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Preface

Over the past two decades, some countries have observed an increase in the use 
of opioid drugs for pain management, including non-oncological pain. The use of 
prescription opioids is sometimes justified to decrease or abolish the nociceptive 
sensation but the misuse of this kind of drug, the rise in heroin consumption, and 
the escalation in the abuse of high-potency synthetic opioids, such as fentanyl, have 
led to the declaration of an opioid epidemic.

Nowadays, morphine and other opioid drugs are widely used for pain relief in many 
conditions but their use is associated with potential complications. For example, 
opioids can produce a rebound effect and cause more pain instead of relief and they 
have a high chance of generating tolerance, dependence, and addiction, a brain 
disease induced by repeated or chronic use of these drugs that causes adaptive or 
allostatic changes (i.e. cellular or system adaptations) that modify the neuronal 
circuitry, inducing a “drug-dependent” state. This state persists even after drug 
consumption and affects the feeling of well-being, learning, stress, decision-making, 
and self-control.

This book is written by international scientists with expertise in psychobiology, 
addiction, and pain management, and addresses different aspects of opioids, 
such as understanding central pain and central sensitization for better patient 
care, effectiveness of morphine in other conditions apart from pain control, 
neurobiological mechanisms associated with opioid addiction, and pharmacological 
treatments for this disease.

With this book culminates an intense project in which I would first like to highlight 
the involvement of all authors who have contributed to a text of great quality and 
scientific rigor. I would like to thank Ms Romina Rovan, Ms Rozmari Marijan and 
Ms Manuela Gabric, the Author Service Managers for this book at IntechOpen, 
for their assistance during book preparation. Finally, I would also like to dedicate 
this book to my mentor, Professor María Luisa Laorden, and to my family, without 
any of them, it would not have been possible to get here.

Pilar Almela Rojo
Associate Professor,

Department of Pharmacology,
Faculty of Medicine,

University of Murcia,
Spain
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Chapter 1

Introductory Chapter: Opioid 
Analgesics - History, Uses 
and Risks
Pilar Almela

1. Introduction

Opiates have been used for various purposes throughout history [1, 2] 
(Figure 1). Interest in opium poppy plant (Papaver somniferum) arose more than 
4500 years ago, due to the nutritional power of its seeds. Afterwards, around 
1550 BC, opium was used in the Eastern Mediterranean and Egypt for religious and 
medicinal purposes. Greek medicine was the first to refer to opium as a narcotic, 
and it is at this time that a classification of the various preparations of this plant 
begins. In the seventeenth century, its use as a pain reliever in Sydenham’s laudanum 
began to become general, until it was replaced by the currently used morphine 
hydrochloride.

In 1803, the German pharmacist, Friedrich Wilhelm Adam Sertürner, identi-
fied and isolated the major psychoactive agent in opium, at approximately 4–21% 
and named it “morphium,” alluding to the Greek god of dreams Morpheus [3]. 
Sertürner and three young assistant experimented the narcotic effects of morphine 
by taking the raw material. From this moment on, morphine began to be used for 
the same cases in which opium was used through different routes of administration 
(oral, rectal, or transdermal). Twenty years after Sertürner’s discovery, in 1820, a 
pharmacist named Heinrich Emmanuel Merck began to commercialize morphine. 
The medical use of morphine was widespread after the discovery of the hypodermic 
syringe in the mid-nineteenth century.

In 1973, three independent research groups headed by Solomon Snyder in 
Baltimore, Eric Simon in New York, and Lars Terenius in Sweden confirmed the 
existence of specific opioid receptors [4–6], and, 2 years later, Hughes discovered 
the presence of endogenous peptides able of activating the same receptors, although 
in a less intense way [7].

The endogenous opioid system plays a main role in multiple physiological 
functions of the organism. When people carry out certain daily activities (eating, 
exercising, sexual behavior and others), endogenous opioids are released, induc-
ing a brain reward effect that increases the likelihood that these behaviors tend to 
repeat. It is the so-called behavioral reinforcing effect, which can lead to addictive 
behaviors.

Nowadays, morphine is widely used for chronic to severe pain relief in many 
conditions associated with heart attacks, serious injury, postoperative discomfort, 
and terminal illness such as cancer [8]. However, it is not possible to uncouple its 
beneficial analgesic effect from addiction, tolerance, and dependence. Being able to 
separate the potent analgesia from the addictive capacity would make pain relief to 
be a minor medical problem.



3

Chapter 1

Introductory Chapter: Opioid 
Analgesics - History, Uses 
and Risks
Pilar Almela

1. Introduction

Opiates have been used for various purposes throughout history [1, 2] 
(Figure 1). Interest in opium poppy plant (Papaver somniferum) arose more than 
4500 years ago, due to the nutritional power of its seeds. Afterwards, around 
1550 BC, opium was used in the Eastern Mediterranean and Egypt for religious and 
medicinal purposes. Greek medicine was the first to refer to opium as a narcotic, 
and it is at this time that a classification of the various preparations of this plant 
begins. In the seventeenth century, its use as a pain reliever in Sydenham’s laudanum 
began to become general, until it was replaced by the currently used morphine 
hydrochloride.

In 1803, the German pharmacist, Friedrich Wilhelm Adam Sertürner, identi-
fied and isolated the major psychoactive agent in opium, at approximately 4–21% 
and named it “morphium,” alluding to the Greek god of dreams Morpheus [3]. 
Sertürner and three young assistant experimented the narcotic effects of morphine 
by taking the raw material. From this moment on, morphine began to be used for 
the same cases in which opium was used through different routes of administration 
(oral, rectal, or transdermal). Twenty years after Sertürner’s discovery, in 1820, a 
pharmacist named Heinrich Emmanuel Merck began to commercialize morphine. 
The medical use of morphine was widespread after the discovery of the hypodermic 
syringe in the mid-nineteenth century.

In 1973, three independent research groups headed by Solomon Snyder in 
Baltimore, Eric Simon in New York, and Lars Terenius in Sweden confirmed the 
existence of specific opioid receptors [4–6], and, 2 years later, Hughes discovered 
the presence of endogenous peptides able of activating the same receptors, although 
in a less intense way [7].

The endogenous opioid system plays a main role in multiple physiological 
functions of the organism. When people carry out certain daily activities (eating, 
exercising, sexual behavior and others), endogenous opioids are released, induc-
ing a brain reward effect that increases the likelihood that these behaviors tend to 
repeat. It is the so-called behavioral reinforcing effect, which can lead to addictive 
behaviors.

Nowadays, morphine is widely used for chronic to severe pain relief in many 
conditions associated with heart attacks, serious injury, postoperative discomfort, 
and terminal illness such as cancer [8]. However, it is not possible to uncouple its 
beneficial analgesic effect from addiction, tolerance, and dependence. Being able to 
separate the potent analgesia from the addictive capacity would make pain relief to 
be a minor medical problem.



Opioids - From Analgesic Use to Addiction

4

2. Opioid receptors

There are three main opioid receptor types that produce pharmacologic effects 
upon stimulation, mu (MOP), kappa (KOP), and delta (DOR), and morphine is a 
MOR-preferring agonist. The novel nociception/orphanin FQ receptor is consid-
ered to be a non-opioid branch of the opioid receptor family (Figure 2). However, 
substantial pharmacological evidence for additional opioid receptor phenotypes 
exists [9].

Opioid receptors are a group of Gi/Go protein-coupled receptors, which consist 
of seven transmembrane domains, three extracellular, and three intracellular loops, 
extracellular amino acid N-terminus, and intracellular carboxyl C-terminus. They 
are activated both by endogenously opioid peptides and by exogenously admin-
istered natural, synthetic, or semisynthetic opiate compounds such as morphine 
and heroin.

Opioid receptors are located in both the central and peripheral nervous system. 
Morphine analgesia is mainly due to its action on MOP receptors, although the 
activation of KOP and DOP receptors also participates in the analgesic effects of this 
drug. These receptors act synergistically in different places at CNS level, from the 
spinal cord to the cerebral cortex, inhibiting the nociceptive sensation whatever its 
location or intensity. Specifically, they act on the afferent system at the spinal level, 
where the activation of MOP receptors results in the inhibition of primary sensory 
fibers. Morphine also acts by regulating the transmission of the efferent system, 
inhibiting the nociceptive transmission sent from mesencephalic areas and the 
brainstem. Nevertheless, opiates not only diminish the painful sensation but also 

Figure 2. 
Opioid receptor structures. Modified from [10].

Figure 1. 
Timeline of morphine history.
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block the unpleasant or distressing feelings that accompany pain through its action 
at the limbic and cortical level, areas involved in emotional physiological responses 
and where a large number of opioid receptors are expressed.

Some pharmacological properties of opioid agonists are routinely used in clinic 
practice. In addition to the aforementioned opioid analgesic power, these drugs 
have utility in other conditions as cough suppressant, antidiarrheal, emetic, and 
anesthetics, being also used in special situations as in the acute pulmonary edema or 
in respiratory rhythm regulation in patients undergoing artificial respiration.

3. Genetic polymorphisms modulating the pain response

Recent research in the field of pharmacogenomics has discovered important 
single-nucleotide polymorphisms that are thought to be linked to opioid dose vari-
ability. This could explain the genetic changes in the analgesic opioid dose. These 
polymorphisms appear in several areas involved in pain pathways, drug receptors, 
drug-metabolizing enzymes, and drug efflux molecules [11]. Among the genetic 
polymorphisms identified as possible modulators of the pain response, we can 
mention genes that code for voltage-gated sodium channels, the metabolic enzyme 
catechol-O-methyltransferase (COMT), the synthetic enzyme CTP cyclohydrolase, 
and the changes described in the OPRM1 gene [12].

A better knowledge of these polymorphisms can help clinicians to manage 
interindividual variability in opioid demands. These genetic markers could also help 
to design tools to precisely predict the analgesic opioid dose, increase efficacy, and 
reduce the incidence of drug dependence and addiction.

4. Opioid addiction: a severe substance use disorder

Today, morphine is a Schedule II narcotic, along with other drugs like fentanyl, 
hydromorphone, meperidine, methadone, or oxycodone, under the Controlled 
Substances Act (US Drug Enforcement Administration) [13], and is available only 
by a prescription due to its high potential for abuse. Morphine is also regulated 
because it is the precursor to heroin, a synthetic alkaloid that presents a different 
pharmacokinetics than morphine, resulting in more acute CNS effects, partly 
responsible for the tremendous addictive capacity of this molecule.

The first experiences with opioids are usually unpleasant, since the effects on 
the gastrointestinal tract (nausea and vomiting) predominate. However, when 
repeating the behavior, tolerance to the emetic action develops, then the feeling of 
euphoria prevails.

The addictive state is characterized by the compulsive consumption of the drug 
despite the serious negative consequences that it entails, such as diseases, neglect-
ing social and family obligations, and the need to commit criminal acts to obtain 
the substance. For drug addicts, drugs become the main incentive within their 
scale of values, and, as a result, their lives are reduced to obtaining and consum-
ing drugs.

In addition, drug addiction involves loss of control in limiting intake and emerg-
ing of a negative emotional state (e.g., dysphoria, anxiety and irritability), reflect-
ing a motivational withdrawal syndrome when access to the drug is prevented [14].

The addictive process consists of three stages (Figure 3): binge/intoxication, 
withdrawal/negative affect, and preoccupation/anticipation (craving). These stages 
interact with each other, becoming more intense and ultimately leading to the state 
known as addiction.



Opioids - From Analgesic Use to Addiction

4

2. Opioid receptors

There are three main opioid receptor types that produce pharmacologic effects 
upon stimulation, mu (MOP), kappa (KOP), and delta (DOR), and morphine is a 
MOR-preferring agonist. The novel nociception/orphanin FQ receptor is consid-
ered to be a non-opioid branch of the opioid receptor family (Figure 2). However, 
substantial pharmacological evidence for additional opioid receptor phenotypes 
exists [9].

Opioid receptors are a group of Gi/Go protein-coupled receptors, which consist 
of seven transmembrane domains, three extracellular, and three intracellular loops, 
extracellular amino acid N-terminus, and intracellular carboxyl C-terminus. They 
are activated both by endogenously opioid peptides and by exogenously admin-
istered natural, synthetic, or semisynthetic opiate compounds such as morphine 
and heroin.

Opioid receptors are located in both the central and peripheral nervous system. 
Morphine analgesia is mainly due to its action on MOP receptors, although the 
activation of KOP and DOP receptors also participates in the analgesic effects of this 
drug. These receptors act synergistically in different places at CNS level, from the 
spinal cord to the cerebral cortex, inhibiting the nociceptive sensation whatever its 
location or intensity. Specifically, they act on the afferent system at the spinal level, 
where the activation of MOP receptors results in the inhibition of primary sensory 
fibers. Morphine also acts by regulating the transmission of the efferent system, 
inhibiting the nociceptive transmission sent from mesencephalic areas and the 
brainstem. Nevertheless, opiates not only diminish the painful sensation but also 

Figure 2. 
Opioid receptor structures. Modified from [10].

Figure 1. 
Timeline of morphine history.

5

Introductory Chapter: Opioid Analgesics - History, Uses and Risks
DOI: http://dx.doi.org/10.5772/intechopen.92401

block the unpleasant or distressing feelings that accompany pain through its action 
at the limbic and cortical level, areas involved in emotional physiological responses 
and where a large number of opioid receptors are expressed.

Some pharmacological properties of opioid agonists are routinely used in clinic 
practice. In addition to the aforementioned opioid analgesic power, these drugs 
have utility in other conditions as cough suppressant, antidiarrheal, emetic, and 
anesthetics, being also used in special situations as in the acute pulmonary edema or 
in respiratory rhythm regulation in patients undergoing artificial respiration.

3. Genetic polymorphisms modulating the pain response

Recent research in the field of pharmacogenomics has discovered important 
single-nucleotide polymorphisms that are thought to be linked to opioid dose vari-
ability. This could explain the genetic changes in the analgesic opioid dose. These 
polymorphisms appear in several areas involved in pain pathways, drug receptors, 
drug-metabolizing enzymes, and drug efflux molecules [11]. Among the genetic 
polymorphisms identified as possible modulators of the pain response, we can 
mention genes that code for voltage-gated sodium channels, the metabolic enzyme 
catechol-O-methyltransferase (COMT), the synthetic enzyme CTP cyclohydrolase, 
and the changes described in the OPRM1 gene [12].

A better knowledge of these polymorphisms can help clinicians to manage 
interindividual variability in opioid demands. These genetic markers could also help 
to design tools to precisely predict the analgesic opioid dose, increase efficacy, and 
reduce the incidence of drug dependence and addiction.

4. Opioid addiction: a severe substance use disorder

Today, morphine is a Schedule II narcotic, along with other drugs like fentanyl, 
hydromorphone, meperidine, methadone, or oxycodone, under the Controlled 
Substances Act (US Drug Enforcement Administration) [13], and is available only 
by a prescription due to its high potential for abuse. Morphine is also regulated 
because it is the precursor to heroin, a synthetic alkaloid that presents a different 
pharmacokinetics than morphine, resulting in more acute CNS effects, partly 
responsible for the tremendous addictive capacity of this molecule.

The first experiences with opioids are usually unpleasant, since the effects on 
the gastrointestinal tract (nausea and vomiting) predominate. However, when 
repeating the behavior, tolerance to the emetic action develops, then the feeling of 
euphoria prevails.

The addictive state is characterized by the compulsive consumption of the drug 
despite the serious negative consequences that it entails, such as diseases, neglect-
ing social and family obligations, and the need to commit criminal acts to obtain 
the substance. For drug addicts, drugs become the main incentive within their 
scale of values, and, as a result, their lives are reduced to obtaining and consum-
ing drugs.

In addition, drug addiction involves loss of control in limiting intake and emerg-
ing of a negative emotional state (e.g., dysphoria, anxiety and irritability), reflect-
ing a motivational withdrawal syndrome when access to the drug is prevented [14].

The addictive process consists of three stages (Figure 3): binge/intoxication, 
withdrawal/negative affect, and preoccupation/anticipation (craving). These stages 
interact with each other, becoming more intense and ultimately leading to the state 
known as addiction.



Opioids - From Analgesic Use to Addiction

6

In the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), addic-
tion is synonymous with a severe substance use disorder, and opioid use disorder is 
included here [15]. Just like it happens with other substance use disorders, individu-
als can begin opioid misuse with recreational use of the drug and evolve to the 
withdrawal/negative affect stage as negative reinforcement appear.

Despite numerous treatment attempts and the serious risk to their lives, relapses 
to drug-seeking and drug-taking behaviors following months or years of abstinence 
are frequent when addicts find stimuli associated with the first contact with the 
drug [16]. This fact shows that we need more effective long-term treatments for 
drug dependence and emphasizes, on the other hand, the importance of better 
understanding the neurobiological mechanisms that underlie drug addiction and 
their persistence.

5. The opioid epidemic: challenges and opportunities

Over the past 20 years, there has been a significant increase in opioid prescrip-
tion worldwide, but especially in the United States. This substantial increase in opi-
oid prescribing patterns has been due, in part, to the influence of certain currents 
of opinion, which trivialized the potential drawbacks of opioid painkillers, along 
with the widely spread belief that any kind of pain could and should be treated with 
opioids. On the other hand, consuming higher doses than prescribed or by people 
who had not been prescribed, or switching to a more direct route of administration 
than the oral route, has contributed to the expansion of the abuse of these drugs 
among the population [17].

An opioid epidemic has been declared in 2017 in the United States [1, 18]. 
Europe and, particularly, low- and middle-income countries, appear to be less 
influenced by this problem. An estimated 10.3 million Americans aged 12 and older 
misused opioids in 2018, including 9.9 million prescription pain reliever (mor-
phine, oxycodone, and hydrocodone) abusers and 808,000 heroin users. A report 
from the Centers for Disease Control and Prevention (CDC) indicated that opioid 

Figure 3. 
Neurobiological bases of substance use disorders [14].
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sales multiplied by 14 from 1999 to 2010. Moreover, this center reported that, in 
2017, the number of overdose deaths involving opioids (including prescription and 
illegal opioids) was six times higher than in 1999. Prescription opioid overdose, 
abuse, and dependence involve high economic costs for American society from 
around $78.5 billion.

Avoiding prescription of opioid pain relievers when its therapeutic indication 
is doubtful or unnecessary is always easier than proceeding later upon treatments 
for abuse, which will be even more difficult if the patient is not involved. Only in 
certain situations, opioid administration for pain relieve is essential; for all the 
others, a great diversity of interventions that can be as effective or more than the 
prescription of opioids are available, avoiding thus the potential risks of addiction 
and overdose that are associated with the consumption of opiates.

Different states have begun implementing prescription drug monitoring pro-
grams to control irregular prescribing practices by clinicians and the recreational 
use of opioids. In addition, current strategies include a greater involvement of 
healthcare professionals (such as psychiatrists) and approaches to address comor-
bidities [19]. These measures could be resulting in a decrease in opioid prescription, 
as shown in last reports from CDC, which indicate a reduction in these prescrip-
tions from 2016 [20].

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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are frequent when addicts find stimuli associated with the first contact with the 
drug [16]. This fact shows that we need more effective long-term treatments for 
drug dependence and emphasizes, on the other hand, the importance of better 
understanding the neurobiological mechanisms that underlie drug addiction and 
their persistence.

5. The opioid epidemic: challenges and opportunities

Over the past 20 years, there has been a significant increase in opioid prescrip-
tion worldwide, but especially in the United States. This substantial increase in opi-
oid prescribing patterns has been due, in part, to the influence of certain currents 
of opinion, which trivialized the potential drawbacks of opioid painkillers, along 
with the widely spread belief that any kind of pain could and should be treated with 
opioids. On the other hand, consuming higher doses than prescribed or by people 
who had not been prescribed, or switching to a more direct route of administration 
than the oral route, has contributed to the expansion of the abuse of these drugs 
among the population [17].

