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Preface

The robotics industry was originally developed to supplement or replace humans by doing
dull, repetitive, dirty, or dangerous work. Robot systems have broad application prospects in
industry, agriculture, defense, and other fields. Over the past few decades, extensive research
has been conducted on the applications of agricultural robots and automation to a variety of
field and greenhouse operations, and technical fundamentals and their feasibility have been
also widely demonstrated. Due to the unstructured environment, adverse interference, and
complicated and diversified operation process are the key of blocking its commercialization
in robotic agricultural operations. Because of the development of automation techniques,
smart sensors, and information techniques, some types of agricultural robots have achieved
considerable success in recent years. Mapping and localization, navigation and guidance, ro‐
botic grasping, human/robot interaction, object recognition and location, as well as multiro‐
bot systems and collaboration operation are also research hotspots in agricultural robots.

Agricultural Robots: Fundamentals and Applications aims to present the recent developments
and applications of agricultural robots, and to publish original articles from a wide variety
of interdisciplinary perspectives concerning the theory and practice of robots in the fields of
agriculture, food, and biosystem engineering. This book can also serve as an international
forum to share ideas, problems, and solutions relating to agricultural robots and applica‐
tions in agriculture. In addition to the introductory chapter, this book also presents selected
representative chapters covering infield navigation, pest and disease detection, field robots
for mechanical weed control, unmanned aerial vehicles, hybrid powered autonomous ro‐
bots, and fruit grading robots.

Overview of the recent developments and applications

The first chapter, “Introductory chapter: recent developments and applications of agricultur‐
al robots,” gives a brief overview of the recent developments and applications of agricultur‐
al robots. With the motivation of high efficiency, high automatization, and increase in the
value of agricultural products to the consumer, worldwide research and development ef‐
forts in agricultural robot technology have continued to be developed over the last 40 years.
Many excellent research papers have been published focused on harvesting robots, weeding
robots, fertilizing robots, transplanting robots, spraying robots, grading robots, grafting ro‐
bots, phenotyping robots, unmanned aerial vehicles, etc.

Agricultural robots for field and greenhouse farming

The second chapter, “Development of a field robot platform for mechanical weed control in
greenhouse cultivation of cucumber,” introduces a prototype robot that moves on a mono‐
rail along the greenhouse for weed elimination between cucumber plants. The use of a labor
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force that manually pulls out weeds is not an efficient method. It is therefore necessary to
select a proper method for effective weed control. In this study, the robot benefits from three
arrays of ultrasonic sensors for weed detection and a PIC18 F4550-E/P microcontroller board
for processing. Thus, the feedback from the sensors activates a robotic arm that moves inside
the rows of cucumber plants and cuts the weeds using rotating blades. In this regard, agri‐
cultural robotic and automation technology plays an essential role in improving the interac‐
tions between human, machine, and plants. This study can contribute to the
commercialization of a reliable and affordable robot for automated weed control in green‐
house cultivation of cucumber.

The third chapter, “An evaluation of three different infield navigation algorithms,” presents
three different infield navigation algorithms based on the readings from a LIDAR sensor. The
usual autonomously driving agriculture machinery requires a previously known path of
movement. This is repeated with each iteration when the crop needs to be treated. This is not
always possible if no prior GPS information exists, or an accurate GPS system is not always
available. So, different algorithms should be compiled to autonomously drive the machines
and evaluate the accuracy for infield navigation. The three different algorithms include a
minimal row offset-based algorithm, a least-squares fit approach algorithm, and a triangle-
based navigation algorithm. The algorithms are tested on a small field robot. The robot has to
drive autonomously through the crop fields with the navigation algorithm, which relies on
the distance measurements from the LIDAR sensor and then chooses the optimal path based
on the readings. Once the robot reaches the end of the crop line it uses data from the on-board
compass (IMU unit) and turns in the next row. Additionally, the accuracy of the three pro‐
posed navigation algorithms was investigated and compared in this work.

The fourth chapter, “Agricultural robot for intelligent detection of Pyralidae insects,” intro‐
duces a new scheme to detect and identify Pyralidae insects by using the designed insect
monitoring robot to solve the problem of maize borer detection. In this chapter, a robot plat‐
form for pest monitoring is first designed and fabricated. Then, a recognition scheme for
Pyralidae insects is presented. The recognition scheme for Pyralidae insects is mainly divid‐
ed into input module, reference image-processing module, image segmentation module,
contour extraction module, and target recognition module. Furthermore, the histogram re‐
verse-mapping method and the multitemplate image are used to obtain the general proba‐
bility image superposition. Color histograms are particularly useful for describing images
that are difficult to segment automatically and the histogram reverse-mapping method can
be used to segment the image or find interesting content in the image. Next, the image is
segmented with the Otsu algorithm based on constrained space. Finally, the contour of Pyr‐
alidae insects can be recognized by using the contours and Hu moments to automatically
screen and identify the contours. This chapter also compares the new scheme with the mul‐
tistructural element-based crop pest identification method proposed and the general histo‐
gram reverse-mapping method.

The fifth chapter, “Hybrid-powered autonomous robots for reducing both fuel consumption
and pollution in precision agriculture tasks,” investigates techniques to reduce fuel con‐
sumption in robotic vehicles and reduce atmospheric emissions from these automated sys‐
tems. Agricultural vehicles that use fossil fuels emit significant amounts of atmospheric
pollutants. Thus, a solution is examined by designing and assessing a hybrid energy system
that omits the alternators from the original vehicle and modifies the agricultural imple‐
ments. Therefore, the PTO power is replaced by electrical power. A hybrid energy system
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for autonomous robots devoted to weed and pest control in agriculture is modeled and eval‐
uated, and its exhaust emissions are compared with those of an internal combustion engine-
powered system. The results demonstrate that the hybrid energy system reduced emissions
by up to approximately 50%.

The sixth chapter, “Fundamental research on unmanned aerial vehicles (UAVs) to support
precision agriculture in oil palm plantations,” discusses several considerations and recom‐
mendations for using UAV drones in several precision agriculture applications for oil palms
in Malaysia, including health assessment and disease detection, pest monitoring, yield mon‐
itoring, and creation of virtual plantations and dynamic web mapping. With the background
of Malaysia as the second largest oil palm exporter, precision agriculture of oil palm is one
of the largest markets in Malaysia to benefit from UAV and robotics. To solve these four
aspects, the chapter proposes a solution of aerial scanning the plantation using a visible RGB
camera and near-infrared, hyperspectral, and multispectral sensors. Furthermore, it relates
to stabilizing a fixed-wing Osprey UAV. For this purpose, a case study is presented on stabi‐
lizing a fixed-wing Osprey crop surveillance drone that can be adapted as a research plat‐
form in UAV-based precision agriculture of oil palm. The objective was to design and
implement three controllers, including PID, LQR with full-state feedback, and LQR plus an
observer to improve automatic flight control of the Osprey drone.

Grading robots for the fruit industry

The seventh chapter, “Multimodal classification of mangos,” presents an integrated frame‐
work for the automated grading, sorting, and weighing system of Cat-Chu mangos using
features including weight, size, and external defects. This topic is crucial for ensuring high
quality from the earliest stages of the crop to postharvest storage and treatments. In the first
part of this chapter, an algorithm for estimating mangos’ masses is proposed based on the
research of the simple, linear correlation between mass and sizes, and the estimation error is
relatively small. A review of several methods for automatic selection of threshold values is
given, especially Otsu’s method and the Valley-Emphasis method. In addition, this chapter
constructs an artificial neural network model to classify mangos having multiple types of
external defects, and the research results indicate that the proposed system has great poten‐
tial to be used in a real industrial setting.

This book is the result of many collaborating parties, and we gratefully acknowledge all the
contributors to this book. We sincerely hope that you will find the chapters as useful and
interesting as we did. We also look forward to seeing another technological breakthrough in
agricultural robots in the near future.

Jun Zhou and Baohua Zhang
College of Engineering

Nanjing Agricultural University
Nanjing

Jiangsu, PR China

Preface IX
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1. Introduction

The robotics industry was originally developed to supplement or replace humans by doing 
dull, repetitive, dirty, or dangerous work [1]. Robot systems have broad application prospects 
in industry, agriculture, defense, and other fields. In the past decades, extensive research has 
been conducted on the applications of agricultural robots and automation to a variety of field 
and greenhouse operations, and technical fundamentals and their feasibility have been also 
widely demonstrated. Due to the unstructured environment, adverse interferences, as well as 
the complicated and diversified operation process, are the key in blocking its commercializa-
tion in robotic agricultural operations.

It is well known that the introduction of robotics in agriculture has not had the same success 
as it has in the manufacturing industry [2]. This is mainly due to the fact that the agricultural 
environment is much less structured, and the operating agricultural objects are flexible and 
vary in shape, size, and materials [3]. Consequently, it is more difficult to adopt robots in the 
automation of different agricultural processes.

As the development of automation techniques, smart sensors, and information techniques, 
some types of agricultural robot have achieved considerable success in recent years. Mapping 
and localization, navigation and guidance, robotic grasping, human-robot interaction, object 
recognition and location, and multi-robot systems and collaboration operation are the research 
hotspots in agricultural robots.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Hot research topics of agricultural robots

2.1. Object recognition for harvesting robots

In the latest decades, the use of robot systems in agriculture has seen a sharp increment [4]. 
Object recognition is the precondition for robot grasping. Today, harvesting robot mainly uti-
lizes the methods based on computer vision to achieve recognition and location of objects. 
Actually, the key step of computer vision is the processing procedures of vision images which 
were acquired by visual sensors including our object. Not only the object but also many of use-
less and interferential information were present in the acquired image. These redundant infor-
mation extremely may slow down the speed and accuracy of recognition. Thus, how to extract 
useful information while detecting the fruit or vegetable became the most important part.

In the past, researches gradually put forward the concept of feature engineering [5]. The avail-
able information in the object recognition is called feature. By extracting and using those 
features, the distinction between the object and their growing environment can be figured out. 
However, there are some uncontrollable and complex factories near the fruit and vegetable. 
The occlusion of leaves and stems, the illumination unevenness on fruit surface and the high 
variability of fruit color enhanced the difficulty of recognition and location. Therefore, a 
robust algorithm must be developed and applied to object recognition for harvesting robots.

2.2. Simultaneous localization and mapping for agricultural environments

Simultaneous localization and mapping (SLAM) is a critic problem in robotics automatic 
navigation and positioning, using multiple sensors to get external information, for the pur-
pose of obtaining a consistent map of the environment and at the same time recognizing 
itself within this map [6]. From the choice of different sensors, the solutions to SLAM prob-
lem can be divided into three main fundamental categories: visual, lidar, and sensor fusion 
SLAM. Different kinds of SLAM algorithms have been in demand in many scenarios for a long 
time, such as VR/AR equipment, indoor autonomous mobile robots, and unmanned vehicle 
[7]. With the development and maturity of SLAM technology, SLAM has been applied to 
agriculture. It is a combination of traditional fields and new technologies. The most significant 
requirement for many applications in precision agriculture is the ability to accurately locate a 
moving vehicle [8]. By solving the problem of SLAM, the vehicle can map the targeted areas, 
locate itself, and fulfill tasks such as spraying, weeding, and mowing [8, 9]. As a consequence, 
the application of SLAM technology in agriculture can lighten framers’ workload, complete 
dangerous tasks instead of human labor, and increase productivity [10]. Overall, SLAM tech-
nology has a bright prospect in the automation and intelligence of agriculture.

2.3. Agricultural product quality sensing for grading robots

Nowadays, fruits and vegetables have become an indispensable food in our daily life. Fruits 
and vegetables are not only important for people to adjust their taste but also rich in healthy 
vitamins, fiber, and trace elements. In recent years, consumer demand for fruits and vegetables 
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tends to be diversified, and more attention has been paid to the external and internal quality 
of agricultural products [11]. Due to the ever-growing demand for food safety and security, 
the automated grading of agricultural products is playing an increasingly important role in 
agricultural field. The automatic robots are able to remove the need for human operators 
to carry out heavy, monotonous, and dangerous operations and give future generations the 
possibility to achieve economic sustainability in small high value farming operations. The 
principle of the automated grading robots is to apply machine vision to detect the external 
defects of the fruits and vegetables and to use spectral/hyperspectral imaging technology to 
measure the internal quality [12]. Therefore, it can be said that operations in grading system 
for fruits and vegetables became highly automated with the machine vision, near infrared, 
and robotics technologies. The automated grading robots of fruits and vegetables have been 
investigated over the past few years.

2.4. Robotic grippers and grasping control

Grasping and holding of objects are the fundamental capabilities and key tasks for robots 
and robotic manipulators. The grippers are the most important components of robots for 
many manipulation tasks, since they serve as mechanical interface between the robots and 
their environment. The fragile structure of the fruit or vegetable body makes them suscep-
tible to bruising caused by the aggressiveness of harvest and postharvest processes. Grasping 
without damaging the fruits is a key barrier to the replacement of manual labor by robotic 
harvesting.

The agricultural tasks are always carried out in an outdoor unstructured environment [13]; the  
agricultural operations and sequence of motions are different from one task to the other; the 
manipulating objects of robots and grippers are flexible and damageable plants or fruits, and 
they are highly variable in shapes, sizes, and structures. The abovementioned factors put 
forward higher requirement to the machinery of robotic grippers, smart sensors, and grasping 
control strategy in agricultural tasks.

Robotic grippers design attempts to simulate the advantage aptitudes with the aim of 
grasping any kind of objects by copying human abilities such as sense of touch and visual 
perception [1]. By integrating various sensors, the robotic grippers can not only manipu-
late the workpiece but also analyze and the grippers can also conduct online decision-
making based on the fusion sensory data. Figure 1 shows the gripper development trend 
for sensors.

2.5. Other hot research topics

As the requirement of the agricultural robots, the research topics have been extended to very 
large areas, including precision farming, cloud computing, human-robot interaction, sensing 
and control, robot design and optimization, multi-robot systems and collaboration opera-
tion, weeding robots, fertilizing robots, transplanting robots, spraying robots, grafting robots, 
phenotyping robots, and unmanned aerial vehicles.
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3. Conclusions

With the motivation of high efficiency, high automatization, and increasing the value of 
the agricultural products to the consumer, worldwide research and development efforts in 
agricultural robot technology continue to be developed in the last 40 years. Many excellent 
research papers have been published focused on harvesting robots, weeding robots, fertilizing 
robots, transplanting robots, spraying robots, grading robots, grafting robots, phenotyping 
robots, unmanned aerial vehicles, etc.

This book intends to provide the reader with a comprehensive overview of the current state- 
of-the-art agricultural robots, fundamentals, and applications in robotic agricultural opera-
tions. The challenges and directions of agricultural robots for future research and  development 
will be also reported and formulated in this book.
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Figure 1. Gripper development trend for sensors.
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Abstract

A prototype robot that moves on a monorail along the greenhouse for weed elimination 
between cucumber plants was designed and developed. The robot benefits from three 
arrays of ultrasonic sensors for weed detection and a PIC18 F4550-E/P microcontroller 
board for processing. The feedback from the sensors activates a robotic arm, which 
moves inside the rows of the cucumber plants for cutting the weeds using rotating blades. 
Several experiments were carried out inside a greenhouse to find the best combination 
of arm motor (AM) speed, blade rotation (BR) speed, and blade design. We assigned 
three BR speeds of 3500, 2500, and 1500 rpm, and two AM speed of 10 and 30 rpm to 
three blade designs of S-shape, triangular shape, and circular shape. Results indicated 
that different types of blades, different BR speed, and different AM speed had significant 
effects (P < 0.05) on the percentage of weeds cut (PWC); however, no significant interac-
tion effects were observed. The comparison between the interaction effect of the factors 
(three blade designs, three BR speeds, and two AM speeds) showed that maximum mean 
PWC was equal to 78.2% with standard deviation of 3.9% and was achieved with the 
S-shape blade when the BR speed was 3500 rpm, and the AM speed was 10 rpm. Using 
this setting, the maximum PWC that the robot achieved in a random experiment was 
95%. The lowest mean PWC was observed with the triangular-shaped blade (mean of 
50.39% and SD = 1.86), which resulted from BR speed of 1500 rpm and AM speed of 
30 rpm. This study can contribute to the commercialization of a reliable and affordable 
robot for automated weed control in greenhouse cultivation of cucumber.
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1. Introduction

The demand for off-season cultivation of fruits and vegetables require different aspects of auto-
mation and robotics in closed-field plant production environments like greenhouses [1]. Modern 
greenhouse bioproduction systems are required to exhibit integration of automation, biological 
culture practices, and control systems through the concept of Automation-Culture-Environment-
oriented SYStems analysis (ACESYS) as defined in [2, 3]. The growth condition for Solanaceae 
vegetables in the greenhouse provides the leeway for the growth of other plants as well. In green-
house cultivation of Cucumber (Cucumis sativus), the growth of weeds like cleavers, amaranth, 
camelthorn, grass quack, and oat wild decreases the final crop yield and quality. These weeds 
compete with cucumbers for nutrients, water, and photosynthesis. During the growing period, 
weeds use a large portion of water and nutrient, and because of their physiological properties, 
they grow simultaneously and rapidly with the original plant. It is, therefore, necessary to elimi-
nate them before causing serious damage to the original plants. Various mechanical and chemical 
methods, as well as cultivation techniques, have been proposed to prevent the growth of weeds, 
including mechanical techniques, hand picking, spraying, environment heating, herbicides and 
biocontrols, and soilless cultural practices. For example, weed biocontrol is the suppression 
of weeds by insects and microorganisms that feed on the target plants or otherwise parasitize 
them. The success in this method is not always guaranteed because biocontrol is species specific, 
and there are hundreds of serious weed species. Cultural control includes those management 
practices that modify the agro-ecosystem to make the pasture, crop, or forest ecosystem resis-
tant to weed establishment, i.e., integrating sheep or goats to browse brush species and fowl to 
graze herbs and grasses [4]. Prior to the development of modern herbicides, rancher and forest 
managers relied mainly on mechanical methods of weed control, such as grubbing, bulldozing, 
dragging, cabling, and mowing. Compared to mechanical weed control methods, herbicides 
are more effective at a lower cost. Herbicidal weed control results in greater grass production 
in pastures than does clipping of weeds [5]. In order to apply chemical directly to the weed’s 
vascular tissue, a direct chemical application end effector is required to cut the weed’s stem and 
spread the chemical on the cut surface. An example of such application can be found in [6] where 
a prototype weed control robot was developed to spray weeds in cotton plants in the seed line. 
A real-time intelligent weed control system was introduced in [7] for selective herbicide applica-
tion to in-row weeds using machine vision and chemical application. A minirobot to perform 
spraying activities based on machine vision and fuzzy logic has been described in [8, 9]. More 
examples of autonomous vehicle robot for spraying the weeds can be found in [10–12].

The use of labor force that manually pulls out the weeds is still practiced by local growers. 
This is, however, not an efficient method since the availability of the skilled workforce that 
accepts repetitive tasks in the harsh greenhouse and field conditions impose uncertainties 
and timeliness costs [13]. It is, therefore, necessary to select a proper method for effective 
weed control. The trends in the agricultural robotics in the past 10 years show that automa-
tion of plant trimming with simultaneous localization and mapping techniques will change 
the industry in future [14]. The available time, labor, equipment, costs, and types of weeds 
and the areas infested need to be considered when planning a weed control program. In this 
regard, agricultural robotic and automation technology plays an essential role in improving 
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the interactions between human, machine, and plants [15]. For example, the prevention of 
musculoskeletal disorders in manual harvesting operations in Dutch greenhouses has moti-
vated various researchers for replacement of human labor by automatons robot for picking 
cucumber [16] and sweet pepper [13] fruits. Automation is a viable and sometimes necessary 
method to ensure maximum profits with minimum costs. In fact, one of the main purposes of 
agricultural automation has been always concerned with the substitution of human workforce 
by robots or mechanized systems that can handle the tasks more accurately and uniformly at 
a lower cost and higher efficiency [17–22].

Research and development in agricultural robotics date back to 1980s, with Japan, the 
Netherlands, and the USA as the pioneer countries. Example of such research works 
included the works of [7, 23] for robotic weed control and automated harvesting of tomato. 
Development of an autonomous weeding machine requires a vision system capable of detect-
ing and locating the position of the crop. Such vision system should be able to recognize the 
accurate position of the plant stem and protects it during the weed control [24]. A near-ground 
image capturing and processing technique to detect broad-leaved weeds in cereal crops under 
actual field conditions has been reported in the work of [25]. Here, the researchers proposed 
a method that uses color information to discriminate between vegetation and background, 
while shape analysis techniques were applied to distinguish between crop and weeds. Shape 
features of the radish plant and weed were investigated by [26]. They proposed a machine 
vision system using a charge coupled device camera for the weed detection in a radish farm 
resulting 92% success rate of recognition for radish and 98% for weeds.

A combined method of color and shape features for sugar beet weed segmentation was pro-
posed by [27] with 92% success rate in classification. This rate increased to 96% by adding two 
shape features. Another approach extracted a correlation between the three main color com-
ponents R, G and B, which constitute weeds and sugar beet color classes by means of discrimi-
nant analysis [28]. Their method resulted in different classification success rates between 77 
and 98%. The segmentation of weeds and soybean seedlings by CCD images in the field was 
studied by [29]. Texture features of weed species have been applied for distinguishing weed 
species by [30] with grass and broadleaf classification accuracies of 93 and 85%, respectively. 
Textural image analysis was used to detect weeds in the grass [31]. Gabor wavelet features of 
NIR images of apples were extracted for quality inspection and used as input to kernel PCA 
[32]. Kernel PCA first maps the nonlinear features to linear space, and then, PCA is applied 
to separate the image Gabor wavelet (5 scales and 8 orientations) combined with kernel PCA 
that had the highest recognition rate (90.5%). Improvements in vision-based control system 
[13, 33–36] have enabled several applications of robotic manipulators for greenhouse and 
orchard tasks and have contributed to the decrease in workload and labor’s fatigue, while 
improving the efficiency and safety of the operations. These achievements were considered a 
challenge in the earlier agricultural robotics works [23, 37, 38]. For example, spray equipment 
for weed control has been developed with vertical spray booms that increase the deposition in 
the canopy [39–41]. Some of these alternatives are self-propelled vehicles such as Fumimatic® 
(IDM S.L, Almería, Spain) and Tizona (Carretillas Amate S.L., Almería, Spain), or autono-
mous vehicles such as Fitorobot (Universidad de Almería, Cadia S.L., Almería, Spain) that 
have been designed specifically to move without difficulty over loose soils and in spaces with 

Development of a Field Robot Platform for Mechanical Weed Control in Greenhouse Cultivation…
http://dx.doi.org/10.5772/intechopen.80935

13



1. Introduction

The demand for off-season cultivation of fruits and vegetables require different aspects of auto-
mation and robotics in closed-field plant production environments like greenhouses [1]. Modern 
greenhouse bioproduction systems are required to exhibit integration of automation, biological 
culture practices, and control systems through the concept of Automation-Culture-Environment-
oriented SYStems analysis (ACESYS) as defined in [2, 3]. The growth condition for Solanaceae 
vegetables in the greenhouse provides the leeway for the growth of other plants as well. In green-
house cultivation of Cucumber (Cucumis sativus), the growth of weeds like cleavers, amaranth, 
camelthorn, grass quack, and oat wild decreases the final crop yield and quality. These weeds 
compete with cucumbers for nutrients, water, and photosynthesis. During the growing period, 
weeds use a large portion of water and nutrient, and because of their physiological properties, 
they grow simultaneously and rapidly with the original plant. It is, therefore, necessary to elimi-
nate them before causing serious damage to the original plants. Various mechanical and chemical 
methods, as well as cultivation techniques, have been proposed to prevent the growth of weeds, 
including mechanical techniques, hand picking, spraying, environment heating, herbicides and 
biocontrols, and soilless cultural practices. For example, weed biocontrol is the suppression 
of weeds by insects and microorganisms that feed on the target plants or otherwise parasitize 
them. The success in this method is not always guaranteed because biocontrol is species specific, 
and there are hundreds of serious weed species. Cultural control includes those management 
practices that modify the agro-ecosystem to make the pasture, crop, or forest ecosystem resis-
tant to weed establishment, i.e., integrating sheep or goats to browse brush species and fowl to 
graze herbs and grasses [4]. Prior to the development of modern herbicides, rancher and forest 
managers relied mainly on mechanical methods of weed control, such as grubbing, bulldozing, 
dragging, cabling, and mowing. Compared to mechanical weed control methods, herbicides 
are more effective at a lower cost. Herbicidal weed control results in greater grass production 
in pastures than does clipping of weeds [5]. In order to apply chemical directly to the weed’s 
vascular tissue, a direct chemical application end effector is required to cut the weed’s stem and 
spread the chemical on the cut surface. An example of such application can be found in [6] where 
a prototype weed control robot was developed to spray weeds in cotton plants in the seed line. 
A real-time intelligent weed control system was introduced in [7] for selective herbicide applica-
tion to in-row weeds using machine vision and chemical application. A minirobot to perform 
spraying activities based on machine vision and fuzzy logic has been described in [8, 9]. More 
examples of autonomous vehicle robot for spraying the weeds can be found in [10–12].

The use of labor force that manually pulls out the weeds is still practiced by local growers. 
This is, however, not an efficient method since the availability of the skilled workforce that 
accepts repetitive tasks in the harsh greenhouse and field conditions impose uncertainties 
and timeliness costs [13]. It is, therefore, necessary to select a proper method for effective 
weed control. The trends in the agricultural robotics in the past 10 years show that automa-
tion of plant trimming with simultaneous localization and mapping techniques will change 
the industry in future [14]. The available time, labor, equipment, costs, and types of weeds 
and the areas infested need to be considered when planning a weed control program. In this 
regard, agricultural robotic and automation technology plays an essential role in improving 

Agricultural Robots - Fundamentals and Applications12
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a large number of obstacles [41]. These vehicles rely on inductive sensors to follow metal 
pipes buried in the soil. Few studies have addressed the navigation problem of vehicles in 
greenhouses operating completely autonomously [9, 11, 15]. The main challenge of these 
systems is that localization approaches needed for feeding the closed-loop controllers would 
lead to inaccurate measurements after a few steps fail for long trajectories [42]. A stereovision 
system along with an image processing algorithm was used to recognize the weeds and also 
to estimate their location in the field. In order to experiment with vision sensors and agricul-
tural robots, [13] created a completely simulated environment in V-REP, ROS, and MATLAB 
for improvement of plant/fruit scanning and visual servoing task through an easy testing and 
debugging of control algorithms with zero damage risk to the real robot and to the actual 
equipment. In another study, [43] designed a field survey mobile robot platform based for 
navigating inside greenhouses and open-field cultivation for automated image acquisition. A 
functional model shown in Figure 1 was introduced by [44] in the field test of an autonomous 
robot for deleafing cucumber plants grown in a high-wire cultivation system. This model was 
also adapted and used by [13] for the robotic harvesting of sweet pepper and on a greenhouse 
field survey mobile platform [43]. Artificial neural networks have also been used by many 
researchers to discriminate weeds [45, 46] with machine vision as shown in Figure 2. A fixed-
position weed robot was presented by [47], which is interfaced to a standard belt-conveyor 
displacement system and provides the robot with pallets containing the crops. These reviews 
indicate that a commercial robotic platform for the elimination of weeds in a cucumber green-
house has not been materialized yet. In addition, most of the research works in the area of 
robotic weed control are applicable prior to the plant growth or in some cases when the main 
plant height is between 0.2 and 0.3 m.

