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Preface

Polyneuropathy is a distinct term for a generalized and relatively homogenous
process that affects many peripheral nerves, but it is the distal nerves that are
generally more affected by the disorder at large. It also commonly encompasses
any disturbance of the peripheral nervous system, including radiculopathies and 
mononeuropathies and/or disorders involving the nerves of the central and periph-
eral nervous system. In daily practice, the wide variety of causes must be identified 
in obtaining a diagnosis and polyneuropathies should be differentiated from other
diseases of the peripheral nervous system, including mononeuropathies and mul-
tiplex mononeuropathy (multifocal neuropathy) and some disorders of the central 
nervous system. Central nervous system diseases such as brain tumor, stroke, or
spinal cord injury occasionally present symptoms that are difficult to distinguish
from polyneuropathies.

The complex structure and function of nerves of the nervous system make them
susceptible to a variety of inflammatory, hereditary, infectious, toxicity, and other
factors that can impair their health and function, leading to the clinical disorder of
polyneuropathy. Although there is a lack of population-based studies, researchers
generally agree that no specific cause is identified in up to half of cases of patients
with polyneuropathy at referral centers despite deeper investigations.

There are no simple rules one can apply to reliably distinguish the type of polyneu-
ropathy produced by various disease categories (e.g., demyelinating versus axonal, 
chronic versus acute, and sensory versus motor). The interest in more reliable
instruments to apply to diseases involving nerves of the nervous system has become
a significant part of the full investigation to clarify the etiologic diagnosis of
polyneuropathy. Regarding its management, although several procedures involving 
conservative and surgical interventions are available, promising biological strate-
gies are needed to open new horizons so the drawbacks of these challenging condi-
tions may be overcome.

Knowledge about polyneuropathy has advanced on all fronts, significantly, 
through education and inspirational leadership. Contributors to this first edition of
Demystifying Polyneuropathy - Recent Advances and New Directions are many of these
leaders, and their writing and creativity are remarkable. The authors are practi-
tioners and researchers with an inestimable amount of experience, and they share
their knowledge and wisdom, seeking not only to teach but also to inspire those who
will follow them. They point out not only what we already know but also what we
need to discover, thereby directing a path toward observation, service, and experi-
mentation, each of which is integral to the study of polyneuropathy in imminent
and future directions.

As editor, and on behalf of the authors and assistants, I extend my gratitude to the
publisher for striking visual content to help create a comprehensive book, complete
with unique topic selections, so that the blend of academic and other content is
at once logical and stimulating. At this point, I am enormously grateful to the
extraordinary team at IntechOpen, including Edi Lipović, Mirena Calmić, and 
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Maja Božičević. My publishing editorship family always sets the bar high, patiently 
helping me by leaps and bounds to achieve a finished book. And, definitely, my 
academic family has embraced this exciting experience while my own little family 
graciously has allowed me the time to pursue this lovely undertaking. 

Finally, I am excited to introduce you, the reader, to our endeavor, shared in three 
main sections, five chapters in total. In the first section, general considerations and 
diagnostic approach are discussed through the chapter, The Cutaneous Biopsy for 
the Diagnosis for the Peripheral Neuropathies: Meissner’s Corpuscles and Merkel’s, 
which highlight skin biopsy as an alternative method of peripheral nerve biopsy for 
the analysis of nerve involvement in the differential of polyneuropathy. Given the 
relative simplicity of the technique and its ability to provide quantitative data, the 
test is also likely to be useful in following disease progression or response to treat-
ment. The chapter provides us a comprehensive rationale concerning this method 
within neuropathies and an update of the available information in this topic. 

In the second section, Etiologies and Pathogenesis, three chapters are included: 
the first is on HIV-associated neuropathy: the clinical picture of what is triggered 
by HIV infection and other maladies is very similar; it includes neuropathic pain, 
tingling sensation, and numbness. Several related aspects are discussed. The second 
chapter explains how peripheral neuropathy in connective tissue diseases is char-
acterized by different organ disorders due to the loss of immune system tolerance 
to autoantigens. Peripheral neuropathy is one of the features of these diseases with 
variable, and it is often seen in the course of the disease. The chapter reviews the 
clinical, diagnostic, and therapeutic features associated with the common diffuse 
connective tissue diseases, and it presents future directions. A third innovative 
chapter is presented about a new definition of a nonclassified polyneuropathy 
condition called ‘working hand syndrome.’ 

In the third section, Management and New Clinical Applications, a final chapter 
discusses platelet-rich plasma for injured peripheral nerves. Although polyneu-
ropathy is among the most challenging categories of neurological diseases, effective 
forms of treatment for polyneuropathy have been introduced over the last decades. 
Biological therapies are promising using conservative and surgical approaches. 
Effects mechanisms, clinical guidelines, protocols, and results from bench to 
bedside are fully described. 

We wish to thank those who contributed to these new insights into polyneuropathy. 
Particularly, we acknowledge our contributing authors for their excellent submis-
sions to this book, and our patients, families, friends, and collaborators for their 
help and patience at each step in the production of this book. In summary, we hope 
you enjoy this wonderful reading, and we are proud to have you join us in this 
unique and new experience. 

Patricia Bozzetto Ambrosi 
Paris Diderot University, 

France 
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Chapter 1

The Cutaneous Biopsy for the
Diagnosis of Peripheral
Neuropathies: Meissner’s
Corpuscles and Merkel’s Cells
Olivia García-Suárez, Yolanda García-Mesa,
Jorge García-Piqueras, Giuseppina Salvo, Juan L. Cobo,
Elda Alba, Ramón Cobo, Jorge Feito and José A. Vega

Abstract

Cutaneous biopsy is a complementary method, alternative to peripheral nerve
biopsy, for the analysis of nerve involvement in peripheral neuropathies, systemic
diseases, and several pathologies of the central nervous system. Most of these
neuropathological studies were focused on the intraepithelial nerve fibers (thin-
myelinated Aδ fibers and unmyelinated C fibers), and few studies investigated the
variations in dermal innervation, that is, large myelinated fibers, Merkel’s cell-
neurite complexes, and Meissner’s corpuscles. Here, we updated and summarized
the current data about the quantitative and qualitative changes that undergo MCs
and MkCs in peripheral neuropathies. Moreover, we provide a comprehensive
rationale to include MCs in the study of cutaneous biopsies when analyzing the
peripheral neuropathies and aim to provide a protocol to study them.

Keywords: skin biopsy, peripheral neuropathy, Meissner’s corpuscles,
Merkel’s cells

1. Introduction

Since the last half of the past century, the analysis in the cutaneous biopsy of
nerves, Merkel’s cells (MkCs), and sensory corpuscles, especially Meissner’s cor-
puscles (MCs), become a complementary method to diagnose peripheral neuropa-
thies [1] and a reliable alternative to peripheral nerve biopsy. Nevertheless, it has
been during the last decade that numerous studies have provided consistent evi-
dence to support this technique as a valuable tool to understand the etiologies of
some neurological diseases and to follow up clinical trials [2–4] (Figures 1 and 2).

Most of the neuropathological studies on cutaneous biopsies were focused on
intraepithelial nerve fibers, which are thin-myelinated Aδ fibers or unmyelinated C
fibers [2, 3, 5–9]. Conversely, few studies have investigated the large myelinated fibers
(although it can offer notable advantages over the unmyelinated ones [10]). Also, the
quantitative and qualitatively changes in MCs and MkCs associated to peripheral
neuropathies are poorly known although the study of MCs has gained interest [11–13].
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Figure 1. 
Meissner’s corpuscles (arrows) and Merkel’s cells in the first toe skin of nondiabetic (nd) and diabetic (d) 
subjects as observed using immunohistochemistry for S100 protein (S100P) and cytokeratin-20 (CK20), 
specific markers for lamellar cells and Merkel’s cells, respectively. 

The evaluation of the dermal innervation, including large fibers, MCs, and 
MkCs, is not currently included within the routine analysis of skin biopsies because 
of the lack of a validated protocol. Changes in the density and size of MC and MkCs 
(i.e., variations in number/unit of surface, atrophy and/or hypertrophy, protein 
expression, etc.), can reflect quantitative or qualitative variations in the number of 
sensory neurons or nerve fibers innervating them or in the cells forming MCs 
themselves. Even more, they might also reflect pathologies of the central nervous 
system, and in these cases, the cutaneous biopsy becomes a method to study dis-
eases difficult to be analyzed without invasive surgery. 

This chapter is aimed to update the current data about the quantitative and 
qualitative changes in MCs and MkCs in peripheral neuropathies, as well as to 
provide a comprehensive rationale to include them in the study of cutaneous biop-
sies when analyzing the peripheral neuropathies. Furthermore, our purpose is to 
provide a technical protocol for analyzing MCs and MkCs in cutaneous biopsies. We 
have excluded from this review the intraepidermic nerve fibers because they have 
been extensively studied in peripheral neuropathies, and standardized method has 
been proposed and accepted [4, 9]. 

2. State of the art: a review and update of the literature 

2.1 Why do we study Meissner’s corpuscles and Merkel’s cells for clinical 
purposes 

The cutaneous MCs are sensory structures placed just beneath the epidermis 
within the dermal papillae in areas especially sensitive to light touch, like the finger-
tips, palms, soles, lips, and male and female genital skin [14–16]. They show an 
ellipsoid morphology with the main axis perpendicular to the skin surface and a size 
largely variable (length of 80–150 μm and diameter of 20–40 μm). Structurally, they 
consist of an axon that runs between the stacked nonmyelinating Schwann-like cells 
(the so-called lamellar cells) and habitually lacks a differentiated capsule [14, 16, 17]. 
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Figure 2. 
Meissner’s corpuscles (arrows) of the palmar aspect of the fingers of patients diagnosed of Alzheimer’s disease, 
amyotrophic lateral sclerosis, and multiple sclerosis, as observed using immunohistochemistry for S100 protein 
(S100P). The samples were obtained during necropsy and in compliance with Spanish law. 

MCs are particularly abundant in the fingers and palm hand, which are two 
zones easily accessible for biopsy. Nevertheless, the analysis of MCs from these 
zones has many problems. First of all, the normal density (MCs/mm2) at this 
localization should be determined to compare normal and pathological conditions. 
The most ancient studies established that the density of MCs in the human hand is 
˜10–24 MCs/mm2 [18–20], it is higher in the fingertip (2.7/mm2 ° 0.68) than in 
the palm (1.33/mm2 ° 0.6), and it does not change significantly with age [21]. 
Nolano et al. [22] found 33.02/mm2 ° 13.2 in the fingertip of digit III and 45/mm2 in 
the digit V; Herrmann et al. [12] determined that the density of MCs on the palmar 
side of digit V is 12/mm2 ° 5.3, whereas in the skin of the thenar eminence, it is 
5.1/mm2 ° 2.2. 

The second trouble for the use of MCs in the diagnosis of neuropathies is 
whether or not MCs change in density and characteristic with aging. A reduction in 
number and size of MCs in elderly is generally assumed [18, 23–25], but detailed 
studies are not available. Preliminary data from our laboratory demonstrate that 
aging is accomplished of a reduction in the number and size of digital MCs, as well 
as changes in their architecture and immunohistochemical properties (García-
Piqueras et al., unpublished). However, the variations in the corpuscular size and 
morphology of MCs are difficult to evaluate because of their large variability within 
the same skin sample. Therefore, in the absence of evident atrophy, hypertrophy, or 
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corpuscular disruption, the evaluation of these parameters must be cautiously con-
sidered when evaluating cutaneous biopsies. 

The main constituents of MCs, that is, the axon and lamellar cells, contain specific 
proteins as widely demonstrated using immunohistochemistry [17, 26, 27]. These 
studies reported a large volume of information, but they are purely descriptive and do 
not consent to quantify those proteins and their possible variations in neuropathies. 
The central axon displays immunoreactivity for general neuronal markers (neuron-
specific enolase, protein gene product 9.5, neurofilament subunit proteins). They also 
express Ca2+-binding proteins such as calbindin D28k, parvalbumin, calretinin, and 
neurocalcin, which presumably regulate the axonic Ca2+ homeostasis and therefore 
participate in the mechanoelectric transduction. Recently, our research’s group 
detected axonic TRPC6, TRPV4, ASIC2, and Piezo2 ion channels that work as puta-
tive mechanoproteins [28–30]. Regarding lamellar cells, the vimentin is the interme-
diate filament filling their cytoplasm, while the glial fibrillary acidic protein is always 
absent. They strongly express S100 protein colocated with parvalbumin or calbindin 
D-28 kDa. The lamellar cells also display immunoreactivity for TrkB, the signaling 
receptor for the neurotrophins BDNF/NT-4 [31]. Apart from axon- or lamellar cell-
specific proteins, there are some others shared by both corpuscular constituents. They 
include p75NTR and TrkA (low-affinity pan-neurotrophin receptor and the high-
affinity receptor for nerve growth factor, respectively; [32, 33]), the epidermal 
growth factor receptor [34], or cell death protein Bcl-2 [35]. The presence of some ion 
channels in the lamellar cells has been also reported [28–30]. It is possible that some 
of these proteins undergo changes during peripheral neuropathies, but limited infor-
mation is so far available in this topic (see [17]). The proteins present in human MCs 
are summarized in Table 1. 

The cutaneous MkCs are special epidermal cells placed in the basal layer of the 
epidermis, isolated or forming clusters, in both the glabrous and hairy skin. They 
are innervated by Aβ sensory axons connected through synapse-like contacts 
forming the so-called MkCs-neurite complexes. MkCs are involved in fine touch 
working as a part of slowly adapting type I low-threshold mechanoreceptors and 
express specific mechanoproteins [16, 30, 36–39]. MkCs have an epithelial origin 
and do not originate from the neural crest, as classically accepted [40–42]. 

Using immunohistochemistry, diverse proteins have been detected in the MkC-
neurite complexes. They include low-molecular-weight cytokeratins and a reper-
tory of synaptic vesicles-related proteins (chromogranin A, synaptophysin), differ-
ent neuropeptides as well as neurotransmitter receptors, neurotrophin receptors, 
ion channels (ASIC2 and Piezo2), and neuron-specific enolase [28, 43–46]. The 
axon of the MkC-neurite complexes displays immunoreactivity for general neuronal 
markers (Table 1). 

The density of MCs varies from an anatomical region to another, and it is directly 
related to the sensibility of those zones [47]. In terms of density as far as we know, no 
age-dependent changes have been communicated. Recently, we have found signifi-
cant reduction in of digital MkCs with aging (García-Piqueras et al., unpublished). 
On the other hand, whether or not MkCs, or the nerve fibers innervating them, are 
involved in peripheral neuropathies has been poorly studied, but this possibility 
should be explored because the easily accessibility to MkCs-neurite complexes. 

2.2 Variations in MCs and MKCs in peripheral neuropathies 

Data reporting changes in MCs in peripheral neuropathies are scarce and are 
restricted to diabetes and other rare inheretary neuropathies, HIV infection, 
mechanical or traumatic nerve entrapment, and a miscellaneous group of systemic 
diseases with neurological symptoms. 
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Meissner’s corpuscles Merkel’s cell-neurite 
complex 

Protein Ax LC Ax MC 

Axonal proteins 

Neuron-specific enolase 

Protein gene product 9.5 

β-Arrestin 1 

GAP-43 

Ca2+-binding proteins 

S100 protein 

Calbindin D28K 

Calretinin 

Neurocalcin 

Cytoskeletal proteins 

Neurofilament proteins 

Vimentin 

Growth factor receptors 

p75NTR (pan-neurotrophin receptor) 

TrkA (NGF receptor) 

TrkB (BDNF/NT4 receptor) 

EGF receptor 

Putative mechanoproteins (ion channels) 

ASIC2 

Piezo2 

TRPC6 

TRPV4 

TRPM8 

Cell death-live proteins 

Bcl-2 

Neuropeptides and bioactive amines 

Serotonin 

Bombesin 

Vasoactive intestinal polypeptide 

Substance P 

CCK8 

Calcitonin gene-related peptide 

Neuropeptide receptors 

NMDA 

Synaptic vesicle-associated proteins 

Chromogranin A 

Synaptophysin 

Table 1. 
Proteins detected in human Meissner’s corpuscles and Merkel’s cell neurite complexes using 
immunohistochemistry. Red: positivity for a protein in the axon of Meissner's corpuscles; Blue: positivty for a 
protein in the lamellar cells (LC) of Meissner's corpuscles. 
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2.2.1 Diabetic neuropathy 

Distal symmetric peripheral neuropathy is one of the most common complica-
tions of diabetes [48] and involves motor, autonomic, and sensory nerve fibers. The 
histopathological studies have provided evidence that both the thin unmyelinated C 
fibers and the large myelinated ones are affected in on diabetic neuropathy. Con-
sistently, the two most prominent complaints are peripheral pain and changes in 
touch [13, 49–52]. The intraepidermic nerve fibers as well as the nerve apparatus of 
the dermis are reduced in the diabetic neuropathy, and the reduction of the dermic 
nerves involves MCs. Importantly, although some authors have argued their inter-
est in studying MCs and MkCs to better understand the diabetic neuropathy [53], 
only few studies have approached this topic. 

