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Preface

Multiple imaging modalities can complement each other to provide more information 
to understand the real worlds of objects than the use of a single modality. Image fusion 
aims to generate a fused single image which contains more precise reliable visualiza-
tion of the objects than any source image of them.  Such a fused image should provide 
extended information and bett er perception for human vision or computerized vision 
tasks. All source images need to be accurately aligned or spatially registered before 
fusion. Image fusion has been investigated by many researchers in various  elds. Sev-
eral great works in this decade established the basic principles and sub-specialties 
evolved and grew. Recent eff orts have led to the development of a number of algo-
rithms, performance assessment, processing approaches and promising applications. 
Image fusion technology has successfully contributed to various  elds such as medical 
diagnosis and navigation, surveillance systems, remote sensing, digitalized cameras, 
military applications, computer vision, etc. However, there are still challenging issues 
to be resolved over the broad range of its applications, which include the development 
of further sophisticated algorithms and associated hardware devices to support more 
reliable, real-time practical applications. 

This book presents various recent advances in research and development in the  eld of 
image fusion. This monumental work was created through the diligence and creativ-
ity of some of the most accomplished experts in diff erent  elds. Many authorities have 
provided their unique concepts and thoughts herein. To enhance readability, the essen-
tial processes of image fusion have been graphically represented in each chapter. It is 
our hope that our eff orts have yielded a comprehensive and practical reference source 
for image fusion for basic scientists and imaging specialists in diverse  elds, and that 
it will be ultimately bene cial for human use and in robotics to achieve more precise 
and reliable decision making.

Many people have devoted many hours to this project in diff erent ways. First, the edi-
tor would like to thank all the authors of the chapters which make this book such a 
valuable collection of new developments and perspective insights. Furthermore, we 
would like to thank all the Editorial members of IN-TECH for giving us this opportu-
nity and their support in the timely publication of this book.

Osamu Ukimura
Institute of Urology, University of Southern California, Los Angeles, California, USA

Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
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F-Transform Based Image Fusion
I. Perfilieva, M. Daňková, P. Hod’áková and M. Vajgl

Institute for Research and Applications of Fuzzy Modeling, University of Ostrava
Czech Republic

1. Introduction

Developments in hardware, sensor quality and imaging technology have attracted a great
deal of research interest in image processing and associated fields in the last two decades.
Here, we focus particularly on the problem of image fusion due to the fact that it is one of the
leading areas of intense research and development activity. Moreover, image fusion is used
in many real-world applications such as medical diagnosis with multimodal images (for an
overview of medical applications, see Constantinos et al. (2001)), person or weapon detection
by automated defense systems and classification of objects (e.g., roads, rivers, mountains and
towns) in multi-sensor geographical images. (a wide overview of applications can be found
in Piella (2003)).
Image fusion aims at the integration of various complementary image data into a single, new
image with the best possible quality. The term “quality” depends on the demands of the
specific application, which is usually related to its usefulness for human visual perception,
computer vision or further processing. As stated in Šroubek & Flusser (2005), if u is an ideal
image (considered as a function of two variables) and c1, . . . , cK are acquired images, then the
relation between each ci and u can be expressed by

ci(x,y) = di(u(x,y)) + ei(x,y), i = 1, . . . ,K

where di is an unknown operator describing the image degradation, and ei is an additive
random noise.
Image fusion is a means to obtain an image û that yields in some sense a better representation
of the ideal image u than is provided by each individual image ci. There are various fusion
methodologies currently in use. The main categories are determined by the level at which
the fusion is actually executed Zhang (2010). The methodologies are designed on the basis
of the following mathematical fields: statistical methods (e.g., using aggregation operators,
such as the MinMaxmethod Blum (2005)), estimation theory Loza et al. (2010), fuzzy methods
(see Singh et al. (2004); Ranjan et al. (2005); Ashoori et al. (2008)), optimization methods (e.g.,
neural networks, genetic algorithms Mumtaz & Majid (2008)) and multiscale decomposition
methods, which incorporate various transforms, e.g., discrete wavelet transforms (for a
classification of these methods see Piella (2003); a classification of wavelet-based image
fusion methods can be found in Amolins et al. (2007), and for applications for blurred
and unregistered images, refer to Šroubek & Flusser (2005); Šroubek & Zı́tová (2006)). The
choice of a fusion methodology is basically influenced by parameters relating to the type of
degradation operators di, the occurrence of noise and the type of outputs of the preprocessing
analysis.

1



0

F-Transform Based Image Fusion
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choice of a fusion methodology is basically influenced by parameters relating to the type of
degradation operators di, the occurrence of noise and the type of outputs of the preprocessing
analysis.

1



2 Image Fusion

The main purpose of this contribution is to show that the F-transform technique
is a promising and efficient method for image fusion Daňková & Valášek (2006);
Perfilieva & Daňková (2008). The original motivation for the F-transform (an abbreviated
name for the fuzzy transform) came from fuzzy modeling Perfilieva (2006; 2007). The
purpose was to show that, similarly to traditional transforms (Fourier and wavelet),
the F-transform performs a transformation of an original universe of functions into
a universe of their “skeleton models” (vectors of F-transform components) in which
further computation is easier (e.g., an application to the initial-value problem with a
fuzzy initial condition Perfilieva, De Meyer, De Baets & Plšková (2008)). In this respect,
the F-transform can be as useful in many applications as traditional transforms
(see applications to image compression Perfilieva, Pavliska, Vajgl & De Baets (2008) and
time-series procession Perfilieva, Novák, Pavliska, Dvořák & Štěpnička (2008)). Moreover,
sometimes the F-transform can be more efficient than its counterparts. Without going into
specific details here, we claim that F-transform has a potential advantage over the wavelet
transform; while the latter uses a single “mother wavelet” that determines all basic functions,
the former can use basic functions with different shapes.
This contribution is organized as follows: Section 2 introduces the F-transform technique and
gives an overview of its properties; Section 3 describes the details of image representation
for image fusion using the F-transform; Section 4 provides the details of two algorithms
(where the first algorithm is a special case of the second one) for image fusion that use
image representation based on the F-transform; Section 5addresses some particular problems
in image fusion and highlights the advantages of the optional setting in the introduced
algorithm. Finally, conclusions, comments and some future trends in our research are given
in the Section 6.

2. F-transform

To find a fused image, we propose two algorithms that are based on the F-transform technique.
Before going into the details of image fusion, we give a general characterization and the
relevant details of the technique developed herein.
Generally speaking, the F-transform produces an image by a linear mapping from a set of
ordinary continuous/discrete functions over a domain P onto a set of functions within a fuzzy
partition of P. We assume that the reader is familiar with the notion of the fuzzy set and how
is it represented.
Below, we explain the F-transform in more detail and adapt our explanation to the purpose of
this chapter (we refer to Perfilieva (2006) for a complete description). The explanation will be
given for the example of a discrete function that corresponds to the image u.
Let u be represented by the discrete function u : P → R of two Variables, where P = {(i, j) |
i = 1, . . . ,N, j = 1, . . . ,M} is an N × M array of pixels, and R is the set of reals. If (i, j) ∈ P is a
pixel, then u(i, j) represents its intensity range.
The F-transform of u corresponds u to the matrix Fnm[u] of F-transform components:

Fnm[u] =

⎛
⎜⎝

F[u]11 . . . F[u]1m
...

...
...

F[u]n1 . . . F[u]nm

⎞
⎟⎠ . (1)

Each component F[u]kl is a local mean value of u over a support set of the respective fuzzy
set Ak × Bl . The latter is an element of a fuzzy partition of the Cartesian product of intervals

4 Image Fusion F-Transform Based Image Fusion 3

[1,N] × [1,M]. Using the fact that a fuzzy partition of a Cartesian product is the Cartesian
product of fuzzy partitions, we first introduce this notion for a single interval and then for a
Cartesian product of intervals.
Let [1,N] = {x | 1 ≤ x ≤ N} be an interval on the real line R, n ≥ 2, a number of fuzzy sets in
a fuzzy partition of [1,N], and h = N−1

n−1 the distance between nodes x1, . . . ,xn ∈ [1,N], where
x1 = 1, xk = x1+(k− 1)h, k= 1, . . . ,n. Fuzzy sets A1, . . . ,An : [1,N]→ [0,1] establish a h-uniform
fuzzy partition of [1,N] if the following requirements are fulfilled:

(i) for every k = 1, . . . ,n, Ak(x) = 0 if x ∈ [1,N] \ [xk−1,xk+1], where x0 = x1, xN+1 = xN ;

(ii) for every k = 1, . . . ,n, Ak is continuous on [xk−1,xk+1], where x0 = x1, xN+1 = xN ;

(iii) for every i = 1, . . . ,N, ∑
n
k=1 Ak(i) = 1;

(iv) for every k = 1, . . . ,n, ∑
N
i=1Ak(i)> 0;

(v) for every k = 2, . . . ,n− 1, Ak is symmetrical with respect to the line x = xk .

The membership functions of the respective fuzzy sets in a fuzzy partition are called basic
functions. The example of triangular basic functions A1, . . . ,An, n ≥ 2 on the interval [1,N] is
given below.

A1(x) =

{
1− (x−x1)

h , x ∈ [x1,x2],

0, otherwise,

Ak(x) =

{
|x−xk|

h , x ∈ [xk−1,xk+1],

0, otherwise,

An(x) =

{
(x−xn−1)

h , x ∈ [xn−1,xn ],

0, otherwise.

Note that the shape (e.g., triangular or sinusoidal) of a basic function in a fuzzy partition is
not predetermined and can be chosen according to additional requirements.
We now introduce two extreme fuzzy partitions of [1,N] that will be used in the following.

Largest partition. The largest partition contains only one fuzzy set, A1 : [1,N]→ [0,1], such that
for all x ∈ [1,N], A1(x) = 1.

Finest partition. The finest partition is established by N fuzzy sets, A1, . . . ,AN : [1,N]→ [0,1],
such that for all k, l = 1, . . . ,N, k �= l, Ak(xk) = 1 and Ak(xl) = 0.

If fuzzy sets A1, . . . ,An establish a fuzzy partition of [1,N] and B1, . . . ,Bm do the same for [1,M],
then the Cartesian product {A1, . . . ,An} × {B1, . . . ,Bm} of these fuzzy partitions is the set of
all fuzzy sets Ak × Bl , k = 1, . . . ,n, l = 1, . . . ,m. The membership function Ak × Bl : [1,N] ×
[1,M] → [0,1] is equal to the product Ak · Bl of the respective membership functions. Fuzzy
sets Ak× Bl , k= 1, . . . ,n, l= 1, . . . ,m establish a fuzzy partition of the Cartesian product [1,N]×
[1,M]. In Figure 1, an example of a fuzzy partition of [1,3]× [1,4] by triangular membership
functions is given.
Let u : P → R and fuzzy sets Ak × Bl , k = 1, . . . ,n, l = 1, . . . ,m, establish a fuzzy partition of
[1,N]× [1,M]. The (direct) F-transform of u (with respect to the chosen partition) is an image
of the mapping F[u] : {A1, . . . ,An} × {B1, . . . ,Bm} → R defined by
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Let u : P → R and fuzzy sets Ak × Bl , k = 1, . . . ,n, l = 1, . . . ,m, establish a fuzzy partition of
[1,N]× [1,M]. The (direct) F-transform of u (with respect to the chosen partition) is an image
of the mapping F[u] : {A1, . . . ,An} × {B1, . . . ,Bm} → R defined by
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Fig. 1. An example of a fuzzy partition of [1,3]× [1,4] by triangular membership functions.

F[u](Ak × Bl) =
∑

N
i=1 ∑

M
j=1 u(i, j)Ak(i)Bl(j)

∑
N
i=1 ∑

M
j=1 Ak(i)Bl(j)

, (2)

where k = 1, . . . ,n, l = 1, . . . ,m. The value F[u](Ak × Bl) is called an F-transform component
of u and is denoted by F[u]kl. The components F[u]kl can be arranged into the matrix
representation as in (1) or into the vector representation as follows:

(F[u]11, . . . ,F[u]1m, . . . ,F[u]n1, . . . ,F[u]nm). (3)

The inverse F-transform of u is a function on P, which is represented by the following inversion
formula, where i = 1, . . . ,N, j = 1, . . . ,M:

unm(i, j) =
n

∑
k=1

m

∑
l=1

F[u]klAk(i)Bl(j). (4)

It can be shown that the inverse F-transform unm approximates the original function u on the
domain P. The proof can be found in Perfilieva (2006; 2007).

Example 1 Let discrete real function u= u(x,y) be defined on the N×M array of pixels P= {(i, j) |
i = 1, . . . ,N, j = 1, . . . ,M} so that u : P → R. We now characterize F-transforms of u for two extreme
fuzzy partitions introduced above.

Largest partition. The largest partition of [1,N]× [1,M] contains only one fuzzy set, A1 × B1, such
that for all (x,y) ∈ [1,N]× [1,M], (A1 × B1)(x,y) = 1. The respective F-transform component
F[u]11 and the respective inverse F-transform u11 are as follows:

F[u]11 =
∑

N
i=1 ∑

M
j=1u(i, j)

NM
,

u11(i, j) = F[u]11, i = 1, . . . ,N, j = 1, . . . ,M.

It is easy to see that F[u]11 is the arithmetic mean of u.

Finest partition. The finest partition of [1,N]× [1,M] is established by N × M fuzzy sets Ak × Bl,
such that for all k = 1, . . . ,N, and l = 1, . . . ,M, (Ak × Bl)(xk,yl) = 1, and for all r = 1, . . . ,N,
and s = 1, . . . ,M, such that (k, l) �= (r, s), (Ak × Bl)(xr ,ys) = 0. The respective F-transform

6 Image Fusion F-Transform Based Image Fusion 5

components F[u]kl, k = 1, . . . ,N, l = 1, . . . ,M, and the respective inverse F-transform uNM are as
follows:

F[u]kl = u(k, l),

uNM(i, j) = u(i, j), i = 1, . . . ,N, j = 1, . . . ,M.

It is easy to see that uNM = u.

The following two statements (for the proof see Perfilieva & Valášek (2005)) justify the
image-fusion method proposed below. Both are based on the following assumptions: the
interval [a,b] is h-uniformly partitioned by A1, . . . ,An, where n > 2 and h= (b− a)/(n− 1), f
is a continuous function on [a,b], F[ f ]1, . . . andF[ f ]n are the F-transform components of f with
respect to A1, . . . ,An.

S1. For each k = 1, . . . ,n− 1, and for each t ∈ [xk,xk+1] the following estimations hold:

| f (t)− F[ f ]k| ≤ 2ω(h, f ), | f (t)− F[ f ]k+1| ≤ 2ω(h, f )

where
ω(h, f ) =max

|δ|≤h
max

x∈[a,b−δ]
| f (x+ δ)− f (x)|

is the modulus of continuity of f on [a,b].

S2. The k-th component F[ f ]k (k = 1, . . . ,n) minimizes the function

Φ(y) =
∫ b

a
( f (x)− y)2Ak(x)dx.

3. Image representation for image fusion: step by step

In the next section, two algorithms for image fusion are presented. Both are based on
the F-transform technique, leading to one-level or higher-level decomposition of an image;
here we explain the technical details of these decompositions. We assume that the image
u is a discrete real function u = u(x,y) defined on the N × M array of pixels P = {(i, j) |
i = 1, . . . ,N, j = 1, . . . ,M} so that u : P → R. Moreover, let fuzzy sets Ak × Bl , k = 1, . . . ,n,
l = 1, . . . ,m, where 0< n ≤ N,0< m ≤ M establish a fuzzy partition of [1,N]× [1,M].
We begin with the following representation of u on P:

u(x,y) = unm(x,y) + e(x,y), where 0< n ≤ N,0< m≤ M, (5)

e(x,y) = u(x,y)− unm(x,y), ∀(x,y) ∈ P, (6)

where unm is the inverse F-transform of u and e is the respective residuum. If we replace e in
(5) by its inverse F-transform eNM with respect to the finest partition of [1,N]× [1,M] (see the
Example above), the above representation can then be rewritten as follows:

u(x,y) = unm(x,y) + eNM(x,y), ∀(x,y) ∈ P. (7)

We call (7) a one-level decomposition of u.
If function u is smooth, then the error function eNM is small, and the one-level decomposition
(7) is sufficient for our fusion algorithm. However, images generally contain various types of
degradation that disrupt their smoothness. As a result, the error function eNM in (7) is not
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Fig. 1. An example of a fuzzy partition of [1,3]× [1,4] by triangular membership functions.
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degradation that disrupt their smoothness. As a result, the error function eNM in (7) is not
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negligible, and the one-level decomposition is insufficient for our purpose. In this case, we
continue with the decomposition of the error function e in (5). We decompose e into its inverse
F-transform en�m� (with respect to a finer fuzzy partition of [1,N]× [1,M] with n� : n < n� ≤ N
and m� : m < m� ≤ M basic functions, respectively) and a new error function e�. Thus, we
obtain the second-level decomposition of u:

u(x,y) = unm(x,y) + en�m� (x,y) + e�(x,y),

e�(x,y) = e(x,y)− en�m� (x,y), ∀(x,y) ∈ P.

In the same manner, we can obtain a higher-level decomposition

u(x,y) = un1m1(x,y) + e
(1)
n2m2

(x,y) + . . .+ e
(k−2)
nk−1mk−1

(x,y) + e(k−1)(x,y), where

0< n1 ≤ n2 ≤ . . . ≤ nk−1 ≤ N,

0< m1 ≤ m2 ≤ . . .≤ mk−1 ≤ M,

e(1)(x,y) = u(x,y)− un1m1 (x,y),

e(i)(x,y) = e(i−1)(x,y)− e
(i−1)
nimi

(x,y), for i = 2, . . . ,k− 1 and (x,y) ∈ P,

which can be rewritten as follows:

u(x,y) = un1m1(x,y) + e
(1)
n2m2

(x,y) + . . .+ e
(k−2)
nk−1mk−1

(x,y) + e
(k−1)
nkmk

(x,y). (8)

Below, we work with the two decompositions of u that are given by (7) and (8).

4. Two algorithms for image fusion

We propose two algorithms:

1. The simple F-transform-based fusion algorithm (SA) and

2. The complete F-transform-based fusion algorithm (CA).

These algorithms are based on the one-level decomposition (7) and the higher-level
decomposition (8), respectively. Moreover, the first algorithm is a special case of the second.
Both algorithms are derived from the one developed in Daňková & Valášek (2006).
The main role in fusion algorithms is played by the so-called fusion operator κ : R

K → R,
defined as follows:

κ(x1, . . . ,xK) = xp, if |xp| =max(|x1|, . . . , |xK |). (9)

Note that other definitions of a fusion operator are possible. The choice of a fusion operator
is influenced by a type of image degradation encountered. Below, we show that a rather wide
class of degradations can be captured by the κ defined above.

4.1 Simple F-transform-based image fusion
Assume that we are givenK≥ 2 input images c1, . . . , cK with various types of degradation. Our
aim is to recognize undistorted parts in the given images and to fuse them into one image. In
this section, we describe the algorithm for image fusion based on the one-level decomposition
(7).

8 Image Fusion F-Transform Based Image Fusion 7

Each input image ci, i = 1, . . . ,K, is assumed to be a discrete real function ci = ci(x,y) defined
on the N × M array of pixels P = {(x,y) | x = 1, . . . ,N,y = 1, . . . ,M} so that ci : P → R.
Moreover, the set [1,N] × [1,M] is assumed to be partitioned by fuzzy sets Ak × Bl , where
k = 1, . . . ,n, l = 1, . . . ,m and 0< n≤ N,0< m≤ M. Denote I = {1,2, . . . ,K}. The algorithm can
be summarized as follows:

(1) Decompose input images c1, . . . , cK into inverse F-transforms and error functions using the
one-level decomposition (7).

(2) Apply the fusion operator (9) to the respective F-transform components of ci, i ∈ I, and
obtain the fused F-transform components of a new image.

(3) Apply the fusion operator to the to the respective F-transform components of the error
functions ei, i ∈ I, and obtain the fused F-transform components of a new error function.

(4) Reconstruct the fused image from the inverse F-transforms with the fused components of
the new image and the fused components of the new error function.

We now proceed with a detailed description of the simple F-transform-based image-fusion
algorithm (SA).

Setting:

Step 0. Choose n,m, 0< n≤ N,0<m≤M, – the numbers of basic functions in the fuzzy
partitions of [1,N] and [1,M], respectively.

Initialization:

Step 1. Create the fuzzy partitions A
(1)
1 , . . . ,A

(1)
n and B

(1)
1 , . . . ,B

(1)
m of [1,N] and [1,M],

respectively.

Denote A
(2)
1 , . . . ,A

(2)
N and B

(2)
1 , . . . ,B

(2)
M the finest partitions of [1,N] and [1,M],

respectively.

Transformation:

Step 2. For all i ∈ I, compute the direct and the inverse F-transforms of each input image
ci and obtain:

F[ci]11, . . . ,F[ci]nm – the F-transform components of ci,

cinm – the inverse F-transform of ci.

Step 3. For all i ∈ I, compute the error functions: ei = ci − cinm . Identify values ei(x,y),
(x,y) ∈ P, with the F-transform components F[ei]xy of ei with respect to the finest
partitions of [1,N] and [1,M].

Fusion:

Step 4(a). Apply the fusion operator κ to the respective components of the direct
F-transforms of the input images ci, i ∈ I:

κ(F[c1]11, . . . ,F[cK]11) = κ
(1)
11 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ(F[c1]nm, . . . ,F[cK]nm) = κ
(1)
nm,
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The main role in fusion algorithms is played by the so-called fusion operator κ : R

K → R,
defined as follows:

κ(x1, . . . ,xK) = xp, if |xp| =max(|x1|, . . . , |xK |). (9)

Note that other definitions of a fusion operator are possible. The choice of a fusion operator
is influenced by a type of image degradation encountered. Below, we show that a rather wide
class of degradations can be captured by the κ defined above.

4.1 Simple F-transform-based image fusion
Assume that we are givenK≥ 2 input images c1, . . . , cK with various types of degradation. Our
aim is to recognize undistorted parts in the given images and to fuse them into one image. In
this section, we describe the algorithm for image fusion based on the one-level decomposition
(7).

8 Image Fusion F-Transform Based Image Fusion 7

Each input image ci, i = 1, . . . ,K, is assumed to be a discrete real function ci = ci(x,y) defined
on the N × M array of pixels P = {(x,y) | x = 1, . . . ,N,y = 1, . . . ,M} so that ci : P → R.
Moreover, the set [1,N] × [1,M] is assumed to be partitioned by fuzzy sets Ak × Bl , where
k = 1, . . . ,n, l = 1, . . . ,m and 0< n≤ N,0< m≤ M. Denote I = {1,2, . . . ,K}. The algorithm can
be summarized as follows:

(1) Decompose input images c1, . . . , cK into inverse F-transforms and error functions using the
one-level decomposition (7).

(2) Apply the fusion operator (9) to the respective F-transform components of ci, i ∈ I, and
obtain the fused F-transform components of a new image.

(3) Apply the fusion operator to the to the respective F-transform components of the error
functions ei, i ∈ I, and obtain the fused F-transform components of a new error function.

(4) Reconstruct the fused image from the inverse F-transforms with the fused components of
the new image and the fused components of the new error function.

We now proceed with a detailed description of the simple F-transform-based image-fusion
algorithm (SA).

Setting:

Step 0. Choose n,m, 0< n≤ N,0<m≤M, – the numbers of basic functions in the fuzzy
partitions of [1,N] and [1,M], respectively.

Initialization:

Step 1. Create the fuzzy partitions A
(1)
1 , . . . ,A

(1)
n and B

(1)
1 , . . . ,B

(1)
m of [1,N] and [1,M],

respectively.

Denote A
(2)
1 , . . . ,A

(2)
N and B

(2)
1 , . . . ,B

(2)
M the finest partitions of [1,N] and [1,M],

respectively.

Transformation:

Step 2. For all i ∈ I, compute the direct and the inverse F-transforms of each input image
ci and obtain:

F[ci]11, . . . ,F[ci]nm – the F-transform components of ci,

cinm – the inverse F-transform of ci.

Step 3. For all i ∈ I, compute the error functions: ei = ci − cinm . Identify values ei(x,y),
(x,y) ∈ P, with the F-transform components F[ei]xy of ei with respect to the finest
partitions of [1,N] and [1,M].

Fusion:

Step 4(a). Apply the fusion operator κ to the respective components of the direct
F-transforms of the input images ci, i ∈ I:

κ(F[c1]11, . . . ,F[cK]11) = κ
(1)
11 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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and obtain the fused F-transform components of a new image:

(κ
(1)
11 , . . . ,κ

(1)
nm). (10)

Step 4(b). Apply the fusion operator κ to the respective components of the direct
F-transforms of the error functions ei, i ∈ I, with respect to the finest partitions
of [1,N] and [1,M]:

κ(F[e1]11, . . . ,F[eK]11) = κ
(2)
11 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ(F[e1]NM, . . . ,F[e1]NM) = κ
(2)
NM,

and obtain the fused F-transform components of a new error function:

(κ
(2)
11 , . . . ,κ

(2)
NM). (11)

Reconstruction:

Step 5. The fused image c is equal to the sum of the two inverse F-transformswith fused
components (10) and fused components (11), i.e.:

c(x,y) =
n

∑
k=1

m

∑
l=1

κ
(1)
kl A

(1)
k (x)B

(1)
l (y) +

N

∑
k=1

M

∑
l=1

κ
(2)
kl A

(2)
k (x)B

(2)
l (y), (x,y) ∈ P.

4.2 Complete F-transform-based algorithm
In this section, we describe the second algorithm for image fusion, i.e., based on the
higher-level decomposition (8). All the assumptions made above remain valid. Moreover,
the summarized description of the complete F-transform-based algorithm coincides with the
one given above up to the descriptions of their respective decompositions.
We proceed with a detailed description of the complete F-transform-based image fusion
algorithm (CA).

Setting:

Step 0. Choose

kmax – maximal number of iterations,

step – coefficient for an increment of the number of basic functions in each fuzzy partition,

nstart – starting number of basic functions in the fuzzy partition of [1,N],

mstart – starting number of basic functions in the fuzzy partition [1,M],

where step≤min(N− nstart,M−mstart) and 0< n(m)start ≤ N(M).

Denote e
(0)
i = ci for i ∈ I.

For k = 0 · stepk to kmax

Initialization:
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Step 1.1. Compute n = nstart · step
k, m = mstart · step

k.

Step 1.2. Create fuzzy partitions A
(0)
1 , . . . ,A

(0)
n and B

(0)
1 , . . . ,B

(0)
m of [1,N] and

[1,M], respectively.
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Step 2. For all i ∈ I, compute the direct and the inverse F-transforms of each

function e
(k)
i and obtain:

F[e
(k)
i ]11, . . . ,F[e

(k)
i ]nm – the F-transform components of e

(k)
i ,

e
(k)
inm

– the inverse F-transform of e
(k)
i .

Step 3. For all i ∈ I, compute error functions: e
(k+1)
i = e

(k)
i − e

(k)
inm

.
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(k)
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(k)
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(k)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(k)
1 ]nm, . . . ,F[e

(k)
K ]nm) = κ

(k)
nm ,
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(κ
(k)
11 , . . . ,κ

(k)
nm). (12)

Step 5. k = k+ 1.
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Last step of fusion:

Step 6. For all i ∈ I, identify values e
(kmax+1)
i (x,y), (x,y) ∈ P, with the F-transform
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(kmax+1)
i with respect to the finest partitions of
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κ(F[e
(kmax+1)
1 ]NM, . . . ,F[e
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(kmax+1)
11 , . . . ,κ
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NM ). (13)
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Reconstruction:

Step 7. The fused image c is equal to the sum of two inverse F-transforms with
fused components (12) and fused components (13), i.e.:

c(x,y) =
nstart

∑
k=1

mstart

∑
l=1

κ
(0)
kl A

(0)
k (x)B

(0)
l (y) + . . .

. . .+
N

∑
k=1

M

∑
l=1

κ
(kmax+1)
kl A

(kmax+1)
k (x)B

(kmax+1)
l (y) (x,y) ∈ P, (14)

where n0 = nstart and m0 = mstart, . . . ,nkmax+1 = N,mkmax+1 = M.

4.3 Justication of the algorithms
By S1, a smaller modulus of continuity leads to a higher-quality approximation of an input
image by its inverse fuzzy transform. If a certain part of the input image is affected
by degradation, then by S2, the respective F-transform component captures the weighted
arithmetic mean and the error function is close to zero at that part. Thus, by the proposed
fusion operator κ, we choose components with maximal absolute values that correspond to
those parts of the input image which are least degraded.

5. Experimental results

We tested the algorithms described above on examples of input images which are available at
“http://irafm.osu.cz/”. Two types of degradations were applied to these images so that they
appear as either:

1. multi-focus input images, or

2. multi-sensor input images.

Multi-focus input images are affected by degradation in the form of blurring caused by
imaging devices (due to their optical properties or display limitations) and/or the complexity
of the image subject. Such images are blurred and noisy and generally exhibit further
phenomena such as various motions in the field or input images having different resolutions;
these effects were neglected in the subsequent experiments, as our aim was only to minimize
blurring and noise in the fused image.
In contrast, multi-sensor input images do not contain a priori degraded information. They
can be characterized as more likely to be carriers of complementary information coming from
different types of sensors. Of course, additional blurring may occur as well as noise and
other distortions in the input images. Here, a fused image should contain the most useful
information available in the input images.
The following experiments produced a series of fused images. They differed in their initial
settings of the values of the algorithms and thus in their resulting quality. Because the latter
is not obvious, we focus on a performance of a particular algorithm and demonstrate various
fusions that are better than the input originals. Whenever possible, we compare fused images

with ideal images. In this case, the Euclidean distance E(c,d) =
√

∑x∈P(c(x)− d(x))2 was
used as a measure of quality.
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5.1 Multi-focus images
In this section, we demonstrate a multi-focus image fusion. In the first two examples, a
Gaussian noise was artificially added to an ideal image at complementary or disjoint regions.
In the following two examples, real images made by a digital camera were fused.
Ideally, the fused image is produced by combining regions that are in focus. If this is the case,
our fusion operator κ defined by (9) works reasonably well. We can explain (and justify) this
as follows: if the one-level decomposition is applied, then the error function of a blurred part
is smaller than that of the unblurred (sharp) part. Therefore, the maximal absolute values of
the F-transform components reflect the level of sharpness, which is important for fusion. In
the case of the SA and CA, an important role is played by the initial settings of the values of
the algorithm parameters: the number of basic functions, m,n, in the case of SA and CA and
the values of the increment, step, and the number of iterations, kmax, in the case of CA.

5.1.1 Articial input images
Figs. 2(d) – 2(f) illustrate the use of the SA and the CA in the case of artificially blurred input
images Fig. 2(a) and 2(b). The results show that the best choice was the SA with m,n = 3. In
this case, the fused image was identical to the original one shown in Fig. 2(c), and for this
reason, it is not demonstrated. A lower or a higher number of basic functions propagated
the blur into the fused images (see Fig. 2(d), 2(e), and 2(f)), with the respective pictures of
the pointwise absolute differences shown in Fig. 2(g), 2(h), and 2(i), where the values that
are “close to zero” are in “close to black” color. Moreover, the SA, with the optimal choice
m,n = 3, has a small computational complexity and was thus very fast. Surprisingly, the CA,
with step = 2 and 8 iterations (see Fig. 2(f)), did not provide a better fusion.
The next example is slightly different: there are two different Gaussian blurs1 applied to two
disjoint regions of the ideal image Fig. 3(c). Unlike the previous case, we were not able to
obtain a fused image identical to the ideal one. The results of our fusion algorithms were as
follows: the SA required a rather fine partition, with m,n = 250 basic functions (see Fig. 3(e),
the Euclidean distance is E = 75.58), and the CA slightly outperformed the SA (see Fig. 3(f),
the Euclidean distance is E = 72.53). However, the computational complexity of the first
algorithm (SA) was significantly smaller than that of the second (CA). We finally remark that
the application of the simplest SA, with m,n = 1 (see Fig. 3(d)), produced a very good fusion
with the Euclidean distance E = 187.07. The quality of fusion was especially good in the
background part of the image.

5.1.2 Real input images
5.1.2.1 Grayscale digital input images
Fig. 4 presents the fusion ofmulti-focus images originating froma digital camera. Due to space
limitations, we show here only the SA output Fig. 4(c) and note that it is comparable (measures
of quality are almost equal) to the CA. Because we did not have a whole, ideal image at our
disposal, we compare “ideal” parts of the input images with their respective parts in the fused
image. These “ideal” parts are designated by the two color boxes in Fig. 4(d), referred to as
the “left box” and the “right box”. In Fig. 4(e) and Fig. 4(f), we see graphs of the pointwise
absolute differences between the “ideal” and blurred parts, where again, the values that are
“close to zero” are in “close to black” color. It is easily seen that the quality of fusion in the
background region (left box) is better than that in the foreground region (right box). This was

1A Gaussian blur is a type of an image filter, which combines Gaussian function and the input image
by means of convolution.
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Reconstruction:
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(a) 1’st blurred image (b) 2’nd blurred image (c) O – Original image

(d) F1 – fused image by SAwith
n,m = 1

(e) F2 – fused image by SAwith
n,m = 9

(f) F3 – fused image by CAwith
nstart,mstart = 1,kmax = 8, step=
2

(g) |O− F1| (h) |O− F2| (i) |O− F3|

Fig. 2. Illustration of various initial setting values of SA and CA applied to a blurred image
(Gaussian blur).
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(a) 1’st blurred image (b) 2’nd blurred image (c) Original image

(d) F1 – fused image by SAwith
n,m = 1

(e) F2 – fused image by SAwith
n,m = 250

(f) F3 – fused image by CA
with nstart,mstart = 1,kmax =
10, step= 2

(g) |O− F1| (h) |O− F2| (i) |O− F3|

Fig. 3. Application of SA to artificially blurred images (Gaussian blur).

caused by differences in reflections from the surfaces of the boxes. It seems that the initial
setting values (in our case n,m= 200) did not play a significant role in this application.

5.1.2.2 Multichannel color input images
The application shows how the CA can be successfully used for the fusion of multi-focus
color images. In our case, the fusion was performed separately for each color component.
We assumed the RGB format for input color images and applied the CA with the same initial
setting values three times on each R, G and B component. The final fused image was then
composed from the fused individual color components.
The input images Fig. 5(a) and Fig. 5(b) depict a rather complicated scene with a lot of different
smooth and glossy objects in the background. This observation forced us to choose the CA
and not the simpler SA. The resulting (fused) toy in Fig. 5(c) and 5(d) seems to be perfect
except for the one blurred area that is still blurred in all the input images. This blurred area
is situated in a background area that contains both smooth and glossy elements and is thus
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(a) C1 – 1’st image (right box in
focus)

(b) C2 – 2’nd image (left box in
focus)

(c) F – fused image by SA with
n,m = 200

(d) Regions to compare (e) |L− LC2
| (f) |R− RC1

|

Fig. 4. Application of SA to multi-focus images

very sensitive to any disturbances. Figs. 5(f) and 5(g) present graphs of the pointwise absolute
differences (over the region of interest extracted from C1) between the respective fused images
and the first input image in Fig. 5(a). Obviously, the CA with a higher value of nstart,mstart

gives a better fused image (compare Fig. 5(c) and 5(d)).

5.2 Multi-sensor images
This section presents two particular examples of multi-sensor images and their fusion using
the F-transform technique.

5.2.1 Image fusion helps navigation
We start with a known benchmark, which can be downloaded from
”http://www.metapix.de”. It contains two input images taken by two sensors: a thermal
imaging forward-looking infrared (FLIR) sensor, depicted in Fig. 6(a), and a low-light
television (LLTV) sensor on Fig. 6(b). The sensors were used together in a helmet-mounted
display intended for a helicopter pilot. The sensor input images help the helicopter pilot with
orientation under poor-visibility conditions. However, they are not both simultaneously at
the pilot’s disposal. Therefore, image fusion is required. The goal here was to extract and
fuse the most important characteristics of the scene, i.e., the paths and their localization in the
landscape. In this case, a fast and efficient fusion method is highly desirable.
SAwas deemed themost suitable for this application due to its low computational complexity.
The results of the SA fusion (see Fig. 6(d)) were compared with the benchmark fusion
(available on the same site) based on a multiresolution analysis (see Fig. 6(c)). The quality
of our result, shown in Fig. 6(d), is visibly better. The main visual advantage lies in the part
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(a) C1 – 1’st input image (background in focus) (b) C2 – 2’nd input image (toy in focus)

(c) F1 – fused image by CA with nstart,mstart =
1,kmax = 5, step= 2

(d) F2 – fused image by CA with nstart,mstart =
10,kmax = 4, step= 2

(e) R – region of interest
extracted from C1

(f) |R− RF1 | (g) |R− RF2 |

Fig. 5. Application of CA to multi-focus color images
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landscape. In this case, a fast and efficient fusion method is highly desirable.
SAwas deemed themost suitable for this application due to its low computational complexity.
The results of the SA fusion (see Fig. 6(d)) were compared with the benchmark fusion
(available on the same site) based on a multiresolution analysis (see Fig. 6(c)). The quality
of our result, shown in Fig. 6(d), is visibly better. The main visual advantage lies in the part
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(a) C1 – 1’st input image (background in focus) (b) C2 – 2’nd input image (toy in focus)

(c) F1 – fused image by CA with nstart,mstart =
1,kmax = 5, step= 2

(d) F2 – fused image by CA with nstart,mstart =
10,kmax = 4, step= 2

(e) R – region of interest
extracted from C1

(f) |R− RF1 | (g) |R− RF2 |

Fig. 5. Application of CA to multi-focus color images
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R marked by the red color in Fig. 6(e); it displays a field. In contrast to the output of the
multiresolution analysis, the SA did not change this area. We note that the CA produced
a fusion of even better quality (e.g. Fig. 6(f)), although at the cost of higher computational
complexity.

5.2.2 Image fusion in medical diagnosis
An important field of applications for image-fusion methods is in medical diagnostics.
Imaging methods such as computer tomography (CT), magnetic resonance imaging (MRI)
or positron-emission tomography (PET) produce a multitude of images displaying particular
information destined for further analysis and interpretation. The significant benefits of image
fusion in this field are indisputable and widely sought.
For this application, we used brain MRI images, as in Bloch (2008). These images represent a
slice of a dual-echo MRI image acquired with various parameters. As stated in Bloch (2008),
the pathology (called adrenoleukodystrophy) is indicated by the bright area in Fig. 7(b) and
is not visible in Fig. 7(a). There, the normal structure (ventricles) of a healthy brain is well
delineated.
Initial experimental results with the original input images showed that the pure algorithms
SA and CA could not be successfully applied. The reason is that Fig. 7(b) is almost uniformly
smooth, and the F-transform components corresponding to this image are not within the
values of the fusion operator. As can be deduced from the properties S1 and S2, the contrast
of an input image is very important for our F-transform-based fusion. Therefore, we modified
the original input image in Fig. 7(b) by enhancing its contrast and obtained a new input image,
depicted in Fig. 7(c). After this modification, the fusion was again applied to the input images
in Fig. 7(b) and Fig. 7(c). The result is shown in Fig. 7(d). The pathological parts as well as the
structure of the displayed brain are now nicely visible in the fused image.

6. Conclusion

This study focused on the application of the F-transform to the problem of image fusion.
After a brief introduction to the theory of F-transform, detailed descriptions of two
fusion algorithms were given. These algorithms are based on one-level and higher-level
decompositions of input images. We then proposed an appropriate fusion operator and
discussed several types of degradations that can be eliminated by its application.
In various examples, we showed that the proposed approach can be successfully applied in
cases when input images are available as either:

1. multi-focus input images or

2. multi-sensor input images.

We examined input images that were artificially blurred and those blurred by inherent
restrictions of the imaging tools. For the artificially blurred images, we estimated fusion
quality by the Euclidean distance with the origin. For the others, we used the known
benchmarks. Last, but not least, we discussed the influence of initial settings of the parameter
values of the proposed algorithms on the quality of the resulting fusion.
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(a) FLIR image (b) LLTV image

(c) Fusion by means of
multiresolution analysis

(d) SA n,m = 100

(e) Problematic part R (f) CA with nstart,mstart =
40,kmax = 3, step= 2

Fig. 6. Illustration of various initial setting values in SA and CA applied to multi-sensor
images

19F-Transform Based Image Fusion



16 Image Fusion

R marked by the red color in Fig. 6(e); it displays a field. In contrast to the output of the
multiresolution analysis, the SA did not change this area. We note that the CA produced
a fusion of even better quality (e.g. Fig. 6(f)), although at the cost of higher computational
complexity.

5.2.2 Image fusion in medical diagnosis
An important field of applications for image-fusion methods is in medical diagnostics.
Imaging methods such as computer tomography (CT), magnetic resonance imaging (MRI)
or positron-emission tomography (PET) produce a multitude of images displaying particular
information destined for further analysis and interpretation. The significant benefits of image
fusion in this field are indisputable and widely sought.
For this application, we used brain MRI images, as in Bloch (2008). These images represent a
slice of a dual-echo MRI image acquired with various parameters. As stated in Bloch (2008),
the pathology (called adrenoleukodystrophy) is indicated by the bright area in Fig. 7(b) and
is not visible in Fig. 7(a). There, the normal structure (ventricles) of a healthy brain is well
delineated.
Initial experimental results with the original input images showed that the pure algorithms
SA and CA could not be successfully applied. The reason is that Fig. 7(b) is almost uniformly
smooth, and the F-transform components corresponding to this image are not within the
values of the fusion operator. As can be deduced from the properties S1 and S2, the contrast
of an input image is very important for our F-transform-based fusion. Therefore, we modified
the original input image in Fig. 7(b) by enhancing its contrast and obtained a new input image,
depicted in Fig. 7(c). After this modification, the fusion was again applied to the input images
in Fig. 7(b) and Fig. 7(c). The result is shown in Fig. 7(d). The pathological parts as well as the
structure of the displayed brain are now nicely visible in the fused image.

6. Conclusion

This study focused on the application of the F-transform to the problem of image fusion.
After a brief introduction to the theory of F-transform, detailed descriptions of two
fusion algorithms were given. These algorithms are based on one-level and higher-level
decompositions of input images. We then proposed an appropriate fusion operator and
discussed several types of degradations that can be eliminated by its application.
In various examples, we showed that the proposed approach can be successfully applied in
cases when input images are available as either:

1. multi-focus input images or

2. multi-sensor input images.

We examined input images that were artificially blurred and those blurred by inherent
restrictions of the imaging tools. For the artificially blurred images, we estimated fusion
quality by the Euclidean distance with the origin. For the others, we used the known
benchmarks. Last, but not least, we discussed the influence of initial settings of the parameter
values of the proposed algorithms on the quality of the resulting fusion.

7. Acknowledgement
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(a) 1’st MRI image (b) 2’nd MRI image

(c) 2’nd image with modified contrast (d) CA with nstart,mstart = 10,kmax = 5, step= 2

Fig. 7. One axial slice of dual-echo magnetic resonance imaging acquisitions (pathological
brain image), courtesy of Professor Catherine Adamsbaum, Saint Vincent de Paul Hospital,
Paris.

20 Image Fusion F-Transform Based Image Fusion 19

8. References

Amolins, K., Zhang, Y. & Dare, P. (2007). Wavelet based image fusion techniques – an
introduction, review and comparison, ISPRS Journal of Photogrammetry and Remote
Sensing 62(4): 249 – 263.

Ashoori, A., Moshiri, B. & Setarehdan, S. (2008). Fuzzy image fusion application in detecting
coronary layers in ivus pictures, Communications, Control and Signal Processing, 2008.
ISCCSP 2008. 3rd International Symposium on, pp. 20 –24.

Bloch, I. (2008). Defining belief functions using mathematical morphology - application
to image fusion under imprecision, International Journal of Approximate Reasoning
48(2): 437 – 465. In Memory of Philippe Smets (1938-2005).

Blum, R. S. (2005). Robust image fusion using a statistical signal processing approach,
Information Fusion 6(2): 119 – 128.

Constantinos, S., Pattichis, M. & Micheli-Tzanakou, E. (2001). Medical imaging fusion
applications: An overview, Signals, Systems and Computers, 2001. Conference Record
of the Thirty-Fifth Asilomar Conference on, Vol. 2, pp. 1263 –1267 vol.2.
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1. Introduction 
This chapter presents image enhancement and image hiding approaches based on linear 
image fusion (LIF). Most of materials presented here have been published in (Hsieh et al., 
2008; Hsieh et al., 2010; Kondo and Zhao, 2006). Apparently, image enhancement, image 
morphing, and image hiding are completely different technologies for different applications, 
they can actually be unified under the core of LIF, and this unification can be helpful in 
other related researches. The reason we use LIF is its simplicity and low computational cost. 
By our observations, LIF generally has satisfactory performance provided that appropriate 
source images are used. This motivates the image enhancement approaches presented in 
this chapter. Note that the intermediate image generated by image morphing, in which LIF 
plays a fundamental role, can be a way to hide images, an LIF based approach to image 
hiding is presented in this chapter as well. This chapter consists of five sections. Section 1 
gives introductions related to image enhancement and image hiding. Section 2 reviews LIF 
which is the core for the given applications. Then image enhancement approaches based on 
LIF are introduced in Section 3. Section 4 presents an image hiding approach based on LIF. 
Finally, conclusion and future work are mentioned in Section 5. 

1.1 Image enhancement 
1.1.1 High dynamic range imaging enhancement 
Nowadays, CCD sensors have been extensively applied to capture an image in many 
scenarios such as digital camera and surveillance systems. In general cases, CCD sensors 
work well in automatic exposure mode. However, CCD sensors may fail to appropriately 
present pixels when they are saturated to the maximum or minimum values. One example is 
that an image is taken in a high contrast or high dynamic range situation. Though the 
automatic exposure control tries to determine an appropriate exposure value, the captured 
image still suffers from missing details in overexposed and underexposed areas. To deal 
with the cases when automatic exposure mode is not suitable, an image fusion approach is 
sought. Since a satisfactory image cannot be obtained in one shot, multiple images are used 
in image fusion generally. Recently, two approaches based on image fusion have been 
reported to get rid of high dynamic range imaging problem. In (Tang and Zhao, 2007), an 
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image fusion approach to relieve the problem of overexposure and underexposure was 
presented which was based on wavelet-based contourlet transform. In (Kao, 2007), a real-
time image fusion approach was proposed to solve exposure problem in an image with high 
dynamic range, where medians of source images were manipulated. In (Tang and Zhao, 
2007; Kao, 2007), image fusion requires a mechanism to determine how the information is 
fused. In this chapter, an image fusion approach is proposed for the problem in high 
dynamic range imaging where no mechanism is needed to determine the way to fuse source 
images. Besides, two source images are taken with different exposures to benefit LIF since 
they are of detail-complementary property (DCP). The concept of DCP will be described 
later in Section 3. It will show that a pair of source images with DCP is appropriate for LIF 
and generally leads good results. 

1.1.2 Contrast enhancement 
An objective of image enhancement is to improve the visual quality of images. Among 
image enhancement schemes, contrast enhancement is a popular approach and has been 
widely used in many display related fields, such as consumer electronics, medical analysis, 
and so on. It is well-known that the contrast in an image is related to its dynamic range of 
histogram distribution. That is, an image with wider histogram dynamic range generally has 
better contrast. Consequently, to enhance the contrast in an image can be achieved by 
expanding its histogram distribution. Because of its simplicity, the conventional histogram 
equalization (CHE) is very popular which expands the histogram to its admissible extremes. 
Though the image contrast is enhanced, however a poor equalized image may be obtained 
because of the unsuitable histogram distribution for the CHE. 
Note that the visual quality of histogram equalized image can be improved by restricting the 
dynamic range or by modifying the original histogram distribution. Recently, several HE-
based approaches have been presented to improve the performance of the CHE. In (Kim, 
1997), taking the brightness shift into account, the approach called mean preserving bi-
histogram equalization (BBHE) was proposed to enhance image contrast while preserving 
the mean brightness. In the BBHE, the histogram was partitioned into two portions based on 
the mean brightness value of a given image. Then the CHE was performed on each of the 
two sub-histograms. In light of the BBHE, several variations were reported. In (Wan et al., 
1999), the histogram was partitioned into two sub-histograms by the median, instead of the 
mean, of brightness in a given image. In (Chen and Ramli, 2003), a recursive mean-separate 
histogram equalization approach was reported where the histogram of a given image was 
partitioned into sub-histograms in a number of two’s power. Note that the histogram spike 
generally causes visual problems in the CHE. In (Wang and Ward, 2007), the distribution of 
pixel values was modified through weighting and thresholding before histogram 
equalization. To consider the histogram spike, in (Ibrahim and Kong, 2007) a Gaussian filter 
was introduced to smooth the histogram distribution first. Then the smoothened histogram 
was partitioned and the partitioned histogram was equalized. In (Kim and Chung, 2008), the 
histogram of an image was weighted by a normalized power law function while the 
recursive partition was performed based on the mean or the median of the image brightness. 
In (Arici et al., 2009), a histogram modification approach based on an optimization scheme 
was proposed where the level of contrast enhancement, noise robustness, white/black 
stretching, and mean-brightness preservation were all under consideration. In (Ooi et al., 
2009), the bi-histogram equalization with a plateau level was proposed. In the approach, two 
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stages were involved: input histogram subdivision and sub-histogram clipping based on the 
plateau value. Generally speaking, HE-based approaches manipulated the histogram of 
input image by histogram partitioning, histogram modification with weighting or filtering, 
to improve the performance of the image contrast enhancement. 
In (Chen et al., 2010), an image enhancement based on linear image fusion was presented 
where an adaptive weight was employed on a pixel-by-pixel basis. In our experiences on the 
approach of (Chen et al., 2010), it shows that the fused images is of good visual quality when 
source images are appropriate but anomaly pixels are found in homogenous area if source 
images are not suitable for the approach. A fixed weight may avoid the problem or a better 
adaptive way should be sought. In Section 3.2, a simple contrast enhancement approach will 
be presented which is based on detail-complementary property (DCP) and LIF. Though 
simple, the proposed approach will be justified effective in the improvement of image visual 
quality. 

1.2 Image hiding with morphing technology 
Image morphing is a technology for generating a sequence of images from a source image 
and a target image. This technology has been used mainly for producing moving pictures. In 
our study, it is noticed that the intermediate images generated by morphing can actually be 
used to hide the source or the target image. In image morphing, many intermediate images 
can be generated using different morphing rates. With LIF, the morphing rate, denoted by 
α , represents the contribution portion of the source image for synthesizing an intermediate 
image while the contribution portion of the target image is (1- α ). Therefore, image 
morphing is a variation of LIF where two input images, source image and target image, are 
different. 
To generate images of natural looking, both source image and target image are first warped 
based on a common skeleton. This skeleton is usually determined by using a set of 
characteristic points or characteristic lines. The first step in morphing is to obtain the 
skeleton of the intermediate image. By sharing the same skeleton, the warped source image 
and the warped target image are found. With LIF, the warped images are then used to 
generate intermediate images with different morphing rates. Then intermediate images can 
be used to hide the source (or target) image. In other words, image hiding can be achieved 
by the morphing technology based on LIF. 
To recover the source (or target) image from an intermediate image, the target (or the 
source) image, the skeletons, and the morphing rate are required. With those information, 
the source (or target) image can be found by the de-morphing. Though image warping is 
generally not reversible, and some information in input images may be lost in the warping 
process, the original images can be recovered almost perfectly in general. 
With the morphing technology, an image hiding approach is developed and applied to 
steganography where the target (or the source) image, the feature vectors, e.g. skeletons, of 
the source and the target images, and the morphing rate are considered as the stego keys. A 
steganograhic approach based on image morphing will be proposed in Section 4. 

2. Linear image fusion 

The main objective of image fusion is to integrate information or details from different 
source images of a scene to form an image with better visual quality. A general expression to 
obtain a fused image fI  with two source images is given as 
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stages were involved: input histogram subdivision and sub-histogram clipping based on the 
plateau value. Generally speaking, HE-based approaches manipulated the histogram of 
input image by histogram partitioning, histogram modification with weighting or filtering, 
to improve the performance of the image contrast enhancement. 
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1.2 Image hiding with morphing technology 
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the source (or target) image can be found by the de-morphing. Though image warping is 
generally not reversible, and some information in input images may be lost in the warping 
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the source and the target images, and the morphing rate are considered as the stego keys. A 
steganograhic approach based on image morphing will be proposed in Section 4. 

2. Linear image fusion 

The main objective of image fusion is to integrate information or details from different 
source images of a scene to form an image with better visual quality. A general expression to 
obtain a fused image fI  with two source images is given as 
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  1 2( , )f f=I I I  (1)  

where 1I  and 2I  are two source images and (.)f  is a function to fuse the source images.  
Eq. (1) suggests that the fused image fI  is significantly affected by function (.)f  and source 
images 1I  and 2I . Therefore, how to find an appropriate fusion function and source images 
is a fundamental issue for a successful image fusion. 
In this chapter, we will employ the linear interpolation as (.)f  in Eq. (1). With 1I  and 2I , 
the fused image fI  by the linear interpolation is found as 

  -1 2(1 )f α α= +I I I  (2)  

where 1≤≤0 α  is a weighting factor. 
The image fusion based on linear interpolation is called linear image fusion (LIF). Though 
simple, LIF generally has satisfactory performance if appropriate source images can be 
found. In Section 3, two ways to obtain appropriate source images are introduced. 
Interesting enough, the fused image fI  can be considered as a morphed image when source 
images 1I  and 2I  are different object images, e.g. face images of different persons. Since fI  
is somewhere between 1I  and 2I , and different from either 1I  or 2I , it thus can be used to 
hide 1I  or 2I . The idea will be described and applied to steganography in Section 4. 

3. Image enhancement based on LIF 
One of objectives in image enhancement is to improve visual quality of an image for human 
viewers. An image with better visual quality can be obtained by image fusion through 
combining information from different source images. Thus, in this section, LIF will be 
applied to image enhancement where source images play an important role. Two image 
enhancement approaches based on LIF are proposed in this section. The first approach is to 
deal with the problem in high dynamic range imaging while the second approach provides 
a way to enhance contrast of a given image. The two approaches based on LIF are described 
in Section 3.1 and Section 3.2, respectively. 

3.1 Image enhancement based on LIF with two source images, IE/LIF_2 
In this section, an approach to image enhancement based on LIF with two source images is 
proposed which is abbreviated IE/LIF_2. The motivation is given in Section 3.1.1 and the 
proposed IE/LIF_2 is described in Section 3.1.2. Then simulation results are provided to 
justify the IE/LIF_2 in Section 3.1.3. 

3.1.1 Motivation of IE/LIF_2 
As mentioned previously, LIF will have satisfactory performance if suitable source images 
can be found. It is observed that source images of detail-complementary property (DCP) are 
appropriate for LIF. In the proposed IE/LIF_2, source images of DCP are obtained through 
different exposure settings. As an example, two images taken with different exposures are 
shown in Fig. 2. In Fig. 2(a), the image is underexposed while the image in Fig. 2(b) is 
overexposed. Note that the details of both images are of a sort of complementary property. 
For instance, the details of sign board area can be found in Fig. 2(a) while other details 
found in Fig. 2(b). The example in Fig. 2 demonstrates the idea of DCP. In light of DCP, the 
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fused image by LIF will combine details from Fig. 2(a) and Fig. 2(b). For example, the details 
of sign board area come from Fig. 2(a) and the details of building and road are from Fig. 
2(b). This is verified by the result shown in Fig. 3(b). The proposed approach to image 
enhancement based on LIF with two source images is abbreviated as IE/LIF_2 whose 
illustration is depicted in Fig. 1 where darkF  and lightF  denote the underexposed source image 
and the overexposed source image, respectively. And fusedF stands for the fused image. It 
will show that the IE/LIF_2 is able to deal with the problem in high dynamic range imaging. 
 

),( jiFdark

),( jiFfused ),( jiFlight

darkF fusedF lightF
 

Fig. 1. An illustration of IE/LIF_2 

3.1.2 The proposed IE/LIF_2 approach 
In this section, the proposed IE/LIF_2 approach is introduced. In the proposed approach, 
LIF with two source images are employed. In practice, LIF is implemented on a pixel-by-
pixel basis. That is, two pixels, one pixel from the first source image and the other form the 
second source image, are fused to find the corresponding pixel in the fused image. Fig. 1 
shows the idea where ),( jiFdark  and ),( jiFlight  denote elements of the underexposed source 
image and the overexposed source image, respectively. ),( jiFfused  are elements of the fused 
image. Assume source images are of RGB format. With source images darkF  and lightF , the 
implementation steps of IE/LIF_2 for each component are given as follows. 
Step 1. Input a two-pixel pair from source images,  )},(),,({= jiFjiF lightdarkx , where ),( jiFdark  

and ),( jiFlight  denote the ),( ji  pixel in darkF  and lightF , respectively. 
Step 2. By LIF described in Section 2, the fused pixel ),( jiFfused  is found, where  darkF  and 

lightF are considered as 1I  and 2I  in Eq. (2), respectively. 
Step 3. On a pixel-by-pixel basis, continue Steps 1 and 2 until all fused pixels ),( jiFfused are 

found. 
Note that in the IE/LIF_2 there is no mechanism to determine how to fuse the source images 
as in (Tang and Zhao, 2007; Kao, 2007). The weighting factor α  in LIF is the only parameter 
needed to be determined in the IE/LIF_2. By our experiences, 4.0=α  is a good choice for 
most of cases. That is, more portion is taken from the overexposed source image in the fused 
image. Though simple, the proposed IE/LIF_2 approach will be shown effective in high 
dynamic range imaging in Section 3.1.3. 

3.1.3 Simulation results for the IE/LIF_2 
In this section, two high contrast examples are provided to justify the proposed IE/LIF_2 
approach whose results are also compared with those from (Kao, 2007) which is abbreviated 
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fused image by LIF will combine details from Fig. 2(a) and Fig. 2(b). For example, the details 
of sign board area come from Fig. 2(a) and the details of building and road are from Fig. 
2(b). This is verified by the result shown in Fig. 3(b). The proposed approach to image 
enhancement based on LIF with two source images is abbreviated as IE/LIF_2 whose 
illustration is depicted in Fig. 1 where darkF  and lightF  denote the underexposed source image 
and the overexposed source image, respectively. And fusedF stands for the fused image. It 
will show that the IE/LIF_2 is able to deal with the problem in high dynamic range imaging. 
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3.1.2 The proposed IE/LIF_2 approach 
In this section, the proposed IE/LIF_2 approach is introduced. In the proposed approach, 
LIF with two source images are employed. In practice, LIF is implemented on a pixel-by-
pixel basis. That is, two pixels, one pixel from the first source image and the other form the 
second source image, are fused to find the corresponding pixel in the fused image. Fig. 1 
shows the idea where ),( jiFdark  and ),( jiFlight  denote elements of the underexposed source 
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lightF are considered as 1I  and 2I  in Eq. (2), respectively. 
Step 3. On a pixel-by-pixel basis, continue Steps 1 and 2 until all fused pixels ),( jiFfused are 

found. 
Note that in the IE/LIF_2 there is no mechanism to determine how to fuse the source images 
as in (Tang and Zhao, 2007; Kao, 2007). The weighting factor α  in LIF is the only parameter 
needed to be determined in the IE/LIF_2. By our experiences, 4.0=α  is a good choice for 
most of cases. That is, more portion is taken from the overexposed source image in the fused 
image. Though simple, the proposed IE/LIF_2 approach will be shown effective in high 
dynamic range imaging in Section 3.1.3. 