Figure 1. Task sequence during leaf picking of cucumber, adapted from [44].
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The overall objective of this study was to design and develop an affordable robotic weed 
control system for application in greenhouse cultivation of cucumbers where plants can reach 
to a height of 10 m. Our design is based on mechanical weed removal techniques without 
using chemical materials. The specific objectives were to determine (i) the best blade design 
for cutting the weeds among cultivation rows, (ii) the best blade rotation (BR) speed, and (iii) 
the best arm motor (AM) speed.

2. Materials and methods

2.1. Overview of the prototype robot weed

A flowchart of the methodology is shown in Figure 3. A prototype robot was designed using 
AutoCAD software 2011 v18.1 (Autodesk Inc., San Rafael, CA, USA). Schematic views of the 
prototype robot, as well as the corresponding dimensions and parts are shown and illus-
trated in Figures 4 and 5. The main mechanical components of the robotic platform consist 
of a monorail, main chassis, ball bearings, wheels, arms, blade, and adjusting mechanism. 
Major electrical components include DC motors, microswitches, a 12 V 7.2–9 amp sealed lead 
acid battery, SRF05 ultrasonic sensors, pic 18F4550 microcontroller, and 2 × 24 LCD monitor 
(Figure 6). We began with the design of a monorail that was responsible to support the robot 
navigations and stops between two cucumber rows inside the greenhouse. The monorail has 
a width of 0.06 m and was placed 0.4 m above the ground (Figure 5A and B). The algorithm 
for robot navigation between two consecutive stops points on the monorail is also illustrated 
in the flowchart of Figure 5. Right after the robot is switched on, it starts moving on the 
monorail that is fixed along the greenhouse from one row to another. Upon reaching the first 

Figure 2. Mechatronic paradigm followed in this research, adapted from [41].
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stopper point on the rail, the robot strikes the first microswitch, which sends a deactivation 
signal to the first motor responsible for moving the robot. While stopped between two cucum-
ber plant rows, the robot scans for weeds and determines the distance between the detected 
weed and the blade arm using the ultrasonic sensors. Subsequently, a command signal is 
sent to the arm motor and blade motor for activating the blade rotation as illustrated in the 
flowchart of Figure 5.

2.2. Design of the mechanical parts

The moving mechanical arm consists of a chassis, a small arm, and the main arm. Two main 
criteria were considered in designing the robot frame including minimum weight (for increas-
ing the motor efficiency), and strength (for standing vibrations). The frame was made from 
an iron band bearing with the dimensions of 0.02 × 0.18 × 0.005 m. In order to provide sup-
port for the battery, bearing bases, microswitches, and the main arm, we installed additional 
extensions to the frame in a way that the robot gravity center is placed on the monorail. The 
battery is the heaviest part of the robot and can power the robot for 2 h. It was installed on 
the central frame above the rails and wheels. The battery weight creates stability for the robot 
when the main arm is outstretched, and this weight and location for the battery can hold the 
spinning wheel implemented in place. We placed several holes on the frame to facilitate the 
installation of the motor, wheels, and the required electrical fragments (Figure 5C and D). 
The robot makes use of four ball bearings of diameter 0.02 m, out of which three were used 
to hold the robot to the rail and to facilitate a smooth movement (two bearings were placed 

Figure 3. Flowchart of the research methodology.
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on the right and one on the left side). The fourth bearing was used to act as the second wheel 
for the robot. All the ball bearings have a diameter of 0.02 m and are installed on the central 
frame. The diameter of the robot main wheel is 0.04 m, and the ideal speed was determined 
using trial and errors and time-motion studies during the conducted tests. The arm frame is 
made of an iron band bearing with a dimension of 0.02 × 0.2 × 0.005 m. A blade was installed 
on the main arm that moves forward and enables robot access to the weeds between the main 
plants. A shank protector in one of the holes in the arm frame makes the movement and the 
selection of the angle for smooth cutting.

Figure 4. The CAD model design of the weed control robot.
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2.3. Design of the electronic parts: sense and action mechanism

Major electronic components of the robot are three sets of SRF05 ultrasonic sensors, a 
PIC18F4550 microcontroller, and a 2 × 24 LCD monitor (Figure 6). The ultrasonic sensors were 
placed in a row having 0.10 m distance from each other. The sensors are specially positioned 
in a way that they cover the space between two cucumber plants on the cultivation row. 
As mentioned earlier, upon receiving a signal indicating weed existence, the microcontroller 
program determines the distance between the weed and the sensors and whether the weed 
is on the left, right, or middle of the sensors. This signal activates the cutting mechanism. 
Finally, the information of the entire process, including the distance between weed and sen-
sors, and the specific sensor that identified the weed are shown on the robot LCD. During 
the experimental phase, we considered several improvements and adjustment on the sensing 
part and corresponding microcontroller program. For example, we used a tube pipe cover for 
each of the ultrasonic sensors to change the circular waves to linear waves. This was necessary 

Figure 5. The mechanism and flowchart for the robot navigation and control on the monorail showing (A) the monorail 
layout, (B) the robot mounted on the monorail, (C) the robot main body and manipulator arm, and (D) the joint setup 
between the robot and the monorail.

Figure 6. Major electrical module and wiring connections of the weed control robot.
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because sound waves that broadcast from transmitters of ultrasonic sensors are circular. 
When these sensors are close to the ground, the broadcasting waves that bounce off from the 
ground are misinterpreted as weeds.

The robot movements are supported by three 12 V, 0.89 A DC motors that are labeled for this 
paper by motor 1, 2, and 3. The first motor was fixed directly to the wheels in front of the robot 
and was responsible for the robot movement on the monorail. To select the optimum speed 
for the robot, six motor speeds of 30, 40, 50, 60, 80, and 120 rpm were tested. We found that the 
motor with 60 rpm, 1.358 N·m torque, 12 V, 0.89 A had the best performance in the greenhouse 
under study. The second motor was connected to the small arm and is responsible to rotate the 
big arm that moves the blade of the robot at a selected speed of 10 rpm and torque of 8.15 N·m. 
The third motor was fixed to the frame of the main arm for rotating the blade at a high speed 
of 3500 rpm for efficient weed cutting and removal. This frame can move up and down and can 
fix the distance between the blade and the ground level. It should be noted that the 3500 rpm 
blade rotation speed and the 10 rpm arm motor speed were found from the experiments.

2.4. Blade design and analysis

Three types of blade, namely the S-shaped, the triangle-shaped, and the circular-shaped blade 
(Figure 7) were initially considered in the weed cutting experiments. We conducted several 
tests to find the best blade width (equal to 0.1 m) for matching the 0.4 m distance between 
two cucumber plants. Based on our field tests, we found that the S-shaped blade was the most 
efficient design for the purpose of weed cutting. The blade was built from double stainless steel 
material to resist the corrosion in high humidity greenhouse environment. Analysis and calcu-
lations were carried out for finding the blade tip speed and corresponding vector components 
according to the formulations given in [48]. The corresponding diagrams of this analysis are 
shown schematically in Figure 7. It can be observed from Figure 7A that the direction of the tip 
of the blade follows a cycloid curve on the ground level. The component of blade speed in the 
direction of robot forward speed vector, as well as the demonstration of vector gradient in the 
blade speeds, is shown in Figure 7B–D. Here, WB is the circular speed of the blade (rad/s), Vf is 
the forward speed of robot [m/s], Vbf = Vf + Vb is the ratio of the total speed of blade to ground 
[m/s], vb = rb × WB is the circumferential speed of blade [m/s], rb is the radius of blade [m], U 
represents the direction of the robot movement, and V is the linear speed of blade [m/s]. The 
speed of the tip of the blade on the ground is equal to the sum of robot forward speed and its 
circumferential speed. Having the direction of robot moving (U), the direction of the moving 
blade will be in the direction of Vbf, which changes its direction as the blade rotates in the time 
frame t [s]. Therefore, to find the components of U and V, the speed of the blade tip can be writ-
ten as the component of blade speed in direction of moving U [48], that is Vu = Vf – rb × WB Sin 
(θ), and Vv = Vbv = Vb × Cosθ = rb × WBcos (θ), where θ = WB × t is the angle between blade and 
movement direction, Vu and Vu are the speed component [m/s], and t [s] is the measured time 
from the initial angle θ = 0. Therefore, the speed of the blade tip with respect to the ground is 

calculated as    | Vbf |   =  √ 
___________

     | Vv |     2  +    | Vu |     2    . Figure 7E shows forces and torque vectors of the cutting strike 
on the weed stem. Here, the force fb [N] is the bending strength of the plant body, fr is the 
cutting force [N], Ip is the pant geometry hardness torques, and mp is the weight of the cutting 
part of the plant [kg]. During the trial and error experiments, it was found that a minimum 
strike speed of between 50 and 75 m/s is required for cutting the weeds.
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2.5. Experiment setup

The weed control robot was tested in a 5000 m2 greenhouse in Jiroft city (28°40′41″N 57°44′26″E) 
located to the south of Kerman province of Iran (Figure 8). We planted over 10,000 cucumber 
seeds in pots and placed them in the greenhouse with spaces between the two plants being 
0.4 m. It should be noted that in order to manually remove the weeds from 1 ha of the green-
house under study, four seasonal workers had to perform the task every day, for 8 months 
(equivalent to 832 man/hour). Three experiments were conducted at different growth stages 
as follows: (i) during the seedling and germination stage, 15 days after the crop was cultivated 

Figure 7. Design of the cutting blade, (A): calculating the velocity of rotating blade in stickles, (B): component of blade 
speed in direction of moving U, (C, D): calculating U and V, (E): components of forces, and (F): vector demonstration of 
the blade speed. Adapted from [48].

Agricultural Robots - Fundamentals and Applications20

and the surrounding weeds were also 15 days old (these weeds usually have thin and very 
flexible stalks and are 10 cm high), (ii) during the vegetation and early fruiting stage, when 
the cucumber plants were 2 months old, and (iii) during the mature fruiting stage, when the 
plants were at their mature height. Three types of blades were selected, namely the S-shaped, 
triangular-shaped, and circular-shaped blade. For each blade, we assigned three blade rota-
tion (BR) speeds of BR1 = 3500, BR2 = 2500, and BR3 = 1500 rpm with two arm motor (AM) 
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age of weeds cut (PWC) in an experiment. Time and motion study was conducted for the 
robot to move from one stopper to another. For motor no. 1, with a typical rotational speed of 
60 rpm, and the wheel diameter of 0.04 m, the forward speed of the robot (VF) becomes 0.1256 
m/s. Hence, the required time T [s] for the robot to travel the distance of X = 0.40 [m] between 
two consecutive stoppers is equal to T = 3.2 s using Eq. (1). The possibility for the robot to pass 
through the two stoppers within a row was considered for the consequent calculations. For 
the arm motor, the typical speed is 10 rpm, which implies that it takes T = 6 s for the robot to 
remove the weed between two plants.

  T =   3.6 × X ______  V  F  
    (1)

3. Results

Results of statistical analysis are summarized in Tables 1–3 showing that the effects of blade 
type (T), blade rotation (BR) speed, and arm motor (AM) speed are significant at the 0.05 level. 
Moreover, it was found that the S-shaped blade with a mean (μ) of 67.8% and standard error (σ) 
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2.5. Experiment setup
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Figure 7. Design of the cutting blade, (A): calculating the velocity of rotating blade in stickles, (B): component of blade 
speed in direction of moving U, (C, D): calculating U and V, (E): components of forces, and (F): vector demonstration of 
the blade speed. Adapted from [48].
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of 3.052% had the highest effect, and triangular-shaped blade with μ = 61.38% and σ = 3.083% 
had the lowest effect on the percentage of the weeds cut (PWC). The BR factor was significant 
at P < 0.05, indicating that blade rotation speed of 3500 rpm with μ = 78.23% and σ = 1.71% had 
the highest effect and the 1500 rpm with μ = 50.39 and σ = 1.86% had the lowest effect. The 
AM speed factor was also found to be significant at P < 0.05, which indicates that the speed 
of 10 rpm with μ = 69.1% and σ = 2.45% had the highest effect and the speed of 30 rpm with 
μ = 59.8% and σ = 2.46% has had the lowest effect on the PWC. It was found that (Table 1) dif-
ferent blade shapes with the AM speed of 10 rpm had a significant effect on the PWC. While the 
mean PWC by the S-shaped blades was the highest, increasing AM speed to 30 rpm reduced the 
efficiency of the S-shaped blade (as well as with the other two blades), resulting a mean PWC of 
59.39%. According to the P-values in Table 2, while all of the main effects of blade type, BR, and 
AM speeds are significant at 0.05 level, their interactions were not found to have a significant 

Blade type μ: Mean percentage of weeds cut (%) σ: Std. error (%)

A: S shaped 67.8 3.05

B: Triangular shape 61.38 3.08

C: Circular shape 64.3 3.38

Blade rotation speed (rpm)

1500 50.3 1.86

2500 64.9 1.51

3500 78.2 1.71

Arm motor speed (rpm)

10 69.148 2.457

30 59.88 2.461

Table 1. Factor effects on the percentage of weeds cut.

Model Sum of squares Mean sum of squares P-value

Blade type (T) 110.3 110.3 0.0462

Blade rotation speed (BR) 6977.1 3488.6 0.000

Arm motor speed (AM) 1157.4 1157.4 0.000

Error 1264.6 26.3

Interaction types P-value

T × BR 114.1 57.1 0.1272

T × AM 5.4 5.4 0.6493

BR × AM 73.6 36.8 0.2560

T × BR × AM 16 8 0.7356

Table 2. Variance analysis and effects of the robot blade type (T), blade rotation (BR) speed, and arm motor (AM) speed 
on the percentage of weed cutting performance.
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effect on the PWC. The results provided in Table 3 show that the difference between the two 
blades, S-shape and triangular shape is significant at the 0.05 level. In other words, the mean of 
weeds cut by these two blades are significantly different, and according to the mean differences 
column, the mean of the PWC by the S-shape blade is larger than the PWC by the triangular-
shaped blade. The mean difference between the S-shaped and the circular-shaped blade with 
P-value of 0.036 is also significant at the 0.05 level. This implies that the average PWC by these 
two blades are significantly different, and according to the mean differences column, the mean 
PWC by the S-shaped blade is larger than the mean of the PWC by the circular-shaped blade. It 
was found that the difference between the means of the triangular-shaped blade and circular-
shaped blade with the P-value of 0.076 is not significant at the 0.05 level, that is, the mean of the 
PWC by these two blade types are not significantly different.

Results of analysis of variance also showed that the mean differences between the BR 
speeds are significant, indicating that the resulted PWC with BR1 = 1500, BR2 = 2500, and 
BR3 = 3500 rpm are not equal. More specifically, the PWC in 1500 rpm was found to be 
smaller than those of 2500 and 3500 rpm. In addition, the mean PWC in 2500 rpm was also 
smaller than that of 3500 rpm. This can also be observed from the bar plots of Figure 9, 

Mean differences P-value

Blade type

A-B 6.4444 0.000

A-C 3.5000 0.036

B-C −2.9444 0.076

Blade rotation (rpm)

BR1-BR2 −14.5556 0.000

BR1-BR3 −27.8333 0.000

BR2-BR3 −13.2778 0.000

Table 3. Comparison of significant difference between blade types (A: S-shape, B: Triangular shape, and C: Circular 
shape), and blades rotation speed (BR1: 1500, BR2: 2500, and BR3: 3500 rpm).

Figure 9. Comparison of the effects of various blade types on (left) and various blade rotation speeds (right) on the 
percentage of weeds cut.
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effect on the PWC. The results provided in Table 3 show that the difference between the two 
blades, S-shape and triangular shape is significant at the 0.05 level. In other words, the mean of 
weeds cut by these two blades are significantly different, and according to the mean differences 
column, the mean of the PWC by the S-shape blade is larger than the PWC by the triangular-
shaped blade. The mean difference between the S-shaped and the circular-shaped blade with 
P-value of 0.036 is also significant at the 0.05 level. This implies that the average PWC by these 
two blades are significantly different, and according to the mean differences column, the mean 
PWC by the S-shaped blade is larger than the mean of the PWC by the circular-shaped blade. It 
was found that the difference between the means of the triangular-shaped blade and circular-
shaped blade with the P-value of 0.076 is not significant at the 0.05 level, that is, the mean of the 
PWC by these two blade types are not significantly different.

Results of analysis of variance also showed that the mean differences between the BR 
speeds are significant, indicating that the resulted PWC with BR1 = 1500, BR2 = 2500, and 
BR3 = 3500 rpm are not equal. More specifically, the PWC in 1500 rpm was found to be 
smaller than those of 2500 and 3500 rpm. In addition, the mean PWC in 2500 rpm was also 
smaller than that of 3500 rpm. This can also be observed from the bar plots of Figure 9, 
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shape), and blades rotation speed (BR1: 1500, BR2: 2500, and BR3: 3500 rpm).

Figure 9. Comparison of the effects of various blade types on (left) and various blade rotation speeds (right) on the 
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Figure 10. Bar plots describing percentage of weeds cut with different blade type, blade rotation speed, and robot arm 
speed.
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showing that the mean PWC in 1500 rpm is the smallest (59.39%) and that of 3500 rpm 
was the largest (78.23%). The bar plots in Figure 10 illustrate descriptive statistics and fre-
quency of the PWC for the experiments with the robot using all factors (blade types A, B, 
C, blade rotation speeds of 1500, 2500, 3500 rpm, and arm motor speed of 10 and 30 rpm). 
It can be seen from Figure 10 that the average PWC by the blades was significantly differ-
ent. Consequently, the highest PWC cut was related to S-shaped at the blade rotation speed 
of 3500 rpm. In each motor arm speed, the increase in the rotational blade speed caused 
an increase in the PWC. In each rotational blade speed, if the motor arm speed increases, 
the PWC cut will decrease. Comparing the interactions between the three different types of 
blades, blade speed, and the speed of the arm the following results was obtained: the highest 
PWC in the entire experiment was 95%, which was obtained when the S-shaped blade at the 
rotational speed of 3500 rpm was used and motor speed was 10 rpm. The lowest PWC was 
45%, which was obtained when the blade speed was 1500 rpm, AM speed was 30 rpm, and 
the blade type was triangular in shape. The analysis of the interaction of the BR speed and 
blade type showed that (i) none of the mutual interactions was significant in the variance 
test, (ii) t-test showed that if the rotational speed of the blade is low, the blade type will have 
a significant effect on the PWC, and (iii) for all the blade types, the highest PWC cut was at 
BR speed of 3500 rpm.

4. Conclusion

In this study, we designed, developed, and fabricated a prototype robot for mechanical 
weed control in greenhouse cultivation of cucumber. Automatic weed cutting experiments 
that were carried using the robot consist of ultrasonic sensor, which senses the existence of 
weeds between the cucumber plants. The robot then moves between cucumber rows on a 
monorail in the greenhouse, with an arm that moves the blade between the plants for cut-
ting the detected weeds. The entire process of weed detection, moving the arm and blades, 
and weeds cutting is carried out in 10 s. Among the three blade types tested (S-, triangular-, 
and circular shapes), it was concluded that the S-shape was the most efficient design. For 
the best blade rotation (BR) and arm motor (AM) speeds, it was concluded that as the AM 
speed increased, the percentage of weeds cut (PWC) reduces; therefore, the motor with 10 
rpm, 8.15 N·m torque, 12 V, and 0.89 A was selected to for moving the arm. The average 
weeds cut at 10 and 30 rpm was 69.1 and 58.9%, respectively. Finally, it was concluded 
that the best robot performance corresponding to the highest percentage of weeds cut was 
achieved with the S-shaped blade when the BR speed was 3500 rpm, and the AM speed 
was 10 rpm.
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Abstract

In this chapter, we present and evaluate three different infield navigation algorithms, 
based on the readings from a LIDAR sensor. All three algorithms are tested on a small 
field robot and used to autonomously drive the robot between the two adjacent rows 
of maze plants. The first algorithm is the simplest one and just takes distance read-
ings from the left and right side. If robot is not in the center of the mid-row space, it 
adjusts its course by turning the robot in the right direction accordingly. The second 
approach groups the left and right readings into two vertical lines by using least-square 
fit approach. According to the calculated distance and orientation to both lines, it adjusts 
the course of the robot. The third approach tries to fit an optimal triangle between the 
robot and the plants, revealing the most optimal one. Based on its shape, the course of 
the robot is adjusted. All three algorithms are tested in a simulated (ROS stage) and 
then in an outdoor (maze test field) environment comparing the optimal line with the 
actual calculated position of the robot. The tests prove that all three approaches work 
with an error of 0.041 ± 0.034 m for the first algorithm, 0.07 ± 0.059 m for the second, and 
0.078 ± 0.055 m error for the third.

Keywords: infield algorithms, navigation algorithms, LIDAR, field robot, ROS

1. Introduction

The usual approach of autonomously driving agriculture machinery trough the field is by 
using a precise differential [1] or RTK global positioning systems [2]. In order to work, these 
systems require a previously known path of movement that is repeated with each iteration 
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when the crop needs to be treated [3]. This is not always possible, if no prior GPS information 
exists, or simply because an accurate GPS system is not always available. So, different systems 
should be used in these situations.

A possible solution to solve this is to use cameras to detect plant lines [4] or even stereo 
cameras to build a 3D cloud of points [5], describing the plants, and drive the agricultural 
machinery to drive between them. Another possible approach is the use of LIDAR systems 
[6] that take accurate measurements of the scene, by reading distances from the sensor to the 
first obstacle and repeating this for the whole range (usually 270° or 360° in 1°, 0.5° or even 
2.25° steps).

With the help of these systems, the machines [7–9] can drive even in an unfamiliar field 
where they have not been applied before. They rely on the property of the field and the crops 
planted. The plants are in parallel to each other, and the machines can drive between the crop 
lines, in mid-row spaces, in order to not damage the plants. This can be done by using differ-
ent approaches/algorithms to guide the machines.

More advance systems using different SLAM methods [10, 11] even build a map of the envi-
ronment and localize the machines in a new environment that is only being discovered. 
Based on the map, it then constructs a path using path planner [12] and path follower [13] 
to follow the path. These approaches come in use in case of unfamiliar scenes but are not 
really necessary in infield situations where prior information regarding the pattern of the 
plants is known.

So, the purpose of this work is to first present three different algorithms that could be used 
to autonomously drive the machines and to evaluate their accuracy for infield navigation. All 
three were implemented as part of robotic operating system (ROS) [14] and applied on a small 
field robot, making it autonomous when driving through the field in mid-row spaces. Their 
purpose is not to plan and follow the path but to adjust the heading of the machines/robot at 
every measured location. The field robot that was used to test the algorithms is presented in 
Section 2, along with all three algorithms used, which are then evaluated in Section 3.

2. Materials and methods

The algorithms are tested on a small field robot [16] depicted in Figure 1. It is an electric 
driven robot with 50 × 50 cm in size, small enough to fit in 75 cm wide space between two par-
allel lines of maze plants. It has four in-wheel BLDC motors capable of delivering 200 W max 
peak power, equipped with four additional motors to individually turn each of the wheels, 
making possible to drive in different steering modes like skid steer or Ackermann. Besides the 
odometry from the wheels, the robot is equipped with three different additional sensors: two 
digital cameras, an IMU unit, and a LIDAR sensor. The data from the sensors are processed by 
two onboard computers, a low-level computer build around Raspberry PI 3B and Intel NUC 
i7 (gen. 7) computer, used as high-level processing unit. The two units run a Linux-based 
distribution with robotic (meta) operating system (ROS) on top, configured in multimachine 
mode to split the essential processing from time consuming, advance algorithms, making the 
robot as responsive as possible.

Agricultural Robots - Fundamentals and Applications32

If the robot, as the one in Figure 1, has to drive autonomously through the crop fields, it must 
have a navigation algorithm. The navigation algorithm relies on the distance measurements 
from the LIDAR sensor. The experimental robot is equipped with the SICK TIM310 LIDAR, 
with a 270° area at a 1° angular resolution. It detects obstacles up to 4 m away and then 
chooses the optimal path based on the readings. Once the robot reaches the end of the crop 
line, it uses data from the on-board compass (IMU unit) and turns in the next row.

In this chapter, we investigate the accuracy of three different navigation algorithms and com-
pare them, with left and right row distance as a reference for optimal path that should be in 
the middle of the rows and with as little oscillations as possible.

2.1. Minimal row offset-based algorithm

The first algorithm is the simplest one. It takes 30 readings from left and 30 from right side, 
as shown in Figure 2.

From these two sets, it first eliminates ones that are too far away, that is more than 0.75 cm 
and belong to the other crop lines, and then calculates an average distance value for each side. 
These average distances can be written as dr and dl for right and left side, respectively. These 
two are then used to calculate an offset, as shown in Eq. 1:

  Offset =  ( d  r   −  d  l  )   (1)

The value of the offset is then used to adjust the course of the robot, if necessary, as shown in 
Eq. 2.

  Orientation = Offset /  ( d  r   +  d  l  )   (2)

So, the current course of the robot is adjusted by the new value  orientation  which also cor-
responds directly how much the wheels should turn in radians.

Figure 1. A small field robot FarmBeast while performing Task 1—Basic navigation at Field Robot Event 2018.
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2.2. Least-square fit approach algorithm

This second algorithm was designed to navigate the robot between two walls that are paral-
lel to each other, this being either an artificial barrier, e.g., walls, or real crop lines, such as 
maze plants. The overview of the approach is depicted in Figure 3, explaining each sensing— 
adjustment cycle.

(A) The sensor reads the data—the distances between the sensor and the obstacles for each 
degree—and triggers a callback function each time it completes the measuring sequence.

(B) The callback function first filters the data depending on the distance readings. The points 
that are too far away and points that are too near to count are discarded. The algorithm makes 
possible to set how many points should be included for each count for each side that cor-
responds to how many degrees will use in the subsequent steps of the algorithm. The useful 
readings are stored in two data sets, one for left and one for right side.

Figure 2. Robot standing in the middle of the row. Each double-sided arrow represents a measurement of the sensor, 
where the actual number of reading is 30 on each side. The sensor returns the distance for each degree it measures.

Figure 3. Performed steps in each cycle.
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(C) In the third step, a linear fit is used, for which a least squares method [17] was chosen. 
This way the slope and y-intercept of a linear equation describing each set for each side is 
calculated.

The least squares method allows us to linearly fit the measurements with a smaller number of 
heavy duty mathematical operations. For this, we need to define some additional parameters 
with which we then calculate the slope and y-intercept of each line:

  x  sum   − sum of all the distances taken for the line ,

  x  square sum   − sum of all the squared distances taken for the line ,

  y  sum   − sum of all the angles taken for the line  (in degrees) , 

  y  square sum   − sum of all the squared angles taken for the line  (in degrees) , 

  yx  sum   − sum of the products of the angle and distance of each point. 

Once these parameters are known, the slope ( k ) and y-intercept ( n ) can easily be calculated as 
shown in Eqs. 3 and 4:

  k =   
number of points ∗  yx  sum   −  x  sum   ∗  y  sum   

   _________________________________   number of elements ∗  x  square sum   −  x  sum  2      (3)

  n =   
 x  square sum   ∗  y  sum   −  x  sum   ∗  yx  sum   

   ______________________________   number of elements ∗  x  square sum   −  x  sum  2      (4)

(D) With the calculated slopes and y-intercepts, a crossing point is calculated where those two 
lines cross each other. This is the point, which depends on the rotation of the robot and its 
position between the two walls.

