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Abstract

Research in the area of cooperative multi-agent robot systems has received wide attention 
among researchers in recent years. The main concern is to find the effective coordina-
tion among autonomous agents to perform the task in order to achieve a high quality of 
overall performance. Therefore, this paper reviewed various selected literatures primar-
ily from recent conference proceedings and journals related to cooperation and coor-
dination of multi-agent robot systems (MARS). The problems, issues, and directions of 
MARS research have been investigated in the literature reviews. Three main elements 
of MARS which are the type of agents, control architectures, and communications were 
discussed thoroughly in the beginning of this paper. A series of problems together with 
the issues were analyzed and reviewed, which included centralized and decentralized 
control, consensus, containment, formation, task allocation, intelligences, optimization 
and communications of multi-agent robots. Since the research in the field of multi-agent 
robot research is expanding, some issues and future challenges in MARS are recalled, 
discussed and clarified with future directions. Finally, the paper is concluded with some 
recommendations with respect to multi-agent systems.

Keywords: cooperative mobile robots, multi-agent robot systems, coordination, control, 
communication

1. Introduction

Research on the multi-agent robot systems has been conducted since late 80s as it provides a 
more efficient and robust system compared to a single robot. ALLIANCE [1] and ACTRESS 
[2] robot are among of the earliest heterogeneous multi-agent robots developed by previous 
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distribution, and reproduction in any medium, provided the original work is properly cited.
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researchers. The benefits received from information sharing among agents, data fusion, dis-
tribution of task, time and energy consumption have made the multi-agents research still 
relevant until present.

There were many researchers who focused on cooperative multi-agent research. The most 
challenging part was to provide a robust and intelligent control system so that the agents 
can communicate and coordinate among them to complete the task. Hence, it has been found 
that designing the control architecture, communication, and planning system were the major 
issues discussed and solved among researchers. Other than that, improvement to the exist-
ing coordination techniques, optimal control architectures, and communication were also the 
main highlights in the previous research. A few examples of cooperative multi-agent robots 
applications are soccer robot [3], unmanned guided vehicles (UGV’s) and unmanned aerial 
vehicles (UAV’s) [4], micro chain [5], and paralyzed robot [6].

There were two main reviewed papers proposed by Cao and Zhi Yan which were related to 
cooperative multi-agent research. Cao et al. [7] proposed a paper that represents the anteced-
ents and direction of the cooperative mobile robot in the mid-1990s (most of the reviewed 
papers were published from 1990 to 1995). There were several issues discussed such as group 
architecture, resource conflict, the origin of cooperation, learning, and geometric problem. 
The applications and critical survey of the issues and direction of cooperative robots based 
on existing motivation have been indicated. Besides that, there were also a survey and an 
analysis of multi-robot coordination proposed by Yan et al. [8] in 2013 (most of the reviewed 
papers were published from 2000 to 2013). They presented a systematic survey and analysis of 
multiple mobile robot systems coordination. Related problems such as communication mech-
anism, a planning strategy, and a decision-making structure have been reviewed. In addi-
tion, various additional issues of cooperative MARS have been highlighted in these reviewed 
papers. Most of the papers were published from 2010 to 2015 which the recent research papers 
on cooperative multi-agent systems have been reviewed.

The main contributions of this paper are (i) the most reflected and affected key elements and 
current issues in cooperative mobile robots and (ii) directions and future challenges for the 
multi-agents robot, with recommendations and related suggestions. The remain sections of 
the paper are structured as follows: the first section discusses three main categories of multi-
agent robot systems, the second section focuses on discussion of problems and some current 
issues of multi-agent systems and the final section is the conclusions with some challenges 
and recommendations for future research direction in the field of cooperative multi-agent 
systems.

2. Key elements of cooperative multi-agent robot systems

A wide means of research in cooperative multi-agent robots systems have focused on the three 
main elements which are (1) types of agents; homogeneous and heterogeneous, (2) control 
architectures; reactive, deliberative and hybrid, and (3) communication; implicit and explicit. 
In order to provide efficient coordination among multi-agent robots, the selections and 
designs of the control architecture and communication must possess a coherent behavior with 
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the agents. Therefore, this paper thoroughly explains each of the key elements with related 
examples from previous research and followed by the issues and directions of the multi-agent 
robot systems.

2.1. Types of agents: homogeneous and heterogeneous

Multi-agent robots can be divided into two categories which are homogeneous and heteroge-
neous. The agents become homogeneous when the physical structures or capabilities of the 
agents/individuals are identical (Figure 1). The capabilities for heterogeneous agents are not 
identical and they are different among robots, where each robot has its own specialization or 
specific task to complete [8]. Besides that, the physical structures of heterogeneous agents are 
also not identical among them (Figures 2 and 3).

Research carried out by Sugawara and Sano [9] and Hackwood and Beni [10] have proven 
that their homogeneous agents that have identical structures and identical capabilities can 
perform the task efficiently. However, for Li and Li [11], the heterogeneous agents are more 
applicable than homogeneous agents in the real world. Therefore, instead of focusing on 
homogeneous agents, current researchers are also concerned about heterogeneous agent’s 
issues [1–6, 11–15]. The agent’s physical structures and capabilities which are not identical 
have made the agents fall into these heterogeneous agents categories [16, 17].

There are two researchers known as Parker [18] and Goldberg [19] who compared the task 
coverage and interference between homogeneous and heterogeneous agents. Parker discov-
ered that the task coverage for homogeneous agents is maximum compared to heterogeneous. 
This is because the homogeneous agents execute the same task at one time, while the hetero-
geneous agents need to distribute their task to another agent during the execution. Due to the 
task distributions among heterogeneous agents, the interference becomes higher compared to 
homogeneous agents, as proven in Goldberg’s research [19]. As a result, we can  summarize 
that the selection of a homogeneous or heterogeneous agent depends on the research applica-
tion. Since the capability of heterogeneous agents is not identical, it becomes a  challenging 
issue especially in finding consensus among agent during execution of the task. Table 1  
shows the research conducted by previous researchers using their heterogeneous agents.

Figure 1. Multi-agent (homogeneous agents) control with broadcast [33].
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2.2. Control architectures: reactive, deliberative, and hybrid

The selection of control architectures for multi-agent robots is based on the capabilities of each 
agent to work in the groups and it also depends on how the overall systems work. The control 
architectures can be classified into three categories which are (i) reactive, (ii) deliberative and 
(iii) hybrid (reactive and deliberative).

Reactive control is also known as decentralized control. Reactive control relies on the concept 
of perception-reaction where the agents will cooperate between agents based on direct per-
ception, signal broadcast or indirect communication via environmental changes. It does not 
require a high-level of communication to interact with agents. There are a few approaches 
which are related to reactive control for multi-agent robots. Glorennec [20] coordinated multi-
agent robots by using fuzzy logic techniques to avoid obstacles and robots in the environment, 
whereas, research done by Lope et al. [12] coordinated their multi-agent robots by using the 
reinforcement learning algorithm based on the learning automata and ant colony optimiza-
tion theory. Their multi-agent robots can organize the task by themselves to choose any task 
to be executed. It was proven that without interference from the central controller, the robots 
are capable of selecting their own task independently.

Despite these approaches, Chen and Sun [21] proposed a new optimal control law as distrib-
uted control for multi-agent robots in finding consensus to avoid obstacles in the environment. 
Local information from neighbors is required in this research. It is proven that this approach 
is capable of solving consensus problem under obstacle avoidance scenarios. In terms of local 
information context, Vatankhah et al. [22] developed a unique adaptive controller to move 

Figure 2. Examples of Heterogeneous agent (chained micro robots) [5].

Figure 3. The heterogeneous team includes a single UAV (Pelican Quadrotor) controlling many UGV’s (Khepera II 
robots) [4].
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the leader and follower to a specific path. Finally, the decentralized control for stabilizing 
nonlinear multi-agent systems by using neural inverse optimal paper is carried out by Franco 
et al. [23].

Deliberative approach relied on the high-level communication, rich sensor and complete rep-
resentation of the environment which allow the planning action. This approach is also known 
as centralized approach. The input data (usually from the static environment) that represents 
the global map can be planned to drive the agents efficiently to the target point [6, 24, 25]. 
The hybrid approach represents the integration control between reactive and deliberative 
control. Both controls complement each other to find the robust control system in controlling 
multi-agents robot. In deliberative control, all of the planning processes are involved with the 
calculation of a global target. As for reactive control, it is more towards a local plan for the 
robot to avoid the obstacles. There are examples of hybrid approaches related to multi-agents 
research studies as shown in Table 2 [5, 6, 24, 25].

Robot task Type of robots Reason of heterogeneous

The pusher robots work among them 
and push the paralyzed robot to a certain 
point. The paralyzed robot is driven by 
the global system [6]

One paralyzed robot with multiple 
numbers of pusher robots

Different robot, different task

The ROBOCUP robot team plays a soccer 
ball [3]

Group of agents (robots) acts as a 
goal keeper, middle field player, 
striker, and defender

Same robot, different task for each 
group of agents since each agent 
has different capabilities and 
characteristics

Unmanned aerial vehicles (UAV) acts as a 
supervisor to control unmanned ground 
vehicles (UGV) robots from any danger 
and collide with obstacles [4]

Single UAV flies to control and 
allocate several UGV’S

Different robot, different task

Coordination of heterogeneous multi-
agents systems. Second order dynamics 
is the state of the leader while first order 
dynamics is the state of the followers [11]

Consists of leader and few 
followers

Same agent, different state 
dimension among the leader and 
follower (not identical)

Coordination of the micro robots chain [5] Consists of different modules 
(active and passive) such as 
rotation, support, extension and 
helicoidally modules

Different modules, different task/
function

Multi-agent robots construct four 
different blocks [12]

Multiple agents Same agent, different task

ACTRESS robot pushes the objects [2] 3 different robotors act as interface 
human operator, image processor, 
and global environment manager

Different agent, different task

ALLIANCE robot executes few tasks. The 
tasks are box pushing, puck gathering, 
marching, information, marching, 
hazardous and waste cleanup [1]

Small to a medium size of 
heterogeneous teams

Different agent, different task

Table 1. Examples of heterogeneous agent’s research.
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2.2. Control architectures: reactive, deliberative, and hybrid

The selection of control architectures for multi-agent robots is based on the capabilities of each 
agent to work in the groups and it also depends on how the overall systems work. The control 
architectures can be classified into three categories which are (i) reactive, (ii) deliberative and 
(iii) hybrid (reactive and deliberative).

Reactive control is also known as decentralized control. Reactive control relies on the concept 
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Figure 2. Examples of Heterogeneous agent (chained micro robots) [5].

Figure 3. The heterogeneous team includes a single UAV (Pelican Quadrotor) controlling many UGV’s (Khepera II 
robots) [4].
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Every researcher has used different types of control architecture that are suitable for their 
system. They have come out with their own idea about the control architectures. Based on 
[26], hybrid architectures offer the most widespread solution in controlling intelligent mobile 
robots. Besides that, in a real world, agents also require acting in a dynamic and uncertain 
environment [6]. Subsequently, the hybrid approach allows the robot to navigate the target as 
well as avoiding the obstacles successfully within that environment [24].

The researchers who have focused on reactive architectures or known as decentralized 
approach [27] have claimed that decentralization will provide flexibility and robustness. 
However, Franco et al. [23] have different views where they agreed with the deliberative 
approach (centralized) is obviously good for their system although it is hard to control in 
a complex and large system due to technical and economic reasons. Sometimes, central-
ized control design totally depends on the system structure and it cannot handle structural 
changes. Once removed, it needs to be designed all over again. It is also costly and complex in 
terms of online computation and its control design.

2.3. Communications: implicit and explicit

Cooperation is usually based on some forms of communication. Communication is a mode of 
interactions between multi-agent robots. With an efficient communication system, the robot is 
capable of interacting, sharing and exchanging information. Communication also determines 
the success in mobile robots cooperation [28, 29]. Based on research by Cao et al. [7], there 
are three types of communication structures which are (i) interaction via the environment, 
(ii) interaction via sensing, and (iii) interaction via communications. However, this section 
will only focus on the two main types of interaction (ii) and (iii) which are important in the 
communication of mobile robots.

Implicit communication or also known as interaction via sensing refers to the local interac-
tions between agents (agent to agent) as shown in Table 3. The agents will sense other agents 

Task Deliberative (D) Reactive (R) Communication of D 
and R

Pusher robots push the 
paralyzed robot to a 
specified target point [6]

Emit an attractive signal to move 
paralyzed robot to a specific target 
and to recruit another pusher robot to 
push the paralyzed robots (broadcast 
simple signal). It has a vision of the 
environment to determine the path

A force field approach 
used to define the 
pushers robots motion

D broadcast emitted 
signal to R controller

Solving dynamic 
problem for multi-agents 
by proposing a novel 
control scheme [25]

Introduce supervisor that assists a 
group of agents with centralized 
coverage control law and global 
trajectory tracking control law

Introduce control laws 
for coverage agents to 
avoid a collision and 
maintain proximity to 
a supervisor

Using a control law. Each 
law is active at a given 
time

Movement of chain 
micro-robots [5]

High layer for central control Low-level embedded 
layer based on 
behavior function

D and R communicate 
using command exchange 
protocol

Table 2. Hybrid control architectures of multi-agent robots.
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by embedding a different kind of sensors among them. They will react to avoid obstacles 
among themselves if they sense signals from other agents [4, 10, 30–32]. However, due to 
limitation of hardware parts, the interaction via sensing has been replaced by using a radio or 
infrared communication.

Explicit communication refers to the direct exchange of information between agents or via 
broadcast messages. This often requires onboard communication modules. Issues on design-
ing the network topologies and communication protocol arise because these types of commu-
nication are similar to the communication network [3, 5–6, 33–39]. Table 4 shows an example 
of explicit communications being used in the robot systems.

Task Sensors

Multi-robots work together to avoid other 
robots, remove obstacles and pass objects [30]

Real mobile robots equipped with CCD cameras

Follower robots follow the leader while 
avoiding the obstacles [31]

4 robots equipped with ultrasound sensors

Robot teams will track the target and push the 
box cooperatively [32]

4 robots are equipped with side sensors. Different signals are 
emitted to differentiate between the robots (3 robots) and target 
robot (1 robot)

UAV allocate UGV’s [4] UAV equipped with a video camera with onboard Inertial 
Measurement Unit (IMU). UGV equipped with onboard laser range 
finder sensor

Multi-robot cooperatively collects the pucks in 
the field [9]

Robots are equipped with a pair of photo sensors and a pair of IR 
sensors

Table 3. Implicit communication researches.

Task Communication devices/network Interaction

Coordination of the ROBOCUP 
teams (middle size league) [3]

Robots equipped with communicating devices 
(off-the-shelf) radio modems and wireless 
Ethernet cards. Communication is based on 
underlying IP protocol either TCP-IP or UDP-IP

Agent to agent

Developing the control 
architectures for chain micro 
robots [5]

Command exchange protocol is used for 
communication between modules and PC by 
sending a message. The name of the protocol is   
I   2  C  protocol

One to many agents (modules) 
for global. Agent to agents for 
local

The pusher robots work 
cooperatively to push the 
paralyzed robot to a specific 
point [6]

PC will send messages to the Mindstorm robot 
(paralyzed) to control Mirosot robots (pusher) by 
using infrared serial communications interface/
transceiver

One way communication. One 
to all agents (broadcast) for 
global

Broadcast control framework 
for multi-agent coordination 
[33]

The broadcast signal sent from computer to all 
agents via Bluetooth

One way communication. One 
to all agents (broadcast)

Sign board based inter-robot 
communication in distributes 
robotic system [34]

Communication-based on conceptual mechanism 
of “sign-board” being used in inter-robot system

Agent to agent
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by embedding a different kind of sensors among them. They will react to avoid obstacles 
among themselves if they sense signals from other agents [4, 10, 30–32]. However, due to 
limitation of hardware parts, the interaction via sensing has been replaced by using a radio or 
infrared communication.

Explicit communication refers to the direct exchange of information between agents or via 
broadcast messages. This often requires onboard communication modules. Issues on design-
ing the network topologies and communication protocol arise because these types of commu-
nication are similar to the communication network [3, 5–6, 33–39]. Table 4 shows an example 
of explicit communications being used in the robot systems.
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Multi-robots work together to avoid other 
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avoiding the obstacles [31]
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Robot teams will track the target and push the 
box cooperatively [32]
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emitted to differentiate between the robots (3 robots) and target 
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UAV allocate UGV’s [4] UAV equipped with a video camera with onboard Inertial 
Measurement Unit (IMU). UGV equipped with onboard laser range 
finder sensor

Multi-robot cooperatively collects the pucks in 
the field [9]

Robots are equipped with a pair of photo sensors and a pair of IR 
sensors
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communication between modules and PC by 
sending a message. The name of the protocol is   
I   2  C  protocol

One to many agents (modules) 
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3. Problems and issues of cooperative multi-agent robot systems

Although researchers in recent years have addressed the issues of multi-agent robot systems 
(MARS), the current robot technology is still far from achieving many real world applica-
tions. Some real world MARS applications can be found in unmanned aerial vehicles (UAV’s), 
unmanned ground vehicles (UGV’s), unmanned underwater vehicles (UUV’s), multi-robot 
surveillance, planetary exploration, search and rescue missions, service robots in smart homes 
and offices, warehouse management, as well as transportation. Therefore, in this paper, prob-
lems and issues related to cooperative multi-agent systems are discussed to improve the cur-
rent approaches and to further expand the applications of MARS.

3.1. Centralized and distributed control

Based on Section 2.2, the differences between two types of control approaches have been high-
lighted. However, some problems and issues of both control system in coordinating multi agents 
will be discussed. By having centralized control, the global information of the environment has 
been used to calculate the path, trajectory or position of the agents before all [5, 6, 24–26, 40]. 
The information then can be sent directly to the agents by using a suitable communication 
medium. This is one advantage of this control where the agents can obtained the information 
directly from its central. Research by Azuma [33] shows that the central will sent the updated 
location directly to the agents by using a WIFI continuously until the agents reach the target 
point. The quadratic equation is used to calculate agent performances while Simultaneous 
Perturbation Stochastic Approximation is the algorithm used for the control design [41]. Besides 
that, A* algorithm, Dijkstra, Genetic Algorithm [42–44] and Ant Colony Optimization algorithm 
[45–47], are example of another algorithms have been used in multi agent centralized control. 
Oleiwi et al. [24] used a modified GA with A* algorithm for its global motion controller while 
Atinc et al. [25] proposed a novel control scheme that has a centralized coverage control law.

The main issue in centralized control exists when the number of agents is expanding. The com-
putation will become high since there is only one centralized processor that control over all of 

Task Communication devices/network Interaction

Cooperative multi-robot 
system using Hello-Call 
Communication [35]

Each agent communicates together (chains) using 
“hello-call” protocol to extend their effective 
communication ranges

Agent to agent

Swarm robots control mobile 
robot using wireless sensor 
networks [36]

Using Wifi and three communication channels to 
interact between swarms for cooperation

One to many agents (broadcast)

Effect of grouping in local 
communication system of 
multiple mobile robots [37]

Information spread by the effect of random walk 
and local communication known as information 
diffusion (equation of acquisition probability)

Agent to groups of agents

A design method of local 
communication area in multiple 
mobile robots systems [38, 39]

Communication by information probability by 
infinite series

Agent to agent

Table 4. Explicit communication researches.
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the system. Effect of this high computation, the time as well as the energy consumption will be 
effected at some point. Therefore, to solve this problem, hybrid control approach [5, 6, 24, 25] 
has been proposed with objective to balance between centralized control and distributed control 
[23, 26, 48–52]. Besides that, alternative towards optimizing or minimizing the trajectory length, 
time and energy consumption [24] as well as adding the intelligences [11, 20, 22, 27, 31, 32, 53] 
has taken into consideration to reduce the computation time. In terms of scalability, adapt-
ability and flexibility of the controller can be claimed lesser as compared to distributed control. 
Any changes especially dealing with dynamics will cause the repetition in the computing and 
sometimes will effect overall of the system with only a limited number of controllers. Thus, 
centralized control sometimes does not fit with the dynamic environment.

Distributed control had proven scalable, adaptive, flexible and robust for multi agents system 
not only in static but also in a dynamic environment [54]. Many researchers had proven that 
their distributed controller can work efficiently for their multi agent robot systems [12, 26, 31, 
32, 34, 48–50, 53, 55–58]. Innocenti et al. [27] have proven that their ActivMedia Pioneer 2DX 
mobile robots can reach its target by using their fuzzy logic controller. Same goes to Chen and 
Sun [21], Vatankhah et al. [22] and Glorennec [20] where they develop the distributed control-
ler purposely for obstacles avoidance for their multi agents by using a fuzzy, neuro fuzzy, and 
a new optimal control protocol.

In distributed, the main issue is the task has to be distributed in a robust an efficient manner 
to ensure that every agent is able to perform its individual task cooperatively with another 
agents to achieve certain target. Distributing task among heterogeneous agents [11, 15] is more 
crucial and complex comparing with homogeneous agents which are identical [20–22, 59]. 
Limited sensing range and low bandwidth are also among physical constraints in distributed 
approach. With a limited local information, the agent cannot predict and cannot control the 
group behavior effectively in some sense. Another issues in distributed such as consensus, 
formation, containment, task allocation, optimization and intelligence will also discussed 
thoroughly in below section.

3.2. Consensus

Since multi-agent robots need to interact and communicate together to work cooperatively, 
issue on finding consensus for the homogeneous and heterogeneous robot has attracted 
researchers’ attention over the past few years. Consensus refers to the degree of agreement 
among multi-agents to reach certain quantities of interest. The main problem of consensus 
control in multi-agent robots is to design a distributed protocol by using local information 
which can guarantee the agreements between robots to reach certain tasks or certain states. 
Therefore, a large number of interest concerning on developing the consensus control dis-
tributed protocol for homogeneous and heterogeneous robots which can be classified into a 
leader following consensus [60] and leaderless consensus [61–66], (to name a few), have been 
intensively studied by researchers recently [22, 67].

Each of heterogeneity agents is not identical and the states between agents are different which 
will cause difficulties in finding consensus. This is known as cooperative output consensus 
problem. This is a challenging issue for heterogeneous robots and there are a number of 
researchers who focused on the leaderless output consensus problem [13, 15, 68] and leader-
follower output consensus problem [13, 15, 69–71]. Wieland et al. [68] proposed an internal 
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the system. Effect of this high computation, the time as well as the energy consumption will be 
effected at some point. Therefore, to solve this problem, hybrid control approach [5, 6, 24, 25] 
has been proposed with objective to balance between centralized control and distributed control 
[23, 26, 48–52]. Besides that, alternative towards optimizing or minimizing the trajectory length, 
time and energy consumption [24] as well as adding the intelligences [11, 20, 22, 27, 31, 32, 53] 
has taken into consideration to reduce the computation time. In terms of scalability, adapt-
ability and flexibility of the controller can be claimed lesser as compared to distributed control. 
Any changes especially dealing with dynamics will cause the repetition in the computing and 
sometimes will effect overall of the system with only a limited number of controllers. Thus, 
centralized control sometimes does not fit with the dynamic environment.

Distributed control had proven scalable, adaptive, flexible and robust for multi agents system 
not only in static but also in a dynamic environment [54]. Many researchers had proven that 
their distributed controller can work efficiently for their multi agent robot systems [12, 26, 31, 
32, 34, 48–50, 53, 55–58]. Innocenti et al. [27] have proven that their ActivMedia Pioneer 2DX 
mobile robots can reach its target by using their fuzzy logic controller. Same goes to Chen and 
Sun [21], Vatankhah et al. [22] and Glorennec [20] where they develop the distributed control-
ler purposely for obstacles avoidance for their multi agents by using a fuzzy, neuro fuzzy, and 
a new optimal control protocol.

In distributed, the main issue is the task has to be distributed in a robust an efficient manner 
to ensure that every agent is able to perform its individual task cooperatively with another 
agents to achieve certain target. Distributing task among heterogeneous agents [11, 15] is more 
crucial and complex comparing with homogeneous agents which are identical [20–22, 59]. 
Limited sensing range and low bandwidth are also among physical constraints in distributed 
approach. With a limited local information, the agent cannot predict and cannot control the 
group behavior effectively in some sense. Another issues in distributed such as consensus, 
formation, containment, task allocation, optimization and intelligence will also discussed 
thoroughly in below section.

3.2. Consensus

Since multi-agent robots need to interact and communicate together to work cooperatively, 
issue on finding consensus for the homogeneous and heterogeneous robot has attracted 
researchers’ attention over the past few years. Consensus refers to the degree of agreement 
among multi-agents to reach certain quantities of interest. The main problem of consensus 
control in multi-agent robots is to design a distributed protocol by using local information 
which can guarantee the agreements between robots to reach certain tasks or certain states. 
Therefore, a large number of interest concerning on developing the consensus control dis-
tributed protocol for homogeneous and heterogeneous robots which can be classified into a 
leader following consensus [60] and leaderless consensus [61–66], (to name a few), have been 
intensively studied by researchers recently [22, 67].

Each of heterogeneity agents is not identical and the states between agents are different which 
will cause difficulties in finding consensus. This is known as cooperative output consensus 
problem. This is a challenging issue for heterogeneous robots and there are a number of 
researchers who focused on the leaderless output consensus problem [13, 15, 68] and leader-
follower output consensus problem [13, 15, 69–71]. Wieland et al. [68] proposed an internal 
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model principle to solve the leaderless output consensus problem for heterogeneous linear 
multi-agent systems. Wang et al. [69] discussed the classes of multi-agent system by switching 
topologies via static and dynamic feedback.

Research on finding consensus in the broadcasting area has also been carried out by few 
researchers. Li and Yan [72] solved the consensus in both fixing and switching type topology 
based on the spectrum radius of stochastic matrices. Azuma et al. [73] studied the consensus 
problem with a limited communication range and unlimited broadcast range by proposing its 
own controller. They introduced a concept of connected agent groups. This is to reduce con-
sensus for “group to group” relation and for “agent to agent” relation in the groups by pro-
posing two groups of consensus controller which are local and global. They proved that their 
controller can work efficiently in a mixed environment with communication and broadcast.

Besides that, research carried out by Das and Ghose [74, 75] solved the positional consensus 
problem for multi-agents. Das and Ghose [74] proposed a novel linear programming formula-
tion and random perturbation input in the control command to achieve consensus at the pre-
specified location. The results showed that novel linear programming that is less intensive 
computation and perfect consensus can be obtained from random perturbation. They also 
proposed a novel linear programming formulation for their research [75]. Overall, it can be 
summarized that consensus problem is a vital issue which has been solved by many research-
ers. They have identified solutions to consensus problems for either homogeneous agents or 
heterogeneous agents which focus on finding an agreement among agents based on agent 
states (linear, nonlinear, static or dynamics topology) although there is an existence of leader 
in the environment or leaderless. Other than that, finding consensus in broadcasting topol-
ogy/communication, broadcast mixed environment [73] and positioning agents [74] are also 
another recent issues focused by previous researchers.

3.3. Containment

Containment control is another problem investigated by many researchers. Containment prob-
lem refers to introducing more than one leader among the agents to ensure the groups are not 
ventured by the hazardous environment. If the agents are faced with this situation, they will move 
the robots to the safe region spanned by a group of leaders. The agents can either be homogeneous 
agents that have identical dynamics or heterogeneous agents that have different dynamics.

There are several issues investigated by previous researchers to solve the containment control 
problem for multi-agent robots such as (i) containment problem for a different dynamic level of 
the leaders and followers [70, 71, 14], (ii) containment problem for a linear and nonlinear systems 
[50, 76–79], (iii) containment problem for first order and second order systems [43–44, 72]. By 
assuming the follower and the leader of heterogeneous agents have different dynamics but the 
dynamics between each follower are similar, Youcheng and Yiguang [80] and Yuanshi and Long 
[81] had carried out their research studies. Besides that, Haghshenas et al. [14] solved the contain-
ment problem for two followers when the dynamic level is not identical.

A research on solving the containment problem for linear and nonlinear systems has been 
carried out by few researchers. Ping and Wen [76] investigated the linear first order systems 
for their multiple leaders. The distributed finite time containment problem for linear systems 
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was also being explored by the authors [77]. For nonlinear systems, Liu et al. [50] investigated 
the distributed containment control problem for second order nonlinear multi-agents with 
dynamic leaders. The issues of containment problem for the first order and second order 
systems have been investigated by Ping and Wen [76], Bo et al. [51] and Rong et al. [52]. Ping 
and Wen [76] studied the first order multi-agent systems while Bo et al. [51] proposed the 
control protocol for first order discrete-time systems with fixed time delays.

3.4. Formation

Formation control is an important issue to coordinate and control a group of multi-agent 
robots [49, 82–84]. The robots must be able to control their relative position and orientation 
among the robots in a group to move to a specific point. The motivations that drive the most 
attention among researchers to this problem are the biological inspirations, challenging con-
trol problems and the demand of multi-robot systems. There are many issues needed to be 
considered in designing a controller for mobile robot formation such as the stability of the for-
mation, controllability of different formation patterns, safety and uncertainties in formations 
[82]. Other than that, issues of formation shape generation, formation reconfiguration and 
selection, formation tracking as well as role assignments in formation is discussed by Kiattisin.

There are three main control strategies for formation control proposed by previous research-
ers [82, 85, 86] such as (i) behavior based [87], (ii) virtual structure [88], (iii) leader-follower 
[89]. Each formation control method has its advantages and disadvantages. Balch and Arkin 
[87] proposed behavior-based formation control for their multi-robot teams. Behavior-based 
approach refers to several desired behavior of the agents such as goal seeking, obstacles 
avoidance, collision avoidance, etc. The final robot decision to choose which behavior comes 
first is based on the average weight of the behavior. The advantage of this approach is it can 
be used to guide the multi-agent robots in the unknown or dynamic environment by using 
the local information that the robot has. However, the drawback is where it cannot guarantee 
to converge easily during the process.

Virtual structure is a formation control that considers the entire formation as a rigid body which 
was pioneered by Lewis and Tan [88]. The main advantage of this approach is easy coordination 
of the group’s behavior and the formation is well maintain during maneuvers. However, the 
limitation of the virtual structures is it has to maintain the same virtual structure at all times 
especially when the formation shape needs to be frequently reconfigured. If not, the possible 
applications are limited. Leader and followers approach is another formation control for multi-
agent robots proposed by previous researchers [85, 86, 89]. In this strategy, some robots are 
considered as leaders while others will act as followers. The leaders will lead the followers to 
the target path while the followers will position and orientate by themselves while following the 
leaders. The main advantage of this approach is it can reduce the tracking error while the dis-
advantages are it will lead to a poor disturbance rejection property and the leader’s motion will 
not depend on the followers. In addition, the formation does not tolerate to the leader’s faults.

The networking system in formation control is another challenging issue highlighted by Chen 
and Wang [82] and Kiattisin in their reviewed papers. The communication delay in inter-robot 
information flow and communication loss problem will affect the performance of formation 
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approach refers to several desired behavior of the agents such as goal seeking, obstacles 
avoidance, collision avoidance, etc. The final robot decision to choose which behavior comes 
first is based on the average weight of the behavior. The advantage of this approach is it can 
be used to guide the multi-agent robots in the unknown or dynamic environment by using 
the local information that the robot has. However, the drawback is where it cannot guarantee 
to converge easily during the process.

Virtual structure is a formation control that considers the entire formation as a rigid body which 
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especially when the formation shape needs to be frequently reconfigured. If not, the possible 
applications are limited. Leader and followers approach is another formation control for multi-
agent robots proposed by previous researchers [85, 86, 89]. In this strategy, some robots are 
considered as leaders while others will act as followers. The leaders will lead the followers to 
the target path while the followers will position and orientate by themselves while following the 
leaders. The main advantage of this approach is it can reduce the tracking error while the dis-
advantages are it will lead to a poor disturbance rejection property and the leader’s motion will 
not depend on the followers. In addition, the formation does not tolerate to the leader’s faults.

The networking system in formation control is another challenging issue highlighted by Chen 
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control and can even make the formation control system unstable. Therefore, a suitable com-
munication protocol and network control system need to be implemented correctly into the 
robot system. In order to get more realistic formation control design for multi-agent robots 
coordination, the formation control needs to come together with an effective communication 
system design (either for local or global information via sensing or wireless network). Lastly, 
an alternative of implementing a hybrid control framework for multi-agent robots formation 
control has also become an issue to let the robots work in real world applications.

3.5. Task allocation

The problem of task allocation among multi-agent robots has attracted researcher’s attention. 
Once the computer assigns the task, the task needs to be sent to the robots for execution. 
Thus, a suitable approach needs to be applied in the system to ensure that the task is suc-
cessfully allocated to the robots. Sarker et al. [90] used attractive field model to self-organize 
their robots while allocating its task. On the other side, Tolmidis and Petrou [91] proposed 
multi-objective optimization for their dynamic task allocation. The experiment results show 
a scalability, a generic solution and a better utilization of time as well as energy. Nagarajan 
and Thondiyath [92] also provided their own algorithm for task allocation which had proven 
better performances and better in minimizing the turnaround time, makespan and also cost.

3.6. Intelligences

The intelligence of multiagent robots to work cooperatively or coordinate its task is based on 
its controller. The design of the controller will determine agent’s performances. The evolution 
of MARS shows that the level of intelligence is increasing in proportional with the technology. 
Since the beginning of artificial intelligences has been introduced, many researchers have 
started to design their controller by using this artificial intelligences approaches.

There are several approaches of artificial intelligences have been used by researchers in their 
multi agent controller development [11, 20, 22, 27, 31, 32, 53]. Fuzzy logic and neural network 
are approach have been used in multi agent robot control design which already proven its 
robustness and effectiveness [93]. Al-Jarrah et al. [31] used 2 fuzzy levels, which consisted of 
a fuzzy probabilistic control and adaptive neuro-fuzzy inference system, ANFIS. Vatankhah 
et al. [22] proposed a neuro-fuzzy structure with critic based learning structure and [11] 
proposed iterative learning control (ILC) scheme for their control system. Another research-
ers [20, 27, 32, 53, 94–97] were also using fuzzy control as one of the artificial intelligence 
approaches to develop their robots controller.

Other than artificial intelligence, there is another kind of intelligence proposed by previous 
researchers that had proven their multi-agent robots work effectively and successfully. Instead 
of focusing to a basic learning method, Tosic and Vilalta [98] proposed a unified framework 
for their multi-agent coordination by adopting the reinforcement learning, co-learning, and 
meta-learning in their system. Leader and follower concept also has been applied by few 
researchers to coordinate and plan their agent path [11, 22, 31]. Broadcast concept and frame-
work for multi agent coordination can also be considered as an alternative towards intelli-
gence [33, 61, 73, 99]. Azuma et al. [33, 73] developed the controller and broadcasted the signal 
from “agent to agent” or “agent to all agents”. They also proposed integral-type broadcast 

Applications of Mobile Robots12

controllers and provide a sufficient condition for the controller gain to stabilize the broadcast 
for their group of Markov Chains [99]. Seyboth et al. [61] proposed the novel control strategy 
known as event-based broadcast control. They proved that their controller is more effective 
as compared to the time-based broadcast control. Finally, by having the intelligence, multi 
agent robot control is ready to be apply for an advance and complex multi-agents applications 
[3, 36, 49, 59]. As an example, Jolly et al. [53] and Candea et al. [3] have proposed their own 
controller to let the soccer robots coordinate and play successfully.

3.7. Optimization

Optimization is one of the important issue in designing a control system for multi agent 
robots. The objective is to find an optimal strategy under a given cost function either to find 
optimum trajectory/path, time, speed an as well as energy consumption. For example, by 
minimizing the path, less time is taken by the agent to move to its target point and the energy 
consumption will become less also.

Kumar and Kothare [100] have discovered the optimal strategy and optimal control archi-
tectures for their swarm agents. Their aim was to stabilize a swarm of stochastic agents by 
proposing the novel broadcast stochastic receding horizon controller. In order to search for an 
optimal path trajectory by minimizing the trajectory, time and energy consumption, Oleiwi 
et al. [24] had proposed the optimal motion planner. They combined the modified genetic 
algorithm with A* algorithm to find a path from the start point to the goal point, fuzzy to 
avoid obstacles and cubic spline interpolation curve to reduce energy consumption.

However, Chen and Sun [21] had a different approach, where they had proposed a new opti-
mal control protocol to find an optimal control for their multi-agent consensus. Nagarajan 
and Thondiyath [92] proposed an algorithm that can minimize the turnaround time and cost 
during the agent’s allocation task. The result showed that the algorithm performed better than 
the existing algorithm.

3.8. Communications

Issues on communications either implicit or explicit type of communication has been tackled 
since it will give effect to the multi agent controller performances. There are researchers who 
have focused on implicit communication where their robots interact based on sensor signal 
embedded to the robots [4, 30, 31]. However, there are also some drawbacks of implicit com-
munication such as (1) limitations of the hardware and the sensors i.e. the hardware cannot 
support too many sensors, and the sensors can only work at certain conditions and distances, 
and (2) time delay if too many agents need to pass the information from one to another. 
Therefore, explicit communication come in to place where the information (messages) can be 
sent via broadcast (one to all) [5, 6, 33] or one to one agent [3, 5, 34].

However, other challenging parts of explicit communication are (1) to design a control frame-
work to send the messages efficiently [33], (2) to design a suitable protocol that can guarantee 
all agents communicate effectively in the environment [3, 5, 34, 35], (3) to solve consensus 
problem which occurs during the interaction process either for homogeneous or heteroge-
neous agents [3], and (4) to design optimal controller that can optimize the speed and energy 
of the robots [33]. With the aim of providing an effective communication system for the robot 
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control and can even make the formation control system unstable. Therefore, a suitable com-
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robot system. In order to get more realistic formation control design for multi-agent robots 
coordination, the formation control needs to come together with an effective communication 
system design (either for local or global information via sensing or wireless network). Lastly, 
an alternative of implementing a hybrid control framework for multi-agent robots formation 
control has also become an issue to let the robots work in real world applications.

3.5. Task allocation

The problem of task allocation among multi-agent robots has attracted researcher’s attention. 
Once the computer assigns the task, the task needs to be sent to the robots for execution. 
Thus, a suitable approach needs to be applied in the system to ensure that the task is suc-
cessfully allocated to the robots. Sarker et al. [90] used attractive field model to self-organize 
their robots while allocating its task. On the other side, Tolmidis and Petrou [91] proposed 
multi-objective optimization for their dynamic task allocation. The experiment results show 
a scalability, a generic solution and a better utilization of time as well as energy. Nagarajan 
and Thondiyath [92] also provided their own algorithm for task allocation which had proven 
better performances and better in minimizing the turnaround time, makespan and also cost.

3.6. Intelligences

The intelligence of multiagent robots to work cooperatively or coordinate its task is based on 
its controller. The design of the controller will determine agent’s performances. The evolution 
of MARS shows that the level of intelligence is increasing in proportional with the technology. 
Since the beginning of artificial intelligences has been introduced, many researchers have 
started to design their controller by using this artificial intelligences approaches.

There are several approaches of artificial intelligences have been used by researchers in their 
multi agent controller development [11, 20, 22, 27, 31, 32, 53]. Fuzzy logic and neural network 
are approach have been used in multi agent robot control design which already proven its 
robustness and effectiveness [93]. Al-Jarrah et al. [31] used 2 fuzzy levels, which consisted of 
a fuzzy probabilistic control and adaptive neuro-fuzzy inference system, ANFIS. Vatankhah 
et al. [22] proposed a neuro-fuzzy structure with critic based learning structure and [11] 
proposed iterative learning control (ILC) scheme for their control system. Another research-
ers [20, 27, 32, 53, 94–97] were also using fuzzy control as one of the artificial intelligence 
approaches to develop their robots controller.

Other than artificial intelligence, there is another kind of intelligence proposed by previous 
researchers that had proven their multi-agent robots work effectively and successfully. Instead 
of focusing to a basic learning method, Tosic and Vilalta [98] proposed a unified framework 
for their multi-agent coordination by adopting the reinforcement learning, co-learning, and 
meta-learning in their system. Leader and follower concept also has been applied by few 
researchers to coordinate and plan their agent path [11, 22, 31]. Broadcast concept and frame-
work for multi agent coordination can also be considered as an alternative towards intelli-
gence [33, 61, 73, 99]. Azuma et al. [33, 73] developed the controller and broadcasted the signal 
from “agent to agent” or “agent to all agents”. They also proposed integral-type broadcast 
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controllers and provide a sufficient condition for the controller gain to stabilize the broadcast 
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as compared to the time-based broadcast control. Finally, by having the intelligence, multi 
agent robot control is ready to be apply for an advance and complex multi-agents applications 
[3, 36, 49, 59]. As an example, Jolly et al. [53] and Candea et al. [3] have proposed their own 
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3.7. Optimization

Optimization is one of the important issue in designing a control system for multi agent 
robots. The objective is to find an optimal strategy under a given cost function either to find 
optimum trajectory/path, time, speed an as well as energy consumption. For example, by 
minimizing the path, less time is taken by the agent to move to its target point and the energy 
consumption will become less also.

Kumar and Kothare [100] have discovered the optimal strategy and optimal control archi-
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proposing the novel broadcast stochastic receding horizon controller. In order to search for an 
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et al. [24] had proposed the optimal motion planner. They combined the modified genetic 
algorithm with A* algorithm to find a path from the start point to the goal point, fuzzy to 
avoid obstacles and cubic spline interpolation curve to reduce energy consumption.

However, Chen and Sun [21] had a different approach, where they had proposed a new opti-
mal control protocol to find an optimal control for their multi-agent consensus. Nagarajan 
and Thondiyath [92] proposed an algorithm that can minimize the turnaround time and cost 
during the agent’s allocation task. The result showed that the algorithm performed better than 
the existing algorithm.
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Issues on communications either implicit or explicit type of communication has been tackled 
since it will give effect to the multi agent controller performances. There are researchers who 
have focused on implicit communication where their robots interact based on sensor signal 
embedded to the robots [4, 30, 31]. However, there are also some drawbacks of implicit com-
munication such as (1) limitations of the hardware and the sensors i.e. the hardware cannot 
support too many sensors, and the sensors can only work at certain conditions and distances, 
and (2) time delay if too many agents need to pass the information from one to another. 
Therefore, explicit communication come in to place where the information (messages) can be 
sent via broadcast (one to all) [5, 6, 33] or one to one agent [3, 5, 34].

However, other challenging parts of explicit communication are (1) to design a control frame-
work to send the messages efficiently [33], (2) to design a suitable protocol that can guarantee 
all agents communicate effectively in the environment [3, 5, 34, 35], (3) to solve consensus 
problem which occurs during the interaction process either for homogeneous or heteroge-
neous agents [3], and (4) to design optimal controller that can optimize the speed and energy 
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coordination, researchers have tried to fix these problems by designing a suitable communica-
tion control that is relevant to the systems. There are also researchers who complement both 
communications implicitly and explicitly for their cooperative multi-agents research.

4. Conclusion

This paper has provided a review of cooperative multi-agent robots system (MARS). It shows 
that this research is leading to the creation of a robust cooperation and coordination of multi-
agent robots in various real applications. In order to produce high performance among agents, 
improvement in controller and communication part is the most crucial issues highlighted by 
researchers. Thus we strongly believe that this research has a potential to be expanded as the tech-
nology develops and the cooperative agents are foreseen to produce a big contribution towards 
the applications. Improvement on the controller design and communications either by adding 
intelligences or optimize certain cost function is in parallel with the technologies development 
which will then produce a multi agents which are mobile, scalable, flexible, global, dynamic 
and persistent connectivity. Regardingly, the following are other future challenges and recom-
mendations that could be explored by our future researchers in expanding the area of MARS.

4.1. Future challenges

There are many challenges for future cooperative multi-agent systems and, among them, the 
most crucial challenge lies in controller design, which should be robust and intelligent enough 
to support overall system. Besides that, communication among agents is also important since 
it will determine the success of the system. Therefore, there are several future challenges that 
should be taken into consideration:

1. The need of more powerful coordination among homogeneous and heterogeneous agents. 
This is especially for advance and complex multi-agent robots application such as soccer 
robots [3], swarm robots [36], UGV’s [4], UAV’s [4] or any other robots.

2. Since the physical identity and capability among heterogeneous agents are not identical, 
issues in coordinating the agents will become more challenging compared to homogene-
ous agents [2–5, 6, 9, 12]. Attention should be given more to these agents.

3. Adapting various artificial intelligence approaches in solving control and communication 
problems of MARS either consensus [13, 15, 69–71], containment [70, 71, 14, 49, 82–84], 
position [45, 58] or any other problems should be considered as long as there is an improve-
ment towards the robot performances.

4. Issues in reducing the energy consumption and time travel will produce an optimal con-
troller for the agents. Thus, an appropriate design of controller should be applied together 
with the suitable communication system that can support the MARS [3, 5].

5. By broadcasting the information to agents, the information can be sent directly to agents, 
to avoid losses and time delay during transmission of the information [33, 45, 47–48,  
51, 52]. Thus, this research should be expanded since the communication among agents 
can be improved from time to time.
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4.2. Recommendations

Some recommendations for cooperative MARS are as follows:

1. The reactive and deliberative control architectures have their own strengths and weak-
nesses. In the future, an effective way is to implement hybrid approach into MARS which 
consists of both reactive and deliberative control that leads to a more efficient system.

2. An effective interaction between multi-agent robots can be achieved by integrating the 
implicit and explicit communications especially when the number of agents is increasing.

3. A suitable communication protocol and network control system should be implemented 
into MARS to avoid time delay during transmission of information among agents.
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ment towards the robot performances.

4. Issues in reducing the energy consumption and time travel will produce an optimal con-
troller for the agents. Thus, an appropriate design of controller should be applied together 
with the suitable communication system that can support the MARS [3, 5].

5. By broadcasting the information to agents, the information can be sent directly to agents, 
to avoid losses and time delay during transmission of the information [33, 45, 47–48,  
51, 52]. Thus, this research should be expanded since the communication among agents 
can be improved from time to time.

Applications of Mobile Robots14

4.2. Recommendations

Some recommendations for cooperative MARS are as follows:

1. The reactive and deliberative control architectures have their own strengths and weak-
nesses. In the future, an effective way is to implement hybrid approach into MARS which 
consists of both reactive and deliberative control that leads to a more efficient system.

2. An effective interaction between multi-agent robots can be achieved by integrating the 
implicit and explicit communications especially when the number of agents is increasing.

3. A suitable communication protocol and network control system should be implemented 
into MARS to avoid time delay during transmission of information among agents.
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Abstract

The design of motion controllers for wheeled mobile robots is often based only on the
robot’s kinematics. However, to reduce tracking error it is important to also consider the
robot dynamics, especially when high-speed movements and/or heavy load transporta-
tion are required. Commercial mobile robots usually have internal controllers that accept
velocity commands, but the control signals generated by most dynamic controllers in the
literature are torques or voltages. In this chapter, we present a velocity-based dynamic
model for differential-drive mobile robots that also includes the dynamics of the robot
actuators. Such model can be used to design controllers that generate velocity commands,
while compensating for the robot dynamics. We present an explanation on how to obtain
the parameters of the dynamic model and show that motion controllers designed for the
robot’s kinematics can be easily integrated with the velocity-based dynamic compensation
controller. We conclude the chapter with experimental results of a trajectory tracking
controller that show a reduction of up to 50% in tracking error index IAE due to the
application of the dynamic compensation controller.

Keywords: velocity-based dynamic model, dynamic modeling, dynamic compensation,
motion control, tracking control

1. Introduction

A common configuration for mobile robots is the differential drive, which has two indepen-
dently driven parallel wheels and one (or more) unpowered wheel to balance the structure [1].
For several years differential-drive mobile robots (DDMR) have been widely used in many
applications because of their simple configuration and good mobility. Some applications of
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DDMR are surveillance [2], floor cleaning [3], industrial load transportation [4], autonomous
wheelchairs [5], and others.

In the literature, most of the motion controllers for DDMR are based only on its kinematics.
The main reasons for that are: (a) the kinematic model is simpler than the dynamic model,
therefore the resulting controllers are less complex and simpler to tune; (b) the accuracy of the
dynamic model depends on several parameters that might change or are difficult to measure,
like the robot’s mass and moment of inertia; and (c) dynamic controllers usually generate
torque or voltage commands, while mobile robots frequently have internal velocity controllers
that take velocity as input [6]. However, the robot’s low-level velocity control loops do not
guarantee perfect velocity tracking, especially when high-speed movements and/or heavy load
transportation are required. In such cases, to reduce tracking error, it becomes essential to
consider the robot dynamics as well, as shown in [7].

A possible solution to overcome the problem described above is to design a controller that
compensates for the robot’s dynamics. Commercial mobile robots usually have internal con-
trollers that accept velocity commands, like the Pioneer 3 from Adept Mobile Robots, the
Khepera from K-Team Corporation, and the robuLAB-10 from Robosoft Inc. However, the
control signals generated by most dynamic controllers in the literature are torques or voltages,
as in [8–14]. Because of that, some researchers have proposed dynamic controllers that gener-
ate linear and angular velocities as commands [15, 16]. In some works, the dynamic model is
divided in to two parts, allowing the design of independent controllers for the robot kinemat-
ics and dynamics [17–20]. Finally, to reduce performance degradation in applications in which
the robot dynamic parameters may vary (such as load transportation) or when the knowledge
of the dynamic parameters is imprecise, adaptive controllers can also be considered [7, 21].

The above-mentioned works applied a dynamic model that has linear and angular velocities as
inputs, which illustrates the interest on such kind of dynamic model. In such context, this
chapter explains the velocity-based dynamic model and its mathematical properties, which are
useful for the design of controllers that compensate for the robot dynamics. It also illustrates
how to design a trajectory tracking motion controller based on the robot’s kinematics, and how
to integrate it with a velocity-based dynamic compensation controller.

2. Dynamic model

The classical equation to represent the dynamics of mobile robots can be obtained via Lagrang-
ian formulation, resulting in [22].

M qð Þ€q þVm q; _qð Þ _q þ Fm _qð Þ þGm qð Þ þ τd¼B qð Þτ�AT qð Þλ, (1)

where q ¼ q1 q2 … qn
� �T is the vector of generalized coordinates of the system with n

degrees of freedom, M qð Þ∈Rn�n is the matrix of inertia, Vm q; _qð Þ∈Rn�n is the matrix of
Coriolis and centrifugal forces, Fm _qð Þ∈Rn�1 is the vector that represents viscous friction,
Gm qð Þ∈Rn�1 is the vector of gravitational torques, τd ∈Rn�1 is the disturbance vector,
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τ∈Rr�1 is the vector of input torques, where r is the number of inputs, B qð Þ∈Rn�r is the input
transformation matrix, λ∈Rm�1 is the vector that represents restriction forces, and A qð Þ∈Rm�n

is the matrix associated to such restrictions. Two well known properties of such model are [9, 22]:

1. M qð Þ is a symmetric and positive definite matrix, that is, M qð Þ ¼M qð ÞT > 0;

2. _M � 2Vm
� �

is antisymmetric.

The above properties are widely used on the development and stability analysis of controllers
for mobile robots, as shown in [8, 9, 22, 23]. But, such controllers generate torque commands,
not velocities, as usually accepted by commercial robots. The conversion from torque to
velocity commands requires knowledge of the actuation system of the robot (model of its
motors and its speed controllers). On the other hand, a controller designed from a velocity-
based dynamic model generates linear and angular velocities that can be directly applied as
commands for mobile robots.

In such a context, now the dynamic model for the DDMR proposed in [16] is reviewed. For
convenience, we first present its equations again. Then, the dynamic model is written in such a
way that it becomes similar to the classical dynamic equation based on torques. Figure 1 depicts
a DDMR with the variables of interest. There, u and ω are, respectively, the linear and angular
velocities, G is the center of mass, h is the point of interest (whose position should be controlled)

Figure 1. The differential drive mobile robot (DDMR). u and ω are, respectively, the linear and angular velocities, G is the
center of mass, h is the point of interest with coordinates x and y in the XY plane, ψ is the robot orientation, a is the
distance from the point of interest to the point in the middle of the virtual axle that links the traction wheels (point B), b is
the distance between points G and B, and d is the distance between the points of contact of the traction wheels to the floor.
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DDMR are surveillance [2], floor cleaning [3], industrial load transportation [4], autonomous
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The main reasons for that are: (a) the kinematic model is simpler than the dynamic model,
therefore the resulting controllers are less complex and simpler to tune; (b) the accuracy of the
dynamic model depends on several parameters that might change or are difficult to measure,
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with coordinates x and y in the XY plane, ψ is the robot orientation, a is the distance from
the point of interest to the point in the middle of the virtual axle that links the traction wheels
(point B), b is the distance between points G and B, and d is the distance between the points of
contact of the traction wheels to the floor. The complete mathematical model is written as [16].
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where θ ¼ θ1;…;θ6½ �T is the vector of identified parameters and δ ¼ δx; δy; 0; δu; δω
� �T is the

vector of parametric uncertainties associated to the mobile robot. The equations describing the
parameters θ are presented in Section 3. The model is split into kinematic and dynamic parts.
The kinematic model is
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which is a modified approach to describe the robot kinematics. The classical unicycle model is
obtained when a ¼ 0 in (3), but here we consider the case in which a 6¼ 0, which means that the
x; yð Þ position described by the model is not in the center of the line between the traction
wheels, but at a distance a from it (see point h in Figure 1). We use this model because it is
useful on the design of the trajectory tracking controller, as shown in Section 4.

The part of the equation that represents the dynamics is given by

_u
_ω

� �
¼

θ3

θ1
ω2 � θ4

θ1
u

�θ5

θ2
uω� θ6

θ2
ω

2
664

3
775þ

1
θ1

0

0
1
θ2

2
664

3
775

ur
ωr

� �
þ δu

δω

� �
: (4)

As shown in [21], by rearranging its terms the Eq. (4) can be written as
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or, in a compact form, as

ΔþH0 _v þ c vð Þv¼vr, (6)

where vr ¼ ur ωr½ �T is the vector of reference velocities, v ¼ u ω½ �T is the vector containing
the actual robot velocities, and the matrices H0 and c vð Þ, and the vector Δ are given by
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Let us rewrite c vð Þ by adding and subtracting the term iθ3u to its fourth element (where
i ¼ 1rad2=s), such that

c vð Þ ¼ θ4 �θ3ω

θ5ω θ6 þ iθ3 � iθ3ð Þu

� �
, (8)
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The role of the term i ¼ 1rad2=s is to make the units consistent to allow us to split c vð Þ into two

matrices, while keeping the numerical values unchanged. Now, let us define v0 ¼ iu ω½ �T as
the vector of modified velocities, so that

v0 ¼ i 0
0 1

� �
u
ω

� �
: (10)

The terms in the vector of modified velocities are numerically equal to the terms in the vector
of actual velocities v, only its dimensions are different. By rewriting the model equation, the
following matrices are defined:

H ¼ θ1=i 0
0 θ2
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Finally, the dynamic model of a DDMR can be represented by
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(13)

Notice that c vð Þv ¼ C v0ð Þv0 þ F v0ð Þv0 and H0 _v¼H _v
0
, that is, the dimensions of the resulting

vector vr are kept unchanged.

The model represented by Eq. (13) is mathematically equivalent to the one proposed in [16]
and used in [7], where it was validated via simulation and experiments. Nevertheless, the
model presented here is written in such a way that some mathematical properties arise. Such
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properties, which are presented and discussed in the next session, can be applied on the design
and stability analysis of dynamic controllers.

3. Dynamic parameters and model properties

To calculate the dynamic parameters of the vector θ, one has to know physical parameters of
the robot, like its mass, its moment of inertia, friction coefficient of its motors, etc. The
equations describing each one of the parameters θi are

θ1 ¼ Ra

ka
mr2 þ 2Ie
� �þ 2rkDT

� �
1

2rkPTð Þ s½ �,

θ2 ¼ Ra

ka
Ied2 þ 2r2 Iz þmb2

� �� �þ 2rdkDR

� �
1

2rdkPRð Þ s½ �,

θ3 ¼ Ra

ka

mbr
2kPT

sm=rad2
� �

,

θ4 ¼ Ra

ka

kakb
Ra
þ Be

� �
1

rkPT
þ 1,

θ5 ¼ Ra

ka

mbr
dkPR

s=m½ �, and

θ6 ¼ Ra

ka

kakb
Ra
þ Be

� �
d

2rkPR
þ 1,

(14)

where m is the mass of the robot, Iz is its moment of inertia at G, Ra, kb and ka are the electrical
resistance, the electromotive constant, and the constant of torque of its motors, respectively, Be

is the coefficient of friction, Ie is the moment of inertia of each group rotor-reduction gear-
wheel, r is the radius of each wheel, and b and d are distances defined in Figure 1. It is assumed
that the internal motor controllers are of type PD (proportional-derivative) with proportional
gains kPT > 0 and kPR > 0, and derivative gains kDT ≥ 0 and kDR ≥ 0. It is also assumed that the
inductances of the motors are negligible, and both driving motors are identical.

Obtaining accurate values of all physical parameters of a robot might be difficult, or even not
possible. Therefore, it is useful to discuss an identification procedure to directly obtain the
values of the dynamic parameters θ. Such procedure is explained in Section 3.2.