3.1.3 Simulation results for the IE/LIF_2 
In this section, two high contrast examples are provided to justify the proposed IE/LIF_2 
approach whose results are also compared with those from (Kao, 2007) which is abbreviated 
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as RTIF here. In the simulation, the parameter 4.0=α   is used in LIF. For the first example, 
source images darkF  and lightF  of 7-11 are taken on some street at night which are shown in 
Fig. 2(a) and Fig. 2(b), respectively. In Figure 2(a), the image is underexposed. Therefore lots 
of areas cannot be seen but the details of bright area, like sign boards, are found. On the 
other hand, the image in Fig. 2(b) is overexposed where details of dark area, like building 
and road, can be seen and the bright parts lose their details because of saturation. The two 
source images darkF  and lightF  reveal the DCP and it is expected that a good fused image can 
be obtained by LIF. 
The fused images of 7-11 by the RTIF and the IE/LIF_2 are shown in Fig. 3(a) and Fig. 3(b), 
respectively. By the results, the fused image from the IE/LIF_2 is better than that from the 
RTIF since better visual quality with more details are found in the IE/LIF_2. 
  

      
                      (a) Source image darkF                              (b) Source image lightF  

Fig. 2.  Source images of 7-11 
  

      
                           (a) by the RTIF                  (b) by the IE/LIF_2 

Fig. 3.  Fused images of 7-11 

For the second example, outdoor building images are taken from indoor through a window 
with different exposure settings. Two source images darkF  and lightF  are given in Fig. 4(a) and 
Fig. 4(b). In this example, it is almost impossible to capture both building outside and 
textbook inside clearly in one shot. Once one is obtained, the other is lost. Thus two or more 
source images are required for different parts of details. Note that source image in Fig. 4(a) 
and Fig. 4(b) show the DCP and thus a good result is expected for LIF. The fused images for 
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the RTIF and the IE/LIF_2 are given in Fig. 5(a) and Fig. 5(b), respectively. As one may see, 
better details of outside building are for the IE/LIF_2 while details of textbook are similar 
for both approaches. Consequently, the one from the IE/LIF_2 has better visual quality than 
that for the RTIF. 
  

      
                         (a) Source image darkF           (b) Source image lightF  

Fig. 4.  Source images of Building 

  

      
                            (a) by the RTIF                                (b) by the IE/LIF_2 

Fig. 5. Fused images of Building 
In summary, the simulation results indicate that the proposed IE/LIF_2, though simple, is 
able to effectively deal with the problem of high dynamic range imaging and outperforms 
the RTIF in the given examples. 

3.2 Image enhancement based on LIF with single source image, IE/LIF_1 
In Section 3.1, the IE/LIF_2 is proposed to deal with the problem in high dynamic range 
imaging. This section will propose an approach to contrast enhancement based on LIF 
where only single source image is available. This approach is called image enhancement 
based on LIF with single source image and abbreviated as IE/LIF_1. Unlike the IE/LIF_2, 
the IE/LIF_1 is not for images of high dynamic range but provides a way to enhance 
contrast in a given image. When details in the given image are lost, it is impossible to make 
any enhancement in the IE/LIF_1 since only single source image is available. In other 
words, the IE/LIF_1 will use similar approach as in the IE/LIF_2 to enhance contrast in a 
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In summary, the simulation results indicate that the proposed IE/LIF_2, though simple, is 
able to effectively deal with the problem of high dynamic range imaging and outperforms 
the RTIF in the given examples. 

3.2 Image enhancement based on LIF with single source image, IE/LIF_1 
In Section 3.1, the IE/LIF_2 is proposed to deal with the problem in high dynamic range 
imaging. This section will propose an approach to contrast enhancement based on LIF 
where only single source image is available. This approach is called image enhancement 
based on LIF with single source image and abbreviated as IE/LIF_1. Unlike the IE/LIF_2, 
the IE/LIF_1 is not for images of high dynamic range but provides a way to enhance 
contrast in a given image. When details in the given image are lost, it is impossible to make 
any enhancement in the IE/LIF_1 since only single source image is available. In other 
words, the IE/LIF_1 will use similar approach as in the IE/LIF_2 to enhance contrast in a 
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given image. Since only single source image 1I  is available in the IE/LIF_1, the problem 
now is how to fine another source image, i.e., 2I  in Eq. (2), from the available source image. 
Moreover, images 1I  and 2I  should have the DCP for better result in LIF. These issues are 
going to be discussed later. This section is organized as follows. Motivation of IE/LIF_1 is 
described in Section 3.2.1 and its implementation steps are stated in Section 3.2.2. Then 
simulations to verify the proposed IE/LIF_1 are given in Section 3.2.3. 

3.2.1 Motivation of IE/LIF_1 
The motivation for the proposed IE/LIF_1 approach is based on the following observation. 
Note that the conventional histogram equalizaion (CHE) is able to enhance the contrast in a 
given image. Thus the details which are not obvious may be revealed after the CHE, though 
some other details may be lost because of over enhancement. That is, the CHE reveals the 
details hard to perceive in the original image while destroys some details in the original 
image. The revealed details in the equalized image are desired in the image fusion. Roughly 
speaking, the original image can be divided into two types of regions: the region with good 
details and the region with poor details. This is also true for its equalized image. Interesting 
enough, there is a kind of complementary between details in the original image and its 
equalized image by the CHE. In other words, when a region in one image is of poor details 
its counterpart shows good details in general. Thus, the DCP is revealed between the 
original image and its equalized image by the CHE. That is, the DCP is obtained through the 
CHE in the IE/LIF_1 while by exposure setting in the IE/LIF_2. 
To show the DCP by the CHE, Airplane in Fig. 6 is given as an example. In Fig. 6(a), the 
original Airplane has good details around the airplane while with poor details in the field. 
On the other hand, as shown in Fig. 6(b) the equalized image by the CHE loses the details of 
airplane but has better details in the field. The images of Airplane in Fig. 6(a) and Fig. 6(b) 
demonstrates the DCP which motivates the proposed IE/LIF_1 approach. Since the details 
in the original image and its equalized image by the CHE are of DCP, it gives us a hope that 
LIF would be good to obtain a fused image with better visual quality than the original 
image. This idea is justified as follows. 
  
 

      
                                            (a) Original                     (b) by the CHE 

Fig. 6. Images of Airplane 
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By Eq. (2), here the original image oI  takes the place of 1I  and the equalized image of oI  by 
the CHE, hI , replaces 2I . With 7.0=α , the fused image fI  is shown in Fig. 7. As expected, 
both details in the original image and its equalized image are found in the fused image. That 
is, the fused image shows both details around the airplane and in the field. This justifies the 
idea just described. 
  

 

Fig. 7. Fused Airplane by LIF 

3.2.2 The proposed IE/LIF_1 approach 
In this section, the proposed IE/LIF_1 approach is descried. Suppose the original image oI  
is of bitmap format, i.e., in RGB color space. Since R-, G-, and B-component are processed 
similarly in the proposed IE/LIF_1, thus only one component, oX , is considered in the 
following. The implementation steps for the IE/LIF_1 approach are described as follows. 
Step 1. Input the original image oX . 
Step 2. Perform the CHE on oX  and the equalized image is denoted as hX . 
Step 3. With a user-defined α , obtain the fused image fX  as in Eq. (2). 
The block diagram for the proposed IE/LIF_1 approach is depicted in Fig. 8. 
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Fig. 8. The block diagram for the IE/LIF_1 
Note that two stages involved in the proposed IE/LIF_1 approach are the CHE and the LIF. 
Both of them are of low computational complexity and easy to implement in the hardware. 
Thus, it is easy to apply the proposed IE/LIF_1 approach in the real-world applications 
where computational complexity and hardware cost are limited. Moreover, there is only one 
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its counterpart shows good details in general. Thus, the DCP is revealed between the 
original image and its equalized image by the CHE. That is, the DCP is obtained through the 
CHE in the IE/LIF_1 while by exposure setting in the IE/LIF_2. 
To show the DCP by the CHE, Airplane in Fig. 6 is given as an example. In Fig. 6(a), the 
original Airplane has good details around the airplane while with poor details in the field. 
On the other hand, as shown in Fig. 6(b) the equalized image by the CHE loses the details of 
airplane but has better details in the field. The images of Airplane in Fig. 6(a) and Fig. 6(b) 
demonstrates the DCP which motivates the proposed IE/LIF_1 approach. Since the details 
in the original image and its equalized image by the CHE are of DCP, it gives us a hope that 
LIF would be good to obtain a fused image with better visual quality than the original 
image. This idea is justified as follows. 
  
 

      
                                            (a) Original                     (b) by the CHE 

Fig. 6. Images of Airplane 
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By Eq. (2), here the original image oI  takes the place of 1I  and the equalized image of oI  by 
the CHE, hI , replaces 2I . With 7.0=α , the fused image fI  is shown in Fig. 7. As expected, 
both details in the original image and its equalized image are found in the fused image. That 
is, the fused image shows both details around the airplane and in the field. This justifies the 
idea just described. 
  

 

Fig. 7. Fused Airplane by LIF 

3.2.2 The proposed IE/LIF_1 approach 
In this section, the proposed IE/LIF_1 approach is descried. Suppose the original image oI  
is of bitmap format, i.e., in RGB color space. Since R-, G-, and B-component are processed 
similarly in the proposed IE/LIF_1, thus only one component, oX , is considered in the 
following. The implementation steps for the IE/LIF_1 approach are described as follows. 
Step 1. Input the original image oX . 
Step 2. Perform the CHE on oX  and the equalized image is denoted as hX . 
Step 3. With a user-defined α , obtain the fused image fX  as in Eq. (2). 
The block diagram for the proposed IE/LIF_1 approach is depicted in Fig. 8. 
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Fig. 8. The block diagram for the IE/LIF_1 
Note that two stages involved in the proposed IE/LIF_1 approach are the CHE and the LIF. 
Both of them are of low computational complexity and easy to implement in the hardware. 
Thus, it is easy to apply the proposed IE/LIF_1 approach in the real-world applications 
where computational complexity and hardware cost are limited. Moreover, there is only one 
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parameter α  in the proposed IE/LIF_1 approach needed to be determined. Note that the 
overall visual quality of the original image is generally better than that in the equalized 
image. Thus, the value of α  is set greater than 0.5 which takes more portion from the 
original image than that from the equalized image in LIF. By our experiences, weighting 
factor 7.0=α  works well for most of cases. This will be justified in the following section. 

3.2.3 Simulation results for the IE/LIF_1 
In this section, the proposed IE/LIF_1 approach is verified by two examples, images Girl 
and River. The parameter α  in the proposed IE/LIF_1 approach is set to 0.7 for all 
simulations. The original images, the equalized images by the CHE, and the fused or 
enhanced images by the IE/LIF_1, are shown in Fig. 9 and Fig. 10, respectively. Moreover, 
to compare the results by the IE/LIF_1 with HE-based approach, one recently reported 
approach in (Wang and Ward, 2007) is employed to enhance the images as well. The 
enhanced images are also shown in Fig. 9 and Fig. 10 where the approach in (Wang and 
Ward, 2007) is denoted as WTHE. Discussions on the results are given in the following. 
Image Girl in Fig. 9(a) was taken indoors under fluorescent light. By the CHE, the enhanced 
image is given in Fig. 9(b) where some details are revealed and some details, like the cake, 
are lost. Fortunately, the details lost in the equalized Girl by the CHE can be found in the 
original image. By fusing the two images, the fused Girl with better visual quality is 
obtained as shown in Fig. 9(c). Fig. 9(d) shows the enhanced images from the WTHE. As 
shown in Fig 9(d), the contrast is enhanced but the color fades and over enhancement, like 
the cake, results. By the results, the enhanced image by the proposed IE/LIF_1 is of better 
visual quality than the original Girl and that from the WTHE. 
  

   
(a) Original                                             (b) by the CHE 

   
(c)  by the IE/LIF_1                                 (d) by the WTHE 

Fig. 9. Images of Girl 

Image Enhancement and Image Hiding Based on Linear Image Fusion   

 

33 

As the second example, image River was taken outdoors at night. In this example, the DCP 
is revealed as shown in Fig. 10(a) and Fig. 10(b). In the enhanced River by the IE/LIF_1, the 
original image provides the details of brighter area while the equalized River by the CHE 
contributes the details of darker area in general. This results in better visual quality of the 
enhanced River as shown in Fig. 10(c). On the other hand, the enhanced image shown in Fig. 
10(d) is over enhanced in the light area and the color fading is found after the WTHE. Thus, 
better enhanced image is for the proposed IE/LIF_1 approach. 
  

   
(a) Original                                         (b) by the CHE 

   
(c) by the IE/LIF_1                                     (d) by the WTHE 

Fig. 10. Images of River 
To sum up, simulation results suggest that the proposed IE/LIF_1 is able to enhance image 
contrast for the given examples and has better visual quality than those from the compared 
HE-based approach, i.e., the WTHE. Besides, there is a fundamental difference between the 
IE/IFLI_2 and the IE/IFLI_1. For the IE/IFLI_2, two source images are employed and thus 
more information can be found in the fused image. Consequently, the IE/IFLI_2 is able to 
deal with the problem in high dynamic range imaging. On the other hand, in the IE/IFLI_1 
there is only one source image available and the second source image is derived from the 
available source image. Thus, only image contrast in the given image can be enhanced. In 
other words, the IE/LIF_1 gives a way to contrast enhancement for the given image. Even 
the IE/LIF_2 and the IE/LIF_1 both are based on LIF, they are fundamentally different from 
each other as described above. 

4. Image hiding with morphing technology based on LIF, IH/LIF 
This section presents an approach to image hiding with morphing technology based on LIF. 
The approach is abbreviated as IH/LIF. In Section 4.1, the IH/LIF is described. Then a way 



 Image Fusion 

 

32 

parameter α  in the proposed IE/LIF_1 approach needed to be determined. Note that the 
overall visual quality of the original image is generally better than that in the equalized 
image. Thus, the value of α  is set greater than 0.5 which takes more portion from the 
original image than that from the equalized image in LIF. By our experiences, weighting 
factor 7.0=α  works well for most of cases. This will be justified in the following section. 

3.2.3 Simulation results for the IE/LIF_1 
In this section, the proposed IE/LIF_1 approach is verified by two examples, images Girl 
and River. The parameter α  in the proposed IE/LIF_1 approach is set to 0.7 for all 
simulations. The original images, the equalized images by the CHE, and the fused or 
enhanced images by the IE/LIF_1, are shown in Fig. 9 and Fig. 10, respectively. Moreover, 
to compare the results by the IE/LIF_1 with HE-based approach, one recently reported 
approach in (Wang and Ward, 2007) is employed to enhance the images as well. The 
enhanced images are also shown in Fig. 9 and Fig. 10 where the approach in (Wang and 
Ward, 2007) is denoted as WTHE. Discussions on the results are given in the following. 
Image Girl in Fig. 9(a) was taken indoors under fluorescent light. By the CHE, the enhanced 
image is given in Fig. 9(b) where some details are revealed and some details, like the cake, 
are lost. Fortunately, the details lost in the equalized Girl by the CHE can be found in the 
original image. By fusing the two images, the fused Girl with better visual quality is 
obtained as shown in Fig. 9(c). Fig. 9(d) shows the enhanced images from the WTHE. As 
shown in Fig 9(d), the contrast is enhanced but the color fades and over enhancement, like 
the cake, results. By the results, the enhanced image by the proposed IE/LIF_1 is of better 
visual quality than the original Girl and that from the WTHE. 
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As the second example, image River was taken outdoors at night. In this example, the DCP 
is revealed as shown in Fig. 10(a) and Fig. 10(b). In the enhanced River by the IE/LIF_1, the 
original image provides the details of brighter area while the equalized River by the CHE 
contributes the details of darker area in general. This results in better visual quality of the 
enhanced River as shown in Fig. 10(c). On the other hand, the enhanced image shown in Fig. 
10(d) is over enhanced in the light area and the color fading is found after the WTHE. Thus, 
better enhanced image is for the proposed IE/LIF_1 approach. 
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(c) by the IE/LIF_1                                     (d) by the WTHE 

Fig. 10. Images of River 
To sum up, simulation results suggest that the proposed IE/LIF_1 is able to enhance image 
contrast for the given examples and has better visual quality than those from the compared 
HE-based approach, i.e., the WTHE. Besides, there is a fundamental difference between the 
IE/IFLI_2 and the IE/IFLI_1. For the IE/IFLI_2, two source images are employed and thus 
more information can be found in the fused image. Consequently, the IE/IFLI_2 is able to 
deal with the problem in high dynamic range imaging. On the other hand, in the IE/IFLI_1 
there is only one source image available and the second source image is derived from the 
available source image. Thus, only image contrast in the given image can be enhanced. In 
other words, the IE/LIF_1 gives a way to contrast enhancement for the given image. Even 
the IE/LIF_2 and the IE/LIF_1 both are based on LIF, they are fundamentally different from 
each other as described above. 

4. Image hiding with morphing technology based on LIF, IH/LIF 
This section presents an approach to image hiding with morphing technology based on LIF. 
The approach is abbreviated as IH/LIF. In Section 4.1, the IH/LIF is described. Then a way 
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to apply the IH/LIF to steganography is given in Section 4.2 where motivation and a 
proposed steganographic approach are described. Finally, a scenario for the proposed 
steganographic approach is given in Section 4.3. 

4.1 The proposed IH/LIF approach 
The image morphing consists of two stages: warping and fusion. Two images are involved 
in the morphing process, i.e. a source image sI  and a target image tI . Based on sI  and tI , 
an intermediate image mI  is generated which is then used to hide the source image or target 
image. In the warping stage, a common skeleton is found based on characteristic points or 
characteristic lines in sI  and tI . Suppose sF  and tF  are the skeletons of the source image 

sI , and the target image tI , respectively. Then the skeleton of the intermediate image mI , 
which is considered as the common skeleton, is found as 

  -(1 )m s tα α= +F F F  (3)  

where 1<<0 α  is a morphing rate. Based on mF  and sF , the source image sI  is warped 
to w

sI . Similarly, the target image tI  is warped to w
tI  through  mF  and tF . After warping, w

sI , 
w
tI  and mI  share the same skeleton, and thus an intermediate image with natural looking 

can be obtained by LIF as 

  -(1 )w w
m s tα α= +I I I  (4)  

In Eq. (4), the morphing rate α  represents the contribution of the source image to 
synthesizing intermediate image mI  and the contribution of the target image is (1- α ). Note 
that image morphing can be considered as a variation of IE/LIF_2 where two input images, 
i.e. the warped source image and the warped target image, are different. 
Fig. 11 shows an example of image morphing. In Fig. 11, the left image is the source image, 
the right image is the target image, and the small images are the intermediate images 
generated using different morphing rates, from 0 to 1. Note that in Fig. 11 the intermediate 
images, especially those close to the center, can be used to hide the source (or target) image. 
That is, image hiding can be achieved by morphing technology based on LIF. 
   

 
Fig. 11. An example of image morphing 
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To reconstructed the source (or target) image from the intermediate image, the target (or the 
source) image, the skeletons, and the morphing rate are required. The process to reconstruct 
the source (or target) image is called de-morphing, that is, inverse of morphing. The 
implementation steps of de-morphing to recontruct the source image are given as follows. 
Step 1. Input the warped target image w

tI . 
Step 2. Obtain the warped source image w

sI  as 

  αα w
tm

w
s /])1([= III --  (5)  

Step 3. Calculate the skeleton of the source image as 

  αα tms /])1([= FFF --  (6)  

Step 4. Find the source image as 

 ),,(= sm
w
ss dewarp FFII  (7) 

where (.)dewarp  is a function to de-warp the source image. 
Fig. 12 shows an example of de-morphing. As described previously, the source image can be 
recontructed almost perfectly except the borders. 
  

  
               (a) Source image      (b) Reconstructed image 

Fig. 12. An example of image de-morphing 

4.2 Application of IH/LIF to steganography 
In light of the IH/LIF, a steganographic approach based on image morphing is proposed 
here. The motivation is given in Section 4.2.1 and the proposed steganographic approach is 
introduced in Section 4.2.2. 

4.2.1 Motivation 
Steganography is a technology to hide messages in such a way that no one except the 
authorized recipient knows the existence of the messages. The block diagram of 
steganography is shown in Fig. 13. In steganography, the secret message is often hidden in 
some cover message. In general, larger cover message relative to the secret message can hide 
the latter easier. For instance, an image in general contains more data than a text and thus an 
image is often used as the cover message to hide some text data. Usually, the cover image is 



 Image Fusion 

 

34 

to apply the IH/LIF to steganography is given in Section 4.2 where motivation and a 
proposed steganographic approach are described. Finally, a scenario for the proposed 
steganographic approach is given in Section 4.3. 

4.1 The proposed IH/LIF approach 
The image morphing consists of two stages: warping and fusion. Two images are involved 
in the morphing process, i.e. a source image sI  and a target image tI . Based on sI  and tI , 
an intermediate image mI  is generated which is then used to hide the source image or target 
image. In the warping stage, a common skeleton is found based on characteristic points or 
characteristic lines in sI  and tI . Suppose sF  and tF  are the skeletons of the source image 

sI , and the target image tI , respectively. Then the skeleton of the intermediate image mI , 
which is considered as the common skeleton, is found as 
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where 1<<0 α  is a morphing rate. Based on mF  and sF , the source image sI  is warped 
to w

sI . Similarly, the target image tI  is warped to w
tI  through  mF  and tF . After warping, w
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tI  and mI  share the same skeleton, and thus an intermediate image with natural looking 

can be obtained by LIF as 
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In Eq. (4), the morphing rate α  represents the contribution of the source image to 
synthesizing intermediate image mI  and the contribution of the target image is (1- α ). Note 
that image morphing can be considered as a variation of IE/LIF_2 where two input images, 
i.e. the warped source image and the warped target image, are different. 
Fig. 11 shows an example of image morphing. In Fig. 11, the left image is the source image, 
the right image is the target image, and the small images are the intermediate images 
generated using different morphing rates, from 0 to 1. Note that in Fig. 11 the intermediate 
images, especially those close to the center, can be used to hide the source (or target) image. 
That is, image hiding can be achieved by morphing technology based on LIF. 
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To reconstructed the source (or target) image from the intermediate image, the target (or the 
source) image, the skeletons, and the morphing rate are required. The process to reconstruct 
the source (or target) image is called de-morphing, that is, inverse of morphing. The 
implementation steps of de-morphing to recontruct the source image are given as follows. 
Step 1. Input the warped target image w

tI . 
Step 2. Obtain the warped source image w

sI  as 
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Step 3. Calculate the skeleton of the source image as 
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Step 4. Find the source image as 
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where (.)dewarp  is a function to de-warp the source image. 
Fig. 12 shows an example of de-morphing. As described previously, the source image can be 
recontructed almost perfectly except the borders. 
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Fig. 12. An example of image de-morphing 

4.2 Application of IH/LIF to steganography 
In light of the IH/LIF, a steganographic approach based on image morphing is proposed 
here. The motivation is given in Section 4.2.1 and the proposed steganographic approach is 
introduced in Section 4.2.2. 

4.2.1 Motivation 
Steganography is a technology to hide messages in such a way that no one except the 
authorized recipient knows the existence of the messages. The block diagram of 
steganography is shown in Fig. 13. In steganography, the secret message is often hidden in 
some cover message. In general, larger cover message relative to the secret message can hide 
the latter easier. For instance, an image in general contains more data than a text and thus an 
image is often used as the cover message to hide some text data. Usually, the cover image is 
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not changed visually after hiding the secret data. By this doing, the objective of 
steganography is achieved. 
 

 
Fig. 13. The block diagram of steganography 

Though the steganography is able to hide messages in cover messages, there are at least two 
problems in the framework of steganography. First, to hide an image using existing 
steganographic approaches is very difficult unless the size of the secret image is much 
smaller than that of the cover image. For example, a 1024×768 color image, with 3 bytes per 
pixel, has the potential to hide 294,912 bytes of information, if 3 bits are used for each pixel. 
In this case, the size of the secret image should be smaller than or equal to 1/8 of the size of 
the cover image. Consequently, in the framework of steganography, it is a challenge to 
embed a secret image into a cover image when both images of same size.  
Another problem in existing steganographic approaches is that partial hiding of messages is 
not allowed. However, there are cases in which partial hiding is required. A scenario might 
be doctor’s co-examination on medical images. In this case, one doctor may hide the 
patient's personal information (e.g., the patient’s face image) while keeping the sickness 
information (e.g., face color) “readable“ to other doctors. In the conventional steganographic 
approaches, the image data of the patient must be hidden completely in the cover data, and 
be recovered completely when the recipients want to see the data. 
To solve the two problems just described, Section 4.2.2 proposes a steganographic approach 
based on image morphing. Morphing is a technology that transforms from a source image to 
a target image. So far, morphing is mainly used for producing animation movies or special 
TV programs. Here, morphing technology will be applied to image hiding where the two 
problems mentioned above can be solved as follows. 
First, a morphed image, which is one of the intermediate images between the source image 
and the target image, can be used as the stego data. The source image here is the secret 
image to be hidden. Upon receiving the morphed image, the source image can be recovered 
through de-morphing based on four stego keys, that is, the morphing rate, the feature vector 
(skeleton) of the morphed image, the feature vector (skeleton) of the target image and the 
target image. Note that, the source image, the target image, and the morphed image are of 
the same size. Thus, the first problem is sovled by the proposed steganographic approach 
based on image morphing. 

Image Enhancement and Image Hiding Based on Linear Image Fusion   

 

37 

Second, the proposed steganographic approach is able to provide part of the information in 
the source image “readable“, that is, visible on the stego data (the morphed image) while 
hiding other information. In the scenario of doctor’s co-examination on medical images, the 
patient's personal information, i.e., face image, can be hidden through morphing, and keep 
the sickness information “readable“ to doctors. Thus, partial hiding is achieved by the 
morphing based steganography. The proposed steganographic approach is described in the 
following section. 

4.2.2 The proposed steganographic approach  
In this section, we propose a steganographic approach based on morphing technology. The 
block diagram of the proposed approach is shown in Fig. 14. When compared, the 
followings are observed between the proposed steganographic approach and the 
steganography shown in Fig. 13. 
a. The embedding algorithm: Morphing plays the role to embed the secret data. 
b. The extracting algorithm: De-morphing corresponds to the algorithm to extract the 

secret data. 
c. The embedded data: The source image is considered as the data to be embedded. 
d. The cover data: There is no cover data in the proposed approach. 
e. The stego data: the morphed image is considered as stego data. 
f. The stego keys for embedding: The target image, the feature vector (skeleton) of the 

source image, the feature vector (skeleton) of the target image, and the morphing rate 
are considered as stego keys for embedding. 

g. The stego keys for extraction: The target image, the feature vector (skeleton) of the 
morphed image, the feature vector (skeleton) of the target image, and the morphing rate 
are the stego keys for extraction. 

  

 
Fig. 14. The block diagram of the proposed steganographic approach 

The correspondence between the proposed steganographic approach and the steganography 
shown in Fig. 13 is given Table 1. 
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problems mentioned above can be solved as follows. 
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target image. Note that, the source image, the target image, and the morphed image are of 
the same size. Thus, the first problem is sovled by the proposed steganographic approach 
based on image morphing. 
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Second, the proposed steganographic approach is able to provide part of the information in 
the source image “readable“, that is, visible on the stego data (the morphed image) while 
hiding other information. In the scenario of doctor’s co-examination on medical images, the 
patient's personal information, i.e., face image, can be hidden through morphing, and keep 
the sickness information “readable“ to doctors. Thus, partial hiding is achieved by the 
morphing based steganography. The proposed steganographic approach is described in the 
following section. 

4.2.2 The proposed steganographic approach  
In this section, we propose a steganographic approach based on morphing technology. The 
block diagram of the proposed approach is shown in Fig. 14. When compared, the 
followings are observed between the proposed steganographic approach and the 
steganography shown in Fig. 13. 
a. The embedding algorithm: Morphing plays the role to embed the secret data. 
b. The extracting algorithm: De-morphing corresponds to the algorithm to extract the 

secret data. 
c. The embedded data: The source image is considered as the data to be embedded. 
d. The cover data: There is no cover data in the proposed approach. 
e. The stego data: the morphed image is considered as stego data. 
f. The stego keys for embedding: The target image, the feature vector (skeleton) of the 

source image, the feature vector (skeleton) of the target image, and the morphing rate 
are considered as stego keys for embedding. 
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Fig. 14. The block diagram of the proposed steganographic approach 

The correspondence between the proposed steganographic approach and the steganography 
shown in Fig. 13 is given Table 1. 
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Table 1. Correspondence between the proposed and conventional steganography 

Two things should be noticed in the proposed steganographic approach. First, without 
cover data, the proposed approach is able to cover an image using much less data when 
compared with conventional steganographic approaches. In other words, the capacity of the 
proposed approach is very high. In the proposed approach, the morphed image plays the 
roles of cover data and stego data. To cover an image, only two images of same size and 
some morphing parameters are required. As described earlier, the stego keys for extraction 
include the target image, the feature vectors of the target image and the morphed image, 
and the morphing rate. The data amount of stego keys is relatively big which makes the 
morphing based steganography even securer than conventional approaches. In short, the 
proposed approach provides a way to embed an image into another image with same size 
where the conventional steganographic approaches fail to. 
Second, in the conventional steganography the secret data is completely hidden in the cover 
data so that the stego data and the cover data look similarly. Only the recipient who has the 
stego key can extract the secret data. In the proposed morphing based steganography, the 
morphed image (the stego data) has certain similarity with the source image (the secret 
data) which is controlled by the morphing rate. This seems to be one defect of the morphing 
based steganography, but it is not. Even the morphed image has certain similarity with the 
source image, it is simply another natural image. For face images, the morphed image is just 
the face of another person who may not exist at all. Therefore, one is not able to extract the 
source image or even may not know the existence of the source image by the morphed 
image. This property of partial hiding or revealing in the propsed steganographic can be 
applied in the real world cases. One scenario to apply the partial hiding property is given in 
the following section. 

4.3 A scenario for the proposed steganographic approach 
A scenarios for the proposed steganographic approach is given in this section. The scenario 
related to doctor’s co-examination is shown in Fig. 15. In this scenario, doctor A may share 
the sickness information of a patient to doctor B while hiding the individual information of 
the patient, i.e., face image. In Fig. 15, S+sick is the face image of the patient and M+sick is 
the corresponding morphed image. In this case, doctor B may examine the sickness of the 
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patient without knowing who he/she is. This is impossible for conventional steganographic 
approaches. More details are given in the following. 
  

 
Fig. 15. Scenario to share sickness information while hiding the patient’s face image 

Fig. 16 shows the morphed images of a patient with different morphing rates. In the 
example, the painted part is considered as important clue for the sickness. While the 
morphing rate approaches to 1, the morphed image approaches to the target image in which 
there is no clue of sickness at all. That is, the individual information of the patient can be 
hidden completely with a morphing rate close to one. However, the sickness information on 
the face image is disappeared as well. The reason can be explained by Eq. (4). When the 
morphing rate is close to one, the morphed image is constructed almost from the target 
image alone. 
 

 
Fig. 16. Morphed image of a patient with different morphing rates 

This problem can be solved by separating the sickness part from the face image of the 
patient. During morphing, the warped source image and the warped target are combined to 
form the morphed image for all pixels except the region of sickness part in the warped 
source image which is then added to the morphed image. Fig. 17 shows a way that sickness 
part is separated, warped and added to the morphed image. In Fig. 17, Ssick is the sickness 
part of the source image, and Wsick is the warped sickness part. In fact, the sickness part is 
warped in the same way as the source image. First of all, the sickness part is separated from  
 

 
Fig. 17. A way that sick part is separated, warped and added to the morphed image 
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Table 1. Correspondence between the proposed and conventional steganography 
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the image of the patient. Next, morphing is performed for all pixels except the sickness part. 
Then the sickness part is warped and added to the morphed image. By separating the 
sickness part, the morphed image can hide the face image of the patient and reveal the 
sickness part. 
Fig. 18 shows several morphed images of a patient generated with various morphing rates 
by the way shown in Fig. 17. In Fig. 18, the patient’s face is hidden by an appropriate 
morphing rate, say 0.8. Moreover, the sickness part can be retained in the morphed image 
since it is added directly to the morphed image after warping. In this way, a doctor can 
share the sickness information to another doctor while hiding the information of the patient. 
 

 
Fig. 18. Morphed images of a patient with separated sick part and different morphing rates 

5. Conclusion and future work 
This chapter presented approaches to image enhancement and image hiding based on linear 
image fusion (LIF). Though simple, LIF showed its effectiveness on image enhancement and 
image hiding. In image enhancement, LIF has been shown having good performance when 
source images are of detail-complementary property (DCP). In image hiding, a morphing 
technology based on LIF was given from which a stegnograhpic approach was developed. 
Conclusions and future works for the proposed image enhancement and image hiding 
approaches are described, respectively, in the following. 
For image enhancement, the IE/LIF_2 and IE/LIF_1 were presented. Note that DCP benefits 
the result of LIF. By different exposure settings, two source images of DCP were obtained in 
the IE/LIF_2. Then LIF was applied to fuse the two source images with an appropriate 
weighting factor. It showed good results in the given examples and better visaul quality was 
for the proposed IE/LIF_2 when compared with the approach in (Kao, 2007). Simulation 
results suggested that the problem in high dynamic range imaging can be solved by the 
IE/LIF_2. When only a single source image was available, the IE/LIF_1 was applied to 
enhance contrast and therefore visual quality. In the proposed IE/LIF_1, a source image for 
LIF was derived from the available image by the conventional histogram equalization 
(CHE). The reason using the CHE was that the original image and the equalized image 
shows the DCP. In light of DCP, LIF may have good performance generally. As expected, 
simulation results of the given examples had justified the idea. When compared with the 
HE-based approach in (Wang and Ward, 2007), the IE/LIF_1 showed its supirority for better 
visual quality. Consequently, the IE/LIF_1 provides a good way to improve visual quality 
of images through contrast enhancement. No matter in the IE/LIF_2 or the IE/LIF_1, the 
weighting factor in LIF is fixed and determined by our rule of thumb. In the future, a 
mechanism to adaptively determine the weighting factor will be devised. 
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Note that the morphing technology based on LIF can be a way to hide images. The proposed 
image hiding approach called IH/LIF was developed. Then a steganographic approach 
based on IH/LIF was developed. When compared with conventional steganographic 
approaches, there are at least two advantages for the proposed approach. First, by morphing 
technology it is possible to embed a secret image whose size is same as the cover image in 
the framework of steganography where the stego keys are the morphing rate, the target 
image, the feature vector of the target image and the feature vector of the morphed image. 
With the stego keys, the secret imag can be extracted through de-morphing. Second, the 
proposed steganographic approach provides a way to partial hiding or revealing the secret 
image. The basic idea is to process the two kinds of information, separately. That is, perform 
morphing for the information to be hidden, and warping for the information to be revealed. 
A scenario was given for the proposed steganographic approach. In the future, the proposed 
approach will be extended to other types of data, like music and video, where a proper 
morphing or transformation should be sought. 
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approaches, there are at least two advantages for the proposed approach. First, by morphing 
technology it is possible to embed a secret image whose size is same as the cover image in 
the framework of steganography where the stego keys are the morphing rate, the target 
image, the feature vector of the target image and the feature vector of the morphed image. 
With the stego keys, the secret imag can be extracted through de-morphing. Second, the 
proposed steganographic approach provides a way to partial hiding or revealing the secret 
image. The basic idea is to process the two kinds of information, separately. That is, perform 
morphing for the information to be hidden, and warping for the information to be revealed. 
A scenario was given for the proposed steganographic approach. In the future, the proposed 
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1. Introduction 
Nowadays, operational earth observation satellites provide a large variety of multi-sensor, 
multi-temporal and multi-modal data. Signals generated by miscellaneous sensors needs to 
be sampled, filtered, fused, stored, and interpreted (Yu & Christakos, 2010). Each of these 
data-processing steps must be conducted in an efficient way to conserve data fidelity. 
Amidst these research areas, remote sensing community is notably interested in studying 
multi-source images fusion issues. Over last past decades, information fusion has emerged 
to manage large amounts of multi-source data in the military field (Mahler, 2007). Recently, 
substantial amount of research has been dedicated to data fusion techniques development 
and adaptation for signal and images processing applications. Therefore, data fusion is now 
largely adopted in several fields including, but are not limited to, satellite and aerial 
imaging, medical imaging, sonar and radar, robotics, etc. (Stathaki, 2008).  
Until recently, images fusion has become a worthy tool in remote sensing image processing 
and received great attention for satellite image interpretation. Motivations for images fusion 
are numerous and predominantly justified by application issue (Farah et al., 2008b). Fusion 
techniques aim to produce an enhanced single view with extended information content by 
combining intelligently multi-modality data coming from different sources. However, 
remote sensing images are characterized by their unique spectral, spatial, temporal and 
directional dimensions depending fundamentally on the nature of the corresponding sensor 
(Farah et al., 2010). Thus, image fusion can be looked with different points of view; each one 
is designed to answer specific research requirements and to meet a particular need.  
Typically, for an efficient fusion, some questions must been answered before deciding about 
the fusion approach: What is the objective of image fusion? Which types of data are the most 
useful? What is the most “appropriate” method of fusion to achieve study goals? What 
technique is used for results assessment? (Pohl & Van Genderen, 1998). 
Moreover, numerous challenging research issues are related to developing new approaches 
for remotely sensed signals managing and interpretation. In most actual researches, sensors 
must operate in an unfriendly environment with many complications. Therefore, an image 
processing method must be able to deal effectively with limited resources and 
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missing/noisy data (Yu & Christakos, 2010). Imperfections are inherent in all applications 
fields and arise from measurements errors, spatio-temporal variability and numerical 
approximation, etc. Therefore, the fusion procedure is associated, generally, with the 
calculation of uncertainties. In our case, we use the term imperfection to denote limitations 
associated with data. Here, we refer to one or more of the characteristics: imprecise, 
uncertain, incomplete, inconsistent and vague when using this term. In a remotely sensed 
context, we identified the following types of imperfection: 
• Imperfections related to nature: it is a consequence of the spatio-temporal variability of 

the natural phenomena (precipitation, climate changes, etc.) which introduces a random 
function into the physical process. 

• Imperfections related to data: most researchers agree that it is impossible to identify the 
variability and the local data complexity through some points of measurement. 

• Uncertainty related to model parameters: influenced by data imprecision. 
Difficulties in fusion process lie also with the problems of redundant information reducing 
and the large volume data managing. In addition, data specially extracted from each 
individual source are naturally incomplete (Farah et al., 2003). Hence, developing an 
efficient data fusion technique must take into account these factors. Some requirements to 
the images processing algorithms included: 
• Tolerance to noise, un-calibrated data frequently associated with remote sensing data. 
• Resource constrained computation.  
• Robustness and reliability: if any data sources are missing 
• Ambiguity reducing. 
Having answered these requirements and questions, appropriate technique for data fusion 
may be chosen. Conjointly, specific data features must been taken into account at all fusion 
process stages. These features differ from one area to another typically including 
heterogeneous, large amount, and multi-objective data. Improving knowledge and 
providing a better description of the real world is the major goal of information fusion 
techniques. To achieve this ambition, remotely sensed images must be mapped to semantic 
level for data analysis, interpretation, and decision making (Bentabet et al., 2002). Such 
mapping requires further efforts and effective images processing tools (Gamba et al., 2005).  
This chapter focuses on image fusion techniques for remotely sensed applications. 
Designing a fusion process requires a good assimilation of techniques foundations, a well-
defined input data as well as an effective assessment metrics. The objectives of this chapter 
are to contribute to the apprehension of image fusion approaches including concepts 
definition, techniques ethics and results assessment. It is structured in five sections. 
Following this introduction, a definition of image fusion provides involved fundamental 
concepts. Respectively, we explain cases in which image fusion might be useful. Most 
existing techniques and architectures are reviewed and classified in the third section. In 
fourth section, we focuses heavily on algorithms based on multi-views approach, we 
compares and analyses the process model and algorithms including advantages, limitations 
and applicability of each view. The last part of the chapter summarized the benefits and 
limitations of a multi-view approach image fusion; it gives some recommendations on the 
effectiveness and the performance of these methods. These recommendations, based on a 
comprehensive study and meaningful quantitative metrics, evaluate various proposed 
views by applying them to various environmental applications with different remotely 
sensed images coming from different sensors. In the concluding section, we fence the 
chapter with a summary and recommendations for future researches. 
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2. Image fusion: definition and fundamentals   
Data fusion is a formal framework defined by means and tools for heterogeneous data 
alliance (Wald, 1999). Image fusion (IF) has been used in many application areas especially 
in computer vision and remote sensing fields. Most popular applications concern multi-
sensor fusion combining images from different engines to achieve a high spatial and spectral 
resolutions. Nowadays, Earth observation satellites provide data covering different portions 
of the electromagnetic spectrum at different spatial, spectral and temporal resolutions 
(Hemissi et al. 2009). Multi-source, multi-sensor and multi-temporal data often present 
complementary information about a surveyed scene, so image fusion appears as an effective 
way enabling efficient analysis of such data (Farah et al., 2008a). Therefore, data fusion from 
various sources aids in delineating objects with interest and comprehensive information 
thanks to complimentary data integration.  
The list of image fusion techniques grows as new forms of sensors that are expanded and 
applied to data acquisition. Many definitions have been proposed from the remote sensing 
community, where fusion concepts and algorithms have been matured over several decades. 
Image fusion aims to integrate complementary heterogeneous data and/or multi-view 
information acquired in several domains. Hence, a multi-view fusion aims to generate an 
image with higher information degree by considering diverse aspects.  
Image fusion means a very wide domain and it is very difficult to provide a precise 
definition. A number of earlier definitions of sensor, data, images and information fusion 
have been proposed in the literature (Gamba et al., 2005), among these we can cite: 
Def 1: “Fusion … aims at obtaining information of greater quality; the exact definition of 

greater quality’ will depend upon the application.” (Wald, 1999) 
Def 2: “…techniques combine data from multiple sensors, and related information from 

associated databases, to achieve improved accuracy and more specific inferences 
than what could be achieved by the use of a single sensor alone”(Hall & Llinas, 
1990) 

Def 3: “…a multilevel, multifaceted process dealing with the automatic detection, 
association, correlation, estimation, and combination of data and information from 
multiple sources” (US Department of Defense) 

It was felt in all these definitions that several concepts appear around images fusion. First 
the term “data” is used in the definition 2, whereas the term “information” is preferred in 
definitions 1 and 3. Here, we choose to use the term information in order to designate the 
whole of what can be fused. Moreover, most definitions treat the term "information" in its 
entirety. However, several other authors assume that is possible to characterize information 
into two or three main types (Bloch, 1996). The first type relates to numerical information 
which may be signal intensity, pixel gray level, etc. The second type is the symbolic 
information which may be expressed in symbols, proposals (e.g. what is great is not small), 
rules (e.g. if it's big and it flies, c is a plane), etc. Recently, numerous researches propose a 
hybrid type of information (Bloch, 1996). We noticed also that the symbolic type has been a 
little studied in images fusion, although it can be an important source of information. The 
difficulty lies in formulation of expert knowledge on data and sensors (Stathaki, 2008). 
We further denote that all these definitions delineate information fusion as a combination 
from several sources. So, it is important to clarify the purpose of the term “combination”, 
allowing a new image with more valuable information and which quality cannot be 
achieved otherwise. Many writers from the computer scientist community understand the 
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missing/noisy data (Yu & Christakos, 2010). Imperfections are inherent in all applications 
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This chapter focuses on image fusion techniques for remotely sensed applications. 
Designing a fusion process requires a good assimilation of techniques foundations, a well-
defined input data as well as an effective assessment metrics. The objectives of this chapter 
are to contribute to the apprehension of image fusion approaches including concepts 
definition, techniques ethics and results assessment. It is structured in five sections. 
Following this introduction, a definition of image fusion provides involved fundamental 
concepts. Respectively, we explain cases in which image fusion might be useful. Most 
existing techniques and architectures are reviewed and classified in the third section. In 
fourth section, we focuses heavily on algorithms based on multi-views approach, we 
compares and analyses the process model and algorithms including advantages, limitations 
and applicability of each view. The last part of the chapter summarized the benefits and 
limitations of a multi-view approach image fusion; it gives some recommendations on the 
effectiveness and the performance of these methods. These recommendations, based on a 
comprehensive study and meaningful quantitative metrics, evaluate various proposed 
views by applying them to various environmental applications with different remotely 
sensed images coming from different sensors. In the concluding section, we fence the 
chapter with a summary and recommendations for future researches. 
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fusion as the concatenation of multi-sources information. This does not exclude the 
possibility of obtaining information from a single source after specific treatment. Therefore, 
the proposal of image fusion is to create new images that are more suitable for further 
image-processing tasks usually allowing the data amount reducing.  
Formally, suppose that we have m sources Sj with j € [1,…,m]. Each source Sj can be 
characterized by information provided by the ith source as a function of the observation X 
noted sj(X). For each observation X, these sources should take a decision in a set of n 
decisions d1,...,dn. Each source Sj provides information to decision di about observation X 
that we denoted Mij (x). Thus the final decision on the observation x, E(x) will be taken from 
the combination of information contained in the matrix (Mij(x)) given by (1). 

   

(1)

 
Most of these definitions were focusing too much on fusion techniques despite giving some 
attention to quality. Once the results of fusion process have been generated, quality 
evaluation provides convincing indicators about fusion contribution. However, meaning 
and measurement depend on the particular application. Thus, the effectively evaluation has 
been a challenging topic among the image fusion community (Gianinetto & Villa, 2007). 
Most common image fusion quality evaluation approaches can be classified into two main 
categories: qualitative approach which considers a visual comparison of results, and 
quantitative approach involving a set of predefined quality indicators. 

3. Image fusion approaches   
A variety of image fusion schemes have been proposed in the literature, concerning multi-
sources data combination and support decision making. Each fusion method is designed for 
a specific problem resolution with disparate inputs, processing approach and outputs. This 
section aims to propose a state of art of images fusion approaches for remotely sensed 
applications, to study their main ideas and to sort algorithms into respective categories. 

3.1 Data fusion architecture 
Fusion architecture describes how to set and use information sources commonly with 
mathematical and images processing algorithms in order to perform an efficient fusion 
operation. Some studies tend to characterize image fusion architecture by data type 
(Dasarathy, 2001) or by the desired applications (Hall & Llinas, 1990). In remotely sensed 
studies, it is more interesting to characterize its structure which can be defined as a fusion 
cell. Wald (Wald, 1999) structured synthetically the fusion cell into several elementary 
operations shown in Figure 1.  
Information sources, original data or sensors measurements are the main inputs of the 
fusion cell. Auxiliary information, providing additional data, can be obtained by a specific 
source processing or deriving out of another fusion operation. External knowledge is 
designed to support and assist the fusion process by imposing a priori information, which 
leads us to elect the adequate model for fusion process. In iterative processing, fusion results 
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can be used as auxiliary information, since it is not considered as original sources. Finally, it 
is interesting to get a quality index in addition to results after fusion process. This quality 
index serves to evaluate the chosen method and to adjust additional information.  
 

 
Fig. 1. Formalization of an elementary fusion operation as a fusion cell.  

 
Fig. 2. Fusion process steps. 

Three types of architectures are usually considered: centralised, decentralised and hybrid 
(Lawrence, 2004). The centralised architecture exploits, concurrently or not, input data in a 
single location. Since this architecture takes into account the whole available sources and 
knowledge, it provides theoretically an optimal result. Centralised architecture has some 
drawbacks such as rigidity and noise sensitivity. Therefore, if a particular source has a large 
error rate, the whole data set is affected which leads to the decrease in the decision quality. 
Satellite image properties severely limit the use of this type of architecture owing to noise, 
atmospheric conditions, sensor drifts, etc. Although, decentralised architecture is often 
adopted since it offers a large flexibility and modularity. Hybrid architectures, which are a 
combination of centralized and decentralised architectures, may be used recently. 
According to fusion cell proposed by (Wald, 1999), numerous researches look to the fusion 
as a compound stage and a succession of several steps (cf. Figure 2); including generally: 
• Modelling: the first step of fusion process formulation and it is particularly critical 

since it tend to choose the fusion formalism (i.e. information representation). It consists 
generally of determining Mij, which can be a distribution, a cost function, etc. 

• Estimation: depends on previous step, it is necessary for most fusion formalism since it 
allows function initialization.  

• Combination: The combination step is the heart of fusion operation allowing 
information consolidation. It meets to choose an appropriate fusion operator 
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fusion as the concatenation of multi-sources information. This does not exclude the 
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can be used as auxiliary information, since it is not considered as original sources. Finally, it 
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index serves to evaluate the chosen method and to adjust additional information.  
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conforming to the representation formalism defined in step one. Additional information 
can guide this choice. Most interesting properties of fusion operators are associativity, 
commutativity, idempotency and adaptability (Bloch, 1996).  

• Decision: is final step of fusion operation. Usually, it consists of minimizing or 
maximizing the combination function. The same function can be also used to calculate a 
quality index.  

3.2 Image fusion process 
Images fusion techniques are usually conceived following a similar methodology. An 
overall processing workflow for remotely sensed images fusion is given in figure 3 (Pohl & 
Van Genderen, 1998). Later on data collection step, images should be corrected from system 
errors. Indeed, satellite imagery is influenced by atmosphere during data acquisition and 
therefore needs some corrections and/or other radiometric enhancements such as edge 
enhancement. Data are also further radiometrically processed. Following this, data are 
geometrically corrected due to the height variations in the contained images area. 
 

 
Fig. 3. Flowchart of image fusion process  

According to several early studies, fusion techniques are generally grouped into three 
classes: (1) Colour related techniques, (2) Statistical/numerical methods and (3) combined 
approaches. The first comprises the colour composition techniques which slice original data 
into their respective layers, which can be RGB, IHS, HSV or more luminance–chrominance. 
Statistical approaches use a mathematical approach for data integration. They involve 
addition, multiplication, differencing and rationing treatments. Combined approaches 
involve integration of both statistical as well as colour related techniques (Mahler, 2007).  
Otherwise, some other researches tend to classify techniques depending to their fusion level. 
It is often written that fusion takes place at three levels in data fusion: pixel, feature 
(attribute) and decision. In pixel-based fusion, the information associated with each pixel is 
obtained by fusing the set of corresponding pixels in source images. In the feature-level 
approach, each sensor generates a feature vector for a specific object in the scene, which are 
then fused. In the decision-level fusion, each sensor performs independent processing 
scheme, and then outputs from each sensor are thereafter combined via a fusion process. 

A Multi Views Approach for Remote Sensing Fusion  
Based on Spectral, Spatial and Temporal Information   

 

49 

Techniques referring to feature and decision level are generally deriving from a large range 
of areas including pattern recognition, artificial learning, artificial intelligence, etc.  
Until recently, fusion levels are also discussed in their terminology and their number 
(Gamba et al, 2205). In several studies four analysis levels are preferred: symbolic, feature, 
pixel and signal level. The goal of the signal-based fusion is to improve the signal-to-noise 
ratio.  
We can notice that there is confusion between information type and fusion level. Hence 
signal level can be considered as the pixel level for remote sensing applications. In addition, 
despite the laborious development of sensors, most images have a low spatial resolution. 
Recent researches (Farah et al., 2010) suggest analysing remote sensing data at sub-pixel 
level. Thus, we update in this chapter images fusion techniques classification by adding the 
sub-pixel level to standard above pixel, feature and decision levels. This new classification is 
summarized by figure 4. Figure 5 shows the various fusion inputs/outputs, to which we 
added the ability to have entrances at different levels. This figure is an illustrative example 
of all cases that we can meet by adding the sub-pixel level. We recall here that the fusion 
process can play the role of selection, transformation, extraction, and information 
classification i from multiple sources. 
In the following sections, we propose to illustrate some fusion level by proposing a specific 
view. For each of them, we present application schema, used data and obtained results. 
 

 
 

 
Fig. 4. Proposed classification of fusion techniques  
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Fig. 5. Inputs/outputs of fusion process  
 

Sub-pixel level 
Specral unmixing, Mathematical morphology, Second 
Order Statistics, Iterative Back-Projection, Wavelet 
decomposition, Markov chain/MRF, etc. 

Pixel level 
Neural, fuzzy, neuro fuzzy approaches 
Voting Strategies, Wavelets, Regression fusion, Filters, 
Colour Normalized transformation, etc. 

Feature level 
Cluster Analysis, Neural Networks 
Bayesian Inference, Evidential Fusion 
Expert Systems, Logical Templates, etc. 

Decision level 

Classical Inference, Bayesian Inference 
Evidential fusion, Contextual Fusion 
Voting Strategies, Expert Systems 
Neural Networks, Fuzzy Logic 
Blackboard Syntactic Fusion, etc. 

Table 1. Fusion approaches review depending on fusion level 

4. Towards a multi-view approach of satellite images fusion     
To overcome problems arising satellite images fusion, we propose a new mufti-view 
approach intended to enhance images fusion and interpretation. It is designed with diverse 
fusion schemes and dealing with multi-sources, multi-sensor data and symbolic 
information. Based on the fact that a unique fusion scheme is impossible to achieve today, 
we present in this chapter an approach declined on several multiform views. So, fusion 
practitioners and readers can easily adopt one of these views related to their own problems 
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and application areas. Our contribution lies on a novel conception of fusion process offering 
more flexibility and providing a largest adaptation aptitude. In fact, the proposed approach 
is structured under several points of view, each designed to meet a specific need, to solve a 
peculiar problem. The first view tries to overcome the difficulties related to the presence of 
mixed pixels by performing a sub-pixel probability fusion. The purpose of the second view 
will be to fuse information extracted from the image with symbolic knowledge in the sub-
pixel level. The last view aims to resolve the conflict related to choice of the optimal fusion 
technique by combining optimally several approaches. In the following sections, we outline 
in detail each point of view by emphasizing on its application criteria, proposed fusion 
process and outputs. 

4.1 View 1: Towards an intelligent Sub-pixel multi-sensor satellite image fusion 
4.1.1 Introduction 
Recently, with the development of miscellaneous satellite sensors, a wide variety of 
remotely sensed data have become available for scientific studies. As the intensity of data 
acquisition grows, so does the need to combine multi-sensor images in order to extract the 
most useful information. However, most studies tend often to fuse multi-sensor images by 
combining straightly radiometric pixels values. This assumption suffers from pixels 
heterogeneity due to the low spatial resolution of most satellite images (figure6-a). In this 
view, we introduce a new multi-sensor fusion approach for land cover classification. The 
proposed approach is an exhibition of multi-sensor images fusion in the presence of mixed 
pixels considering that the fusion is performed in the sub-pixel level.  
 

 
Fig. 6. (a): Satellite images heterogeneity, (b): mixed pixel representation 

4.1.2 Proposed approach 
The considered approach focuses on multi-sensor images fusion for land cover recognition. 
Outlined method is applied to both optical and radar images considering that each sensor is 
associated with a well-defined spectral band. If optical images are easier to interpret, SAR 
images are very interesting for land cover studies since they are not bound to the daylight 
constraint and cloudless conditions, allowing an image acquisition independently of 
weather conditions (Pohl & Van Genderen, 1998). Therefore, considering the well-known 
advantages and disadvantages of each sensor, it seems logical to combine optical and SAR 
data for an enhanced apprehension of land cover types.  
The proposed approach includes various stages for multi-sensors images processing and 
fusion. Generic flowchart is summarized by figure7. After data collection and pre-
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and application areas. Our contribution lies on a novel conception of fusion process offering 
more flexibility and providing a largest adaptation aptitude. In fact, the proposed approach 
is structured under several points of view, each designed to meet a specific need, to solve a 
peculiar problem. The first view tries to overcome the difficulties related to the presence of 
mixed pixels by performing a sub-pixel probability fusion. The purpose of the second view 
will be to fuse information extracted from the image with symbolic knowledge in the sub-
pixel level. The last view aims to resolve the conflict related to choice of the optimal fusion 
technique by combining optimally several approaches. In the following sections, we outline 
in detail each point of view by emphasizing on its application criteria, proposed fusion 
process and outputs. 

4.1 View 1: Towards an intelligent Sub-pixel multi-sensor satellite image fusion 
4.1.1 Introduction 
Recently, with the development of miscellaneous satellite sensors, a wide variety of 
remotely sensed data have become available for scientific studies. As the intensity of data 
acquisition grows, so does the need to combine multi-sensor images in order to extract the 
most useful information. However, most studies tend often to fuse multi-sensor images by 
combining straightly radiometric pixels values. This assumption suffers from pixels 
heterogeneity due to the low spatial resolution of most satellite images (figure6-a). In this 
view, we introduce a new multi-sensor fusion approach for land cover classification. The 
proposed approach is an exhibition of multi-sensor images fusion in the presence of mixed 
pixels considering that the fusion is performed in the sub-pixel level.  
 

 
Fig. 6. (a): Satellite images heterogeneity, (b): mixed pixel representation 

4.1.2 Proposed approach 
The considered approach focuses on multi-sensor images fusion for land cover recognition. 
Outlined method is applied to both optical and radar images considering that each sensor is 
associated with a well-defined spectral band. If optical images are easier to interpret, SAR 
images are very interesting for land cover studies since they are not bound to the daylight 
constraint and cloudless conditions, allowing an image acquisition independently of 
weather conditions (Pohl & Van Genderen, 1998). Therefore, considering the well-known 
advantages and disadvantages of each sensor, it seems logical to combine optical and SAR 
data for an enhanced apprehension of land cover types.  
The proposed approach includes various stages for multi-sensors images processing and 
fusion. Generic flowchart is summarized by figure7. After data collection and pre-
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processing, the proposed approach begins by extract source images thanks to Blind Source 
Separation methods. Under linearity assumption, the radiometric value of a given pixel can 
be seen as a mixture of physically independent sources (Farah et al., 2003) (c.f figure 6-b). 
Thereafter, we generate a set of source images and source signals, each outlining a specific 
land cover type. Extracted sources evaluation is performed in the next step, allowing 
additional knowledge discovering from most informative sources signals. To further 
improve images interpretation, the framework promises a source knowledge representation 
capabilities delineated as a set of decision rules. Hence, multi-source information fusion 
produce a valuable understanding of the observed site by decreasing the uncertainty related 
to single sources (Mansour et al., 2000). In our study, we assumed that multi-sensor adopted 
images have negligible registration problems, which implies that the objects in all images 
are geometrically aligned (Goshtasby, 2005). In the following sub-sections, we describe this 
knowledge representation, as well as the components of the architecture and the 
interpretation steps. 
 