An opioid epidemic has been declared in 2017 in the United States [1, 18]. 
Europe and, particularly, low- and middle-income countries, appear to be less 
influenced by this problem. An estimated 10.3 million Americans aged 12 and older 
misused opioids in 2018, including 9.9 million prescription pain reliever (mor-
phine, oxycodone, and hydrocodone) abusers and 808,000 heroin users. A report 
from the Centers for Disease Control and Prevention (CDC) indicated that opioid 

Figure 3. 
Neurobiological bases of substance use disorders [14].
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sales multiplied by 14 from 1999 to 2010. Moreover, this center reported that, in 
2017, the number of overdose deaths involving opioids (including prescription and 
illegal opioids) was six times higher than in 1999. Prescription opioid overdose, 
abuse, and dependence involve high economic costs for American society from 
around $78.5 billion.

Avoiding prescription of opioid pain relievers when its therapeutic indication 
is doubtful or unnecessary is always easier than proceeding later upon treatments 
for abuse, which will be even more difficult if the patient is not involved. Only in 
certain situations, opioid administration for pain relieve is essential; for all the 
others, a great diversity of interventions that can be as effective or more than the 
prescription of opioids are available, avoiding thus the potential risks of addiction 
and overdose that are associated with the consumption of opiates.

Different states have begun implementing prescription drug monitoring pro-
grams to control irregular prescribing practices by clinicians and the recreational 
use of opioids. In addition, current strategies include a greater involvement of 
healthcare professionals (such as psychiatrists) and approaches to address comor-
bidities [19]. These measures could be resulting in a decrease in opioid prescription, 
as shown in last reports from CDC, which indicate a reduction in these prescrip-
tions from 2016 [20].

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 2

A New Paradigm: Prevention of
Central Sensitization in Pain
Management through Minimizing
Opioid Exposure
Pamela Bolyanatz

Abstract

Current exacerbations of chronic pain cannot be understood in isolation from
how past incidents impact pain and its experience. Patients who frequent the
Emergency Room or hospital for a pain crisis or intensification of their pain without
new findings on X-rays or scans are often seen as ‘drug seekers.’ Yet, to the patient
the pain is agonizing, and the suffering real. It is this type of patient that prompted
an ongoing improvement project in our local hospital, our Multiple Visit Patient
Complex Care Program. The goal was to determine the similarities between this
type of ‘complex’ patient—who frequents the hospital despite no new radiographic
change—and other patients. Understanding this ‘complex’ pattern in terms of cen-
tral intractable pain can change the trajectory of treatment. Results of our program
described here reveal that a better understanding of central pain and central sensi-
tization can result in better patient care.

Keywords: opioids, central sensitization, central intractable pain, trauma,
multi-modal pain management

1. Introduction: the costs of misdiagnosing pain

Patient complaints of pain can befuddle even the most experienced healthcare
provider. The seeming lack of an organic origin, along with multiple exacerbating
affective and cognitive variables can result in stopgap measures and incomplete or
inaccurate diagnoses. The costs of this approach to treatment can be significant.

Broadly speaking, misdiagnoses or inadequate contribute to overall runaway
healthcare costs. The cost of pain care is exorbitant already; inaccurate diagnoses
can result in money spent for the wrong treatment: ‘The annual cost of pain was
greater than the annual costs in 2010 dollars of heart disease ($309 billion), cancer
($243 billion), and diabetes ($188 billion) and nearly 30% higher than the combined
cost of cancer and diabetes’ [1].

For individual patients who do not receive an accurate diagnosis of their pain,
there is a risk of a redundancy of testing that can result in increased exposure to
radiation, risk of further misdiagnosis, and mistreatment. The primary risk to the
patient, however, is the development of debility, immobility, and isolation.

The reasons for inadequate pain diagnoses are sometimes attributed to the
patients themselves. Many times, patients are labeled as ‘drug seekers’ when they
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come to the Emergency Department complaining of pain. If patients are presumed
to be drug seekers, and if opiates are the easy default treatment for pain, this
combination can easily lead to a resistance, even if not entirely conscious—on the
part of healthcare staff to assume that the pain is overstated, or perhaps even utterly
absent. The ready use of opiates, then, does have to be seen as a contributing
problem to pain misdiagnoses. This predisposition has its own set of costs.

For example, patients may have neurobiological anomalies, in which there is an
anxiety, fear, and pain matrix in the prefrontal cortex and amygdala. This is
influenced by neurotransmitters and glial cell activation, which can lead to perva-
sive inflammation and central sensitivity. It is paramount that hospitals utilize non-
opioid and multi-modal treatments after surgeries to reduce opioid exposure of the
brain. The exposure of the insula and the limbic area of the brain to morphine or
hydromorphone begins the cascade of blocking endogenous opioid production.

In fact, �20% of patients complaining of pain have likely used illicit substances,
and may be found to have psychiatric or opioid use disorders that are not accurately
diagnosed and miss proper treatment with medical-assisted drug therapy. Sporadic
follow-up, and missed opportunities to begin treatment due to the health care
providers judgment and stigma, can lead to becoming stuck in the same cycle [2].

Ultimately, it is vital to determine a patient’s full history. Displays of judgment
that evoke a patient’s sense of being stigmatized will more likely lead to an improper
diagnosis and treatment by the healthcare team. If a treatment is not effective, then
understanding the options to reassess and change the course of treatment become
necessary. Opioid administration guidelines have been slowly changing since 2005
with the concept of ‘not every increase in pain should be met with a higher dose of
narcotics (opioids)’ [3]. Further research into hormonal, dietary, and other natural
or integrative methods of the treatment of pain is increasingly necessary, especially
as the costs of opioid use for misdiagnosed pain become more widely known.

2. Current practices in pain treatment

Today healthcare providers are working to lower opioid use in their own way,
some in systemized fashion, while other just draw a line in their practice and hope
that patients’ pain improves, and/or that the patients get tired of asking for medi-
cation. But the use of opioids, especially, in pain management today is a complex
landscape.

Pain and the treatment or management of pain is a widely debated subject. It is
typically not a favorite topic of most providers; many feel they were not trained to care
for thewide variety of pain complaints and some throw their hands up in frustration at
themyriad of complaints they hear. Some providers have changed their office policy to
include a blanket statement, “I do not prescribe narcotics.” The reason for this policy,
gleaned throughmany conversations with providers, is that they prefer to avoid the
many ‘headaches’ from the ‘drug seekers.’ Case Study 1 illustrates this problem.

Case Study 1
A patient arrives at the Emergency Department with no external presenting problems, but she

describes her internal pain as, ‘I feel like I am going to break apart.’ She had undergone surgery 1 week
prior, a straightforward laparoscopic cholecystectomy, but she is sure there is an infection or something
worse inside. The staff in the Emergency Room see her often for her anxiety; they have other patients with
‘true’ emergencies in the rooms next door. Should she receive opioids for her pain? She and others like her
struggle with feelings of anxiety, fear, pain and often come to the Emergency Department for relief. On a
daily basis, patients with chronic pain feel their pain in a way that is difficult to express to others. Their
previous experiences of anxiety, trauma, chronic disease, and previous treatment with opioids influence
their current situation.
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But medical providers are not the only piece of the puzzle. National pharmacy
chains have placed restrictions of 7 days for the first prescription of opioids,
regardless of whether the patient is opioid naïve or opioid tolerant. This can have
unintended outcomes, exemplified by Case Study 2:

Case Study 2
A postoperative patient changed pharmacies shortly after surgery. He was able to receive the first

7 days of medication, but while the pharmacy was waiting for a phone call to complete his authorization, he
did not have access to his regularly prescribed medication. This contributed to a pain crisis and he was
hospitalized for 3 days. With his regular opioid medication dosage, the admission could have been
prevented. The patient was not misusing his medication; he was affected by a ruling that was put in place to
safeguard opioid medication from getting in to the hands of those who do not need a large quantity of
opioid medication (from Ref. [3]).

Many state surgical organizations are taking notice of the overprescribing on the
part of their members in the past. A not uncommon unintended consequence of this
practice has been for post-operative patients, historically, to take a few oral pain
relievers, and then the rest of the bottle of hydrocodone (Norco™, Vicodin) or
oxycodone (Percocet™) sits in the medicine cupboard for many years. The result is
that many household opioid supplies allow patients to self- and over-medicate in ways
that “fly under the radar” of healthcare personnel. Case Study 3 is one such instance:

Case Study 3
A patient arrived at the Emergency Room in clear distress from her new onset pneumonia. She was

experiencing significant chest discomfort, and asked for pain medications since her hydrocodone with
acetaminophen 7.5/325 mg was not working; the patient felt that something stronger was needed, and so
insisted on a stronger dose. Emergency Room providers do not routinely administer opioids for pneumonia,
so she left the hospital against medical advice, frustrated that her pain was not controlled. She eventually
returned due to her worsening pneumonia symptoms, which resulted in hospitalization.

3. Factors that affect the experience of pain

Ossipov et al. [4] found the experience of pain to be influenced by emotions
and experiences. Painful experiences accompanied by intense emotions, such as
wartime injuries, or co-occurring mental health disorders play a role in the body’s
own endogenous inhibitory system in heightening the pain perception.

Pain perception and modulation are important concepts to understand within
pain management and its treatment, as in Figure 1.

The following is not an exhaustive list of some of the complexities of the expe-
rience of pain; they are offered to show that today’s pain management provider
must be something of a jack-of-all-trades in order to understand the nature and
treatment of pain.

• Multiple medications are often utilized in the management of pain. Antidepressants,
anti-inflammatories, and bowel medications are all important parts of the
picture. Some are finding that topical treatments can be effective in the
treatment of pain. It can be a burden to maintain a working knowledge of the
plethora of available options, in order to be able to utilize the most effective pain
medications, especially if one is not a pain specialist.

• There are not enough pain specialists. There is a disparity between the number of
pain specialists and the number of patients in pain. Pain patients sense, not
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15

A New Paradigm: Prevention of Central Sensitization in Pain Management through Minimizing…
DOI: http://dx.doi.org/10.5772/intechopen.85192



surprisingly, that their needs are viewed as of secondary importance when they
perceive that their sense of urgency is not matched by healthcare team.

• Patient pain care guidelines do not have individual complex patients in mind.
It is a constant challenge to maintain a targeted therapy for a patient and
stay within the morphine milligrams guidelines as set by national and state
guidelines. Some states have even prepared guidelines for Emergency
Rooms that generalize treatments rather than allow for individual treatments
of pain [5].

• Patient frustration can be high. Maintaining the provider-patient relationship
can be difficult if the non-opioid medications do not work, and the only thing
that helps is the opioid pain relievers [6]. The real struggle comes when the
opioids are ineffective or requests for more and more opioids occur, especially
if a provider is not aware of other options for pain control or even the true
diagnosis of the patient. This is exacerbated by the fact that if opioids are
overused, the diagnostic picture can become clouded due to suspicion.

• Patient expectations are based on past history. Often, when a patient comes to the
Emergency Room and has a history of being on chronic opioids, the opioids
become the focus of the visit. The struggle begins: the patient feels they
deserve more, since their home medications (including, sometimes, that
leftover hydrocodone or oxycodone) do not work. For her part, the provider
does not want to give opioids, given the growing awareness of opioid-related
problems, especially now that providers receive scorecards with their opioid
prescribing measured.

• Surgical delay can limit choices for the orthopedic patient. Current guidelines for
knee replacement are to ‘proceed with total joint replacement after all other
modalities have failed’ [7]. This delay may increase the use of opioids since
many patients struggle with limited mobility, and perhaps severe pain for
many months or years, until they have qualified for the replacement.
Ironically, a predisposition to leap to opioids is often done in order to delay the
surgery. Recovery is often delayed due to the muscle atrophy of older patients,

Figure 1.
Factors influencing the pain experience [4].
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and these patients often need higher doses of medications to be able to
tolerate movement.

• An increasingly obese population has implications for pain management. Obesity
becomes a post-operative barrier to surgery due to lack of mobility. Physical
therapy pain can be more intense and last longer if movement has been
difficult for a patient.

The list of considerations entailed in understanding the nature of pain and
subsequent pain management could go on. Patients with debilitating illnesses who
have had to retire early may be less mobile and so more susceptible to pain—post-
operative or other. Clinical observations reveal that back pain and spinal stenosis
can leave a patient with weak proximal thigh muscles and the inability to walk more
than 30–40 feet, while daily headaches can lead to the inability to leave the home
for weeks at a time. Prolonged chronic pain and discomfort often leads to disability.

Disability from pain is increasing. Clinically, patients become more and more
deconditioned. They often ambulate or walk less, lose muscle mass, and may
become discouraged and often depressed. Some eat lower-quality food, as in the
case of a 50-year-old patient who told me that she orders from a mobile app at home
and has her food delivered to her, since she cannot drive or stand to cook. Her diet is
fast food almost exclusively. This leads to isolation and emotional ‘sadness’ as
described by many patients. Many of the pain patients in my practice state, ‘I want
to be a good parent (or son, daughter, wife, husband), but I hurt too much.’ The
psychological and cognitive dysfunction persist.

4. The missing link: central intractable pain

As if the complexities of pain management just addressed were not enough,
there are the important differences in types of pain, not just differences in patients.
Patients with fibromyalgia, chronic fatigue, and small fiber neuropathy suffer from
a category of pain known as central intractable pain (CIP)—a type of pain that does
not respond to opioids and is, in fact, a type of pain for which the use of opioids has
been detrimental [8, 9].

Understanding CIP is vital for diagnosis, and for treatment modalities. Joshi [10]
describes the etiology of CIP in terms of brain stimulation due to trauma or injury.
NMDA and glutamate are released, and, due to glutamate excitability, glial cells are
released. These glial cells are irritated and inflamed, and cytokines release cyto-
toxins. These cytotoxins are neurotoxins, are pervasive throughout the body, and
cause damage to nerves from inflammation. Sensory nerve fibers are specifically
targeted. It is important to stress here it is believed that the patient’s subjective
experience of events as emotionally traumatic in triggering this physiological
response that results in cytotoxins’ attack on sensory nerve fibers.

There are other variables that can compound and exacerbate this process. There
are genes that have been found to be involved in the amplification of pain and may
indicate an increased risk of chronic pain development [11]. In addition, there are
environmental influences. Previous emotional trauma, sexual abuse, medical
influenced trauma, previous stigma from the LGBTQ or other gender related or
minority stress inducers has been thought to amplify pain perception. The Substance
Abuse and Mental Health Services Administration (SAMSHA) have developed
Trauma-informed care education for health care providers for these populations [12].

Treatment is typically a multi-faceted approach to minimize sensitization; there
are a number of ways that this can be affected:
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1. Prevent the exposure to opioids.

2.Minimize the wind up phenomena. Defined as stimulation of pain nerve fibers
to the extent that the fibers are altered and produce neuropathic pain.

3. Setting the expectation for patients prior to painful experiences. Information
and education of patients and providers has proven to lower patients’ pain
scores after surgery.

4.The use of oral Naloxone™ has been on the rise in the recent past due to the
research surrounding the stimulation of the midbrain periaqueductal grey
(PAG) region. Outputs from the PAG to the medulla reduce pain by activating
an endogenous opioidergic pain inhibitory system [13].

5. Lidocaine has been used for over 50 years as a local anesthetic; now it is
assisting with less exposure to opioid medications due to its anti-inflammatory
and analgesic properties. Postoperative infusions at a low dose have
effectively lowered opioid requirements, decreased post-operative nausea,
and enhanced the return of bowel function [14].

6.Hormone replacement has been shown to indicate that various hormones
regulate the hypothalamic-pituitary-adrenal axis, which, when activated cause
persistent pain. Multiple hormones are implicated here, including cortisol and
pregnenolone. Dr. Forrest Tennant has developed a protocol for patients who
have Ehlers Danlos syndrome and arachnoiditis, which replaces hormones to
assist with pain control [15].

7. Dr. Jay Joshi [10] has worked diligently to determine an appropriate plan for
individual patients who struggle with CIP, using a treatment plan that relies on
ketamine, which has the following benefits:

• Increase in cerebral blood flow

• Resetting of the mu receptor

• Reduction of hypersensitivity

• Reversal, in some cases, of post-traumatic stress disorder (PTSD)

• NMDA receptors mediation

• It serves as a potent neuro-anti-inflammatory agent

Early identification of central pain syndromes prevents the central sensitization
and brain reorganization. Functional MRIs show cortical reorganization: psycho-
logic interaction with pain and stress that causes areas in the brain to become
hyperactive to a stimulus, including brain mapping and biofeedback [16]. CIP,
then, often has its origins in supratentorial factors, and failure to take these factors
seriously can result in opioid overuse.

5. The multiple visit patient complex care program

The hospital-based team approach to helping multiple-visit patients has been
successful at my suburban hospital for the past 3 years. Recent data indicates the use
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of individualized care plans by a Complex Care team has helped reduce
readmissions by 36%.1 The goal is to assist the patient to find proper outpatient
treatment, so that a readmission to the Emergency Room becomes less necessary.
The goals of the care plans include providing appropriate symptom management, as
well as reducing the opioids that are prescribed during the Emergency Room visit,
and at discharge. Other techniques include giving a welcome letter to a patient that
frequently uses the Emergency Room. The goals of the letter are to (1) alert patients
to the program; (2) introduce the Complex Care team; (3) offer to help patients
obtain a primary care physician; and in accordance with the Center for Disease
Control Guidelines; (4) state clearly that we will not always treat their pain with
opioids, but will use a multimodal approach when they present for treatment. These
specific strategies have reduced the readmission rate by 60–70% during a more
specific period of study.

Identification and diagnosis is paramount to optimizing treatment strategies and
symptom management. Patients who frequent the Emergency Room can be misun-
derstood with characteristics that are not always identified early in their pain
treatment. This can place the patient at risk for over-medication syndromes, over-
utilization of the healthcare system, and developing central sensitization.

Retrospectively, identification of complex patients who have symptoms that
correlate to those identified as CIP has been ongoing. Recognizing CIP has resulted
in revised treatment plans for patients. Case Study 4 describes one such instance of
the importance of recognizing CIP.

Case Study 4
A patient experienced a significant traumatic event when she was young. She developed low back pain

and abdominal pain, although the imaging for both were not significant enough to pinpoint the cause for
the pain. She had multiple medical procedures and work-ups, and because she complained of severe pain
even after other medications, opioids were begun. Over the years, the dosages were increased, but they
were not effective. The pain continued despite the subsequent overuse of the opioids. She eventually had
multiple admissions to the hospital without a cause for the pain identified.

After being treated for opioid addiction, the patient was introduced to the concept of ketamine
treatment for desensitization for central pain. After a series of ketamine infusions, the central sensitization
subsided. The patient was able to use significantly less opioids, with much greater relief of the pain. She has
now learned to identify the triggers of her pain exacerbations, and has been able to be active and care for
her family.

Informal conversations with colleagues at other institutions suggest that our
suburban hospital is not the only facility to have concerns about patients similar to
the one described above. Recognizing that many pain patients have a type of central
sensitization—chronic pain that is out of control—can both reduce pain that is
activated by a physical response to a past stressor—and the repeated exposure to
opioids.

The case studies below represent how recognizing the role of CIP in
supratentorial pain can reduce reliance upon opioids and subsequent opioid-related
addiction problems. Some of the implications found in the cases below include non-
opioid pain management, the use of postoperative lidocaine, and desensitization
with ketamine. This is consistent with the prevention of opioid exposure as the new
paradigm, and the need to implement innovative treatments.