It is interesting to point out that the dynamic model adopted here considers that the robot’s
center of mass G can be located anywhere along the line that crosses the center of the structure,
as illustrated in Figure 1. This means that the formulation of the proposed dynamic model is
adequate for robots that have a symmetrical weight distribution between their left and right
sides. Because most differential drive robots have an approximately symmetrical weight dis-
tribution (with each motor and wheel on either left or right sides), such assumption does not
introduce significant modeling errors on most cases. It should also be noticed that θi > 0 for
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i ¼ 1; 2; 4; 6. The parameters θ3 and θ5 can be negative and will be null if, and only if, the center
of mass G is exactly in the center of the virtual axle, that is, b ¼ 0. Finally, in [21], it was shown
that the model parameters θ1 to θ6 cannot be written as a linear combination of each other, that
is, they are independent.

3.1. Model properties

The mathematical properties of the dynamic model (12) are:

1. The matrix H is symmetric and positive definite, or H ¼ HT > 0;

2. The inverse of H exists and is also positive definite, or ∃ H�1 > 0;

3. Thematrix F v0ð Þ is symmetric and positive definite, or F v0ð Þ ¼ FT > 0, ifθ6 > � θ5=i� θ3ð Þiu;
4. The matrix H is constant if there is no change on the physical parameters of the robot;

5. The matrix C v0ð Þ is skew symmetric;

6. The matrix F v0ð Þ can be considered constant if θ6 ≫∣ θ5=i� θ3ð Þiu∣ and there is no change
on the physical parameters of the robot;

7. The mapping vr ! v0 is strictly output passive if θ6 > � θ5=i� θ3ð Þiu and Δ ¼ 0.

To analyze the above mathematical properties, first recall that θi > 0 for i ¼ 1; 2; 4; 6. Properties
1 and 2 can be confirmed by observing thatH is a diagonal square matrix formed by θ1 and θ2.
F v0ð Þ is also a diagonal square matrix formed by θ4 and θ6 þ θ5=i� θ3ð Þiu. Property 3 holds if
θ6 > � θ5=i� θ3ð Þiu. Property 4 holds if there is no change on the physical parameters of the
robot (i.e., if there is no change on the robot’s mass, moment of inertia, etc.). C v0ð Þ is a square
matrix formed by θ3ω and �θ3ω, whose transpose is also its negative, which proves property
5. Property 6 holds if there is no change on the physical parameters of the robot and
θ6 ≫∣ θ5=i� θ3ð Þiu∣. Finally, the proof for property 7 is given in [21].

3.2. Identified parameters

The values of the dynamic parameters θ can be estimated via an identification procedure,
described as follows. Let a system be represented by the regression model

Y¼Wθ, (15)

where θ is the vector of parameters and Y is the system output. The least squares estimate of θ
is given by

bθ ¼ WTW
� ��1

WTY, (16)

where bθ is the vector with the estimated values of θ and W is the regression matrix. By
rearranging (4) and ignoring uncertainty, the dynamic model can be represented by
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The values of the dynamic parameters θ can be estimated via an identification procedure,
described as follows. Let a system be represented by the regression model

Y¼Wθ, (15)

where θ is the vector of parameters and Y is the system output. The least squares estimate of θ
is given by

bθ ¼ WTW
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WTY, (16)
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ur
ωr

� �
¼ _u 0 �ω2 u 0 0

0 _ω 0 0 uω ω

� �
θ1 θ2 θ3 θ4 θ5 θ6½ �T, (17)

where

Y ¼ ur
ωr

� �
,W ¼ _u 0 �ω2 u 0 0

0 _ω 0 0 uω ω

� �
,θ ¼ θ1 θ2 θ3 θ4 θ5 θ6½ �T : (18)

In order to obtain an estimate for the values of θ, each robot needs to be excited with speed
reference signals ur;ωrð Þ, while the actual values of its velocities u;ωð Þ and accelerations _u; _ωð Þ
are measured and stored. In our case, the excitation signals consisted of a sum of six sine waves
with different frequencies and amplitudes. All data were stored and the regression model was
assembled so that the vector Y and the matrix W had all values obtained in each sampling
instant. Subsequently, the value of θ for each robot was calculated by least squares method.

In order to verify the assumptions that θ6 ≫∣ θ5=i� θ3ð Þiu∣ and θ6 > � θ5=i� θ3ð Þiu, we have
analyzed the dynamic parameters of five differential drive robots obtained via identification
procedure. The analysis was done considering the parameters of the following robots: a
Pioneer 3-DX with no extra equipment (P3), a Pioneer 3-DX with a LASER scanner and
omnidirectional camera (P3laser), a robotic wheelchair while carrying a 55 kg person (RW55), a
robotic wheelchair while carrying a 125kg person (RW125), and a Khepera III (KIII). The Khepera
III robot weighs 690 g, has a diameter of 13 cm and is 7 cm high. Its dynamic parameters were
identified by Laut and were originally presented in [24]. By its turn, the Pioneer robots weigh
about 9 kg, are 44 cm long, 38 cm wide, and 22 cm tall (without the LASER scanner). The LASER
scanner weighs about 50% of the original robot weight, which produces an important change in
the mass and moment of inertia of the structure. Finally, the robotic wheelchair presents an even
greater difference in dynamics because of its own weight (about 70 kg) and the weight of the
person that it is carrying. The dynamic parameters for the above-mentioned robots are presented
in Table 1.

The value of u is limited to 0:5 m=s for the Khepera III robots, to 1:2 m=s for the Pioneer robots,
and to 1:5 m=s for the robotic wheelchair. Therefore, using the values presented in Table 1 one

P3 P3laser RW55 RW125 KIII

θ1 s½ � 0.5338 0.2604 0.3759 0.4263 0.0228

θ2 s½ � 0.2168 0.2509 0.0188 0.0289 0.0568

θ3 sm=rad2
� � �0.0134 �0.0005 0.0128 0.0058 �0.0001

θ4 0.9560 0.9965 1.0027 0.9883 1.0030

θ5 s=m½ � �0.0843 0.0026 �0.0015 0.0134 0.0732

θ6 1.0590 1.0768 0.9808 0.9931 0.9981

Table 1. Identified dynamic parameters of a Pioneer 3-DX with no extra equipment (P3), a Pioneer 3-DX with a LASER
scanner (P3laser), a robotic wheelchair while carrying a 55 kg person (RW55), a robotic wheelchair while carrying a 125 kg
person (RW125), and a Khepera III (KIII).

Applications of Mobile Robots30

can verify that the conditions of θ6 > � θ5=i� θ3ð Þiu and θ6 ≫∣ θ5=i� θ3ð Þiu∣ are valid for all
sets of identified parameters. Therefore, the dynamic model of the above-mentioned robots can
be represented as in (12), with properties 1–7 valid under the considered conditions.

4. Controller design

To illustrate the usefulness of the modified model and its properties, in this section we show
the design of a trajectory tracking controller and a dynamic compensation controller. The
controller design is split in two parts, as in [7]. The first part is based on the inverse kinematics
and the second one compensates for the robot dynamics. The use of the dynamic model
properties is shown on the second part.

The control structure is shown in Figure 2, where blocks K, D, and R represent the kinematic
controller, the dynamic compensation controller, and the robot, respectively. Figure 2 shows

that the kinematic controller receives the desired values of position hd ¼ xd yd
� �T and velocity

_hd from the trajectory planner (which is not considered in this work). Then, based on those

values and on the actual robot position h ¼ x y½ �T and orientation ψ, the kinematic controller

calculates the desired robot velocities vd ¼ ud ωd½ �T . The desired velocities vd and the actual

robot velocities v ¼ u ω½ �T are fed into the dynamic controller. Such controller uses those
values and the estimates of the robot parameters θ to generate the velocity commands

vr ¼ ur ωr½ �T that are sent as references to the robot internal controller.

4.1. Kinematic controller

The same kinematic controller presented in [7, 21] is shown here. It is a trajectory tracking
controller based on the inverse kinematics of the robot. If only the position of the point of

interest h ¼ x y½ �T is considered, the robot’s inverse kinematics can be written as

u
ω

� �
¼

cosψ sinψ

� 1
a
sinψ

1
a
cosψ

2
4

3
5 _x

_y

� �
: (19)

Figure 2. Structure of the control system. The kinematic controller K receives the desired values of position hd and
velocity _hd, the actual robot position h and its orientation ψ, and calculates the desired robot velocities vd. Those values
and the actual robot velocities v are fed into the dynamic compensation controller D, that generates the velocity
commands vr that are sent as references to the robot R.
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reference signals ur;ωrð Þ, while the actual values of its velocities u;ωð Þ and accelerations _u; _ωð Þ
are measured and stored. In our case, the excitation signals consisted of a sum of six sine waves
with different frequencies and amplitudes. All data were stored and the regression model was
assembled so that the vector Y and the matrix W had all values obtained in each sampling
instant. Subsequently, the value of θ for each robot was calculated by least squares method.
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analyzed the dynamic parameters of five differential drive robots obtained via identification
procedure. The analysis was done considering the parameters of the following robots: a
Pioneer 3-DX with no extra equipment (P3), a Pioneer 3-DX with a LASER scanner and
omnidirectional camera (P3laser), a robotic wheelchair while carrying a 55 kg person (RW55), a
robotic wheelchair while carrying a 125kg person (RW125), and a Khepera III (KIII). The Khepera
III robot weighs 690 g, has a diameter of 13 cm and is 7 cm high. Its dynamic parameters were
identified by Laut and were originally presented in [24]. By its turn, the Pioneer robots weigh
about 9 kg, are 44 cm long, 38 cm wide, and 22 cm tall (without the LASER scanner). The LASER
scanner weighs about 50% of the original robot weight, which produces an important change in
the mass and moment of inertia of the structure. Finally, the robotic wheelchair presents an even
greater difference in dynamics because of its own weight (about 70 kg) and the weight of the
person that it is carrying. The dynamic parameters for the above-mentioned robots are presented
in Table 1.

The value of u is limited to 0:5 m=s for the Khepera III robots, to 1:2 m=s for the Pioneer robots,
and to 1:5 m=s for the robotic wheelchair. Therefore, using the values presented in Table 1 one

P3 P3laser RW55 RW125 KIII

θ1 s½ � 0.5338 0.2604 0.3759 0.4263 0.0228

θ2 s½ � 0.2168 0.2509 0.0188 0.0289 0.0568

θ3 sm=rad2
� � �0.0134 �0.0005 0.0128 0.0058 �0.0001

θ4 0.9560 0.9965 1.0027 0.9883 1.0030

θ5 s=m½ � �0.0843 0.0026 �0.0015 0.0134 0.0732

θ6 1.0590 1.0768 0.9808 0.9931 0.9981

Table 1. Identified dynamic parameters of a Pioneer 3-DX with no extra equipment (P3), a Pioneer 3-DX with a LASER
scanner (P3laser), a robotic wheelchair while carrying a 55 kg person (RW55), a robotic wheelchair while carrying a 125 kg
person (RW125), and a Khepera III (KIII).
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can verify that the conditions of θ6 > � θ5=i� θ3ð Þiu and θ6 ≫∣ θ5=i� θ3ð Þiu∣ are valid for all
sets of identified parameters. Therefore, the dynamic model of the above-mentioned robots can
be represented as in (12), with properties 1–7 valid under the considered conditions.

4. Controller design

To illustrate the usefulness of the modified model and its properties, in this section we show
the design of a trajectory tracking controller and a dynamic compensation controller. The
controller design is split in two parts, as in [7]. The first part is based on the inverse kinematics
and the second one compensates for the robot dynamics. The use of the dynamic model
properties is shown on the second part.

The control structure is shown in Figure 2, where blocks K, D, and R represent the kinematic
controller, the dynamic compensation controller, and the robot, respectively. Figure 2 shows

that the kinematic controller receives the desired values of position hd ¼ xd yd
� �T and velocity

_hd from the trajectory planner (which is not considered in this work). Then, based on those

values and on the actual robot position h ¼ x y½ �T and orientation ψ, the kinematic controller

calculates the desired robot velocities vd ¼ ud ωd½ �T . The desired velocities vd and the actual

robot velocities v ¼ u ω½ �T are fed into the dynamic controller. Such controller uses those
values and the estimates of the robot parameters θ to generate the velocity commands

vr ¼ ur ωr½ �T that are sent as references to the robot internal controller.

4.1. Kinematic controller

The same kinematic controller presented in [7, 21] is shown here. It is a trajectory tracking
controller based on the inverse kinematics of the robot. If only the position of the point of

interest h ¼ x y½ �T is considered, the robot’s inverse kinematics can be written as

u
ω

� �
¼

cosψ sinψ

� 1
a
sinψ

1
a
cosψ

2
4

3
5 _x

_y

� �
: (19)

Figure 2. Structure of the control system. The kinematic controller K receives the desired values of position hd and
velocity _hd, the actual robot position h and its orientation ψ, and calculates the desired robot velocities vd. Those values
and the actual robot velocities v are fed into the dynamic compensation controller D, that generates the velocity
commands vr that are sent as references to the robot R.
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The inverse kinematics described by Eq. (19) is valid only for a 6¼ 0. This is the reason why we
prefer to adopt this model instead of the classical unicycle model, as discussed earlier. Consid-
ering (19), the adopted control law is

ud
ωd

� �
¼

cosψ sinψ

� 1
a
sinψ

1
a
cosψ

2
4

3
5

_xd þ lx tanh
kx
lx
~x

� �

_yd þ ly tanh
ky
ly
~y

� �

2
6664

3
7775, (20)

for which vd ¼ ud ωd½ �T is the vector of desired velocities given by the kinematic controller;

h ¼ x y½ �T and hd ¼ xd yd
� �T are the vectors of actual and desired coordinates of the point of

interest h, respectively; ~h ¼ ~x ~y½ �T is the vector of position errors given by hd � h; kx > 0 and
ky > 0 are the controller gains; lx, ly ∈R are saturation constants; and a > 0. The tanh terms are
included to limit the values of the desired velocities vd to avoid saturation of the robot

actuators in case the position errors ~h are too big, considering _hd is appropriately bounded.

It is important to point out that the orientation of a DDMR is always tangent to the path being
followed. Moreover, the desired trajectory defines the desired linear speed ud, which means
that the robot will be moving either forward or backwards. Therefore, it is not necessary for the
controller to explicitly control the robot’s orientation to make it successfully follow a trajectory
with a desired orientation.

For the stability analysis of the kinematic controller, it is supposed a perfect velocity tracking,
which allows equating (19) and (20) under the assumption of u � ud and ω � ωd, which means
that the dynamic effects are, at this moment, ignored. Then, the closed-loop equation is
obtained in terms of the velocity errors, which is

_~x
_~y

" #
þ lx 0

0 ly

� � tanh
kx
lx
~x

� �

tanh
ky
ly
~y

� �

2
6664

3
7775 ¼

0
0

� �
: (21)

Now, the output error vector ~h (21) can be written as

_~h ¼ � lx tanh kx
lx
~x

� �
ly tanh

ky
ly
~y

� �h iT
, (22)

which has an unique equilibrium point at the origin. To conclude the stability analysis of such

equilibrium, V ¼ 1
2
~hT~h > 0 is considered as the Lyapunov’s candidate function. Its first time

derivative is

_V ¼ ~hT _~h ¼ �~xlx tanh kx
lx
~x

� �
� ~yly tanh

ky
ly
~y

� �
< 0, ∀~h: (23)

Regarding these results, one can immediately conclude that the system characterized so far has
a globally asymptotically stable equilibrium at the origin, which means that the position errors
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~x tð Þ ! 0 and ~y tð Þ ! 0 as t! ∞. This result will be revisited latter, after adding a dynamic
controller to the system in order to implement the whole control scheme.

Remark. Considering the case in which the reference is a fixed destination point, instead of a
trajectory, the robot reaches such a point and stops there. Assuming u � ud and ω � ωd,
Eq. (20) guarantees that ω ¼ 0 when ~x ¼ 0 and ~y ¼ 0, therefore ψ tð Þ ! ψconstant.

4.2. Dynamic compensation controller

Now, the use of the proposed dynamic model and its properties is illustrated via the design of
a dynamic compensation controller. It receives the desired velocities vd from the kinematic
controller and generates a pair of linear and angular velocity references vr for the robot servos,
as shown in Figure 2. First, let us define the vector of modified velocities v0d as

v0d ¼
u0d
ωd

� �
¼ i 0

0 1

� �
ud
ωd

� �
, (24)

and the vector of velocity errors is given by ~v0¼v0d � v0.

Regarding parametric uncertainties, the proposed dynamic compensation control law is

vr¼bH _v0d þ T ~v0ð Þ� �þ bCv0d þ bFv0d, (25)

where bH, bC, and bF are estimates of H, C, and F, respectively, T ~v 0ð Þ ¼

lu 0
0 lω

� � tanh
ku
lu
i~u

� �

tanh
kω
lω

~ω
� �

2
6664

3
7775, ku > 0 and kω > 0 are gain constants, lu ∈R and lω ∈R are satura-

tion constants, and ~ω ¼ ωd � ω and ~u ¼ ud � u are the current velocity errors. The term T ~v0ð Þ
provides a saturation in order to guarantee that the commands to be sent to the robot are
always below the corresponding physical limits, considering that v0d and _v0d are bounded to
appropriate values.

In this chapter, we consider that the dynamic parameters are exactly known, that is, bθ ¼ θ.

This means that bH ¼ H, bC ¼ C, and bF ¼ F. The analysis considering parametric error is
presented in [7, 21].

Using the Lyapunov candidate function V ¼ 1
2 ~v
0TH~v0 > 0, and considering that the dynamic

parameters are constant, one has

_V ¼ �~v 0THT ~v 0ð Þ � ~v 0TC~v0 � ~v0TF~v 0: (26)

Observing property 5, of antisymmetry of C, the derivative of the Lyapunov function can be
written as

_V ¼ �~v0THT ~v0ð Þ � ~v0TF~v0: (27)
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The inverse kinematics described by Eq. (19) is valid only for a 6¼ 0. This is the reason why we
prefer to adopt this model instead of the classical unicycle model, as discussed earlier. Consid-
ering (19), the adopted control law is
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for which vd ¼ ud ωd½ �T is the vector of desired velocities given by the kinematic controller;

h ¼ x y½ �T and hd ¼ xd yd
� �T are the vectors of actual and desired coordinates of the point of

interest h, respectively; ~h ¼ ~x ~y½ �T is the vector of position errors given by hd � h; kx > 0 and
ky > 0 are the controller gains; lx, ly ∈R are saturation constants; and a > 0. The tanh terms are
included to limit the values of the desired velocities vd to avoid saturation of the robot

actuators in case the position errors ~h are too big, considering _hd is appropriately bounded.

It is important to point out that the orientation of a DDMR is always tangent to the path being
followed. Moreover, the desired trajectory defines the desired linear speed ud, which means
that the robot will be moving either forward or backwards. Therefore, it is not necessary for the
controller to explicitly control the robot’s orientation to make it successfully follow a trajectory
with a desired orientation.

For the stability analysis of the kinematic controller, it is supposed a perfect velocity tracking,
which allows equating (19) and (20) under the assumption of u � ud and ω � ωd, which means
that the dynamic effects are, at this moment, ignored. Then, the closed-loop equation is
obtained in terms of the velocity errors, which is
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Now, the output error vector ~h (21) can be written as

_~h ¼ � lx tanh kx
lx
~x

� �
ly tanh

ky
ly
~y

� �h iT
, (22)

which has an unique equilibrium point at the origin. To conclude the stability analysis of such

equilibrium, V ¼ 1
2
~hT~h > 0 is considered as the Lyapunov’s candidate function. Its first time

derivative is

_V ¼ ~hT _~h ¼ �~xlx tanh kx
lx
~x

� �
� ~yly tanh

ky
ly
~y

� �
< 0, ∀~h: (23)

Regarding these results, one can immediately conclude that the system characterized so far has
a globally asymptotically stable equilibrium at the origin, which means that the position errors
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~x tð Þ ! 0 and ~y tð Þ ! 0 as t! ∞. This result will be revisited latter, after adding a dynamic
controller to the system in order to implement the whole control scheme.

Remark. Considering the case in which the reference is a fixed destination point, instead of a
trajectory, the robot reaches such a point and stops there. Assuming u � ud and ω � ωd,
Eq. (20) guarantees that ω ¼ 0 when ~x ¼ 0 and ~y ¼ 0, therefore ψ tð Þ ! ψconstant.

4.2. Dynamic compensation controller

Now, the use of the proposed dynamic model and its properties is illustrated via the design of
a dynamic compensation controller. It receives the desired velocities vd from the kinematic
controller and generates a pair of linear and angular velocity references vr for the robot servos,
as shown in Figure 2. First, let us define the vector of modified velocities v0d as

v0d ¼
u0d
ωd

� �
¼ i 0

0 1

� �
ud
ωd

� �
, (24)

and the vector of velocity errors is given by ~v0¼v0d � v0.

Regarding parametric uncertainties, the proposed dynamic compensation control law is

vr¼bH _v0d þ T ~v0ð Þ� �þ bCv0d þ bFv0d, (25)

where bH, bC, and bF are estimates of H, C, and F, respectively, T ~v 0ð Þ ¼

lu 0
0 lω

� � tanh
ku
lu
i~u

� �

tanh
kω
lω

~ω
� �

2
6664

3
7775, ku > 0 and kω > 0 are gain constants, lu ∈R and lω ∈R are satura-

tion constants, and ~ω ¼ ωd � ω and ~u ¼ ud � u are the current velocity errors. The term T ~v0ð Þ
provides a saturation in order to guarantee that the commands to be sent to the robot are
always below the corresponding physical limits, considering that v0d and _v0d are bounded to
appropriate values.

In this chapter, we consider that the dynamic parameters are exactly known, that is, bθ ¼ θ.

This means that bH ¼ H, bC ¼ C, and bF ¼ F. The analysis considering parametric error is
presented in [7, 21].

Using the Lyapunov candidate function V ¼ 1
2 ~v
0TH~v0 > 0, and considering that the dynamic

parameters are constant, one has

_V ¼ �~v 0THT ~v 0ð Þ � ~v 0TC~v0 � ~v0TF~v 0: (26)

Observing property 5, of antisymmetry of C, the derivative of the Lyapunov function can be
written as

_V ¼ �~v0THT ~v0ð Þ � ~v0TF~v0: (27)
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According to Property 1, H is symmetric and positive definite. The terms of T ~v0ð Þ have the
same sign of the terms of ~v0. Property 3 states that F is symmetric and positive definite if
θ6 > � θ5=I � θ3ð ÞIu, condition that was shown to hold for our robot. Therefore, one can
conclude that _V < 0, that is, ~v0 ∈ L∞ and ~v0 ! 0 with t! ∞, and ~v ∈L∞ and ~v ! 0 with t! ∞.

Regarding the kinematic controller, it has been shown [7] that a sufficient condition for the
asymptotic stability is

∥~h∥ >
∥A~v∥
min

kx; ky
� �

, (28)

where A ¼ cosψ �a sinψ
sinψ a cosψ

� �
: Because ~v tð Þ ! 0, the condition (28) is asymptotically verified

for any value of ~h. Consequently, the tracking control error ~h tð Þ ! 0, thus accomplishing the
control objective.

To sum up, by using a control structure as shown in Figure 2 with a dynamic compensation
controller given by Eq. (25), different motion controllers can be applied. In our example, the
trajectory tracking controller given by Eq. (20) was used. This is the system that we have
implemented and for which we present some experimental results in Section 5.

5. Experimental results

In this section, we present some experimental results using a Pioneer 3-DX, from Adept Mobile
Robots. In all experiments, the robot starts at position 0:0; 0:0ð Þm with orientation 0�, and
should follow an 8-shape trajectory also starting at 0:0; 0:0ð Þm. The trajectory to be followed

by the robot is represented by a sequence of desired positions hd and velocities _hd, both
varying in time. The reference path is illustrated in Figure 3.

We have implemented the control structure shown on Figure 2 using the control laws given by
Eqs. (20) and (25). In total, we have executed 10 experiments for each controller, from now on
referred to as KC (kinematics controller) and DC (dynamic compensation). In the case of KC,
the robot receives as commands the values vd calculated by the kinematics controller and there
is no dynamic compensation. On the other hand, in the case of DC, the dynamic compensation
controller is active and the robot receives as commands the values of vr calculated by the
dynamic compensation controller. We have repeated the experiments for four cases: KC with
load, KC without load, DC with load, and DC without load. The load consists of a weight of
24:8 kg placed on top of the robot, while the original weight of the robot is 10:4 kg.

The following parameters were used in all experiments: a ¼ 0:15 m, sample time of 0.1 s (this
is the sample time of the Pioneer 3-DX); controller gains kx ¼ 0:1, ky ¼ 0:1, ku ¼ 4, kw ¼ 4, and
saturation constants lx ¼ 0:1, ly ¼ 0:1, lu ¼ 1, lw ¼ 1. The robot used in the experiments is a
Pioneer 3-DX without LASER scanner, therefore the parameters used in the dynamic compen-
sation controller are the ones in column P3 from Table 1.

Applications of Mobile Robots34

Figure 4 illustrates the results of 2 experiments, both without load. Figure 4(a) shows the 8-
shape path followed by the robot without load when controlled by KC and DC. Robot path
was recovered through its odometry. One can notice that the path followed by the robot is
slightly different under KC or DC. The robot’s linear and angular velocities also change along
the path, as shown in Figure 4(b).

A better visualization of the tracking error is given by Figure 5, which shows the evolution of
the distance error during the experiments without load. The distance error is defined as the

Figure 3. 8-shape reference path to be followed by the robot. Initial reference position is 0:0; 0:0ð Þm and the direction of
motion is indicated in the figure. The robot starts at position 0:0; 0:0ð Þm with orientation 0�.

Figure 4. Experiments without load: (a) robot path; (b) linear and angular velocities. In all graphs, the black line
represents the results for the case in which the dynamic compensation (DC) is active, while the red line represents the
results for the kinematic controller (KC).
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According to Property 1, H is symmetric and positive definite. The terms of T ~v0ð Þ have the
same sign of the terms of ~v0. Property 3 states that F is symmetric and positive definite if
θ6 > � θ5=I � θ3ð ÞIu, condition that was shown to hold for our robot. Therefore, one can
conclude that _V < 0, that is, ~v0 ∈ L∞ and ~v0 ! 0 with t! ∞, and ~v ∈L∞ and ~v ! 0 with t! ∞.

Regarding the kinematic controller, it has been shown [7] that a sufficient condition for the
asymptotic stability is

∥~h∥ >
∥A~v∥
min

kx; ky
� �

, (28)

where A ¼ cosψ �a sinψ
sinψ a cosψ

� �
: Because ~v tð Þ ! 0, the condition (28) is asymptotically verified

for any value of ~h. Consequently, the tracking control error ~h tð Þ ! 0, thus accomplishing the
control objective.

To sum up, by using a control structure as shown in Figure 2 with a dynamic compensation
controller given by Eq. (25), different motion controllers can be applied. In our example, the
trajectory tracking controller given by Eq. (20) was used. This is the system that we have
implemented and for which we present some experimental results in Section 5.

5. Experimental results

In this section, we present some experimental results using a Pioneer 3-DX, from Adept Mobile
Robots. In all experiments, the robot starts at position 0:0; 0:0ð Þm with orientation 0�, and
should follow an 8-shape trajectory also starting at 0:0; 0:0ð Þm. The trajectory to be followed

by the robot is represented by a sequence of desired positions hd and velocities _hd, both
varying in time. The reference path is illustrated in Figure 3.

We have implemented the control structure shown on Figure 2 using the control laws given by
Eqs. (20) and (25). In total, we have executed 10 experiments for each controller, from now on
referred to as KC (kinematics controller) and DC (dynamic compensation). In the case of KC,
the robot receives as commands the values vd calculated by the kinematics controller and there
is no dynamic compensation. On the other hand, in the case of DC, the dynamic compensation
controller is active and the robot receives as commands the values of vr calculated by the
dynamic compensation controller. We have repeated the experiments for four cases: KC with
load, KC without load, DC with load, and DC without load. The load consists of a weight of
24:8 kg placed on top of the robot, while the original weight of the robot is 10:4 kg.

The following parameters were used in all experiments: a ¼ 0:15 m, sample time of 0.1 s (this
is the sample time of the Pioneer 3-DX); controller gains kx ¼ 0:1, ky ¼ 0:1, ku ¼ 4, kw ¼ 4, and
saturation constants lx ¼ 0:1, ly ¼ 0:1, lu ¼ 1, lw ¼ 1. The robot used in the experiments is a
Pioneer 3-DX without LASER scanner, therefore the parameters used in the dynamic compen-
sation controller are the ones in column P3 from Table 1.
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Figure 4 illustrates the results of 2 experiments, both without load. Figure 4(a) shows the 8-
shape path followed by the robot without load when controlled by KC and DC. Robot path
was recovered through its odometry. One can notice that the path followed by the robot is
slightly different under KC or DC. The robot’s linear and angular velocities also change along
the path, as shown in Figure 4(b).

A better visualization of the tracking error is given by Figure 5, which shows the evolution of
the distance error during the experiments without load. The distance error is defined as the

Figure 3. 8-shape reference path to be followed by the robot. Initial reference position is 0:0; 0:0ð Þm and the direction of
motion is indicated in the figure. The robot starts at position 0:0; 0:0ð Þm with orientation 0�.

Figure 4. Experiments without load: (a) robot path; (b) linear and angular velocities. In all graphs, the black line
represents the results for the case in which the dynamic compensation (DC) is active, while the red line represents the
results for the kinematic controller (KC).
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instantaneous distance between the desired position hd and the actual robot position h. It can
be noticed that the distance error is similar for KC and DC in the first part of the path. At the
beginning of the experiment, the tracking error increases quite a lot, reaching almost 1:0 m.
This happens because the robot needs to accelerate from zero to catch up with the reference
trajectory. After a few seconds, the error starts to decrease and around 25� 30s, the robot
follows the trajectory at normal speed. From this point on, it is clear that the average error is
smaller when the DC is active.

Figure 6(a) shows the 8-shape path followed by the robot when carrying the load and con-
trolled by KC and DC. One can notice that the path followed by the robot is slightly different
under KC or DC, and there is more distortion in the path when compared to the case in which
the robot carries no load. The robot’s linear and angular velocities also change along the path,
as shown in Figure 6(b), and are very similar to the previous case.

The tracking error is given by Figure 7, which shows the evolution of the distance error during
the experiments with load. As before, the robot needs to accelerate from zero to catch upwith the
reference trajectory, which causes the tracking error to increase in the first part of the experi-
ments. But, in this case, the error in the first part of the experiment is actually higher for DC. This
happens because the dynamic parameters used in the dynamic compensation controller
remained unchanged during all experiments, with and without load. This means that the case
in which the robot is carrying load is unfavorable for the dynamic compensation controller
because the dynamics is not properly compensated, causing the error to increase. Even so, after
about 30 s, the tracking error of DC gets smaller than the error for KC.

Figure 5. Evolution of tracking error without load. The black line represents the error for the case in which the dynamic
compensation (DC) is active, while the red line represents the error for the kinematic controller (KC). The corresponding
values of IAE30 for this experiment are also shown in the figure.
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To evaluate the performance of the system we have calculated the IAE performance index,

where IAE ¼ Ð t2t1 E tð Þdt, E tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

p
is the instantaneous distance error and t2 � t1 is the

period of integration. The average and standard deviation values of IAE for all experiments are
reported in Table 2. There, IAEtot was calculated considering t2 ¼ 75 s and t1 ¼ 0, that is, for
the total period of each experiment. By its turn, the value of IAE30 was calculated only for the

Figure 6. Experiments with load: (a) robot path; (b) linear and angular velocities. In all graphs the black line represents
the results for the case in which the dynamic compensation (DC) is active, while the red line represents the results for the
kinematic controller (KC).

Figure 7. Evolution of tracking error with load. The black line represents the error for the case in which the dynamic
compensation (DC) is active, while the red line represents the error for the kinematic controller (KC). The corresponding
values of IAE30 for this experiment are also shown in the figure.
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instantaneous distance between the desired position hd and the actual robot position h. It can
be noticed that the distance error is similar for KC and DC in the first part of the path. At the
beginning of the experiment, the tracking error increases quite a lot, reaching almost 1:0 m.
This happens because the robot needs to accelerate from zero to catch up with the reference
trajectory. After a few seconds, the error starts to decrease and around 25� 30s, the robot
follows the trajectory at normal speed. From this point on, it is clear that the average error is
smaller when the DC is active.

Figure 6(a) shows the 8-shape path followed by the robot when carrying the load and con-
trolled by KC and DC. One can notice that the path followed by the robot is slightly different
under KC or DC, and there is more distortion in the path when compared to the case in which
the robot carries no load. The robot’s linear and angular velocities also change along the path,
as shown in Figure 6(b), and are very similar to the previous case.

The tracking error is given by Figure 7, which shows the evolution of the distance error during
the experiments with load. As before, the robot needs to accelerate from zero to catch upwith the
reference trajectory, which causes the tracking error to increase in the first part of the experi-
ments. But, in this case, the error in the first part of the experiment is actually higher for DC. This
happens because the dynamic parameters used in the dynamic compensation controller
remained unchanged during all experiments, with and without load. This means that the case
in which the robot is carrying load is unfavorable for the dynamic compensation controller
because the dynamics is not properly compensated, causing the error to increase. Even so, after
about 30 s, the tracking error of DC gets smaller than the error for KC.

Figure 5. Evolution of tracking error without load. The black line represents the error for the case in which the dynamic
compensation (DC) is active, while the red line represents the error for the kinematic controller (KC). The corresponding
values of IAE30 for this experiment are also shown in the figure.
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To evaluate the performance of the system we have calculated the IAE performance index,

where IAE ¼ Ð t2t1 E tð Þdt, E tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

p
is the instantaneous distance error and t2 � t1 is the

period of integration. The average and standard deviation values of IAE for all experiments are
reported in Table 2. There, IAEtot was calculated considering t2 ¼ 75 s and t1 ¼ 0, that is, for
the total period of each experiment. By its turn, the value of IAE30 was calculated only for the

Figure 6. Experiments with load: (a) robot path; (b) linear and angular velocities. In all graphs the black line represents
the results for the case in which the dynamic compensation (DC) is active, while the red line represents the results for the
kinematic controller (KC).

Figure 7. Evolution of tracking error with load. The black line represents the error for the case in which the dynamic
compensation (DC) is active, while the red line represents the error for the kinematic controller (KC). The corresponding
values of IAE30 for this experiment are also shown in the figure.
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final 30 seconds of each experiment, that is, considering t2 ¼ 75s and t1 ¼ 35s. Therefore, IAE30

gives a good indication of the performance of the system after the error due to initial acceler-
ation have faded out. From the results highlighted in bold in Table 2, it is clear that the
performance of the system with the dynamic compensation controller is better in the long run
because the correspondent values of IAE30 are about 50% of those for the kinematic controller.
This is true even for the case in which the robot is carrying load.

It is important to emphasize that the dynamic parameters used in the dynamic compensation
controller remained unchanged during all experiments, which means that the dynamics is not
properly compensated when carrying load. This is illustrated by the fact that IAEtot is bigger
when the dynamic compensation is active and the robot is carrying load. Even so, in our
experiments the performance was better in the long run when the dynamic compensation
controller remained active.

One should notice that an increase in controller gains kx and ky could result in better performance
(smaller tracking error), especially when the robot is carrying load. Nevertheless, we kept the
same values of controller gains during all experiments to be able to compare the results.

6. Conclusion

In this chapter, we illustrate that the performance (in term of IAE) of a motion control system
for a mobile robot can be up to 50% better under certain conditions when dynamic compensa-
tion is included. Such dynamic compensation can be implemented as shown in Figure 2, in
which Eq. (25) is used with parameters identified via the procedure described in Section 3.2.

It is worth mentioning that the values of controller gains used in the experiments here reported
were not optimum. The values of the gains were chosen empirically so that we could compare
different cases. Optimization of controller gains can be executed to reduce tracking error,
energy consumption, or a weighted combination of both, as shown in [25]. This means that
the performance of the overall system could potentially be better than reported here.

We also presented a formulation of a dynamic model for differential-drive mobile robots, and
discussed its mathematical properties. When compared to the classical dynamic model based
on torques, the model used in this chapter has the advantages of accepting velocities as inputs,

With load Without load

IAEtot IAE30 IAEtot IAE30

Kinematic controller 14:30� 0:66 3:10� 0:05 14:08� 0:18 3:11� 0:12

Dynamic compensation 15:39� 0:42 1:41� 0:13 13:05� 0:07 1:29� 0:02

Here, IAE ¼ Ð t2t1 ∣E tð Þ∣dt, E tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

p
is the instantaneous distance error, and t2 � t1 is the period of integration. For

IAEtot , t2 ¼ 75 s and t1 ¼ 0. For IAE30, t2 ¼ 75 s and t1 ¼ 35 s.

Table 2. Average and standard deviation of IAE performance index calculated for experiments with and without load
(lower value is better, highlighted in bold).

Applications of Mobile Robots38

and modeling the dynamics or the robot’s actuators. We have shown that such model and its
properties are useful on the design and stability analysis of a dynamic compensation controller
for a differential-drive mobile robot. Moreover, because the mathematical structure of (12) is
similar to the classical torque-based model, classical strategies for controller design [8, 26] can be
adapted for designing controllers for mobile robots using the model presented in this chapter.

The dynamic model presented in this chapter can be used in connection with other kinematic
controllers designed for commercial mobile robots, even in the context of coordinated control of
multi-robot formations [27]. This integration requires no change on the original controller equa-
tions since the dynamic model accepts the same velocity commands as commercial robots. We
invite the interested reader to download our toolbox for MATLAB/Simulink®, which include
blocks to simulate the differential-drive kinematics and dynamics, a kinematic controller and two
dynamic compensation controllers, one of which being the one presented in this chapter [28].
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Abstract

This chapter is concerned with the development of collaborative control schemes for
mobile ground robots for area coverage purposes. The simplest scheme assumes point
omnidirectional robots with heterogeneous circular sensing patterns. Using information
from their spatial neighbors, each robot (agent) computes its cell relying on the power
diagram partitioning. If there is uncertainty in inferring the locations of these robots, the
Additively Weighted Guaranteed Voronoi scheme is employed resulting in a rather con-
servative performance. The aforementioned schemes are enhanced by using a Voronoi-
free coverage scheme that relies on the knowledge of any arbitrary sensing pattern
employed by the agents. Experimental results are offered to highlight the efficiency of the
suggested control laws.

Keywords: area coverage, multiagent systems, mobile robot systems, distributed control,
cooperative control

1. Introduction

The problem of area coverage is one that has been widely studied in the past decade and
consists of the deployment of a sensor-equipped mobile robot team. It is usually categorized as
either blanket or sweep coverage. In blanket or static coverage the goal of the robot team is a
final static configuration at which an objective function is maximized [1–3]. In sweep or
dynamic coverage on the other hand the mobile agents are tasked with maximizing a con-
stantly changing objective, resulting in potentially continuous motion of the agents [4–6].

Several aspects of the area coverage problem have been studied over the years, including the
effect of robot dynamics [7–9], communication constraints among agents [10–12], complex
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non-convex regions [13–15] or guaranteeing collision avoidance among the mobile robots
[16, 17]. A wide variety of methods has also been employed for multirobot area coverage such
as geometric optimization [18], optimal control [19] or event-triggered control [20]. Due to the
widespread adoption of unmanned aerial vehicles (UAVs), they have become a popular
platform for area coverage [21–23] since they are usually equipped with visual sensors [24–26].

In this chapter we focus on the blanket coverage problem for a convex region of interest. The
techniques outlined are based on geometric optimization principles and result in distributed
control schemes. In a distributed control law, each agent uses only local information from its
neighboring agents in order to compute its own control input so that a common objective
function is maximized. Distributed control laws are highly desirable in multiagent systems
because they are easily scalable to large robot teams and because they significantly reduce the
computational burden and communication requirements on the agents. Moreover, they are
more robust to failures and can adapt to unexpected changes without the need to recompute a
new solution as is the case with most centralized control schemes.

The chapter is organized as follows. Section 2.1 contains some mathematical preliminaries
which will be relevant throughout the chapter. In Section 2.2 the problem of blanket area
coverage in a convex region by a heterogeneous team of agents with omnidirectional sensors
is examined. In Section 2.3 the results are extended by taking into account the uncertain
positioning of the mobile robots. Section 2.4 presents a tessellation-free method for area
coverage by agents with anisotropic sensing patterns. Section 2.5 contains some experimental
results and it is followed by concluding remarks.

2. Area coverage using mobile agents

2.1. Mathematical preliminaries

Throughout the chapter we assume a compact, convex region Ω⊂R2 to be covered by the
mobile agents and a space density function ϕ : Ω! Rþ. The space density function is used to
encode any a priori information regarding the importance of points in Ω, for example the
likelihood that an event may occur at a given point. The boundary of a set S is denoted ∂S
and its interior is denoted Int Sð Þ. The set 1;…; nf g is denoted In. The indicator function 1S qð Þ
for a set S and the 2� 2 rotation matrix R θð Þ are respectively

1S qð Þ ¼ 1 if q∈ S
0 if q ∉ S

, R θð Þ ¼
cosθ � sinθ

sinθ cosθ

" #
,

(

while the 2� 2 identity matrix is denoted I2.

2.2. Heterogeneous agents with omnidirectional sensing

One of the simplest variants of the area coverage problem is the case of a team of homogeneous
agents with circular sensing footprints. This was one of the first variants to be studied and
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there is extensive work on the topic [27, 28]. One generalization of this problem arises by
allowing each agent to have a different sensing performance, resulting in a heterogeneous
team [29–31]. In this chapter we will focus in the coverage of a convex region by a team of
unicycle robots equipped with heterogeneous omnidirectional sensors.

2.2.1. Problem statement

A team of n mobile ground agents is deployed inside the region of interest Ω. Each agent i∈ In
is approximated by a point mass located at qi ∈Ω which is governed by the following kine-
matic model

_qi ¼ ui, q∈Ω, ui ∈R2 (1)

where ui is the velocity control input of the agent.

Each agent has been equipped with an omnidirectional sensor with limited sensing radius Ri,
which is allowed to differ among agents, resulting in a circular sensing pattern

Si qi;Ri
� � ¼ q∈Ω : ∥q� qi∥ ≤ Ri

� �
: (2)

Since the goal of the mobile agent team is the maximization of the covered area using their
sensors, while also taking into account the space density function, we define the coverage
objective as

H ¼
ð

Ω

max
i∈ In

1Si qð Þ ϕ qð Þ dq: (3)

The control objective is the design of a distributed control law for the mobile agents in order to
guarantee monotonic increase of the coverage objective H over time.

2.2.2. Space partitioning

The first step in designing a distributed control law is finding a method to distribute the
computation of the coverage objective H . Due to the heterogeneous sensing performance of
the agents, the Voronoi diagram is inadequate for the task as it does not take this information
into account. To that extent the power diagram will be used in order to assign a region of
responsibility to each agent. In contrast to the Voronoi diagram whose generators are points,
the generators of the power diagram are disks.

Given a planar region Ω and a set of disks S ¼ S1;…; Snf g with centers Q ¼ q1;…; qn
� �

and
radii R ¼ R1;…;Rnf g, the power diagram assigns a convex cell Pi ⊆ Ω to each disk Si

Pi Ω; Sð Þ ¼ q∈Ω : ∥q� qi∥
2 � Ri

2 ≤ ∥q� qj∥
2 � Rj

2; ∀j∈ In∖i
n o

, i∈ In:

The power diagram is a complete tessellation of Ω, thus it holds that
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non-convex regions [13–15] or guaranteeing collision avoidance among the mobile robots
[16, 17]. A wide variety of methods has also been employed for multirobot area coverage such
as geometric optimization [18], optimal control [19] or event-triggered control [20]. Due to the
widespread adoption of unmanned aerial vehicles (UAVs), they have become a popular
platform for area coverage [21–23] since they are usually equipped with visual sensors [24–26].

In this chapter we focus on the blanket coverage problem for a convex region of interest. The
techniques outlined are based on geometric optimization principles and result in distributed
control schemes. In a distributed control law, each agent uses only local information from its
neighboring agents in order to compute its own control input so that a common objective
function is maximized. Distributed control laws are highly desirable in multiagent systems
because they are easily scalable to large robot teams and because they significantly reduce the
computational burden and communication requirements on the agents. Moreover, they are
more robust to failures and can adapt to unexpected changes without the need to recompute a
new solution as is the case with most centralized control schemes.

The chapter is organized as follows. Section 2.1 contains some mathematical preliminaries
which will be relevant throughout the chapter. In Section 2.2 the problem of blanket area
coverage in a convex region by a heterogeneous team of agents with omnidirectional sensors
is examined. In Section 2.3 the results are extended by taking into account the uncertain
positioning of the mobile robots. Section 2.4 presents a tessellation-free method for area
coverage by agents with anisotropic sensing patterns. Section 2.5 contains some experimental
results and it is followed by concluding remarks.

2. Area coverage using mobile agents

2.1. Mathematical preliminaries

Throughout the chapter we assume a compact, convex region Ω⊂R2 to be covered by the
mobile agents and a space density function ϕ : Ω! Rþ. The space density function is used to
encode any a priori information regarding the importance of points in Ω, for example the
likelihood that an event may occur at a given point. The boundary of a set S is denoted ∂S
and its interior is denoted Int Sð Þ. The set 1;…; nf g is denoted In. The indicator function 1S qð Þ
for a set S and the 2� 2 rotation matrix R θð Þ are respectively

1S qð Þ ¼ 1 if q∈ S
0 if q ∉ S

, R θð Þ ¼
cosθ � sinθ

sinθ cosθ

" #
,

(

while the 2� 2 identity matrix is denoted I2.

2.2. Heterogeneous agents with omnidirectional sensing

One of the simplest variants of the area coverage problem is the case of a team of homogeneous
agents with circular sensing footprints. This was one of the first variants to be studied and
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there is extensive work on the topic [27, 28]. One generalization of this problem arises by
allowing each agent to have a different sensing performance, resulting in a heterogeneous
team [29–31]. In this chapter we will focus in the coverage of a convex region by a team of
unicycle robots equipped with heterogeneous omnidirectional sensors.

2.2.1. Problem statement

A team of n mobile ground agents is deployed inside the region of interest Ω. Each agent i∈ In
is approximated by a point mass located at qi ∈Ω which is governed by the following kine-
matic model

_qi ¼ ui, q∈Ω, ui ∈R2 (1)

where ui is the velocity control input of the agent.

Each agent has been equipped with an omnidirectional sensor with limited sensing radius Ri,
which is allowed to differ among agents, resulting in a circular sensing pattern

Si qi;Ri
� � ¼ q∈Ω : ∥q� qi∥ ≤ Ri

� �
: (2)

Since the goal of the mobile agent team is the maximization of the covered area using their
sensors, while also taking into account the space density function, we define the coverage
objective as

H ¼
ð

Ω

max
i∈ In

1Si qð Þ ϕ qð Þ dq: (3)

The control objective is the design of a distributed control law for the mobile agents in order to
guarantee monotonic increase of the coverage objective H over time.

2.2.2. Space partitioning

The first step in designing a distributed control law is finding a method to distribute the
computation of the coverage objective H . Due to the heterogeneous sensing performance of
the agents, the Voronoi diagram is inadequate for the task as it does not take this information
into account. To that extent the power diagram will be used in order to assign a region of
responsibility to each agent. In contrast to the Voronoi diagram whose generators are points,
the generators of the power diagram are disks.

Given a planar region Ω and a set of disks S ¼ S1;…; Snf g with centers Q ¼ q1;…; qn
� �

and
radii R ¼ R1;…;Rnf g, the power diagram assigns a convex cell Pi ⊆ Ω to each disk Si

Pi Ω; Sð Þ ¼ q∈Ω : ∥q� qi∥
2 � Ri

2 ≤ ∥q� qj∥
2 � Rj

2; ∀j∈ In∖i
n o

, i∈ In:

The power diagram is a complete tessellation of Ω, thus it holds that
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Ω ¼ ⋃
i∈ In

Pi, Int Pið Þ ∩ Int Pj
� � ¼ ;, ∀i 6¼ j:

A notable property of power diagrams is their duality with power-weighted Delaunay graphs.
It has been shown that in order to compute the power cell Pi of point qi, only the power-
weighted Delaunay neighbors Ni of point qi need to be considered. The power-weighted
Delaunay neighbors of agent i have the property that

Ni ¼ j∈ In∖i : Pi ∩Pj 6¼ ;
� �

, (4)

By using the previous definition, the power diagram can be formulated as

Pi Ω;Qð Þ ¼ q∈Ω : ∥q� qi∥
2 � Ri

2 ≤ ∥q� qj∥
2 � Rj

2; ∀j∈Ni

n o
, i∈ In: (5)

Since it holds that Ni ⊆ In, each agent i requires information only from its power-weighted
Delaunay neighbors in order to compute its own power cell Pi, thus rendering the computation
of the power diagram distributed.

Remark 2.1.When the agents’ sensing radii are equal, i.e., Ri ¼ Rj, ∀i, j, the power diagram converges
to the Voronoi diagram. In that case the computation of the cell of agent i requires information only from
the Delaunay neighbors of agent i. Thus the power diagram can be also utilized in the case of agents
with homogeneous sensing performance.

For any two agents i and j with Si ∩ Sj 6¼ ; it holds that Si∖Pi ∈Pj ∩ Sj and Sj∖Pj ∈Pi ∩Si due to
the properties of the power diagram. Thus if a part of some agent i ’s sensing pattern is inside
the cell of some other agent j, then that part is guaranteed to be sensed by j. Consequently, we
define the r-limited power cell of agent i as PR

i ¼ Pi ∩Si. Thus by utilizing the power diagram,
the coverage objective H can be computed as follows

H ¼
X
i∈ In

ð

PR
i

ϕ qð Þ dq: (6)

Since H can be written as a sum of integrals over r-limited power cells and since an agent can
compute its own power cell using information just from its power-weighted Delaunay neigh-
bors, the computation of H is distributed.

2.2.3. Control law formulation

Having found a partitioning scheme that allows distributed computation of the coverage
objective H , what is left is the derivation of a distributed control law for its maximization.

Theorem 2.1. For a team of mobile ground agents with kinematics (1), sensing performance (2) and
using the power diagram partitioning (5), the control law

ui ¼ αi

ð

∂PR
i ∩ ∂Si

ni ϕ qð Þ dq, (7)
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where αi is a positive constant and ni is the outward unit normal vector on ∂PR
i , leading the agents to

trajectories that result in monotonic increase of the coverage objective (6).

Proof. We start by evaluating the time derivative of the objective using the agent dynamics (1)

we get ∂H
∂t ¼

X
i∈ In

∂H
∂qi

∂qi
∂t ¼

X
i∈ In

∂H
∂qi

_qi ¼
X
i∈ In

∂H
∂qi

ui: By selecting the control law ui ¼ αi
∂H
∂qi

,αi > 0,

we can guarantee monotonic increase of the coverage objective.

The partial derivative ∂H
∂qi

is evaluated as follows

∂H
∂qi
¼ ∂

∂qi

X
i∈ In

ð

PR
i

ϕ qð Þ dq ¼ ∂
∂qi

ð

PR
i

ϕ qð Þ dq þ
X
j 6¼i

∂
∂qi

ð

PR
j

ϕ qð Þ dq:

Since only the cells of power-weighted Delaunay neighbors of agent i are affected by its

movement and ∂ϕ qð Þ
∂qi
¼ 0, by using the Leibniz integral rule [32], the previous equation becomes

∂H
∂qi
¼
ð

∂PR
i

υii ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
j

υij nj ϕ qð Þ dq

where υij is the Jacobian matrix υij ¼ ∂q
∂qi

, q∈ ∂PR
j and ni is the outward unit normal vector on

∂PR
i . The boundary ∂PR

i can be decomposed into three disjoint sets ∂PR
i ¼ ∂PR

i ∩ ∂Si
� �

∪

∂PR
i ∩ ∂Ω

� �
∪ ∪

j∈Ni

∂PR
i ∩ ∂P

R
j

� �� �
, where ∂PR

i ∩ ∂Si denotes part of the r-limited cell’s boundary

that is also part of the boundary of the agent’s sensing disk, ∂PR
i ∩ ∂Ω denotes the common

boundary between the r-limited cell and the region, while ∂PR
i ∩ ∂P

R
j denotes the common

boundary with the r-limited cell of some neighboring agent j. This decomposition is presented
in Figure 1where ∂PR

i ∩ ∂Si, ∂P
R
i ∩ ∂Ω and ∂PR

i ∩P
R
j are shown in solid green, red, and blue lines,

respectively.

Figure 1. Decomposition of ∂PR
i into disjoint sets and corresponding normal vectors.
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Ω ¼ ⋃
i∈ In

Pi, Int Pið Þ ∩ Int Pj
� � ¼ ;, ∀i 6¼ j:

A notable property of power diagrams is their duality with power-weighted Delaunay graphs.
It has been shown that in order to compute the power cell Pi of point qi, only the power-
weighted Delaunay neighbors Ni of point qi need to be considered. The power-weighted
Delaunay neighbors of agent i have the property that

Ni ¼ j∈ In∖i : Pi ∩Pj 6¼ ;
� �

, (4)

By using the previous definition, the power diagram can be formulated as

Pi Ω;Qð Þ ¼ q∈Ω : ∥q� qi∥
2 � Ri

2 ≤ ∥q� qj∥
2 � Rj

2; ∀j∈Ni

n o
, i∈ In: (5)

Since it holds that Ni ⊆ In, each agent i requires information only from its power-weighted
Delaunay neighbors in order to compute its own power cell Pi, thus rendering the computation
of the power diagram distributed.

Remark 2.1.When the agents’ sensing radii are equal, i.e., Ri ¼ Rj, ∀i, j, the power diagram converges
to the Voronoi diagram. In that case the computation of the cell of agent i requires information only from
the Delaunay neighbors of agent i. Thus the power diagram can be also utilized in the case of agents
with homogeneous sensing performance.

For any two agents i and j with Si ∩ Sj 6¼ ; it holds that Si∖Pi ∈Pj ∩ Sj and Sj∖Pj ∈Pi ∩Si due to
the properties of the power diagram. Thus if a part of some agent i ’s sensing pattern is inside
the cell of some other agent j, then that part is guaranteed to be sensed by j. Consequently, we
define the r-limited power cell of agent i as PR

i ¼ Pi ∩Si. Thus by utilizing the power diagram,
the coverage objective H can be computed as follows

H ¼
X
i∈ In

ð

PR
i

ϕ qð Þ dq: (6)

Since H can be written as a sum of integrals over r-limited power cells and since an agent can
compute its own power cell using information just from its power-weighted Delaunay neigh-
bors, the computation of H is distributed.

2.2.3. Control law formulation

Having found a partitioning scheme that allows distributed computation of the coverage
objective H , what is left is the derivation of a distributed control law for its maximization.

Theorem 2.1. For a team of mobile ground agents with kinematics (1), sensing performance (2) and
using the power diagram partitioning (5), the control law

ui ¼ αi

ð

∂PR
i ∩ ∂Si

ni ϕ qð Þ dq, (7)
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where αi is a positive constant and ni is the outward unit normal vector on ∂PR
i , leading the agents to

trajectories that result in monotonic increase of the coverage objective (6).

Proof. We start by evaluating the time derivative of the objective using the agent dynamics (1)

we get ∂H
∂t ¼

X
i∈ In

∂H
∂qi

∂qi
∂t ¼

X
i∈ In

∂H
∂qi

_qi ¼
X
i∈ In

∂H
∂qi

ui: By selecting the control law ui ¼ αi
∂H
∂qi

,αi > 0,

we can guarantee monotonic increase of the coverage objective.

The partial derivative ∂H
∂qi

is evaluated as follows

∂H
∂qi
¼ ∂

∂qi

X
i∈ In

ð

PR
i

ϕ qð Þ dq ¼ ∂
∂qi

ð

PR
i

ϕ qð Þ dq þ
X
j 6¼i

∂
∂qi

ð

PR
j

ϕ qð Þ dq:

Since only the cells of power-weighted Delaunay neighbors of agent i are affected by its

movement and ∂ϕ qð Þ
∂qi
¼ 0, by using the Leibniz integral rule [32], the previous equation becomes

∂H
∂qi
¼
ð

∂PR
i

υii ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
j

υij nj ϕ qð Þ dq

where υij is the Jacobian matrix υij ¼ ∂q
∂qi

, q∈ ∂PR
j and ni is the outward unit normal vector on

∂PR
i . The boundary ∂PR

i can be decomposed into three disjoint sets ∂PR
i ¼ ∂PR

i ∩ ∂Si
� �

∪

∂PR
i ∩ ∂Ω

� �
∪ ∪

j∈Ni

∂PR
i ∩ ∂P

R
j

� �� �
, where ∂PR

i ∩ ∂Si denotes part of the r-limited cell’s boundary

that is also part of the boundary of the agent’s sensing disk, ∂PR
i ∩ ∂Ω denotes the common

boundary between the r-limited cell and the region, while ∂PR
i ∩ ∂P

R
j denotes the common

boundary with the r-limited cell of some neighboring agent j. This decomposition is presented
in Figure 1where ∂PR

i ∩ ∂Si, ∂P
R
i ∩ ∂Ω and ∂PR

i ∩P
R
j are shown in solid green, red, and blue lines,

respectively.