 
Fig. 7. Workflow of proposed approach   
 

 
Fig. 8. Typical spectral sensitivity of SPOT4.  
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4.1.2.1 Blind source separation 
The BSS problem aims to retrieve unknown original signals from their mixtures (measured 
signals). Its main assumptions are the mutual independence and non-Gaussianity of sources 
(Mansour et al., 2000). Thus, we attempt to separate observed signals into a set of other 
signals, such that the regularity of each resulting signal is maximized, and the regularity 
between the signals is minimized (i.e. statistical independence is maximized). If we admit 
the linearity of mixing process, the model of BSS can be expressed by: 

                                                                 X A S N= × +   (2) 

where X is an n×p observed image matrix; each of its rows determines the reflectance of the 
observed image according to a given spectral band. S is an m×p source images matrix; each 
of its rows determines the reflectance of one source image. A is an n×m mixing matrix; each 
of its columns is called the directional vector associated to the corresponding source. N is 
defined as an n×p matrix realized from a spatially additive white Gaussian noise considered 
as negligible. 
Many approximate methods have been proposed in order to solve equation (2) (Cao & Liu, 
1996). The adapted algorithms in our approach are approximate diagonalization of eigen-
matrix (JADE-2D) (Cardoso & Souloumiac, 1993), second order blind identification (SOBI-
2D) (Belouchrani, 1997) and fast-independent component analysis (Fast-ICA-2D) 
(Hyvärinen & Oja, 1997) algorithms. Source separation can be obtained by optimizing a 
contrast function that can be based on entropy, mutual independency, higher order 
statistics, etc. Each of these algorithms takes as an input a matrix X representing the set of 
multi-sensor images. The goal of all these BSS algorithms is to solve equation (2), in which A 
(mixing matrix) and S (source images) are the unknown components. After source images 
extraction, we propose to evaluate their information content using the following criteria, 
which help us to select just the most informative sources to the fusion process. 
The entropy source: This criterion can be interpreted as the degree of information granted 
by each source image. We use the entropy source in order to assort source images and 
electing those having a maximum of information degree. Entropy source criterion is given 
by: 

                                                     2( ) ( )log ( )s s
n

E S P n p n= −∑  (3) 

where S and ps(n) denote respectively the source image and the probability of gray level 
value n of S.  
Source mutual information (SMI): To evaluate the performances of BSS algorithms, we use 
the SMI criterion in order to quantify the separation rate between extracted sources. It’s 
based on the concept of mutual information (Zadeh & Jutten 2005) and defined as: 

 1 1 2 1( ) ( )log ( )s s
n

E S P n p n= −∑  (4) 

 2 2 2 2( ) ( )log ( )s s
n

E S P n p n= −∑  (5) 

where ps1(n) and ps2(n) are the probability of the pixel value n in sources S1 and S2, 
respectively. The entropy of the couple S1 and S2 is: 
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1, 2

( , ) ( , )log ( , )
n n

E S S p n n p n n= − ∑  (6) 

where p(n1, n2) is the joint probability of pixel value n1 for S1 and n2 for S2. If the sources are 
independent, the mutual information of a set of k sources is defined as follow: 
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After entropy and MSI criterion computing, we choose the source images having the 
maximum of information degree. This will help us to extract a learning area that models the 
spectral characteristics of each land cover type. The knowledge about the land cover theme 
will be modelled by an intelligent tool based on decision rules.  
4.1.2.2 Source signals 
After source images extraction and evaluation, we propose to improve interpretation 
process by using filters called also sources signals (Farah et al., 2003). Thus, the sensitivity of 
each source image can be modelled by source filters, which consist of a physical 
representation of source images sensitivity according to the spectral bands (cf. figure 8).  
The sensitivity of multispectral observations according to the wavelength λ is represented 
by S(k,l,λ), which can be obtained by sampling and quantifying the spectral sensitivity of 
optical sensor. Each ith image for the (k,l) pixel represented by Xi(k, l) is observed with a 
filter of reflectance Ri(λ). Thus, these images can be written as follows: 

 ( , ) ( ) ( , , )i iX k l R S k l dλ λ λ= ∫  (8) 

From equation (8), the (k,l)th pixel of the jth image source Sj(k, l) can be modelled by: 

 ( , ) ( , ) ( , )j i
i

S k l c i j X k l=∑  (9) 

where c(i,j) is the unmixing coefficient A-1 of source j and image i. Combining equations (8) 
and (9), we obtain: 

 ( , ) ( ) ( , , )j iS k l U S k l dλ λ λ= ∫  (10) 

  ( ) ( , ) ( )i i
i

U e i j Rλ λ=∑∫ ∫  (11) 

The source images can be regarded as observed images through filters Uj(l), called the 
source signals. Therefore, the sensitivity of each source image extracted from the BSS can be 
modelled by the source signal. 

4.1.2.3 Intelligent analyzer 
This module performs the enhancement of source images extracted by multi-sensor BSS 
module by allowing semantics information assigning and improvement (Cf. Figure 9). For 
each source image, corresponding source signal will be depicted in terms of source 
knowledge, offering further information about land cover types. This relation will be 
expressed by a set of decision rules.  
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Fig. 9. Workflow of the intelligent analyzer module. 

In order to perform a supervised multi-source image fusion, we choose the source image 
having the maximum information criterion. This operation is carried out by the “source 
selector” which retains sources with a maximum information degree. This allows us extract 
a learning area that models the spectral characteristics of each land cover type. The 
knowledge about the land cover themes will be modelled by an intelligent tool based on 
decision rules, which will be used by the multi-source image fusion in order to improve and 
enhance image analysis. Simultaneously, training zones are extracted by the “generator of 
training areas” module in order to assist satellite image classification and to maximize 
information extraction. Signatures Knowledge basis concedes semantics to each training 
zone. The “signature selector” module retains only the one with a maximum percentage of 
identification. We specify in the following sub-sections each of these sub-modules. 
The sources knowledge base. Thanks to this base, land cover type can be recognized for the 
source images resulting from the multi-sensor BSS step. The base is constructed by using the 
parameters related to the source signals and the rate of identification of the land cover 
classes. The facets used to construct this basis are: 
a. Parameters 

• Interval of λ (Intervalλ). This parameter represents the wavelength interval 
corresponding to the maximum value of source signal. 

• Maximum value (MaxV). This parameter gives the maximum value of the source 
signal, indicating that the source is sensitive to a particular type of soil occupation. 

b. Decision rules 
The production rules are formalized as follows: 

, 1:3, 1:5 , , 1:5, 1:5 ,( ( ) sup( ( ) )) & ( ) _i j i j k l k i l l j m m i j nIf MaxV S MaxV S Interval I Then S isOλ= = = = ≠ =∈  

where MaxV is the maximum value, j is the number of the source, i is the used algorithm(1 = 
Fast-ICA-2D; 2 = JADE-2D; 3 = SOBI-2D), l is the number of the source test, and k is the 
algorithm used. Im denotes the wavelength interval tests: 
The sources selector. This module selects more significant source images depending on 
their entropy values, sources are ranked in a descending order and significant ones are 
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After entropy and MSI criterion computing, we choose the source images having the 
maximum of information degree. This will help us to extract a learning area that models the 
spectral characteristics of each land cover type. The knowledge about the land cover theme 
will be modelled by an intelligent tool based on decision rules.  
4.1.2.2 Source signals 
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each source image can be modelled by source filters, which consist of a physical 
representation of source images sensitivity according to the spectral bands (cf. figure 8).  
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by S(k,l,λ), which can be obtained by sampling and quantifying the spectral sensitivity of 
optical sensor. Each ith image for the (k,l) pixel represented by Xi(k, l) is observed with a 
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The source images can be regarded as observed images through filters Uj(l), called the 
source signals. Therefore, the sensitivity of each source image extracted from the BSS can be 
modelled by the source signal. 

4.1.2.3 Intelligent analyzer 
This module performs the enhancement of source images extracted by multi-sensor BSS 
module by allowing semantics information assigning and improvement (Cf. Figure 9). For 
each source image, corresponding source signal will be depicted in terms of source 
knowledge, offering further information about land cover types. This relation will be 
expressed by a set of decision rules.  
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where MaxV is the maximum value, j is the number of the source, i is the used algorithm(1 = 
Fast-ICA-2D; 2 = JADE-2D; 3 = SOBI-2D), l is the number of the source test, and k is the 
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The sources selector. This module selects more significant source images depending on 
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selected. Three sources were chosen from the set of sources affected by radar. From other 
sources, we choose two sources for each algorithm with maximum entropy criterion which 
is defined by: 

                                           , , 1:3, 1:5, 0:1(( ) )i j k i j kMaxEntropy S = = =  (12) 

where j represents the number of the source, i represents the algorithm used (1 = Fast- ICA-
2D; 2 = JADE-2D; 3 = SOBI-2D), and k indicates whether the source is affected by the radar 
(1 = radar; 0 if not). 
The signatures knowledge basis. This knowledge basis is constructed by zones training 
and from expert knowledge. It includes two main stages: 
a. Generator of training zones: this generator extracts a training zone from each source in 

order to assist the module of fusion and to give an improved classified image. This 
generation is accomplished by using histogram analysis of each image. 

b. Signatures knowledge basis: allows determination of the nature of the training zones 
extracted from the generator of training zones (GTZ) module.  

The multi-source fusion module. This module performs the fusion of selected sources. 
Maximum likelihood classification (MLC) was used for fusion process. In perform images 
classification and produce a thematic map. 

4.1.3 Study areas and results 
The proposed method will be illustrated using two different datasets located in central 
Tunisia. The images come from the ERS2 and SPOT4 satellites. Kairouan, our first selected 
zone, is situated at approximately 100 km south of Tunis. Corresponding images for this 
zone are as follows: (i) a synthetic-aperture radar image from ERS2 acquired on 24th of April 
1998, presenting a spatial resolution of 12.5 m, and operating in band C centred on the value 
frequency 5.36 GHz, with a polarization VV and an incidence angle centred at 26°; and (ii) 
an optical image of SPOT4 acquired on 31st of May 1998, with a spatial resolution of 20×20m. 
The second selected zone is Tunis, centred over the gulf of Tunis. Respective images are as 
follows: (i) an ERS2 image acquired in June 2003 operating in band C, centred on the value 
frequency 5.36 GHz, with a polarization VV and an incidence angle centred at 26°; and (ii) 
an optical SPOT4 image acquired in June 2003, with a spatial resolution of 20×20. 
After data correction and co-registration, blind source module is executed to extract sources 
images which will be evaluated in the next step. In order to choose the training data, a 
cartographic map has been used. After having determined the source images and the 
training and testing zones, we carried out fusion multi-source by MLC for selected zones. 
The source images used in our experiment are S2 and S4 from Fast- ICA-2D, S1 and S4 from 
JADE-2D, and S4 and S1 from SOBI-2D. The classification resulting from MLC is an image 
including five classes related to the various types of land cover (compartmental, humid, 
urban, lake and vegetation areas (figure 10 (B) (D)).  
Confusion matrixes are used for classification evaluation. In order to prove the effectiveness of 
the proposed method in land cover classification over conventional methods, a thematic map 
was produced with a maximum likelihood classification (MLC) applied to multispectral 
imagery without a BSS treatment (Table 2). The overall classification accuracies are listed in 
tables 2(a) and 2(b), respectively. The improved land-use map is characterized with mixed 
pixels and more homogeneous regions. The overall accuracy increased considerably from 63% 
for MLC applied to multispectral imagery to 85% with the proposed approach. 
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Fig. 10. Classified Kairouan image (A) and Tunis (C) issued from fusion of multi-source 
images; (B) and (D) are respectively Kairouan and Tunis zone classification with MLC 
applied to SPOT and ERS imagery. 
 

Class MLC Proposed approach 
Humid 81.96 100.00 

Compartmental 61.76 99.44 
Vegetation 58.51 99.40 

Urban 52.53 97.80 
Lake 75.27 95.73 

Overall accuracy 66.01 98.47 

Table 2(a). Classification accuracy for Kairouan zone,  
 

Class MLC Proposed approach 
Lake 80.60 98.53 

Vegetation 52.98 83.93 
Bare 58.31 82.67 

Humid 54.04 80.76 
Urban 73.88 83.80 

Overall accuracy 63.96 85.93 

Table 2(b). Classification accuracy for Tunis zone. 

3.2 View 2: Towards Neuro-fuzzy approach image fusion 
3.2.1 Introduction 
Recently, the advent of hyperspectral data provides hundreds of relatively narrow and 
contiguous bands that may be useful for extracting land-use information. This new form of 
information can revolutionize the appliance of multisensory images fusion thanks to the 
wealth of spectral information. Thus, hyperspectral imaging has become a fruitful ally for 
land cover recognition and natural phenomena monitoring. However, the interpretation of 
hyperspectral imagery is confronted to several problems such as high data dimensionality, 
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selected. Three sources were chosen from the set of sources affected by radar. From other 
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is defined by: 
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Recently, the advent of hyperspectral data provides hundreds of relatively narrow and 
contiguous bands that may be useful for extracting land-use information. This new form of 
information can revolutionize the appliance of multisensory images fusion thanks to the 
wealth of spectral information. Thus, hyperspectral imaging has become a fruitful ally for 
land cover recognition and natural phenomena monitoring. However, the interpretation of 
hyperspectral imagery is confronted to several problems such as high data dimensionality, 
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spatio-temporal variability of natural phenomena, data imperfection and the requirement of 
a recurrent expert intervention. So the major dilemma with hyperspectral data 
interpretation bears upon knowledge integration and fusion flexibility.  
As discussed in Section 2, very few studies have focused on an efficient integration of 
symbolic information in image fusion process. Therefore, we propose in this view a neuro-
fuzzy approach for hyperspectral images interpretation at a sub-pixel level. This 
investigation serves to consolidate the alliance of the symbolic knowledge into images 
fusion process and takes advantage of the spectral information provided by hyperspectral 
imaging. Previous view address spatial and spectral dimensions of images by considering 
each pixel value as a mixture of several sources. In this view, we show how to analyze also 
the temporal aspect in satellite images fusion. This investigation is decidedly interesting if 
information coming from various sensor lack fidelity in the spectral or/and spatial domains. 

4.2.2 Proposed approach 
Our environment is subject to disturbances practiced on variables scales of space and time. 
On the attempt of natural risk prediction and management, we outline in this view a neuro-
fuzzy fusion strategy for where data fusion is the combination of heterogeneous information 
from multiple data sources.  
The proposed methodology in this view is mainly divided into two stages corresponding to 
the development of a predictive model of risk hazard monitoring. The first step is “spectral 
unmixing” allowing abundance maps generation. Each map is relative to a specific 
endmember in the image. Abundance map of a pure material (source) is a 2D image whose 
pixel values, ranged between 0 and 1, indicate the proportion of this material spectrum in 
each pixel vector. The second step is the fusion of these maps with In situ data using a 
neuro-fuzzy architecture. The choice of a fuzzy logic has been motivated by data and 
knowledge imperfection; neural networks have been preferred due to their learning ability 
allowing model calibration and adaptation (Hemissi et al., 2009).  
4.2.2.1 Spectral unmixing 
Hyperspectral imaging spectrometers collect images provided by spectral information 
reflected from surface materials. Each pixel in such image contains a resulting mixed 
spectrum from reflected sources radiation. Spectral unmixing techniques allow mapping of 
elements of the scene at the sub pixel level. The objective of this module is to achieve, for 
each pixel, a reliable extraction of pure spectral signatures and an accurate estimation of 
their fractional abundances (maps). This investigation should be done using only observed 
data (hyperspectral pixels), from which the interest of using blind separation of sources 
techniques, and particularly the independent component analysis (ICA). Formally, the 
spectral mixture model for a pixel is expressed by equation (2). Then using a BSS technique, 
mixing proportions of each ground cover material could be retrieved.  
In order to obtain abundance maps, we use Independent Component Analysis (ICA) 
technique which is a blind source separation (BSS) method based on the hypothesis that the 
independent components (ICs) are statistically independent. Particularly, FAST-2D-ICA 
(Hyvärinen & Oja, 1997) algorithm has been adopted to achieve independent components 
(ICs) generation from hyperspectral images. After ICs computing, we calculate a Priority 
score for each of them based on higher order statistics (CSOs) (Wang & Chang, 2006).  Since 
the number of materials in the hyperspectral scene is much less than the dimension of 
hyperspectral data; we used the Virtual Dimensionality algorithm (Chang, 2004) to estimate 
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the number of endmembers in the hyperspectral scene denoted p. We can then classify ICs 
in order of importance and select only, first p priority ICs. For each of them we elect the 
pixel with maximum radiometry which may be assumed to be a pure spectral signature 
(endmember). For endmembers labeling and identification, we use the Spectral Angle 
Mapper Technical (SAM) (Yuhas, 1992). Outputs of “spectral Unmixing” stage are a set of 
endmembers and their respective abundance maps. In the next section, we show how to 
integrate these maps with field (In-situ) data in order to increase fusion and prevision 
quality. 
4.2.2.2 Neuro-fuzzy fusion 
This module provides a neuro-fuzzy interpretation of abundance maps generated by BSS 
analysis. Its main purpose is to build a block of correspondence such as from a set of multi-
source information (abundance maps and the in Situ data) describing the current situation, 
it is possible to obtain a prediction of future risks. Fundamentally, the interpretation is 
essentially seen as a predicting problem by neuro-fuzzy pattern recognition approach.  
The use of a neuro-fuzzy model in the problem of hyperspectral images interpretation and 
for heterogeneous data fusion offers the possibility to model a priori knowledge and 
linguistic decision rules defined by experts. It also benefits the capabilities and advantages 
of the fuzzy inference modeled by a parallel neural architecture. Thus, the adjustment of 
fuzzy system parameters is achieved through neural learning (Lin, 1997). The overall 
objective of the proposed model is how to associate any new entry to a class of potential 
risk. For temporal dimension appending, the inputs of our fusion system can also be multi-
temporal fractions extracted by unmixing a series of hyperspectral images. Therfore, the 
analysis of these fractions by the neuro-fuzzy model will lead us to analyze change 
efficentiely by spatial\temporel and spectral consolidation. 
Adopted neuro-fuzzy architecture is the FALCON model (Fuzzy Adaptive Learning Control 
Network) (Lin, 1997), a connectionist model that can be contrasted with a traditional fuzzy 
logic and decision system into a connectionist structure in terms of its network structure and 
learning abilities. The FALCON is then a feed-forward multilayer network in which the 
input nodes represent the input states, the hidden layers work as membership functions and 
fuzzy logic rules, the output layers represent decision signals. The expert knowledge can be 
easily incorporated into the model and provides a human understandable meaning to the 
normal multilayer neural network, the structure avoids the rule-matching time of the 
inference engine in the traditional fuzzy control system. 
The proposed model, shown in Figure 11, consists of five layers. Each node in layer 1 
corresponds to one input variable. Each node in layer 2 corresponds to one linguistic label 
which acts as membership functions representing the terms of the respective linguistic 
variables. Nodes in layer 3 represent one fuzzy logic rule and perform precondition 
matching of a rule Layer 3 hence links define the preconditions of the rule. Layer 5 is the 
output layer. Nodes in layer 4 links define the consequences of rules. The links in layers 2 
and 5 are fully connected between linguistic nodes and their corresponding terms nodes. 
The semantic meaning and function of the neurons are as below: 
Layer 1: This layer transfers the input variable to the next layer. Therefore, there are p+q 
neurons in layer 1, each represents one input variable. For the ith neuron in this layer, the 
input (Ii1) and output (Oi1) are represented, respectively, as: 

                                         1 1
i iI X=       and     1 1

i iO I=   (1) (13) 
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spectrum from reflected sources radiation. Spectral unmixing techniques allow mapping of 
elements of the scene at the sub pixel level. The objective of this module is to achieve, for 
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techniques, and particularly the independent component analysis (ICA). Formally, the 
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Mapper Technical (SAM) (Yuhas, 1992). Outputs of “spectral Unmixing” stage are a set of 
endmembers and their respective abundance maps. In the next section, we show how to 
integrate these maps with field (In-situ) data in order to increase fusion and prevision 
quality. 
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This module provides a neuro-fuzzy interpretation of abundance maps generated by BSS 
analysis. Its main purpose is to build a block of correspondence such as from a set of multi-
source information (abundance maps and the in Situ data) describing the current situation, 
it is possible to obtain a prediction of future risks. Fundamentally, the interpretation is 
essentially seen as a predicting problem by neuro-fuzzy pattern recognition approach.  
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for heterogeneous data fusion offers the possibility to model a priori knowledge and 
linguistic decision rules defined by experts. It also benefits the capabilities and advantages 
of the fuzzy inference modeled by a parallel neural architecture. Thus, the adjustment of 
fuzzy system parameters is achieved through neural learning (Lin, 1997). The overall 
objective of the proposed model is how to associate any new entry to a class of potential 
risk. For temporal dimension appending, the inputs of our fusion system can also be multi-
temporal fractions extracted by unmixing a series of hyperspectral images. Therfore, the 
analysis of these fractions by the neuro-fuzzy model will lead us to analyze change 
efficentiely by spatial\temporel and spectral consolidation. 
Adopted neuro-fuzzy architecture is the FALCON model (Fuzzy Adaptive Learning Control 
Network) (Lin, 1997), a connectionist model that can be contrasted with a traditional fuzzy 
logic and decision system into a connectionist structure in terms of its network structure and 
learning abilities. The FALCON is then a feed-forward multilayer network in which the 
input nodes represent the input states, the hidden layers work as membership functions and 
fuzzy logic rules, the output layers represent decision signals. The expert knowledge can be 
easily incorporated into the model and provides a human understandable meaning to the 
normal multilayer neural network, the structure avoids the rule-matching time of the 
inference engine in the traditional fuzzy control system. 
The proposed model, shown in Figure 11, consists of five layers. Each node in layer 1 
corresponds to one input variable. Each node in layer 2 corresponds to one linguistic label 
which acts as membership functions representing the terms of the respective linguistic 
variables. Nodes in layer 3 represent one fuzzy logic rule and perform precondition 
matching of a rule Layer 3 hence links define the preconditions of the rule. Layer 5 is the 
output layer. Nodes in layer 4 links define the consequences of rules. The links in layers 2 
and 5 are fully connected between linguistic nodes and their corresponding terms nodes. 
The semantic meaning and function of the neurons are as below: 
Layer 1: This layer transfers the input variable to the next layer. Therefore, there are p+q 
neurons in layer 1, each represents one input variable. For the ith neuron in this layer, the 
input (Ii1) and output (Oi1) are represented, respectively, as: 
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Fig. 11. Proposed neuro-fuzzy model 
Where: FA(x,y) Emp : abundance fraction of endmember p in pixel with (x,y) coordinates, 
D(x,y)q : value of the q  In-Situ data, with q:  the In-Situ data index 
ф : the rules index 
From Eq.(13), the link weight at layer 1 (Wi(1)) is unity. 
Layer 2: Each input feature xi , i =1,2 is expressed in terms of membership values, where i 
corresponds to the input feature and j corresponds to the number of term sets for the 
linguistic variable xi. We use a single node to perform a bell-shaped membership function 
Eq.(14): 
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where µij and σij are, respectively, the center (or mean) and the width (or variance) of the 
bell-shaped function of the jth term of the ith input linguistic variable xi. Hence, the link 
weight at layer 2 (Wi(2)) can be interpreted as µij. 
Layer 3: The links in this layer are used to perform precondition matching of fuzzy logic 
rules. Hence, the rule nodes perform the fuzzy AND operation: 
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The link weight in layer 3 (Wi(3)) is then unity. 
Layer 4: The nodes in this layer have two transmission modes, i.e., forward and backward. 
In forward transmission mode, the nodes in this layer perform the fuzzy OR operation to 
integrate the fired rules which have the same consequence. In the backward transmission 
mode, the links function exactly same as the layer 2 nodes: 
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Hence, the link weight (Wi(4)) =1.  
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Layer 5: The nodes of the layer 5 links attached to them act as the defuzzifier. If µij and σij 
are, respectively, the center and the width of the membership function of the jth term of the 
its output linguistic variable, then the Eq.(17) can be used to simulate the center of area 
defuzzification method: 

  5 5 4
i i i

i
I W O=∑  and  5 5

i iO I=  (17) 

Here the link weight in layer 5 (Wi(5)) is µijσij. 
Based on this connectionist structure, a supervised gradient-descent learning procedure is 
developed to determine the proper centers (µij) and widths (σij) of the term nodes in layers 2 
and 4. To set up the neuro fuzzy model, a hybrid learning algorithm from a set of 
supervised training data was developed. It consists on a learning strategy based on two 
successive stages which combines unsupervised learning. A self-organized learning scheme 
(i.e., unsupervised learning) is used to detect the potential fuzzy logic rules and to locate 
initial membership functions, then a supervised gradient-descent learning procedures is 
used to optimally adjust the parameters of the membership functions for desired outputs. 
The result of the fusion module is a predictive map of potential risks. This map can be 
regarded as a decision model alert. We mean by alert, the ability to get ahead of an event in 
time, space, or both. Indeed, the map produced provides the evolution of a phenomenon in 
medium and long-term consequences for each pixel. This leads to the definition of 
preventive strategies and policies depending on potential risk seriousness. 

4.2.3 Results and validation 
The validation of the proposed approach regards its application on the “Hydric erosion” 
risk affecting southern Tunisian region. To delimitate this risk, a case study was conducted 
using a subset of HYPERION hyperspectral dataset. In situ data include a slope and a 
lithofaçies maps describing soil properties. Interpretation and risk assessment consists to 
fuse abundances maps with in situ data using the proposed neuro-fuzzy model. As such, 
CNT’s (Tunisian Remote sensing Center) experts have defined a set of 42 fuzzy rules 
defining the degree of risk as a function of slope value, lithofaçies class and the proportion 
of some materials in each pixel. Laterally, we defined the form of membership functions 
using sigmoidal function which is legitimately chosen to model data variability (Cox, 1999). 
Learning neuro-fuzzy model has been developed on the basis of 568 pixels. This phase was 
used to calibrate the prediction model by adjusting the parameters of membership functions 
and refining the fuzzy rules base. Finally, neuro-fuzzy model generates the risk map shown 
by Figure 13.  
In order to evaluate the results, the predicted risks were overlaid to the observed risks from 
2000 to 2008 by the CNT experts. Performance on training and validation data are presented 
in Table 3 which indicates that about 87.54% of the training data which fell within the high 
category coincided with high category, about 85.53% of moderately high category coincided 
with moderately high category, 83.09% of moderate category coincided with moderate and 
90.3% of the low category coincided with low. For the training data sets, correct 
classification was (94.2%) and number of misclassified entries about (5.8%). For the 
validation data sets (49% of the training sets), the correct classification was (97%) and 
number of misclassified entries about (3%). Some others methods of interpretation used 
were evaluated independently in terms of prediction accuracy. Table 4 summarizes the 
measurements of efficiency and quality obtained from confusion matrices.  
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medium and long-term consequences for each pixel. This leads to the definition of 
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risk affecting southern Tunisian region. To delimitate this risk, a case study was conducted 
using a subset of HYPERION hyperspectral dataset. In situ data include a slope and a 
lithofaçies maps describing soil properties. Interpretation and risk assessment consists to 
fuse abundances maps with in situ data using the proposed neuro-fuzzy model. As such, 
CNT’s (Tunisian Remote sensing Center) experts have defined a set of 42 fuzzy rules 
defining the degree of risk as a function of slope value, lithofaçies class and the proportion 
of some materials in each pixel. Laterally, we defined the form of membership functions 
using sigmoidal function which is legitimately chosen to model data variability (Cox, 1999). 
Learning neuro-fuzzy model has been developed on the basis of 568 pixels. This phase was 
used to calibrate the prediction model by adjusting the parameters of membership functions 
and refining the fuzzy rules base. Finally, neuro-fuzzy model generates the risk map shown 
by Figure 13.  
In order to evaluate the results, the predicted risks were overlaid to the observed risks from 
2000 to 2008 by the CNT experts. Performance on training and validation data are presented 
in Table 3 which indicates that about 87.54% of the training data which fell within the high 
category coincided with high category, about 85.53% of moderately high category coincided 
with moderately high category, 83.09% of moderate category coincided with moderate and 
90.3% of the low category coincided with low. For the training data sets, correct 
classification was (94.2%) and number of misclassified entries about (5.8%). For the 
validation data sets (49% of the training sets), the correct classification was (97%) and 
number of misclassified entries about (3%). Some others methods of interpretation used 
were evaluated independently in terms of prediction accuracy. Table 4 summarizes the 
measurements of efficiency and quality obtained from confusion matrices.  
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Fig. 12. Abundances maps,  

 
Fig. 13. Erosion risk map  
 

Vulnerability
Classes High Moderately

High Moderate Low

High 87.54 10.64 4.75 0.00 
Moderately 

high 9.77 85.53 8.94 3.27 

Moderate 2.15 3.00 83.09 6.43 
Low 0.54 0.83 3.22 90.3 

Table 3. Performance of the training data (%) for erosion vulnerability 
Table 4 allowed us to justify the choice of the neuro-fuzzy model. Indeed, comparing the 
average accuracy of the fuzzy approach (75.04%) with neuronal prediction (82.01%) and the 
maximum likehood (83.49%), we can see the remarkable improvements (91.9%) obtained by 
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coupling these two techniques in one hybrid architecture. Furthermore, comparison of 
results obtained with the truth ground testifies the effectiveness of prevention diction of the 
approach proposed, this is expressed by a Kappa coefficient of about 0.7002 against 0.5847 
for the fuzzy approach 0.6514 for neuronal prediction. 
 

Vulnerability
Classes 

Neural 
networks

Fuzzy
logic MLC Proposed

approach
High 87,32 87,35 89,17 90,07 

Moderately 
high 77,70 73.62 81.06 85.76 

Moderate 75.61 63.19 73.37 88.57 
Low 79,67 69.27 79.57 89.71 

Table 4. Comparison several approaches 

4.3 View 3: Towards a multi-approach image fusion   
4.3.1 Introduction 
We have shown, in previous sections, that combining multi-sensor information provides a 
greater recognition accuracy and improves analysis quality. However, we have also noticed 
that satellite images interpretation is frequently marked by several types of imperfection. To 
overcome these weaknesses, most commonly approaches are probability, possibility, and 
evidence theories. Frequently, the major matter arising most studies is the choice of the most 
appropriate method for a particular situation and application issue. This section aims to 
present a novel approach consolidating several fusion techniques in order to choose the 
most appropriate depending on application field. By choosing the optimum theory for a 
particular image context, our approach will lead to improve images classification. 
Developed Framework is performed in the pixel level and it is based on a multi-agent 
system and a case-based reasoning.  

4.3.2 Proposed approach   
Data as available for an interpretation system are always somehow imperfect. Hence, 
imperfection, be it imprecision, uncertainty or ignorance, affect strongly most remotely 
sensed data and must be incorporated into every interpretation process. The term 
“imperfection” is usually used as a most general label. Materially, it can be due to 
imprecision, inconsistency, ignorance, uncertainty, etc (Farah et al., 2008b). Imprecision 
arises from the existence of a value, which cannot be measured with suitable precision. 
These imprecision can be resulting from a noise affecting satellite images that should be 
treated by applying some filters. Uncertainty is a property that arises from a lack of 
information about application nature. The uncertainty is resulting from an unreliable sensor 
or from spatial or temporal constraints. Imprecision and inconsistency are essentially 
properties of the information itself whereas uncertainty is a property of the relation between 
the information and our knowledge about context. The incompleteness reflects the fact that 
information is unable to capture all relevant aspects of an observable event (Bloch, 1996).  
Conventionally, data imperfection was fluently modeled by probability theory. Until 
recently, many new theories have been proposed to deal with this problem. The large 
number of theories reflects the recent acknowledgement that probability theory, as good as 
it is, is not the unique alternative and it is not able to take into account all aspects of data 
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imperfection (Mahler, 2007). Then, the use of inappropriate, unjustified, or purely one 
theory can lead to decline interpretation task and results. Moreover, the majority of 
interpretation systems do not hold into account the imperfection accompanying satellite 
images. Few systems use only one theory with very restricted parameters.  
In this view, in order to handle data imperfection, we propose a new intelligent multi-
approach for uncertain satellite images fusion combining three different data fusion 
methods, namely, the probability, possibility, and evidence methods. This system can 
provide a powerful framework for multi-sensor images fusion and decision-making. 
Therefore, the proposed architecture incorporates the information extracted by learning. It 
includes also some “structures detection” modules based on a set of agents; each of them is 
specialized in the detection of a specific object type.  
Figure 14 summarized the proposed approach, which enclosed three levels of abstraction: 
the low level, the intermediate level and the high level. The three levels are independent and 
cooperate to build the whole image fusion and interpretation process. As shown, proposed 
approach is based on a multi-agent architecture. Interest for multi-agent approach is 
motivated by many factors (Tupin et al., 1999). Primary, as the fusion cell can be 
decomposed into several well-defined stages; each will be accountable of an independent 
processing agent. Second, agent’s interaction, communication and cooperation induce a 
robust treatment process, allowing us to solve difficult situations and to reduce imperfection 
rate (Farah et al., 2006). Thus, a high performance of application can be achieved through 
parallelism between agents. Agents for each level communicate with their counterparts at 
other levels in order to answer requests and to transmit respective information. In our 
system, agent’s knowledge will be stored in the fact basis, allowing a subsequent reasoning 
step using a set of rules. The learning process is necessary to initialize the multi-approach 
and images fusion. The agent of each abstraction level carries on and cooperates and 
generates information to the upper level in order to achieve interpretation task. 
4.3.2.1 Low-level abstraction: 
This level assures the extraction of symbolic information such as borders or homogeneous 
regions. Adopted techniques are intensely associated with data type, but they are 
independent of the application domain. In our approach, we choose to develop a set of 
agents allowing the extraction of useful information for interpretation and fusion tasks such 
as the learning agent, the structure detection agent (river detection, urban detection, etc.), 
the probability agent, the possibility agent, and the evidence agent. To better monitor 
imperfections, the process initializing our system emphasizes a learning process. Learning 
can be supervised or unsupervised allowing functions estimation.  
4.3.2.2 Intermediate-level abstraction: 
The intermediate level performs the designation of symbolic primitives extracted in 
previous level. This level is more sensitive and expresses a notable importance sense it 
provides an articulation component between low and high levels.  
Depending on application’s field, this level can be decomposed into several sub-levels; each of 
them is designed for specific kind of primitives and achieving to a particular transformation or 
a selection. In our case, we develop three types of intermediate-level agents, namely, the 
supervisor structure detection agent, the supervisor fusion agent, and the supervisor learning 
agent. The information gathered by the low-level agents is sent to the supervisor detection 
agent who must use knowledge about this information offered by the high level Decision 
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support system (DSS). The DSS allows recognizing the type of the extracted zones through a 
set of rules stored in the rule basis. The rules are expressed in a language that is close to 
natural language, allowing DSS enrichment. We develop three types of rules: 
1. Radiometric rules: modeling the shade level. 
2. Geometric rules: concerning pixels arrangement. 
3. Topologic rules: concerning the spatial relation and the position of the objects to detect. 
These three kinds of rules do not have the same weight to all images objects. For example, to 
validate the presence of an urban zone, the geometric criterion is more relevant than the 
radiometric and the topologic one. Moreover, the structures’ description is often imprecise. 
To detect structures from images, we develop a set of agents, each of them designed to 
detect a specific object type. We can find for example the humid detection agent, the river 
detection agent, the urban detection agent, and the road detection agent. 
 

 
Fig. 14. Workflow of proposed multi-approach  
4.3.2.3 High-level abstraction: 
This level incorporates the interpretation mechanisms and symbolic representation of the 
scene. Information provided by learning and structure detection agents of intermediate level 
are used by the high-level fusion agents in order to build the resulting fused image.  
In order to optimize the interpretation process, we have developed an agent called the best 
fusion method decision maker. This agent refers to case-based reasoning (CBR) module, which 
is particularly useful for applications where we lack sufficient knowledge either for formal 
representation or for parameter estimation (Bentabet et al., 2002). CBR presents cases related to 
similar previously handled problems; it suggests the solution adapted under similar situations 
and decides what order previous cases can provide for dealing with the current problem.  
This module stores an archive about different fusion cases previously handled (Jurisica & 
Glasgow, 2004). In our approach, each case has three components:  
• The features describing each case: including textual, shape, color, and texture features; 
• Image fusion method: gives a solution to a given problem 
• The case relevance: provided by an expert.  
For a better characterization of problem, we have weighed each problem feature according 
to its importance. A communication is launched between the supervisor fusion agent and 
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the best fusion method decision-maker. For each image, we start by determining the features 
described above. Then we retrieve the best fusion method using a quadtree technique, 
allowing a multilevel structure representation of image features. Each level contains a set of 
nodes reserved for a specific feature (textual, color, texture, or shape).  
The quadtree technique lets us to filter images by gradually increasing the detail level 
(Inglada & Mercier, 2007). Image retrieval can be done in two ways. Globally by comparing 
globally the query image with all case base images, or using a region-based image retrieval 
in which each image in the database is split into different regions by the fuzzy c-means 
method (Archambeau et al. , 2006); then, each region in the input image is compared with all 
regions in the image in the basis.  
For similarity measurement, the Bhattacharyya distance has been adopted (Deb & Zhang, 
2004). The distance between two images is computed using the distance between most 
resembling couples, excluding those having a distance less than a given threshold th.  
After retrieving the closest image to the input one, the fusion method is deduced from the 
corresponding case. If the case basis does not contain a case similar to the current one, the 
three low-level fusion agents are launched.  
The last step consists of evaluating the fusion method. The goal of the evaluation agent is to 
help the expert select the best fusion method for a given sequence of images. In order to 
accomplish that, we opted for a post-fusion analysis based on a confusion matrix. 

4.3.3 Results and validation 
In order to evaluate our multi-approcha fusion, we have used data presented in view 1. The 
possibility method with the T-norm operator was selected as the most suitable fusion 
method for the first example. For the second example, the possibility method with the mean 
operator is the most suitable. Tables 5 and 6 shows, respectively, confusion matrices for the 
possibility methods (T-norm and mean operators). 
To evaluate the performance of the proposed approach, we compare CBR results with those 
obtained following methods: the probability method established on equiprobablity between 
the five images, the possibility method applied with three types of combination operators (T-
norm, T-conorm, and mean). The last method is an unsupervised fusion by evidence theory. 
The images resulting from these fusion methods will be compared according to OK criteria. 
 

 1 2 3 4 5 
1 98.33 1.5 0.17 0.00 0.12 
2 1.55 94.75 3.32 0.38 2.88 
3 0.11 3.59 91.05 4.92 1.28 
4 0.01 0.16 5.33 92.68 2.06 
5 0.00 0.00 0.13 2.02 92.66

Table 5. Confusion matrix of the first example.  

 1 2 3 4 5 
1 93.11 1.03 3.73 2.01 0.12 
2 1.02 93.16 2.07 0.87 2.88 
3 3.75 1.91 89.05 4.01 1.28 
4 2.01 0.82 2.22 92.89 2.06 
5 0.11 3.08 2.93 0.22 92.66

Table 6. Confused matrix of the second example.  
(1:Humid, 2:Parcel, 3:Cultivated, 4:Urban, 5:Sebkha) 
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Tables 7 and 8 present a comparison between the probability, possibility, and evidence 
fusion methods for examples 1 and 2, respectively, according to OK criteria. 
As we can see, the possibility method with T-norm and mean operators has the best value 
for the assessment criteria of the two examples. This result, in perfect correspondence with 
CBR one, proves that our approach seems to be useful and effective. It allows interpretation 
process optimization by avoiding the call of the three fusion methods. 
 

Assessment parameter OK 
Probability theory 0.891

Possibilty theory (1) 0.932
Possibilty theory (2) 0.748
Possibilty theory (3) 0.889

Evidence theory 0.921

Table 7. Evaluation of three fusion method for the fist example.  
 

Assessment parameter OK 
Probability theory 0.882

Possibilty theory (1) 0.781
Possibilty theory (2) 0.866
Possibilty theory (3) 0.893

Evidence theory 0.849

Table 8. Evaluation of three fusion method for the second example.  
 

 
Fig. 15. Classified images for the second example.  

5. Discussion     
In this chapter, we have presented several views for satellite images fusion. As shown, several 
kinds of problems hamper and dampen the quality of a reliable images fusion. Images fusion, 
especially multi-sensor one, is limited by several factors. First, simultaneously acquired multi-
sensor images are not always available for the same area and time. Moreover, interpretation is 
usually limited by spatial resolutions unconformity and data incompatibility. Since there is no 
common recognized procedure to do this, most studies are regularly forced to find empirically 
the best fusion scheme, the most useful data and optimal results. Numerous authors have 
agreed that the fusion should be done usually from separate and heterogeneous data sources. 
We have introduced, in this chapter, a different kind of fusion that is made at the sub-pixel 
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level. Thus, the transformation performed at each pixel attempt to provide additional fusion 
sources. This investigation leads us to overcome the assumption of pixels homogeneity in 
remotely sensed data. Therefore, newest sources, extracted by bind source separation, offers a 
new precise and detailed knowledge about land cover proprieties. 
We have also addressed the dilemma related to an efficient combination of symbolic 
knowledge into fusion process in order to increase interpretation quality. We have thus 
proposed an appropriate framework for this fusion allowing an efficient fusion of both 
images (extracted additional sources) and In-situ data modelled by a fuzzy rule basis. A 
learning capability has been added to calibrate and adjust the model. 
We also showed that the choice of a specific theory for fusion is a tedious task which must 
be done carefully; taking into account several parameters such as study context, available 
data etc. Proposed multi-view is an accomplished way for finest interpretation of large 
volumes data from multiple sources. Against feature or decision level fusion, all proposed 
views in this chapter operate in the pixel and sub-pixel have the opportunity to use all 
available original data. This leads us to reduce the loss of information occurring during the 
feature extraction process. 

6. Conclusions 
In this chapter, we reviewed some images fusion approaches on remote sensing field. We 
have shown, by exposing various interpretation views, that the sub-pixel fusion level has 
become a successful way to overcome difficulties related to multi-sensor and multi-source 
images fusion. Hence, the growth of signal processing techniques and symbolic knowledge 
enable a new fusion leading to an enhanced interpretation quality. Besides knowledge 
integration, the election of the optimum fusion approach and results evaluation of pixel and 
sub-pixel level image fusion have been well studied in this chapter, each view was designed 
to solve a specific fusion issue. 
Obtained results show that the sub-pixel fusion level has been rapidly developing and 
gradually becoming mature. Therefore, fusion process issues and practical matters 
associated with the implementation of such image fusion strategy should be considered 
seriously. Challenges remain with regard to developing intelligent fusion methods adapting 
to vastly different situations. However, there still remain many issues that deserve to be 
studied further such as mathematic formulation and learning incorporation. In addition, the 
development of the sub-pixel level image fusion techniques urgently demands widely 
accepted, objective quality metrics. 
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We have also addressed the dilemma related to an efficient combination of symbolic 
knowledge into fusion process in order to increase interpretation quality. We have thus 
proposed an appropriate framework for this fusion allowing an efficient fusion of both 
images (extracted additional sources) and In-situ data modelled by a fuzzy rule basis. A 
learning capability has been added to calibrate and adjust the model. 
We also showed that the choice of a specific theory for fusion is a tedious task which must 
be done carefully; taking into account several parameters such as study context, available 
data etc. Proposed multi-view is an accomplished way for finest interpretation of large 
volumes data from multiple sources. Against feature or decision level fusion, all proposed 
views in this chapter operate in the pixel and sub-pixel have the opportunity to use all 
available original data. This leads us to reduce the loss of information occurring during the 
feature extraction process. 

6. Conclusions 
In this chapter, we reviewed some images fusion approaches on remote sensing field. We 
have shown, by exposing various interpretation views, that the sub-pixel fusion level has 
become a successful way to overcome difficulties related to multi-sensor and multi-source 
images fusion. Hence, the growth of signal processing techniques and symbolic knowledge 
enable a new fusion leading to an enhanced interpretation quality. Besides knowledge 
integration, the election of the optimum fusion approach and results evaluation of pixel and 
sub-pixel level image fusion have been well studied in this chapter, each view was designed 
to solve a specific fusion issue. 
Obtained results show that the sub-pixel fusion level has been rapidly developing and 
gradually becoming mature. Therefore, fusion process issues and practical matters 
associated with the implementation of such image fusion strategy should be considered 
seriously. Challenges remain with regard to developing intelligent fusion methods adapting 
to vastly different situations. However, there still remain many issues that deserve to be 
studied further such as mathematic formulation and learning incorporation. In addition, the 
development of the sub-pixel level image fusion techniques urgently demands widely 
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1. Introduction 
The recent advances in sensor technology, microelectronics and multisensor systems have 
motivated researchers towards processing techniques that combine the information 
obtained from different sensors. For this purpose a large number of image fusion techniques 
[Mukhopadhyay & Chanda, 2001; Pohl & van Genderen, 1998, Tsagaris & Anastassopoulos, 
2005; Piella, 2003] have been proposed in the fields of remote sensing, medical diagnostics, 
military applications, surveillance etc. The main goal of these image fusion techniques is to 
provide a compact representation of the multiple input images into a single grayscale one 
that contains all the important original features. Such an image provides improved 
interpretation capabilities but can also be used for further computer processing tasks, like 
feature extraction or classification. 
The performance of image fusion techniques is sometimes assessed subjectively by human 
visual inspection. The reproduction of subjective tests is often time-consuming and 
expensive, while the exact same conditions for the test cannot be guaranteed. This has led to 
a rising demand for objective measures in order to rapidly compare the results obtained 
with different algorithms or to obtain optimal settings for a specific fusion algorithm. The 
objective evaluation of the performance of pixel level fusion methods is addressed in this 
book chapter. The image fusion processes can be classified in grayscale or color methods 
depending on the resulting fused image. 
For this purpose the general framework of objective evaluation of image fusion is discussed 
and different fusion measures are discussed. Moreover, a global measure for grayscale 
image fusion schemes, IFPM, based on information theory is presented. The measure 
employs mutual and conditional mutual information in order to assess and represent the 
amount of information transferred from the source images to the final fused grayscale 
image. Accordingly, the common information contained in the source images is considered 
only once in the performance evaluation procedure. The experimental results clarify the 
applicability of the IFPM measure in comparing different fusion methods or in optimizing 
the parameters of a specific algorithm. 
Moreover, a measure for objectively assessing the performance of color image fusion 
methods, CIFM, is presented in this chapter. Two different aspects are considered in 
establishing the measure, namely the amount of common information between the source 
images and the final fused image as well as the distribution of color information in the final 
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motivated researchers towards processing techniques that combine the information 
obtained from different sensors. For this purpose a large number of image fusion techniques 
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military applications, surveillance etc. The main goal of these image fusion techniques is to 
provide a compact representation of the multiple input images into a single grayscale one 
that contains all the important original features. Such an image provides improved 
interpretation capabilities but can also be used for further computer processing tasks, like 
feature extraction or classification. 
The performance of image fusion techniques is sometimes assessed subjectively by human 
visual inspection. The reproduction of subjective tests is often time-consuming and 
expensive, while the exact same conditions for the test cannot be guaranteed. This has led to 
a rising demand for objective measures in order to rapidly compare the results obtained 
with different algorithms or to obtain optimal settings for a specific fusion algorithm. The 
objective evaluation of the performance of pixel level fusion methods is addressed in this 
book chapter. The image fusion processes can be classified in grayscale or color methods 
depending on the resulting fused image. 
For this purpose the general framework of objective evaluation of image fusion is discussed 
and different fusion measures are discussed. Moreover, a global measure for grayscale 
image fusion schemes, IFPM, based on information theory is presented. The measure 
employs mutual and conditional mutual information in order to assess and represent the 
amount of information transferred from the source images to the final fused grayscale 
image. Accordingly, the common information contained in the source images is considered 
only once in the performance evaluation procedure. The experimental results clarify the 
applicability of the IFPM measure in comparing different fusion methods or in optimizing 
the parameters of a specific algorithm. 
Moreover, a measure for objectively assessing the performance of color image fusion 
methods, CIFM, is presented in this chapter. Two different aspects are considered in 
establishing the measure, namely the amount of common information between the source 
images and the final fused image as well as the distribution of color information in the final 
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image in order to achieve optimal color representation. Mutual information and conditional 
mutual information are employed in order to assess information transfer between the source 
images and the final fused image. Simultaneously, the distribution of colors in the final 
image is explored by means of the hue coordinate in the perceptually uniform CIELAB 
space. The proposed measure does not depend on the use of a target fused image for the 
objective performance evaluation. It is employed experimentally for objective evaluation of 
fusion methods in the cases of medical imaging and night vision data. 

2. Image fusion measures 
The problem of objective evaluation has not been addressed only in image fusion 
applications. A large number of metrics has been proposed over the years for assessing 
image and video fidelity. An informative overview on the topic can be found in [Avcibas et 
al, 2002]. These measures cannot be applied to evaluate image fusion methods since they 
require an ideal target image. Such an image is not always available as it happens in the 
field of remote sensing or medical imaging. 
The performance of image fusion techniques is sometimes assessed subjectively by human 
visual inspection [Toet and Franken, 2003]. The reproduction of subjective tests is often 
time-consuming and expensive, while the exact same conditions for the test cannot be 
guaranteed. This has led to a rising demand for objective measures in order to rapidly 
compare the results obtained with different algorithms or to obtain optimal settings for a 
specific fusion algorithm. 
In this context, [Xydeas & Petrovic, 2000] proposed a measure based on edge information 
that is probably the first objective image fusion measure. The authors associated the 
important visual information with the “edge” information that is present in each pixel of an 
image. The evaluation of the amount of edge information that is transferred from input 
images to the fused image is employed as a measure of fusion performance. The edge 
detection process is based on Sobel algorithm that is applied both horizontally and 
vertically. The edge strength and the orientation information for each pixel are comprised 
and for an input image  we calculate 

    (1) 

    (2) 

Relative values of edge strength and orientation are calculated for a source image A and a 
fused image F is 

 
if

erwise
   (3) 

These are used to derive the edge strength and orientation preservation values 

    (4) 
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 and  model perceptual loss of information in F, in terms of how well the 
strength and orientation values of a pixel in A are represented in the fused image. The 
constants  and   determine the exact shape of the sigmoid functions used to 
form the edge strength and orientation preservation values. Edge information preservation 
values are then defined as 

   (6) 

while  takes its values in the range zero to one. A value of zero corresponds to the 
complete loss of edge information, at location (n,m), as transferred from A into F.  
indicates “fusion” from A to F with no loss of information. The authors have also proposed 
weighted versions of the  criterion. The main drawback of this approach is the loss of 
information related with texture since it is mostly based on edge detection.  
Moreover, in [Piella & Heijmans, 2003], an image quality index proposed by [Wang & Bovik, 
2002] has been used for image fusion assessment. This measure is based on the second order 
statistics of both the source images and the final fused image, in order to assess fusion 
performance. The  measure is calculated as: 

    (7) 

but it can also be analyzed as: 

    (8) 

Each image is a random variable , and its mean value and variance are  respectively. 
The first term in (8) is the correlation coefficient between images  and . The value of  
ranges between -1 and 1 and is a measure of similarity between the two images. Piella and 
Heijmans, were based on the fact that image signals are generally non-stationary, thus it is 
more appropriate to measure the image quality index  over local regions and then 
combine the different results into a single measure. The fusion measure is given by  

  (9) 

where  are local weights in the range of zero to one.  
The ERGAS measure [Wald et al, 1997] which is an error index that offers a global picture of 
the quality of a fused product. The index is called ERGAS after its name in French, means 
relative dimensionless global error and is given by 

  (10) 

where  is the ratio between pixel sizes in cases of pansharpened and multispectral images, 
 is the mean of the K band and K is the number of bands. According to the authors, an 

ERGAS value greater than 3 corresponds to fused products of low quality, while an ERGAS 
value lower than 3 denotes a product of satisfactory quality. 
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Especially for remote sensing applications, [Alparone et al, 2004] proposed the Q4 index that 
is suitable for MS imagery having four spectral bands. Both spectral and radiometric 
distortion measurements are encapsulated in a unique measurement, simultaneously 
accounting for local mean bias, changes in contrast, and loss of correlation of individual 
bands, together with spectral distortion. 
More recently, the measures that have been proposed for objective evaluation of image 
fusion are based in information theory. These approaches provide a more general 
assessment of each image and have attracted the interest of a lot of researchers. A short 
discussion on basics of information theory is needed before presenting the IFPM and CIFM 
measures for grayscale and color image fusion respectively. 
In [Qu et al, 2002], the authors introduced an information measure for image fusion 
assessment, which employs mutual information for representing the amount of information 
that is transferred from the source images to the final fused image. The overall fusion 
performance is the sum of mutual information between each source image and the final 
fused image. In this approach only the common information between each of the source 
images and the fused image is considered whereas no attention has been paid to the 
overlapping information of the source images. Additionally, the values of this measure are 
not bounded, e.g. in the range , so the comparison between different fusion 
algorithms and data sets is not straightforward. The concepts of the overlapping 
information and comparable fusion performance are also considered in the following fusion 
measures.  

3. Information theory basics 
In this section the basic concepts from information theory, that are needed to describe the 
information and the common information between images, are provided. These concepts are 
used in different image fusion measures in order to evaluate and describe the amount of 
information in each image as well as common information between two or more images.  
Each source image or the final grayscale image is considered as being a discrete random 
variable. The entropy or total information  for a discrete random variable , is defined 
as 

      (11) 

where  is the probability density function of the variable. Entropy is always a finite, 
positive number for discrete random variables and takes its maximum value in the case of a 
uniformly distributed variable. In the case of an image, entropy describes the total amount 
of information. The joint entropy  for a pair of random variables   with joint 
distribution  is defined as 

    (12) 

In addition the conditional entropy of a random variable  given the random variable  is 
expressed as  

  (13) 

The chain rule for two variables is expressed as . The generalized 
entropy chain rule is  
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  (14) 

The common information shared between two random variables   is expressed by the 
mutual information that is defined as 

    (15) 

It can be proved that mutual information is always a positive quantity that vanishes only if 
. Therefore, it can be interpreted as a measure of the statistical 

dependence between  and . The relationship between mutual information and 
conditional entropy is given by  

   (16) 

The above quantities are schematically demonstrated by the Venn diagram of Figure 1. 
 
 

 
Fig. 1. The relationship between entropy and mutual information for two variables 

The conditional mutual information of random variables   and  given  is defined by  

    (17) 

and can be seen as the reduction in the uncertainty of  due to the knowledge of  when  
is given [Cover & Tomas, 1991]. The interpretation of conditional mutual information in a 
Venn diagram can be found in Figure 2. Apparently, conditional mutual information 
describes the shared information between two variables when a third variable has already 
been considered. Thus, conditional mutual information is employed to address the problem 
of overlapping information. The chain rule for mutual information is expressed as  

   (18) 

The  measure is based on mutual information in order to evaluate the amount of 
information that is transferred from the source images to the final fused representation. 
Moreover, the use of conditional mutual information guarantees that the overlapping 
information of the source images is considered only once. 
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Fig. 2. The conditional mutual information for three variables 

4. Grayscale image fusion evaluation 
The purpose of an image fusion process is to combine a number of multimodal or 
multispectral images into a final entity that comprises the maximum possible information, 
which is present in the source images. The source images often exhibit a high degree of 
correlation since the same area is covered in different regions of the electromagnetic 
spectrum or with complementary imaging technologies. Thus, the same information can be 
found in more than one of the source images and is described as overlapping information. 
For example, in the case of multispectral imagery, each band reveals different aspects of the 
same scene but, at the same time, a large amount of overlapping information can be seen 
due to texture or spectral correlation. In an objective assessment of the effectiveness of a 
fusion algorithm the overlapping information should be considered only once and this 
problem has not been addressed in the existing measures. 

4.1 The IFPM measure 
The aim of the authors’ work in [Tsagaris & Anastassopoulos, 2006] was to provide an 
information-based global measure for objective performance evaluation of image fusion 
schemes. The proposed Image Fusion Performance Measure (IFPM) employs mutual 
information as well as conditional mutual information in order to evaluate the amount of 
information transferred from the source images to the final fused image.  
IFPM is based on information quantities in order to objectively evaluate the performance of 
a fusion method. These quantities are evaluated all over the image resulting in a measure 
that can be regarded as global or universal. Each source image  is treated as a discrete 
random variable with corresponding pdf , while all the information quantities, described 
in the previous section, are employed. The resulting fused image is denoted as  while the 
corresponding probability density function as . Mutual information  describes 
the common information between the source image  and the final fused image . The 
conditional mutual information  describes the common information between  
and  given . In this way, only the information that is present in  is considered in the 
evaluation of the common information between  and . In its general form the conditional 
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mutual information  guarantees that the overlapping information 
between the source images  is considered only once. The sum of all the conditional 
information represents the total amount of common information , transferred from the 
source images  to the final fused image  and is expressed as  

   (19) 

On the other hand the joint entropy  represents the total amount of 
information that is present in the source images. The Image Fusion Performance Measure 

is defined as 

   (20) 

takes values in the range  where zero corresponds to total lack of common 
information between the source and the fused image and one corresponds to an effective 
fusion process that transfers all the information from the source images to the fused image 
(ideal case). 

4.2 Evaluation of grayscale image fusion based on IFPM 
In order to have a descriptive overview of objective evaluation we employ  in order to 
compare four different fusion methods applied to three different data sets. The first fusion 
method that will be further referred to as Method 1, is a simple averaging of the source 
images. Method 2 is the well-known principal component analysis (PCA) algorithm, which 
is applied to the source images and the first principal component is considered as the final 
fused image. An approach based on discrete wavelet transform (DWT) and specifically on 
DBSS(2,2) is considered as Method 3 [Piella, 2003]. Finally, a fusion approach based on 
multiscale morphological pyramid [Mukhopadhyay and Chanda, 2001] is employed as 
Method 4. 
The first data set used in this work consists of four multispectral bands and has been 
acquired by IKONOS-2 sensor. The radiometric resolution of each band is 11 bits. The 
ground resolution provided by IKONOS-2 for the multispectral imagery is 4m. The 
spectral range of the sensor is in the visible and near infrared region of the EM spectrum. 
The area covered in this multispectral image is mainly an urban area with a structured 
road network, a forest, a stadium, a park etc. The natural color composite image is shown 
in Figure 3(a), while in Figure 3(b), the near-infrared band is depicted. For perceptual 
comparison of the four fusion methods, their output fused images are demonstrated in 
Figure 3(c) to 3(f) for the fusion methods 1 to 4 respectively. A comparison of the fusion 
results at this point, from a perceptual point of view, reveals that all fusion methods 
provide an improved representation with methods 2 and 3 (PCA and DWT) to perform 
superiorly. 
The second data set is derived from the night vision research area and comprises a color 
image of a scene representing a sandy path, trees and fences (Fig. 4(a)) and a midwave 
infrared (3-5 m) image in which a person is standing behind the trees and close to the fence, 
as shown in Fig. 4(b). The data set has been provided by TNO, Human Factors and a more 
detailed description of the data acquisition procedure can be found in [Toet, 2003]. The 
results of the four fusion methods are available for subjective visual evaluation in Figure 
4(c)-4(f). Similar comments regarding the performance of the four methods, from a 
perceptual point, are valid for this data set as well.  
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The evaluation of the four fusion methods for two different data sets based on the 
information theory measures can be found in Table 1 and  reveals some interesting aspects 
of image fusion. The first conclusion is that there is no superior or outperforming image 
fusion method that can be used regardless the application. This conclusion has also been 
reported in [Toet and Franken, 2003, Qu et al, 2002] and proves that evaluation of image 
fusion performance in a real application, without having an ideal target image, is a 
complicated issue. Moreover, the type of the data involved in the image fusion process plays 
an important role. For example, in the case of high resolution multispectral data the source 
images to be fused possess a lot of features or objects with high edge information content. 
On the other hand, if thermal imagery is to be fused the visual features that are to be merged 
have a rather coarse outline. 
The authors of [Tsagaris and Anastassopoulos, 2006] have compared the two measures in 
order to reveal the concept of overlapping information with a trivial case in which 
overlapping information is present between the source images. The results demonstrated 
that IFPM measure is not affected by the overlapping information, while the same 
conclusion does not hold for MI measure. Moreover, IFPM provide largest percentages of 
differentiation between the fusion methods and gives comparable results. 
 