In cutaneous biopsies, it was shown that the density of MCs is significantly 
reduced in diabetic patients with respect to the controls (10.2 ˜ 8.4 vs. 
16.2 ̃  9.4/mm2, more evidently in type I than in type II diabetes), and this correlated 
with a reduction in median and ulnar nerves sensory amplitude; moreover, some MCs 
were hypertrophic or showed anomalies in their architecture (disorganization of the 
lamellar cells and increase in the irregularity of the axons) [54]. Similar findings as 
those obtained from cutaneous biopsy were observed using in vivo reflectance confo-
cal microscopy at the thenar eminence and digit V [55]. We have recently communi-
cated that long-term diabetic neuropathy courses with a reduction in the number 
and size of MCs and changes in their immunohistochemical profile [56] (Figure 1). 

Nevertheless, the number and size of MCs are probably related with the time of 
evolution of the neuropathy. In fact, in an animal model of diabetes that develop 
neuropathy, MCs were found more abundant and hypertrophic during the first few 
years of hyperglycemia, whereas after a long time, the hypertrophy declines but the 
number of corpuscles remained higher than in age-matched nondiabetic subjects; 
furthermore, the MCs from the diabetic animals found had abnormal structure and 
immunochemistry properties [57]. 

On the other hand, as far as we know, the only study reporting a reduction in the 
number of immunohistochemically demonstrable MkCs in diabetic neuropathy was 
from our laboratory [56]. 

2.2.2 Charcot-Marie-Tooth disease 

Charcot-Marie-Tooth (CMT) disease is a common inherited neuromuscular dis-
order characterized by neuropathies without known metabolic alterations. In the 
skin of patients with common and rare forms of CMT caused by different muta-
tions, the density of MCs is reduced compared with normal controls [58–60]. 
Similar findings were reported by Almodovar et al. [61] using in vivo reflectance 
confocal microscopy. 

2.2.3 Human immunodeficiency virus (HIV) neuropathy 

HIV-sensory neuropathy is a common complication of HIV infection and may be 
associated with significant morbidity due to neuropathic pain [62]. Several 
approaches exist for quantitative assessment of human HIV-associated distal sen-
sory polyneuropathy, and some of them have analyzed both unmyelinated and 
myelinated nerve fibers, as well as MCs. Using in vivo reflectance confocal micros-
copy, it was found a marked reduction in MCs [12, 63] in HIV+ subjects with and 
without distal sensory neuropathy [64]. 
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2.2.4 Entrapment neuropathies 

Surprisingly, little is known about the impact of entrapment neuropathy on 
target innervation. More than 20 years ago, we reported that human digital MCs 
survive to entrapment or section of peripheral nerves for more than 10 years, and 
although its number remains relatively stable, denervated MCs lack some antigens 
or change the pattern of expression of some others [65–67]. These data were con-
firmed recently in subjects undergoing carpal tunnel syndrome [68]. 

2.2.5 Miscellaneous 

A reduction in density or loss of MCs has also been reported in the skin of 
patients suffering from Ross syndrome (a rare disorder of sweating associated with 
areflexia and tonic pupil) [69], POEMS syndrome (polyneuropathy, organomegaly, 
endocrinopathy, monoclonal gammopathy, and skin changes) [70], systemic scle-
rosis [71], pachyonychia congenita (in contrast, MkC densities are higher) [72], 
chronic inflammatory demyelinating polyradiculoneuropathy [73], and systemic 
lupus erythematosus [12]. 

2.3 MCs are also altered in central nervous system disorders 

In addition to the abovementioned peripheral neuropathies, changes in MCs 
have been reported in Parkinson’s disease associated or not with dementia [74–76], 
spinobulbar muscular atrophy [77], Friedreich’s ataxia [78], amyotrophic lateral 
sclerosis [79], or Guillain-Barré syndrome [73]. Furthermore, altered cutaneous 
innervation also has been observed in some psychiatric disorders [80] and mental 
deficiencies [81] (Figure 2). 

3. Proposal of a method to systematically study MCs and MkCs in 
cutaneous biopsies 

MCs are only present in glabrous skin, and therefore fingers or toes are appro-
priate regions to take cutaneous biopsies focused to evaluate them; in spite of the 
discrepancies regarding their density in these places, they are abundant enough. 

In our opinion, the palmar aspect of fingertip IV would be an ideal region to be 
biopsied, because it is not involved in handling; the lateral borders should be 
excluded to avoid damaging the digital nerves and the formation of neuromas. On 
the other hand, toe pad biopsies can be also useful, but they contain a lower density 
of MCs than fingers [82]. 

The Joint Task Force EFNS/PNS [9] recommends to perform a 3 mm punch skin 
biopsy (including epidermis and the subpapillary and reticular dermis), using a 
sterile technique and under local anesthesia. A sample of these dimensions does not 
need sutures, heal completely within 1 week, and this normally guaranties no side 
effects or complaints. Informed consent is required, and information on the possible 
risks must be always provided. The fixation of the skin samples is recommended in 
2% PLP (2% paraformaldehyde, 0.075 M lysine, 0.037 M sodium phosphate, 0.01 M 
periodate) or Zamboni’s solution. We have also obtained excellent structural results 
and good antigen preservation using Bouin’s fixative and buffered 10% formalde-
hyde. Conversely, 4% paraformaldehyde masked most of the antigens present in 
MCs. The thickness of the sections is also important. The Joint Task Force EFNS/ 
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PNS especially recommends 50-μm thick sections to perform 3D reconstructions of 
MCs. Nevertheless, our experience demonstrates that to demonstrate the occur-
rence of most antigens present in the axon or in the lamellar cells of Meissner’s 
corpuscles, 8 or 10 μm sections are appropriate. 

There are different techniques for identification and assessment of MCs (silver 
impregnation techniques, electron microscopy, immunohistochemistry, and immu-
nofluorescence), but the ideal one should allow to the quantification and specific 
immunostaining, distinguishing the different MCs constituents. In routine studies, 
at least one marker for the axon and one for the lamellar cells should be used. 
Indirect immunofluorescence, especially when associated with confocal micros-
copy, provides an opportunity to investigate multiple neuronal and nonneuronal 
proteins within the same MC and also to perform its 3D reconstruction using 
appropriate computerized image analysis systems. Ideally, double immunostaining 
for both axon and lamellar cells, associated or not with labeling of the nuclei, 
provides a global image of the morphology and size of the corpuscle, as well as of 
the arrangement of corpuscular constituents (Figure 3). 

To quantify MCs, we use the method proposed by Verendeev et al. [83] to 
establish the density of MCs in the fingertips of primates. Briefly, 10-μm-thick 
sections, 200 μm apart, processed for S100 protein immunohistochemistry, are 
used. The sections are scanned by SCN400F scanner (Leica, Leica Biosystems™) 
and computerized using SlidePath Gateway LAN software (Leica, Leica 
Biosystems™). Then, in each section, MCs are identified and counted by two 
independent observers. The average numerical values were corrected applying 
the Abercrombie’s formula: N = n*T/(T + H), where N is the corrected average 
number of MCs, n is the counted average number of MCs in all sections of a 
fingertip, T is the average section’s thickness, and H is the average diameter of the 
counted MCs. Through a specific tool of the abovementioned software, the aver-
age MCs diameter was determinate measuring the horizontal axis by drawing a 
straight line approximately in the central region of each corpuscle. The longitu-
dinal epidermis of each section (mm) is measured with the same tool, and the 
average length was multiplied by the section’s thickness (mm) to give the mea-
sured surface area (mm2). Finally, the average number of Meissner corpuscles 
(N) was divided by the surface area (mm2) that is the density of MCs by squared 
millimeter of skin (number of MCs/mm2) (Figure 4). To establish the density of 
digital Merkel’s cells, we used the same method immunostaining Merkel’s cells for 
cytokeratin. 

Figure 3. 
3D reconstruction of a Meissner’s corpuscle in a finger of a 25-year-old male. The axon is labeled in red, and the 
lamellar cells in green. The cell nuclei were labeled with DAPI. Scale bar = 20 μm. 
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Figure 4. 
Schematic representation of the technical procedure to quantify Meissner’s corpuscles in sections of human 
digital skin immunostained for the detection of S100 protein. 

4. Final remarks and future prospectives 

Peripheral neuropathies are diverse and require a multidimensional approach for 
detection and monitoring clinical and research setting. The minimal invasiveness of 
skin biopsy makes it a useful tool not only for diagnostics but also for following the 
progression or the effects of a treatment in neuropathies. 

Pathophysiological studies in patients with large nerve fiber polyneuropathies 
are limited because the difficulty in obtaining nerve samples due to the invasive 
nature of the procedure. For this reason, some authors utilized skin biopsies to 
obtain morphological and molecular information from large dermal myelinated 
nerve fibers. The development of new methods to evaluate skin innervation, 
including MCs, through noninvasive techniques, that is, in vivo reflectance confocal 
microscopy, may contribute to better understand the changes in sensory corpuscles 
in neuropathies [12, 55, 61, 84–86]. 

Nevertheless, to use MCs as a complementary method in the diagnosis of neu-
rological diseases, more studies are still necessary. Firstly, the density of MCs must 
be mapped in the specific areas where they are abundant and easily accessible to 
cutaneous biopsy, especially the hand glabrous skin. Secondly, the physiological 
age-related changes in the number and protein composition of MCs of these 
selected areas must be established. Quantitative data, apart from qualitative, on 
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changes in protein composition of MCs with aging are necessary as a baseline for 
possible pathological changes. In addition to immunohistochemical studies, skin 
biopsy is amenable to the extraction of mRNA, RT-PCR, or microarrays for genes 
involved in neuropathies, and these methods should be used and standardized to 
study MCs. Finally, future studies should include not only neuropathies such as 
neurofibromatosis [85], or other rare metabolic neuropathies such as Gaucher 
type 1 disease [86], but also central nervous system diseases such as Alzheimer’s 
disease. 
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Chapter 2

HIV-Associated Sensory
Neuropathy
Fitri Octaviana, Ahmad Yanuar Safri, Darma Imran
and Patricia Price

Abstract

As advances in the treatment of HIV are now allowing patients a longer life
span, further comorbidities become apparent. This includes sensory neuropathy
(HIV-SN) which can affect a patient’s quality of life. Here, we review factors
influencing HIV-SN in patients receiving antiretroviral therapy that promotes this
condition and in the modern era when these therapies have been withdrawn. This
has halved the incidence of HIV-SN, but the condition remains significant in the
lives of many sufferers. Genetic polymorphisms that influence pathogenesis of
HIV-SN have indicated likely mechanisms, but studies of skin biopsies and animal 
models are needed to confirm the roles of the encoded proteins.

Keywords: HIV sensory neuropathy, inflammation, neuronal repair

1. Introduction

Management of HIV patients is now focused on their quality of life as anti-
retroviral therapy (ART) increases life expectancy. However, with longer lives, a
growing number of patients experience a neurological disorder that predominantly
affects small fibers. HIV-associated sensory neuropathy (HIV-SN) may arise not
only as a result of HIV infection itself but also as a side effect of ART. The clinical 
pictures triggered by HIV infection or ART are very similar and include neuropathic
pain, tingling sensation, and numbness [1–3]. HIV-SN is one of the most common
complications of HIV infection.

The incidence and prevalence of HIV-SN vary widely—perhaps because most
studies do not distinguish between neuropathy due to HIV itself and due to ART
regimens with different risk profiles. Cross-sectional studies including patients
receiving ART identify HIV-SN in 16–50% of HIV patients [4–6]. ART that includes
the non-nucleotide reverse transcriptase inhibitor (NNRTI), stavudine (d4T), is
associated with high prevalence of HIV-SN. The prevalence in Melbourne was up
to 42%, whereas in Kuala Lumpur and Jakarta, the reported level was lower, 19 and 
34%, respectively [7]. Stavudine is no longer in first-line therapy, and the preva-
lence of HIV-SN is almost halved (14.2%) compared to data from the same clinic in
Indonesia when patients received stavudine [8].

In untreated patients, the risk factors for HIV-SN were severe HIV disease marked
by low numbers of CD4+ T cells and high viral loads (HIV RNA) in plasma. In the era
of ART (including stavudine), the risk factors of HIV-SN included older age, height,
<50 CD4+ T cells/mm3, malnutrition, and concurrent diabetes [1, 7, 9, 10]. HIV-SN
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1. Introduction 

Management of HIV patients is now focused on their quality of life as anti-
retroviral therapy (ART) increases life expectancy. However, with longer lives, a 
growing number of patients experience a neurological disorder that predominantly 
affects small fibers. HIV-associated sensory neuropathy (HIV-SN) may arise not 
only as a result of HIV infection itself but also as a side effect of ART. The clinical 
pictures triggered by HIV infection or ART are very similar and include neuropathic 
pain, tingling sensation, and numbness [1–3]. HIV-SN is one of the most common 
complications of HIV infection. 

The incidence and prevalence of HIV-SN vary widely—perhaps because most 
studies do not distinguish between neuropathy due to HIV itself and due to ART 
regimens with different risk profiles. Cross-sectional studies including patients 
receiving ART identify HIV-SN in 16–50% of HIV patients [4–6]. ART that includes 
the non-nucleotide reverse transcriptase inhibitor (NNRTI), stavudine (d4T), is 
associated with high prevalence of HIV-SN. The prevalence in Melbourne was up 
to 42%, whereas in Kuala Lumpur and Jakarta, the reported level was lower, 19 and 
34%, respectively [7]. Stavudine is no longer in first-line therapy, and the preva-
lence of HIV-SN is almost halved (14.2%) compared to data from the same clinic in 
Indonesia when patients received stavudine [8]. 

In untreated patients, the risk factors for HIV-SN were severe HIV disease marked 
by low numbers of CD4+ T cells and high viral loads (HIV RNA) in plasma. In the era 
of ART (including stavudine), the risk factors of HIV-SN included older age, height, 
<50 CD4+ T cells/mm3, malnutrition, and concurrent diabetes [1, 7, 9, 10]. HIV-SN 
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was also more common in African-Americans [3] and Hispanics [11]. Genetic 
polymorphisms may alter risk for HIV-SN in Africans [12–14], Asians [15], and 
Caucasians [16]. These factors are discussed in more detail here. 

2. Clinical features and diagnostic criteria 

There are two forms of HIV-SN—distal symmetrical polyneuropathy in HIV 
(DSP) and antiretroviral toxic neuropathy (ATN). DSP arises at later stages of HIV 
infection, while ATN is caused by neurotoxic effects of antiretroviral drugs [10, 17]. 
These two forms cannot be distinguished clinically, so they are grouped as HIV-SN 
when seen in patients receiving ART. 

The most frequent symptoms of HIV-SN are pain, numbness, and burning 
sensations. The symptoms can be progressive, predominantly affecting the soles 
of the feet and may become more severe at night. Physical examination may reveal 
hyperalgesia and allodynia, with absent physiological reflexes and sensory loss 
in the distal limb segments, including sensitivity to vibration [1, 9–11]. Clinical 
symptoms usually occur first on the lower limbs for several months but may spread 
upward. Since HIV-SN predominantly affects small nerve fibers, the clinical signs 
can also manifest as autonomic neuropathy with postural hypotension and urinary 
dysfunction [18]. Guidelines for the diagnosis and management of HIV-SN are 
available [e.g., https://www.hiv.va.gov/provider/manual-primary-care/peripheral-
neuropathy.asp] but require adaptation to accommodate differences between 
patient populations, structures of medical care, and available resources. 

Perhaps, the optimal tool to screen HIV-SN is AIDS Clinical Trial Group Brief 
Peripheral Neuropathy Screening Test (ACTG BPNST). This test has been used in 
many countries including Australia, the USA, India, South Africa, and Indonesia. 
It is relatively inexpensive, is fairly easy to do, and takes less than 10 minutes to 
perform but has low sensitivity. A study comparing BPNST to modified Total 
Neuropathy Scores (mTNS) in HIV patients on ART (including d4T, ddI, ddC) 
found that the sensitivity of BPNST was 49%, whereas the specificity was high at 
88% [17]. Peripheral neuropathy can be diagnosed if there is ≥1 symptom assessed 
in the BPNST list and one of the following signs: decreased Achilles reflexes or 
decreased sensibility to vibration when a tuning fork is held on a toe. This definition 
means that patients with two abnormal signs but no symptoms are not considered 
to have HIV-SN. This may contribute to variations in the prevalence of peripheral 
neuropathy in HIV reported in various studies. Some studies consider this inter-
mediate group as asymptomatic peripheral neuropathy with the assumption that 
they can become symptomatic in time. Ellis et al. defined peripheral neuropathy as 
a decrease in Achilles tendon reflexes or decreased perception of vibration in both 
legs. The sensitivity increased by 80% but the specificity decreased to 59% [19]. 