Figure 1. Decomposition of ∂PR
i into disjoint sets and corresponding normal vectors.
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Since the region Ω is assumed to be static, it holds that υii ¼ 0, ∀q∈ ∂PR
i ∩ ∂Ω. In addition, since

q∈ ∂PR
i ∩ ∂Si are points on a circle with center qi, it holds that υ

i
i ¼ I2, ∀q∈ ∂PR

i ∩ ∂Si. Finally, P
R
j

is only affected by the movement of agent i at the common boundary ∂PR
i ∩ ∂P

R
j , resulting in the

expression

∂H
∂qi
¼

ð

∂PR
i ∩ ∂Si

ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
i ∩ ∂PR

j

υii ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
i ∩ ∂PR

j

υij nj ϕ qð Þ dq:

Since υii ¼ υij and ni ¼ �nj on the common boundary ∂PR
i ∩ ∂P

R
j , as shown in Figure 1, the two

sums in the previous expression cancel out and by multiplying it with αi we get (7). □

2.2.4. Simulation study I

An indicative simulation is presented in this section. The region Ω is chosen as the convex
polygon defined by the vertices with x and y coordinates

Ωx ¼ 0:5; 0:5; 0:45; 0:4;�0:46;�0:5;�0:48;�0:34; 0:05½ �,
Ωy ¼ 0:43; 0:2;�0:3;�0:5;�0:44;�0:1; 0:37; 0:47; 0:5½ �

respectively. The space density function was ϕ qð Þ ¼ 1, ∀q∈Ω. A team of eight agents with
heterogeneous sensing radii is deployed inside the region.

The initial and final agent configurations are shown in Figure 2a and c respectively where the
agent positions are marked by black dots, the boundaries of their sensing disks are shown as
dashed black lines, the boundaries of their cells are marked by solid black lines while their
interiors are filled in color. The agent trajectories are shown in Figure 2b with the initial
positions marked by dots and the final positions by circles. It is observed that the agents are
successfully deployed inside the region, increasing the covered area in the process. In order to
provide a more objective measure of the agents’ performance, two different metrics are used.
The first, denotedH r, is the value of the coverage objectiveH as a percentage of the objective
over the whole region which in the case where ϕ qð Þ ¼ 1,∀q∈Ω it is equal to the area ofΩ. This

Figure 2. Simulation study I: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of the
coverage objective over time.
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metric indicates to what extent the agents cover the region Ω, with high values of H r

corresponding to high coverage over Ω. The second metric, denoted H a, is the value of the
coverage objective H as a percentage of the agents’ maximum possible covered area which is
only meaningful in the case where ϕ qð Þ ¼ 1, ∀q∈Ω. This metric indicates to what extent the
agents’ sensors are utilized, with high values of H a indicating that the agents’ sensors are
utilized close to their full capabilities. Low values of H a simultaneously with high values of
H r indicate an overabundance of agents given the size of the current region Ω. The two
metrics are more formally defined as

H r ¼ 100
Hð

Ω

ϕ qð Þdq
, H a ¼ 100

H
X
i∈ In

ð

Si

dq
: (8)

Figure 2d showsH a in solid blue andH r in dashed red with their final values being 90.0 and
88.9% respectively, indicating that the final agent configuration is an efficient one.

2.3. Heterogeneous agents with omnidirectional sensing under positioning uncertainty

The inherent uncertainty in all localization systems’ measurements can often create unexpected
problems in algorithms designed with precise localization in mind. Consequently algorithms
robust to positioning errors have been sought for the area coverage problem [33, 34]. This section
presents an extension to the control law presented in [35] which allows for teams of agents with
heterogeneous sensing performance.

2.3.1. Agent model

The agents’ kinematic model is described by (1) and their sensing performance by (2). Due to
the localization systems’ inherent inaccuracy, we assume that qi is the agent’s position as
reported by the localization system, while ri is a known upper bound on the localization error.
Thus we define the positioning uncertainty region Ui as follows

Ui qi; ri
� � ¼ q∈R2 : ∥q� qi∥ ≤ ri

� �
, (9)

which is a circular disk that contains all possible positions of agent i given its reported position
qi and positioning uncertainty upper bound ri.

In order to take into account the agents’ positioning uncertainty, we define for each agent the
guaranteed sensed region Sgi as

Sgi qi; ri;Ri
� � ¼ ⋂

∀q∈Ui

Si q;Rið Þ, (10)

which is the region that is guaranteed to be sensed by agent i given all of its possible positions
within its positioning uncertainty region. Given the fact that both Si andUi are disks, the above
expression can be simplified into

Sgi qi; ri;Ri
� � ¼ q∈R2 : ∥q� qi∥ ≤ Rg

i ¼ Ri � ri
� �

: (11)

Theoretical and Experimental Collaborative Area Coverage Schemes Using Mobile Agents
http://dx.doi.org/10.5772/intechopen.78940

49



Since the region Ω is assumed to be static, it holds that υii ¼ 0, ∀q∈ ∂PR
i ∩ ∂Ω. In addition, since

q∈ ∂PR
i ∩ ∂Si are points on a circle with center qi, it holds that υ

i
i ¼ I2, ∀q∈ ∂PR

i ∩ ∂Si. Finally, P
R
j

is only affected by the movement of agent i at the common boundary ∂PR
i ∩ ∂P

R
j , resulting in the

expression

∂H
∂qi
¼

ð

∂PR
i ∩ ∂Si

ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
i ∩ ∂PR

j

υii ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
i ∩ ∂PR

j

υij nj ϕ qð Þ dq:

Since υii ¼ υij and ni ¼ �nj on the common boundary ∂PR
i ∩ ∂P

R
j , as shown in Figure 1, the two

sums in the previous expression cancel out and by multiplying it with αi we get (7). □

2.2.4. Simulation study I

An indicative simulation is presented in this section. The region Ω is chosen as the convex
polygon defined by the vertices with x and y coordinates

Ωx ¼ 0:5; 0:5; 0:45; 0:4;�0:46;�0:5;�0:48;�0:34; 0:05½ �,
Ωy ¼ 0:43; 0:2;�0:3;�0:5;�0:44;�0:1; 0:37; 0:47; 0:5½ �

respectively. The space density function was ϕ qð Þ ¼ 1, ∀q∈Ω. A team of eight agents with
heterogeneous sensing radii is deployed inside the region.

The initial and final agent configurations are shown in Figure 2a and c respectively where the
agent positions are marked by black dots, the boundaries of their sensing disks are shown as
dashed black lines, the boundaries of their cells are marked by solid black lines while their
interiors are filled in color. The agent trajectories are shown in Figure 2b with the initial
positions marked by dots and the final positions by circles. It is observed that the agents are
successfully deployed inside the region, increasing the covered area in the process. In order to
provide a more objective measure of the agents’ performance, two different metrics are used.
The first, denotedH r, is the value of the coverage objectiveH as a percentage of the objective
over the whole region which in the case where ϕ qð Þ ¼ 1,∀q∈Ω it is equal to the area ofΩ. This

Figure 2. Simulation study I: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of the
coverage objective over time.
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metric indicates to what extent the agents cover the region Ω, with high values of H r

corresponding to high coverage over Ω. The second metric, denoted H a, is the value of the
coverage objective H as a percentage of the agents’ maximum possible covered area which is
only meaningful in the case where ϕ qð Þ ¼ 1, ∀q∈Ω. This metric indicates to what extent the
agents’ sensors are utilized, with high values of H a indicating that the agents’ sensors are
utilized close to their full capabilities. Low values of H a simultaneously with high values of
H r indicate an overabundance of agents given the size of the current region Ω. The two
metrics are more formally defined as

H r ¼ 100
Hð

Ω

ϕ qð Þdq
, H a ¼ 100

H
X
i∈ In

ð

Si

dq
: (8)

Figure 2d showsH a in solid blue andH r in dashed red with their final values being 90.0 and
88.9% respectively, indicating that the final agent configuration is an efficient one.

2.3. Heterogeneous agents with omnidirectional sensing under positioning uncertainty

The inherent uncertainty in all localization systems’ measurements can often create unexpected
problems in algorithms designed with precise localization in mind. Consequently algorithms
robust to positioning errors have been sought for the area coverage problem [33, 34]. This section
presents an extension to the control law presented in [35] which allows for teams of agents with
heterogeneous sensing performance.

2.3.1. Agent model

The agents’ kinematic model is described by (1) and their sensing performance by (2). Due to
the localization systems’ inherent inaccuracy, we assume that qi is the agent’s position as
reported by the localization system, while ri is a known upper bound on the localization error.
Thus we define the positioning uncertainty region Ui as follows

Ui qi; ri
� � ¼ q∈R2 : ∥q� qi∥ ≤ ri

� �
, (9)

which is a circular disk that contains all possible positions of agent i given its reported position
qi and positioning uncertainty upper bound ri.

In order to take into account the agents’ positioning uncertainty, we define for each agent the
guaranteed sensed region Sgi as

Sgi qi; ri;Ri
� � ¼ ⋂

∀q∈Ui

Si q;Rið Þ, (10)

which is the region that is guaranteed to be sensed by agent i given all of its possible positions
within its positioning uncertainty region. Given the fact that both Si andUi are disks, the above
expression can be simplified into

Sgi qi; ri;Ri
� � ¼ q∈R2 : ∥q� qi∥ ≤ Rg

i ¼ Ri � ri
� �

: (11)

Theoretical and Experimental Collaborative Area Coverage Schemes Using Mobile Agents
http://dx.doi.org/10.5772/intechopen.78940

49



2.3.2. Space partitioning and problem statement

In order to take into account the agents’ positioning uncertainty as well as their heterogeneous
sensing capabilities, the Additively Weighted Guaranteed Voronoi (AWGV) diagram is
employed. The AWGV is an extension of the Guaranteed Voronoi (GV) diagram [36] that
incorporates additive weights.

Given a planar region Ω, a set of uncertain regions U ¼ U1;…;Unf g and a set of weights
Rg ¼ Rg

1;…;Rg
n

� �
, the AWGV diagram assigns a convex cell Gi ⊆ Ω to each region-weight

pair Ui;R
g
i

� �
as follows

Gi Ω;U;Rgð Þ ¼ q∈Ω : max
q∈Ui

∥q� qi∥� Rg
i ≤ min

q∈Uj

∥q� qj∥� Rg
j ; ∀j∈ In∖i

� �
, i∈ In:

Contrary to the Voronoi diagram, the AWGV diagram is not a complete tessellation of the region
Ω since a part ofΩ is left unassigned. This part is called the neutral region O and it holds that

Ω ¼ O ∪ ⋃
i∈ In

Gi: (12)

A notable property of AWGV diagrams is their duality with additively weighted Delaunay
graphs. It has been shown that in order to compute the AWGV cell Gi of the region-weight pair
Ui;R

g
i

� �
, only the additively weighted Delaunay neighbors Ni of Ui;R

g
i

� �
need to be consid-

ered. By using the previous definition, the Voronoi diagram can be formulated as

Gi Ω;U;Rgð Þ ¼ q∈Ω : max
q∈Ui

∥q� qi∥� Rg
i ≤ min

q∈Uj

∥q� qj∥� Rg
j ; ∀j∈Ni∖i

� �
, i∈ In: (13)

Since it holds that Ni ⊆ In, each agent i requires information only from its additively weighted
Delaunay neighbors in order to compute its own AWGV cell Gi, thus rendering the computa-
tion of the AWGV diagram distributed.

The previous definition of the AWGV can be written as Gi ¼ ⋂
j∈Ni

Hij, i∈ In, where

Hij ¼ q∈Ω : ∥q� qj∥� ∥q� qi∥ ≥ þ ri þ rj � Rg
i þ Rg

j

n o
. Thus the boundary ∂Hij is one branch

of a hyperbola with foci located at qi and qi and semi-major axis aij ¼
riþrj�Rg

i þR
g
j

2 . Since the
quantity aij may be either positive or negative, ∂Hij may correspond to the ‘East’ or ‘West’ branch
of the hyperbola, which results in the region Hij being convex or non-convex respectively.

We define the r-limited AWGV cell of agent i as GR
i ¼ Gi ∩ S

g
i . We now define the coverage

objective as

H ¼
X
i∈ In

ð

GR
i

ϕ qð Þ dq, (14)
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which is the area of the region that is guaranteed to be closest to and at the same time sensed
by each agent. SinceH is a sum of integrals over r-limited AWGV cells and since an agent can
compute its own AWGV cell using information just from the agents in Ni, the computation of
H is distributed.

2.3.3. Control law formulation

Since the computation of the coverage objective H is distributed due to the AWGV
partitioning, what is left is the derivation of a distributed control law for its maximization.

Theorem 2.2. For a team of mobile ground agents with kinematics (1), sensing performance (2),
positioning uncertainty (9) and using the AWGV partitioning (13), the control scheme

ui ¼ αi

ð

∂GR
i ∩ ∂Sgi

ni ϕ qð Þ dq þ αi

X
j∈Ni

ð

∂GR
i ∩ ∂Hij

μi
i ni ϕ qð Þ dq þ

ð

∂GR
j ∩ ∂Hji

μi
j nj ϕ qð Þ dq

2
664

3
775 (15)

where αi is a positive constant, ni the outward unit normal vector on ∂GR
i , leads the agent to trajectories

that result in monotonic increase of the coverage objective (14).

Proof. We start by evaluating the time derivative of the objective using the agent dynamics (1)
as in the proof of Theorem 2.1 and by selecting the control law ui ¼ αi

∂H
∂qi

,αi > 0, we can

guarantee monotonic increase of the coverage objective.

The partial derivative ∂H
∂qi

is evaluated as follows

∂H
∂qi
¼ ∂

∂qi

X
i∈ In

ð

GR
i

ϕ qð Þ dq ¼ ∂
∂qi

ð

GR
i

ϕ qð Þ dq þ
X
j 6¼i

∂
∂qi

ð

GR
j

ϕ qð Þ dq:

Since only the cells of additively weighted Delaunay neighbors of agent i are affected by its

movement and ∂ϕ qð Þ
∂qi
¼ 0, the previous equation becomes

∂H
∂qi
¼
ð

∂GR
i

μi
i ni ϕ qð Þ dq þ

X
j∈Ni

ð

∂GR
j

μi
j nj ϕ qð Þ dq

where μi
j is the Jacobian matrix

μi
j ¼

∂q
∂qi

, q∈ ∂GR
j
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2.3.2. Space partitioning and problem statement
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incorporates additive weights.

Given a planar region Ω, a set of uncertain regions U ¼ U1;…;Unf g and a set of weights
Rg ¼ Rg

1;…;Rg
n

� �
, the AWGV diagram assigns a convex cell Gi ⊆ Ω to each region-weight

pair Ui;R
g
i

� �
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Contrary to the Voronoi diagram, the AWGV diagram is not a complete tessellation of the region
Ω since a part ofΩ is left unassigned. This part is called the neutral region O and it holds that

Ω ¼ O ∪ ⋃
i∈ In
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A notable property of AWGV diagrams is their duality with additively weighted Delaunay
graphs. It has been shown that in order to compute the AWGV cell Gi of the region-weight pair
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, only the additively weighted Delaunay neighbors Ni of Ui;R
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need to be consid-
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i ≤ min
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, i∈ In: (13)

Since it holds that Ni ⊆ In, each agent i requires information only from its additively weighted
Delaunay neighbors in order to compute its own AWGV cell Gi, thus rendering the computa-
tion of the AWGV diagram distributed.

The previous definition of the AWGV can be written as Gi ¼ ⋂
j∈Ni

Hij, i∈ In, where

Hij ¼ q∈Ω : ∥q� qj∥� ∥q� qi∥ ≥ þ ri þ rj � Rg
i þ Rg

j

n o
. Thus the boundary ∂Hij is one branch

of a hyperbola with foci located at qi and qi and semi-major axis aij ¼
riþrj�Rg

i þR
g
j

2 . Since the
quantity aij may be either positive or negative, ∂Hij may correspond to the ‘East’ or ‘West’ branch
of the hyperbola, which results in the region Hij being convex or non-convex respectively.

We define the r-limited AWGV cell of agent i as GR
i ¼ Gi ∩ S

g
i . We now define the coverage

objective as

H ¼
X
i∈ In

ð

GR
i

ϕ qð Þ dq, (14)
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which is the area of the region that is guaranteed to be closest to and at the same time sensed
by each agent. SinceH is a sum of integrals over r-limited AWGV cells and since an agent can
compute its own AWGV cell using information just from the agents in Ni, the computation of
H is distributed.

2.3.3. Control law formulation

Since the computation of the coverage objective H is distributed due to the AWGV
partitioning, what is left is the derivation of a distributed control law for its maximization.

Theorem 2.2. For a team of mobile ground agents with kinematics (1), sensing performance (2),
positioning uncertainty (9) and using the AWGV partitioning (13), the control scheme

ui ¼ αi

ð

∂GR
i ∩ ∂Sgi

ni ϕ qð Þ dq þ αi

X
j∈Ni

ð

∂GR
i ∩ ∂Hij

μi
i ni ϕ qð Þ dq þ

ð

∂GR
j ∩ ∂Hji

μi
j nj ϕ qð Þ dq

2
664

3
775 (15)

where αi is a positive constant, ni the outward unit normal vector on ∂GR
i , leads the agent to trajectories

that result in monotonic increase of the coverage objective (14).

Proof. We start by evaluating the time derivative of the objective using the agent dynamics (1)
as in the proof of Theorem 2.1 and by selecting the control law ui ¼ αi

∂H
∂qi

,αi > 0, we can

guarantee monotonic increase of the coverage objective.

The partial derivative ∂H
∂qi

is evaluated as follows

∂H
∂qi
¼ ∂

∂qi

X
i∈ In

ð

GR
i

ϕ qð Þ dq ¼ ∂
∂qi

ð

GR
i

ϕ qð Þ dq þ
X
j 6¼i

∂
∂qi

ð

GR
j

ϕ qð Þ dq:

Since only the cells of additively weighted Delaunay neighbors of agent i are affected by its

movement and ∂ϕ qð Þ
∂qi
¼ 0, the previous equation becomes

∂H
∂qi
¼
ð

∂GR
i

μi
i ni ϕ qð Þ dq þ

X
j∈Ni

ð

∂GR
j

μi
j nj ϕ qð Þ dq

where μi
j is the Jacobian matrix

μi
j ¼

∂q
∂qi

, q∈ ∂GR
j
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and ni is the outward unit normal vector on ∂GR
i . The boundary ∂GR

i can be decomposed into
three disjoint sets as follows

∂GR
i ¼ ∂GR

i ∩ ∂S
g
i

� �
∪ ∂GR

i ∩ ∂Ω
� �

∪ ⋃
j∈Ni

∂GR
i ∩ ∂Hij

� �
" #

, (16)

where ∂GR
i ∩ ∂S

g
i denotes part of the r-limited cell’s boundary that is also part of the boundary

of the agent’s sensing disk, ∂GR
i ∩ ∂Ω denotes the common boundary between the r-limited cell

and the region, while ∂GR
i ∩ ∂Hij denotes parts of the boundary that consist of hyperbolic arcs

induced by some neighboring agent j. This decomposition is presented in Figure 3 where

∂GR
i ∩ ∂S

g
i , ∂G

R
i ∩ ∂Ω, ∂GR

i ∩ ∂Hij and ∂GR
j ∩ ∂Hji are shown in solid green, red, blue and purple

lines respectively.

Since the region Ω is assumed to be static, it holds that μi
i ¼ 0, ∀q∈ ∂GR

i ∩ ∂Ω. In addition, since

q∈ ∂GR
i ∩ ∂S

g
i are points on a circle with center qi, it holds that μ

i
i ¼ I2, ∀q∈ ∂GR

i ∩ ∂S
g
i . Finally, G

R
j

is only affected by the movement of agent i at the induced hyperbolic arc ∂GR
j ∩ ∂Hji and by

grouping the hyperbolic arcs in pairs and multiplying by αi we get (15). □

2.3.4. Constraining agents inside the region

When the control law (15) is used, there can be cases where the positioning uncertainty regions
of some agent does not remain entirely insideΩ, i.e. it is possible thatUi ∩Ω 6¼ Ui for some agent
i. This has the implication that the control law (15) may lead some agent i outside the region Ω,
given the fact that an agent may reside anywhere within its positioning uncertainty region Ui.

In order to avoid such a situation, a subset Ωs
i ⊆ Ω is used instead, instead of the region Ω.

This subset Ωs
i is in the general case different among agents due to their differing measures of

positioning uncertainty ri. This subset ofΩ is computed as the Minkowski difference ofΩwith

the disk U0
i rið Þ ¼ q∈Ω : ∥q∥ ≤ rif g which is Ωs

i ¼ q∈Ω : qþU0
i ⊆ Ω

� �
, i∈ In.

Figure 3. Decomposition of ∂GR
i into disjoint sets and corresponding normal vectors.
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By using this subset Ωs
i , constraining agents inside Ω is simpler, since this is equivalent to

constraining each agent’s reported position qi inside its respective subset region Ωs
i . This is

achieved by stopping an agent if its reported position qi is located on the boundary of Ωs
i and

simultaneously its current control input leads the agent toward the exterior of Ωs
i . Thus the

control law being implemented is

~ui ¼
0 if qi ∈ ∂Ωs

i ∧ qi þ εui ∉ Ωs
i

ui otherwise

�
(17)

where ε is an infinitesimally small positive constant.

2.3.5. Simulation study II

An indicative simulation is presented in this section. This simulation is identical to the one
presented in Section 2.2.4 with the only difference being the addition of positioning uncer-
tainty to the agents.

The initial and final agent configurations are shown in Figure 4a and c respectively where the
agent positioning uncertainty regions are shown as black circles, the boundaries of their sensing
disks are shown as dashed black lines, the boundaries of their cells are marked by solid black
lines while their interiors are filled in color. The agent trajectories are shown in Figure 4b with
the initial positions marked by dots and the final positions by circles. It is observed that the
agents successfully deploy inside the region, increasing the covered area in the process. In order
to provide a more objective measure of the agents’ performance, the two metrics described in
Section 2.2.4 are used which in the case of uncertainty positioning are more formally defined as

H r ¼ 100
Hð

Ω

ϕ qð Þdq
, H a ¼ 100

H
X
i∈ In

ð

Sgi

dq
:

Figure 4d showsH a in solid blue andH r in dashed red with their final values being 94.0 and
70.0% respectively. In this simulation we observe that althoughH a reaches a high value, this is

Figure 4. Simulation study II: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of the
coverage objective over time.
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and ni is the outward unit normal vector on ∂GR
i . The boundary ∂GR

i can be decomposed into
three disjoint sets as follows

∂GR
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� �
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where ∂GR
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i denotes part of the r-limited cell’s boundary that is also part of the boundary

of the agent’s sensing disk, ∂GR
i ∩ ∂Ω denotes the common boundary between the r-limited cell

and the region, while ∂GR
i ∩ ∂Hij denotes parts of the boundary that consist of hyperbolic arcs
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lines respectively.

Since the region Ω is assumed to be static, it holds that μi
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i ∩ ∂Ω. In addition, since
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i are points on a circle with center qi, it holds that μ
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i . Finally, G
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is only affected by the movement of agent i at the induced hyperbolic arc ∂GR
j ∩ ∂Hji and by

grouping the hyperbolic arcs in pairs and multiplying by αi we get (15). □

2.3.4. Constraining agents inside the region

When the control law (15) is used, there can be cases where the positioning uncertainty regions
of some agent does not remain entirely insideΩ, i.e. it is possible thatUi ∩Ω 6¼ Ui for some agent
i. This has the implication that the control law (15) may lead some agent i outside the region Ω,
given the fact that an agent may reside anywhere within its positioning uncertainty region Ui.

In order to avoid such a situation, a subset Ωs
i ⊆ Ω is used instead, instead of the region Ω.

This subset Ωs
i is in the general case different among agents due to their differing measures of

positioning uncertainty ri. This subset ofΩ is computed as the Minkowski difference ofΩwith

the disk U0
i rið Þ ¼ q∈Ω : ∥q∥ ≤ rif g which is Ωs
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Figure 3. Decomposition of ∂GR
i into disjoint sets and corresponding normal vectors.
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By using this subset Ωs
i , constraining agents inside Ω is simpler, since this is equivalent to

constraining each agent’s reported position qi inside its respective subset region Ωs
i . This is

achieved by stopping an agent if its reported position qi is located on the boundary of Ωs
i and

simultaneously its current control input leads the agent toward the exterior of Ωs
i . Thus the

control law being implemented is

~ui ¼
0 if qi ∈ ∂Ωs

i ∧ qi þ εui ∉ Ωs
i

ui otherwise

�
(17)

where ε is an infinitesimally small positive constant.

2.3.5. Simulation study II

An indicative simulation is presented in this section. This simulation is identical to the one
presented in Section 2.2.4 with the only difference being the addition of positioning uncer-
tainty to the agents.

The initial and final agent configurations are shown in Figure 4a and c respectively where the
agent positioning uncertainty regions are shown as black circles, the boundaries of their sensing
disks are shown as dashed black lines, the boundaries of their cells are marked by solid black
lines while their interiors are filled in color. The agent trajectories are shown in Figure 4b with
the initial positions marked by dots and the final positions by circles. It is observed that the
agents successfully deploy inside the region, increasing the covered area in the process. In order
to provide a more objective measure of the agents’ performance, the two metrics described in
Section 2.2.4 are used which in the case of uncertainty positioning are more formally defined as

H r ¼ 100
Hð

Ω

ϕ qð Þdq
, H a ¼ 100

H
X
i∈ In

ð

Sgi

dq
:

Figure 4d showsH a in solid blue andH r in dashed red with their final values being 94.0 and
70.0% respectively. In this simulation we observe that althoughH a reaches a high value, this is

Figure 4. Simulation study II: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of the
coverage objective over time.
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not the case with H r. The first reason for this result is the fact that the computation of H is
based on the agents’ guaranteed sensing patterns Sgi , which by definition are lower in area than
their respective sensing patterns Si. Moreover, due to the definition of H being conservative,
only the area of the r-limited cells GR

i counts toward the value of H , thus parts of the neutral
region O that are covered by the agents do not contribute to H . Consequently, in the case of
the AWGV partitioning (13), coverage objective (14) and control law (15), it is expected for H r

to achieve a lower value.

2.4. Heterogeneous agents with anisotropic sensing

Although the omnidirectional sensors examined in the previous two sections can significantly
simplify the problem formulation and solution, they are usually inadequate for precise model-
ing of real-life sensors. For this reason there have been several differing approaches to area
coverage using agents with anisotropic sensing patterns [37–40]. In this section we will follow
the methodology presented in [41] which is a distributed optimization technique resulting in a
gradient-based control law.

2.4.1. Problem statement

A team of n mobile ground agents is deployed inside the region of interest Ω. Given the
anisotropic nature of the sensing patterns examined in this section, the mobile agents should
be able to change their orientation as well as move around inside the region of interest. A
realistic model for a mobile agent with the ability to rotate is that of the differential drive robot
whose kinematic model is

_qi ¼
cosθi

sinθi

" #
ri
2

ΩR
i þΩL

i

� �
, qi ∈Ω,

_θ i ¼ ri
li

ΩR
i �ΩL

i

� �
, θi ∈ �π; π½ �,

where ΩR
i , ΩL

i are the rotational velocities of the right and left wheels, respectively, ri is the
wheel radius, and li is the length of the wheel axis. In this chapter however a simpler single
integrator kinematic model is used for the agents. Each agent i∈ In is approximated by a point
mass located at qi ∈Ωwith orientation θi which is governed by the kinematic model described by

_qi ¼ ui, q∈Ω, ui ∈R2, (18)

_θi ¼ ωi, θ,ωi ∈R, (19)

where ωi is the rotational velocity control input of the agent. This single integrator model
simplifies the derivation of the control law, although the control law can be extended for
differential drive robots as well.

We define the base sensing pattern Sbi of agent i as the region sensed by the agent when

qi ¼ 0; 0½ �T and θi ¼ 0. The only requirements with regards to the base sensing pattern are
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that qi ∈ Int Sbi
� �

and that its boundary ∂Sbi can bedescribed bya set of parametric equations. Let the

radius Ri of a base sensing pattern be defined as Ri Sbi
� � ¼ max

q∈ ∂Sbi
∥q∥. This is themaximumdistance

from the origin, which is also the base sensing pattern’s center of rotation, to its boundary.

The sensing pattern of agent i as a function of its position qi and orientation θi, can be
computed by rotating around the origin and translating its base sensing pattern as follows

Si qi;θi
� � ¼ qi þ R θið Þ Sbi : (20)

By allowing a different base sensing pattern for each agent, teams of heterogeneous agents can
be effectively utilized.

Since the goal of the mobile agent team is the maximization of the covered area using their
sensors, while also taking into account the space density function, we define the coverage
objective as in (3). The control objective is the design of a distributed control law for the mobile
agents in order to guarantee monotonic increase of the coverage objective H over time.

2.4.2. Space partitioning

The first step in designing a distributed control law is finding a method to distribute the
computation of the coverage objective H . Due to the agents’ anisotropic sensing patterns, the
partitioning scheme employed in this case is highly different from Voronoi-like partitioning
schemes. Instead of partitioning the whole region Ω based on the agents’ positions, only the
sensed region ∪

i∈ In
Si is partitioned based on the agents’ sensing patterns. Each agent is assigned

the part of Ω that only itself is able to sense, with parts being sensed by multiple or no agents
being left unassigned.

Given a planar regionΩ and a set of sensing patterns S ¼ S1;…; Snf g, each agent i is assigned a
cell Wi as follows

Wi Ω; Sð Þ ¼ Ω ∩Sið Þ∖ ⋃
j∈ In∖i

Sj, i∈ In:

The part of Ω sensed by multiple agents is left unassigned but still contributes toward the
coverage objective H . This part is called the common region and is computed as follows

Wc Ω; Sð Þ ¼ Ω ∩ ⋃
i∈ In

Si∖Wið Þ: (21)

Having defined the cells and the common region, it holds that ⋃
i∈ In

Si ¼ ⋃
i∈ In

Wi ∪Wc ⊆ Ω .

We can define the neighbors of agent i as those agents that affect the computation of its cell.
Since the computation of the cells relies entirely on the agents’ sensing patterns, the neighbors
can be defined as

Ni ¼ j∈ In∖i : Si ∩ Sj 6¼ ;
� �

: (22)

Theoretical and Experimental Collaborative Area Coverage Schemes Using Mobile Agents
http://dx.doi.org/10.5772/intechopen.78940

55



not the case with H r. The first reason for this result is the fact that the computation of H is
based on the agents’ guaranteed sensing patterns Sgi , which by definition are lower in area than
their respective sensing patterns Si. Moreover, due to the definition of H being conservative,
only the area of the r-limited cells GR

i counts toward the value of H , thus parts of the neutral
region O that are covered by the agents do not contribute to H . Consequently, in the case of
the AWGV partitioning (13), coverage objective (14) and control law (15), it is expected for H r

to achieve a lower value.

2.4. Heterogeneous agents with anisotropic sensing

Although the omnidirectional sensors examined in the previous two sections can significantly
simplify the problem formulation and solution, they are usually inadequate for precise model-
ing of real-life sensors. For this reason there have been several differing approaches to area
coverage using agents with anisotropic sensing patterns [37–40]. In this section we will follow
the methodology presented in [41] which is a distributed optimization technique resulting in a
gradient-based control law.

2.4.1. Problem statement

A team of n mobile ground agents is deployed inside the region of interest Ω. Given the
anisotropic nature of the sensing patterns examined in this section, the mobile agents should
be able to change their orientation as well as move around inside the region of interest. A
realistic model for a mobile agent with the ability to rotate is that of the differential drive robot
whose kinematic model is

_qi ¼
cosθi

sinθi
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where ΩR
i , ΩL

i are the rotational velocities of the right and left wheels, respectively, ri is the
wheel radius, and li is the length of the wheel axis. In this chapter however a simpler single
integrator kinematic model is used for the agents. Each agent i∈ In is approximated by a point
mass located at qi ∈Ωwith orientation θi which is governed by the kinematic model described by

_qi ¼ ui, q∈Ω, ui ∈R2, (18)

_θi ¼ ωi, θ,ωi ∈R, (19)

where ωi is the rotational velocity control input of the agent. This single integrator model
simplifies the derivation of the control law, although the control law can be extended for
differential drive robots as well.

We define the base sensing pattern Sbi of agent i as the region sensed by the agent when

qi ¼ 0; 0½ �T and θi ¼ 0. The only requirements with regards to the base sensing pattern are
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that qi ∈ Int Sbi
� �

and that its boundary ∂Sbi can bedescribed bya set of parametric equations. Let the

radius Ri of a base sensing pattern be defined as Ri Sbi
� � ¼ max

q∈ ∂Sbi
∥q∥. This is themaximumdistance

from the origin, which is also the base sensing pattern’s center of rotation, to its boundary.

The sensing pattern of agent i as a function of its position qi and orientation θi, can be
computed by rotating around the origin and translating its base sensing pattern as follows

Si qi;θi
� � ¼ qi þ R θið Þ Sbi : (20)

By allowing a different base sensing pattern for each agent, teams of heterogeneous agents can
be effectively utilized.

Since the goal of the mobile agent team is the maximization of the covered area using their
sensors, while also taking into account the space density function, we define the coverage
objective as in (3). The control objective is the design of a distributed control law for the mobile
agents in order to guarantee monotonic increase of the coverage objective H over time.

2.4.2. Space partitioning

The first step in designing a distributed control law is finding a method to distribute the
computation of the coverage objective H . Due to the agents’ anisotropic sensing patterns, the
partitioning scheme employed in this case is highly different from Voronoi-like partitioning
schemes. Instead of partitioning the whole region Ω based on the agents’ positions, only the
sensed region ∪

i∈ In
Si is partitioned based on the agents’ sensing patterns. Each agent is assigned

the part of Ω that only itself is able to sense, with parts being sensed by multiple or no agents
being left unassigned.

Given a planar regionΩ and a set of sensing patterns S ¼ S1;…; Snf g, each agent i is assigned a
cell Wi as follows

Wi Ω; Sð Þ ¼ Ω ∩Sið Þ∖ ⋃
j∈ In∖i

Sj, i∈ In:

The part of Ω sensed by multiple agents is left unassigned but still contributes toward the
coverage objective H . This part is called the common region and is computed as follows

Wc Ω; Sð Þ ¼ Ω ∩ ⋃
i∈ In

Si∖Wið Þ: (21)

Having defined the cells and the common region, it holds that ⋃
i∈ In

Si ¼ ⋃
i∈ In

Wi ∪Wc ⊆ Ω .

We can define the neighbors of agent i as those agents that affect the computation of its cell.
Since the computation of the cells relies entirely on the agents’ sensing patterns, the neighbors
can be defined as

Ni ¼ j∈ In∖i : Si ∩ Sj 6¼ ;
� �

: (22)
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Moreover, if the maximum base sensing radius Rmax ¼ max
i∈ In

Ri is known by all agents, and if

each agent is able to communicate with all others within a radius

Ci ¼ Ri þ Rmax, (23)

then it is guaranteed it will be able to communicate with all of its neighbors Ni. By using the
neighbor definition, the proposed partitioning scheme can be computed in a distributed
manner as follows

Wi Ω; Sð Þ ¼ Ω ∩ Sið Þ∖ ⋃
j∈Ni∖i

Sj, i∈ In: (24)

Remark 2.2. The partitioning scheme (24) may result in the cell of some agent being empty or
consisting of multiple disjoint regions. It should be noted however that such cases are handled success-
fully by the control law presented in Section 2.4.3.

Thus by utilizing the aforementioned partitioning scheme, the coverage objective H can be
computed as follows

ℋ ¼
X
i∈ In

ð

Wi

ϕ qð Þ dqþ
ð

Wc

ϕ qð Þ dq: (25)

Since H can be written as a sum of integrals over the assigned cells and since an agent can
compute its own cell using information just from its neighbors, the computation of H is
distributed.

2.4.3. Control law formulation

Having found a partitioning scheme that allows distributed computation of the coverage
objective H , what is left is the derivation of a distributed control law for its maximization.

Theorem 2.3. For a team of mobile ground agents with kinematics (18, 19), sensing performance (20)
and using the partitioning (24), the control scheme

ui ¼ αi, u

ð

∂Wi ∩ ∂Si

ni ϕ qð Þ dq, (26)

ωi ¼ αi,ω

ð

∂Wi ∩ ∂Si

ni R
π
2

� �
q� qi
� �

ϕ qð Þ dq, (27)

where αi,u,αi,ω are positive constants and ni is the outward unit normal vector on ∂Wi, leading the
agent to trajectories that result in monotonic increase of the coverage objective (25).

Proof. We start by evaluating the time derivative of the objective using the chain rule and the
agent dynamics (18, 19)
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∂H
∂t
¼
X
i∈ In

∂H
∂qi

∂qi
∂t
þ ∂H

∂θi

∂θi

∂t
¼
X
i∈ In

∂H
∂qi

_qi þ
∂H
∂θi

_θi ¼
X
i∈ In

∂H
∂qi

ui þ ∂H
∂θi

ωi:

By selecting the control law

ui ¼ αi,u
∂H
∂qi

, ωi ¼ αi,ω
∂H
∂θi

, αi,u,αi,ω > 0,

we can guarantee monotonic increase of the coverage objective.

The partial derivative ∂H
∂qi

is evaluated as follows

∂H
∂qi
¼ ∂

∂qi

ð

Wi

ϕ qð Þ dq þ
X
j 6¼i

∂
∂qi

ð

Wj

ϕ qð Þ dq þ ∂
∂qi

ð

Wc

ϕ qð Þ dq:

Due to the partitioning scheme (24) only the common region Wc is affected by the movement

of agent i and since ∂ϕ qð Þ
∂qi
¼ 0, by using the Leibniz integral rule [32], the previous equation

becomes

∂H
∂qi
¼
ð

∂Wi

υii ni ϕ qð Þ dq þ
ð

∂Wc

υic ncϕ qð Þ dq

where υij is the Jacobian matrix

υij ¼
∂q
∂qi

, q∈ ∂Wj

and ni is the outward unit normal vector on ∂Wi. The boundary ∂Wi can be decomposed into
three disjoint sets as follows

∂Wi ¼ ∂Wi ∩ ∂Sið Þ ∪ ∂Wi ∩ ∂Ωð Þ ∪ ∂Wi ∩ ∂Wcð Þ, (28)

where ∂Wi ∩ ∂Si denotes part of the cell’s boundary that is also part of the boundary of the
agent’s sensing disk, ∂Wi ∩ ∂Ω denotes the common boundary between the cell and the region,
while ∂Wi ∩ ∂Wc denotes the common boundary of the cell and the common region. This
decomposition is presented in Figure 5 where ∂Wi ∩ ∂Si, ∂Wi ∩ ∂Ω and ∂Wi ∩ ∂Wc are shown
in solid green, red and blue lines respectively.

Since the region Ω is assumed to be static, it holds that υii ¼ 0, ∀q∈ ∂Wi ∩ ∂Ω. In addition, from

Eq. (20) we get that υii ¼ I2, ∀q∈ ∂Wi ∩ ∂Si. Finally, on all the common boundaries

∂Wj ∩ ∂Wc, j∈ In it holds that υji ¼ υci and nj ¼ �nc, as shown in Figure 5, leaving only an
integral over ∂Wi ∩ ∂Si. By multiplying with αi, u we get (26). The same procedure is used for
the derivation of the rotational part of the control law (27). □
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fully by the control law presented in Section 2.4.3.
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i∈ In

ð

Wi

ϕ qð Þ dqþ
ð

Wc

ϕ qð Þ dq: (25)

Since H can be written as a sum of integrals over the assigned cells and since an agent can
compute its own cell using information just from its neighbors, the computation of H is
distributed.

2.4.3. Control law formulation

Having found a partitioning scheme that allows distributed computation of the coverage
objective H , what is left is the derivation of a distributed control law for its maximization.

Theorem 2.3. For a team of mobile ground agents with kinematics (18, 19), sensing performance (20)
and using the partitioning (24), the control scheme

ui ¼ αi, u

ð
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ni ϕ qð Þ dq, (26)
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ni R
π
2
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ϕ qð Þ dq, (27)

where αi,u,αi,ω are positive constants and ni is the outward unit normal vector on ∂Wi, leading the
agent to trajectories that result in monotonic increase of the coverage objective (25).

Proof. We start by evaluating the time derivative of the objective using the chain rule and the
agent dynamics (18, 19)
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where υij is the Jacobian matrix
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and ni is the outward unit normal vector on ∂Wi. The boundary ∂Wi can be decomposed into
three disjoint sets as follows

∂Wi ¼ ∂Wi ∩ ∂Sið Þ ∪ ∂Wi ∩ ∂Ωð Þ ∪ ∂Wi ∩ ∂Wcð Þ, (28)

where ∂Wi ∩ ∂Si denotes part of the cell’s boundary that is also part of the boundary of the
agent’s sensing disk, ∂Wi ∩ ∂Ω denotes the common boundary between the cell and the region,
while ∂Wi ∩ ∂Wc denotes the common boundary of the cell and the common region. This
decomposition is presented in Figure 5 where ∂Wi ∩ ∂Si, ∂Wi ∩ ∂Ω and ∂Wi ∩ ∂Wc are shown
in solid green, red and blue lines respectively.

Since the region Ω is assumed to be static, it holds that υii ¼ 0, ∀q∈ ∂Wi ∩ ∂Ω. In addition, from

Eq. (20) we get that υii ¼ I2, ∀q∈ ∂Wi ∩ ∂Si. Finally, on all the common boundaries

∂Wj ∩ ∂Wc, j∈ In it holds that υji ¼ υci and nj ¼ �nc, as shown in Figure 5, leaving only an
integral over ∂Wi ∩ ∂Si. By multiplying with αi, u we get (26). The same procedure is used for
the derivation of the rotational part of the control law (27). □
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2.4.4. Simulation study III

An indicative simulation is presented in this section. The regionΩ, the space density function ϕ qð Þ
and the agent initial positions are the same as in the simulation presented in Section 2.2.4. In this
simulation however the agents are equipped with heterogeneous sensors with elliptical sensing
patterns.

The initial and final agent configurations are shown in Figure 6a and c respectively where the
agent positions are marked by black dots, the agent orientations are marked by black arrows, the
boundaries of their sensing disks are shown as dashed black lines, the boundaries of their cells
are marked by solid black lines while their interiors are filled in color. The agent trajectories are
shown in Figure 6bwith the initial positions marked by dots and the final positions by circles. It
is observed that the agents successfully deploy inside the region, increasing the covered area in
the process. In order to provide a more objective measure of the agents’ performance, the two
metrics defined in Eq. (8) are used. Figure 6d showsH a in solid blue andH r in dashed red with
their final values being 91.3 and 93.5% respectively. This indicates that the final configuration
results in both high coverage ofΩ and efficient use of the agents sensors.

2.4.5. Simulation study IV

This simulation study serves to highlight the need for taking into account the agents’ aniso-
tropic sensing patterns instead of approximating them with circular ones. To that end,

Figure 5. Decomposition of ∂Wi into disjoint sets and corresponding normal vectors.

Figure 6. Simulation study III: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of
the coverage objective over time.
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Simulation Study III was repeated by approximating the agents’ elliptical sensing patterns
with their maximal inscribed circles. The initial agent configuration, agent trajectories and final
agent configuration are shown in Figure 7a, b and c respectively. It is observed that the agent’s
performance is decreased significantly when using this underapproximation of their sensing
patterns. In order to provide a more objective measure of the agents’ performance, the two
metrics defined in Eq. (8) are used. Figure 7d shows H a in solid blue and H r in dashed red
with their final values being 100% and 35.2% respectively, indicating a 62.4% decrease in the
coverage of Ω compared to Simulation Study III.

2.5. Experimental implementation

An experimental implementation of a simplified version of one of the previously examined
control schemes is briefly presented in this section. This experimental study first appeared and
is presented in greater detail in [42]. The experiment consisted of three differential-drive
robots, a visual pose tracking system using fiducial markers and a computer communicating
with the robots and pose tracking system via a WiFi router. The methodology presented in
Section 2.3 was used in order to take into account the positioning uncertainty of the pose
tracking system. The experimental results are compared with a simulation using the same
initial conditions.

2.5.1. Experimental setup

The robots used in the experiment were the differential-drive AmigoBots by Omron Adept
MobileRobots. The robots are 33 cm� 28 cm� 15 cm in size, weigh 3:6 kg and are able to carry a
payload of up to 1 kg. Their maximum linear and rotational velocities are vmax ¼ 1 m=s and
ωmax ¼ 100o=s. Although these robots are equipped with encoders measuring 39; 000 ticks=
revolution which can be used for estimating their pose, an external pose tracking system was
used instead due to the encoders’ drifting error. Since the AmigoBots lack any omnidirectional
sensors, for the sake of the control law it was assumed that they were equipped with sensors
with a common sensing radius of R ¼ 0:3 m.

The external pose tracking system consists of a USB camera and an ODROID-XU4 computer.
Pose tracking is achieved by attaching a fiducial marker on top of each robot and using the

Figure 7. Simulation study IV: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of
the coverage objective over time.
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An indicative simulation is presented in this section. The regionΩ, the space density function ϕ qð Þ
and the agent initial positions are the same as in the simulation presented in Section 2.2.4. In this
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patterns.
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the process. In order to provide a more objective measure of the agents’ performance, the two
metrics defined in Eq. (8) are used. Figure 6d showsH a in solid blue andH r in dashed red with
their final values being 91.3 and 93.5% respectively. This indicates that the final configuration
results in both high coverage ofΩ and efficient use of the agents sensors.
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This simulation study serves to highlight the need for taking into account the agents’ aniso-
tropic sensing patterns instead of approximating them with circular ones. To that end,

Figure 5. Decomposition of ∂Wi into disjoint sets and corresponding normal vectors.

Figure 6. Simulation study III: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of
the coverage objective over time.

Applications of Mobile Robots58

Simulation Study III was repeated by approximating the agents’ elliptical sensing patterns
with their maximal inscribed circles. The initial agent configuration, agent trajectories and final
agent configuration are shown in Figure 7a, b and c respectively. It is observed that the agent’s
performance is decreased significantly when using this underapproximation of their sensing
patterns. In order to provide a more objective measure of the agents’ performance, the two
metrics defined in Eq. (8) are used. Figure 7d shows H a in solid blue and H r in dashed red
with their final values being 100% and 35.2% respectively, indicating a 62.4% decrease in the
coverage of Ω compared to Simulation Study III.

2.5. Experimental implementation

An experimental implementation of a simplified version of one of the previously examined
control schemes is briefly presented in this section. This experimental study first appeared and
is presented in greater detail in [42]. The experiment consisted of three differential-drive
robots, a visual pose tracking system using fiducial markers and a computer communicating
with the robots and pose tracking system via a WiFi router. The methodology presented in
Section 2.3 was used in order to take into account the positioning uncertainty of the pose
tracking system. The experimental results are compared with a simulation using the same
initial conditions.

2.5.1. Experimental setup

The robots used in the experiment were the differential-drive AmigoBots by Omron Adept
MobileRobots. The robots are 33 cm� 28 cm� 15 cm in size, weigh 3:6 kg and are able to carry a
payload of up to 1 kg. Their maximum linear and rotational velocities are vmax ¼ 1 m=s and
ωmax ¼ 100o=s. Although these robots are equipped with encoders measuring 39; 000 ticks=
revolution which can be used for estimating their pose, an external pose tracking system was
used instead due to the encoders’ drifting error. Since the AmigoBots lack any omnidirectional
sensors, for the sake of the control law it was assumed that they were equipped with sensors
with a common sensing radius of R ¼ 0:3 m.

The external pose tracking system consists of a USB camera and an ODROID-XU4 computer.
Pose tracking is achieved by attaching a fiducial marker on top of each robot and using the

Figure 7. Simulation study IV: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of
the coverage objective over time.
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ArUco [43] library to estimate the pose of these markers. As is the case with all positioning
systems, ArUco has a certain degree of uncertainty in its pose estimations. In order to get an
estimate of this uncertainty, a fiducial marked was placed on the vertices and the centroid of
the region Ω resulting in a maximum error of 0:032 m, which was used as the measure of
positioning uncertainty r for all robots.

The control scheme was implemented as a loop in the main computer with an iteration period
of Ts ¼ 0:1 seconds. At each iteration, a simplified version of the control law (15) is computed
for each agent, and from that, a target point qti is derived for each agent. Then a feedback
controller is used in order to lead each robot to each respective target point. Once all robots are
within a predefined distance dt ¼ 0:02 m of their respective target points, new target points are
computed from the robots’ current positions. The feedback control law used for each robot was

vi ¼ min
∥qti � qi∥

Ts
; vmax

� �
cos dθið Þ, ωi ¼ min

∣dθi∣
Ts

;ωmax
� �

sin dθið Þ,

where qi and θi are the robot’s current position and orientation, vi and ωi the robots linear and

rotational velocity control inputs respectively and dθi ¼ ∡ qti � qi
� �� θi.

2.5.2. Experimental results

The robots’ initial configuration, which is common between the experiment and simulation is
shown in Figure 8a. The final configurations of the experiment and the simulation are shown
in Figure 8c and d, respectively. The boundaries of the agents’ positioning uncertainty regions
are shown as black circles, the boundaries of their sensing disks are shown in dashed black line
and the boundaries of their cells are marked by solid black lines while their interiors are filled
in color. Some photographs of the robots’ initial and final configurations are presented in
Figure 9a and b respectively where the ArUco fiducial markers can be seen. In both the
experiment and the simulation it is observed from the robots’ final configurations that their
guaranteed sensed regions are completely contained within their respective AWGV cells, i.e.
Sgi ⊂Gi, ∀i∈ In, which is a globally optimal configuration. The robots’ trajectories are depicted
in Figure 8b in blue for the experiment and in red for the simulation, with the initial and final
positions marked by dots and circles respectively. The simulation trajectories are smooth but

Figure 8. Experiment: (a) initial configuration, (b) experimental (blue) and simulated (red) robot trajectories, (c) experi-
ment final configuration and (d) simulation final configuration.
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the experimental trajectories have many turns due to the robots moving to target points. The
robots’ final positions have an error of 9:27% the diameter of Ω between the experiment and
the simulation. This large error is attributed to the difference between the implemented control
laws as well as the existence of multiple global optima for this particular coverage setup.
Figure shows the evolution of the metric H a over time for the experiment in blue and the
simulation in red where it is seen that it increased from 83:70 to 98:95% in the experiment.
Although in the case of the experiment its increase was not monotonic, this is to be expected as
the implemented control law differed from the theoretical one. The lower convergence speed is
also attributed to this difference as well as the constraints on the robots’ translational and
rotational velocities.

3. Conclusions and future work

This chapter presented an overview of past and current work on area coverage problems. A
strong theoretical background has been provided, along with indicative simulations results
and an experimental implementation of one of the presented control schemes. The problem of
multiagent area coverage still offers possibilities for original research. One possible extension
would be the usage of more realistic sensor models, such as visual sensors. The usage of visual
sensors can result in the incorporation of coverage quality metrics in the objective or in variable
sensing patterns in the case of pan-tilt-zoom cameras. Another aspect of multirobot area
coverage problem that has not been studied thoroughly yet is the development of communi-
cation systems and algorithms that allow the agents to exchange information in a distributed
manner. Finally, implementations in actual robotic systems in order to solve practical problems
are not yet common.
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Figure 9. Experiment: (a) initial configuration, (b) final configuration and (c) evolution of the coverage objective over time
for the experiment and simulation.
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ArUco [43] library to estimate the pose of these markers. As is the case with all positioning
systems, ArUco has a certain degree of uncertainty in its pose estimations. In order to get an
estimate of this uncertainty, a fiducial marked was placed on the vertices and the centroid of
the region Ω resulting in a maximum error of 0:032 m, which was used as the measure of
positioning uncertainty r for all robots.

The control scheme was implemented as a loop in the main computer with an iteration period
of Ts ¼ 0:1 seconds. At each iteration, a simplified version of the control law (15) is computed
for each agent, and from that, a target point qti is derived for each agent. Then a feedback
controller is used in order to lead each robot to each respective target point. Once all robots are
within a predefined distance dt ¼ 0:02 m of their respective target points, new target points are
computed from the robots’ current positions. The feedback control law used for each robot was
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;ωmax
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where qi and θi are the robot’s current position and orientation, vi and ωi the robots linear and

rotational velocity control inputs respectively and dθi ¼ ∡ qti � qi
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Figure 9a and b respectively where the ArUco fiducial markers can be seen. In both the
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the experimental trajectories have many turns due to the robots moving to target points. The
robots’ final positions have an error of 9:27% the diameter of Ω between the experiment and
the simulation. This large error is attributed to the difference between the implemented control
laws as well as the existence of multiple global optima for this particular coverage setup.
Figure shows the evolution of the metric H a over time for the experiment in blue and the
simulation in red where it is seen that it increased from 83:70 to 98:95% in the experiment.
Although in the case of the experiment its increase was not monotonic, this is to be expected as
the implemented control law differed from the theoretical one. The lower convergence speed is
also attributed to this difference as well as the constraints on the robots’ translational and
rotational velocities.

3. Conclusions and future work

This chapter presented an overview of past and current work on area coverage problems. A
strong theoretical background has been provided, along with indicative simulations results
and an experimental implementation of one of the presented control schemes. The problem of
multiagent area coverage still offers possibilities for original research. One possible extension
would be the usage of more realistic sensor models, such as visual sensors. The usage of visual
sensors can result in the incorporation of coverage quality metrics in the objective or in variable
sensing patterns in the case of pan-tilt-zoom cameras. Another aspect of multirobot area
coverage problem that has not been studied thoroughly yet is the development of communi-
cation systems and algorithms that allow the agents to exchange information in a distributed
manner. Finally, implementations in actual robotic systems in order to solve practical problems
are not yet common.
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Abstract

Learning mobile robot space and navigation behavior, are essential requirements for impro-
ved navigation, in addition to gain much understanding about the navigation maps. This
chapter presents mobile robots feature-based SLAM behavior learning, and navigation in
complex spaces. Mobile intelligence has been based on blending a number of functionaries
related to navigation, including learning SLAM map main features. To achieve this, the
mobile system was built on diverse levels of intelligence, this includes principle component
analysis (PCA), neuro-fuzzy (NF) learning system as a classifier, and fuzzy rule based deci-
sion system (FRD).

Keywords: SLAM, PAC, NF classification, fuzzy rule based decision, navigation

1. Introduction

1.1. Study background

Interactive mobile robotics systems have been introduced by researcher’s worldwide. The
main focus of such research directions, are how to let a mobile robotic system to navigate in
an unstructured environment, while learning its features. To meet these objectives, mobile
robots platforms are to be equipped with AI tools. In particular to achieve this, Janglová in
[1], describes an approach for solving the motion-planning problem in mobile robot control
using neural networks-based technique. The proposed system consists of a head artificial
neural network, which was used to determine the free space using ultrasound range finder
data. In terms of maps building with visual mobile robot capabilities, a remote controlled
vision guided mobile robot system was introduced by Raymond et al. [2]. The drive of the
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work, was to describe exploratory research on designing remote controlled emergency stop
and vision systems for an autonomous mobile robot. Camera modeling and distortion calibra-
tion for mobile robot vision was also introduced by Gang et al. [3]. In their paper they presented
an essential camera calibration technique for mobile robot, which is based on PIONEER II
experiment platform. Bonin-Font et al. [4], presented a map-based navigation and mapless navi-
gation, as they subdivided in metric map-based navigation and topological map based naviga-
tion. Abdul et al. [5] have introduced a hybrid approach for vision based self-localization of
autonomous mobile robots. They presented a hybrid approach towards self-localization of tiny
autonomous mobile robots in a known but highly dynamic environment. Kalman filter was used
for tracking of the globally estimated position. In [8], Filliata and Meyer, presented a 3-level
hierarchy of localization strategies, and a direct position inference, single-hypothesis tracking,
and multiple-hypothesis tracking.

They stated the advantages and drawbacks of these strategies. In [6], Andreja et al. have
presented a fuzzy ART neural architecture for robot map learning and navigation. Araujo
proposed methods that are integrated into a navigation architecture. Further, intelligence
based navigation was further discussed by [9–11]. In [12], Vlassis et al., motioned, “method
for building robot maps by using a Kohonen’s self-organizing artificial neural network, and
describe how path planning can be subsequently performed on such a map”. The built ANN
related SOM is shown in Figure 1. Stereo vision-based autonomous mobile robot was also
given by Changhan et al. [13]. In their research, they proposed a technique to give more
autonomy to a mobile robot by providing vision sensors. In [14], Thrun reported an approach
that integrates two paradigms: grid-based and topological. The intelligent control of the
mobile robot, was based on image processing was also given by Nima et al. [15]. In terms of
leaning intelligent navigation, intelligent robot control using an adaptive critic with a task
control center and dynamic database was also introduced by Hall et al. [16]. This involves
development and simulation of a real time controller for an intelligent, vision guided robot.
Such models are also necessary for sizing the actuators, tuning the controller, and achieving
superior performance. A novel feature of the proposed approach is that the method is applica-
ble to both robot arm manipulators and robot bases such as wheeled mobile robots. Stereo
vision based self-localization of autonomous mobile robots was furthermore introduced by
Abdul et al. [17]. In reference to the work presented, a vision based self-localization of tiny
autonomous mobile robots in a known but highly dynamic environment. A learning mobile
robots was shown by Hall et al. [18]. They presented a discussion of recent technical advances
in learning for intelligent mobile robots. Novel application of a laser range finder with vision
system for wheeled mobile robot was presented by Chun et al. [19], where their research
presents a trajectory planning strategy of a wheeled mobile robot in an obstructed environ-
ment. A vision-based intelligent path following control of a four-wheel differentially driven
skid steer mobile robot was given by Nazari and Naraghi [20]. In this work, a Fuzzy Logic
Controller (FLC) for path following of a four-wheel differentially skid steer mobile robot is
presented. Color learning and illumination invariance on mobile robots survey was given by
Mohan et al. [21]. A major challenge to the widespread deployment of mobile robots is the
ability to function autonomously. Two arms and two legs like an ape, was aimed to study a
variety of vision-based behaviors. In addition, robot based on the remote-brained approach

Applications of Mobile Robots68

was given by Masayuki et al. [22]. Localization algorithm of mobile robot based on single
vision and laser radar have been presented by Xiaoning [23]. In order to increase the localiza-
tion precision of mobile robot, a self-localization algorithm based on odometry, single vision
and laser radar is proposed. The data provided by odometry, single vision, and laser radar
were fused together by means of an Extended Kalman filter (EKF) technique. Mobile robot self-
localization in complex indoor environments using monocular vision and 3D model, was
moreover presented by Andreja et al. [24], they considered the problem of mobile robot pose
estimation using only visual information from a single camera and odometry readings.
Human observation based mobile robot navigation in intelligent space was also given by

Figure 1. ANN-self organizing maps, for learning mobile robot navigation [1, 6–8].
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variety of vision-based behaviors. In addition, robot based on the remote-brained approach
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was given by Masayuki et al. [22]. Localization algorithm of mobile robot based on single
vision and laser radar have been presented by Xiaoning [23]. In order to increase the localiza-
tion precision of mobile robot, a self-localization algorithm based on odometry, single vision
and laser radar is proposed. The data provided by odometry, single vision, and laser radar
were fused together by means of an Extended Kalman filter (EKF) technique. Mobile robot self-
localization in complex indoor environments using monocular vision and 3D model, was
moreover presented by Andreja et al. [24], they considered the problem of mobile robot pose
estimation using only visual information from a single camera and odometry readings.
Human observation based mobile robot navigation in intelligent space was also given by

Figure 1. ANN-self organizing maps, for learning mobile robot navigation [1, 6–8].
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Takeshi and Hashimoto [25], they investigated a mobile robot navigation system which can
localize the mobile robot correctly and navigate based on observation of human walking.
Similar work was also given by Manoj and Ernest [26].