Based on step (C), with calculated slope and intercept for each side, the following parameters 
are defined:

kL—slope of the left side,

nL—y intercept of the left side,

kD—slope of the right side,

nD—y intercept of the right side.

and distances   x  
L
    and   y  

L
    can be calculated using Eqs. (5) and (6):

   x  L   =   
 n  2   −  n  1   _____  k  1   −  k  2  

    (5)

   y  L   =  k  1   ∗  x  L   +  n  1    (6)
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(E) Once the information about the intersection from the two lines is known, the position of the 
robot is calculated. The distance   y  

L
    stays constant, if the robot is aligned up with the row no mat-

ter which wall it is closer. The   x  
L
    describes how far away it is from both of walls/lines. With just 

looking at the two distances, the problem is simplified and can be solved with Eqs. (1) and (2).

Based on the position of the robot, the described approach can describe two different situa-
tions. The first situation is when the robot is in the right location, as shown in Figure 4, and 
the second if the robot is not in the right location and needs adjustment, as shown in Figure 5. 
In both cases, the parameters of the two linear equations and the distance to the path of the 
robot are used.

Since the walls are always apart from each other with a constant width, the triangle covers 
the same surface. What changes is the orientation and position changes with the robot that 
produces different triangles. If the robot is not aligned in parallel to the walls or crop lines, an 
asymmetric triangle is constructed, as the one in Figure 5.

2.3. Triangle-based navigation algorithm

The third approach [15] of finding an optimal path for the robot consists out of multiple steps. 
As shown in Figure 6, the algorithm uses trigonometric functions to calculate the distance of 
a segment between every two sequential points from LIDAR sensor. The segment distance 
must be wide enough to drive the robot trough, and if they do not meet the criteria, they are 
disposed. This is depicted in Figure 6 where red colored segment distances written as (d1, d5, 
d6, d8, d9, and d13) are disposed and green colored distances (d2, d3, d4, d7, d10, d11, and d12) are 
retained for further procedure.

Figure 4. Arranged distances (blue) depicted on a graph that correspond to the length and the degree, it is located on. 
The red dotted line shows the two lines that are created out of these measurements. The green circle represents where 
the lines meet. This way a triangle is calculate and its shape depends on the position of the robot.
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Figure 5. This picture shows us what we can get from the position of the intersection of the lines (distance   y  L    and   x  L   ). 
We can figure out the position and the rotation of the robot with the two lengths.

Figure 6. The way the robot calculates each segment of distances between every two sequential points from LIDAR 
sensor.
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Figure 7. The procedure eliminates inappropriate solutions.

Figure 8. Calculating front wheels turn angle δ.
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Figure 6 shows that only segment d7 is appropriate for robot to drive trough. The procedure 
eliminates inappropriate segments as shown in Figure 7. Algorithm calculates the angles: α, 
β, and γ in triangle limited between two sequential points and LIDAR sensor. If any of the 
angles α or β is bigger than predefined threshold, set to 100° or more, which would produce 
a triangle that would not fit in field situations, the segment is disposed. Disposed segments 
are marked with red triangle in Figure 7, and the optimal segment d7 which pass the criteria 
is marked as green triangle.

When the optimal segment is determined, the algorithm calculates the angle for the front 
wheels to turn. The midpoint of optimal segment is calculated for robot to drive to. Angle δ in 
Figure 8 represents the angle for robot to turn front wheels to follow the midpoint of optimal 
segment.

3. Results

In order to test and compare all three algorithms from Section 2, two separate approaches are 
used. In the first, a simulated environment is built to test all three using precisely the same 
data sets in order to verify if they work. In the second approach, a real testing environment is 
used in order to evaluate the approaches in uncontrolled environment.

In contrast to the first experiment, where the algorithms were tested one time, the robot in the 
second approach is tested using one of three algorithms and repeated five times, for example, 
it drives between the two rows five times, in order to calculate an average absolute value with 
its standard deviation. The average value is computed for all three algorithms and evaluated 
as the average displacement from the center point and its standard deviation. The algorithm 
that preforms best should have the average closest to the real middle point, with as little 
deviation as possible, corresponding to a minimal oscillation pattern. Figure 9 depicts an 
exaugurated principle of how the robot moves. The oscillation pattern is of course small and 
neglectable with some algorithms.

3.1. Simulated environment

A simulated environment was build using ROS stage simulator [18] in order to test all three 
algorithms before the application in real environment. In this experiment, all tests start at 
the same starting point, and the robot moves in semi-parallel direction to two artificial walls, 
mimicking two plant rows (Figure 10).

3.2. Real environment

In the second experiment, the robot moves between two plant rows. In this experiment, the 
data sets are not precisely the same as the plants can move due to wind. Even in no wind 
situation, the data sets might differ due to quantization steps of the LIDAR that might not 
be at the same location each time. Figure 11 depicts the environment used in this approach.

Figure 12 depicts an example of how the both corn rows are sensed using a LIDAR sensor 
with readings depicted as colored dots.
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The results of the second test are presented in Table 1, where in each iteration, the average 
distance from the mid-row path was calculated on 8 m long test runs, but this time using real 
plants in real environment.

Figure 9. An example how the robot moves with the simplest algorithm. The movement is depicted with red line, the 
optimal mid-row path with blue, and the plants with green markers.

Figure 10. A screenshot of the simulation environment STAGE used in this test.
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The results in Table 1 show that the best performing algorithm is the algorithm from Section 
2.1 with an error of 0.041 ± 0.034 m, and the second and third are very close with an average 
error of 0.07 ± 0.059 m for the second from Section 2.2 and 0.078 ± 0.055 m error for the third 
from Section 2.3. It should be noted that all three performed well reaching the end of each row 
without any problems. The difference between the first and other two is that the first uses the 
values in small proximity to the sensor on either side, but the second and third use a bigger 
range on both sides making them more useful in situations when rows are not straight as in 

Figure 11. An environment with real plants with 8 m in length and 0.75 m in width.

Figure 12. The environment from Figure 12 seen by LIDAR sensor mounted on the front of the robot. The dots at the 
bottom center of the robot represent the wheels of the robot and are filtered out.
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this experiment. The scenario in which the first algorithm might fail is in situation where the 
corn plants are bigger and the leaves from the corn over leap the mid-row space, obstructing 
a clear view for the sensor. In this case, the algorithms from Section 2.2 and 2.3 would be more 
efficient due to higher robustness in comparison to the first algorithm.

4. Conclusion

In this chapter, we presented three different algorithms for infield navigation and then tested 
them using first a simulated environment and, second, evaluated them in a real environment. 
The results from Section 3 show that all three algorithms perform good, with the best one in 
terms of optimal mid-row driving and minimal oscillation, the algorithm from Section 2.1 
with an error of 0.041 ± 0.034 m, the second being algorithm from Section 2.2 with an error 
of 0.07 ± 0.059 m, and third, the algorithm from Section 2.3 with an error of 0.078 ± 0.055 m.

The algorithms presented in this chapter adjust the movement of the robot according to each 
iteration of measured distance sets recorded by LIDAR sensor. As a logical improvement to 
the best performing algorithms from Section 2, the accuracy could be improved by taking into 
account the measurements further away from the robot, measurements of the parallel lines, 
that are currently filtered out, as well as measurements of the previously driven row(s), as the 
rows are always in parallel to each other in which we get a prior information for the current 
rows. All this would further improve the performance of the algorithms.
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Iteration Algorithm 2.1 Algorithm 2.2 Algorithm 2.3

First 0.04 ± 0.035 m 0.082 ± 0.06 m 0.069 ± 0.049 m

Second 0.038 ± 0.03 m 0.063 ± 0.049 m 0.071 ± 0.045 m

Third 0.045 ± 0.037 m 0.077 ± 0.073 m 0.073 ± 0.053 m
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Fifth 0.042 ± 0.036 m 0.065 ± 0.056 m 0.099 ± 0.065 m

AVERAGE: 0.041 ± 0.034 m 0.07 ± 0.059 m 0.078 ± 0.055 m

Table 1. A performance comparison of three different algorithms from Section 2 using a real environment.
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Abstract

The Pyralidae insects are one of the main pests in economic crops. However, the manual
detection and identification of Pyralidae insects are labor intensive and inefficient, and
subjective factors can influence recognition accuracy. To address these shortcomings, an
insect monitoring robot and a new method to recognize the Pyralidae insects are presented
in this chapter. Firstly, the robot gets images by performing a fixed action and detects
whether there are Pyralidae insects in the images. The recognition method obtains the total
probability image by using reverse mapping of histogram and multi-template images, and
then image contour can be extracted quickly and accurately by using constraint Otsu.
Finally, according to the Hu moment characters, perimeter, and area characters, the con-
tours can be filtrated, and recognition results with triangle mark can be obtained. According
to the recognition results, the speed of the robot car and mechanical arm can be adjusted
adaptively. The theoretical analysis and experimental results show that the proposed
scheme has high timeliness and high recognition accuracy in the natural planting scene.

Keywords: pest detection and recognition, Pyralidae insects, reverse mapping,
multi-template matching, agricultural robot

1. Introduction

The timely detection and identification of corn pests and diseases are one of the major tasks of
agriculturists for social and environmental challenges, such as maintaining the stability of
grain output and reducing environmental pollution caused by the use of pesticides. Pyralidae
insects are one of the most common pests of maize [1], and it does great harm to the quality
and yield of maize. The traditional manual monitoring not only requires a large amount of
labor but also causes that detection is not timely due to human omissions. With the rapidly
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development of computer technology, the monitoring of diseases and insect pests based on
computer vision has been feasible, which can greatly improve the real-time detection and
recognition of pests [2].

Currently, there have existed some methods to detect plant diseases or insect with image
processing and computer vision technologies [3]. For example, Ali et al. used color histogram
and textural descriptors to detect citrus diseases [4]. They took the use of color difference to
separate the area affected by disease. Lu et al. used spectroscopy technology to detect anthrac-
nose crown rot in strawberry [5]. Xie et al. employed the hyper-spectral images to detect
whether there was gray mold disease in tomato leaves [6]. In addition, the researchers
constructed an automated detection and monitoring system for the detection of small pests in
the greenhouse, such as whitefly, etc., which can effectively monitor the tiny insects and their
densities [7–10]. Meanwhile, computer vision technology was also used for aphid detection
and monitoring of its population [11]. For the parasites on strawberry plants, support vector
machine (SVM) method combined with the image processing technique was successful in
detecting the thrips with an error less than 2.5% in the greenhouse environment [12]. The
incorporation k-means clustering methodology with image processing was used to segment
the pests or any object from the image [13]. Dai and Man used a convolutional Riemannian
texture with differential entropic active contours to distinguish the background regions and
expose pest regions [14]. Zhao et al. obtained accurate contour of crop diseases and insect pests
for the following recognition, taking the use of texture difference and active contour guided by
the texture difference [15]. In their further research, they also proposed image segmentation
method for fruits with diseases based on constraint Otsu and level set active contour [16].
However, they did not research on identification.

As for the recognition of insects and diseases, some recent research advances can be classified
into the two categories. The first category focuses on the image processing and computer
vision technologies without requiring data training. Pest recognition method based on sparse
representation and multi-feature fusion was proposed, which mainly used to identify beetles
[17]. Four methods for the diagnosis and classification of the diseases of corn leaf were
presented by using image processing and machine vision techniques [18]. Martin et al. pro-
posed an extended region growing algorithm, which can identify the pest and have the count-
ing of the pest to predict the pesticide amount to be used [19]. Przybyłowicz et al. developed a
technique based on wing measurements, which can be an effective tool for monitoring of the
European corn borer [20].

The second category concentrated on the training of data models, which mainly used machine
learning and neural network technology. The method based on difference of Gaussian filter
and local configuration pattern algorithm was used to extract the invariant features of the pest
images, and then these features were put to a linear SVM (support vector machine) for pest
recognition with recognition rate of 89% [21]. Kohonen’s Self-Organizing Maps neural network
was used to identify the extracted insect pests caught by a sticky trap [22]. In addition,
Boniecki et al. proposed a classification neural model using optimized learning sets acquired
based on the information encoded, which can be used to accurately identify the six most

Agricultural Robots - Fundamentals and Applications46

common apple pests [23]. Based on the combination of an image processing algorithm and
artificial neural networks, Espinoza et al. proposed an algorithm to detect and monitor adult-
stage whitefly (Bemisia tabaci) and thrip (Frankliniella occidentalis) in greenhouses, and the
correct recognition rate reached above 0.92 [24]. Zhu et al. combined the color histogram with
dual tree complex wavelet transform [25] and SVM [26] to recognize insects, which can
improve the recognition rate of insects. Li et al. proposed a red spider recognition method
based on k-means clustering, which transformed the image into Lab color space for clustering
[27]. This method had a high accuracy rate to identify red spider with obvious red features.
However, the method can be only applied in the situation that there is high color contrast
between the objects and the scenes.

In addition, the device for image acquisition is also necessary [7]. Johannes et al. presented a
scheme to diagnosis wheat disease automatically by using mobile capture devices [28]. In his
research, a novel image processing algorithm based on candidate hot-spot detection in combi-
nation with statistical inference methods is proposed to tackle disease identification in wild
conditions.

From the literature analysis in recent years, the image processing and computer vision tech-
nology have been widely used for the detection and recognition of diseases and pests and have
achieved good results. Generally, the researchers used an existing method combined with
image processing techniques to detect and identify clustering method, neural network, texture
analysis, wavelet transform, the level set method, etc. However, it is difficult to have a univer-
sal method to detect and identify all pests. In general, the algorithms are used to detect and
identify one or a class of pests. Moreover, most of the existing studies are often aimed at the
greenhouse environment, and the researchers usually do not build a practical verification
system. Obviously, deep learning can achieve high recognition accuracy, but this training-
based approach is difficult to guarantee real time and requires a large amount of existing data
to train the model.

At present, there are still relatively few studies on the detection and identification of Pyralidae
insects. In order to detect and identify the Pyralidae insects automatically and accurately in
real time, we have researched in the following aspects. Firstly, a robot platform for pest
monitoring is designed and fabricated. Then, a recognition scheme for Pyralidae insects is
presented, in which the color feature of the image is used. Moreover, the histogram reverse
mapping method and the multi-template image are used to obtain the general probability
image superposition. Next, the image is segmented with constraint Otsu. Finally, the contours
and Hu moments are used to automatically screen and identify the contours; thus, the contour
of Pyralidae insects can be recognized. The scheme proposed in this chapter can recognize the
single target and also has good recognition ability for multiple targets.

The rest of this chapter is organized as follows. Section 2 shows data acquisition equipment
and its structure and also gives the whole detailed description of detection and recognition
algorithm. In Section 3, we verify the monitoring robot’s work and the proposed scheme of
detection and recognition. In addition, we also evaluate the proposed scheme and discuss the
results of the experiment. Finally, Section 4 concludes the chapter.
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2. Materials and methods

2.1. Acquisition of Pyralidae insect data source

The image data used in this study are collected by an Automatic Detection and Identification
System for Pests and Diseases. The system has been installed at the zone of technology
application and demonstration of Hainan University in Hainan province, China. The system
prototype and structure diagram is shown in Figure 1. The basic structure of the system can be
divided into five major parts: the camera sensor (automatic focusing, resolution 1600 � 1200
and camera model KS2A01AF) and display unit, trap unit, the power delivery unit, the
intelligent detection and recognition unit, and the hardware bearer unit.

2.2. Description of proposed scheme

In this chapter, the recognition scheme for Pyralidae insects based on reverse mapping of
histogram and contour template matching is mainly divided into input module, reference
image processing module, image segmentation module, contour extraction module, and target
recognition module. The input module firstly converts the experimental image into a matrix
and initializes the parameters such as contour recognition threshold and the binarization
threshold of the probability image. Then, the reference image processing module makes space
conversion for the reference image, transforms the image from RGB space to HSV space, and
extracts the histogram of the color layer (H layer). After that, the image segmentation module
is to extract the color histogram of the experimental image. After normalization, the total

Figure 1. The intelligent recognition of robot car for Pyralidae insects. (1) Deep grooved wheel, (2) shell, (3) guardrail, (4)
screen display, (5) camera, (6) mechanical arm, (7) vertical thread screw, (8) screw guardrail, (9) solar panels, (10) sensor
integrator, (11) horizontal screw motor, (12) trap lamp, (13) the hardcore, (14) crossbar, (15) insect collecting board, (16)
vertical thread screw-drivenmotor, (17) chassis, (18) car control buttons, (19) horizontal thread screw, and (20) trap top cover.
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probability image is obtained by the principle of histogram reverse mapping using the H layer
histogram of multiple template images, and then the module binarizes the probability image.
Subsequently, in the contour extraction module, the method obtains the contour of the binary
image with the help of the function named findContours() in OpenCV. The contours of the
internal holes are removed by morphological methods, which are screened according to the
circumference and area features. Finally, in the target recognition module, the scheme recog-
nizes the contour by calculating the similarity between the contour obtained in the previous
steps and the template contour. The outline of the contour larger than the threshold is consid-
ered to be the target contour, and finally we can get the recognition result. The pseudo-code
corresponding to the scheme is shown in Table 1.

2.3. Probability image acquisition based on color histogram reverse projection and multi-
template matching

The adults of the Pyralidae insects are yellowish brown. The male moths are 10–13 mm long,
and the wing can reach 20–30 mm. The back of the Pyralidae insects is yellowish brown, and
the end of the abdomen is relatively thin and pointed. Usually, they have a pair of filamentous
antennae, which are grayish brown. Meanwhile, its forewing is tan, with two brown wavy
stripes, and there are two yellowish brown short patterns between the two lines. In addition,

Algorithm: Recognition scheme of Pyralidae insects

Input: S (target image); Mx (reference image);

Output: Three vertices of triangular markings on the Pyralidae insects α1; β1
� �

, α2; β2
� �

, α3; β3
� �

1: Initialize: (R, G, B) S, Mx

2: Setting: The threshold of Hu moments; Reference contour image Yimage

3: V=max(R, G, B);
S=(V-min(R,G,B))�255÷V if V!=0, 0 otherwise

H ¼
G� Bð Þ � 60÷S if V ¼ R
180þ B� Rð Þ � 60÷S if V ¼ G
240þ R�Gð Þ � 60÷S if V ¼ B

8><
>:

4: for i=0:1:255
The color histogram of each image is obtained by statistics: H Xi=Hpi÷(Hm�Hn);
Normalized (H);
end for

5: for i=0:1:m
for j=0:1:n
Gij=Similarity(H of {Image blocks with the same size as Mx}, H of Mx)

/*Similarity(),Calculate the histogram similarity */
end for

end for
6: R = OSTU(G); /* Binarize the image by Otsu method */
7: C=findContours(R) /*findContours() extracts the contours from binary images*/
8: real_match Based on Hu moment feature, calculating the similarity between C and the template contour
9: if real_match > match:

Triangle Approximate processing for triangle contour;
Output vertex coordinates

else:delete R

Table 1. The pseudo-code description of the proposed scheme.
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Triangle Approximate processing for triangle contour;
Output vertex coordinates

else:delete R

Table 1. The pseudo-code description of the proposed scheme.
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the hind wings of the Pyralidae insects are grayish brown; especially, female moths are similar
in shape to male moths with lighter shades, yellowish veins, lightly brown texture, and obese
abdomen. From these characteristics, the color characteristics of adult Pyralidae insects are
obvious, and it is very effective to recognize the Pyralidae insects by color characteristics. Color
histograms are often used to describe color features and are particularly useful for describing
images that are difficult to segment automatically.

The inverse projection of the histogram is proposed by Michael J. Swain and Dana H. Ballard
[29], which is a form of record that shows how the pixel or pixel block adapts to the histogram
model allocation. It can be used to segment image or find interesting content in the image. The
output of the algorithm is an image of the same size as the input image, where the value of the
pixel represents the probability that it belongs to the target image. Therefore, it is possible to
obtain a probability image by mapping the histogram in the target image by using the tem-
plate image of the Pyralidae insects. Considering the Pyralidae insect’s highlight color feature
and the functional characteristics of histogram reflective algorithm, the scheme proposed in
this chapter applies the image grayscale processing based on the reflection of the color histo-
gram to the color feature extraction step. After the target image and the template image are
converted into the HSV space and the color layer (i.e., the H component) is extracted, the
image is grayed out by the method of histogram mapping. The gray image obtained in this
way is a probability image that reflects the degree of similarity to the target color. Thus, it
realizes the color distribution feature screening of the target image. The algorithm flow is
shown below:

1. Convert the reference image into HSV space; extract the H spatial matrix, statistically,
histogram; and normalize it.

2. Start from the first pixel (x, y) of the experimental image, and cut temporary image that is
the same size as the reference image, where (x, y) is the center pixel of the temporary
image. Extract the H space matrix, statistically its histogram, and normalize it.

3. Calculate the similarity between the color histogram of the detected image H1 and the
color histogram of the reference image H2. The result is Similarity (H1, H2):

H
0
k ¼ Hk ið Þ � 1

N
�
XN

j

Hk jð Þ (1)

Similarity H1;H2ð Þ ¼
PN

i H01 ið Þ �H02 ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i H021 ið Þ �H022 ið Þ

q (2)

In Eqs. (1) and (2), k∈ 1; 2f g, i ¼ j∈ 1; 2; 3;…;Nf g, N is the number of intervals in the
histogram, and Hk ið Þ is the value of the ith interval in the kth histogram. Similarity H1ð ;H2Þ
is the similarity between histogram H1 and histogram H2. The degree of similarity reflects
the color characteristics of the pixel which are in line with the probability of Asian Pyral-
idae insects.
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In addition, due to the differences in the color and texture between different Pyralidae insects
in natural scenes, it is necessary to use a plurality of template images for histogram reverse
projection processing, which can avoid the use of a template that cannot be adapted to a
variety of different scene situations. As shown in Table 3, three template images are given.
The total probability image obtained by this method is shown in Eq. (3), where M represents
the number of template images. The results obtained are shown in Table 4.

Similarity H1ð Þ ¼
XM
m¼1

Similarity H1;Hmð Þ (3)

2.4. Otsu image segmentation based on constrained space

The Otsu algorithm is also known as maximum between-class variance method [30], some-
times called the Otsu algorithm, which is considered to be the best algorithm of selecting the
threshold in image segmentation. For the image G x; yð Þ, the split threshold is set as T, ω1 is
the proportion of foreground pixels, μ1 is the average grayscale of foreground image, ω2 is the
proportion background pixels, μ2 is the average grayscale of background image, μ is the total
average grayscale of background image, and g is the maximum between-class variance. pmin

and pmax are, respectively, the minimum and maximum values of the pixel values in the image.
Then, we can get

μ ¼ μ1 � ω1 þ μ2 � ω2 s:t:ω1 þ ω2 ¼ 1 (4)

gotsu ¼ argmax ω1 � μ� μ1

� �2 þ ω2 � μ� μ2

� �2n o
(5)

Substitute Eq. (4) into Eq. (5), and then the Otsu solution expression for threshold is as below:

gotsu ¼ argmax ω1 � ω2 � μ1 � μ2

� �2n o
pmin ≤T ≤ pmax (6)

Finally, by using the method of traverse, the threshold of the maximum between-class variance
of the image is obtained. Inspired by the literature [16], the variance of the similarity value of
the background area is smaller because of the variance of the similarity degree of the Pyralidae
insect area and the diversity of the natural scene. In addition, the similarity of the Pyralidae
insects is larger than that of the background. Therefore, the Otsu threshold will be biased
toward the background, which can lead smaller threshold compared with the actual optimal
threshold. After that, the Otsu constrained spatial segmentation method is used to obtain the
gotsu firstly, and then a threshold for maximizing the between-class variance is obtained in the
constraint space (between gotsu and pmax), as shown in Eq. (7), where gotsu is a simple calculation

method [31], that is, gotsu ¼ 1
2 μ1 þ μ2

� �� �
, which indicates that the Otsu threshold is biased to a

larger variance for the image with a large difference between the two variance values:

goptimal ¼ argmax ω1 � ω2 � μ1 � μ2

� �2n o
gotsu ≤T ≤ pmax (7)

Agricultural Robot for Intelligent Detection of Pyralidae Insects
http://dx.doi.org/10.5772/intechopen.79460

51
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projection processing, which can avoid the use of a template that cannot be adapted to a
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The total probability image obtained by this method is shown in Eq. (3), where M represents
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Substitute Eq. (4) into Eq. (5), and then the Otsu solution expression for threshold is as below:
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Finally, by using the method of traverse, the threshold of the maximum between-class variance
of the image is obtained. Inspired by the literature [16], the variance of the similarity value of
the background area is smaller because of the variance of the similarity degree of the Pyralidae
insect area and the diversity of the natural scene. In addition, the similarity of the Pyralidae
insects is larger than that of the background. Therefore, the Otsu threshold will be biased
toward the background, which can lead smaller threshold compared with the actual optimal
threshold. After that, the Otsu constrained spatial segmentation method is used to obtain the
gotsu firstly, and then a threshold for maximizing the between-class variance is obtained in the
constraint space (between gotsu and pmax), as shown in Eq. (7), where gotsu is a simple calculation
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2.5. Target contour recognition based on Hu moments

The moment feature mainly characterizes the geometric characteristics of the image area, also
known as the geometric moment. Because it has the invariant characteristic of the rotation,
translation, scale, and so on, so it is also called the invariant moment. In image processing,
geometric invariant moments can be used as an important feature to represent objects, which
can be used to classify an image. Among them, the invariant moments commonly used in
humanoid recognition are mainly composed of Hu moments, Zernike moments, and so on.
Hu moment is first proposed by M.K. Hu [32], and he gave the definition of Hu moments,
the basic properties, and seven invariant moments with translation, rotation, and scaling
invariance.

Specifically, we assume that the gray distribution in the target D region is f(x, y). In order to
describe the target, the gray distribution outside the region D is considered to be 0, and then
the geometric moment and the regional moment of the pþ q order are, respectively, expressed
as follows:

mpq ¼
ðð

D

xpyqf x; yð Þdxdy (8)

μpq ¼
ðð

D

x� xð Þp y� yð Þpf x; yð Þdxdy (9)

As shown in the above equation, mpq represents the pþ q order geometric moments of the
image, and μpq represents the pþ q order center moments of the image. Calculating the two
features of the reference contour image and the experimental contour image, we can use these
two features to represent the contour. The similarity between the experimental contour and the
reference contour is compared, and the similarity less than the threshold value of the contour is
removed. Then, the rest of the contour is the contour of the Pyralidae insects. Finally, by using
the function named approxPolyDP() in the OpenCV and other contour approximation
processing functions, the contour is approximated to a triangle and marked. Obviously, the
marked contour is the result we want.

2.6. Recognition algorithm combined with robot control

Combining with robot operations is one of the innovations of this chapter. Depending on the
result of the similarity detection, the robot arm can adjust the speed.When the similarity is greater
than 0.9, the robot arm will stop moving; meanwhile, camera sensors continue to collect image
data, and the robot will give an alarm. When the similarity is between 0.7 and 0.9, the movement
of the robot will slow down. Using robot and image recognition in a coordinated manner, we can
reduce the false alarm rate and missed detection rate. Meanwhile, when there is interference of
other insects, the robot arm will stop or slow down, which can reduce the probability of false
positives. Only when the similarity of five consecutive insect images is greater than 0.9, we can
make the final decision on the presence of Pyralidae insects. Using this method, it can be
prevented from being mistaken for other insects, so as to improve the correct recognition rate.
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3. Results and discussions

The hardware environment of this scheme includes PC (Inter(R) Core(TM) i3-2500 CPU
@3.30GHZ and 4.00GB RAM), embedded master development board (NVIDIA Jetson TX1),
embedded auxiliary control development board (2 Raspberry Pi B+ and 6 Arduino uno r3
expansion board), camera module (KS2A01AF), etc. The software experiment environment
includes Window 7 operating system, Python 2.7, OpenCV 2.4.13, and embedded Linux
operating system. The images used in the experiment are collected from cameras on the robot
arm. We gather about more than 200 photos of the Pyralidae insects for experiments. Some
result images of detection are shown in Table 4. The robot can perform a well-designed
motion, capture the images well, and identify Pyralidae insect object from the images. The
main parts and functions of the robot are shown in Table 2.