Clinically, peripheral neuropathy can also be classified as small- or large-fiber 
neuropathy. The latter manifests as the loss of joint position and vibration sense 
and sensory ataxia, whereas small-fiber neuropathy manifests as neuropathic pain, 
impairment of temperature sensing, and autonomic function. A nerve conduc-
tion study (NCS) can include sensory and motor nerve conduction and help in 
documenting sensory motor deficits that mainly affect large-fiber nerves [20]. As 
HIV-SN is a predominately small-fiber neuropathy, NCS is often normal [21]. In 
HIV-SN patients, ATN- and HIV-associated DSP often cannot be distinguished 
since patients can have both types at same time. However, there are some evidences 
that ATN primarily impairs small-fiber nerves, whereas HIV-associated neuropathy 
(DSP) has been linked to large-fiber nerves [22, 23]. 
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Stimulated skin wrinkling (SSW) test is a method to assess small nerve fiber 
function using exposure to eutectic mixture of local anesthetic. It has been shown 
to correlate with intraepidermal nerve fiber density (IENFD) in patients with 
a sensory neuropathy [24] and has high sensitivity compared to other assess-
ments of small-fiber neuropathy in diabetic patients [25]. Skin wrinkling occurs 
as a result of vasoconstriction in the glabrous skin, mediated by postganglionic 
sympathetic fibers [26]. Other assessments that have been used to detect small-
fiber neuropathy in HIV-SN patients include quantitative sudomotor axon reflex 
tests (QSART) [27], quantitative sensory tests (QST) [18], and sympathetic skin 
responses (SSR) [22, 23]. 

Skin biopsies are the gold standard for the detection of damage to small-diameter 
sensory nerves, including non-myelinated and myelinated intraepidermal nerve 
fibers. Lower nerve fiber densities have been demonstrated in patients with HIV-SN 
[18]. Studies have used several different techniques. The European Federation of 
Neurological Societies recommended a biopsy of the skin to a depth of 3 mm by 
using a skin punch biopsy on the distal limbs to calculate the linear density or nerve 
fibers with a minimum of 50 μm-thick slices, fixed in a 2% solution of parafor-
maldehyde-lysine-periodate (2% PLP). Immunohistochemical staining techniques 
recommended are bright-field immunohistochemistry and indirect immunofluo-
rescence [28]. PGP9.5 immunofluorescence allows nerves to be visualized using a 
confocal microscope [29]. Smaller intraepidermal nerve fiber densities (IENFD) 
in HIV-SN patients correlated with the clinical and electrophysiological severity 
[30]. Skin biopsies can also be used to identify cells and mediators that contribute to 
SN. These are discussed later in this chapter. 

3. Clinical factors influence the risk of HIV-SN 

Analyses of the risk factor of HIV-SN require that we consider the condition in 
three distinct eras—(1) pre-ART, (2) the use of combination ART that included 
stavudine (d4T), and (3) the use of non-neurotoxic ART. In the pre-ART era, the 
risk factors for developing HIV-SN included HIV disease severity, low CD4+ T-cell 
counts, high viral load, and older age [31, 32]. In the second era, the risk factors 
are older age, height, low nadir CD4+ T-cell counts, HIV duration, malnutrition, 
diabetes mellitus, dyslipidemia, and the use of neurotoxic drugs (usually stavudine; 
see Table 1; [7, 14, 15, 33, 34]). Stavudine is no longer recommended by the WHO 
as first-line ART and is now rarely used anywhere in the world, but HIV-SN has 

Demographic risk factors Genetic risk factors 

Low nadir CD4+ T-cell count Race (more common in African populations) 
HIV duration Polymorphisms in 
Age • Mitochondrial DNA (mtDNA) 
Height 
High plasma HIV RNA • HFE (affecting iron metabolism) 
Diabetes mellitus • Cytokine genes (IL4, IL10, IL12B) 
Malnutrition 

• TNF gene block (central MHC) Neurotoxic drugs 
• P2X4R, P2X7R (purinergic receptors) • NRTI: stavudine, didanosine 
• CAMKK2 (affecting neuronal repair) • Protease inhibitors: indinavir, ritonavir, saquinavir 

Table 1. 
Genetic and demographic risk factors affecting HIV-SN in patients receiving ART. 
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not disappeared. The risk factors of HIV-SN in patients on ART without stavudine 
are almost the same as in the pre-ART era—high plasma viral load and older age 
[8]. Isoniazid is widely used as therapy for tuberculosis and has been recognized 
as a risk factor for neuropathy for a long time. It remains weakly associated with 
HIV-SN even though patients receiving isoniazid are also given B6 supplementa-
tion to prevent neuropathy. Protease inhibitor (PI) exposure may be a risk factor 
of HIV-SN. Lopinavir, indinavir, and ritonavir, but not nelfinavir, were associated 
with neuropathy in one study [35]. 

4. Genetic risk factors 

The risk of HIV-SN cannot be correlated with a single genetic variant, so candi-
date genes are discussed separately (see Table 1). It is of interest to determine if any 
aligns with the greater sensitivity of individuals of African descent [13, 14, 36]. 

4.1 Genes in linkage disequilibrium with TNF or encoding components of 
pathways regulated by TNF 

In patients receiving stavudine, haplotypic combinations of alleles of single-
nucleotide polymorphisms (SNP) spanning the tumor necrosis factor (TNF) block 
in the central major histocompatibility complex (MHC) associate with variations 
in the prevalence of HIV-SN, but the associations were different in Africans and 
Asians [12]. For example, a polymorphism in intron 10 of BAT1 (marking an MHC 
haplotype associated with several inflammatory disorders) and a polymorphism 
in the promoter region of the TNFA gene (TNF-1031) were associated with an 
increased risk of HIV-SN in Caucasians [37]. TNF-1031*2 is associated with 
an increased risk of HIV-SN in Indonesian HIV-positive patients who receive 
stavudine [15, 16]. However, in Africans, different SNP alleles were found in 
linkage disequilibrium with TNF-1031*2, so TNF-1031*2 was not associated with 
HIV-SN. These findings link HIV-SN with an unknown SNP in the TNF block 
marked by (but distinct from) TNF-1031. The link between HIV-SN and inflam-
mation was supported by studies linking IL4 genotypes with HIV-SN in Africans 
receiving stavudine [13]. 

4.2 The P2X7R, P2X4R, and CAMKK2 gene cluster: Inflammation and 
neuronal repair 

Goullee et al. linked SNP in three genes P2X7R, P2X4R, and CAMKK2 with 
HIV-SN in African patients treated with stavudine. In a logistic regression 
model which included demographic analyses, SNP in CAMKK2, and to a lesser 
extent P2X7R and P2X4R, demonstrated independent associations with HIV-SN 
(p < 0.0001; R2 = 0.19) [14]. 

The P2X7R receptor is expressed by microglia and may be involved in neuro-
pathic pain, as its ablation or inhibition in animal models of neuropathy can reduce 
responses to painful stimuli [38]. Conversely, stimulation of P2X7R will increase 
the release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNFα [39] as 
well as pro-inflammatory chemokines such as CXCL2 and CCL3, which have been 
implicated in neuropathic pain [40, 41]. 

In animal studies, P2X4R was activated in spinal microglial cells in rats with 
induced pain [42]. Mice with disrupted P2X4R genes showed reduced pain response 
in two models of chronic pain (inflammatory and neuropathic) [43]. P2X4R is 
upregulated after peripheral nerve injury which results in increased activity of 
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mitogen p38 [44]. This process initiates the release of brain-derived neurotropic 
factor (BDNF). BDNF induces neuronal hyperexcitability through interaction with 
the TrkB receptor [45, 46]. 

The CAMKK2 gene encodes calcium-/calmodulin-dependent protein kinase 2 
(CaMKK2), which acts as a pervasive second messenger of Ca2+ in many cellular 
functions such as energy balance, neuronal differentiation, and inflammation 
[47]. CaMKK2 plays a role in neural plasticity and neurite growth by activating 
another protein kinase CaMKI [48]. CAMKK2 and P2X4R polymorphisms affect 
TNFα production in vitro. This suggests a mechanism for their impact on HIV-SN 
[49]. Hence, polymorphisms in CAMKK2 may affect inflammation or neuronal 
growth. 

4.3 Mitochondrial haplotypes and iron metabolism 

The process of mitochondrial toxicity induced by ART is not a simple drug 
toxicity, but mitochondrial DNA (mtDNA) SNP has a role in developing HIV-SN 
in patients receiving NRTI. SNP in African mtDNA haplogroup L1c and European 
haplogroup J is associated with decreased prevalence of HIV-SN compared with all 
other haplogroups [36]. Moreover, Thai persons belonging to mtDNA haplogroup B 
were more likely to develop HIV-SN [50]. 

HIV-1 Nef protein may influence iron levels via interactions with the hemo-
chromatosis protein HFE in humans [51]. In an observational prospective study, 
Kallianpur et al. suggested that disruption of iron homeostasis due to HIV infection 
might damage neurons and potentially lead to HIV-SN. They presented evidence 
that the HFE C282Y mutation may be a protective factor in HIV patients using NRTI 
[52]. They subsequently linked polymorphisms in iron management genes with 
increased risk (TF, CP, ACO1, BMP6, B2M) and reduced risk (TF, TFRC, BMP6, 
ACO1, SLC11A2, FXN) of HIV-SN [53]. 

5. The pathophysiology of HIV-SN 

The pathophysiology of HIV-SN is not completely understood, but there are 
several promising theories. It remains unclear whether HIV inflicts direct damage in 
the nerve body of dorsal root ganglia (DRG) or damages nerve fibers; both will lead 
to the development of distal axonopathies. HIV causes distal axon degeneration, 
reduction of nerve fiber in DRG, infiltration of inflammation cells, and reduction 
of the intraepidermal nerve fiber (IENFD) count [2]. As HIV itself cannot directly 
infect nerve bodies, destruction of neuron in HIV-SN may be caused by neurotoxic 
agents released by activated macrophage and satellite glial cells (TNF-α, IL-1β, 
chemokines), viral proteins with neurotoxic properties (gp41, gp120, Tat, Vpr), 
infection of perineural cells, or combinations of these processes [54–58]. A study in 
simian immunodeficiency virus macaque model confirmed that HIV infection acti-
vates perineuronal inflammatory cells (including macrophages and lymphocytes) 
in trigeminal ganglia and DRG during the early stage of infection. In the later stage, 
neuronal damage becomes evident, and regenerative capacity of small epidermal 
nerve is impaired [59]. 

HIV infection may cause macrophages to respond to the axonal degenera-
tion (even in mild cases) causing inflammation of the nerves and DRG. Pro-
inflammatory mediators were released by Schwann cells at DRG and may 
accumulate adjacent to peripheral nerves, activate apoptotic pathways and cause 
damage to the nerves directly or indirectly (reviewed in [55]). The gp120 virus 
protein may act directly on chemokine receptors expressed on neurons and cause 
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pain [60]. A histopathology study of skin biopsies from HIV-SN patients on ART 
without stavudine confirmed the presence of inflammatory macrophages and T 
cells expressing some chemokine receptors (CX3CR1, CCR2, CCR5), along with 
reduced IENFD [61]. 

HIV protein gp120 is a component of the viral glycoprotein sheath. The 
entry of the HIV virus into cells requires the interaction of gp120 with CD4 
glycoprotein and a chemokine receptor (usually CXCR4 and/or CCR5) which 
may be expressed on neurons or infiltrating inflammatory cells. Several che-
mokine receptors, such as CCR2, CCR5, and CXCR4, and CX3CR1 (fractalkine 
receptor) are located in primary afferent neurons or secondary neurons of the 
spinal dorsal horn. Chemokines and gp120 can cause pain through direct effects 
on chemokine receptors expressed by nociceptive neurons [62]. For example, 
binding of gp120 to CXCR4 receptors increases the release of CCL5, which binds 
CCR5 and triggers the release of TNFα and other neurotoxic substances. These 
interactions activate an influx of Ca2+, kinase cascades, and STAT3 signaling 
leading to the signs and symptoms of HIV-SN. The pathways have been reviewed 
previously [61, 63]. 

The pathophysiology of HIV-SN in patients on stavudine may reflect damage 
to the mitochondria of neurons and axons via damage to mitochondrial DNA 
(mtDNA) [64]. Inhibition of mtDNA gamma polymerase, mtDNA intercalation, 
and damage in stress response of mitochondria has been demonstrated in vitro 
in cultures of T-lymphoblastoid cells [65]. This finding is further supported 
by differences in haplotypes or SNP in mtDNA in Europeans, Hispanics, and 
Africans that may contribute to differences in the prevalence of HIV-SN [36, 52, 
66, 67]. 

6. Therapeutic options 

Management of HIV-SN aims to avoid further nerve damage and minimize the 
patients’ symptoms especially neuropathic pain. Some studies showed that smoked 
cannabis is effective and has analgesic value to relieve pain in HIV-SN patients 
[68, 69]. However, due to legal issues in many countries, the recommendation of 
smoked cannabis has been controversial. Other pharmacological treatments recom-
mended for neuropathic pain are amitriptyline, pregabalin, and gabapentin [70]. 
However, these medications were not superior to the placebo in HIV-SN patients 
[71–73]. Another option is non-pharmacological treatment such as acupuncture 
and hypnosis. However, acupuncture was not superior to the placebo to improve 
pain in HIV patients [74]. A small study showed that hypnosis showed benefit to 
reduce the pain score in HIV-SN patients [75]. 

7. Conclusions and future directions 

Despite the withdrawal of the most toxic drugs from recommended ART 
regimens, HIV-SN remains a common neurological complication of HIV disease. 
The risk factors of HIV-SN have changed with changes in ART from the patient’s 
age and height to the efficacy of ART and the use of protease inhibitors. Genetic 
polymorphisms that influence pathogenesis of HIV-SN will provide candidate 
molecules, which may contribute to pathogenesis, but studies of skin biopsies from 
patients are needed to confirm the roles of the encoded proteins. Animal models 
may reveal mechanisms for neuropathy and pain by HIV proteins but do not mimic 
the complexities of HIV disease in patients. 
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Chapter 3 

Peripheral Neuropathy in 
Connective Tissue Diseases 
Mouna Snoussi, Faten Frikha and Zouhir Bahloul 

Abstract 

Connective tissue diseases are characterized by different organ disorders due to 
loss of immune system tolerance to autoantigens. Peripheral neuropathy is one of the 
features of these diseases with variable frequency; it is more prevalent in Sjögren syn-
drome. Peripheral neuropathy is often seen in the course of the disease. Nonetheless, 
it may be also a presenting sign or the unique feature of immune system dysfunction. 
Neuropathies in connective tissue diseases are related mainly to vasculitic disorder. It 
requires prompt diagnosis and treatment to improve its outcome. Peripheral neuropa-
thy in connective tissue diseases could be multifocal and asymmetric, or confluent 
and symmetrical. This chapter reviews the clinical, diagnostic and therapeutic fea-
tures of neuropathies associated with the common diffuse connective tissue diseases. 

Keywords: peripheral neuropathy, vasculitis, connective tissue disease, 
treatment, electromyography, nerve biopsy 

1. Introduction 

Connective tissue diseases (CTDs) are defined as a group of acquired diseases 
resulting from persistent immune-mediated inflammation. They are generally the 
consequence of autoimmune dysregulation resulting in generation of autoreactive T 
cells or autoantibodies [1]. Immune disorders can affect any organ of the human body 
responsible for multisystem involvement. The CTDs classily include systemic lupus 
erythematosus (SLE), Sjögren syndrome (SS), systemic sclerosis (SSc), dermatomyosi-
tis and polymyositis (PM/DM), undifferentiated CTD (UTCD) and overlap syndromes 
such as mixed CTD (MCTD). Most clinicians do not include systemic necrotizing vas-
culitis, e.g. polyarteritis nodosa, Churg-Strauss syndrome and Wegener’s granuloma-
tosis in the category of CTD [1]. Peripheral neuropathies (PN) may complicate many 
different systemic autoimmune diseases. PN in CTD large clinical, histopathological 
and pathogenic spectrum [2]. We aim in this chapter to precise the epidemiology, 
the pathogenesis, the diagnosis and the treatment of neuropathies in CTD including 
systemic lupus erythematosus (SLE), Sjögren syndrome (SS), dermatomyositis and 
polymyositis (PM/DM), systemic sclerosis (SSc) and mixed CTD (MCTD). 