Figure 2. (a) A sample of SLAM details for learning, picture source robot cartography [27]. (b) Mobile robot training
patterns generation. A space is represented by maps space’s basis.
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1.2. Research objectives

Given the previous background, this current presented work is focusing on learning naviga-
tion maps with intelligent capabilities. The system is based on PCA representation of large
navigation maps, Neuro-fuzzy classifier, and a fuzzy decision based system. For bulky amount
of visual and non-visual mobile data measurements (odometry, and the observations), the
approach followed, is to reduce the mobile robot observation dimensionality using principle
component analysis (PCA), thus to generate a reduced representation of the navigation map
(SLAM), refer to Figure 2 for details. A learning systemwas used to learn navigationmaps details,
hence to classify the representations, (in terms of observation features). The learned system was
employed for navigating maps, and other mobile robot routing applications.

2. Building navigation maps

2.1. Simultaneous localization and mapping (SLAM)

SLAM, is a routine that estimates a pose of a mobile robot, while mapping the environment at
the same time. SLAM is computationally intensive, since maps represent localization, hence
accurate pose estimate is needed for mapping. For creating navigation intelligence capabilities
during path planning, this is achieved by learning spaces, once robot was in motion. This is
based on learning path and navigation behavior. There are four important stages for building
SLAM, this localization, map building and updates, searching for optimal path and planning.
Optimal path search is done by A∗, occupancy grids mapping. Given a mobile robot control
inputs U as set of controls, U1:k ¼ u1; u2;…; ukð Þ, with mobile parameters measurements
(mobile observations) as Z1:k ¼ z1; z2;…; zkð Þ . For odometry, refer to Figure 3.
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In reference to Figure 3, the mobile robot starts to move in the space, with a target to research into
a predefined final position. While the robot in movement, a SLAM is built, and measurements are
recorded from the mobile observations, as Z1:k ¼ z1; z2;…; zkð Þ. All recorded observations are
considered as inputs to the PAC, hence they are tabulated into predefined format, for later
processing using the PCA algorithm.

2.2. Monte-Carlo (MC) localization

Monte-Carlo localization, is a well-known technique in literature, and still being used for
localization parameters estimation. In sampling-based methods, one represents the density by
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a set of η random samples of particles. The goal is then to recursively compute at each time

step k set of samples of Ζk that is drawn from density p xk : Zk� �
. A particularly elegant

algorithm to accomplish this has recently been suggested independently by various authors.
In analogy with the formal filtering problem, the algorithm proceeds in two phases. In the first
phase we start from a set of particles S k�1ð Þ computed in the previous iteration, and apply the

motion model to each particle Sik�1ð Þ by sampling from the density pðxk⋮Sik�1ð Þ, u k�1ð ÞÞ for each
particle Sik�1ð Þ: draw one sample Sikð Þ from ðxk⋮Sik�1ð Þ, u k�1ð ÞÞ. We have used a motion model and

set of particles Sik�1ð Þ to build an empirical predictive density function of:
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In Eq. (2), we describe a blended density approximation to p xk⋮Z k�1ð Þ
� �

. The environment, or

the mobile robot space is highly redundant, once used to describe maps.

3. Principle component analysis (PCA)

3.1. PCA based statistically and dimensionality reduction

While in navigation, each traveled path, region, zone, etc. are characterized by diverse behav-
ior (i.e. features), Figure 4. If x is matrix of representation for distances and measurements at

Figure 3. Odometry, generation of navigation patterns for spaces, the (maps).
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each location during navigation, a covariance matrix for the set of maps is considered highly
non-diagonal. Mathematically, the previous notation is:

r ¼ XXt

σX11 ⋯ σX1,w�h
⋮ ⋱ ⋮

σXw�h,1 ⋯ σXw�h,w�h

0
B@

1
CA

0
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1
CA (3)

σXij represents covariance between distances for location (w) and location (h). There is a relation

between covariance coefficients and correlation coefficients. The covariancematrix r is expressed as:

r ¼ 1
j

Xj

n¼1
λn � λT

n

� �
(4)

Since principal components are calculated linearly, let Ρ be a transformation matrix:

Y ¼ PT � X and X ¼ P� Y

In fact, P ¼ P�1, since the P’s columns are orthonormal to each other, PT � P ¼ I. Now, the
question is, what is the value of Ρ given the condition that Sy must be a diagonal matrix, i.e.

Sy ¼ Y � YT ¼ PT � Χ� ΧT � P

Sy ¼ PT � Sy � P

in such away Sy is a rotation of Sx byΡ. ChoosingΡ as being amatrix containing eigenvectors ofSx:

Figure 4. Robot navigation spaces. A representation of navigation segments, zones, areas,….. (S1, S2, S3,…. Sn, Z1, Z2, Z3,
…. Zm, A1, A2, A3, …. An).
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Sx � P ¼ Λ� P

where Λ is a diagonal matrix containing eigenvalues of Sx. In this regard,

Sy ¼ PT �Λ� P ¼ Λ� PT � P ¼ Λ

and Sy is a diagonal matrix containing eigenvalues of Sx. Since the diagonal elements of Sy are
the variance of components of training patterns in the (in navigation) space, the eigenvalues of
Sx are those variances.

This is further expanded into:

r ¼
β1,1�β1 ⋯ β1, k�βk

⋮ ⋱ ⋮
βj,1�β1 ⋯ βj, k�xk

0
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Finally, covariance matrix r is further expressed by:

r ¼
cov β1; β1
� �

⋯ cov β1; βk
� �

⋮ ⋱ ⋮
cov βk; β1
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⋯ cov βk; βk
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0
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The p, is a symmetric (around the main diagonal), and a Rn�n matrix. The diagonal of,
represents the covariance between the matrix and it self. To recognize normalized dataset for
patterns, the covariance r of Eq. (6) plays an important role. This can be achieved by getting
the eigenvectors of covariance r matrix of Eq. (6). Given this background, therefore we need to
compute eigenvalues and eigenvectors using numerical approach. For a Rk�k matrix r, if we
search for a row vector Rk�1 X that could be multiplied by r and get the same vector X
multiplied by eigenvalues λ and eigenvector. Matrix r transforms the vector X to scale posi-
tions by an amount equal to λ, gives a transformation matrix:

rXð Þ ¼ λXð Þ (7)

In reference to Eq. (7), and for a Rk�k matrix r, we shall compute for (k) eigenvalues. The (k)
eigenvalue (λ), are hence used for scaling every (k) eigenvectors. Individual eigenvalues (λ),
are also found by solving the below defined identity as expressed by Eq. (8):

r � I � λð ÞX ¼ 0½ � (8)

where I is an identity matrix. We shall compute for the determinant of Eq. (8), i.e.,
| r � Iλð Þ∣ ¼ 0 , while solving for the eigenvalues, λ. While substituting for the (λ) in Eq. (8),
and solving for (X), this will result in finding the eigenvector (X), once λ are satisfying the
following:

r � I � λð Þj j ¼ 0 (9)
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Following Eq. (5) to Eq. (9), and computing for eigenvalues, hence reordering the eigenvalues
according to a descending order, this represents a major step in building a PAC based recog-
nition system for the mobile robot dataset generated by the navigation system.

4. Learning system: learning mobile robot navigation maps

4.1. Feature-based SLAM learning

While stating in Section 3 steps for PAC computations, in this section we shall make a focus
on building a learning system for the mobile navigation. In reference to Figure 4, the mobile
robot will be generating navigation dataset. Dataset is generated at different locations,
during the mobile robot motion. Navigation dataset involves sensory measurements,
odometry, and locality information (i.e. zones, areas, segments …), refer to Figure 4. An
important part of the dataset, is also the part generated by the SLAM, as already described
in Section 2. It is not achievable to encompass all dataset, as this is massive dataset. However,
we shall rely on features of the mobile dataset, i.e. the PCA based features of navigation
dataset, (the SLAM features). Robot navigation spaces. A representation of navigation seg-
ments, zones, areas, ….. are designated as (S1, S2, S3, …. Sn, Z1, Z2, Z3, …. Zm, A1, A2, A3, ….
An). For each of such different segments, zones, and areas of navigation, there will be
features associated with it. Features during navigation will be used for further processing.
This includes a five layers feature learning NF architecture (classifier), and a fuzzy decision
system (Figure 5).

4.2. Neuro-fuzzy features classifier (NFC) architecture

For the case of fuzzy decision making system, it is essential to incorporate a priori knowledge
for the mobile movements in the space. In this respect, many conventional approaches rely on
depth physical knowledge describing the system. An issue with fuzzy decision is that knowl-
edge are mathematically impervious. This results in and there is no formal mathematical
representation of the system’s behavior. This prevents the application of conventional empiri-
cal modeling techniques to fuzzy systems, making knowledge validation and comparison hard
to perform. Creating a benchmark measure of performance by a minimum distance classifier.

Decision rule adopted by such system, is to assign Χ to a class whose mean feature vector is
closest (Euclidean Distance) to Χ. A decision is given by:

∥d� d1∥ ≤ ∥d� d2¼)d∈ h2

else d∈ h2

(
(10)

Rule-based structure of fuzzy knowledge allows for integrating heuristic knowledge with
information obtained from process measurements. The global operation of a system is divided
into several local operating conditions. Within each region Ri, a representation:
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Riŷi kð Þ ¼
Xo

ij

χijy kð Þ þ
Xh

ij

ψiju kð Þ for h ¼ 1, 2,…r (11)

In reference to Figure 6, for Eq. (11), ŷi is the computed fuzzy output, u is the system input, in
the ith operating region, (h) is the number of fuzzy operating regions. In addition, both (i) and
(o) do represent the time lags in the input and the output, respectively, μi is the membership
function. Finally, χij and ψij are the few parameters. The membership function for inputs, is

constructed in a number of ways.

The fuzzy knowledge system (Neuro-fuzzy) illustrated in Figure 6, is an exceptional architec-
ture of network topology. This architecture combines advantages of fuzzy reasoning and the
classical neural networks. In its broader sense, the architecture rule rið Þ, demonstrates a rela-
tion between the input map feature space, and named classes. This is further expressed as
follows:

Rule ri ¼)if χsi and χsj is Aij…… and χsn is Ain, ¼)class name is Ck (12)

In Eq. (12), the Gaussian membership function is defined as:

μij χsj

� �
¼ exp � χsj � cij

� �2
j2σ2ij

� �

Figure 5. The recognition system. PAC for SLAM features computations, a five layers neuro-fuzzy classifier, and last a
fuzzy decision based system.
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μijðχsjÞ is the membership grade of ith rule and jth. That is, the (if) parts of the rules are same as

in the ordinary fuzzy (if-then) rules, (then) parts are some combinations of the input variables.
For each ith node in this layer is a square node with a node function.

αis ¼
Yn

j¼1
μij νsj
� �

(13)

where νsj is the input to ith node given as the linguistic label (small, large, .. etc.) associated with
this node function, n is the number of features. The membership is a bell-shape type, and
ranged between (1 and 0).

Osk ¼
βskPk
l¼1 βsl

(14)

As values of these parameters change, membership shaped functions vary accordingly, thus
exhibiting various forms of membership functions on the linguistic label Ai. For every node in

Figure 6. NF classifier architecture. The architecture is used to classify features of navigation maps.
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this layer, there is a circle node which multiplies incoming signals and sends their product out.
Stages of the adopted Neuro-fuzzy classifier, is shown in Figure 6.

χi ¼ μAix k1ð Þ � μBiy k2ð Þ for i ¼ 1, 2 (15)

The output node computes the system output as summation of incoming signals, i.e.:

Xo
i ¼

X
i

Yif i ! Xo
i ¼

P
i Yif iP
i Yi

(16)

More precisely, the class label for the sth sample is obtained by the maximum Oskf g value as
follows:

Cs ¼ maxk¼1,2,…:K Oskf g (17)

The consequent parameters thus identified are optimal (in the consequent parameter space) under
the condition that the premise parameters are fixed. The knowledge system’s weights are conven-
tionally identified by performing maximum likelihood estimation. Given a training data set
Zn ¼ y kð Þ; x kð Þð Þnk¼l, the task is to find aweight vectorwhichminimizes the following cost function:

Jn wð Þ ¼ 1
n

Xn

k¼1
y kð Þ � ŷ x kð Þ;wð Þð Þ2 (18)

As the knowledge based system, ŷ x kð Þ;wð Þ is much interrelated with respect to the weights,
linear optimization techniques cannot be applied. The adopted Neuro-fuzzy system has num-
ber of inputs (n) (representing the features) and (m) outputs (representing classes of features).
In reference to Figure 7, there are dataset about the mobile area and zone of navigation. This is
due to the large amount of information coming from the visual system. Here comes the
potential of employing the PCA to reduce the dimensionality of the input spaces.

4.3. Fuzzy decision based system

The last stage of the mobile robot maps learning system, is the fuzzy decision system. Within
this stage, the hard decisions are undertaken by the mobile robot system during a course of
navigation. A fuzzy system is constructed typically from the following rules:

D ¼ G ∩C⇔μD að Þ ¼ μG að ÞVμGC að Þ, for a∈A
a∗ ¼ ARGmax μG að Þ ∧μc að Þ� �

,…:: a∈A
(19)

The rules (if) parts, are identical to an ordinary fuzzy IF-THEN rules. Given an fuzzy inputs

u ¼ u1; u2;…:;…:unð ÞT the output ŷ kð Þ of a fuzzy system is computed as the weighted average
of the yls, that is:

ŷ kð Þ ¼
Pm

i¼l y
lwl

Pm
i¼l wl (20)
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weights wi are computed as

wi ¼
Yn

i¼1
μcli xið Þ (21)

A dynamic TSK fuzzy system is constructed from the following rules:

if y kð Þð Þ is AP
l

� �
δ ðy kk�nþlð Þ is AP

n

� �
δ u kð Þð Þ is BP� �

) ynþ1 ¼ apl yk þ…aPnyk�nþl þ bPu kð Þ� � (22)

where AP
n

� �
and BP� �

are fuzzy sets, apl
� �

and bP
� �

are constants, p ¼ 1; 2;…:; n; u kð Þð Þ are the
inputs to the system, and u kð Þ ¼ x1 kð Þ,ð x2 kð Þ,…, xnþ1 kð ÞÞ is the fuzzy system knowledge vec-
tor. Typically, the output of the fuzzy decision based system is computed as:

x kð Þ ¼
Pn

p¼1 x
p β
� �

vpPn
p¼1 vp

(23)

Figure 7. Data from navigation spaces in different zones and areas, (z1, z2, z3, …. zm, a1, a2, a3, …. An), they represent
inputs to the PCA.
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where xp k1ð Þ is given in Eq. (23) and:

vp ¼
Yn

i¼1
μAp

i xkð ÞμBp u kð Þð Þ (24)

The mobile robot training datasets, do consist of four inputs. There are also four output
parameters. This is summarized in Tables 1 and 2.

5. The experimentation

Within this section, we shall discuss few experimentations results. In order to implement the
proposed navigation methodology, the (914 PC BOT) has been reengineered in such a way to
allowmore control and observations to be communicated through. The main high-level coding
was achieved using Matlab. Matlab toolboxes have been integrated in such a way to allow
PCA computation, Neuro-fuzzy learning capabilities, and fuzzy decision making routines.
This is further indicated to in Figure 8.

Inputs Outputs

1 x Robot Zone O1 Behavior1

2 y Robot Area O2 Behavior2

3 z Robot Segment O3 Behavior3

4 w Delicate Observations O4 Behavior4

Table 1. Fuzzy decision based system input-outputs representation.

Inputs Outputs

1 First
mobile
stimuli

Identification
of zone of
navigation

Zones identification, and obstacles in
zones, z1, z2, z3, z4, z5, ……. zm

First mobile
behavior.
Behavior1

Rotate around, move robot
forward, move robot
backward, rotate right, rotate
left, …

2 Second
mobile
stimuli

Identification
of area of
locality

Areas identification, and obstacles in
areas. Obstacles in a1: area floor, obstacles
in a2: Out_Corridor, Obstacles in a3:
building. Entry, Obstacles in a4:

Second
mobile
behaviour.
Behavior2

Image focus, image capture, …
image processing of a scene.

3 Third
mobile
stimuli

Identification
of segment of
navigation

Obstacles at different segments within an
area, ..

Third mobile
behaviour.
Behavior3

Video recording zooming with
video capture, ..

4 Fourth
mobile
stimuli

Mobile robot
delicate
sensory
observation

Rotate around, move robot forward, move
robot backward, rotate right, rotate left, …

Fourth
mobile
behaviour.
Behavior4

Delicate mobile action.

Table 2 Neuro-fuzzy classifier, input-outputs representation.
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5.1. Behaviour knowledge building

For building the mobile robot behaviour at localities, the mobile system was maneuvered over a
space in the laboratory for several trails. Typical physical readings from the robot odometry, and
sensory observations were recorded. Typical readings are shown in Figure 9. Different mobile
behaviors (for learning) were also recorded, beside the odometry, and sensory observations.

5.2. Navigation intelligence

Building the mobile robot navigation intelligence is the next phase. This phase requires
blinding all the previous inputs (readings, situations, and behaviors). This will help to take
the most appropriate actions. The designated learning and decision making architecture is a
Neuro-fuzzy. Typical information, that constitute the Neuro-fuzzy classifier inputs are:

The classifier inputs:

ZONES of navigation. This represents typical zones where the mobile robot is located.

AREAS of navigation. This represents typical areas where the mobile robot is moving.

SEGMENT of navigation. This represents typical segment where the mobile robot is moving.

OBSERVATIONS. This represents typical Observations, the mobile is experiencing at a locality.

The classifier outputs:

Figure 8. Implementation system hierarchy.
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First mobile behavior. Behavior1, Rotate Around, Move Robot forward, Move Robot Back-
ward, Rotate Right, Rotate Left, ….

Second mobile behavior. Behavior2, Image Processing of a Scene, … .

Third mobile behavior. Behavior3, Video Recording.

Fourth mobile behavior. Behavior4, Delicate Mobile Action.

With such inputs and system outputs, a good degree of a mixture of mobile behaviors can
therefore be created. This is further listed below:

The implementation system hierarchy, is shown in Figure 8. An adequate of mobile intelli-
gence was created for a mobile navigation within hazardous environments. Inputs to the
Neuro-fuzzy decision based system are coming from the PCA network.

5.3. Fuzzy if-then decision system

In addition, the four system inputs-outputs, do represent the system outputs the mobile robot
should undertake also at any particular situation. While relying on the fuzzy (if-then) state-
ments, we are able to make further final decision to be undertaken by the mobile robot. Within
this sense, we are able to build an (if then statement), as follows:

Typical Fuzzy Rules are:

If (Input_#1 is ….. and Input_#2 is ….) then (Output_#1 is …. and Output_2 is ….) .. ...

If (Input_#3 is ….. and Input_#2 is ….) then (Output_#4 is …. and Output_2 is ….) .. ...

Figure 9. Mobile robot real sensory observations, by experimentation. Dataset have been collected through a number of
runs for the PCA.
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If (Mobile is in zone1 ….. and in area1 ….) then (do image FOUCS).

If (Mobile is in zone1, ….. and in segment2 and, Mobile special task) then (set an ALAM and GAZE).

If (Mobile is in zone3 and in area5 and segment 3, and Image Capture), … then (do image analyze).

If (Mobile in zone41 and in area2 and, … and Special task, then (move back).

Given the defined navigation strategy, the mobile robot is able to undertake much detailed
navigation and behaviors tasks.

6. Conclusions

Learning mobile robot navigation behavior, is an essential feature, for improved navigation. In
addition, it helps to gain further understanding about the spaces of navigation. In this study,
navigation maps details have been created while relying on dataset collected by SLAM rou-
tines. Due to enormous sensory and environmental data observation to be analyzed during
navigation, we have reduced the dimensionally and size of environmental and sensory obser-
vation information with PCA technique. Reduction of environment information (i.e. getting
features), are hence used as learning inputs to a neuro-fuzzy classifier. Examples of Neuro-
fuzzy feature inputs are, navigation locations, areas, …, and behaviors related to particular
localities. The final stage of mobile robot map building is a fuzzy decision based system.
Within this stage, mobile robot navigation decisions are undertaken. With multi-levels of
mobile robot sensory and navigation observation dataset, we have designed a learning system
for mobile robot maps learning with navigating capabilities.
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Abstract

The objective of the chapter is to show current trends in robot navigation systems
related to indoor environments. Navigation systems depend on the level of abstraction
of the environment representation. The three main techniques for representing the
environment will be described: geometric, topological, and semantic. The geometric
representation of the environment is closer to the sensor and actuator world and it is
the best one to perform local navigation. Topological representation of the environment
uses graphs to model the environment and it is used in large navigation tasks. The
semantic representation is the most abstract representation model and adds concepts
such as utilities or meanings of the environment elements in the map representation. In
addition, regardless of the representation used for navigation, perception plays a signif-
icant role in terms of understanding and moving through the environment.

Keywords: robot navigation, environment modeling, topological navigation, semantic
navigation, geometric navigation

1. Introduction: navigation problem

Navigation of mobile robots has been traditionally understood as solving the problem pro-
posed by these three questions (Levitt [1]):

• Where am I?

• Where are other places related to me?

• How do I get to other places from here?
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The answer to these questions refers to localization to determine where the robot is, path-
planning to know how to reach other places from where the robot is, and navigation to
perform the trajectory commanded by the path-planning system.

This approach has ruled robot navigation paradigm and many successful solutions have been
proposed. However, the advances in technical developments allow a wider thought of mobile
robot navigation giving a solution for a “bigger” problem. This solution would give answer to
two additional questions, which are:

• How is this place like?

• How is the structure of the environment I am in?

The answer to these new questions focuses on the importance of perception to determine the
place and the elements of the place where the robot is and the importance of modeling the
environment to determine the structure of the place and infer the connections between places.
When robots are integrated in human environments and live together with humans, percep-
tion and modeling gain importance to enable future tasks related to service robots such as
manipulation or human-robot interaction. In this chapter, we give a conceptual answer to the
traditional robot navigation question and to the questions proposed above.

Robot navigation has been tackled from different perspectives leading to a classification into
three main approaches: geometric navigation, topological navigation, and semantic naviga-
tion. Although the three of them differ in their definition and methods, all of them have the
focus of answering the same questions.

From the beginning, authors have focused on generating metric maps and moving through the
map using metric path planners. The most well-known algorithm to build metric maps is
simultaneous localization and mapping (SLAM) as proposed by Bailey & Durrant-Whyte [2].
Wang et al. [3] use SLAM and Rapidly-exploring Random Tree (RTT) planning with Monte
Carlo localization to drive a wheelchair in indoor environments. Pfrunder et al. [4] use SLAM
and occupancy grids to navigate in heterogeneous environments. However, as larger maps are
considered, it is computationally expensive to keep metric maps and other authors have
focused on topological representations. Fernández-Madrigal et al. [5], design a hierarchical
topological model to drive a wheelchair and perform reactive navigation and path-planned
navigation. Ko et al. [6] works with topological maps where nodes are bags of visual words
and a Bayesian framework is used for localization.

Regarding topological navigation, since the first developments, the global conception of the
system has attracted the interest of several authors. In Kuipers & Levitt [7], the authors
presented a four-level hierarchy (sensorimotor interaction, procedural behaviors, topological
mapping, and metric mapping) to plan trajectories and execute them. Giralt et al. [8] defined a
navigation and control system integrating modeling, planning, and motion control and stated
that the key to autonomous robot was system integration and multisensory-driven navigation.
Mataric [9] defined a distributed navigation model whose main purposes were collision-free
path-planning, landmark detection, and environment learning. In Levitt [1], Levitt established
a visual-based navigation where landmarks are memorized and paths are sequences of
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landmarks. These authors tackled for the first time robot navigation concepts from a topolog-
ical approach and some of them noticed the importance of perception in the navigational
processes.

At the last level of the semantic navigation paradigm, the ability to reason and to infer new
knowledge is required. In today’s world of robotics, there is a general tendency to implement
behavioral mechanisms based on human psychology, taking as example the natural processing
of thought. This allows a greater understanding of the environment and the objects it contains.
This trend is also valued in the field of mobile robot navigation. Navigators have been increas-
ing their level of abstraction over time. Initially, navigation was solved with geometric naviga-
tors that interpreted the environment as a set of accessible areas and areas that were not
accessible. Then, the concept of node and the accessibility between nodes was introduced,
which allowed increasing the level of abstraction generating graphs and calculating trajecto-
ries with algorithms of graphs. However, the level of abstraction has increased a step further,
introducing high-level concepts that classify the rooms according to more complex and
abstract data such as the utility and the objects they contain.

Another important aspect is the collection of the information of the environment, which has to
be available for the navigation systems, among other tasks carried out by mobile robots. This
information is provided by a perceptual system, therefore non-trivial problems appear related
to object detection and place recognition. One of the most challenging issues in scene recogni-
tion is the appearance of a place. Sometimes, the same place may look different or different
places may look similar. Also, the position of the robot and the variation of its point of view
can affect the identification of the place when it is revisited. Environment models and the way
to define the navigation tasks can be remodeled taking into account new technologies and
trends. This will provide more autonomy to mobile robots and will help the interaction with
humans in their usual environments. In this trend, vision is the main sensor for navigation,
localization, and scene recognition. Place recognition is a very well-known challenging prob-
lem that not only has to do with how a robot can give the same meaning that a human do to
the same image, but also with the variability in the appearance of these images in the real
world. Place recognition has a strong relation with many major robotics research fields includ-
ing simultaneous localization and mapping.

2. Geometric navigation

Geometric navigation consists of moving the robot from one point of the environment to
another one, given those points by its coordinates in a map. The map of the environment is
classically represented by a grid of points, and the trajectory between two points is a sequence
of points the robot must reach in the given order. The controller of the robot must reach the
next point of the path closing a loop with the encoder information about its position (distance
and angle). One of the main objectives in the geometric navigation researches is the path-
planning task from an initial point to a final point, creating an algorithm able to find a path
ensuring completeness.
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Although the path-planning task is widely treated in mobile robots, computational capacity
has increased exponentially and more complex algorithms can be developed. Algorithms try to
find the shortest or fastest path while maintaining safety constraints. Another challenge is to
try to get solutions that provide smoother trajectories, trying to imitate the human trajectories.

In the literature, many different algorithms can be found. One of the most important pre-
cedents were the works of LaValle [10], where a classification into two big groups depending
on the way information is discretized is proposed: combinatorial planning and sampling-
based planning. Combinatorial planning constructs structures containing all the necessary
information for route planning; see De Berg et al. [11]. Sampling-based planning is based on
an incremental representation of space and uses collision-free algorithms for path search. Here
are some of the algorithms most used in the path-finding problem.

2.1. Deterministic algorithms

One of the first approaches tries to get all the possible paths between two points and choose
the shortest one. Two example algorithms use potential fields and Voronoi diagrams.

2.1.1. Potential fields

The potential fields method is based on reactive planning techniques, which can be used to
plan locally in unexplored environments. This method assigns to the obstacles similar charac-
teristics that an electrostatic potential might have; in this way, the robot is considered as a
particle under the influence of an artificial potential field that pulls it toward a target position,
Figure 1a. The generation of trajectories is due to an attractive field toward the final position
and another repulsive one with respect to the obstacles [12].

In this way, navigation through potential fields is composed of three phases:

• Calculation of the potential acting on the robot using the sensor data.

• Determination of the vector of the artificial force acting on the robot.

• Generation of the movement orders of the robot.

Figure 1. Trajectories created using potential fields and Voronoi diagram methods. (a) Trajectory of a real robot created
using Potential Fields Method, (b) Trajectories created using Voronoi Diagram by Skeletonization and (c) Trajectories
created by Voronoi Diagram Method.
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On the one hand, the attractive potential must be a function of the distance to the final
destination, decreasing when the robot approaches this point. On the other hand, the repulsive
potential should only be influenced when the robot is at a dangerous distance from obstacles.
Therefore, the potential fields method allows to be performed in real time, as a local planner,
considering obstacles only when the robot is at a minimum distance from them.

The problem that exists in this type of method is the local minimums [13], places where the
potential is null but it is not the final position.

2.1.2. Voronoi diagram

The generation of Voronoi diagrams seeks to maximize the distance between the robot and the
obstacles, looking for the safest path between two points in the space [14]. In this way,
the diagram is defined as the locus of the configurations that are at the same distance from
the obstacles.

The algorithm divides the space into sections formed by vertices and segments that fulfill the
cost function of maximum distance between obstacles, Figure 1. Then, the trajectory is sought
from an initial point to the objective. For a more realistic representation, obstacles are consid-
ered as polygons, since physically an obstacle is not a point.

One way of building the Voronoi diagram is using image-processing methods (skeletonization)
based on the method of Breu [15]. These present a linear (and therefore asymptotically optimal)
time algorithm in order to calculate the Euclidean distance of a binary image.

The algorithm is built with the pixels that result after performing the morphological operations
on the image, with the nodes being the points where the lines that pass through the pixels of
the image intersect.

A trajectory generated by Voronoi diagrams has the disadvantage that it is not optimal from
the point of view of length traveled, it can also present a large number of turns [16]. Moreover,
this method is not efficient for more than two dimensions.

2.2. Probabilistic algorithms

Over the years, a large number of solutions for the navigation problem have been presented
using algorithms with random components, specifically in generic environments and with a
large number of dimensions.

2.2.1. PRM algorithm

Probabilistic roadmap (PRM) is a trajectory planner that searches the connectivity of different
points in the free space from a starting point to the final goal avoiding collisions with obstacles,
using random sampling methods [17].

If the environment in which the robot is located is very complex, this type of algorithm allows
finding a solution without a large computational requirement, so it is used in environments
with a large number of dimensions.
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One of the main problems of PRM is that the solutions it finds do not have to be the optimal
trajectory. Also, since the way it generates the nodes is completely random, it produces a
nonhomogeneous distribution of the samples in the space. These two disadvantages are seen
in Figure 2a.

2.2.2. Rapidly exploring random tree algorithm

Rapidly exploring random tree (RRT) [18] provides a solution by creating random branches
from a starting point. The collision-free branches are stored iteratively and new ones are
created until the target point is reached. The algorithm is started with a tree whose source is a
single node, the starting point. In each iteration, the tree expands by selecting a random state
and expanding the tree to that state. The expansion is performed by extending the nearest node
of the tree to the selected random state, which will depend on the size of the selected step. The
algorithm creates branches until the tree takes a certain extension approaching the goal.

The size of the step is an important parameter of the algorithm. Small values result in slow
expansion, but with finer paths or paths that can take fine turns [19].

2.3. Fast marching square algorithm

Fast marching square (FM2) is a path-planning algorithm, that searches for the optimal path
between two points. It uses the fast marching method (FMM) as a basis for calculation. It is a
modeling algorithm of a physical wave propagation.

The fast marching method uses a function that behaves similar to the propagation of a wave.
The form that this wave propagates, following the Eikonal equation, from an initial point to
reach a goal position is the most efficient way in terms of time to reach it. The fast marching
algorithm calculates the time (T) that the front of the wave, called interface, spends to reach
each point of the map from a starting point. The FMM requires as previous step a

Figure 2. PRM generated and trajectory created using bidirectional RRT. (a) PRM generated for a real environment and
(b) Trajectory created using Bidirectional Rapidly Exploring Ramdom Trees.
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discretization of the environment in a grid of cells, on which the Eikonal equation is solved
iteratively (Figure 3).

The trajectories obtained using FMM present two drawbacks: great abruptness of turns and
trajectories very close to the obstacles. This makes it impossible to use the algorithm as a
trajectory planner in real robotics. The main change in FM2 [20] solves these problems by
generating a speed map that modifies the expansion of the wave taking into account the
proximity to obstacles.

3. Topological navigation

Topological navigation refers to the navigational processes that take place using a topological
representation of the environment. A topological representation is characterized by defining
reference elements of the environment according to the different relations between them.
Reference elements are denominated nodes and the relations between them are characterized
as arches. The aim of topological navigation is to develop navigational behaviors that are
closer to those of humans in order to enhance the human-robot understanding. Summing up
the main implications of topological navigation [21]:

• Topological navigation permits efficient planning. However, as they are based on rela-
tions, they do not minimize distance traveled or execution time.

• Topological navigation does not require precise localization.

• It is easy to understand by humans due to its natural conception.

• A complex recognition model is needed.

• Huge diagrams are involved in large environments and diagrams scale better than geo-
metrical representations.

Figure 3. Trajectory calculated by fast marching square.
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discretization of the environment in a grid of cells, on which the Eikonal equation is solved
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Topological representation classifications, as the one proposed by Vale & Ribeiro [22], differ-
entiate mainly two ways of representing the environment: topological representations based
on movements, for example the works developed by Kuipers & Byun [23], and topological
representations based on geometrical maps, as proposed by Thrun [24]. These two conceptions
differ mainly in the spatial relation between the real world and its representation. Regarding
topological maps based on geometry, an exact relation between the environment and the
representation is mandatory. Every topological node is metrically associated with a position
or place in the environment, whereas, in topological representations based on movements, it is
not necessary to have a metrical correspondence with the elements of the environment. An
example of the same environment represented as a topological map based on geometry and as
a topological map based on movements is shown in Figure 4.

In topological representations based on geometry, nodes normally correspond to geometrical
positions (characterized as x; y;θð Þ) that correspond to geometrical events such as junctions,
dead-ends, etc. and arches correspond to the geometrical transition between positions. In
topological representations based on movements, the relation between nodes is more abstract
as it does not have a geometrical meaning, being a qualitative relation instead of a quantitative
one. That is why arches can be associated to different and more complex behaviors. In addi-
tion, nodes are associated to important sensorial events which can be determined for each
application ranging from important geometrical events to landmarks and objects.

Although there are substantial differences between topological representations based on
geometry and topological representations based on movements, both of them share the defini-
tion of the required modules so the system works efficiently. These modules will be explained
in the following subsections, which are: modeling of the environment, planification and navi-
gation, and perception interface.

3.1. Modeling of the environment as a topological graph

A topological graph, as defined by Simhon & Dudek [25], is a graph representation of an
environment in which the important elements of an environment are defined along with the
transitions among them. The topological graph can be given to the system by the user or can be
built through exploration. Exploration strategies differ if the system works with a topological

Figure 4. Topological representations based on geometry (left) and on movements (right).
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representation based on geometry or a topological representation based on movements. In the
case of using representations based on geometry, exploration and map acquisition strategies
such as the ones explained previously for geometrical representations can be used adding a
processing stage to extract the relevant geometrical positions. In the case of representations
based on movements, strategies like Next Best View, as proposed in Amigoni & Gallo [26], or
Frontier Exploration, as in the work proposed by Arvanitakis et al. [27] can be used. Generally,
these representations are translated into a text file that lists the information of the graph in
order to maximize the graph efficiency. In Figure 5, an example of a map text file structure and
its graphical interpretation is shown. In this example, a topological representation based on
movements is used so the position of the nodes in the graph is not necessarily linked to the
position of reference elements in the environment.

This text file contains all the information required for navigation. Nodes are ordered according
to an identifier and they are associated with their corresponding event type (odometry, marker,
closet, etc.). Arches are associated with the behavior or translational ability that the robot has
to perform (GP, go to point; R, turn; etc.).

A model of the environment can be formed by several topological graphs containing different
information or representing different levels of abstraction, in that case the environment is
modeled as a hierarchical topological graph.

3.2. Topological planification and navigation

Topological navigation behaviors are determined mainly by the path-planning and navigation
(meaning strict motor abilities execution) strategies as considered in Mataric [28]. The different
nodes conforming the path are associated with the topological place where the robot perceives
a sensorial stimulus or where it reaches a required position. In addition, while navigating, the
behavior of the robot is subjugated to real-time perception and movement in the environment.

Topological planification is in charge of finding the topological route that the robot has to
follow; it has to determine the path that the robot has to perform in order to move between two

Figure 5. Example of a topological map and its graphical representation.
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order to maximize the graph efficiency. In Figure 5, an example of a map text file structure and
its graphical interpretation is shown. In this example, a topological representation based on
movements is used so the position of the nodes in the graph is not necessarily linked to the
position of reference elements in the environment.

This text file contains all the information required for navigation. Nodes are ordered according
to an identifier and they are associated with their corresponding event type (odometry, marker,
closet, etc.). Arches are associated with the behavior or translational ability that the robot has
to perform (GP, go to point; R, turn; etc.).

A model of the environment can be formed by several topological graphs containing different
information or representing different levels of abstraction, in that case the environment is
modeled as a hierarchical topological graph.

3.2. Topological planification and navigation

Topological navigation behaviors are determined mainly by the path-planning and navigation
(meaning strict motor abilities execution) strategies as considered in Mataric [28]. The different
nodes conforming the path are associated with the topological place where the robot perceives
a sensorial stimulus or where it reaches a required position. In addition, while navigating, the
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nodes. The path is a subgraph of the original graph of the environment. In order to plan a
trajectory in a topological representation of the environment, a graph path-planning algorithm
has to be used. There are many algorithms in the literature for this purpose, such as Dijkstra’s
algorithm, Skiena [29]. The main objective of Dijkstra’s algorithm is to obtain the shortest path
between nodes in a graph according to some heuristics or cost function. Given an initial node,
it evaluates adjacent nodes and chooses the node that minimizes the cost function. This process
is iterated until the goal node is reached or every connection between nodes has been explored.
Using traditional algorithms such as Dijkstra, many modifications can be implemented to
establish heuristics that fit better to real environments. For example, the cost of a translation
between nodes can be varied according to previous executions or pursing a specific global
behavior, such as the personality factor proposed in Egido et al. [30].

The navigator is in charge of performing the path and reaching the goal node analyzing events
and abilities or positions and transitions. An ability is the order the robot has to execute to
reach coming nodes and it is intrinsically related to motor control. An event is the sign
indicating the robot has reached a node, through sensorial information or odometrically in the
case of representations based on geometry. A navigator can be based on a single behavior or on
multiple behaviors. Topological representations based on geometry are all based on a single
behavior that can be understood as “Going to point” or “Reaching next position.” Topological
representations based on movements can be based on single behaviors also or define a set of
behaviors that would be used for optimizing the transitions between nodes. A multiple-
behavior system contains several strategies and abilities in order to perform navigation behav-
iors and it should enable the inclusion of new strategies. Some of the common abilities
implemented are Go to point, Turn, Contour following, and Go to object. Navigation systems
are complemented with reactive obstacle avoidance modules to guarantee safe operation.

3.3. Managing the information of the environment: perception interface

If the topological navigation system is designed to work with multiple exteroceptive and
proprioceptive events and it has to handle them simultaneously, these events have to be
managed carefully. In order to manage the information that will be assigned to the nodes, a
new module is needed. In this chapter, we will refer to this module as the perception interface.

The perception interface is decoupled from the system translating the specific information of
each perception to a general structure which interacts with the other modules of the topolog-
ical system, as shown in Figure 6. When translating the information to a general structure, the
power of the system is multiplied exponentially, as adding new perception types becomes very

Figure 6. Perception interface and event manager modules distribution.
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simple. Perceptions are mainly based on vision, such as object detection and landmark detec-
tion, but some perceptions such as magnetic signals, ultrasounds, or proprioceptive percep-
tions such as odometry can be used. Another advantage of the perception interface is the
possibility of establishing priorities and relations between perceptions easily.

4. Semantical navigation

The current tendency in robotics is to move from representation models that are closest to the
robot´s hardware such as geometric models to those models closer to the way how humans
reason, with which the robot will interact. It is intended to bring closer the models the way
robots represent the environment and the way they plan to the way the humans do. The
current trend is to implement behavior mechanisms based on human psychology. Robots are
provided with cognitive architectures in order to model the environment, using semantics
concepts that provide more autonomy, and which helps the navigation to be robust and more
efficient.

In theory, any characteristic of the space can be represented on a map. But in general, it tends
to identify a map with geometric information more or less complemented with additional
information. When a mobile robot builds a map, the techniques used generally ignore relevant
descriptive information of the environment and quite close to the process of made by humans,
such as the navigation of the environment, the nature of the activity that there is, what objects
it contains, etc.

The problem of the construction of semantic maps consists of maps that represent not only the
occupation and geometric appearance of the environment but the same properties. Semantics
is needed to give meaning to the data, mainly to make the simplest interpretation of data. The
application of this idea to the construction of maps for mobile robots allows a better under-
standing of the data used to represent the environment and also allows an exchange of
information between robots or between robots and people, if needed, easily. It also allows to
build more accurate models and more useful environment models.

Semantic navigation is another step to the logical representation, it implies an additional
knowledge about the elements of the world and it allows the robot to infer new information.
For instance, the root can perform this type of associations: “There is a photocopier in this
room-> there must be paper nearby”.

Semantic navigation allows the robot to relate what it perceives to the places in which it is
located. This way, an environment model is managed using the objects and on the concepts
that they represent. All this information is used to classify the place where objects are located
and it is used to reach a given location or a specific target. Therefore, the robot can find places
or rooms Vasudevan & Siegwart [31] semantically related with the target, even if it is in a little-
explored or unknown environment. This navigation level allows to complete the information
that is necessary from a partial knowledge of the environment.

Semantic navigation is related to classification methods of the environment object and places,
which provides more effectiveness, as is described in Vasudevan & Siegwart [32]. An example
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of place identification using a Naive Bayes Classifier to infer place identification is shown in
Duda et al. [33] and Kollar & Roy [34]. These works show that relations between object-object
and objet-scenario can be used to predict the location of a variety of objects and scenarios.

4.1. Knowledge representation of the environment

One of the most important issues is how the robot models the environment. In semantic
navigation, a large amount of information related to the environment and to the objects of the
environment is used in the environment representation. For this representation, an ontology
can be used to define the concepts and the links between objects in the environment. Figure 7a
shows the concepts of the ontology and its relations.

4.2. An ontology design through a database

The ontology design can be implemented using different tools. In this work, a relational model
using a database is proposed. Figure 7b shows a relational database diagram scheme. This
scheme is used to understand the elements of the system and its relations. Tables used to
model the ontology are described below.

4.2.1. Basic information tables

Basic information tables are used to store the environment elements. Four elements have been
considered: physical rooms (real locations sensorially perceived by the robot), conceptual rooms
(the type of room that the robot can recognize), physical objects (objects perceived by sensors),
and conceptual objects (each semantic information of the object that the robot must recognize).

• ConceptualRoom: This table stores the information of the rooms understood as concepts.
The table records are those corresponding to the concepts bathroom, bed room, kitchen, etc.

• ConceptualObject: This table contains data related to objects abstractly defined and
understood as concepts. For example, Oven, Computer, Washbasin, etc.

Figure 7. Ontological model for semantic navigation and its implementation on a database. (a) Ontological model for
semantic navigation and (b) Database design for semantic navigation.
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• PhysicalRoom: It stores specific locations, places in space, regions delimited by walls,
having real coordinates, etc., where the robot can move.

• PhysicalObject: This table stores each real object that the robot sensor identifies. This
table contains specific objects: Table-1, Table-2, Computer-1, etc.

With these tables, objects and places have been modeled. More tables are needed in order to
complete the relations and information of the environment that are described below.

4.2.2. Links between primary tables

To complete the model, the following links between the primary tables are needed:

Objects are always in rooms; so, between PhysicalRoom and PhysicalObject tables, there exists a
link. And a physical room may have an indeterminate amount of physical objects. In table
PhysicalObject, the room associated to each object is also stored.

4.2.3. Tables that allow searches by semantic proximity

As an example of the implementation of the tables, Figure 7b shows the design of the database.
This database contains several tables that manage important information to help the robot to
find objects and relations. With the information of this table, if the robot does not locate a
specific object, it can deduce with what other objects it is linked to, helping the robot locate the
object. To get additional information about objects, some tables are defined:

• Interaction: Objects interact with other objects. This table can handle any type of interac-
tion, although tests have been performed with a limited number of them. The interactions
taken into account are: BE_A, when an object is a subtype of another object;
IS_USED_WITH, when an object is used with an object; and IS_INSIDE_OF, when usually
an object is inside another object.

• Utility: All objects have one or more utilities. The tendency is to group objects that have
the same utility (or something related) in the same places. Also, concepts are created
regarding kinds of room depending on what they are used for.

• Meaning: The actions or utilities that an object has often are associated with a specific
meaning. The goal of the navigation may also be oriented to emotions or places that give a
feeling, such as calm or fun. For example, read is an action quiet.

• Characteristic: Objects may have features to best define the concept or even differentiate
them from others. For example, on the one hand, water may be cold, warm, or hot. And
that implies differences in location. Cold water may be found in the refrigerator or in a
fountain, but hot water would come out from the faucet.

These tables include the semantic information of the objects in the environment that can help
the robot to locate on it. For example, considering the utility, it can be said that a computer is
used to work. The robot can go to an office if it needs to locate a computer.
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• PhysicalRoom: It stores specific locations, places in space, regions delimited by walls,
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• PhysicalObject: This table stores each real object that the robot sensor identifies. This
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the same utility (or something related) in the same places. Also, concepts are created
regarding kinds of room depending on what they are used for.
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used to work. The robot can go to an office if it needs to locate a computer.
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This relational database model provides a simple way to define and manage semantic knowl-
edge using simple queries without the need to define rules as it has been described in previous
works (Galindo et al. [35], Galindo et al. [36]).

4.3. Semantic information management

Once the environment and its components are modeled, the next step is to manage the
information in order to accomplish navigation tasks. Robots need to localize in the environ-
ment and calculate the path to the targets defined with semantical information. In the real
robot, semantic targets must be transferred to the topological and geometrical levels in order to
complete the movement of the robot.

4.3.1. Semantic target obtention

Similar to the previous navigation system, a way to establish how to reach a target is needed.
In the proposed semantic system is defined the concept of Semantic Position as a contextual
information unit related to the robot’s position. Semantic Position contains attributes that
correspond to a room code (the target room in this case) and to an object code (the target object
in this case). It is therefore understood that a position is obtained in relation to a semantic
reference point, which can be either objects or rooms. The target of the robot is defined as a
Semantic Position.

Depending on the information available in the database about the requested destination and
the type of destination (object or room), several options can be found in order to establish the
semantic path:

• If the destination is a known object in a known room, the robot has all the information to
reach the Semantic Target.

• If the destination is an unknown room, a semantic exploration routine must be used to
manage the semantic information to locate a room with similar semantic information of
the destination.

• If the destination is an unknown object in a known room, the robot would try to explore it to
get an object with similar semantic information in the room to define it as a Semantic Target.

• If the destination is an unknown object in an unknown room, all information of the object
and room in the database must be used to get an object in a room which matches with the
semantical information of the destination.

To get the Semantic Target, several consultations to the database must be done. One query is
used to obtain the specific object instances that have already been stored, other query to know
the physical room where a specific object is found, and a last query to match a room with a
specific type of object.

In addition, this system allows the search of destinations by semantic proximity. For example,
using the knowledge of Figure 8a if the requested objective is to do something fun, the answer
would be to go to the computer-1. This is because the computer-1 is an object associated with the
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computer concept. The computer concept is associated with the watching movies utility and the
watching movies utility is associated with the fun concept. Using the knowledge of Figure 8b,
searches for objects with characteristics and actions can be done. If the destination is to drink
something cold, the system recognizes cold water as a valid objective. The cold water is related to
the refrigerator, the refrigerator is related to the kitchen, and the kitchen is related to Room-1.
Then, the system goes to Room-1.

4.3.2. Semantic identification of a place

A place, in this case a room, can be identified as a vector of detected objects. The object
observed from the environment must be analyzed and with a query we can get a list of the
types of room where the object can be found. If an object is found, it defines the room where it
is located. For instance, the bed is an object that can only be in a bedroom. If the result of the
previous query returns several records, it is because the object is not discriminatory enough to
be able to conclude any identification, and more additional semantic information and more
queries are needed to get the destination room.

4.4. Example

In this example, the robot is asked for several targets in a home. In the experiment, the robot
has the information provided by the previous exploration of the environment. This informa-
tion is stored in several tables: 1a is the table with physical objects information, 1a is the table
with physical objects information and 1b is the table with deducted knowledge.

The objective is to use semantic information to get the semantic target, that is attached to a
topological or to a geometrical target to which the robot must move (Table 1).

Figure 8. Ontology concepts and semantic relations. (a) Ontology concepts and semantic relations of a office and (b)
Ontology concepts and semantic relations of a kitchen.
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This relational database model provides a simple way to define and manage semantic knowl-
edge using simple queries without the need to define rules as it has been described in previous
works (Galindo et al. [35], Galindo et al. [36]).

4.3. Semantic information management

Once the environment and its components are modeled, the next step is to manage the
information in order to accomplish navigation tasks. Robots need to localize in the environ-
ment and calculate the path to the targets defined with semantical information. In the real
robot, semantic targets must be transferred to the topological and geometrical levels in order to
complete the movement of the robot.

4.3.1. Semantic target obtention

Similar to the previous navigation system, a way to establish how to reach a target is needed.
In the proposed semantic system is defined the concept of Semantic Position as a contextual
information unit related to the robot’s position. Semantic Position contains attributes that
correspond to a room code (the target room in this case) and to an object code (the target object
in this case). It is therefore understood that a position is obtained in relation to a semantic
reference point, which can be either objects or rooms. The target of the robot is defined as a
Semantic Position.

Depending on the information available in the database about the requested destination and
the type of destination (object or room), several options can be found in order to establish the
semantic path:

• If the destination is a known object in a known room, the robot has all the information to
reach the Semantic Target.

• If the destination is an unknown room, a semantic exploration routine must be used to
manage the semantic information to locate a room with similar semantic information of
the destination.

• If the destination is an unknown object in a known room, the robot would try to explore it to
get an object with similar semantic information in the room to define it as a Semantic Target.

• If the destination is an unknown object in an unknown room, all information of the object
and room in the database must be used to get an object in a room which matches with the
semantical information of the destination.

To get the Semantic Target, several consultations to the database must be done. One query is
used to obtain the specific object instances that have already been stored, other query to know
the physical room where a specific object is found, and a last query to match a room with a
specific type of object.

In addition, this system allows the search of destinations by semantic proximity. For example,
using the knowledge of Figure 8a if the requested objective is to do something fun, the answer
would be to go to the computer-1. This is because the computer-1 is an object associated with the
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computer concept. The computer concept is associated with the watching movies utility and the
watching movies utility is associated with the fun concept. Using the knowledge of Figure 8b,
searches for objects with characteristics and actions can be done. If the destination is to drink
something cold, the system recognizes cold water as a valid objective. The cold water is related to
the refrigerator, the refrigerator is related to the kitchen, and the kitchen is related to Room-1.
Then, the system goes to Room-1.

4.3.2. Semantic identification of a place

A place, in this case a room, can be identified as a vector of detected objects. The object
observed from the environment must be analyzed and with a query we can get a list of the
types of room where the object can be found. If an object is found, it defines the room where it
is located. For instance, the bed is an object that can only be in a bedroom. If the result of the
previous query returns several records, it is because the object is not discriminatory enough to
be able to conclude any identification, and more additional semantic information and more
queries are needed to get the destination room.

4.4. Example

In this example, the robot is asked for several targets in a home. In the experiment, the robot
has the information provided by the previous exploration of the environment. This informa-
tion is stored in several tables: 1a is the table with physical objects information, 1a is the table
with physical objects information and 1b is the table with deducted knowledge.

The objective is to use semantic information to get the semantic target, that is attached to a
topological or to a geometrical target to which the robot must move (Table 1).

Figure 8. Ontology concepts and semantic relations. (a) Ontology concepts and semantic relations of a office and (b)
Ontology concepts and semantic relations of a kitchen.
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First, the robot is asked for the kitchen. Checking the table PhysicalConceptualRoom with a
query, the result is Room-1. Repeating the query, in the tables, there are no more kitchens in
the database, so the process finishes.

In a second experiment, the robot is asked for a chair. In the initial environment, there are three
real objects of the CHAIR type. In the query, the robot identifies three chairs: Chair-1, Chair-2,
and Chair-3. The robot gets the information of the rooms in which the chairs are and moves to
the first option. If it indicates that this is not the correct room, the robot moves to the rest of the
options. This process is described in Figure 9.

In case the object has no match with the observed physical object, it is necessary to ask again
for a chair, after having discarded the chairs from the previous test. The operation sequence is
shown in Figure 10a. In Figure 9, another query on chair is shown, and the robot starts to
explore searching in new types of rooms where chairs could be found.

(a) Content of the table physical object (b) Content of the table conceptual physical room

Physical object Conceptual physical room

Name Conceptual name Room name Conceptual name Physical name

Chair-1 CHAIR Room-1 Room-1 KITCHEN

Chair-2 CHAIR Room-2 Room-2 LIVING ROOM

Chair-3 CHAIR Room-3 Room-3 OFFICE

Refrigerator-1 REFRIGERATOR Room-1

Sofa-1 SOFA Room-2

Desk-1 DESK Room-3

Table 1. Tables with semantic information.

Figure 9. Test sequence with the CHAIR object.
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5. Perception model for navigation

Talking about autonomous robots implies carrying out movements safely and having a com-
plete knowledge of the environment. These elements define the capabilities of action and
interaction between the environment, humans, and robots. Tasks performed by mobile robots
such as navigation, localization, planning, among others, can be improved if the perceptual
information is considered. So, the general idea is detecting and identifying meaningful ele-
ments (objects and scenes) of the environment. There are different ways to obtain the informa-
tion about the environment. One of them consists of detecting recognizable features of the
environment (natural landmarks) using several types of sensors. The detection of artificial
landmarks, based on the work of Fischler & Elschlager [37], can be used to acquire a represen-
tation of the environment. However, due to the technological advances in 3D sensors (e.g.,
RGB-D sensors) and according to Huang [38], vision has become the main sensor used for
navigation, localization, and scene recognition. Vision provides significant information about

Figure 10. Ontology concepts and semantic relations. (a) Test sequence with the CHAIR object when there is no match
with no observed physical object and (b) Content of the table ConceptualObjectRoom.

Mobile Robot Navigation in Indoor Environments: Geometric, Topological, and Semantic Navigation
http://dx.doi.org/10.5772/intechopen.79842

103



First, the robot is asked for the kitchen. Checking the table PhysicalConceptualRoom with a
query, the result is Room-1. Repeating the query, in the tables, there are no more kitchens in
the database, so the process finishes.

In a second experiment, the robot is asked for a chair. In the initial environment, there are three
real objects of the CHAIR type. In the query, the robot identifies three chairs: Chair-1, Chair-2,
and Chair-3. The robot gets the information of the rooms in which the chairs are and moves to
the first option. If it indicates that this is not the correct room, the robot moves to the rest of the
options. This process is described in Figure 9.

In case the object has no match with the observed physical object, it is necessary to ask again
for a chair, after having discarded the chairs from the previous test. The operation sequence is
shown in Figure 10a. In Figure 9, another query on chair is shown, and the robot starts to
explore searching in new types of rooms where chairs could be found.

(a) Content of the table physical object (b) Content of the table conceptual physical room

Physical object Conceptual physical room

Name Conceptual name Room name Conceptual name Physical name

Chair-1 CHAIR Room-1 Room-1 KITCHEN

Chair-2 CHAIR Room-2 Room-2 LIVING ROOM

Chair-3 CHAIR Room-3 Room-3 OFFICE

Refrigerator-1 REFRIGERATOR Room-1

Sofa-1 SOFA Room-2

Desk-1 DESK Room-3

Table 1. Tables with semantic information.