3.1. Probabilistic image acquisition experiment and analysis

After the image is converted to HSV space, the next step is that histogram reverse mapping is
conducted by using the three template images for target images, and then we can obtain the
probability image. The probability images obtained in the experiment are shown in Table 3.

As shown in Table 3, there are probability images obtained after three template images make
original image from the histogram reverse mapping. The image of the first column of lines 2–4 is
the template image used by the current line. The first line of the table is the original image of the

The chassis is used to
support and secure the
sliding rails on the vehicle
and can also be used to
move the equipment

The sliding
guide is
used to
move the
robot arm

The part
marked by
the white
circle is the
robotic arm

The camera is used to
acquire images

Display
screen for
real-time
display of
images

Table 2. Image acquisition equipment: pest identification and environmental monitoring robot.
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five images containing Asian Pyralidae insects. The second line of the table is the probability
image obtained by mapping the backward histogramwith the template image 1. The third line of
the table is the probability image obtained bymapping the backward histogramwith the template
image 2. The fourth line of the table is the probability image obtained by mapping the backward
histogram with the template image 3. The last line of the table is the total probability image
obtained by logical or operation and image erosion with the above three probability images.

As can be found in Table 3, the proposed method can avoid the situation that only one image
used cannot adapt to a variety of different scenarios. It can be seen from the results of the final
image after erosion operation that the total probability image obtained by multi-template
image’s logical operation has better effect.

3.2. Experiment and analysis of maize borer

After obtaining the probability image, the contour extraction, matching, screening, and recog-
nition experiments are carried out in this chapter. At the same time, triangle mark is to identify
the results of recognition for the characteristics of Pyralidae insects shape, and recognition
results are shown in Table 4.

As can be seen from Table 4, the scheme proposed can better identify the target containing
Pyralidae insect images. The number marked on the pictures indicates similarity. While we use
the triangle to identify the results of identification, better results are achieved. According to

Table 3. The original images and the obtained probability image after histogram reverse mapping.
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different recognition results, the speed of the robot arm can be adjusted adaptively to improve
the detection accuracy. Subsequently, we make statistics on time consumption and other
indicators in the experimental results. The processing time is about 1 s on every image. So,
the method proposed in this chapter can achieve real-time processing.

3.3. Comparison and analysis

Currently, recognition method based on ELM and deep learning has a rapid development. In
theory, the use of these methods can get a higher correct rate. Unfortunately, the capture and
establishment of such pest images of maize borers are very difficult. By now, there are few
useful pictures we can take, which are far less than the minimum requirement for the number
of image to be trained. Certainly, we also try to collect images through the trap. However, the
background of the resulting images is single, which cannot meet the requirements. In addition,
ELM and deep learning all have relatively high computational complexity and cannot meet the
needs of real-time detection. So, based on the two reasons mentioned above, they are not
feasible. Conversely, through the artificial summary of the characteristics of Pyralidae insects,
the robot adaptively adjusts the sampling frequency to detect, which can achieve better accu-
racy and good practicability.

Table 4. The recognition results and the robot arm action.
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Finally, the proposed method is compared with the multi-structural element-based crop pest
identification method proposed in [33] and the general histogram reverse mapping method.
The experimental results are shown in Table 5. As can be seen from Table 5, the scheme of
maize borer recognition proposed in this chapter has higher recognition rate, lower false alarm
rate, and good application prospects. Besides, it is not necessary to carry out a large amount of
data analysis, which ensures that the average time consumption is not significantly increased.
In Table 5, the recognition rate and the false-positive rate are calculated as follows:

β ¼
Pn
i¼1

rij

n
rij ¼ 0 or rij ¼ 1
� �

(10)

δ ¼
x� Pn,m

i¼1, j¼1
rij

x
rij ¼ 0 or rij ¼ 1
� �

(11)

In formulae (10) and (11), β represents the recognition rate and δ represents the false-positive
rate. rij is the jth contour of the ith Pyralidae insects (if exist, then 1, else 0). n represents the
number of real Pyralidae insects in the image, x represents the total number of contours
marked by the algorithm, and m represents the total number of contours marked by the
algorithm for the ith Pyralidae insects in the image. Thus, the recognition rate reflects the
ability of the algorithm to identify maize borers. The false alarm rate reflects the proportion of
the error contours in all marker contours. Especially, the sum of these two probabilities is not
necessarily equal to 1.

Our scheme and two other algorithms are used to test more than 200 images containing the
Pyralidae insects, respectively. Then, we conducted a statistical analysis for the average time
consumption, the recognition accuracy, and the false alarm rate. The results of the statistics are
shown in Table 5.

4. Conclusions

Pyralidae insects have a great influence on the quality and yield of maize and so on. In order to
solve the problem of maize borer detection, this chapter presents a scheme for the detection and
identification of Pyralidae insects by using the robot we designed. Firstly, the mathematical

Schemes Recognition rate
(%)

False alarm rate
(%)

Average time
consumption (s)

Our proposed scheme in this chapter 94.3 6.5 1.12

Histogram reverse mapping method 65.2 60.8 1.01

Multi-structural element-based crop pest identification
method [33]

78.8 16.9 1.10

Table 5. Comparison results of different schemes.
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morphology is used to preprocess the obtained image, and then the image is binarized by
histogram reverse mapping. Next, the binary image is processed by contour extraction and
preliminary screening. Then, combining the reference contour image, the contours of Asian
Pyralidae insect characteristics are selected by using the Hu moment feature. In the end, this
chapter makes a statistical analysis of the experimental results, and the correct rate of recognition
based on multi-template matching can reach nearly 94.3%. Compared with other methods, the
time complexity of this scheme is basically the same as that of those, which can meet the
requirement of real-time detection.
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Finally, the proposed method is compared with the multi-structural element-based crop pest
identification method proposed in [33] and the general histogram reverse mapping method.
The experimental results are shown in Table 5. As can be seen from Table 5, the scheme of
maize borer recognition proposed in this chapter has higher recognition rate, lower false alarm
rate, and good application prospects. Besides, it is not necessary to carry out a large amount of
data analysis, which ensures that the average time consumption is not significantly increased.
In Table 5, the recognition rate and the false-positive rate are calculated as follows:

β ¼
Pn
i¼1

rij

n
rij ¼ 0 or rij ¼ 1
� �

(10)

δ ¼
x� Pn,m

i¼1, j¼1
rij

x
rij ¼ 0 or rij ¼ 1
� �

(11)

In formulae (10) and (11), β represents the recognition rate and δ represents the false-positive
rate. rij is the jth contour of the ith Pyralidae insects (if exist, then 1, else 0). n represents the
number of real Pyralidae insects in the image, x represents the total number of contours
marked by the algorithm, and m represents the total number of contours marked by the
algorithm for the ith Pyralidae insects in the image. Thus, the recognition rate reflects the
ability of the algorithm to identify maize borers. The false alarm rate reflects the proportion of
the error contours in all marker contours. Especially, the sum of these two probabilities is not
necessarily equal to 1.

Our scheme and two other algorithms are used to test more than 200 images containing the
Pyralidae insects, respectively. Then, we conducted a statistical analysis for the average time
consumption, the recognition accuracy, and the false alarm rate. The results of the statistics are
shown in Table 5.

4. Conclusions

Pyralidae insects have a great influence on the quality and yield of maize and so on. In order to
solve the problem of maize borer detection, this chapter presents a scheme for the detection and
identification of Pyralidae insects by using the robot we designed. Firstly, the mathematical

Schemes Recognition rate
(%)

False alarm rate
(%)

Average time
consumption (s)

Our proposed scheme in this chapter 94.3 6.5 1.12

Histogram reverse mapping method 65.2 60.8 1.01

Multi-structural element-based crop pest identification
method [33]

78.8 16.9 1.10

Table 5. Comparison results of different schemes.
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morphology is used to preprocess the obtained image, and then the image is binarized by
histogram reverse mapping. Next, the binary image is processed by contour extraction and
preliminary screening. Then, combining the reference contour image, the contours of Asian
Pyralidae insect characteristics are selected by using the Hu moment feature. In the end, this
chapter makes a statistical analysis of the experimental results, and the correct rate of recognition
based on multi-template matching can reach nearly 94.3%. Compared with other methods, the
time complexity of this scheme is basically the same as that of those, which can meet the
requirement of real-time detection.
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system based on a hydrogen fuel cell. We analyze and compare the exhaust gases result-
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1. Introduction

Off-road vehicles based on internal combustion engines use large amounts of fossil fuels that 
emit large amounts of pollution into the atmosphere. According to the US Environmental 
Protection Agency (EPA) [1], internal combustion engines emit carbon dioxide (CO2), nitrogen 
oxide (NOX), carbon monoxide (CO), particulate matter and hydrocarbons. CO2 and NOX are 
greenhouse gases that contribute to global warming, whereas sulfur dioxide (SO2) and NOx 
emissions contribute to acid rain. Therefore, the use of internal combustion engines is a major 
environmental concern. Furthermore, these chemical compounds also cause health problems. 
For example, NOX may cause respiratory diseases and intensify existing heart disease; CO can 
reduce oxygen delivery to the body’s tissues and organs, which reduces an individual’s work 
capacity, mental skills and learning ability. Hydrocarbons are volatile organic compounds that 
can cause headaches, dizziness, and loss of consciousness, among other effects. Moreover, some 
of these substances, such as benzene, are carcinogenic and increase the likelihood of leukemia. 
Particle matter emitted from combustion engines (nitrates, sulfates, organic chemicals, metals, 
and dust particles) can also affect lung and heart functions, causing serious health problems.

Many efforts to mitigate these negative effects have conducted analyses of energy use and the 
pollution emitted by agricultural tractors. In the early 2000s, several research studies compared 
different methods and calculated the average absolute and specific emission values from agri-
cultural tractors, concluding that the use of hydrocarbon fuels must be progressively replaced 
by cleaner fuels or electrical systems [2]. Other studies have proposed using a model of fos-
sil fuel to simulate possible agricultural production scenarios to improve future techniques 
[3]. In recent years, researchers have analyzed how increasing the soil organic carbon content 
decreases the draft force in plowing, resulting in reduced fuel consumption and emissions [4].

Several studies have analyzed the exhaust gas emissions from internal combustion engines 
in the last two decades, and many such studies have focused on agricultural machines. For 
example, a mathematical model of a tractor was developed in [5] to analyze the fuel consump-
tion and engine emissions for different engine control strategies and engine transmission char-
acteristics, whereas in [6], the exhaust emissions and fuel composition of a real tractor during 
plowing were measured and correlated to the load factor of the tractor. These works con-
cluded that fuel consumption and emissions depend on the engine speed and load conditions.

Many studies have analyzed the impact of alternative energy sources such as biofuels and 
have demonstrated that biofuels can benefit the environment and society [7]. However, many 
of these studies have proposed the use of batteries and have examined various battery tech-
nologies available for use in solar-assisted plug-in hybrid electrical tractors that can be used in 
light-duty agricultural operations [8]. These researchers have also conducted life cycle analy-
ses of a solar-assisted plug-in hybrid electrical tractor and compared the results with that of a 
similar power output internal combustion engine tractor considering both economic costs and 
environmental emissions; they determined that the life cycle costs of solar-assisted plug-in 
hybrid electrical tractors are lower than those of internal combustion engines.

Another important alternative to batteries is fuel cells. For example, several researchers have 
proposed the use of environmentally benign fuel cells for power production in field crop 
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production and distribution and presented engineering systems analyses of how such sys-
tems can reduce pollution [9]. Others have compared the theoretical maximum efficiencies 
of a fuel cell and a Carnot cycle using the same fuel to determine the net reaction [10]. They 
found that the maximum efficiencies of both systems are similar, but in practice, a fuel cell is 
more efficient because internal combustion engines cannot operate at their theoretical maxi-
mum efficiency. Other researchers have compared battery electrical vehicles, hydrogen fuel 
cell electrical vehicles and hydrogen fuel cell plug-in hybrid vehicles [11]. These research-
ers determined that battery electrical vehicles and hydrogen fuel cell plug-in hybrid vehicles 
have similar life cycle costs. The life cycle costs of these vehicles are higher than the costs of 
internal combustion engines but could decrease by 2030.

The approach presented in this work originated from the observation that during precision 
agriculture tasks with robotized vehicles, the internal combustion engine frequently supplied 
more power than needed, particularly when the implement (a tool or utensil for performing 
agricultural work) used a power take-off (PTO) device as a power source. Thus, the objective 
of this work was to develop, implement and assess a hybrid energy system for agricultural 
robotic vehicles. The proposed energy system combines the use of batteries, a hydrogen 
fuel cell and photovoltaic cells with the original internal combustion engine of the tractor to 
achieve a substantial decrease in fossil fuel use, reducing the pollutant emissions.

The rest of this work is organized as follows. In Section 2, the autonomous robot and agri-
cultural implements used in this study are described. In Section 3, a path planning method 
for reducing the fuel consumption is presented. Then, in Section 4, the energy demanded in 
the selected agricultural tasks is analyzed, and the hybrid energy system designed to reduce 
the system energy consumption is described. Section 5 studies the energy requirements of the 
selected agricultural tasks and the required features of the hybrid energy system. Finally, the 
main results are discussed in Section 6, and the main conclusions are summarized in Section 7.

2. Systems description

The energetic model derived in this work was tested in a system composed of an autonomous 
robot and three different implements, each designed for a different agricultural task. The 
autonomous robot consisted of several subsystems:

• A central controller

• An internal combustion engine

• A hydrogen fuel cell

• A photovoltaic panel

• A set of batteries

• An energy management system

• A fuel consumption measurement system used to estimate the exhaust gases from the 
internal combustion engine
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1. Introduction

Off-road vehicles based on internal combustion engines use large amounts of fossil fuels that 
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capacity, mental skills and learning ability. Hydrocarbons are volatile organic compounds that 
can cause headaches, dizziness, and loss of consciousness, among other effects. Moreover, some 
of these substances, such as benzene, are carcinogenic and increase the likelihood of leukemia. 
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[3]. In recent years, researchers have analyzed how increasing the soil organic carbon content 
decreases the draft force in plowing, resulting in reduced fuel consumption and emissions [4].

Several studies have analyzed the exhaust gas emissions from internal combustion engines 
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production and distribution and presented engineering systems analyses of how such sys-
tems can reduce pollution [9]. Others have compared the theoretical maximum efficiencies 
of a fuel cell and a Carnot cycle using the same fuel to determine the net reaction [10]. They 
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robot and three different implements, each designed for a different agricultural task. The 
autonomous robot consisted of several subsystems:

• A central controller

• An internal combustion engine

• A hydrogen fuel cell

• A photovoltaic panel

• A set of batteries

• An energy management system

• A fuel consumption measurement system used to estimate the exhaust gases from the 
internal combustion engine
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These subsystems and the implements are described below. The modifications made to the 
implements such that the power provided by the PTO device could be replaced with electrical 
power are also described, and the implement power features needed to design the energy 
model are detailed.

2.1. Autonomous robot

The autonomous robot was based on the commercial CNHi Boomer 3050 CVT tractor (CNHi, 
Zedelgem, Bruges, Belgium). This vehicle, with a weight of approximately 1700 kg and a gross 
power of approximately 33.6 kW, was mechanically, electrically and hydraulically modified. 
The robot power system, originally based on the tractor internal combustion engine, was 
improved with an additional electrical energy system consisting of (1) a photovoltaic panel, 
(2) a hydrogen fuel cell and (3) a set of batteries.

A main controller onboard the vehicle managed the main vehicle functions and a safety sys-
tem that provided safety to the vehicle, the environment and, most importantly, any indi-
viduals nearby [12]. The final autonomous robot and the different subsystems attached to it, 
whose main features are detailed in the following sections, are depicted in Figure 1. The size, 
justification and assessment of the added electrical energy system are presented in Section 5.2.

2.1.1. Autonomous robot controller

The autonomous robot controller (see Figure 2) allowed the robot to apply an effective treatment 
with high precision. The autonomous robot controller is based on a hybrid architecture that 
relies on the main controller based on a CompactRIO-9082 (National Instruments Corporation) 
running a LabVIEW Real-Time operating system. The controller synchronized and processed 
the information received from different sensors and the external operator and selected the best 
behavior for the entire system depending on the current working situation, the perceived envi-
ronment and the general mission requirements. The controller also communicated with every 
other subsystem via diverse communication protocols (Ethernet, serial and CAN bus) [13, 14]. 
The set of these systems (controllers, sensors and actuators) had an average power demand of 
approximately 170 W for 12-V devices and approximately 260 W for 24-V devices.

Figure 1. Autonomous robot.
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The autonomous robot is equipped with a positioning system that consists of a global posi-
tioning system (GPS) receiver (Trimble Model BX982), with two antennas to measure the 
robot’s heading with triangulation techniques. The system uses a real-time kinematic (RTK) 
signal correction provided by a GPS base station located next to the working field. The posi-
tioning system provides a location accuracy of approximately ±0.025 m.

A vision system installed onboard the robot was used by

• the weed detection system, which is responsible for detecting weed patches

• the crop row detection system, which is responsible for detecting the rows as a reference 
for guiding the autonomous robot

• the safety system, which comprised (1) an obstacle detection system based on the robot 
camera, (2) a laser and (3) a remote controller used by the operator.

A base station generated the mission, which consisted of a plan that defined the trajectories 
of the robot and a plan for managing the implements, both plans depended on the specific 
application. After generating the mission, the base station sent both plans to the robot control-
ler and executed them. When the robot was working, the base station was responsible for 
supervising the status of both the robot and implement in real time and detecting malfunc-
tions, such as service disruptions, incorrect working speeds, incorrect implement statuses and 
the probability of collisions [15].

2.1.2. Internal combustion engine

The internal combustion engine can work in two ways:

• As the only power source providing the total power demanded by the agricultural task.

• As a part of the hybrid energy system, providing only a sufficient amount of power to 
move the autonomous robot with its implement.

Figure 2. Main components of the autonomous robot controller.
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The engine was similar to that of the original tractor; however, the maximum ground speed 
was limited to 7 km h−1 for safety reasons. Figure 3 shows the performance curves of the 
internal combustion engine provided by the manufacturer, which were used to calculate the 
exhaust gas emissions and implement the energy demand model. The torque, power curve 
and specific fuel consumption volume (VSFC) are shown as functions of the engine speed.

2.1.3. Hydrogen fuel cell

A hydrogen fuel cell was used because this device generates electrical power with high 
performance and can be rapidly refueled. The cell was attached to the front of the robot in 
a box containing the hydrogen tanks (see Figure 1). A proton exchange membrane fuel cell 
and metal hydride tanks were selected, which provided a power range from 0.5 to 5 kW 
with a specific hydrogen consumption of approximately 0.74 Nm3 kW h−1. This value was 
used to estimate the hydrogen consumption [17]. Nm3 denotes normal cubic meters, the 
volume of gas measured under the normal conditions of 0°C and 1.01325 × 105 Pa (1 atm) 
of pressure.

Figure 3. Performance curves of the internal combustion engine [16].
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2.1.4. Photovoltaic panel

The photovoltaic panel was used as an additional system for fossil-free energy. This device 
charged the batteries whenever there was sufficient light, even when the robot was in a 
garage. The panel was situated on top of the robot to minimize shadows. Only the antennas 
and camera were attached higher on the robot to improve the signal transmission and camera 
vision. The panel was set horizontally to collect solar power independent of the orientation 
(see Figure 1).

2.1.5. Batteries

A set of batteries were used to

• store excess electrical energy

• supply energy during periods of high demand, for example, the startup of the internal 
combustion engine

• ensure that the robot’s energy management system had a continuous energy supply.

Because the set of batteries was heavy, one group of batteries was placed over the rear vehicle 
shaft to reduce the slippage in tasks requiring draft forces. Another battery bank was placed 
inside the fuel cell box in front part of the tractor and acted as a counterweight, when heavy 
implements were used (see Figure 1).

2.1.6. Energy management system

The energy management system consisted of a controller to manage the electrical energy 
flow from the hydrogen fuel cell and the photovoltaic panel. This system was responsible for 
regulating and adapting the electrical power and supervising the electrical energy storage. To 
accomplish this task, the system collected data about the status of the batteries and hydrogen 
tanks and controlled the power provided by the hydrogen fuel cell.

2.1.7. Fuel consumption measurement system and model

Fuel consumption was measured using two flowmeters installed in the fuel supply line and 
return line (see Figure 4). The instantaneous fuel consumption was measured as the differ-
ence between the data from flowmeter 1 and the data from flowmeter 2.

The flow sensors must be placed behind a fuel filter for protection; therefore, the return line 
flowmeter must be installed in the pipe between the injectors and the junction with the fuel 
filter return line. The other flowmeter can be installed between the fuel filter and lift pump 
or between the lift pump and injection pump. The best position is behind the lift pump; oth-
erwise, low pressure can lead to additional problems resulting from small air bubbles in the 
sensor circuit. Additionally, a cooling device was added in the return line before flowmeter 2 
because a substantial amount of noise was observed in the flowmeter 2 data as a result of the 
high temperature of the fuel returned by the robot engine.
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These flowmeters must be suitable for measuring diesel fuel and support the robot fuel circuit 
conditions. According to the characteristics of the fuel system (see Table 1), the flowmeters do 
not need to support high pressures; the nominal flow must be approximately 12.54 L h−1, with 
a maximum flow of approximately 30 L h−1, which is adequate for oil with a low kinematic 
viscosity. Furthermore, the flowmeter must deliver a measure of the temperature of the fluid, 
and the return line flow sensor must be sensitive to a low flow rate.

An effective flowmeter for these applications was a small positive displacement oval gear 
flowmeter. The oval gear design ensures that the pressure loss across the sensor is very low 
(less than 1.5 × 104 Pa at full flow) and that the performance remains nearly constant over 
the entire temperature and viscosity range. The PD400 flowmeter from Titan Enterprises 
Ltd. (Sherborne Dorset, England, UK) was selected (see Figure 5) for both flow lines. Table 2 
presents the main features of the PD400 flowmeter, which has a small, oval, tooth-wheeled 
counter in addition to an easily replaceable filter that protects the sensor from any floating 
particles. The flowmeter accuracy was approximately ±2.5% with a low pressure loss of 104 Pa 
[20], and its recommended working temperature range was from 0 to 60°C, which was slightly 
lower than the temperature of the fluid in the return line; thus, the return line required a small 
radiator to cool the returned fuel. This fuel consumption measurement system was properly 
calibrated and validated experimentally. Considering the flowmeter accuracy and the rate of 
flow in the fuel line, we obtained an accuracy of approximately 0.3 L h−1.

Figure 4. Scheme of the fuel flow system.

Feature Value

Lift pump rated flow 12.54 L h−1

Lift pump working pressure (0.2 ± 0.05) 105 Pa

Maximum flow ~30 L h−1

Density at 15°C 820–845 kg m−3

Gross calorific value 10.40–10.72 kWh L−1

Net calorific value 9.881–10.182 kWh L−1

CO2 emissions 2.616–2.696 kg L−1

Table 1. Main characteristics of the fuel and fuel systems [16, 18, 19].
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Several mathematical models for tractor engine consumption have been proposed in the last 
few decades; these models show the interest in minimizing fuel consumption in agriculture 
tasks [21, 22]. In this study, fuel consumption was assumed to depend on the terrain surface 
and slope, engine speed, throttle position and load conditions, tractor drive type, total weight, 
drawbar, PTO, and hydraulic and electrical power. To estimate the individual contribution 
of these elements to fuel consumption, their relationships with energy expenditures must be 
examined. These relationships were based on estimates using standards, engineering prac-
tices, and data suggested by the American Society of Agricultural Engineers (ASAE) [24].

The total energy and fuel consumption can be related through the specific fuel consumption 
volume, VSFC, which is the fuel volume consumed per power provided, by computing the total 
fuel consumed, VTFC, as follows:

   V  TFC   =  ∫ 0  
T     V  SFC   (t)   P  T_PTOeq    (t) dt  (1)

where PT_PTOeq is the total equivalent PTO demanded power.

According to ASAE [24], the specific fuel consumption volume can be computed by

Figure 5. PD400 flowmeter.

Feature Value

Flow rate 1–60 L h−1

Maximum working pressure 25,105 Pa

K factor 1830 pulses L−1

Temperature range 0–60°C

Accuracy ±2.5% (at a density of 830 kg m−3)

Table 2. Main characteristics of the PD400 flowmeter [23].
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and the total equivalent PTO demanded power is given by
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where PPTOeq is the equivalent PTO power; PPTOrated is the rated PTO power; nPT and nFT are 
the partial and full throttle engine speed, respectively; D is the implement draft force; FMR is 
the motion resistance (i.e., the difference between the gross traction and net traction; v is the 
vehicle speed; ET is the traction efficiency; EM is the mechanical efficiency of the power trans-
mission from the net flywheel to the PTO; and PPTO, Phyd and Pel are the power requirements 
from the PTO, the hydraulic power and the electrical power, respectively. Details about the 
model’s derivation are provided in [25].

2.1.8. Calculation of the exhaust gas emissions

The exhaust gas emissions were computed by considering the partial load and speed of the 
engine for a particular work regime according to the ISO 8178 standard [26] and the fuel 
features specified in [18]. To calculate the partial load, the values of wheel slippage (the dif-
ference between the ground speed provided by GPS and the wheel speed provided by the 
control system), PTO speed, engine speed, three-point hitch position (which determines the 
plowing depth when the cultivator is used), and terrain slope (obtained from the orthometric 
height in each point) were obtained. The partial load of the engine was calculated using these 
data and the equations from the ASABE standards [24, 27]. With this partial load, the work 
regime of the engine was obtained from the curves shown in Figure 3. Then, the correspond-
ing emission factor for each exhaust substance was estimated with these data and the ISO 
8178 standard [26]. The ISO standard defines the emissions factors of exhaust gases for agri-
cultural combustion engines in eight individual work regimes based on the maximum power 
and the manufacturing year of the engine. For small engines, as in this case, the ISO standard 
defines the emission factors needed to calculate CO, particulate matter and NOX + hydrocar-
bons. Finally, the CO2 emissions were calculated using the chemical equation of combustion 
reaction (considering the other exhaust emission gases calculated with the emission factor of 
the ISO standard) and the measured fuel consumption.

2.2. Agricultural tasks and implements

Three different agricultural tasks were considered, each one requiring a specific agricultural 
implement:

• Weed control using a thermal and a row crop cultivator implement

• Weed control using an herbicide patch sprayer

• Pest control using a canopy sprayer.

Agricultural Robots - Fundamentals and Applications70

Figure 6 illustrates these three implements, and their main features and requirements are 
presented in the following sections. The modifications to the implements made to allow use 
with the hybrid energy system are also described.

2.2.1. Weed control with a thermal implement and cultivator implement

This task consisted of performing weed control using plowing and thermal treatments with 
a particular mechanical-thermal machine. The weed detection system detected weed patches 
by processing the images from a vision camera in real time. The autonomous robot was pro-
grammed to follow an initial predefined path, which fixed the initial and final points of each 
track (the path followed by the vehicle through the crop). However, the initial path was cor-
rected with information provided by the row detection system based on the vision camera 
of the weed detection system. The area analyzed in each image was a 3-m-wide (4 rows) 
and 2-m-long rectangle. It was georeferenced with an accuracy of approximately 0.08 m and 
divided into 0.25 × 0.25 m cells [14].