 Dataset 1 
Remote sensing 

Dataset 2 
Night vision 

 IFPM MI IFPM MI 

Method 1 0.2629 3.4755 0.3104 2.0684 

Method 2 0.2993 3.9023 0.3247 3.2043 

Method 3 0.3050 3.4318 0.3704 2.8024 

Method 4 0.2434 1.7036 0.4063 3.5632 

Table 1. Objective performance evaluation using IFPM and MI  for the two datasets 

5. Color image fusion  
The objective measures discussed so far address the problem of grayscale image fusion that 
is fusion methods that result in grayscale representations. However, these measures cannot 
be trivially extended into color image fusion techniques.  
 

 
Fig. 5. Color image fusion process 
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is fusion methods that result in grayscale representations. However, these measures cannot 
be trivially extended into color image fusion techniques.  
 

 
Fig. 5. Color image fusion process 
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In an ordinary fusion procedure,  multimodal or multispectral images are regarded as 
being the source images to be fused in order to produce a final color representation as 
shown in Figure 5. This color representation should perform as an ideal candidate for both 
detection and classification purposes and furthermore, be perceptually of high quality. 
Fusion methods that result in color images have to be assessed for the way they distribute 
the source information in the intensity, hue and saturation components since the main 
motivation behind color image fusion is the ability of the human vision system to 
distinguish thousands of colors.  The fused color image is often formed in the RGB color 
space that is used in nowadays standard display devices and most computer vision tasks. 
However, the transformation of the color image in a uniform color space like CIELAB seems 
suitable in order to objectively evaluate the image fusion performance since in this color 
space the luminance component is independent of the chromaticity components. 
Assessment of the effectiveness of a fusion method to result in a final image with maximum 
perceivable color information should be carried out in a perceptually uniform color space. 
The perceptually uniform CIELAB space consists of an achromatic luminosity component  
and two chromatic values  and  , each one incorporating opponent colors [Malacara, 
2002]. An alternative way to represent color characteristics is by transforming the   
components into cylindrical   and  coordinates on the   plane, given by 

     (21) 

     (22) 

where  correlates with chroma and  is an angle correlating with hue. In this system, 
an average observer is more sensitive to hue than to chroma differences [Malacara, 2002]. 
The  measure employs the  coordinate to evaluate the color distribution in the final 
fused color image. 

5.1 The CIFM measure 
An approach for objectively assessing the performance of image fusion methods resulting in 
color images should address two issues. The problem of transferring information from the 
sources images and in the same time the problem of distributing this information in a color 
image that is color distribution in the final representation. The sources images could be 
either several grayscale images or a color image and grayscale images. In the case of a RGB 
color image each channel is regarded as a grayscale image.  
The Color Image Fusion Measure (CIFM) presented in [Tsagaris, 2009] takes into 
consideration the amount of information transferred to the final image and, at the same 
time, the variety of colors obtained. It is a two component vector and each component deals 
with one of the two issues of the objective color image fusion evaluation previously 
described.  The first terms concerns the amount of common information , between the 
intensity component of the final fused color image in the CIELAB color space, denoted as  
and the source images  expressed as  

    (23) 

or equivalently 

   (24) 
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The joint entropy  represents the total amount of information that is present 
in the source images and is used in order to derive a normalized version of the amount of 
common information. The Image Fusion Performance Measure  was defined as 

   (25) 

The angular coordinate  is additionally employed in order to evaluate the distribution of 
colors and hues in the final image. In [Tsagaris & Anastassopoulos, 2005(b)] the concept of 
an image with Maximum Realizable Color Information (MRCI) and uniformly distributed 
information in the CIELAB color space and thus maximum perceivable information was 
proposed. The evaluation of the marginal distribution is carried out numerically using the 
uniformly distributed vector population in the CIELAB space for the MRCI image and it 
turns out that these marginal probabilities are not uniform [Tsagaris & Anastassopoulos, 
2005(b)] mainly due to the non-cylindrical shape of the CIELAB color space. In order to 
evaluate the color distribution the authors employed the angular coordinate  and its 
marginal probability density function  which is calculated using 

  (26) 

The color image resulting from the fusion process is considered in the CIELAB space and its 
 coordinate has a marginal pdf denoted as . The Kullback-Leibler or relative 

entropy distance between the probability mass functions  and  is employed in 
order to quantify the similarity between the distribution of the color image resulted from the 
fusion process and the image with the maximum perceivable information. It is defined as 

  (27) 

If  is close to , the quantity  is close to zero, which means that the 
image resulting from the fusion process,  with histogram  has a an almost ideal 
distribution of color and hues in the CIELAB space. In order to have an easily comparable 
measure we propose the Hue Distribution  is given by 

  (28) 

The is expressed as  

  (29) 

The two vector components deals with the two problems of the objective color image fusion 
evaluation discussed in the previous section. A large value of  indicates that a large 
amount of information is transferred from the source images to the luminance  of the final 
fused color image. The use of mutual information along with conditional mutual 
information guarantees that no overlapping information is considered in this objective 
evaluation. Simultaneously, the  term measures the divergence of the hue coordinate in 
the CIELAB space of the fused color image from the hue coordinate of an image with 
uniform distribution in the CIELAB space. In this way, it provides an objective assessment 
of the variety of colors in the specially selected  coordinate. Both vector components are 
calculated in the CIELAB color space in order to take advantage of the perceptual 
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order to quantify the similarity between the distribution of the color image resulted from the 
fusion process and the image with the maximum perceivable information. It is defined as 

  (27) 

If  is close to , the quantity  is close to zero, which means that the 
image resulting from the fusion process,  with histogram  has a an almost ideal 
distribution of color and hues in the CIELAB space. In order to have an easily comparable 
measure we propose the Hue Distribution  is given by 

  (28) 

The is expressed as  

  (29) 

The two vector components deals with the two problems of the objective color image fusion 
evaluation discussed in the previous section. A large value of  indicates that a large 
amount of information is transferred from the source images to the luminance  of the final 
fused color image. The use of mutual information along with conditional mutual 
information guarantees that no overlapping information is considered in this objective 
evaluation. Simultaneously, the  term measures the divergence of the hue coordinate in 
the CIELAB space of the fused color image from the hue coordinate of an image with 
uniform distribution in the CIELAB space. In this way, it provides an objective assessment 
of the variety of colors in the specially selected  coordinate. Both vector components are 
calculated in the CIELAB color space in order to take advantage of the perceptual 
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uniformity of this color space and the independency between the luminosity component  
and the chromatic components.  

5.2 Objective evaluation of color image fusion methods 
The proposed  is experimentally used in this section in order to assess the performance 
of four different fusion methods resulting in color images. In the following paragraphs a 
short description of the tested fusion methods is provided. Moreover, the experimental data 
from three different application areas are presented. Then, the two components of the  
measure, namely  and  are calculated for all data sets and for each fusion method 
and the results are discussed in order to derive conclusions.  
Method 1 - The first fusion scheme, will be referred to as Method 1, is the well known 
Karhunen-Loewe transform or equivalently principal components analysis (PCA). In this 
approach the source data are transformed into an orthogonal space and then the first three 
principal components corresponding to the largest eigenvalues of the covariance matrix, are 
mapped to the RGB channels in order to form a color image.  
Method 2 - This color image fusion scheme is based on perceptual attributes [Tsagaris & 
Anastassopoulos, 2005]. The approach takes into consideration the inherent high correlation 
of the RGB bands in natural images. The resulting image is directly formed in the RGB color 
space and no further transformation is needed. The main advantage of the method is that it 
results in fused color images with adjustable covariance matrix.  
Method 3 - A large variety of color image fusion methods based on wavelet methods has 
been proposed in the literature [Piella, 2003]. In these approaches the wavelet 
decomposition of the original images is merged using different fusion rules applied to the 
approximations coefficients and the details coefficients. Then inverse wavelet transform is 
applied to the merged coefficients in order to derive the final fused color image. Method 3 is 
based on the DBSS(2,2) wavelet and fusion is applied by taking the maximum for 
approximation and the minimum for the details coefficients.  
Method 4 - Finally, Method 4 [Tsagaris & Anastassopoulos, 2005] is a fusion scheme based on 
non-negative matrix factorization [Lee & Seung, 1999] and the application of a color transfer 
technique. In this way an additive representation of the source features is obtained while 
inappropriate color mappings are avoided due to the use of color transfer. Simultaneously, 
the overall discrimination capabilities in the final fused color image are enhanced.  
The source experimental data employed in this work are three data sets one derived from 
the field of medical imaging, the second from the area of night vision and the third from the 
field of remote sensing. These data sets originate from different research fields and are 
acquired with different imaging techniques in order to cover in the experimental results 
different source data and a variety of research challenges in image fusion.  
Dataset 1 - The first data set is composed of multi-modal medical images selected from the 
Brain Atlas collection of the Medical Harvard School.  A four-dimensional vector space is 
considered, where a greyscale magnetic resonance image (MRI) and the three components 
of a computed tomography (CT) pseudo-color image, shown in Figure 6 (a) and (b) 
respectively, define the axes of this space. The two images are registered and of the same 
size. Employing the aforementioned fusion methods, four different final color images are 
obtained as shown in Figure 6(c) – (f) respectively. 
Dataset 2 - The second data set is from the research field of night vision and thermal 
imaging, and was also described in the case of grayscale image fusion. It comprises a color 

82 Image Fusion
Performance Evaluation of Image Fusion Methods 83 

image of a scene representing a sandy path, trees and fences and a midwave infrared (3-
5 m) image in which a person is standing behind the trees and close to the fence.  
Dataset 3 - The third data set originates from the field of remote sensing. It consists of 
multispectral data acquired from the ENVISAT satellite and specifically MERIS sensor. 
MERIS (MEdium Resolution Imaging Spectrometer Instrument) measures the solar 
radiation reflected by the Earth at a ground spatial resolution of 300m, in 15 spectral bands, 
programmable in width and position, in the visible and near infra-red region of the 
electromagnetic spectrum. The geographical area is in the South part of Greece and covers 
both sea and land. The results of the previously described fusion methods can be found in 
Figure 7. 
 
 
 

a) b) 
 

c) 

d) e) 
 

f) 

Fig. 6. Source data and fused color images. In (a) original MRI image and (b) the 
corresponding PET image (registered). (c) result of Method 1, (d) result of Method 2, (e) 
result of Method 3 and (f) result of Method 4 

The proposed  vector measure is calculated for the above described color image fusion 
methods. The two components of the measure namely,  and  are calculated and the 
results are summarized in Table 2 for the medical data.  In the case of the medical data set 
Method 2 outperforms other methods for both  and  vector components whilst 
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respectively, define the axes of this space. The two images are registered and of the same 
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Method 4, based on NMF is having a comparable performance. The first method based on 
PCA is having a significant performance as derived from the   measure but it achieves 
poor results in the color distribution since the final color image is dominated by red color 
(first principal component). The Method 3 based on wavelet approach provides a good 
solution but not the best one. 
The same procedure for the calculation of the proposed measure is applied for the case of 
the night vision data. In the case of the second dataset Method 3 provides the best results in 
both  and  measures. Method 2 is the second best solution and demonstrates a 
comparable high performance since it merges all the important features of the source images 
in the final fused representation. The poor performance of Method 1 is mainly due to the 
statistical nature of the PCA approach that fails to transfer small details of the source images 
in the final fused color image. 
 

a) 
 

b) 

c) 
 

d) 

Fig. 7. Source Results of the fusion methods applied on MERIS data. In (a) result of Method 
1, (b) result of Method 2, (c) result of Method 3 and (d) result of Method 4 
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The vector components of the  measure are also calculated for the case of the third 
dataset from the field of remote sensing. Method 2 achieves superior performance in both 

 and  components for the case of the third dataset. The fusion method that is based 
on the wavelet approach is having a comparable performance especially in the color 
distribution expressed by   measure. Method 4 achieves rather good but not optimal 
results in any measure whilst Method 1 fails to provide an efficient performance both in the 
information transfer but also in the color distribution. 
These results are compliant with findings reported for the cases of grayscale image fusion 
[Toet & Franken, 2003, Xydeas & Petrovic, 2000, Qu et al, 2002, Tsagaris & Anastassopoulos, 
2006] which state that there is no superior image fusion method that can be applied in all 
datasets. Thus, objective evaluation of fusion schemes should be employed in order to 
decide on the best available solution for the specific application. Moreover, image fusion 
measures are also useful in parameter calculation and optimization for a specific image 
fusion method. 
 

 Dataset 1 
Medical data 

Dataset 2 
Night vision 

Dataset 3 
Remote sensing 

 

Method 1 – PCA 0.3601 0.0503 0.1912 0.4848 0.2466 0.2811 

Method 2 – VTVA 0.4850 0.9201 0.2423 0.6418 0.4248 0.7758 

Method 3 – DBSS 0.3562 0.6216 0.2805 0.9034 0.3709 0.7558 

Method 4 – NMF 0.4485 0.8444 0.2085 0.5997 0.3687 0.5226 

Table 2. Objective performance evaluation using  and  for the different datasets 

The two components of the  measure can also be used for a graphical representation in 
order to evaluate image fusion methods. The  vector components, namely  and 

 provide an orthogonal base for a two dimensional vector space ( , ) where each 
fusion method is regarded as a single point. Each vector component can also be used 
independently in certain applications. For example,  could be employed if the amount 
of information transferred from the source images to the final image is important since 
further digital processing will be employed. On the other hand if the fused image will be 
used by visual experts then special attention should be given to the color distribution and 
thus  provide a useful tool.  
The results of Table 2 are depicted in a graphical representation in Figure 8. The same 
conclusions about the performance of the four different fusion methods can be derived from 
this figure. Based on this representation, one may try to describe the  measure in a 
scalar rather than a vector form, i.e. to use a distance expressed as 

. However, this or any similar approach fails to describe the two 
important issues in the color image fusion performance evaluation that is the assessment of 
information transferred to the final image and also the distribution of colors in the final 
fused color image and therefore should be employed in specific cases only.    
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Simultaneously, the evolution in color image fusion methods will result in new objective 
measures for these applications. Finally, the use of objective evaluation in real time 
applications leads to a new research field dealing with the development of dedicated 
software/hardware for real time objective evaluation of image fusion.  
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1. Introduction

Image fusion is a process of combining a set of images of the same scene into one composite
image. The main objective of this technique is to obtain an image that is more suitable for
visual perception. This composite image has reduced uncertainty and minimal redundancy
while the essential information is maximized. In other words, image fusion integrates
redundant and complementary information from multiple images into a composite image but
also decreases dimensionality. There are many methods discovered and discussed in literature
that focus on image fusion. They vary with the aim of application used, but they can be
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spatial or in transform domain. This kind of algorithms work as a local operation despite
of transform used and can generate undesirable artifacts. These methods can be enhanced
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Macro photography is a type of close-up photography. In the classical definition it is described
as photography in which the image on film or electronic sensor is at least as large as the
subject. Therefore, on 35mm film, the camera has to have the ability to focus on an area
at least as small as 24 × 36mm, equivalent to the image size on film (magnification 1:1). In
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while the essential information is maximized. In other words, image fusion integrates
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The different classification of image fusion involves pixel, feature and symbolic levels
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spatial or in transform domain. This kind of algorithms work as a local operation despite
of transform used and can generate undesirable artifacts. These methods can be enhanced
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(2007)). Feature-based methods use segmentation algorithms to divide images into relevant
patterns and then combine them to create output image by using various properties (Piella
(2003)). High-level methods combine image descriptions, typically, in the form of relational
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In this work we use image fusion algorithm to achieve first of our aims, i.e. to obtain the
deepest possible depth-of-field in macro-photography using standard digital camera images.
Macro photography is a type of close-up photography. In the classical definition it is described
as photography in which the image on film or electronic sensor is at least as large as the
subject. Therefore, on 35mm film, the camera has to have the ability to focus on an area
at least as small as 24 × 36mm, equivalent to the image size on film (magnification 1:1). In
other words, macro photography means photographing objects at extreme close-ups with
magnification ratios from about 1:1 to about 10:1. There are some primary difficulties in macro
photography; one of the most crucial is the problem of insufficient lighting. When using some
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cameras to take photos in the macro-mode, the camera must be positioned so close to the
object that it touches the front piece of glass in the lens. In this case it is impossible to place
a light source between the camera and the subject, making extreme close-up photography
impractical. 50mm is a typical focal-length lens used on a 35mm camera, and can focus so
close that the lighting problem remains. The method of choice in such situations is usually to
use a telephoto macro lenses. When using such devices in macro photography it is possible
to increase the focal length to be grater than 100mm. But this implies second problem of
macrophotography – very shallow Depth-of-Field (DOF) (see Figure 1(a)).
Because it is very difficult to obtain high values of DOF for extreme close-ups it is essential to
focus on the most important part of the subject. Any other elements that are even a millimeter
farther or closer may appear blurred in the acquired photo. For this reason, special devices like
advanced tripods for a medium-scale objects or microscope stage for micro-scale objects are
required for precise focusing. The depth of field can be defined as the distance in front of and
behind the subject appearing in focus. Only a very short range of the photographed subject
will appear in exact focus. This focus decreases rapidly on either side of this distance, but due
to imperfections of the human eye the focused area seems to be much bigger. This focused area
decreases more quickly in front of the focus point than behind as the angle of the light rays
changes more rapidly when it is closer to the lens, while becoming parallel with increasing
distance. It is for these reasons that there is no precise definition of what is focused; there are
many factors that determine whether the subject appears in focus. The most important factor
is how a single point is mapped onto the film area. If a given point is exactly at the focus
distance it will be imaged as one point on the film, but if this point is farther or nearer it will
produce a disk whose border is known as a “circle of confusion”. These circles can be used to
define the measure of focus and blurriness as they increase in diameter the further away they
are from the focus point. For the most common size of 35mm camera negative (22x16mm),
the acceptable “circle of confusion“ diameter at which human eye is able to distinguish such
a circle as a dot is usually set to 0.05mm. The film size is also important when considering the
depth of field problem because, for a given scene, the larger the negative is then the longer
the lens needed to capture it. Summarizing, for a specific film format, the depth of field is
described as a function parameterized by: the focal length of the lens, the diameter of the lens
opening (the aperture), and the distance between the subject and the camera. Let D be the
distance at which the camera is focused, F the focal length (in millimeters) calculated for an
aperture number f and k - the ”circle of confusion” for a given film format (in millimeters),
then depth of field (DOF) (Constant (2000)) can be defined as:

DOF1,2 =
D

1 ± 1000×D×k× f
F2

(1)

where DOF1 is distance from the camera to the far depth of field limit, and DOF2 is the
distance from the camera to the near depth of field limit. The aperture controls the effective
diameter of the lens opening. Reducing the aperture size increases the depth of field, however,
it also reduces the amount of light transmitted. Lenses with a short focal length have a
greater depth-of-field than long lenses. Greater camera-to-subject distance results in a greater
depth-of-field (see Figure 1(b)). We use this optical phenomenon to determine the distances
from the camera to every point of the scene which gives as the height map field of this scene.
The height map field allows us to achieve our second goal i.e. to create a three-dimensional
model of the photographed scene.
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(a) (b)

Fig. 1. (a) An example of very shallow depth of field in macro-photography. (b) Example
diagram of how the f-number (aperture) affects depth-of-field.

As an input we have created a series of macro photograph images of the same subject with
different focus lengths and registered them to each other to create a properly aligned stack of
images. The next step was to fuse them into a one composite image. Many of the methods
mentioned above can do this perfectly, but our finall objective is to create a 3D visualization
of that scene. And the main difficulty was to obtain the height map without spikes or noise,
generally smooth but with sharp edges. Most of the fusing methods don’t care about height
map smoothness (if create it at all) beacuse its only goal is to create good fused image. Such
an observation determined us to develop a new fusion algorithm.
Our method is based on discrete Fourier transform which copes with problem of height
map smoothness. As an effect of fusing algorithm we obtain a height map field and the
reconstructed focused image with a very deep depth-of-field. The height map field is a label
map which determines the height of each part of the scene. From this map, we can construct
a 3D model of the scene.
Generally, we limit our method to macro photography only and we assume that images were
taken perpendicularly or almost perpendicularly to the scene. There is also a strong limitation
of our method to scenes that can be represented as a height field. The whole method consists
of several phases including: image segmentation, height map creation, image reconstruction
and 3D scene generation.

2. Methodology

We capture our set of images using standard digital SLR camera mounted on a tripod with
macro lenses attached. Our method works best when the photographed plan is perpendicular
or almost perpendicular to the lens line. It is also good idea to avoid specularities and shinning
surfaces. For better results gray background can be used. All images are taken in RAW format
and then manually calibrated to one another to equalize their illumination, white ballans and
exposure.
After that, all images are aligned to each other and the reconstruction process combines the
image stack into the height map field and the fused image. We introduce a new method
which employs discrete Fourier transform to designate sharp regions in the set of images
and combines them together into an image where all regions are properly focused. From the
created height map field and the fused image we can generate a 3D surface model of the scene.
After that the mesh is created and textured with a plane mapping using the fused image.
The main difficulty is to obtain the height map field without spikes or noise, generally smooth
but with sharp edges. It is not essential from the point of view of the image fusion, but it may
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farther or closer may appear blurred in the acquired photo. For this reason, special devices like
advanced tripods for a medium-scale objects or microscope stage for micro-scale objects are
required for precise focusing. The depth of field can be defined as the distance in front of and
behind the subject appearing in focus. Only a very short range of the photographed subject
will appear in exact focus. This focus decreases rapidly on either side of this distance, but due
to imperfections of the human eye the focused area seems to be much bigger. This focused area
decreases more quickly in front of the focus point than behind as the angle of the light rays
changes more rapidly when it is closer to the lens, while becoming parallel with increasing
distance. It is for these reasons that there is no precise definition of what is focused; there are
many factors that determine whether the subject appears in focus. The most important factor
is how a single point is mapped onto the film area. If a given point is exactly at the focus
distance it will be imaged as one point on the film, but if this point is farther or nearer it will
produce a disk whose border is known as a “circle of confusion”. These circles can be used to
define the measure of focus and blurriness as they increase in diameter the further away they
are from the focus point. For the most common size of 35mm camera negative (22x16mm),
the acceptable “circle of confusion“ diameter at which human eye is able to distinguish such
a circle as a dot is usually set to 0.05mm. The film size is also important when considering the
depth of field problem because, for a given scene, the larger the negative is then the longer
the lens needed to capture it. Summarizing, for a specific film format, the depth of field is
described as a function parameterized by: the focal length of the lens, the diameter of the lens
opening (the aperture), and the distance between the subject and the camera. Let D be the
distance at which the camera is focused, F the focal length (in millimeters) calculated for an
aperture number f and k - the ”circle of confusion” for a given film format (in millimeters),
then depth of field (DOF) (Constant (2000)) can be defined as:

DOF1,2 =
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1 ± 1000×D×k× f
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where DOF1 is distance from the camera to the far depth of field limit, and DOF2 is the
distance from the camera to the near depth of field limit. The aperture controls the effective
diameter of the lens opening. Reducing the aperture size increases the depth of field, however,
it also reduces the amount of light transmitted. Lenses with a short focal length have a
greater depth-of-field than long lenses. Greater camera-to-subject distance results in a greater
depth-of-field (see Figure 1(b)). We use this optical phenomenon to determine the distances
from the camera to every point of the scene which gives as the height map field of this scene.
The height map field allows us to achieve our second goal i.e. to create a three-dimensional
model of the photographed scene.
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Fig. 1. (a) An example of very shallow depth of field in macro-photography. (b) Example
diagram of how the f-number (aperture) affects depth-of-field.

As an input we have created a series of macro photograph images of the same subject with
different focus lengths and registered them to each other to create a properly aligned stack of
images. The next step was to fuse them into a one composite image. Many of the methods
mentioned above can do this perfectly, but our finall objective is to create a 3D visualization
of that scene. And the main difficulty was to obtain the height map without spikes or noise,
generally smooth but with sharp edges. Most of the fusing methods don’t care about height
map smoothness (if create it at all) beacuse its only goal is to create good fused image. Such
an observation determined us to develop a new fusion algorithm.
Our method is based on discrete Fourier transform which copes with problem of height
map smoothness. As an effect of fusing algorithm we obtain a height map field and the
reconstructed focused image with a very deep depth-of-field. The height map field is a label
map which determines the height of each part of the scene. From this map, we can construct
a 3D model of the scene.
Generally, we limit our method to macro photography only and we assume that images were
taken perpendicularly or almost perpendicularly to the scene. There is also a strong limitation
of our method to scenes that can be represented as a height field. The whole method consists
of several phases including: image segmentation, height map creation, image reconstruction
and 3D scene generation.

2. Methodology

We capture our set of images using standard digital SLR camera mounted on a tripod with
macro lenses attached. Our method works best when the photographed plan is perpendicular
or almost perpendicular to the lens line. It is also good idea to avoid specularities and shinning
surfaces. For better results gray background can be used. All images are taken in RAW format
and then manually calibrated to one another to equalize their illumination, white ballans and
exposure.
After that, all images are aligned to each other and the reconstruction process combines the
image stack into the height map field and the fused image. We introduce a new method
which employs discrete Fourier transform to designate sharp regions in the set of images
and combines them together into an image where all regions are properly focused. From the
created height map field and the fused image we can generate a 3D surface model of the scene.
After that the mesh is created and textured with a plane mapping using the fused image.
The main difficulty is to obtain the height map field without spikes or noise, generally smooth
but with sharp edges. It is not essential from the point of view of the image fusion, but it may
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Fig. 2. Image Fusion scheme showing the steps in our method.

be crucial in three-dimensional reconstruction of the scene. Most of such peaks are generated
in smooth regions, where noise in defocused region on one image from the stack is often more
varied than in the corresponding region on sharp image. This leads to undesired deformations
of reconstructed spatial surface. For that reason, we introduced a background plane. For now,
we assumed that the background plane overlaps with the last image on the stack, but the user
can choose it by hand.

2.1 Image fusion
In our work we use discrete Fourier transform methods combined with Canny edge detector
and inpainting techniques to distinguish homogeneous regions. Our fusion method is also
capable to work with color images. Color image fusion has been discussed in (Bogoni
& Hansen (2001)). A naive approach to image fusion in color might include performing
image fusion separately and independently on each color plane, then providing the resulting
three color planes as a single color image. In practice, this does not work because
color in three-dimmensional space is a vector and not just three independent components.
Similar results gives conversion of RGB images to gray scales and processing them in
one-dimmensional color space. But in this case a great number of information is lost and
it generates another problem: how to map resulted grayscale image back to color space. And
our assumption is that the result of the fusion process applied to color images should preserve
colors and boundaries between colors. To maximize focus, fusion algorithm must emphasize
structural details of the image while the color is preserved. To meet these constraints, from
many possible choices for color image representations, we have chosen the CIE L*a*b color
space, which separates luminance channel from chromatic channels. LAB also aspires to be
perceptualy uniform and most complete color space, and its L component closely matches
human perception of lightness. Therefore, L channel, which represents the luminance of the
color space represent an edge energy itself.
At this stage we assume that images on the image stack are aligned to each other. The main
objective is to create the focused image and the height map field (HMF). The whole algorithm
diagram is shown in Figure 2.
First, the Discrete Fourier Transform for all images is calculated as follows:
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Where N and M are dimensions of the image, fz(x,y) is value of the pixel at (x,y) position
taken for z − th image on the stack. This transform is multiplied with normalized two
dimensional Gaussian distribution:

F�
z(u,v) = Fz(u,v) ∗ G(u,v) (3)

where

G(u,v) =
1
k

exp
(u + v)2

2σ2 (4)

where k is normalization factor and σ is a free parameter determining degree of details
preserved, which can be specified by the user. After that inverse transform f (x,y) = F−1(u,v)
is calculated. This gives us an image where pixels with high local gradients are emphasised,
see Fig. 5b). This transform is applied to to all L*, a* anb b* channels in case of color images,
converted previously to CIE L*a*b* color space. These three channels compose one high
frequency map by applying weighted sum operator, e.i.:

F�
z(u,v) = 0.8FL

z (u,v) + 0.1Fa
z (u,v) + 0.1Fb

z (u,v) (5)

Next, two metrices: local variance and entropy are calculated for every point of that map:

σ2
z (u,v) =

1
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2 (6)

Ez(u,v) = −
S,T

∑
j,k

fz(u + j,v + k) log( fz(u + j,v + k)) (7)

where S and T define the size of the local neighbourhood. In our case we use neigbourhood
defined as disk-shaped structure with radius equal to S/2, and S = T. fz(u,v) is a value taken
from (u,v) position in high frequency map F�

z for z − th blurry image, f z is a mean value of
the whole neigbourhood for current (u,v) position.
These two metrices are used for creating height map field according to:

– For every point (u,v) for both σ2
z and Ez square y(x) = ax2 + bx+ c function is fitted through

z − th dimension.

– Maximum for yσ(x) and yE(x) is calculated and x position of the maximum (Z) is
designated as Z = 0.5xyσ + 0.5xyE

– Height Map Field at (u,v) position is equal to Z but only if range of σ2
z values at (u,v)

position for all z is greater than k, otherwise HMF(u,v) is designated as (−1):

HMF(u,v) =
{

Z, ∀zrange(σ2
z (u,v)) > k

−1, otherwise
(8)

k is a free threshold value controlled by the user. All values equal to (−1) are treated as
unresolved.

93Estimating 3D Surface Depth Based on Depth-of-Field Image Fusion



4 Image Fusion

Fig. 2. Image Fusion scheme showing the steps in our method.

be crucial in three-dimensional reconstruction of the scene. Most of such peaks are generated
in smooth regions, where noise in defocused region on one image from the stack is often more
varied than in the corresponding region on sharp image. This leads to undesired deformations
of reconstructed spatial surface. For that reason, we introduced a background plane. For now,
we assumed that the background plane overlaps with the last image on the stack, but the user
can choose it by hand.

2.1 Image fusion
In our work we use discrete Fourier transform methods combined with Canny edge detector
and inpainting techniques to distinguish homogeneous regions. Our fusion method is also
capable to work with color images. Color image fusion has been discussed in (Bogoni
& Hansen (2001)). A naive approach to image fusion in color might include performing
image fusion separately and independently on each color plane, then providing the resulting
three color planes as a single color image. In practice, this does not work because
color in three-dimmensional space is a vector and not just three independent components.
Similar results gives conversion of RGB images to gray scales and processing them in
one-dimmensional color space. But in this case a great number of information is lost and
it generates another problem: how to map resulted grayscale image back to color space. And
our assumption is that the result of the fusion process applied to color images should preserve
colors and boundaries between colors. To maximize focus, fusion algorithm must emphasize
structural details of the image while the color is preserved. To meet these constraints, from
many possible choices for color image representations, we have chosen the CIE L*a*b color
space, which separates luminance channel from chromatic channels. LAB also aspires to be
perceptualy uniform and most complete color space, and its L component closely matches
human perception of lightness. Therefore, L channel, which represents the luminance of the
color space represent an edge energy itself.
At this stage we assume that images on the image stack are aligned to each other. The main
objective is to create the focused image and the height map field (HMF). The whole algorithm
diagram is shown in Figure 2.
First, the Discrete Fourier Transform for all images is calculated as follows:
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(a) (b) (c)

Fig. 3. Example of halo effect: (a) part of the original image, (b) the height map created only
based on frequencies - visible halo effect, (c) edges in the height map with help of inpainting.

A base Heigh Map Field (HMF) created by these steps is filtered by hit and miss morphology
operator to remove small islands, usually formed because of noise in original images.
The next step is optional but it highly improves the quality of the edges in a resulted image.
Figure 3 shows usual problem with halo effect appearing on and nearby edges and where
there is a large difference in lightness in local area.
To overcome this problem we use Canny Edge Detector filter which finds sharp edges in all
input images. This edge line is localy dilated depending on the strength of the edge in local
area. To achieve this we create distance to the edge map for whole edge image and then based
on the strength of the edge, they are thickened. The strenght of the edge is determined on the
basis of difference between original image and its version convolved with a Gaussian filter
and the distance map secures that this thickness will only be applied to exact edges. From
these edge images we form fused edge image with all edges by simply applying bitwise OR
operator for all images. Figure 4 ilustrates steps of this edge designating procedure. This
process also introduces two free parameters that control its efects: (1) standard deviation of
the Gaussian filter and (2) maximum distance to edge. Both parameters are set to default
values but much beter results are obtained when they are set by the user for a given set of
images.
With this edges image we just mark all pixels in a nearby and on the edges in the height map
field HMF(x,y) as unresolved, see Figure 5f).
To classify all unresolved pixels in the height map field HMF we distinguish two cases:

1. Field of island formed by linked unresolved pixels in bigger than background factor Bf -
these pixels are marked as backround.

2. Otherwise we employ image inpainting technique, described for example in (Bertalmo et
al. (2001)) to fill remaining gaps. Inpainting is a technique for reconstructing lost or broken
parts of image, widely used for image restoration or noise removing. Generally, the idea
is to fill missing gaps using information from the surrounding area. In our work we use
Bertalmo algorithm (Bertalmo et al. (2001)) which uses Navier-Stokes partial differential
equations with boundary conditions for continuity. An example of inpainting technique is
shown in Figure 5g.

Now, we have the height map field prepared to fuse blurry images into a fused one. A value

of a fused image pixel I f used(x,y) is equal to the pixel I(z)i (x,y) from z − th input image on

94 Image Fusion Estimating 3D Surface Depth Based on Depth-of-Field Image Fusion 7

(a) (b)

(c) (d)

Fig. 4. (a) Canny edges acquired from all blurry images, (b) distance to edge map calculated
for canny edge image (scaled in intensity), (c) gaussian strength of the edges (scaled in
intensity), (d) finall edge map.

the stack, where z is a value interpolated form the height map field HMF(x,y). Separately,
regions marked as a background in the HMF in fused image I f used are taken from a specific
image selected by the user, but generally they can be taken from any image from the stack due
to smoothness and not big differences between corresponding images in background regions.

2.2 Scene visualization
Before three-dimensional visualization the HMF is filtered by the median and bilateral filter
(Tomasi & Manduchi (1998)) to smooth homogeneous regions while preserving edges beetwen
objects (see Figure 8). Bilateral filtering is in details a simple, non-iterative scheme for
edge-preserving smoothing, work in spatial and intensity domain and uses shift-invariant
low pass Gauss filters. An output pixel’s value is calculated according to:

h(x) = k ∑
i∈R

f (x, i)C(x, i)(I(x, i) (9)

where:

C(x, i) = exp

(
−1

2

(
d(x, i)

σd

)2
)

(10)
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(a) (b) (c)

Fig. 3. Example of halo effect: (a) part of the original image, (b) the height map created only
based on frequencies - visible halo effect, (c) edges in the height map with help of inpainting.

A base Heigh Map Field (HMF) created by these steps is filtered by hit and miss morphology
operator to remove small islands, usually formed because of noise in original images.
The next step is optional but it highly improves the quality of the edges in a resulted image.
Figure 3 shows usual problem with halo effect appearing on and nearby edges and where
there is a large difference in lightness in local area.
To overcome this problem we use Canny Edge Detector filter which finds sharp edges in all
input images. This edge line is localy dilated depending on the strength of the edge in local
area. To achieve this we create distance to the edge map for whole edge image and then based
on the strength of the edge, they are thickened. The strenght of the edge is determined on the
basis of difference between original image and its version convolved with a Gaussian filter
and the distance map secures that this thickness will only be applied to exact edges. From
these edge images we form fused edge image with all edges by simply applying bitwise OR
operator for all images. Figure 4 ilustrates steps of this edge designating procedure. This
process also introduces two free parameters that control its efects: (1) standard deviation of
the Gaussian filter and (2) maximum distance to edge. Both parameters are set to default
values but much beter results are obtained when they are set by the user for a given set of
images.
With this edges image we just mark all pixels in a nearby and on the edges in the height map
field HMF(x,y) as unresolved, see Figure 5f).
To classify all unresolved pixels in the height map field HMF we distinguish two cases:

1. Field of island formed by linked unresolved pixels in bigger than background factor Bf -
these pixels are marked as backround.

2. Otherwise we employ image inpainting technique, described for example in (Bertalmo et
al. (2001)) to fill remaining gaps. Inpainting is a technique for reconstructing lost or broken
parts of image, widely used for image restoration or noise removing. Generally, the idea
is to fill missing gaps using information from the surrounding area. In our work we use
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Now, we have the height map field prepared to fuse blurry images into a fused one. A value

of a fused image pixel I f used(x,y) is equal to the pixel I(z)i (x,y) from z − th input image on
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Fig. 5. Example of image fusion in steps; (a) input images; (b) high frequencies in images; (c)
unresolved pixels; (d) edges pixels; (e) unresolved + edges pixels; (f) composed Height map
field with unresolved pixels; (g) inpainted unresolved pixels in the HMF, (h) fused image.

is a closeness function, a typical Gaussian filter, where d(x, i) = d(x − i) =‖x − i‖is the
Euclidian distance between x and i;

I(x, i) = exp

(
−1

2

(
δ( f (x), f (i))

σδ

)2
)

(11)

is an intensity function, where δ(φ,θ) = δ(φ − θ) =‖φ − θ‖is a suitable measure of distance
between the two intensity values φ and θ. An examples of different σ parameters for both
closeness and intensity functions are shown in Figure 7.
Because the input images are taken from an analogue camera settings, the focus lengths in
successive planes do not arrange in a constant or linear function. Thus the user can specify
the distances between successive slices in the height map field and HMF is appropriately
rescaled in intensities. Now, the HMF is prepared for creating three dimensional surface.
Generally, spatial scene can be visualized by any rendering technique which is able to show
information contained in the height map field, where each pixel value represents z coordinate
of appropriate mesh vertex. But, due to very high resolutions of tested images (up to
4096 × 4096) a regular triangle mesh (above 16 millions of triangles) can be not the very best
choise. Thus, we decided to approximate a height field with an irregular triangle mesh using
algorithm similar to (Garland & Heckbert (1995)). The input for this algorithm is a height field
map represented by an image whose scalar values are heights and the output is polygonal
data consisting of triangles. The algorithm uses a top-down decimation approach and starts
with two triangles with vertices positioned at the corners of the height field and, on each
pass, locates the point with the greatest error (difference between height field and interpolated
mesh approximation) and injects it as a vertex into the mesh using the standard incremental
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Fig. 6. (a-l) A series of macro photograph taken with different focus length, (m) reconstructed
image by out algorithm, (n) the depth map for that series scaled in intensity to fit 8-bit depth.
Images courtsey of Department of Anatomy, Medical Faculty, University of Varmia and
Masuria in Olsztyn, Poland.

Delaunay point insertion algorithm. The mesh is modified in an iterative fashion until the
specific error criterion is met. As a result the number of triangles in the output is reduced
as compared to a naive tessellation of the input height field map. From our empirical tests,
it seems that the reduction of triangles compared to the regular mesh while preserving good
quality vary from 40% to 70% depending on the complexity of the approximated scene. See
the differences between regular and irregular mesh if Figure 9.
Generated mesh is smoothed and resulted surface is textured with a plane mapping by the
fused image. Additionally, the scene is lit by a directional light which is able to cast shadows
to make bumpy surfaces more visible.
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as compared to a naive tessellation of the input height field map. From our empirical tests,
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Fig. 7. Example images filtered by bilateral filter; (a) original image; (b) image filtered with
radius r = 24,σ = 20; (c) r = 24,σ = 96; (d) r = 12,σ = 12, 8 iterations; (e, f) examples of the
HMF from fusion algorithm (on left) and the HMF filtered by bilateral filter (on right).

(a) (b) (c)

Fig. 8. (a) Surface of 3D model without bilateral smoothing, (b) and (c) examples of 3D model
surfaces without removing spikes in fusing algorithm.

(a) (b) (c)

Fig. 9. (a) 3D model generated as a regular triangle mesh, (b) 3D model generated as
decimated irregular triangle mesh – red rectangle covers the region visible in (a), (c) full
textured 3D model rendered from the same point of view.
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3. Experimental results

The proposed method has been implemented on Linux platform in C++ language using our
Integrated Graphics and Modeling Environment (IGME) framework and Kitware VTK library
for visualisation purposes.
To test whole reconstraction procedure we have prepared eight image stacks from
macrophotography. Here, each image contains objects at different distances from the camera.
Thus, one or more objects naturally become out-of-focus when the image is taken. Each
stack containes six to twelve images taken with different depth-of-field. In all cases the
procedure is performed in the following order. At first, we have manually equalize all images
to each other, then the registration process aligns multifocus images to each other to minimize
misregistration. Next, the reconstruction process combine image stack into the height map
field and fused image. Finally, 3D scene was generated.
Reconstruction time strongly depends on the size of the images used in the fusion and the
number of images on the stack. The fusion process takes about 45%, and generation of three
dimensional mesh takes remaining 55% of all time needed for full reconstruction. For a typical
set of images, containing ten images with resolution 512x512 the whole procedure lasts about
60 seconds.

3.1 Evaluating image fusion algorithm
Examples of multifocus images with height map fields and reconstructed fused images are
shown in Figures 10(a,b) and 11(a,b). Quantitative measure that evaluates the quality of image
fusion and produces single numerical score that indicates the success of the fusion process is
hard to define and is often performed in impractical subjective trials. We have decided to
use a metric QAB/F proposed by Xydeas and Petrović in (Xydeas & Petrović (2000)). In this
case, a per-pixel measure of information preservation is obtained between each input and the
fused image which is aggregated into a single score QAB/F using a simple local importance
assignment. This metric is based on the assumption that fusion algorithm that transfers input
gradient information into result image more accurately performs better. Furthermore, by
evaluating the amount of edge information that is transferred from input images to the fused
image, a measure of fusion performance can be obtained. QAB/F is in range [0,1] where 0
means complete loss of information and 1 means perfect fusion. In our case we have modified
this metric to calculate measure of quality for more than two images as it was in case of
original QAB/F metric:

QAB/F =
∑z QAF

z (n,m)wz(n,m)

∑z wz(n,m)
(12)

where z is a number of image on the stack of blurry images and:

QAF(n,m) = QAF
g (n,m)QAF

α (n,m) (13)

QAF
g (n,m) =

Γg

1 + eκg(GAF(n,m)−σg)
(14)

QAF
α (n,m) =

Γα

1 + eκα(AAF(n,m)−σα)
(15)

where AAF(n,m) and GAF(n,m) are defined as in (Xydeas & Petrović (2000)) and describe the
relative strength and orientation of the edges in an image using the Sobel operator. Constansts
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Fig. 7. Example images filtered by bilateral filter; (a) original image; (b) image filtered with
radius r = 24,σ = 20; (c) r = 24,σ = 96; (d) r = 12,σ = 12, 8 iterations; (e, f) examples of the
HMF from fusion algorithm (on left) and the HMF filtered by bilateral filter (on right).
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Fig. 9. (a) 3D model generated as a regular triangle mesh, (b) 3D model generated as
decimated irregular triangle mesh – red rectangle covers the region visible in (a), (c) full
textured 3D model rendered from the same point of view.
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image, a measure of fusion performance can be obtained. QAB/F is in range [0,1] where 0
means complete loss of information and 1 means perfect fusion. In our case we have modified
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S1 S2 S3 S4 S5 S6 S7 S8

QAB/F 0.43 0.38 0.53 0.22 0.46 0.39 0.44 0.52

Table 1. The quality measure QAB/F for all eight cases.

are: Γg = 0.9994, Γg = 0.9879, κg = −15, κα = −22, σg = 0.5, σα = 0.8. Table 1 contains velues
of QAB/F metric that measures quality of image fusion.

3.2 Evaluating 3D reconstruction
Figures 10 and 11 show qualitative results of our method for eight tested image sets. The
biggest problem in this 3d reconstruction is to obtain a surface which is smooth enough in
uniform regions and simultaneously has sharp edges on the objects boundaries. The best
results are received when the photographs are taken perpendicularly to the background,
objects are within the scene, and they are rough without smooth regions.
Because quantitative measure of the 3D reconstruction of real models is practically impossible
we have created synthetic tests. Two simple scenes have been generated in 3D modeling
application: (1) a flat surface inclined 15◦ to the perpendicular plane to camera axis, this
surface has been textured and iluminated only with ambient light and (2) spherical surface,
also textured and lit with ambient light. For both scenes analytical equation of the surface
was known allowing to calculate quantities like volume or shape and to compare with other
surface(s). These surfaces are presented in Figure 12.
Both scenes have been rendered with depth-of-field filters that simulates depth-of-field effect
using Blender 3D graphic application. In both cases 10 images of partially sharp images have

(a) (b)

(c)

Fig. 10. (a) A few samples of blurry images with height map, (b) finall fused image, (c)
reconstructed 3D model.
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(a) (b)

(c)

Fig. 11. (a) A few samples of blurry images with height map, (b) finall fused image, (c)
reconstructed 3D model.

been created. For every image the focus length was set to different part of the scene covering
a range from the farthest parts of the scene to the nearest ones with constant step between
slices. These images were input images to test our fusing and 3D reconstruction method.
After reconstruction, created scene was rescaled to match to bounding box of the original
scene. We chose two quantites to compare 3D scene generated by 3D application and scene
generated by our method:

1. Mean square difference of differences in meshes of reconstructed and original scene:

MSD =
1
R ∑

x,y∈R
( f (x,y)− g(x,y))2 (16)

2. Normalized cross-correlation between meshes of reconstructed and original scene:

XC =

∑
x,y∈R

( f (x,y)− f ) · (g(x,y)− g)

√√√√
(

∑
x,y∈R

( f (x,y)− f )2 · ∑
x,y∈R

(g(x,y)− g)2

) (17)

To calculate both quantities the space of the scene was quantitized in (X,Y) dimension to the
size equal to the resolution of the height map field (marked as R). f (x,y) is interpolated height
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(a) (b)

(c) (d)

Fig. 12. Two test scenes: (a) flat surface inclined 15◦ to the perpendicular plane to camera
axis, (b) spherical surface, (c) wireframe rendering of the reconstructed plane scene, (d)
wireframe rendering of the reconstructed sphere scene.

(z axis) in the (x,y) position in reconstructed scene, f is the mean height of reconstructed
scene, g(x,y) is interpolated height in the (x,y) position in original scene, g is the mean height
of original scene.
Mean square difference estimates the difference between the reconstructed surface and the
original one and was equal MSD = 0.018 and MSD = 0.031 respectively for plane and sphere
scenes. Cross correlation gives information about how this two surfaces are similar to each
other. Two identical surfaces give value of XC equal to 1 or (−1), value equal to 0 means
completely different surfaces. For plane scene XC was equal to 0.98 and for sphere scene XC
was equal to 0.96. Obtained results indicate very good match for both surfaces. However,
despite the use of mesh decimation algorithm the number of triangles is still much larger
than original mesh. The problem is also “effect of blocks” which must be smoothed by
very expensive algorithms for smoothing mesh of triangles. We also expect that synthetic
tests would give better results than real tests. To estimate the quality of our procedure we
plan to scan a simple but real micro-scene by a 3D laser scanner and then compare with a
reconstructed mesh to acquire more precise results.
Figure 13 shows an example of a typical failure. Our method often fails when there are large
smooth regions which don’t belong to the background plane. The main difficulty in such cases
is to distinguish between background and an object without any external spatial knowledge
of the scene.
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Fig. 13. Typical image that creates failed 3D model. This photograph presents a common
child’s spinning top. Reconstruction algorithms failed because of many smooth and uniform
regions and a lack of background plane.

4. Conclusions

This paper presented a new attempt to the image fusion and estimation of surface depth based
on multifocus images. We proposed the whole pipeline from raw photographs to the final
spatial surface. Input multifocus images were fused by DFT method and the height map
field was created. Based on the HMF the image with a greater depth-of-field was composed.
Finally, further algorithms reconstructed the 3d surface of the photographed scene.
The presented results of generation of 3D models show that our method is a good tool for
acquiring surfaces from a few photographs. However, future work should include automatic
detection of the background plane. Second, there should be more complex methods used to
identify smooth regions of objects. We think that in both cases pattern recognition algorithms
should improve effectiveness of our method. Also Feature-based fusion methods such as
(Piella (2003)) could generate more accurate height maps.
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(a) (b)

(c) (d)

Fig. 12. Two test scenes: (a) flat surface inclined 15◦ to the perpendicular plane to camera
axis, (b) spherical surface, (c) wireframe rendering of the reconstructed plane scene, (d)
wireframe rendering of the reconstructed sphere scene.

(z axis) in the (x,y) position in reconstructed scene, f is the mean height of reconstructed
scene, g(x,y) is interpolated height in the (x,y) position in original scene, g is the mean height
of original scene.
Mean square difference estimates the difference between the reconstructed surface and the
original one and was equal MSD = 0.018 and MSD = 0.031 respectively for plane and sphere
scenes. Cross correlation gives information about how this two surfaces are similar to each
other. Two identical surfaces give value of XC equal to 1 or (−1), value equal to 0 means
completely different surfaces. For plane scene XC was equal to 0.98 and for sphere scene XC
was equal to 0.96. Obtained results indicate very good match for both surfaces. However,
despite the use of mesh decimation algorithm the number of triangles is still much larger
than original mesh. The problem is also “effect of blocks” which must be smoothed by
very expensive algorithms for smoothing mesh of triangles. We also expect that synthetic
tests would give better results than real tests. To estimate the quality of our procedure we
plan to scan a simple but real micro-scene by a 3D laser scanner and then compare with a
reconstructed mesh to acquire more precise results.
Figure 13 shows an example of a typical failure. Our method often fails when there are large
smooth regions which don’t belong to the background plane. The main difficulty in such cases
is to distinguish between background and an object without any external spatial knowledge
of the scene.
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Fig. 13. Typical image that creates failed 3D model. This photograph presents a common
child’s spinning top. Reconstruction algorithms failed because of many smooth and uniform
regions and a lack of background plane.

4. Conclusions

This paper presented a new attempt to the image fusion and estimation of surface depth based
on multifocus images. We proposed the whole pipeline from raw photographs to the final
spatial surface. Input multifocus images were fused by DFT method and the height map
field was created. Based on the HMF the image with a greater depth-of-field was composed.
Finally, further algorithms reconstructed the 3d surface of the photographed scene.
The presented results of generation of 3D models show that our method is a good tool for
acquiring surfaces from a few photographs. However, future work should include automatic
detection of the background plane. Second, there should be more complex methods used to
identify smooth regions of objects. We think that in both cases pattern recognition algorithms
should improve effectiveness of our method. Also Feature-based fusion methods such as
(Piella (2003)) could generate more accurate height maps.
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1. Introduction

During the last two decades, the number of spectral bands in optical remote sensing
technology kept growing steadily going from multispectral (MS) to hyperspectral (HS) data
sets. HS images employ hundreds of contiguous spectral bands to capture and process
spectral information over a range of wavelenghts, compared to the tens of discrete spectral
bands used in MS images (Chang, 2003). This increase in spectral accuracy is delivering more
information, allowing a whole range of new and more precise applications. The detailed
spectral information of HS images is helpful for interpretation, classification and recognition.
However, in remote sensors, usually a trade-off exists between SNR, spatial and spectral
resolutions due to physical limitations, data-transfer requirements and some other practical
reasons. In most cases, high spatial and spectral resolutions are not available in a single
image, which makes the spatial resolution of HS images usually lower than that of MS images
(Gomez et al., 2001). In practice, many applications require high accuracy both spectrally and
spatially, which inspires research on spatial resolution enhancement techniques for HS image
(Gomez et al., 2001; Duijster et al., 2009; Zhang & He, 2007; Hardie et al., 2004; Eismann &
Hardie, 2005; 2004).
When more than one observation of the scene is available, a popular technique dealing with
this limitation is image fusion, a well studied field for more than ten years. As a prototype
problem, usually an image of high spectral resolution is combined with an image of high
spatial resolution to obtain an image of optimal resolutions both spectrally and spatially. Most
fusion techniques for spatial resolution improvement were developed for the specific purpose
of enhancing MS image by using a panchromatic (Pan) image of higher spatial resolution,
also referred to as pansharpening. Principal component analysis (PCA) (Chavez et al., 1991;
Shettigara, 1992) and Intensity-Hue-Saturation (IHS) transform (Carper et al., 1990; Edwards
& Davis, 1994; Tu et al., 2001) based techniques are the most commonly used ones. The Pan
image is applied to totally or partially substitute the 1st principal component or intensity
component of the coregistered and resampled MS image. To generalize to more than three
bands and to reduce spectral degradation, generalized IHS (GIHS) transforms (Tu et al.,
2004) and generalized intensity modulation techniques (Alparone et al., 2004) were defined.
High-pass filtering and high-pass modulation techniques were developed (Chavez et al., 1991;
Shettigara, 1992; Liu & Moore, 1998), in which spatial high-frequency information is extracted
and injected adequately into each band of the MS image. With the rise of multiresolution
analysis, many researchers have proposed pansharpening techniques, using Gaussian and
Laplacian pyramids as well as discrete decimated and undecimated wavelet transforms (WTs)
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1. Introduction

During the last two decades, the number of spectral bands in optical remote sensing
technology kept growing steadily going from multispectral (MS) to hyperspectral (HS) data
sets. HS images employ hundreds of contiguous spectral bands to capture and process
spectral information over a range of wavelenghts, compared to the tens of discrete spectral
bands used in MS images (Chang, 2003). This increase in spectral accuracy is delivering more
information, allowing a whole range of new and more precise applications. The detailed
spectral information of HS images is helpful for interpretation, classification and recognition.
However, in remote sensors, usually a trade-off exists between SNR, spatial and spectral
resolutions due to physical limitations, data-transfer requirements and some other practical
reasons. In most cases, high spatial and spectral resolutions are not available in a single
image, which makes the spatial resolution of HS images usually lower than that of MS images
(Gomez et al., 2001). In practice, many applications require high accuracy both spectrally and
spatially, which inspires research on spatial resolution enhancement techniques for HS image
(Gomez et al., 2001; Duijster et al., 2009; Zhang & He, 2007; Hardie et al., 2004; Eismann &
Hardie, 2005; 2004).
When more than one observation of the scene is available, a popular technique dealing with
this limitation is image fusion, a well studied field for more than ten years. As a prototype
problem, usually an image of high spectral resolution is combined with an image of high
spatial resolution to obtain an image of optimal resolutions both spectrally and spatially. Most
fusion techniques for spatial resolution improvement were developed for the specific purpose
of enhancing MS image by using a panchromatic (Pan) image of higher spatial resolution,
also referred to as pansharpening. Principal component analysis (PCA) (Chavez et al., 1991;
Shettigara, 1992) and Intensity-Hue-Saturation (IHS) transform (Carper et al., 1990; Edwards
& Davis, 1994; Tu et al., 2001) based techniques are the most commonly used ones. The Pan
image is applied to totally or partially substitute the 1st principal component or intensity
component of the coregistered and resampled MS image. To generalize to more than three
bands and to reduce spectral degradation, generalized IHS (GIHS) transforms (Tu et al.,
2004) and generalized intensity modulation techniques (Alparone et al., 2004) were defined.
High-pass filtering and high-pass modulation techniques were developed (Chavez et al., 1991;
Shettigara, 1992; Liu & Moore, 1998), in which spatial high-frequency information is extracted
and injected adequately into each band of the MS image. With the rise of multiresolution
analysis, many researchers have proposed pansharpening techniques, using Gaussian and
Laplacian pyramids as well as discrete decimated and undecimated wavelet transforms (WTs)
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(Aiazzi et al., 2002; Núñez et al., 1999; Shi et al., 2003). A detailed description and comparison
of these techniques is given in (Pohl & Van Genderen, 1998; Wang et al., 2005; Alparone et al.,
2007).
In this work, a more general fusion is considered, in which an HS image of low spatial
resolution and an MS image of high spatial resolution are observed and fused. Since the
high spatial resolution MS image is multiband, the pansharpening techniques cannot be
applied directly to the problem of HS and MS image fusion. Usually, a spatial high-frequency
component of the MS image is extracted (by PCA, IHS, etc.) first and then injected to the
HS image, which may lead to spectral distortion. Techniques using 2D and 3D WTs were
also proposed (Gomez et al., 2001; Zhang & He, 2007), in which the MS and HS images
were spectrally and spatially resampled a priori. These two approaches were both capable of
improving the spatial resolution of the HS image effectively. However, the performance was
highly dependent on the spectral resampling methods adopted. Some researchers proposed
statistical estimation techniques for HS and MS image fusion. In (Hardie et al., 2004), MAP
estimation based on a spatially varying statistical model is employed to enhance the spatial
resolution of HS image. The framework developed was validated for pansharpening but
allowed for any number of spectral bands in both the HS and MS images. Extensions of this
work applied an extended stochastic mixing model (Eismann & Hardie, 2005; 2004).
In this work, we treat the problem of fusion of a low-spatial high-spectral resolution
observation (HS image) with a high-spatial low-spectral resolution observation (MS image),
for the purpose of spatial enhancement of the former. A Bayesian fusion framework is
proposed, in which the fusion is accomplished by assuming an observation model for the
HS image and a joint statistical model between the HS and MS images. Specifically, an
expectation-maximization (EM) algorithm is employed for estimation optimization.
The rest of this work is arranged as follows. In Section 2, mathematical description of the
problem concerned is introduced, as well as some related theoretical basis. In Section 3, the
EM-based Bayesian fusion framework is elaborated and a practical implementation scheme is
provided. In Section 4, simulation experiments with a reference are performed for validation
and comparison. Finally, the conclusions are given in Section 5.

2. Problem description and theoretical basis

2.1 Problem description
The general problem discussed in this paper is to describe a scene z based on a series of
observations, each with specific spatial and spectral resolutions. As a prototype problem, we
will consider the case where a low-spatial high-spectral resolution observation x (HS image)
is available together with a high-spatial low-spectral resolution observation y (MS image).
Although the two observations may be presented at different spatial and spectral sampling
rates, in this paper, we will assume that all images are equally spatially sampled at a grid of
N pixels, sufficiently fine to reveal the spatial resolution of z. Since we will concentrate on
the optimization of the spatial resolution and no spectral enhancement will be performed, the
spectral sampling rate of x is sufficient. Each image is presented in band-interleaved-by-pixel
lexicographical notation, that is, z = [zT

1 ,zT
2 , · · · ,zT

N ]T with zn = [z1
n,z2

n, · · · ,zP
n ]

T where P is the
number of spectral bands. Similar notations are applied to all related images. Normally, a
standard linear observation model is applied for x:

x = Wz + n (1)
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where the PSF W reflects the spatial blurring of the observation x, and n is the additive
Gaussian white noise with covariance Cn.