Figure 9. Test sequence with the CHAIR object.
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5. Perception model for navigation

Talking about autonomous robots implies carrying out movements safely and having a com-
plete knowledge of the environment. These elements define the capabilities of action and
interaction between the environment, humans, and robots. Tasks performed by mobile robots
such as navigation, localization, planning, among others, can be improved if the perceptual
information is considered. So, the general idea is detecting and identifying meaningful ele-
ments (objects and scenes) of the environment. There are different ways to obtain the informa-
tion about the environment. One of them consists of detecting recognizable features of the
environment (natural landmarks) using several types of sensors. The detection of artificial
landmarks, based on the work of Fischler & Elschlager [37], can be used to acquire a represen-
tation of the environment. However, due to the technological advances in 3D sensors (e.g.,
RGB-D sensors) and according to Huang [38], vision has become the main sensor used for
navigation, localization, and scene recognition. Vision provides significant information about

Figure 10. Ontology concepts and semantic relations. (a) Test sequence with the CHAIR object when there is no match
with no observed physical object and (b) Content of the table ConceptualObjectRoom.
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the objects present in a place; at the same time, it is capable of providing semantic information
of the scene where it is. Scene recognition is a very well-known challenging issue that deals
with how robots understand scenes just like a human does and the appearance variability of
real environments. Therefore, regardless of the type of navigation used, whether geometrical,
topological, or semantic, place recognition and object identification play a significant role in
terms of representation of the environment.

5.1. Object recognition

To perform several tasks in common indoor environments, mobile robots need to quickly and
accurately verify and recognize objects, obstacles, etc. One of these crucial tasks is to move
safely in an unknown environment. Autonomous robots should be able to acquire and hold
visual representations of their environments.

The most important stages in an object recognition model are: feature extraction and predic-
tion. As for feature extraction, the identification of significant aspects of different objects that
belong to the same class, independently of the appearance variabilities, such a scaling, rota-
tion, translation, illumination changing, among others, is crucial to obtain a suitable represen-
tation of the objects present in a scene. Some techniques are based on local and global
descriptors such as the works presented by Bay et al. [39] and Hernández et al. [40], or a
combination of both of them (Hernandez-Lopez et al. [41]). Also, in other approaches such as
the work presented by Csurka et al. [42], visual vocabularies (e. g., bag of words) are com-
monly used to create a proper representation of each object.

Regarding prediction, through the vectors created from the extracted features, it is possible to
learn these characteristics in order to identify objects that correspond with each class. In the
literature, different classification techniques based on machine learning such as nearest neigh-
bor classifier, neural networks, AdaBoost, etc., have been proposed depending on the kind of
extracted features (Pontil & Verri [43]). Machine learning is a field of computer science that
includes algorithms that improve their performance at a given task considering the experience.
In this way, support vector machine (SVM) is one of the most helpful classification algorithms.
The aim of SVM is to generate a training model that is capable of predicting the target classes
of the test dataset, considering only its attributes.

Generally, an object recognition system that works in real time is divided into two stages:
offline and online. Offline stage includes all the processes to reduce the execution time and
guarantee the efficiency of the system, which are image preprocessing, segmentation, feature
extraction, and training process. Online stage refers to the processes carried out in real time
with the goal to ensure the interaction between the robot and the environment. Mainly, the
processes included in the online stage are image retrieval and classification.

Object detection can be very useful for a navigation system since it allows the robot to relate
what it perceives to the scenes in which it is. For this reason, it is necessary to consider that the
designed systems and the sensors are not perfect. Therefore, the object detection model has to
incorporate uncertainty information. The uncertainty management is a relevant aspect in an
object recognition system because it allows to represent the environment and its elements in a
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more realistic way. The uncertainty calculation can be determined considering the dependency
relations between different factors. Some of the factors are: the accuracy of the model that can
be determined empirically and a factor based on the outcomes of the classification algorithm.
Also, other factors can include the influence of other elements of the environment, for example
the distance during the detection process. Finally, considering these factors makes it possible to
obtain a robust object recognition model to serve as an input to a mobile robot.

5.2. Place recognition

The growth of service robotics in recent years has created the needed for developing models
that contribute to robots being able to adequately handle information from human environ-
ments. A semantic model can improve the high-level tasks of a robot, such as, semantic
navigation and human-robot and robot-environment interaction. According to Wang et al.
[44], semantic navigation is considered as a system that takes into account semantic informa-
tion to represent the environment and then to carry out the localization and navigation of the
robot.

In view of the above, place recognition deals with the process of recognizing an area of the
environment in which there are elements (objects), actions are developed, and robot-
environment and human-robot interaction is possible. The scene-understanding issue can be
defined as a combination between scene recognition and object detection. There are
approaches that try to solve the scene recognition problem through computer vision algo-
rithms, including the creation of complex feature descriptors (Xie et al. [45]), and a combina-
tion of feature extraction techniques (Nicosevici & Garcia [46] and Khan et al. [47]), among
others. Moreover, if it is desired to get a robust model as close as possible to reality, the
incorporation of environmental data and errors of the sensors is needed.

Some approaches are based on machine learning and select support vector machine as classi-
fication technique. Commonly, this type of place recognition model is composed by the fol-
lowing processes (Figure 11): image preprocessing, that includes the selection of the datasets
and the initial preprocessing of the images to obtain the training model; feature extraction, that
can implement some techniques such as bag of words, local and global descriptors, among
others; training process, where the parameters of the classifier are defined and the model of the
scene is generated; prediction process that generates the final results of the possible scene
where the robot is located; and ,finally, a last process called reclassification has to be consid-
ered in which it is possible to generate a relationship between the place recognition model and
the elements (objects) of the environment.

In this way, the influence of the objects in the scene can improve, worsen, and correct the final
results on where the robot is located. The process implies the adjustment of the probabilities of
being in a place and therefore the management of uncertainties. To do that, it is necessary that
the place recognition model and the object recognition system work simultaneously in real
time. The uncertainty can be modeled from a set of rules based on learning to determine the
probability of co-occurrence of the objects. Also, it is important to incorporate the prior
information of the place and object recognition models. Finally, it is possible to apply different
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the objects present in a place; at the same time, it is capable of providing semantic information
of the scene where it is. Scene recognition is a very well-known challenging issue that deals
with how robots understand scenes just like a human does and the appearance variability of
real environments. Therefore, regardless of the type of navigation used, whether geometrical,
topological, or semantic, place recognition and object identification play a significant role in
terms of representation of the environment.

5.1. Object recognition

To perform several tasks in common indoor environments, mobile robots need to quickly and
accurately verify and recognize objects, obstacles, etc. One of these crucial tasks is to move
safely in an unknown environment. Autonomous robots should be able to acquire and hold
visual representations of their environments.

The most important stages in an object recognition model are: feature extraction and predic-
tion. As for feature extraction, the identification of significant aspects of different objects that
belong to the same class, independently of the appearance variabilities, such a scaling, rota-
tion, translation, illumination changing, among others, is crucial to obtain a suitable represen-
tation of the objects present in a scene. Some techniques are based on local and global
descriptors such as the works presented by Bay et al. [39] and Hernández et al. [40], or a
combination of both of them (Hernandez-Lopez et al. [41]). Also, in other approaches such as
the work presented by Csurka et al. [42], visual vocabularies (e. g., bag of words) are com-
monly used to create a proper representation of each object.

Regarding prediction, through the vectors created from the extracted features, it is possible to
learn these characteristics in order to identify objects that correspond with each class. In the
literature, different classification techniques based on machine learning such as nearest neigh-
bor classifier, neural networks, AdaBoost, etc., have been proposed depending on the kind of
extracted features (Pontil & Verri [43]). Machine learning is a field of computer science that
includes algorithms that improve their performance at a given task considering the experience.
In this way, support vector machine (SVM) is one of the most helpful classification algorithms.
The aim of SVM is to generate a training model that is capable of predicting the target classes
of the test dataset, considering only its attributes.

Generally, an object recognition system that works in real time is divided into two stages:
offline and online. Offline stage includes all the processes to reduce the execution time and
guarantee the efficiency of the system, which are image preprocessing, segmentation, feature
extraction, and training process. Online stage refers to the processes carried out in real time
with the goal to ensure the interaction between the robot and the environment. Mainly, the
processes included in the online stage are image retrieval and classification.

Object detection can be very useful for a navigation system since it allows the robot to relate
what it perceives to the scenes in which it is. For this reason, it is necessary to consider that the
designed systems and the sensors are not perfect. Therefore, the object detection model has to
incorporate uncertainty information. The uncertainty management is a relevant aspect in an
object recognition system because it allows to represent the environment and its elements in a
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more realistic way. The uncertainty calculation can be determined considering the dependency
relations between different factors. Some of the factors are: the accuracy of the model that can
be determined empirically and a factor based on the outcomes of the classification algorithm.
Also, other factors can include the influence of other elements of the environment, for example
the distance during the detection process. Finally, considering these factors makes it possible to
obtain a robust object recognition model to serve as an input to a mobile robot.

5.2. Place recognition

The growth of service robotics in recent years has created the needed for developing models
that contribute to robots being able to adequately handle information from human environ-
ments. A semantic model can improve the high-level tasks of a robot, such as, semantic
navigation and human-robot and robot-environment interaction. According to Wang et al.
[44], semantic navigation is considered as a system that takes into account semantic informa-
tion to represent the environment and then to carry out the localization and navigation of the
robot.

In view of the above, place recognition deals with the process of recognizing an area of the
environment in which there are elements (objects), actions are developed, and robot-
environment and human-robot interaction is possible. The scene-understanding issue can be
defined as a combination between scene recognition and object detection. There are
approaches that try to solve the scene recognition problem through computer vision algo-
rithms, including the creation of complex feature descriptors (Xie et al. [45]), and a combina-
tion of feature extraction techniques (Nicosevici & Garcia [46] and Khan et al. [47]), among
others. Moreover, if it is desired to get a robust model as close as possible to reality, the
incorporation of environmental data and errors of the sensors is needed.

Some approaches are based on machine learning and select support vector machine as classi-
fication technique. Commonly, this type of place recognition model is composed by the fol-
lowing processes (Figure 11): image preprocessing, that includes the selection of the datasets
and the initial preprocessing of the images to obtain the training model; feature extraction, that
can implement some techniques such as bag of words, local and global descriptors, among
others; training process, where the parameters of the classifier are defined and the model of the
scene is generated; prediction process that generates the final results of the possible scene
where the robot is located; and ,finally, a last process called reclassification has to be consid-
ered in which it is possible to generate a relationship between the place recognition model and
the elements (objects) of the environment.

In this way, the influence of the objects in the scene can improve, worsen, and correct the final
results on where the robot is located. The process implies the adjustment of the probabilities of
being in a place and therefore the management of uncertainties. To do that, it is necessary that
the place recognition model and the object recognition system work simultaneously in real
time. The uncertainty can be modeled from a set of rules based on learning to determine the
probability of co-occurrence of the objects. Also, it is important to incorporate the prior
information of the place and object recognition models. Finally, it is possible to apply different

Mobile Robot Navigation in Indoor Environments: Geometric, Topological, and Semantic Navigation
http://dx.doi.org/10.5772/intechopen.79842

105



theorems such as Bayes to determine the final relation between objects and scenes, and the last
result about where the robot is. The adjusted prediction has to be available as input for
relevant tasks such as localization, navigation, scene understanding, and human-robot and
robot-environment interaction. All this contributes to the main goal that is to have an autono-
mous and independent robot, with a wide knowledge of the environment.

6. Conclusion

The aim of this chapter was to describe different approaches for global navigation systems for
mobile robots applied to indoor environments. Many researches and current developments are
focused on solving specific needs for navigation. Our objective is to merge all these develop-
ments in order to classify them and establish a global frame for navigation.

Robot navigation has been tackled from different perspectives leading to a classification into
three main approaches: geometric navigation, topological navigation, and semantic naviga-
tion. Although the three of them differ in their definition and methods, all of them have the
focus on driving a robot autonomously and safely.

In this chapter, different trends and techniques have been presented, all of them inspired by
biological models and pursuing human abilities and abstraction models. The geometric represen-
tation, closer to the sensor and actuator world, is the best one to perform local navigation and
precise path-planning. Topological representation of the environment, which is based on graphs,
enables large navigation tasks and uses similar models as humans do. The semantic representa-
tion, which is the closest to cognitive human models, adds concepts such as utilities or meanings
of the environment elements and establishes complex relations between them. All of these repre-
sentations are based on the available information of the environment. For this reason, perception
plays a significant role in terms of understanding and moving through the environment.

Despite the differences between the environment representations, we consider that the inte-
gration of all of them and the proper management of the information is the key to achieve a
global navigation system.

Figure 11. Schematic of a general scene recognition model. Vision data are the initial input of the recognition model.
Then, the metric data and object information can be included into the model to update the final outcome of the possible
place where the robot can be.
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theorems such as Bayes to determine the final relation between objects and scenes, and the last
result about where the robot is. The adjusted prediction has to be available as input for
relevant tasks such as localization, navigation, scene understanding, and human-robot and
robot-environment interaction. All this contributes to the main goal that is to have an autono-
mous and independent robot, with a wide knowledge of the environment.

6. Conclusion

The aim of this chapter was to describe different approaches for global navigation systems for
mobile robots applied to indoor environments. Many researches and current developments are
focused on solving specific needs for navigation. Our objective is to merge all these develop-
ments in order to classify them and establish a global frame for navigation.

Robot navigation has been tackled from different perspectives leading to a classification into
three main approaches: geometric navigation, topological navigation, and semantic naviga-
tion. Although the three of them differ in their definition and methods, all of them have the
focus on driving a robot autonomously and safely.

In this chapter, different trends and techniques have been presented, all of them inspired by
biological models and pursuing human abilities and abstraction models. The geometric represen-
tation, closer to the sensor and actuator world, is the best one to perform local navigation and
precise path-planning. Topological representation of the environment, which is based on graphs,
enables large navigation tasks and uses similar models as humans do. The semantic representa-
tion, which is the closest to cognitive human models, adds concepts such as utilities or meanings
of the environment elements and establishes complex relations between them. All of these repre-
sentations are based on the available information of the environment. For this reason, perception
plays a significant role in terms of understanding and moving through the environment.

Despite the differences between the environment representations, we consider that the inte-
gration of all of them and the proper management of the information is the key to achieve a
global navigation system.

Figure 11. Schematic of a general scene recognition model. Vision data are the initial input of the recognition model.
Then, the metric data and object information can be included into the model to update the final outcome of the possible
place where the robot can be.
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Abstract

Robotic perception is related to many applications in robotics where sensory data and 
artificial intelligence/machine learning (AI/ML) techniques are involved. Examples of 
such applications are object detection, environment representation, scene understand-
ing, human/pedestrian detection, activity recognition, semantic place classification, 
object modeling, among others. Robotic perception, in the scope of this chapter, encom-
passes the ML algorithms and techniques that empower robots to learn from sensory 
data and, based on learned models, to react and take decisions accordingly. The recent 
developments in machine learning, namely deep-learning approaches, are evident and, 
consequently, robotic perception systems are evolving in a way that new applications 
and tasks are becoming a reality. Recent advances in human-robot interaction, complex 
robotic tasks, intelligent reasoning, and decision-making are, at some extent, the results 
of the notorious evolution and success of ML algorithms. This chapter will cover recent 
and emerging topics and use-cases related to intelligent perception systems in robotics.

Keywords: robotic perception, machine learning, advanced robotics,  
artificial intelligence

1. Introduction

In robotics, perception is understood as a system that endows the robot with the ability to 
perceive, comprehend, and reason about the surrounding environment. The key components 
of a perception system are essentially sensory data processing, data representation (environ-
ment modeling), and ML-based algorithms, as illustrated in Figure 1. Since strong AI is still 
far from being achieved in real-world robotics applications, this chapter is about weak AI, i.e., 
standard machine learning approaches [1].
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Robotic perception is crucial for a robot to make decisions, plan, and operate in real-world 
environments, by means of numerous functionalities and operations from occupancy grid map-
ping to object detection. Some examples of robotic perception subareas, including autonomous 
robot-vehicles, are obstacle detection [2, 3], object recognition [4, 5], semantic place classification 
[6, 7], 3D environment representation [8], gesture and voice recognition [9], activity classifica-
tion [10], terrain classification [11], road detection [12], vehicle detection [13], pedestrian detec-
tion [14], object tracking [3], human detection [15], and environment change detection [16].

Nowadays, most of robotic perception systems use machine learning (ML) techniques, rang-
ing from classical to deep-learning approaches [17]. Machine learning for robotic perception 
can be in the form of unsupervised learning, or supervised classifiers using handcrafted fea-
tures, or deep-learning neural networks (e.g., convolutional neural network (CNN)), or even 
a combination of multiple methods.

Regardless of the ML approach considered, data from sensor(s) are the key ingredient 
in robotic perception. Data can come from a single or multiple sensors, usually mounted 
onboard the robot, but can also come from the infrastructure or from another robot (e.g., 
cameras mounted on UAVs flying nearby). In multiple-sensors perception, either the same 
modality or multimodal, an efficient approach is usually necessary to combine and process 
data from the sensors before an ML method can be employed. Data alignment and calibration 
steps are necessary depending on the nature of the problem and the type of sensors used.

Sensor-based environment representation/mapping is a very important part of a robotic per-
ception system. Mapping here encompasses both the acquisition of a metric model and its 
semantic interpretation, and is therefore a synonym of environment/scene representation. 
This semantic mapping process uses ML at various levels, e.g., reasoning on volumetric occu-
pancy and occlusions, or identifying, describing, and matching optimally the local regions 
from different time-stamps/models, i.e., not only higher level interpretations. However, in 
the majority of applications, the primary role of environment mapping is to model data from 
exteroceptive sensors, mounted onboard the robot, in order to enable reasoning and inference 
regarding the real-world environment where the robot operates.

Robot perception functions, like localization and navigation, are dependent on the environ-
ment where the robot operates. Essentially, a robot is designed to operate in two categories of 

Figure 1. Key modules of a typical robotic perception system: sensory data processing (focusing here on visual and 
range perception); data representations specific for the tasks at hand; algorithms for data analysis and interpretation 
(using AI/ML methods); and planning and execution of actions for robot-environment interaction.
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environments: indoors or outdoors. Therefore, different assumptions can be incorporated in 
the mapping (representation) and perception systems considering indoor or outdoor environ-
ments. Moreover, the sensors used are different depending on the environment, and therefore, 
the sensory data to be processed by a perception system will not be the same for indoors and 
outdoors scenarios. An example to clarify the differences and challenges between a mobile 
robot navigating in an indoor versus outdoor environment is the ground, or terrain, where 
the robot operates. Most of indoor robots assume that the ground is regular and flat which, in 
some manner, facilitates the environment representation models; on the other hand, for field 
(outdoors) robots, the terrain is quite often far from being regular and, as consequence, the 
environment modeling is itself a challenge and, without a proper representation, the subse-
quent perception tasks are negatively affected. Moreover, in outdoors, robotic perception has 
to deal with weather conditions and variations in light intensities and spectra.

Similar scenario-specific differences exist in virtually all use-cases of robotic vision, as exempli-
fied by the 2016 Amazon Picking Challenge participants’ survey [18], requiring complex yet 
robust solutions, and therefore considered one of the most difficult tasks in the pick-and-place 
application domain. Moreover, one of the participating teams from 2016 benchmarked a pose 
estimation method on a warehouse logistics dataset, and found large variations in performance 
depending on clutter level and object type [2]. Thus, perception systems currently require expert 
knowledge in order to select, adapt, extend, and fine-tune the various employed components.

Apart from the increased training data sizes and robustness, the end-to-end training aspect 
of deep-learning (DL) approaches made the development of perception systems easier and 
more accessible for newcomers, as one can obtain the desired results directly from raw data 
in many cases, by providing a large number of training examples. The method selection 
often boils down to obtaining the latest pretrained network from an online repository and 
fine-tuning it to the problem at hand, hiding all the traditional feature detection, description, 
filtering, matching, optimization steps behind a relatively unified framework. Unfortunately, 
at the moment an off-the-shelf DL solution for every problem does not exist, or at least no 
usable pretrained network, making the need for huge amounts of training data apparent. 
Therefore, large datasets are a valuable asset for modern AI/ML. A large number of datasets 
exist for perception tasks as well, with a survey of RGB-D datasets presented by Firman [5] 
(up-to-date list available online: http://www.michaelfirman.co.uk/RGBDdatasets/), and even 
tools for synthetically generating sensor-based datasets, e.g., the work presented by Handa 
et al. [4] which is available online: http://robotvault.bitbucket.org/. However, the danger is to 
overfit to such benchmarks, as the deployment environment of mobile robots is almost sure 
to differ from the one used in teaching the robot to perceive and understand the surrounding 
environment. Thus, the suggestions formulated by Wagstaff [19] still hold true today and 
should be taken to heart by researchers and practitioners.

As pointed out recently by Sünderhauf et al. [17], robotic perception (also designated robotic 
vision in [17]) differs from traditional computer vision perception in the sense that, in robot-
ics, the outputs of a perception system will result in decisions and actions in the real world. 
Therefore, perception is a very important part of a complex, embodied, active, and goal-driven 
robotic system. As exemplified by Sünderhauf et al. [17], robotic perception has to translate 
images (or scans, or point-clouds) into actions, whereas most computer vision applications 
take images and translate the outputs into information.
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[6, 7], 3D environment representation [8], gesture and voice recognition [9], activity classifica-
tion [10], terrain classification [11], road detection [12], vehicle detection [13], pedestrian detec-
tion [14], object tracking [3], human detection [15], and environment change detection [16].

Nowadays, most of robotic perception systems use machine learning (ML) techniques, rang-
ing from classical to deep-learning approaches [17]. Machine learning for robotic perception 
can be in the form of unsupervised learning, or supervised classifiers using handcrafted fea-
tures, or deep-learning neural networks (e.g., convolutional neural network (CNN)), or even 
a combination of multiple methods.

Regardless of the ML approach considered, data from sensor(s) are the key ingredient 
in robotic perception. Data can come from a single or multiple sensors, usually mounted 
onboard the robot, but can also come from the infrastructure or from another robot (e.g., 
cameras mounted on UAVs flying nearby). In multiple-sensors perception, either the same 
modality or multimodal, an efficient approach is usually necessary to combine and process 
data from the sensors before an ML method can be employed. Data alignment and calibration 
steps are necessary depending on the nature of the problem and the type of sensors used.

Sensor-based environment representation/mapping is a very important part of a robotic per-
ception system. Mapping here encompasses both the acquisition of a metric model and its 
semantic interpretation, and is therefore a synonym of environment/scene representation. 
This semantic mapping process uses ML at various levels, e.g., reasoning on volumetric occu-
pancy and occlusions, or identifying, describing, and matching optimally the local regions 
from different time-stamps/models, i.e., not only higher level interpretations. However, in 
the majority of applications, the primary role of environment mapping is to model data from 
exteroceptive sensors, mounted onboard the robot, in order to enable reasoning and inference 
regarding the real-world environment where the robot operates.

Robot perception functions, like localization and navigation, are dependent on the environ-
ment where the robot operates. Essentially, a robot is designed to operate in two categories of 

Figure 1. Key modules of a typical robotic perception system: sensory data processing (focusing here on visual and 
range perception); data representations specific for the tasks at hand; algorithms for data analysis and interpretation 
(using AI/ML methods); and planning and execution of actions for robot-environment interaction.
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environments: indoors or outdoors. Therefore, different assumptions can be incorporated in 
the mapping (representation) and perception systems considering indoor or outdoor environ-
ments. Moreover, the sensors used are different depending on the environment, and therefore, 
the sensory data to be processed by a perception system will not be the same for indoors and 
outdoors scenarios. An example to clarify the differences and challenges between a mobile 
robot navigating in an indoor versus outdoor environment is the ground, or terrain, where 
the robot operates. Most of indoor robots assume that the ground is regular and flat which, in 
some manner, facilitates the environment representation models; on the other hand, for field 
(outdoors) robots, the terrain is quite often far from being regular and, as consequence, the 
environment modeling is itself a challenge and, without a proper representation, the subse-
quent perception tasks are negatively affected. Moreover, in outdoors, robotic perception has 
to deal with weather conditions and variations in light intensities and spectra.

Similar scenario-specific differences exist in virtually all use-cases of robotic vision, as exempli-
fied by the 2016 Amazon Picking Challenge participants’ survey [18], requiring complex yet 
robust solutions, and therefore considered one of the most difficult tasks in the pick-and-place 
application domain. Moreover, one of the participating teams from 2016 benchmarked a pose 
estimation method on a warehouse logistics dataset, and found large variations in performance 
depending on clutter level and object type [2]. Thus, perception systems currently require expert 
knowledge in order to select, adapt, extend, and fine-tune the various employed components.

Apart from the increased training data sizes and robustness, the end-to-end training aspect 
of deep-learning (DL) approaches made the development of perception systems easier and 
more accessible for newcomers, as one can obtain the desired results directly from raw data 
in many cases, by providing a large number of training examples. The method selection 
often boils down to obtaining the latest pretrained network from an online repository and 
fine-tuning it to the problem at hand, hiding all the traditional feature detection, description, 
filtering, matching, optimization steps behind a relatively unified framework. Unfortunately, 
at the moment an off-the-shelf DL solution for every problem does not exist, or at least no 
usable pretrained network, making the need for huge amounts of training data apparent. 
Therefore, large datasets are a valuable asset for modern AI/ML. A large number of datasets 
exist for perception tasks as well, with a survey of RGB-D datasets presented by Firman [5] 
(up-to-date list available online: http://www.michaelfirman.co.uk/RGBDdatasets/), and even 
tools for synthetically generating sensor-based datasets, e.g., the work presented by Handa 
et al. [4] which is available online: http://robotvault.bitbucket.org/. However, the danger is to 
overfit to such benchmarks, as the deployment environment of mobile robots is almost sure 
to differ from the one used in teaching the robot to perceive and understand the surrounding 
environment. Thus, the suggestions formulated by Wagstaff [19] still hold true today and 
should be taken to heart by researchers and practitioners.

As pointed out recently by Sünderhauf et al. [17], robotic perception (also designated robotic 
vision in [17]) differs from traditional computer vision perception in the sense that, in robot-
ics, the outputs of a perception system will result in decisions and actions in the real world. 
Therefore, perception is a very important part of a complex, embodied, active, and goal-driven 
robotic system. As exemplified by Sünderhauf et al. [17], robotic perception has to translate 
images (or scans, or point-clouds) into actions, whereas most computer vision applications 
take images and translate the outputs into information.
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2. Environment representation

Among the numerous approaches used in environment representation for mobile robotics, 
and for autonomous robotic-vehicles, the most influential approach is the occupancy grid 
mapping [20]. This 2D mapping is still used in many mobile platforms due to its efficiency, 
probabilistic framework, and fast implementation. Although many approaches use 2D-based 
representations to model the real world, presently 2.5D and 3D representation models are 
becoming more common. The main reasons for using higher dimensional representations 
are essentially twofold: (1) robots are demanded to navigate and make decisions in higher 
complex environments where 2D representations are insufficient; (2) current 3D sensor tech-
nologies are affordable and reliable, and therefore 3D environment representations became 
attainable. Moreover, the recent advances in software tools, like ROS and PCL, and also the 
advent of methods like Octomaps, developed by Hornung et al. [21], have been contributing 
to the increase in 3D-like environment representations.

The advent and proliferation of RGBD sensors has enabled the construction of larger and ever-
more detailed 3D maps. In addition, considerable effort has been made in the semantic labeling 
of these maps, at pixel and voxels levels. Most of the relevant approaches can be split into two 
main trends: methods designed for online and those designed for offline use. Online methods 
process data as it is being acquired by the mobile robot, and generate a semantic map incremen-
tally. These methods are usually coupled with a SLAM framework, which ensures the geomet-
ric consistency of the map. Building maps of the environment is a crucial part of any robotic 
system and arguably one of the most researched areas in robotics. Early work coupled map-
ping with localization as part of the simultaneous localization and mapping (SLAM) problem 
[22, 23]. More recent work has focused on dealing with or incorporating time-dependencies 
(short or long term) into the underlying structure, using either grid maps as described in [8, 24], 
pose-graph representations in [25], and normal distribution transform (NDT) [16, 26].

As presented by Hermans et al. [27], RGBD data are processed by a random forest-based clas-
sifier and predict semantic labels; these labels are further regularized through the conditional 
random field (CRF) method proposed by Krahenbuhl and Koltun [28]. Similarly, McCormac 
et al. [29] use the elastic fusion SLAM algorithm proposed by Whelan et al. [30] to fuse CNN 
predictions about the scene in a geometrically consistent map. In the work of Sünderhauf et al. 
[6], a CNN is used to incrementally build a semantic map, with the aim of extending the num-
ber of classes supported by the CNN by complementing it with a series of one-vs-all classifiers 
which can be trained online. A number of semantic mapping approaches are designed to 
operate offline, taking as input a complete map of the environment. In the methods described 
by Ambrus et al. [31, 32] and Armeni et al. [33], large-scale point clouds of indoor buildings are 
processed, and then, after segmenting the input data, the method’s outputs are in the form of 
a set of “rooms.” Ambrus et al. [31, 32] use a 2D cell-complex graph-cut approach to compute 
the segmentation with the main limitation that only single floor buildings can be processed, 
while Armeni et al. [33] process multifloor structures by detecting the spaces between the 
walls, ceilings, etc., with the limitation that the building walls have to be axis-aligned (i.e., the 
Manhattan world assumption). Similarly, in the work proposed by Mura et al. [34], a large 
point cloud of an indoor structure is processed by making use of a 3D cell-complex structure 
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and outputting a mesh containing the semantic segmentation of the input data. However, the 
main limitation in [34] is that the approach requires knowledge of the positions from which 
the environment was scanned when the input data were collected.

The recent work presented by Brucker et al. [7] builds on the segmentation of Ambrus et al. 
[31, 32] and explores ways of fusing different types of information, such as presence of objects 
and cues of the types of rooms to obtain a semantic segmentation of the environment. The aim 
of the work presented by Brucker et al. [7] is to obtain an intuitive and human-like labeling 
of the environment while at the same time preserving as many of the semantic features as 
possible. Also, Brucker et al. [7] use a conditional random field (CRF) or the fusion of various 
heterogeneous data sources and inference is done using Gibbs sampling technique.

Processing sensory data and storing it in a representation of the environment (i.e., a map of 
the environment) has been and continues to be an active area in robotics research, includ-
ing autonomous driving system (or autonomous robotic-vehicles). The approaches covered 
range from metric representations (2D or 3D) to higher semantic or topological maps, and all 
serve specific purposes key to the successful operation of a mobile robot, such as localization, 
navigation, object detection, manipulation, etc. Moreover, the ability to construct a geometri-
cally accurate map further annotated with semantic information also can be used in other 
applications such as building management or architecture, or can be further fed back into a 
robotic system, increasing the awareness of its surroundings and thus improving its ability 
to perform certain tasks in human-populated environments (e.g., finding a cup is more likely 
to be successful if the robot knows a priori which room is the kitchen and how to get there).

3. Artificial intelligence and machine learning applied on  
robotics perception

Once a robot is (self) localized, it can proceed with the execution of its task. In the case of autono-
mous mobile manipulators, this involves localizing the objects of interest in the operating envi-
ronment and grasping them. In a typical setup, the robot navigates to the region of interest, 
observes the current scene to build a 3D map for collision-free grasp planning and for localizing 
target objects. The target could be a table or container where something has to be put down, or 
an object to be picked up. Especially in the latter case, estimating all 6 degrees of freedom of an 
object is necessary. Subsequently, a motion and a grasp are computed and executed. There are 
cases where a tighter integration of perception and manipulation is required, e.g., for high-pre-
cision manipulation, where approaches like visual servoing are employed. However, in every 
application, there is a potential improvement for treating perception and manipulation together.

Perception and manipulation are complementary ways to understand and interact with 
the environment and according to the common coding theory, as developed and presented 
by Sperry [35], they are also inextricably linked in the brain. The importance of a tight link 
between perception and action for artificial agents has been recognized by Turing [36], who 
suggested to equip computers “with the best sense organs that money can buy” and let them 
learn from gathered experiences until they pass his famous test as described in [37].
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and outputting a mesh containing the semantic segmentation of the input data. However, the 
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[31, 32] and explores ways of fusing different types of information, such as presence of objects 
and cues of the types of rooms to obtain a semantic segmentation of the environment. The aim 
of the work presented by Brucker et al. [7] is to obtain an intuitive and human-like labeling 
of the environment while at the same time preserving as many of the semantic features as 
possible. Also, Brucker et al. [7] use a conditional random field (CRF) or the fusion of various 
heterogeneous data sources and inference is done using Gibbs sampling technique.

Processing sensory data and storing it in a representation of the environment (i.e., a map of 
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range from metric representations (2D or 3D) to higher semantic or topological maps, and all 
serve specific purposes key to the successful operation of a mobile robot, such as localization, 
navigation, object detection, manipulation, etc. Moreover, the ability to construct a geometri-
cally accurate map further annotated with semantic information also can be used in other 
applications such as building management or architecture, or can be further fed back into a 
robotic system, increasing the awareness of its surroundings and thus improving its ability 
to perform certain tasks in human-populated environments (e.g., finding a cup is more likely 
to be successful if the robot knows a priori which room is the kitchen and how to get there).

3. Artificial intelligence and machine learning applied on  
robotics perception

Once a robot is (self) localized, it can proceed with the execution of its task. In the case of autono-
mous mobile manipulators, this involves localizing the objects of interest in the operating envi-
ronment and grasping them. In a typical setup, the robot navigates to the region of interest, 
observes the current scene to build a 3D map for collision-free grasp planning and for localizing 
target objects. The target could be a table or container where something has to be put down, or 
an object to be picked up. Especially in the latter case, estimating all 6 degrees of freedom of an 
object is necessary. Subsequently, a motion and a grasp are computed and executed. There are 
cases where a tighter integration of perception and manipulation is required, e.g., for high-pre-
cision manipulation, where approaches like visual servoing are employed. However, in every 
application, there is a potential improvement for treating perception and manipulation together.

Perception and manipulation are complementary ways to understand and interact with 
the environment and according to the common coding theory, as developed and presented 
by Sperry [35], they are also inextricably linked in the brain. The importance of a tight link 
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learn from gathered experiences until they pass his famous test as described in [37].
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The argument for embodied learning and grounding of new information evolved, considering 
the works of Steels and Brooks [38] and Vernon [39], and more recently in [40], robot perception 
involves planning and interactive segmentation. In this regard, perception and action recipro-
cally inform each other, in order to obtain the best results for locating objects. In this context, 
the localization problem involves segmenting objects, but also knowing their position and 
orientation relative to the robot in order to facilitate manipulation. The problem of object pose 
estimation, an important prerequisite for model-based robotic grasping, uses in most of the 
cases precomputed grasp points as described by Ferrari and Canny [41]. We can categorize this 
topic in either template/descriptor-based approaches or alternatively local feature/patch-based 
approaches. In both cases, an ever-recurring approach is that bottom-up data-driven hypothe-
sis generation is followed and verified by top-down concept-driven models. Such mechanisms 
are assumed, as addressed by Frisby and Stone [42], to be like our human vision system.

The approaches presented in ([43–45] make use of color histograms, color gradients, depth 
or normal orientations from discrete object views, i.e., they are examples of vision-/camera-
based perception for robots. Vision-based perception systems typically suffer from occlusions, 
aspect ratio influence, and from problems arising due to the discretization of the 3D or 6D 
search space. Conversely, in the works of [46–48], they predict the object pose through voting 
or a PnP algorithm [49]. The performance usually decreases if the considered object lacks tex-
ture and if the background is heavily cluttered. In the works listed above, learning algorithms 
based on classical ML methods and deep-learning (e.g., CNN) have been employed.

The importance of mobile manipulation and perception areas has been signaled by the (not 
only academic) interest spurred by events like the Amazon Robotics (formerly Picking) 
Challenge and the workshop series at the recent major computer vision conferences asso-
ciated with the SIXD Challenge (http://cmp.felk.cvut.cz/sixd/workshop_2018/). However, 
current solutions are either heavily tailored to a specific application, requiring specific engi-
neering during deployment, or their generality makes them too slow or imprecise to fulfill 
the tight time-constraints of industrial applications. While deep learning holds the potential 
to both improve accuracy (i.e., classification or recognition performance) and also to increase 
execution speed, more work on transfer learning, in the sense of generalization improvement, 
is required to apply models learned in real-world and also in unseen (new) environment. 
Domain adaptation and domain randomization (i.e., image augmentations) seem to be impor-
tant directions to pursue, and should be explored not only for vision/camera cases, but also 
for LiDAR-based perception cases.

Usually, in traditional mobile robot manipulation use-cases, the navigation and manipulation 
capabilities of a robot can be exploited to let the robot gather data about objects autonomously. 
This can involve, for instance, observing an object of interest from multiple viewpoints in 
order to allow a better object model estimation, or even in-hand modeling. In the case of 
perception for mobile robots and autonomous (robot) vehicles, such options are not avail-
able; thus, its perception systems have to be trained offline. However, besides AI/ML-based 
algorithms and higher level perception, for autonomous driving applications, environment 
representation (including multisensor fusion) is of primary concern [50, 51].

The development of advanced perception for (full) autonomous driving has been a sub-
ject of interest since the 1980s, having a period of strong development due to the DARPA 
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Challenges (2004, 2005, and 2007) and the European ELROB challenges (since 2006), and more 
recently, it has regained considerable interest from automotive and robotics industries and 
academia. Research in self-driving cars, also referred as autonomous robot-cars, is closely 
related to mobile robotics and many important works in this field have been published 
in well-known conferences and journals devoted to robotics. Autonomous driving systems 
(ADS) comprise, basically, perception (including sensor-fusion and environment modeling/
representation), localization, and navigation (path planning, trajectory following, control) 
and, more recently, cooperation (V2X-based communication technologies). However, the 
cornerstone of ADS is the perception system because it is involved in most of the essen-
tial and necessary tasks for safe driving such as the “segmentation,” detection/recognition, 
of: road, lane-markings, pedestrians, and other vulnerable road users (e.g., cyclists), other 
vehicles, traffic signals, crosswalks, and the numerous other types of objects and obstacles 
that can be found on the roads. In addition to the sensors (e.g., cameras, LIDAR, Radar, 
“new” solid-state LiDAR technology) and the models used in ADS, the common denomina-
tor in a perception system consists of AI/ML algorithms, where deep learning is the leading 
technique for semantic segmentation and object detection [50].

One of current trends in autonomous vehicles and robotics is the promising idea of incorpo-
rating cooperative information, from connected environment/infrastructure, into the decision 
loop of the robotic perception system. The rationale is to improve robustness and safety by 
providing complementary information to the perception system, for example: the position 
and identification of a given object or obstacle on the road could be reported (e.g., broadcasted 
through a communication network) in advance to an autonomous car, moments before the 
object/obstacle are within the onboard sensor’s field/range of view.

4. Case studies

4.1. The Strands project

The EU FP7 Strands project [52] is formed by a consortium of six universities and two indus-
trial partners. The aim of the project is to develop the next generation of intelligent mobile 
robots, capable of operating alongside humans for extended periods of time. While research 
into mobile robotic technology has been very active over the last few decades, robotic systems 
that can operate robustly, for extended periods of time, in human-populated environments 
remain a rarity. Strands aims to fill this gap and to provide robots that are intelligent, robust, 
and can provide useful functions in real-world security and care scenarios. Importantly, the 
extended operation times imply that the robotic systems developed have to be able to cope 
with an ever-increasing amount of data, as well as to be able to deal with the complex and 
unstructured real world (Figure 2).

Figure 3 shows a high level overview of the Strands system (with more details in [52]): the 
mobile robot navigates autonomously between a number of predefined waypoints. A task 
scheduling mechanism dictates when the robot should visit which waypoints, depending on 
the tasks the robot has to accomplish on any given day. The perception system consists, at the 
lowest level, of a module which builds local metric maps at the waypoints visited by the robot. 

Intelligent Robotic Perception Systems
http://dx.doi.org/10.5772/intechopen.79742

117



The argument for embodied learning and grounding of new information evolved, considering 
the works of Steels and Brooks [38] and Vernon [39], and more recently in [40], robot perception 
involves planning and interactive segmentation. In this regard, perception and action recipro-
cally inform each other, in order to obtain the best results for locating objects. In this context, 
the localization problem involves segmenting objects, but also knowing their position and 
orientation relative to the robot in order to facilitate manipulation. The problem of object pose 
estimation, an important prerequisite for model-based robotic grasping, uses in most of the 
cases precomputed grasp points as described by Ferrari and Canny [41]. We can categorize this 
topic in either template/descriptor-based approaches or alternatively local feature/patch-based 
approaches. In both cases, an ever-recurring approach is that bottom-up data-driven hypothe-
sis generation is followed and verified by top-down concept-driven models. Such mechanisms 
are assumed, as addressed by Frisby and Stone [42], to be like our human vision system.

The approaches presented in ([43–45] make use of color histograms, color gradients, depth 
or normal orientations from discrete object views, i.e., they are examples of vision-/camera-
based perception for robots. Vision-based perception systems typically suffer from occlusions, 
aspect ratio influence, and from problems arising due to the discretization of the 3D or 6D 
search space. Conversely, in the works of [46–48], they predict the object pose through voting 
or a PnP algorithm [49]. The performance usually decreases if the considered object lacks tex-
ture and if the background is heavily cluttered. In the works listed above, learning algorithms 
based on classical ML methods and deep-learning (e.g., CNN) have been employed.

The importance of mobile manipulation and perception areas has been signaled by the (not 
only academic) interest spurred by events like the Amazon Robotics (formerly Picking) 
Challenge and the workshop series at the recent major computer vision conferences asso-
ciated with the SIXD Challenge (http://cmp.felk.cvut.cz/sixd/workshop_2018/). However, 
current solutions are either heavily tailored to a specific application, requiring specific engi-
neering during deployment, or their generality makes them too slow or imprecise to fulfill 
the tight time-constraints of industrial applications. While deep learning holds the potential 
to both improve accuracy (i.e., classification or recognition performance) and also to increase 
execution speed, more work on transfer learning, in the sense of generalization improvement, 
is required to apply models learned in real-world and also in unseen (new) environment. 
Domain adaptation and domain randomization (i.e., image augmentations) seem to be impor-
tant directions to pursue, and should be explored not only for vision/camera cases, but also 
for LiDAR-based perception cases.

Usually, in traditional mobile robot manipulation use-cases, the navigation and manipulation 
capabilities of a robot can be exploited to let the robot gather data about objects autonomously. 
This can involve, for instance, observing an object of interest from multiple viewpoints in 
order to allow a better object model estimation, or even in-hand modeling. In the case of 
perception for mobile robots and autonomous (robot) vehicles, such options are not avail-
able; thus, its perception systems have to be trained offline. However, besides AI/ML-based 
algorithms and higher level perception, for autonomous driving applications, environment 
representation (including multisensor fusion) is of primary concern [50, 51].

The development of advanced perception for (full) autonomous driving has been a sub-
ject of interest since the 1980s, having a period of strong development due to the DARPA 

Applications of Mobile Robots116

Challenges (2004, 2005, and 2007) and the European ELROB challenges (since 2006), and more 
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loop of the robotic perception system. The rationale is to improve robustness and safety by 
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4. Case studies

4.1. The Strands project

The EU FP7 Strands project [52] is formed by a consortium of six universities and two indus-
trial partners. The aim of the project is to develop the next generation of intelligent mobile 
robots, capable of operating alongside humans for extended periods of time. While research 
into mobile robotic technology has been very active over the last few decades, robotic systems 
that can operate robustly, for extended periods of time, in human-populated environments 
remain a rarity. Strands aims to fill this gap and to provide robots that are intelligent, robust, 
and can provide useful functions in real-world security and care scenarios. Importantly, the 
extended operation times imply that the robotic systems developed have to be able to cope 
with an ever-increasing amount of data, as well as to be able to deal with the complex and 
unstructured real world (Figure 2).

Figure 3 shows a high level overview of the Strands system (with more details in [52]): the 
mobile robot navigates autonomously between a number of predefined waypoints. A task 
scheduling mechanism dictates when the robot should visit which waypoints, depending on 
the tasks the robot has to accomplish on any given day. The perception system consists, at the 
lowest level, of a module which builds local metric maps at the waypoints visited by the robot. 
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Figure 3. The Strands system—Overview.

These local maps are updated over time, as the robot revisits the same locations in the environ-
ment, and they are further used to segment out the dynamic objects from the static scene. The 
dynamic segmentations are used as cues for higher level behaviors, such as triggering a data 
acquisition and object modeling step, whereby the robot navigates around the detected object 
to collect additional data which are fused into a canonical model of the object [53]. The data can 

Figure 2. The Strands project (image from http://strands.acin.tuwien.ac.at/).
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further be used to generate a textured mesh through which a convolutional neural network 
can be trained which can successfully recognize the object in future observations [31, 32]. The 
dynamics detected in the environment can be used to detect patterns, either through spectral 
analysis (i.e., by applying a Fourier transform on the raw detection data), as described in [54], 
or as part of a multitarget tracking system based on a Rao-Blackwellized particle filter.

In addition to the detection and modeling of objects, the Strands perception system also focuses 
on the detection of people. Beyer et al. [55] present a method to continuously estimate the 
head-pose of people, while in [15] laser and RGB-D are combined to reliably detect humans 
and to allow human-aware navigation approaches which make the robot more socially accept-
able. Beyer et al. [56] propose a CNN-based system which uses laser scanner data to detect 
objects; the usefulness of the approach is demonstrated in the case scenario, where it is used to 
detect wheelchairs and walkers.

Robust perception algorithms that can operate reliably for extended periods of time are one 
of the cornerstones of the Strands system. However, any algorithm deployed on the robot 
has to be not only robust, but also able to scale as the robot makes more observations and 
collects more information about the world. One of the key parts that would enable the suc-
cessful operation of such a robotic system is a perception stack that is able to continuously 
integrate observations about the world, extract relevant parts as well as build models that 
understand and are able to predict what the environment will look like in the future. This 
spatio-temporal understanding is crucial, as it allows a mobile robot to compress the data 
acquired during months of autonomous operation into models that can be used to refine the 
robot’s operation over time. Modeling periodicities in the environment and integrating them 
into a planning pipeline is further investigated by Fentanes et al. [57], while Santos et al. 
[58] build spatio-temporal models of the environment and use them for exploration through 
an information-theoretic approach which predicts the potential gain of observing particular 
areas of the world at different points in time.

4.2. The RobDREAM project

Advanced robots operating in complex and dynamic environments require intelligent per-
ception algorithms to navigate collision-free, analyze scenes, recognize relevant objects, and 
manipulate them. Nowadays, the perception of mobile manipulation systems often fails if 
the context changes due to a variation, e.g., in the lightning conditions, the utilized objects, 
the manipulation area, or the environment. Then, a robotic expert is needed who needs to 
adjust the parameters of the perception algorithm and the utilized sensor or even select a better 
method or sensor. Thus, a high-level cognitive ability that is required for operating alongside 
humans is to continuously improve performance based on introspection. This adaptability to 
changing situations requires different aspects of machine learning, e.g., storing experiences for 
life-long learning, generating annotated datasets for supervised learning through user interac-
tion, Bayesian optimization to avoid brute-force search in high-dimensional data, and a unified 
representation of data and meta-data to facilitate knowledge transfer.

The RobDREAM consortium automated and integrated different aspects of these. Specifically, 
in the EU’s H2020 RobDREAM project, a mobile manipulator was used to showcase the 
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objects; the usefulness of the approach is demonstrated in the case scenario, where it is used to 
detect wheelchairs and walkers.

Robust perception algorithms that can operate reliably for extended periods of time are one 
of the cornerstones of the Strands system. However, any algorithm deployed on the robot 
has to be not only robust, but also able to scale as the robot makes more observations and 
collects more information about the world. One of the key parts that would enable the suc-
cessful operation of such a robotic system is a perception stack that is able to continuously 
integrate observations about the world, extract relevant parts as well as build models that 
understand and are able to predict what the environment will look like in the future. This 
spatio-temporal understanding is crucial, as it allows a mobile robot to compress the data 
acquired during months of autonomous operation into models that can be used to refine the 
robot’s operation over time. Modeling periodicities in the environment and integrating them 
into a planning pipeline is further investigated by Fentanes et al. [57], while Santos et al. 
[58] build spatio-temporal models of the environment and use them for exploration through 
an information-theoretic approach which predicts the potential gain of observing particular 
areas of the world at different points in time.

4.2. The RobDREAM project

Advanced robots operating in complex and dynamic environments require intelligent per-
ception algorithms to navigate collision-free, analyze scenes, recognize relevant objects, and 
manipulate them. Nowadays, the perception of mobile manipulation systems often fails if 
the context changes due to a variation, e.g., in the lightning conditions, the utilized objects, 
the manipulation area, or the environment. Then, a robotic expert is needed who needs to 
adjust the parameters of the perception algorithm and the utilized sensor or even select a better 
method or sensor. Thus, a high-level cognitive ability that is required for operating alongside 
humans is to continuously improve performance based on introspection. This adaptability to 
changing situations requires different aspects of machine learning, e.g., storing experiences for 
life-long learning, generating annotated datasets for supervised learning through user interac-
tion, Bayesian optimization to avoid brute-force search in high-dimensional data, and a unified 
representation of data and meta-data to facilitate knowledge transfer.

The RobDREAM consortium automated and integrated different aspects of these. Specifically, 
in the EU’s H2020 RobDREAM project, a mobile manipulator was used to showcase the 
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intuitive programming and simplified setup of robotic applications enabled by automatically 
tuning task execution pipelines according to user-defined performance criteria.

As illustrated in Figure 4, this was achieved by a semantically annotated logging of percep-
tual episodic memories that can be queried intuitively in order to analyze the performance of 
the system in different contexts. Then, a ground truth annotation tool can be used by the user 
to mark satisfying results, or correct unsatisfying ones, where the suggestions and interactive 
capabilities of the system reduced the cognitive load of this often complicated task (espe-
cially when it comes to 6 DoF pose annotations), as shown in user studies involving computer 
vision expert and nonexpert users alike.

These annotations are then used by a Bayesian optimization framework to tune the off-
the-shelf pipeline to the specific scenarios the robot encounters, thereby incrementally 
improving the performance of the system. The project did not focus only on perception, 
but on other key technologies for mobile manipulation as well. Bayesian optimization and 
other techniques were used to adapt the navigation, manipulation, and grasping capa-
bilities independently of each other and the perception ones. However, the combinatorial 
complexity of the joint parameter space of all the involved steps was too much even for 
such intelligent meta-learners. The final industrially relevant use-case demo featured the 
kitting and mounting of electric cabinet board elements, for which a pose-annotated data-
base was built using two RBD-D cameras and released to the public (http://www.dlr.de/
rm/thr-dataset).

4.3. The SPENCER project

When deploying robots in scenarios where they need to share the environment and inter-
act with a large number of people, it is increasingly important that their functionalities 
are “socially aware.” This means that they respect the personal space (and also privacy) of 
encountered persons, does not navigate s.t. to cut up cues or groups, etc. Such functionalities 
go beyond the usual focus of robotics research groups, while academics focusing on user 
experience typically do not have the means to develop radically new robots. However, the 
EU’s FP7 program funded such an interdisciplinary project, called SPENCER, driven by an 
end-user in the aviation industry.

Figure 4. Schematics of the RobDREAM approach (image based on deliverables of http://robdream.eu/).
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Since around 80% of passenger traffic at different hubs, including Schiphol in Amsterdam, is 
comprised of passengers who are transferring from one flight to the other, KLM is interested 
in an efficient management of their movements. For example, when transfer times are short, 
and finding one’s way in a big airport is difficult due to language and alphabet barriers, 
people are at risk to losing their connection. In such, and similar cases, robotic assistants that 
can be deployed and booked flexibly can possibly help alleviate some of the problem. This 
use-case was explored by the SPENCER demonstrator for smart passengers’ flow manage-
ment and mobile information provider, but similar solutions are required in other domains 
as well (Figure 5).

Figure 5. Concept and results of the SPENCER project (images from http://www.spencer.eu/).
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The SPENCER consortium integrated the developed technologies onto a robot platform 
whose task consists in picking up short-transfer time passenger groups at their gate of arrival, 
identifying them with an onboard boarding pass reader, guiding them to the Schengen barrier 
and instructing them to use the priority track [59]. Additionally, the platform was equipped 
with a KLM information kiosk and provides services to passengers in need of help.

In crowded environments such as airports, generating short and safe paths for mobile robots 
is still difficult. Thus, social scene understanding and long-term prediction of human motion 
in crowds is not sufficiently solved but highly relevant for all robots that need to quickly 
navigate in human environments, possibly under temporal constraints. Social scene under-
standing means, in part, that a reliable tracking and prediction of people’s motion with low 
uncertainty is available, and that is particularly hard if there are too many occlusions and 
too many fast changes of motion direction. Classical path planning approaches often result 
in an overconstrained or overly cautious robot that either fails to produce a feasible and 
safe path in the crowd, or plans a large and suboptimal detour to avoid people in the scene.

4.4. The AUTOCITS project

The AUTOCITS (https://www.autocits.eu/) project will carry out a comprehensive assessment 
of cooperative systems and autonomous driving by deploying real-world Pilots, and will 
study and review regulations related to automated and autonomous driving. AUTOCITS, 
cofinanced by the European Union through the Connecting Europe Facility (CEF) Program, 
aims to facilitate the deployment of autonomous vehicles in European roads, and to use 
connected/cooperative intelligent transport systems (C-ITS) services to share information 
between autonomous vehicles and infrastructure, by means of V2V and V2I communica-
tion technology, to improve safety and to facilitate the coexistence of autonomous cars in 
real-world traffic conditions. The AUTOCITS Pilots, involving connected and autonomous 
vehicles (including autonomous shuttles, i.e., low-speed robot-vehicles), will be deployed 
in three major European cities in “the Atlantic Corridor of the European Network”: Lisbon 
(Portugal), Madrid (Spain), and Paris (France).

A number of technologies are involved in AUTOCITS, ranging from the onboard and road-
side units (OBU, RSU) to the autonomous driving systems that equip the cars. Today, the 
autonomous and/or automated driving technology we see on the roads belongs to the levels 
3 or 4 (with respect to the SAE’s levels of automation in vehicles). In AUTOCITS, the Pilot’s 
deployment will be of level 3 to 4. In this context, it is important to say that level 5 cars (i.e., 
100% self-driving or full-automated cars: the driving wheels would be unnecessary) operat-
ing in real-world roads and streets are still far from reality.

We can say that the perception system is in charge of all tasks related to object and event 
detection and response (OEDR). Therefore, a perception system—including of course its soft-
ware modules—is responsible for sensing, understanding, and reasoning about the autono-
mous car’s surroundings. Within a connected and cooperative environment, connected cars 
would leverage and complement onboard sensor data by using information from vehicular 
communication systems (i.e., V2X technology): information from other connected vehicles, 
from infrastructure, and road users (and vice-versa).
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5. Conclusions and remarks

So just how capable is current perception and AI, and how close did/can it get to human-level 
performance? Szeliski [60] in his introductory book to computer vision argued that tradi-
tional vision struggled to reach the performance of a 2-year old child, but today’s CNNs reach 
super-human classification performance on restricted domains (e.g., in the ImageNet Large 
Scale Visual Recognition Challenge: http://www.image-net.org/challenges/LSVRC/).

The recent surge and interest in deep-learning methods for perception has greatly improved 
performance in a variety of tasks such as object detection, recognition, semantic segmentation, 
etc. One of the main reasons for these advancements is that working on perception systems 
lends itself easily to offline experimentation on publicly available datasets, and comparison to 
other methods via standard benchmarks and competitions.

Machine learning (ML) and deep learning (DL), the latter has been one of the most used 
keywords in some conferences in robotics recently, are consolidated topics embraced by 
the robotics community nowadays. While one can interpret the filters of CNNs as Gabor 
filters and assume to be analogous to functions of the visual cortex, currently, deep learn-
ing is a purely nonsymbolic approach to AI/ML, and thus not expected to produce “strong” 
AI/ML. However, even at the current level, its usefulness is undeniable, and perhaps, 
the most eloquent example comes from the world of autonomous driving which brings 
together the robotics and the computer vision community. A number of other robotics-
related products are starting to be commercially available for increasingly complex tasks 
such as visual question and answering systems, video captioning and activity recognition, 
large-scale human detection and tracking in videos, or anomaly detection in images for 
factory automation.
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Abstract

A road mapping and feature extraction for mobile robot navigation in road roundabout
and road following environments is presented in this chapter. In this work, the online
mapping of mobile robot employing the utilization of sensor fusion technique is used to
extract the road characteristics that will be used with path planning algorithm to enable
the robot to move from a certain start position to predetermined goal, such as road curbs,
road borders, and roundabout. The sensor fusion is performed using many sensors,
namely, laser range finder, camera, and odometry, which are combined on a new wheeled
mobile robot prototype to determine the best optimum path of the robot and localize it
within its environments. The local maps are developed using an image’s preprocessing
and processing algorithms and an artificial threshold of LRF signal processing to recog-
nize the road environment parameters such as road curbs, width, and roundabout. The
path planning in the road environments is accomplished using a novel approach so called
Laser Simulator to find the trajectory in the local maps developed by sensor fusion.
Results show the capability of the wheeled mobile robot to effectively recognize the road
environments, build a local mapping, and find the path in both road following and
roundabout.

Keywords: LRF, vision system, odometry, laser simulator, road roundabout,
road following, 2D map, local map

1. Introduction

Autonomous navigation can be defined as the ability of the mobile robot to determine its
position within the reference frame environment using suitable sensors, plan its path mission
through the terrain from the start toward the goal position using high planner techniques and
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perform the path using actuators, all with a high degree of autonomy. In other words, the robot
during navigation must be able to answer the following questions [1]:

• Where have I been? It is solved using cognitive maps.