The implement consisted of a row crop cultivator and thermal device. The row crop cultivator 
performed a mechanical treatment in the furrows (the spaces between crop rows, similar to a 
conventional row crop cultivator). The thermal device consisted of several burners that pro-
duced flames applied in each row for weed control. This implement (see Figure 6a) was used 
for wide rows of crops, with rows separated by approximately 0.75 m. This technique can be 
applied to crops that can withstand high temperatures over short periods of time, such as 

Figure 6. Implements working: (a) thermal and row cultivator, (b) canopy sprayer and (c) patch sprayer.
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maize, garlic, leek and onion. The implement was controlled from the main controller, which 
was able to regulate the gas pressure of each burner separately in three stages: zero (off), low 
and high. The basic features of this implement are provided in Table 3 [28].

The implement originally had two hydraulic cylinders to allow the main bar to extend (for 
treatment) and retract (during transportation). These cylinders could be replaced by linear 
actuators with electrical motors (LINAK LA36, Guderup, Nordborg, Denmark), reducing 
the power demand from the internal combustion engine and increasing the power demand 
from the electrical energy system. The power demand from the electrical energy system was 
relatively small because plowing was the main energy demand of this task, and the energy 
required for plowing was supplied by the internal combustion engine. This implement used 
gas fuel for the burners, but the gas fuel was not considered in the energy analysis; the energy 
analysis considered only the electrical power used to light the burners. Any type of biogas 
could be used for the burners, which have negligible combustion emissions.

Implement Feature Value

Thermal and row crop cultivator Power of the implement controller 40 W (24 V)

Number of burners (two per row) 8

Power of the valves and sensors <1 W

Power of each ignitor 144 W (24 V)

Linear actuator engine power (×2) 240 W (24 V)

Patch sprayer Power of the implement controller 40 W (24 V)

Number of nozzles 12

Nominal flow of the nozzles 0.0126 L s−1

Nominal pressure of the nozzles 2.76 105 Pa

Power of each pump 16.5 W (24 V)

Power of the flow control system 15 W (12 V)

Engine power of each linear actuator (×2) 200 W (12 V)

Canopy sprayer Power of the implement controller 40 W (24 V)

Number of diffusors 8

Nominal flow of the nozzles (two per diffusor) 0.066 L s−1

Nominal pressure of the nozzles 3 105 Pa

Power of each pump 19 W (24 V)

Power of the flow control system 24 W (24 V)

Air flow per nozzle ~0.5 m3 s−1

Power of each fan 105 W (24 V)

Power of the ultrasonic sensors 12 W (24 V)

Engine power of each angle regulator (×4) 36 W (24 V)

Table 3. Main features of the implements [12, 31–33].
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2.2.2. Weed control with an herbicide patch sprayer

This task consisted of spraying herbicides over weed patches of herbaceous crops. The weed 
patches were detected and localized using the remote weed detection system, which was 
a system based on vision cameras that acquired images using aerial robots and provided 
a weed map of the crop consisting of 0.25 × 0.25 m cells with weed indexes indicating the 
percentage of each cell’s area covered by weeds with respect to the total cell area. This map 
is an input for the autonomous robot, which will open/close the implement nozzles over the 
cells depending on their cell weed indexes.

The implement was a conventional patch sprayer (see Figure 6c) modified to activate each 
nozzle separately and regulate the total flow of the applied product. Two electrical linear 
actuators extended and retracted the spraying booms that were controlled by the robot’s cen-
tral controller. The main features of this implement are summarized in Table 3 [29].

Originally, this implement used a main pump that worked with the PTO using the internal 
combustion engine’s power. The pump worked to a rated power whenever a valve was open 
and used a bypass line to return the product overflow, wasting a large amount of energy. To 
improve this system, the main pump was replaced with a set of small pumps, using one pump 
for each nozzle. The selected pump for this application was the model MG100 Micropump 
(TCS Micropumps Ltd., Faversham, Kent, UK), which was able to regulate the flow to provide 
sufficient flow and pressure. The implement control system was able to regulate the main her-
bicide flow (the total nozzle flow) to ensure correct operation. This modification generated a 
significant reduction in power demand from the combustion engine and increased the power 
demand from the electrical energy system slightly.

2.2.3. Pest control with a canopy sprayer

This task consisted of spraying insecticide into tree canopies for pest control. The robot path 
plan provided the initial and final points of each track, and the robot controller was responsible 
for interpolating the path to follow. The implement was a canopy sprayer (see Figure 6b) that 
sprayed a pesticide solution over the tree canopies and blew the spray along the entire canopy. 
The canopy sprayer was designed to spray trees planted in rows spaced approximately 4 m 
apart, a common row spacing in olive groves. The implement was autonomous, that is, capable 
of detecting the tree canopies and applying pesticide doses depending of the canopy dimensions. 
The autonomous robot central controller turned the implement on and off only at the start and 
end of the mission, respectively. The sprayer had four vertically placed diffusors on each side, 
four of which (the lower and upper) allowed the spray direction to the canopy to range from −15 
to 15° with respect to its initial vertical position. Each diffusor was equipped with two nozzles 
and one air outlet, and the implement control system was able to activate each diffusor separately. 
Eight ultrasonic sensors were used to detect the tree canopy, activate the required diffusors and 
regulate the diffusor positions. In addition, the sprayer regulated the main flow of pesticide and 
air using a main pump and fan. Table 3 shows the main features of this implement [30].

Analogous to the patch sprayer, the canopy sprayer originally used the internal combustion 
engine power from the PTO to operate the main pump and the fan that diffuses the pesticide 
throughout the tree canopy. Because this implement was autonomous, the robot’s central 
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Figure 7. Path plan selection.

controller could not determine the instantaneous power requirements of the task. Thus, the 
pump and fan worked continuously at the rated power, wasting large amounts of energy. The 
system could be improved using a similar process as the previous application: replacing the main 
pump with a series of small pumps, replacing the main fan with a set of small fans and using one 
pump and one fan in each diffusor. The pump model MG100 Micro Pump and the axial compact 
fan EC W1G250-HH37-52 (ebm-papst Group, Mulfingen, Baden-Württemberg, Germany) were 
used for this modification. In this implement, the pesticide flow was controlled while the fan was 
maintained at its rated power. The reduction in power demand from the internal combustion 
engine was the largest of the three tasks, as it was the total power consumed by electrical devices.

3. Path planning to reduce the fuel consumption

To find a path plan that minimizes the fuel consumption, a number of different possible paths 
must be simulated. These paths must consider all possible track angles, field’s slopes and vehi-
cle mass losses during the spraying task. Figure 7 shows the block diagram of the procedure. 
The first step is to obtain (a) the field and crop data, (b) the digital elevation model and (c) the 
weed map, and to define potential angles for the first track of the path plans to accomplish the 
treatment. The procedure relies in calculating the required energy of each path, considering 
that we can start the treatment from both sides of the crop (right or left) and rejecting the track 
with no weed. Finally, the plan with the smallest fuel consumption is selected.

Fuel consumption for all possible track angels, from 0 to 360°, must be calculated because 
for treatments with mass losses, the motion resistance at a given point may differ. Thus, the 
instantaneous motion resistance at each point depends on the path plan starting point [25].

The crop limits were defined as a function of the crop features and the weed map, if available, 
was provided by an external device. The weed maps were represented in gray scale images 
using eight bits per color channel; they have a pixel size of 0.5 m and were georeferenced 
by the position of the lower left pixel with geodesic coordinates that are translated to the 
(Universal transverse Mercator) UTM. The WGS84 standard Earth reference ellipsoid was 
used. To estimate the terrain elevation model, the GeoTIFF ASTER GDEM images obtained 
from the NASA website were used. These data were provided using a 1-arc-second (approxi-
mately 30 m at the Equator) grid and are referenced to the WGS84 [34].
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Table 4 summarizes the results obtained with these methods, and Figure 8 represents the best 
path plan to reduce the fuel consumption.

For the path sprayer case, where the areas to be treated are known in advance, the fuel 
reduction resulted the best. Thus, a weed detection system that provides the weed data in 
advance, with the consequent energy cost, is essential. However, this study considers that 
energy negligible with respect to the energy savings achieved. In the case of the thermal and 
row cultivator implement, we know the areas to be treated a few seconds before the treat-
ment, but it suffices for applying some energy-saving actions to obtain an important energy 
reduction.

Finally, in the case of the canopy sprayer, an autonomous implement capable of detecting 
the areas to be treated a few milliseconds in advance is used. This implement does not 
enable the use of nearly any energy-saving actions, and the fuel reduction obtained is thus 
the lowest.

Implement Implement method Fuel consumption 
calculated

Fuel consumption measured

Thermal and row cultivator Without optimization 0.48 L 0.50 L

With optimization 0.31 L 0.43 L

Reduction 36% 13%

Patch sprayer Without optimization 0.74 L 0.90 L

With optimization 0.29 L 0.53 L

Reduction 61% 41%

Canopy sprayer Without optimization 0.37 L 0.45 L

With optimization 0.35 L 0.43 L

Reduction 6% 5%

Table 4. Results in fuel optimization.

Figure 8. Test field schemes with the best path planning.
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4. Energy demand analysis

To estimate the total energy consumed in each agriculture task, the instantaneous power, the 
time and the relationship with the energy source were all related. The robot had four energy 
sources: fuel, hydrogen, batteries and solar power (the instantaneous power provided by the 
Sun cannot be regulated). The energy demand has two main components:

• The energy demand supplied by the internal combustion engine, EICE, which is the energy 
used to move the robot and implement.

• The electrical energy demand supplied by the electrical energy system, EEES.

• Thus, the total energy consumed, ET, could be calculated as follows [35]:

   E  T   =  E  ICE   +  E  EES    (4)

The energy provided by the internal combustion engine, EICE, can be computed as

   E  ICE   =  ∫ 0  T     P  ICE   (t)  dt =  ∫ 0  T    (D (t)  +  F  MR   (t) ) v (t) dt  (5)

where v is the system speed; D is the implement draft force, which depends on the dimension-
less soil texture adjustment parameter and machine-specific parameters; FMR is the motion 
resistance force, which depends of the soil surfaces, terrain slope, wheel slippage, total system 
mass and vehicle tires; and T is the study period. Eq. (5) computes the energy obtained from 
an internal combustion engine, but it does not consider the loss of mechanical and traction 
efficiencies in the vehicle [24, 27].

The second term of Eq. (4), that is, the energy supplied by the electrical energy system, can 
be calculated by

   E  EES   =  ∫ 0  T     P  EES   (t)  dt =  ∫ 0  T    ( P  AR_control    (t)  +  P  IMP_control    (t)  + n  P  Tool    (t) )  dt  (6)

where PEES is the instantaneous power demanded to the electrical energy system, PAR_control 
is the power used to supply the autonomous robot controller described in Section 2.1.1, 
PIMP_control is the power consumed by the electrical system of the implement (e.g., controllers, 
sensors and position actuator), n is the number of active tools and PTool is the electrical power 
consumed by each tool. A tool is defined as a set of systems that can be activated separately 
to apply the treatment correctly in a given zone. With the thermal and row cultivator imple-
ment, the tool was the set of two burners and hoes used in each crop row, which used two 
ignitors (only to light the burners) and two valves (only to change the tool status). In the 
patch sprayer, the tool was each nozzle, each of which used a pump. In the canopy sprayer, 
the tool was the set of two nozzles and the air outlet of each diffuser, each of which used 
a pump and fan. Eqs. (4)–(6) describe the model of the energy demand in the system for a 
specific task.
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5. Energetic analysis

This section studies the energy requirements of the aforementioned agricultural tasks and the 
required features and devices of the hybrid energy system.

5.1. Energy demanded in the selected task

The energy required for the autonomous robot and implement in each of the aforementioned 
agricultural tasks was estimated using a representation of real crops (see Figure 8). The energy 
analysis described in Section 4 was used to estimate the total energy consumed, measured as both 
the maximum power demand and average power. The power was split into two values: (1) the 
power demanded by the 24-V DC system and (2) the power demanded by the 12-V DC system.

5.1.1. Energy analysis of weed control using a thermal implement and cultivator implement

The electrical power demands of the 12-V DC devices, 24-V DC devices and their combined 
sum are shown in Figure 9a. In this application, the power demand from the 12-V DC devices 
was approximately constant, and the power demand of the 24-V DC system had abrupt and 
short peaks, which were generated by the ignition of the burners. Table 5 presents the values 
of these peaks and the average values of each type of power demand.

The total hydrogen consumed during a working shift of 8 h was calculated under the assump-
tion that the hydrogen fuel cell, which was described in Section 2.1.3, supplied all of the 
electrical energy. This task represented the lowest power demand from the electrical energy 
system because the energy for plowing was supplied by the internal combustion engine and 
the gas burners did not require electrical power to work, only an ignition spark. Thus, the 
electrical energy system was mainly used to power the electrical control systems.

5.1.2. Energy analysis of weed control using a patch sprayer

Figure 9b illustrates the instantaneous power demand of the patch sprayer in a weed control task. 
The power consumed by the 12-V DC system was approximately constant because this power 
was mainly used to supply energy to the system controllers. However, the power demanded by 
the 24-V DC system, used to provide power to the implement devices, exhibited important varia-
tion that occurred when the pumps applied the treatment to weed patches. The maximum values 
of the power demand, their average values and the total hydrogen consumed during an 8-h work 
shift are shown in Table 5. These values were generally higher than those for the above case.

5.1.3. Energy analysis of pest control tasks using a canopy sprayer

As in previous tasks, Figure 9c shows the power required for pest control using the autono-
mous canopy sprayer. These graphs are similar to the patch sprayer application but with 
larger values for the power demanded by the 24-V system, the only voltage used in this imple-
ment. The numerical values (and comparisons) for power demand in the pest control task, 
and other tasks are provided in Table 5. As expected, the pest control task had the highest 
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4. Energy demand analysis
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   E  T   =  E  ICE   +  E  EES    (4)
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   E  ICE   =  ∫ 0  T     P  ICE   (t)  dt =  ∫ 0  T    (D (t)  +  F  MR   (t) ) v (t) dt  (5)

where v is the system speed; D is the implement draft force, which depends on the dimension-
less soil texture adjustment parameter and machine-specific parameters; FMR is the motion 
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   E  EES   =  ∫ 0  T     P  EES   (t)  dt =  ∫ 0  T    ( P  AR_control    (t)  +  P  IMP_control    (t)  + n  P  Tool    (t) )  dt  (6)
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5. Energetic analysis
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power demand from the electrical energy system, although the power demand from the 
12-V DC system was similar to the other three cases because it was used mainly to supply the 
controllers. Thus, the controllers had a quasi-constant power demand and were not strongly 
influenced by the task.

Figure 9. Power demands of the electrical energy system (ESS): (a) weed control using the thermal and row crop cultivator 
implement; (b) weed control using the sprayer implement and (c) pest control using the canopy sprayer. PEES 12, PEES 24 and 
PESS are the 12-V, 24-V and total power, respectively.
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5.2. Hybrid energy system

The energy system studied in this work used the original internal combustion engine of the 
tractor operating in parallel with an electrical energy system. The architecture of the resulting 
hybrid energy system is shown in Figure 10. The internal combustion engine was used to 
provide motion, overcoming the motion resistant force and possible draft forces generated 
by the implement, while the electrical energy system was used to power all electrical systems 
onboard the autonomous robot. The combustion engine had enough power and autonomy 
for the tasks analyzed in this work, but an electrical energy system was needed to supply the 
electrical energy required for each agricultural task.

The electrical energy system used hydrogen as the main energy source, with a small contribu-
tion from a photovoltaic panel, and used batteries to adapt the power supply to the energy 
requirements and store excess electrical energy generated by the photovoltaic panel when it 
was not in use. The electrical energy system was designed according to the maximum values 
in Table 5.

The hydrogen system was designed to supply the average power demanded by all electri-
cal systems, for example, control systems, sensors and actuators. Therefore, a hybrid fuel 
cell with a minimum power of 1.16 kW and at least 5.96 Nm3 of hydrogen storage was 
required.

The hybrid fuel cell was based on the TROPICAL TB-1000 model. It was an unregulated DC 
power system based on a proton exchange membrane fuel cell (FCgen-1020ACS, Ballard 
Power Systems, Burnaby, British Columbia, Canada). The system had to be fueled with pure 
hydrogen and was able to deliver up to 1.4 kW of peak electrical power and 1.2 kW in a 
nominal continuous operation. A hydrogen storage system based on metal hydride tanks was 
used. Four tanks were used, each with a capacity of 3 Nm3.

The photovoltaic panel was a Module EGM-185 (EGing PV Co., Ltd., Jintan, Jiangsu, P.R. C), 
which had a power rating of 183 W and an efficiency of approximately 15%. At the test site 
location (40°18′29″ N, 3°29′14″ W), this panel provided an average daily energy amount of 

Implement

Thermal and row crop cultivator Patch sprayer Canopy sprayer

12-V average power 0.26 kW 0.28 kW 0.26 kW

24-V average power 0.22 kW 0.28 kW 0.90 kW

Total average power 0.48 kW 0.56 kW 1.16 kW

12-V maximum power 0.26 kW 0.40 kW 0.26 kW

24-V maximum power 0.79 kW 0.41 kW 1.39 kW

Total maximum power 1.05 kW 0.68 kW 1.65 kW

H2 consumed (for 8 h) 2.43 Nm3 2.84 Nm3 5.96 Nm3

Table 5. Power and hydrogen consumed in each application.
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Figure 10. Hybrid energy system.

0.88 kWh, with a maximum of 1.46 kWh per day in July, according to the irradiation data 
available from the Photovoltaic Geographical Information System of the Institute for Energy 
and Transport [36].

Deep-cycle lead-acid batteries, which could supply current levels greater than those provided 
by the hybrid fuel cell over short periods, were used. The lead-acid batteries were charged by 
both the hybrid fuel cell and photovoltaic panel and stored all unused photovoltaic energy. 
The batteries were divided into two banks to supply 12 V DC and 24 V DC. Each bank con-
sisted of two batteries, each with a capacity of 2.2 kWh; this capacity was sufficient to store 
excess photovoltaic energy over several days of inactivity and could be used during sporadic 
periods of high energy demand, as shown in Figure 11. Table 5 shows that the power demand 
of the 24-V DC system was higher, but this analysis did not consider the energy required to 
start the combustion engine. Furthermore, two or more batteries in parallel were required to 
start the internal combustion engine because deep-cycle batteries were used.

The energy management system was responsible for

• Regulating and adapting the power provided by the hydrogen fuel cell and photovoltaic 
panel.

• Assuring a minimum charge in the batteries.
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• Obtaining the maximum photovoltaic power.

• Supervising the hydrogen storage, batteries status and photovoltaic power.

The energy management system used two solar-panel controllers (either 12-V batteries or 
24-V batteries) with the maximum power point tracking (MPPT SS-MPPT-15 L, Morningstar, 
Inc., Chicago, Illinois, US) to obtain the maximum power from the photovoltaic panel.

Both 12-V and 24-V battery chargers (or power adapters) (BCD1015, Analytic Systems Ware 
Ltd., Delta, British Columbia, Canada) were required to adapt the power from the hybrid fuel 
cell. The energy management system was equipped with a controller that managed the energy 
flow. The block diagram of the energy management system is shown in Figure 11, where C12V 
and C24V are the charges of the 12-V and 24-V batteries, respectively; C12Vmin and C24Vmin are the 
minimum charges in these batteries with the hybrid fuel cell stopped; and C12Vmax and C24Vmax 
are the maximum charges in these batteries when the hybrid fuel cell is running. C12Vmin and 
C24Vmin were calculated to ensure correct operation during periods of high energy demand. 
The C12Vmax and C24Vmax values were calculated to create a hysteresis cycle for the hybrid fuel 
cell’s operation with a value that is sufficiently high to avoid excessive start/stop in the hybrid 
fuel cell but sufficiently low to allow for the storage of the photovoltaic energy generated 
when the robot was stationary.

6. Results and discussion

This section presents the emission reductions obtained by using the hybrid energy system 
in real scenarios. To analyze the results, the emissions of the autonomous robot with the 

Figure 11. Block diagram of the flow energy control.
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internal combustion engine as the only power system were compared with the emissions of 
the same robot using the additional hybrid energy system described in Section 5.2. The same 
autonomous mobile robot was used in all tests, and the fuel consumption and emissions were 
measured as explained in Section 2.1.7. The experiments were carried out for the crops and 
tasks introduced in Section 2.2, and the results are described in the following sections.

6.1. Hybrid power of weed control with a thermal implement and a cultivator 
implement

This test was performed over the maize crop represented in Figure 8a, where the path followed 
by the robot is indicated in blue and the weed patches are indicated in green. As described 
in Section 2.2.1, the vision system onboard the robot detected the weed patches in real time; 
therefore, the trajectories had to cover the entire field because a priori knowledge of where the 
patches were located was not available. Although the burners were activated only over weed 
patches, the hoes plowed all furrows to kill weeds and aerate the soil. Therefore, the energy 
required to plow all tracks was high, and more exhaust gas was produced, particularly CO2, 
as shown in Figure 12a, which shows the exhaust gas emitted as a function of the distance 
traveled. The required energy to plow was the main power demand supplied by the engine 
in both cases (using the internal combustion engine alone and using it along with the hybrid 
energy system). Consequently, the emission reduction obtained due to the use of the hybrid 
energy system was small.

As shown in Figures 12a–d and Table 6, the reduction in air pollution during this task was 
lower than in the other analyzed tasks. The CO2 emissions were only slightly reduced as a 
result of the energy consumed by the burner ignitors and electrical control system, although 
the energy consumed by the ignitors was relatively negligible.

Figure 12. Exhaust gas emissions in weed control using the thermal and row crop cultivator implement.
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6.2. Hybrid power of weed control with an herbicide patch sprayer

This test was performed over the wheat crop represented in Figure 8b, where the path fol-
lowed by the robot is indicated in blue and the weed patches are indicated in green. The weed 
map was acquired in advance using remote sensing. Thus, the robot did not need to move 
over the entire field, as in the task described in Section 2.2.2, and the path could be optimized 
to pass over only the weed patches, reducing energy consumption.

Figure 13 shows the instantaneous emissions of CO2, CO, hydrocarbons + NOX and partic-
ulate matter obtained in this experiment, and Table 6 shows their average values and the 

Application Power system CO2 CO HC + NOX PM

(kg h−1)

Thermal and cultivator Combustion engine only 11.32 0.1132 0.1478 0.0126

Hybrid system 10.36 0.1129 0.1475 0.0126

Exhaust gas reduction 8.53% 0.2% 0.2% 0.0%

Patch sprayer Combustion engine only 9.86 0.1334 0.1852 0.013

Hybrid system 6.25 0.110 0.1434 0.0123

Exhaust gas reduction 36.6% 17.8% 22.6% 5.4%

Canopy sprayer Combustion engine only 10.74 0.1425 0.2047 0.0125

Hybrid system 5.64 0.1071 0.1393 0.012

Exhaust gas reduction 47.5% 24.8% 31.9% 3.8%

Table 6. Average values and comparison of exhaust gas emissions in the three applications.

Figure 13. Exhaust gas emissions in weed control using the patch sprayer.
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reductions obtained when using the hybrid energy system. Figure 13a shows a significant 
reduction in CO2 emissions because the hybrid energy system avoids the use of the PTO, 
resulting in a significant reduction in fuel consumption.

Figure 13c presents the reductions in hydrocarbon and NOX emissions, but these reductions 
were smaller than the reduction in CO2 because the NOX concentration in the exhaust gases 
decreased with engine speed but the concentration of hydrocarbons increased. Particulate 
matter emissions were highly similar in both cases (see Figure 13d) because their concentra-
tions in the exhaust gases increased as the engine speed decreased, which occurred when the 
PTO was off or operating slowly. A similar result, but to a lesser extent, was obtained for CO, 
as shown in Figure 13b and Table 6.

6.3. Hybrid power of pest control with a canopy sprayer

This test was performed in the small olive grove represented in Figure 8c, where the path fol-
lowed by the autonomous robot is indicated in blue and the olive trees are indicated in green. 
The implement used for this task was the autonomous canopy sprayer, as described in Section 
2.2.3. This implement, as discussed in Section 5.1.3, demanded the majority of the energy from 
the electrical energy system out of the three experiments that were conducted. The highest 
reduction in power demand from the combustion engine was achieved in this experiment, 
resulting in the highest reduction in the exhaust gases, as illustrated in Figures 14a–d and 
Table 6. The reduction in CO2 emissions reached approximately 50%. The results are similar 
to the previous experiments (herbicide spraying) but, in general, with a greater reduction in 
emissions.

Figure 14. Exhaust gas emissions in weed control using the patch sprayer.
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7. Conclusions

This work demonstrates that using fuel optimization techniques with a good consumption 
model combined with field data (field limits and field elevation map) and crop needs can 
achieve fuel savings of approximately 50% in the best case. Furthermore, it is proved that 
to combine current agricultural machines, which use combustion engines for power, with 
new technologies that are based on clean energy sources to significantly reduce the emissions 
of atmospheric pollutants and greenhouse gases. This integration can be accomplished by 
offloading the combustion engine and adding this load to an additional electrical energy sys-
tem. This technique was highly effective for tasks where the implement requires PTO power, 
as shown in Sections 6.2 and 6.3. The replacement of this PTO power is relatively simple; only 
small modifications were required in the implement, as described in Section 2.2. When the 
implement generated draft force (e.g., in plowing), this technique was not as effective as in the 
experiments analyzed in Sections 6.2 and 6.3; however, a reduction in the pollutant emissions 
was obtained from the robotic systems when electrical energy consumption was important.

The use of electrical energy systems allows small electrical actuators to be used, which are 
able to apply treatments to small areas with little power consumption. The use of such dis-
tributed systems is particularly important in precision agriculture, where treatments must be 
focused only on affected areas, which are often smaller than the total area that the implement 
is able to treat.

The greatest improvement was obtained by the autonomous implement analyzed in Section 
6.3. In this example, the robot does not know the instantaneous power requirements of the 
implement, and thus, for the case in which the combustion engine is the only power source, 
the engine must supply the rated power to the implement, which is an inefficient use of 
energy. However, with the hybrid energy system, the implement uses the energy provided 
by the electrical energy system, and it is able to manage and minimize its energy.