1

Source: unpublished data from 2015 to 2017 (Delnor Hospital, Geneva, Illinois, USA).
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Case Study 5
A patient with significant head pain sought diagnosis for her pain at multiple facilities without a

definite diagnosis. All headache abortive efforts failed, and all multimodal management failed to relieve the
pain. The patient was placed on intravenous meperidine and over the course of many years, the dosage was
raised to a high dose. This was effective for a short time, but then the high dose began to fail in efficacy. Re-
interpretation of her pain in terms of CIP etiology has resulted in conversations about stressors in her social
life, and a reduction of opioids.

Case Study 6
A patient had a cervical spinal cord stimulator placed, but it failed almost immediately, worsening her

pain. Struggles with anxiety and debility have contributed to a clinical diagnosis of depression. Treatment
for depression has resulted in less frequent PTSD responses to an earlier-life trauma. As a result, her pain is
not managed with less reliance on opioids.

Case Study 7
A patient has progressive neuropathy, although the reason is unclear. Initially she presented with the

inability to sit up long enough to go to her primary care physician’s office, which suggested significant
psychological overlay. Opioids were escalated, and her ability to sit comfortably and walk easily did
improve. Care conferences ensued and biopsies, along with neurologic medication were used without
improvement. Finally, the recognition that CIP might, at least in part, have had a role in the patient’s
symptoms resulted in fewer symptoms and a consequent reduction of opioids.

6. Conclusion and recommendations

The management of pain by health care providers and pain specialists has a new
contour: identify the patients with CIP in a timely manner, then identify treatments
and methods to find sustained relief with limited or no use of opioids.

A patient’s previous history of PTSD, anxiety (general anxiety disorder, post-
partum depression, etc.), chronic pain, or substance use disorder matters when it
comes to differential diagnoses. It is vital that health care providers realize the
ramifications of co-existing psychological and neurologic impact when planning for
surgery or other pain-producing procedures.

What might be routine and typical surgery/procedure from the perspective of a
surgeon could be different to the brain, neurotransmitters, and the other aspects of a
patient’s neuroanatomy. It is crucial that patients’ prior history be considered, and a
plan put in place to assist the patient in coping. Pre-surgical education and planning,
along with collaboration between anesthesia or social work colleagues can have a long-
term positive effect. It may be beneficial to place a temporary nerve block, low dose
lidocaine, or bupivacaine (either short acting or long-acting) in order to block the
ascending nociceptors from sending the pain signal through the descending pain path-
way. The future of pain management must be the prevention of pain pathway activa-
tion. This will lower the exposure to opioids and prevent future substance use disorder.

Of note, physical therapy is very beneficial to a large subset of patients. Special-
ized concepts have been developed by physiatrists’ (also called physical medicine and
rehabilitation specialists) to assist patients with chronic pain, known as an integrative
comprehensive pain management program (CPMP). This program revealed signifi-
cant improvement through the administration of a battery of observed functional
tests (BOFT) to patients with chronic pain who were attending the CPMP [13].
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Activity can be the best treatment for most pain. Exercise and stretching of
muscles, and desensitization of scar tissue leads to healing. Part of the CPMP is
cognitive therapy, psychological, neurological, and pain education. It is clear that
improving outcomes in chronic pain management occur when the patient under-
stands the influence the mind and the body play in pain perception.

The FDA and other research opportunities should be supported to continue to
find more methods of pain blockade and prevention of pain at the site of surgery.
Kaiser Permanente and other hospitals around the United States have been adopting
the enhanced recovery after surgery (ERAS) concept. There is a full protocol of
management of the patient, but the basic tenet is to block the pain to speed recovery
with very little or no opioids.

Lowering opioid exposure is paramount and should be supported and rewarded
with funding and research grants. Health care and surgeries with minimal or no
opioids are possible now, and need to be utilized immediately. Minimizing opioid
exposure is the mandate at this time, there are available options presently, and more
research dollars should be committed to new ways to block the perception of pain.
Finally, patients should be educated about the options and choose hospitals and
providers who utilize the most up-to-date resources.

Education of the next generation of providers needs to be clear in the direction and
potential options for preventing disability and preventing overuse syndromes, early
identification and the importance of prevention of the central sensitization and CIP.
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term positive effect. It may be beneficial to place a temporary nerve block, low dose
lidocaine, or bupivacaine (either short acting or long-acting) in order to block the
ascending nociceptors from sending the pain signal through the descending pain path-
way. The future of pain management must be the prevention of pain pathway activa-
tion. This will lower the exposure to opioids and prevent future substance use disorder.

Of note, physical therapy is very beneficial to a large subset of patients. Special-
ized concepts have been developed by physiatrists’ (also called physical medicine and
rehabilitation specialists) to assist patients with chronic pain, known as an integrative
comprehensive pain management program (CPMP). This program revealed signifi-
cant improvement through the administration of a battery of observed functional
tests (BOFT) to patients with chronic pain who were attending the CPMP [13].
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Activity can be the best treatment for most pain. Exercise and stretching of
muscles, and desensitization of scar tissue leads to healing. Part of the CPMP is
cognitive therapy, psychological, neurological, and pain education. It is clear that
improving outcomes in chronic pain management occur when the patient under-
stands the influence the mind and the body play in pain perception.

The FDA and other research opportunities should be supported to continue to
find more methods of pain blockade and prevention of pain at the site of surgery.
Kaiser Permanente and other hospitals around the United States have been adopting
the enhanced recovery after surgery (ERAS) concept. There is a full protocol of
management of the patient, but the basic tenet is to block the pain to speed recovery
with very little or no opioids.

Lowering opioid exposure is paramount and should be supported and rewarded
with funding and research grants. Health care and surgeries with minimal or no
opioids are possible now, and need to be utilized immediately. Minimizing opioid
exposure is the mandate at this time, there are available options presently, and more
research dollars should be committed to new ways to block the perception of pain.
Finally, patients should be educated about the options and choose hospitals and
providers who utilize the most up-to-date resources.

Education of the next generation of providers needs to be clear in the direction and
potential options for preventing disability and preventing overuse syndromes, early
identification and the importance of prevention of the central sensitization and CIP.
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Chapter 3

Other Uses of Morphine
Shrenik Ostwal

Abstract

Worldwide many different strong opioids and their formulations are available 
to control pain. Of which, morphine is considered as global opioid of choice and 
is widely used to control moderate to severe pain. The World Health Organization 
(WHO) has recommended morphine as one of the essential drug. Apart from anal-
gesic use, research has proven its effectiveness for relief and treatment of various 
debilitating and distressing conditions like breathlessness, mucositis (oral and vagi-
nal) and cough. However, its role in diarrhea and opioid substitution therapy (OST) 
is still nonconfirmatory. This chapter illustrates all available literature supporting 
effectiveness of morphine in above conditions and its impact on quality of life.

Keywords: morphine, dyspnoea, mucositis, chronic cough,  
opioid substitution therapy (OST), diarrhea

1. Introduction

Preparations of the opium poppy Papaver somniferum have been used for many 
hundreds of years to relieve pain. Morphine remains as the gold standard for manage-
ment of moderate to severe cancer pain. It has a five ringed structure with a character-
istic T-shaped three dimensional form essential for activation of the opioid receptor.

Due to its strong affinity to mu receptors and action similar to endorphins, i.e., 
natural pain killers, morphine has been widely used globally. Apart from its anal-
gesic action, it can be used widely for symptomatic relief of other distressing and 
debilitating conditions. This chapter depicts all available literature for various other 
uses of morphine.

2. Dyspnoea

2.1 Introduction

Dyspnoea, also termed as breathlessness, is a common and prevalent source 
of discomfort in patients with advanced cancer and non-cancer life limiting ill-
nesses. Most people describe it as an uncomfortable sensation or increased work of 
breathing in terms of air hunger, increased effort, chest tightness, rapid breathing, 
incomplete exhalation or feeling of suffocation.

The American Thoracic Society defined dyspnoea as “a subjective experience 
of breathing discomfort that consists of qualitatively distinct sensations that 
vary in intensity” [1]. This definition highlights key areas where dyspnoea can be 
measured, suggesting that dyspnoea is not merely a single sensation but a shared 
experience with physical and affective components. This is similar to concept of 
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total pain or total suffering which constitutes other domains like psychological, 
social, spiritual and environmental.

The prevalence of dyspnoea varies according to disease primary site and stage 
of illness. Studies by Muers and Round [2]; Smith et al. [3] reported prevalence of 
dyspnoea in 75–87% patients with primary lung cancer. While, a systematic review 
by Solano et al. [4] reported dyspnoea prevalence of: 90–95% in patients with 
chronic obstructive pulmonary disease (COPD), 60–88% in patients with heart 
disease, 11–62% in patients with AIDS and 11–62% in patients with renal disease. 
COPD and chronic heart failure (CHF) constitutes major non-cancer causes of 
dyspnoea in patients [5, 6].

Dyspnoea due to its prevalence and associated suffering poses a significant 
burden to patients and caregivers, hence severely affecting quality of life.

2.2 Pathophysiology of dyspnoea

Normally during unconscious activity, respiration is managed by clusters of neu-
rons in the medulla. They receive afferent input from several types of mechanore-
ceptors in respiratory muscles, airways, and lung parenchyma and chemoreceptors 
in aortic and carotid bodies and the medulla. Motor commands from the medulla 
or motor cortex by means of the medulla descend to respiratory muscles through 
efferent motor neurons [7, 8].

Differential diagnosis for dyspnoea in advanced cancer can be: (Table 1).

2.3 Opioids in breathlessness

The primary site of action of opioids in breathlessness is through medulla 
oblongata, although various mechanisms may be involved on effect on perception 
of breathlessness. Box 1 suggests various mechanisms by which morphine acts on 
breathlessness [1].

A study by Mahler et al. [9] in 2009 demonstrated threefold increase in beta 
endorphin levels in 17 COPD patients when compared from rest to end exercise. 
Patients were randomized to receive either normal saline or 10 mg of intravenous 
naloxone. Authors found significantly higher peak ratings and regression slope of 
breathlessness with naloxone as compared to normal saline. This study high-lighten 
role of endogenous opioids in dyspnoea modification in COPD patients.

Research has demonstrated role of oral morphine in breathlessness. However 
dosing schedule varies according to underlying condition. Box 2 depicts morphine 
dosing recommendations for breathlessness [10]:

• Analgesia—reduction of pain induced respiratory drive.

• Anxiolytic effects.

• Reduce minute ventilation.

• Cortical sedation (suppression of respiratory awareness).

• Alteration of neurotransmission within medullary respiratory center.

• Reduce central sensitivity and response to hypercarbia or hypoxia.

• Decreased metabolic rate and ventilatory requirements—decrease in O2 consumption.

• Vasodilatation and improved cardiac functions.

Box 1. 
Mechanism by which morphine reduces perception of breathlessness. Source: Adapted from American Thoracic 
Society guidelines on dyspnoea 2012.
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2.3.1 Morphine for breathlessness in cancer patients

There is good evidence for role of opioids in breathlessness [1, 5, 11–20]. Most 
of studies illustrated beneficial effect of morphine in breathlessness in cancer 
patients. Out of eight studies which evaluated effect of morphine in cancer related 
dyspnoea, seven were randomized controlled, double blind trials [21]. Another study 
by Clemens et al. [22], a non-randomized prospective study in advanced terminal 
cancer patients with dyspnoea, reported beneficial effect of morphine in reducing 
intensity of dyspnoea when compared with oxygen. While, Charles et al. [23] also 
reported similar and rapid improvement in breathlessness with use of nebulised 
hydromorphone. Studies by Bruera et al. [15] and Mazocato et al. [24] compared 
role of subcutaneous morphine with placebo in patients with primary lung cancer or 
lung metastases, showing a significant decrease in breathlessness intensity on visual 
analogue scale (VAS) after 45 min of intervention when treated with morphine. This 
was supported by a meta-analysis by Ben-Aharon et al. [10] in patients with cancer 
related dyspnoea. Authors found positive effect of opioids in reducing breathlessness.

Another two studies by Davis et al. (1996) and Grimbert et al. [25] reported 
no significant improvement in VAS scores even after 60 min of intervention with 
nebulized morphine when compared with placebo, i.e., nebulised saline. In one 
study Bruera et al. [15] compared effect of subcutaneous morphine with nebulised 

Malignant causes Non-malignant causes

Lung cancer/metastases to lung COPD/interstitial lung disease

Pleural effusion/pericardial effusion/ascites Bronchiectasis

Superior vena caval obstruction Congestive heart failure

Pulmonary embolism Arrhythmias

Pulmonary edema Motor neuron diseases

Major airway obstruction Muscular dystrophy

Lymphangitis carcinomatosis Anaemia

Chest wall infiltration Acidosis

Radiation induced pulmonary fibrosis Anxiety/panic attacks

Table 1. 
Causes of dyspnoea.

• Opioids should be started when disabling dyspnoea persists despite maximal Management of underlying 
condition.

• Check for renal, hepatic, pulmonary function, current and past opioid use.

• Prescribe laxatives and other supportive medications.

• Adopt policy of “Start Low and Go Slow” while titrating morphine dosage.

• Titrate morphine dose (up to 25–50% of dose for continued mild to moderate dyspnoea; and by up to 
50–100% of dose for continued moderate to severe dyspnoea) every weekly over 4 weeks until lowest 
effective dose is found.

• Start with 2.5–5 mg/4 h. PO or 1–2.5 mg/4 h. SC of morphine in opioid naive patients.

• For patients already prescribed morphine for pain, increase regular dose by 25–30%.

• Consider long acting twice daily morphine dosing in patients with stable regular dose.

• Consider 1/6th of regular dose prn for episodic breathlessness.

Box 2. 
Morphine dosing recommendations for breathlessness. Source: Adapted and developed from best practice for 
managing breathlessness in palliative care.



Opioids - From Analgesic Use to Addiction

26

total pain or total suffering which constitutes other domains like psychological, 
social, spiritual and environmental.

The prevalence of dyspnoea varies according to disease primary site and stage 
of illness. Studies by Muers and Round [2]; Smith et al. [3] reported prevalence of 
dyspnoea in 75–87% patients with primary lung cancer. While, a systematic review 
by Solano et al. [4] reported dyspnoea prevalence of: 90–95% in patients with 
chronic obstructive pulmonary disease (COPD), 60–88% in patients with heart 
disease, 11–62% in patients with AIDS and 11–62% in patients with renal disease. 
COPD and chronic heart failure (CHF) constitutes major non-cancer causes of 
dyspnoea in patients [5, 6].

Dyspnoea due to its prevalence and associated suffering poses a significant 
burden to patients and caregivers, hence severely affecting quality of life.

2.2 Pathophysiology of dyspnoea

Normally during unconscious activity, respiration is managed by clusters of neu-
rons in the medulla. They receive afferent input from several types of mechanore-
ceptors in respiratory muscles, airways, and lung parenchyma and chemoreceptors 
in aortic and carotid bodies and the medulla. Motor commands from the medulla 
or motor cortex by means of the medulla descend to respiratory muscles through 
efferent motor neurons [7, 8].

Differential diagnosis for dyspnoea in advanced cancer can be: (Table 1).

2.3 Opioids in breathlessness

The primary site of action of opioids in breathlessness is through medulla 
oblongata, although various mechanisms may be involved on effect on perception 
of breathlessness. Box 1 suggests various mechanisms by which morphine acts on 
breathlessness [1].

A study by Mahler et al. [9] in 2009 demonstrated threefold increase in beta 
endorphin levels in 17 COPD patients when compared from rest to end exercise. 
Patients were randomized to receive either normal saline or 10 mg of intravenous 
naloxone. Authors found significantly higher peak ratings and regression slope of 
breathlessness with naloxone as compared to normal saline. This study high-lighten 
role of endogenous opioids in dyspnoea modification in COPD patients.

Research has demonstrated role of oral morphine in breathlessness. However 
dosing schedule varies according to underlying condition. Box 2 depicts morphine 
dosing recommendations for breathlessness [10]:

• Analgesia—reduction of pain induced respiratory drive.

• Anxiolytic effects.

• Reduce minute ventilation.

• Cortical sedation (suppression of respiratory awareness).

• Alteration of neurotransmission within medullary respiratory center.

• Reduce central sensitivity and response to hypercarbia or hypoxia.

• Decreased metabolic rate and ventilatory requirements—decrease in O2 consumption.

• Vasodilatation and improved cardiac functions.

Box 1. 
Mechanism by which morphine reduces perception of breathlessness. Source: Adapted from American Thoracic 
Society guidelines on dyspnoea 2012.

27

Other Uses of Morphine
DOI: http://dx.doi.org/10.5772/intechopen.85165

2.3.1 Morphine for breathlessness in cancer patients

There is good evidence for role of opioids in breathlessness [1, 5, 11–20]. Most 
of studies illustrated beneficial effect of morphine in breathlessness in cancer 
patients. Out of eight studies which evaluated effect of morphine in cancer related 
dyspnoea, seven were randomized controlled, double blind trials [21]. Another study 
by Clemens et al. [22], a non-randomized prospective study in advanced terminal 
cancer patients with dyspnoea, reported beneficial effect of morphine in reducing 
intensity of dyspnoea when compared with oxygen. While, Charles et al. [23] also 
reported similar and rapid improvement in breathlessness with use of nebulised 
hydromorphone. Studies by Bruera et al. [15] and Mazocato et al. [24] compared 
role of subcutaneous morphine with placebo in patients with primary lung cancer or 
lung metastases, showing a significant decrease in breathlessness intensity on visual 
analogue scale (VAS) after 45 min of intervention when treated with morphine. This 
was supported by a meta-analysis by Ben-Aharon et al. [10] in patients with cancer 
related dyspnoea. Authors found positive effect of opioids in reducing breathlessness.

Another two studies by Davis et al. (1996) and Grimbert et al. [25] reported 
no significant improvement in VAS scores even after 60 min of intervention with 
nebulized morphine when compared with placebo, i.e., nebulised saline. In one 
study Bruera et al. [15] compared effect of subcutaneous morphine with nebulised 

Malignant causes Non-malignant causes

Lung cancer/metastases to lung COPD/interstitial lung disease

Pleural effusion/pericardial effusion/ascites Bronchiectasis

Superior vena caval obstruction Congestive heart failure

Pulmonary embolism Arrhythmias

Pulmonary edema Motor neuron diseases

Major airway obstruction Muscular dystrophy

Lymphangitis carcinomatosis Anaemia

Chest wall infiltration Acidosis

Radiation induced pulmonary fibrosis Anxiety/panic attacks

Table 1. 
Causes of dyspnoea.

• Opioids should be started when disabling dyspnoea persists despite maximal Management of underlying 
condition.

• Check for renal, hepatic, pulmonary function, current and past opioid use.

• Prescribe laxatives and other supportive medications.

• Adopt policy of “Start Low and Go Slow” while titrating morphine dosage.

• Titrate morphine dose (up to 25–50% of dose for continued mild to moderate dyspnoea; and by up to 
50–100% of dose for continued moderate to severe dyspnoea) every weekly over 4 weeks until lowest 
effective dose is found.

• Start with 2.5–5 mg/4 h. PO or 1–2.5 mg/4 h. SC of morphine in opioid naive patients.

• For patients already prescribed morphine for pain, increase regular dose by 25–30%.

• Consider long acting twice daily morphine dosing in patients with stable regular dose.

• Consider 1/6th of regular dose prn for episodic breathlessness.

Box 2. 
Morphine dosing recommendations for breathlessness. Source: Adapted and developed from best practice for 
managing breathlessness in palliative care.