2. Epidemiology of peripheral neuropathy associated with connective 
tissue diseases and its topographic distribution 

PN is one of the clinical features of CTD with variable frequency and prognosis. 
It is often seen in the course of the disease. However, it may also be a presenting 
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Vasculitic neuropathy 

Mononeuropathy multiplex 

Asymmetrical polyneuropathy 

Distal symmetrical polyneuropathy 

Distal axonal polyneuropathy 

Compression neuropathy 

Sensory neuronopathy 

Trigeminal sensory neuropathy 

Other types of neuropathies associated with connective tissue disease 

Acute demyelinating polyneuropathy 

Chronic demyelinating polyneuropathy 

Table 1. 
Types of neuropathies associated with CTD (adapted from neuropathies in connective tissue disease/Richard K) [12]. 

sign or the unique feature of immune system dysfunction [3]. The prevalence of 
PN is different in the literature series depending on the type of CTD and the means 
of diagnosis. The incidence of PN in SS is 10–60%, and many of these patients 
(40–93%) present with neuropathy as the sentinel symptom [4]. PN in SLE patients 
ranges from 25 to 50% based on electrodiagnostic studies. Curiously, the incidence 
drops to only 5% based on clinical criteria [5, 6]. Finally, PN is rarely associated 
with the other CTD, namely, SSc, MCTD, DM and PM [4]. 

PN refers to the part of a spinal nerve distal to the root and plexus. It is a damage 
or a disease affecting nerves [7–9]. Neuropathy affecting one nerve is called “mono-
neuropathy” and neuropathy affecting multiple nerves in the same areas on both 
sides of the body is named “symmetrical polyneuropathy”. When separate nerves in 
disparate areas of the body are affected, the neuropathy is called mononeuritis multi-
plex, multifocal mononeuropathy or multiple mononeuropathy [8, 10, 11]. Types of 
neuropathies that are associated with CTD are outlined in Table 1. 

3. Pathogenesis of peripheral neuropathy in connective tissue diseases 

The principal components in the pathogenesis of peripheral nerve lesions in 
diffuse CTD are ischemia due to vasculitis and immune abnormalities. Generally, 
most of patients have a combination of the ischemic, immunological and metabolic 
mechanisms of damage to the peripheral nervous system. Nevertheless, one com-
ponent may be predominant in a different stage of the disease. In systemic sclero-
derma, the greater role is played by ischemic mechanisms, mainly in the initial 
states of the disease, while SLE may involve the participation of immunological 
mechanisms, especially in acute and subacute disease with high level of autoim-
mune activity [13]. 

3.1 Vasculitic neuropathy 

The immunopathogenesis of vasculitis in CTD is still unclear. The accumulation 
of immune complexes in the vasa nervorum initiates the leukocytoclastic reaction, 
which is characterized by segmental fibrinoid necrosis and transmural inflam-
matory cell infiltration. Vasculitis induces the occlusion of vasa nervorum at the 
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epineurial arteries and produces nerve infarction. Nerve infarcts typically lead to 
axonal degeneration [14]. Demyelination and conduction block may occur tran-
siently but are usually not a predominant or persistent finding [15]. The clinical and 
electrophysiological features of neuropathies correlate with the rapidity of onset 
of ischemia. Acute ischemia induces the development of mononeuropathy, while 
prolonged circulatory insufficiency is associated with chronic polyneuropathy. The 
compression-ischemic mechanism leads to the formation of tunnel syndromes [13, 
14, 16, 17]. The Peripheral Nerve Society task force has recently proposed a clas-
sification that categorizes vasculitic neuropathy into primary systemic vasculitides, 
secondary systemic vasculitides including CTD and nonsystemic or localized 
vasculitis on the basis of disease associations [18]. 

3.2 Autoimmune disorders 

Patients with diffuse CTD may have IgG and IgM anticardiolipin antibodies 
in their serum, which are associated with severe signs of neural lesions, as dem-
onstrated by electromyogram [13]. Moreover, serum levels of anti-nerve growth 
factor (NGF) antibodies are greater than normal in 32.1% of patients with diffuse 
CTD. Increased serum levels of anti-NGF are associated with high disease activity 
and more severe nervous system involvement [13]. 

3.3 Metabolic disorder 

Peripheral nervous system abnormalities in CTD are also explained by metabolic 
disorder secondary to aggressive therapy, multiorgan pathology and endocrine 
abnormalities in these patients. Metabolic disorder may induce a reaction of demy-
elization and axon dystrophy in severe cases [13]. 

4. Clinical practice guidelines of peripheral neuropathy in CTD 

In CTD neuropathic symptoms often start gradually and then get worse. Deep 
proximal aching pain is the first sign in the affected limb. Burning pain in the 
cutaneous distribution of the affected nerve is frequent. Weakness and numbness 
usually appear over several hours to several days after the pain. The delay of the 
former symptoms is explained by the nerve infarction. On physical examination, 
most patients have pain and temperature sensory loss in the distribution of the 
affected nerve. A few patients have impairment of vibration and position sense. 
Hyporeflexia is also rare except in the ankles. In fact, tendon reflexes other than 
at the ankle are lost only if the femoral, musculocutaneous, or radial nerves are 
affected proximally [12, 18, 19]. The quantitative sensory testing (QST) is a tool 
to analyse the perception in response to external stimuli of controlled intensity. It 
has been used for the early diagnosis and follow-up of small fibre neuropathies. 
Although the QST is time-consuming and it is modified also in non-neuropathic 
pain as in rheumatoid arthritis and inflammatory myalgia, it cannot be taken 
alone as a conclusive demonstration of PN [20]. The QST is helpful to quantify the 
effects of treatments on allodynia and hyperalgesia and may reveal a differential 
efficacy of treatments on different pain components (grade A) [20]. According to 
EFNS international guidelines, to evaluate hyperalgesia in PN, it is recommended 
to use simple tools such as a brush and at least one high-intensity weighted pin-
prick or von Frey filament. The evaluation of pain in response to thermal stimuli 
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is best performed by using the thermotest which is recommended for pathophysi-
ological research or treatment trials. The DN4 may be a useful instrument for the 
daily diagnostic of PN in CTD [21]. 

5. Diagnosis and clinical results 

In patient with multiorgan involvement and mononeuropathy multiplex, the 
diagnosis of vasculitic neuropathy is usually easy. However, the diagnosis may be 
more difficult in less typical presentations of CTD or when peripheral neuropathy is 
the unique manifestation of the disease. The diagnosis of peripheral neuropathy in 
CTD particularly in atypical situation is based first on clinical and physical exami-
nations. Electromyography confirms even an underlying axonal neuropathy. The 
most characteristic electromyographic finding in vasculitic neuropathy described in 
the previous series is axonal degeneration with multifocal distribution. The typical 
feature is a low sensory nerve and compound muscle action potential amplitudes in 
a non-length-dependent distribution with normal or minimally reduced conduction 
velocities [15, 17, 22, 23]. A partial conduction block is rare, and it is seen transiently 
and early in stage of nerve ischemia [12]. Laboratory tests may be helpful in estab-
lishing the presence of systemic vasculitis or identifying previously undiagnosed 
connective tissue disease. Evaluation of patients with suspected neuropathy in 
CTD should include liver and kidney function tests, erythrocyte sedimentation 
rate, urinalysis as well as a complete blood count. The choice of immunological test 
including rheumatoid factor, antinuclear antibody, cryoglobulins, antineutrophil 
cytoplasmic autoantibody and serum complement depends on the clinical pre-
sentation of the patient. Nerve biopsy may be helpful in demonstrating vasculitic 
process. A concomitant muscle specimen is useful to increase diagnostic yield 
because of the patchy distribution of vasculitic lesions [18]. 

6. Particularity of PN in each CTD 

6.1 Peripheral neuropathy in Sjögren syndrome 

Sjögren syndrome is a CTD more prevalent in women at the age of menopause. It 
is characterized by sicca syndrome and other extra-glandular symptoms. Peripheral 
nervous involvement in Sjögren syndrome (SS) is reported with variable frequency 
because of diverse methods for detection of neuropathy and may precede the onset 
of the disease or be the initial diagnostic clue [24]. The most common feature is 
symmetrical distal sensory neuropathy, autonomic neuropathy and trigeminal 
sensory neuropathy. Mononeuritis multiplex, chronic inflammatory demyelinating 
neuropathy and motor neuropathy are less common [8]. 

6.1.1 Ganglionopathies 

Sensory ganglionopathy is characterized by an impairment of kinesthetic aware-
ness. Patients have the profound handicap of proprioceptive sense affecting larger 
joints. Electromyogram shows unelicitable sensory nerve action potentials, with 
preservation of compound motor action potentials [25]. When MRI is performed, 
it can reveal T2 hyperintensities limited to the gracile and cuneatus tracts of the 
dorsal spinal cord with sensory neuronopathies [26]. There are two mechanisms 
evoked in the pathogenesis of gangliopathies in SS. First, the cellular autoimmu-
nity, confirmed by the infiltration of mononuclear and predominantly T cells in 
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the dorsal root ganglia, is associated with cellular degeneration in the absence of 
vasculitis [25, 27, 28]. Second, recent studies have suggested that the presence of 
antibodies against the G-bodies, which are a subcellular aggregation of noncoding 
RNA intermediates and proteins, is associated to neuropathy [29, 30]. Moreover, 
It was reported that antineuronal antibodies were seen more frequently in Sjögren 
patients with severe peripheral neuropathy (PN) complications [25]. 

6.1.2 Small fibre neuropathies 

Small fibre neuropathy is the most common PN manifestation of SS. It is a 
painful, sensory neuropathy affecting the nociceptive A-alpha and unmyelinated 
C-fibres. Small fibre neuropathy is reported with variable frequency. In the Hopkins 
Green Sjögren cohort, it was described as the most frequent manifestation [31]. The 
onset of small fibre neuropathy is usually subacute to chronic, occurring over weeks 
to months, although cases with hyperacute evolution of hours to days have been 
reported [27]. The cardinal clinical symptom of isolated small fibre neuropathy is an 
excruciating burning pain. The physical examination reveals a selective impairment 
in small-fibre modalities of pinprick and temperature, with relatively preserved 
vibratory sense and proprioception. The diagnosis of small fibre neuropathy is based 
on skin biopsy, which assesses the low density of intraepidermal nerve fibres [25, 32]. 

6.1.3 Sensorimotor polyneuropathies 

The majority of studies reported that axonal polyneuropathies as the most 
frequent type of PN in SS. The onset of sensorimotor polyneuropathy is usually sub-
acute or chronic. The axonal sensory neuropathies are characterized by propriocep-
tive sensory loss and motor reflexes, and there are diminished sensory nerve action 
potentials in electromyogram [25]. The sensory symptoms, however, are gradually 
accompanied by muscle weakness in a distal, symmetrical distribution [32]. 

6.1.4 Multiple mononeuropathy 

It is the transduction of vasculitic neuropathy, and it is very uncommon in SS 
reported in 0–5% in previous studies. It is usually associated with extra-glandular 
manifestations [25, 27, 33–35]. Patients with SS and presenting mononeuritis multiplex 
should be assessed for cryoglobulinemia polyclonal (types II and III) rather than mono-
clonal (type I) mainly when there is high-titer rheumatoid factor positivity or when 
there is disproportionate C4 hypocomplementemia, with normal levels of C3. When 
nerve biopsy is performed, it may show a lymphocytic or necrotizing vasculitis [32]. 

6.1.5 Cranial neuropathies 

The most common cranial neuropathy in SS is the trigeminal neuropathy, which 
is usually progressive and can be bilateral and requires symptomatic treatment. 
Motor dysfunction of cranial nerves is less common, and the facial nerve is the most 
cranial nerve targeted. The acute onset of cranial neuropathy is due to vasculitic 
mechanism especially when associated with equally rapid development of multiple 
mononeuropathies in the extremities [25]. 

6.1.6 Demyelinating neuropathies 

Demyelinating neuropathy is a rare manifestation of SS [32, 33]. Cases of 
chronic idiopathic demyelinating polyneuropathy have been the subject of case 
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reports in Sjögren patients but have not been substantially described in larger case 
series. The most common neurophysiologic finding in demyelinating neuropathies 
was demyelination of the motor nerves [36–38]. The onset of this neuropathy is 
subacute and characterized by severe proximal and distal weakness and proprio-
ceptive sensory deficit. Treatment with steroid and sometimes with intravenous 
immune globulins may be effective [32, 39]. 

6.1.7 Autonomic neuropathy 

Autonomic neuropathy is the rarest type of peripheral nerve involvement in 
SS because it is usually underdiagnosed. The clinical manifestations of autonomic 
neuropathy will vary depending on the organs which are affected. Symptoms range 
from urinary symptoms to severe disabling postural hypotension [27, 32, 38]. In 
recent studies, autonomic dysfunction is associated with the severity of fatigue in 
patients with primary SS. However, no association was detected between autonomic 
dysfunction and exocrine function in these patients [32, 40]. 

6.2 Peripheral neuropathy in systemic erythematosus lupus 

Systemic lupus erythematosus is a multisystem autoimmune disorder with 
a broad spectrum of clinical presentations as cutaneous, renal and articular 
manifestations (Figure 1). Affected patients typically have subacute or chronic 
distal symmetrical polyneuropathies with predominant sensory symptoms. Distal 
symmetrical axonal degeneration is the major feature of most cases, although other 
types of peripheral neuropathy have been described [12, 41]. Oomatia reported 
the subtypes of peripheral neuropathy (PN) attributable to SLE in a group of 82 
patients out of 2097 and detailed in Table 2 [42]. Other features such as Guillain-
Barré syndrome, plexopathy and autonomic neuropathy are very low in all series 

Figure 1. 
Butterfly rash in systemic lupus erythematosus. 
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Type of peripheral neuropathy Frequency no. (%) 

Axonal neuropathies 46 (56.1) 

Sensory axonal polyneuropathy 19 (23.2) 

Sensorimotor axonal polyneuropathy 21 (25.6) 

Mononeuritis multiplex 6 (7.3) 

Small fibre neuropathies 14 (17.1) 

Demyelinating polyneuropathies 

Acute inflammatory demyelinating polyneuropathy 1 (1.2) 

Sensory demyelinating polyneuropathy 1 (1.2) 

Mixed axonal-demyelinating sensorimotor polyneuropathy 3 (3.6) 

Plexopathy 1 (1.2) 

Table 2. 
Type of peripheral neuropathy in SLE (adapted from peripheral neuropathies in systemic lupus erythematous/ 
Oomatia et al.) [42]. 

[41]. In recent data, small fibre neuropathy is more frequent in SLE, and the 
decreased intraepidermal nerve fibre density of unmyelinated fibres is a diagnostic 
test [42]. The mechanisms of peripheral neuropathy in SLE are unclear. Several 
factors have been reported particularly small-vessel vasculitis and lesions induced 
by autoimmune antibodies and immune complexes. In series, where nerve biopsy 
is performed, the anatomopathologic aspect was perivascular mononuclear cell 
infiltration and variable intimal thickening without necrotizing vasculitis. The 
presence of necrotizing vasculitis is possible and constitutes a prognostic factor of 
the disease [12, 41, 43]. Endoneurial mononuclear cell infiltration and increased 
class II antigen expression were also noticed [12, 43]. 

6.3 Peripheral neuropathy in systemic sclerosis 

Systemic sclerosis is a rare connective tissue disease with a prevalence of 1 in 
10,000 [44]. It is characterized by symmetrical, widespread thickening of the skin 
(Figure 2) [45]. The prevalence of peripheral neuropathy is unknown with reported 
ranges in retrospective studies varying from 0.01 to 14% of patients [46, 47]. 
Vascular-dependent neuropathy is the principal mechanism inducing a distal 
symmetric, mainly sensory polyneuropathy as in other connective tissue diseases 
[13, 46, 47]. Cranial mononeuropathies can also occur, mainly the trigeminal 
nerve, leading to numbness and dysesthesias in the face. Rarely the seventh and 
ninth cranial neuropathies are affected [11]. The electrophysiological features are 
those of sensory axonopathy [11]. Rare cases of mononeuritis multiplex have been 
mentioned in the course of limited SSc (CREST: calcinosis, Raynaud’s phenomenon, 
oesophageal dysmotility, sclerodactyly, telangiectasia) and are due to a necrotizing 
vasculitis [11]. 

6.4 Peripheral neuropathy in mixed connective tissue disease 

Mixed connective tissue disease is defined as the overlap of SLE, SSc and PM, 
with a high titer of extractable nuclear antigen and its ribonucleoprotein compo-
nent [48]. Mild distal axonal polyneuropathy was exceptionally reported in 2 of 
20 patients with mixed connective tissue disease, but there has not been a detailed 
study of the neuropathy or its treatment [48]. 
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Figure 2. 
Sclerosis of the face in systemic sclerosis. 