• Where am I? It is determined by the localization algorithm.

• Where am I going? It is done by path planning.

• How can I go there? It is performed by motion control system.

Autonomous navigation comprises many tasks between the sensing and actuating processes that
can be further divided into two approaches: behavior-based navigation and model-based navi-
gation. The behavior-based navigation depends on the interaction of some asynchronous sets of
behaviors of the robot and the environment such as: build maps, explore, avoid obstacles, and
follow right/left and goal seeking, which are fused together to generate suitable actions for the
actuators. The model-based navigation includes four subtasks that are performed synchronously
step by step: perception, localization, path planning, and motion control. This is the common
navigation systems that have been used and found in the literature.

The model-based navigation will be explained in details, since it is implemented in the proposed
navigation system. In the perception task of this navigation model, the sensors are used to
acquire and produce enormous information and good observation for the environments, where
the robot navigates. There is a range of sensors that can be chosen for the autonomous navigation
depending on the task of mobile robot, which generally can be classified into two groups:
absolute position measurements and relative position measurements [2]. The European robotics
platform (EUROP) marks the perception process in the robotics system as the main problem
which needs further research solutions [1].

The localization process can be perceived as the answer to the question: where am I? In order
to enable the robot to find its location within the environments, two types of information are
needed. First, a-priori information is given to the robot from maps or cause-effect relationships
in an initialization phase. Second, the robot acquires information about the environment
through observation by sensors. Sensor fusion techniques are always used to combine the
initial information and position measurements of sensors to estimate the location of the robot
instantly [1].

In the path planning process, the collision-free path between start and target positions is
determined continuously. There are two types of path planning: (a) global planning or delib-
erative technique and (b) local path planning or sensor-based planning. In the former, the
surrounding terrain of the mobile robot is known totally, and then the collision-free path is
determined offline, while in the latter, the surrounding terrain of the mobile robot is partially
or totally unknown, and the robot uses the sensor data for planning the path online in the
environments [1]. The path planning consists of three main steps, namely, the environment’s
modeling, determination of the collision-free trajectory from the initial to target positions, and
searching continuously for the goal [1].

In motion control, the mobile robot should apply a steering strategy that attempts to prevent
slippage and reduce position errors. The control algorithm has to guarantee a zero steady-state
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orientation or position error. The kinematic and dynamic analysis of the mobile robot is used
to find the parameters of the controllers for continuously avoiding the obstacles and moving
toward the target position through the predefined path [1]. The autonomous navigation
system can be classified according to the environmental features as follows:

i. Structured environments: it is usually found in indoor applications, where the environ-
ments are totally known.

ii. Semi-structured environments: the environments are partially known.

iii. Unstructured environments: outdoor applications are almost unstructured, where the
environments are totally unknown.

There are many factors that can make outdoor autonomous navigation very complex in
comparison to the indoor navigation:

i. The borders of surrounding terrain in the indoor application are clear and distinct.
However, in contrary to that, they are mostly “faded” in outdoor setting.

ii. The robot algorithm should be able to discover and deal with many things that are not in
the initial planning.

iii. The locomotion of robot will be different depending on the terrain roughness.

iv. Outdoor autonomous navigation should have adequate robustness and reliable enough
because the robot typically works and meddles with people and encounters unexpected
moving obstacles.

v. Weather changes can affect the mobile robot sensor measurement, electronic devices, and
actuators. For example, the inhomogeneous of the light will affect the camera when
capturing the image of the scene, the sunray affects the laser measurement, and ultrasonic
measurement becomes unavailable.

Although the outdoor navigation in urban area is a topic involving a wide range and level of
difficulties, it is attractive and forms a challenge to the researchers who are motivated to
discover solution(s) to the problems via their proposed developed technique. Until today, there
is as yet a robot or vehicle, which is able to drive fully autonomously on the roads of urban
buildings, taking into account a high level of robust interaction with its environments [3, 4].
This vehicle is expected to operate in a dangerous situation, since it always passes through
crowded area, must follow printed or signal traffic lights and more often than not, it is in touch
with the people.

Most navigation systems on the roads are performed using two or more sensors to obtain the
parameters of the surrounding environment, taking into consideration various situations and
conditions. Sensor fusion technique is the common method that has been used in navigation of
mobile robot in road environments. In this model, the methods for extracting the features of
roads can be done with reference to either behavior-based navigation or model-based naviga-
tion as described in the following paragraphs.

Global positioning system (GPS) is used as the main sensor and combined with odometry and
LRF for trajectory tracking, obstacle avoiding and localization in curbed roads [5] or navigating
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crowded area, must follow printed or signal traffic lights and more often than not, it is in touch
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Most navigation systems on the roads are performed using two or more sensors to obtain the
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mobile robot between urban buildings [6]. GPS can be combined with LRF and dead reckoning
for navigating vehicles in roads using beacons and landmarks [7], combined with camera vision
for localizing mobile robot in color marked roads [8], combined with 3D laser scanner for
building compact maps to be used in a miscellaneous navigation applications of mobile robot
[9], combined with IMU, camera vision, and sonar altimeter for navigating unmanned helicopter
through urban building [10] or combined with LRF and inertial sensors for leading mobile robot
ATRV-JR in paved and rugged terrain [11, 12]. GPS can be combined with INS and odometry
sensor for helping GPS to increase its positioning accuracy of vehicles [13]. GPS is combinedwith
odometry and GIS (geographical information system) for road matching-based vehicle naviga-
tion [14]. GPS can also be combined with LIDAR (light detection and ranging) and INS for
leading wheelchair in urban building by 3D map-based navigation [15]. GPS is combined with
a video camera and INS for navigating the vehicles by lane detection of roads [16]. GPS is
combined with INS for increasing position estimation of vehicles [17]. GPS is combined with
INS and odometry for localizing mobile robot in urban buildings [18]. Camera video with
odometry is used for navigating land vehicle, road following by lane signs and obstacles
avoiding [19]. Omni-directional infrared vision system can be used for localizing patrol mobile
robot in an electrical station environment [20]. 3D map building and urban scenes are used in
mobile robot navigation by fusing stereo vision and LRF [21].

LRF can be combined with cameras and odometry for online modeling of road boundary
navigation [6], for enhancing position accuracy during mobile robot navigation [22] or for
correcting trajectory navigation of mobile robot [23]. Also, it can be combined with compass
and odometry for building map-based mobile robot navigation [1]. It can be combined with
color CCD camera for modeling roads and driving mobile robot in paved and unpaved road
[24], for crossing roads through landmark detection [25], for obstacle detecting and avoiding
[26] or for road recognition process [27]. It can be combined with sonar and camera vision for
navigating mobile robot when crossing roads [1]. 3D LRF is combined with two color camera,
INS, and odometry for cross-country navigation of ADAM mobile robot through natural
terrain [1]. It can be combined with IMU, CCD camera, and odometry for guiding tractor
vehicle in Citrus Grove [1]. It can be combined with camera, LRF, sonar, and compass for
building 3D map of an urban environment [1].

Priori map can be used for navigation by mapping precisely environment landmarks [1]. Dead
reckoning is used for estimating position accurately by feature detection in mobile robot [1]. A
hybrid methodology between the teleoperating and autonomous navigation system has been
applied in a curbed road environment as explained in [5]. A combination of differential global
positioning system (DGPS) and odometry with extended Kalman filter is used to localize the
mobile robot in a road environment. LRF is used for obstacle avoidance by finding the suitable
path to pass through the road curbs and to estimate the position of the road curbs during
trajectory tracking. The main setback in this work is that the robot cannot work autonomously
in road environments.

Jose et al. [7] presented a robust outdoor navigation system using LRF, and dead reckoning is
proposed for navigating vehicles using beacons and landmarks on the roads. The system is
studied considering several cylindrical or V-shaped objects (beacons) that can be detected
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using LRF in a road environment. The information filter (derived from Kalman filter) is used to
gather data from sensors and build map and determine the localization of robot. The results
show that the accuracy of the online mapping is very close to DGPS, which has accuracy equal
to 1 cm. Donghoon et al. [8] proposed a navigation system method based on fusing two
localization systems is proposed. The first one uses a camera vision system with particle filter,
while the second uses two GPS with Kalman filter. The printed marks on the road like arrows,
lines, and cross are effectively detected through the camera system. By processing the camera’s
data using the hyperbola-pair lane detection, that is, Delaunay triangulation method for point
extraction and mapping based on sky view of points, the robot is able to determine the current
position within its environment. To eliminate the camera drawback like lens distortion and
inaccuracy in the long run, GPS system data are used to complement and validate the camera’s
data. The errors between the predefined map and real-time measurements are found to be
0.78 m in x direction and 0.43 m in y direction.

Cristina et al. [9] suggested a compact 3D map building for a miscellaneous navigation applica-
tion of mobile robot in real time performed through the use of the GPS and 3D laser scanner. A
3D laser scanner senses the environment surface with sufficient accuracy to obtain a map, which
is processed to get a qualitative description of the traversable environment cell. The 3D local map
is built using 2D Voronoi diagram model, while the third dimension is determined through the
data from laser scanner for the terrain reversibility. The previous map is gathered with the GPS
information to build a global map. This system is able to detect the slopes of navigated surfaces
using Brezets algorithm and the roughness of the terrain using normal vector deviation for the
whole region. Although the proposed algorithm is very complicated, the result shows that it is
able to extract an area as big as 40 � 20 m in an outdoor environment for 0.89 s.

2. Platform overview

A new platform for an autonomous wheeled mobile robot navigation system has been
designed and developed in our labs. It is comprised of the following parts as shown in
Figure 1:

• Two motors, type: DC-brush with power 120 W and model DKM.

• One spherical Castor wheel.

• 4 m range LRF; model HOKUYO URG-04LX-UG01.

• High resolution WiFi camera, model JVC-GC-XA1B.

• Two optical rotary odometry; model, B106.

• Motors drivers, types SmartDrive 40.

• Five cards for the interface free-based controllers system (IFC): interface power, abbrevi-
ated as IFC-IP00; interface computer, abbreviated as IFC-IC00; interface brushless, abbre-
viated as IFC-BL02; and interface brush motors, abbreviated as IFCBH02.
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mobile robot between urban buildings [6]. GPS can be combined with LRF and dead reckoning
for navigating vehicles in roads using beacons and landmarks [7], combined with camera vision
for localizing mobile robot in color marked roads [8], combined with 3D laser scanner for
building compact maps to be used in a miscellaneous navigation applications of mobile robot
[9], combined with IMU, camera vision, and sonar altimeter for navigating unmanned helicopter
through urban building [10] or combined with LRF and inertial sensors for leading mobile robot
ATRV-JR in paved and rugged terrain [11, 12]. GPS can be combined with INS and odometry
sensor for helping GPS to increase its positioning accuracy of vehicles [13]. GPS is combinedwith
odometry and GIS (geographical information system) for road matching-based vehicle naviga-
tion [14]. GPS can also be combined with LIDAR (light detection and ranging) and INS for
leading wheelchair in urban building by 3D map-based navigation [15]. GPS is combined with
a video camera and INS for navigating the vehicles by lane detection of roads [16]. GPS is
combined with INS for increasing position estimation of vehicles [17]. GPS is combined with
INS and odometry for localizing mobile robot in urban buildings [18]. Camera video with
odometry is used for navigating land vehicle, road following by lane signs and obstacles
avoiding [19]. Omni-directional infrared vision system can be used for localizing patrol mobile
robot in an electrical station environment [20]. 3D map building and urban scenes are used in
mobile robot navigation by fusing stereo vision and LRF [21].

LRF can be combined with cameras and odometry for online modeling of road boundary
navigation [6], for enhancing position accuracy during mobile robot navigation [22] or for
correcting trajectory navigation of mobile robot [23]. Also, it can be combined with compass
and odometry for building map-based mobile robot navigation [1]. It can be combined with
color CCD camera for modeling roads and driving mobile robot in paved and unpaved road
[24], for crossing roads through landmark detection [25], for obstacle detecting and avoiding
[26] or for road recognition process [27]. It can be combined with sonar and camera vision for
navigating mobile robot when crossing roads [1]. 3D LRF is combined with two color camera,
INS, and odometry for cross-country navigation of ADAM mobile robot through natural
terrain [1]. It can be combined with IMU, CCD camera, and odometry for guiding tractor
vehicle in Citrus Grove [1]. It can be combined with camera, LRF, sonar, and compass for
building 3D map of an urban environment [1].

Priori map can be used for navigation by mapping precisely environment landmarks [1]. Dead
reckoning is used for estimating position accurately by feature detection in mobile robot [1]. A
hybrid methodology between the teleoperating and autonomous navigation system has been
applied in a curbed road environment as explained in [5]. A combination of differential global
positioning system (DGPS) and odometry with extended Kalman filter is used to localize the
mobile robot in a road environment. LRF is used for obstacle avoidance by finding the suitable
path to pass through the road curbs and to estimate the position of the road curbs during
trajectory tracking. The main setback in this work is that the robot cannot work autonomously
in road environments.

Jose et al. [7] presented a robust outdoor navigation system using LRF, and dead reckoning is
proposed for navigating vehicles using beacons and landmarks on the roads. The system is
studied considering several cylindrical or V-shaped objects (beacons) that can be detected
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using LRF in a road environment. The information filter (derived from Kalman filter) is used to
gather data from sensors and build map and determine the localization of robot. The results
show that the accuracy of the online mapping is very close to DGPS, which has accuracy equal
to 1 cm. Donghoon et al. [8] proposed a navigation system method based on fusing two
localization systems is proposed. The first one uses a camera vision system with particle filter,
while the second uses two GPS with Kalman filter. The printed marks on the road like arrows,
lines, and cross are effectively detected through the camera system. By processing the camera’s
data using the hyperbola-pair lane detection, that is, Delaunay triangulation method for point
extraction and mapping based on sky view of points, the robot is able to determine the current
position within its environment. To eliminate the camera drawback like lens distortion and
inaccuracy in the long run, GPS system data are used to complement and validate the camera’s
data. The errors between the predefined map and real-time measurements are found to be
0.78 m in x direction and 0.43 m in y direction.

Cristina et al. [9] suggested a compact 3D map building for a miscellaneous navigation applica-
tion of mobile robot in real time performed through the use of the GPS and 3D laser scanner. A
3D laser scanner senses the environment surface with sufficient accuracy to obtain a map, which
is processed to get a qualitative description of the traversable environment cell. The 3D local map
is built using 2D Voronoi diagram model, while the third dimension is determined through the
data from laser scanner for the terrain reversibility. The previous map is gathered with the GPS
information to build a global map. This system is able to detect the slopes of navigated surfaces
using Brezets algorithm and the roughness of the terrain using normal vector deviation for the
whole region. Although the proposed algorithm is very complicated, the result shows that it is
able to extract an area as big as 40 � 20 m in an outdoor environment for 0.89 s.

2. Platform overview

A new platform for an autonomous wheeled mobile robot navigation system has been
designed and developed in our labs. It is comprised of the following parts as shown in
Figure 1:

• Two motors, type: DC-brush with power 120 W and model DKM.

• One spherical Castor wheel.

• 4 m range LRF; model HOKUYO URG-04LX-UG01.

• High resolution WiFi camera, model JVC-GC-XA1B.

• Two optical rotary odometry; model, B106.

• Motors drivers, types SmartDrive 40.

• Five cards for the interface free-based controllers system (IFC): interface power, abbrevi-
ated as IFC-IP00; interface computer, abbreviated as IFC-IC00; interface brushless, abbre-
viated as IFC-BL02; and interface brush motors, abbreviated as IFCBH02.
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• The platform has an additional part such as battery with model NP7-12 lead acid and the
aluminum profile and sheet-based chassis as shown in Figure 1.

3. Sensor modeling and feature extraction

The data coming from each sensor in the platform were prepared in such a way that it enables
for the extraction of the road features autonomously while navigating on the road. It is
described in the following section.

3.1. Camera

JVC-GC-XA1B camera is utilized to figure out the environments in front of the robot with good
resolution (760 � 320) and speed equal to 30 frame/s. The sequences of pictures are extracted
from the live video using image processing tool boxes in MATLAB. An algorithm has been
developed that can take the image sequences from the video and apply multiple operations to
get a local map from the image and perform further calculation for road following and
roundabout detection. In general, the image sequences processing algorithm consists of three
main parts:

i. Preprocessing of the image for depth processing.

ii. Processing of the image and development of the environment local map.

iii. Post processing algorithms to perform the following subtasks:

• Roundabout detection based on LS approach.

• Road following in the roads without curbs.

Figure 1. The developed platform used for experiments.
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The first and second steps will be explained here, while the third one will be explained in next
section.

(i) Preprocessing of the image for depth processing.

A preprocessing algorithm is utilized to capture the environments of the road from the live
video and prepare it in an appropriate form to be processed in the next processes. The main
operations that have been used at this step can be briefly described as follows:

• Constructing the video input object: the video input object represents the connection
between MATLAB and a particular image acquisition device.

vid = videoinput(‘winvideo’,3);

• Preview of the WiFi video: it creates a video preview window that displays live video data
for video input object. The window also displays the timestamp and video resolution of
each frame and the current status of video input object.

preview (vid);

• Setting the brightness of live video

The brightness of image’s sequences is adjusted, since the aperture of camera is not
automatic. Following command is used:

set (vid.source, ‘Brightness’, 35);

• Start acquiring frames

This function helps to reserve the image device for the exclusive use in this program and
locks the configuration to others applications. Thus, certain properties become read only
while running.

Start(vid);

• Acquiring the image frames to MATLAB workspace

It returns the data, which contains the number of frames specified in the (Frames per
Trigger) property of the video input object.

data = getdata(vid);

• Crop image

It allows for cutting the interesting regions in the images. In the proposed algorithm, the
bottom half of the image is cropped, since it contains the nearest area of the road to the
robot; also to save time needed for calculation in comparison with whole image.

GH = imcrop(data, [1 u1 io(2) io(1)]);

• Convert from RGB into grayscale

Thepurpose is tomake imageuseful for the edgedetection and removing the noise operations.

IS = rgb2gray(GH);
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robot; also to save time needed for calculation in comparison with whole image.
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• Remove image acquisition object from memory

It is used to free memory at the end of an image acquisition session and start a new frame
acquisition.

delete(vid).

(ii) Processing of the image and development of the environments local map.

It includes some operations that allow to extract the edges of the road and roundabout from
the images with capability to remove the noises and perform filtrations.

The following operations are applied for edge detection and noise filtering:

1. 2D Gaussian filters: It is used for smoothing the detection of the edge. The point-spread
function (PSF) for 2D continuous space Gaussian is given by:

g x; yð Þ ¼ 1
2πσ2

:e
� x�x0ð Þ2

2σ2
þ y�y0ð Þ2

2σ2

� �
(1)

σ is the standard deviation of the Gaussian distribution.

The following Gaussian filter was applied to the image in MATLAB:

PSF = fspecial(‘gaussian’, 3, 3).

2. Multidimensional images (imfilter): It allows the user to filter one array with another array
according to the specified options. In the proposed image processing, a symmetric option
is used to filter the image by the Gaussian filter as follows:

I = imfilter(IS, PSF, ‘symmetric’, ‘conv’).

IS is the gray value image of the scene, and conv indicates the linear convolution operation
of the image in which each output pixel is the weighted sum of neighboring input pixels.

3. Canny, Prewitt, and Sobel filters for edge detection: these filters were used to find the edges
of curbed road in the image. They are derivative-based operations for edge detection:

Canny filter: It finds the edges by looking for local maxima of the gradient of the image
matrix. It passes through the following steps: smoothing the image by blurring the
operation in order to prepare for removing the noise; finding the gradients of the edges,
where the large magnitude gradients of the image should be marked; nonmaximum
suppression operation which allow only the local maxima to be marked as edges; double
thresholding applied to the potential edges; and edge tracking by hysteresis, where the
final edges are determined by removing all edges that are not connected to certain strong
edges (large magnitudes). This filter is implemented with threshold coming from imfilter as
follows:

BW = edge (I, ‘canny’, (graythresh(I) * .1)).

Prewitt gradient filter:
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It finds the edges using the Prewitt approximation of the derivative. Each component of the
filter takes the derivative in one direction and smoothies in the orthogonal direction using
a uniform filter. This filter is implemented with threshold coming from imfilter as follows:

BW = edge (I, ‘prewitt’, (graythresh(I) * .1)).

Sobel gradient filter:

It finds the edges using the Sobel approximation of the derivative. Each filter takes the
derivative in one direction and smoothies in the orthogonal direction using a triangular
filter. This filter is implemented with the threshold coming from imfilter as follows:

BW = edge (I, ‘sobel’, (graythresh(I) * .1)).

4. Morphological operations

The morphological methodology is applied to improve the shape of the lines representing the
road curb, which are extracted from edges in the images using the above-mentioned filters.
Morphology technique includes a various set of image processing enhancing operations that
process the images based on shapes. Morphological operations implement a structuring
element to the input image and then carry out the output images with a similar size. The
morphological operation compares the current pixel in the output image with the input one
and its neighbors to calculate the value of each output image pixels. This is done by selecting
a certain shape and size of the neighbors that are sensitive to the input image’s shapes.

Two operations are used to perform the morphological method:

Morphological structuring element (strel): it is used to define the areas that will be applied
using morphological operations. Straight lines with 0

�
and 90

�
are the shapes used for the

images which actually represent the road curbs.

se90 = strel(‘line’, 3, 90).

se0 = strel(‘line’, 3, 0).

Dilation of image (imdilate): dilation and erosion are two common operations in morphol-
ogy. With dilation operation, the pixels in the image have to be summed to the object
boundaries. The numbers of the added pixels are depended on the element size and its
structure that is utilized to process the input images. In dilation process, the status of the
pixels in the output images is figured out by implementing a certain rule and equations to
the corresponding input pixels and all its neighbors. In the developed algorithm, the
imdilate is used with a range that comes from the strel operation as follows:

BW1 = imdilate(BWC, [se90 se0]).

BWC is the binary image coming from the edges filters.

5. 2D order-statistic filtering (ordfil2)

It is also called Min/Max of theMedian filter. It uses a more general approach for filtration,
which allows for specifying and choosing the rank order of the filter as:
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• Remove image acquisition object from memory

It is used to free memory at the end of an image acquisition session and start a new frame
acquisition.

delete(vid).

(ii) Processing of the image and development of the environments local map.

It includes some operations that allow to extract the edges of the road and roundabout from
the images with capability to remove the noises and perform filtrations.

The following operations are applied for edge detection and noise filtering:

1. 2D Gaussian filters: It is used for smoothing the detection of the edge. The point-spread
function (PSF) for 2D continuous space Gaussian is given by:

g x; yð Þ ¼ 1
2πσ2

:e
� x�x0ð Þ2

2σ2
þ y�y0ð Þ2

2σ2

� �
(1)

σ is the standard deviation of the Gaussian distribution.

The following Gaussian filter was applied to the image in MATLAB:

PSF = fspecial(‘gaussian’, 3, 3).

2. Multidimensional images (imfilter): It allows the user to filter one array with another array
according to the specified options. In the proposed image processing, a symmetric option
is used to filter the image by the Gaussian filter as follows:

I = imfilter(IS, PSF, ‘symmetric’, ‘conv’).

IS is the gray value image of the scene, and conv indicates the linear convolution operation
of the image in which each output pixel is the weighted sum of neighboring input pixels.

3. Canny, Prewitt, and Sobel filters for edge detection: these filters were used to find the edges
of curbed road in the image. They are derivative-based operations for edge detection:

Canny filter: It finds the edges by looking for local maxima of the gradient of the image
matrix. It passes through the following steps: smoothing the image by blurring the
operation in order to prepare for removing the noise; finding the gradients of the edges,
where the large magnitude gradients of the image should be marked; nonmaximum
suppression operation which allow only the local maxima to be marked as edges; double
thresholding applied to the potential edges; and edge tracking by hysteresis, where the
final edges are determined by removing all edges that are not connected to certain strong
edges (large magnitudes). This filter is implemented with threshold coming from imfilter as
follows:

BW = edge (I, ‘canny’, (graythresh(I) * .1)).

Prewitt gradient filter:
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It finds the edges using the Prewitt approximation of the derivative. Each component of the
filter takes the derivative in one direction and smoothies in the orthogonal direction using
a uniform filter. This filter is implemented with threshold coming from imfilter as follows:

BW = edge (I, ‘prewitt’, (graythresh(I) * .1)).

Sobel gradient filter:

It finds the edges using the Sobel approximation of the derivative. Each filter takes the
derivative in one direction and smoothies in the orthogonal direction using a triangular
filter. This filter is implemented with the threshold coming from imfilter as follows:

BW = edge (I, ‘sobel’, (graythresh(I) * .1)).

4. Morphological operations

The morphological methodology is applied to improve the shape of the lines representing the
road curb, which are extracted from edges in the images using the above-mentioned filters.
Morphology technique includes a various set of image processing enhancing operations that
process the images based on shapes. Morphological operations implement a structuring
element to the input image and then carry out the output images with a similar size. The
morphological operation compares the current pixel in the output image with the input one
and its neighbors to calculate the value of each output image pixels. This is done by selecting
a certain shape and size of the neighbors that are sensitive to the input image’s shapes.

Two operations are used to perform the morphological method:

Morphological structuring element (strel): it is used to define the areas that will be applied
using morphological operations. Straight lines with 0

�
and 90

�
are the shapes used for the

images which actually represent the road curbs.

se90 = strel(‘line’, 3, 90).

se0 = strel(‘line’, 3, 0).

Dilation of image (imdilate): dilation and erosion are two common operations in morphol-
ogy. With dilation operation, the pixels in the image have to be summed to the object
boundaries. The numbers of the added pixels are depended on the element size and its
structure that is utilized to process the input images. In dilation process, the status of the
pixels in the output images is figured out by implementing a certain rule and equations to
the corresponding input pixels and all its neighbors. In the developed algorithm, the
imdilate is used with a range that comes from the strel operation as follows:

BW1 = imdilate(BWC, [se90 se0]).

BWC is the binary image coming from the edges filters.

5. 2D order-statistic filtering (ordfil2)

It is also called Min/Max of theMedian filter. It uses a more general approach for filtration,
which allows for specifying and choosing the rank order of the filter as:
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f2 = ordfilt2(x, 5, [1 1 1; 1 1 1; 1 1 1]).

Where, the second parameter specifies the rank order chosen, and the third parameter
specify the mask with the neighbors specified by the nonzero elements in it.

6. Removing of small objects from binary image (bwareaopen)

This function is helpful to remove all connected components (objects) that have less than a
certain threshold numbers of pixels from the binary image. The connectivity between the
pixels can be defined at any direction of image; in MATLAB, it can be defined by default to
4-connected neighborhood or 8-connected neighborhood for the images. In the proposed
algorithm, it is adjusted as follows:

BW2 = bwareaopen(BW1, 1200).

7. Filling of image regions and hole operation (imfill)

Due to the object in images are not clear, especially at the borders, this function is used to
fill the image region that represents an object. This tool is very useful in the proposed
algorithm to detect the roundabout intersection. One can describe the region filling oper-
ation as follows:

Xf ¼ Xf�1 ⊕B
� �

∩AC f ¼ 1, 2, 3, :: (2)

Xf is any point inside the interested boundary, B is the symmetric structuring element, ∩ is
the intersection area between A and B, and AC is the complement of set A. The above-
mentioned equation is performed in MATLAB by the following command:

P = imfill(BW2, ‘holes’).

The developed image sequences after processing looked like the one shown in Figures 2
and 3, which are used later on for Laser Simulator-based roundabout detection. Also,
Figures 8–11 portrayed in Section 4 show the capability of the algorithm to develop the
local map in the indoor and outdoor road environments.

3.2. Laser range finder

LRF measurements are used to localize the robot in environments and for building 2D local
map. As previously mentioned, this device can scan an area with 240� at 100 ms/scan. The
surrounding environments in the LRF measurements look like the one shown in Figure 4.

Two coordinate systems are used to characterize the measurements of LRF as depicted in
Figure 5, which are: LRF measuring coordinate and LRF environment coordinate systems.
Since the LRF measurements are scanned starting from the origin point, the calculation is done
based on the right triangle as depicted in Figure 5.

If the laser measurement of components in yL direction is compared at points a, b, and c, one
can find:
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yLc ¼ Lc, xLc ¼ 0
yLa ¼ La sin β

� � ¼ Lc, xLc ¼ La cos β
� �

yLb ¼ Lb sin β
� �

, xLb ¼ Lb cos β
� � (3)

La, Lb, and Lc are the length of laser measurements at point a, b, and c, respectively, as shown in
Figure 5. β is the angle between the measurement point and the platform coordinate system
which can be calculated from the scan area angle Lθ = (0–240�). yLa and yLc represent the

Figure 2. Image sequence processing where no roundabout can be detected, (a) original image, (b) curbed image in a
gray, (c) after edge detection algorithm, (d) final processed image, and (e) developed image for local map.
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f2 = ordfilt2(x, 5, [1 1 1; 1 1 1; 1 1 1]).
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specify the mask with the neighbors specified by the nonzero elements in it.
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This function is helpful to remove all connected components (objects) that have less than a
certain threshold numbers of pixels from the binary image. The connectivity between the
pixels can be defined at any direction of image; in MATLAB, it can be defined by default to
4-connected neighborhood or 8-connected neighborhood for the images. In the proposed
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Due to the object in images are not clear, especially at the borders, this function is used to
fill the image region that represents an object. This tool is very useful in the proposed
algorithm to detect the roundabout intersection. One can describe the region filling oper-
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Xf is any point inside the interested boundary, B is the symmetric structuring element, ∩ is
the intersection area between A and B, and AC is the complement of set A. The above-
mentioned equation is performed in MATLAB by the following command:

P = imfill(BW2, ‘holes’).

The developed image sequences after processing looked like the one shown in Figures 2
and 3, which are used later on for Laser Simulator-based roundabout detection. Also,
Figures 8–11 portrayed in Section 4 show the capability of the algorithm to develop the
local map in the indoor and outdoor road environments.

3.2. Laser range finder

LRF measurements are used to localize the robot in environments and for building 2D local
map. As previously mentioned, this device can scan an area with 240� at 100 ms/scan. The
surrounding environments in the LRF measurements look like the one shown in Figure 4.

Two coordinate systems are used to characterize the measurements of LRF as depicted in
Figure 5, which are: LRF measuring coordinate and LRF environment coordinate systems.
Since the LRF measurements are scanned starting from the origin point, the calculation is done
based on the right triangle as depicted in Figure 5.

If the laser measurement of components in yL direction is compared at points a, b, and c, one
can find:
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yLc ¼ Lc, xLc ¼ 0
yLa ¼ La sin β

� � ¼ Lc, xLc ¼ La cos β
� �

yLb ¼ Lb sin β
� �

, xLb ¼ Lb cos β
� � (3)

La, Lb, and Lc are the length of laser measurements at point a, b, and c, respectively, as shown in
Figure 5. β is the angle between the measurement point and the platform coordinate system
which can be calculated from the scan area angle Lθ = (0–240�). yLa and yLc represent the

Figure 2. Image sequence processing where no roundabout can be detected, (a) original image, (b) curbed image in a
gray, (c) after edge detection algorithm, (d) final processed image, and (e) developed image for local map.
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parameters of the road, and yLb represents the curb. It is found that yLa and yLc have the same
length in y direction; however, the length of yLb is different and can be written as follows:

yLb ¼ yLc �
ZRb

sin rð Þ ) yLc � yLb ¼
ZRb

sin rð Þ (4)

ZRb = hc, hc is idetified as the road curbed height which is known as a threshold in the program.
r is defined as the LRF rays and the floor. For obstacle detection, two successive scan measure-
ments (i and ii) have to be compared with each other in yL direction in the location between e
and d as illustrated in Figure 5 to find the obstacles ahead of the robot as shown in Eqs. (5)–(7):

Figure 3. Image sequence processing where roundabout is detected, (a) original image, (b) curbed image in a gray value,
(c) with edge detection algorithm, (d) final image, and (e) developed image for local map.
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yc � yd ¼
ZRd

sin rð Þ andxd ¼ -Ld cos β
� �

(5)

yc � ye ¼
ZRe

sin rð Þ andxe ¼ -Le cos β
� �

, (6)

The width of the obstacle can be calculated as:

Wob ¼ xe � xd (7)

Figure 4. Laser measurements and the location of objects in its environment at the left, middle, and right side.

Figure 5. Principle of laser measurement calculation.
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From previous calculation, one can define the parameters that will be used later for road
discovering by LRF as shown in Figure 5 as:

• Road fluctuations (height of objects with reference to the laser device) as follows:

rfn ¼ rn cos β
� �

(8)

• Road width (side distance with reference to the laser device) as follows:

rwn ¼ rn sin β
� �

(9)

rn is the dimension of LRF signals for n-th LRF measurements.

• Curb threshold: rf0 in β = 0
�
is used as reference and the other fluctuation measurements

(rfn) on the left and right side in the same scan are compared with this base line. If the
deviation between the reference point and other measurement values exceeds the
predefined threshold th, this point will be considered as a road curb. Otherwise, it will be
considered as a road. This operation is repeated with all measurements as follows:

rfn � rf 0 ≥ � th (10)

The LRF driver for reading the data from USB connection in real-time is developed in
MATLAB. It includes some functions to identify, configure and get data from the sensors as
further detailed out in Appendix B. The algorithm for detecting the curbs of road based on the
previous mentioned Eqs. (3)–(10) is developed and implemented in the road environments as
shown in Figure 6. The LRF is the main sensor for the calculation of the robot path within the
environments, which produces the results through using the LRF to generate the equations for
path planning as shown in Sections 4.1 and 4.2.

3.3. Odometry

Two rotary encoders (B106) were used to estimate the position of robot, which are connected
through dual brush card pins (IFC-BH02) to the two differential wheels. The full rotation of

Figure 6. Laser measurements for the experimental setup, (a) one scan of laser measurement (mm), (b) road with curbs in
3D (mm), and (c) path generation (mm).
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encoders is 500 pulses/rotations, and the linear position of the wheels is calculated from the
encoder rotation as shown in Figure 7 using the following expression:

C ¼ 2π r Pcur

Pfr
(11)

C is the accumulative path of robot, r is the radius of wheel, Pcur is the number of pulses in the
current position, and Pfr is the number of pulses for one full rotation of the encoder.

Two encoders were used in the proposed system, and the accumulative path will be calculated
as an average value of both encoders as follows:

Cav ¼ C1 þ C2

2
(12)

4. Navigation system results and discussion

The proposed WMR is able to navigate autonomously on the road following and negotiates
effectively the curvature of a standard roundabout. The robot is able to find the path starting
from the predefined start pose until it reaches the pregoal position using the LS approach for
the local map that was identified by the robot sensors such as camera, the LRF, and odometry
measurements. Normally, the start and goal positions are determined using the DGPS system,
and the robot uses this information to detect the direction of the roundabout exit. Since the
proposed robot is navigating in a relatively small area (about 10–30 m), it is not useful to use
GPS. Instead one can simply inform the robot about the roundabout exit direction, goal
position before it starts to move. The goal position can be determined as how much distance
the robot should travel after passing through the roundabout, for example, the goal is located
at eastern part of the exit of the roundabout (i.e., 270�) with a distance equals to 20 m. The path
that the robot will follow in the environment can be adjusted in the program of the navigation
system as in middle, left or right. It is desired that the robot should navigate in the middle of
the road for all the experiments. The velocity of the robot during navigation is adjusted in the
range of 7–10 cm/s.

During navigation on the road, our Laser Simulator approach is used to detect the roundabout
when it is present in the local map identified by the camera [27–29]. The sensor fusion
including LRF and encoders is used to estimate the position of robot within the environments.

Figure 7. Calculation of the linear position from the rotary encoder.
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encoders is 500 pulses/rotations, and the linear position of the wheels is calculated from the
encoder rotation as shown in Figure 7 using the following expression:

C ¼ 2π r Pcur

Pfr
(11)

C is the accumulative path of robot, r is the radius of wheel, Pcur is the number of pulses in the
current position, and Pfr is the number of pulses for one full rotation of the encoder.

Two encoders were used in the proposed system, and the accumulative path will be calculated
as an average value of both encoders as follows:

Cav ¼ C1 þ C2

2
(12)

4. Navigation system results and discussion

The proposed WMR is able to navigate autonomously on the road following and negotiates
effectively the curvature of a standard roundabout. The robot is able to find the path starting
from the predefined start pose until it reaches the pregoal position using the LS approach for
the local map that was identified by the robot sensors such as camera, the LRF, and odometry
measurements. Normally, the start and goal positions are determined using the DGPS system,
and the robot uses this information to detect the direction of the roundabout exit. Since the
proposed robot is navigating in a relatively small area (about 10–30 m), it is not useful to use
GPS. Instead one can simply inform the robot about the roundabout exit direction, goal
position before it starts to move. The goal position can be determined as how much distance
the robot should travel after passing through the roundabout, for example, the goal is located
at eastern part of the exit of the roundabout (i.e., 270�) with a distance equals to 20 m. The path
that the robot will follow in the environment can be adjusted in the program of the navigation
system as in middle, left or right. It is desired that the robot should navigate in the middle of
the road for all the experiments. The velocity of the robot during navigation is adjusted in the
range of 7–10 cm/s.

During navigation on the road, our Laser Simulator approach is used to detect the roundabout
when it is present in the local map identified by the camera [27–29]. The sensor fusion
including LRF and encoders is used to estimate the position of robot within the environments.

Figure 7. Calculation of the linear position from the rotary encoder.
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In general, two conditions are used to detect a roundabout; noncurbs detection on the left and
right and discovering ellipse in the image as shown in Figures 8 and 9.

4.1. Road following

In the road following area, the camera, encoders, and laser are combined together to find the
collision-free path. The camera is used for roundabout detection when it figures out using Laser
Simulator. LRF is utilized for detecting the road curbs and localizing the robot in the environ-
ment. The encoder’s measurements are used for estimating the current position of robot within
environments. The generation of robot path is described in the following paragraphs.

4.2. Roundabout navigation results

The results show the capability of the roundabout path planning algorithm to find the right
trajectory with a small deviation in comparison to the optimum path as shown in Figure 10.

Figure 8. Image sequences processing where no roundabout can be detected using LS, (a) image from preprocessing and
processing step, and (b) applying the LS (continues line in the middle).

Figure 9. Image sequences processing where roundabout is detected using LS, (a) image from preprocessing and
processing step, and (b) applying the LS (discontinues line in the middle).
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Figure 11 shows how the camera, encoders, and laser range finder are used for path planning
and execution from start to goal position. It also shows the local map built from camera
sequence frames, where the developed view presents the curbs of the road environment of
road in images. The camera’s local map is determined for each image in the sequences of video
frames as shown in Figure 11(b) and (c), and the LS is applied to find the roundabout.
Figure 11(c) shows the last image, where the roundabout is detected.

By applying the algorithm of cameras, laser range finder, and odometry described in Section 3,
one can determine the path of robot as in Figure 11(d). It is noticed that the part of roundabout
in the entrance and exit areas is not occurred in the roundabout environment, due to that the
laser still does not reach that area, but it is calculated based on a mixed algorithm of camera
and laser range finder. The road following curbs are shown in Figure 11(d), where the entrance
to the roundabout is located on the left side, and the exit is located on the right. The path of the
robot looked smooth especially with the indoor environments in comparison with the opti-
mum path (continuous red line); however, there is a deviation in the outdoor measurements in

Figure 10. Correction of the robot path in the road following when the start location of the robot is near to left curb, (a)
laser measurements, (b) path determination: the blue with (*) is the laser measurements, black with (o) is road curbs and
roundabout, and red with (�) is the optimum path, (c) images of the robot in the beginning of movement, and (d) images
of the robot when correcting its path.
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In general, two conditions are used to detect a roundabout; noncurbs detection on the left and
right and discovering ellipse in the image as shown in Figures 8 and 9.

4.1. Road following

In the road following area, the camera, encoders, and laser are combined together to find the
collision-free path. The camera is used for roundabout detection when it figures out using Laser
Simulator. LRF is utilized for detecting the road curbs and localizing the robot in the environ-
ment. The encoder’s measurements are used for estimating the current position of robot within
environments. The generation of robot path is described in the following paragraphs.

4.2. Roundabout navigation results

The results show the capability of the roundabout path planning algorithm to find the right
trajectory with a small deviation in comparison to the optimum path as shown in Figure 10.

Figure 8. Image sequences processing where no roundabout can be detected using LS, (a) image from preprocessing and
processing step, and (b) applying the LS (continues line in the middle).

Figure 9. Image sequences processing where roundabout is detected using LS, (a) image from preprocessing and
processing step, and (b) applying the LS (discontinues line in the middle).
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Figure 11 shows how the camera, encoders, and laser range finder are used for path planning
and execution from start to goal position. It also shows the local map built from camera
sequence frames, where the developed view presents the curbs of the road environment of
road in images. The camera’s local map is determined for each image in the sequences of video
frames as shown in Figure 11(b) and (c), and the LS is applied to find the roundabout.
Figure 11(c) shows the last image, where the roundabout is detected.

By applying the algorithm of cameras, laser range finder, and odometry described in Section 3,
one can determine the path of robot as in Figure 11(d). It is noticed that the part of roundabout
in the entrance and exit areas is not occurred in the roundabout environment, due to that the
laser still does not reach that area, but it is calculated based on a mixed algorithm of camera
and laser range finder. The road following curbs are shown in Figure 11(d), where the entrance
to the roundabout is located on the left side, and the exit is located on the right. The path of the
robot looked smooth especially with the indoor environments in comparison with the opti-
mum path (continuous red line); however, there is a deviation in the outdoor measurements in

Figure 10. Correction of the robot path in the road following when the start location of the robot is near to left curb, (a)
laser measurements, (b) path determination: the blue with (*) is the laser measurements, black with (o) is road curbs and
roundabout, and red with (�) is the optimum path, (c) images of the robot in the beginning of movement, and (d) images
of the robot when correcting its path.
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the area of entrance and exit of roundabout due to the distance between the curbs and the
roundabout center.

5. Conclusion

A practical implementation of the WMR online path navigation using laser simulator (LS) and
sensor fusion in the road environments is presented in this thesis. The mobile robot is sup-
posed to navigate on the roads in real time and reach the predetermined goal while

Figure 11. Camera sequence images when navigating in outdoor with 360� rotation, (a) image when start moving, (b)
camera’s local map when robot starts to move, (c) camera’s local map when robot detects the roundabout, and (d) path of
robot during navigation in a roundabout in (mm) with 360� rotation: blue with (*) is the path, black with (O) is for the
road environments, and red with (�) for the optimum path.
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discovering and detecting the roundabout. A complete modeling and path determination of
the roundabout intersection environments for autonomous mobile robot navigation is derived
and presented in this chapter. The LS approach was used for road roundabout environment
detection; whereas, the sensor fusion involves the laser range finder (LRF), and odometry was
used to generate the path of the robot and localize it within its terrain. The local maps were
built using both the camera and LRF to estimate the road border parameters such as road
width, curbs, and roundabout in 2D. The algorithm of the path generation is fully derived
within the local maps and subsequently implemented in two ways; first, considering the direct
use of the sensor fusion data for path planning without applying localization and control
algorithms and second, taking into account a complete model-based navigation including
localization, path planning, and control schemes.
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Abstract

This chapter focuses on path tracking of a wheeled mobile manipulator designed for
manufacturing processes such as drilling, riveting, or line drawing, which demand high
accuracy. This problem can be solved by combining two approaches: improved localiza-
tion and improved calibration. In the first approach, a full-scale kinematic equation is
derived for calibration of each individual wheel’s geometrical parameters, as opposed to
traditionally treating them identical for all wheels. To avoid the singularity problem in
computation, a predefined square path is used to quantify the errors used for calibration
considering the movement in different directions. Both statistical method and interval
analysis method are adopted and compared for estimation of the calibration parameters.
In the second approach, a vision-based deviation rectification solution is presented to
localize the system in the global frame through a number of artificial reflectors that are
identified by an onboard laser scanner. An improved tracking and localization algorithm
is developed to meet the high positional accuracy requirement, improve the system’s
repeatability in the traditional trilateral algorithm, and solve the problem of pose loss in
path following. The developed methods have been verified and implemented on the
mobile manipulators developed by Shanghai University.

Keywords: mobile manipulator, localization, tracking, path following

1. Introduction

Recently, mobile manipulators have been used in various industries including aerospace or
indoor decoration engineering, which requires a large workspace [1–4]. The said mobile
manipulator consists of an industrial manipulator mounted on a mobile platform to perform
various manufacturing tasks such as drilling/riveting in aerospace industry or baseline

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.79598

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 8

Path Tracking of a Wheeled Mobile Manipulator
through Improved Localization and Calibration

Tao Song, Fengfeng (Jeff) Xi and Shuai Guo

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79598

Provisional chapter

Path Tracking of a Wheeled Mobile Manipulator
through Improved Localization and Calibration

Tao Song, Fengfeng (Jeff) Xi and Shuai Guo

Additional information is available at the end of the chapter

Abstract

This chapter focuses on path tracking of a wheeled mobile manipulator designed for
manufacturing processes such as drilling, riveting, or line drawing, which demand high
accuracy. This problem can be solved by combining two approaches: improved localiza-
tion and improved calibration. In the first approach, a full-scale kinematic equation is
derived for calibration of each individual wheel’s geometrical parameters, as opposed to
traditionally treating them identical for all wheels. To avoid the singularity problem in
computation, a predefined square path is used to quantify the errors used for calibration
considering the movement in different directions. Both statistical method and interval
analysis method are adopted and compared for estimation of the calibration parameters.
In the second approach, a vision-based deviation rectification solution is presented to
localize the system in the global frame through a number of artificial reflectors that are
identified by an onboard laser scanner. An improved tracking and localization algorithm
is developed to meet the high positional accuracy requirement, improve the system’s
repeatability in the traditional trilateral algorithm, and solve the problem of pose loss in
path following. The developed methods have been verified and implemented on the
mobile manipulators developed by Shanghai University.

Keywords: mobile manipulator, localization, tracking, path following

1. Introduction

Recently, mobile manipulators have been used in various industries including aerospace or
indoor decoration engineering, which requires a large workspace [1–4]. The said mobile
manipulator consists of an industrial manipulator mounted on a mobile platform to perform
various manufacturing tasks such as drilling/riveting in aerospace industry or baseline

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.79598

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



drawing in decoration engineering. Wheeled mobile platforms with Mecanum wheels that can
easily navigate through crowded spaces due to their omnidirectionality with a zero turning
radius are commonly used. Path tracking is one of the important issues for mobile manipula-
tors, in particular for performing manufacturing tasks. This chapter addresses this issue from
the aspect of localization and calibration.

Localization is a key functionality of mobile manipulator in order to track and determine its
position around the environment [5]. Many methods are proposed to address this issue [6].
They can be divided into two categories: absolute localization and relative localization.

Absolute localization relies on detecting and recognizing different features in the environment
to obtain the position and posture. The features can be normally divided into two types:
artificial landmarks and natural landmarks. Compared with the natural landmarks, artificial
landmarks have advantages of high recognition, which will lead to high accuracy. There is no
cumulative error problem when a localization method based on artificial landmarks is used.
The key challenge is to identify and extract the needed information from the raw data of
landmarks. For the relative localization, dead reckoning and inertial navigation are commonly
carried out to obtain the systems’ position. It does not have to perceive the external environ-
ment, but the drift error accumulates over time.

Researchers have proposed several solutions, such as fuzzy reflector-based localization [7] and
color reflector-based self-localization [8]. The main drawbacks of these two methods are that the
anti-interference ability is poor and the computation is huge. To solve these problems pertaining
to the localization method based on artificial landmarks, Madsen and Andersen [9] proposed a
method using three reflectors and the triangulation principle. Betke and Gurvits [10] proposed a
multichannel localization method with the three-dimensional localization principle and the least
squares method. Because of the unavoidable errors in position and angle measurement of reflec-
tors, the use of only a trilateral or triangular method will not achieve high accuracy [11]. Never-
theless, there are still many challenges for mobile manipulator working in industrial environments
such as aerospace manufacturing or decoration engineering, which requires high maneuverability
and high accuracy at the same time. The stationary industrial manipulator has high repeated
localization accuracy, which the mobile manipulator cannot achieve. This chapter focuses on the
improvement of path tracking of a mobile manipulator through enhanced localization combined
with calibration. Calibration is required for the system kinematic model established based on
nominal geometry parameter to improve motion accuracy. Muir and Neuman [12] proposed a
kinematic error model for Mecanum wheeled platform and applied actuated inverse and sensed
forward solutions to the kinematic control. Wang and Chang [13] carried out error analysis in
terms of distribution among Mecanum wheels. Shimada et al. [14] presented a position-corrective
feedback control method with vision system on Mecanum wheeled mobile platform. Qian et al.
[15] conducted a more detailed analysis on the installation angle of rollers. An improved calibra-
tionmethod is presented in this chapter to improve the tracking accuracy of a mobile manipulator.

2. System modeling

The wheeled mobile manipulator, as shown in Figure 1, is built with a manipulator onto a
wheeled mobile platform with four Mecanum wheels. This system aims to carry out fuselage
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drilling/riveting tasks at assembly stations in an adaptive and flexible way in the aero-
space industry.

This system needs to localize in real time during machining process. The global frame
XG,YG,ZGf g is attached to the ground in the environment. The platform frame XP,YP,ZPf g is

Figure 1. The wheeled mobile manipulator for fuselage drilling/riveting.

Figure 2. The position and posture of system.
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wheeled mobile platform with four Mecanum wheels. This system aims to carry out fuselage
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drilling/riveting tasks at assembly stations in an adaptive and flexible way in the aero-
space industry.

This system needs to localize in real time during machining process. The global frame
XG,YG,ZGf g is attached to the ground in the environment. The platform frame XP,YP,ZPf g is

Figure 1. The wheeled mobile manipulator for fuselage drilling/riveting.

Figure 2. The position and posture of system.
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attached to the center of the mobile platform. The tool frame XM;YM;ZMf g is attached to the
tool of the manipulator. Two laser range finders are equipped and their frames XL1;YL1;ZL1f g
and XL2;YL2;ZL2f g are attached to the left-front and right-rear of the mobile platform, respec-
tively. The vision frame XV;YV;ZVf g is attached to the industrial camera.

The position and posture of the system in the global frame can be defined as

GP ¼ Gx, Gy, Gθ
� �

(1)

where Gx and Gy are the positions in two directions, respectively, and Gθ is the azimuth
angle, as shown in Figure 2.

3. Accuracy analysis of a wheeled mobile manipulator

3.1. Problem formulation

Figure 3 shows the kinematic model of the mobile platform with Mecanum wheels. According
to kinematic analysis [16], the motion equation can be obtained as

V ¼ D0W (2)

Figure 3. The kinematic model of a Mecanum wheeled mobile platform.
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where V ¼ VX;VY;ω0½ �T, D0 ¼ 1
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VX;VY;ω0½ �T is defined as the linear and angular speeds of the platform; L is the half distance
from the front axle to the rear axle as shown in Figure 3; l0 is the transverse distance from the
wheel centers to the platform center line; R0 is the radius of the Mecanum wheel; and ω1, ω2,
ω3, and ω4 are angular velocities of the four wheels, respectively.

The Mecanum wheel and its roller are shown in Figure 4. The roller is fitted on the edge of the
wheel at a certain angle (generally 45�) with its central axis. Each roller can rotate freely around
the central axis. The wheel relies on the friction between the roller and the ground to move.
The material of roller’s outer rim is usually rubber, which will deform under pressure between
ground and the wheel.

Figure 5 shows the distribution of roller deformation. F and T are the force and driving torque
on the roller, respectively. The radiuses of wheels reduce differently under different pressures.
The deformation zone and the position of the wheel center change with the action of driving
torque and the shifting [17]. Furthermore, with such deformation, R0 and l0 will change.

As shown in Figure 6, based on the kinematic analysis and consideration on deformation of
the roller, Eq. (2) can be revised as follows: [18].

V ¼ D1W (3)

where D1 ¼ 1
4
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2
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3
775; here D1 is defined by R1, R2, R3, and R4,

which are individual radiuses of the four Mecanum wheels, respectively. In order to improve
the system motion accuracy, the relative errors ΔRi between Ri and R0, and relative errors Δli
between li and l0 (i ¼ 1, 2, 3, 4) should be obtained to revise matrix D1 (Figure 6).

Figure 4. Mecanum wheel and roller.
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3.2. Error modeling

By multiplying time t, Eq. (3) becomes a displacement equation as

X ¼ D1θ (4)

where X ¼ Vt is X;Y;θ½ �T. θ ¼Wt is θ1;θ2;θ3;θ4½ �T. Individual geometric parameters including
l1, l2, l3, l4, R1, R2, R3, and R4 are variables in Eq. (4). The relative errors can be determined from

Figure 5. Roller deformation.

Figure 6. Motion model of the mobile platform.
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leading to

ΔX ¼ GΔB (6)

where ΔX ¼ ΔX;ΔY;Δθ½ �T, ΔB ¼ ΔR1;ΔR2;ΔR3;ΔR4;Δl1;Δl2;Δl3;Δl4½ �T, and
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R1 ¼ R0 þ ΔR1, l1 ¼ l0 þ Δl1,R2 ¼ R0 þ ΔR2, l2 ¼ l0 þ Δl2

R3 ¼ R0 þ ΔR3, l3 ¼ l0 þ Δl3,R4 ¼ R0 þ ΔR4, l4 ¼ l0 þ Δl4

With the least squares method, the geometric errors can be solved as

ΔB ¼ GTG
� ��1

GTΔX (7)

ΔRi is generally defined as the tolerance resulting from manufacturing or assembly. With the
deformation of the roller and Δli limited to –h;h½ � and –j; j½ � h ¼ 3mmð , j ¼ 5mm) respectively,
li and Ri can be defined as:

li ¼ 2jrþ l0 � jð Þ (8)

Ri ¼ 2hrþ R0 � hð Þ (9)

where li and Ri are in l0 � j; l0 þ j½ � and R0 � h;R0 þ h½ �, respectively, and r is a random number
between 0 and 1. The angular speeds of all wheels are set to 20rad=s, and the time t is set to 1 s.

The rank of matrixG in Eq. (7) is generally 3, soG is a full rank matrix and ΔB can be obtained.
The following steps can be carried out. First, the displacement error measurement is analyzed.
In order to obtain ΔB, it is needed to obtain the displacement error matrix ΔX first.

The system is moved in the YG direction and stopped every 2 s to obtain its position and

posture GXk ;
GYk ;

Gθk
� �

. The principle of measurement is shown in Figure 7 and ΔX can be
calculated as

ΔX ¼
GX1 þ GX 2 þ GX 3 þ GX 4
� �

=10� XT

GY 1 þ GY 2 þ GY 3 þ GY 4
� �

=10� YT

Gθ 1 þ Gθ 2 þ Gθ 3 þ Gθ 4
� �

=10� θT

2
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3
775 (10)
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Figure 5. Roller deformation.

Figure 6. Motion model of the mobile platform.
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between 0 and 1. The angular speeds of all wheels are set to 20rad=s, and the time t is set to 1 s.

The rank of matrixG in Eq. (7) is generally 3, soG is a full rank matrix and ΔB can be obtained.
The following steps can be carried out. First, the displacement error measurement is analyzed.
In order to obtain ΔB, it is needed to obtain the displacement error matrix ΔX first.

The system is moved in the YG direction and stopped every 2 s to obtain its position and

posture GXk ;
GYk ;

Gθk
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. The principle of measurement is shown in Figure 7 and ΔX can be
calculated as
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According to Eq. (2), XT, YT, and θT are theoretical values which can be obtained as follows:
XT ¼ Vxt, YT ¼ Vyt, θT ¼ 0. Finally, through the experiment, the displacement errors can be
obtained.

ΔX ¼
3mm
1mm
0
�

2
64

3
75 (11)

Substituting Eq. (11) in to Eq. (7), ΔB can be determined.

The Monte Carlo analysis is applied to deal with 50 samples. While ΔX has been given in
Eq. (11), the corresponding ΔB should also satisfy its own tolerance, i.e., �3 ≤ΔRi ≤ 3 and
�5 ≤ΔLi ≤ 5.

The results are given in Figure 8. These data are averaged to form a new result: ΔB ¼
�0:541; 1:237;�0:605; 1:055; 0:458; 0:683;�0:048;�0:683½ �T: A process capability index is then
used to estimate the value of ΔB. Process capability refers to the ability of a process to meet the
required quality. It is a measure of the minimum fluctuation of the internal consistency of the
process itself in the most stable state. When the process is stable, the quality characteristic
value of the product is in the range μ� 3σ;μþ 3σ½ �, where μ is the ensemble average of the
quality characteristic value of the product, and σ is the standard deviation of the quality
characteristic value of the product.

There are two kinds of situations for which the process capability index has to be solved. First,
μ ¼M as shown in Figure 9: USL is the maximum error of quality and Lsl is the minimum error
of quality; M ¼ USL þ LSLð Þ=2; μ is the average value of process machining; and Cp indicates
the process capability index, and Cp ¼ USL � LSLð Þ=6σ:
Second, μ 6¼M as shown in Figure 10: Cpk indicates the process capability index, and
Cpk ¼ USL � LSLð Þ=6σ� ∣M� μ∣=3σ. Only process capability index greater than 1 is valid. As
�3 ≤ΔRi ≤ 3 and �5 ≤ΔLi ≤ 5, M ¼ 0 and μ 6¼M, the following results can be obtained:

Figure 7. The principle of measuring displacement.
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Figure 8. The values obtained with the Monte Carlo method.
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Cpk ΔR1ð Þ ¼ 1:58, Cpk Δl1ð Þ ¼ 0:57, Cpk ΔR2ð Þ ¼ 1:06, Cpk Δl2ð Þ ¼ 0:58, Cpk ΔR3ð Þ ¼ 1:54,
Cpk Δl3ð Þ ¼ 0:63, Cpk ΔR4ð Þ ¼ 1:17, and Cpk Δl4ð Þ ¼ 0:5.