Opioids - From Analgesic Use to Addiction

28

morphine in lung primary patients, reporting no significant difference in dyspnoea 
intensity. However, this study reported patient’s preference with nebulised mor-
phine. Lastly, Allard et al. [26] found no significant differences in VAS score with 25 
or 50% increments in morphine dosages.

2.3.2 Morphine for breathlessness in COPD patients

A systemic review and meta-analysis by Jennings et al., comparing opioids with 
placebo for the treatment of dyspnoea [21] showed out of 18 randomized controlled 
trials (RCT) involved, nine trials reported patients receiving either oral opioids 
(n = 8) or subcutaneous morphine (n = 1). Such patients experienced significant 
beneficial effect with parenteral opioids on reducing dyspnoea when compared 
with placebo (meanΔ: –0.40; CI: −0.32 to −0.17). However, exercise was used as 
provoking stimulus to dyspnoea in eight of these nine studies, whereas only one 
study could examine patients with dyspnoea at rest.

Another randomized, double blind, placebo-controlled crossover trial by 
Abernethy et al. [27] compared 4 days of 20 mg oral sustained-release morphine 
with 4 days of oral placebo. Thirty-eight (87.5%) participants who were opioid 
naive and had dyspnoea at rest in spite of optimal therapy for their underlying 
condition (mainly patients with COPD) completed the trial. Patients on morphine 
experienced significant improvements (i.e., less dyspnoea and improved sleep) on 
VAS scale. Hence, authors concluded that “sustained release, oral morphine at low 
dosage provides significant symptomatic improvement in refractory dyspnoea in 
the community setting.”

2.3.3 Morphine for breathlessness in heart failure patients

Only few published studies have demonstrated positive outcomes with use of 
morphine in CHF related dyspnoea. In a pilot study by Johnson et al. [28] aimed to 
measure effect of oral morphine on breathlessness in patients with CHF, authors 
found a significant decrease in median breathlessness in those who received 5 mg 
of oral morphine four times a day (p = 0.022), whereas no change was observed in 
patients treated with placebo.

Oxberry et al. [29] conducted a crossover RCT on 35 patients diagnosed with 
CHF (New York Heart Association Grade III–IV) comparing 4 days of morphine 
(5 mg four times daily), oxycodone (2.5 mg four times daily) and placebo followed 
by a washout period of 3 days. Patients were followed up for 3 months. Authors 
found a significant improvement in composite breathlessness in opioid group as 
compared to placebo (p = 0.017). However they did not find any statistically signifi-
cant difference in breathlessness improvement in either intervention group. Hence, 
authors concluded need for long term trials to establish effectiveness of opioids.

Before stating opioids for dyspnoea in CHF patients, all possible etio-pathological 
causes should be taken into consideration. Non-pharmacological treatment options—
salt and fluid restriction, diet modification, appropriate exercise training and weight 
reduction strategies, etc., should be used first. Pharmacological therapy with angio-
tensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB), 
beta blockers, diuretics, digoxin and implant devices should be optimally considered. 
Other possible causes like anaemia and pleural effusion should be taken care of.

2.3.4 Morphine for breathlessness in other conditions

A recent double blind study by Shohrati et al. [30] on 40 patients presented 
with dyspnoea due to mustard gas induced bronchiolitis obliterans reported 
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effectiveness of nebulised morphine (1 mg diluted in 4 cc normal saline). 
Patients experienced improvements in dyspnoea VAS score, cough, night time 
awakenings both due to dyspnoea and cough, heart rate, respiratory rate and 
overall quality of life.

A phase I clinical trial on six patients with interstitial lung disease (ILD) by 
Matsuda et al. [31] comparing two different doses of subcutaneous morphine injec-
tion demonstrated a tolerable dose of 2 mg to alleviate dyspnoea. However due to 
small sample size, results could not be reciprocated to general population and need 
for larger trials were recommended. On the other hand, Harris-Eze et al. [32] does 
not found any significant difference in exercise capacity and dyspnoea score in ILD 
patients treated with either 2.5 or 5 mg of nebulised morphine. This was supported 
by Cochrane review by Polosa et al. [33].

A single arm study of six patients with terminal amyotrophic lateral sclerosis 
(ALS) by Clemens et al. [22] showed effectiveness of morphine in reducing dys-
pnoea. Authors found a significant difference in respiratory rate and dyspnoea 
intensity at 120 min after morphine administration.

3. Role of morphine in mucositis

Mucositis refers to erythematous, erosive and ulcerative lesion of mucosa 
observed in patients with cancer treated with chemotherapy and/or radiotherapy 
to fields involving areas of body. Accordingly it may involve oral cavity, gastroin-
testinal tract, vaginal mucosa or other areas. Hence, manifesting as burning pain in 
mouth, diarrhea, vaginitis, etc. Elting et al. [34] observed chemotherapy-induced 
mucositis in 303 out of 599 patients (51%). Oral mucositis was developed in 22% 
cycles while gastrointestinal (GI) mucositis in 7% cycles.

3.1 Pathophysiology of mucositis

The five-stage model depicts various steps involved in pathogenesis of mucositis. 
Stages involved are [35]:

1. Stage of initiation of tissue injury

2. Stage of signaling through up regulation of inflammation via generation of 
messenger signals

3. Stage of amplification

4. Stage of ulceration and inflammation

5. Stage of healing

3.2 Morphine and oral mucositis

Oral mucositis poses a significant source of pain and distress to patients receiv-
ing chemotherapy or radiotherapy to head and neck area. It often manifests as 
burning pain, ulcers, erythematous lesions in mouth complicated by secondary 
infections—bacterial/fungal/viral. It significantly affects nutritional intake, oral 
hygiene and overall quality of life. Infections associated with oral mucositis may 
pose life-threatening conditions. Adequate oral hygiene and treatment of underly-
ing cause helps to relieve symptoms and distress in patients [36, 37].
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morphine in lung primary patients, reporting no significant difference in dyspnoea 
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phine. Lastly, Allard et al. [26] found no significant differences in VAS score with 25 
or 50% increments in morphine dosages.

2.3.2 Morphine for breathlessness in COPD patients
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Abernethy et al. [27] compared 4 days of 20 mg oral sustained-release morphine 
with 4 days of oral placebo. Thirty-eight (87.5%) participants who were opioid 
naive and had dyspnoea at rest in spite of optimal therapy for their underlying 
condition (mainly patients with COPD) completed the trial. Patients on morphine 
experienced significant improvements (i.e., less dyspnoea and improved sleep) on 
VAS scale. Hence, authors concluded that “sustained release, oral morphine at low 
dosage provides significant symptomatic improvement in refractory dyspnoea in 
the community setting.”

2.3.3 Morphine for breathlessness in heart failure patients

Only few published studies have demonstrated positive outcomes with use of 
morphine in CHF related dyspnoea. In a pilot study by Johnson et al. [28] aimed to 
measure effect of oral morphine on breathlessness in patients with CHF, authors 
found a significant decrease in median breathlessness in those who received 5 mg 
of oral morphine four times a day (p = 0.022), whereas no change was observed in 
patients treated with placebo.

Oxberry et al. [29] conducted a crossover RCT on 35 patients diagnosed with 
CHF (New York Heart Association Grade III–IV) comparing 4 days of morphine 
(5 mg four times daily), oxycodone (2.5 mg four times daily) and placebo followed 
by a washout period of 3 days. Patients were followed up for 3 months. Authors 
found a significant improvement in composite breathlessness in opioid group as 
compared to placebo (p = 0.017). However they did not find any statistically signifi-
cant difference in breathlessness improvement in either intervention group. Hence, 
authors concluded need for long term trials to establish effectiveness of opioids.

Before stating opioids for dyspnoea in CHF patients, all possible etio-pathological 
causes should be taken into consideration. Non-pharmacological treatment options—
salt and fluid restriction, diet modification, appropriate exercise training and weight 
reduction strategies, etc., should be used first. Pharmacological therapy with angio-
tensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB), 
beta blockers, diuretics, digoxin and implant devices should be optimally considered. 
Other possible causes like anaemia and pleural effusion should be taken care of.

2.3.4 Morphine for breathlessness in other conditions

A recent double blind study by Shohrati et al. [30] on 40 patients presented 
with dyspnoea due to mustard gas induced bronchiolitis obliterans reported 
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effectiveness of nebulised morphine (1 mg diluted in 4 cc normal saline). 
Patients experienced improvements in dyspnoea VAS score, cough, night time 
awakenings both due to dyspnoea and cough, heart rate, respiratory rate and 
overall quality of life.

A phase I clinical trial on six patients with interstitial lung disease (ILD) by 
Matsuda et al. [31] comparing two different doses of subcutaneous morphine injec-
tion demonstrated a tolerable dose of 2 mg to alleviate dyspnoea. However due to 
small sample size, results could not be reciprocated to general population and need 
for larger trials were recommended. On the other hand, Harris-Eze et al. [32] does 
not found any significant difference in exercise capacity and dyspnoea score in ILD 
patients treated with either 2.5 or 5 mg of nebulised morphine. This was supported 
by Cochrane review by Polosa et al. [33].

A single arm study of six patients with terminal amyotrophic lateral sclerosis 
(ALS) by Clemens et al. [22] showed effectiveness of morphine in reducing dys-
pnoea. Authors found a significant difference in respiratory rate and dyspnoea 
intensity at 120 min after morphine administration.

3. Role of morphine in mucositis

Mucositis refers to erythematous, erosive and ulcerative lesion of mucosa 
observed in patients with cancer treated with chemotherapy and/or radiotherapy 
to fields involving areas of body. Accordingly it may involve oral cavity, gastroin-
testinal tract, vaginal mucosa or other areas. Hence, manifesting as burning pain in 
mouth, diarrhea, vaginitis, etc. Elting et al. [34] observed chemotherapy-induced 
mucositis in 303 out of 599 patients (51%). Oral mucositis was developed in 22% 
cycles while gastrointestinal (GI) mucositis in 7% cycles.

3.1 Pathophysiology of mucositis

The five-stage model depicts various steps involved in pathogenesis of mucositis. 
Stages involved are [35]:

1. Stage of initiation of tissue injury

2. Stage of signaling through up regulation of inflammation via generation of 
messenger signals

3. Stage of amplification

4. Stage of ulceration and inflammation

5. Stage of healing

3.2 Morphine and oral mucositis

Oral mucositis poses a significant source of pain and distress to patients receiv-
ing chemotherapy or radiotherapy to head and neck area. It often manifests as 
burning pain, ulcers, erythematous lesions in mouth complicated by secondary 
infections—bacterial/fungal/viral. It significantly affects nutritional intake, oral 
hygiene and overall quality of life. Infections associated with oral mucositis may 
pose life-threatening conditions. Adequate oral hygiene and treatment of underly-
ing cause helps to relieve symptoms and distress in patients [36, 37].
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Various combination of local measures helps to take care of mucositis-related 
complications. Research has shown effectiveness of morphine gargles either alone 
(morphine rinse) or in combination with antacid, lignocaine viscous and dex-
tromethorphan (magic mouth wash), in relieving pain and symptoms related to 
mucositis. A mini review by Dutta et al. [38] compared six studies using morphine 
as oral rinse. All studies showed satisfactory result in terms of pain control, mouth 
opening and patient preferences. This is supported by other studies which proved 
efficacy of morphine gargles [36, 37, 39–44].

3.3 Morphine and vaginal mucositis

Vaginitis, also known as vaginal mucositis is an acute inflammation with ery-
thema and erosion of vaginal mucosa leading to severe vaginal pain, per vaginal 
discharge and/or associated complications. It is commonly seen in patients with 
local infection or as a part of systemic infection, as a complication to radiotherapy 
to local areas or chemotherapy, recto-vaginal fistula, trauma, etc. Morphine, similar 
to its role in oral mucositis can be considered for vaginal mucositis. A case reported 
by Ostwal et al. [45] showed efficacy of morphine when combined with vaginal 
douche (magic vaginal douche—metronidazole, normal saline, povidone iodine 
solution, lignocaine viscous with 20 mg crushed tab morphine) in relief from 
symptoms of vaginal mucositis. However RCTs are not available and are required to 
prove its clinical efficacy.

4. Role of morphine in chronic cough

4.1 Introduction

Cough is found to be prevalent in around 65% patients with lung cancer [46] 
and 70% patients with COPD [47, 48]. Persistent or chronic cough can have vari-
ous physical complications like musculoskeletal pain over chest wall, rib fracture, 
bowel and bladder incontinence, disturbed sleep and feeling of exhaustion. Patients 
usually experience psychological impacts, social isolation and decreased quality of 
life [48].

Cough reflex is regulated by vagal afferent pathways, nucleus tractus solitarius 
(NTS) in brainstem, and cough center in cerebral cortex. Common underlying 
patho-physiological causes for cough includes: (i) infection; (ii) lung cancer or 
secondary metastases to lung/pleura/mediastinum/pericardium/blood vessels; 
(iii) COPD, ILD, bronchiectasis; (iv) aspiration; (v) asthma/bronchospasm; (vi) 
esophageal reflux; (vii) tracheo-esophageal fistula; (viii) radiotherapy or chemo-
therapy induced pulmonary fibrosis; (ix) ACE inhibitors; (x) pulmonary edema/
left ventricular failure, etc. Timely and proper assessment of cough with removal of 
underlying cause can decrease distress and improve patients’ quality of life.

4.2 Morphine and cough

Research work by Kamei [49] showed involvement of mu opioid receptors in 
production of cough. Very limited studies are available for use of morphine on 
chronic cough [47, 50–56]. Strongest evidence for effectiveness of morphine in 
chronic cough was shown in a double blind placebo controlled trial by Morice et al. 
[57]. Twenty seven patients with chronic persistent cough were assigned to 4 weeks 
of slow release morphine sulfate (5 mg twice daily escalated to 10 mg twice daily) 
matched correspondingly with placebo. A significant improvement of 3.2 points 
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over baseline, and 40% rapid reduction in cough frequency and severity was 
observed in slow release morphine group (p < 0.01). Dose comparison over 3 month 
period between 5 and 10 mg did not showed any significant difference, helping to 
conclude study with daily dose recommendation of slow release morphine sulfate 
from 5 to 10 mg twice daily.

5. Role of morphine in diarrhea

Diarrhea has been defined as “passage of ≥3 loose or watery bowel movements 
per day or passage of ≥200 g of stool per day based on typical diet.” Diarrhea can be 
acute (<14 days), persistent (>14 days but <30 days) or chronic (>30 days) based 
on its duration. Diarrhea poses a common and significant problem in patients with 
cancer. It may be due to either local infection, as a part of systemic inflammation/
infection, as a complication to radiotherapy or chemotherapy [58], etc.

Mechanism for diarrhea can be attributed to increased intestinal motility  
[59, 60]. Hence drugs which act to decrease intestinal motility are found to be help-
ful in treatment. Morphine and other opiates (loperamide, diphenoxylate, codeine) 
act on intestinal mu-receptors and slow intestinal transit time, thus increasing net 
absorption [61, 62]. Though constipation is commonly seen as a side effect with 
morphine use, research considering use of this side effect to treat diarrhea has not 
been done. Clinical Practice guidelines by European Society for Medical Oncology 
(ESMO) has documented role of tincture of opium like morphine (10 mg/mL 
morphine) in treatment with diarrhea as an alternative to loperamide. The recom-
mended dose of tincture morphine is 10–15 drops in water every 3–4 h [58, 63, 64].  
Till date robust studies supporting this has not been available.

6. Morphine and opioid substitution therapy (OST)

Morphine has been known for its potential effect in analgesia since last few 
decades. However, it is also known for its potential to cause addiction and depen-
dence. Opium, derived naturally from poppy plant is widely used for addiction. 
Opioid substitution therapy (OST) is an evidence-based intervention for opiate 
dependent persons that replaces illicit drug use with medically prescribed, orally 
administered opiates such as buprenorphine and methadone. OST reduces HIV risk 
behaviors and harms associated with injecting (such as abscesses, septicemia and 
endocarditis), overdose and participation in criminal activity, thereby improving 
the quality of life and health of injecting drug users (IDUs).

Work by Hämmig et al. [65] showed that slow release oral morphine (SROM) 
preparations can be used as OST for heroin addicted patients. Authors found 
higher treatment satisfaction, fewer cravings for drug and less mental stress with 
SROM. Cochrane review by Ferri et al. [65] found only three randomized controlled 
trials which included SROM for OST. Out of three, only two studies suggested 
possible role of SROM formulations; while remaining study was associated with 
adverse events like depressive symptoms [65–70]. Hence authors concluded for 
necessity of more robust and clinically controlled trials.

7. Conclusion

Morphine, a potent and strong opioid, has shown its efficacy in relieving variety 
of distressing symptoms. Research has documented role of low dose morphine for 
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Various combination of local measures helps to take care of mucositis-related 
complications. Research has shown effectiveness of morphine gargles either alone 
(morphine rinse) or in combination with antacid, lignocaine viscous and dex-
tromethorphan (magic mouth wash), in relieving pain and symptoms related to 
mucositis. A mini review by Dutta et al. [38] compared six studies using morphine 
as oral rinse. All studies showed satisfactory result in terms of pain control, mouth 
opening and patient preferences. This is supported by other studies which proved 
efficacy of morphine gargles [36, 37, 39–44].

3.3 Morphine and vaginal mucositis

Vaginitis, also known as vaginal mucositis is an acute inflammation with ery-
thema and erosion of vaginal mucosa leading to severe vaginal pain, per vaginal 
discharge and/or associated complications. It is commonly seen in patients with 
local infection or as a part of systemic infection, as a complication to radiotherapy 
to local areas or chemotherapy, recto-vaginal fistula, trauma, etc. Morphine, similar 
to its role in oral mucositis can be considered for vaginal mucositis. A case reported 
by Ostwal et al. [45] showed efficacy of morphine when combined with vaginal 
douche (magic vaginal douche—metronidazole, normal saline, povidone iodine 
solution, lignocaine viscous with 20 mg crushed tab morphine) in relief from 
symptoms of vaginal mucositis. However RCTs are not available and are required to 
prove its clinical efficacy.

4. Role of morphine in chronic cough

4.1 Introduction

Cough is found to be prevalent in around 65% patients with lung cancer [46] 
and 70% patients with COPD [47, 48]. Persistent or chronic cough can have vari-
ous physical complications like musculoskeletal pain over chest wall, rib fracture, 
bowel and bladder incontinence, disturbed sleep and feeling of exhaustion. Patients 
usually experience psychological impacts, social isolation and decreased quality of 
life [48].

Cough reflex is regulated by vagal afferent pathways, nucleus tractus solitarius 
(NTS) in brainstem, and cough center in cerebral cortex. Common underlying 
patho-physiological causes for cough includes: (i) infection; (ii) lung cancer or 
secondary metastases to lung/pleura/mediastinum/pericardium/blood vessels; 
(iii) COPD, ILD, bronchiectasis; (iv) aspiration; (v) asthma/bronchospasm; (vi) 
esophageal reflux; (vii) tracheo-esophageal fistula; (viii) radiotherapy or chemo-
therapy induced pulmonary fibrosis; (ix) ACE inhibitors; (x) pulmonary edema/
left ventricular failure, etc. Timely and proper assessment of cough with removal of 
underlying cause can decrease distress and improve patients’ quality of life.

4.2 Morphine and cough

Research work by Kamei [49] showed involvement of mu opioid receptors in 
production of cough. Very limited studies are available for use of morphine on 
chronic cough [47, 50–56]. Strongest evidence for effectiveness of morphine in 
chronic cough was shown in a double blind placebo controlled trial by Morice et al. 
[57]. Twenty seven patients with chronic persistent cough were assigned to 4 weeks 
of slow release morphine sulfate (5 mg twice daily escalated to 10 mg twice daily) 
matched correspondingly with placebo. A significant improvement of 3.2 points 
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observed in slow release morphine group (p < 0.01). Dose comparison over 3 month 
period between 5 and 10 mg did not showed any significant difference, helping to 
conclude study with daily dose recommendation of slow release morphine sulfate 
from 5 to 10 mg twice daily.