6.5 Peripheral neuropathy in dermatomyositis and polymyositis 

Nerve involvement in patients with DM is mediated through membrane attack 
complex (MAC) formation, leading to nerve injury. This entity called “neuromyo-
sitis” was first reported in 1890 [49]. Further studies showed a frequency of 7.5% in 
DM or PM patients with polyneuropathy [50]. Neuropathy due to DM is difficult to 
diagnose due to necessity of excluding other comorbid etiologic conditions and het-
erogeneity of muscular manifestations [49]. Nerve biopsy may reveal endothelial 
vascular injury, and immunohistochemical stains revealed increased expression of 
perivascular VEGF and demyelinization associated or not with inflammation [51]. 

7. Treatment of peripheral neuropathy in CTD 

7.1 General approach 

There are no treatment guidelines specific to each CTD. In general, the manage-
ment of PN is based on symptomatic treatment of pain as in other causes of neurop-
athies. Typically, patients with painful polyneuropathies respond to drugs known to 
be effective for neuropathic pain, including tricyclic antidepressants and a variety 
of antiepileptic drugs as gabapentin and pregabalin, which is preferred because of 
its better bioavailability [52]. Concerning the antidepressants, international guide-
lines provide the same level of recommendation for nonselective tricyclic antide-
pressants and serotonin-norepinephrine reuptake inhibitors (SNRIs). Most clinical 
trials showed that the efficacy of SNRIs is lower than that of tricyclic antidepres-
sants. However, tricyclic antidepressants have more side effects in elderly and are 
contraindicated in patients with glaucoma, prostate hypertrophy or some cardiac 
conduction disturbances. Venlafaxine is a SNRI who has shown efficacy in painful 
polyneuropathies of different origins [53]. In CTD, PN is mainly due to vasculitic 
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and immune abnormalities. So when vasculitic neuropathy is diagnosed, cortico-
steroids should be promptly introduced to recover sensory and motor deficits [3]. 
Most authors recommend starting oral prednisone at high dose of 1 mg/kg per day. 
In severe cases, intravenous pulses of methylprednisolone of one 1 g for 3–5 days 
might be appropriate for initial treatment. This treatment should be maintained 
during the subacute phase, and after 6 to 8 weeks, the treatment should be tapered 
progressively. Immunosuppressant therapy is associated to corticosteroids in severe 
forms of vasculitic neuropathy or in systemic vasculitic PN. Cyclophosphamide 
seems to be the most effective drug for induction of remission and improvement of 
survival in non-viral systemic vasculitides [18]. Most patients need 3–12 months of 
cyclophosphamide induction therapy before they can be switched to a maintenance 
immunosuppressant [54]. Immunosuppressant used as a maintenance therapy is 
azathioprine, methotrexate and mycophenolate mofetil [55]. Intravenous immuno-
globulin is a safe treatment used in serious systemic PN with clinical benefit [18]. 

7.2 Particularities of treatment in each CTD 

Therapeutic strategies of small fibre neuropathy in SS are still unclear. 
Carbamazepine is generally the first-line agent for trigeminal neuralgia. The use 

PNS manifestation First-line treatment approach Treatment of 
refractory cases 

Polyneuropathy Neurotrophic agents (tricyclic antidepressants, Carbamazepine 
SNRI (duloxetine, venlafaxine), anticonvulsants High-dose IVIG 
(gabapentin, pregabalin)) (glucocorticoids PEX 
(1 mg/kg/day of prednisone equivalent)) Rituximab 
Severe forms: immunosuppressants (azathioprine, 
mycophenolate mofetil, cyclophosphamide) 

Mononeuropathy single/ Systemic glucocorticoids (1–2 mg/kg/ Rituximab, IVIG, PEX 
multiple day of prednisone equivalent or pulses of Mycophenolate mofetil 

methylprednisolone 500/1000 mg for 3–5 days with Azathioprine 
long-term dosage reduction) 
IV 
Cyclophosphamide 

Small fibre neuropathy Neurotrophic agents (tricyclic antidepressants, Immunosuppressants 
SNRI (duloxetine, venlafaxine), anticonvulsants IVIG 
(gabapentin, pregabalin)), topical anaesthetics Psychological support 
Analgesics 

Acute inflammatory High-dose IVIG Glucocorticoids (1 mg/ 
demyelinating PEX kg/day of prednisone 
polyradiculoneuropathy Cardiorespiratory supporting measures 1000 mg for 3 days) 
(GBS) Equivalent or pulses of 

methylprednisolone 
and 
immunosuppressants 
– cyclophosphamide 

Cranial neuropathy Glucocorticoids (1 mg/kg/day of prednisone Cyclophosphamide 
equivalent) with long-term dosage reduction immunosuppressants 
Spontaneous recovery possible for oculomotor as maintenance 
involvement treatment 

PNS: peripheral nervous system; SNRI: serotonin-norepinephrine reuptake inhibitors; IVIG: intravenous 
immunoglobulins; PEX: plasma exchange; GBS: Guillain Barré Syndrom. 

Table 3. 
Treatment options available for peripheral nervous system involvement in patients with SLE (adapted from 
PNS involvement in SLE/A. Bortoluzzi et al.) [60]. 

41 

http://dx.doi.org/10.5772/intechopen.82271


 
 

 
 

 
 

 
 

 
 
 

  
  

 

       

    
  

 
 

  

 
 

 
 

 

 
  

 
 

 
 

  
  

 
 

 
 
 

Demystifying Polyneuropathy - Recent Advances and New Directions 

of other antiepileptic agents such as gabapentin should be prescribed with slow 
titration to minimize its side effects particularly over somnolence and fatigue. 
The duration of therapeutic trial should be at least 3 months. The secondary 
amine tricyclic antidepressants such as nortriptyline and desipramine have fewer 
anticholinergic side effects and a proven efficacy in neuropathic pain, and so 
they may be slowly prescribed in patients with SS. The use of new immunosup-
pressant agents mainly monoclonal antibody directed against CD20 antigen on 
B cells as rituximab and the tumour necrosis factor (TNF)-alpha inhibitors such 
as adalimumab has been reported to be efficient in the small fibre neuropathies 
occurring in SS [25]. The management of axonal polyneuropathy is based on a 
symptomatic treatment; corticosteroids and immunosuppressors are discussed 
in the case of motor neuropathy with rapid progression [25]. In the case of 
multiple mononeuropathy, the presence of vasculitis is associated with a good 
response to immunosuppressive therapy [34]. There is evidence supporting the 
use of immunoglobulin therapy in Sjögren-associated sensorimotor and non-
ataxic sensory neuropathy from retrospective and observational cohorts and case 
reports [56, 57]. 

In SLE, there are no clear guidelines on the treatment of peripheral neuropathy. 
Induction treatments with glucocorticoids with or without immunosuppressant 
agents are indicated in the situation of active vasculitic neuropathy [58]. In the case 
of necrotizing vasculitis, treatment with plasmapheresis, steroids and immunosup-
pressant has led to improvement [59, 60]. The definitions of response to treatment 
are variable between studies. Overall, the rate of global response (complete or 
partial) is more than 50% [41] (Table 3). 

In SSc, there is not enough data regarding the response of scleroderma-associated 
neuropathy to immunosuppression [11, 61]. However, this therapy seems to be 
effective in mononeuritis multiplex and sensorimotor polyneuropathy with inflam-
matory process [11]. In DM/PM the treatment of PN is based on corticosteroids and 
immunosuppressant agents depending on the severity of the clinic presentation [51]. 

PNS, peripheral nervous system; SNRI, serotonin-norepinephrine reuptake 
inhibitors; IVIG, intravenous immunoglobulins; PEX, plasma exchange; GBS, 
Guillain-Barré syndrome. 

8. Conclusion 

8.1 Final considerations 

PN is one of the possible neurologic manifestations encountered by physi-
cians in CTD. Coexistence of both conditions is explained by immune-mediated 
factors particularly a vasculitis of peripheral nerve. Therefore, it is important to 
take a detailed medical history and examination and then adequate investigations 
to assess for an underlying systemic autoimmune diseases that may be associated 
with the neuropathy. Pure sensory and sensorimotor neuropathies are the most 
common PN features in these disorders. Acute to subacutely evolving multifocal 
or asymmetric neuropathy suggests a vasculitic cause. This situation constitutes a 
prognostic factor of the disease and requires prompt treatment with steroids and 
immunosuppressant agents. The treatment of PN in CTD progresses in three fronts: 
first, to identify the type of PN through the medical history and physical exam; 
second, to precise the pathogenic mechanism of neuropathy via clinical presenta-
tion, electromyographic data and in unclear situation the nerve biopsy and finally, 
the efficient control of pain. Corticosteroids remain the mainstay of treatment for 
vasculitic neuropathy in CTD. 
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8.2 Futures directions 

Although much is known about the PN in CTD, particularly its pathogenesis and 
its clinical aspects, further experience needs to be gained especially in the treatment 
with prospective trials to identify indications and precise efficacy for cytotoxic 
agents, intravenous immunoglobulin, plasma exchange and new biological drugs. 
In future, we need also further studies to precise clear guidelines to diagnose PN 
related to CTD such as more specific features in the electromyogram and neuro-
muscular biopsy. Moreover, in the treatment approach of PN in CTD, we need 
further researches to identify curative drugs targeting the pathogenesis pathways 
rather than the symptomatic and the previous conventional therapy. 
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Chapter 4

Working Hand Syndrome: A 
New Definition of Nonclassified 
Polyneuropathy Condition
Gökhan Özdemir

Abstract

The aim of this chapter was to define an unexplained nonclassified polyneu-
ropathy condition as a new neurological disease. This new diagnosis of occupation-
related polyneuropathy has been named as “working hand syndrome (WHS).” 
This study collected and compared clinical and electrophysiological analyses data
from healthy controls, WHS patients, carpal tunnel syndrome (CTS) patients, 
and polyneuropathy patients. The WHS patients presented to the clinic with pain, 
numbness, tingling, and burning sensations in their hands that increased signifi-
cantly during rest and nighttime. However, there was no weakness in the muscles, 
and the deep tendon reflexes were normal in this disease. The patients had all been
working in physically demanding jobs requiring the use of their hands/arms for
at least 1 year, but no vibrating tools were used by the patients. All of the cases
were men. I suppose that overload caused by an action repeated chronically by the
hand/arm may impair the sensory nerves in mentioned hand/arm. In patients with
these complaints, for a definitive diagnosis, similar diseases must be excluded. 
Nonetheless, the specific electrophysiological finding that the sural nerves are
normal on the lower sides, as well as the occurrence of sensory axonal polyneuropa-
thy in the sensory nerves without a significant effect on velocity and latency in the
work-ups of the upper extremity are enough to make a diagnosis.

Keywords: working hand syndrome (WHS)

1. Inclusion

Polyneuropathies (PNP) are disorders of the peripheral nervous system that
indicates any disorder of the peripheral nervous system. Polyneuropathy is one
of the most prevalent neurologic conditions. Polyneuropathy has an estimated 
prevalence of 5–8% in the general population. However, if there are one or more
risk factors involved, this rate can increase to 12–17%. Various systemic diseases, 
exposure to toxicity, drugs, infections, and hereditary diseases are considered 
causes. Young patients are much more likely to have a polyneuropathy on a genetic
basis, elderly patients are much more likely to have idiopathic polyneuropathy, and 
middle-age patients are more likely to have acquired polyneuropathy. It needs to
be done that family history and other important details of the individual’s history
and examination. Family history should focus on illnesses associated with neu-
ropathy, such as diabetes mellitus, hypothyroidism, renal failure, hepatic disorder, 
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human immunodeficiency virus infection, and dysproteinemic disorders (10% of 
peripheral neuropathies are associated with dysproteinemias) and in those receiv-
ing chemotherapy and cancer. In the developed world, the most common cause 
of peripheral neuropathy is diabetes mellitus. Patients with cancer may develop 
neuropathy depending to nutritional deficiency and chemotherapy side effects. But 
the etiology of 20–25% of these neuropathies remains uncertain [1–3]. 

The clinical manifestations of peripheral neuropathy vary widely that weakness, 
fatigue, hypesthesia, ataxia, autonomic symptoms, and positive symptoms include 
cramps, twitching, and myokymia. Sensorimotor peripheral neuropathies are the 
most common form of neuropathy. Usually, there is a progression from distal to 
proximal. Diminished deep tendon reflexes, distal muscle weakness, and atrophy are 
common in advanced cases. Most neuropathies are chronic and progressive. Peripheral 
neuropathy may be symmetrically generalized, multifocal, or focal. Most neuropathies 
are symmetric and length-dependent. Chronic symmetrical polyneuropathy is the 
most common type of polyneuropathy and usually evolves over months. Sensory or 
motor symptoms in a more diffuse, involving both proximal and distal limbs in length-
independent pattern. In these cases reflexes are globally reduced or absent. The earliest 
symptoms of polyneuropathy are usually sensory abnormalities. Sensory symptoms 
start in the feet, which are supplied by the longest axons. Pathologic mechanisms in 
peripheral neuropathy are distal axonopathy, myelinopathy, and neuronopathy. The 
symptoms ascend insidiously up the leg. The upper limb involvement may never occur. 
Development of symptoms in the hands and feet at the same time is atypical for a 
length-dependent neuropathy and may indicate coexisting disorder [2, 3]. 

One of the most common causes of neuropathic pain in the hands is physical 
compression of the nerves, known as compression neuropathy. Carpal tunnel syn-
drome (CTS) and cubital tunnel syndrome are examples. Direct injury to a nerve, 
interruption of its blood supply, or inflammation may also cause neuropathic pain. 

Anamnesis, neurological checkup, and electrophysiological work-up are recom-
mended for diagnosis [1–3]. 

2. Working hand syndrome 

Working hand syndrome patients have neuropathic pain in their hands, and 
axonal neuropathy is detected only in the sensorial neurons of the upper extrem-
ity. The common trait for these patients is the fact that they used their hands/arms 
during heavy labor. I think that a significant number of patients as this should not 
to be underestimated in the general population. Common traits among the patients 
include man sex, use of the arms and hands in heavy labor, neuropathic pain in their 
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hands, and axonal polyneuropathy in the sensory median and ulnar nerves. The 
average age of the patients is 45.7 ± 20.4 years in working hand syndrome (WHS). 

None of the WHS cases have systemic disease, and all of the cases are men. The 
use of the upper extremity while working a physically demanding job (construction 
worker, farmer, forester, crushing, tire repairer) requiring the use of the hands/ 
arms for at least 1 year; presentation with pain, numbness, tingling and burning 
sensations (neuropathic) in the hands and fingers that increases significantly dur-
ing rest and nighttime in the WHS [1]. 

3. Etiopathogenesis 

Pathology in the sensory nerves can cause neuropathic pain. Sensory poly-
neuropathy is one of the most common causes of neuropathic pain. It is believed 
that WHS is likely a sensory neuropathy with such a mechanism as axonal poly-
neuropathy, because the ulnar nerve is more affected than the median nerve in 
the upper extremities in polyneuropathies. I posit that an overload caused by an 
action repeated chronically by the hand/arm may impair the sensory nerves in the 
said hand/arm. Not only the peripheral nervous system but also the local vessels 
may be affected. This process may result in vasoconstriction of the local vessels. 
This situation leads to hypoxia and a lack of nutrition in the sensory nerves. 
However, there is not a clear relation between WHS and its pathology. However, in 
my opinion, genetics, ergonomics, emotional stress, and biodynamic status play 
an important role in WHS, because this disease does not occur in everyone who is 
doing the same job [1]. 

4. Diagnosis 

WHS is a polyneuropathy and occupational disease. Patients with WHS present 
with pain, numbness, tingling, and burning sensations in their hands that increases 
significantly during rest and nighttime. They also use their arms/hands for jobs 
that require heavy labor. The neurological examinations of patients with WHS are 
normal. Only the sensory nerves in the upper extremities are affected. 

Carpal tunnel 
syndrome 

Hand-arm vibration 
syndrome 

Chronic ıdiopathic 
axonal polyneuropathy 

Working hand 
syndrome 

Sural nerve Normal Normal Decreased SNAP Normal 

The sensory 
median nerve distal 
latency/velocity 

Delayed/Decreases Delayed/Decreases Normal/Normal Normal/Normal 

SNAP of the 
sensory median 
nerve 

May be reduced May be reduced Reduced Reduced 

The sensory 
ulnar nerve distal 
latency/velocity 

Normal/Normal Delayed/Decreases Normal/Normal Normal/Normal 

SNAP of the 
sensory ulnar nerve 

Normal May be reduced Reduced Reduced 

CMAP of lower 
extremity motor 
nerves 

Normal Normal Reduced Normal 
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Carpal tunnel 
syndrome 

Hand-arm vibration 
syndrome 

Chronic ıdiopathic 
axonal polyneuropathy 

Working hand 
syndrome 

The motor median 
nerve distal 
latency/velocity 

May be delayed/ 
decreases 

May be delayed/ 
decreases 

Normal/Normal Normal/Normal 

CMAP of the motor 
median nerve 

May be reduced May be reduced May be reduced Normal 

The motor ulnar 
nerve distal 
latency/velocity 

Normal/Normal Delayed/Decreases Normal/Normal Normal/Normal 

CMAP of the motor 
ulnar nerve 

Normal May be reduced May be reduced Normal 

SNAP, sensory nerve action potential; CMAP, compound muscle action potential. 