2.2 Theoretical basis
2.2.1 EM algorithm
When only the observation x is available, one way to improve its spatial resolution would
be image restoration. A possible treatment of the restoration is splitting it up into a
deblurring and a denoising part as was done in (Figueiredo & Nowak, 2003), where the
expectation-maximization (EM) algorithm was employed to solve the problem. In (Duijster
et al., 2009), this procedure was extended for multiband images. The key concept in the
EM-based restoration procedure is that the observation model for x is inverted by performing
the deblurring and denoising in two separate steps. To accomplish this, the observation model
is decomposed as:

x = Ws + n�� (2)

s = z + n�. (3)

In this way, the noise is decomposed into two independent parts n� and n��, with Wn� + n�� =
n. The spatial-invariance of W guarantees a semi positive-definite covariance for n��. If W
would be not translation-invariant, a rescaling is required (see (Figueiredo & Nowak, 2003)).
The splitting up leaves the option to divide the originally assumed Gaussian white noise n into
two parts. Choosing n� to be white with p(n�) = φ(0,Cn) facilitates the denoising problem (3).
However, W colors the noise so that n�� becomes colored with p(n��) = φ(0,Cn − WCnWT).
When the largest part of the original noise appears into n�, n�� can be neglected, making (2) a
pure deblurring problem.
The estimation problem concerned can be then described as:

ẑ = argmax
z

p(z|x,s)

= argmax
z

p(x,s|z)p(z) (4)

which is solved using the iterative EM algorithm. At each iteration k, the EM algorithm
involves two steps:

• The E-step computes the conditional expectation of the complete log-likelihood, the
so-called Q-function, given the observation x and an estimate of z acquired in the
previous iteration:

Q(z, ẑ(k−1)) = E[log (p(x,s|z)p(z))|x, ẑ(k−1)]. (5)

• The M-step maximizes the Q-function and updates the estimate of z:

ẑ(k) = argmax
z

Q(z, ẑ(k−1)). (6)

2.2.1.1 E-step
Conditioned on s, x is independent of z (see (2)), therefore:

p(x,s|z)p(z) = p(x|s,z)p(s|z)p(z)
= p(x|s)p(s|z)p(z)
∝ p(s|z)p(z). (7)
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2007).
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estimation based on a spatially varying statistical model is employed to enhance the spatial
resolution of HS image. The framework developed was validated for pansharpening but
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In this work, we treat the problem of fusion of a low-spatial high-spectral resolution
observation (HS image) with a high-spatial low-spectral resolution observation (MS image),
for the purpose of spatial enhancement of the former. A Bayesian fusion framework is
proposed, in which the fusion is accomplished by assuming an observation model for the
HS image and a joint statistical model between the HS and MS images. Specifically, an
expectation-maximization (EM) algorithm is employed for estimation optimization.
The rest of this work is arranged as follows. In Section 2, mathematical description of the
problem concerned is introduced, as well as some related theoretical basis. In Section 3, the
EM-based Bayesian fusion framework is elaborated and a practical implementation scheme is
provided. In Section 4, simulation experiments with a reference are performed for validation
and comparison. Finally, the conclusions are given in Section 5.
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2.1 Problem description
The general problem discussed in this paper is to describe a scene z based on a series of
observations, each with specific spatial and spectral resolutions. As a prototype problem, we
will consider the case where a low-spatial high-spectral resolution observation x (HS image)
is available together with a high-spatial low-spectral resolution observation y (MS image).
Although the two observations may be presented at different spatial and spectral sampling
rates, in this paper, we will assume that all images are equally spatially sampled at a grid of
N pixels, sufficiently fine to reveal the spatial resolution of z. Since we will concentrate on
the optimization of the spatial resolution and no spectral enhancement will be performed, the
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where the PSF W reflects the spatial blurring of the observation x, and n is the additive
Gaussian white noise with covariance Cn.

2.2 Theoretical basis
2.2.1 EM algorithm
When only the observation x is available, one way to improve its spatial resolution would
be image restoration. A possible treatment of the restoration is splitting it up into a
deblurring and a denoising part as was done in (Figueiredo & Nowak, 2003), where the
expectation-maximization (EM) algorithm was employed to solve the problem. In (Duijster
et al., 2009), this procedure was extended for multiband images. The key concept in the
EM-based restoration procedure is that the observation model for x is inverted by performing
the deblurring and denoising in two separate steps. To accomplish this, the observation model
is decomposed as:

x = Ws + n�� (2)

s = z + n�. (3)

In this way, the noise is decomposed into two independent parts n� and n��, with Wn� + n�� =
n. The spatial-invariance of W guarantees a semi positive-definite covariance for n��. If W
would be not translation-invariant, a rescaling is required (see (Figueiredo & Nowak, 2003)).
The splitting up leaves the option to divide the originally assumed Gaussian white noise n into
two parts. Choosing n� to be white with p(n�) = φ(0,Cn) facilitates the denoising problem (3).
However, W colors the noise so that n�� becomes colored with p(n��) = φ(0,Cn − WCnWT).
When the largest part of the original noise appears into n�, n�� can be neglected, making (2) a
pure deblurring problem.
The estimation problem concerned can be then described as:

ẑ = argmax
z

p(z|x,s)

= argmax
z

p(x,s|z)p(z) (4)

which is solved using the iterative EM algorithm. At each iteration k, the EM algorithm
involves two steps:

• The E-step computes the conditional expectation of the complete log-likelihood, the
so-called Q-function, given the observation x and an estimate of z acquired in the
previous iteration:

Q(z, ẑ(k−1)) = E[log (p(x,s|z)p(z))|x, ẑ(k−1)]. (5)

• The M-step maximizes the Q-function and updates the estimate of z:

ẑ(k) = argmax
z

Q(z, ẑ(k−1)). (6)

2.2.1.1 E-step
Conditioned on s, x is independent of z (see (2)), therefore:
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= p(x|s)p(s|z)p(z)
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From Equation (3), one has p(s|z) = φ(z,Cn). When a Gaussian prior is assumed for z, one
has

p(z) = φ(μμμz,Cz) (8)

with

μμμz = E[z]

Cz = E[(z − E[z])(z − E[z])T ] (9)

which can be estimated from an estimate of z obtained in the previous iteration (ẑ(k−1)).
Hence, the complete log-likelihood can be expressed as:

log(p(x,s|z)p(x|y)) ∝ −1
2
(z − s)TC−1

n (z − s)− 1
2
(z − μμμz)

TC−1
z (z − μμμz). (10)

Since the z-dependent part of this expression is linear in s, finding the Q-function or the
expectation of (10) comes down to finding the expectation of s, conditioned on the observation
x and an estimate of z from last iteration. Denoting this expectation as ŝ(k), the final expression
for the Q-function becomes:

Q(z, ẑ(k−1)) ∝ −1
2
(z − ŝ(k))TC−1

n (z − ŝ(k))− 1
2
(z − μμμz)

TC−1
z (z − μμμz). (11)

2.2.1.2 Calculation of ŝ(k)

ŝ(k) can be obtained from the conditional pdf of s given the observation x and an estimate of
z from the previous iteration:

p(s|x, ẑ(k−1)) =
p(x|s, ẑ(k−1))p(s|ẑ(k−1))

p(x|ẑ(k−1))

=
p(x|s)p(s|ẑ(k−1))

p(x|ẑ(k−1))

∝ p(x|s)p(s|ẑ(k−1)) (12)

where the first pdf comes from (2) and the second from (3)

p(x|s) = φ(Ws,Cn − WCnWT) (13)

p(s|ẑ(k−1)) = φ(ẑ(k−1),Cn). (14)

As a result, the conditional expectation of s can then be obtained as:

ŝ(k) = E[s|x,z(k−1)]

=
∫

sp(x|s)p(s|ẑ(k−1))ds

= ẑ(k−1) + WT(x − Wẑ(k−1)). (15)
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2.2.1.3 M-step
In this step, the estimate of z is updated by maximizing the Q-function obtained in (11):

ẑ(k) = argmax
z

Q(z, ẑ(k−1))

= Cẑ(k−1) (Cẑ(k−1) + Cn)
−1 ŝ(k) + Cn(Cẑ(k−1) + Cn)

−1μμμẑ(k−1) . (16)

Since no auxiliary information is used in the whole procedure, its performance in spatial
enhancement is usually quite limited.

2.2.2 Bayesian fusion using MAP estimation
When the high-spatial low-spectral resolution observation y is also available, image fusion
technique would be a solution for spatial enhancement of x. In a Bayesian framework, an
estimate of z can be obtained from the conditional pdf given both observations using MAP
estimation (Hardie et al., 2004):

ẑ = argmax
z

p(z|x,y)

= argmax
z

p(x|z)p(z|y). (17)

The first pdf is obtained from the observation model for x (see (1)):

p(x|z) = φ(Wz,Cn). (18)

By assuming a jointly Gaussian distribution between z and y, the conditional pdf p(z|y)
would also be a Gaussian (Hardie et al., 2004):

p(z|y) = φ(μμμz|y,Cz|y) (19)

with

μμμz|y = E[z] + Cz,yC−1
y (y − E[y])

Cz|y = Cz − Cz,yC−1
y CT

z,y

where
Cz,y = E[(z − E[z])(y − E[y])T ]. (20)

After some calculation, the following solution can be easily obtained:

ẑ = μμμz|y + Cz|yWT(WCz|yWT + Cn)
−1(y − Wμμμz|y). (21)

In this fusion approach, ideally, the fused result ẑ has the spectral resolution of x and the
spatial resolution of y. As a result, the spatial resolution of ẑ is limited to that of y.

3. Bayesian fusion based on EM algorithm

In this section, a new Bayesian fusion approach for HS and MS images is proposed, which
employs both the EM algorithm presented in Section 2.2.1 and Bayesian fusion framework
explained in Section 2.2.2, for the purpose of performance improvement. Based on the
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TC−1
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2
(z − μμμz)

TC−1
z (z − μμμz). (11)

2.2.1.2 Calculation of ŝ(k)
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2.2.1.3 M-step
In this step, the estimate of z is updated by maximizing the Q-function obtained in (11):
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−1μμμẑ(k−1) . (16)
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z,y
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ẑ = μμμz|y + Cz|yWT(WCz|yWT + Cn)
−1(y − Wμμμz|y). (21)

In this fusion approach, ideally, the fused result ẑ has the spectral resolution of x and the
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splitting-up strategy ((2) and (3)), the objective of the fusion problem discussed is to find an
estimate of z by:

ẑ = argmax
z

p(z|x,y,s)

= argmax
z

p(x,s|z)p(z|y). (22)

Employing the EM algorithm, the proposed fusion approach is an iterative procedure with
two major steps in each iteration k:

• The E-step computes the conditional expectation of the complete log-likelihood, the
so-called Q-function, given both observations (x and y) and an estimate of z acquired
in the previous iteration:

Q(z, ẑ(k−1)) = E[log (p(x,s|z)p(z|y))|x,y, ẑ(k−1)]. (23)

• The M-step maximizes the Q-function and updates the estimate of z:

ẑ(k) = argmax
z

Q(z, ẑ(k−1)). (24)

3.1 E-step
Since conditioned on s, x is independent of z (see (2)), the following can be obtained:

p(x,s|z)p(z|y) = p(x|s,z)p(s|z)p(z|y)
= p(x|s)p(s|z)p(z|y)
∝ p(s|z)p(z|y). (25)

From (3), one has p(s|z) = φ(z,Cn). As for p(z|y), we will assume that z and y are jointly
normally distributed as in (Hardie et al., 2004), so that the conditional distribution is also a
normal (see (19)). As a result,

log(p(x,s|z)p(z|y)) ∝ −1
2
(z − s)TC−1

n (z − s)− 1
2
(z − μμμz|y)

TC−1
z|y(z − μμμz|y). (26)

Since the z-dependent part of this expression is linear in s, finding the Q-function or
the expectation of (26) comes down to finding the expectation of s, conditioned on both
observations (x and y) as well as ẑ(k−1). We will denote this expectation as ŝ(k), so that the
final expression for the Q-function becomes:

Q(z, ẑ(k−1)) ∝ −1
2
(z − ŝ(k))TC−1

n (z − ŝ(k))− 1
2
(z − μμμz|y)

TC−1
z|y(z − μμμz|y). (27)

3.2 Calculation of ŝ(k)

The pdf of s given both observations and an estimate of z from the previous iteration is
described as following:

p(s|x,y, ẑ(k−1)) =
p(x|s,y, ẑ(k−1))

p(x|y, ẑ(k−1))
· p(s|y, ẑ(k−1))

=
p(x|s,y, ẑ(k−1))

p(x|y, ẑ(k−1))
· p(ẑ(k−1)|s,y)p(s|y)

p(ẑ(k−1)|y) .
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Since conditioned on s, x is independent of ẑ(k−1) (see (2)), ẑ(k−1) is independent of y (see (3)),
besides x and y are independent, the conditional pdf can then be rewritten as:

p(s|x,y, ẑ(k−1)) =
p(x|s)p(ẑ(k−1)|s)p(s|y)
p(x|ẑ(k−1))p(ẑ(k−1)|y)

∝ p(x|s)p(ẑ(k−1)|s)p(s|y)
with

p(x|s) = φ(Ws,Cn − WCnWT)

p(ẑ(k−1)|s) = φ(s,Cn)

p(s|y) = φ(μμμẑ(k−1) |y,Cẑ(k−1) |y + Cn)

where the first expression is derived from (2), the second from (3) and the third from the prior
model assumption combined with (3). Thus, an estimate of the expectation of s leads to:

ŝ(k) = E[s|x,y,z(k−1)]

=
∫

sp(x|s)p(ẑ(k−1)|s)p(s|y)ds

= μμμ + C(x − Wμμμ) (28)

with

μμμ = B[C−1
n ẑ(k−1) + (Cẑ(k−1) |y + Cn)

−1μμμẑ(k−1) |y].

C = BWT [Cn + W(B − Cn)W
T ]−1

B = [C−1
n + (Cẑ(k−1) |y + Cn)

−1]−1.

3.3 M-step
In this step, the estimate of z is updated by maximizing the Q-function in (27), which leads to:

ẑ(k) = argmax
z

Q(z, ẑ(k−1))

= Cẑ(k−1) |y(Cẑ(k−1) |y + Cn)
−1 ŝ(k) + Cn(Cẑ(k−1) |y + Cn)

−1μμμẑ(k−1) |y. (29)

3.4 Discussion
Remark that the obtained expression in the E-step (28) is a combination of the expressions
obtained by a restoration of x and a fusion of x with y. Indeed, when no high-spatial resolution
image (y) is available, (28) would reduce to (15) which is a deconvolution result of x. On the
other hand, if no EM algorithm would be applied, the MAP estimation of (22) would lead to
(21) which is a Bayesian fusion of x and y using MAP estimation. The obtained expression in
the M-step (29) makes use of both observations. Without the use of y, the expression would
reduce to (16), accounting for the interband correlation of ẑ(k−1). While in (29), the correlation
between ẑ(k−1) and y are also accounted for. Therefore, the proposed approach is actually a
combination of EM-based restoration and Bayesian fusion.
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final expression for the Q-function becomes:
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−1 ŝ(k) + Cn(Cẑ(k−1) |y + Cn)
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between ẑ(k−1) and y are also accounted for. Therefore, the proposed approach is actually a
combination of EM-based restoration and Bayesian fusion.
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4. Experiments and analysis

4.1 Implementation
4.1.1 Noise covariance
The noise covariance Cn is required in the estimation. In this paper, instead of assuming it is
known, it is estimated from ẑ(k−1). The noise is assumed to be spectrally uncorrelated, so that
Cn is diagonal:

Cn =

⎡
⎢⎢⎢⎣

Cn1 0 · · · 0
0 Cn2 · · · 0
...

...
. . .

...
0 0 · · · CnN

⎤
⎥⎥⎥⎦ with Cnn =

⎡
⎢⎢⎢⎣

σ̂2
1 0 · · · 0
0 σ̂2

2 · · · 0
...

...
. . .

...
0 0 · · · σ̂2

P

⎤
⎥⎥⎥⎦ (n = 1,2, · · · , N).

The diagonal elements in the noise covariance can be estimated in several ways. In this work,
we employ the well-known estimator by Donoho (Donoho & Johnstone, 1995):

σ̂p =
median(|ẑ(1,diag)

p |)
0.6745

(30)

where ẑ(1,diag)
p represents the wavelet diagonal subband at the first resolution scale of the pth

(p = 1,2, · · · , P) spectral band of ẑ(k−1).

4.1.2 Spatial independence
Estimating the full size covariance matrix Cz|y (of size NP × NP) is impractical for a typical
size HS image. To keep the calculations feasible, we follow a similar strategy as employed in
(Hardie et al., 2004). The pixels in z are assumed to be spatially conditionally independent,
so that the conditional expectation and covariance can be estimated independently for each
individual pixel:

μμμz|y = [μμμT
z1|y1

,μμμT
z2|y2

, · · · ,μμμT
zN |yN

]T

Cz|y =

⎡
⎢⎢⎢⎢⎣

Cz1|y1
0 · · · 0

0 Cz2|y2
· · · 0

...
...

. . .
...

0 0 · · · CzN |yN

⎤
⎥⎥⎥⎥⎦

where the individual conditional expectation and covariance is estimated as:

μμμzn |yn
= E[zn] + Czn ,yn C−1

yn
(yn − E[yn])

Czn |yn
= Czn − Czn ,yn C−1

yn
CT

zn ,yn
.

In this work, all related expectation as well as self- and cross-covariances are globally
estimated, which denotes that they are constants for each pixel.

4.1.3 Block-by-block estimation strategy
Since Cn is diagonal and Cz|y is block-diagonal, μμμ = [μμμT

1 ,μμμT
2 , · · · ,μμμT

N ]T and B is also
block-diagonal. However, because of the effect of W and matrix inversion, C is not
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block-diagonal. The calculation of C and thus the estimation in (28) cannot be implemented
pixel by pixel. The matrix with size NP × NP is obviously too large to be practical. To
solve this problem, we design a practical implementation scheme, in which C and thus ŝ(k)

are calculated block by block. The image is divided into non-overlapping blocks with an
appropriate size (with M pixels, in this paper, a 16 × 16 square is used), which is sufficiently
large for the PSF simulation and sufficiently small for keeping the calculations feasible. In this
work, W models a space-invariant periodic convolution in the image domain. W is then a
square block-circulant matrix (size NP × NP) constructed from the convolution kernel. Using
the same convolution kernel, we can construct Wb (size MP × MP) in the same manner,
which performs the blurring on each block in z, mimicking the way that W performs on z.
The calculation of C and the estimation of s are then implemented block by block, using Wb
instead of W.

4.2 Experimental setup
In this work, simulation experiments with a reference are employed for performance
validation and comparison, so that the fused results can be compared to the reference.
Performances of fusion techniques are usually difficult to be measured only based on
observation, especially for multiband images. Objective and quantitative analysis can
contribute to a more comprehensive evaluation. In this work, we employ the SNR in decibels
between the result and the reference as the performance evaluation index:

SNR(Z, Ẑ) = 10log10
∑ Z2

∑(Z − Ẑ)2
. (31)

For the first set of experiments (Test 1), an AVIRIS HS image of NW Indiana’s Indian Pine test
site, USA in 1992 with 220 bands is employed. To construct the experimental data, we select
60 continuous bands (bands 11-70) and 128 × 128 pixels in each band, avoiding atmospheric
water bands and bands with low SNR. To limit processing time, a 10-band HS reference image
is constructed by averaging over 6 adjacent bands successively. It is then spatially smoothed
by a Gaussian low-pass filter with a standard deviation of 1.2 and Gaussian noise is also added
to acquire x. A 3-band image y is obtained by averaging the original 60-band image over 20
adjacent bands successively.
In the second set of experiments (Test 2), we apply the presented framework to a specific case
of fusion, pansharpening, where an MS image of low spatial resolution is fused with a Pan
image of high spatial resolution. For this, a set of color-composite Landsat images (3 bands,
30m resolution) and a SPOT Pan image (10m resolution) covering an area near London are
used as test data. To be able to use the original Landsat image as a reference, we smooth it
with a Gaussian low-pass filter with a standard deviation of 1.2 and Gaussian noise is also
added to obtain x. A degraded SPOT Pan image to 30m is used as y.
For initialization of EM algorithm, we set ẑ(0) = x.

4.3 Experimental results and analysis
4.3.1 Algorithm convergence
In this part, experiments are performed to validate the proposed fusion framework. In Test
1, general HS and MS image fusion is discussed, using x with noise level of 25dB. In Test 2,
the proposed approach is validated for the specific case of pansharpening, using x with noise
level of 20dB. In Fig. 1, the SNRs between the reference and fused images as a function of
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of fusion, pansharpening, where an MS image of low spatial resolution is fused with a Pan
image of high spatial resolution. For this, a set of color-composite Landsat images (3 bands,
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4.3 Experimental results and analysis
4.3.1 Algorithm convergence
In this part, experiments are performed to validate the proposed fusion framework. In Test
1, general HS and MS image fusion is discussed, using x with noise level of 25dB. In Test 2,
the proposed approach is validated for the specific case of pansharpening, using x with noise
level of 20dB. In Fig. 1, the SNRs between the reference and fused images as a function of
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Noise level 40 35 30 25 20
Test 1 35.4405 35.3011 34.7885 33.5456 29.0465
Test 2 25.3240 25.1845 24.9342 24.6979 24.2355

Table 1. SNR in fusion tests with different noise levels

the number of iterations of the EM algorithm involved are shown. It can be observed that the
SNR increases sharply in the first several iterations and converges after around 10 iterations.
The proposed approach is also validated for x with different noise levels (20-40dB) in both Test
1 and 2, and comparable results are observed. Fig. 2 shows x with specific noise levels and the
corresponding fused results, as well as the reference from Test 2. The slight differences among
all the fused images illustrate the excellent noise-resistance of the proposed fusion approach.
The SNRs between the reference and fused images produced in different experiments are
listed in Table 1, together with the original noise levels of x.

4.3.2 Knowledge about W
In the estimation of (28), the PSF W is required. Nevertheless, knowledge about the PSF
is usually partly or totally unknown in practice. In this part, we will discuss the influence
of (lack of) knowledge of W on the fused result. To address this problem, we arrange the
following experiment. We employ the experimental data constructed in Section 4.2, while
using Gaussian low-pass filters with standard deviation σ1 to model W, with σ1 ∈ [0.3,2.1]
with a step of 0.1 (the actual σ1 = 1.2). The SNRs between the fused and reference images
as a function of σ1 are shown in Fig. 3. It can be observed that a little underestimated or
overestimated W (σ1 ∈ [1.0,1.4]) can still produce fairly good fused results. It seems that an
overestimated W has even less influence on the fusion results than an underestimated W,

0 2 4 6 8 10 12 14 16 18 20
14

16

18

20

22

24

26

28

30

32

34

Iteration

S
N

R

 

 

Test 1
Test 2

Fig. 1. SNR in function of number of iterations.
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Fig. 2. Experimental results in Test 2 using x with different noise levels.
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especially in Test 2 (dashed). It can be concluded that for the proposed fusion approach,
the exact knowledge about W is not strictly required. By using a good approximation or
estimation of W, fused results with fairly good quality can still be obtained.
In certain practical circumstances, ground truth (reference) may not be available as well,
which means there is no prior knowledge about W at all. The proposed technique can still
be applied, by applying Gaussian low-pass filters with increasing σ1 as W and validating the
results by users’ observation. Some fused images from the pansharpening test with different
underestimated as well as overestimated W are shown in Fig. 4.

(a) σ1 = 0.5 (b) σ1 = 0.8 (c) σ1 = 1.2

(d) σ1 = 1.7 (e) σ1 = 2.0

Fig. 4. Fused images using W with different σ1.
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4.3.3 Performance comparison
In this set of experiments we compare the proposed fusion technique with the EM-based
restoration approach of (Duijster et al., 2009) as presented in Section 2.2.1 (denoted as EM-Res),
and the Bayesian fusion approach of (Hardie et al., 2004) as presented in Section 2.2.2 (denoted
as Bayes-F). To make a fair comparison, all three approaches employ the same statistical
parameter estimation strategy.
When performing EM-Res, W denotes the imaging PSF and reflects the resolution difference
between x and z. Since no high-spatial resolution auxiliary information is utilized, its
performance in spatial enhancement is usually quite limited. While in Bayes-F, W actually
reflects the resolution difference between x and y. Hence, the spatial resolution of z is
limited to that of y. It is notable that both resolution differences may be quite different
in practice. However, either of the above two approaches only accounts for one of the
resolution differences. The newly proposed fusion approach overcome this limitation, in
which W describes the spatial resolution difference between x and z, while the resolution
difference between x and y is accounted for in the covariance estimation. In fact, it combines
the advantages of the fusion and restoration techniques, obtaining a result which is actually
a weighted result between the results produced by these two techniques. Depending on
the spatial resolution differences and noise level in the observation model, it is capable of
updating the weights adaptively. If the resolution difference between x and y is high, fusion
is expected to contribute more to the result than restoration, while if it is low, the restoration
part is expected to contribute more.
As a reminder, W is assumed to be known, but as shown in the first set of experiments, a fair
estimation is sufficient. In the following experiments, we have used the knowledge of W. The
spatial resolution of y and thus knowledge about the spatial resolution difference between x
and y is not required a priori and is estimated during the process.
In order to investigate the performance of different techniques, the following experiment is
conducted. Gaussian low-pass filters G with standard deviation σ2 ∈ [0.3,2.1] (with a step
of 0.1) are applied to the original high-spatial low-spectral image, to generate y at different
spatial resolution scales.
In Fig. 5, the SNRs as a function of σ2 are shown, the original SNR of x and the reference is
also depicted. The result produced by EM-Res is of course constant since it does not make use
of y, while the performance of Bayes-F decreases sharply with decreasing spatial resolution
of y (increase of σ2). For high spatial resolution of y (σ2 ∈ [0.3,0.9]), Bayes-F performs better
than EM-Res. For higher values of σ2, which implies the spatial resolution of y is only slightly
higher or even lower than that of x, EM-Res performs better than Bayes-F. When σ2 = 1.2, the
SNR of the result produced by Bayes-F is almost the same as the original SNR, which well
explains the fact that no improvement can be expected by fusing two observations at the same
spatial resolution scale. The slightly higher SNR over the original one can be attributed to the
noise-resistance of Bayes-F. When the spatial resolution of y decreases further, Bayes-F does
not make a contribution any more, it even deteriorates the x observation.
As for the proposed approach, three different regimes appear in Fig. 5. For low values of
σ2 (σ2 ∈ [0.3,0.6]), the result of the proposed technique is comparable to the Bayes-F result.
For high values of σ2 (σ2 ∈ [1.3,2.1]), restoration dominates the process and the result of the
proposed technique seems to saturate to a value nearby the EM-Res result. This is more
obvious in Test 1, in which general HS and MS image fusion is performed. The middle
regime (σ2 ∈ [0.6,1.3]) is the most interesting one. In that regime, both restoration and fusion
contribute to the result, leading to an improved fusion performance.
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Fig. 5. Influence of the spatial resolution of y on performance.
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(a) EM-Res (b) Bayes-F (σ2 = 0) (c) Proposed (σ2 = 0)

(d) Zoomed reference (e) Zoomed (a)

(f) Zoomed (b) (g) Zoomed (c)

Fig. 6. Experimental results from Test 2.

In Fig. 6, the experimental results of Test 2 are depicted, produced by EM-Res, Bayes-F and the
proposed approach. Zoomed images of fusion results produced by Bayes-F and the proposed
approach using y on different spatial resolution scales are also depicted in Fig. 7. It can
be observed that for EM-Res, the spatial resolution improvement is limited and the result
is quite noisy. The spatial resolution improvements of the results produced by Bayes-F and
the proposed approach are comparable. When y is of lower spatial resolution, the spatial
resolution improvement of the proposed approach is better than that of Bayes-F. However,
severe spectral distortion (color difference with the reference) can be observed in Bayes-F
result.
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Fig. 7. Zoomed results in Test 2.
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These findings reflect some weaknesses of EM-Res and Bayes-F approaches. EM-Res approach
combines in each iteration a deconvolution step and a denoising step, the latter being a
regularization step. It is known that such iterative processes sometimes overemphasize
details and thereby tend to amplify the noise. On the other hand, the jeopardy with Bayes-F
approach is that it may lose spectral fidelity of the low-spatial high-spectral resolution image
by including spatial details from the high-spatial low-spectral resolution image. The proposed
approach seems to be able to control both aspects by weighting of the contributions of
restoration and fusion.

5. Conclusion

In this paper, a fusion approach for two observations (a low-spatial high-spectral resolution
observation x and a high-spatial low-spectral resolution observation y) is proposed. The
newly proposed fusion approach employs an iterative EM algorithm as well as a Bayesian
fusion scheme, in which an image restoration process for x is applied in combination with
a fusion of x and y. In the simulation experiments, the proposed approach is validated and
analyzed, as well as compared with some state-of-the-art techniques which clearly illustrates
its advantages.
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Pan-sharpening aims to use image fusion techniques in the remote sensing field in order to 
synthesis the Multispectral (MS) images to higher resolution using spatial information of the 
Panchromatic (Pan) image. Up to now, several definitions for the image fusion have been 
suggested. Wald’s definition (Wald, 1999) is one of these most celebrated definitions used 
commonly in the remote sensing community which defines image fusion as: ”a formal 
framework in which are expressed means and tools for the alliance of data originating from 
different sources. It aims at obtaining information of a greater quality, although the exact 
definition of ‘greater quality’ will depend on the application”. Many applications such as 
feature detection, change monitoring, urban analysis, and land cover classification recieve 
benefits of pan-sharpening. In fact, these applications need both high spectral and spatial 
resolution concurrently. Due to physical and technological constraints, creating a sensor 
which can provide high spectral and spatial resolution simultanously is not possible. So, the 
image fusion algorithms have been received increasingly attention to fuse MS and Pan 
images and to provide a new image including both spatial charachteristics of Pan and 
spectral charachteristics of MS images. Usually the pan-sharpening methods are categorized 
into three main sets (Wald, 2002; Thomas et al., 2008);projection substitution, relative 
spectral contribution, and methods that belong to the Amélioration de la Résolution Spatiale 
par Injection de Structures (ARSIS) concept. 
The Projection–Substitution methods take advantage of a vectorial algorithm. In this kind of 
methods, all fused images corresponding to different MS images are synthesized 
simultaneously. These methods consider coincident pixels of MS images as spectral axes. 
Then, the spectral axes are projected into a new space to reduce the information redundancy. It 
results the decorrelated components. The structures of MS images, which are mainly related to 
color, are isolated by one of these components from the rest of the information. Actually these 
methods assume that the structures contained in this structural component are equivalent to 
those in the Pan image. Next, this structural component is replaced either partially or wholly 
with corresponding parts of Pan. Eventually, the inverse projection is performed to obtain the 
MS images in higher resolution, i.e. the fused images. The most famous methods of this 
category are those based on principal component analysis (PCA) (Ehlers, 1991; Chavez  et al., 
1991) and intensity hue saturation (IHS) (Haydn et al., 1982). 
The Relative Spectral Contribution methods are also based on the linear combination of 
bands. The basic assumption of these methods is considering the low-resolution Pan as a 
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linear combination of original MS images. This assumption arises from the overlap of the 
spectral bands. Besides, a filtering operation applied on the Pan image is implicitly required. 
In addition, the fused MS product is a function of this linear combination and of the Pan 
image as well. Brovey (Gillespie et al, 1987) is the most important algorithm of this category. 
The high correlation between the Pan and each MS images is the most important factor of 
the two mentioned categories which affects the fusion results. The higher the correlation 
between the Pan and each MS images is, the better the outcome of fusion will be. If the 
correlation of Pan and MS image is large, the MS image can be considered as an affine 
function of the Pan image. Moreover, the most characteristic of these two types of methods 
is their spectacular increase in visual impression with a good geometrical quality. So, they 
are well adapted to certain applications such as cartography or the localization of specific 
phenomena like target recognition (Vijayaraj et al, 2004; Yocky, 1996).Nevertheless, their 
major disadvantage is spectral distortion, called the color or radiometric distortion, 
characterized by inclining to present a predominance of a color on the others. However, 
their spectral distortion arises from the modification of the low frequencies of the original 
MS images (Shi et al, 2005). It means while no obvious relation exists between Pan and MS 
input modalities, creating the fused image as a function of the original MS and Pan images 
leads to this spectral distortion. Another disadvantage of these two types is that they apply 
the same model to the entire image (Thomas et al., 2008). 
The third category is ARSIS concept which is the French acronym for “Amélioration de la 
Résolution Spatiale par Injection de Structures” meaning Improving Spatial Resolution by 
Structure Injection. The fundamental assumption of this type is that the missed spatial 
information in MS image can be derived from the high frequencies laying between orignial 
and low spatial version of the Pan, and possibly from external knowledge. This type is what 
would be discuused more in the following. 
However, some other methods, called Hybrid methods, are possible which do not 
exclusively belong to one of the mentioned categories. They may include more than one 
category (Thomas et al., 2008). One of these renowned categories is projection–substitution 
combined with relative spectral contribution. Those methods which combine IHS method 
with spectral contribution assumption are the examples of this hybrid category. The relative 
spectral contribution combined with the ARSIS concept assumption is another famous 
category of hybrid methods. They are based on the minimization of energy functional. The 
third celebrated hybrid category is the projection–substitution combined with the ARSIS 
concept assumption. Many recent methods such as improved IHS method (González-
Audícana et al, 2004), improved adaptive PCA method (Shah et al, 2008), etc can be put in 
this category.   
In the following, more focuces will be placed on the ARSIS concept and it would be 
reviewed in more details. Then, some renowned methods based on ARSIS concept will be 
discussed. Finally, the simulation results of the described methods would be presented. 

2. ARSIS concept 
As mentioned in previous section, in ARSIS concept, synthesizing the MS image in higher 
resolution is seen as the inference of the information missing in the original MS image. The 
fundamental assumption of ARSIS concept is that the missing information is linked to the 
high frequencies of Pan and MS images. Indeed, finding this relationship between high 
frequencies in Pan and MS images is the thing that investigated in the ARSIS concept. 
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Methods based on ARSIS concept usually perform the following steps: at first, the required 
information should be elicited from Pan image; next, the missing information in MS image 
must be inferred using the extracted information; finally, the MS image in high resolution 
would be synthesized (Ranchin & Wald, 2000; Ranchin et al, 2003).  
Although diverse algorithms for ARSIS concept are possible, the majority of recent 
algorithms apply multiscale or multiresolution transforms on both Pan and MS images to 
obtain a scale by scale description of the images content information. This description, called 
multiscale model (MSM), is usually represented by a pyramidal structure as shown in 
Figure 1 (Thomas et al., 2008).   
 

 
Fig. 1. Pyramidal structure of information (Thomas et al., 2008) 
In this structure, the missing high frequency information of MS image, shown by dashed 
line in pyramid B, is extracted from the corresponding details in Pan image, which is 
displayed by gray parallelogram in pyramid A, to synthesize the MS image in higher 
resolution as indicated by dashed line in the bottom of pyramid B. However, if the extracted 
information from Pan is inserted directly into the missing high frequency information of MS 
image, the synthesized MS image may not be the same as “what would be seen if the MS 
image were taken by an especial sensor at Pan’s resolution”. Consequently, some adaption 
or transformation, called the intermodality model (IMM) (Wald, 2002) or the interband 
structure model (IBSM) (Ranchin et al, 2003), should be applied to adjust the extracted 
information to MS image. Figure 2 shows the ARSIS fusion procedure. Up to now, several 
IMM have been proposed (Ranchin et al, 2003; Aiazzi et al, 2002). 
On the other hand, there are many methods like High Pass Filtering (HPF) method (Chavez  
et al., 1991) in which the extracted information are injected without any transformation into 
the low-resolution MS image. However, MSM might employ different transforms like 
Laplacian Pyramid (LP), Wavelet (Mallat, 1999), Curvelet (Starck et al, 2002), etc, to 
decompose and synthesize Pan and MS. 
However, as the consistency property indicates (Thomas & Wald, 2004), if a fused product is 
downsampled to its original resolution, the original MS image must be restored. Since 
MSMs utilize mutiresolution algorithms to decompose input images into low and high 
frequency parts, they can isolate low frequencies from high frequencies and preserve the 
low frequencies while synthesizing high frequencies. Furthermore, in many papers it is  
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linear combination of original MS images. This assumption arises from the overlap of the 
spectral bands. Besides, a filtering operation applied on the Pan image is implicitly required. 
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Fig. 2. General scheme for the application of the ARSIS concept (Ranchin et al, 2003)  

mentioned that the multiresolution algorithms can provide a good trade off between 
preserving the low frequencies and injecting the high frequencies (Wald, 2002; Thomas et 
al., 2008; Ranchin et al, 2003). Nevertheless, multiscale algorithms should be selected in such 
a way that they do not produce artifacts affecting low frequencies like aliasing. 
Likewise, many fusion methods are based on local estimation of parameters to take into 
account local dissimilarities between Pan and MS images. In these methods, the injection 
will be performed in such way that the local parameters meet certain demands. Although 
these methods assure good consistency with the original MS image, several experiments 
have demonstrated that it might decline the quality of the results and weakens image 
interpretation (Thomas et al., 2008).  
However, the ARSIS concept is still being noticed by many researchers. We will discuss 
some of the famous ARSIS-based methods in more details in the following. Our discussion 
would concentrate on AABP model (Aiazzi et al, 2001), context driven method (Aiazzi et al, 
2002) and the fusion method based on Linear Test Dependency (Golibagh Mahyar & Yazdi, 
2010; 2009). 

3. AABP model 
The AABP (the model of Aiazzi, Alparone, Baronti and Pippi) proposed by Aiazzi et al. 
belongs to IBSM models (Aiazzi et al, 2001). As it was mentioned, IBSM models deal with 
the transformation of spatial structures with changes in spectral bands. Their model takes 
into account the relationship between the details or context of Pan and MS images.  
In this method, the input images are decomposed into approximation and details 
coefficients by a multiresolution transform such as LP or wavelet. Let l

MSD and l
PanD be the 

detail coefficients of MS and Pan images at certain resolution l , respectively. In addition, 
let l

MSC and l
PanC be the approximation coefficients of input images. The AABP model tries to 
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discover a local relationship between l
MSD and l

PanD . This relationship is calculated by 
considering l

MSC and l
PanC .  In this model, it is assumed that the detail coefficients of MS can 

obtain by scaling the detail coefficients of Pan. This relation is defined as: 

 .l l
MS PanD Dα=  (1) 

Where α  is a coefficient representing the local relationship. Considering Figure 1, the 
missing coefficients in pyramid B are calculated by Eq. (1). In order to synthesize the MS 
image at a higher resolution, first Pan should be decomposed into a lower resolution. The 
obtained detail coefficients of Pan at this resolution are used to estimate the missing 
coefficients of the MS image in Eq. (1). Then, in order to acquire the proper value ofα , the 
approximation coefficients of Pan and MS image are decomposed into a lower resolution. 
After calculatingα , the missing coefficients of MS image can easily be anticipated by 
multiplying α at detail coefficients of Pan at the first level of decomposition. Finally, the 
synthesized MS image at a higher resolution can be created simply by computing the 
inverse multiresolution transform using original MS image as the approximation coefficients 
and estimated missing coefficients as the detail coefficients. This procedure is shown in 
Figure 3.      
 

 
Fig. 3. Flowchart of AABP model 

Furthermore, the calculation of α  is performed in a n n× sliding window around each 
coefficient, typically 9 9× for IKONOS images. Let Panσ  and MSσ be the standard deviation 
of Pan’s and MS’s detail coefficient in this window. In addition, consider ρ as the local 
correlation coefficient between Pan’s and MS’s detail coefficient. Let also θ  be a constant 
threshold. This threshold can have any value in the interval [0.3 , 0.6] ; however the higher 
value of threshold is usually selected in condition that the correlation coefficient is not very 
large. According to these assumptions, α  is chosen based on the below rule. 
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To avoid numerical instabilities on homogenous areas of Pan, α  is clipped above 3 in the 
first row of Eq. (2). 

4. Context driven method 

Similar to many methods in which the high frequencies of Pan are modified before injecting 
into MS, Context-driven method employs statistical measures in order to locally give 
weights to the high frequency coefficients of Pan. Moreover, this method uses a statistical 
criterion to make decision whether or not the high frequency coefficients obtained from Pan 
should be injected into the high frequency coefficients of MS. This decision rule is based on 
comparing the statistical criterion, which measures in turn the matching degree between the 
low-pass version of Pan and the expanded MS, using a specific threshold. Although the 
context-driven method can be implemented by any multiresolution transform, here we 
explain the algorithm based on wavelet transform.  
 In order to register the input images, original MS image should be upsampled by two and 
then passed into an 23-taps pyramid-generating lowpass filter. Next, Pan and upsampled 
MS are decomposed by wavelet transform. Let ; , ,k

MSD k H V D= and ; , ,k
PanD k H V D=  be 

the detail coefficients of MS and Pan images respectively where , ,k H V D= stand for 
Horizontal, Vertical and Diagonal coefficients. In addition, let MSC and PanC be the 
approximation coefficients of input images. Firstly, the local correlation coefficient is 
calculated for every approximation coefficient. So, around ( , )i j th approximation coefficient 
in MS and Pan decomposed images, an n n× -window is considered to compute the local 
correlation coefficient, named ( , )LCC i j , between Pan and MS approximations; later during 
fusion process, ( , )LCC i j will be compared with the certain threshold θ . Furthermore, in 
order to create weighted Pan’s detail coefficients before injecting into MS’s detail 
coefficients, a local weight is calculated for ( , )i j th approximation coefficient; this weight is 
defined as the ratio of the standard deviation of MS image, which is locally computed in the 
n n× window among approximation coefficients of MS, to the standard deviation of Pan, 
locally computed in the n n× window among approximation coefficients of Pan. This weight 
for the ( , )i j th  coefficient is ( , )i jγ . Now, the ( , )i j th detail coefficient in all three subbands 

, ,k H V D= are injected, according to the rule in Eq. (3), into the corresponding location in 
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Figure 4 shows the fusion procedure of this algorithm diagrammatically.  

Pan-sharpening Methods based on ARSIS Concept   

 

129 

 
Fig. 4. Flowchart of fusion process based on context-driven method 

5. GLP-SDM 
Like other methods, the main goal of this method is to preserve the spectral information of 
MS images during the injection of high frequency details by means of selectively 
substituting the spatial-frequencies spectrum of Pan into MS image. In fact, the main idea of 
this method is based on minimizing the spectral distortion during fusion process which is 
performed by serving the Spectral Angle Mapper (SAM) as a criterion. However, the 
missing details are injected into the upsampled MS image after scaling them. 
Suppose that h  is the scaling ratio (e.g. 2h = for Landsat images) between Pan and original 
MS images, namely the size of Pan is h  times greater than that of original MS. Let MS  be 
the original MS image, Pan  be the Pan image and F be the fused image or enhanced MS 
image. In order to synthesize the MS image at higher resolution, first the original MS image 
is upsampled by h to create the upsampled MS image MS . Then MS  is passed into the h -
expansion lowpass filter he whose cutoff frequency is equal to 1

h  to prevent aliasing. On 
the other hand, in order to obtain the missing details, a low resolution version of 
Pan should be created. So, Pan  is passed into the h -reduction lowpass filter hr with cutoff 
frequency 1

h  to avoid aliasing and then downsampled the results by h . Afterwards, the 
downsampled Pan is upsampled by h and passed into the h -expansion lowpass filter he  
with cutoff frequency 1

h . This leads to the upsampled low resolution Pan image Pan . The 
difference between the upsampled low resolution Pan image and the original one is the 
missing details which must be injected into the upsampled MS image. Before injecting, the 
missing details must be rescaled. The proper gain, which can weigh the missing details 
appropriately, is defined as the ratio of the upsampled MS image ( MS ) over the upsampled 
low resolution Pan image; it means 

 MS
Pan

γ =  (4) 

Eventually, the final enhanced MS image is obtained by multiplying γ by the missing 
details and then adding the result to the upsampled MS image. The mentioned procedure is 
displayed in Figure 5. 
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Fig. 5. Blockdiagram of GLP-SDM method 

6. Fusion method based on linear dependency test 
As it was pointed out, the MSMs use a multiresolution transform to decompose input 
images in order to efficiently represent their details. The choice of multiscale decomposing 
algorithm is crucial since it leads to improve the performance of fusion algorithm noticeably. 
Recently, beyond wavelets such as curvelet, contourlet, etc were proposed. The higher 
performance of these transforms in well representing details rather than LP and wavelet 
were proven (Starck et al, 2002). So, this method based on linear dependency test takes the 
advantages of curvelet transform (Starck et al, 2002). In addition, an appropriate fusion rule 
can increase the performance of fusion method significantly. Selecting the detail coefficients 
with the maximum absolute value is one of the simple fusion rules. However, fusion 
decision based on coefficient values alone can inject noise into the final image. As a result, 
not only the fusion algorithm won’t enhance the spatial resolution of MS image, but also it 
will decline the spatial and spectral resolution of original MS image. So, in this method the 
detail coefficients are opted regionally. The outlandish details like lines are distributed 
among neighbouring detail coefficients. Therefore, in order to determine whether there is an 
outlandish feature in the vicinity of a detail coefficient, the linear dependency test is used in 
this method which is computed in a window centred on a certain coefficient detail. In the 
following, the basic concept of curvelet transform will be explained and then the fusion 
method based on the linear dependency test will be presented. 

6.1 Discrete curvelet transform 
Curvelets can be seen as an extension of wavelets for multidimensional data. The key 
difference between the wavelet and curvelet is that only curvelets are really directional. 
Curvelets satisfy the anisotropic scaling relation 2width length≈ in the spatial domain 
(Candes & Donoho, 2000). For example, as shown in Figure 6(a), it would take many 
wavelet coefficients to accurately represent such a curve. Compared with wavelets, 
curvelets can represent a smooth contour with much fewer coefficients for the same 
precision (Figure 6(b)). 
Curvelets are defined as a function of 1 2( , )x x x=  at scale 2 j−  , orientations lθ  and positions 
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Fig. 6. Comparison of non-linear approximation performance of wavelet and curvelet. (a) 
wavelet representation, (b) curvelet representation 
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where W(r) is the “radial window” supported on (0.5,2)r∈ and V(t) is the “angular 
window” supported on [ 1,1]t∈ − . 
A curvelet coefficient is then simply the inner product between an element 2 2( )f L R∈  and a 
curvelet , ,j l kϕ , 
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In (Candes et al, 2006), Candes et al. proposed two fast discrete curvelet transforms .The first 
one is a digital transformation which is based on unequally-spaced fast Fourier transforms 
(USFFT) and another is based on the wrapping of specially selected Fourier samples. We use 
the first fast discrete curvelet transform to decompose an image into its curvelet coefficients. 

6.2 Fusion rule 
At the first step, input images, Pan and MS, must be registered. It can be done by 
interpolating the MS image. Then, the registered images are decomposed by curvelet 
transform in order to set aside low frequencies for avoiding distortion. The low frequency 
part of MS image would be considered as the low frequency part of final image.  
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In (Candes et al, 2006), Candes et al. proposed two fast discrete curvelet transforms .The first 
one is a digital transformation which is based on unequally-spaced fast Fourier transforms 
(USFFT) and another is based on the wrapping of specially selected Fourier samples. We use 
the first fast discrete curvelet transform to decompose an image into its curvelet coefficients. 

6.2 Fusion rule 
At the first step, input images, Pan and MS, must be registered. It can be done by 
interpolating the MS image. Then, the registered images are decomposed by curvelet 
transform in order to set aside low frequencies for avoiding distortion. The low frequency 
part of MS image would be considered as the low frequency part of final image.  
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Furthermore, the linear dependency test is exerted to decide which detail coefficient should 
be injected into the MS detail coefficients. The linear dependency test can be performed 
based on either Wronskian determinant (Golibagh Mahyar & Yazdi, 2009) or Gramian 
(Golibagh Mahyar & Yazdi, 2010). For an M N× image I , Wronskian’s determinant is 
calculated using Eq. (9) 
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In addition, the Gramian is defined as follows (Barth, 1999). 
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Where ( , )C m n is the ( , )m n th pixel and iv is an M-dimensional vector of all pixels located in 
the i th column of the image.  
In order to attain ( , )m n th  detail coefficient of output image, an W W× window is 
considered around ( , )m n th  detail coefficient of MS and Pan images. Then the linear 
dependency test is computed in this window based on either Eq. (9) or Eq. (10). The higher 
the value of Wronskian’s determinant or Gramian is, the more prominent feature is inside 
the window. So this value can be compared between MS details and Pan ones to determine 
which input image has the stronger feature at the ( , )m n th  detail coefficient. As a 
consequence, the detail coefficients of Pan will be injected to the final image only if this 
value in Pan details is greater than the value in MS details. Therefore, it will prevent the 
injection of noise and non-related details. The fusion rule in this method is defined as: 
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Where ( , ) ( , )MS PanLD m n and LD m n are the value of linear dependency test which can be 
computed using either Eq. (9) or Eq. (10), respectively. In addition, ( , ) ,PanD m n  

( , ) , ( , )MS FD m n and D m n are the detail coefficients of Pan, MS and resulted fusion image, 
respectively. Figure 7 shows the flowchart of this algorithm. 

7. Objective indicators 

Generally, the quality of fusion process can be investigated either visually or quantitatively. 
Although a visual assessment gives better view about the quality of image fusion method 
owing to its dependence on human interpretation, it is not an appropriate way to compare 
different fusion methods. On the other hand, a quantitative assessment is more suitable to 
compare methods inasmuch since it is based on numerical values. However, some famous 
indicators are employed in this chapter in order to compare the mentioned fusion methods 
with each other. They are as follows. 
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Fig. 7. Flowchart of fusion method based on linear dependency test 

7.1 Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) 
It means the relative global dimensional synthesis error and is defined as (Ranchin & Wald, 
2000; Ranchin et al, 2003): 
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where h  is the resolution of the high spatial resolution image, l is the resolution of the low 
spatial resolution image, iM  is the mean radiance of each spectral band involved in the 
fusion and RMSE is the root mean square error computed by: 

 2 2 2( ) ( ) ( )i i iRMSE B bias B SD B= +  (5) 

The lower the value of the ERGAS is, the higher the spectral and spatial quality of the fused 
image will be. 

7.2 Spectral Angle Mapper (SAM) 
The spectral angle mapper for two given spectral vectors v and v̂ is defined as (Ranchin & 
Wald, 2000; Ranchin et al, 2003): 
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where 1 2{ , ,..., }Lv v v v= is the original spectral pixel vector ( )( , )l
lv G i j= and 1 2ˆ ˆ ˆ ˆ{ , ,..., }Lv v v v=  

is the distorted vector obtained by applying the fusion process on the coarser resolution  of 
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MS images, i.e. ( )ˆˆ ( , )l
lv G i j= . SAM is calculated in degree for each pixel and is averaged on 

all pixels to obtain a single value. 
The lower the value of the SAM is, the higher the spectral and spatial quality of the fused 
image will be. 

7.3 Universal Image Quality Index (UIQI) 
It is defined as (Wang & Bovik, 2002): 
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The UIQI is designed by modeling any image distortion as a combination of three factors: 
loss of correlation, radiometric distortion, and contrast distortion. 
The greater the value of the UIQI is, the higher the spectral and spatial quality of the fused 
image will be. 

7.4 Correlation Coefficient (CC) 
It is defined as (Khan, 2008): 
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It is calculated between fused image and reference image. 

8. Experimental results and discussion 
A sample data set, which was obtained from LandSat ETM+, is used in order to evaluate the 
described methods. This satellite provides seven multispectral images in bands 1-7 and one 
panchromatic image in band 8. These bands are in three different resolution categories as 
follows. 
• 30 m for bands 1–5 and 7; 
• 60 m for band 6; 
• 15 m for band 8. 
According to the spectral range of these 8 bands, only three bands 2, 3 and 4 have overlap 
with spectral range of Pan which is why only these three bands are used to fuse with Pan 
and assess the fusion methods‘ performance. These three bands can be displayed as an RGB 
image.  
The outcomes of applying AABP, context-driven, GLP-SDM and Fusion Method based on 
Linear Dependency Test methods are depicted in Figure 8. 
In order to compare different methods, the original MS image in Figure 8(b) is set as the 
reference. AABP method (whose fusion result is shown in Figure 8(c)) not only did not 
enhance the resolution of the upsampled MS image (Figure 8(a)) but also injected noise and 
led the fusion result to become blurred. In addition, this method caused spectral distortion 
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MS images, i.e. ( )ˆˆ ( , )l
lv G i j= . SAM is calculated in degree for each pixel and is averaged on 

all pixels to obtain a single value. 
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in the final result which can be seen especially in the left-down corner of the image where 
mustered color was turned to bright brown. On the other hand, the context-driven method 
in the Figure 8(d) preserved the spectral content of MS image; it also enhanced the spatial 
resolution somehow but the image was still blurred. Unlike these two methods, the fusion 
results of GLP-SDM method was enhanced noticeably. Furthermore, visually comparison 
does not indicate any spectral distortion. Finally, the method based on linear dependency 
test provided enhancements in upsampled MS image. Moreover, no spectral distortion can 
be identified in the fusion outcome.  
However, evaluation criteria can provide a better comparison among various methods. So 
that these four methods are compared numerically in Table 1 using described evaluation 
criteria in the previous section. 
 

 ERGAS SAM UIQI CC 
AABP Model 3.73 1 0.29 0.73

Context-Driven 1.49 0.72 0.85 0.92
GLP-SDM 1.57 0.65 0.88 0.95

Linear Dependency Test 1.39 0.71 0.89 0.96

Table 1. Evaluation Criteria comparison 

Sure enough, the AABP model has the worst performance among these four methods 
according to Table 1. On the other hand, although the evaluation criteria values of the other 
three methods are very close to each other, GLP-SDM and Linear Dependency Test methods 
have better outcomes in compare with context-driven method. Likewise, the performance of 
Linear Dependency Test method in spatial enhancement is little better than that of GLP-
SDM method. Nevertheless, according to SAM, the GLP-SDM method preserves the spectral 
content better as it is clear from a visual comparison.    

9. Conclusion 
In this chapter, the ARSIS concept, one of the most important categories for the image 
fusion, was considered. The basic assumption of ARSIS concept is the existence of a 
relationship between high frequency components of Pan and MS images. So, the majority of 
fusion methods in this category incline to decompose input images by a multiresolution 
transform in order to separate high frequencies from low frequencies resulting in 
preservation of low frequencies during the fusion process.  
Furthermore, four novel fusion methods were elaborated. Eventually, the methods were 
compared visually and assessed quantitatively based on some well-known criteria. 
However, further works on ARSIS concept would be appreciated by introducing newer 
multiresolution transform like ridgelet, surfacelet, etc. 
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1. Introduction 
Advances in sensor technology have brought about extensive research in the field of image 
fusion. Image fusion is the combination of two or more source images which vary in 
resolution, instrument modality, or image capture technique into a single composite 
representation (Hill et al., 2002).  Thus, the source images are complementary in many ways, 
with no one input image being an adequate data representation of the scene.  Therefore, the 
goal of an image fusion algorithm is to integrate the redundant and complementary 
information obtained from the source images in order to form a new image which provides 
a better description of the scene for human or machine perception (Kumar & Dass, 2009).  
Image fusion is essential for computer vision and robotics systems in which fusion results 
can be used to aid further processing steps for a given task.  Image fusion techniques are 
practical and fruitful for many applications, including medical imaging, security, military, 
remote sensing, digital camera and consumer use.  There are many cases in medical imaging 
where viewing a series of images individually is not convenient.  For example, magnetic 
resonance imaging (MRI) and computed tomography (CT) images provide structural and 
anatomical information with high resolution. Positron emission tomography (PET) and 
single photon emission computed tomography (SPECT) images provide functional 
information with low resolution.  Therefore, the fusion of MRI or CT images with PET or 
SPECT images can provide the needed structural, anatomical, and functional information 
for medical diagnosis, anomaly detection and quantitative analysis (Daneshvar & 
Ghassemian, 2010).  Moreover, the combination of MRI and CT images can provide images 
containing both dense bone structure and soft tissue information (Yang et al., 2010).  
Similarly, the combination of MRI-T1 images provides greater details of anamotical 
structures while MRI-T2 images provides greater contrast between normal and abmormal 
tissue matter, and thus, their fusion can also help to extract the features needed by 
physicians (Wang, 2008). In security applications, thermal/infrared images provide 
information regarding the presence of intruders or potential threat objects (Zhang & Blum, 
1997).   For military applications, such images can also provide terrain clues for helicopter 
navigation.  Visible light images provide high-resolution structural information based on the 
way in which light is reflected.  Thus, the fusion of thermal/infrared and visible images can 
be used to aid navigation, concealed weapon detection, and surveillance/border patrol by 
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humans or automated computer vision security systems (Qiong et al., 2008).  In remote 
sensing applications, the fusion of multi-spectral low-resolution remote sensing images with 
a high-resolution panchromatic image can yield a high-resolution multispectral image with 
good spectral and spatial characteristics (Chibani, 2005).  As a visible light image is taken by 
a CCR device at a given focal point, certain objects in the image may be in focus while others 
may be blurred and out of focus.  For digital camera applications and consumer use, the 
fusion of images taken at different focal points can essentially create an image having 
multiple focal points in which all objects in the scene are in focus (Zhang, 1999).   
The most basic of image fusion approaches include spatial domain techniques using simple 
averaging, Principal Component Analysis (PCA) (Chavez & Kwarteng, 1989), and the 
Intensity-Hue-Saturation (IHS) transformation (Tu et al., 2001). However, such methods do 
not incorporate aspects of the human visual system in their formulation.  It is well known 
that the human visual system is particularly sensitive to edges at their various scales (Tabb 
& Ahuja, 1997).  Based on this fact, multi-resolution image fusion techniques have been 
proposed in order to yield more visually accurate fusion results. These approaches 
decompose image signals into low-pass and high-pass coefficients via a multi-resolution 
decomposition scheme, fuse low-pass and high-pass coefficients according to specific fusion 
rules, and perform an inverse transform to yield the final fusion result.  The use of different 
fusion rules for low-pass and high-pass coefficients provides a means of yielding fusion 
results inspired by the human visual system.  Pixel-based image fusion algorithms fuse 
detail coefficients pixels individually based on either selection or weighted averaging.  
Motivated by the fact that applications requiring image fusion are interested in integrating 
information at the feature level, region-based image fusion algorithms use segmentation to 
extract regions corresponding to perceived objects from the source images, and fuse regions 
according to a region activity measure (Piella, 2003). Because of their general formulations, 
both pixel- and region-based fusion rules can be adopted using any multi-resolution 
decomposition technique, allowing for a convenient means of comparing the performance of 
multi-resolution decomposition schemes for image fusion while keeping the fusion rules 
constant.  The most common of multi-resolution decomposition schemes for image fusion 
have been the pyramid transforms and wavelet transforms.  Particularly, pixel- and region-
based image fusion algorithms using the Laplacian Pyramid (LP) (Burt & Adelson, 1983), 
Discrete Wavelet Transform (DWT) (Mallat, 1989), and Stationary Wavelet Transform (SWT) 
(Rockinger, 1997) have been proposed.   
Although much of the research in image fusion has strived to formulate effective image 
fusion techniques which are consistent with the human visual system, the mentioned multi-
resolution decomposition schemes and their respective image fusion algorithms are 
implemented using standard arithmetic operators which are not suitable for processing 
images. Conversely, the Logarithmic Image Processing (LIP) model was proposed to 
provide a nonlinear framework for visualizing images using a mathematically rigorous 
arithmetical structure specifically designed for image manipulation (Jourlin & Pinoli, 2001).  
The LIP model views images in terms of their graytone functions, which are interpreted as 
absorption filters.  It processes graytone functions using a new arithmetic which replaces 
standard arithmetical operators. The resulting set of arithmetic operators can be used to 
process images based on a physically relevant image formation model.  The model makes 
use of a logarithmic isomorphic transformation, consistent with the fact that the human 
visual system processes light logarithmically. The model has also shown to satisfy Weber’s 
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Law, which quantifies the human eye’s ability to perceive intensity differences for a given 
background intensity (Pinoli, 1998).  As a result, image enhancement, edge detection, and 
image restoration algorithms utilizing the LIP model have yielded better results (Deng et al., 
2009; Debayle et al., 2006). 
However, an unfortunate consequence of the LIP model for general practical purposes is 
that the dynamic range of the processed image data is left unchanged causing information 
loss and signal clipping.  Moreover, specifically for image fusion purposes, the combination 
of source images in regions of vastly different mean intensity yield visually poor results 
even though their processing is motivated by a relevant physical model.  It is therefore 
advantageous to formulate a generalized image processing framework which is able to 
effectively unify the LIP and standard processing frameworks into a single framework.  
Consequently, the Parameterized Logarithmic Image Processing (PLIP) model was 
formulated. The PLIP model is a generalization of the LIP model which attempts to 
overcome the mentioned shortcomings of the standard processing and LIP models and can 
yield visually more pleasing outputs (Panetta et al., 2008).  A mathematical analysis shows 
that in fact LIP and standard mathematical operators are instances of the generalized PLIP 
framework.  Adaptations of edge detection and image enhancement algorithms using the 
PLIP model have demonstrated the improved performance achieved by the parameterized 
framework (Panetta et al., 2007; Wharton et al. 2008).   In this chapter, we investigate the use 
of the PLIP model for image fusion applications.  New multi-resolution decomposition 
schemes and image fusion rules using the PLIP model are introduced, and consequently, 
new pixel- and region-based image fusion algorithms using the PLIP model are proposed. 
The remainder of this chapter is organized as follows:  Section 2 provides a brief overview of 
commonly used multi-scale image decomposition techniques. Section 3 provides 
background information for pixel-based image fusion algorithms, while Section 4 provides 
background information for region-based image fusion algorithms.  Section 5 describes the 
LIP and PLIP models, and in particular, analyzes the advantageous properties of the 
proposed PLIP model.  Section 6 subsequently introduces the proposed multi-scale image 
decomposition techniques and image fusion algorithms. Section 7 describes the quality 
metric used for quantitative assessment of image fusion quality. Section 8 compares the 
proposed image fusion algorithms with existing standards via computer simulations.  
Section 9 draws conclusions based on the presented experimental results.   