5. Role of morphine in diarrhea

Diarrhea has been defined as “passage of ≥3 loose or watery bowel movements 
per day or passage of ≥200 g of stool per day based on typical diet.” Diarrhea can be 
acute (<14 days), persistent (>14 days but <30 days) or chronic (>30 days) based 
on its duration. Diarrhea poses a common and significant problem in patients with 
cancer. It may be due to either local infection, as a part of systemic inflammation/
infection, as a complication to radiotherapy or chemotherapy [58], etc.

Mechanism for diarrhea can be attributed to increased intestinal motility  
[59, 60]. Hence drugs which act to decrease intestinal motility are found to be help-
ful in treatment. Morphine and other opiates (loperamide, diphenoxylate, codeine) 
act on intestinal mu-receptors and slow intestinal transit time, thus increasing net 
absorption [61, 62]. Though constipation is commonly seen as a side effect with 
morphine use, research considering use of this side effect to treat diarrhea has not 
been done. Clinical Practice guidelines by European Society for Medical Oncology 
(ESMO) has documented role of tincture of opium like morphine (10 mg/mL 
morphine) in treatment with diarrhea as an alternative to loperamide. The recom-
mended dose of tincture morphine is 10–15 drops in water every 3–4 h [58, 63, 64].  
Till date robust studies supporting this has not been available.

6. Morphine and opioid substitution therapy (OST)

Morphine has been known for its potential effect in analgesia since last few 
decades. However, it is also known for its potential to cause addiction and depen-
dence. Opium, derived naturally from poppy plant is widely used for addiction. 
Opioid substitution therapy (OST) is an evidence-based intervention for opiate 
dependent persons that replaces illicit drug use with medically prescribed, orally 
administered opiates such as buprenorphine and methadone. OST reduces HIV risk 
behaviors and harms associated with injecting (such as abscesses, septicemia and 
endocarditis), overdose and participation in criminal activity, thereby improving 
the quality of life and health of injecting drug users (IDUs).

Work by Hämmig et al. [65] showed that slow release oral morphine (SROM) 
preparations can be used as OST for heroin addicted patients. Authors found 
higher treatment satisfaction, fewer cravings for drug and less mental stress with 
SROM. Cochrane review by Ferri et al. [65] found only three randomized controlled 
trials which included SROM for OST. Out of three, only two studies suggested 
possible role of SROM formulations; while remaining study was associated with 
adverse events like depressive symptoms [65–70]. Hence authors concluded for 
necessity of more robust and clinically controlled trials.
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Morphine, a potent and strong opioid, has shown its efficacy in relieving variety 
of distressing symptoms. Research has documented role of low dose morphine for 
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Chapter 4

Role of Glucocorticoid Receptor 
in the Relation between Stress and 
Opiate Addiction
Javier Navarro-Zaragoza, María Victoria Milanés 
and María Luisa Laorden

Abstract

Stressful situations can result in relapse in dependent or abstinent causing 
reinstatement of drug-seeking. In fact, it has been suggested that activation of the 
brain stress system results in glucocorticoid release that affects the dopaminergic 
pathways. Also, the noradrenergic system innervates the extrahypothalamic BSS 
from the nucleus of tractus solitarius (NTS), resulting in a feedforward loop 
between the corticotropin-releasing factor (CRF) and noradrenaline (NA) crucial 
in drug addiction and relapses. Glucocorticoids interact with two receptors: min-
eralocorticoid receptor (MR) and glucocorticoid receptor (GR) which bind to a 
GRE site located in tyrosine hydroxylase (TH), resulting in the upregulation of TH 
synthesis and, finally, increasing dopamine (DA) release in the nucleus accumbens. 
TH upregulation depends on the phosphorylation of serine 31 and/or serine 40. 
Previous research has shown that protein kinase C (PKC) activates extracellular 
signal-regulated kinase (ERK) pathway and in turn phosphorylates serine 31 in the 
NTS. Besides, cAMP response element binding protein (CREB) is regulated by PKA 
and PKC. The results shown after pretreating morphine-withdrawn rats with mife-
pristone and spironolactone (GR and MR antagonists, respectively) suggest that 
glucocorticoids have a prominent role in addiction because GR would activate ERK 
and CREB in the NTS, phosphorylating serine 31 and activating TH and indeed 
noradrenergic release in the paraventricular nucleus (PVN).

Keywords: glucocorticoids, stress, addiction, brain stress system, 
noradrenergic system, TH, ERK, CREB

1. Introduction

Drug addiction is a chronic disease characterized by recurrence of its signs: 
drug-seeking and drug-taking behavior, loss of control and impulsivity in 
consumption, and emergence of a negative state when the access to the drug is 
not possible [1]. Besides, drug relapse is very often even months and years after 
withdrawal [2].

Drug addiction has been described as a three-phase disease: During phase 1, 
drug- seeking behavior is exacerbated and it courses with sensibilization of dopami-
nergic system, altogether with an associative learning from environment [3]. Phase 
2 consists of positive reinforcement pathway downregulation [4]. Finally, phase 3 
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is characterized by a negative emotional state and by an enhanced craving, which 
facilitates relapse to drug addiction [5]. Summarizing, individuals experience posi-
tive reinforcement in early stages of addiction when they consume drugs of abuse, 
but after several intakes, they continue that consumption only to avoid the negative 
state that appears during withdrawal [2, 6].

Previous research has described the importance of different neurotransmit-
ters and neuronal systems in the distinct phases of addiction, being dopaminergic 
system the main responsible of positive reinforcement [7–10]. Differently, nor-
adrenergic system and brain stress system activities are increased during drug 
dependence [11].

It is well known that dopaminergic system innervates the prefrontal cortex 
(PFC) and the nucleus accumbens (NAc), where consumption of major drugs of 
abuse produces dopamine (DA) release, what is attributed to be behind the develop-
ment of drug addiction due to its positive reinforcement properties. In contrast, 
noradrenergic system is mainly related with the negative state that emerges when 
there is drug withdrawal. It has been shown that noradrenergic innervation from 
nucleus of tractus solitarius (NTS) to the paraventricular nucleus (PVN) is involved 
in drug-seeking and in the negative reinforcement produced by morphine with-
drawal [12, 13]. Moreover, the existence of a loop between noradrenaline (NA) and 
corticotropin-releasing factor (CRF) has been described where the enhancement of 
NA system would result in the enhancement of CRF release (feedforward) and vice 
versa [14].

On the other hand, many pathways are involved in drug addiction resulting in 
intracellular responses once extracellular stimuli are processed. One of the more 
critical is the extracellular signal-regulated kinases (ERK) pathway which plays 
a main role in neuronal changes, being implicated, i.e., in reward after cocaine 
consumption [15]. Also, cAMP response element binding protein (CREB) is crucial 
being its activation through phosphorylation (pCREB). Previous studies from our 
laboratory have suggested an enhancement of pCREB during morphine withdrawal 
in the NTS [16]. Besides, CREB regulates TH phosphorylation, limiting enzyme for 
DA synthesis.

2. Brain stress system and addiction

Brain stress system is composed of two different linked structures: hypotha-
lamic-pituitary-adrenal (HPA) axis and the extended amygdala [17]. Both struc-
tures are activated during drug intake and during withdrawal, resulting in CRF and 
glucocorticoid release [18].

2.1 HPA axis

Also known as hypothalamic brain stress system, as its name suggests, it is 
divided in three components: the PVN, the pituitary, and the suprarenal glands 
[1, 12, 19]. In the PVN, CRF is released from the medial parvocellular subdivision 
to the median eminence reaching the pituitary (Figure 1) where it stimulates the 
synthesis and release of adrenocorticotropic hormone (ACTH) through CRF1R 
and CRF2R activation [20, 21]. Consequently, ACTH stimulates the synthesis and 
release of glucocorticoids from the adrenal glands. These glucocorticoids regulate 
the HPA axis through a negative feedback system once they interact with gluco-
corticoid (GR) and mineralocorticoid receptors (MR). Changes in this system are 
proposed to mediate transition from acute consumption to chronic consumption in 
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addicted [12, 22]. Previous research has shown that different antagonists can block 
the negative state that come across during morphine withdrawal [23]. Besides, 
chronic exposure to opiates results in physic dependence and tolerance, and it is 
accompanied by enhanced ACTH and corticosterone release during morphine 
withdrawal [24]. Stressful situations can result in relapse in dependent or abstinent 
humans [25] and cause reinstatement of drug-seeking in different animal relapsing 
models [26].

2.2 Extended amygdala

The extrahypothalamic brain stress system or the extended amygdala (Figure 2) 
is composed of different nuclei as bed nucleus of the stria terminalis (BNST), 
central nucleus of the amygdala (CeA), and the shell of the NAc [27, 28]. These 
nuclei have similar functions and are responsible of connecting the limbic struc-
tures as hippocampus, basolateral amygdala, or the midbrain [12, 29]. Also, limbic 
structures mediate responses and behavior guiding the individuals according to 
memories [30]. Here, CRF receptors and CRF neuron cell bodies have been seen in 
BNST and CeA innervating each other and others as the NAc [28, 31, 32]. Therefore, 
CRF has a prominent role in this structure. Moreover, the extended amygdala is a 
key component in the acquisition and development of different negative symptoms 
through the release of CRF together with other neurotransmitters or peptides like 
NA or dynorphin [17, 33, 34]. In addition, extended amygdala is linked to the NTS 
(a noradrenergic nucleus) through innervations from there to the BNST, CeA, or 
the NAc [35, 36]. Thereupon, the extended amygdala, a part of the brain stress 
system, connects with the noradrenergic system and the dopaminergic pathways 
[37]. In fact, it has been suggested that activation of the brain stress system would 
result in sensibilization of the dopaminergic pathways [38, 39].

Figure 1. 
Representation of the HPA axis. The hypothalamic brain stress system or HPA axis is composed by the PVN, 
the pituitary, and the suprarenal glands. CRF binds to CRF1R and CRF2R resulting in the activation of the 
pituitary which consequently, through ACTH, produces release of glucocorticoids (corticosterone, CORT) by the 
adrenal glands resulting in negative feedback over the previous steps.
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3. Role of glucocorticoids in addiction

Glucocorticoids are the final step of HPA axis, and their release takes place in 
response to stressful situations, becoming this activation one of the main mecha-
nisms of adaption to stress [40]. Glucocorticoids make their function by interacting 
with two classes of receptors: MR or type I and GR or type II [41].

Whereas MR are located in limbic areas of the brain such as amygdala and 
also in the PVN or the locus coeruleus (LC) [42], GR have a more heterogeneous 
localization, with deep presence in the PVN, amygdala, or the hippocampus. MR 
have higher affinity for corticosterone than GR, but GR are activated when there are 
stressful facts differently to MR, which are important at basal levels. Both receptors 
have presence in the NTS, making this nucleus to be important in glucocorticoid 
effects [43]. Previous research has shown that MR blockade decreases self-adminis-
tration of cocaine, suggesting a role for these receptors in addiction [44].

Moreover, stress affects GR, which are located through the dopaminergic path-
ways enhancing HPA axis and dopaminergic activity. In fact, glucocorticoids have 
been suggested to interact with a GRE site located in TH, resulting in the upregula-
tion of TH synthesis and, finally, increasing DA release in the NAc [45]. Therefore, 
individuals with higher HPA axis activity would be more vulnerable to develop drug 
addiction [5].

4.  Involvement of GR and MR in TH activity and phosphorylation  
in the NTS

The regulation in the biosynthesis of catecholamines by TH depends on its 
phosphorylation at serine 31 and serine 40. This has been proposed to be triggered 
by stressful situations considering that increased release of glucocorticoids results 
in uprising TH activity [46]. Moreover, morphine withdrawal induced by naloxone 
injection increased TH mRNA expression in the NTS and TH activity in the PVN [47]. 
Therefore, it was critical to elucidate if blocking GR and MR with mifepristone and 

Figure 2. 
Representation of the extended amygdala. The extrahypothalamic brain stress system or extended amygdala 
is shown here in a scheme with its main nuclei: BNST, CeA, and NAc. Noradrenergic innervations establish 
a feedforward loop between CRF and NA, which remains crucial for the development of drug addiction 
and relapses. Besides, there is dopaminergic innervation from ventral tegmental area to different nuclei 
establishing a relationship between NA system, DA system, and the brain stress system (hypothalamic and 
extrahypothalamic).
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spironolactone would affect TH phosphorylation during morphine withdrawal in the 
NTS. Results from our laboratory showed that TH phosphorylation at serine 31 and 
serine 40 was increased during naloxone-induced morphine withdrawal in rats, a fact 
that, together with the existence of enhanced NA turnover in the NTS during mor-
phine withdrawal, suggests that TH regulates noradrenergic activity [24, 31, 48–50]. 
Besides, the blockade of GR with mifepristone, selective antagonist of GR, signifi-
cantly attenuated the phosphorylation at serine 31, but not at serine 40 in the NTS 
during morphine withdrawal [48, 50], different to the results after blockade of MR 
with spironolactone. Pretreatment with this antagonist decreased phosphorylation of 
serine 31 in the NTS but not significantly [49, 50] (Figure 3). These results would sug-
gest that enhanced glucocorticoid release during morphine withdrawal results in TH 
phosphorylation at serine 31, consequently, also in enhanced TH activity, and finally 
in higher catecholamine levels in the PVN, innervated by noradrenergic system.

Figure 3. 
Antagonization of TH phosphorylation at serine 31 by mifepristone (GR antagonist). Mifepristone (C) but 
not spironolactone (A) antagonized naloxone-induced morphine-withdrawal phosphorylation of TH at 
serine 31 in the NTS. Representative immunoblots of THpSer31 (A, C) and THpSer40 (B, D) in the NTS 
tissues isolated from placebo and morphine-dependent rats 60 min after administration of naloxone and the 
respective antagonist [mifepristone (C, D) or spironolactone (A, B)] or saline. Data represent the optical 
density of immunoreactive bands expressed as a percentage (%) of the mean ± SEM of placebo control band 
*P < 0.05 versus placebo + vehicle + naloxone; **P < 0.01 versus placebo + vehicle + naloxone; #P < 0.05 versus 
morphine + vehicle + naloxone; ++P < 0.01 versus placebo + spironolactone+ naloxone; +++P < 0.001 versus 
placebo + spironolactone + naloxone.
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that, together with the existence of enhanced NA turnover in the NTS during mor-
phine withdrawal, suggests that TH regulates noradrenergic activity [24, 31, 48–50]. 
Besides, the blockade of GR with mifepristone, selective antagonist of GR, signifi-
cantly attenuated the phosphorylation at serine 31, but not at serine 40 in the NTS 
during morphine withdrawal [48, 50], different to the results after blockade of MR 
with spironolactone. Pretreatment with this antagonist decreased phosphorylation of 
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Figure 3. 
Antagonization of TH phosphorylation at serine 31 by mifepristone (GR antagonist). Mifepristone (C) but 
not spironolactone (A) antagonized naloxone-induced morphine-withdrawal phosphorylation of TH at 
serine 31 in the NTS. Representative immunoblots of THpSer31 (A, C) and THpSer40 (B, D) in the NTS 
tissues isolated from placebo and morphine-dependent rats 60 min after administration of naloxone and the 
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morphine + vehicle + naloxone; ++P < 0.01 versus placebo + spironolactone+ naloxone; +++P < 0.001 versus 
placebo + spironolactone + naloxone.
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5.  Role of GR and MR in the activation of ERK pathway and CREB  
(via phosphorylation) in the NTS

Different studies have proposed the importance of ERK pathway in drug addic-
tion, particularly, during morphine withdrawal [51, 52]. Protein Kinase C (PKC) 
regulates this pathway activated by the phosphorylation of ERKs [50, 52]. It is 
important to highlight that previous research has shown that ERK has a main role 
in the phosphorylation of TH at serine 31 in the NTS [53], supporting a synergic 
cooperation between the brain stress system, the noradrenergic system, and this 
pathway. GR but not MR blockade significantly decreased the enhanced activity 
(via phosphorylation) seen in pERK1 and pERK2 during morphine withdrawal in 
rats, supporting a role for glucocorticoids in activation of ERK pathway (Figure 4).

On the other hand, it is known that CREB has a main role in addiction to drugs 
of abuse as a transcription factor [54]. Nevertheless, CREB is the final step of 
protein kinase A (PKA) signaling pathway, although PKC pathway has been also 
proposed to be mediating its activation in the NTS [16]. As it happens with ERK, 

Figure 4. 
Antagonization of ERK 1 and ERK 2 phosphorylation by mifepristone (GR antagonist). Mifepristone (A, 
C) but not spironolactone (B, D) antagonized naloxone-induced morphine-withdrawal phosphorylation of 
ERK 1 and ERK 2 in the NTS. Representative immunoblots of ERK 1 (A, B) and ERK 2 (C, D) in the NTS 
tissues isolated from placebo and morphine-dependent rats 60 min after administration of naloxone and the 
respective antagonist [mifepristone (A, C) or spironolactone (B, D)] or saline. Data represent the optical 
density of immunoreactive bands expressed as a percentage (%) of the mean ± SEM of placebo control band. 
*P < 0.05 versus placebo + vehicle+ naloxone; **P < 0.01 versus placebo + vehicle + naloxone; *P < 0.05 versus 
placebo + vehicle + naloxone ##P < 0.01 versus morphine + vehicle + naloxone; ###P < 0.001 versus morphine + 
vehicle + naloxone.
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CREB is activated via phosphorylation, and it has been shown to be enhanced in 
the NTS during morphine withdrawal [16, 50]. Once again, GR but not MR block-
ade significantly decreased the phosphorylation of CREB seen during morphine 
withdrawal [50] (Figure 5). Therefore, GR would be implicated in CREB activation 
during morphine withdrawal in the NTS.

6. Conclusion

Previous research has shown that CRE (binding site for CREB) and GRE 
(binding site for GR) are present in the gene promoters that regulate activity of 
TH [55], setting a relationship between NA system, the HPA axis and the extended 
amygdala, and finally, CREB. In contrast, little was known about the mechanisms 
underlying this regulation. This review suggests that stressful situations as nalox-
one-induced morphine withdrawal would result in glucocorticoid release which 
would activate GR. Immediately, GR would produce an activation of PKC signaling 
pathway that would regulate ERK pathway and CREB activation (via phosphoryla-
tion) in the NTS. Finally, TH activity would be enhanced in the NTS through the 
activation of different sites as CRE or GRE resulting in catecholamine release in the 
PVN, supporting a main role for glucocorticoids and the GR in drug addiction.
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Figure 5. 
Antagonization of CREB phosphorylation by mifepristone (GR antagonist). Mifepristone (A) but not 
spironolactone (B) antagonized naloxone-induced morphine-withdrawal phosphorylation of CREB in 
the NTS. Representative immunoblots of pCREB in the NTS tissues isolated from placebo and morphine-
dependent rats 60 min after administration of naloxone and the respective antagonist mifepristone (A) or 
spironolactone (B) or saline. Data represent the optical density of immunoreactive bands expressed as a 
percentage (%) of the mean ± SEM of placebo control band. *P < 0.05 versus placebo + vehicle + naloxone; 
##P < 0.01 versus morphine + vehicle + naloxone.
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5.  Role of GR and MR in the activation of ERK pathway and CREB  
(via phosphorylation) in the NTS

Different studies have proposed the importance of ERK pathway in drug addic-
tion, particularly, during morphine withdrawal [51, 52]. Protein Kinase C (PKC) 
regulates this pathway activated by the phosphorylation of ERKs [50, 52]. It is 
important to highlight that previous research has shown that ERK has a main role 
in the phosphorylation of TH at serine 31 in the NTS [53], supporting a synergic 
cooperation between the brain stress system, the noradrenergic system, and this 
pathway. GR but not MR blockade significantly decreased the enhanced activity 
(via phosphorylation) seen in pERK1 and pERK2 during morphine withdrawal in 
rats, supporting a role for glucocorticoids in activation of ERK pathway (Figure 4).