Table 1. 
Electrophysiological findings of working hand syndrome and similar diseases. 

Carpal tunnel 
syndrome 

Hand-arm vibration 
syndrome 

Chronic ıdiopathic 
axonal polyneuropathy 

Working hand 
syndrome 

Age Intermediate and 
advanced ages 

Young or middle ages Intermediate and 
advanced ages 

Young, middle or 
advanced ages 

Gender Female are 
generally affected 

No significant gender 
differences 

No significant gender 
differences 

All male 

Complaint Neuropathic pain is 
often in the hands 

Neuropathic pain is 
often in the hands 

Especially neuropathic 
pain in the feet 

Neuropathic pain is 
the hands 

Risk factors For example, 
rheumatism, 
pregnancy, 
diabetes, etc. 

Continuous use of 
vibrating hand-held 
machinery 

For example, diabetes, 
various cardiovascular 
risk factors, the metabolic 
syndrome, etc. 

Patients used their 
hands/arms in heavy 
labor (no use of 
vibrating hand-held 
machinery) 

Raynaud's 
phenomenon 

No Yes No No 

Affected tissues Only the median 
nerve 

Median and ulnar 
nerves (motor and 
sensory nerves), 
blood vessels, nerves, 
muscles, and joints 

Especially sural nerve and 
other sensory and motor 
nerves 

Only the median and 
ulnar sensory nerves 

Deep tendon 
reflexes 

Unaffected Usually unaffected Usually decreases Unaffected 

Muscle Advanced cases Advanced cases Advanced cases No 
weakness and 
atrophy 

Table 2. 
Differential diagnosis of working hand syndrome. 

For a definitive diagnosis: 

1. All have been working in physically demanding jobs requiring the use of the 
hands/arms. 

2. Patients exhibit neuropathic pain in their hands. 

3. The exclusion of similar diseases (Tables 1 and 2). 
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4. Specific electrophysiological findings that the sural nerves are normal, as well 
as the occurrence of sensory axonal polyneuropathy in the sensory nerves 
without being greatly affected by speed and latency in the work-ups of the 
upper extremity, are enough to make a diagnosis [1]. 

5. Nerve conduction studies 

The electromyographer plays an important role in the evaluation of patients with 
polyneuropathy. The results of nerve conduction studies and electromyography are 
useful in analyzing the underlying pathophysiology. The recording and measure-
ment of the terminal latency, amplitude, duration of the evoked potential, and the 
conduction velocity. Nerve conduction studies are also valuable in differentiating 
whether a demyelinating process is acquired or inherited. Nerve conduction studies 
can identify the predominant pathophysiology (axonal loss or segmental demyelin-
ation) and establish whether sensory or motor findings predominate. In addition, 
the studies provide quantitating the severity and the distribution of the neuropathy. 
Electrophysiological work-ups show axonal damage (axonal neuropathy), demyelin-
ation (demyelinating neuropathy), and both (mix neuropathy). In the electrophysi-
ological work-ups that involve distal latency, the amplitude, shape, and velocity of 
the motor and sensory nerves are checked. Axonal degeneration causes a decrease in 
amplitude, while demyelinating polyneuropathy causes delays in distal latencies and 
decreases in velocity. Acute axonal damage in the motor nerves can cause spontaneous 
activities in muscle fibers when checked with electromyography, where dilution in vol-
untary activity and chronic neurogenic motor unit potentials (MUP) are seen [1, 4]. 

The electrophysiological work-ups in the WHS are completed with standardized 
supramaximal percutaneous stimulation techniques. In the upper sides, a sensorial 
check-up is completed of the median and ulnar nerves. The sural nerves are used for a 
lower extremity sensory evaluation. For the median motor nerve evaluation, a 6–7 cm 
proximal of the abductor pollicis brevis muscle is supramaximally stimulated; the 
ulnar motor nerve is recorded from the abductor minimi muscle; the median sensorial 
nerve is recorded from the second finger; and the ulnar sensorial nerve is recorded 
from the fifth finger. For the sural nerves, the active electrode was placed between the 
lateral malleolus and the heel, and the reference electrode was placed 30 mm distally 
at the lateral edge of the foot. Supramaximal stimuli are applied at 13 cm proximal to 
the active electrode, just lateral to the midline of the calf. Amplitudes below 16 uV for 
the sensorial nerves in the upper sides and amplitudes below 10 uV for the sensorial 
nerves in the lower sensory sides (sural nerves) are considered the limits of sensory 
axonal neuropathy to assess its sensitivity and specificity. The use of an infrared lamp 
ensured that the temperature of the extremities during measurement has been done 
at 34°C or higher. In the electrophysiological findings of the WHS according to the 
normal, the distal latency and velocity of the median and ulnar sensorial nerves are 
similar in both hands. However, both the median sensory and ulnar sensory nerve 
amplitudes are decreased (P < 0.05). The motor nerve conduction work-ups of the 
upper and lower sides are similar in all differential diagnosis. The sural nerve results 
are similar on the lower sides in the normal, CTS, and WHS. The sural nerve results 
are significantly affected in the polyneuropathy (P < 0.05). 

6. Clinical results 

The deep tendon reflex polyneuropathy patients have a significantly decreased 
reflex when compared with all differential diagnosis (P < 0.05, Duncan). Regarding 

53 

http://dx.doi.org/10.5772/intechopen.81966


  

  
 

 
  

  
 

 
 

 
  

  
  

 
  

 
 

  
 

 

  
 
 

  
 

 
 
 

  
   

 
 

 
  

 

Demystifying Polyneuropathy - Recent Advances and New Directions 

the presence of atrophy when all cases are compared with the WHS, there is no sig-
nificant difference. In terms of hand complaints, polyneuropathy has a higher com-
plaint score (1.3 ± 1.33; P < 0.05) when compared with the healthy normal group. 
However, the WHS (3.00 ± 0.00) and CTS (3.00 ± 0.00) groups exhibit an increase 
in hand complaints when compared with both the healthy and polyneuropathy. 

7. Other comorbid diseases in the WHS 

In terms of diabetes mellitus, hypertension, cardiovascular diseases, hyper-
lipidemia, cigarette smoking, and the presence of atrophy, when all cases are 
compared with the WHS, there is no significant difference according to Fisher 
exact test. 

8. Differential diagnosis in the WHS 

The use of a vibrating tool by the patients and the presence of a nervous system 
disease, such as polyneuropathy, CTS, or hand-arm vibration syndrome (HAVS). 
The diagnosis of distal axonal sensory polyneuropathy is extracted from nerve 
conduction work-up reports based on the presence of bilateral, symmetric, and 
distal lower and upper extremity neuropathic pain. The motor nerves are unaf-
fected, and there is no muscle weakness in this condition. Only the hands experi-
ence neuropathic pain in the WHS, while there is neuropathic pain in both the 
feet and hands in the polyneuropathy. Sensory nerve conduction work-ups of the 
median, ulnar, and sural nerves are widely used in the electrodiagnosis of sensory 
polyneuropathy. The long nerves are most commonly affected by polyneuropathy. 
Thus, the sural sensory nerve action potential (SNAP) amplitude is likely the most 
useful parameter for differentiating normal subjects from those with distal sensory 
polyneuropathy. Even the sural SNAP is most sensitive in the diagnosis of early 
distal sensory polyneuropathy. The sural nerve results are significantly affected in 
the polyneuropathy, while the WHS have normal sural nerve conduction work-ups. 

Several diseases affect the nerves of the hand, the most common being CTS, 
which is caused by median nerves in the carpal tunnels becoming stuck. It is charac-
terized by neuropathic complaints in the first four fingers and the palm of the hand. 
Its symptoms manifest usually during rest hours or nighttime, and the cases identi-
fied in the WHS are similar in that regard. This means the entirety of their hand and 
the fingers have neuropathic pain. Women are more commonly affected by CTS, and 
rheumatism, pregnancy, and diabetes are among the known risk factors for CTS. All 
of the WHS cases are men, and they have no known CTS risk factors. Characteristic 
electrophysiological findings of CTS include a progressively delayed sensory peak 
latency, and amplitude becomes smaller in the median nerve. In medium cases, 
similar findings appear in the motor nerves. In advanced cases, SNAP and compound 
muscle action potential (CMAP) values decrease, which means that in CTS, a delayed 
distal latency and decrease in velocity are pronounced in the median nerve. The ulnar 
nerve conduction work-ups in CTS are normal. In the WHS, according to the normal, 
distal latency and velocity are close to normal, but both the median sensory and ulnar 
sensory nerve amplitudes are decreased. Motor values are completely normal. 

Guyon canal and cubital tunnel entrapment neuropathies can cause neuropathic 
pain, as well [8], but neuropathic pain is seen only in the ulnar nerve tract. In nerve 
conduction studies, distal latency and velocity are affected in the ulnar nerve. In all 
of the cases herein, neuropathic pain is identified in every region of the hand. Not 
only the ulnar nerve but also the median nerve is affected. 
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The mechanical energy created by vibrating tools, which enters the body 
through the fingers or palms, is called hand-arm vibration. These tools are gener-
ally used in the production, stone working, mining, construction, agriculture, and 
forestry sectors. HAVS is a clinical condition that occurs after exposure to hand-arm 
vibration. Symptoms of HAVS include numbness, pain, and reduced dexterity, 
strength, and sensation in the hands. In HAVS, the peripheral and central nervous 
systems are affected, which can lead to vascular, bone and joint, and tendon and 
muscle diseases. There is a direct correlation between the disease and the magnitude 
and duration of hand-arm vibration and cold temperatures. In the cases here in, no 
vibrating tools are used by the patients, but they engage in taxing labor using their 
hands (using such tools as a sledgehammer, hammer, saw, and carry stones). It is 
argued that the usage of beta-blockers and cigarettes and a decrease in blood circu-
lation due to exposure to the cold lead to an increase in HAVS symptoms. According 
to the anamnesis of the patients in the WHS, their symptoms do not change in cold 
temperatures or after smoking. CTS is often observed in people with HAVS who 
engage in breaking stones, plating, and forestry. This means that HAVS itself can 
cause CTS. Electrophysiological studies aimed at defining the nature of a vibration 
injury have provided conflicting results. Usually, electrophysiological findings 
related to HAVS are similar to those related to CTS, and the effect on velocity is 
pronounced. These conditions can be seen together often. 

The ulnar nerve is rarely affected in HAVS, but both the ulnar and median nerves 
are affected in the WHS. Especially, the ulnar nerve is affected. In HAVS, slowed 
sensory nerve conduction velocities are often observed in the hands. In the WHS, 
especially, the amplitude is low without being greatly affected by speed and latency. 
In vibration-associated neuropathies, conceivable target structures could be periph-
eral sensory receptors, large or thin myelinated nerve fibers, and small-caliber, non-
myelinated C fibers. Pathological studies by cutaneous biopsy have demonstrated 
demyelinating neuropathy in the digital nerves of individuals with HAVS [5–8]. 

9. Treatment options 

In treatment of polyneuropathy, the primary goal in the evaluation of neuropathy is 
to identify the etiology and if possible treat the underlying cause. Medical causes such 
as diabetes mellitus, renal insufficiency, hypothyroidism, vitamin B-12 deficiency, and 
Guillain-Barré syndrome need specific treatments. But, there is no specific treatment 
for many chronic neuropathies such as chronic idiopathic axonal polyneuropathy or 
the hereditary neuropathies. One of the most limiting symptoms is neuropathic pain. 
The neuropathic pain can be effectively treated with an algorithmic approach. In the 
WHS, there is no specific treatment yet. However, I gave 75 mg pregabalin. 

10. Conclusion and future directions 

The WHS is a new disorder. It is also an occupational disease. I think that a sig-
nificant number of patients as this should not to be underestimated in the general 
population. We only considered it previously as a sensory polyneuropathy in upper 
limbs. For this reason, we need to examine it more in detail from the etiopathogen-
esis to its treatment. This disorder is suggested to serve as a resource for patients, 
healthcare professionals, and members of the neurology community at large. 
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Abstract

Platelet-rich plasma (PRP) is a biological therapy that uses the patient’s own
blood to obtain products with a higher platelet concentration than in blood. It
provides a transient fibrin scaffold as a controlled drug delivery system of growth
factors suitable for regenerative medicine. PRP has been used as medical strategy to
treat diverse types of injuries in the field of orthopedics, including peripheral nerve
lesions. In vitro and in vivo studies showed the neuroprotective, neurogenic and 
neuroinflammatory modulator effect of PRP. In addition, it has been demonstrated 
clinically that PRP infiltrations improve clinical symptoms and enhance the sensory
and motor functional nerve muscle unit recovery. Potential effects of PRP could 
be applied in treatments for neuropathies, as conservative treatment by means of
nerve ultrasound-guided infiltrations or as biological adjuvant during surgery.

Keywords: platelet-rich plasma, growth factors, neuropathies, intraneural injection,
perineural injection, US-guided injection

1. Introduction

Diverse health conditions or traumatic injuries such as accidents, stretching or
compressions may cause damage on nerves. Some options to treat these damages are
oral drugs, steroid injections, physical therapy or surgical interventions. Probably, 
nerve autografts or direct tension-free microsurgical repairs are the most common
treatments aimed to enhance the intrinsic regenerative potential of injured axons. 
However, they do not recreate the suitable cellular and molecular microenviron-
ment of peripheral nerve repair.

To overcome this drawback, new therapeutic strategies have been developed for
these conditions, using various models of nerve injuries. In vitro models of neuro-
nal survival include cell cultures or tissue engineering advances, whereas in vivo
models involve lesions in peripheral nerves of many species. These studies lead to
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develop new strategies based on tissue engineering approaches through molecular 
intervention and scaffolding, and platelet-rich plasma (PRP) represents one of these 
promising biological strategies. Large number of studies provides evidence for PRP 
application in musculoskeletal disorders and orthopedics. Applications include treat-
ments of chondropathy, osteoarthritis, tendinopathy, muscle or ligament tear, acute 
and chronic soft tissue injuries, as well as enhancement of healing after bone or tissue 
reconstruction [1]. In addition to its positive effects on the healing of many types of 
tissues, recent studies reported the promising effects of PRP on nerve regeneration 
[2]. Indeed, several preclinical and clinical studies have proved the neuroprotective, 
neurogenic and neuroinflammatory properties of this therapy. Moreover, pain reduc-
tion, function improvement and nerve-muscle unit recovery have been demonstrated 
after applying diverse PRP formulations including liquid and scaffold form. This 
chapter is intended to overview the advances made on this specific field, focusing on 
the concept of PRP, its biological effects on nerve repair and its clinical application. 

2. Platelet-rich plasma 

PRP is an autologous product with a higher platelet concentration than in blood. 
It consists of a pool of bioactive mediators including growth factors (GF), cytokines, 
microparticles and others from patient’s own blood. Currently, there are several 
methods and commercial devices to achieve PRP, obtaining a diversity of products 
including autologous conditioned plasma, platelet-enriched plasma, platelet-rich 
concentrate, autogenous platelet gel, platelet releasate, platelet rich in GFs and others 
[3]. Some parameters and characteristics such as platelet concentration, the presence 
of leucocytes or the fibrin architecture may vary depending on the method or device 
employed to obtain these refined products. The processing technique to achieve PRP 
mostly consists of a blood collection in the presence of an anticoagulant followed by 
centrifugation. This centrifugation separates the blood components with the aim of 
discarding substances considered as not usable such as red blood cells and concentrat-
ing the elements with therapeutic potential, for instance fibrinogen/fibrin, platelets or 
GF, with or without leukocytes (Figure 1). Before its administration, an activating fac-
tor such as thrombin or calcium is added to the platelet concentrate to promote platelet 
degranulation and exocytosis of the factors stored in the cytoplasmic granules [4]. 