The values of ΔR1, ΔR2, ΔR3, and ΔR4 are closer to the real values than the values of Δl1,

Δl2, Δl3, and Δl4. Now, taking ΔB1 að Þ ¼ �0:541; 1:237;�0:605; 1:055; 0; 0; 0; 0½ �T, ΔB1 bð Þ ¼
0; 0; 0; 0; 0:458; 0:683;�0:048;�0:683½ �T in Eq. (5), it can be seen that ΔX1 ¼ �0:4119,4;½
�0:0003�T, ΔX1 bð Þ ¼ 0; 0;�0:0003½ �T. According to the change rate relative to Eq. (10), the
influence ofΔR1, ΔR2, ΔR3, and ΔR4 is much bigger than that ofΔl1, Δl2, Δl3, andΔl4. Although
the values of Δl1, Δl2, Δl3, and Δl4 are not accurate enough for the real values, ΔB1 is valid.

The interval analysis is also carried out. In Eq. (6), the value of G is uncertain because of the
change of ΔRi and Δli in �3; 3½ � and �5; 5½ �, respectively. Now, the increment of ΔRi and Δli is set

Figure 9. μ ¼M.

Figure 10. μ 6¼M.
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to 1 mm; there are 7 values of ΔRi, and 11 values of Δli, so there are 74 � 114 groups of combina-
tions of matrix G: Take all the combinations of matrix G to Eq. (6) to obtain ΔB and exclude the
cases for which ΔRi and Δli are not in �3; 3½ � and �5; 5½ �, respectively. Thus, 277 groups of ΔB can
be obtained. As shown in Figure 11, the average values of ΔR1, ΔR2, ΔR3, ΔR4, Δl1, Δl2, Δl3, and

Δl4, lead to a new ΔB2 ¼ �0:233; 1:467;�0:932; 0:824; 0:2;�0:213;�0:068;�0:039½ �T, which is
close to ΔB1.

Figure 11. The values obtained in interval analysis.
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The same method is used to solve the process capability index of ΔB2. One obtains:
Cpk ΔR1ð Þ ¼ 3:34, Cpk Δl1ð Þ ¼ 0:68, Cpk ΔR2ð Þ ¼ 1:22, Cpk Δl2ð Þ ¼ 0:59, Cpk ΔR3ð Þ ¼ 2:5, Cpk

Δl3ð Þ ¼ 0:63, Cpk R4ð Þ ¼ 1:73, and Cpk Δl4ð Þ ¼ 0:6. The values of ΔR1, ΔR2, ΔR3, and ΔR4 in
ΔB2 are closer to the real ones than the values of Δl1, Δl2, Δl3, and Δl4 in ΔB2. As the influence
of ΔR1, ΔR2, ΔR3, and ΔR4 is bigger than that of Δl1, Δl2, Δl3, and Δl4, ΔB2 is valid.

The result is verified as well. ΔB1 is used to revise the parameters of D1 in Eq. (2) as

D1 ¼ 1
4

�186:959 188:737 �186:895
186:959 188:737 186:895
0:1369 �0:1382 �0:1369

188:555

188:555

0:1382

2
664

3
775

By setting two sets of four wheel speeds W1 ¼ 10π=21; 10π=21; 10π=21; 10π=21½ �T and W2 ¼
4π=7; 4π=7; 4π=7; 4π=7½ �T, the displacement errors can be computed as S1 ¼ D1 �D0ð ÞW2t

Figure 12. (a) Schematic diagram of measuring and (b) the actual measuring.
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and S2 ¼ D2 �D0ð ÞW2t. The results of the two correction methods are almost identical in
theory.

The experiment with four movements is shown in Figure 12(a), while the actual movement is
shown in Figure 12(b). It can be found that S1 and S2 are close to the measured displacement
errors, so both ΔB1 and ΔB2 are satisfied to revise the matrix D1.

4. Localization

4.1. System configuration

The localization component of mobile manipulator includes two laser range finders and a
number of reflectors that are of cylindrical shape placed in the environment. Each reflector is
covered by a reflective tape with high reflectivity (Figure 13).

4.2. Dynamic tracking

To achieve accurate localization, the system should have the ability to perceive external infor-
mation through extracting the reflector features. In this research, as shown in Figure 13, there
are n reflectors, and the feature of each reflector Bi i ¼ 1; 2;…;nð Þ is extracted from the raw
data. The feature extraction algorithm consists of three steps: (i) filtering and clustering, (ii)
identification, and (iii) feature extraction.

The first step is filtering and clustering. The raw data obtained by each finder are a set of
discrete data sequences γ;∅ð Þ;λf gi j i ¼ 1; 2;…;n

� �
. γ is the distance from the target point to

the finder. ∅ is the polar angle. λi is the intensity value of the ith data point. In the process of
data analysis, the outlier points that are contaminated by noise will be filtered out.

The density of the collected data points is proportional to the distance from the target point to
the laser range finder. To improve the efficiency of the feature extraction process, an adaptive
clustering method is adopted as given by Eq. (12). Unless the distance between two data points
is less than the threshold δ, these data points are clustered for one reflector.

Figure 13. Localization system for the mobile manipulator.
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The same method is used to solve the process capability index of ΔB2. One obtains:
Cpk ΔR1ð Þ ¼ 3:34, Cpk Δl1ð Þ ¼ 0:68, Cpk ΔR2ð Þ ¼ 1:22, Cpk Δl2ð Þ ¼ 0:59, Cpk ΔR3ð Þ ¼ 2:5, Cpk

Δl3ð Þ ¼ 0:63, Cpk R4ð Þ ¼ 1:73, and Cpk Δl4ð Þ ¼ 0:6. The values of ΔR1, ΔR2, ΔR3, and ΔR4 in
ΔB2 are closer to the real ones than the values of Δl1, Δl2, Δl3, and Δl4 in ΔB2. As the influence
of ΔR1, ΔR2, ΔR3, and ΔR4 is bigger than that of Δl1, Δl2, Δl3, and Δl4, ΔB2 is valid.

The result is verified as well. ΔB1 is used to revise the parameters of D1 in Eq. (2) as

D1 ¼ 1
4

�186:959 188:737 �186:895
186:959 188:737 186:895
0:1369 �0:1382 �0:1369

188:555

188:555

0:1382

2
664

3
775

By setting two sets of four wheel speeds W1 ¼ 10π=21; 10π=21; 10π=21; 10π=21½ �T and W2 ¼
4π=7; 4π=7; 4π=7; 4π=7½ �T, the displacement errors can be computed as S1 ¼ D1 �D0ð ÞW2t

Figure 12. (a) Schematic diagram of measuring and (b) the actual measuring.

Applications of Mobile Robots162

and S2 ¼ D2 �D0ð ÞW2t. The results of the two correction methods are almost identical in
theory.

The experiment with four movements is shown in Figure 12(a), while the actual movement is
shown in Figure 12(b). It can be found that S1 and S2 are close to the measured displacement
errors, so both ΔB1 and ΔB2 are satisfied to revise the matrix D1.

4. Localization

4.1. System configuration

The localization component of mobile manipulator includes two laser range finders and a
number of reflectors that are of cylindrical shape placed in the environment. Each reflector is
covered by a reflective tape with high reflectivity (Figure 13).

4.2. Dynamic tracking

To achieve accurate localization, the system should have the ability to perceive external infor-
mation through extracting the reflector features. In this research, as shown in Figure 13, there
are n reflectors, and the feature of each reflector Bi i ¼ 1; 2;…;nð Þ is extracted from the raw
data. The feature extraction algorithm consists of three steps: (i) filtering and clustering, (ii)
identification, and (iii) feature extraction.

The first step is filtering and clustering. The raw data obtained by each finder are a set of
discrete data sequences γ;∅ð Þ;λf gi j i ¼ 1; 2;…;n

� �
. γ is the distance from the target point to

the finder. ∅ is the polar angle. λi is the intensity value of the ith data point. In the process of
data analysis, the outlier points that are contaminated by noise will be filtered out.

The density of the collected data points is proportional to the distance from the target point to
the laser range finder. To improve the efficiency of the feature extraction process, an adaptive
clustering method is adopted as given by Eq. (12). Unless the distance between two data points
is less than the threshold δ, these data points are clustered for one reflector.

Figure 13. Localization system for the mobile manipulator.
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δ ¼ γi�1 sinΔ∅ð Þ= sin β� Δ∅
� �� �� �þ 3σγ (12)

where γi�1 is the distance value of the i� 1ð Þth data point, Δ∅ is the angle resolution of the
laser range finder, β is an auxiliary constant parameter, and σγ is the measurement error. The

values of parameters σγ and β are given as 0.01 m and 10
�
, respectively.

The second step is identification. After clustering, the data set can be correlated to each
observable reflector. Each reflector data set is then used to calculate the position of the
reflector in the laser range finder frame [19]. Let λδ be the reflected intensity threshold
and D�Dδ; DþDδ½ � be the diameter range of a reflector, where D is a nominal reflector
diameter and Dδ is the tolerance. The values of λδ and Dδ are selected based on the actual
situation. Considering that Wc represents a set after clustering, i.e., Wc ¼ γ;∅ð Þ;λf giji ¼

�
m;…;ng, for each reflector, the measured diameter Dc is calculated as
Dc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
n þ γ2

m � 2γnγm cos ∅n �∅mð Þp
, where γ;∅ð Þm and γ;∅ð Þn are the beginning and end

data of a reflector set, respectively. When the set Wc satisfies the following two conditions

λmax ≥λδ

Dc ∈ Dmin;Dmax½ �

(
(13)

then the set Wc is established for all reflectors.

The third step is feature extraction. The feature extraction algorithm of a reflector extracts its

central position γL,B;βL,B

� �
in the laser range finder frame XL;YL;ZLf g, where γL,B and βL,B

are the distance and azimuth of each reflector, respectively. In the process of extracting the
feature of the circular reflector, only a small portion of the entire circle was scanned with noise,
so the accuracy of the fitting result would be low if a general least square circle fitting method
is used. Since the radius of the reflector is known, the known radius is used as a constraint to
improve the accuracy.

First, the value of βL,B is obtained from n�mð Þ consecutive data points of the reflector set

LβB ¼
1

n�mð Þ
Xn
i¼m

Lβi (14)

As shown in Figure 14, Mi represents the ith data and OL2B is a line between the reflector
center B and the laser range finder center OL2; the projected angle of the line OL2B in the laser
range finder frame is LβB, while the angle between the line OL2B and the line OL2Mi is θi. The

distance from Mi to B is approximately the radius of the reflector, i.e., BMi
�� �� ¼ D=2:

θi ¼ ∅i � LβB (15)

OL2B
�� ��

i ¼ OL2Mi
�� �� cos θij j þ BMi

�� �� cos arcsin 2∙ OL2Mi
�� �� sinθi

� �
=D

� �� �
(16)

LγB ¼
1

n�m

Xn
i¼m

OL2B
�� ��

i, i ¼ 1, 2,⋯m (17)
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Furthermore, as mentioned before, the position of the finder in the platform frame is
Px L2;

Py L2

� �
. The position of reflector center B Pγ B;

Pβ B

� �
in the platform frame can be

expressed as

PγB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Px L2 þ PγB cos

PβB

� �2 þ PyL2 þ PγB sin
PβB

� �2q

PβB ¼ arctanðPyL2 � Pγ B sin
PβBÞ=

PxL2 � PγB cos
PβB

� �

8<
: (18)

The optimal triangulation localization algorithm based on angle measurement is carried out. A
number of experiments were carried out on the reflector feature extraction algorithm before
proposing a localization algorithm for the system. A single reflector was placed in the measur-
ing range of the finder. The finder performed repeated scanning when it was placed at
difference places. Two different feature extraction algorithms were tested to calculate the
position of the reflector, and the results are shown in Figure 15. Algorithm A is the feature
extraction algorithm proposed in this chapter, while algorithm B is the least square circle
fitting method without a radius constraint. Apparently, the former one yields a better result.

After extracting the reflector center, the positions of all the reflectors G ¼ LγB
LβB

� �
iji ¼

n

1; 2;…;ng can be obtained and used to calculate the distance measurement range Rγ and the
angler measurement range Rβ of the reflector, as given below:

Rγ ¼ LγB

� �
max � LγB

� �
min (19)

Rβ ¼ LβB

� �
max � LβB

� �
min

� �
π∙

1
n

Xn
i¼1

LγB

 !
=180 (20)

where LγB

� �
max ∈G, LγB

� �
min ∈G, LβB

� �
max ∈G, LβB

� �
min ∈G.

Figure 14. Extraction of the center of the cylindrical reflector.
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δ ¼ γi�1 sinΔ∅ð Þ= sin β� Δ∅
� �� �� �þ 3σγ (12)

where γi�1 is the distance value of the i� 1ð Þth data point, Δ∅ is the angle resolution of the
laser range finder, β is an auxiliary constant parameter, and σγ is the measurement error. The

values of parameters σγ and β are given as 0.01 m and 10
�
, respectively.

The second step is identification. After clustering, the data set can be correlated to each
observable reflector. Each reflector data set is then used to calculate the position of the
reflector in the laser range finder frame [19]. Let λδ be the reflected intensity threshold
and D�Dδ; DþDδ½ � be the diameter range of a reflector, where D is a nominal reflector
diameter and Dδ is the tolerance. The values of λδ and Dδ are selected based on the actual
situation. Considering that Wc represents a set after clustering, i.e., Wc ¼ γ;∅ð Þ;λf giji ¼

�
m;…;ng, for each reflector, the measured diameter Dc is calculated as
Dc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
n þ γ2

m � 2γnγm cos ∅n �∅mð Þp
, where γ;∅ð Þm and γ;∅ð Þn are the beginning and end

data of a reflector set, respectively. When the set Wc satisfies the following two conditions

λmax ≥λδ

Dc ∈ Dmin;Dmax½ �

(
(13)

then the set Wc is established for all reflectors.

The third step is feature extraction. The feature extraction algorithm of a reflector extracts its

central position γL,B;βL,B

� �
in the laser range finder frame XL;YL;ZLf g, where γL,B and βL,B

are the distance and azimuth of each reflector, respectively. In the process of extracting the
feature of the circular reflector, only a small portion of the entire circle was scanned with noise,
so the accuracy of the fitting result would be low if a general least square circle fitting method
is used. Since the radius of the reflector is known, the known radius is used as a constraint to
improve the accuracy.

First, the value of βL,B is obtained from n�mð Þ consecutive data points of the reflector set

LβB ¼
1

n�mð Þ
Xn
i¼m

Lβi (14)

As shown in Figure 14, Mi represents the ith data and OL2B is a line between the reflector
center B and the laser range finder center OL2; the projected angle of the line OL2B in the laser
range finder frame is LβB, while the angle between the line OL2B and the line OL2Mi is θi. The

distance from Mi to B is approximately the radius of the reflector, i.e., BMi
�� �� ¼ D=2:

θi ¼ ∅i � LβB (15)

OL2B
�� ��

i ¼ OL2Mi
�� �� cos θij j þ BMi

�� �� cos arcsin 2∙ OL2Mi
�� �� sinθi

� �
=D

� �� �
(16)

LγB ¼
1

n�m

Xn
i¼m

OL2B
�� ��

i, i ¼ 1, 2,⋯m (17)
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Furthermore, as mentioned before, the position of the finder in the platform frame is
Px L2;

Py L2

� �
. The position of reflector center B Pγ B;

Pβ B

� �
in the platform frame can be

expressed as

PγB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Px L2 þ PγB cos

PβB

� �2 þ PyL2 þ PγB sin
PβB

� �2q

PβB ¼ arctanðPyL2 � Pγ B sin
PβBÞ=

PxL2 � PγB cos
PβB

� �

8<
: (18)

The optimal triangulation localization algorithm based on angle measurement is carried out. A
number of experiments were carried out on the reflector feature extraction algorithm before
proposing a localization algorithm for the system. A single reflector was placed in the measur-
ing range of the finder. The finder performed repeated scanning when it was placed at
difference places. Two different feature extraction algorithms were tested to calculate the
position of the reflector, and the results are shown in Figure 15. Algorithm A is the feature
extraction algorithm proposed in this chapter, while algorithm B is the least square circle
fitting method without a radius constraint. Apparently, the former one yields a better result.

After extracting the reflector center, the positions of all the reflectors G ¼ LγB
LβB

� �
iji ¼

n

1; 2;…;ng can be obtained and used to calculate the distance measurement range Rγ and the
angler measurement range Rβ of the reflector, as given below:

Rγ ¼ LγB

� �
max � LγB

� �
min (19)

Rβ ¼ LβB

� �
max � LβB

� �
min

� �
π∙

1
n

Xn
i¼1

LγB

 !
=180 (20)

where LγB

� �
max ∈G, LγB

� �
min ∈G, LβB

� �
max ∈G, LβB

� �
min ∈G.
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It can be seen from Figure 16 that the angle measurement accuracy is better than the distance
measurement accuracy. Therefore, based on these results, this chapter proposes an optimal
trilateral localization algorithm based on angle measurement. The idea is to use the azimuth

Figure 15. Effect diagram using different feature extraction algorithms.

Figure 16. The position of single reflector in the laser range finder frame.
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angle βb of the reflector in the platform frame to find the optima γb by the cosine theorem. The
global pose of the mobile manipulator is then calculated based on the triangular method. The
algorithm details are given as follows.

First, it is assumed that the finder can cover at least three reflectors at each position. After

feature extraction, the positions of three reflectors B1, B2, and B3 are calculated as PγB1

PβB1

� �
;

PγR,B2
; PβR,B2

� �
; and PγR,B3

; PβR,B3

� �
, respectively. In the global frame, these positions can also

be obtained as GB1 x1; y1
� �

; GB2 x2; y2
� �

; and GB3 x3; y3
� �

. Since they are measured from the

same finder, three circles must intersect at the same point GOMP , and the value of
GOMP

GxMP
GyMP

� �
, represents the position of the mobile platform, as shown in Figure 17.

According to the cosine theorem, the relations between the above variables can be expressed
by the following equations:

Pγ2
B1a
þ Pγ2

B2a
� 2Pγ B1a

γB2a
cos PβB1 � PβB2

� � ¼ x1 � x2ð Þ2 þ y1 � y2
� �2

Pγ2
B2a
þ Pγ2

B3a
� 2Pγ B2a

γB3a
cos PβR � PβB3

� � ¼ x2 � x3ð Þ2 þ y2 � y3
� �2

Pγ2
B1a
þ Pγ2

B3a
� 2Pγ B1a

Pγ B3a
cos PβB1 � PβB3

� � ¼ x1 � x3ð Þ2 þ y1 � y3
� �2

8>>>>><
>>>>>:

(21)

In Eq. (21), the known parameters PβB1,
PβB2, and

PβB3 are used to solve PγB1a
, PγB2a

, and PγB3a
.

Since the above equations are nonlinear, the steepest descent method is adopted. The three
circle equations can be expressed as

Figure 17. Schematic diagram of the localization algorithm.
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It can be seen from Figure 16 that the angle measurement accuracy is better than the distance
measurement accuracy. Therefore, based on these results, this chapter proposes an optimal
trilateral localization algorithm based on angle measurement. The idea is to use the azimuth

Figure 15. Effect diagram using different feature extraction algorithms.

Figure 16. The position of single reflector in the laser range finder frame.
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angle βb of the reflector in the platform frame to find the optima γb by the cosine theorem. The
global pose of the mobile manipulator is then calculated based on the triangular method. The
algorithm details are given as follows.

First, it is assumed that the finder can cover at least three reflectors at each position. After

feature extraction, the positions of three reflectors B1, B2, and B3 are calculated as PγB1

PβB1

� �
;

PγR,B2
; PβR,B2

� �
; and PγR,B3

; PβR,B3

� �
, respectively. In the global frame, these positions can also

be obtained as GB1 x1; y1
� �

; GB2 x2; y2
� �

; and GB3 x3; y3
� �

. Since they are measured from the

same finder, three circles must intersect at the same point GOMP , and the value of
GOMP

GxMP
GyMP

� �
, represents the position of the mobile platform, as shown in Figure 17.

According to the cosine theorem, the relations between the above variables can be expressed
by the following equations:

Pγ2
B1a
þ Pγ2

B2a
� 2Pγ B1a

γB2a
cos PβB1 � PβB2

� � ¼ x1 � x2ð Þ2 þ y1 � y2
� �2

Pγ2
B2a
þ Pγ2

B3a
� 2Pγ B2a

γB3a
cos PβR � PβB3

� � ¼ x2 � x3ð Þ2 þ y2 � y3
� �2

Pγ2
B1a
þ Pγ2

B3a
� 2Pγ B1a

Pγ B3a
cos PβB1 � PβB3

� � ¼ x1 � x3ð Þ2 þ y1 � y3
� �2

8>>>>><
>>>>>:

(21)

In Eq. (21), the known parameters PβB1,
PβB2, and

PβB3 are used to solve PγB1a
, PγB2a

, and PγB3a
.

Since the above equations are nonlinear, the steepest descent method is adopted. The three
circle equations can be expressed as

Figure 17. Schematic diagram of the localization algorithm.

Path Tracking of a Wheeled Mobile Manipulator through Improved Localization and Calibration
http://dx.doi.org/10.5772/intechopen.79598

167



x1 � GxMP
� �2 þ y1 � GyMP

� �2 ¼ Pγ2
B1a

x2 � GxMP
� �2 þ y2 � GyMP

� �2 ¼ Pγ2
B2a

x3 � GxMP
� �2 þ y3 � GyMP

� �2 ¼ Pγ2
B3a

8>>>>><
>>>>>:

(22)

The position GOMP
GxMP

GyMP

� �
of the system can be obtained in the global frame by solving

the above equations. Since the actual position of the reflector in the global environment
deviates from the theoretical position, these circles may not intersect at the same point. In
order to minimize the difference between the calculated position of the system and the actual
position, the least squares estimation principle is applied. Assuming that the coordinate of the
reflector is GBi xi; yi

� �
i ¼ 1; 2;…;nð Þ, n is the number of reflectors detected by laser range

finder. The position value GOMP
GxMP

GyMP

� �
of the system is calculated as

GxMP
GyMP

� �T ¼ ATA
� ��1

ATb (23)

where

A ¼
2 x1 � xnð Þ ⋯ 2 y1 � yn

� �

⋮ ⋯ ⋮

2 xn�1 � xnð Þ ⋯ 2 yn�1 � yn
� �

2
664

3
775 (24)

b ¼
x21 � x2n þ y21 � y2n þ Pγ 2

B2a
� Pγ2

B1a

⋮

x2n�1 � x2n þ y2n�1 � y2n þ Pγ2
B2a
� Pγ2

B1a

2
664

3
775 (25)

The posture of the system also includes an azimuth angle Gθ in the global frame. First, Gθi is
obtained from the ith reflector as

Gθi ¼ arctan yi � GyMP

� �
= xi � GxMP
� �� �� PβBi

(26)

The azimuth angle Gθ of the system is the averaged value from all the reflectors, as in

Gθ ¼ 1
n

Xn
i¼1

Gθi (27)

The dynamic tracking algorithm is then carried out. Localization of the system is based on
landmarks. The system needs to meet the following two conditions to complete real-time
localization:

i. The system requires real-time localization of the reflector in the environment.

ii. The localization system correctly matches the real-time observed reflectors.

Applications of Mobile Robots168

During the matching process, the reflectors observed in real time are made to correspond to all
reflectors in the last moment in the environment one by one to extract the effective reflectors
[20]. The localization can be achieved.

During localization, owing to the fact that some of the reflectors are obscured by obstacles or
confused with a highly reflective metal surface object, the loss of position of the system is
observed. To address the above problems, a dynamic tracking algorithm is proposed as shown
in Figure 18.

After placing n reflectors in the global environment, the system actually observes q reflectors at
the tth moment, and the coordinate value of the ith reflector in the platform frame is

Mt, i γt,Bi
;βt,Bi

� �
0≪ i≪ q
� �

. The sampling time of the laser range finder is 0.1 s. Therefore, the

theoretical position value Mt�1, j�1 γt�1,Bj
;βt�1,Bj

� �
of the jth reflector in the platform frame can

be deduced by the position Ot�1,R xt�1; yt�1
� �

of the system at the t� 1ð Þth moment and the

position GO j xj; yj
� �

of the jth reflector in the global environment.

If the difference between the theoretical value Mt�1, j γt�1,Bj
;βt�1,Bj

� �
and the observed value

Mt, i γt,Bi
;βt,Bi

� �
is less than η, then the ith observed reflector is an effective reflector and is

considered matched with the reference reflector Bj as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt�1,Bj cosβt�1,Bj

� γt,Bj
cosβt,Bi

� �2
þ γt�1,Bj

sinβt�1,Bj
� γt,Bi

sinβt�1,Bj

� �2r�����

����� ≤η (28)

Figure 18. Schematic diagram of the dynamic tracking algorithm.
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x1 � GxMP
� �2 þ y1 � GyMP

� �2 ¼ Pγ2
B1a

x2 � GxMP
� �2 þ y2 � GyMP

� �2 ¼ Pγ2
B2a

x3 � GxMP
� �2 þ y3 � GyMP

� �2 ¼ Pγ2
B3a

8>>>>><
>>>>>:

(22)

The position GOMP
GxMP

GyMP

� �
of the system can be obtained in the global frame by solving

the above equations. Since the actual position of the reflector in the global environment
deviates from the theoretical position, these circles may not intersect at the same point. In
order to minimize the difference between the calculated position of the system and the actual
position, the least squares estimation principle is applied. Assuming that the coordinate of the
reflector is GBi xi; yi

� �
i ¼ 1; 2;…;nð Þ, n is the number of reflectors detected by laser range

finder. The position value GOMP
GxMP

GyMP

� �
of the system is calculated as

GxMP
GyMP

� �T ¼ ATA
� ��1

ATb (23)

where

A ¼
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b ¼
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The posture of the system also includes an azimuth angle Gθ in the global frame. First, Gθi is
obtained from the ith reflector as

Gθi ¼ arctan yi � GyMP

� �
= xi � GxMP
� �� �� PβBi

(26)

The azimuth angle Gθ of the system is the averaged value from all the reflectors, as in

Gθ ¼ 1
n

Xn
i¼1

Gθi (27)

The dynamic tracking algorithm is then carried out. Localization of the system is based on
landmarks. The system needs to meet the following two conditions to complete real-time
localization:

i. The system requires real-time localization of the reflector in the environment.

ii. The localization system correctly matches the real-time observed reflectors.
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During the matching process, the reflectors observed in real time are made to correspond to all
reflectors in the last moment in the environment one by one to extract the effective reflectors
[20]. The localization can be achieved.

During localization, owing to the fact that some of the reflectors are obscured by obstacles or
confused with a highly reflective metal surface object, the loss of position of the system is
observed. To address the above problems, a dynamic tracking algorithm is proposed as shown
in Figure 18.

After placing n reflectors in the global environment, the system actually observes q reflectors at
the tth moment, and the coordinate value of the ith reflector in the platform frame is

Mt, i γt,Bi
;βt,Bi

� �
0≪ i≪ q
� �

. The sampling time of the laser range finder is 0.1 s. Therefore, the

theoretical position value Mt�1, j�1 γt�1,Bj
;βt�1,Bj

� �
of the jth reflector in the platform frame can

be deduced by the position Ot�1,R xt�1; yt�1
� �

of the system at the t� 1ð Þth moment and the

position GO j xj; yj
� �

of the jth reflector in the global environment.

If the difference between the theoretical value Mt�1, j γt�1,Bj
;βt�1,Bj

� �
and the observed value

Mt, i γt,Bi
;βt,Bi

� �
is less than η, then the ith observed reflector is an effective reflector and is

considered matched with the reference reflector Bj as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt�1,Bj cosβt�1,Bj

� γt,Bj
cosβt,Bi

� �2
þ γt�1,Bj

sinβt�1,Bj
� γt,Bi

sinβt�1,Bj

� �2r�����

����� ≤η (28)

Figure 18. Schematic diagram of the dynamic tracking algorithm.
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Therefore, a set A of effective reflectors at the tth moment can be obtained, and

A ¼ Mt,o γt,Bo
βt,Bo

� �
;…;Mt, i γt,Bo

;βt,Bi

� �
ji ¼ 0; 1;…; q

n o
. Taking the mobile manipulator’s

moving speed into account, the value of η depends on the actual situation. Through the use
of the optimal triangulation localization algorithm based on angle measurement, the pose
Ot,R xt; yt

� �
of the mobile manipulator can be calculated at the tth moment.

4.3. Experimental verification

The experimental data are obtained by the LMS 100 laser range finder with a scanning range of
270� and an angular resolution of 0.25�. The experimental platform is shown in Figure 19. The

Figure 19. Experimental platform.

Figure 20. Experimental environment.
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outside of the reflector is wrapped by reflective tape. In the experimental environment, five
reflectors are placed around the system. Their global coordinate values are (0,995); (0, 0);
(0, 1774); (2905, �2449); and (3956, �2032), and the unit is mm, as shown in Figure 20.

The optimal triangulation method based on angle measurement is used for validation by the
repeatability of the system. In the stationary state of the system, the environment is scanned by

Figure 21. Repeatability localization of the system at the same location.

Figure 22. System localization error.
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finders. Each result is indicated by a red dot in Figure 21. The repeatability obtained by the
trilateral method is nearly 18 mm, while the repeatability of the optimal method is only 9 mm.
It can be shown that the optimal method is better than the traditional method.

The mobile manipulator moves in the direction of the arrow in Figure 19, and each time the
systemmoves a certain distance, the localization system will perform an experiment, i.e., it will
use the left rear finder to calculate the current position. An average of 30 samples is taken for
each experiment.

Figure 22 shows the results of static localization accuracy. The maximum distance error is 18 mm
and the maximum angle error is 2�, which satisfies the localization requirement of the system.

The mobile manipulator moves in the designated route, and it needs to constantly calculate
and record its own position in the moving process. As shown in Figure 23, the trajectory of the
moving system based on the localization method is smoother.

This chapter demonstrates the feasibility of a tracking and localization algorithm for mobile
manipulators. The following conclusions can be drawn from this study: (i) In the detection of a
reflector in the laser range finder frame, the angle repeatability of the reflector is better than
that of the distance repeatability based on the feature extraction algorithm; (ii) The repeatabil-
ity localization accuracy using the optimal triangulation method based on the angle measure-
ment is nearly 9 mm, which is better than that of the trilateral method; (iii) The localization
error of the system is 18 mm, which satisfies the localization requirement of system. Improve-
ments in the location method based on reflectors, such as optimizing the layout of reflectors
and the map of reflectors selection strategy for localization, are still needed.

5. Summary

In this chapter, through analyzing the roller deformation of the Mecanum wheel, the changed
parameters of the motion equation of mobile system are found. The relative variation of the

Figure 23. Tracking results.
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parameters in the motion equation of the Mecanum motion platform is solved by Monte Carlo
analysis and interval analysis. Using the relative variation of the parameters to revise the
motion equation, the displacement errors in different spaces in theory are solved for and
compared with the measured displacement errors. From the comparison, both the methods
are found to satisfy the system’s requirement. Then, the feasibility of a tracking and locating
algorithm for mobile manipulator is demonstrated. The following conclusions can be drawn
from this study: (i) In the detection of a reflector in the laser range finder frame, the angle
repeatability of the reflector is better than that of the distance repeatability based on the feature
extraction algorithm; (ii) The repeatability localization accuracy using the optimal triangula-
tion method based on the angle measurement is nearly 9 mm, which is better than that of the
trilateral method; (iii) The localization error of the system is 18 mm, which satisfies the
localization requirement of system. Improvements in the localization method based on reflec-
tors, such as optimizing the layout of reflectors and the map of reflectors selection strategy for
localization, are still needed.

The method in this chapter is also used in the research of MoMaCo (Mobile manipulator in
Construction), which can draw baseline for architectural decoration engineering as shown in
Figure 24. The application result also verified the effectiveness of the method.
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Abstract

This chapter presents a four-wheel robot’s trajectory tracking model by an extended
Kalman filter (EKF) estimator for visual odometry using a divergent trinocular visual
sensor. The trinocular sensor is homemade and a specific observer model was developed
to measure 3D key-points by combining multi-view cameras. The observer approaches a
geometric model and the key-points are used as references for estimating the robot’s
displacement. The robot’s displacement is estimated by triangulation of multiple pairs of
environmental 3D key-points. The four-wheel drive (4WD) robot’s inverse/direct kine-
matic control law is combined with the visual observer, the visual odometry model, and
the EKF. The robot’s control law is used to produce experimental locomotion statistical
variances and is used as a prediction model in the EKF. The proposed dead-reckoning
approach models the four asynchronous drives and the four damping suspensions. This
chapter presents the deductions of models, formulations and their validation, as well as
the experimental results on posture state estimation comparing the four-wheel dead-
reckoning model, the visual observer, and the EKF with an external global positioning
reference.

Keywords: 4WD, visual odometry, trinocular sensor, EKF, visual observer,
trajectory estimation

1. Introduction

Autonomous robots obtain precise information about their surroundings by deploying their
sensing devices and developing perceptual tasks to accomplish useful missions. Intelligent robots
require to concurrently execute multiple functions such as path planning, collision avoidance,
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self-localization, tasks scheduling, trajectory control, map building, environment recognition,
kinematic/dynamic control, and so forth. Autonomous robots depend on multisensor fusion,
which is the process of combining data from the physical sensors into a homogeneous data space.

This chapter presents robot’s visual odometry using sensor data obtained from a homemade
radial multi-view device (Figure 1a). For this case, trinocular sensing is divergent; hence, an
inherent problem refers to different perspectives in each camera. Besides, the partial overlap
between adjacent cameras allows sharing approximately 25% of the total sensing angles,
which is too reduced and limits extracting numerous relevant features for data fusion affecting
to infer consistent information. Besides perspective, radial cameras yield differences of scale,
skew, rotation, and lighting intensities. To cope with this problem, this chapter deduces a
geometric trinocular sensor model to directly measure 3D data by combining divergent pairs,
the central camera with one of the two lateral cameras (Figure 1b). The robot’s state vector
(posture) is recursively estimated by a visual odometry model that triangulates multiple pairs
of key-points. Thus, an EKF uses the 3D odometry model and estimates the robot’s position.
The mobile robot is a four-wheel drive (4WD) modeled by a differential control law involving
the four passive damping suspensions to infer accurate positions.

Parallel trinocular stereo systems had been deployed either to detect the ground [1], or to
estimate motion [2]. There are reported works on motion estimation with binocular divergent
systems [3], trinocular divergence for visual odometry [4], and divergent visual simultaneous
localization and mapping (SLAM) [5]. As a difference from the active sensing modalities for
localization [6], and concurrent localization and mapping with parallel multi-view [7], this
chapter intends to estimate the posture of a rolling vehicle by exploiting feedback of the rich
data fusion that a divergent trinocular sensor provides. Numerous visual odometry algorithms
had been reported, using stereo cameras [8], matching multi-frame features [9] and 3D point
cloud [10]. Some outdoor visual odometry approaches for urban [11] environments estimate
motion tracking by extraction of visual feature points. There are numerous works combining
the benefits of visual SLAM algorithms [12–14] with visual odometry [15], detecting geometri-
cal features [16].

Figure 1. Robot’s trinocular sensor. (a) Trinocular sensor onboard. (b) Camera’s geometric divergence (top view).
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This chapter is organized into to the following sections. Section 2 deduces the sensor
fusion observer modeling the trinocular system geometry. Section 3 models the 4WD
direct/inverse kinematic solutions. Section 4 deduces the visual odometry formulation
and EKF-based control state and estimation. Finally, conclusions are provided in Sec-
tion 5.

2. Trinocular sensing model

This section describes the divergent multi-view geometric model, which basically combines the
data of a pair of cameras radially arranged. In addition, this section presents an algebraic analysis
of the lateral cameras’ alignment and correction w.r.t. the central camera. The fundamental
geometrical relationship of the system divergence was experimentally studied by deploying a
homemade prototype onboard a mobile robot, see Figure 2a. Cameras with homogeneous
intrinsic parameters are assumed, and cameras are mechanically fixed epipolar. The sensor

model’s purpose is to determine the depth information of a point in the scene p ¼ x; y; zð Þ⊤,
which is projected onto the overlapping area of a divergent pair. The proposed multi-view
geometric model combines data using the central camera as the reference (Figure 1b). The focal
plane in cameras A,C are perspective transformed, in order to align them epipolar and coplanar
w.r.t. the central reference B. As seen in Figure 1b, a point p is projected over two focal planes, for
instance, at column xC of lateral camera C, and at xB of camera B. Thus, an isosceles triangle PBC
is formed. For the triangle OBC, let β be the angle between the cameras’ centers B and C, as
deployed by expression (1). Let ϕ=2 be the remaining angle ofOBC, where the inner angles’ total

sum is π. By expressing βþ ϕ ¼ π and dropping off ϕ ¼ π� β, we easily deduce that ϕ
2 ¼ π

2 � β
2.

The geometrical distance BC is calculated by triangulation using the law of sines, with known
distance l that converges to O. The linear distance between adjacent sensors BC commonly
oriented w.r.t. the center O is

BC ¼ l sin β
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Figure 2. 4WD kinematics. (a) Deployed robot. (b) Damping system. (c) Robot’s view from below.
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self-localization, tasks scheduling, trajectory control, map building, environment recognition,
kinematic/dynamic control, and so forth. Autonomous robots depend on multisensor fusion,
which is the process of combining data from the physical sensors into a homogeneous data space.

This chapter presents robot’s visual odometry using sensor data obtained from a homemade
radial multi-view device (Figure 1a). For this case, trinocular sensing is divergent; hence, an
inherent problem refers to different perspectives in each camera. Besides, the partial overlap
between adjacent cameras allows sharing approximately 25% of the total sensing angles,
which is too reduced and limits extracting numerous relevant features for data fusion affecting
to infer consistent information. Besides perspective, radial cameras yield differences of scale,
skew, rotation, and lighting intensities. To cope with this problem, this chapter deduces a
geometric trinocular sensor model to directly measure 3D data by combining divergent pairs,
the central camera with one of the two lateral cameras (Figure 1b). The robot’s state vector
(posture) is recursively estimated by a visual odometry model that triangulates multiple pairs
of key-points. Thus, an EKF uses the 3D odometry model and estimates the robot’s position.
The mobile robot is a four-wheel drive (4WD) modeled by a differential control law involving
the four passive damping suspensions to infer accurate positions.

Parallel trinocular stereo systems had been deployed either to detect the ground [1], or to
estimate motion [2]. There are reported works on motion estimation with binocular divergent
systems [3], trinocular divergence for visual odometry [4], and divergent visual simultaneous
localization and mapping (SLAM) [5]. As a difference from the active sensing modalities for
localization [6], and concurrent localization and mapping with parallel multi-view [7], this
chapter intends to estimate the posture of a rolling vehicle by exploiting feedback of the rich
data fusion that a divergent trinocular sensor provides. Numerous visual odometry algorithms
had been reported, using stereo cameras [8], matching multi-frame features [9] and 3D point
cloud [10]. Some outdoor visual odometry approaches for urban [11] environments estimate
motion tracking by extraction of visual feature points. There are numerous works combining
the benefits of visual SLAM algorithms [12–14] with visual odometry [15], detecting geometri-
cal features [16].

Figure 1. Robot’s trinocular sensor. (a) Trinocular sensor onboard. (b) Camera’s geometric divergence (top view).
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This chapter is organized into to the following sections. Section 2 deduces the sensor
fusion observer modeling the trinocular system geometry. Section 3 models the 4WD
direct/inverse kinematic solutions. Section 4 deduces the visual odometry formulation
and EKF-based control state and estimation. Finally, conclusions are provided in Sec-
tion 5.

2. Trinocular sensing model

This section describes the divergent multi-view geometric model, which basically combines the
data of a pair of cameras radially arranged. In addition, this section presents an algebraic analysis
of the lateral cameras’ alignment and correction w.r.t. the central camera. The fundamental
geometrical relationship of the system divergence was experimentally studied by deploying a
homemade prototype onboard a mobile robot, see Figure 2a. Cameras with homogeneous
intrinsic parameters are assumed, and cameras are mechanically fixed epipolar. The sensor

model’s purpose is to determine the depth information of a point in the scene p ¼ x; y; zð Þ⊤,
which is projected onto the overlapping area of a divergent pair. The proposed multi-view
geometric model combines data using the central camera as the reference (Figure 1b). The focal
plane in cameras A,C are perspective transformed, in order to align them epipolar and coplanar
w.r.t. the central reference B. As seen in Figure 1b, a point p is projected over two focal planes, for
instance, at column xC of lateral camera C, and at xB of camera B. Thus, an isosceles triangle PBC
is formed. For the triangle OBC, let β be the angle between the cameras’ centers B and C, as
deployed by expression (1). Let ϕ=2 be the remaining angle ofOBC, where the inner angles’ total

sum is π. By expressing βþ ϕ ¼ π and dropping off ϕ ¼ π� β, we easily deduce that ϕ
2 ¼ π

2 � β
2.

The geometrical distance BC is calculated by triangulation using the law of sines, with known
distance l that converges to O. The linear distance between adjacent sensors BC commonly
oriented w.r.t. the center O is

BC ¼ l sin β

sin π
2 � β
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Figure 2. 4WD kinematics. (a) Deployed robot. (b) Damping system. (c) Robot’s view from below.
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To calculate the Cartesian coordinates of p, let us state that the point p is projected through the
horizontal coordinate xB, and on camera B angle’s θB, and focal distance f B as expressed by

θB ¼ tan �1
xB
fB

� �
and θC ¼ tan �1

xC
fC

� �
: (2)

The complementary angles B and C are modeled by

∠B ¼ π
2
� θB þ β

2
and ∠C ¼ π

2
� θC þ β

2
: (3)

In the triangle BCO, the angle at point p is obtained by equivalence of similar triangles
∠P ¼ θB þ θC � β. Thus, to estimate the range of the radial system B and C w.r.t. p, the linear
distance is calculated by the law of sines:

BC
sin∠P

¼ CP
sin∠B

and CP ¼ BC sin∠B
sin∠P

: (4)

Thus, for the other cameras’ pair, similar expressions are stated

BC
sin∠P

¼ BP
sin∠C

and BP ¼ BC sin∠C
sin∠P

: (5)

Hence, the model to express depth information is given by zB ¼ BP cosθB. By substituting BP
and θB, the model is further specified by

Λ1 ¼ l sin β

sin π�β
2

� �
sin θB � θC � β
� � ,

where,

zB ¼ Λ1 sin
πþ β
2
� θC

� �
cos tan �1

xB
fB

� �� �
: (6)

In addition, the range between camera C and p is defined by zC ¼ Cp cosθC. Thus, substituting
Cp and θC, we define

zC ¼ Λ1 sin
πþ β
2
� θB

� �
cos tan �1

xC
fC

� �� �
: (7)

Using the depth models zB and zC, the distances dB and dC w.r.t. p are estimated, such that
dB ¼ zB tan θBð Þ. Hence,

dB ¼ zB tan tan �1
xB
fB

� �� �
or dB ¼ zBxB

fB
(8)
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and being dC ¼ zC tan θCð Þ, by substituting θC from expression (2) we have

dC ¼ zC tan tan �1
xC
fC

� �� �
or dC ¼ zCxC

fC
: (9)

Furthermore, the algebraic deduction along the Y component for the equalities hBfB ¼ zByB
and hCfC ¼ zCyC, w.r.t p using distances hB and hC, is obtained by

hB ¼ zByB
fB

and hC ¼ zCyC
fC

,

thus the following term is stated as

Ψ ¼ 1
fB

l sin β

sin π
2 � β

2

� �
0
@

1
A cos tan �1

xB
fB

� �� �
:

Therefore, the geometry vector model for camera B w.r.t. camera C, with substitution of the
terms Ψ, zB, and zC in robot’s inertial frame R, produce the next expression:

pR
BC ¼

Ψ sin πþβ
2 � θC

� �

sin θB þ θC � β
� �

xB
yB
fB

0
B@

1
CA (10)

and the same model is enhanced for camera B, using the geometry of cameras A and B by

pR
AB ¼

Ψ sin πþβ
2 � θA

� �

sin θA þ θB � β
� �

xB
yB
fB

0
B@

1
CA: (11)

Hence, the arbitrary point pABC ∈ℝ3 is projected onto cameras AB, or onto cameras BC. In
order to express a general formula, let us define the following theorem.

Theorem 1 (Trinocular depth model). Let camera B be the reference for either divergent camera A

or C. A point coordinates w.r.t. camera A is pAB ¼ xA; yA; z
� �Τ , and w.r.t. camera C is pAC ¼

xC; yC; z
� �Τ . Hence, the general depth coordinate model for x and y for any divergent pair is

x, yA,C ¼
ΨxB sin

πþβ
2 � θA,C

� �

sin θA,C þ θB � β
� � , (12)

for coordinate z,

zA,C ¼
Ψf 2B sin

πþβ
2 � θA,C

� �

sin θA,C þ θB � β
� � : (13)
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Therefore, the geometry vector model for camera B w.r.t. camera C, with substitution of the
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order to express a general formula, let us define the following theorem.
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� �Τ . Hence, the general depth coordinate model for x and y for any divergent pair is
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The four points shown by the three cameras may illustrate their transformation, experimen-
tally developed at 1-m distance between the robot and the marks.

3. 4WD dead-reckoning controller

Since the visual trinocular approach uses an exteroceptive sensor, we decided to challenge its
detection and tracking capabilities with a robot having high holonomic properties. A 4WD
robot’s locomotion is prone to experience frequent swift turns resulting in numerous slippages.
Thus, a 4WD has to depend more on exteroceptive rather than inner measurements. Compar-
atively, inner 4WD odometry differs greatly from external visual measurement to infer pos-
ture. The proposed dead-reckoning system obtains speed measurements by deploying
odometer readings of the four asynchronous drives (Figure 2). A 4WD system is considerably
different from a conventional differential dual approach. Moreover, four passive mass-spring-
damper suspensions are included in this system (Figure 2b), which varies the inter-wheel
distances over time. Particularly, the robot’s 4WD and passive suspensions make the posture
observations challenging.

The robot’s dead-reckoning model is fundamental to sense and control position used as
feedback, providing motion description as a kinematic reference to match the visual observa-
tions when estimating the robot’s motion. The positioning and trajectory control [17], as well
as the type of kinematic analysis [18] and the dynamic suspension [19] in this type of robot
have been previously reported. The robot’s instantaneous speed vt (m/s) and yaw rate ωt (rad/s)
depend on the four wheels’ asynchronous rolling motion, _φ1, _φ2, _φ3, _φ4. For a wheel’s encoder,
the velocity model approaches measurements by high-precision numerical derivatives (central
divided differences) of the rotary angle φt (rad) w.r.t. time t, such that

_φt ¼
π
6Rt

ηtþ2 þ 7ηtþ1 þ 7φt�1 � ηt�2
� �

, (14)

where the wheel’s angular speed _φ is measured through pulse detection η (dimensionless) of
encoder’s resolution R (pulses/rev); thus, the robot’s instantaneous velocity is modeled by the
averaged wheel speed, with wheels of nominal radius r (m)

vt ¼ r
4

X4

i¼1
_φi: (15)

Further, the differential velocity v̂t expresses the lateral speeds’ difference that yields ωt. Thus,
v̂t is formulated by the expression

v̂t ¼ r _φ1 þ _φ2 � _φ3 � _φ4

� �
: (16)

This model describes that the rotary motion of _φ1 and _φ2 contributes to robot’s þωt (counter-
clockwise sense). Likewise, _φ3 and _φ4 contribute to robot’s �ωt (clockwise sense). Therefore,
ωt is yielded by the lateral speed component v̂t cos αið Þ (see Figure 2b) modeled by
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ωt ¼ v̂ cos cos αið Þð Þ
li

: (17)

The previous equation expresses the conservation of angular motion, and the wheel’s contact
point turns w.r.t. the robot’s center,

cos αið Þ ¼W
2li

, (18)

where for each length li there is an asynchronous model,

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ L1 þ L4ð Þ22

q

2
, l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ L2 þ L3ð Þ22

q

2
,

as well as

l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ L3 þ L2ð Þ22

q

2
, l4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ L4 þ L1ð Þ22

q

2
:

Thus, substituting cos αið Þ and li into ωt and by considering both clockwise and counterclock-
wise motions, the robot’s angular speed is

ωt ¼
X2

i¼1

rW _φi

l2i
�
X4

i¼3

rW _φi

l2i
: (19)

The longitudinal contact point’s distance li (m) takes as reference the robot’s geometric center.
When li varies, the contact point’s position Li changes.

Li ¼ d cos arcsin γi

� �� �
, (20)

where γi represents the vertical motion along the suspension,

γi ¼ arcsin
Δy

d1

� �
: (21)

From Figure 2a, the vertical motion yd is modeled assuming critical damping motion for a
general spring-mass-damper system. The suspension is modeled by the following second-
order homogeneous differential equation:

m€yd þ κ2 _yd þ κ1yd ¼ 0, (22)

where the elastic spring restitution coefficient is κ1 (kg/s2). The damping coefficient is κ2 (kg/s).
The restitution force m€yd counteracts the vertical oscillatory damping effects. The oscillatory
velocity and acceleration are denoted by _yd and €yd, respectively. Thus, solving the second-
order differential equation as a first-order equation such that κ2 _yd ¼ �κ1yd,
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ωt ¼ v̂ cos cos αið Þð Þ
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q

2
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q

2
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q

2
, l4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ L4 þ L1ð Þ22

q

2
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When li varies, the contact point’s position Li changes.
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where γi represents the vertical motion along the suspension,
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From Figure 2a, the vertical motion yd is modeled assuming critical damping motion for a
general spring-mass-damper system. The suspension is modeled by the following second-
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where the elastic spring restitution coefficient is κ1 (kg/s2). The damping coefficient is κ2 (kg/s).
The restitution force m€yd counteracts the vertical oscillatory damping effects. The oscillatory
velocity and acceleration are denoted by _yd and €yd, respectively. Thus, solving the second-
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ð

yd

dyd
yd
¼ � κ1

κ2

ð

t
dt, (23)

hence

ln yd
� � ¼ �κ1

κ2
tþ c, ζ ¼ � κ1

κ2
, (24)

with integration constant c ¼ 0 for analysis purpose. The suspension’s elongation derivatives
as functions of time are

yd ¼ eζt, _yd ¼ ζeζt, €yd ¼ ζ2eζt: (25)

Substituting the previous expression in (22),

mζ2eζt þ κ2ζeζt þ κ1eζt ¼ 0, (26)

and by algebraically simplifying, the characteristic equation is

ζ2 þ κ2

m
ζþ κ1

m
¼ 0, (27)

and its analytic solution is

ζ1,2 ¼
�κ2

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1
m

� �2 � 4 κ1
m

2
q

2
: (28)

As we assume a critically damped system, κ2
m

� �2 ¼ 4 κ1
m

� �
and there is only one real root solution,

such that

ζ ¼ � κ2

2m
: (29)

Therefore, the damping motion is analytically solved by

yd tð Þ ¼ Aeζt, (30)

where A (m) is the elongation amplitude (m) parameter for the suspension system. Moreover,
in this type of robotic platform, the four asynchronous drives simultaneously produce slip/
skid motions that are advantageously used to maneuver the robot. This approach proposes

inferring the instantaneous Z-turn axis location xR; yR
� �⊤. The Z-turn axis is movable in the

square region bounded by the wheels’ contact point. The Z-turn axis is expressed by the first-
order derivatives
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_xR ¼ rW
4vmax

€φ1 � €φ2 � €φ3 þ €φ4

� �
(31)

and

_yR ¼
rL

4vmax
� €φ1 � €φ2 þ €φ3 þ €φ4

� �
: (32)

There is a maximal allowable Z-turn displacement speed vmax. Hereafter, with four indepen-
dent equations, the control positioning system is instantaneously computed. The robot

control vector is _uR ¼ _vt; _ωt; _xR; _yR
� �⊤, and the control transition matrix Λt has the elements

λ1 ¼ r=4, λ2i ¼ rW=l2i , λ3 ¼ rW= 4vmaxð Þ, and λ4 ¼ rL= 4vmaxð Þ. Thus, the forward kinematics

solution is _uR ¼ Λt � _Ω or

_vt

_ωt

_xR

_yR

0
BBBBB@

1
CCCCCA
¼

λ1 λ1 λ1 λ1

λ21 λ22 �λ23 �λ24

λ3 �λ3 �λ3 λ3

�λ4 �λ4 λ4 λ4

0
BBBBB@

1
CCCCCA
�

€φ1

€φ2

€φ3

€φ4

0
BBBBB@

1
CCCCCA
: (33)

In addition, to inversely solve this matrix system, the analytical solution represents the vector

of independent control rotary variables _Ωt ¼ €φ1; €φ2; €φ3; €φ4

� �⊤. Thus, let us define λw ¼
λ1λ3λ4, λA ¼ λ23 � λ24, λB ¼ λ22 � λ21, λC ¼ λ21 � λ23, λD ¼ λ24 � λ22, λE ¼ λ21 þ λ24, and
λF ¼ λ22 � λ23.

€φ1 ¼
λ3λ4λD _v þ 2λw _ω � λ1λ4λA _xR þ λ1λ3λF _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ , (34)

€φ2 ¼
λ3λ4λC _v � 2λw _ω þ λ1λ4λA _xR � λ1λ3λE _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ , (35)

€φ3 ¼
λ3λ4λD _v þ 2λw _ω þ λ1λ4λB _xR þ λ1λ3λE _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ (36)

and

€φ4 ¼
λ3λ4λC _v � 2λw _ω � λ1λ4λB _xR � λ1λ3λF _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ : (37)

The matrix form of the inverse analytical solution for all wheels’ speed under damping

variations is stated as _Ω ¼ Λ�1t � _ut or
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ð

yd

dyd
yd
¼ � κ1

κ2

ð

t
dt, (23)

hence

ln yd
� � ¼ �κ1

κ2
tþ c, ζ ¼ � κ1

κ2
, (24)

with integration constant c ¼ 0 for analysis purpose. The suspension’s elongation derivatives
as functions of time are

yd ¼ eζt, _yd ¼ ζeζt, €yd ¼ ζ2eζt: (25)
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mζ2eζt þ κ2ζeζt þ κ1eζt ¼ 0, (26)
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ζ2 þ κ2

m
ζþ κ1

m
¼ 0, (27)
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ζ1,2 ¼
�κ2

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1
m

� �2 � 4 κ1
m

2
q

2
: (28)

As we assume a critically damped system, κ2
m

� �2 ¼ 4 κ1
m

� �
and there is only one real root solution,

such that

ζ ¼ � κ2

2m
: (29)

Therefore, the damping motion is analytically solved by

yd tð Þ ¼ Aeζt, (30)

where A (m) is the elongation amplitude (m) parameter for the suspension system. Moreover,
in this type of robotic platform, the four asynchronous drives simultaneously produce slip/
skid motions that are advantageously used to maneuver the robot. This approach proposes

inferring the instantaneous Z-turn axis location xR; yR
� �⊤. The Z-turn axis is movable in the

square region bounded by the wheels’ contact point. The Z-turn axis is expressed by the first-
order derivatives
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_xR ¼ rW
4vmax

€φ1 � €φ2 � €φ3 þ €φ4

� �
(31)

and

_yR ¼
rL

4vmax
� €φ1 � €φ2 þ €φ3 þ €φ4

� �
: (32)
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_vt

_ωt

_xR

_yR

0
BBBBB@

1
CCCCCA
¼

λ1 λ1 λ1 λ1

λ21 λ22 �λ23 �λ24

λ3 �λ3 �λ3 λ3

�λ4 �λ4 λ4 λ4

0
BBBBB@

1
CCCCCA
�

€φ1

€φ2

€φ3

€φ4

0
BBBBB@

1
CCCCCA
: (33)
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The matrix form of the inverse analytical solution for all wheels’ speed under damping
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_Ωt ¼

λ3λ4λD

2λwλG

2λw

2λwλG

�λ1λ4λA

2λwλG

λ1λ3λF

2λwλG

λ3λ4λC

2λwλG

�2λw

2λwλG

λ1λ4λA

2λwλG

�λ1λ3λE

2λwλG

λ3λ4λD

2λwλG

2λw

2λwλG

λ1λ4λB

2λwλG

λ1λ3λE

2λwλG

λ3λ4λC

2λwλG

�2λw

2λwλG

�λ1λ4λB

2λwλG

�λ1λ3λF

2λwλG

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�

_vt
_ωt

_xR
_yR

0
BBB@

1
CCCA, (38)

where λG ¼ λ21 � λ22 � λ23 þ λ24.

4. State estimation and feedback position control

This section formulates a deterministic geometric model for visual odometry and the state
estimation by an EKF. The proposed model combines pairs of key-points at times t and t� 1.
The robot’s displacements are deduced by inverse geometric triangulations to feed forward an
EKF and estimate the robot’s posture.