On the other hand, it is known that CREB has a main role in addiction to drugs 
of abuse as a transcription factor [54]. Nevertheless, CREB is the final step of 
protein kinase A (PKA) signaling pathway, although PKC pathway has been also 
proposed to be mediating its activation in the NTS [16]. As it happens with ERK, 

Figure 4. 
Antagonization of ERK 1 and ERK 2 phosphorylation by mifepristone (GR antagonist). Mifepristone (A, 
C) but not spironolactone (B, D) antagonized naloxone-induced morphine-withdrawal phosphorylation of 
ERK 1 and ERK 2 in the NTS. Representative immunoblots of ERK 1 (A, B) and ERK 2 (C, D) in the NTS 
tissues isolated from placebo and morphine-dependent rats 60 min after administration of naloxone and the 
respective antagonist [mifepristone (A, C) or spironolactone (B, D)] or saline. Data represent the optical 
density of immunoreactive bands expressed as a percentage (%) of the mean ± SEM of placebo control band. 
*P < 0.05 versus placebo + vehicle+ naloxone; **P < 0.01 versus placebo + vehicle + naloxone; *P < 0.05 versus 
placebo + vehicle + naloxone ##P < 0.01 versus morphine + vehicle + naloxone; ###P < 0.001 versus morphine + 
vehicle + naloxone.
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CREB is activated via phosphorylation, and it has been shown to be enhanced in 
the NTS during morphine withdrawal [16, 50]. Once again, GR but not MR block-
ade significantly decreased the phosphorylation of CREB seen during morphine 
withdrawal [50] (Figure 5). Therefore, GR would be implicated in CREB activation 
during morphine withdrawal in the NTS.

6. Conclusion

Previous research has shown that CRE (binding site for CREB) and GRE 
(binding site for GR) are present in the gene promoters that regulate activity of 
TH [55], setting a relationship between NA system, the HPA axis and the extended 
amygdala, and finally, CREB. In contrast, little was known about the mechanisms 
underlying this regulation. This review suggests that stressful situations as nalox-
one-induced morphine withdrawal would result in glucocorticoid release which 
would activate GR. Immediately, GR would produce an activation of PKC signaling 
pathway that would regulate ERK pathway and CREB activation (via phosphoryla-
tion) in the NTS. Finally, TH activity would be enhanced in the NTS through the 
activation of different sites as CRE or GRE resulting in catecholamine release in the 
PVN, supporting a main role for glucocorticoids and the GR in drug addiction.
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Figure 5. 
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spironolactone (B) antagonized naloxone-induced morphine-withdrawal phosphorylation of CREB in 
the NTS. Representative immunoblots of pCREB in the NTS tissues isolated from placebo and morphine-
dependent rats 60 min after administration of naloxone and the respective antagonist mifepristone (A) or 
spironolactone (B) or saline. Data represent the optical density of immunoreactive bands expressed as a 
percentage (%) of the mean ± SEM of placebo control band. *P < 0.05 versus placebo + vehicle + naloxone; 
##P < 0.01 versus morphine + vehicle + naloxone.
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Abstract

Different studies have elucidated the mechanisms underlying the formation and 
expression of drug-related cue memories; corticotrophin-releasing factor (CRF) 
plays a critical role in reward- and aversion-driven associative learning. In the 
present chapter, we have evaluated whether CP-154,526, a selective CRF1 receptor 
(CRF1R) antagonist, or genetic deletion of CRF1R (KO mice) have comparable 
effects on conditioned place preference (CPP) and conditioned place aversion 
(CPA) learning. We also investigated CP-154,526 effects on morphine-induced 
CPP activation of CRF, CREB phosphorylation, and thioredoxin (Trx1) expression 
in dentate gyrus (DG), a brain region involved in memory consolidation, and the 
role of hypothalamic-pituitary-adrenocortical (HPA) axis in CPA expression and 
extinction. The CRF1R antagonist abolished the acquisition of morphine CPP, Trx-1 
and BDNF increased expression, and pCREB/Trx-1 co-localization in the DG. The 
increase in adrenocorticotropic hormone (ACTH) plasma levels observed after 
CPA expression was attenuated in CRF1R KO mice, suggesting a role of HPA axis in 
aversive memories. Altogether, these results suggest a critical role of CRF, through 
CRF1R, in molecular changes involved in memory formation and consolidation and 
may facilitate the development of effective treatments for opioid addiction.

Keywords: conditioned place preference, conditioned place aversion, morphine, 
hippocampus, CRF, HPA axis

1. Introduction

Drug addiction is a chronic brain disease with a high rate of relapse [1–3]. Despite 
years of abstinence from drugs, relapse can occur when addicts encounter cues, includ-
ing people or places, associated with their prior drug use [4]. Drug-associated memory 
can persist throughout the lifetime of a patient; therefore, the elimination of this kind 
of memory is considered to be crucial for the treatment of drug addiction.
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years of abstinence from drugs, relapse can occur when addicts encounter cues, includ-
ing people or places, associated with their prior drug use [4]. Drug-associated memory 
can persist throughout the lifetime of a patient; therefore, the elimination of this kind 
of memory is considered to be crucial for the treatment of drug addiction.
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In organism and human models, drug reward can be assessed using a Pavlovian 
conditioning procedure known as conditioned place preference/conditioned place 
aversion (CPP/CPA) [5–7]. CPP for the drug-paired environment is predicted by 
self-reported measures of drug liking in humans [6]. CPA for the drug-paired envi-
ronment is used to infer the dysphoric properties of drugs, including opioid receptor 
antagonists [8]. Many neurotransmitters, neurotrophic factors, and protein kinases 
have been delineated in the regulation of the formation and expression of drug-
associated reward memories and withdrawal-associated aversive memories [9–13].

Corticotrophin-releasing factor (CRF) in the brain plays a critical role in 
reward- and aversion-driven associative learning. However, it is not clear whether it 
does this by a common mechanism or by separated mechanisms that can be dissoci-
ated. The knowledge of these mechanisms could lead to more effective treatments 
for addictive processes. CRF and its CRF1 receptor (CRF1R) are widely distributed 
and in a highly conserved way in several brain regions, including the hippocampal 
formation, involved in reward reinforcement, craving and aversive effects of drug 
of abuse [14–17]. At the extrahypothalamic level, CRF acts as a neuroregulator of 
the behavioral and emotional integration of environmental and endogenous stimuli 
associated with drug dependence [18, 19]. In the hippocampal dentate gyrus (DG), 
an important brain region involved in saving similar experiences and contexts [20], 
CRF is released from inhibitory interneurons [21] through CRF1R [14] by environ-
mental signals. CRF1R activation stimulates Gαs protein, promoting the induction 
of the protein kinase A/cAMP response element binding protein (CREB) pathway 
[22]. CREB activity in the brain is critical for learning and memory processes [23], 
and it has been reported to be involved in the expression of opioid dependence. 
The activation of CREB, as one of the main downstream effectors of extracellular 
signal-regulated kinase (ERK), accelerates the transcription of CREB-dependent 
genes such as the brain-derived neurotrophic factor (BDNF). With respect to 
hypothalamus, CRF release from paraventricular nucleus (PVN) controls the 
hypothalamic-pituitary-adrenal (HPA) axis responses to stress and drug addiction 
[24–26]. CRF neurons in the PVN and CRF fibber in DG have direct connexion with 
dopaminergic neurons located in the ventral tegmental area (VTA) projecting to 
nucleus accumbens (NAc) [27, 28].

2. Role of CRF in the rewarding effects of morphine

CPP is an animal model widely used to evaluate the correlation between contexts 
and drugs. Different substances of abuse display differential ability to produce 
CPP. Opiates induce strong CPP over a wide range of experimental conditions [5]. 
Previous studies from our laboratory [29–32] and others [33, 34] have demonstrated 
that morphine administration evokes significant CPP for the drug-associated envi-
ronment. Different neurobiological substrates have been involved in the rewarding 
properties of drugs of abuse, although the mesolimbic dopaminergic pathway has 
been pointed out to be the critical system for drug reward. Recently, it has been sug-
gested that PVN may have a role in the reinforcing effects of opioids [35]. Various 
studies have elucidated the mechanisms underlying the formation and expression 
of drug-related cue memories. CRF in the brain plays a critical role in reward-driven 
associative learning. During the formation or consolidation process (CPP expres-
sion), the majority of the CRF-positive neurons in the PVN, central nucleus of 
amygdale (CeA), and bed nucleus of stria terminalis (BNST) coexpresses pCREB 
after morphine-induced CPP, suggesting that drug-paired context could trigger 
neuronal activity in the brain stress system [29]. Morphine-treated mice in their 
home cage do not show any changes in total CRF/CREB positive neurons, indicating 
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that the exposure to drug-paired environments is necessary for CRF activation in 
the brain stress system [29]. Anatomical and functional studies reveal connec-
tions between CRF and the mesolimbic dopaminergic system. Thus, VTA and NAc 
receive CRF-positive projections from the PVN and stress extrahypothalamic areas 
[36, 37], which have been proposed to regulate dopamine release. The rewarding 
effect of morphine (CPP expression) is decreased by pretreatment with CP-154,526, 
a selective CRF1 antagonist, suggesting an important role of CRF/CRF1 receptor in 
memory formation and consolidation [30].

2.1 Implications of different signaling pathways in the rewarding effects  
of morphine. Role of CRF1 receptors

Hippocampus is a brain region known to participate in associative processes 
such as declarative memory, and PVN is an important stress area. Both structures 
are related with mesolimbic pathways [38]. Our group has studied the implication 
of different signaling pathways in both areas, because the understanding of how 
the formation of drug-reward memories alters the neurobiology of the hippocam-
pal DG and PVN, and may shed light on the later and more persistent aspect of 
addiction.

The transcription factor CREB is critical in the conversion from short-term 
to long-term memory, and it is involved in the creation of long-term memory. 
Learning and memory and drug addiction share certain intracellular signaling path-
ways and depend on activation of CREB [39]. According to previous studies [40, 
41], our laboratory has demonstrated that the number of pCREB positive neurons 
in PVN and DG is significantly increased after morphine-induced CPP expression 
(Figure 1). Since CRF1R is coupled to stimulatory G protein Gαs and can thus 
activate PKA and, subsequently, CREB [22], our group has investigated if CRF1R 
signaling is involved in CREB activity after morphine-induced CPP. Administration 
of the CRF1R antagonist, CP-154,526, completely revoked pCREB positive neuron 
enhancement induced by morphine in PVN and slightly in DG. CREB involvement 
in morphine dependence has been previously supported by studies demonstrating 
that CREB mutant mice do not respond to the reinforcing properties of morphine 
in a conditioned place preference paradigm [42], suggesting that specific CREB 
functions are necessary for the rewarding properties of this drug.

Although it is known that CRF signaling is involved in the drug withdrawal-
induced anxiogenic-like and negative behavioral response [43], no definitive data 
are available about the role in the positive reinforcing properties of opiates. CRF-
immunoreactive fibers densely innervate many intrahypothalamic and extrahypo-
thalamic brain areas, such as hippocampus. Besides, CRF, through CRF1R, increases 
neuronal activity propagation from DG, the classical hippocampal input region, to 
the hypothalamic structure CA1 [44]. CRF is present in GABAergic hippocampal 
neurons of the pyramidal cells [14]. The supramammillary (SuM) region of the 
hypothalamus acts a connection nucleus between limbic and hypothalamic struc-
tures involved in controlling cognitive aspects [45]. Thus, SuM sends robust and 
direct inputs to DG. For example, it has been shown that mild stress could activate 
the SuM cells that project to the hippocampus [46]. Our group has previously 
shown that most of the CRF positive neurons in PVN coexpresses pCREB dur-
ing morphine CPP. In addition, we have observed an enhancement in CRF fibers 
density in DG after morphine administration. Both changes were antagonized by 
injection of CP-154,526 (Figure 2). CRF binding to CRF1R results in activation 
of heterotrimeric G-proteins. The physiological functions of CRF1R in the central 
nervous system and in the periphery have been mainly associated to an increase in 
intracellular cAMP levels. This is consistent with a predominant coupling to Gαs 
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(cAMP/PKA/CREB). However, CRF through CRFR1 is capable of activating other 
Gα types such as Gαs and activate inositol triphosphate (IP3) cascade. An enhance-
ment in the concentration of secondary messengers (cAMP, IP3, and Ca2+) in cells, 
induced by CRF1R agonists, promotes the activation of several transcriptional 
factors such as CREB, AP-1, NF-κB, and the calcium response element (CARE) 
[47–53]. In this sense, the antagonist of the CRF1R, CP-154,526, by blocking the 
postsynaptic CRF1R, inhibited CREB phosphorylation in PVN and DG. Moreover, 
morphine treatment induced an increase in CRF fiber immunodetection in DG, 
suggesting an elevated CRF release, which was prevented by pretreatment with 
this antagonist. Since CRF1R activation increases Ca2+ levels, it is possible that 
CP-154,526 inhibits CRF release by blocking presynaptic CRF1R in PVN.

Several evidences suggest that CREB phosphorylation represents a site of conver-
gence for various signaling pathways and alters gene expression [40]. CREB activa-
tion can also be regulated by the family of the redox protein Trx-1 [54]. In addition to 
its antioxidant activity, Trx-1 has been shown to play a crucial role in cellular signal-
ing by controlling several important members of the signal transduction pathway. 
Thus, NF-κB, p38 mitogen-activated protein kinases, activator protein-1, CREB 
(as mentioned before), estrogen receptor, glucocorticoid receptor, and p53 are the 
targets of Trx-1 [55]. Data from our laboratory have shown that morphine-induced 
CPP increases Trx-1 expression in DG (Figure 3). Trx-1 might activate CREB 

Figure 1. 
CREB activation in PVN (A) and DG (C) after morphine-induced CPP. Scale bar 100 μm. Quantitative 
analysis of pCREB immunodetection in PVN (B) and DG (D). Data are expressed as mean ± SEM. **p < 0.01, 
***p < 0.001 versus vehicle (veh) + saline (S); +p < 0.05, +++p < 0.001 versus veh + morphine (M). CP-154,526 
(CP). Optical density (OD).
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phosphorylation, thus increasing the rewarding effects of morphine. In agreement 
with our results, other studies have also observed an increased Trx-1 expression 
following morphine or methamphetamine administration [56]. Upregulation of 
CREB activity induced by methamphetamine was suppressed by Trx-1siRNA, which 
suggests that Trx-1 is necessary for CREB activation [55, 56]. Moreover, morphine-
induced Trx-1 expression is blocked by naloxone, indicating that morphine induces 
Trx-1 expression via activating opioid receptors [57]. Results from our laboratory 
showing a positive relationship between morphine rewarding effects, and Trx-1 
expression are in contrast with another study [58] demonstrating that geranylgeran-
ylacetone induces Trx-1 and, concomitantly, reduces morphine-induced CPP. These 
variations could be explained by the differential regulating roles of NAc and hippo-
campus. Besides, CREB expression has been shown to be increased in hippocampus 
but decreased in NAc after morphine conditioning [40], which suggests that CREB 
activity is differently regulated depending on the brain area studied. Our investiga-
tions have demonstrated a large number of pCREB/Trx-1 double-labeled neurons 
in DG (Figure 3). These neuron colocalizations in DG suggest that CREB might be 
activated by Trx-1 in this brain nucleus involved in memory consolidation processes. 

Figure 2. 
CRF/pCREB double-labeling photomicrographs in PVN (A). The upper right side of the figure shows the 
quantitative analysis of double-labeled neurons (B). CRF fiber photomicrographs in the DG (C). The down 
right side of the figure shows the CRF fiber density in the DG (D). Scale bar 100 or 50 μm. Data are expressed 
as mean ± SEM. ***p < 0.001 versus vehicle (veh) + saline (S); ++p < 0.01, +++p < 0.001 versus veh + morphine 
(M). CP-154,526 (CP). Optical density (OD).
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phosphorylation, thus increasing the rewarding effects of morphine. In agreement 
with our results, other studies have also observed an increased Trx-1 expression 
following morphine or methamphetamine administration [56]. Upregulation of 
CREB activity induced by methamphetamine was suppressed by Trx-1siRNA, which 
suggests that Trx-1 is necessary for CREB activation [55, 56]. Moreover, morphine-
induced Trx-1 expression is blocked by naloxone, indicating that morphine induces 
Trx-1 expression via activating opioid receptors [57]. Results from our laboratory 
showing a positive relationship between morphine rewarding effects, and Trx-1 
expression are in contrast with another study [58] demonstrating that geranylgeran-
ylacetone induces Trx-1 and, concomitantly, reduces morphine-induced CPP. These 
variations could be explained by the differential regulating roles of NAc and hippo-
campus. Besides, CREB expression has been shown to be increased in hippocampus 
but decreased in NAc after morphine conditioning [40], which suggests that CREB 
activity is differently regulated depending on the brain area studied. Our investiga-
tions have demonstrated a large number of pCREB/Trx-1 double-labeled neurons 
in DG (Figure 3). These neuron colocalizations in DG suggest that CREB might be 
activated by Trx-1 in this brain nucleus involved in memory consolidation processes. 

Figure 2. 
CRF/pCREB double-labeling photomicrographs in PVN (A). The upper right side of the figure shows the 
quantitative analysis of double-labeled neurons (B). CRF fiber photomicrographs in the DG (C). The down 
right side of the figure shows the CRF fiber density in the DG (D). Scale bar 100 or 50 μm. Data are expressed 
as mean ± SEM. ***p < 0.001 versus vehicle (veh) + saline (S); ++p < 0.01, +++p < 0.001 versus veh + morphine 
(M). CP-154,526 (CP). Optical density (OD).
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Due to the important role of TRX-1 in regulating the cellular redox balance, the 
induction of TRX-1 expression following morphine CPP could be associated to a 
mechanism of neural protection against a stressful situation.

Pretreatment with CP-154,526 completely blocks morphine-induced CPP eleva-
tion of Trx-1 expression in DG (Figure 3).

We have also shown an increase in the number of pCREB neurons coexpress-
ing Trx-1 following morphine-induced CPP, so CRF1R could be involved in CREB 
phosphorylation, probably through a Trx-1-dependent way. The exact mechanism 
by which the CRF system participates in Trx-1 signaling regulation in DG is not 
completely understood. One possible explanation could indicate that pCREB binds 
to CRE in the 5′-upstream sequence of Trx-1 gene, thus inducing Trx-1 expression 
to regulate its phosphorylation. In agreement with this hypothesis, other authors 
have demonstrated that ephedrine promotes Trx-1 expression via the β-adrenergic 

Figure 3. 
Characterization of pCREB and Trx-1 immunostaining in the dentate gyrus (DG) after morphine-induced 
CPP. (A) Schematic illustration showing the analyzed region of the DG (diagram modified from Franklin & 
Paxinos) [59]. Coordinate −1.94 mm from Bregma. (B) High-magnification image of a mouse midbrain coronal 
section immunostained for pCREB and Trx-1. Scale bar 100 μm. Representative confocal images of pCREB (red) 
(C–F) and Trx-1 (green) (C′–F′). Colocalization (pCREB/Trx-1) is shown in C″–F″ by yellow-orange neurons 
in the merged images. Scale bar 20 μm. Graphs on the right indicate the mean total number of pCREB (G), 
Trx-1 (H), and double-labeled (pCREB/Trx-1) neurons (I). Data are expressed as mean ± SEM. ***p < 0.001 
versus vehicle (veh) + saline (S); +p < 0.05, ++p < 0.01 versus veh + morphine (M). CP-154,526 (CP).
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receptor/cyclic AMP/PKA/DARPP-32 signaling pathway [60]. Besides, metham-
phetamine-induced CREB activity in rat pheochromocytoma cells was shown to be 
regulated by Trx-1 [56].