The CO and particulate matter emissions present the least reduction because these concentra-
tions of emissions were larger when the hybrid energy system was used due to the effect 
of decreasing engine speed. Similar emission results were obtained for these gases in many 
studies that analyzed internal combustion engine exhaust gases [5, 6, 37]. But, although the 
concentrations of CO and particulate matter in the exhaust gases were lesser for these engine 
speeds and loads, the total exhaust gases increased because the flow of exhaust gases emitted 
from the combustion engine was much greater than the gases from the hybrid energy system. 
The theoretical studies and experiments conducted in this work reveal that the use of a hybrid 
energy system in precision agriculture via autonomous robots improves the quality of the 
exhaust gases and decreases energy use. Compared with traditional tractors, robotic trac-
tors have increased electric power consumption; therefore, an electrical energy system must 
be added when the agricultural vehicle is robotized because the use of alternators increases 
energy loss. Furthermore, an electrical energy system can be designed to supply some of 
the energy requirements of various agricultural tasks, as shown in this work. The hybrid 
energy system significantly reduced atmospheric pollutant emissions, including CO2, CO, 
NOX, hydrocarbons and particulate matter. This work has demonstrated that hybrid energy 
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Figure 14. Exhaust gas emissions in weed control using the patch sprayer.
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of decreasing engine speed. Similar emission results were obtained for these gases in many 
studies that analyzed internal combustion engine exhaust gases [5, 6, 37]. But, although the 
concentrations of CO and particulate matter in the exhaust gases were lesser for these engine 
speeds and loads, the total exhaust gases increased because the flow of exhaust gases emitted 
from the combustion engine was much greater than the gases from the hybrid energy system. 
The theoretical studies and experiments conducted in this work reveal that the use of a hybrid 
energy system in precision agriculture via autonomous robots improves the quality of the 
exhaust gases and decreases energy use. Compared with traditional tractors, robotic trac-
tors have increased electric power consumption; therefore, an electrical energy system must 
be added when the agricultural vehicle is robotized because the use of alternators increases 
energy loss. Furthermore, an electrical energy system can be designed to supply some of 
the energy requirements of various agricultural tasks, as shown in this work. The hybrid 
energy system significantly reduced atmospheric pollutant emissions, including CO2, CO, 
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systems can be reliably and autonomously used in agricultural tasks with tractors or robots, 
decreasing (to various extents) the load on the internal combustion engine. This development 
can be regarded as an intermediate step toward the use of completely clean energy systems.
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Nomenclature

Chemical components

CO carbon monoxide

CO2 carbon dioxide

NOX nitrogen oxides

SO2 sulfur dioxide

Symbols

D implement draft force (N)

EICE energy demand supplied by the internal combustion engine (Wh)

FMR total implement motion resistance (N)

n number of tools

PTool electrical power of each implement tool (W)

VTFC total fuel consumed (L)

VSFC specific fuel consumption volume (L Wh−1)

ET total energy (Wh)

PPTO power requirement from the PTO shaft (W)

PPTOeq equivalent PTO power (W)

PPTOrated rated PTO power (W)

PT_PTOeq total equivalent PTO demanded power (W)

PAR_control power used to supply the autonomous robot controller (W)

PIMP_control power consumed by the electrical system of the implement (W)

nPT partial throttle engine speed (rpm)

Agricultural Robots - Fundamentals and Applications86

nFT full throttle engine speed (rpm)

Phyd hydraulic power (W)

Pel electrical power (W)

Acronyms

DC direct current

NASA The National Aeronautics and Space Administration

PTO power take-off

GPS global positioning system

RTK real-time kinematic

UTM Universal transverse Mercator

WGS84 World geodetic system of 1984
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Abstract

Unmanned aerial vehicles carrying multimodal sensors for precision agriculture (PA) appli-
cations face adaptation challenges to satisfy reliability, accuracy, and timeliness. Unlike
ground platforms, UAV/drones are subjected to additional considerations such as payload,
flight time, stabilization, autonomous missions, and external disturbances. For instance, in
oil palm plantations (OPP), accruing high resolution images to generate multidimensional
maps necessitates lower altitude mission flights with greater stability. This chapter
addresses various UAV-based smart farming and PA solutions for OPP including health
assessment and disease detection, pest monitoring, yield estimation, creation of virtual
plantations, and dynamic Web-mapping. Stabilization of UAVs was discussed as one of
the key factors for acquiring high quality aerial images. For this purpose, a case study was
presented on stabilizing a fixed-wing Osprey drone crop surveillance that can be adapted as
a remote sensing research platform. The objective was to design three controllers (including
PID, LQR with full state feedback, and LQR plus observer) to improve the automatic flight
mission. Dynamic equations were decoupled into lateral and longitudinal directions, where
the longitudinal dynamics were modeled as a fourth order two-inputs-two-outputs system.
State variables were defined as velocity, angle of attack, pitch rate, and pitch angle, all
assumed to be available to the controller. A special case was considered in which only
velocity and pitch rate were measurable. The control objective was to stabilize the system
for a velocity step input of 10m/s. The performance of noise effects, model error, and
complementary sensitivity was analyzed.

Keywords: unmanned aerial vehicle, drone, flight control, oil palm, precision agriculture
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Abstract

Unmanned aerial vehicles carrying multimodal sensors for precision agriculture (PA) appli-
cations face adaptation challenges to satisfy reliability, accuracy, and timeliness. Unlike
ground platforms, UAV/drones are subjected to additional considerations such as payload,
flight time, stabilization, autonomous missions, and external disturbances. For instance, in
oil palm plantations (OPP), accruing high resolution images to generate multidimensional
maps necessitates lower altitude mission flights with greater stability. This chapter
addresses various UAV-based smart farming and PA solutions for OPP including health
assessment and disease detection, pest monitoring, yield estimation, creation of virtual
plantations, and dynamic Web-mapping. Stabilization of UAVs was discussed as one of
the key factors for acquiring high quality aerial images. For this purpose, a case study was
presented on stabilizing a fixed-wing Osprey drone crop surveillance that can be adapted as
a remote sensing research platform. The objective was to design three controllers (including
PID, LQR with full state feedback, and LQR plus observer) to improve the automatic flight
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the longitudinal dynamics were modeled as a fourth order two-inputs-two-outputs system.
State variables were defined as velocity, angle of attack, pitch rate, and pitch angle, all
assumed to be available to the controller. A special case was considered in which only
velocity and pitch rate were measurable. The control objective was to stabilize the system
for a velocity step input of 10m/s. The performance of noise effects, model error, and
complementary sensitivity was analyzed.
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1. Introduction

Malaysia is the world’s second largest exporter of palm oil (Figure 1) with approximately
5.08 million ha of land under cultivation [1]. Major percentage of these plantations is owned
by small-scale private farmers that have huge demands to affordable low-cost autonomous
platforms for applications, such as scouting, palm census, yield monitoring, spraying, and
most importantly health assessment and disease detection. The ability to collect high spatial
resolution aerial images using drones is changing the way the oil palm growers are
approaching the business [2]. Conventional methods of practicing precision agriculture
(PA) in oil palm plantations such as remote sensing and spraying are being replaced by
integrated fixed-wing or multirotor unmanned aerial vehicles (UAV) [3], allowing collection
of information to be instantly accessible for immediate decisions. Precision farming for
increasing oil palm yield requires optimization of returns on inputs while preserving
resources based on sensing, measuring, and health assessment of the plantations [4]. Relying
on satellites images of palms, there is a substantial lag in terms of accessing the data quickly
enough. Professionals have been using satellite and piloted airplane remote sensing plat-
forms [5] for plantation scouting applications, such as vegetation cover assessment [6],
vegetation mapping [7], crop monitoring [8], and forest fire applications [9]; however, the
difference that drone technology [10] and agricultural robotics [11–13] have made is around
the speed and accuracy of delivering that information. Digital agriculture [4] offers great
opportunities for mechanization and automation of farming tasks in oil palm plantations
through automation of data collection by means of ground or aerial surveillance and data
processing software to predict or estimate palms yields.

Conventional scouting of oil palms on a regular basis (Figure 2), as well as palm census and
quantification of the amount of fresh fruit bunches (FFB) for yield monitoring, is a labor-
intensive task that is either ignored or carried out manually by the use of hand counters.
Traditional scouting of palms is an ineffective practice that requires expert knowledge and
postprocessing lab equipment. It involves spending hours and hours of human observation
inside the unpleasant hot and humid plantation and does not provide accurate and

Figure 1. Comparison between world exports of palm oil, with Malaysia as the second largest exporter. (data: [1]).
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comprehensive information because several parameters are ignored due to measurements
difficulties (i.e., tasks that involve climbing trees, measuring canopy diameter, etc.). Other than
the inaccuracy and biases statistics, manual scouting involves additional costs for each extra
observation, hazards, and safety issues (i.e., falling from trees, bugs, snake bites, etc.). Satellite
imaging services are extremely costly, and they can take images only once a day and have to be
ordered in advance. The resolution of these images is low and can be influenced greatly with
certain sky cloud conditions. Ground sensing platforms are also time consuming and are
limited to small fields of view. Yield reduction due to high-density palm areas that cause
etiolation is an issue in plantation management. Palm densities are an important and limiting
factor for growth, nutritional status, fruiting, and hence for the plantation yield. Optimal palm
densities depend on different factors, such as cultivars, climate, soil characteristics, and land
preparation. Refilling of palm gaps and correction of nonoptimal densities are of high priority
for a good plantation management. Conventional methods that are solely based on visual
observation are inaccurate, particularly when coverage is large and dominant topography
is hillocky.

Precision agriculture of oil palm is one of the largest markets in Malaysia that will be hit by
UAVand robotics. These devices are the future of PA and are sometimes referred to as the next
step in data-driven agriculture. UAV/drones carrying multi-spectral and multimodal data
acquisition devices face adaptation challenges to satisfy information, accuracy, and timeliness
as the bases of a successful precision agriculture (PA) operation. These platforms have contrib-
uted to significant reductions of in-field walking costs and observational experiments. UAVs
are defined as “an aircraft that is equipped with necessary data processing units, sensors,
automatic control, and communications systems and is capable of performing autonomous
flight missions without the interference of a human pilot” [14]. The global market for agricul-
tural UAV drones is estimated to reach 3.7 billion US dollars by the year 2022 (Source: Radiant
Insight Research firm). Aerial photography from UAS has bridged the gap (see the schematic
diagram shown in Figure 3) between ground-based observations and remotely sensed imag-
ery of conventional aircraft and satellite platforms and has made possible great improvements
in crop scouting, yield mapping, field boundary mapping, soil sampling and soil property
mapping, weeds and pest control and mapping, vehicle’s guidance, navigation control, and
spraying. These devices are easy to use and are typically flexible, low cost, light-weight, and
low airspeed aircraft. They have revolutionized smart farming and precision agriculture, from
planting to harvesting, from seeding to sensing, and from scouting to spaying. UAS drones are
widely available on demand, and their functionalities can be customized for different farming
applications and can provide a cost-effective monitoring platform without requiring an expert

Figure 2. Tedious field work with conventional scouting of oil palm plantation.
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operator. With this technology, several problems associated with the data resolution from
piloted aircraft and satellite imaging have been solved. They are capable of providing live data
from a wide range of sensors, such as those shown in Figure 3 (multispectral, NIR, LiDAR,
etc.) at precision resolutions measured as centimeters per pixel. Such information contributes
to the in-depth analysis for the crop health assessment or the inventory management data-
bases. With the UAV technology, the following can be achieved: information about accurate
planted area for replanting or thinning, palm census for creating inventory database, calculat-
ing the total land area in use, finding distances between each palm to specific spots, calculating
canopy diameter, palm height, and palm density, creating 2D, 3D, GIS, NDVI maps for
plantation, identifying palm status based on Orthomosaics and digital elevation models,
detecting healthy and unhealthy palms (stress assessment), monitoring exposed soil for vari-
able rate technology application, quantification of fresh fruit bunches and mature fruits for
yield calculation, monitoring chlorophyll content and nutrient estimation, and measuring leaf
area index, drought assessment, biomass indication, weed detection, and inventory manage-
ment. Data and information such as these are useful for developing decision support systems
and yield prediction models.

2. Adaptation of UAV for oil palm remote sensing

UAV drones can be well adapted for oil palm plantations, where field work is tedious. They
allow observation of individual palm trees and can operate unnoticed and below cloud cover
that prevents larger high-altitude aircraft and satellites from performing the same mission.
Moreover, they can be deployed quickly and repeatedly, and they are less costly and safer
than piloted aircraft, are flexible in terms of flying height and timing of missions, and can
obtain very high-resolution imagery. As an aerial remote sensing platform, a UAV drone
must be adapted to satisfy the basic requirements of image data collection from oil palm

Figure 3. Typical components of a UAV-based remote sensing platform for precision agriculture of oil palm.
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plantation. Other than the selection of proper sensors, the stability and accuracy are vital to
provide geo-referenced images for extraction of useful information. Adaptation of UAV
technology for oil palm plantations involves integration of vision sensors, machine vision
algorithms, and control system for (i) yield monitoring and yield mapping, (ii) automated
airborne pest monitoring using thermal cameras, (iii) identification and counting of specific
insects from very high-resolution optical images, (iv) development of decision support
system (DSS) using geo-referenced images as a basis for a GIS-based system giving oil palm
growers the possibility to incorporate data directly to their precision farming platforms, (v)
identification and mapping of Ganoderma disease using hyperspectral camera, (vi) auto-
mated retrieving of oil palm canopy chlorophyll and nutrient content from multispectral and
hyperspectral UAV acquired images, and (vii) dynamic Web mapping and inventory man-
agement of oil palm productivity using in situ sensors. This paper is the first of series
reporting on design and development of an affordable fixed-wing UAV to be used as a
flexible scouting test bed for oil palm plantations. Schematic diagram illustrating the early
stages of technological development for introducing a UAV platform to local farmers and the
general steps and procedure involved with setting up a UAV remote sensing platform for
agricultural applications are shown in Figures 4 and 5, respectively.

Figure 4. Schematic diagram illustrating the early stages of technological development for introducing a UAV platform
to local farmers (source: Adaptive AgroTech Consultancy International).

Figure 5. General steps and procedure involved with setting up a UAV remote sensing platform for agricultural applications.
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2.1. Recommendations for purchasing UAV for agricultural application

A comprehensive document including recommendation for choosing the best UAV drone for
precision agricultural and smart farming applications is available in [15]. Specifications of
sample multirotor and fixed-wing UAV recommended for precision agriculture of oil palm
are also provided in the Appendix. Compared with piloted airplanes and satellite imaging, the
ability of UAVs in collecting higher resolution aerial images at a significantly lower cost can
provide oil palm growers with more accurate information on palm height, crown size, and
normalized difference vegetation index (NDVI), enabling practicing of data-driven techniques
for early and accurate yield estimation and health assessment. While a typical UAV may cost
as little as USD1000, it can be integrated with custom instrumentations, controllers, sensors,
and software to operate as a flexible remote sensing or variable rate technology platform to
contribute to plantation management, growth, and soil condition assessment mapping appli-
cation (i.e., 2D, 3D, GIS, NDVI), risk/hazard/safety management, spraying application, and
academic and research application. In specific, UAV remote sensing in oil palm precision
agriculture can contribute to automatic palm detection and counting, automatic measurements
of palm height and crown diameter measurements, calculation of planted and unplanted areas
for replanting or thinning, analyzing palm status based on Orthomosaics and digital elevation
models, inventory management and health assessment based on physical appearances and
vegetation indices, model-based yield prediction, yield monitoring and mapping, rapid esti-
mation of nutrient contents, and disease detection. It should be noted that agricultural UAV
activity is considered commercial operation with a high-tech platform for data acquisition or
spraying applications that should be carried out by licensed professionals or certified pilots.
Price range for a complete package is between USD1500 to over USD25000 depending on the
application. Multicopter drones can fly for 3–45 minutes on a one battery charge and are more
suitable for regular use in small-scale plantation without the requirement to special takeoff and
landing areas. Fixed-wing UAVs need to be planned for mission flights and reliable landing
for use in larger plantations. It is better to purchase drones that can be controlled via mobile or
tablets or are fully autonomous from takeoff to landing (i.e., the entire mission can be
performed by a single start button). For a multicopter, it is also important to check for the live
standstill view feed. This feature allows plantation managers to find specific spots and issues
for closer inspection. One of the key considerations in purchasing scouting UAV is the NDVI
and NIR camera options. For the sake of cost saving, an affordable regular 3D camera with two
lenses can be purchased for less than USD300 and modified slightly with a blue plastic filter to
produce NIR images. However, a more expensive UAV that can collect data faster will com-
pensate the extra costs in a long run.

2.2. Oil palm health assessment and disease detection

Health assessment in oil palm plantations is crucial for spotting fungal infection and bacterial
disease on the palms. By aerial scanning the plantation using visible RGB camera, NIR,
hyperspectral, and multispectral sensors, it is possible to identify temporal and spatial reflec-
tance variations before they can be detected by naked eyes and associate these changes with
palms heaths for an early response. For instance, NDVI cameras can calculate the vegetation
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index describing the relative density and health of the palms, and thermal camera can show
the heat signature of different spots in the plantations. A conceptual demonstration of a UAV
remote sensing platform equipped with NDVI sensor for oil palm health assessment is shown
in Figure 6.

The platform shown in Figure 7 can be customized and integrated with hyperspectral
camera as shown in Figure 8, for the detection of Ganoderma boninense, which is a serious
threat to oil palm plantations in Malaysia and has caused great losses to healthy palms. This
disease causes both basal stem rot and upper stem rot and remains South East Asia’s most
devastating oil palm diseases, with direct loss of the stand, reduced yield of diseased palms,
and the resultant requirement for earlier replanting. Using naked eye, the Ganoderma

Figure 6. Conceptual demonstration of a UAV-remote sensing platform for oil palm health assessment with NDVI camera.

Figure 7. Feasibility of using autonomous UAV-based hyperspectral imaging for detection of Ganoderma boninense disease
in oil palms.
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disease can only be recognized at a very late stage with serious symptoms of foliar chlorosis
and breakage at older fronds, the presence of decayed tissues at palm base, and production
of fruiting bodies. When symptoms of the disease appear on young palms, it is too late and
younger palms die within 6 to 24 months, whereas mature palms may survive for 3 years.
Reports also indicate that the basal stem rot can kill up to 80% of the total standing palms.
Despite the several efforts in controlling this disease, the available methods are slow, and
current strategies are still immature. To our knowledge, no effective method or a robust
sensing instrumentation has been commercialized for early detection of this disease at an
early stage. Research reports have highlighted that oil palm yields are highly correlated with
most of the nutrients. There are extensive publications on the hyperspectral analysis of
images with application in agriculture that shows promising methods to be adapted for
early detection of Ganoderma disease in oil palm. In order to adapt a UAV remote sensing
platform for this purpose, several questions should be addressed as follow: (i) at what stages
of infection can the hyperspectral imaging detect the Ganoderma disease symptoms? (ii)
what are the unique spectral characteristics of Ganoderma spectral reflectance data? (iii)
what statistical or mathematical methods are the best for analyzing the Ganoderma spectral
data? and (iv) how well can a low-cost multiband radiometer assist a scouting crew to detect
the suspicious HLB-infected trees? We can begin with a hypothesis that wavelet analysis of
reflectance data can improve detection of nutrient concentration in oil palm. This hypothesis
can be studied by the use of the Matlab Wavelet CIR images Toolbox. Preliminary studies
have demonstrated the potential of wavelet analysis for retrieving foliar nitrogen content
and photosynthetic pigment concentrations from leaf and canopy reflectance spectra, but
further research is needed to develop the approach. Our research will contribute to saving of
more palm trees and consequently a higher yield which has a significant impact on large
scale plantations and the economy of Malaysia. A project can be proposed with the long-
term goal of developing a fast UAV-based screening technique that can assist oil palm
growers in detecting suspicious Ganoderma-infected palms. Such a project may involve the
following systematic steps and methodology: (i) study the spectral characteristics of GB in
lab conditions, (ii) developing a classification method to identify the disease and separate it
from other palm stresses and other diseases with similar symptoms, (iii) evaluating the

Figure 8. Thermal camera and night vision (top row figures) and high-resolution RGB images approach (bottom row
figures) for UAV based pest monitoring in oil palm plantations.
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possibility of using a low-cost spectral radiometer for fast screening of Ganoderma-infected
palms, (iv) developing an instrumented platform for collecting and geo-referencing
hyperspectral images in the plantations, and (v) conducting a field trial to evaluate the
effectiveness of hyperspectral imagery for detecting the disease in the plantations. Reflec-
tance spectra of vegetation, measured in the visible and infrared region, contain information
on plant pigment concentration, leaf cellular structure, and leaf moisture content. In this
research, we propose to study the capability of hyperspectral imaging and spectroscopy in
the range of 300-2500 nm for early detection of anomalies in oil palm trees as a result of
Ganoderma infection. Preliminarily hyperspectral imaging data indicated that Ganoderma-
infected leaves have different spectral characteristics compared to healthy leaves. A quick
and efficient method of detecting and mapping Ganoderma at the field level will assist
growers to better manage and control this disease and can financially benefit growers. In
the first year of the study, we will study the spectral characteristics of Ganoderma-infected
oil palm leaves in laboratory conditions and compare them with other nutrient deficiency
symptoms. Accordingly, we will develop a classification method to identify the symptoms of
Ganoderma and separate it from plant stresses and other diseases with similar symptoms.
Also, in the first year, we will study how well a low-cost spectral radiometer can detect
Ganoderma symptoms. Based on the results from the first year of the study, we will develop
an instrumented platform for collecting and geo-referencing hyperspectral images and eval-
uate the effectiveness of hyperspectral imagery for detecting suspicious Ganoderma-infected
palm trees in the grove.

2.3. Pest monitoring

Oil Palm growers lose some portion of their yields to insects and pests infestation. Traditional
methods of locating pests in thousands of hectare plantations are not effective. For example,
early detection of an invasive pest like rats in palm plantations with labor requires a great
amount of time and luck. Obviously, conventional methods are not accurate, and plantation
managers have to make an educated guess before sending the crew to a large field to check for
infested spots. For the purpose of pest monitoring, a solution is to have a UAV imagery
platform equipped with a thermal camera and high-resolution RGB vision sensors for accurate
identification of the spots in the oil palm plantations fields that are diagnosed with specific
insects and pests. This approach may also involve development of a decision support system
(DSS) using georeferenced insect count as a basis for a GIS-based system, giving plantation
managers the possibility to incorporate data directly to their precision farming platforms.
Specific steps involve (i) platform setup, that is integration of the UAV, vision sensor, and
control system, (ii) perception which refers to the development of a real-time machine vision
algorithm for pest monitoring (to refine the aerial images captured by the UAV in order to
provide plantation managers with the most usable data), and (iii) action stage, which is the
development of the DSS for creation of the prescription map. When pests are spotted, spraying
UAV can be used for dropping a targeted load of pesticide. The spraying UAV can be
equipped with distance-measuring and light detection sensors such as lasers, ultrasonic echo-
ing, or LiDAR methods to scan the ground and adjust the flight altitude with the varying
topography of the plantation and therefore apply the correct amount of spraying liquids for
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further research is needed to develop the approach. Our research will contribute to saving of
more palm trees and consequently a higher yield which has a significant impact on large
scale plantations and the economy of Malaysia. A project can be proposed with the long-
term goal of developing a fast UAV-based screening technique that can assist oil palm
growers in detecting suspicious Ganoderma-infected palms. Such a project may involve the
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and efficient method of detecting and mapping Ganoderma at the field level will assist
growers to better manage and control this disease and can financially benefit growers. In
the first year of the study, we will study the spectral characteristics of Ganoderma-infected
oil palm leaves in laboratory conditions and compare them with other nutrient deficiency
symptoms. Accordingly, we will develop a classification method to identify the symptoms of
Ganoderma and separate it from plant stresses and other diseases with similar symptoms.
Also, in the first year, we will study how well a low-cost spectral radiometer can detect
Ganoderma symptoms. Based on the results from the first year of the study, we will develop
an instrumented platform for collecting and geo-referencing hyperspectral images and eval-
uate the effectiveness of hyperspectral imagery for detecting suspicious Ganoderma-infected
palm trees in the grove.
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Oil Palm growers lose some portion of their yields to insects and pests infestation. Traditional
methods of locating pests in thousands of hectare plantations are not effective. For example,
early detection of an invasive pest like rats in palm plantations with labor requires a great
amount of time and luck. Obviously, conventional methods are not accurate, and plantation
managers have to make an educated guess before sending the crew to a large field to check for
infested spots. For the purpose of pest monitoring, a solution is to have a UAV imagery
platform equipped with a thermal camera and high-resolution RGB vision sensors for accurate
identification of the spots in the oil palm plantations fields that are diagnosed with specific
insects and pests. This approach may also involve development of a decision support system
(DSS) using georeferenced insect count as a basis for a GIS-based system, giving plantation
managers the possibility to incorporate data directly to their precision farming platforms.
Specific steps involve (i) platform setup, that is integration of the UAV, vision sensor, and
control system, (ii) perception which refers to the development of a real-time machine vision
algorithm for pest monitoring (to refine the aerial images captured by the UAV in order to
provide plantation managers with the most usable data), and (iii) action stage, which is the
development of the DSS for creation of the prescription map. When pests are spotted, spraying
UAV can be used for dropping a targeted load of pesticide. The spraying UAV can be
equipped with distance-measuring and light detection sensors such as lasers, ultrasonic echo-
ing, or LiDAR methods to scan the ground and adjust the flight altitude with the varying
topography of the plantation and therefore apply the correct amount of spraying liquids for
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even coverage and avoid collisions. This practice will result in an increased efficiency while
reducing the amount of penetrating spray chemical in the soil and groundwater. It is estimated
that UAV spraying is five times faster than conventional tractor and machinery equipment.

The FLIR Vue Pro thermal camera shown in Figure 8 is designed for small UAVs and can be
used for agricultural applications. It has different lens options for different type of view and
specific applications. The thermal sensor resolution of this camera is 640 by 512 pixels and
records 30 frames per second for smooth video. The light weight and small size of this camera
will not affect the UAV center of gravity during the flight or sacrifice the flight time. It comes
with the mounting accessories that can be used with most UAV platforms. It can also be used
with transmitters for live feeds. The FLIR Vue Pro thermal camera does not have a separate
battery and can be charged through a 6 V power from the UAV. Image data are stored on a
standard micro SD card. An application connects the camera with the computer via Bluetooth.
The thermal imager Optris PI 640 shown in the figure is the smallest measuring VGA infrared
camera available. With an optical resolution of 640 � 480 pixels, the PI 640 delivers pin-sharp
radiometric pictures and videos in real time. With a body sized 45� 56� 90 mm and weighing
only 320 grams (lens included), the optris PI 640 counts among the most compact thermal
imaging cameras on the market. Temperature range is between �20 and 900�C (optional up to
1500�C), spectral range is between 7.5 and 13 μm, and frame rate up is to 125 Hz. For the
purpose of validation, images taken at varying heights and resolutions will be compared with
the ground truth pictures taken on the ground with a mobile device. The research findings
may lead to new pest management strategies that use UAVand other imaging technologies for
detecting invasive pests in other farm fields, e.g., oil palm plantations. The thermal camera can
also be used for spotting the areas that are drier and require attention.

2.4. Yield monitoring

Quantification of FFB from UAV stream images for yield map creation is the first step toward
practicing PA in oil palm plantations. With the available high-tech imaging sensors and using
real-time image processing and remote sensing techniques (i.e., pixel-based or object-based
[16], template matching [17–19] image analysis, learning algorithms methods for classification
[20, 21] and for extracting useful information from an image), it is possible to measure oil palm
yield on much smaller scales. One of the benefits of using autonomous UAV is their affordable
price and lower cost per each mission flight that make them suitable for academic research in
yield monitoring applications. The idea is to evaluate the feasibility of having UAV agent
robots that can fly over and inside oil palm plantations and collect high-resolution detailed
photos from different angles for automated creation of yield maps. These maps can tell
growers where and when to apply the optimal amount of inputs (i.e., fertilizer, pesticide,
water) for creating further sustainability. Of course, mobile robots with camera and sensors
mounted on top of them can also be used for such application; however as mentioned earlier,
we are proposing a research idea that involves a swarm or fleet of small-scale UAVs similar to
what is shown in the figure that simultaneously fly inside the plantation for image data
collection. By using different sensor-based measurement and imaging techniques on each
UAV, a real-time machine-vision system can be developed for accurate identification of the
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amount of FFB on the palms. Such technology is highly demanded by oil palm growers as a
fast, accurate, and reliable tool for estimating palm numbers and FFB in large-scale planta-
tions. In determining instantaneous oil palm yield, two parameters must be known, weight
and coordination of FFB on each palm. The weight of the FFB can be estimated using a
machine vision algorithm that quantifies the number of fruits on each palm (Figure 5). These
estimated weights are then georeferenced with coordinates of the corresponding palm using
computer programs for the creation of database and yield map. Collected data will be
processed by custom-built GIS software for creation of yield map and inventory database. A
conceptual illustration of integrated fixed-wing UAV-based inventory management and health
assessment system with mobile application and cloud computing is shown in Figure 9.