Indeed, the potential effect of PRP is closely related with the release of bioactive 
molecules stored in alpha granules of platelets after its activation with the activat-
ing factor [5]. Platelet-derived growth factor (PDGF), transforming growth factor 
(TGF-β), epidermal growth factor (EGF), insulin-like growth factor (IGF-1), 
hepatocyte growth factor (HGF), basic fibroblasts growth factor (FGF) and vascu-
lar endothelial growth factor (VEGF) are some of the key proteins associated with 
the acceleration of healing process, since they modulate angiogenesis, remodel the 
extracellular matrix (ECM) and affect the recruitment, proliferation and differ-
entiation of stem cells [6]. The wide variety of elements found in platelet granules 
act synergistically under normal physiological conditions on local cells to promote 
wound healing. On the other hand, plasma activation also promotes the polymeriza-
tion of fibrinogen into a three-dimensional fibrin scaffold (Figure 1), maintaining 
the bioactive mediators trapped through fibrin heparin sulfate-binding domains 
[1]. This biocompatible and biodegradable scaffold provides plastic-elastic stiffness 
and generates GF gradients that are essential cues for cell proliferation, differentia-
tion, migration and correct orientation in the nascent tissue [7]. When fibrinolysis 
begins, a gradual, sustained release of GF and other biomolecules occurs, in contrast 
to a bolus delivery modality. Thus, this technology provides a fibrin scaffold as a 
controlled drug delivery system of GF suitable for regenerative medicine [8]. 
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Figure 1. 
Platelet-rich plasma formulation. After withdrawing a small volume of venous blood in tubes containing 
anticoagulant, these are centrifuged in order to separate the blood components. The plasma fraction located just 
above the red blood cells is collected including or not leukocytes. PRP is activated adding thrombin or calcium to 
promote platelet degranulation and exocytosis of GF. This liquid formulation is used to conduct PRP injections. 
If after activation, the waiting time is prolonged, fibrin formation is achieved, obtaining a scaffold for applying 
in surgery. 

Due to its primarily autologous origin and relatively noninvasive collection 
technique, the risks of injection or immune rejection associated with PRP are mini-
mized, making this biological therapy a powerful tool for its application on diverse 
medical fields. Thus, this strategy has been employed as a biological adjuvant in 
peripheral nerve injuries and neuropathies, enhancing the sensory and motor 
functional nerve-muscle unit recovery [9]. In cases of nontraumatic peripheral 
injuries such as compression, adhesion and/or fibrotic postsurgical side effects, PRP 
may help diminish undesirable consequences such as denervated organ atrophy and 
fibrotic scars. 

3. Biological effects of PRP on nerve regeneration 

Among therapeutic alternatives to restore damaged nerves, PRP is gaining 
attention, since it provides the infiltrated environment with a pool of GF inducing 
healing and regeneration of the tissue. Nerve growth factor (NGF), brain-derived 
neurotrophic factor (BDNF) and PDGF are some of PRP components that can 
improve nerve regeneration. However, a sustained delivery of several GFs is not the 
unique constituent of PRP effect on nerve regeneration. Indeed, in vitro and in vivo 
evidence suggests that the biomolecules transmitted by PRP are instrumental agents 
that act as key drivers of full nerve functional recovery, offering a new possibility 
for nerve regeneration (Figure 2). 
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Figure 2. 
Effects of PRP on nerve repair. Biomolecules and GF participate jointly and synergistically in several biological 
processes involved in nerve regeneration. 

3.1 Neuroprotection and prevention of cell apoptosis 

An important factor that plays a critical role in many functions within the ner-
vous system including neurogenesis and neuroprotective function is BDNF. One 
of the most important benefits that this biomolecule offers is its ability to inhibit 
neuronal and glial apoptosis after traumatic injury. A work carried out by Koda 
et al. proved that BDNF suppressed in a dose-dependent manner anoikis of 
Schwann cells (SC), which are able to promote axonal regeneration and func-
tional recovery [10]. This effect is based on the activation or transdifferentiation 
of SCs, a drastic modification of the phenotype of this cell type that takes place 
after the disruption of the regeneration unit by the noxious agent. Macrophages 
will collaborate with the activated SCs clearing the myelin and other tissue 
debris. Moreover, these SCs come into direct contact with resident fibroblasts 
accumulated in large numbers at the site of injury, influencing SC migration 
and transdifferentiation. In another work, Wang et al. found that mesenchymal 
stem cells (MSCs) transfected with Ad-BDNF enhance the expression of BDNF, 
recovering brain damage. They suggest that BDNF-MSCs have a potential protec-
tive effect against neuron death by apoptosis [11]. In another study, Zurita et al. 
enriched PRP fibrin scaffolds with bone marrow stromal cells with BDNF, NGF 
and retinoic acid, enhancing cell survival and differentiation into the neural 
phenotype [12]. Another GF related with neuronal and Schwann cell survival is 
IGF-1. This factor acts as neurotrophic factor for sensory, motor and sympathetic 
neurons to promote growth cone motility and prevent apoptosis [13]. It has also 
been proved that neurons express PDGF receptors, and the function related with 
this GF on nerve injury also involves the survival for Schwann cells with trophic 
activity on neurons [14]. Other substances such as NGF, FGF, VEGF and TGF-β 
presented in PRP have shown to exert an antiapoptotic and neuroprotective effect 
on diverse cell types such as MSCs, neurons, Schwann cells and human neural 
stem cells [15]. 
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3.2 Anti-inflammatory effects 

Anti-inflammatory action of PRP is associated with an inhibition of nuclear 
transcription factor-kB (NF-kB) pathway, which was observed after culturing 
astrocytes with PRP supernatants [16]. Some of the GFs such as HGF, IGF-1, PDGF 
and TGF-β delivered in a sustained way after PRP infiltrations are closely related 
with these effects [15]. TGF-β also affects cellular behavior, the neurite outgrowth 
and glial scar formation [17]. Outcomes from an in vivo study further suggested 
that TGF-β coordinated with adipose-derived MSCs enhanced nerve regeneration 
affecting the host’s immune response and reducing inflammation [15]. 

PRP injections have been associated with a decrease of proinflammatory sub-
stances such as nitric oxide, cyclooxygenase and tumor necrosis factor expressed in 
the brain [16]. In addition, PRP is able to block Ab-induced upregulation of proin-
flammatory cytokine production, and this capacity was correlated with a preven-
tion of the decrease in several synaptic proteins. 

3.3 Angiogenic properties 

Among the substances that PRP contains, VEGF is one of the most angiogenic fac-
tors. It stimulates proliferation and migration of endothelial cells, formation of new 
blood vessels and enhances vascular permeability. This action is conducted by trans-
membrane receptors found in neural tissue, especially on growth cones of sprouting 
axons and Schwann cells [18]. VEGF can act as a neurotrophic factor by promoting 
Schwann cell proliferation and neurite outgrowth and enhance nerve survival [19]. 
However, despite the evidence that PRP promotes angiogenesis in tendon, muscle 
and bone and the crucial role that blood vessels play as trackers of the axonal growth 
cones across the injury site, there is lack of studies assessing angiogenesis in nerve 
repair. Borselli et al. showed that an injectable scaffold loaded with VEGF and IGF-1 
accelerated regeneration of damaged neuromuscular junction innervation together 
with an enhancement of angiogenesis in an ischemic limb rodent model [20]. Another 
study demonstrated that vein graft filled with PRP provides an earlier and more 
prominent neoangiogenesis than sciatic nerve gaps treated with nerve autograft alone 
[21]. The fibrin obtained after PRP activation provides a permissive and robust 3D 
matrix for angiogenesis. In fact, autologous fibrin matrix is the best tailored transient 
scaffold for tissue regeneration where complex morphogenetic processes for tissue 
regeneration take place, including angiogenesis, cell migration and proliferation [22]. 

3.4 Enhancing axonal outgrowth capacity 

Schwann cells provide bioactive substrates for axonal migration and they release 
neurotrophic factors able to regulate axonal outgrowth. An optimal proliferation 
and viability may affect the rapid regeneration of injured peripheral nerves. PRP 
might allow the sprouting of growth cones since they promote survival, prolifera-
tion and differentiation of Schwann cells. In that sense, Zheng et al. showed a 
dose-dependent effect of PRP on the proliferation, migration and neurotrophic 
function in rat Schwann cells cultured with PRP [23]. The significant role played by 
GF within the PRP has also been highlighted in a rat brain-spinal cord cocultured 
system, where the addition of PRP supernatant promoted an increase in the size and 
number of axons. This positive effect was significantly suppressed by the addition 
of antibodies against IGF-1 and VEGF [24]. 

Solid form of PRP also demonstrated its positive effect on both axonal myelina-
tion and its density enhancement. Ye et al. fabricated tissue-engineered nerves 
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based on poly (lactic-co-glycolic acid) conduit using PRP gel for suspension of 
Schwann cell–like cells. PRP group presented superior functionality in both nerve 
conduction velocity and compound muscle action potential. They suggest that 
PRP gel plays a dual role: first, the fibrin network as matrix for regenerative cell 
incorporation, and second, biomolecules that improve the biological environment 
stimulating the regenerative processes of nerve fibers [25]. Indeed, the PRP bioac-
tive proteins initiate and control the healing cascade of nerve fibers. Increasing the 
concentration of these bioactive proteins such as TGF-β, PDGF and IGF-1 could 
accelerate healing of the regenerating nerve fibers [26]. Other studies realized 
in rabbits after implantation of PRP together with Schwann cells [27] reported 
beneficial effects on axonal counts, myelination and electrophysiological param-
eters. Cho et al. observed considerably increased expression of neurotrophic factors 
such as BDNF, NGF, FGF and Glial cell–derived neurotrophic factor (GDNF) after 
PRP injection in guinea pigs with facial nerve transection, suggesting that PRP and 
MSCs act as a source of neurotrophic factors. They also could prove an enhance-
ment of axon counts and myelination in the groups treated with PRP [27]. An 
inside-out vein autograft filled with PRP was used to bridge a 10-mm-long sciatic 
nerve defect in rats [21]. The axon diameter, the number of myelinated axons and 
myelin sheath were significantly superior when vein autograph was filled with 
PRP. In another rat model, they used platelet-rich fibrin (PRF) as a filler of silicon 
nerve guidance. Animals treated with PRP improved functional recovery and 
showed a superior sciatic functional index compared to nontreated animals [28]. 

3.5 Dampening the denervated target muscle atrophy 

The acceleration of axonal growth can prevent muscle atrophy, since it reduces 
the time to establish a connection between the sprouting axon and target muscle 
[29]. PRP applications induce an earlier axonal regeneration and functional recovery, 
which also can have a consequence reducing the target muscle atrophy. In the work 
carried out by Sánchez et al., they could observe this positive effect since nerves 
repaired with intraneural infiltrations of PRP were associated with lower muscle 
atrophy and an earlier electrophysiological recovery [30]. In some peripheral nerve 
injuries such as carpal tunnel syndrome or fibrotic postsurgical side effects, the main 
pathological agent is compression, adhesion and/or fibrosis. The use of PRP may addi-
tionally avoid or at least diminish denervated organ atrophy and undesirable fibrotic 
scars, thereby accelerating the functional recovery of the nerve-muscle unit, due to its 
antifibrotic effects [24, 31]. Intramuscular injection of PRP 24 hours after the induc-
tion of limb ischemia in mice mitigated fibrosis and muscle atrophy [32]. These results 
are in agreement with the reduction of atrophy in denervated muscle reported when 
muscle was infiltrated with cells [33], effects suggested to be mediated by IGF-1 [34]. 

4. Clinical guidelines for the application of platelet-rich plasma in 
injured peripheral nerves: from bench to bedside 

Although the biological effects described previously mean a promising thera-
peutic tool, the success to achieve optimal clinical results lies in several factors such 
as PRP preparation, dosage and application protocols. 

4.1 PRP preparation 

Physicians face a large number of systems to obtain PRP and therefore 
different types of final products. These depend on variables such as platelet 
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concentration, the presence or absence of leukocytes and the exogenous activation 
of PRP. Although there is still no consensus on which is the best product to use in 
orthopedic pathologies, according to preclinical research and our experience, we 
suggest choosing a product with specific characteristics. 

An excessive number of platelets could not only suppress the therapeutic action 
of PRP but also inhibit the tissue repair process. PRP with excess platelet concentra-
tion had negative influence over cellular responses such as proliferation, viability or 
differentiation [35]. Thus, it seems that a concentration of platelet slightly higher 
than blood is suitable to achieve an optimal response. The presence of leukocytes 
in PRP products is more controversial. While in tissues like cartilage the scale tips 
in favor of the PRP without leukocytes, in other applications, it is not clear. The 
presence of leukocytes fosters the nuclear NF-κB p65 protein expression, which is 
key in the activation of cellular inflammation, and oddly enough, it is inhibited by 
PRP [36]. Finally, and although platelets within PRP can be activated endogenously 
by tissue collagen, we recommend the previous activation in an exogenous way, 
which is carried out by adding calcium to PRP. As calcium was chelated during 
blood extraction to avoid coagulation, we restore the levels of it in PRP preventing 
hypocalcemia in nerve environment during infiltration. The activation triggers the 
formation of a fibrin 3D liquid scaffold that spreads over the tissue, delivering GF 
in a control manner. After activation, PRP must be injected immediately during the 
following 10 minutes. Without activating, it can be stored for 3–4 hours without 
losing its efficacy. PRP can be applied also as a fibrin scaffold for using in surgery. 
This scaffold is obtained in the same way as the liquid formulation, except that after 
its activation, the waiting time before its use is prolonged until the formation of 
the fibrin scaffold (Figure 1). Despite these recommendations, it is in the hands of 
the professional who applies PRP to choose the best suitable type, and following the 
manufacturer’s protocol is advisable to obtain an optimal product. 

4.2 Conducting nerve infiltrations 

In order to achieve the biological effects described in Section 3, PRP must be 
administered in an adequate manner to reach the target tissue and cells that are key 
elements in nerve repair process such as Schwann cells. However, they are in the inner-
most compartment of the nerve, inside the fascicles that enclose the axons covered by 
the myelin sheaths, and getting to them is a major issue. For many years, nerve infil-
tration has been and still is a controversial point for physicians and medical specialists. 
Although a possible cause of nerve lesions during an injection is the ischemic damage 
due to increased pressure inside the nerve, the most likely reason is the neurotoxic-
ity of the injected drug such as corticosteroids or local anesthetics. Several studies 
demonstrated that the injuries caused to the nerve after infiltrations were because of 
the injected drug or its dose, and not because of the physical act of infiltrating [37]. 

The compartment of the nerve where the injection is performed is also a sensi-
tive point to consider. Although some studies recommend avoiding intraneural 
injection due to high risk of nerve lesion [38], it is necessary to be more precise in 
this description. We must distinguish between extrafascicular and intrafascicular 
injection, the former being safe and without any evidence of nerve injury [39]. 
In contrast, some studies conclude that the main cause of neurologic injury is the 
intrafascicular injections [40]. Brierley et al. studied the progression of nerve 
lesions in some diseases like tetanus or poliomyelitis using radioactive phosphorus. 
He found that the phosphorus reached the blood stream, the cerebrospinal fluid 
and the nervous system when the needle penetrated into the fasciculus, thus being 
an intrafascicular injection [41]. Diffusion studies of PRP into the nerve carried 
out by our group showed that PRP previously stained with methylene blue was 
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accumulated around the perineurium after intraneural but not intrafascicular injec-
tions, without reaching inside the fascicle through the perineurium [2] (Figure 3). 

4.3 Conservative treatment with US-guided infiltrations of PRP 

Throughout this section, we will describe the procedures to perform US-guided 
infiltrations of PRP in some nerves susceptible to peripheral lesions, namely 
median nerve (Figure 4), ulnar nerve (Figure 5) and common peroneal nerve 
(Figure 6). The infiltrations of the nerves mentioned in this section share a large 
number of key points, which are described below. The details of each nerve are 
shown in Table 1. 

4.3.1 Key points for common US-guided neural infiltrations 

a.Preparation of the sterile field is required to maintain aseptic conditions 
throughout the treatment. The skin covering the affected nerve and the trans-
ducer of the US machine must be prepared following standard asepsis protocols. 

b.Prior to the infiltrations, the nerve must be located by means of US in the perti-
nent areas. During this step, the US probe can be used in a long- as well as short-
axis in respect to the nerve so that its examination can be as accurate as possible. 

c. In the course of PRP injections, the needle is placed parallel to the US probe, and 
consequently its orientation in respect to the nerve has influence on the PRP dif-
fusion. With the transductor in the long-axis in respect to the nerve, the needle is 
introduced almost parallel to it, spreading PRP along the nerve. If the US probe is 
placed in the short-axis, the needle is inserted at right angles to the nerve increas-
ing the risk of injury axon. The spread is less than in the previous case, especially 
when the diameter of the nerve is large. However, this approach allows better 
visualization of the tissue. Therefore, we recommend using the US transductor 
that achieves a balance between diffusion and nerve visualization. 