As shown in Figure 4, morphine-induced CPP increases the number of pCREB-
positive neurons in PVN, an increase that was blocked by CP-154,526 treatment. 
However, there are no changes in the number of Trx-1 positive neurons or in the 
double labeled neurons (pCREB/Trx-1).

On the other hand, BDNF, an important neurotrophin for synaptic plastic-
ity, is one of the molecular candidates underlying the development of persistent 

Figure 4. 
Characterization of pCREB and Trx-1 immunostaining in the paraventricular nucleus (PVN) after 
morphine-induced CPP. (A) Schematic illustration showing the analyzed region of the PVN (diagram 
modified from Franklin & Paxinos) [59]. Coordinate −0.82 mm from Bregma. (B) High-magnification image 
of a mouse midbrain coronal section immunostained for pCREB and Trx-1. Scale bar 100 μm. Representative 
confocal images of pCREB (red) (C–F) and Trx-1 (green) (C′–F′). Colocalization (pCREB/Trx-1) is shown 
in C″–F″ by yellow-orange neurons in the merged images. Scale bar 20 μm. Graphs on the right indicate the 
mean total number of pCREB (G), Trx-1 (H), and double-labeled (pCREB/Trx-1) neurons (I). Data are 
expressed as mean ± SEM. **p < 0.01, versus vehicle (veh) + saline (S); ++p < 0.01, versus veh + morphine 
(M). CP-154,526 (CP).
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neuroplastic adaptation that regulates drug addiction [61]. Several lines of evidence 
indicate that chronic morphine treatment triggers ERK activation in different 
brain regions [62]. ERK phosphorylates CREB and active (phosphorylated) CREB 
stimulates the expression of target genes, including BDNF [63–65]. Chronic 
morphine use has been shown to increase the expression of BDNF in the NAc and 
hippocampus [61, 66, 67]. According to these data, our findings demonstrated that 
morphine-induced CPP activates BDNF signaling in the DG without any changes 
in the saline group (Figure 5), demonstrating that repeated morphine with context 
exposure, but not merely the context, increases BDNF expression in DG, suggesting 
that BDNF is implicated in drug-induced contextual memory formation. Therefore, 
BDNF is a crucial signal molecule involved in morphine dependence. However, 
whether this molecule is regulated in a CRF1R-dependent manner remains largely 
unknown: CP-154,526 attenuated CREB-BDNF expression (Figures 4 and 5) and 
prevented morphine-induced CPP [29]. Taken together, CRF1R-mediated CREB-
BDNF signaling changes may regulate morphine reward through modulating 
contextual memory in the hippocampus.

3. Role of CRF1 receptor in the aversive effects induced by 
naloxone-precipitated withdrawal

The physical component of morphine withdrawal syndrome can be assessed by 
scoring some somatic withdrawal signs after morphine exposure [68]. Recent results 
from our group have demonstrated significant alterations in some morphine with-
drawal signs such as body weight loss, rearing, rubbing, grooming, diarrhea, freezing, 
and time to first immobility in wild type morphine-withdrawn animals compared 
with controls treated with saline (Figure 6). Besides, and in agreement with previous 
studies [69–71], our laboratory has shown that body weight loss (Figure 6H), freez-
ing (Figure 6F), and diarrhea (Figure 6E) are significantly attenuated in CRF1R KO 
mice although an increase in jumping in CRF1R KO mice was observed (Figure 6A), 
as it has been described previously by other authors [72]. Jumping is a sensitive 
and commonly used index of naloxone-induced withdrawal [73–76]. However, it is 

Figure 5. 
Western-blotting analysis of BDNF in the dentate gyrus (DG) and paraventricular nucleus (PVN) from 
animals pretreated with vehicle (veh) or CP-154,526 (CP) before saline or morphine. The immunoreactivity 
corresponding to BDNF is expressed as a percentage of that in the control group defined as 100% value. 
***p < 0.001 versus morphine + CP; +p < 0.05 versus saline + veh.
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important to clarify that different neural elements mediate several withdrawal 
behaviors [77, 78]. Thus, it is not easy to extrapolate naloxone-precipitated jumping in 
CRF1R KO mice to other physical symptoms like body weight loss.

4. Role of CRF1 receptor in CPA expression and extinction

It is commonly accepted that affective drug withdrawal symptoms are of major 
motivational significance in contributing to relapse and continued drug use; thus, it 
is important to understand the mechanisms that mediate affective behaviors during 
morphine withdrawal. CPA paradigm is a highly sensitive animal model for the 
measurement of the negative affective component of drug withdrawal as well as to 
investigate the neural substrates underlying the aversive memory associated with 
drug withdrawal [79, 80]. In this model, a morphine-dependent animal undergoing 

Figure 6. 
Behavior effects by naloxone (nx)-precipitated morphine withdrawal in wild type (WT) or knockout (CRF1R 
KO) mice. The following somatic signs, (A) jumping, (B) rearing, (C) rubbing, (D) grooming, (E) diarrhea, 
(F) freezing behavior, and (H) body weight loss, induced after nx (1 mg/kg, s.c.)-injection to morphine or 
saline-treated mice during 18 min, were evaluated. The time to first immobilization (G) was also evaluated. 
Data are expressed as the mean ± SEM. $$p < 0.01 versus WT mice treated with morphine + nx; **p < 0.01 
versus WT mice treated with saline + nx; +p < 0.05, ++p < 0.01, +++p < 0.001 versus WT mice treated with 
saline+nx; ##p < 0.01, ###p < 0.001 versus KO mice treated with saline + nx; &&&p < 0.001 versus WT mice 
treated with morphine + nx.
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withdrawal is exposed to a particular environment for a period of time. When later 
is given the opportunity to freely explore the apparatus, animals trained in this 
way tend to avoid the previously paired context due to the association between the 
context and aversive memories of drug withdrawal [79].

The extinction of this aversion occurs if the association is weakened by repeated 
exposure to the withdrawal-associated context in the absence of the conditioned 
stimulus, and the initial response (CPA) can be reinstated by a drug priming 
injection, stress or by conditioned cues. Extinction is complete when animals no 
longer avoid the previously cue-paired compartment. Typically, while memory 
reconsolidation requires single context reexposure, extinction requires multiple cue 
reexposures [81]. For example, fear conditioning studies suggest that the extinction 
process does not eliminate the initial context, but the organism learns that this cue 
does not cause the previous stimulus [82]. Thus, extinction requires associative 
learning, consolidation, and the formation of a new memory [83].

Recently, our group has investigated the mechanism underlying CPA expression 
and extinction. These experiments showed that morphine administration induced 
a significant place aversion for the naloxone-paired compartment, compared to the 
saline group. However, CRF1R KO mice presented less aversion than wild type mice 
(Figure 7A).

Figure 7. 
(A) CPA expression induced by naloxone (nx, 1 mg/kg, s.c.) in wild type (WT) or knockout (CRF1R KO) 
mice treated with morphine or saline. The score was calculated for each mouse as the difference between the 
postconditioning and the preconditioning time spent in the naloxone-paired compartment. (B) Extinction of 
CPA training. Aversion scores from day 5 to 13 for WT and CRF1R KO mice are shown. Data are expressed 
as the mean ± SEM. +++p < 0.001 versus WT mice treated with saline + nx, &p < 0.05, &&p < 0.01, 
&&&p < 0.001 versus WT mice treated with morphine + nx.
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There is much information about the neurobiological mechanisms involving 
extinction of reward memory of drug taking [84–86]. However, little information 
is known about extinction of aversive memory of drug withdrawal [87]. Previous 
studies have demonstrated that the aversive effects of opiates might be related to 
basal genotype differences in the brain systems [88]. Accordingly, we have clearly 
demonstrated that the genetic disruption of the CRF/CRF1R pathway decreases the 
period of CPA extinction (Figure 7B).

Thus, results obtained by our laboratory regarding CPA expression and extinc-
tion suggest an important role for CRF1R in aversive memory.

5. Role of HHA axis in the CPA induced by morphine withdrawal

It is well established that acute withdrawal of all major drugs of abuse dys-
regulates the HPA axis and alters CRF activity in the PVN of the hypothalamus, 
with a common response of increased adrenocorticotropic hormone (ACTH) and 
corticosterone [89], which mediate somatic and aversive components of withdrawal 
[72, 90–92]. To evaluate whether a causal link exists between CRF1R activation 
and HPA axis, our group has measured plasma ACTH and corticosterone levels in 
wild type and CRF1R KO mice after naloxone-induced CPA expression and CPA 
extinction (Figure 8). Our investigations have shown that plasma ACTH levels 
are increased in wild type mice although plasma corticosterone levels are not 
changed following CPA expression. These results indicate that ACTH-independent 
mechanisms could have an important role in the regulation of the adrenal stress 
system to appropriately adapt its response to physiological necessities, and even the 
presence of pituitary ACTH is basic for adrenocortical function. Numerous lines of 
evidence indicate that a large number of neuropeptides, neurotransmitters, growth 

Figure 8. 
Effect of CPA expression and CPA extinction training on ACTH (A and B) and corticosterone (C and D) plasma 
levels in wild type (WT) and knockout (CRF1R KO) mice. Data are expressed as the mean ± SEM. +++p < 0.001 
versus WT mice treated with saline + nx, &&&p < 0.001 versus WT mice treated with morphine + nx.
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factors, and bacterial ligands can influence the release of adrenal glucocorticoids 
independently of pituitary ACTH [93]. Adrenocortical cells express a large diversity 
of receptors for these factors, thus triggering potential direct actions on glucocor-
ticoids release. Damage in the upstream stress regulating pathways in the brain 
leads to a rupture between ACTH and corticosterone, which suggests that central 
nervous system neurocircuits can regulate HPA axis response at both pituitary and 
adrenal sites [94]. Our results also indicate that CPA expression-induced ACTH 
release is attenuated in CRF1R KO mice. In agreement with these observations, it 
has been reported fewer ACTH levels in morphine withdrawn animals treated with 
CRF1R antagonists [70]. Besides, a role for the HPA axis and extra-hypothalamic 
brain circuitry in somatic, molecular, and endocrine changes induced during opioid 
withdrawal has been described [72]. ACTH plasma levels returned to basal in wild 
type and CRF1R KO mice after CPA extinction. These results suggest that CPA 
expression is, at least, partially due to an increase in plasma ACTH levels which can 
be decreased after naloxone CPA extinction.

6. Conclusion

CP-154,526 administration or genetic deletion of CRF1R impairs CPP and 
CPA learning, suggesting that the expression of reward and aversive learning and 
memory shares some common neural circuits related with CRF/CRF1R signaling. 
During the formation or consolidation process (CPP expression), the majority 
of phospho-CREB positive neurons in DG coexpresses Trx-1, in parallel with 
an increased expression of BDNF, suggesting that Trx-1 could activate CREB 
and this in turn accelerates the transcription of CREB-dependent genes such as 
BDNF. However, CP-154,526 diminishes CPP expression, in parallel with a block of 
phospho-CREB/Trx-1 colocalization and BDNF expression, suggesting that Trx-1-
CREB-BDNF signaling could be essential for memory formation or consolidation. 
In addition, CPA expression training increases plasma ACTH levels, which is critical 
for the maintenance of aversive memories associated with drug withdrawal. Genetic 
deletion of CRF1R (KO mice) induces a reduction in CPA expression accompanied 
with a higher decrease in ACTH plasma levels. CPA extinction period is reduced in 
KO mice, indicating a role for CRF1R in the aversive memory retrieval. Altogether, 
these results indicate a critical role for CRF, through CRF1R, in molecular changes 
involved in reward memory-associated behaviors and in aversive memory expres-
sion and extinction. The disruption of these processes by CRF1 antagonists might 
lead to effective treatments in drug addiction.
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6. Conclusion

CP-154,526 administration or genetic deletion of CRF1R impairs CPP and 
CPA learning, suggesting that the expression of reward and aversive learning and 
memory shares some common neural circuits related with CRF/CRF1R signaling. 
During the formation or consolidation process (CPP expression), the majority 
of phospho-CREB positive neurons in DG coexpresses Trx-1, in parallel with 
an increased expression of BDNF, suggesting that Trx-1 could activate CREB 
and this in turn accelerates the transcription of CREB-dependent genes such as 
BDNF. However, CP-154,526 diminishes CPP expression, in parallel with a block of 
phospho-CREB/Trx-1 colocalization and BDNF expression, suggesting that Trx-1-
CREB-BDNF signaling could be essential for memory formation or consolidation. 
In addition, CPA expression training increases plasma ACTH levels, which is critical 
for the maintenance of aversive memories associated with drug withdrawal. Genetic 
deletion of CRF1R (KO mice) induces a reduction in CPA expression accompanied 
with a higher decrease in ACTH plasma levels. CPA extinction period is reduced in 
KO mice, indicating a role for CRF1R in the aversive memory retrieval. Altogether, 
these results indicate a critical role for CRF, through CRF1R, in molecular changes 
involved in reward memory-associated behaviors and in aversive memory expres-
sion and extinction. The disruption of these processes by CRF1 antagonists might 
lead to effective treatments in drug addiction.
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Abstract

When treating opioid addiction, multidisciplinary treatment is highly recom-
mended, but pharmacotherapy plays a key role. Although the ideal goal is to achieve 
complete abstinence, an elevated percentage of opioid addicts requires maintenance 
substitution therapy. In the first section of this chapter, we will focus on the cur-
rent pharmacological interventions to treat opioid addiction, such as methadone, 
buprenorphine, and naltrexone. Thanks to these medications, people are able to go 
back to their normal lives, by preventing withdrawal symptoms, reducing craving, 
and increasing their adherence to psychotherapy. In the second section, based on 
the evidence that addiction induces neuroadaptive changes in several neurotrans-
mission systems, we focus on the wide range of possible pharmacological develop-
ments at the preclinical and clinical levels, which in recent years have increased 
considerably.
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1. Introduction

Addiction is a chronic and multifactorial disorder characterized by compulsive 
drug seeking and use, despite its harmful consequences. Chronic opioid use induces 
profound molecular and behavioral changes, inducing long-lasting changes in 
brain plasticity [1]. During the use of the drug, reward and motivation circuits are 
modified, and new learning and memories are created in relation to the pleasurable 
effects of the drug and the context in which it is consumed [2]. These memories 
will later be responsible for the vulnerability to relapse even after a long period of 
withdrawal. In order to restructure these memories and avoid relapse and crav-
ing to opioids, the first recommended approach currently consists in combining 
psychotherapy with pharmacological substitution therapy [3]. Opioid addiction is 
currently a major medical and social problem, and its abuse and recreational use 
have been declared an epidemic in the USA [4, 5], with more than 90 people dying 
from an opioid overdose every day [6].

Opioids are highly addictive because they induce euphoria (positive reinforce-
ment) and the cessation of a chronic use produces dysphoria [7]. The non-medical 
opioid use is a major public health challenge, making opioids the second most used 
illicit drug in the USA [8].
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The use of opioids has increased 10- to 14-fold in the last 20 years, including 
those taken under supervision and recreational use [9].

In relation to this, opioids are one of the most commonly misused medica-
tions. Although it is usually prescribed to treat pain, its abuse has serious medical 
consequences. According to NIDA (National Institute on Drug Abuse, NIH), 
misuse of prescription drugs is defined as taking a medication in a manner or 
dose different than has been prescribed, either for a medical complaint, such as 
pain, or to feel euphoria [2]. The number of opioid prescriptions has increased 
significantly since the early 1990s [10], with this easier access to the drug being 
one of the reasons for the high prevalence of opioid misuse [9]. However, other 
factors can contribute to the problem, such as the lack of information about the 
addictive properties of prescription opioids, which are perceived as less harmful 
than illicit opioids [11, 12]. Regardless of the primary causes, there has been a 
dramatic increase in the number of treatment admissions for addictive disorders 
related to prescription opioids, as well as the associated overdose deaths in the 
past 15 years [8, 13, 14].

Pharmacological treatments are essential for initiating and sustaining effec-
tive patient-, public health, and system-level interventions to reduce opioid-
related morbidity and mortality [15]. In the specific case of opioid use disorders, 
pharmacotherapy is strongly recommended as a part of an integrated approach, 
also including psychosocial interventions, psychotherapy, or relapse prevention 
programs [16]. Until the 1960s, the opioid addiction treatment was only oriented 
towards abstinence, but then the potential action of methadone as a maintenance 
treatment for opioid addiction was evaluated [17]. Currently, although complete 
abstinence continues to be the best possible outcome, the most common option is 
life-long substitution therapy. While the currently approved medications improve 
the outcomes, relapse rates are still high, and pharmacotherapy is not effective in all 
patients [18].

The final goal of the treatment is to reduce the risk of illicit opioid use, over-
dose or infections, as well as the general improvement of the individuals’ quality 
of life [15]. The available pharmacological interventions prevent the appear-
ance of withdrawal symptoms and reduce craving, also increasing adherence 
to the psychotherapy. First, we will address the three different approved drugs 
on the market [19]. Although the rate of success, measured by maintenance of 
abstinence, has been greatly improved with the existing treatments, there is still 
room for further improvement. In a second part of this chapter, we will also refer 
to new treatments under development, both in preclinical models and in clini-
cal trials. These new drugs are focused on different neurotransmission systems, 
which are altered by the neuroadaptive changes induced during the addictive 
process.

2. Current approved pharmacological treatments for opioid addiction

2.1 Opioid agonist therapies

The great percentage of withdrawn patients who relapse into drug use [20] 
makes opioid maintenance therapy the first-line treatment in most cases. Ideal 
agents for substitution maintenance therapy are those with a high affinity for 
μ-type opioid receptors showing long-term action. Methadone and  buprenorphine, 
as potent and long-acting opioid agonists, are usually prescribed for opioid 
 substitution therapy, and both constitute the most effective treatments for opioid 
 dependence [21].
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2.1.1 Methadone

Methadone is a safe, efficient, and effective treatment for heroin addiction 
[22]. This μ-opioid receptor agonist was introduced in the USA by Eli Lilly and 
Company as an opioid analgesic in 1947. Methadone maintenance treatment began 
at the Rockefeller Hospital (1965) with the aim to develop an effective and long 
action pharmacotherapy that targeted opioid receptors. In these initial clinical 
trials, patients received safe doses (20–40 mg) once a day, and over time, the dose 
was adjusted to avoid withdrawal symptoms and reduce craving [17]. Since 1964, a 
great number of studies have documented the safety, efficacy, and effectiveness of 
methadone pharmacotherapy for heroin addiction [22].

The National Institutes of Health (NIH) at the end of the 1990s supported 
methadone maintenance pharmacotherapy for heroin addiction. Nowadays, half 
of the problematic opiate users are under maintenance treatment, with more 
than 60% receiving methadone [23]. Elevated retention rates with a noteworthy 
decrease of illicit opiate use have been observed under methadone maintenance 
treatment [24–27]. In addition, there are reductions of other associated prob-
lems such as intravenous drug use, crime [28–30], and improvement of social 
functioning [31]. Later studies reported that prolonged methadone maintenance 
normalized the immune system function in heroin addicts [32], as well as the 
altered stress response [33]. Methadone is also well suited with performance 
of complex cognitive tasks [34]. Regarding its efficacy, according to a recent 
Cochrane meta-analysis, methadone and buprenorphine appear to be equally 
effective [35].