2.5. Virtual plantations and dynamic Web mapping

One of the limitations of doing research on oil palm plantation is the lack of accurate data and
input variables for modeling and simulation purposes. UAV technology can be integrated with

Figure 9. Feasibility of UAV imaging system for yield monitoring of oil palm (top) and a proposed methodology for
UAV-based yield monitoring of apple and orange fruits using deep learning algorithms [22].
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even coverage and avoid collisions. This practice will result in an increased efficiency while
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battery and can be charged through a 6 V power from the UAV. Image data are stored on a
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also be used for spotting the areas that are drier and require attention.

2.4. Yield monitoring

Quantification of FFB from UAV stream images for yield map creation is the first step toward
practicing PA in oil palm plantations. With the available high-tech imaging sensors and using
real-time image processing and remote sensing techniques (i.e., pixel-based or object-based
[16], template matching [17–19] image analysis, learning algorithms methods for classification
[20, 21] and for extracting useful information from an image), it is possible to measure oil palm
yield on much smaller scales. One of the benefits of using autonomous UAV is their affordable
price and lower cost per each mission flight that make them suitable for academic research in
yield monitoring applications. The idea is to evaluate the feasibility of having UAV agent
robots that can fly over and inside oil palm plantations and collect high-resolution detailed
photos from different angles for automated creation of yield maps. These maps can tell
growers where and when to apply the optimal amount of inputs (i.e., fertilizer, pesticide,
water) for creating further sustainability. Of course, mobile robots with camera and sensors
mounted on top of them can also be used for such application; however as mentioned earlier,
we are proposing a research idea that involves a swarm or fleet of small-scale UAVs similar to
what is shown in the figure that simultaneously fly inside the plantation for image data
collection. By using different sensor-based measurement and imaging techniques on each
UAV, a real-time machine-vision system can be developed for accurate identification of the
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amount of FFB on the palms. Such technology is highly demanded by oil palm growers as a
fast, accurate, and reliable tool for estimating palm numbers and FFB in large-scale planta-
tions. In determining instantaneous oil palm yield, two parameters must be known, weight
and coordination of FFB on each palm. The weight of the FFB can be estimated using a
machine vision algorithm that quantifies the number of fruits on each palm (Figure 5). These
estimated weights are then georeferenced with coordinates of the corresponding palm using
computer programs for the creation of database and yield map. Collected data will be
processed by custom-built GIS software for creation of yield map and inventory database. A
conceptual illustration of integrated fixed-wing UAV-based inventory management and health
assessment system with mobile application and cloud computing is shown in Figure 9.
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image acquisition techniques for three-dimensional reconstruction of the environment and
creation of virtual plantations. Examples of 3D reconstructed plantation are shown in
Figure 10. The information extracted from these 3D models can lead to the development of
dynamic Web inventory management and mapping system. A 3D reconstruction model of oil
palm plantation can be created by using range data methods or depth map using laser range
finder sensors and 3D scanner instrumentations. This approach is however costly and not
affordable by local oil palm farmers. Alternatively, passive methods, also called image-based
reconstruction methods (i.e., photogrammetry technique), have been introduced using a nor-
mal camera and image sensors, which do not interfere with the reconstructed object. In this
method, a UAV equipped with a normal RGB camera will collect images of the oil palm
plantations from different views and angles. Computer software will then process these
images to create a 3D model, and filter specific wavelength to generate images that corre-
sponds to vegetation index and palm health. For example, a red edge image can describe
nitrogen content and water stress. The potential of UAV image data to simulate the physical
process of palm photosynthesis as a result of different crown sizes and densities intercepting
different amounts of light radiation can be evaluated using virtual plantations. A virtual
plantation can be used to estimate palm height, crown size, and inventory database (Figure 11)
for generating dynamic Web maps and yield prediction models. These maps can identify how
different palm height, crown sizes, plantation densities, and row orientations in different
locations can affect the water and fertilizer demand. Moreover, mathematical models can be
established based on the validated information from virtual plantations for estimating nitro-
gen demand and fertilizer application. These maps also provide precision rich data for aca-
demic and educational purposes. Researchers can access to detailed measurements of palm
trunk and crown size and the spacing between different palms, leaf area index, and crown
density as a preliminary study for the possibility of autonomous variable rate applications and
robotic harvesting.

For the purpose of a sensor Web-based approach for dynamic Web mapping, observations
from a UAV can be combined with in situ sensor data to derive typical information offered by
a dynamic Web mapping service (WMS). This will provide daily maps of vegetation produc-
tivity for oil palm plantation with a spatial resolution of 250 m. Results will present the
vegetation productivity model, the sensor data sources, and the implementation of the auto-
mated processing facility. An evaluation will be made of the opportunities and limitations of
sensor Web-based approaches for the development of Web services, which combine both UAV
and in situ sensor sources. A conceptual illustration is provided in Figure 11. A yield estima-
tion model can be developed by establishing performing regression analysis between palm

Figure 10. Example of virtual plantation generated by UAV imaging [23].

Agricultural Robots - Fundamentals and Applications102

height (x1), crown size (x2), palm age (x3), vegetation index (x4), nutrient content (x5), and soil
parameters (x6): Yield = func(x1, x2,…, x6). This model will be based on comprehensive infor-
mation of each palm location, size, and health, will provide managers with an estimation of
yield, and make decisions for sustainable practices methods for production increase without
necessary needs for expanding the plantation into natural forests.

3. Stabilizing a fixed-wing Osprey UAV

The fixed-wing Osprey drone shown in Figure 11 is a commercially available, low-cost exper-
imental flight test bed manufactured by Unmanned Aerial Research (Florida, USA) that is
suitable for investigating novel control approaches [24] and is a flexible platform for remote
sensing research applications in precision agriculture of oil palm. An example application can
be found in the work of [25], where the fixed-wing J-HAWK UAV was used for palm tree
counting at Melaka Pindah oil palm plantation in Malaysia. This drone can carry large pay-
loads while maintaining excellent performance with virtually no degradation in handling
qualities. It is a well-constructed, durable aircraft with mission versatility and a cavernous
payload volume that is easily accessible, featuring two long aluminum tracks on the floor for
mounting payloads in limitless configurations. Some of the specifications according to the
manufacturing website are as follows: payload capacity: 31.75 kg, empty weight: 15.87 kg,

Figure 11. Conceptual illustration of a fixed-wing UAV Web mapping system integrated with mobile application and
cloud computing for yield prediction and inventory management in oil palm plantation.
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imental flight test bed manufactured by Unmanned Aerial Research (Florida, USA) that is
suitable for investigating novel control approaches [24] and is a flexible platform for remote
sensing research applications in precision agriculture of oil palm. An example application can
be found in the work of [25], where the fixed-wing J-HAWK UAV was used for palm tree
counting at Melaka Pindah oil palm plantation in Malaysia. This drone can carry large pay-
loads while maintaining excellent performance with virtually no degradation in handling
qualities. It is a well-constructed, durable aircraft with mission versatility and a cavernous
payload volume that is easily accessible, featuring two long aluminum tracks on the floor for
mounting payloads in limitless configurations. Some of the specifications according to the
manufacturing website are as follows: payload capacity: 31.75 kg, empty weight: 15.87 kg,
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payload volume 0.0566 m3 (0.203H � 0.304 W � 0.889 L), max cruise: 90 kts, landing speed (no
flaps): 25 kts, power (DA-100): 10 hp by a reliable custom desert aircraft 100 cc motor with 3-
blade carbon fiber propeller, wingspan 3.352 mm, and length 2.362 m. We begin with dynamic
analysis and controller design for this drone in the presence of actuator limits and sensor noise
for autonomous flight missions with greater accuracy and stability. The communication archi-
tecture, modules, and designed control system is shown in Figure 12.

For the purpose of this paper, we have concentrated our analysis on controller design for two
outputs, velocity and pitch rate, by adjusting two control inputs, the elevator and the thrust. In
specific, our control objective was to design a single controller, i.e., proportional-integral-
derivative (PID), Linear-quadratic regulator (LQR) full state feedback, (C ¼ I4�4), and LQR
plus observer (with C defined by the dynamic model), that (i) stabilize the drone with a
velocity step input of 10 m/s and (ii) minimize rise time, percentage overshoot, and steady
state error over the widest possible initial conditions. Based on the field experiments data in
the reviewed literature [24], the maximum δthrust and δelev and their rate of change were
considered �200 N and �30

�
and �200 N= sec and �300

�
=s, respectively. In addition, the noise

for the velocity sensor and the pitch rate sensor were assumed to be �0:4 m=s and �1:7
�
=s,

respectively. The dynamics associated with this drone under standard aircraft assumptions
were de-coupled into both lateral and longitudinal directions. For the sake of this control
design, we only analyze the longitudinal dynamics. The longitudinal dynamics of the Osprey
have been mathematically modeled as a fourth-order multiple-input multiple-output (MIMO)
system with two inputs and two outputs [24]. The dynamics have been linearized for the
Osprey aircraft flying at 25 m/s at an altitude of 60 m. In standard state-space form, they are
given as:

Figure 12. Architecture, modules, and control system for a the proposed UAV in precision agriculture of oil palm.
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where x ¼ V α q θ½ �, with the state variables defined as V: velocity, α: angle of attack, q: pitch

rate, and θ: pitch angle. The control inputs are u ¼ δelev δthrust½ �T . Our controller design
process begins with analyzing the mathematical model of the given dynamic system. The
state-space model was first converted to a convenient transfer functions (TF) given in (1) and
(2). Converting the SS model into TF form using MATLAB “tf(sys)” yields transfer function
from input “δelev” to outputs given in (1), and the sets of transfer function from input “δthrust” to
outputs give in (2).

H11 sð Þ ¼ V ¼ 0:03357 s3 þ 0:6577 s2 þ 3:407 s� 68:91
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

H21 sð Þ ¼ q ¼ 0:98 s3 þ 7:171 s2 þ 1:416 s
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

(1)

H12 sð Þ ¼ V ¼ 0:06 s3 þ 1:029 s2 þ 6:153 sþ 0:03663
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

H22 sð Þ ¼ q ¼ �0:003735 s2 þ 0:07027 s
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

(2)

We first perform open-loop analysis to determine possible control strategies. The open-loop
responses (Figure 13) from each of the four TFs were then analyzed individually. According to
the TF in (1) and (2), the terms with the highest coupling can be obtained by considering the
simple steady state case. Substituting jω = 0, in all the terms, it can be observed that the static
gain relationship is high for δelev versus velocity output. This also makes physical sense as a
change in the pitch would slowdown the Osprey. It is also noted that the pitch rate has zeros at
origin. This suggests that the system has inherent derivative property and hence has a ten-
dency to amplify noises. Based on the open-loop response shown in Figure 13, it can also be
seen that the effect of δelev on the velocity is more than other inputs. From Figure 13, the
following key points are helpful in controller design for the system, (i) δelev has more effect on
velocity than any other input, (ii) the velocity falls sharply with input δelev, and (iii) δthrust has
limited effect in both velocity and pitch rate.

For the PID controller design shown in Figure 14, the system was set at initial conditions
[δelev ¼ 4 and V = 25 m/s]. A step input of 10 m/s was given at time t = 60 s. The following gains
were used for the PID velocity controller: Kp = 200, Ki = 80, and Kd = 20. For the PID pitch
controller, Kp, Ki, and Kd were respective selected as 6, 0.2, and 10. After introducing the noise,
the new selected gains for the PID velocity controller were Kp = 50, Ki = 11 and Kd = 11. For the
PID pitch controller, the new Kp, Ki, and Kd were chosen 100, 4, and 1, respectively. The
decrease in Kp compared with the previous case for the velocity controller should be noticed.
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payload volume 0.0566 m3 (0.203H � 0.304 W � 0.889 L), max cruise: 90 kts, landing speed (no
flaps): 25 kts, power (DA-100): 10 hp by a reliable custom desert aircraft 100 cc motor with 3-
blade carbon fiber propeller, wingspan 3.352 mm, and length 2.362 m. We begin with dynamic
analysis and controller design for this drone in the presence of actuator limits and sensor noise
for autonomous flight missions with greater accuracy and stability. The communication archi-
tecture, modules, and designed control system is shown in Figure 12.

For the purpose of this paper, we have concentrated our analysis on controller design for two
outputs, velocity and pitch rate, by adjusting two control inputs, the elevator and the thrust. In
specific, our control objective was to design a single controller, i.e., proportional-integral-
derivative (PID), Linear-quadratic regulator (LQR) full state feedback, (C ¼ I4�4), and LQR
plus observer (with C defined by the dynamic model), that (i) stabilize the drone with a
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�
and �200 N= sec and �300

�
=s, respectively. In addition, the noise

for the velocity sensor and the pitch rate sensor were assumed to be �0:4 m=s and �1:7
�
=s,

respectively. The dynamics associated with this drone under standard aircraft assumptions
were de-coupled into both lateral and longitudinal directions. For the sake of this control
design, we only analyze the longitudinal dynamics. The longitudinal dynamics of the Osprey
have been mathematically modeled as a fourth-order multiple-input multiple-output (MIMO)
system with two inputs and two outputs [24]. The dynamics have been linearized for the
Osprey aircraft flying at 25 m/s at an altitude of 60 m. In standard state-space form, they are
given as:

Figure 12. Architecture, modules, and control system for a the proposed UAV in precision agriculture of oil palm.
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2
6664

3
7775, B ¼

3:10�3 0:06
10�5 10�4

0:98 0
0 0

2
6664

3
7775, C ¼ 1 0 0 0

0 0 1 0:

� �

where x ¼ V α q θ½ �, with the state variables defined as V: velocity, α: angle of attack, q: pitch

rate, and θ: pitch angle. The control inputs are u ¼ δelev δthrust½ �T . Our controller design
process begins with analyzing the mathematical model of the given dynamic system. The
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from input “δelev” to outputs given in (1), and the sets of transfer function from input “δthrust” to
outputs give in (2).

H11 sð Þ ¼ V ¼ 0:03357 s3 þ 0:6577 s2 þ 3:407 s� 68:91
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

H21 sð Þ ¼ q ¼ 0:98 s3 þ 7:171 s2 þ 1:416 s
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

(1)

H12 sð Þ ¼ V ¼ 0:06 s3 þ 1:029 s2 þ 6:153 sþ 0:03663
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

H22 sð Þ ¼ q ¼ �0:003735 s2 þ 0:07027 s
s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

(2)

We first perform open-loop analysis to determine possible control strategies. The open-loop
responses (Figure 13) from each of the four TFs were then analyzed individually. According to
the TF in (1) and (2), the terms with the highest coupling can be obtained by considering the
simple steady state case. Substituting jω = 0, in all the terms, it can be observed that the static
gain relationship is high for δelev versus velocity output. This also makes physical sense as a
change in the pitch would slowdown the Osprey. It is also noted that the pitch rate has zeros at
origin. This suggests that the system has inherent derivative property and hence has a ten-
dency to amplify noises. Based on the open-loop response shown in Figure 13, it can also be
seen that the effect of δelev on the velocity is more than other inputs. From Figure 13, the
following key points are helpful in controller design for the system, (i) δelev has more effect on
velocity than any other input, (ii) the velocity falls sharply with input δelev, and (iii) δthrust has
limited effect in both velocity and pitch rate.

For the PID controller design shown in Figure 14, the system was set at initial conditions
[δelev ¼ 4 and V = 25 m/s]. A step input of 10 m/s was given at time t = 60 s. The following gains
were used for the PID velocity controller: Kp = 200, Ki = 80, and Kd = 20. For the PID pitch
controller, Kp, Ki, and Kd were respective selected as 6, 0.2, and 10. After introducing the noise,
the new selected gains for the PID velocity controller were Kp = 50, Ki = 11 and Kd = 11. For the
PID pitch controller, the new Kp, Ki, and Kd were chosen 100, 4, and 1, respectively. The
decrease in Kp compared with the previous case for the velocity controller should be noticed.
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Figure 13. Open-loop step response analysis of the Osprey drone velocity and pitch rate for the elevator and thrust inputs.

Figure 14. Simulink blocks for the PID controller in the absence and presence of noise and actuator limits.
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Hence, in this case, the gain of the pitch controller was driven high and the other low. Since
pitch rate has very high impact on the other system variables, noise in the pitch rate influences
the system heavily. Therefore to improve tuning the controller, a simple first-order TF = 2/
(S + 15) (low pass filter) was inserted in the loop (shown in the second Simulink block of
Figure 14).

The LQR controller is the solution of the optimization problem that optimizes the cost of errors
and the cost of actuation effort, with appropriately weighted states. The optimization function
is defined as J ¼ Ð

xTQxþ uTRu
� �

dσ. In the state space form, the obtained LQR controller is
expressed as u ¼ �Kx. For this solution, an LQR controller was first derived using the
MATLAB “lqr” command. The cost weighting matrices Q and R were selected as unit
matrices, and the LQR was realized. Simulink blocks for the designed LQR controller with full
state feedback are shown in Figure 15. The weighting matrices used in this case were as follow:

Q ¼

5 0 0 0
0 1 0 0
0 0 0:5 0
0 0 0 4000

2
6664

3
7775, R ¼ 1 0

0 0:05

� �

It is noted that the control effort for pitch is the most optimized parameter inQ. This value was
selected on the basis that pitch is the most influential state variable and controlling pitch
translates control of all the other parameters. In addition, the weight for pitch rate is low
because the effort to control pitch rate is harder and introduced more oscillations in the system.

For the LQR controller with observer (Figure 16), the observer design allows controller to use
full-state feedback techniques in situations where only a subset of states is available to the
controller. The observer matrix L adds gain to the feedback loop, in order to ensure stability
and quicker response of the state observer system. While this helps stability, the L gain adversely
amplifies the sensor noise. Therefore, a trade-off has to be made on the noise resilience versus the
system’s robustness. The matrix L was determined through these steps: (i) the system output
states were checked for controllability and observability using Matlab code “obsv” and
“ctrb,” (ii) the poles of the system were found and the system was found to be stable, (iii) for

Figure 15. Simulink blocks for the designed LQR controller with full state feedback.
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Figure 13. Open-loop step response analysis of the Osprey drone velocity and pitch rate for the elevator and thrust inputs.

Figure 14. Simulink blocks for the PID controller in the absence and presence of noise and actuator limits.
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Hence, in this case, the gain of the pitch controller was driven high and the other low. Since
pitch rate has very high impact on the other system variables, noise in the pitch rate influences
the system heavily. Therefore to improve tuning the controller, a simple first-order TF = 2/
(S + 15) (low pass filter) was inserted in the loop (shown in the second Simulink block of
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and the cost of actuation effort, with appropriately weighted states. The optimization function
is defined as J ¼ Ð
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dσ. In the state space form, the obtained LQR controller is
expressed as u ¼ �Kx. For this solution, an LQR controller was first derived using the
MATLAB “lqr” command. The cost weighting matrices Q and R were selected as unit
matrices, and the LQR was realized. Simulink blocks for the designed LQR controller with full
state feedback are shown in Figure 15. The weighting matrices used in this case were as follow:
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It is noted that the control effort for pitch is the most optimized parameter inQ. This value was
selected on the basis that pitch is the most influential state variable and controlling pitch
translates control of all the other parameters. In addition, the weight for pitch rate is low
because the effort to control pitch rate is harder and introduced more oscillations in the system.

For the LQR controller with observer (Figure 16), the observer design allows controller to use
full-state feedback techniques in situations where only a subset of states is available to the
controller. The observer matrix L adds gain to the feedback loop, in order to ensure stability
and quicker response of the state observer system. While this helps stability, the L gain adversely
amplifies the sensor noise. Therefore, a trade-off has to be made on the noise resilience versus the
system’s robustness. The matrix L was determined through these steps: (i) the system output
states were checked for controllability and observability using Matlab code “obsv” and
“ctrb,” (ii) the poles of the system were found and the system was found to be stable, (iii) for

Figure 15. Simulink blocks for the designed LQR controller with full state feedback.
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the observer system to be more stable and faster, the poles were multiplied by a factor of 3, (iv)
these scaled poles were then used in the Ackermann’s formula for pole-placement design to find
L and design a mimic of the original system, the observer, and (v) the state output from the
observer can now be fed to the LQR controller. The weighting matrices used in this case are:

Q ¼

1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1000

2
6664

3
7775, R ¼ 1 0

0 0:001

� �

It can be seen that the value of pitch gains in theQ is four times smaller than the previous case.
The gains were reduced to take control over noise in the system. In the other words, these
reductions help eliminate the noise in the system. From step three of the observer design, we
know that the observer matrix L adds gain to feedback loop. This gain helps amplifying the
noise and then feeding them into the control loop back again. Noise introduces similar prob-
lems faced with the PID controller. With high gains, the noise amplifies and combined with
actuator nonlinearities drives the system into instability. With lesser gains and actuator effort,
noise is damped and absorbed by the system.

4. Simulation results and discussion

Results of the simulation for the designed controllers are shown in Figure 17 through
Figure 20. It can be seen from Figure 17 that the step change applied at time 60 s has an effect
on the pitch, and the PID controller is managed to minimize this effect. When noise is intro-
duced to the system (Figure 18), because the coupling gain between pitch and velocity are very

Figure 16. LQR controller with observer block.
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high, the pitch rate sensor noise distorts the response considerably. Moreover, since the tuned
gains exploited the infinite actuator capabilities, the response of the system was quick and the
steady state error was almost zero; however, due to the nonlinearities, the system had to be
tuned again. Since elevation was directly related to the pitch rather than the pitch rate and to
avoid the dynamics of the “rate” signal, pitch was compared against the elevator angle to
generate the error signal. To accomplish this, the pitch rate was simply integrated using an
ideal integrator (1/s).

It can be seen from the results that the state variables pitch and velocity are closely coupled
variables. The coupling terms connecting these two quantities exhibit every high gains,
hence the control design was challenging in regulating these variables independent of the
other. This coupling needed special attention during control design. It should be noted that
on the basis of tuning complexity, only two PID controllers were used in the control problem,
as if the system was a weakly coupled system. Since PID control is ideally suited for single-
input single-output systems (SISO) and only for weakly coupled MIMO systems, a perfect
performance was not expected to achieve with the two PID controllers. Nevertheless, a
reasonable performance was still achieved when the system was considered ideal, i.e., free

Figure 17. PID performance without noise and actuator limits.

Figure 18. PID performance with noise and actuator nonlinearities.
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lems faced with the PID controller. With high gains, the noise amplifies and combined with
actuator nonlinearities drives the system into instability. With lesser gains and actuator effort,
noise is damped and absorbed by the system.

4. Simulation results and discussion

Results of the simulation for the designed controllers are shown in Figure 17 through
Figure 20. It can be seen from Figure 17 that the step change applied at time 60 s has an effect
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avoid the dynamics of the “rate” signal, pitch was compared against the elevator angle to
generate the error signal. To accomplish this, the pitch rate was simply integrated using an
ideal integrator (1/s).
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variables. The coupling terms connecting these two quantities exhibit every high gains,
hence the control design was challenging in regulating these variables independent of the
other. This coupling needed special attention during control design. It should be noted that
on the basis of tuning complexity, only two PID controllers were used in the control problem,
as if the system was a weakly coupled system. Since PID control is ideally suited for single-
input single-output systems (SISO) and only for weakly coupled MIMO systems, a perfect
performance was not expected to achieve with the two PID controllers. Nevertheless, a
reasonable performance was still achieved when the system was considered ideal, i.e., free
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from nonlinearities and noise. When noise was introduced to the system, the velocity suf-
fered because of high noise content in the pitch signal. The noise also introduced dangerous
oscillations in the system, limiting controller gains significantly and hence slowing down the
overall system. Several instabilities caused due to the rate limit and saturation were evident.
The integral gain of the PID acted on error build-up caused by saturation and hence pushing
the system into instability. After reducing the gains in the loop, the controller was then tuned
by trial and error procedures. The relative performance of PID with respect to other control-
lers is summarized in Table 1.

LQR controllers however work in the state-space and are suited for MIMO control. It
assumes full state feedback; that is, all the system’s states are available for the controller to
take decisions, even though this might not be a case in reality. Therefore, we designed the
observer to deal with this issue. The outputs of the LQR controlled system response with
actuator dynamics are shown in Figures 19 and 20. Unlike the PID controller, the LQR
handles actuator dynamics inconsequentially. Appropriate waiting matrices were assigned,
and the LQR controller matrix was obtained by using the MATLAB “lqr” command. The
LQR trivially performed well with actuator nonlinearities. By weighting the gains in the Q
and R matrices, it was possible to avoid high actuation effort and thus saturation. But rate
limit did affect the rise time. The LQR also suffered from oscillations, when noise was
introduced.

Controller Noise Actuator limits Rise time (s) Settling time (s) Overshoot (%)

PID — — 0.61 0.95 4.2

PID Y Y 1.28 Inf 10.1

LQR — Y 1.01 1.9 2.1

LQR Y Y 3.3 3.95 0

Observer Y Y 1.9 Inf 34.5

Table 1. A comparison between the proposed controllers.

Figure 19. LQR full state feedback response without noise.
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From the plots of LQR with observer (Figure 20), it can be seen that the system is in the verge of
instability and the noise content of the pitch signal disturbs the velocity severely. The relative
stability of the given system can be discussed in terms of the gain margin and phase margin.
Based on the Bode plots analysis of the open-loop system (plots not provided for the sake of
paper page limits), the differential term in the elevator input to output relationships reduces the
phase margin of system considerably. Model errors and disturbance in the pitch rate could easily
drive the system to instability. This agrees with the findings in the controller design exercised.

5. Conclusion

Health assessment and conventional scouting of oil palms on a regular basis, as well as palm
census and quantification of the amount of fresh fruit bunches (FFB) for yield monitoring, are
labor-intensive tasks that are either ignored in large scale plantations or are carried out manually
by the use of labor force. Traditional scouting is not only an ineffective practice but also requires
expert knowledge and post-processing lab equipment to provide useful information. Advances
in aerospace engineering, control system, and computing have contributed significantly to the
improvement of UAV-based remote sensing platforms. This paper discussed some of the poten-
tial applications of UAVs for precision agriculture of oil palm plantations. We also highlighted
some of the adaptation challenges faced by UAV drones, including platform stability due to the
flight dynamics parameters and winds, climate factors and light reflection degrading quality of
the acquired images, and regulations and restrictions law by the Federal Aviation Administra-
tion. As a response to the needs of small-scale plantation owner for an affordable UAV platform,
a fixed-wing Osprey drone was proposed and used in designing an auto-flight control. The
aircraft can be externally actuated by controlling the thrust (δthrust) and the elevator (δelev).
Initially, all states of the dynamic model were assumed to be available to the controller. A case
was then considered when only velocity and pitch rate could be measured. We conclude that the
MIMO control problem of the Osprey drone falls in the class of systems that exhibit high level of
coupling between the inputs. We also conclude that the LQR design procedure was simple
compared with the PID and performed better than PID in the presence of noise. Unlike PID, the

Figure 20. LQR with observer response with noise.
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from nonlinearities and noise. When noise was introduced to the system, the velocity suf-
fered because of high noise content in the pitch signal. The noise also introduced dangerous
oscillations in the system, limiting controller gains significantly and hence slowing down the
overall system. Several instabilities caused due to the rate limit and saturation were evident.
The integral gain of the PID acted on error build-up caused by saturation and hence pushing
the system into instability. After reducing the gains in the loop, the controller was then tuned
by trial and error procedures. The relative performance of PID with respect to other control-
lers is summarized in Table 1.