2. Multi-resolution image decomposition schemes 
2.1 Laplacian Pyramid (LP) 
The LP uses the Gaussian Pyramid to provide a multi-resolution image representation for an 
image I (Burt & Adelson, 1983).  Analysis and synthesis using the LP is illustrated in Figure 
1. Each analysis stage consists of low-pass filtering, down-sampling, interpolating, and 
differencing steps in order to generate the approximation coefficients ( )
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humans or automated computer vision security systems (Qiong et al., 2008).  In remote 
sensing applications, the fusion of multi-spectral low-resolution remote sensing images with 
a high-resolution panchromatic image can yield a high-resolution multispectral image with 
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Although much of the research in image fusion has strived to formulate effective image 
fusion techniques which are consistent with the human visual system, the mentioned multi-
resolution decomposition schemes and their respective image fusion algorithms are 
implemented using standard arithmetic operators which are not suitable for processing 
images. Conversely, the Logarithmic Image Processing (LIP) model was proposed to 
provide a nonlinear framework for visualizing images using a mathematically rigorous 
arithmetical structure specifically designed for image manipulation (Jourlin & Pinoli, 2001).  
The LIP model views images in terms of their graytone functions, which are interpreted as 
absorption filters.  It processes graytone functions using a new arithmetic which replaces 
standard arithmetical operators. The resulting set of arithmetic operators can be used to 
process images based on a physically relevant image formation model.  The model makes 
use of a logarithmic isomorphic transformation, consistent with the fact that the human 
visual system processes light logarithmically. The model has also shown to satisfy Weber’s 
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Law, which quantifies the human eye’s ability to perceive intensity differences for a given 
background intensity (Pinoli, 1998).  As a result, image enhancement, edge detection, and 
image restoration algorithms utilizing the LIP model have yielded better results (Deng et al., 
2009; Debayle et al., 2006). 
However, an unfortunate consequence of the LIP model for general practical purposes is 
that the dynamic range of the processed image data is left unchanged causing information 
loss and signal clipping.  Moreover, specifically for image fusion purposes, the combination 
of source images in regions of vastly different mean intensity yield visually poor results 
even though their processing is motivated by a relevant physical model.  It is therefore 
advantageous to formulate a generalized image processing framework which is able to 
effectively unify the LIP and standard processing frameworks into a single framework.  
Consequently, the Parameterized Logarithmic Image Processing (PLIP) model was 
formulated. The PLIP model is a generalization of the LIP model which attempts to 
overcome the mentioned shortcomings of the standard processing and LIP models and can 
yield visually more pleasing outputs (Panetta et al., 2008).  A mathematical analysis shows 
that in fact LIP and standard mathematical operators are instances of the generalized PLIP 
framework.  Adaptations of edge detection and image enhancement algorithms using the 
PLIP model have demonstrated the improved performance achieved by the parameterized 
framework (Panetta et al., 2007; Wharton et al. 2008).   In this chapter, we investigate the use 
of the PLIP model for image fusion applications.  New multi-resolution decomposition 
schemes and image fusion rules using the PLIP model are introduced, and consequently, 
new pixel- and region-based image fusion algorithms using the PLIP model are proposed. 
The remainder of this chapter is organized as follows:  Section 2 provides a brief overview of 
commonly used multi-scale image decomposition techniques. Section 3 provides 
background information for pixel-based image fusion algorithms, while Section 4 provides 
background information for region-based image fusion algorithms.  Section 5 describes the 
LIP and PLIP models, and in particular, analyzes the advantageous properties of the 
proposed PLIP model.  Section 6 subsequently introduces the proposed multi-scale image 
decomposition techniques and image fusion algorithms. Section 7 describes the quality 
metric used for quantitative assessment of image fusion quality. Section 8 compares the 
proposed image fusion algorithms with existing standards via computer simulations.  
Section 9 draws conclusions based on the presented experimental results.   

2. Multi-resolution image decomposition schemes 
2.1 Laplacian Pyramid (LP) 
The LP uses the Gaussian Pyramid to provide a multi-resolution image representation for an 
image I (Burt & Adelson, 1983).  Analysis and synthesis using the LP is illustrated in Figure 
1. Each analysis stage consists of low-pass filtering, down-sampling, interpolating, and 
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The detail coefficients at scale n are consequently calculated as a weighted difference 
between successive levels of the Gaussian Pyramid, and is given by 
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The synthesis procedure begins from the approximation coefficient at the high 
decomposition level N.  Each synthesis level reconstructs approximation coefficients at a 
scale n < N by 
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Fig. 1. Laplacian Pyramid analysis and synthesis 

2.2 Discrete Wavelet Transform (DWT) 
The 2D separable DWT uses a quadrature mirror set of 1D filters to provide a multi-
resolution scheme for an image I with added directionality relative to the LP (Mallat, 1989).  
Analysis and synthesis using the DWT is illustrated in Figure 2.  The DWT is able to provide 
perfect reconstruction while using critical sampling.  Each analysis stage consists of filtering 
along rows, down-sampling along columns, filtering along columns, and down-sampling 
along rows in order to generate the approximation coefficient sub-band ( )
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and are oriented horizontally, vertically, and diagonally, respectively. The synthesis 
procedure begins from the wavelet coefficients at the highest decomposition level N.  
Filtering and up-sampling steps are performed in order to perfectly reconstruct the image 
signal.  Each synthesis level reconstructs approximation coefficients at a scale n < N by 
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where ĝ and ĥ  are 1D low-pass and high-pass wavelet synthesis filters, respectively. 
 
 

 
Fig. 2. Discrete Wavelet Transform analysis and synthesis 

2.3 Discrete Wavelet Transform (SWT) 
Both the DWT and LP are shift-variant due to the down-sampling step which they employ.  
Therefore, the alteration of transform coefficients may introduce artifacts when processed 
using the DWT and to a lesser extent, the LP.  It can introduce artifacts into the fusion results 
particularly for cases in which source images are misregistered.  The SWT is a shift-invariant, 
redundant wavelet transform which attempts to reduce artifact effects by up-sampling 
analysis filters rather than down-sampling approximation images at each level of 
decomposition (Fowler, 2005). Therefore, each analysis stage calculates the approximation 
coefficient sub-band ( )
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3. Pixel-based fusion using multi-resolution decomposition schemes 
A generalized pixel-based multi-resolution image fusion algorithm is illustrated in Figure 3.  
The input source images are transformed using a given multi-resolution image 
decomposition technique T. One fusion rule is used to fuse the approximation coefficients at 
the highest decomposition level. A second fusion rule is used to fuse the detail coefficients at 
each decomposition level. The resulting inverse transform yields the final fused result.  
Although image fusion algorithms are expected to withstand minor registration differences, 
the source images to be fused are assumed to be registered. 
 
 

 
Fig. 3. A generalized pixel-based multi-resolution image fusion algorithm 

Misregistered source images should be subjected to registration preprocessing steps 
independent to the image fusion algorithm.  The approximation coefficients at the highest 
level of decomposition N are most commonly fused via uniform averaging.  This is because 
at the highest level of decomposition, the approximation coefficients are interpreted as the 
mean intensity value of the source images with all salient features encapsulated by the detail 
coefficient sub-bands at their various scales (Piella, 2003). Therefore, fusing approximation 
coefficients at their highest level of decomposition by averaging maintains the appropriate 
mean intensity needed for the fusion result with minimal loss of salient features.  Given 
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Conversely, the detail coefficients of the source images correspond to salient features such 
as lines and edges detected at various scales.  Therefore, fusion rules for detail coefficients at 
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each decomposition level should be formulated in order to preserve these features. Such 
fusion rules are inspired by the human visual system, which is particularly sensitive to 
edges. Many pixel-based detail coefficient fusion rules have been proposed. In this work, 
two common detail coefficient fusion rules are considered.  

3.1 Absolute maximum detail coefficient fusion rule 
The absolute maximum (AM) detail coefficient fusion rule selects the detail coefficient in 
each sub-band with greatest magnitude (Piella, 2003). For each of the i high-pass sub-bands 
at each level of decomposition n, the multiplicative weights for fusion are given by 
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For each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients 
of the fused image F are determined by 
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3.2 Burt and Kolczynski’s detail coefficient fusion rule 
Burt and Kolczynski’s (BK) detail coefficient fusion rule combines detail coefficients based 
on an activity and match measure (Burt & Kolczynski, 1993). The activity measure for each 
wxw local window of each sub-band i is calculated for each source image, given as  
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The local match measure of each sub-band measures the correlation of each sub-band 
between source images, and is given as  
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Comparing the match measure to a threshold th determines if detail coefficients are to be is 
combined by simple selection or by weighted averaging. The associated weights for fusion 
are given by 
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the highest decomposition level. A second fusion rule is used to fuse the detail coefficients at 
each decomposition level. The resulting inverse transform yields the final fused result.  
Although image fusion algorithms are expected to withstand minor registration differences, 
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each decomposition level should be formulated in order to preserve these features. Such 
fusion rules are inspired by the human visual system, which is particularly sensitive to 
edges. Many pixel-based detail coefficient fusion rules have been proposed. In this work, 
two common detail coefficient fusion rules are considered.  

3.1 Absolute maximum detail coefficient fusion rule 
The absolute maximum (AM) detail coefficient fusion rule selects the detail coefficient in 
each sub-band with greatest magnitude (Piella, 2003). For each of the i high-pass sub-bands 
at each level of decomposition n, the multiplicative weights for fusion are given by 
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For each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients 
of the fused image F are determined by 
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3.2 Burt and Kolczynski’s detail coefficient fusion rule 
Burt and Kolczynski’s (BK) detail coefficient fusion rule combines detail coefficients based 
on an activity and match measure (Burt & Kolczynski, 1993). The activity measure for each 
wxw local window of each sub-band i is calculated for each source image, given as  
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The local match measure of each sub-band measures the correlation of each sub-band 
between source images, and is given as  
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Comparing the match measure to a threshold th determines if detail coefficients are to be is 
combined by simple selection or by weighted averaging. The associated weights for fusion 
are given by 
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For each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients 
for the fused image F are again determined by (18). 

4. Region-based fusion using multi-resolution decomposition schemes 
Pixel-based image fusion approaches determine the detail coefficients of a fused image on a 
per pixel basis.  Namely, they use the transform data at local neighborhoods to individually 
determine each detail coefficient of the ultimate fusion result.  Applications which utilize 
image fusion schemes are by in large more interested in fusing the various objects found in 
the original source images.  This suggests that information regarding feature instead of the 
pixels themselves should be incorporated into the fusion process. This provides the 
motivation for region-based image fusion algorithms (Piella, 2003). Region-based fusion 
algorithms use image segmentation to guide the fusion process. A generalized region-based 
multi-resolution fusion algorithm is illustrated in Figure 4. The source images are once again 
first transformed using a given multi-resolution decomposition scheme. They are segmented 
using a segmentation algorithm, yielding a shared region representation which is thereby 
used to aid the fusion of detail coefficients at each scale.  The detail coefficients in each 
region at each scale are fused based on their level of activity in the given region.  The fusion 
of approximation coefficients at the highest level of decomposition remains unchanged. The 
result is a more robust fusion approach which can overcome blurring effects and improve 
sensitivity to noise and misregistration known in pixel-based approaches. Moreover, region-
based image fusion have allowed for a broader class of fusion rules to be formulated.  The 
choice of segmentation algorithm used in region-based image fusion directly affects the 
fusion result.   Segmentation algorithms which have been used in region-based image fusion 
algorithms include watershed (Lewis et al., 2004), K-means (Khan et al., 2007), texture-based 
(Li et al., 2003), pyramidal linking (Piella, 2003), and mean-shift segmentation (Shuang & 
Zhilin, 2008).  In this paper, mean-shift segmentation is used for all region-based approaches 
because of its robustness and because it has previously been applied for image fusion 
purposes yielding promising results. It may be substituted with another segmentation 
algorithm. As this paper is primarily concerned with the use of the nonlinear frameworks 
and multi-resolution schemes for image fusion, a discussion of appropriate segmentation 
algorithms for image fusion is considered outside of the scope of this work. The main 
objective here is to ultimately extend the use of parameterized logarithmic image fusion to 
region-based approaches.   
 

 
Fig. 4. A generalized region-based multi-resolution image fusion algorithm 
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4.1 Mean-shift segmentation 
Mean-shift segmentation is a specific application of the mean-shift procedure (Comanicu & 
Meer, 2002).  The mean shift procedure is an adaptive gradient ascent which can be used for 
mode detection, and is thus a nonparametric tool for feature space analysis.  Given a radially 
symmetric kernel K(x) with a monotonically decreasing profile function k(x), the kernel G(x) 
is defined as a kernel with profile function  

 ( ) ( )g x k x′= −  (22) 

For n data points xi, i = 1, …, n, the mean shift is defined by 
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where h is a bandwidth parameter and x is the center of the kernel G.  The mean shift 
procedure iteratively calculates the center position of the kernel G by 
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The procedure is guaranteed convergence, which is arrived when the estimate has a 
gradient of zero. By representing images as a 2D lattice of p-dimensional vectors, where p = 
1 corresponds to grayscale, p = 3 corresponds to color, and p > 3 corresponds to 
multispectral images, the space of the lattice can be referred to as the spatial domain and the 
gray level, color, or spectral data can be referred to as the range domain. Accordingly, a 
multi-variate kernel K can be defined by 
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where hs is a spatial bandwidth parameter, hr is a range bandwidth parameter, and C is a 
normalizing constant.  Accordingly, a mean-shift filtering is proposed, where each pixel is 
mapped to its spatial and range convergence point.  The mean-shift segmentation merges 
results from the mean-shift filtering algorithm by grouping pixels whose resulting 
convergence points are closer than hs in the spatial domain and hr in the range domain.  
Therefore, the hs and hr parameters are the only user selected parameters for the 
segmentation (Tao et al. 2007). A shared region representation for region-based image fusion 
purposes is yielded using mean-shift segmentation by individually segmenting each of the 
source images, and by then splitting overlapping regions into new regions.  An example of a 
shared region representation yielded using mean-shift segmentation is shown in Figure 5.  
To maintain consistency in segmentation results across different scales, successive down- 
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For each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients 
for the fused image F are again determined by (18). 

4. Region-based fusion using multi-resolution decomposition schemes 
Pixel-based image fusion approaches determine the detail coefficients of a fused image on a 
per pixel basis.  Namely, they use the transform data at local neighborhoods to individually 
determine each detail coefficient of the ultimate fusion result.  Applications which utilize 
image fusion schemes are by in large more interested in fusing the various objects found in 
the original source images.  This suggests that information regarding feature instead of the 
pixels themselves should be incorporated into the fusion process. This provides the 
motivation for region-based image fusion algorithms (Piella, 2003). Region-based fusion 
algorithms use image segmentation to guide the fusion process. A generalized region-based 
multi-resolution fusion algorithm is illustrated in Figure 4. The source images are once again 
first transformed using a given multi-resolution decomposition scheme. They are segmented 
using a segmentation algorithm, yielding a shared region representation which is thereby 
used to aid the fusion of detail coefficients at each scale.  The detail coefficients in each 
region at each scale are fused based on their level of activity in the given region.  The fusion 
of approximation coefficients at the highest level of decomposition remains unchanged. The 
result is a more robust fusion approach which can overcome blurring effects and improve 
sensitivity to noise and misregistration known in pixel-based approaches. Moreover, region-
based image fusion have allowed for a broader class of fusion rules to be formulated.  The 
choice of segmentation algorithm used in region-based image fusion directly affects the 
fusion result.   Segmentation algorithms which have been used in region-based image fusion 
algorithms include watershed (Lewis et al., 2004), K-means (Khan et al., 2007), texture-based 
(Li et al., 2003), pyramidal linking (Piella, 2003), and mean-shift segmentation (Shuang & 
Zhilin, 2008).  In this paper, mean-shift segmentation is used for all region-based approaches 
because of its robustness and because it has previously been applied for image fusion 
purposes yielding promising results. It may be substituted with another segmentation 
algorithm. As this paper is primarily concerned with the use of the nonlinear frameworks 
and multi-resolution schemes for image fusion, a discussion of appropriate segmentation 
algorithms for image fusion is considered outside of the scope of this work. The main 
objective here is to ultimately extend the use of parameterized logarithmic image fusion to 
region-based approaches.   
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4.1 Mean-shift segmentation 
Mean-shift segmentation is a specific application of the mean-shift procedure (Comanicu & 
Meer, 2002).  The mean shift procedure is an adaptive gradient ascent which can be used for 
mode detection, and is thus a nonparametric tool for feature space analysis.  Given a radially 
symmetric kernel K(x) with a monotonically decreasing profile function k(x), the kernel G(x) 
is defined as a kernel with profile function  
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where h is a bandwidth parameter and x is the center of the kernel G.  The mean shift 
procedure iteratively calculates the center position of the kernel G by 
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The procedure is guaranteed convergence, which is arrived when the estimate has a 
gradient of zero. By representing images as a 2D lattice of p-dimensional vectors, where p = 
1 corresponds to grayscale, p = 3 corresponds to color, and p > 3 corresponds to 
multispectral images, the space of the lattice can be referred to as the spatial domain and the 
gray level, color, or spectral data can be referred to as the range domain. Accordingly, a 
multi-variate kernel K can be defined by 
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where hs is a spatial bandwidth parameter, hr is a range bandwidth parameter, and C is a 
normalizing constant.  Accordingly, a mean-shift filtering is proposed, where each pixel is 
mapped to its spatial and range convergence point.  The mean-shift segmentation merges 
results from the mean-shift filtering algorithm by grouping pixels whose resulting 
convergence points are closer than hs in the spatial domain and hr in the range domain.  
Therefore, the hs and hr parameters are the only user selected parameters for the 
segmentation (Tao et al. 2007). A shared region representation for region-based image fusion 
purposes is yielded using mean-shift segmentation by individually segmenting each of the 
source images, and by then splitting overlapping regions into new regions.  An example of a 
shared region representation yielded using mean-shift segmentation is shown in Figure 5.  
To maintain consistency in segmentation results across different scales, successive down- 
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 a)  b) c) d) e) 

Fig. 5. (a)(b) Original “brain” source images, (c) mean-shift segmentation result of (a),  
(d) mean-shift segmentation result of (b), (e) shared region representation for region-based 
image fusion 
sampling is performed to yield a shared region representation at each level of 
decomposition based on the image decomposition scheme used for image fusion. 

4.2 Region-based detail coefficient fusion rules 
Most any fusion rule formulated for pixel-based fusion can be easily formulated in terms of 
regions. The extension to regions merely involves calculating activity measures, match 
measures, and fusion weights for each region R instead of each pixel (Piella, 2003). For 
example, the activity measure for each region of each sub-band i of each source image can 
be defined by 
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where |R| is the area of the region R.  Similarly, the match measure ( )
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n
I I im R  and the 

multiplicative fusion weight ( )( )n
i Rλ  for each region of each sub-band i can be defined.  For 

each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients of 
the fused image F in each region R are determined by 
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5. Parameterized logarithmic image processing (PLIP) model 
5.1 Formulation 
The LIP model was originally developed to provide a representation and processing 
framework for images in a bounded intensity range which is consistent with the physical 
laws of image combination and amplification.  The model processes images as absorption 
filters known as graytones based on M, the maximum value of the range of I, and is 
characterized by its isomorphic transformation which mathematically emulates the relevant 
nonlinear physical model which the LIP model is based on. A new set of LIP mathematical 
operators, namely addition, subtraction, and scalar multiplication, are consequently defined 
for graytones g1 and g2 and scalar constant c in terms of this isomorphic transformation, thus 
replacing traditional mathematical operators with nonlinear operators which attempt to 
characterize the nonlinearity of image arithmetic (Jourlin & Pinoli, 2001).  For example, LIP 
addition emulates the intensity image projected onto a screen when a uniform light source is 
filtered by two graytones placed in series.  Subsequently, LIP convolution is also defined for 
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a graytone g and filter w (Palomares et al., 2005).  The framework is consistent with several 
properties of the human visual system, such as brightness range inversion, Weber’s law, 
saturation characteristics, and the psychophysical notion.   However, it has been shown that 
psychophysical laws can be context-dependent, and thus, the constants governing these 
psychophysical laws are indeed parametric (Krueger, 1989). Thus, the PLIP model 
generalizes the concept of nonlinear image processing frameworks initially proposed in the 
form of the LIP model by adding parameterization to the model.   
Table 1 summarizes and compares the LIP and PLIP mathematical operators.  In its most 
general form, the PLIP model generalizes graytone calculation, arithmetic operations, and 
the isomorphic transformation independently, giving rise to the model parameters µ, γ, k, λ, 
and β.  To reduce the number of parameters needed for image fusion, this paper considers 
the specific instance in which µ = M, γ = k = λ, and β = 1, effectively resulting in a single 
model parameter γ.  In this case, The PLIP model generalizes the isomorphic transformation 
which defines the LIP model by accordingly choosing values for γ.  Practically, for images in 
[0, M), the value of γ can either be chosen such that γ ≥ M for positive γ or can take on any 
negative value. The resulting PLIP mathematical operators based on the parameterized 
isomorphic transformation can be subsequently derived.   
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Table 1. Summary of the LIP and PLIP operators 

5.2 Properties  
The PLIP properties to be discussed refer to the specific instance of the PLIP model in which 
µ = M, γ = k = λ, and β = 1.  Similar intuitions are deduced for the more general cases.   
1. The PLIP model operators revert to the LIP model operators with γ = M.   
2. It can be shown that  
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Fig. 5. (a)(b) Original “brain” source images, (c) mean-shift segmentation result of (a),  
(d) mean-shift segmentation result of (b), (e) shared region representation for region-based 
image fusion 
sampling is performed to yield a shared region representation at each level of 
decomposition based on the image decomposition scheme used for image fusion. 

4.2 Region-based detail coefficient fusion rules 
Most any fusion rule formulated for pixel-based fusion can be easily formulated in terms of 
regions. The extension to regions merely involves calculating activity measures, match 
measures, and fusion weights for each region R instead of each pixel (Piella, 2003). For 
example, the activity measure for each region of each sub-band i of each source image can 
be defined by 
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5. Parameterized logarithmic image processing (PLIP) model 
5.1 Formulation 
The LIP model was originally developed to provide a representation and processing 
framework for images in a bounded intensity range which is consistent with the physical 
laws of image combination and amplification.  The model processes images as absorption 
filters known as graytones based on M, the maximum value of the range of I, and is 
characterized by its isomorphic transformation which mathematically emulates the relevant 
nonlinear physical model which the LIP model is based on. A new set of LIP mathematical 
operators, namely addition, subtraction, and scalar multiplication, are consequently defined 
for graytones g1 and g2 and scalar constant c in terms of this isomorphic transformation, thus 
replacing traditional mathematical operators with nonlinear operators which attempt to 
characterize the nonlinearity of image arithmetic (Jourlin & Pinoli, 2001).  For example, LIP 
addition emulates the intensity image projected onto a screen when a uniform light source is 
filtered by two graytones placed in series.  Subsequently, LIP convolution is also defined for 
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a graytone g and filter w (Palomares et al., 2005).  The framework is consistent with several 
properties of the human visual system, such as brightness range inversion, Weber’s law, 
saturation characteristics, and the psychophysical notion.   However, it has been shown that 
psychophysical laws can be context-dependent, and thus, the constants governing these 
psychophysical laws are indeed parametric (Krueger, 1989). Thus, the PLIP model 
generalizes the concept of nonlinear image processing frameworks initially proposed in the 
form of the LIP model by adding parameterization to the model.   
Table 1 summarizes and compares the LIP and PLIP mathematical operators.  In its most 
general form, the PLIP model generalizes graytone calculation, arithmetic operations, and 
the isomorphic transformation independently, giving rise to the model parameters µ, γ, k, λ, 
and β.  To reduce the number of parameters needed for image fusion, this paper considers 
the specific instance in which µ = M, γ = k = λ, and β = 1, effectively resulting in a single 
model parameter γ.  In this case, The PLIP model generalizes the isomorphic transformation 
which defines the LIP model by accordingly choosing values for γ.  Practically, for images in 
[0, M), the value of γ can either be chosen such that γ ≥ M for positive γ or can take on any 
negative value. The resulting PLIP mathematical operators based on the parameterized 
isomorphic transformation can be subsequently derived.   
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Table 1. Summary of the LIP and PLIP operators 

5.2 Properties  
The PLIP properties to be discussed refer to the specific instance of the PLIP model in which 
µ = M, γ = k = λ, and β = 1.  Similar intuitions are deduced for the more general cases.   
1. The PLIP model operators revert to the LIP model operators with γ = M.   
2. It can be shown that  
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Since ϕ  and 1ϕ−  are continuous functions, the PLIP model operators revert to 
arithmetic operators as |γ| approaches infinity and therefore, the PLIP model 
approaches standard linear processing of graytone functions as |γ| approaches infinity.  
Depending on the nature of the algorithm, an algorithm which utilizes standard linear 
processing operators can be found to be an instance of an algorithm using the PLIP 
model with γ = ∞.   

3. The PLIP model can generate intermediate cases between LIP operators and standard 
operators by choosing γ in the range (M, ∞).   

4. For input graytones in [0, M), the range of PLIP addition and multiplication with γ in 
[M, ∞] is [0, γ].   

5. For input graytones in [0, M), the range of PLIP subtraction with γ in [M, ∞] is (-∞, γ].   
6. It can be shown that the PLIP operators obey the associative, commutative, and 

distributive laws and unit identities.   
7. The operations satisfy the 4 requirements for image processing frameworks (Jourlin & 

Pinoli, 2001) and an additional 5th one.  Namely, (1) the image processing framework 
must be based on a physically relevant image formation model; (2) The mathematical 
operations must be consistent with the physical nature of images; (3) The operations 
must be computationally effective; (4) The framework must be practically fruitful; (5) 
The framework must minimize the loss of information. 

 

         
 a) b) (c) 

         
 d) e) f) 
Fig. 6. (a) “Lena” image , (b) “Cameraman” image, image addition using (c) γ = 256 (LIP 
model case), (d) γ = 300, (e) γ = 600, (f) γ = 108 

The 5th requirement essentially states that when visually “good” images are processed, the 
output must also be visually “good” (Panetta et al., 2008).  The PLIP model satisfies the 
requirements by selecting values of γ which expands the dynamic range of outputs in order 
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to minimize information loss while also retaining non-linear, logarithmic functionality 
according to a physical model.  This property is illustrated in Figure 6.  The LIP addition 
provides a good contrast between Lena and the cameraman, but there is also a loss of 
information in the output, namely in the area corresponding to the cameraman’s coat.  PLIP 
addition with γ = 300 is able to yield a good contrast while also minimizing loss of 
information.  Thus, for positive γ, the PLIP model physically provides a balance between the 
standard linear processing model and the LIP model.  Conversely, negative values of γ may be 
selected for cases in which added brightness is needed to yield more visually pleasing results. 

6. Image fusion using the PLIP model 
Adapting image fusion algorithms with the PLIP model require a mathematical formulation 
of multi-resolution decomposition schemes and coefficient fusion rules in terms of the 
model.  The combination of the parameterized logarithmic image decomposition techniques 
with parameterized logarithmic fusion rules yields a new set of image fusion algorithms 
which are based on the PLIP model.  The parameterized logarithmic multi-resolution  
decomposition schemes and fusion rules are defined for graytone functions.  Therefore, 
images are converted to graytone functions before PLIP-based operations are performed and 
converted from graytone functions to images after PLIP-based operation are performed.   

6.1 Parameterized logarithmic multi-scale image decomposition schemes 
6.1.1 Parameterized Logarithmic Laplacian Pyramid (PL-LP) 
The approximation coefficients for a graytone function g at a scale n > 0 are generated by 

 ( ) ( 1)
0 0 2
n ny w y −

↓
⎡ ⎤= ∗⎣ ⎦  (29) 

where ( )
0
ny = g and w is the low-pass filter defined in (2).  The detail coefficients at scale n are 

then generated by 
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The inverse procedure begins from the approximation coefficient at the high decomposition 
level N.  Each synthesis level reconstructs approximation coefficients at a scale i < N by each 
synthesis level by 
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6.1.2 Parameterized Logarithmic Discrete Wavelet Transform (PL-DWT) 
The PL-DWT at decomposition level n follows directly from (44) and (45).  The PL-DWT for 
a graytone function g at a scale n > 0 is calculated by  

 ( ) ( )( )( )( ) ( )1
0 0
n n

DWT DWTW y W yϕ ϕ−=  (32) 

where (0)
0y = g.  Similarly, the inverse procedure begins from the discrete wavelet coefficients 

at the highest decomposition level N.  Each synthesis level reconstructs approximation 
coefficients at a scale       i < N by each synthesis level by 
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Since ϕ  and 1ϕ−  are continuous functions, the PLIP model operators revert to 
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must be based on a physically relevant image formation model; (2) The mathematical 
operations must be consistent with the physical nature of images; (3) The operations 
must be computationally effective; (4) The framework must be practically fruitful; (5) 
The framework must minimize the loss of information. 
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images are converted to graytone functions before PLIP-based operations are performed and 
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Fig. 7. Parameterized Logarithmic Wavelet Transform analysis and synthesis 

6.1.3 Parameterized Logarithmic Stationary Wavelet Transform (PL-SWT) 
The PL-SWT also follows directly from (44) and (45).  The forward and inverse PL-SWT for a 
graytone function g at a scale n > 0 is calculated by 
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Fig. 8. (a) Original “Trui” image, top-left: approximation sub-band, magnitude of top-right: 
horizontal sub-band, bottom-left: vertical sub-band, bottom-right: diagonal sub-band 
magnitude of horizontal sub-band using the DWT and PLIP model operators with                  
(b) γ = 256 (LIP model case), (c) γ = 300, (d) γ = 500, (e) γ = 700, (f) standard operators 
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Figure 7 illustrates the analysis and synthesis stages using PLIP wavelet transforms, where 
W is a type of wavelet transform (e.g. DWT, SWT, etc.) with a given set of wavelet filters 
(Courbebaisse, 2002).  As the parameterized logarithmic decomposition approaches 
essentially makes use of standard decomposition schemes with added pre-processing and 
post-processing in the form of the isomorphic transformation calculations, they can be 
computed with minimal added computation cost.   
Figure 8 illustrates the advantages yielded using parameterized logarithmic multi-resolution 
schemes.  The wavelet decomposition using γ = 256 (LIP model case) predominantly extracts 
the hair features from the image.  As γ increases, it is particularly apparent that the hair 
textures are less emphasized and that the scarf, hat, and facial edges and textures are more 
emphasized.  The wavelet decomposition using standard operators extracts the most texture 
and edge information from the scarf, hat, and face in the image, and close to none of the 
texture of the hair.  Visually, it is seen that the wavelet decomposition using the PLIP model 
operators with γ = 300 provides the best balance between extracting the hair, scarf, hat, and 
facial features in the image.  Ultimately, the salient features which need to be extracted at 
each scale for further processing are task and image dependent, and thus, the PLIP model 
parameter can be tuned accordingly.   

6.2 Parameterized Logarithmic image fusion rules 
Both the approximation coefficient and detail coefficient fusion rules should also be adapted 
according to the PLIP model.  For

1

( )
,0

N
Iy and 

2

( )
,0

N
Iy , the approximation coefficient sub-bands of 

images I1 and I2, respectively, at the highest decomposition level N yielded using a given 
parameterized logarithmic multi-resolution decomposition technique, the approximation 
coefficients for the fused image F at the highest level of decomposition using simple 
averaging is given by 

 ( )1 2

( ) ( ) ( )
,0 ,0 ,0

1
2

N N N
F I Iy y y= ⊗ ⊕  (35) 

In general, an approximation coefficient fusion rule can be adapted according to the PLIP 
model by 

 ( ) ( )( )( )1 2

( ) ( ) ( )1
,0 ,0 ,0,N N N

F A I Iy R y yϕ ϕ ϕ−=  (36) 

where RA is an approximation coefficient fusion rule implemented using standard 
arithmetic operators.  An analysis of the PLIP operation in Table 1 and (35) yields a simple 
interpretation of the effect of γ on fusion results.  Practically, γ can be interpreted as a 
brightness parameter, where negative values of γ yield brighter fusion results and positive 
values of γ yield darker fusion results.  This is achieved while also maintaining the fusion 
identity that the fusion of identical source images is the source image itself. Therefore, 
improved visual quality is achieved within an image fusion context and not as a result of an 
independent image enhancement process.  The influence of the parameterization on fusion 
results is not limited to this naïve observation, however, as γ also influences the multi-scale 
decomposition scheme and the detail coefficient fusion rule.  The fusion rules for details 
coefficients at each decomposition level for pixel- or region-based approaches are similarly 
adapted according to the PLIP model via the parameterized isomorphic transformation.  In 
general, a detail coefficient fusion rule can be adapted according to the PLIP model by 
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Figure 7 illustrates the analysis and synthesis stages using PLIP wavelet transforms, where 
W is a type of wavelet transform (e.g. DWT, SWT, etc.) with a given set of wavelet filters 
(Courbebaisse, 2002).  As the parameterized logarithmic decomposition approaches 
essentially makes use of standard decomposition schemes with added pre-processing and 
post-processing in the form of the isomorphic transformation calculations, they can be 
computed with minimal added computation cost.   
Figure 8 illustrates the advantages yielded using parameterized logarithmic multi-resolution 
schemes.  The wavelet decomposition using γ = 256 (LIP model case) predominantly extracts 
the hair features from the image.  As γ increases, it is particularly apparent that the hair 
textures are less emphasized and that the scarf, hat, and facial edges and textures are more 
emphasized.  The wavelet decomposition using standard operators extracts the most texture 
and edge information from the scarf, hat, and face in the image, and close to none of the 
texture of the hair.  Visually, it is seen that the wavelet decomposition using the PLIP model 
operators with γ = 300 provides the best balance between extracting the hair, scarf, hat, and 
facial features in the image.  Ultimately, the salient features which need to be extracted at 
each scale for further processing are task and image dependent, and thus, the PLIP model 
parameter can be tuned accordingly.   

6.2 Parameterized Logarithmic image fusion rules 
Both the approximation coefficient and detail coefficient fusion rules should also be adapted 
according to the PLIP model.  For
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images I1 and I2, respectively, at the highest decomposition level N yielded using a given 
parameterized logarithmic multi-resolution decomposition technique, the approximation 
coefficients for the fused image F at the highest level of decomposition using simple 
averaging is given by 
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In general, an approximation coefficient fusion rule can be adapted according to the PLIP 
model by 
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where RA is an approximation coefficient fusion rule implemented using standard 
arithmetic operators.  An analysis of the PLIP operation in Table 1 and (35) yields a simple 
interpretation of the effect of γ on fusion results.  Practically, γ can be interpreted as a 
brightness parameter, where negative values of γ yield brighter fusion results and positive 
values of γ yield darker fusion results.  This is achieved while also maintaining the fusion 
identity that the fusion of identical source images is the source image itself. Therefore, 
improved visual quality is achieved within an image fusion context and not as a result of an 
independent image enhancement process.  The influence of the parameterization on fusion 
results is not limited to this naïve observation, however, as γ also influences the multi-scale 
decomposition scheme and the detail coefficient fusion rule.  The fusion rules for details 
coefficients at each decomposition level for pixel- or region-based approaches are similarly 
adapted according to the PLIP model via the parameterized isomorphic transformation.  In 
general, a detail coefficient fusion rule can be adapted according to the PLIP model by 
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where RD is a pixel- or region-based detail coefficient fusion rule implemented using 
standard arithmetic operators. 

7. Quantitative image fusion quality assessment 
When an ideal fusion result is available, it can be used as a reference image to guide image 
fusion quality assessment. Measures such as the root mean square error (RMSE), normalized 
least square error (NLSE), peak signal-to-noise ratio (PSNR), correlation (CORR), difference 
entropy (DE), and mutual information (MI) can be used to relate the fusion result to the 
reference image, thus providing a means of assessing image fusion quality (Liu et. al, 2008).  
These measures are summarized in Table 2 for a fusion result F given a reference image I. 
However, an ideal reference image is usually not known, and thus, quality assessment 
becomes a non-trivial task.  Blind objective performance assessment of image fusion quality 
is still an open problem requiring more research in order to provide valuable objective 
evaluation (Piella, 2003).  The metrics proposed in (Xydeas & Petrovic, 2000) and (Piella & 
Heijmans, 2003) tend to favor fusion results which transfer more edge information into 
fusion results, and are therefore vulnerable to noisy test cases. Conversely, mutual-
information-based metrics (Qu et al., 2002) tend to favor fusion approaches which 
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transfer relatively less edge information but are less sensitive to noise, such as region-based 
and even simple averaging approaches. Nonetheless, to gain objective perspective not on 
the fusion rule or standard decomposition scheme of choice, but rather the improvement of 
fusion results using the PLIP model, fusion results are assessed quantitatively using the 
Piella and Heijmans image fusion quality metric.  The metric measures fusion quality based 
on how much the fusion result reflects the original source images. Bovik’s quality index 
(Wang, 2002) is used to relate the fused result to its original source images. The quality 
index Q0 proposed by Bovik to measure the similarity between two sequences x and y is 
given by 

 0 2 2 2 2

2 2xy x y x y

x y x y x y

Q
σ μ μ σ σ
σ σ μ μ σ σ

= ⋅ ⋅
+ +

 (38) 

where σx and σy are the sample standard deviations of x and y, respectively, σxy is the sample 
covariance of x and y, and µx and µy are the sample means of x and y, respectively.  For two 
images I and F, a sliding window technique is utilized to calculate the quality index                   
Q0(I, F|w) at each local wxw window. The average of these quality indexes is used to 
measure the similarity between I and F, and is given by 
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1, , |

w W
Q I F Q I F w

W ∈

= ∑  (39) 

The resulting similarity index ranges from 0 to 1, with two identical images yielding a Q0 
equal to 1.  Defining s(I|w) as the saliency, and in this case, the variance of the image I in a 
local window wxw window, the quality of the fused result can be assessed by first 
calculating local weights λ(w) for the source images I1 and I2, given by 
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and then calculating the fusion quality index Q(I1,I2,F) for the fused result F by 
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Fig. 9. (a)(b) Original “clock” source images, respective weights (c)c·λ (d) c·(1-λ) used for 
image fusion quality assessment 
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where RD is a pixel- or region-based detail coefficient fusion rule implemented using 
standard arithmetic operators. 
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transfer relatively less edge information but are less sensitive to noise, such as region-based 
and even simple averaging approaches. Nonetheless, to gain objective perspective not on 
the fusion rule or standard decomposition scheme of choice, but rather the improvement of 
fusion results using the PLIP model, fusion results are assessed quantitatively using the 
Piella and Heijmans image fusion quality metric.  The metric measures fusion quality based 
on how much the fusion result reflects the original source images. Bovik’s quality index 
(Wang, 2002) is used to relate the fused result to its original source images. The quality 
index Q0 proposed by Bovik to measure the similarity between two sequences x and y is 
given by 
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where σx and σy are the sample standard deviations of x and y, respectively, σxy is the sample 
covariance of x and y, and µx and µy are the sample means of x and y, respectively.  For two 
images I and F, a sliding window technique is utilized to calculate the quality index                   
Q0(I, F|w) at each local wxw window. The average of these quality indexes is used to 
measure the similarity between I and F, and is given by 
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The resulting similarity index ranges from 0 to 1, with two identical images yielding a Q0 
equal to 1.  Defining s(I|w) as the saliency, and in this case, the variance of the image I in a 
local window wxw window, the quality of the fused result can be assessed by first 
calculating local weights λ(w) for the source images I1 and I2, given by 
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and then calculating the fusion quality index Q(I1,I2,F) for the fused result F by 
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Fig. 9. (a)(b) Original “clock” source images, respective weights (c)c·λ (d) c·(1-λ) used for 
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The metric assesses fusion quality by calculating the local quality indexes between the fused 
image and the two source images, and weighting them according to the local saliency 
between the source images. To better reflect the human visual system, another weight is 
added to give more weight to regions in which the saliency of the source images is greater.  
Defining the overall saliency of a window C(w) by 

 ( ) ( ) ( )( )1 2max | , |C w s I w s I w=  (42) 

The weighted fusion quality index QW(I1,I2,F) is given by 

 ( ) ( ) ( ) ( ) ( )( ) ( )( )1 2 0 1 0 2, , , | 1 , |w
w W

Q I I F c w w Q I F w w Q I F wλ λ
∈

= + −∑  (43) 

where 

 ( ) ( )
( )

'
'

w W

C w
c w

C w
∈

=
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As Q0 yields a maximum value of 1 for identical input images, higher fusion quality metric 
values indicate better fusion results.  Figure 9 provides a graphical representation of the 
weights which are calculated by the quality metric in order to assess the quality of image 
fusion results.   

8. Experimental results 
The effectiveness of the proposed algorithms is illustrated via computer simulations. In 
general, three cases are considered for these experiments: 1) the extreme case in which the 
PLIP model operators yield the LIP model operators (γ = M), 2) standard operators, which 
are the extreme case of PLIP model operators with γ = ∞, 3) the case in which γ takes on a 
value other than M or ∞.  For easy reference, we refer to these cases as the LIP model 
operator case, standard operator case, and PLIP model operator case, respectively, though in 
reality, all are cases of the proposed PLIP-based approach. It should be noted that image 
fusion algorithms employing LIP-based multi-resolution image decomposition schemes and 
fusion rules have not even been introduced to our knowledge.  Thus, we refer to the LIP-LP, 
LIP-DWT, and LIP-SWT image fusion algorithms as the image fusion algorithms which use 
PLIP operators with γ = M to implement the fusion rules and LP, DWT, and SWT, 
respectively. Consequently, the PL-LP, PL-DWT, and PL-SWT image fusion algorithms are 
compared to the traditional LP and LIP-LP; traditional DWT and LIP-DWT; and traditional 
and LIP SWT image fusion algorithms, respectively. The algorithms were tested over a 
range of different image classes, including out-of-focus, medical, surveillance, and remote 
sensing images.   A portion of these results are presented here.  It is assumed that the input 
source images are registered, although it is expected that image fusion algorithms be able to 
handle minor registration differences.  There are many factors which influence image fusion 
using multi-resolution decomposition schemes, including the type of multi-resolution 
decomposition scheme, the number of decomposition levels, the choice of filter bank, and 
the fusion rule used to fuse coefficients at each scale.  This paper emphasizes the transform 
which is used while keeping all other factors constant.  In these experimental results, N = 3 
for all methods, and both the pixel- and region-based fusion rules are examined.  For the 
wavelet-based approaches, biorthogonal 2.2 filters are used. The fusion results are compared 
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quantitatively by first normalizing source images and fused results to the range 0-255, and 
then using the Piella and Heijmans image fusion quality metric QW with w = 7. This metric is 
used to determine the optimal parameter value for γ, with the resulting fused image thereby 
taken to be the result for a given parameterized logarithmic image fusion algorithm.  This 
demonstrates the ability to tune the PLIP model parameter in order to optimize results 
according to any metric used for quality assessment.   
 

    
 a) b) c) d) 

    
 e) f) g) h)  

Fig. 10.  (a)(b) Original “navigation” source images, image fusion results using the LP/AM 
fusion rule, and PLIP model operators with (c) γ = 256 (LIP model case), QW = 0.3467,         
(d)  γ = 300, QW = 0.7802, (e) γ = 430, QW = 0.8200, (f) γ = 700, QW = 0.8128 (g) γ = 108,             
QW = 0.7947, (h) standard operators, QW = 0.7947 

 
Fig. 11. Plot of QW vs. γ for image fusion results in Figure 9, indicating a maximum at                
γ = 430, QW = 0.8200 
Figure 10 illustrates the fundamental themes which have been discussed so far, particularly 
highlighting the necessity for the added model parameterization.  Figure 10.c shows that 
firstly, the PLIP model reverts to the LIP model with γ = M = 256, and secondly, that the 
combination of source images using this extreme case may still be visually unsatisfactory 
given the nature of the input images, even though the processing framework is based on a 
physically inspired model. Figure 10.d-f illustrates the way in which fusion results are 
affected by the parameterization, with the most improved fusion performance yielded by 
the proposed approach using parameterized multi-resolution decomposition schemes and 
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fusion rules relative to both the standard processing extreme and the LIP model extreme 
with  γ = 430.  Namely, this result using the proposed approach has better visual contrast 
between roads and terrain, and provides the proper base luminance to effectively 
differentiate between the grass and bushes. Figure 11 plots the QW quality metric as a 
function of γ, and reflects the qualitative observation indicating Figure 10.e as the best 
fusion output. Lastly, Figure 10 also shows using the AM fusion rule that the PLIP operators 
revert to standard mathematical operators as γ approaches infinity. 
 

         
 a) b)  c) d) e) 

         
 f)  g) h) i)  j) 

         
  k) l) m) n)  o) 

         
 p) q) r) s) t) 
Fig. 12.  Zoomed regions of (a)(b) Original “clocks” source images, image fusion results 
using (c)LP and RB, (d), LIP-LP and RB, (e) PL-LP and RB, (f)(g) original “brain” source 
images, image fusion results using (h) SWT and RB, (i) LIP-SWT and RB, (j) PL-SWT and RB 
(k)(l) original “navigation” source images, image fusion results using (m) DWT and AM, (n) 
LIP-DWT and AM, (o) PL-DWT and AM (p)(q) original “remote sensing” source images, 
image fusion results using (r) SWT and BK, (s) LIP-SWT and BK, (t) PL-SWT and BK 
Zoomed details highlighting specific contrast differences of selected fusion results are 
shown in Figure 12. Selected image fusion results showing more global luminance 
differences can be found in Figure 13. Qualitatively, it is seen that the image fusion 
approaches using the PLIP model operator case yield more informative fusion results with 
more visually pleasing contrast.  The zoomed details in the 1st row of Figure 12 show that 
the lines and numbers in the clock images are sharper and clearer in the fusion result using 
the PLIP model operator case.  The 2nd row shows that the proposed method is able to better 
capture the terrain information and road information of the respective source images.  The 
3rd row shows the improved contrast of tissue information and dense bone structure yielded   
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Fig. 13.  (a)(b) Original “clocks” source images, image fusion results using (c)LP and RB, (d), 
LIP-LP and RB, (e) PL-LP and RB, (f)(g) original “brain” source images, image fusion results 
using (h) SWT and RB, (i) LIP-SWT and RB, (j) PL-SWT and RB (k)(l) original “navigation” 
source images, image fusion results using (m) DWT and AM, (n) LIP-DWT and AM, (o) PL-
DWT and AM (p)(q) original “remote sensing” source images, image fusion results using (r) 
SWT and BK, (s) LIP-SWT and BK, (t) PL-SWT and BK 
by the proposed method. Lastly, the 4th row shows that the proposed fusion approaches are 
able to better capture the subtle features at the point at which the roads intersect.  Thus, the 
experimental results highlight the improvement of fusion results yielded using the PLIP model 
operators.  While the standard operator extreme can often give adequate results, the contrast 
and luminance can be improved by choosing a value of γ which both reflects the human visual 
system and meets the dynamic range requirements of the input images. While the LIP model 
operator extreme can improve the performance of image fusion relative to standard operator 
extreme when the source images are similar in luminance (as in the case of the clocks images), 
it yields visually inadequate results for source images with greatly different local base 
luminance.  This is particularly visible for input images in which one of the source images is 
predominantly dark as in the case of the “navigation” and “brain” images. 
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operators.  While the standard operator extreme can often give adequate results, the contrast 
and luminance can be improved by choosing a value of γ which both reflects the human visual 
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it yields visually inadequate results for source images with greatly different local base 
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Table 3. Quantitative quality assessment of image fusion results using the Piella and 
Heijmans  quality metric 
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The quantitative observations are reflected by their corresponding quality metric values in 
Table 3, in which rows correspond to the basic multi-resolution decomposition scheme 
and fusion rule employed and columns correspond to the image processing operators (LIP 
model operator case, standard operator case, or PLIP model operator case) used to 
implement the given decomposition scheme and fusion rule.  It should be noted that a 
single, constant-size window is used in calculating the quality metric values.  Thus, such 
an evaluation may be dependent on how well the window size reflects the scale of the 
objects of interest in the source images, and may not be able to effectively quantify 
differences in fusion results even when qualitative visual differences are seen. This 
provides a rationalization as to why the perceived visual improvement of the proposed 
methods may in some cases only translate to a small increase in the quality metric values, 
and continues to affirm the fact that objective image fusion quality assessment is still an 
open research topic.  However, the rank of the scores are generally indicative of relative 
performance, and to standardize the testing procedure and to maintain the same 
formulation of the metric as it was originally proposed, the same parameters are used to 
calculate quality metric values for all test cases.  Thus, the quantitative analysis serves as 
an objective means of validating subjective observations.  The quality metric values in 
Table 2 show that in all cases, fusion algorithms using the parameterized logarithmic 
multi-resolution decomposition schemes and fusion rules outperform their respective 
general linear processing model counterparts. 

9. Conclusions 
This paper derived decomposition schemes and image fusion rules based on the PLIP 
model. The PLIP based multi-resolution decomposition schemes were developed and 
thoroughly applied for image fusion purposes. PLIP model properties were analyzed, and 
their implications for image fusion were verified by experimental means. The new multi-
resolution decomposition schemes and fusion rules yields new image fusion tools which 
are able to provide visually more pleasing fusion results. A new class of image fusion 
algorithms, namely those based on the PL-LP, PL-DWT, and PL-SWT were proposed.  The 
images are fused in the transform domain using novel pixel-based or region-based rules.  
Using a number of pixel-based and region-based fusion rules, one can combine the 
important features of the input images in the transform domain to compose an enhanced 
image. The proposed algorithms were tested and compared to traditional and LIP multi-
resolution image fusion algorithms over a number of different image classes including 
out-of-focus, medical, surveillance, and remote sensing images, whose applications can 
make use of image fusion to improve perception for computer-aided or computer vision 
systems.  These experimental results showed that the proposed image decomposition and 
image algorithms improved image fusion quality both qualitatively and quantitatively. 
The Qualitatively, the fusion results using the proposed algorithms provided better 
contrast and the necessary luminance needed for fusion purposes. Quantitatively, the 
proposed outperformed traditional and LIP multi-resolution image fusion algorithms 
using the Piella and Heijmans quality metric to objectively assess image fusion quality. 
The novelty of the proposed PLIP-based image fusion schemes lie in the combination of 
multi-resolution image fusion techniques with physically inspired proccessing models.  
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an evaluation may be dependent on how well the window size reflects the scale of the 
objects of interest in the source images, and may not be able to effectively quantify 
differences in fusion results even when qualitative visual differences are seen. This 
provides a rationalization as to why the perceived visual improvement of the proposed 
methods may in some cases only translate to a small increase in the quality metric values, 
and continues to affirm the fact that objective image fusion quality assessment is still an 
open research topic.  However, the rank of the scores are generally indicative of relative 
performance, and to standardize the testing procedure and to maintain the same 
formulation of the metric as it was originally proposed, the same parameters are used to 
calculate quality metric values for all test cases.  Thus, the quantitative analysis serves as 
an objective means of validating subjective observations.  The quality metric values in 
Table 2 show that in all cases, fusion algorithms using the parameterized logarithmic 
multi-resolution decomposition schemes and fusion rules outperform their respective 
general linear processing model counterparts. 

9. Conclusions 
This paper derived decomposition schemes and image fusion rules based on the PLIP 
model. The PLIP based multi-resolution decomposition schemes were developed and 
thoroughly applied for image fusion purposes. PLIP model properties were analyzed, and 
their implications for image fusion were verified by experimental means. The new multi-
resolution decomposition schemes and fusion rules yields new image fusion tools which 
are able to provide visually more pleasing fusion results. A new class of image fusion 
algorithms, namely those based on the PL-LP, PL-DWT, and PL-SWT were proposed.  The 
images are fused in the transform domain using novel pixel-based or region-based rules.  
Using a number of pixel-based and region-based fusion rules, one can combine the 
important features of the input images in the transform domain to compose an enhanced 
image. The proposed algorithms were tested and compared to traditional and LIP multi-
resolution image fusion algorithms over a number of different image classes including 
out-of-focus, medical, surveillance, and remote sensing images, whose applications can 
make use of image fusion to improve perception for computer-aided or computer vision 
systems.  These experimental results showed that the proposed image decomposition and 
image algorithms improved image fusion quality both qualitatively and quantitatively. 
The Qualitatively, the fusion results using the proposed algorithms provided better 
contrast and the necessary luminance needed for fusion purposes. Quantitatively, the 
proposed outperformed traditional and LIP multi-resolution image fusion algorithms 
using the Piella and Heijmans quality metric to objectively assess image fusion quality. 
The novelty of the proposed PLIP-based image fusion schemes lie in the combination of 
multi-resolution image fusion techniques with physically inspired proccessing models.  
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1. Introduction 
At present time image fusion is widely recognized as an important tool and has attracted a 
great deal of attention from the research community with the purpose of searching general 
formal solutions to a number of problems in different applications such as medical imaging, 
optical microscopy, remote sensing, computer vision and robotics. 
Image fusion consists of combining information from two or more images from the same 
sensor or from multiple sensors in order to improve the decision making process.  
Fused images from multiple sensors, often called multi-modal image fusion system, include at 
least, two image modalities ranging from visible to infrared spectrum and they provide several 
advantages over data images from a single sensor (Kor & Tiwary, 2004). An example of this 
can be found in medical imaging where it is common to merge functional activity as in single 
photon emission computed tomography (SPECT), positron emission tomography (PET) or 
magnetic resonance spectroscopy (MRS) with anatomical structures such as magnetic 
resonance image (MRI), computed tomography (CT) and ultrasound, which helps improve 
diagnostic performance and surgical planning (Guihong et al., 2001, Hajnal et al., 2001). 
An interesting example of single sensor fusion can be found in remote sensing, where 
pansharpening is an important task that combines panchromatic and multispectral optical 
data in order to obtain new multispectral bands that preserve their original spectral 
information with improved spatial resolution. 
Depending on the merging stage, common image fusion schemes can be classified into three 
categories: pixel, feature and decision levels (Pohl & van Genderen, 1998). Many fusion 
schemes usually employ pixel level fusion techniques but since features, that are sensitive to 
human visual system (HVS), are bigger than a pixel and they exist in different scales, it is 
necessary to apply multiresolution analysis which improves the reconstruction of relevant 
image features (Nava et al., 2008). Moreover, the image representation model used to build 
the fusion algorithm must be able to characterize perceptive-relevant image primitives. 
In the literature several methods of pixel level fusion have been reported using a 
transformation to perform data fusion, some of these transformations are: intensity-hue-
saturation transform (IHS), principal component analysis (PCA) (Qiu et al., 2005), the 
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formal solutions to a number of problems in different applications such as medical imaging, 
optical microscopy, remote sensing, computer vision and robotics. 
Image fusion consists of combining information from two or more images from the same 
sensor or from multiple sensors in order to improve the decision making process.  
Fused images from multiple sensors, often called multi-modal image fusion system, include at 
least, two image modalities ranging from visible to infrared spectrum and they provide several 
advantages over data images from a single sensor (Kor & Tiwary, 2004). An example of this 
can be found in medical imaging where it is common to merge functional activity as in single 
photon emission computed tomography (SPECT), positron emission tomography (PET) or 
magnetic resonance spectroscopy (MRS) with anatomical structures such as magnetic 
resonance image (MRI), computed tomography (CT) and ultrasound, which helps improve 
diagnostic performance and surgical planning (Guihong et al., 2001, Hajnal et al., 2001). 
An interesting example of single sensor fusion can be found in remote sensing, where 
pansharpening is an important task that combines panchromatic and multispectral optical 
data in order to obtain new multispectral bands that preserve their original spectral 
information with improved spatial resolution. 
Depending on the merging stage, common image fusion schemes can be classified into three 
categories: pixel, feature and decision levels (Pohl & van Genderen, 1998). Many fusion 
schemes usually employ pixel level fusion techniques but since features, that are sensitive to 
human visual system (HVS), are bigger than a pixel and they exist in different scales, it is 
necessary to apply multiresolution analysis which improves the reconstruction of relevant 
image features (Nava et al., 2008). Moreover, the image representation model used to build 
the fusion algorithm must be able to characterize perceptive-relevant image primitives. 
In the literature several methods of pixel level fusion have been reported using a 
transformation to perform data fusion, some of these transformations are: intensity-hue-
saturation transform (IHS), principal component analysis (PCA) (Qiu et al., 2005), the 
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discrete wavelet transform (DWT) (Aguilar et al., 2007, Chipman et al., 1995, Li et al., 1994), 
dual-tree complex wavelet transform (DTCWT) (Kingsbury, 2001, Hill & Canagarajah, 2002), 
the contourlet transform (CW) (Yang et al., 2007), the curvelet transform (CUW) (Mahyari & 
Yazdi, 2009), and the Hermite transform (HT) (Escalante-Ramírez & López-Caloca, 2006, 
Escalante-Ramírez, 2008). In essence, all these transformations can discriminate between 
salient information and constant or non-textured background. 
Of all these methods, the wavelet transform has been the most used technique for the fusion 
process. However, this technique presents certain problems in the analysis of signals of two 
or more dimensions, examples of these are the points of discontinuity that cannot always be 
detected, and its limitation to capture directional information. The contourlet and the 
curvelet transforms have shown better results than the wavelet transform due to their multi-
directional analysis, but they require an extensive orientation search at each level of the 
decomposition. In contrast, the Hermite transform provides significant advantages to the 
process of image fusion. First, this image representation model includes some of the more 
important properties of the human visual system such as the local orientation analysis and 
the Gaussian derivative model of primary vision (Young, 1986), it also allows 
multiresolution analysis, so it is possible to describe the salient structures of an image at 
different spatial scales, and finally, it is steerable, which allows efficiently representing 
oriented patterns with a small number of coefficients. The latter has the additional 
advantage of reducing noise without introducing artifacts. 
Hereinafter, we assume the input images have negligible registration problems, thus the 
images can be considered registered. The proposed scheme fuses images at the pixel level 
using a multiresolution directional-oriented Hermite transform of the source images by 
means of a decision map. This map is based on a linear dependence test of the Hermite 
coefficients within a fixed windows size; if the coefficients are linearly dependent, this 
indicates the existence of a relevant pattern that must be present in the final image. 
The proposed algorithm has been tested on both multi-focus and multi-modal image sets 
producing results that ovecome results achieved with other methods such as wavelets (Li et 
al., 1994), curvelets (Donoho & Ying, 2007), and contourlets (Yang et al., 2008, Do, 2005). In 
addition to this, we used other decision rules proving that our scheme best characterized 
important structures of the images at the same time that the noise was reduced. 