In Figure 3a, the instantaneous angle αt�1 is formed by a pair of key-points defined by

αt�1 ¼ ∣θa
t�1∣þ ∣θb

t�1∣ (39)

and such key-points’ distance ct�1 is defined by

ct�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δat�1
� �2 þ δbt�1

� �2 � 2δat�1δ
b
t�1 cosαt�1

q
: (40)

The angle βa, bt�1 of either key-point a or b is calculated by the law of sines,

Figure 3. Robot’s visual odometry. (a) Robot’s key-point pair observed at t� 1. (b) Same pair observed at t. (c) Robot’s
displacement Δs by triangulation of key-points pa .
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βa, bt�1 ¼ arcsin
δb, at�1 sinαt�1

ct�1

 !
: (41)

However, at time t in Figure 3b, the instantaneous angle αt is obtained by

αt ¼ ∣θa
t ∣þ ∣θb

t ∣, (42)

with the key-point’s distance ct as

ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δat
� �2 þ δbt

� �2 � 2δatδ
b
t cos αtð Þ

q
, (43)

which is used to obtain the angle βa,bt of the key-point a or b at actual time

βa,bt ¼ arcsin
δb, at sinαt

ct

 !
: (44)

Further, the differential angle β̂ is defined by triangulation of previous and actual poses and an
arbitrary 3D point pa, b (Figure 3c),

β̂ ¼ βa, bt�1 � βa, bt : (45)

Proposition 1 (Triangulation odometric displacement). The robot’s displacement Δs (Figure 3c)
that is inferred by triangulation of visual key-points over time is

Δs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δat�1 þ δat � 2δat�1δ

a
t cos β̂

� �q
: (46)

The triangulation angle λ is calculated by the law of sines,

λa,b ¼ arcsin
δa, bt sin β̂

� �

Δa, b
s

 !
(47)

and the orientation angle for each reference a is

ϕa,b ¼ λa, b þ π
2
� θa,b

t�1
� �

, (48)

which is required to know the X displacement

Δx ¼ Δa, b
s cos ϕa,b� �

, (49)

as well as the Y displacement

Δy ¼ Δa
s sinϕ

a: (50)

When obtaining numerous key-point pairs simultaneously, the total robot’s displacement is an
averaged value of the displacements yielded by all key-point pairs,
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1
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where λG ¼ λ21 � λ22 � λ23 þ λ24.

4. State estimation and feedback position control

This section formulates a deterministic geometric model for visual odometry and the state
estimation by an EKF. The proposed model combines pairs of key-points at times t and t� 1.
The robot’s displacements are deduced by inverse geometric triangulations to feed forward an
EKF and estimate the robot’s posture.

In Figure 3a, the instantaneous angle αt�1 is formed by a pair of key-points defined by

αt�1 ¼ ∣θa
t�1∣þ ∣θb

t�1∣ (39)

and such key-points’ distance ct�1 is defined by

ct�1 ¼
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δat�1
� �2 þ δbt�1

� �2 � 2δat�1δ
b
t�1 cosαt�1

q
: (40)

The angle βa, bt�1 of either key-point a or b is calculated by the law of sines,

Figure 3. Robot’s visual odometry. (a) Robot’s key-point pair observed at t� 1. (b) Same pair observed at t. (c) Robot’s
displacement Δs by triangulation of key-points pa .
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βa, bt�1 ¼ arcsin
δb, at�1 sinαt�1

ct�1

 !
: (41)

However, at time t in Figure 3b, the instantaneous angle αt is obtained by

αt ¼ ∣θa
t ∣þ ∣θb

t ∣, (42)

with the key-point’s distance ct as

ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δat
� �2 þ δbt

� �2 � 2δatδ
b
t cos αtð Þ

q
, (43)

which is used to obtain the angle βa,bt of the key-point a or b at actual time

βa,bt ¼ arcsin
δb, at sinαt

ct

 !
: (44)

Further, the differential angle β̂ is defined by triangulation of previous and actual poses and an
arbitrary 3D point pa, b (Figure 3c),

β̂ ¼ βa, bt�1 � βa, bt : (45)

Proposition 1 (Triangulation odometric displacement). The robot’s displacement Δs (Figure 3c)
that is inferred by triangulation of visual key-points over time is

Δs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δat�1 þ δat � 2δat�1δ

a
t cos β̂

� �q
: (46)

The triangulation angle λ is calculated by the law of sines,

λa,b ¼ arcsin
δa, bt sin β̂

� �

Δa, b
s

 !
(47)

and the orientation angle for each reference a is

ϕa,b ¼ λa, b þ π
2
� θa,b

t�1
� �

, (48)

which is required to know the X displacement

Δx ¼ Δa, b
s cos ϕa,b� �

, (49)

as well as the Y displacement

Δy ¼ Δa
s sinϕ

a: (50)

When obtaining numerous key-point pairs simultaneously, the total robot’s displacement is an
averaged value of the displacements yielded by all key-point pairs,
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Δxt ¼
Pn

i¼1 Δxi

n
and Δyt ¼

Pn
i¼1 Δyi

n
: (51)

Therefore, without loss of generality, for state estimation, let us assume a nonlinear robot’s
model state vector

xk ¼ f xk�1;uk;wkð Þ, (52)

where the state vector is x ¼ x; y;θ; v;ωð Þ, and combined with a nonstationary state transition
matrix At, such that xk ¼ At � xk�1 or

xk ¼

1 0 0 cos θð ÞΔt 0
0 1 0 sin θð ÞΔt 0
0 0 1 0 Δt
0 0 0 1 0
0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
�

x
y
θ

v
ω

0
BBBBBB@

1
CCCCCCA
, (53)

by developing the dot product from previous expression, we obtain

xk ¼

xk�1 þ v cos θð ÞΔt
xk�1 þ v sin θð ÞΔt

θk�1 þ ωΔt
v
ω

0
BBBBBB@

1
CCCCCCA
: (54)

The measurement model requires the displacements that were inferred through key-point
triangulation

zk ¼ h xk; vkð Þ, (55)

where wk and vk are the process and measurement noise models, respectively. These are statisti-
cally independent and supposed to have a Gauss distribution with zero average value and
known variance. To approximate the nonlinear robot’s measurement model, a linearized first-
order approximation by the expansion of the Taylor series is used, and a linear approximation of
a function is built, with slope obtained through partial derivatives by

f 0 ut; xt�1ð Þ ¼ ∂f ut; xt�1ð Þ
∂xt�1

: (56)

Thus, the linearized models of the process and measurement are defined next in (54) and (55),
such that
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f xð Þ ¼ f x̂ð Þ þ f 0 x̂ð Þ|ffl{zffl}
¼J

x� x̂ð Þ (57)

and

h xð Þ ¼ h x̂ð Þ þ h0 x̂ð Þ|ffl{zffl}
¼H

x� x̂ð Þ: (58)

In addition, the EKF’s prediction models (56) and the correction models (57) are formulated
and linearized as

x̂�k ¼ f xk�1;uk�1; 0ð Þ (59)

and

P�k ¼ AkPk�1A⊤
k þWkQk�1W

⊤
k : (60)

Moreover, the recursive Kalman gain for system convergence is

Kk ¼ P�k H
⊤
k HkP�k H

⊤
k þVkRkV⊤

k

� ��1
(61)

and the state vector of the system is described by

x̂k ¼ x̂�k þKk zk �Hxkð Þ, (62)

with covariance matrix of the system

Pk ¼ I�KkHkð ÞP�k : (63)

Thus, hereafter, the vector and matrix models describing the proposed robot’s system are
formulated and incorporated into the conventional EKF. Let us define the robot’s pose vector

x ¼ xt; yt;θt
� �⊤. The control vector is comprised of the robot’s absolute and angular speeds,

uk ¼ υ;ωð Þ⊤. Furthermore, the observation vector with sensor measurement zk ¼ Xp;Yp;Zp
� �⊤.

Eventually, the process noise vector wk ¼ wx;wy;wθ
� �⊤. The measurement noise vector vk ¼

vXp ; vYp ; vZp

� �⊤
.

Therefore, from the displacement equation (46), which arises from exteroceptive observations,
the robot’s Cartesian displacements are

Δx ¼ Δsð Þ cos θk�1 þ λþ π
2
� θa

t�1
� �� �

(64)

and
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Δxt ¼
Pn

i¼1 Δxi

n
and Δyt ¼
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i¼1 Δyi

n
: (51)

Therefore, without loss of generality, for state estimation, let us assume a nonlinear robot’s
model state vector
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where the state vector is x ¼ x; y;θ; v;ωð Þ, and combined with a nonstationary state transition
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xk ¼
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, (53)

by developing the dot product from previous expression, we obtain

xk ¼

xk�1 þ v cos θð ÞΔt
xk�1 þ v sin θð ÞΔt

θk�1 þ ωΔt
v
ω
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BBBBBB@

1
CCCCCCA
: (54)

The measurement model requires the displacements that were inferred through key-point
triangulation

zk ¼ h xk; vkð Þ, (55)

where wk and vk are the process and measurement noise models, respectively. These are statisti-
cally independent and supposed to have a Gauss distribution with zero average value and
known variance. To approximate the nonlinear robot’s measurement model, a linearized first-
order approximation by the expansion of the Taylor series is used, and a linear approximation of
a function is built, with slope obtained through partial derivatives by

f 0 ut; xt�1ð Þ ¼ ∂f ut; xt�1ð Þ
∂xt�1

: (56)

Thus, the linearized models of the process and measurement are defined next in (54) and (55),
such that
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f xð Þ ¼ f x̂ð Þ þ f 0 x̂ð Þ|ffl{zffl}
¼J

x� x̂ð Þ (57)

and

h xð Þ ¼ h x̂ð Þ þ h0 x̂ð Þ|ffl{zffl}
¼H

x� x̂ð Þ: (58)

In addition, the EKF’s prediction models (56) and the correction models (57) are formulated
and linearized as

x̂�k ¼ f xk�1;uk�1; 0ð Þ (59)

and

P�k ¼ AkPk�1A⊤
k þWkQk�1W

⊤
k : (60)

Moreover, the recursive Kalman gain for system convergence is

Kk ¼ P�k H
⊤
k HkP�k H

⊤
k þVkRkV⊤

k

� ��1
(61)

and the state vector of the system is described by

x̂k ¼ x̂�k þKk zk �Hxkð Þ, (62)

with covariance matrix of the system

Pk ¼ I�KkHkð ÞP�k : (63)

Thus, hereafter, the vector and matrix models describing the proposed robot’s system are
formulated and incorporated into the conventional EKF. Let us define the robot’s pose vector

x ¼ xt; yt;θt
� �⊤. The control vector is comprised of the robot’s absolute and angular speeds,

uk ¼ υ;ωð Þ⊤. Furthermore, the observation vector with sensor measurement zk ¼ Xp;Yp;Zp
� �⊤.

Eventually, the process noise vector wk ¼ wx;wy;wθ
� �⊤. The measurement noise vector vk ¼

vXp ; vYp ; vZp

� �⊤
.

Therefore, from the displacement equation (46), which arises from exteroceptive observations,
the robot’s Cartesian displacements are

Δx ¼ Δsð Þ cos θk�1 þ λþ π
2
� θa

t�1
� �� �

(64)

and
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Δy ¼ Δsð Þ sin θk�1 þ λþ π
2
� θa

t�1
� �� �

, (65)

as well as Δθ is given by

Δθ ¼ λþ π
2
� θa

t�1
� �

: (66)

By substituting an averaged Cartesian displacement, one considers n key-point observations to
calculate the recursive noisy state vector xk.The Jacobian matrix Jk of the robot’s temporal
matrix state transition Ak � xk, where xk ¼ xk�1 þ v cos θð ÞΔt, yk ¼ yk�1 þ v cos θð ÞΔt, and θk ¼
θk�1 þ ωΔt is stated by

J ¼ ∂Ak � xk
∂xk�1

¼

∂x
∂x

∂x
∂y

∂x
∂θ

∂x
∂v

∂x
∂ω

∂y
∂x

∂y
∂y

∂y
∂θ

∂y
∂v

∂y
∂ω

∂θ
∂x

∂θ
∂y

∂θ
∂θ

∂θ
∂v

∂θ
∂ω

∂v
∂x

∂v
∂y

∂v
∂θ

∂v
∂v

∂v
∂ω

∂ω
∂x

∂ω
∂y

∂ω
∂θ

∂ω
∂v

∂ω
∂ω

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

1 0 �v sin θð ÞΔt cos θð ÞΔt 0
0 1 v cos θð ÞΔt sin θð ÞΔt 0
0 0 1 0 t
0 0 0 1 0
0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
: (67)

Thus, a measurement is a 3D point arising from either divergent pair Eq. (10) or (11) and
deployed by Proposition 1.1. Thus, the robot’s measurement vector model z includes noise
measurements. The Jacobian matrix H of the expected state model w.r.t. measurements is
defined by

H ¼ ∂h
∂x
¼¼

∂Δx
∂xk�1

∂Δx
∂yk�1

∂Δx
∂θk�1

∂Δy
∂xk�1

∂Δy
∂yk�1

∂Δy
∂θk�1

∂Δθ
∂xk�1

∂Δθ
∂yk�1

∂Δθ
∂θk�1

0
BBBBBBB@

1
CCCCCCCA
: (68)

The process noise covariance matrix Qk is defined by

Qk_2πΣj j�1=2exp 0:5 z� μð Þ⊤Σ�1 z� μð Þ
n o

: (69)

Let us define the nonstationary covariance matrix P,

P ¼
σ2x 0 0
0 σ2y 0

0 0 σ2θ

0
B@

1
CA, (70)
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the matrix diagonal variances are experimental measurements that describe the trend of the
robot motion’s error.

The robot’s motion covariance matrix was obtained experimentally through 500 tests—straight
motion, right turns, left turns, clockwise and counterclockwise rotations, withN ¼ 100 tests for
each type of motion. Exteroceptive sensing devices onboard are tied to the robot’s geometry
of motion, and with their observations the robot’s posture can be estimated and therefore
matched with the robot’s deterministic kinematic model. From Section 3, the inverse (38) and
direct (33) models were used experimentally to obtain the following statistical covariance
about the measurement model

σ2x ¼
1
N

XN

i¼1

ð

t
λ1;λ1;λ1;λ1ð Þ⊤ � _Ωdt � cos

ð

t

rW
l21

rW
l22

�rW
l23

�rW
l24

 !⊤

� _Ωdt

 !
� x

!20
@ (71)

and

σ2y ¼
1
N

XN

i¼1

ð

t
λ1;λ1;λ1;λ1ð Þ⊤ � _Ωdt � sin

ð

t

rW
l21

rW
l22

�rW
l23

�rW
l24

 !⊤

� _Ωdt

 !
� y

!2

,

0
@ (72)

as well as the robot’s yaw statistical measurement model

σ2θ ¼
1
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XN

i¼1

ð

t

rW
l21

rW
l22

�rW
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�rW
l24
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: (73)

Furthermore, the measurement noise covariance matrix is

Rk ¼
σ2xp 0 0 0 0 0

0 σ2yp 0 0 0 0

0 0 σ2yp 0 0 0

0
BB@

1
CCA, (74)

and the matrix Wk which is the partial derivative of the process model w.r.t. the process noise
vector is

Wk ¼ ∂f
∂wk
¼

∂xk
∂wx
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∂θk
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:
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1
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: (75)

The matrix Vk ¼ ∂h=∂vk is the partial derivative w.r.t. the measurement noise vector,
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2
� θa
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� �� �

, (65)

as well as Δθ is given by
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2
� θa

t�1
� �

: (66)

By substituting an averaged Cartesian displacement, one considers n key-point observations to
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Thus, a measurement is a 3D point arising from either divergent pair Eq. (10) or (11) and
deployed by Proposition 1.1. Thus, the robot’s measurement vector model z includes noise
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The process noise covariance matrix Qk is defined by

Qk_2πΣj j�1=2exp 0:5 z� μð Þ⊤Σ�1 z� μð Þ
n o

: (69)

Let us define the nonstationary covariance matrix P,

P ¼
σ2x 0 0
0 σ2y 0

0 0 σ2θ

0
B@

1
CA, (70)
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the matrix diagonal variances are experimental measurements that describe the trend of the
robot motion’s error.

The robot’s motion covariance matrix was obtained experimentally through 500 tests—straight
motion, right turns, left turns, clockwise and counterclockwise rotations, withN ¼ 100 tests for
each type of motion. Exteroceptive sensing devices onboard are tied to the robot’s geometry
of motion, and with their observations the robot’s posture can be estimated and therefore
matched with the robot’s deterministic kinematic model. From Section 3, the inverse (38) and
direct (33) models were used experimentally to obtain the following statistical covariance
about the measurement model
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as well as the robot’s yaw statistical measurement model
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Rk ¼
σ2xp 0 0 0 0 0

0 σ2yp 0 0 0 0

0 0 σ2yp 0 0 0

0
BB@

1
CCA, (74)

and the matrix Wk which is the partial derivative of the process model w.r.t. the process noise
vector is
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The matrix Vk ¼ ∂h=∂vk is the partial derivative w.r.t. the measurement noise vector,
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Let us summarize the 3D points pAB and pBC obtained by Theorem 1.

4.1. State feedback position control

This section describes in six general steps the combined use of the visual observers and the
EKF geometric odometer as a recursive feedback for the robot’s positioning control. The
robot’s deterministic kinematic model conveys predictions about the robot’s geometry of
motion and its observations. Therefore, the deterministic model is used to infer the robot’s
motion observations implicitly by the trinocular sensor. The following formulation illustrates
how the EKF and the visual odometry model are fed back for the 4WD kinematics.

4.1.1. Kalman gain

The initial estimate of Kalman gain is

kk ¼ PkH⊤
k HkPkHT

k þVkRxVT
k

� ��1
(77)

4.1.2. Observation

From Proposition 1.1, the visual observers provide m 3D key-points from Theorem 1, pAB,BC

Δs pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥pt�1∥þ ∥pt∥� 2∥pt�1∥∥pt∥ cos βt�1 � βt

� �
2
q

The angle of each key-point p or q w.r.t. to the robot in actual time is

λt ¼ arcsin
∥pt sin β̂

� �
∥

Δs

 !
,

and the local angle of the robot w.r.t. the robot’s previous position is

ϕ ¼ λt þ π
2
� θt�1

� �
,

thus the inferred displacement is

xk ¼

1
mþ n

X
i
Δsai pð Þ cos ϕa

i

� �

1
mþ n

X
i
Δsai pð Þ sin ϕa

i

� �

λþ π
2
� θa

t�1
� �

0
BBBBB@

1
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: (78)
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Therefore, the observation vector with Gauss noise w is

zk ¼ H � xk þ
wx

wy

wθ

0
B@

1
CA: (79)

4.1.3. Update estimate

The update estimate is obtained by

x̂k ¼ x̂�k�1 þKk zk �Hxk�1ð Þ: (80)

4.1.4. Update error covariance

The covariance matrix error dispersion of the system is updated

P̂k ¼ Pk �KkHkPk: (81)

4.1.5. Deterministic control model

Therefore, the prediction is firstly obtained through the robot’s inverse position control model,
from the inverse kinematics equation, Eq. (38)

Ωtþ1 ¼ Ωt þΛ�1t � uref
R � x̂k

� �
,

where, in the previous expression, uR ¼ s;θ; xR; yR
� �⊤. Thus, Ω̂t ¼ 2π

R Δη1;
2π
R Δη2;

2π
R Δη3;

2π
R Δη4

� �⊤
is the vector of the wheels’ instantaneous measurements

utþ1 ¼ ut �Λ�1t � Ωtþ1 � Ω̂t

� �
:

This step converges until uref
R � ût

� �
< εu, where εu is the convergence error. Then, the robot’s

prediction model is

xk ¼ xk�1 þ B � utþ1

B being a control transition matrix.

4.1.6. State prediction

It follows that state prediction is

xkþ1 ¼Φk þ xk þ qk (82)

and the error dispersion covariance matrix is also predicted at tþ 1
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< εu, where εu is the convergence error. Then, the robot’s

prediction model is
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B being a control transition matrix.

4.1.6. State prediction

It follows that state prediction is
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and the error dispersion covariance matrix is also predicted at tþ 1
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Pkþ1 ¼ Pk þ AþA⊤� �
PkΔtþ APkA⊤ � ΣW

� �
Δt2 (83)

From the previous step, the estimation process repeats again, going to step one. The previous
Kalman process is performed until the robot reaches the goal and the estimation error con-
verges by numerical approximation according to xk � x̂kð Þ ≤ εx.
Therefore, Figure 4a shows the robot’s trajectory obtained by the different comparative
approaches conducted in this study. The postures measured by an external visual global
reference system are the main references to be compared with. The EKF estimation was
obtained by the use of Theorem 1, Proposition 1.1, and Eqs. (71)–(77). In addition, the trinoc-
ular key-points used as inputs of the visual odometry model inferred the robot’s displace-
ments, which are shown in same Figure 4a. Furthermore, the dead-reckoning robot system
was deployed to infer the robot’s postures and is also shown in Figure 4a. Raw odometry
refers to the robot’s dead-reckoning kinematic model used as a mean for direct posture
observation through direct kinematics (33) and inverse kinematics (38), but using direct
encoder readings by (14).

Figure 4. Positions and errors. (a) Cartesian positions. (b) Errors vs. global reference. (c) EKF’s Cartesian errors’ conver-
gence. (d) EKF’s angle error convergence.
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Figure 4b shows the dead-reckoning and the EKF Cartesian absolute errors, taken as main
reference for the visual global reference system. As for the direct dead-reckoning measure-
ments, the absolute error grows exponentially, where the position observation starts diverging
before the robot reaches the third turn. As for the EKF model, the Cartesian error w.r.t. the
global reference does not diverge but preserves bounded error magnitudes.

As for Figure 4c and d, the EKF’s Cartesian and angular absolute errors w.r.t. the global visual
tracker are shown. In Figure 4d, the local minimums and maximums determine the Cartesian
regions where the robot performed its turns.

Finally, Figure 5a shows the covariance error behavior obtained at each control loop during the
EKF recursive calculations. Figure 5b is a mapping of the measured key-points registered
using the state vector (posture) of a robot’s turn to illustrate the map’s divergence.

5. Conclusion

This chapter presented a visual odometry scheme for a trinocular divergent visual system that
was combined with an EKF for visual odometry estimation. The proposed trinocular geometric
model observer geometrically combined adjacent radial views. About 20% of adjacent multi-
view overlapping data allowed inference of small volumes of depth information. In measuring
3D key-points, the X-axis metrical error was reported to be lower than 7 cm, with error less

Figure 5. Errors’ convergence behavior. (a) EKF variances over time. (b) Key-point map’s divergence using state vectors.
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than 10 cm in þY component and less than 3 cm in �Y (vertical). Likewise, we found an
averaged Z-axis error less than 5 cm (depth). Such errors were mostly produced by the angular
divergence of the object w.r.t. the central camera, rather than linear distances. Indoor experi-
ments, measuring distances up to 10 m were developed. In addition, a set of experimental
results in convergent robot’s course gave closed loops, and as the robot moved, the trinocular
sensor incrementally stored environmental 3D key-points.

The robot’s trajectory was obtained by different comparative approaches conducted in this
study. The postures were measured by an external visual global reference system, which was
the main reference system to be compared with. The robotic platform’s kinematics was
modeled in terms of a dead-reckoning approach. The direct and the inverse solutions were
combined to produce a recursive linearized control model and this was used as the prediction
model for EKF estimator. The dead-reckoning robot system was deployed to infer the robot’s
postures using directly the four encoders’ readings, with good results obtained only for very
short paths. As a comparative perspective, using only the 4WD dead-reckoning system the
posture exponentially diverged.

We found bounded Cartesian error for this 4WD robot by deploying the EKF. The trinocular
3D key-points were used as inputs of the visual odometry model that inferred the robot’s
displacements by geometrical triangulations.
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Abstract

This chapter presents a system level design and conception of a System-on-a-Chip (SoC)
for the execution of cognitive agents. The computational architecture of this SoC will be
presented using the cognitive model of the concurrent autonomous agent (CAA) as a
reference. This cognitive model comprises three levels that run concurrently, namely the
reactive level, the instinctive level and the cognitive level. The reactive level executes a fast
perception-action cycle. The instinctive level receives perceptions from and sends the
active behavior to the reactive level, and using a Knowledge Based System (KBS) executes
plans by selecting reactive behaviors. The cognitive level receives symbolic information
from the instinctive level to update its logical world model, used for planning and sends
new local goals to instinctive level. Thus, this work proposes a novel SoC whose architec-
ture fits the computational demands of the aforementioned cognitive model, allowing for
fast, energy-efficient, embedded intelligent applications.

Keywords: cognitive agents, intelligent robots, mobile robots

1. Introduction

Every entity that can perceive its environment and perform actions upon it can be called an
agent [1]. When this process is achieved using knowledge about the environment, then the
agent is a cognitive agent [2]. Cognition, according to [3], is a process that allows to a system to
robustly behave adaptively and autonomously, with anticipatory capabilities. The authors
proceed by classifying cognitive systems in two broad classes, namely the cognitivist and the
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emergent systems. Inside the cognitivist class goes systems that relies on symbolic representa-
tion and information processing. In the second class, the emergent systems, are connectionist,
dynamical and enactive systems.

There are aspects of cognitive agents that remain invariant in time and over different tasks.
These aspects generally include the short-term and long-term memories where knowledge is
stored, the knowledge representation structure and the processes that performs over the
previous elements (possibly changing its contents, like learning). The aspects cited above are
comprised by a cognitive architecture [4].

An example of architecture for cognitive agents is the concurrent autonomous agent (CAA), an
autonomous agent architecture for mobile robots that has already proven to be very powerful
[5–7]. Three parallel levels compose this architecture: the reactive, the instinctive and the
cognitive levels. The first is responsible for executing the perception-action cycle, the second
uses a knowledge based system (KBS) to select behaviors in the reactive level, and the third
also uses a KBS, but for planning.

In [8] the CAA was embedded in a microcontrollers network specially designed to fit its
cognitive architecture. The intention of the authors was to optimize the performance of the
agent for an embedded environment, allowing it to be physically embedded into a mobile
robot. In this work a step forward is given in that direction, since its main objective is to design
a System-on-a-Chip (SoC) dedicated to the execution of the CAA.

Hardware design for cognitivist systems (using [3] aforementioned classification) is not a
recent concern. The first paper about the Rete matching algorithm [9] already presents a low-
level (assembly) implementation of the matching algorithm for production systems. Years
later, [10] designed a reduced instruction set computer (RISC) machine for OPS production
systems, focusing on optimizing the branch prediction unit for the task. A more recent
approach by [11] proposes a parallelization strategy to use the parallel processing power of
graphics processing units (GPUs) for Rete pattern matching.

Still searching for dedicated hardware for the Rete algorithm, [12] present a special purpose
machine that is connected to a host computer as a support for agents execution in software.
The authors also shown that increasing the number of inputs of the beta nodes in the network
generated by the algorithm enhances the performance of the proposed hardware: using four or
five inputs in a join node of the beta network allowed for a 15–20% increase in performance.
For the operation of the processor the network is compiled into an inner representation and
loaded into an external RAM. A Token Queue Unit stores partial matches, controlled by a
microprogram of the Control Unit and by a Match Unit.

The authors in [13] propose a processor for the execution of production systems aiming
applications of real-time embedded general artificial intelligence. The production system exe-
cuted by the processor is the Street system. The processor, named Street Engine, interprets RISC
instructions from its ISA, which is composed by only one type of instructions: a form of
parallel production rules. Hence, instead of being executed sequentially, the instructions are
executed in parallel by hardware units named producers. The producers are interconnected in
a network-on-a-chip (NoC), and each one has only one associated production. The knowledge
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representation language employed by the Street Engine is the Street Language, designed to map
a variant of the Rete algorithm to the hardware. The street engine is controlled by events, where
each producer stores a subset of the working memory (corresponding to the alpha memories in
the Rete algorithm) and changes in the working memory of one producer causes changes in
other memories of producers affected by the change.

Deviating from production systems, a processor oriented to the real-time decision making of
mobile robots is proposed by [14]. The processor comprises four search processors with
8 threads each for trajectory planning and a reinforcement learning acceleration module for
obstacle avoidance. The search processors consist of a 6-stage pipeline that uses a three-level
cache to implement a transposition and avoid redundant computation between threads. The
reinforcement learning accelerator, in turn, uses a 2D array of processing elements to imple-
ment a SIMD architecture. A penalty is considered when a search processor tries to plan a
trajectory that collides with an obstacle.

The common theme among these works is that they are concerned with expert (production)
systems. According to [4], while cognitive architectures are intended to perform successfully in
a broad range of domains, expert systems have a narrower range of applications. The authors
then continues by saying that cognitive architectures “offers accounts of intelligent behaviors
at the system level, rather than at the level of component methods designed for specialized
tasks”. Therefore, the design of a SoC for cognitive systems can accomplish the optimized
performance of a dedicated low-level machine while maintaining its powerful intelligent
behavior, which justifies the importance of this work.

This chapter is divided as follows. In Section 2, the CAA is presented, with its levels explained.
Section 3 then exposes how knowledge is represented and inference is performed by the CAA
KBS (in both instinctive and cognitive levels). Sections 4 and 5 explains the Rete and Graphplan
algorithms, laying the basis for the following sections, which describes the hardware architec-
tures proposed to implement these algorithms. First, in Section 6, the overall architecture is
described. Then, Section 7 describes the Rete RISC machine. And in Section 8 the cognitive
module is presented. Section 9 shows the results of simulations and some final considerations
are presented in Section 10.

2. The concurrent autonomous agent (CAA)

The architecture of the concurrent autonomous agent (CAA) was inspired by the generic model
for cognitive agents. This model comprises three levels: the reactive level, the instinctive level and
the cognitive level [15]. The CAA levels are shown in Figure 1 [5, 6]. As can be seen in this figure,
the reactive level is responsible for interacting with the environment. It contains reactive behaviors
that enables the agent to perform a fast perception-action cycle. The perceptions are sent to the
instinctive level which, in turn, uses it to update the state of the world that it maintains in a KBS. It
also uses this information to update the logical model of the world in the cognitive level and select
the reactive behavior in the reactive level. Finally, the cognitive level does the planning, sending
local goals to the instinctive level, that will coordinate the execution of the plan [6].
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representation language employed by the Street Engine is the Street Language, designed to map
a variant of the Rete algorithm to the hardware. The street engine is controlled by events, where
each producer stores a subset of the working memory (corresponding to the alpha memories in
the Rete algorithm) and changes in the working memory of one producer causes changes in
other memories of producers affected by the change.

Deviating from production systems, a processor oriented to the real-time decision making of
mobile robots is proposed by [14]. The processor comprises four search processors with
8 threads each for trajectory planning and a reinforcement learning acceleration module for
obstacle avoidance. The search processors consist of a 6-stage pipeline that uses a three-level
cache to implement a transposition and avoid redundant computation between threads. The
reinforcement learning accelerator, in turn, uses a 2D array of processing elements to imple-
ment a SIMD architecture. A penalty is considered when a search processor tries to plan a
trajectory that collides with an obstacle.

The common theme among these works is that they are concerned with expert (production)
systems. According to [4], while cognitive architectures are intended to perform successfully in
a broad range of domains, expert systems have a narrower range of applications. The authors
then continues by saying that cognitive architectures “offers accounts of intelligent behaviors
at the system level, rather than at the level of component methods designed for specialized
tasks”. Therefore, the design of a SoC for cognitive systems can accomplish the optimized
performance of a dedicated low-level machine while maintaining its powerful intelligent
behavior, which justifies the importance of this work.

This chapter is divided as follows. In Section 2, the CAA is presented, with its levels explained.
Section 3 then exposes how knowledge is represented and inference is performed by the CAA
KBS (in both instinctive and cognitive levels). Sections 4 and 5 explains the Rete and Graphplan
algorithms, laying the basis for the following sections, which describes the hardware architec-
tures proposed to implement these algorithms. First, in Section 6, the overall architecture is
described. Then, Section 7 describes the Rete RISC machine. And in Section 8 the cognitive
module is presented. Section 9 shows the results of simulations and some final considerations
are presented in Section 10.

2. The concurrent autonomous agent (CAA)

The architecture of the concurrent autonomous agent (CAA) was inspired by the generic model
for cognitive agents. This model comprises three levels: the reactive level, the instinctive level and
the cognitive level [15]. The CAA levels are shown in Figure 1 [5, 6]. As can be seen in this figure,
the reactive level is responsible for interacting with the environment. It contains reactive behaviors
that enables the agent to perform a fast perception-action cycle. The perceptions are sent to the
instinctive level which, in turn, uses it to update the state of the world that it maintains in a KBS. It
also uses this information to update the logical model of the world in the cognitive level and select
the reactive behavior in the reactive level. Finally, the cognitive level does the planning, sending
local goals to the instinctive level, that will coordinate the execution of the plan [6].
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The level that interacts with the environment executing a fast-perception-action cycle is the
reactive level. It consists of a collection of reactive behaviors that determines the interaction of
the agent with the environment. Only one behavior can be active at a time, and the instinctive
level makes the selection. The architecture used in [8, 16] consists of a kinematic position
controller for the omnidirectional robot AxéBot. The reactive behaviors were implemented based
on the embedded kinematic controller. The behaviors implemented were simple: there is one
behavior for each cardinal direction, i.e., selecting the behavior corresponds to selecting the
direction (relative to the orientation of the robot) in which one wishes the robot to move onto.

The instinctive level, as the reactive level, is identical to the one purposed in [8]: its reasoning
mechanism consists of a KBS that executes a plan generated by the cognitive level, sending
symbolic information about the environment to the latter. The plans are executed by coordi-
nating behavior selection in the reactive level, which sends the perceptions to this level.

The cognitive level also uses a KBS as automatic reasoning method. Its facts base consists of a
logical model of the world. The inference engine is multi-cycle, meaning that it keeps running
independent of the update of the facts base by the instinctive level. This level does the planning,
coordinating the instinctive level for the execution of the plans. It is not used in this work.

Figure 1. Concurrent autonomous agent architecture.
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3. Knowledge-based systems (KBS)

The CAA uses a KBS in its two higher levels: the instinctive and the reactive. Its inner structure
is shown in Figure 2 [6].

All knowledge of the agent is stored in the facts base. The elements of the facts base use the
format logicð object attribute value Þ to represent elements in the world. The facts base contains
the states of the agent and of the environment in the KBS of the instinctive level and the logical
model of the world in the cognitive level one.

The format above is used also to form the premises of the rules in the rules base. But in this case
they are restrictions or specifications that the facts in the facts base must met in order to fire the
rule and execute its consequence, which may contain instructions on how to modify its own
facts base, or the facts base of another level (adding, removing or updating facts). Additionally,
in the rules syntax the fields (object, attribute and value) of the logical elements may contain
variables, which are denoted by a symbol preceded by a interrogation (?) token.

The rules may also contain filters to further specify restrictions on the values of the fields in the
premise elements. Filters have the format filterð operator parameter1 parameter2 Þ, where
parameter1 and parameter2 are variables or symbols present in some premise elements and
operator tells how they must compare for the rule to be fired.

The inference engine uses the Retematching algorithm to search the rules base for rules that are
enable to fire by the facts in the facts base without having to iterate through both bases. The
enabled rules then form the conflict set, and the inference engine must decide which rules in
this sets should be fired. Finally, the inference engine executes the consequence of the fired
rules and restart the process. This is the forward chaining algorithm.

Figure 2. Block diagram of a KBS.
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4. The Rete algorithm

The Rete algorithm is used in the inference engine of a KBS to efficiently match rules premises
with the facts without the need of looping through both rules and facts bases at each inference
cycle, greatly improving performance. It was proposed by Charles Forgy in 1979, in its doc-
toral thesis [17]. Its name, rete, is latin for network, because of how it organizes the information
in the knowledge base.

The Rete algorithm starts by constructing a network of nodes and memories based on the
premises of the rules and eventual filters they may contain. This network is divided in two
parts: the alpha and the beta networks.

The alpha network is composed by the following nodes:

• a Root Node, which is the entry point for new facts;

• Constant Test Nodes (CTN), which checks whether the non-variable (constant) fields of
premises matches the corresponding ones in the current fact; and

• Alpha Memories (AM), that stores facts that successfully passed through constant test nodes.

The beta network, in turn, have:

• Join Nodes (JN), where a set of test are performed to check variable binding consistency;

• Beta Memories (BM), which conjunctively “accumulates” facts that passed the corresponding
JN tests in tokens, which are partial matches to specific premises; and

• Production Nodes, which are terminal nodes for full matches.

5. The Graphplan algorithm

The cognitive level of the CAA contained a classical planner that used a KBS to perform a state-
space search in order to generate the plan. This approach may produce an explosion in the
number of states that, in turn, may overwhelm the memory capacity of the computational
system that executes it. In the case of the present work, where a SoC is supposed to run the
algorithm, this issue becomes specially expressive. The alternative considered here is the
utilization of a planning graph algorithm search instead, which is known as Graphplan.

The Graphplan algorithm uses a propositional representation for states and actions, and its
basic idea to reduce the search graph is to structure it as a sequence of layers comprising sets of
states, or propositions. Following a state (proposition) layer there is an inclusive disjoint of
actions, which is then followed by another propositional layer, and so on, alternately.

For a mathematical formulation of the Graphplan algorithm, one should first define mathemat-
ically a general planning problem. Let P ¼ Σ; sj; g

� �
be a planning problem, where:
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• Σ ¼ S;A;γð Þ is the problem domain, with S being the set of states, A the set of actions and
γ ¼ S� A! S is a state transformation application;

• sj ∈ S is the initial state; and

• g is the goal state.

An action a∈A is composed by two sets of propositions: prencond að Þ, its preconditions, and

effects að Þ¼ effectsþ að Þ ∪ effects� að Þ, its effects, where effectsþ að Þ is the set of positive propositions and
effects� að Þ is the set of negative propositions in the effects of the action. For an action a to be
applicable in a given state s, one should have precond að Þ⊆ s, and the new state would be given
by γ s; að Þ ¼ s� effects� að Þð Þ ∪ effectsþ að Þ.
Now back to Graphplan, given the action layer Aj and the propositional layer Pj�1 preceding it,
the former contains all actions a such that precond að Þ⊆Pj�1 and the later is composed by all
propositions p such that p∈Pj�1. Also, there are three types of edges:

• connecting a proposition p∈Pj�1 to an action a∈Aj;

• connecting an action a∈Aj to a proposition p∈Pj�1, such that p∈ effectsþ að Þ (positive arc);
and

• connecting an action a∈Aj to a proposition p∈Pj�1, such that p∈ effects� að Þ (negative arc).

Two actions a1, a2 ∈Aj are called independent if effects� a1ð Þ ∩ precond a2ð Þ ∪ effectsþ a2ð Þ
� � ¼ Ø and

effects� a2ð Þ ∩ precond a1ð Þ ∪ effectsþ a1ð Þ
� � ¼ Ø; otherwise they are said to be dependent.

If two actions are dependent, they are said to be mutually exclusive, or mutex for short. Another
situation that makes two actions in the same layer to be mutex is when a precondition of one of
them is mutex with a precondition of the other. And two propositions p and q are mutex if for
all a1 ∈Aj such that p∈ effectsþ a1ð Þ is mutex with every a2 ∈Aj such that q∈ effectsþ a2ð Þ, and
=∃a∈Aj such that p, q∈ effectsþ að Þ.
The algorithm works as follows. It first expands the planning graph, generating the direct
layered graph described before, with the successive proposition and action layers. Then when
a propositional layer Pj contains g, the expansion stops and the graph is searched backwards
for a sequence of sets of non-mutex actions. The plan is then extracted from this sequence.

An important difference between the algorithm used here and the one from the standard
approach is that here we use a KBS to represent knowledge and execute the inference. So the
expansion step The pseudo-code for the expansion step is given in Algorithm 1.

Algorithm 1 Planning graph expansion

1: procedure EXPAND sið Þ ⊳si: i-th state layer

2: Aiþ1  KBS:InferenceCycle si;Að Þ ⊳A: action profiles

3: siþ1  ∪Aiþ1:effectsþ

IntelliSoC: A System Level Design and Conception of a System-on-a-Chip (SoC) to Cognitive Agents Architecture
http://dx.doi.org/10.5772/intechopen.79265

205



4. The Rete algorithm

The Rete algorithm is used in the inference engine of a KBS to efficiently match rules premises
with the facts without the need of looping through both rules and facts bases at each inference
cycle, greatly improving performance. It was proposed by Charles Forgy in 1979, in its doc-
toral thesis [17]. Its name, rete, is latin for network, because of how it organizes the information
in the knowledge base.

The Rete algorithm starts by constructing a network of nodes and memories based on the
premises of the rules and eventual filters they may contain. This network is divided in two
parts: the alpha and the beta networks.

The alpha network is composed by the following nodes:

• a Root Node, which is the entry point for new facts;

• Constant Test Nodes (CTN), which checks whether the non-variable (constant) fields of
premises matches the corresponding ones in the current fact; and

• Alpha Memories (AM), that stores facts that successfully passed through constant test nodes.

The beta network, in turn, have:

• Join Nodes (JN), where a set of test are performed to check variable binding consistency;

• Beta Memories (BM), which conjunctively “accumulates” facts that passed the corresponding
JN tests in tokens, which are partial matches to specific premises; and

• Production Nodes, which are terminal nodes for full matches.

5. The Graphplan algorithm

The cognitive level of the CAA contained a classical planner that used a KBS to perform a state-
space search in order to generate the plan. This approach may produce an explosion in the
number of states that, in turn, may overwhelm the memory capacity of the computational
system that executes it. In the case of the present work, where a SoC is supposed to run the
algorithm, this issue becomes specially expressive. The alternative considered here is the
utilization of a planning graph algorithm search instead, which is known as Graphplan.

The Graphplan algorithm uses a propositional representation for states and actions, and its
basic idea to reduce the search graph is to structure it as a sequence of layers comprising sets of
states, or propositions. Following a state (proposition) layer there is an inclusive disjoint of
actions, which is then followed by another propositional layer, and so on, alternately.
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� �
be a planning problem, where:
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An important difference between the algorithm used here and the one from the standard
approach is that here we use a KBS to represent knowledge and execute the inference. So the
expansion step The pseudo-code for the expansion step is given in Algorithm 1.

Algorithm 1 Planning graph expansion

1: procedure EXPAND sið Þ ⊳si: i-th state layer

2: Aiþ1  KBS:InferenceCycle si;Að Þ ⊳A: action profiles

3: siþ1  ∪Aiþ1:effectsþ

IntelliSoC: A System Level Design and Conception of a System-on-a-Chip (SoC) to Cognitive Agents Architecture
http://dx.doi.org/10.5772/intechopen.79265

205



4: μAiþ1  a; bð Þ∈A2
iþ1, a 6¼ b ∣Dependent a; bð Þ ∨∃ p; qð Þ∈μsi : p∈

�
preconds að Þ, q∈ preconds bð Þg

5: μsiþ1  p; qð Þ∈ s2iþ1; p 6¼ q j∀ a; bð Þ∈A2
iþ1 : p∈ effectsþ að Þ ∧ q∈ effectsþ bð Þ ! a; bð Þ∈μAiþ1

� �

6: end procedure

Whenever the set of WME in g - the goal state - is contained in a given state layer si, a recursive
procedure must be executed to search for sets of non-mutex actions in each layer that could
have produced all the WMEs in the goal state. This procedure is composed by the functions
Search and Extract.

Algorithm 2 Search for non-mutex actions.

1: procedure SEARCH gð , πi, iÞ
2: if g ¼ Ø then

3: Π Extract ∪ preconds að Þ j∀a∈πif g; i� 1ð Þ
4: if Π ¼ Failure then

5: return Failure

6: end if

7: return Π:πi

8: else

9: select any p∈ g

10: resolvers a∈Ai jp∈ effectsþ að Þ ∧ ∀b∈πi : a; bð Þ∉μAi
� �

11: if resolvers ¼ Ø then

12: return Failure

13: end if

14: non-deterministically choose a∈ resolvers

15: return Search(g� effectsþ að Þ, πi∪ af g, i)
16: end if

17: end procedure

Algorithm 3 Extract a plan.

1: procedure EXTRACT gð , iÞ
2: if i ¼ 0 then
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3: return Ø

4: end if

5: πi  Search g;Ø; ið Þ
6: if πi 6¼ Failure then

7: return πi

8: end if

9: return Failure

10: end procedure

6. The proposed architecture

Figure 3 shows an overview of the SoC architecture for cognitive agents proposed in this work.
As mentioned before, the cognitive model of the CAA (Figure 1) was used as a base model for

Figure 3. Block diagram of the proposed SoC.
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3: return Ø

4: end if
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7: return πi

8: end if
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As mentioned before, the cognitive model of the CAA (Figure 1) was used as a base model for

Figure 3. Block diagram of the proposed SoC.
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the development of this architecture, and hence it can be seen in the image that each CAA level
has a corresponding computational module in the SoC.

The modules were designed according to the task executed by the corresponding CAA level.
Still referring to Figure 3:

• the cognitive level is implemented by a Graphplanmodule, responsible for the execution of
graph planning algorithms and a module dedicated to the Rete algorithm. The later is
used by the former for the SBC-based state space expansion;

• the instinctive level comprises only a Rete module that is applied to coordinate with the
reactive level the execution of a plan; and

• the reactive level, which in fact interacts with the environment, must be as general as
possible, and is implemented by a general purpose CPU.

7. The RISC Rete Machine

In this section, the proposed processor system level architecture is described. As it was stated in
the introduction, this processor is part of the design of a SoC for cognitive agents. The idea is to
have this processor working with another unit for planning in the cognitive level and with a plan
execution unit in the instinctive level. The knowledge bases should first be compiled into the
application specific ISA of the Rete processor and then downloaded into its instruction memory.

The system level architecture here presented is a RISC application specific processor (ASP) whose
special purpose ISA was inspired on the description of the Rete algorithm given in [9], the first
paper written about the algorithm. The author uses an assembly-like set of instructions to describe
the operation of the algorithm. But they serve only as guidelines for a high-level implementation
described afterwards in that paper; no hardware implementations are presented.

Inspired by the aforementioned (pseudo-)instructions presented in [9], this work purposes an
actual machine for the execution of the Rete matching algorithm whose ISA implements a
modified version of the pseudo-instructions presented in Forgy’s seminal paper.

The overall processor architecture is shown in Figure 4. The alpha and beta memories are pre-
allocated at compiling time.

The rules are compiled in a sequence of these instructions instead of being used for the creation
of the Rete tree in memory. The alpha and beta memories will still exist but the nodes (constant
test and join nodes) will be implemented by instructions (Figure 4).

The new fact is stored in a register together with a bit indicating whether it is being added or
deleted. The instructions arguments and operation are detailed below:

• FORK <label>: Represents a branch in the tree, with one of the nodes represented by a node
instruction immediately after it and the other at the instruction address given by <label>. This
address is stacked and the next instruction is fetched. The instruction address corresponding
to <label> is popped from stack when a mismatch occurs and the program jumps to it. If the
stack is empty, the match failed.
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• TEQA <field>, <constant>: Implements a CTN where <field> is the field to be tested (object,
attribute or value) of the fact register and <constant> is the value this field must be equal to.

• FILTER <field1>, <field2>, <comparison>: Compares two fields inside a fact using a given
comparison operation. If the comparison fails, so does the match.

• MERGE <parent-bm>, <bm>, <am>, <next-join>: Saves in registers the addresses of its parent
memories and of the next MERGE instruction. Also, it updates an alpha memory in a right
activation.

• TEST <field1>, <premise>, <field2>, <comparison>: Deals with left and right activations of
the JN. It triggers an interruption, jumping to a pre-programmed routine that runs through
the memories testing whether or not the <field1> compares to <field2> of <premise>-th
premise. The <comparison> operation is given in the field comparison.

• JOIN <lbl>: jumps to a JN (MERGE instruction) defined previously in the code, on a right
activation.

• TERM <rule>, <nsubs>: Represents production nodes. It saves the address of the conse-
quence of the matched rule in a register, for further use. <nsubs> is the number of sub-
stitutions this rule has, so that it can jump to the last one (for popping the test stack) in the
case where the current fact is to be excluded instead of added.

• SUBST <p1>, <f1>, <p2>, <f2>, <lst>: Uses the matched token to create substitutions for the
variable in the consequence. The pairs (<p1>, <f1>) and (<p2>, <f2>) are “coordinates”
of occurrences of the same variable in the premises and the consequence, respectively.

Figure 4. Architecture of the Rete processor.
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the development of this architecture, and hence it can be seen in the image that each CAA level
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The modules were designed according to the task executed by the corresponding CAA level.
Still referring to Figure 3:
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graph planning algorithms and a module dedicated to the Rete algorithm. The later is
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special purpose ISA was inspired on the description of the Rete algorithm given in [9], the first
paper written about the algorithm. The author uses an assembly-like set of instructions to describe
the operation of the algorithm. But they serve only as guidelines for a high-level implementation
described afterwards in that paper; no hardware implementations are presented.

Inspired by the aforementioned (pseudo-)instructions presented in [9], this work purposes an
actual machine for the execution of the Rete matching algorithm whose ISA implements a
modified version of the pseudo-instructions presented in Forgy’s seminal paper.

The overall processor architecture is shown in Figure 4. The alpha and beta memories are pre-
allocated at compiling time.

The rules are compiled in a sequence of these instructions instead of being used for the creation
of the Rete tree in memory. The alpha and beta memories will still exist but the nodes (constant
test and join nodes) will be implemented by instructions (Figure 4).

The new fact is stored in a register together with a bit indicating whether it is being added or
deleted. The instructions arguments and operation are detailed below:

• FORK <label>: Represents a branch in the tree, with one of the nodes represented by a node
instruction immediately after it and the other at the instruction address given by <label>. This
address is stacked and the next instruction is fetched. The instruction address corresponding
to <label> is popped from stack when a mismatch occurs and the program jumps to it. If the
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the JN. It triggers an interruption, jumping to a pre-programmed routine that runs through
the memories testing whether or not the <field1> compares to <field2> of <premise>-th
premise. The <comparison> operation is given in the field comparison.
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<lst> indicates whether it is the last substitution for that match or not. If it is, the test stack
must be popped to proceed with interrupted tests.

8. The cognitive module

Figure 3 shows that the computational module associated with the cognitive level of the CAA
(and from now on referred to as cognitive module) contains a Graphplan module that commu-
nicates with a Rete module, whose architecture was presented in the previous section. The
objective of the cognitive module is to solve planning problems using graph planning algo-
rithms. The Graphplan algorithm was used as an inspiration for the conception of the architec-
ture of this module.

This module needs to be generic enough to execute not only the Graphplan algorithm, but also
algorithms based on planning graphs or that uses Graphplan as heuristic function. Also, it
should have two execution modes: the search mode, where a solution for the planning prob-
lem is searched, and the monitor mode, the monitors the execution of found plans.

The system level model of this module consists of two general purpose processors with
individual instruction memory (i.e. executing independent programs) and a Rete module
communicating with each other through a bus. Figure 5 illustrates this architecture.

The taxonomy of the task this module should execute justifies this architecture. During plan-
ning, two main processes should be executed: the expansion of the states and actions graph,
and the recursive search for a solution whenever the goal state is found in the graph. With the
architecture described it is possible to execute these processes in parallel.

With this approach, when the goal state is found, the solution search can be started while the
graph expansion goes on. Hence, even if the found goal set do not produce a solution, the
expansion made progress in parallel, until another valid goal set is found, when the search is
triggered again. The dynamics of Graphplanwas modified for this module: a KBS is responsible
for calculating the applicable actions; this KBS is implemented by the Rete module. The
sequence diagram in Figure 6 illustrates this operation.

Figure 5. Block diagram of the cognitive module.
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9. Case study

The architecture were simulated using a program written in the Scala programming language,
using array structures for the instruction, alpha and beta memories, lists for fork and JN test
stacks and variables for registers (program counter, direction flags, stacks counters, alpha and
beta indices etc.). The dynamics of the program was dictated by the way the instructions
changed the program counter.

9.1. Domain definition

The architecture will be validated using the block world domain example, from [1]. Figure 7
shows the knowledge base that is going to be used in the simulation. The same filter shown in
the Move rule could be present in the MoveToTable rule, but it was omitted for simplicity. In
spite of the fact that the consequences will not be used here (only the matching procedure is
important), one should notice the add and the rem symbols. Those are simply instructions on
how to modify the facts base in case of a match.

9.2. Simulated tests: Rete module

The knowledge base shown in Figure 7 is then compiled into the program presented in Figure 8.
This program is the input for the simulator, in the form of an array of instruction objects (objects
from an instruction class defined inside the simulator code). It then waits for a new fact to come
in and then executes the program once for that fact, changing the memories accordingly.

The tests performed consisted of feeding some facts that are known to cause a match, one by one,
to the simulator and check whether the system detects that match. The facts logic C; on;Að Þð Þ,
logic C; type; blockð Þð Þ and logic C; state; clearð Þð Þmust match the premise of the ruleMoveToTable.

Figure 6. Sequence diagram of the cognitive module operation.
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Figure 9 shows the output of the simulator after feeding it with the fact logic C; on;Að Þð Þ. This
output contains all the instruction executed by the processor for the given fact. As the entry
point of the network is the root node and it has three CTNs as children, a FORK is always
processed first. For the current fact, the forked address is only taken after the fact is stored in
AM1 (and consequently in BM1 too, since the parent BM is a dummy one), when the JN test
fails (pc ¼ 5) due to the absence of facts in AM2. It is noteworthy that the instruction at forked
address is another fork, because the root node has three children. In the last CTN (pc ¼ 33) the
fork stack is empty, and as the test failed, the program finishes.

For logic C; type; blockð Þð Þ the processing mechanism is the same, but the execution path is
different, since the fact is going to a different alpha memory.

When logic C; state; clearð Þð Þ is added, a match occurs (pc ¼ 22), as can be seen in Figure 10. In
this output it is possible to see the JN tests being stacked once a partial match is found (pc ¼ 5).
After that (pc ¼ 8), a test fails, but the previously stacked test is not popped yet: there is a
FORK at pc ¼ 6, and forks have priority. Also, in this execution four substitutions take place
(pc ¼ 23 to 26).

Finally, Figure 11 shows the output of the simulator for the exclusion of the fact logic C; on;Að Þð Þ.
The procedure for exclusion starts as the same as the one for addition: the instructions guide
the traverse of the tree looking for a match. The difference is that no changes are made to
the memories. Instead, for every activation or match caused by the input fact, the index of the
corresponding memory and its position inside that memory are stacked. At the end of the
execution, when there are no more forks or tests stacked, the exclusion stack is pop and
the elements of the memories given by the indices stored in it are deleted.

Figure 7. Knowledge base for the block world domain example.
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Figure 8. Code for the Rete network of the block world example.

Figure 9. Output of the simulator for logic C; on;Að Þð Þ.
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9.3. Simulated tests: cognitive module

For the cognitive module simulation the Akka library was used. The reason is that Akka
implements the actor model of parallelism, which allows the program to contain routines
running in parallel but with isolated execution contexts, communicating only through message
passing; this suits the module specification given in Section 8.

Figure 10. Output of the simulator for logic C; state; clearð Þð Þ.

Figure 11. Output of the simulator for deleting logic C; on;Að Þð Þ.
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As mentioned early in this chapter, one of the tasks of the cognitive module is to monitor plan
execution. But this simulated experiment deals only with the execution of the Graphplan
algorithm for planning problem solution, since this is the computationally heavier task that
inspired the architecture.

The problem domain chosen for this test was, as in the Rete module, the block world domain.
But this time, for the establishment of a planning problem, a start state and a goal state must be
provided. Those are shown in Figure 12.

To show the execution of the experiment, the sequence diagram in the Figure 13was generated
by the simulation1. In the image it is possible to see that the expansion sub-module (that
represents the processor implementing the graph expansion) communicates with the Rete
module to generate the state and action layers of the planning graph. This sub-module is also
responsible for the calculation of mutex relations in each layer and for detecting the presence
of the goal set in the most recent state layer. It can be seen that after three expansion cycles
the goal is found and the search sub-module is triggered, starting the recursive search for a
solution.

The solution is not found, and this is the point where the main advantage of the architecture
became apparent: while the search sub-module tries to find a plan in the graph, the expansion
and the Rete modules work together to generate a new layer in the graph. And, for this
experiment, the new layer also has the objective state. The search module finds a solution this
time, namely: moveToTable A;Dð Þ,fh moveToTable C;Bð Þg, move C; table;Dð Þf g, move B; table;Cð Þf g,
move A; table;Bð Þf g i. The planning is then halted.

Figure 12. Start and goal states for the planning simulation.

1
The simulation generated a sequence of commands corresponding to the task being executed by each sub-module and
the messages being exchanged between them, and the commands were transformed in the sequence diagram by the tool
WebSequenceDiagrams (https://www.websequencediagrams.com/).
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10. Final considerations

This chapter presented the system level design of a SoC for the execution of cognitive agents. It
uses the cognitive model of a agent architecture named concurrent autonomous agent (CAA).
The SoC architecture was described in terms of the levels of the CAA and the tasks these levels
execute. Two main computational modules of the SoC are the RISC Retemachine that employs
an application specific ISA to detect matches in a KBS (in both the SoC correspondents of the
instinctive and cognitive levels of the CAA) and the multiprocessed cognitive level dedicated
to (graph) planning.

Figure 13. Sequence diagram for the simulation of the cognitive module.
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Simulated experiments shown that the architecture proposed for the aforementioned modules
are valid in the sense of performing correctly their tasks. As future works, a formal verification
method should be applied in order to validate the all modules separately and working
together, as well as their computational and energetic performance, to show that the proposed
architecture allows for low-level symbolic processing, which can give embedded and on-chip
systems fast automatic reasoning capabilities, with low energy consumption.
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