LQR controllers however work in the state-space and are suited for MIMO control. It
assumes full state feedback; that is, all the system’s states are available for the controller to
take decisions, even though this might not be a case in reality. Therefore, we designed the
observer to deal with this issue. The outputs of the LQR controlled system response with
actuator dynamics are shown in Figures 19 and 20. Unlike the PID controller, the LQR
handles actuator dynamics inconsequentially. Appropriate waiting matrices were assigned,
and the LQR controller matrix was obtained by using the MATLAB “lqr” command. The
LQR trivially performed well with actuator nonlinearities. By weighting the gains in the Q
and R matrices, it was possible to avoid high actuation effort and thus saturation. But rate
limit did affect the rise time. The LQR also suffered from oscillations, when noise was
introduced.

Controller Noise Actuator limits Rise time (s) Settling time (s) Overshoot (%)

PID — — 0.61 0.95 4.2

PID Y Y 1.28 Inf 10.1

LQR — Y 1.01 1.9 2.1

LQR Y Y 3.3 3.95 0
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Table 1. A comparison between the proposed controllers.

Figure 19. LQR full state feedback response without noise.
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From the plots of LQR with observer (Figure 20), it can be seen that the system is in the verge of
instability and the noise content of the pitch signal disturbs the velocity severely. The relative
stability of the given system can be discussed in terms of the gain margin and phase margin.
Based on the Bode plots analysis of the open-loop system (plots not provided for the sake of
paper page limits), the differential term in the elevator input to output relationships reduces the
phase margin of system considerably. Model errors and disturbance in the pitch rate could easily
drive the system to instability. This agrees with the findings in the controller design exercised.

5. Conclusion

Health assessment and conventional scouting of oil palms on a regular basis, as well as palm
census and quantification of the amount of fresh fruit bunches (FFB) for yield monitoring, are
labor-intensive tasks that are either ignored in large scale plantations or are carried out manually
by the use of labor force. Traditional scouting is not only an ineffective practice but also requires
expert knowledge and post-processing lab equipment to provide useful information. Advances
in aerospace engineering, control system, and computing have contributed significantly to the
improvement of UAV-based remote sensing platforms. This paper discussed some of the poten-
tial applications of UAVs for precision agriculture of oil palm plantations. We also highlighted
some of the adaptation challenges faced by UAV drones, including platform stability due to the
flight dynamics parameters and winds, climate factors and light reflection degrading quality of
the acquired images, and regulations and restrictions law by the Federal Aviation Administra-
tion. As a response to the needs of small-scale plantation owner for an affordable UAV platform,
a fixed-wing Osprey drone was proposed and used in designing an auto-flight control. The
aircraft can be externally actuated by controlling the thrust (δthrust) and the elevator (δelev).
Initially, all states of the dynamic model were assumed to be available to the controller. A case
was then considered when only velocity and pitch rate could be measured. We conclude that the
MIMO control problem of the Osprey drone falls in the class of systems that exhibit high level of
coupling between the inputs. We also conclude that the LQR design procedure was simple
compared with the PID and performed better than PID in the presence of noise. Unlike PID, the

Figure 20. LQR with observer response with noise.
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LQR was more vulnerable to have steady state error. With changes in the δelev command, the
velocity was affected considerably and would never recover unlike integral action of PID. The
introduction of an observer in an already noisy system added more uncertainty in the system,
thus pushing the system toward instability. The observer added to the gain of the feedback loop
and hence amplifying noise. Even with various combinations of weighting matrices, the steady
state oscillations were as high as 20%. In conclusion, it is observed that the LQR is a robust and
effective controller for MIMO control. The LQR was found to be robust against noise and
disturbance in the system too.

A. Appendix

Names and specifications of sample multi-rotor and fixed-wing UAV recommended for
precision agriculture of oil palm.
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Model Price
($)

Weight
(Kg)

Size (mm) Camera
resolution

Coverage Flight
time (min)

Max
altitude (m)

Flight
speed (km/h)

Parrot Disco Pro
AG Drone

6875 UAV: 0.78
Take-Off:
0.94

Wing span:
1150 � 580
� 120

— — — — —

RF70 UAV 3000 Payload: 3 — 1080 P 600 acres/hour 45–60 — 18

AgDrone UAS 10,000 — — 1080 P — 60 —

DT-26 Crop
mapper

120,000 — — 1080 P — 60 — 110

Quad Indigo 25,000 — — 1080 P — 45 —

E384 Mapping
Drone

2400 UAV: 2.5
Payload: 1

Wingspan:
1900 Length:
1300

— 1000 acres in
100 minutes at
5 cm resolution

90 — 47

PrecisionHawk
Lancaster 5

— Payload: 1 — 1 cm/pixel 300 acres/flight 45 — —

Xena observer — Take-Off: 5 — — — 27 5000 —

Xena thermo — Take-Off:
4.6

— — — 32 5000 —

AEE AP10 Drone 299 — — 1080 P Full HD
Video at 60 FPS

— 25 500 71

UAV drone crop
sprayer

UAV: 9
Payload: 10
Take-Off:
13

800 � 800 �
70 (L.W.H)

— — 16 1000 —

DJI drone sprayer 15,000 — — — 7–10 acres/hour — — 29

Yamaha’s
helicopters spray
& survey

130,000 UAV: 71
Payload: 30

— — 10 acres — — —

JMR-V1000 6-rotor
5 L

665–
3799

UAV: 6.5
Take-Off: 18

875 � 1100
� 480 (L.W.
H)

— — 14–18 — 11–22

AG-UAV
Sprayers1

— UAV: 8
Payload: 6

Height: 650 — — 8–15 — —

AG-UAV
Sprayers2

— UAV: 14.2
Payload:
20

Height: 650 — — 15–30 — —

AG-UAV
Sprayers3

— UAV: 9.5
Payload: 10

Height: 650 — — 10–20 — —

DJI AGRAS MG-1
Sprayer

7999 Payload: 10 — — 7–10 Acres Per
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— — —

Hercules Heavy
Lift UAV (HL6)

— UAV: 8
Payload:
6

Height: 660 — — 30 — 37

Hercules Heavy
Lift UAV (HL10)

— UAV: 9.5
Payload: 10

Height: 660 — — 30 — 37

Hercules Heavy
Lift UAV
(HL20)

— UAV: 14
Payload: 20

Height: 660 — — 60 — 37

Multirotor UAVs — — — — — 10–40 — —

AgStar GoPro
FPV Camera
Payload

1950 — — — — — —
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LQR was more vulnerable to have steady state error. With changes in the δelev command, the
velocity was affected considerably and would never recover unlike integral action of PID. The
introduction of an observer in an already noisy system added more uncertainty in the system,
thus pushing the system toward instability. The observer added to the gain of the feedback loop
and hence amplifying noise. Even with various combinations of weighting matrices, the steady
state oscillations were as high as 20%. In conclusion, it is observed that the LQR is a robust and
effective controller for MIMO control. The LQR was found to be robust against noise and
disturbance in the system too.

A. Appendix

Names and specifications of sample multi-rotor and fixed-wing UAV recommended for
precision agriculture of oil palm.
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Model Price
($)

Weight
(Kg)

Size (mm) Camera
resolution

Coverage Flight
time (min)

Max
altitude (m)

Flight
speed (km/h)
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— — — — —
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2400 UAV: 2.5
Payload: 1
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1900 Length:
1300

— 1000 acres in
100 minutes at
5 cm resolution

90 — 47
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— Payload: 1 — 1 cm/pixel 300 acres/flight 45 — —

Xena observer — Take-Off: 5 — — — 27 5000 —

Xena thermo — Take-Off:
4.6

— — — 32 5000 —

AEE AP10 Drone 299 — — 1080 P Full HD
Video at 60 FPS

— 25 500 71

UAV drone crop
sprayer

UAV: 9
Payload: 10
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13
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70 (L.W.H)

— — 16 1000 —

DJI drone sprayer 15,000 — — — 7–10 acres/hour — — 29

Yamaha’s
helicopters spray
& survey

130,000 UAV: 71
Payload: 30

— — 10 acres — — —

JMR-V1000 6-rotor
5 L

665–
3799

UAV: 6.5
Take-Off: 18

875 � 1100
� 480 (L.W.
H)

— — 14–18 — 11–22

AG-UAV
Sprayers1

— UAV: 8
Payload: 6

Height: 650 — — 8–15 — —

AG-UAV
Sprayers2

— UAV: 14.2
Payload:
20

Height: 650 — — 15–30 — —

AG-UAV
Sprayers3

— UAV: 9.5
Payload: 10

Height: 650 — — 10–20 — —

DJI AGRAS MG-1
Sprayer

7999 Payload: 10 — — 7–10 Acres Per
Hour

— — —

Hercules Heavy
Lift UAV (HL6)

— UAV: 8
Payload:
6

Height: 660 — — 30 — 37

Hercules Heavy
Lift UAV (HL10)

— UAV: 9.5
Payload: 10

Height: 660 — — 30 — 37

Hercules Heavy
Lift UAV
(HL20)

— UAV: 14
Payload: 20

Height: 660 — — 60 — 37

Multirotor UAVs — — — — — 10–40 — —

AgStar GoPro
FPV Camera
Payload

1950 — — — — — —
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Model Price
($)

Weight
(Kg)

Size (mm) Camera
resolution

Coverage Flight
time (min)

Max
altitude (m)

Flight
speed (km/h)

DJI Phantom 3 469 — — 2.7 K HD
videos, 12 MP
photo

— 25 — —

Fixed Wing UG-II — UAV: 11
Take-Off: 15

2240 � 1600
� 650 (L.W.
H)

— — 180 — 65–110

Professional
Electric Six Rotor
Drone UA-8
Series

— Payload: 3 860 � 860 �
540

— — 28 5000 36

Yuneec H520
Hexacopter

2500–
4500

— — 4 K/2 K/HD
video or 20 MP
images

— — — —

Ag-drone AK-61 6999 Take-Off: 22
Payload: 10

— — — 10–15 0.5–5 m 18–36

YM-6160 5000 Take-Off:
21.9
Payload: 10

— — — 10–15 0.5–5 m 18–36

Skytech
TK110HW

32–52 — — 0.3 MP — 6–7 — —

JJRC H8D 5.8G
FPV RTF RC

169–
175

UAV: 0.023 330 � 330 �
115

— 8 — —

X810 Long Range
Uav Sprayer

4000–
6500

Payload: 10 2490 � 1645
� 845 (L.W.
H)

— — 25–40 — —

Syma X8C 68.99 — 508 � 508 �
165 (L.W.H)

2 MP HD
Camera

— 5–8 — —
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Abstract

Grading, sorting, and classification of agricultural products are important steps to ensure 
a profitable and sustainable food industry. Human-intensive labors are replaced with 
better devices/machines that can be used in-line and generate sufficiently fast measure-
ments for a high production volume. Most previous works focused on only one of the 
external quality parameters, such as color, size, mass, shape, and defects. In this work, 
we proposed an integrated machine vision system that can grade, sort, and classify man-
goes using multiple features including weight, size, and external defects. We found that 
weight estimation using our proposed algorithm based on visual information was not 
statistically different from that of a conventional weight measurement using a static digi-
tal load cell; the estimation error is relatively small (4–5%). We also constructed an arti-
ficial neural network model to classify mango having multiple types of external defect; 
the classification error is less than 8% for the worst possible case. The results indicate that 
our system shows a great potential to be used in a real industrial setting. Future work will 
aim to investigate other features such as ripeness and bruises to increase the effectiveness 
and practicality of the system.

Keywords: mango, image processing, machine vision, weighing system,  
defect classification, real time, neural network

1. Introduction

Food standards are evolving both to ensure the sustainability of agriculture and to satisfy con-
sumer needs. The reputation of producers and consequently their market share is based on the 
quality of the product, which makes quality controls very crucial. The market together with 
ever increasing social concerns about good agricultural practices, including environmental, 
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economic, and social sustainability and traceability, require guarantees of high quality from 
the earliest stages of the crop to postharvest storage and treatments.

Optical sensors have been used extensively in the industry ranging from the automatic sorting 
of products into categories to the control of processes which are difficult to observe, for instance, 
because of their long duration [1]. At this point it is important to note that the quality of biologi-
cal products is not easy to assess, as individuals of the same category may differ greatly from one 
to another in terms of color, shape, or size. Furthermore, because they are living products, their 
physiochemical properties evolve over time. Their inherent variability sometimes introduces 
a certain amount of subjectivity into quality control, thus increasing the difficulty involved in 
developing automated inspection systems. Addressing these challenges often requires research 
in advanced and multidisciplinary technologies and sometimes the use of expensive equipment.

In this work, our focus is on mango, Mangifera indica, especially the Cat-Chu cultivar due to 
the increasing export potential in our country—Vietnam.

Postharvest handling of mangoes is usually completed in several steps: washing, sorting, 
grading, packing, storage, and transportation as shown in the following Figure 1; among 
which, sorting and grading are considered the most important especially for fresh agricul-
tural products.

Sorting of agricultural products is accomplished based on external quality parameters such as 
color, defects, shape, and sizes. Manual sorting is based on traditional visual quality inspection 
performed by trained human operators situated on one or both sides of a conveyor belt. They 
visually inspect the produce and remove those not satisfying the predetermined quality stan-
dards. Pieces are transported slowly enough to allow the workers to inspect all of them and 
even manipulate them to ensure the inspection of most of their surface. The process is normally 
tedious, time-consuming, subjective, slow, expensive, and nonconsistent. A cost-effective, con-
sistent, faster, and accurate sorting can be achieved with a machine vision-assisted sorting.

In this work, we present an integrated machine vision-based inspection system including 
sorting, grading, and weighing of mangoes—particularly, the Cat-Chu cultivar.

Figure 1. Typical postharvest steps of agricultural products.
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2. Our research

2.1. Mass estimation

Consumers usually prefer fruits having almost uniform masses and shapes. This is also one 
of the requirements for export. However, one cannot easily model mango shapes which are 
not round or oval-shaped. Commonly accepted laboratory instruments are shown in Figure 2 
including a Vernier caliper for size/length measurements, a water replacement measurement 
setup to estimate volumes, and a planimeter to calculate areas. These methods are time-
consuming and not suitable to be implemented into a real production line.

Several attempts have tried to formulate a relationship between mangoes’ masses and their 
sizes [2–5]. Guzman-Estrada et al. [2] used a set of complicated geometrical parameters to 
estimate the mass of mangoes; most of the parameters can only be obtained using a mechani-
cal measurement tool. Vasquez-Caicedo et al. [3] tried to use five parameters such as length, 
width, and thickness at maximum width and minimum width to estimate mango weight. 
Yimyam et al. [4] used four digital photographs to produce a three-dimensional model of 
Nam-Dokmai mangoes. Most of these methods did not provide easy-to-obtain parameters, 
except for Spreer et al. [5]; they provide an experimental weight-size correlation based on 
just three parameters—Length, Max Width (W), and Max Thickness (T) for a specific mango 
cultivar (Chok Anan) from Thailand.

The weight estimation method using Speer’s method is shown as follows:

  Estimated mass _ ChoknanMango  (grams)  = 5.39 ×  10   −4  × L (mm)  × W (mm)  × T (mm)   (1)

In this work, we will try to use Spreer’s approach to find a meaningful relationship between 
shape parameters and masses of Cat-Chu mangoes. We used over 200 mangoes as a training 
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economic, and social sustainability and traceability, require guarantees of high quality from 
the earliest stages of the crop to postharvest storage and treatments.

Optical sensors have been used extensively in the industry ranging from the automatic sorting 
of products into categories to the control of processes which are difficult to observe, for instance, 
because of their long duration [1]. At this point it is important to note that the quality of biologi-
cal products is not easy to assess, as individuals of the same category may differ greatly from one 
to another in terms of color, shape, or size. Furthermore, because they are living products, their 
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developing automated inspection systems. Addressing these challenges often requires research 
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Figure 1. Typical postharvest steps of agricultural products.
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2. Our research
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dataset to establish the necessary weight-size relationship. Fortunately, we also obtain a linear 
relationship as shown in the following Figure 3. The constant in our case is 4.879 × 10−4. The 
obtained R2 is about 97.6%.

Our estimated mass is:

  Estimated mass _ CatChuMango  (grams)  = 4.879.39 ×  10   −4  × L × W × T  (2)

To validate our findings, we collected an additional 68 mangoes to be used as a validation 
dataset. The accuracy achieved is impressive, with an average error percentage of 3.23%. This 
further proves that the simple, linear correlation between mass and sizes can be used to esti-
mate the corresponding mass effectively.

We also designed and constructed an image capturing platform to obtain the images from 
two different viewpoints (top and side views). The platform would also be used to test the 
algorithm’s ability to estimate mangoes’ masses solely based on their sizes. An algorithm was 
developed to capture and process the images while mangoes travel along a conveyor.

Top and side views of the mango were captured to estimate the mango mass using Eq. (2), and 
the result will also be compared with conventional mass measurement using a calibrated digital 
scale. We found that the difference between the masses estimated using this technique was not 
statistically different from the conventional method using a digital scale (p < 0.05). Classification 
result showed an accuracy of 95–96% when grading mangoes solely based on masses.

2.2. Image segmentation

In this section we review a few methods for automatic selection of threshold values; the most 
important methods that we will discuss are Otsu’s method and the valley-emphasis method. 

Figure 3. Correlation between mango masses and their sizes: L, T, and W.
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For a more general discussion regarding thresholding techniques, please read the reference 
“Machine Vision” by Davies [6].

2.2.1. Otsu’s method

This used to be one of the de facto algorithms in image segmentation [7]. An image is a two-
dimensional matrix of N pixels, each with an intensity level between 0 and L-1, where L is the 
number of distinct gray levels. The number of pixels with a certain gray level i is denoted as 
fi, and the probability of occurrence of gray level i is given by

   P  i   =  f  i   / N  (3)

The average of the intensity level of the whole image can be calculated as

   μ  T   =  ∑ 
i=0

  
L−1

    i  p  i    (4)

By segmenting the image using a single threshold, we get two disjoint regions C1 and C2, 
which are formed by the area of pixels with gray levels [1,…,t] and [t,…L], respectively, where 
t is the threshold level. Normally, C1 and C2 correspond to the object of interest and the back-
ground. The probability distributions of C1 and C2 are

   C  1   =   
 P  i   ____  ω  1   (t) 

  , … ,   
 P  t   ____  ω  1   (t) 

   and  C  2   =   
 P  t+1   ____  ω  2   (t) 

  ,   
 P  t+2   ____  ω  2   (t) 

  …,   
 P  L   ____  ω  2   (t) 

    (5)

   ω  1   (t)  =  ∑ 
i=1

  
t
     P  i   and  ω  2   (t)  =   ∑ 

i=t+1
  

L
     P  i    (6)

The mean gray-level values of the two classes can be computed as

   μ  1   =  ∑ 
i=1

  
t
      

i ·  P  i   ____  ω  1   (t) 
   and  μ  2   =   ∑ 

i=t+1
  

L
      

i ·  P  i   ____  ω  2   (t) 
    (7)

Using discriminant analysis, Otsu [7] showed that the optimal threshold t* can be determined 
by maximizing the between-class variance, that is

   t   ∗  =  
0 ≤ t < L 

  ArgMax   { σ   B  2   (t) }      (8)

where the between-class variance σB is defined as

   σ   B  2   =  ω  1   ·   ( μ  1   −  μ  T  )    2  +  ω  2   ·   ( μ  2   −  μ  T  )    2   (9)

Otsu’s method works well when the images have clear peaks and valleys—in other words, it 
works for images whose histograms show clear bimodal or multimodal distributions. There 
are times when histograms of images contain several different types with widely varied num-
ber of pixels, such as external defects; Otsu’s method will not give the correct threshold level 
as shown in the following Figure 4.
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2.2.2. Valley-emphasis method

To improve drawbacks of Otsu’s method, Ng et al. [8] proposed the valley-emphasis 
method. The idea of the valley-emphasis method is to select a threshold value that has a 
small probability of occurrence (valley in the gray-level histogram) and also maximize the 
between-group variance, as in Otsu’s method. The formulation for the valley-emphasis 
method is

   t   ∗  =  
0 ≤ t < L 

  ArgMax   { (1 −  P  t  )  ( ω  1   (t)   μ  1  2  (t)  +  ω  2   (t)   μ  2  2  (t) ) }      (10)

The addition of an extra weight factor, (1-Pt), ensures the calculated threshold having a small 
probability of occurrence Pt will always be selected. Hence, the name valley-emphasis because 
the threshold level will always reside at the valley of the histogram. For images that have 
apparent bimodal distribution, the valley-emphasis method should give a threshold value 
that is very close to the value generated by Otsu’s method because both methods attempt to 
maximize the between-group variance of the histogram.

The same segmentation experiment done previously using Otsu’s method is repeated 
using the valley-emphasis method as shown in Figure 5. We can clearly observe that the 
segmentation result is much better. And, the result can be utilized for further analysis 
steps.

Figure 4. Segmentation result using Otsu’s algorithm: (a) original image, (b) histogram with the Otsu threshold level 
(red), and (c) resulting image.
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2.3. Defect isolation

2.3.1. Defect isolation

Due to their green appearances, we use G channel as the main channel, since it will be much 
easier to observe defects. To make the defects stand out, we use a simple linear contrast 
enhancement as shown in [3]. The results shown in Figure 6 illustrate the effectiveness of the 
contrast enhancement.

Figure 5. Segmentation result using valley-emphasis method: (a) original image, (b) histogram with the valley-emphasis 
threshold level (red), and (c) resulting image.

Figure 6. Contrast improvement after background removal: (a) before and (b) after.
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After image enhancement, we apply another round of valley-emphasis segmentation on the 
area of the mango mask to isolate the defect zones. The result was illustrated as shown in 
Figure 7.

To simplify the calculation effort, we only concentrate on defects that are equal to or larger 
than 30 pixels. After segmenting the defect zones from the previous steps, we will use their 
sizes and locations on the original image to generate the new defect candidate for further 
classification steps as shown in Figure 8.

Figure 7. Defect zone isolation: (a) original image, (b) after background removal and contrast enhancement, and (c) 
defect isolation result.

Figure 8. Defect zones on the original image.
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2.3.2. Defect classification

There are many kinds of defects that negatively degrade mangoes’ quality [9]. Among them, 
four kinds that are most commonly seen are shown in Figure 9 including stripe-type scars, 
dark patches, sap burns, and small spots. The defect classification steps will help us know 
how many kinds of defects are present on the fruit skin area as shown in Figure 10.

2.3.2.1. Color features

We use an artificial neural network with inputs as color features, shape features, and image 
statistical information. Li et al. [10] suggested that using HSV (HSI) instead of RGB color 
space improves segmentation results. In this research, there are 18H bins, 3S bins, and 3V 
bins. Therefore, we will have 162 features in HSV space.

2.3.2.2. Shape features

To calculate shape features, we used the moment invariant proposed by Hu [11] with practi-
cal implementations by OpenCV as in [12].

Figure 9. Four typical types of defects (I) to (IV).

Figure 10. Proposed image processing procedures.
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2.3.2.3. Histogram-based features

The histogram-based features used in this work are first-order statistics that include mean, 
variance, skewness, and kurtosis for all R, G, and B channels. Let z be a random variable 
denoting image gray levels and p(zi), i = 0, 1, 2, 3, ……. L-1, be the corresponding histogram, 
where L is the number of distinct gray levels. The five following features for each color chan-
nel are calculated using the abovementioned histogram:

  Mean =  ∑ 
i=0

  
L−1

     z  i   p ( z  i  )   (11)

  Variance =  ∑ 
i=0

  
L−1

      ( z  i   − Mean)    2  p ( z  i  )   (12)

  Skewness =  ∑ 
i=0

  
L−1

      ( z  i   − Mean)    3  p ( z  i  )   (13)

  Kurtosis =  ∑ 
i=0

  
L−1

      ( z  i   − Mean)    4  p ( z  i  )   (14)

  Range =   max − min _________ 255    (15)

2.3.2.4. Manual labeling of training data

We prepare our dataset with standardized defect templates of 20 × 20 using 193 abovemen-
tioned features: 162 color-based, 16 shape-based, and 15 histogram-based. We also manually 
label different images in the training dataset with different kinds of defects. For example, 
“Image 1” has nine defect zones, one is the first defect type and the rest are the fourth defect 
type. The procedure is applied similarly for the rest of the training images.

2.3.2.5. Building a neural network model

Our classification problem is a nonlinear one with 193 inputs corresponding to 193 chosen 
features and 4 outputs corresponding to four types of defects. Usually, a number of hidden 
layers are experimentally chosen to be a half of all the number of inputs and outputs [3]. 
Therefore, we chose 98 hidden neurons (=(193 + 4)/2). The neural network model is illustrated 
in Figure 11.

We split our dataset into five smaller ones with different characteristics:

• Set 1: All images show no defects.

• Set 2: Images show only one type of defects.

• Set 3: Images show only two types of defects.

• Set 4: Images show three types of defects.

• Set 5: Images have all four types of defects.
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The classification results are summarized in Table 1. From the statistics, we can see that the 
classification accuracy reduces with an increasing number of defect zones and it also takes more 
computation time. The result is quite promising to be applicable to an automated sorting and 
grading system. In the current version, no acceleration techniques have been applied; in the 
near future, advanced parallel programming technique using graphics processing units (GPU) 
can be utilized to speed up the process, hopefully, to achieve a real-time performance level.

3. Conclusion

In this work, we have established an integrated framework for an automated grading, sorting, 
and weighing system of Cat-Chu mangoes using features including weight, size, and external 
defects. We found a simple, easy-to-calculate formulation between simple parameters and 
mango mass. The estimation error is very small, less than 3% if we use a mechanical measure-
ment tool and less than 5% if we use an optical measurement using top- and side-view image 
captures. We also proposed an innovative procedure to classify external defects based on an 

Figure 11. Our proposed feed-forward neural network with 193 inputs, 98 neurons in a hidden layer, and 4 outputs.

Set 1 Set 2 Set 3 Set 4 Set 5 Total

Number of photos 70 50 40 30 30 220

Number of defects 70 106 272 425 722 1595

Number of defects correctly identified 70 103 258 392 657 1480

Number of wrong identifications 0 3 14 33 65 115

Accuracy (%) 100 97.17 94.85 92.24 91.0 92.79

Table 1. Summary of classification results.
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captures. We also proposed an innovative procedure to classify external defects based on an 

Figure 11. Our proposed feed-forward neural network with 193 inputs, 98 neurons in a hidden layer, and 4 outputs.

Set 1 Set 2 Set 3 Set 4 Set 5 Total

Number of photos 70 50 40 30 30 220

Number of defects 70 106 272 425 722 1595

Number of defects correctly identified 70 103 258 392 657 1480

Number of wrong identifications 0 3 14 33 65 115

Accuracy (%) 100 97.17 94.85 92.24 91.0 92.79

Table 1. Summary of classification results.
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artificial neural network. The classification error is less than 8% for the worst possible case. 
The results indicate that our system has a great potential to be used in a real industrial setting. 
Future work will aim to investigate other features such as ripeness and bruises to increase the 
effectiveness and practicality of the system and possible speedup to real-time performance 
using advanced graphics processing unit (GPU) and further code parallelism.
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