2. The Hermite transform as an image representation model 
The Hermite transform (HT) (Martens 1990a, Martens 1990b) is a special case of polynomial 
transform, which is used to locally decompose signals and can be regarded as an image 
description model. The analysis stage involves two steps. First, the input image L(x,y) is 
windowed with a local function ω(x,y) at several equidistant positions in order to achieve a 
complete description of the image. In the second step the local information of each analysis 
window is expanded in terms of a family of orthogonal polynomials. The polynomials 
Gm,n-m(x,y) used to approximate the windowed information are determined entirely by the 
window function in such a way that the orthogonality condition is satisfied: 

 ( ) ( ) ( )2
, ,, , ,m n m l k l nk mlx y G x y G x y dxdyω δ δ

+∞ +∞

− −
−∞ −∞
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for n, k=0,1,…,∞;  m=0,…,n  y  l=0,…,k; where δnk denotes the Kronecker function. 
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The polynomial transform is called Hermite transform if the windows used are Gaussian 
functions. The Gaussian window is isotropic (rotationally invariant), separable in Cartesian 
coordinates and their derivatives mimic some processes at the retinal or visual cortex of the 
human visual system (Martens, 1990b, Young, 1986). This window function is defined as 
follows 
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In a Gaussian window function, the associated orthogonal polynomials are the Hermite 
polynomials, which are defined as 
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where Hn(x) denotes the nth Hermite polynomial. 
The original signal L(x,y), where (x,y) are the pixel coordinates, is multiplied by the window 
function ω(x-p,y-q) at the positions (p,q) that conform the sampling lattice S. By replicating 
the window function over the sampling lattice, we can define the periodic weighting 
function as 

 ( ) ( )
( ),

, ,
p q S
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This weighting function must be a number other than zero for all coordinates (x,y). 
Therefore,  
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In every window function, the signal content is described as the weighted sum of 
polynomials Gm,n-m(x,y) of m degree in x and n-m in y. In a discrete implementation, the 
Gaussian window function may be approximated by the binomial window function and in 
this case, its orthogonal polynomials Gm,n-m(x,y) are known as Krawtchouck’s polynomials. 
In either case, the polynomial coefficients Lm,n-m(p,q) are calculated convolving the original 
image L(x,y) with the analysis filters Dm,n-m(x,y) = Gm,n-m(-x,-y)ω2(-x,-y), followed by 
subsampling at position (p,q) of the sampling lattice S. That is, 
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The recovery process of the original image consists of interpolating the transform 
coefficients with the proper synthesis filters. This process is called inverse transformed 
polynomial and is defined by 

 ( ) ( ) ( )
( )

, ,
0 0 ,

ˆ , , ,
n

m n m m n m
n m p q S

L x y L p q P x p y q
∞

− −
= = ∈

= − −∑∑ ∑  (7) 



 Image Fusion 

 

166 

discrete wavelet transform (DWT) (Aguilar et al., 2007, Chipman et al., 1995, Li et al., 1994), 
dual-tree complex wavelet transform (DTCWT) (Kingsbury, 2001, Hill & Canagarajah, 2002), 
the contourlet transform (CW) (Yang et al., 2007), the curvelet transform (CUW) (Mahyari & 
Yazdi, 2009), and the Hermite transform (HT) (Escalante-Ramírez & López-Caloca, 2006, 
Escalante-Ramírez, 2008). In essence, all these transformations can discriminate between 
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different spatial scales, and finally, it is steerable, which allows efficiently representing 
oriented patterns with a small number of coefficients. The latter has the additional 
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Hereinafter, we assume the input images have negligible registration problems, thus the 
images can be considered registered. The proposed scheme fuses images at the pixel level 
using a multiresolution directional-oriented Hermite transform of the source images by 
means of a decision map. This map is based on a linear dependence test of the Hermite 
coefficients within a fixed windows size; if the coefficients are linearly dependent, this 
indicates the existence of a relevant pattern that must be present in the final image. 
The proposed algorithm has been tested on both multi-focus and multi-modal image sets 
producing results that ovecome results achieved with other methods such as wavelets (Li et 
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2. The Hermite transform as an image representation model 
The Hermite transform (HT) (Martens 1990a, Martens 1990b) is a special case of polynomial 
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Gm,n-m(x,y) used to approximate the windowed information are determined entirely by the 
window function in such a way that the orthogonality condition is satisfied: 
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for n, k=0,1,…,∞;  m=0,…,n  y  l=0,…,k; where δnk denotes the Kronecker function. 
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The polynomial transform is called Hermite transform if the windows used are Gaussian 
functions. The Gaussian window is isotropic (rotationally invariant), separable in Cartesian 
coordinates and their derivatives mimic some processes at the retinal or visual cortex of the 
human visual system (Martens, 1990b, Young, 1986). This window function is defined as 
follows 
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In a Gaussian window function, the associated orthogonal polynomials are the Hermite 
polynomials, which are defined as 
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where Hn(x) denotes the nth Hermite polynomial. 
The original signal L(x,y), where (x,y) are the pixel coordinates, is multiplied by the window 
function ω(x-p,y-q) at the positions (p,q) that conform the sampling lattice S. By replicating 
the window function over the sampling lattice, we can define the periodic weighting 
function as 
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The synthesis filters Pm,n-m(x,y) of order m and n-m, are defined by 
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for m=0,…,n ,  and  n=0,…,∞ 

2.1 The steered Hermite transform 
The Hermite transform has the advantage of high-energy compaction by adaptively steering 
the HT (Martens, 1997, Van Dijk, 1997, Silván-Cárdenas & Escalante-Ramírez, 2006). 
Steerable filters are a class of filters that are rotated copies of each filter, constructed as a 
linear combination of a set of basis filters. The steering property of the Hermite filters 
explains itself because they are products of polynomials with a radially symmetric window 
function. The N +1 Hermite filters of Nth-order form a steerable basis for each individual 
Nth-order filter. Because of this property, the Hermite filters at each position in the image 
adapt to the local orientation content. 
Thus, for orientation analysis, it is convenient to work with a rotated version of the HT. The 
polynomial coefficients can be computed through a convolution of the image with the filter 
functions Dm(x)Dn_m(y). They are separable in spatial and polar domains, and their Fourier 
transform can be expressed as ωx=ωcosθ and ωy=ωsinθ, in polar coordinates, then 
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where dn(ω) is the Fourier transform for each filter function expressed in radial frequency, 
given by 
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and the orientation selectivity for the filter is expressed by 

 ( ), cosm n m
m n m

n
g sen

m
θ θ θ−

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (11) 

In terms of orientation frequency functions, this property of the Hermite filters can be 
expressed by 
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where cnm,k(θ0) is the steering coefficient.  
The Hermite filter rotation at each position over the image is an adaptation to local 
orientation content. Fig. 1 shows the HT and the steered HT over an image. For the 
directional Hermite decomposition, first, a HT was applied and then the coefficients were 
rotated toward the estimated local orientation, according to a criterion of maximum oriented 
energy at each window position. This implies that these filters can indicate the direction of 
one-dimensional pattern independently of its internal structure. 
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Fig. 1. The discrete Hermite transform (DHT) and the steered Hermite transform over an 
image 

The two-dimensional Hermite coefficients are projected onto one-dimensional coefficients 
on an axis that makes an angle θ with the x axis, this angle can be approximated as θ=L01/L10, 
where L01 and L10 are a good approach to optimal edge detectors in the horizontal and 
vertical directions respectively. 

2.2 The multiresolution directional oriented HT 
A multiresolution decomposition using the HT can be obtained through a pyramid scheme 
(Escalante-Ramírez & Silván Cárdenas 2005). In a pyramidal decomposition, the image is 
decomposed into a number of band-pass or low-pass subimages, which are then 
subsampled in proportion to their spatial resolution. In each layer the zero order coefficients 
are transformed to obtain -in a lower layer- a scaled version of the above. Once the 
coefficients of Hermite decomposition of each level are obtained, the coefficients can be 
projected to one dimension by its local orientation of maximum energy. In this way we 
obtain the multiresolution directional-oriented Hermite transform, which provides 
information about the location and orientation of the structure of the image at different 
scales. 

3. Image fusion with the Hermite transform 
Our approach aims at analyzing images by means of the HT, which allows us to identify 
perceptually relevant patterns to be included in the fusion process while discriminating 
spurious artifacts. As we have mentioned, the steered HT allows us to focus energy in a 
small number of coefficients, and thus the information contained in the first-order rotated 
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The synthesis filters Pm,n-m(x,y) of order m and n-m, are defined by 
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The two-dimensional Hermite coefficients are projected onto one-dimensional coefficients 
on an axis that makes an angle θ with the x axis, this angle can be approximated as θ=L01/L10, 
where L01 and L10 are a good approach to optimal edge detectors in the horizontal and 
vertical directions respectively. 

2.2 The multiresolution directional oriented HT 
A multiresolution decomposition using the HT can be obtained through a pyramid scheme 
(Escalante-Ramírez & Silván Cárdenas 2005). In a pyramidal decomposition, the image is 
decomposed into a number of band-pass or low-pass subimages, which are then 
subsampled in proportion to their spatial resolution. In each layer the zero order coefficients 
are transformed to obtain -in a lower layer- a scaled version of the above. Once the 
coefficients of Hermite decomposition of each level are obtained, the coefficients can be 
projected to one dimension by its local orientation of maximum energy. In this way we 
obtain the multiresolution directional-oriented Hermite transform, which provides 
information about the location and orientation of the structure of the image at different 
scales. 

3. Image fusion with the Hermite transform 
Our approach aims at analyzing images by means of the HT, which allows us to identify 
perceptually relevant patterns to be included in the fusion process while discriminating 
spurious artifacts. As we have mentioned, the steered HT allows us to focus energy in a 
small number of coefficients, and thus the information contained in the first-order rotated 
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coefficient may be sufficient to describe the edge information of the image in a particular 
spatial locality. If we extend this strategy to more than one level of resolution, then it is 
possible to obtain a better description of the image. However, the success of any fusion 
scheme depends not only on the image analysis model but also on the fusion rule, therefore, 
instead of choosing for the usual selection operators based on the maximum pixel value, 
which often introduce noise and irrelevant details in the fused image, we seek a rule to 
consider the existence of a pattern in a region defined by a fixed-size window. 
The general framework for the proposed algorithm includes the following stages. First a 
multiresolution HT of the input images is applied. Then, for each level of decomposition, the 
orientation of maximum energy is detected to rotate the coefficients, so the first order 
rotated coefficient has most edge information. Afterwards, taking this rotated coefficient of 
each image we apply a linear dependence test. The result of this test is then used as a 
decision map to select the coefficients of the fused image in the multiresolution HT domain 
of the input images. If the original images are noisy, the decision map is applied on the 
multiresolution directional-oriented HT. The approximation coefficients in the case of HT 
are the zero order coefficients. In most multifocal and multimodal applications the 
approximation coefficients of the input images are averaged to generate the zero order 
coefficient of the fused image, but it always depends on the application context. Finally the 
fused image is obtained by applying the inverse multiresolution HT. Fig. 2 shows a 
simplified representation of this method. 

3.1 The fusion rule 
The linear dependence test evaluates the pixels inside a window of ws x ws, if those pixels 
are linearly independent, then there is no relevant feature in the window. However, if the 
pixels are linearly dependent, it indicates the existence of a relevant pattern. The fusion rule 
selects the coefficient with the highest dependency value. A higher value will represent a 
stronger pattern. A simple and rigorous test for determining the linear dependence or 
independence of vectors is the Wronskian determinant. The dependency of the window 
centered at a pixel (i,j) is described in 
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where LA(m, n) is the first order steered Hermite coefficient of the source image A with 
spatial position (m,n). The fusion rule is expressed in (14). The coefficient of the fused HT is 
selected as the one with largest value of the dependency measure. 
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We apply this rule to all detail coefficients and in the most of the cases average the zero 
order Hermite coefficients as (15). 
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Fig. 2. Fusion scheme with the multiresolution directional-oriented Hermite transform 

4. Image fusion results 
The proposed algorithm was tested on several sets of multi-focus and multi-modal images, 
with and without noise degradation. Fig. 3 shows one of the multi-focus image sets used 
and the results of image fusion achieved with the proposed method using different decision 
rules. In these experiments, we used a Gaussian window with spread σ=√2, a subsampling 
factor T=2 between each pyramidal level and four decomposition levels. The window size 
for linear dependence test, maximum with verification of consistency and saliency and 
match measurement (Burt & Kolczynski, 1993), was 3 x 3. 
Fig. 4 shows other multi-focus image sets that uses synthetic images. The results of image 
fusion were achieved with different fusion methods using linear dependence as decision 
rule. In these experiments, we used a Gaussian window with spread σ=√2, a subsampling 
factor T=2 between each pyramidal level and three decomposition levels; the wavelet 
transform used was db4 and in the case of the contourlet transform, the McClellan 
transform of 9-7 filters were used as directional filters and the wavelet db4 was used as 
pyramidal filters. The window size for the fusion rule was 3 x 3. The results were zoomed 
with the purpose to better observe the different methods performance. 
On the other side, Figs. 5, 6 and 7 show the application in medical images comparing with 
other fusion methods, all of them using the linear dependence test with a window size of 3 x 
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4. Image fusion results 
The proposed algorithm was tested on several sets of multi-focus and multi-modal images, 
with and without noise degradation. Fig. 3 shows one of the multi-focus image sets used 
and the results of image fusion achieved with the proposed method using different decision 
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with the purpose to better observe the different methods performance. 
On the other side, Figs. 5, 6 and 7 show the application in medical images comparing with 
other fusion methods, all of them using the linear dependence test with a window size of 3 x 
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3. All the transforms have two decomposition levels; the wavelet transform used was db4 
and in the case of the contourlet transform, the McClellan transform of 9-7 filters were used 
as directional filters and the wavelet db4 was used as pyramidal filters. 
In Fig. 7, Gaussian noise with σ=0.001 was introduced to the original images in order to 
show the efficiency of our method in noisy images. 

5. Quality assessment of image fusion algorithms 
Digital image processing involves many tasks, such as manipulation, storing, transmission, 
etc., that may introduce perceivable distortions. Since degradations occur during the 
processing chain, it is crucial to quantify degradations in order to overcome them. Due to 
their importance, many articles on the literature are dedicated to develop methods for 
improving, quantifying or preserving the quality of processed images. For example, Wang 
and Bovik (Wang, et al, 2004) describe a method based on the hypothesis that the HVS is 
highly adapted for extracting structural information, and they proposed a measure of 
structural similarity (SSIM) that compares local patterns of pixel intensities that have been 
normalized for luminance and contrast. In (Nava, et al, 2010; Gabarda & Cristóbal, 2007) two 
quality assessment procedures were introduced based on the expected entropy variance of a 
given image. These methods are useful in scenarios where there is no reference image, 
therefore they can be used in image fusion applications. 
Quality is an image characteristic, it can be defined as ``the degree to which an image satisfies 
the requirements imposed on it'' (Silverstein & Farrell, 1996) and it is crucial for most image 
processing applications, because it can be used to compare the performance of the different 
systems and to select the appropriate processing algorithm for any given application. Image 
quality (IQ) can be used in general terms as an indicator of the relevance of the information 
presented by an image. A major part of research activity in the field of IQ is directed towards 
the development of reliable and widely applicable image quality measure algorithms. 
Nevertheless, only limited success has been achieved (Nava, at al, 2008). 
A common way to measure IQ is based on early visual models but since human beings are 
the ultimate receivers in most applications, the most reliable way of assessing the quality of 
an image is by subjective evaluations. There are several different methodologies for 
subjective testing which are based on the idea how a person perceives the quality of images, 
and so it is inherently subjective (Wang, et al, 2002). 
The subjective quality measure, mean opinion score (MOS), provides a numerical indication 
of the perceived quality. It has been used for many years, and it is considered the best 
method for image quality. The MOS metric is generated by averaging the results of a set of 
standard, subjective tests, where a number of people rate the quality of image series based 
on the recommendation ITU-T J247  (Sheikh, el al, 2006). MOS is the arithmetic mean of all 
the individual scores, and can range from 1 (worst) to 5 (best). 
Nevertheless, MOS is inconvenient because it demands human observers, it is expensive 
and usually too slow to apply in real-time scenarios. Moreover, quality perception is 
strongly influenced by a variety of factors that depend on the observer. For these reasons, it 
is desirable to have an objective metric capable of predict image quality automatically. The 
techniques developed to assess image quality must depend on the field of application 
because it determines the characteristics of the imaging task we would like to evaluate. 
Practical image quality measures may vary according to the field of application and they 
should evaluate overall distortions. However, there is no single standard procedure to 
measure image quality. 
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Fig. 3. Results of image fusion in multi-focus images, using multiresolution directional-
oriented HT. a) and b) are the source images, c) fused image using absolute maximum 
selection, d) fused image using maximum with verification of consistency, e) fused image 
using saliency and match measurement and f) fused image using the linear dependency 
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techniques developed to assess image quality must depend on the field of application 
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Fig. 3. Results of image fusion in multi-focus images, using multiresolution directional-
oriented HT. a) and b) are the source images, c) fused image using absolute maximum 
selection, d) fused image using maximum with verification of consistency, e) fused image 
using saliency and match measurement and f) fused image using the linear dependency 
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Fig. 4. Results of image fusion in synthetic multi-focus images, using the dependency test 
rule and different analyze techniques. a) and b) are the source images, c) HT, d) wavelet 
transform, e) contourlet transform and f) curvelet transform 
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Fig. 5. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) CT, b) MR, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform 
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Fig. 4. Results of image fusion in synthetic multi-focus images, using the dependency test 
rule and different analyze techniques. a) and b) are the source images, c) HT, d) wavelet 
transform, e) contourlet transform and f) curvelet transform 
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Fig. 5. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) CT, b) MR, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform 
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Fig. 6. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) RM, b) PET, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform 
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Fig. 7. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) CT, b) MR, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform. Images provided by Dr. Oliver Rockinger 
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Fig. 6. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) RM, b) PET, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform 
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Fig. 7. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) CT, b) MR, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform. Images provided by Dr. Oliver Rockinger 
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Objective image quality metrics are based on measuring physical characteristics and they 
intend to predict perceived quality accurately and automatically. It means, that they should 
predict image quality that an average human observer will report. One important fact on 
this issue is the availability of an “original image“, which is considered to be distortion-free 
or perfect quality. Most of the proposed objective quality measures assume that the 
reference image exists and they attempt to quantify the visibility error between a distorted 
image and a reference image. 
Among the available ways to measure objective image quality, the mean squared error 
(MSE) and peak signal-to-noise ratio (PSNR) are widely employed because they are easy to 
calculate and usually they have low computational cost, but such measures are not 
necessarily consistent with human observer evaluation (Wang & Bovik, 2009). Both MSE 
and PSNR reflect the global properties of the image quality but they are inefficient in 
predicting structural degradations. Ponomarenko in (Ponomarenko, et al, 2009) evaluated 
correspondence of HVS with MSE and PSNR (0.525) where ideal value is 0.99. This shows 
that the widely used metrics PSNR and MSE have very low correlation with human 
perception (correlation factors are about 0.5). 
In many practical applications, image quality metrics do not always have access to a 
reference image. However, it is desirable to develop measurement approaches that can 
evaluate image quality blindly. Blind or non--reference image quality assessment turns out 
to be a very difficult task, because metrics are not related to the original image (Nava, et al, 
2007).  
In order to quantitatively compare the different objective quality metrics, we evaluated our 
fusion results with several methods, including the traditional as well as some of the more 
recent ones that may correlate better with the human perceptive assessment. Among the 
first ones, we considered the PSNR and the MSE, and for the second group we used the 
measure of structural similarity (SSIM), the Mutual information (MI) and the Normalized 
Mutual Information (NMI) based on Tsallis entropy (Nava et al, 2010). In experiments with 
no reference image (ground truth) was available, metrics based on mutual information were 
used. 
PSNR is a ratio between the maximum possible power of the reconstructed image and the 
power of the noise that affects the fidelity of the reconstruction, this is 
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where F(i,j) denotes the intensity of the pixel of the fused image and R(i,j) denotes the 
intensity of the pixel of the original image. 
The MSE indicates the error level between the fused image and the ideal image (ground 
truth), the smaller value of MSE indicates the better performance of the fusion method. 
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The SSIM (Wang et al., 2004) compares local patterns of pixel intensities that have been 
normalized for luminance and contrast and it provides a quality value in the range [0,1].  
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Where μR is the original image mean and μF the fused image mean; σ is the variance and σRF 
is the covariance. 
MI has also been proposed as a performance measurement of image fusion in the absence of 
a reference image (Wang et al., 2009). Mutual information is a measurement of the statistical 
dependency of two random variables and the amount of information that one variable 
contain about the other. The amount of information that belongs to image A contained in the 
fused image is determined as follows: 
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where PF and PA are the marginal probability densisty functions of images F and A 
respectively, and PFA is the joint probability density funtion of both images.Then, mutual 
information is calculated by 
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Another performance measurement is the Fusion Symmetry (FS) defined in equation (21), it 
denotes the symmetry of the fusion process in relation to the two input images. The smaller 
the FS is, the better the fusion process performs. 

 ( )
( ) ( )

,
0.5

, ,
FA F A

FA F A FB F B

MI I I
FS abs

MI I I MI I I
⎛ ⎞

= −⎜ ⎟⎜ ⎟+⎝ ⎠
 (21) 

The NMI  (Nava et al 2010) is defined as  
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MAXq(F,A,B) is a normalization factor that represents the total information. 
At first glance, the results obtained in Fig. 3 were very similar, thought quantitatively it is 
possible to verify the performance of the proposed algorithm. Table 1 shows the HT fusion 
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intend to predict perceived quality accurately and automatically. It means, that they should 
predict image quality that an average human observer will report. One important fact on 
this issue is the availability of an “original image“, which is considered to be distortion-free 
or perfect quality. Most of the proposed objective quality measures assume that the 
reference image exists and they attempt to quantify the visibility error between a distorted 
image and a reference image. 
Among the available ways to measure objective image quality, the mean squared error 
(MSE) and peak signal-to-noise ratio (PSNR) are widely employed because they are easy to 
calculate and usually they have low computational cost, but such measures are not 
necessarily consistent with human observer evaluation (Wang & Bovik, 2009). Both MSE 
and PSNR reflect the global properties of the image quality but they are inefficient in 
predicting structural degradations. Ponomarenko in (Ponomarenko, et al, 2009) evaluated 
correspondence of HVS with MSE and PSNR (0.525) where ideal value is 0.99. This shows 
that the widely used metrics PSNR and MSE have very low correlation with human 
perception (correlation factors are about 0.5). 
In many practical applications, image quality metrics do not always have access to a 
reference image. However, it is desirable to develop measurement approaches that can 
evaluate image quality blindly. Blind or non--reference image quality assessment turns out 
to be a very difficult task, because metrics are not related to the original image (Nava, et al, 
2007).  
In order to quantitatively compare the different objective quality metrics, we evaluated our 
fusion results with several methods, including the traditional as well as some of the more 
recent ones that may correlate better with the human perceptive assessment. Among the 
first ones, we considered the PSNR and the MSE, and for the second group we used the 
measure of structural similarity (SSIM), the Mutual information (MI) and the Normalized 
Mutual Information (NMI) based on Tsallis entropy (Nava et al, 2010). In experiments with 
no reference image (ground truth) was available, metrics based on mutual information were 
used. 
PSNR is a ratio between the maximum possible power of the reconstructed image and the 
power of the noise that affects the fidelity of the reconstruction, this is 
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where F(i,j) denotes the intensity of the pixel of the fused image and R(i,j) denotes the 
intensity of the pixel of the original image. 
The MSE indicates the error level between the fused image and the ideal image (ground 
truth), the smaller value of MSE indicates the better performance of the fusion method. 
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The SSIM (Wang et al., 2004) compares local patterns of pixel intensities that have been 
normalized for luminance and contrast and it provides a quality value in the range [0,1].  
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Where μR is the original image mean and μF the fused image mean; σ is the variance and σRF 
is the covariance. 
MI has also been proposed as a performance measurement of image fusion in the absence of 
a reference image (Wang et al., 2009). Mutual information is a measurement of the statistical 
dependency of two random variables and the amount of information that one variable 
contain about the other. The amount of information that belongs to image A contained in the 
fused image is determined as follows: 
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where PF and PA are the marginal probability densisty functions of images F and A 
respectively, and PFA is the joint probability density funtion of both images.Then, mutual 
information is calculated by 
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Another performance measurement is the Fusion Symmetry (FS) defined in equation (21), it 
denotes the symmetry of the fusion process in relation to the two input images. The smaller 
the FS is, the better the fusion process performs. 
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MAXq(F,A,B) is a normalization factor that represents the total information. 
At first glance, the results obtained in Fig. 3 were very similar, thought quantitatively it is 
possible to verify the performance of the proposed algorithm. Table 1 shows the HT fusion 
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performance using a ground truth image and different fusion rules, while that Table 2 
compares the performance of different fusion methods with the same reference image and 
the same fusion rule.  

 
Fusion Rule MSE PSNR SSIM MI 

Absolute maximum 4.42934 41.6674 0.997548 5.535170 

Maximum with verification of 
consistency 0.44076 51.6886 0.999641 6.534807 

Saliency and match measurement 4.66043 41.4465 0.996923 5.494261 

Linear dependency test 0.43574 51.7385 0.999625 6.480738 

Table 1. Performance measurement of Fig. 3 using a ground truth image by the 
multiresolution directional-oriented HT using different fusion rules 

 
Fusion Method MSE PSNR SSIM MI NMI 

Hermite Transform 0.43574 51.7385 0.999625 6.480738 0.72835 

Wavelet Transform 0.76497 49.2944 0.999373 6.112805 0.72406 

Contourlet Transform 1.51077 46.3388 0.998464 5.885111 0.72060 

Curvelet Transform 0.88777 48.6478 0.999426 6.083156 0.72295 

Table 2. Performance measurement of Fig. 3 using a ground truth image applying the fusion 
rule based on linear dependency with different methods 
Tables 3 and 4 correspond to tables 1 and 2 for the case of Fig. 4. 
 

Fusion Rule MSE PSNR SSIM MI 

Absolute maximum 54.248692 30.786911 0.984670 3.309483 

Maximum with verification of 
consistency 35.110012 32.676494 0.989323 3.658905 

Saliency and match measurement 38.249722 32.304521 0.989283 3.621530 

Linear dependency test 33.820709 32.838977 0.989576 3.659614 

Table 3. Performance measurement of Fig. 4 using a ground truth image by the 
multiresolution directional-oriented HT with different fusion rules 

A Perceptive-oriented Approach to Image Fusion 

 

181 

Fusion Method MSE PSNR SSIM MI NMI 

Hermite Transform 33.820709 32.838977 0.989576 3.659614 0.23967 

Wavelet Transform 128.590240 27.038724 0.953244 2.543590 0.24127 

Contourlet Transform 156.343357 26.190009 0.945359 2.323243 0.23982 

Curvelet Transform 114.982239 27.524496 0.952543 2.588358 0.24024 

Table 4. Performance measurement of Fig. 4 using a ground truth image applying the fusion 
rule based on linear dependency with different methods 
From Figs. 5, 6 and 7, we can notice that the image fusion method based on the Hermite 
transform preserved better the spatial resolution and information content of both images. 
Moreover our method shows a better performance in noise reduction.  
 

Fusion Method MIFA MIFB MIFAB FS 

Hermite Transform 1.937877 1.298762 3.236638 0.098731 

Wavelet Transform 1.821304 1.202295 3.023599 0.102363 

Contourlet Transform 1.791008 1.212183 3.003192 0.096368 

Curvelet Transform 1.827996 1.268314 3.096310 0.090379 

Table 5. Performance measurement of Fig. 5 (CT/RM) applying the fusion rule based on 
linear dependency with different methods 
 

Fusion Method MIFA MIFB MIFAB FS 

Hermite Transform 1.617056 1.766178 3.383234 0.022038 

Wavelet Transform 1.626056 1.743542 3.369598 0.017433 

Contourlet Transform 1.617931 1.740387 3.358319 0.018232 

Curvelet Transform 1.589712 1.754872 3.344584 0.024691 

Table 6. Performance measurement of Fig. 6 (RM/PET) applying the fusion rule based on 
linear dependency with different methods 

6. Conclusions 
We have presented a multiresolution image fusion method based on the directional-oriented 
HT using a linear dependency test as fusion rule. We have experimented with this method 
for multi-focus and multi-modal images and we have obtained good results, even in the 
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performance using a ground truth image and different fusion rules, while that Table 2 
compares the performance of different fusion methods with the same reference image and 
the same fusion rule.  
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Table 1. Performance measurement of Fig. 3 using a ground truth image by the 
multiresolution directional-oriented HT using different fusion rules 
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Hermite Transform 0.43574 51.7385 0.999625 6.480738 0.72835 

Wavelet Transform 0.76497 49.2944 0.999373 6.112805 0.72406 

Contourlet Transform 1.51077 46.3388 0.998464 5.885111 0.72060 

Curvelet Transform 0.88777 48.6478 0.999426 6.083156 0.72295 

Table 2. Performance measurement of Fig. 3 using a ground truth image applying the fusion 
rule based on linear dependency with different methods 
Tables 3 and 4 correspond to tables 1 and 2 for the case of Fig. 4. 
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Fusion Method MSE PSNR SSIM MI NMI 

Hermite Transform 33.820709 32.838977 0.989576 3.659614 0.23967 

Wavelet Transform 128.590240 27.038724 0.953244 2.543590 0.24127 

Contourlet Transform 156.343357 26.190009 0.945359 2.323243 0.23982 

Curvelet Transform 114.982239 27.524496 0.952543 2.588358 0.24024 

Table 4. Performance measurement of Fig. 4 using a ground truth image applying the fusion 
rule based on linear dependency with different methods 
From Figs. 5, 6 and 7, we can notice that the image fusion method based on the Hermite 
transform preserved better the spatial resolution and information content of both images. 
Moreover our method shows a better performance in noise reduction.  
 

Fusion Method MIFA MIFB MIFAB FS 

Hermite Transform 1.937877 1.298762 3.236638 0.098731 

Wavelet Transform 1.821304 1.202295 3.023599 0.102363 

Contourlet Transform 1.791008 1.212183 3.003192 0.096368 

Curvelet Transform 1.827996 1.268314 3.096310 0.090379 

Table 5. Performance measurement of Fig. 5 (CT/RM) applying the fusion rule based on 
linear dependency with different methods 
 

Fusion Method MIFA MIFB MIFAB FS 

Hermite Transform 1.617056 1.766178 3.383234 0.022038 

Wavelet Transform 1.626056 1.743542 3.369598 0.017433 

Contourlet Transform 1.617931 1.740387 3.358319 0.018232 

Curvelet Transform 1.589712 1.754872 3.344584 0.024691 

Table 6. Performance measurement of Fig. 6 (RM/PET) applying the fusion rule based on 
linear dependency with different methods 

6. Conclusions 
We have presented a multiresolution image fusion method based on the directional-oriented 
HT using a linear dependency test as fusion rule. We have experimented with this method 
for multi-focus and multi-modal images and we have obtained good results, even in the 
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presence of noise. Both subjective and objective results show that the proposed scheme 
outperforms other existing methods. 
The HT has proved to be an efficient model for the representation of images because 
derivatives of Gaussian are the basis functions of this transform, which optimally detect, 
represent and reconstruct perceptually relevant image patterns, such as edges and lines. 
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1. Introduction  
Image fusion is a process by combining two or more source images from different 
modalities or instruments into a single image with more information. The successful fusion 
is of great importance in many applications, such as military, remote sensing, computer 
vision and medical imaging, et al. Image fusion can be performed at signal, pixel, feature 
and symbol levels depending on the representation format at which image information is 
processed. The pixel-level image fusion can provide the fine information by fusing the pixels 
of the source images and the fused images. In this chapter, we only consider the fusion 
technique on pixel-level. To the pixel-level fusion, some generic requirements can be 
imposed on the fused on the fusion results (Rockinger, O., 1996): 
a. The fused image should preserve all relevant information contained in the source 

images as closely as possible; 
b. The fused process should not introduce any artifacts or inconsistencies, which can 

distract or mislead the human observer, or any subsequent image processing steps; 
c. In the fused image, irrelevant features and noise should be suppressed to a maximum 

extent. 
The visible light sensor and the infrared sensor are in common use sensors acting on 
different bands. The infrared imaging sensor is sensitive to the radiation of object scene, but 
not to the brightness change of scene. The visible light imaging sensor is sensitive and 
decided by the reflectivity and the shadow of the object sensor and has the higher contrast 
degree, but independent to the heat contrast. The image features of the two kinds of sensors 
have the different gray values and have the complement information. The fusion of the 
infrared images and the low visible light images can be in favor of integrating the good 
object denote character of the infrared images and the clear scene information of the visible 
light images.  
Panchromatic (PAN) images of high spatial resolution can provide detailed geometric 
information, such as shapes features, and structures of objects of the earth’s surface. While 
multispectral(MS) images with usually lower resolution are used to obtain spectral 
information necessary for environmental applications. The different objects within images of 
high spectral resolution are easily identified. Data fusion methods aim to obtain the images 
with high spatial and spectral resolution, simultaneously. The PAN and MS remote sensing 
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image fusion is different in military missions or computer-aided quality control. The 
specificity is to preserve the spectral information for subsequent classification of ground 
cover. The classical fusion methods are principle component analysis (PCA), intensity-hue-
saturation (IHS) transform, etc. In recent years, with the development of wavelet transform 
(WT) theory and multiresolution analysis, two-dimensional separable wavelets have been 
widely used in image fusion and have achieved good results(Nunez, J., 1999; Gonzalez-
Audicana. M., 2004; Wang, Z. J., 2005). Thus, the fusion algorithms mentioned above can 
hardly make it by themselves. They usually cause some characteristic degradation, spectral 
loss, or color distortion. The WT can preserve spectral information efficiently but cannot 
express spatial characteristics well. Furthermore, the isotropic wavelets are scant of shift-
invariance and multidirectionality and fail to provide an optimal expression of highly 
anisotropic edges and contours in image. 
Image decomposition is an important link of image fusion and affects the information 
extraction quality, even the whole fusion quality. In recent years, along with the 
development and application to express local signal makes wavelet a candidate in 
multisensor image fusion. However, wavelet bases are isotropy and of limited directions 
and fail to represent high anisotropic edges and contours in images well. The MGA 
emerges, which comes form wavelet, but beyond it. The MGA can take full advantage of the 
geometric regularity of image intrinsic structures and obtain the asymptotic optimal 
representation. As an MAG tool, the contourlet transform (CT) has the characteristics of 
localization, mulitdirection, and anisotropy (Do, M. N., 2005). The CT can give the 
asymptotic optimal representation of contours and has been applied in image fusion 
effectively. However, the CT is lack of shift-invariance and results in artifacts along the 
edges to some extend. The nonsubsampled contourlet transform (NSCT) is in virtue the 
nonsubsampled filter banks to meet the shift-invariance(da Cunha, 2006). Therefore, the 
NSCT is more suitable for image fusion, which is explained in section II together with the 
immune clonal selection (ICS) optimization algorithm. 
Considering of the characteristics of low visible light images and infrared images and 
combining with the human visual system, a novel image fusion technique is presented in 
section III. The fusion technique is based on ICS in the natural immune selection and the 
NSCT. The NSCT can give the asymptotic optimal representation of the edges and contours 
in image by virtue of the characteristics of good multiresolution, shift-invariance and multi-
directionality. And then the ICS is introduced into the NSCT domain to optimize the fusing 
weights adaptively. Numerical tests show that this algorithm provides improvements both 
in visual effects and quantitative analysis. And the fused images hold more edge and texture 
information and have stronger contrast and definition.  
The fusion of multispectral and panchromatic remote sensing images is discussed in section 
IV. An NSCT-based panchromatic and multispectral image fusion method is presented after 
analyzing the basic principles of remote sensing image system and fusion purpose. An 
intensity component addition strategy based on LHS transform is introduced into NSCT 
domain to preserve spatial resolution and color content. Experiments show that the fusion 
method proposed can improve spatial resolution and keep spectral information 
simultaneously. 
A novel image fusion scheme is presented based on multiscale decomposition and 
multiwavelet transform (MWT) in section V. First, contrast pyramid (CP) decomposition is 
used to each level of each original image. Then, each image are decomposed by WT. 
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Furthermore, a kind of evolution computation method-ICS algorithm is introduced to 
optimize the fusion coefficients for better fusion products. Applying this technique to fusion 
of multisenor images, simulation results clearly demonstrate the superiority of this new 
approach. Fusion performance is evaluated through subjective inspection, as well as 
objective performance measurements. Experimental results show that the fusion scheme is 
effective and the fused images are more suitable for further human visual or machine 
perception. 

2. NSCT and ICS 
2.1 Contourlet transform and NSCT 
Do and Vetterli proposed a “true” 2-D transform called contourlet transform, which is based 
on nonsubsampled filter banks and provides an efficient directional multiresolution image 
representation. However, because of downsampling and upsampling, CT lacks shift-
invariance and results in artifacts. In order to get rid of the frequency aliasing of contourlets 
and enhance directional selectivity and shift-invariance, nonsubsampled contourlet 
transform based on nonsubsampled pyramid decomposition and nonsubsampled filter 
banks (NSFB) is proposed (Jianping, Zhou, 2005). The NSCT provides not only 
mulitresolution analysis but also geometric and directional representation.  
Multiscale decomposition step of the NSCT is realized by shift-invariant filter banks 
satisfying Bezout identical equation (perfect reconstruction (PR)), not LP of CT. Because of 
no downsampling in pyramid decomposition, there is no frequency aliasing in low-pass 
subband, even the band width is larger than π/2. Hence, the NSCT has better frequency 
characteristic than CT. The two-level NSCT decomposition is shown in Figure 1.  
 

 
 a)   b) 

Fig. 1. Two-level NSCT decomposition. (a) NSCT structure that implements the NSCT (b) 
Frequency partitioning obtained with the proposed structure 

The core of the NSCT is the nonseparable two-channel NSFB. It is easier and more flexible to 
design the needed filter banks that lead to an NSCT with better frequency selectivity and 
regularity when compared to the corresponding CT. Based on mapping approach and 
ladder structure fast implementation, the NSCT frame elements are regular and symmetric, 
and the frame is close to a tight frame. The multiresolution decomposition of NSCT can be 
realized by nonsubsampled pyramid (NSP), which can reach the subband decomposition 
structure similar to LP. On j -th decomposition, the desired bandpass support of the low-
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Fig. 1. Two-level NSCT decomposition. (a) NSCT structure that implements the NSCT (b) 
Frequency partitioning obtained with the proposed structure 

The core of the NSCT is the nonseparable two-channel NSFB. It is easier and more flexible to 
design the needed filter banks that lead to an NSCT with better frequency selectivity and 
regularity when compared to the corresponding CT. Based on mapping approach and 
ladder structure fast implementation, the NSCT frame elements are regular and symmetric, 
and the frame is close to a tight frame. The multiresolution decomposition of NSCT can be 
realized by nonsubsampled pyramid (NSP), which can reach the subband decomposition 
structure similar to LP. On j -th decomposition, the desired bandpass support of the low-
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pass is 2[ / 2 , / 2 ]j jπ π− . And then the corresponding band-pass support of the high-pass is 
the complement set of the low-pass, that is 1 1 2 2[ / 2 , / 2 ] \[ / 2 , / 2 ]j j j jπ π π π− −− − . The filters 
of subsequent scales can be acquired through upsampling that of the first stage, which gives 
the mulitscale property without the need of additional filters desigh. From the computation 
complexity, on bandpass image is produced at each stage resulting in 1J + redundancy. By 
contrast, the corresponding NSWT produces three directional images at each stage and 
resulting in 3 1J +  redundancy.  
The NSFB is built form a lowpass analysis filter 0( )H z  and 1 0( ) 1 ( )H z H z= − . The 
corresponding synthesis filter 0 1( ) ( ) 1G z G z= = . The perfect reconstruction (PR) condition is 
given as  

 0 0 1 1( ) ( ) ( ) ( ) 1H z G z H z G z+ =  (1) 

2.2 ICS optimization 
As a novel artificial intelligent optimization technique, the artificial immune system (AIS) 
aim at using ideas gleaned from immunology in order to develop systems capable of 
performing different tasks in various areas of research. The clonal selection functioning of 
the immune system can be interpreted as a remarkable microcosm of Charles Darwin’s law 
of evolution, with the three major principles of diversity, variation and natural selection.  
The clonal selection algorithm is used by the natural immune system to define the basic 
features of an immune response to an antigenic stimulus (De Castro, L. N. 2000). The main 
features of the clonal selection theory are: generation of new random genetic changes 
subsequently expressed as diverse antibody patterns by a form of accelerated somatic 
mutation; phenotypic restriction and retention of one pattern to one differentiated cell 
(clone); proliferation and differentiation on contact of cells with antigens. It establishes the 
idea that only those cells that recognize the antigens are selected to proliferate. The selected 
cells are subject to an affinity maturation process, which improves their affinity to the 
selective antigens. Random changes are introduced and will lead to an increase in the 
affinity of the antibody. It is these high-affinity variants which are then selected to enter the 
pool of memory cells. Those cells with low affinity receptors must be efficiently eliminated 
become anergic or be edited, so that they do not significantly contribute to the pool of 
memory cells. 
Evolutionary strategy (ES) is an optimization technique based on group, which considers 
the feasible solutions as the group and as the operation object. The individual in the group is 
defined as a real value vector 0 1( , , , )nY y y y= , which measures the advantage and 
disadvantage by the fitness function. The optimization object is to search an optimal 
individual * * * *

0 1( , , , )nY y y y=  with the largest fitness *( )Fit f . The basic process of the ES is as 
follows: 
a. Produce initial parent-off springs { ,iY i = , 1,2, , }μ where μ is the number of 

individuals and uniform distribution on[0,1] . 
b. Aberrance: Producing subgroup individuals 2{ (0, )}j

i i jY Y N δ= + , where 1,2, ,i μ= , 

1,2, ,j λ= . And 2(0, )jN δ denotes the Gaussian noise with mean 0 and variance 2δ , 
where the variance can be fixed or change adaptively. 
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c. Reselection: we can adopt the fixed or random selection methods. In this chapter, we 
adopt the fixed selection and avoid loosing in the local optimal, which means selecting 
the optimal μ individuals from the μ μλ+ individuals and composing new parent 
group. 

d. Repeating the (b) and (c) steps until the fitness function satisfy the end requirement or 
the iterated run time reach the maximum permissible run time. The terminal resolution 
is the optimal individual of the last generation group. 

The definition of antigen, antibody, and antigen is as follows: 
Antigen: it denotes the question and the corresponding constraint and like to the fitness 
function of evolution algorithm. For detail, it is the function of the object function ( )f x and 
denoted as ( ( ))g f x , which is the important weighted index of starting factor and the 
algorithm performance in the artificial immune system However, the determination of the 
antigen g usually needs considering the intrinsic characteristics of the question, that is to 
say, needs to combine with the prior knowledge. Generally, for simple disposal and under 
the unspecified case, we adopt ( ) ( )g x f x= . 
Antibody: It denotes the candidate solutions of the question in the artificial immune system, 
which is the same to the evolution algorithm. 
Antigen—antibody affinity, Avidity: reflects the whole adhesion between the molecular 
antibody and antigen. In the artificial immune system, the avidity denotes the object 
function values or the fitness of the candidate solutions to question. 
a. Clonal oprating C

cT  
The essence of the clonal operating is that the producing of new sub-group around 
candidate solutions based on the values of the affinity during the immune process. The 
colnal process enlarges the search range. The definition of clonal is as follows: 

 
' ' ' ' C

1 2 c
C C C T
c 1 c 2 c

( ) [ ( )  ( )    ( )]=T ( ( ))
        =[T ( ( ))  T ( ( ))    T ( ( ))]

n

n

A k A k A k A k A k
A k A k A k

=
 (2) 

In equation (2), ' C
c( ) T ( ( )) ( )i i i iA k A k I A k= = × is called the clonal of antibody iA , which show 

that the antibody realizes the increase of biologic induced by antigen, where 1,2, ,i n= , 
and iI is the row vector of element I . 
b. Immune gene operating C

mT  
The immune gene operating has the crossover and aberrance. Based on the distribution of 
information exchange diversity characteristics of biological monoclonal antibody and 
polyclonal antibody, the ICS only adopted aberrance is called monoclonal Selection 
Algorithm (MCSA), and the ICS adopted crossover and aberrance is called Polyclonal 
Selection Algorithm (PCSA). Immunology believes that the generation of the affinity 
maturation and the antibody diversity depend mainly on the high frequency mutation of 
antibody, not crossover or regroup. In this chapter, we adopt the MCSA only including 
aberrance and denote the ICS. The individual after mutation is '' '( ) ( ( ))C

mA k T A k= . 
c. Clone selection operating C

sT  
Immune selection operator C

sT indicates the process selecting the optimal individual from 
the sub-group of antibody after clone and come into being new groups, which denotes 
as ''( 1) ( ( ) ( ))C

sA k T A k A k+ = ∪ . Therefore, the ICS is described as follows: 
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' '': ( ) ( ) ( ) ( 1)
C C C
c m sT T T

sC A k A k A k A k⎯⎯→ ⎯⎯→ ⎯⎯→ +  

The ICS enlarges the search range and is helpful to prevent evolution premature and search 
fall into the local minimum. In other words, the clone is a process changing a low-
dimensional space into a higher-dimensional space to solve and mapping the solution into 
the low-dimensional space. 
The basic ICS algorithm is described as the mathematics model of Markov Chain. As the 
encoding mode is determined, the ICS process likes the random walk with memory from a 
state to another. 

3. Low visible light and infrared image fusion based on the NSCT and the ICS 
3.1 Fusion strategy 
In this section, we propose the fusion algorithm based on NSCT and the ICS optimization 
fusion algorithm. We consider the characteristics of coefficients on each multiresolution 
decomposition level and each subband, and adopt different fusion rules to lowpass subband 
and detail subbands. Figure 2 illustrates a single analysis/synthesis stage of NSCT 
processing. 
 

 
Fig. 2. Image fusion processing based on the one-level NSCT 

Because the remote sensing image has no desired contrast image and we expect the image 
with more detail information and texture information. Therefore, the cost function is defined 
as the values of the Edge-dependent fusion qualidity index (EFQI) maximax and as the 
affinity function of ICS. During the process of searching optimization weights, we introduce 
the elitist preserved definition to keep the weights corresponding to the current best affinity 
function and save the memory space. 
Definition (Elitist preserved) Suppose that * * * *{ : ( ) min( ( )), lg 2( )l lS S f S f S l N= = = , , ,2,1}  

where * *
1,l lS S −  are the sets (memory population) of optimal directions on l  level and  1l +  

level, *( )lf S  and *
1( )lf S − are the corresponding values of object function. If *( )lf S , *

1( )lf S −>  

then * *
1:l lS S −=  and * *

1( ) : ( )l lf S f S −= . 
Without of generalization, we only focus on two source image. There is the same to many 
source images. Suppose all the source images are registrated, that is, each image being 
aligned to the same pixel position. If the sensors to be fused are not perfectly aligned, any 
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corrections to the alignment can be made through a low-latency image warp function. The 
fusion algorithm is as follows: 
Step 1. Loading source images; 
Step 2. Performing multi-level NSCT. Suppose that the source images are 1I and 2I , we have 
the approximation sub-band on the last decomposition level and the subimage series of 
detail sub-band on each decomposition level; 
Step 3. Performing the fusion rule of absolute-values maximum to combine corresponding 
detail sub-band images; 
Step 4. Performing the ICS to search the optimal fusion weights to the corresponding 
approximation sub-images on the last decomposition level adaptively, 

 1 2(1 )cAF cI cIα α= + −  (3) 

where 1cI , 2cI and cAF denote the approximation subimages of source images 1I , 2I and the 
synthesis image, (0 1)α α≤ ≤ is the resulting weights. The corresponding ICS sub-algorithm 
as following and shown in Figure 3: 
 

 
Fig. 3. Block diagram of the clonal selection algorithm 

Step 4.1. Initialization. Pre-select the weights in [0, 1] and denoting them initial group 
individuals with the size of 9i = . Let the clone generations is ten.  
Step 4.2. Calculating the affinity values of the initial group individuals and storing 
them in memory cell in sort;   
Step 4.3. Clone. Cloning the initial group. Suppose the clone size is three, that is, each 
individual is cloned to three child individuals by random changes around the father 
individual. And then we calculating the affinity values of the child individuals; 
Step 4.4. Aberrance. Compare the three child individuals with the corresponding father 
individual, based on an affinity measure. If the affinity value of the child is larger than 
its father counterpart, then the former replaces the latter and be kept to the memory 
cell : optS S= . Otherwise, the father individual is kept; 
Step 4.5. Reselection. Return to step4.3 and repeat the optimization procedure until 
satisfy the stop condition; 

Step 5. Substitute the resulting optimal weights to equation (3) and fusion the appreciation 
subimages; 
Step 6. Performing inverse NSCT to obtain the fused image. 
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3.2 Experiments and results 
Subjective visual perception gives the direct comparison. However, it is easily influenced by   
Visual Psychological Factors. Therefore, the effect of image fusion must base on subjective 
vision and combined with objective quantitative valuation criterions. For the remote sensing 
images, the desired standard image cannot be acquired. Hence, the index such as root mean 
square error and peak value of signal to noise is unusable. In this section, we adopt the 
following statistic index to performance the fusion results entirely, such as mean value, 
standard deviation, entropy, mutual information, cross-entropy, weighted fusion quality 
index and edge-dependent fusion quality index, et al. 
a. Mean value (MV): The MV is the gray mean value of the pixels in a image and the 

average brightness reflecting to human eye. Suppose the size of the image is MN , 
( , )I i j is the pixel in the image, then the MV is defined as: 

 
1 1
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1 ( , )
N M

i j
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− −

= =

= ∑ ∑  (4) 

b. Standard deviation (STD): The variance of image reflects the dispersion degree 
between the gray values and the gray mean value. The STD is the square root of the 
variance. The large the STD is, the more disperse the gray level. The definition of the 
STD is: 
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 (5) 

c. Information entropy (IE): The IE of the image is an important index to measure the 
abound degree of the image information. Based on the principle of Shannon 
information theory, the IE of the image is definition as: 
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where iP is the ratio of the number of the pixels, which the gray equals to i , and the total 
number of the pixels. IE reflects the capacity of the information carried by images. The 
large the IE is, the more information the image carries. 

d. Weighted fusion quality index (WFQI) and Edge-dependent fusion qualidity index 
(EFQI): WFQI and EFQI are evaluation indexes without standard referred image and 
consider some aspect of the human visual system. Suppose ', ', 'A B Fy y y  are edge images 
of the source images ,A By y and fused image Fy , respectively. WFQI is introduced to 
weight feature information of the fused images comes from source images. EFQI 
focuses on human visual system sensitivity to the edge information.  The two measures 
have a dynamic range of [-1, 1]. The closer the value to 1, the higher the quality of the 
composite image is. 

 0 0( , , ) ( )( ( ) ( , ,| ) (1 ( )) ( , ,| ))WFQI A B F A A F A B F
Q

Q y y y c Q y y Q y y
ω
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 1( , , ) ( , , ) ( ', ', ')EFQI A B F WFQI A B F WFQI A B FQ y y y Q y y y Q y y yα α−= ⋅  (8) 

where ( ) ( ) /[ ( ')]
Q

c C C
ω

ω ω ω
∈

= ∑ ,and ( ) max( (( | ), ( | ))A BC y yω η ω η ω= denotes the overall 

saliency of a window, ( ) ( | ) /( ( | ) ( | )), ( | )A A A B Ay y y yρ ω η ω η ω η ω η ω= + is some salient 
features of image Ay  in the windowω . In this chapter, we select the energy as the salient 
feature and the size of the window is 3 3× . Q is the summation of the total windows and 

0Q  is the general image quality index. The parameterα in equation (8) expresses the 
contribution of the edges images compared to the original images, and its variation range 
is [0, 1]. Here we select 0.2α = . LOG operator was adopted to obtain the edge image. 
However, the LOG operator cannot provide the edge directional information and 
sensitive to noise. Therefore, we select canny operator to detect the edge information, 
which detect the edges by searching the local maximum of image gradient. Canny 
operator detects the strong edges and weak edges with the two thresholds, respectively, 
where the thresholds are system automatic selection. Just when the weak edges and 
strong edges are jointed and the weak edges may be combined in the output. The canny 
operator is not sensitive to noise and can detect the true weak edges. 

e. Mutual Information (MI): MI of source images A 、 B  and the fused image F is 
defined: 
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where ( , , )BAFp i j k is the normalized grey-level histogram of images A , B and F . MI 
denotes how much the information of fused image extracts from source images. The 
larger the MI is, the more information the fused image from source images. 

f. Cross-entropy (CE) and Root mean square cross entropy (RCE): 
Let 1 2{ , , , , , }i mP p p p p= , 1 2{ , , , , , }i mQ q q q q= , the CE of  P and Q is 
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CE directly reflects the difference of the corresponding pixels between two images. The 
smaller the CE is, the smaller the difference is. The RCE denotes the comprehensive 
difference by considering the two CE and denoted as 
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To allow helicopter pilots navigate under poor visibility conditions (such as fog or heavy 
rain) helicopters are equipped with several imaging sensors, which can be viewed by the 
pilot in a helmet mounted display. A typical sensor suite includes both a low-light-television 
(LLTV) sensor and a thermal imaging forward-looking-infrared (FLIR) sensor. In the current 
configuration, the pilot can choose on of the two sensors to watch in his display. A possible 
improvement is to combine both imaging sources into a single fused image which contains 
the relevant image information of both imaging devices.  
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b. Standard deviation (STD): The variance of image reflects the dispersion degree 
between the gray values and the gray mean value. The STD is the square root of the 
variance. The large the STD is, the more disperse the gray level. The definition of the 
STD is: 
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c. Information entropy (IE): The IE of the image is an important index to measure the 
abound degree of the image information. Based on the principle of Shannon 
information theory, the IE of the image is definition as: 
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where iP is the ratio of the number of the pixels, which the gray equals to i , and the total 
number of the pixels. IE reflects the capacity of the information carried by images. The 
large the IE is, the more information the image carries. 

d. Weighted fusion quality index (WFQI) and Edge-dependent fusion qualidity index 
(EFQI): WFQI and EFQI are evaluation indexes without standard referred image and 
consider some aspect of the human visual system. Suppose ', ', 'A B Fy y y  are edge images 
of the source images ,A By y and fused image Fy , respectively. WFQI is introduced to 
weight feature information of the fused images comes from source images. EFQI 
focuses on human visual system sensitivity to the edge information.  The two measures 
have a dynamic range of [-1, 1]. The closer the value to 1, the higher the quality of the 
composite image is. 
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features of image Ay  in the windowω . In this chapter, we select the energy as the salient 
feature and the size of the window is 3 3× . Q is the summation of the total windows and 

0Q  is the general image quality index. The parameterα in equation (8) expresses the 
contribution of the edges images compared to the original images, and its variation range 
is [0, 1]. Here we select 0.2α = . LOG operator was adopted to obtain the edge image. 
However, the LOG operator cannot provide the edge directional information and 
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operator is not sensitive to noise and can detect the true weak edges. 
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where ( , , )BAFp i j k is the normalized grey-level histogram of images A , B and F . MI 
denotes how much the information of fused image extracts from source images. The 
larger the MI is, the more information the fused image from source images. 

f. Cross-entropy (CE) and Root mean square cross entropy (RCE): 
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CE directly reflects the difference of the corresponding pixels between two images. The 
smaller the CE is, the smaller the difference is. The RCE denotes the comprehensive 
difference by considering the two CE and denoted as 
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To allow helicopter pilots navigate under poor visibility conditions (such as fog or heavy 
rain) helicopters are equipped with several imaging sensors, which can be viewed by the 
pilot in a helmet mounted display. A typical sensor suite includes both a low-light-television 
(LLTV) sensor and a thermal imaging forward-looking-infrared (FLIR) sensor. In the current 
configuration, the pilot can choose on of the two sensors to watch in his display. A possible 
improvement is to combine both imaging sources into a single fused image which contains 
the relevant image information of both imaging devices.  
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The two source images are geometric adjustment and with the size of 256 256× . This group 
images have uniform area, point informatiomn, linear information and texture information. 
The fusion methods are WT and ICS-based (WT-ICS), CT and ICS (CT-ICS), and NSCT and 
ICS-based (NSCT-ICS). Without of generality, the decomposition level of the adopted 
transform is all three. The WT adopts the 9-7 biorthogonal wavelet. The corresponding LP 
filter banks of CT and NSCT are all adopted 9-7 filter banks obtained from 9-7 1-D 
prototypes. And the DFB are adopted ‘pkva’ ladder filters proposed by Phong et al [15], 
which are with the decomposition 0, 0, 0, 3, 4 corresponding to the five levels LP 
decomposition, respectively. The decomposition values of DFB correspond to the directions 
decomposition number, such as “3” denote the direction decomposition number is 32 8= , 
and so on. 
From the human visual system (as shown in Figure 4), we can see that our fusion technique 
based on NSCT-ICS is superior to any other fusion methods. The fusion image has the clear 
edges information, texture information and good definition and contrast than that of based 
on WT-ICS, NWST-ICS and CT-ICS. 
The comparisons of fusion results are shown in Table 1. From the table I, we can see that the 
quantitative evaluation indexes are in accord with the visual effect. The fusion results based 
on our proposed adaptive fusion technique are superior to WT-ICS, NSWT-ICS and CT-ICS 
based fusion methods, which embody in the moderate brightness and the dispersion degree 
between the gray values, the larger entropy, the larger mutation information, the smaller 
difference to the source images and the more edge information. From the whole effects, and 
by virtue of our proposed adaptive fusion technique, the NSCT-based fused result is better 
than that of the WT-based, nonsubsample wavelet transform-based, and the CT-based, 
respectively. 
 