Regardless of the positive effects of methadone, one of the main difficulties of 
methadone maintenance treatment is the stigma accompanying the methadone 
clinics. In order to solve this, maintenance programs aim to rehabilitate patients by 
reassigning addicts from a traditional clinic to a medical office for ongoing treat-
ment. The concept of medical maintenance carefully emulates the treatment of 
chronic diseases, such as insulin-dependent diabetes [32].

On the other hand, there are specific drug interactions of methadone [36], for 
example, the antituberculosis agent rifampin or the anticonvulsant phenytoin 
[37–39]. Methadone can also inhibit gonadotropin-releasing hormones, lower-
ing testosterone levels [40, 41]. Finally, another recognized effect of methadone 
is the QT prolongation [42]. Patients who undergo prolonged QT intervals must 
switch to a treatment with buprenorphine, which does not affect it [43]. Several 
countries, including Germany and Austria, have alternative treatments for opioid 
maintenance, such as Levomethadone (purified methadone) [44], which exerts its 
pharmacologic effects mainly via agonism of μ-opioid receptor.

2.1.2 Buprenorphine

Buprenorphine and the combination buprenorphine-naloxone were also intro-
duced as a possible treatment for opioid use disorder. This medication is character-
ized by a better side effect profile, lower abuse potential, and good availability when 
compared to methadone [3]. Buprenorphine is a μ-receptor partial agonist that 
can reduce opiate cravings, prevent opiate withdrawal, but at the same time blocks 
the effects of other more powerful opiates [45]. As partial agonist, buprenorphine 
presents a safety profile with respect to other μ-opioid-receptor agonists and 
can be more easily adjusted to the desired effect [46]. Although buprenorphine 
can be the first-line medication over methadone to treat opioid addiction, as it 
has considerable less abuse potential, its efficacy is limited when treating severe 
opioid use disorders. Due to the displacement of a stronger opioid by a weaker 
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one, buprenorphine can precipitate withdrawal symptoms [33, 47]. To increase the 
adherence to this treatment, patients should be at least in mild withdrawal [48].

To avoid diversion, buprenorphine is usually combined with the specific 
opioid antagonist, naloxone. In 2006, it was introduced in the European market 
as a sublingual combination tablet. Several works have established the efficacy 
of buprenorphine-naloxone as a maintenance medication [49–51] not only for 
prescription opioids but also for heroin addiction [52, 53]. Numerous meta-
analyses have determined that buprenorphine produces successful results in heroin 
dependence, with no deficiency with respect to being abstinent of illicit opioid 
use [54, 55]. However, methadone was found to be superior to buprenorphine in 
overall treatment retention [56]. Buprenorphine therapy not only improves the 
overall individuals’ quality of life but also decreases overcrowding in emergency 
departments [57, 58].

From a pharmacological point of view, buprenorphine has important advantages 
over methadone besides the lower risk of overdose [41, 59]. It is preferable for 
treatment of opioid dependence in those patients with HIV/AIDS [60, 61] and for 
pregnant opioid users [62]. On the other hand, when buprenorphine is combined 
with respiratory depressants, such as alcohol or benzodiazepines, it results in seda-
tion, coma, or even death [63]. Furthermore, patients who do not know about the 
pharmacology of buprenorphine and use additional opioids seeking a “high” are at 
risk of an overdose when the effects of buprenorphine wear off [55, 64, 65].

2.2 Opiate antagonist therapies

The antagonist therapy blocks or reduces a biological response by binding to 
and blocking a receptor rather than activating it like an agonist. Naloxone and 
naltrexone, the opioid antagonist treatments most accepted and commonly used, 
prevent and reverse opioid effects by mainly blocking the μ-opioid receptor. Both 
are employed for quick detoxification if there is an overdose and to prevent relapse 
[66]. Naloxone is a short-acting non-selective opioid antagonist that reverses an 
opioid overdose. Overdose is a common event for those who use opioids and is 
the leading cause of death in this population [67, 68]. It quickly crosses the blood-
brain barrier and can reverse morphine-induced respiratory depression within 
1–2 min [69].

Different studies support the effectiveness of community-based naloxone train-
ing and distribution programs in reducing overdose deaths [24, 70, 71]. Naloxone is 
considered a safe drug to use with little probability of complications, since it has no 
agonistic activity at the μ-opioid receptor [23]. Since opioid abuse has been declared 
an epidemic in the USA [4], naloxone has been made more accessible to the relatives 
of opioid users, which decreases potentially fatal overdoses around 30–40% [72, 73].

Naltrexone is an opioid receptor antagonist that blocks the euphoric and 
reinforcing effects of opioids consumption, being mainly used for detoxification 
programs [74–77]. However, the main disadvantage of the use of this antagonist is 
the low rate of adherence to this treatment, since less than 20% of patients continue 
opioid antagonist treatments after several months [78]. Nevertheless, with highly 
motivated patients or dependent people who cannot be included in the methadone 
program, naltrexone maintenance therapy can be proposed as a successful approach 
for treating opioid addiction [79]. Furthermore, it has the advantage of not gen-
erating tolerance and/or dependency [80]. In the last years, a new intra-muscular 
depot formulation of naltrexone has been approved, being useful in reducing the 
days-of-heroin-use and relapse rate compared with a placebo [81, 82]. This depot 
naltrexone is taken once monthly, and several studies have shown good outcomes 
compared to placebo in decreasing craving in naltrexone-treated patients [83]. 
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These extended-release naltrexone formulations address the compliance problems 
that are often found with oral administration [84]. However, a recent comparative 
study shows that the extended-release naltrexone presents more difficulties in 
terms of induction and ongoing care with respect to other buprenorphine products, 
such as the sublingual film of buprenorphine-naloxone [85].

Nevertheless, to date, the extended-release naltrexone is, together with metha-
done and buprenorphine, the most recommended pharmacotherapy for opioid use 
disorders, as it has shown superiority with respect to placebo treatment and coun-
seling [83, 86, 87].

3. New pharmacological therapies in development of opiate addiction

Drug addiction induces significant changes in numerous neurotransmission 
systems [1], which became new therapeutic targets to treat opioid addiction. 
Therefore, new pharmacological targets are constantly being developed to improve 
opiate addiction treatment. This second part of the review will offer an overview of 
the most promising agents under development and we will also discuss the recent 
advances in neuroinflammation and the pharmacogenetics field.

3.1 Drugs acting on opioid receptors

With the aim of increasing the efficacy and adherence of treatments, numer-
ous studies are testing new approaches to the currently approved medications. 
For example, the newest buprenorphine subdermal implant called probuphine 
[88], which was approved by the FDA in May 2016, is prescribed to those patients 
who have achieved a sustained clinical stability with low-to-moderate doses of a 
transmucosal buprenorphine-containing product.This implant guarantees non-
fluctuating blood levels of buprenorphine continuously for 6 months improving 
patient compliance [89].

There is growing interest in the slow-release oral morphine (SROM), as a poten-
tial effective candidate for maintenance treatment [90–92]. This medication is given 
once daily, and it suits those individuals who cannot tolerate methadone, respond 
poorly to other available treatments, or show a prolonged QT [93–95]. However, the 
last Cochrane meta-analysis reported that there is not enough evidence to confirm 
the effectiveness of SROM for opioid maintenance, as only three inconclusive stud-
ies exist [96].

Tramadol, a reuptake inhibitor of serotonin and norepinephrine, produces a 
metabolite that moderately acts as a μ-opioid receptor agonist [97]. Recent clinical tri-
als have demonstrated for tramadol the same level of treatment retention and opioid 
withdrawal symptom suppression as buprenorphine, suggesting that this is a promis-
ing and valuable medication [98, 99]. However, although it has been used in the 
management of acute withdrawal, its use for maintenance treatment as a harm reduc-
tion approach has not been assessed systematically. A recent pilot study of tramadol 
on long-term maintenance in patients with opioid use disorders showed that most of 
them were able to achieve and maintain abstinence for at least 6 months [100].

3.2 Dopaminergic compounds

It is well known that dopamine (DA) neurotransmission is a common mecha-
nism of drugs of abuse, although the use of DA compounds has not been success-
ful [22]. Numerous preclinical studies have tested the efficacy of different DA 
antagonists. Acute administration of the DA D3 receptor antagonist SB277011 
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management of acute withdrawal, its use for maintenance treatment as a harm reduc-
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3.2 Dopaminergic compounds
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reduces the reinforcing effects of different drugs of abuse and diminishes opiate 
withdrawal syndrome [101]. The well-known antipsychotics, aripiprazole (par-
tial DAD2 and 5HT1A agonist and a 5HT2A antagonist) and risperidone (atypical 
antipsychotic), block context-dependent induced relapse. Risperidone also inhib-
its reinstatement into heroin seeking due to environmental cues but fails to block 
relapse induced by priming doses [102]. In the same line, aripiprazole inhibits 
the conditioned place preference (CPP) induced by morphine [103]. An ongoing 
clinical trial is evaluating aripiprazole effects to prevent relapse to cocaine use in 
patients being treated with methadone, as they could return to cocaine consump-
tion, even when they are involved in a drug treatment program [104].

3.3 Glutamatergic compounds

Preclinical studies show that reinstatement of morphine CPP is mainly medi-
ated through glutamatergic neurotransmission [105]. NMDA receptors modulate 
nociceptive signals in conjunction with opioid receptors, and after continuous mor-
phine treatment, both receptors suffer a desensitization, which mediate analgesic 
tolerance [22]. Therefore, NMDA receptor antagonists can prevent the development 
of morphine tolerance. Ifenprodil, an NMDA antagonist, prevents the development, 
maintenance, and reinstatement of morphine-induced CPP, as well as reinstatement 
of heroin-seeking self-administration [106].

Another well-known NMDA antagonist is memantine. Animal and human 
studies have shown positive results in reducing opiate withdrawal and preventing 
relapse [107–109]. However, clinical trials have not found significant differences in 
treatment retention, heroin consumption, or craving with respect to placebo [110]. 
Although memantine administered in combination with naltrexone can improve 
the emerging symptoms during the early phase of treatment, this combination did 
not induce significant improvement in preventing relapse [111].

The nitric oxide synthase (NOS) is a neural retrograde messenger molecule 
involved in several opioid effects. It has been reported that NOS upregulation 
takes place during the development of opioid dependence [112] and its inhibition 
blocks opioid dependence [113, 114]. In addition, administration of NOS inhibitors 
diminishes the development of morphine-induced CPP [106].

3.4 GABA compounds

Baclofen is a GABA-B receptor agonist approved for spasticity treatment, and 
early preclinical studies suggested that it could promote abstinence from a variety 
of drugs of abuse [115], such as cocaine, ethanol, nicotine, and methamphet-
amine [116–119]. Baclofen also reduces morphine withdrawal signs in morphine-
dependent animals [120, 121] and disrupts reconsolidation of conditioned reward, 
facilitating the extinction of the morphine-induced CPP [122]. Assadi and cowork-
ers [123] performed a clinical trial to evaluate the possible benefit of baclofen in the 
maintenance treatment of opioid addicts and found that the baclofen group pre-
sented increased treatment retention being superior to placebo in terms of opiate 
withdrawal syndrome and depressive symptoms.

An effective add-on therapy combined with methadone or buprenorphine is pre-
gabalin and gabapentin, which are approved for treatment of epilepsy, neuropathic 
pain, or fibromyalgia [124]. These medications do not act directly on GABA recep-
tors or transporters [125] but modulate the α2-delta subunit of calcium channels, 
preventing the release of neurotransmitters like glutamate [126]. Both medications 
prevent opioid tolerance and dependence and reduce withdrawal symptoms in 
humans and preclinical models [127–129].
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3.5 Cholinergic compounds

Numerous studies have demonstrated that the cholinergic system is also impli-
cated in opioid addiction, as chronic morphine administration is associated with 
changes in gene expression in the cholinergic system, and it increases cholinergic 
neurons in the laterodorsal tegmental nucleus. Administration of nicotinic antago-
nists reduces withdrawal symptoms in rodents [130], which suggests that nicotine 
receptors might be a potential pharmacotherapeutic target for opioid detoxifica-
tion. Furthermore, a relatively recent study evaluated the role of the α4β2 nicotinic 
receptors as a potential therapeutic target to treat morphine dependence [131]. A 
recent clinical trial has evaluated the effects of varenicline, a α4β2 partial agonist 
and α7 full agonist, usually employed for smoking cessation. Varenicline was effec-
tive in opioid detoxification patients, as opioid withdrawal scores decrease with 
respect to those patients receiving a placebo [131].

Cholinesterase inhibitors, currently used to treat Alzheimer’s disease, including 
donepezil, rivastigmine, and galantamine, increase cholinergic activity and can 
be potential therapeutic targets in opioid abuse and dependence treatments [132]. 
Preclinical models have demonstrated that these cholinesterase inhibitors pre-
vented morphine tolerance and attenuated the acquisition and expression  
of morphine CPP [133].

3.6 Cannabinoid compounds

There are many studies suggesting the potential action of the endocannabinoid 
system in opioid dependence [134, 135]. Cannabidiol is a natural active metabolite 
of the Cannabis sativa plant, which is currently being explored for its potential 
anti-addiction properties [135]. It is the second most abundant cannabinoid pres-
ent in the plant [136], and interestingly, it does not bind directly to cannabinoid 
receptors but acts as an inverse agonist at both types CB1 and CB2 [137]. Regarding 
this, cannabidiol has been shown to attenuate the cue-induced reinstatement of 
heroin seeking [138] and reduces the rewarding properties of morphine in rodents 
[139]. There is currently a clinical trial examining the effects of cannabidiol on 
drug craving in abstinent heroin-dependent subjects (ClinicalTrial.Gov identifier: 
NCT02539823). In addition, cannabidiol, when combined with a potent opioid like 
fentanyl, is well tolerated, confirming that cannabidiol would be safe in the case of 
a relapse in abstinent heroin abusers [140].

3.7 Neuroinflammation

The neuroimmune response is an important but relatively poorly understood 
process in the development of drug addiction. Research is now setting up oppor-
tunities for the development of new pharmacotherapies targeting neuroimmune 
dysfunction. Opioids induce direct and indirect adaptations in the peripheral and 
central immune systems [141] with a clear relationship between opioid dependence 
and inflammatory processes [142]. Opioids, such as morphine and heroin, act 
directly on macrophages and lymphocytes, which produce changes in the CNS, 
resulting in neurotoxicity [143–145]. Preclinical models show that chronic mor-
phine treatment increases proinflammatory cytokine levels and overactivates the 
glia [146, 147]. The consequences include dendrite atrophy, abnormal neurogenesis, 
and neurodegeneration [148]. To sum up, opioids act to generate the release of pro-
inflammatory cytokines, which induce the activation of the inflammatory response, 
and finally, this response induces changes in the architecture and functioning of 
the brain. Neuroinflammation derived from opioid consumption is implicated in 
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tolerance and dependence processes based on results obtained in animal models 
[149–151]. Anti-inflammatory cytokines, such as the IL-10, which are well toler-
ated and safe in other inflammatory diseases, could be used as pharmacotherapy 
in addiction [152]. For example, gabapentin upregulates the anti-inflammatory 
cytokine IL-10 in rats [128], thus reducing inflammation. Ibudilast prevents glial 
cell activation, inhibiting production of proinflammatory cytokines (IL1β, IL-6, 
TNF-α), and increases the secretion of anti-inflammatory mediators like IL-10 
[153]. Clinical trials are currently evaluating if this medication, or other glial activa-
tion inhibitors, can prevent opioid withdrawal symptoms [154].

On the other hand, peroxisome proliferator-activated receptors (PPARs) medi-
ate anti-inflammatory and neuroprotective processes [155]. Specifically, PPARγ is 
strongly implicated in reward processing and motivation [156], as they are located 
in VTA DA neurons and modulate DA release [157], which suggests its potential role 
in addiction. Currently, preclinical studies have tested the PPAR-γ agonist piogli-
tazone, an anti-inflammatory medication, as a treatment for opioid dependence, 
attenuating morphine withdrawal syndrome in rats [158].

3.8 Pharmacogenetics and epigenetics

Pharmacogenetics focuses on selecting the most adequate treatment for 
specific patients, based on their genetic profile and thereby increasing the thera-
peutic action of the medication. Its goal is the discovery of gene interactions that 
increase the success rate of treatments [22]. There are variants of gene-encoding 
proteins implicated in opioid pharmacokinetics and pharmacodynamics that 
make the patient respond better or worse to a specific treatment. Most studies 
focus on genes related to the therapeutic response to methadone and buprenor-
phine [159]. For example, two gene interactions are determinant for the response 
to methadone. First, there is the ABCB1, the gene encoding the P-glycoprotein 
efflux transporter, of which methadone is a substrate. People with variants of 
this gene (subjects with a wild-type and 61A haplotype combination or homo-
zygous for the 61A) show lower methadone requirements. On the other hand, 
people with the variant 118A/A in μ-opioid receptor 1 gene (MOR1) show higher 
methadone requirements [160]. Regarding buprenorphine, the frequency of 
the gene polymorphism (SLC6A3/DAT1) allele 10 in the DA transporter is much 
higher in non-responder individuals [161]. These studies reveal the relevance of 
considering genetic variants when considering treatments with methadone or 
buprenorphine.

Currently, it is known that it is not only the polymorphisms that we inherit but 
also how they are expressed, what really matters in genetics. Epigenetics studies the 
reversible modifications to chromatin and their potent effects on gene expression 
regulation. Biochemical modifications, such as DNA methylation, histone modifica-
tion, or micro-RNA expression, can change the pattern of the cell’s gene expression 
[162]. Consequently, such epigenetic changes can modify drug efficacy and its 
adverse effects, being necessary to take them into account in clinical pharmacol-
ogy [163]. Currently, the role of epigenetics in personalized pharmacotherapy has 
been under-explored [164]. This field of research has increased scientific interest 
in the last years, as changes in DNA methylation or histone modifications alter gene 
expression, which affects reward, craving, and relapse [165]. For example, in opiate 
addiction, several changes have been reported in the μ-opioid receptor 1 (OPRM1) 
gene expression due to the hypermethylation of this gene’s promoter [166, 167]. 
Increased DNA methylation can be a predisposing factor for the vulnerability to 
heroin addiction or it can be a consequence of it. This is a new and exciting unex-
plored field that could offer promising results in future years.
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4. Conclusion and future directions

Opioid addiction is a chronic relapsing brain disease, being a major medical and 
social problem. In the past 12 years, several countries are suffering a rise in opioid 
consumption, not only in its recreative use but also in opioid prescriptions and 
related misuse and abuse [5]. The high rate of relapse observed in opioid addicts 
forces the use of maintenance therapy with substitution opiates to reduce damage 
and to avoid the consumption of illegal opioids, such as heroin. Although the cur-
rently approved pharmacotherapies for opioid addiction are effective and encour-
age patients to stay in treatment, there is still much room for improvement [168]. 
Methadone, buprenorphine, and extended-release naltrexone are currently the 
most effective treatments to attenuate the illicit intake of opioids and, together with 
psychosocial therapy, constitute the best combination to succeed in the treatment 
[18]. The number of new pharmacological targets is constantly increasing, but fre-
quently, initially promising preclinical studies result in failure in the clinical trials. 
However, we should be optimistic, since great advances have been made in recent 
years, but much remains to be improved in a disease as important and complex as 
opiate addiction.
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