Figure 3. 
Nerve infiltration. During the procedure, two injections are conducted. First, intraneural infiltration 
(A) reaches the intrafascicular epineurium (2) and next, the perineural infiltration (B) is performed around 
the nerve. 1 = epineurium; 2 = intrafascicular epineurium; 3 = perineurium; 4 = fascicle; 5 = endoneurium; 
6 = axon covered by myelin. 
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Figure 4. 
Median nerve infiltration. The median nerve is located by means of US in the area of the wrist (A). Under US 
control with the probe placed in long-axis, the nerve (blue) is observed above the epiphyses of the distal radius 
(red) and lunate bone (white) (B). The needle (green) is inserted in distal-proximal direction, and PRP is 
injected in an intraneural (yellow) and perineural way (asterisk) (C). 

Figure 5. 
Ulnar nerve infiltration. The ulnar nerve is located by means of US in the area of the elbow (A). Under US 
control with the probe placed in long-axis, the nerve (blue) is observed above the epicondyle (white) (B). The 
needle (green) is inserted in distal-proximal direction, and PRP is injected in an intraneural (yellow) and 
perineural way (asterisk) (C). In this case, the injection could be conducted in proximal-distal direction if the 
access is difficult. 

Figure 6. 
Common peroneal nerve infiltration. Two approaches are possible to infiltrate common peroneal nerve. In 
the first approach, the nerve (blue) is located by US above the popliteal fossa with the US transductor in the 
long axis (A and B). In the second approach, the nerve is located in the lateral side of the knee (D). With the 
probe placed in the short axis, the nerve (blue) is observed above the peroneal head (white) and close to tibialis 
anterior muscle (red) (E). In both cases, the needle (green) is inserted in proximal-distal direction, injecting 
PRP in an intraneural (yellow) and perineural way (asterisk) (C and F). 
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Median nerve Ulnar nerve Common peroneal nerve 

Approach 1 Approach 2 

Indication Compressive Compressive Nerve lesions associated to knee injuries 
neuropathies such neuropathies such 

as CTS as UTS 

Patient Sitting with the arm Supine position Prone position Lateral position 
position flexed and supported over the healthy 

on flat surface side 

Limb Supination, the palm Pronation, with Extended leg Lightly knee 
position of the hand facing the elbow lightly flexion and on a 

upward flexed and on a padded support 
padded support 

Infiltration Wrist, around the Behind medial Back of the Lateral knee 
area distal area of the epicondyle, into thigh, around the area around the 

radius cubital tunnel popliteal fossa peroneal head 
above the knee 

Syringe Luer-Lok, 3 mL Luer-Lok, 3 mL Luer-Lok, 5 mL Luer-Lok, 5 mL 

Needle 23 G/25 mm 23 G/25 mm 21 G/50 mm 21 G/50 mm 

Direction Proximal-distal Both Proximal-distal Proximal-distal 

Intraneural 2 mL 3 mL 3 mL 3 mL 
vol. 

Perineural 4 mL 6 mL 6 mL 6 mL 
vol. 

CTS, carpal tunnel syndrome; UTS, ulnar tunnel syndrome; Vol, volume. 

Table 1. 
Characteristics of platelet-rich plasma US-guided infiltrations for different nerves. 

d.The proximal-distal direction is preferable so that PRP spreads through the 
nerve. In some cases as injections into ulnar nerve, the direction can also be from 
distal to proximal zone if the injured area is unapproachable. 

e. Both intraneural and perineural injections are performed during the treatment. 
Activated PRP is injected softly and without rough movements of the needle 
to prevent nerve damage. As the PRP volume required for both infiltrations 
can exceed the capacity of the syringe, changes of syringes for loading them 
with PRP can be done without removing the needle from the injection site, thus 
avoiding repeated punctures. 

f. Firstly, it is advisable to perform the intraneural infiltration with the needle 
reaching the intrafascicular epineurium of the nerve. During intraneural injec-
tion, PRP shows some hyperechoic signals under US control within the nerve. 

g.Once intraneural injection is accomplished, the needle is gently retreated plac-
ing it just above the nerve to conduct the perineural injection around the nerve. 
The adjacent tissue to the nerve is detached when perineural infiltration is per-
formed, appearing as a hypoechoic signal. This infiltration entails a hydrodis-
section that reduces nerve entrapment through a mechanical effect [42]. 

h.The dosage of these treatments is determined by the nerve size to be infiltrated, 
which is detailed in each case (Table 1). In all cases, it is recommended to carry 
out two treatments, with an interval of two between both visits. 
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i. The follow-up is conducted 4 weeks after finishing the treatment. Clinical 
examination is required in order to observe improvement in clinical parameters 
such as pain and paresthesia. Depending on the patient’s condition, we will fol-
low different recommendation: 

• If the patient shows a significant improvement, no intervention will be per-
formed. Six weeks after clinical follow-up, an electromyography (EMG) will 
be conducted to evaluate the state of the nerve and assess possible actions. 

• When the patient evolution has flat-lined or is not enough, neural infiltrations 
with PRP will be repeated again. 

• In case the patient has not experienced any improvement, infiltrations of PRP 
will be discarded and other treatment alternatives will be considered. An EMG 
study should be performed in the third month. 

4.3.2 Subgluteal sciatic compression 

a.PRP infiltrations into this nerve are indicated for compressive neuropathies such 
as pyramidal syndrome or deep gluteal syndrome. 

b.The patient is placed as in the case of the sciatic nerve approach, namely in prone 
decubitus on a flat surface. 

c. By means of US control, the nerve is located at the level popliteal fossa, and then 
the nerve path is followed until gluteal fold, where PRP injection in distal-proximal 
direction is conducted. If the nerve can be located in a more proximal area, the 
infiltration can also be performed following the proximal-distal direction. 

d.The injection is conducted with 10 mL in a syringe fitted with an 18 G and 75 mm 
needle and US probe placed in the long axis. 

e. Four ml of activated PRP is administered during intraneural infiltration and 
8 mL of activated PRP is infiltrated around the nerve. 

4.3.3 Neuromas 

Traumatic neuroma follows different forms of nerve injury often as a result 
of surgery. They occur at the end of injured nerve fibers as a form of ineffective, 
unregulated nerve regeneration. Due to the peculiarities of these neuropathies, the 
volume of the product, the type of syringes and needles to infiltrate the PRP will 
largely depend on the nerve where the neuroma is located, which was described 
above. In addition, not only an intraneural and a perineural injection into neuroma 
are conducted but also in the proximal nerve close to the neuroma. 

4.4 PRP as adjuvant in surgery 

In many cases, surgical interventions are required for the treatment of neuropa-
thies. Among these, the neurolysis is a standard procedure to separate the nerve 
from the surrounding tissues and try to solve problems related to compression and 
entrapment. In these cases, the use of PRP as a therapeutic adjuvant during surgery 
can stimulate and accelerate nerve recovery. Next, both endoscopic (Figure 7) and 
open neurolysis (Figure 8) of a median nerve are explained. Neurolysis in other 
nerves will be done in the same way but adapting to the particularities of each nerve. 
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Figure 7. 
Endoscopic neurolysis of median nerve. Endoscopic camera and cannula are introduced into the wrist (A). 
Carpal ligament (asterisk) is dissected and cut (B). PRP is infiltrated into the nerve (C) and a fibrin clot is 
placed between the nerve and the ligament (D). 

Figure 8. 
Open neurolysis of median nerve. Median nerve and the transverse carpal ligament are observed after incision 
(A). Once median nerve is released, PRP is injected (B). Finally, fibrin membrane (C) is placed between the 
nerve and the ligament (D). 

4.4.1 Endoscopic neurolysis 

a.After performing a small incision at the level of wrist crease, a cannula is intro-
duced in order to observe structures in the wrist as the transverse carpal liga-
ment with an endoscopic camera. 
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b.When the transverse carpal ligament is located and dissected, it is cut with 
endoscopic knife so that the median nerve is released. 

c. Once the ligament is sectioned and nerve released, 2 mL of PRP is infiltrated into 
the nerve from the incision made for arthroscopy with a 30 G needle. A fibrin 
clot is placed in the open carpal tunnel before suturing. 

4.4.2 Open surgical neurolysis 

a.An incision at the level of wrist crease is conducted. The incision must be large 
enough to observe and access to the median nerve and the transverse carpal 
ligament. 

b.Next, the median nerve and the transverse carpal ligament are located and dis-
sected. During the surgery, the median nerve is released by cutting the trans-
verse carpal ligament and removing all the adhesions present along the nerve. 

c. Finally, intraneural and perineural injections of PRP are performed. In addition, 
a fibrin membrane is placed between the nerve and the ligament, to later suture 
the incision. 

5. Clinical results of PRP application for peripheral nerve injury 

PRP products present a number of features that are quickening the application 
of this therapy in clinical practice, namely ease of use, reasonable biosafety and 
great versatility. Therefore, and although the PRP is still a recent technique, several 
clinical studies have emerging in the last decade (Table 2). 

5.1 PRP infiltrations as conservative treatment 

As in other pathologies, pain is one of the main problems of patients who suffer 
from peripheral nerve injuries. PRP showed to be a promising therapeutic tool for 
the relief or reduction of pain associated with neuropathies. Malahias et al. con-
ducted a case series study where patients who suffered from carpal tunnel syn-
drome (CTS) were treated with one PRP US-guided injection around the median 
nerve [43]. At 3 months of follow-up, the pain was significantly alleviated in 11 out 
of 14 patients according to VAS score. A prospective controlled study carried out 
by Uzun et al. demonstrated the effectiveness of PRP in reducing the pain associ-
ated with CTS after one perineural injection of 2 mL of PRP [44]. These kinds of 
interventions were conducted not only over the median nerve but also over the 
ulnar nerve. Patients with peripheral neuropathy associated to leprosy received a 
perineural injection of 1 mL of PRP in the posterior tibial nerves and in the ulnar 
nerve. The results of this randomized control clinical trial showed a pain decrease 
2 weeks after treatment [45]. 

These results are also accompanied by a functional and clinical improvement, 
which has a positive impact on the quality of life of patients. Some of the patients 
mentioned above showed functional recovery together with reduction in pain 
[42, 43]. More clinical studies also showed improvement in clinical and functional 
symptomatology when applying PRP in different peripheral nerve lesions. Recently, 
a randomized clinical study demonstrated better functional outcomes in patients 
with mild to moderate CTS [46]. Patients who received one US-guided infiltration 
of PRP into the carpal tunnel achieved a better response that patients treated with 
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Reference Condition Target Intervention Improvement 

Infiltrations 

[43] CTS MN US-guided perineural injection 
(1 × 1–2 mL) 

Pain and 
function 

[44] CTS MN Perineural injection (1 × 2 mL) Pain and 
function 

[45] Leprosy 
peripheral 
neuropathy 

PTN and 
UN 

Perineural injection (1 × 1 mL) Pain 

[46] CTS MN US-guided perineural injection 
(1 × 1–2 mL) 

Function 

[47] Perinatal 
cerebral palsy 

Systemic Intravenous injection (1 × 25 mL) Function 

[48] CTS MN Injection at the distal carpal 
crease (1 × 1 mL) 

Pain, function 
and EMG 

[49] CTS MN US-guided perineural injection 
(1 × 3 mL) 

Pain, function 
and EMG 

[50] CPN palsy CPN US-guided intraneural/perineural 
infiltrations (13 × 3–8 mL) 

Pain, function 
and EMG 

[51] 

[52] 

Surgery 

[53] 

CTS 

Section of RN 

Nerve gaps in 
extremities 

MN 

RN 

Nerves 
of the 
extremities 

US-guided perineural injection 
(2 × 5 mL) 

US-guided intraneural injections 
(5 × 4 mL) 

Nerve gap bridged with a collagen 
tube with PRP fibrin 

Pain, function 
and EMG 

Function and 
EMG 

Function 

[54] Persistent 
pudendal 
neuralgia 

PN Injection after a transgluteal 
decompression 

Function 

[55] Benign parotid 
gland tumor 
with facial 
muscles and 
nerve deficit 

FN PRP gel was applied around 
nerve endings during superficial 
parotidectomy 

Function 

CPN, common peroneal nerve; CTS, carpal tunnel syndrome; EMG, electromyography; FN, facial nerve; MN, median 
nerve; PRP, platelet-rich plasma; PTN, posterior tibial nerve; RN, radial nerve; UN, ulnar nerve; US, ultrasound. 

Table 2. 
Clinical research of PRP application for peripheral nerve injury. 

saline 12 weeks after treatment. However, in this study, no differences in pain scores 
were found. A case report that described a 6-year-old boy with perinatal cerebral 
palsy should be noted [49]. After receiving an intravenous injection of 25 mL of 
PRP, an improvement in the cognitive sphere and language during the follow-up at 
3 and 6 months was observed. Levels of GF maintained stable in plasma 3–5 times 
higher than average for his age group. 

It must be taken into consideration that some variables may have a certain 
subjective component or be influenced by other factors than the treatment admin-
istered. Thus, it is advisable to analyze more objective variables such as EMG. A 
randomized controlled study showed improvement in EMG parameters, such as 
sensory nerve action potential (SNAP) in CTS patients [48]. However, there were 
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no differences between control group (splint) and PRP treatment. This could 
be because the infiltration performed in this study was conducted without US 
guidance or directly into the median nerve but in adjacent areas, hampering the 
biological effects of PRP on the nervous tissue. Wu et al. carried out other random-
ized controlled study of CTS patients achieving an enhancement in sensory nerve 
conduction velocity (SNCV) and distal motor latency (DML) [49]. Although these 
EMG values were not significantly better than control group, there were significant 
differences in terms of pain and other clinical symptoms. The authors observed 
this improvement 6 months after one US-guided injection of 3 mL of PRP in the 
median nerve. In a case report described by Sánchez et al., a patient with peroneal 
nerve palsy underwent serial US-guided intraneural and perineural injections for 
33 months [50]. The patient not only achieved improvement related to pain and 
function but also showed EMG sings of reinnervation for the peroneus longus and 
tibialis anterior. Specifically, an increase in compound muscle action (CMAP) was 
reported. In another case report, a 56-year-old woman who suffered from severity 
of symptoms of CTS received a treatment consisted of two US-guided perineural 
injections of 5 mL of PRP [51]. During follow-up at 3 and 6 months after the 
treatment, she revealed significant improvements in the distal motor and sensory 
latencies as well as the sensory nerve action potential and CMAP amplitudes of the 
median nerves. Finally, García de Cortazar et al. reported a case that described a 
patient with a section of the radial nerve [52]. Four months after the trauma and 
consequent surgery without positive response, serial intraneural infiltrations of 
PRP were conducted with US guidance. Eleven months after the first injection, 
EMG showed a complete reinnervation of the musculature of the radial nerve 
dependent. 

5.2 PRP as adjuvant in surgery 

In addition to the application of PRP in liquid form for neural infiltrations, its 
versatility allows it to formulate in different ways such as gel, scaffold or fibrin 
membrane to apply also in surgical interventions. (Figure 1). Kuffler et al. took 
advantage of these properties for patients with nerve gaps in their extremities [53]. 
In the surgical technique they conducted, collagen tubes filled with PRP formu-
lated as fibrin membrane were used to bridge the nerve gaps. Patients of this case 
series reached sensory and motor recovery across nerve gap, reduction of pain and 
functional recovery. Hibner et al. observed in a retrospective analysis the efficacy 
of injecting PRP around the pudendal nerve after a transgluteal decompression to 
enclose the nerve in NeuroWrapNerve Protector [54]. The pain of these patients 
who suffered from persistent pudendal neuralgia after neurolysis and transposition 
was significantly alleviated. This success was also achieved in patients with facial 
muscle and nerve deficit associated with benign parotid gland tumor [55]. In this 
randomized control study, Scala et al. observed significant improvements in several 
clinical parameters in the group of patients where PRP gel was applied during 
superficial parotidectomy. 

6. Conclusion 

6.1 Final considerations 

Neuropathies are very challenging pathologies whose treatment options include 
conservative procedures as well as surgical interventions. In both cases, PRP is 
a promising and safe therapeutic tool that can be used as liquid formulation for 
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US-guided infiltrations or as fibrin scaffold for surgery. Its potential has been 
proved in diverse in vitro and in vivo studies, and there are constantly more treat-
ments based on this therapy in humans also. The use of this technique allows physi-
cians to take advantage of the biological processes required to achieve an optimal 
nerve repair and satisfactory clinical results. 

6.2 Future directions 

Although the PRP application for nerve pathologies is showing encouraging 
results and no negative side effects, apart from some painful episodes during 
injections, its use in these pathologies still has to be cautious. Although in some 
treatments normally the employed product has its importance, the way to use this 
product is also relevant to achieve a successful response. Elements such as a correct 
indication, an appropriate PRP elaboration and a suitable administration and appli-
cation procedures are essential for the success of these treatments. Further studies 
and cases are needed to increase the knowledge not only of PRP for neuropathies 
but also of nerve biology, and thus improve protocols as well as clinical outcomes. 
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