Fusion results 
Fusion 

methods 
MV STD IE WFQI EFQI MI RCE 

Visible image 157.75 50.25 5.27 — — — — 

Infrared image 41.45 64.55 4.11 — — — — 

WT-ICS 162.70 69.09 5.14 0.44 0.39 2.27 2.37 

NSWT-ICS 175.14 70.63 4.94 0.55 0.49 2.79 0.34 

CT-ICS 162.70 65.12 5.08 0.44 0.39 2.27 4.12 

NSCT-ICS 175.14 70.65 4.94 0.56 0.50 2.80 0.32 

Table 1. Comparison of the two algorithms by reconstruction precision and runtime 
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 c)  d) 

    
 e)  f) 
Fig. 4. Compaison of fused images based on different transforms (a) Visible source image (b) 
Infrared source image (c) WT-ICS  based fused image (d) NSWT-ICS based fused image (e) 
CT-ICS based fused image  (f) NSCT-ICS based fused image 
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4. High resolution and multispectral remote image fusion based on the LHS 
and the NSCT 
4.1 Fusion strategy 
In this section, an adaptive panchromatic and multispectral remote sensing image fusion 
technique is presented based on the NSCT and the LHS transform after analyzing the basic 
principles of PAN image and MS image and fusion purpose. Here, we adopt an intensity 
(brightness) component addition method, that is, the detail information of the high-
resolution PAN image is added to the corresponding intensity component of the low-
resolution image’s high frequency subbands to preserve some spectral information.  
An image can be represented by RGB color system in computer.  However, the RGB color 
system disagrees with the comprehensive and cognition habits of the human visual system. 
Human always recognize the color with three features,  that is,  intensity (I), hue (H), and 
saturation (S), called IHS system. I component is decided by the spectral main wave length 
and denotes the nature distintion. S component symbolizes the proportion of the main wave 
length of the intensity. I component means the brightness of the spectral. In the IHS space, 
spectral information is mostly reflected on the hue and the saturation. From the visual 
system, we can conclude that the intensity change has little effect on the spectral 
information and is easy to deal with.  
For the fusion of the high-resolution and multispectral remote sensing images, . the goal is 
ensuring the spectral information and adding the detail information of high spatial 
resolution, therefore, the fusion is even more adequate for treatment in IHS space.  
IHS color space transform means the change of image from RGB space components to IHS 
spatial information I component and spectral information H and S components. However, 
the general IHS color system has the disadvantage that neglects two components when 
computing the brightness values. The IHS system results in that the brightness of pure color 
is the same as the achromatic color. Therefore, we adopt the LHS color system to solve the 
paoblem. The LHS color system generates the brightness with the value of 255 to achromatic 
color pixel and the value of 85 to pure color pixel.  
The detailed process of this fusion algorithm is as follows: 
Step 1. Perform polynomial interpolation to keep the edges of the linear landmark and make 
the PAN and SPOT images with the same sizes. 
Step 2. Transform the RGB representation of the multispectral image by LHS transformation 
into the intensity, hue, and saturation(L. H. S)components.  
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The corresponding matrix expression is as follows 
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Step 3. Apply histogram matching between the original panchromatic image and 
multispectral intensity component to get new panchromatic high-resolution(PAN HR) 
image and multispectral intensity(MSI) component image.  
Step 4. Decompose the matched MSI image and PAN HR image to get the NSTC 
decomposition coefficients.  
Step 5. Fuse the detail and approximate coefficients of the MSI and PAN HR according to 
(25)and(26), respectively.  

 low lowFuse MSI=  (18) 

 det dethigh ails ailsFuse MSI PANHR= +∑ ∑  (19) 

Step 6. Apply the inverse NSCT transform to the fused detail and approximate coefficients 
to reconstruct the new intensity component newI  
Step 7. Perform the inverse LHS transform to the new intensity component, new I, together 
with the hue and saturation components to obtain the fused RGB images.  
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 (20) 

4.2 Experiments and results 
The test source images are the SPOT PAN image and LANDSAT TM5, 4, 3 bands image of 
the same area. The TM image was acquired on February 17, 1993, and the SPOT PAN 
images were obtained on May 28, 1995. The two source images were after geometric 
adjustment and with the size of 256× 256.  
The fusion methods are traditional PCA and IHS, WT-based weighted fusion(WT-W), WT 
and LHS transform-based(WT-LHS), CT and LHS transform-based(CT-LHS), NSCT and 
LHS transform-based (NSCT-LHS). Without loss of generality, the decomposition levels of 
the adopted transforms are all three. The WT adopts the 9-7biorthogonal wavelet. The 
corresponding LP filter banks of CT and NSCT are all adopted 9-7 filter banks obtained 
from 9-7 1-D prototypes. And the DFB are adoped “pkva” ladder filters proposed by phong 
et al., which are with the decomposition 0, 3, 4 corresponding to the three levels of LP 
decomposition, respectively. The fusion results are shown in Fig. 5.  
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Step 3. Apply histogram matching between the original panchromatic image and 
multispectral intensity component to get new panchromatic high-resolution(PAN HR) 
image and multispectral intensity(MSI) component image.  
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Step 6. Apply the inverse NSCT transform to the fused detail and approximate coefficients 
to reconstruct the new intensity component newI  
Step 7. Perform the inverse LHS transform to the new intensity component, new I, together 
with the hue and saturation components to obtain the fused RGB images.  
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4.2 Experiments and results 
The test source images are the SPOT PAN image and LANDSAT TM5, 4, 3 bands image of 
the same area. The TM image was acquired on February 17, 1993, and the SPOT PAN 
images were obtained on May 28, 1995. The two source images were after geometric 
adjustment and with the size of 256× 256.  
The fusion methods are traditional PCA and IHS, WT-based weighted fusion(WT-W), WT 
and LHS transform-based(WT-LHS), CT and LHS transform-based(CT-LHS), NSCT and 
LHS transform-based (NSCT-LHS). Without loss of generality, the decomposition levels of 
the adopted transforms are all three. The WT adopts the 9-7biorthogonal wavelet. The 
corresponding LP filter banks of CT and NSCT are all adopted 9-7 filter banks obtained 
from 9-7 1-D prototypes. And the DFB are adoped “pkva” ladder filters proposed by phong 
et al., which are with the decomposition 0, 3, 4 corresponding to the three levels of LP 
decomposition, respectively. The fusion results are shown in Fig. 5.  
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 g) h) 

Fig. 5. (a) SPOT image (b) TM image (c) PCA fusion image (d) IHS fusion image (e)WT-W 
fusion image  (f) WT-LHS fusion image (g) CT-LHS fusion image (h)NSCT-LHS fusion 
image 
From the human visual system, we can see that our fusion technique based on the NSCT-
LHS can improve spatial resolution and at the same time hold spectral information well. 
Our intensity added fusion technique based on LHS transform is superior to classical PCA 
fusion method and IHS transform fusion method, and the WT-W fusion method. The fused 
image has more information of the source images, which is demonstrated in spatial 
resolution, definition, micro-detail difference, and contrast. The adaptive intensity 
component addition method preserves the whole spatial information, which has the 
advantage of the utilization of the detail information of the two source images. The fusion 
method only uses high-resolution information to adjust intensity component and better 
holds the multispectral information and texture information and introduces the high-
resolution characteristic in multispectral image. Moreover, the fusion algorithm based on 
NSCT-LHS has more outstanding detail information than those based on WT-LHS and  
CT-LHS.  
In this section, we adopt the following statistic index to performance the fusion results 
entirely, such as mean value, standard deviation, information entropy, weighted fusion 
quality index, average gradient, correlation coefficient, bias index, spectrum distoration and 
et al. 
a. Average gradient(AG):AG is the index to reflect the expression ability of the little detail 

contrast and texture variation, and the definition of the image. The calculation formula 
is 

 
( 1)( 1)

2 2

1

1 [( ) ( ) ]/ 2
( 1)( 1)

M N

i

f fg
M N x y

− −

=

∂ ∂
= +

− − ∂ ∂∑  (21) 

Generically, the larger g, the more the hierarchy, and the more definite the fused image.  
b. Correlation coefficient(CC):The CC denotes the degree of correlation of two images. 

The more the CC close to 1, the higher the correlation degree is. The definition is 
denoted as 
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Generically, the larger g, the more the hierarchy, and the more definite the fused image.  
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where A and B are two images,  ,i jx  and '
,i jx  denote the pixels of A and B, respectively,  

( )Aμ  and ( )Bμ  are the corresponding mean values of the two images.  
c. Spectrum distortion (SD): SD means the distortion degree of  a multispectral image 

and is defined as follows: 
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where I(i, j) and If(i, j) are the pixels of the source and fused images, respectively. The 
larger value of W, the higher the distortion.  

d. Bias index: This is an index of the deviation degree between fused image and low-
resolution multispectral image: 
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From Table 2, we can see that the quantitative evaluation indexes are in accord with the 
visual effect. The fusion results based on our adaptive fusion technique are superior to the 
traditional PCA  and IHS fusion methods, which embody the moderate brightness and the 
dispersion degree between the gray values, the larger entropy , the stronger correlation 
degree. From the whole effects, and by virtue of our proposed adaptive fusion technique, 
the NSCT-based fused results are better than those of the WT-based, and the CT-based, 
respectively, especially for the spectral holding. The better values are underlined. 
The comparison of the histogram images of R, G, B components of the TM multispectral 
images and the NSCT-based fusion image are shown in Figure 6, respectively.  
From the comparison of the R, G, and B components histograms, we can conclude that the 
dynamic range of fused image is larger than that of the source image, that is , the fused 
image has more detail information and higher special resolution than that of the source 
image.  
 

Fusion methods MV STD IE AG CC SD Bias Qw QE 
SPOT PAN 92.45 9.55 7. 30 12.75 - - - - - 

TM 102.82 47.68 4.96 9.50 - - - - - 
PCA 94.08 46.62 5.08 18.74 0.52 58.40 0.58 0.53 0.51 
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NSCT-LHS 112.72 52.66 5.30 16.76 0.93 14. 22 0.13 0.54 0.47 
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Fig. 6. The R, G, and B components histograms of TM source image and the NSCT-LHS 
fusion image (a)R component of TM source image (b)R component of NSCT-LHS fusion 
image (c)G component of TM source image (d) G component of NSCT-LHS fusion image 
(e)B component of TM source image (f) B component of NSCT-LHS fusion image 
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where A and B are two images,  ,i jx  and '
,i jx  denote the pixels of A and B, respectively,  

( )Aμ  and ( )Bμ  are the corresponding mean values of the two images.  
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Fig. 6. The R, G, and B components histograms of TM source image and the NSCT-LHS 
fusion image (a)R component of TM source image (b)R component of NSCT-LHS fusion 
image (c)G component of TM source image (d) G component of NSCT-LHS fusion image 
(e)B component of TM source image (f) B component of NSCT-LHS fusion image 
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5. Multisensor image fusion based on the CP and MW-HMT 
5.1 CP decomposition and HMT model 
The construction of CP structure is as follows (A. Toet 1990): Firstly, a Gaussian pyramid is 
constructed. This is a sequence of images in which each image is lowpass filtered and 
subsampling copy of its predecessor. We denote original images as ( , ), ,I i j i m j n≤ ≤ , when 
m  and n  are the number of row and column of images, respectively. Let lG  present the 
level l  of the  Gaussian pyramid decomposition and array 0G  contains the original image. 
This array 0G  becomes the bottom or zero level of the pyramid structure. Each node of 
pyramid level l  ( 1 l N≤ ≤ , where N is the index of the top level of the pyramid) is obtained 
as a Gaussian weighted average of the nodes at level 1l −  that are positioned within a 5×5 
window centered on that node. Convolving an image with a Gaussian-like weighting 
function is equivalent to applying a lowpass filter to the image. Gaussian pyramid 
construction generates a set of lowpass-filtered copies of the input image, each with a 
bandlimit one octave lower than that of its predecessor. Because of the reduction in spatial 
frequency content, each image in the sequence can be represented by an array that is half as 
large as that of its predecessor in both directions. The process that generates each image in 
the sequence from its predecessor is called REDUCE operation since both the sampling 
density and the resolution are decreased. Thus, for 1 l N≤ ≤  we have  
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where N  is the total levels of the pyramid, lC  and lR  are the number of column and row of 
the level l , respectively, and ( , )w m n  is a weighted function, which satisfies some 
conditions.  We can choose the weighting function: 

 

1 4 6 4 1
4 16 24 16 4

1 16 24 36 24 6
256

4 16 24 16 4
1 4 6 4 1

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (27) 

CP analysis scheme is based on local luminance contrast. This scheme computes the ratio of 
the lowpass images at successive levels of the Gaussian pyramid. Since these levels differ in 
sample density, it is necessary to interpolate new values between the given values of the 
lower frequency image before it can divide the higher frequency image. Interpolation can be 
achieved simply by defining the EXPAND operation as the inverse of the REDUCE 
operation.  
Let ,l kG  be the image obtained by applying EXPAND to lG  k times. Then  

 ,0

, , 1( )
l l

l k l k

G G
G EXPAND G −
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 (28) 
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meaning  
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where only integer coordinates ( , )
2 2

j ni m ++  contribute to the sum. A sequence of ratio 

images iR is defined by  
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Thus, every level iR  is a ratio of two successive levels in the Gaussian pyramid.  
Luminance is defined as 

 ( ) / /b b bC L L L L L I= − = −  (31) 

where L denotes the luminance at a certain location in the image plane, and bL  represents 
the luminance of the local background, and I is the unit gray image, that is I(i,j)=1 ,  for all 
i,j . When iC  is defined as  
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Combining with formula (36), we have  

 i iR C I= +  (33) 

Therefore, we refer to the sequence as CP. 0G  can be recovered exactly by reversing the 
above steps as formula (40)  
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Hidden Markov models (M. S. Crouse, 1998) can capture the correlation of multiscale of 
images effectively, it is a very practical operation and the probability model can depict 
coefficient between the statistical characteristics of joint effectively. Figure 7 shows a 
multiwavelets hidden markov tree(HMT) model for one subhand. We model each 
coefficient(black node) as a Gaussian mixture controlled by a hidden state variable(white 
node). To capture the persistence across scale property of multiwavelets (Salesnick, I. 1998), 
we connect the states vertically across scale in Markov-1 chains. We agreed on the following: 
an indicator of the quadtree between different nodes, the root node, the coefficient of mw1  
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shall state for S1, p(i) represent the parent node of i. We do the following description for this 
model. 

 
Fig. 7. Multiwavelets coefficient and HMT modle for one subband 

5.2 Fusion strategy 
a. Iterated Algorithm Based CP and GHM 

Step 1. Initialization. Suppose the number of CP decomposition level is 4. The two 
original; images to be fused are denoted as “m1” and “m2”, respectively; 
Step 2. CP decomposition. According to the number of decomposition level pre-
supposed; 
Step 3. decompose each original image using window function  and obtain two images 
with size of (N/24)×(N/24) denoted as “M1” and “M2”, respectively. 

b. The iterative algorithm combining with HMT model 
Step 1.  Initialize: Set the initial model to estimate for θ 0, and set l =0; 
Step 2. E step. Train the two multiwavelets M1' and M2' separately, which got from step 
3 of algorithm 3.3. Calculate each child coefficient P(S | mw, θ l ), which is the 
weighting function of the state probability, and the maximum value of 

θ θS ln f(mw,S ) mw, lE ⎡ ⎤
⎣ ⎦ ;  

Step 3. M step. Updata ( )θθ θ θ1
Sarg max ln f mw,S mw,l lE+ ⎡ ⎤= ⎣ ⎦ ; 

Step 4. Set the constringency threshold for 10-5. Iterative can be termination, when two 
iterative convergence error is less than 10-5. Establishment HMT model for the last l =l 
+1, and can get two group train coefficient c1 and c2 ; 
Step 5. According to the modulus maxima of fusion rules, get new coefficient c by 
taking coefficients corresponding maxima modulus position c1 and c2. 

c. Iterated Algorithm Combining with ICS Optimizing 
Step 1. Initialization. Taking the coefficient matrix obtained from step 5 in above 
algorithm as the original population A(0), in which each element can be regarded as 
chromosome. The original number of generation is k=1, and the maximal number of 
iterated generation GS=20; 
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Step 2. Terminating condition judgment. Judge whether the terminating condition is 
satisfied or not. That is, if the pre-supposed times of iteration is finished, stop and 
determine the current population composed by current individual as the optimized 
solution population and turn to step 8; else turn to step 3; 
Step 3. Clone operation. Clone operation is performed to the k-th generation parent 
population A (k) to obtain A'(k); 
Step 4. Mutation operation. Gaussian mutation with square error 0.1 is performed to 
A’(k) to obtain A”(k) ; 
Step 5. Affinity function computation; 
Step 6. Clonal selection operation. In child population, if exist muted antibody 

{ }max 2,3,..., 1ij ib a j q= = −  making ( ) ( )iQ a Q b< , ( )ia A k∈ , then choose b to enter the 

new parent population; 
Step 7.  k=k+1, turn to step 2; 
Step 8. Obtaining a group of optimized fusion coefficients denoted as “result-
coefficient” and reconstruction in light of this group of coefficients; 
Step 9. CP reconstruction according to the parameter “result-coefficient” from step 8; 
Step 10. Output the final fusion result; 

5.5 Experiments and results 
The test source images are two bands of mutisensor images. The fusion methods are 
traditional and multiwavelet transform. Without loss of generality, the decomposition levels 
of the adopted transforms are all three. The WT adopts the “db8” wavelet. The fusion results 
are shown in Fig. 8 and Fig. 9. In the experiments, Fig.8 (a), (b) and Fig.9 (a), (b)  are satellite 
images of two different sensor respectively.  
From the visual effect, the resulting images fused by WT-based method (Fig.8(c) and Fig. 
9(c)), MWT-based method (Fig.8(d) and Fig. 9(d)) are fairly well, but our proposed method 
(Fig.8 (e) and Fig.9 (e)) is more clear and contains structural details, which contain richer 
structure content and spatial information and reconstruct the interesting targets. In a word, 
compared with the results of the fusion obtained by the other techniques, the results of the 
ICS-CPMWHMT fusion have better visual effect. 
In addition to visual analysis, we conducted a quantitative analysis. We based our analysis 
of the experimental results on the many factors; namely, the information entropy (IE), the 
average grads (AG) and the standard deviation (STD). Using these factors such as IE, AG 
and STD, Table 3 to Table 4 compares the experimental results of image fusion for the ICS-
CPMWHMT method and the other methods. 
IE refers to the change of information capability. The more the information included in the 
image, the better the fused image. AG can reflect the capability to represent the detail 
contrast of images sensitively and can be used to assess the definition of images. STD is an 
index to measure the contrast value of images. But for the fusion of infrared and visual 
image, if IE value is too high, maybe over smooth the image; if STD value is too high, maybe 
lose too much spectral information. So when we assess fused image using these factors, 
combine with visual effect in general.  
IE value of the fused image by ICS-CPMWHMT method keeps at a high level. AG value and 
STD value of fused images are also moderate, which show that fused images not only reflect 
the detail features also retain plenty detail information better. It is benefit and significant for 
following target automatic recognition and classification. 
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Step 2. Terminating condition judgment. Judge whether the terminating condition is 
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solution population and turn to step 8; else turn to step 3; 
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new parent population; 
Step 7.  k=k+1, turn to step 2; 
Step 8. Obtaining a group of optimized fusion coefficients denoted as “result-
coefficient” and reconstruction in light of this group of coefficients; 
Step 9. CP reconstruction according to the parameter “result-coefficient” from step 8; 
Step 10. Output the final fusion result; 
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The test source images are two bands of mutisensor images. The fusion methods are 
traditional and multiwavelet transform. Without loss of generality, the decomposition levels 
of the adopted transforms are all three. The WT adopts the “db8” wavelet. The fusion results 
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Fig. 8. (a) The image of sensor 1  (b) the image of sensor 2 (c) WT fusion image (d) MWT 
fusion image (e) ICS-CPMWHMT fusion image   
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Image 1 IE AG STD 

Sensor 1 4.59 9.92 48.80

Sensor 2 4.10 8.43 50.00

WT 4.82 12.35 52.22

MWT 4.76 11.56 51.71

ICS-CPMWHMT 5.08 13.30 61.71

Table 3. Comparison of fusion performance on image 1 

 
Image 2 IE AG STD 

Sensor 1 5.13 12.23 41.96

Sensor 2 4.63 6.08 39.09

WT 4.93 13.30 43.64

MWT 5.13 11.95 42.47

ICS-CPMWHMT 5.13 14.86 50.14

Table 4. Comparison of fusion performance on image 2 

6. Conclusion 
The multiscale geometry analysis tool and ICS algorithm are adopted to three remote 
sensing images fusion in this chapter, including the multi-sensor images, the lower spatial 
resolution multispectral image and the higher spatial resolution panchromatic image, the 
infrared image and visible light image. 
Fristly, we propose a panchromatic high-resolution image and multispectral image fusion 
technique, which is based on NSCT and LHS transform. We take full advantage of the 
NSCT, including good multiresolution,shift-invariance, and multidirectional decomposition. 
And an intensity compenent addition technique is introduced into the NSCT domain to 
better improve the spatial resolution and hold the spectral information and texture 
information,simultaneously. Experiments that the proposed fusion technique is more 
effective than other traditional fusion methods and has some improvements,especially for 
holding of spectral information,texture information,and contour information.  
Secondly, based on NSCT and ICS strategy, we take full advantage of the NSCT with the 
good shift-invariance and multi-directional decomposition. And the ICS in introduced into 
the NSCT domain to optimize the fusion weights adaptively. From quantitative analysis, we 
can hold the conclusion that our fusion technique can take full advantage of the low light 
image and infrared image and have improvements both in vision and in quantitative index. 
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From the subjectivity and objectivity, we can conclusion that our proposed fusion technique 
is more effective than other traditional fusion methods and has improvements, especially for 
the holding of more clear texture and contour information. Experiments show that the 
proposed fusion technique is a preferred and effective remote sensing image fusion method. 
Thirdly, based on multiwavelet-domain HMT models and ICS optimization, we explain a 
novel intelligence optimization technique. The immune clonal selection technique is 
introduced into image fusion to obtain the optimal fusion weights adaptively. Experimental 
results show that the proposed approach has improvements in visual fidelity and 
quantitative analysis.  
Finally, in the ICS algorithm optimizing fusion coefficients, iterative times need to be 
preinitialized or experientially selected; also it decides the runtime of whole the technique. 
So it is our further work to study self-adaptive ICS algorithm to apply in the fusion 
processing. How to solve the fusion problem of remote images without desired compared 
images is our future work. 
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1. Introduction 
Advantages and limitations associated with each nondestructive evaluation (NDE) modality 
raises a tradeoff in which no single modality can be identified for a particular application.  
Techniques are presented here that can be used to enhance inspection process based on 
multi-spectral, multi-temporal, and multi-resolution image fusion.  The necessary elements 
for building an intelligent NDE system based on image fusion are introduced. An 
application is presented considering the fusion of optical and eddy current images.  
Developed image evaluation measures (quality metrics) are adopted to cross the gap 
between subjective and objective evaluation, which is essential to automate NDE systems in 
industrial environments.   

2. Multimodal NDE 
NDE methods involve the application of a suitable form of energy to the specimen under 
test.  Wide variety of testing methods exists, where each method has certain properties and 
offers advantages, while having its drawbacks.  The basic categories of NDE methods are: 
visual and optical testing (VT), radiography (RT) magnetic particle testing (MT), ultrasonic 
testing (UT), penetrant testing (PT), leak testing (LT) acoustic emission testing (AE), and 
electromagnetic testing (ET). Electromagnetic testing modalities are attractive for NDE 
applications due to the maturity and robustness of use of these techniques. The adopted 
ranges of the operating frequency cover almost the entire electromagnetic spectrum.  
Techniques employing the static operation, such as the magnetic flux leakage, and the 
quasi-static frequency range such as eddy current methods are commonly used more in 
industry than higher frequency (Lord, 1983).  However, attention is being made to the 
higher end of the spectrum. Examples include application of microwave imaging 
techniques in inspecting civil structures (Cantor, 1984).  Thermal waves are being used in 
characterization coating adhesion (Jaarinen et al., 1989), and optical methods are 
implemented in evaluating concrete and composite materials (Ansari, 1992). Ionizing 
radiation frequency ranges such as x-ray techniques are famous in tomographical 
reconstruction of defects and in assessing residual stresses. Among the ET modalities, the 
EC techniques get considerable attention, since they do not require hazard precautions as 
in the case of ionization radiation, in addition to the fact that they do not lack time 
information as for the static range.   



 Image Fusion 

 

210 

Salesnick, I. (1998). Multiwavelet bases with extra approximation properties. IEEE 
Transactions on Signal Processing, Vol. 46, No. 11, (Nov 1998) pp. 2898-2908, 1053-
587X. 

Wang, Z. J.; Ziou, D.; Armenakis, C.; Li, D. & Li, Q. G. (2005). A comparative analysis of 
image fusion methods, IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, 
No. 6, (June 2005) pp.1391-1402, 0196-2892 

11 

Image Fusion Based Enhancement of 
Nondestructive Evaluation Systems 

 Ibrahim Elshafiey, Ayed Algarni and Majeed A. Alkanhal 
King Saud University 

Saudi Arabia 

1. Introduction 
Advantages and limitations associated with each nondestructive evaluation (NDE) modality 
raises a tradeoff in which no single modality can be identified for a particular application.  
Techniques are presented here that can be used to enhance inspection process based on 
multi-spectral, multi-temporal, and multi-resolution image fusion.  The necessary elements 
for building an intelligent NDE system based on image fusion are introduced. An 
application is presented considering the fusion of optical and eddy current images.  
Developed image evaluation measures (quality metrics) are adopted to cross the gap 
between subjective and objective evaluation, which is essential to automate NDE systems in 
industrial environments.   

2. Multimodal NDE 
NDE methods involve the application of a suitable form of energy to the specimen under 
test.  Wide variety of testing methods exists, where each method has certain properties and 
offers advantages, while having its drawbacks.  The basic categories of NDE methods are: 
visual and optical testing (VT), radiography (RT) magnetic particle testing (MT), ultrasonic 
testing (UT), penetrant testing (PT), leak testing (LT) acoustic emission testing (AE), and 
electromagnetic testing (ET). Electromagnetic testing modalities are attractive for NDE 
applications due to the maturity and robustness of use of these techniques. The adopted 
ranges of the operating frequency cover almost the entire electromagnetic spectrum.  
Techniques employing the static operation, such as the magnetic flux leakage, and the 
quasi-static frequency range such as eddy current methods are commonly used more in 
industry than higher frequency (Lord, 1983).  However, attention is being made to the 
higher end of the spectrum. Examples include application of microwave imaging 
techniques in inspecting civil structures (Cantor, 1984).  Thermal waves are being used in 
characterization coating adhesion (Jaarinen et al., 1989), and optical methods are 
implemented in evaluating concrete and composite materials (Ansari, 1992). Ionizing 
radiation frequency ranges such as x-ray techniques are famous in tomographical 
reconstruction of defects and in assessing residual stresses. Among the ET modalities, the 
EC techniques get considerable attention, since they do not require hazard precautions as 
in the case of ionization radiation, in addition to the fact that they do not lack time 
information as for the static range.   



 Image Fusion 

 

212 

NDE systems that are capable of extracting and fusing complementary segments of 
information from collected NDE data offer additional insight relative to the conventional 
systems. Fusion techniques are expected to play a major role in the next-generation NDE 
systems (Algarni et al., 2009).  Fusion can make use of data collected from various NDE 
modalities, or even from the same technique operated at different points of time or using 
various parameter values (Elshafiey et al., 2008).   

3. NDE signal fusion 
NDE data fusion can be traced back to early 90s (Gros & Takahashi, 1998). Data fusion 
algorithms in NDE can be broadly classified as phenomenological or non-
phenomenological. Phenomenological algorithms utilize knowledge of the underlying 
physical processes as a basis for deriving the procedure for fusing data.  However, such 
methods are likely to be difficult to derive and cumbersome to implement (Simone & 
Morabito, 2001). Non-phenomenological approaches, in contrast, tend to ignore the physical 
process and attempt to fuse information based on the statistics associated with individual 
segments of data.  The later methods can be classified into three different categories: pixel 
level, feature level and symbol level fusion, according to the stage at which fusion takes 
place as illustrated in Fig. 1. 
Pixel based fusion requires accurate registration of the images to each other. Feature level 
fusion operate on mapped versions of original images. Decision (symbol) level fusion 
represents a method that implements value-added data obtained from processing the input 
images individually for information extraction, before applying decision rules. 
 

 
Fig. 1. NDE image fusion categories 

4. NDE fusion algorithms  
Various algorithms have been developed for NDE data fusion to improve the reliability and 
the performance of testing.  The most widely applied are summarized next. 
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4.1 Linear minimum mean square error (LMMSE) 
This optimal approach uses a LMMSE filter to fuse multiple images, which was proposed in 
(Yim, 1995).  The architecture of the fusion algorithm is given in Fig. 2.  From system point 
of view, s(u,v) is the input signal to the system with the degradation transfer function Hi(u,v) 
associated with ith stage, 1 ≤ i ≤ N. From NDE point of view, s(u,v) is the perfect response of 
the original signal in the inspection process. The measurement system acquires signal xi(u,v) 
with additive noise ni(u,v). Applying a controller filter Gi(u,v), the output signal ( ),s u v  is 
controlled to have a minimum mean square error with the input signal. Gi(u,v) can be 
constructed from the spectra of the acquired images as follows: 

 ( )
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Gj(u,v) is the jth filter, Ss(u,v) is the Laplace transform of the original signal s(u,v), and Sxj(u,v) 
is the Laplace transform of the jth acquired image. 
The spectrum of the original signal is approximated as (Yim, 1995)  
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Where, K is estimated spectrum which can be estimated by using the coefficients of Fourier 
decomposition of the signal.  
 

 
Fig. 2. Model for linear signal fusion 

4.2 Neural networks (NN) fusion 
An attempt to fuse eddy current and ultrasonic images, and the other to fuse multi-
frequency eddy current images are proposed as in (Yim et al., 1996), and (Udpa, 2001). 
Networks types implemented in fusion algorithms include multilayer perceptron (MLP) as 
well as radial basis function (RBF). The MLP network consists of a set of simple nonlinear 
processing elements that are arranged in layers and connected via adjustable weights. The 
network is usually trained using an appropriate algorithm such as back-propagation 
algorithm to estimate the interconnection weights. In RBF networks, the output nodal values 
are a linear combination of the basis functions that are calculated by the hidden layer nodes. 
A variety of basis functions can be employed, and Gaussian function is the most common 
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type. The MLP-based algorithm is sensitive to the choice of data used during the training 
phase. The RBF-based system fuses the image inputs smoothly reflecting information from 
input images.   

4.3 Multi-resolution analysis (MRA) fusion 
In this approach, the input NDE image is decomposed into a set of spatial frequency band 
pass sub-images. The sub-band images are computed by convolving and sub-sampling 
operations, as presented in (Gros et al., 2000); (Liu et al., 1999) and (Matuszewski et al., 
2000). The multi-resolution analysis fusion techniques include the image pyramid 
approaches and wavelet based approaches. Different implementations of multi-resolution 
fusion are presented in Table 1, and are discussed next. 

4.3.1 Gaussian and Laplacian pyramid 
Image pyramid consists of a set of low pass (Gaussian pyramid) or band pass (Laplacian 
pyramid) copies of an image, representing pattern information of a different scale.  Burt and 
Adelson proposed Laplacian pyramid in 1983 (Gonzalez & Woods, 2007). The pyramid can 
be used for image compression and processing.  Two operation involved are the EXPAND 
and REDUCE. The relation between two sub-images at level l and l-1 is: 

 ( )1 l lG REDUCE G −=  (3) 

EXPAND is defined as the reverse of REDUCE function and its effect is to expand an (M + 1) 
by (N + 1) array into a (2M + 1) by (2N + 1) array.  

4.3.2 Ratio of low pass pyramid 
This is also based on the Gaussian pyramid, and the ratio of low pass pyramid is defined is 
introduced in (Toet, 1992) as: 
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The perceptually important details are revealed by this kind of representation. 

4.3.3 Wavelet fusion 
Multi-resolution analysis using wavelet transforms allows decomposing images into a set of 
new images with coarser and coarser spatial resolution (approximation images). The 
discrete approach of the wavelet transform mainly can be performed using two algorithms: 
discrete wavelet transform (DWT) also called decimated algorithm, and shift invariant 
discrete wavelet transform (SIWT), un-decimated discrete wavelet transform: 
Decimated Algorithm: It is a fast DWT algorithm based on a multi resolution dyadic 
scheme that allows to decompose an image iA , into an approximation image 1iCA +  and 
three detail coefficient images, 1iCV + , 1iCH + , and 1iCD + , where i is the level of the 
decomposition. If the original image iA  has C columns and R rows, the approximation and 
the wavelet coefficient images obtained applying this multi-resolution decomposition have 
C/2 columns and R/2 rows. The computation of the approximation and the detail 
coefficients is accomplished with a pyramidal scheme based on convolutions along rows 
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and columns with one-dimensional filters followed by a sub-sampling or decimation 
operation. When the multi-resolution wavelet decomposition process is inverted, the 
original image iA  can be reconstructed exactly from an approximation and detailed images, 
applying an up-sampling or oversampling process followed by filtering. To get an image 
fusion, wavelet decomposition is applied for input images, followed by integration of these 
decomposition coefficients to produce a composite representation. An inverse discrete 
wavelet transform is applied to get the fused image.  The wavelet base fusion technique can 
reduce color distortion.  Furthermore, the down sampling process may cause shift variation, 
which increases the distortion in the fused images. 
Un-decimated Algorithm: This algorithm is based on the idea of no decimation. It is a 
redundant wavelet transform algorithm based on a multi-resolution dyadic scheme 
accomplished not with a pyramidal scheme but with a parallelpipedic scheme. The original 
image is decomposed as into four coefficients as in DWT but without decimation. All the 
approximation and wavelet coefficient images obtained by applying this algorithm have the 
same number of columns and rows as the original image thus such decomposition is highly 
redundant. Based on (Li et al., 2002) the performance of the SIWT based algorithm 
outperforms the DWT based fusion algorithms.  
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Discrete Wavelet 
Transform (DWT) 

Images are decomposed via wavelet 
transform, after applying the rule of 
fusion, then inverse discrete wavelet 
transform is found 
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Discrete Wavelet 
Transform 
(SIDWT) 

SIDWT is obtained using à trous 
algorithm so the process of fusion is 
independent of the location of an 
object in the image 

Selection based on choosing the 
maximum absolute values, or 
an area based maximum energy 
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Wavelet Image Fusion Rules 
Several rules can be used for selecting the wavelet packet coefficients for image fusion. The 
most frequently used fusion rules are: 
• Maximum frequency rule. The coefficients with the highest absolute value indicating 

salient features are selected. 
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type. The MLP-based algorithm is sensitive to the choice of data used during the training 
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The perceptually important details are revealed by this kind of representation. 

4.3.3 Wavelet fusion 
Multi-resolution analysis using wavelet transforms allows decomposing images into a set of 
new images with coarser and coarser spatial resolution (approximation images). The 
discrete approach of the wavelet transform mainly can be performed using two algorithms: 
discrete wavelet transform (DWT) also called decimated algorithm, and shift invariant 
discrete wavelet transform (SIWT), un-decimated discrete wavelet transform: 
Decimated Algorithm: It is a fast DWT algorithm based on a multi resolution dyadic 
scheme that allows to decompose an image iA , into an approximation image 1iCA +  and 
three detail coefficient images, 1iCV + , 1iCH + , and 1iCD + , where i is the level of the 
decomposition. If the original image iA  has C columns and R rows, the approximation and 
the wavelet coefficient images obtained applying this multi-resolution decomposition have 
C/2 columns and R/2 rows. The computation of the approximation and the detail 
coefficients is accomplished with a pyramidal scheme based on convolutions along rows 

Image Fusion Based Enhancement of Nondestructive Evaluation Systems 

 

215 
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accomplished not with a pyramidal scheme but with a parallelpipedic scheme. The original 
image is decomposed as into four coefficients as in DWT but without decimation. All the 
approximation and wavelet coefficient images obtained by applying this algorithm have the 
same number of columns and rows as the original image thus such decomposition is highly 
redundant. Based on (Li et al., 2002) the performance of the SIWT based algorithm 
outperforms the DWT based fusion algorithms.  
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• Weighted average rule. It generates a coefficient via a weighted average of the two 
images' coefficients, where the weighting coefficients are based on the correlation 
between the two images. 

• Standard deviation rule.  It calculates an activity or energy measure associated with a 
pixel.  A decision map is created, which indicates the source image from which the 
coefficient has to be selected. 

• Window based verification rule.  It creates a binary decision map to choose between 
each pair of coefficients using a majority filter. 

5. Implementation examples of NDE signal fusion 
Implementation examples of fusion methods in some of the NDE applications are presented 
next, along with by a brief summary of related literature listed in Table 2. 

5.1 Fusion of eddy current signals 
A fusion algorithm is proposed using the data from both real and imaginary image 
components using artificial cracks around rivet holes in an aluminum specimen in (Mina et 
al., 1997).  The operation is implemented in the transform domain with the discrete Fourier 
transform. The fusion process is based on the spectrum of the acquired signal, where the 
linear minimum mean square error (LMMSE) approach was adopted to fuse the images 
using a weighting scheme.  Multi-frequency eddy current testing (MF-ET) is implemented in 
(Mina et al., 1996) to enhance SNR. Two ET scan images obtained at 6 and 20 KHz, with 
radial basis function (RBF) neural networks.  A relatively clear display of subsurface flows is 
achieved after the fusion process.  Pixel level fusion technique using a multi-resolution 
image pyramid was proposed in (Liu et al., 1999).  Signals from two different ET systems in 
weld inspection, are fused using the Dempster-Shafer (DS) combination rule in (Gros et al., 
1995), achieving accurate estimation of crack size. 

5.2 Fusion of ultrasonic signals 
Amplitude, frequency, or time of flight of the echo signals provides information about the 
nature and position of flaws.  Ultrasonic testing produces high resolution measurements but 
the signal is affected by the surface roughness of the specimen and grain structure of metals.  
Ultrasonic image is fused with eddy current images using the AND operation in (Song & 
Udpa, 1996) in order to take advantage of both methods.  Experiments were carried out on 
an aluminum plate where a simulated defect was present.  The boundary of the defect was 
extracted from the UT image, whereas the depth information could be characterized from an 
ET image. Another way to fuse UT and ET data is the use of RBF NNs or multilayer 
perceptron (MLP).  The experiments were carried out in (Simone & Morabito, 2001) to fuse 
eddy current and ultrasonic images showed that the fusion operation improves the process 
of defect classification. 

5.3 Fusion of other NDE modalities 
Infrared (IR) thermographic testing and ET C-scan is fused using wavelet-based methods, 
where an impacted carbon fiber reinforced plastic composite panel is used in (Gros, Liu, 
Tsukada, & Hanaski, 2000) (Gros et al., 2000) and (Liu et al., 1999). Application of multiple 
inspection techniques for NDE fusion is presented in increasing (Tian et al., 2005); (Volponi 
et al., 2004) and (Kaftandjian et al., 2005). 
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6. Image visualization of NDE signals 
Data visualization is an effective and intuitive method for understanding the results of 
inspection.  An effective data visualization stage helps improve the evaluation, especially in 
quantitative evaluation of types, locations, sizes and shapes of the defects. On the other 
hand, imaging reduces the necessity for highly qualified inspector for interpretation of the 
results.  Imaging also gives the ability to use the advanced image processing techniques for 
further improvements as image. Casting NDE data on image format allows also application 
of image fusion techniques. Image registration however is essential in this process to allow 
robust fusion results. Image registration is discussed next followed by the techniques which 
are used to present eddy current data, normally presented as one-dimensional signal form 
in two-dimensional c-scan image format. 

6.1 Image registration  
Registration is the process, which determines the best match of two or more images 
acquired at the same or various times by different or identical sensors. One image is used as 
the reference image, and all the other images are matched relative to this reference data.   
Match can be performed at the one-dimensional level, the two-dimensional level and the 
three-dimensional level. The majority of the registration methods consist of the following 
four steps (Zitova & Flusser, 2003): 
Selection of feature points. Salient and distinctive objects (closed-boundary regions, edges, 
contours, line intersections, corners, etc.) are manually or, preferably, automatically 
detected.  These points are called control points. 
Feature matching. In this step, the correspondence between the features detected in the 
input image and those detected in the reference image is established.   
Transform model estimation. The type and parameters of the so-called mapping functions, 
aligning the input image with the reference image, are estimated. The parameters of the 
mapping functions are computed by means of the established feature correspondence. 
Image re-sampling and transformation. The input image is transformed by means of the 
mapping functions.  Image values in non-integer coordinates are computed by the 
appropriate interpolation technique. 

6.2 Eddy current imaging 
Various techniques have been developed to present eddy current inspection data in the form 
of C-scan images. Probe impedance values acquired in two dimensional surface scans 
provide a set of ranges (Udpa & Elshafiey, 2001). Magnetic flux maps could also be 
presented in image format using techniques such as magneto-optic eddy current technology 
(Lee & Song, 2005) or giant magneto-resistive sensors GMR field scanning (Chalastaras et 
al., 2004). 

6.3 Pulsed eddy current imaging 
Pulsed eddy current sensing is an emerging technique that has been particularly developed 
for subsurface flow.  These techniques can work at some distance below the surface (up to 
100 mm in aluminum) (Tian et al., 2005). In PEC techniques the probe's excitation coil is 
excited with a repetitive broadband pulse, usually a rectangular wave. The resulting 
transient current through the coil induces transient eddy currents in the test object, which 
are associated with highly attenuated magnetic pulses propagating through the material.   
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• Weighted average rule. It generates a coefficient via a weighted average of the two 
images' coefficients, where the weighting coefficients are based on the correlation 
between the two images. 

• Standard deviation rule.  It calculates an activity or energy measure associated with a 
pixel.  A decision map is created, which indicates the source image from which the 
coefficient has to be selected. 

• Window based verification rule.  It creates a binary decision map to choose between 
each pair of coefficients using a majority filter. 

5. Implementation examples of NDE signal fusion 
Implementation examples of fusion methods in some of the NDE applications are presented 
next, along with by a brief summary of related literature listed in Table 2. 

5.1 Fusion of eddy current signals 
A fusion algorithm is proposed using the data from both real and imaginary image 
components using artificial cracks around rivet holes in an aluminum specimen in (Mina et 
al., 1997).  The operation is implemented in the transform domain with the discrete Fourier 
transform. The fusion process is based on the spectrum of the acquired signal, where the 
linear minimum mean square error (LMMSE) approach was adopted to fuse the images 
using a weighting scheme.  Multi-frequency eddy current testing (MF-ET) is implemented in 
(Mina et al., 1996) to enhance SNR. Two ET scan images obtained at 6 and 20 KHz, with 
radial basis function (RBF) neural networks.  A relatively clear display of subsurface flows is 
achieved after the fusion process.  Pixel level fusion technique using a multi-resolution 
image pyramid was proposed in (Liu et al., 1999).  Signals from two different ET systems in 
weld inspection, are fused using the Dempster-Shafer (DS) combination rule in (Gros et al., 
1995), achieving accurate estimation of crack size. 

5.2 Fusion of ultrasonic signals 
Amplitude, frequency, or time of flight of the echo signals provides information about the 
nature and position of flaws.  Ultrasonic testing produces high resolution measurements but 
the signal is affected by the surface roughness of the specimen and grain structure of metals.  
Ultrasonic image is fused with eddy current images using the AND operation in (Song & 
Udpa, 1996) in order to take advantage of both methods.  Experiments were carried out on 
an aluminum plate where a simulated defect was present.  The boundary of the defect was 
extracted from the UT image, whereas the depth information could be characterized from an 
ET image. Another way to fuse UT and ET data is the use of RBF NNs or multilayer 
perceptron (MLP).  The experiments were carried out in (Simone & Morabito, 2001) to fuse 
eddy current and ultrasonic images showed that the fusion operation improves the process 
of defect classification. 

5.3 Fusion of other NDE modalities 
Infrared (IR) thermographic testing and ET C-scan is fused using wavelet-based methods, 
where an impacted carbon fiber reinforced plastic composite panel is used in (Gros, Liu, 
Tsukada, & Hanaski, 2000) (Gros et al., 2000) and (Liu et al., 1999). Application of multiple 
inspection techniques for NDE fusion is presented in increasing (Tian et al., 2005); (Volponi 
et al., 2004) and (Kaftandjian et al., 2005). 
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6. Image visualization of NDE signals 
Data visualization is an effective and intuitive method for understanding the results of 
inspection.  An effective data visualization stage helps improve the evaluation, especially in 
quantitative evaluation of types, locations, sizes and shapes of the defects. On the other 
hand, imaging reduces the necessity for highly qualified inspector for interpretation of the 
results.  Imaging also gives the ability to use the advanced image processing techniques for 
further improvements as image. Casting NDE data on image format allows also application 
of image fusion techniques. Image registration however is essential in this process to allow 
robust fusion results. Image registration is discussed next followed by the techniques which 
are used to present eddy current data, normally presented as one-dimensional signal form 
in two-dimensional c-scan image format. 

6.1 Image registration  
Registration is the process, which determines the best match of two or more images 
acquired at the same or various times by different or identical sensors. One image is used as 
the reference image, and all the other images are matched relative to this reference data.   
Match can be performed at the one-dimensional level, the two-dimensional level and the 
three-dimensional level. The majority of the registration methods consist of the following 
four steps (Zitova & Flusser, 2003): 
Selection of feature points. Salient and distinctive objects (closed-boundary regions, edges, 
contours, line intersections, corners, etc.) are manually or, preferably, automatically 
detected.  These points are called control points. 
Feature matching. In this step, the correspondence between the features detected in the 
input image and those detected in the reference image is established.   
Transform model estimation. The type and parameters of the so-called mapping functions, 
aligning the input image with the reference image, are estimated. The parameters of the 
mapping functions are computed by means of the established feature correspondence. 
Image re-sampling and transformation. The input image is transformed by means of the 
mapping functions.  Image values in non-integer coordinates are computed by the 
appropriate interpolation technique. 

6.2 Eddy current imaging 
Various techniques have been developed to present eddy current inspection data in the form 
of C-scan images. Probe impedance values acquired in two dimensional surface scans 
provide a set of ranges (Udpa & Elshafiey, 2001). Magnetic flux maps could also be 
presented in image format using techniques such as magneto-optic eddy current technology 
(Lee & Song, 2005) or giant magneto-resistive sensors GMR field scanning (Chalastaras et 
al., 2004). 

6.3 Pulsed eddy current imaging 
Pulsed eddy current sensing is an emerging technique that has been particularly developed 
for subsurface flow.  These techniques can work at some distance below the surface (up to 
100 mm in aluminum) (Tian et al., 2005). In PEC techniques the probe's excitation coil is 
excited with a repetitive broadband pulse, usually a rectangular wave. The resulting 
transient current through the coil induces transient eddy currents in the test object, which 
are associated with highly attenuated magnetic pulses propagating through the material.   
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Reference Fusion Technique Modality 

(Tai & Pan, 2008) Physical interaction  / 
Human fusion 

EC / photo inductive 
imaging 

(Liu, Abbas, & Nezih, 2006) Dempester-Shafer EC / PEC 

(Kaftandjian et al., 2005) Evidence Theory  / Fuzzy 
logic X-Ray / Ultrasonic 

(Chady et al., 2005) Barkhausen noise method EC / Flux leakage 

(Djafari, July, 2002) Bayesian X-ray / Geometrical data 

(Francois & Kaftandjian, 2003) Dempester-Shafer X-ray/ Ultrasonic 

(Simone & Morabito, 2001) Feed-forward Neural 
Networks (NN) EC/Ultrasonic 

(Udpa, 2001) NN EC/Ultrasonic 

(Matuszewski et al. 2000) Wavelet Ultrasonic / 
radiographic 

(Brassard et al., 2000) Image subtraction Edge of light / PEC 

(Liu et al., 1999) Multiresolution Analysis 
(MRA ) Multi-frequency EC  

(Mina et al., 1996) Image Pyramid  Multi-frequency EC  

 (Mina et al., 1997) DFT/LMMSE  Real/imaginary of Z  

(Song & Udpa, 1996) Image Pyramid  Ultrasonic/EC  

(Yim et al., 1996) NN  Multi-frequency EC  

(Yim et al., 1995) NN  Ultrasonic/EC  

(Yim, 1995) LMMSE  Ultrasonic/EC  

(Liu et al., 1999) MRA  Multi-frequency EC  

Table 2. Fusion algorithms applied to NDE applications 
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The probe provides a series of voltage-time data pairs as the induced field decays, and since 
the produced pulses consist of a broad frequency spectrum, the reflected signal contains 
important depth information, physically, the field is broadened and delayed as it travels 
deeper into the highly dispersive material. Flaws or other anomalies close to the surface 
affect the eddy current response earlier than deeper flaws.  Peak values, time to maximum 
values, and time to minimum values have been used for flow detection and identification. 
Features are selected based on knowledge about the possible crack that might be most 
probably happened.  In surface cracks the amplitude feature gives better resolution, while 
the time feature gives more information about the subsurface cracks.   

7. Fusion performance evaluation 
In many applications, a human observer is the end user of the fused image. Therefore, the 
human perception and interpretation of the fused image is very important. Consequently, 
one way to assess the fused images is to use subjective tests.  Although the subjective tests 
are typically accurate whenever performed correctly, they are inconvenient, expensive, 
and time consuming. Hence, an objective performance measure that can accurately 
predict human perception would be a valuable complementary method.  However, it is 
difficult to find a good, easy to calculate, objective evaluation criterion which matches 
favorably with visual inspection and is suitable for a variety of different application 
requirements.  In the literature, there are two broad classes of objective performance 
measures.  One class requires a reference image, while the other does not (Wang et al., 
2004). 

7.1 Evaluation measures requiring a reference image 
For certain applications, it is possible to generate an ideal fused image, which is then used as 
a reference to compare with the experimental fused results. The five quality metrics used for 
these comparisons are given next, where R denotes the reference image, F denotes the fused 
image, (i, j) denotes a given pixel, L denotes the number of gray levels, and N × M is the size 
of the input image. 
denotes the reference image, F denotes the fused image, (i, j) denotes a given pixel, and N × 
M is the size of the image. 
The root mean square error (RMSE) 
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The probe provides a series of voltage-time data pairs as the induced field decays, and since 
the produced pulses consist of a broad frequency spectrum, the reflected signal contains 
important depth information, physically, the field is broadened and delayed as it travels 
deeper into the highly dispersive material. Flaws or other anomalies close to the surface 
affect the eddy current response earlier than deeper flaws.  Peak values, time to maximum 
values, and time to minimum values have been used for flow detection and identification. 
Features are selected based on knowledge about the possible crack that might be most 
probably happened.  In surface cracks the amplitude feature gives better resolution, while 
the time feature gives more information about the subsurface cracks.   

7. Fusion performance evaluation 
In many applications, a human observer is the end user of the fused image. Therefore, the 
human perception and interpretation of the fused image is very important. Consequently, 
one way to assess the fused images is to use subjective tests.  Although the subjective tests 
are typically accurate whenever performed correctly, they are inconvenient, expensive, 
and time consuming. Hence, an objective performance measure that can accurately 
predict human perception would be a valuable complementary method.  However, it is 
difficult to find a good, easy to calculate, objective evaluation criterion which matches 
favorably with visual inspection and is suitable for a variety of different application 
requirements.  In the literature, there are two broad classes of objective performance 
measures.  One class requires a reference image, while the other does not (Wang et al., 
2004). 

7.1 Evaluation measures requiring a reference image 
For certain applications, it is possible to generate an ideal fused image, which is then used as 
a reference to compare with the experimental fused results. The five quality metrics used for 
these comparisons are given next, where R denotes the reference image, F denotes the fused 
image, (i, j) denotes a given pixel, L denotes the number of gray levels, and N × M is the size 
of the input image. 
denotes the reference image, F denotes the fused image, (i, j) denotes a given pixel, and N × 
M is the size of the image. 
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The peak signal to noise ratio (PSNR) 
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The mutual information (MI) 
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where ,R Fh  denotes the normalized joint gray level histogram of images R and F while 
, FRh h  are the normalized marginal histograms of the two images. 

Structure information, structural similarity (SSIM) 
This image quality assessment is proposed as (Wang et al., 2004) (Wang, Bovik, Sheikh, & 
Simoncelli, 2004) 
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where 1C  is a constant that is included to avoid the instability when sum of  mean of 
reference image R, and mean of fused image F is close to zero (i.e. 2 2 0R Fμ μ+ ≈ ), and 2C  is a 
constant that is included to avoid the instability when standard deviations is close to zero 
(i.e. 2 2 0R Fσ σ+ ≈ ) 
The objective image quality measures: RMSE, PSNR, CORR and MI, are widely employed 
due to their simplicity.  However, they have been found sometimes not correlate well with 
human evaluation when sensors of different types are considered (Blum & Liu, 2006) and 
the SSIM measure can be used.   

7.2 Evaluation measures not requiring a reference image 
It is generally difficult to access the ideal reference images.  Several simple quantitative 
evaluation methods which do not require a reference image are listed below. 
The standard deviation (SD) 
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Petrovic quality index (QI) 
An objective performance metric is proposed in (Petrovic, 2000), which measures the 
amount of information that is transferred from the input images into the fused image.  Their 
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approach is based on the assumption that important visual information is related with edge 
information. A Sobel edge operator is applied to yield edge strength g(i,j) and orientation 
( ) [ ],  0,i jα π∈  for each pixel of the image.  The relative strength and orientation values, 
( ),AFG i j  and ( )Φ ,AF i j , of input image A with respect to fused image F are defined as: 
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The edge preservation values QAF from input image A to fused result F is formed by the 
product of a sigmoid mapping function of the relative strength and orientation factors. Some 
constants as defined in (Petrovic, 2000) ,   and  Γκ σ  determine the shape of the sigmoid 
mapping as 
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In equation (14), there are 6 parameters (    ,  ,  ,  , Γ ,and  Γg g a a g aκ σ κ σ ), where the first four 
parameters are determined via an optimization process that maximizes a correspondence 
measure between objective and subjective image fusion assessment results.  Furthermore the 
constant Γ  and Γg a are selected such that for optimal values of   ,  ,  , g g a aκ σ κ σ  and AFG , ΦAF  
equal to 1, the QAF  will also be equal to 1 (Chen & Blum, 2005).  The overall objective 
quality quantity measure /Q AB FI  is obtained by weighting the normalized edge 
preservation values of both input images A, and B as: 
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In general the weights wA(i,j) and wB(i,j) are a function of edge strength. The range of QI is 
between 0 and 1, where 0 indicates the complete loss of source information and 1 means the 
ideal fusion. 

8. Proposed NDE fusion systems  
Three proposed fusion systems based on IHS transformation, PCA, and multi-resolution 
wavelet decomposition (MWD) are presented next. 

8.1 Intensity-hue-saturation (IHS) transform fusion 
The IHS technique is a standard procedure in image fusion, and has fast computing 
capability for fusing images (Tania, 2008). The widespread use of the IHS transform to 
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The peak signal to noise ratio (PSNR) 
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The mutual information (MI) 
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where ,R Fh  denotes the normalized joint gray level histogram of images R and F while 
, FRh h  are the normalized marginal histograms of the two images. 

Structure information, structural similarity (SSIM) 
This image quality assessment is proposed as (Wang et al., 2004) (Wang, Bovik, Sheikh, & 
Simoncelli, 2004) 
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where 1C  is a constant that is included to avoid the instability when sum of  mean of 
reference image R, and mean of fused image F is close to zero (i.e. 2 2 0R Fμ μ+ ≈ ), and 2C  is a 
constant that is included to avoid the instability when standard deviations is close to zero 
(i.e. 2 2 0R Fσ σ+ ≈ ) 
The objective image quality measures: RMSE, PSNR, CORR and MI, are widely employed 
due to their simplicity.  However, they have been found sometimes not correlate well with 
human evaluation when sensors of different types are considered (Blum & Liu, 2006) and 
the SSIM measure can be used.   

7.2 Evaluation measures not requiring a reference image 
It is generally difficult to access the ideal reference images.  Several simple quantitative 
evaluation methods which do not require a reference image are listed below. 
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Petrovic quality index (QI) 
An objective performance metric is proposed in (Petrovic, 2000), which measures the 
amount of information that is transferred from the input images into the fused image.  Their 
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approach is based on the assumption that important visual information is related with edge 
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In general the weights wA(i,j) and wB(i,j) are a function of edge strength. The range of QI is 
between 0 and 1, where 0 indicates the complete loss of source information and 1 means the 
ideal fusion. 

8. Proposed NDE fusion systems  
Three proposed fusion systems based on IHS transformation, PCA, and multi-resolution 
wavelet decomposition (MWD) are presented next. 

8.1 Intensity-hue-saturation (IHS) transform fusion 
The IHS technique is a standard procedure in image fusion, and has fast computing 
capability for fusing images (Tania, 2008). The widespread use of the IHS transform to 
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merge remote sensing images is based on the ability to separate the spectral information of 
the RGB image into its two components (H) and (S), while isolating most of the spatial 
information in the (I) component. The fusion steps can be summarized as: 
Register three input images defined as R, G, and B to the same size as the high resolution 
image defined as HR. 
Transform the R, G, and B false color image into the IHS component using one of the 
different transformations that have been developed to transfer a color image from the RGB 
space to the IHS space.  The most common RGB- IHS conversion system is based on the 
following linear transformation (Gonzalez-Audicana et al., 2006), for each pixel p. 
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Modify the HR image to accounts for differences related to acquisition techniques, this is 
usually performed by conventional histogram matching between the HR image and the 
intensity component I of the IHS representation (Nunez, 1999), i.e. after computing the 
histogram of both HR image and the intensity component I of the IHS representation, the 
histogram of the intensity component I is used as reference to which HR image histogram 
was matched, the new HR image defined as NHR. 
Replace the intensity component I by the NHR image. 
Perform the inverse transformation to obtain the merged R'G'B' fused image using the 
relations  
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The generated fused image provides the full details of the HR image but introduces color 
distortion. This is because of the low correlation between the HR image and the intensity 
component I.  

8.2 Principal component analysis PCA fusion 
PCA provides a powerful tool for data analysis which is often used in signal and image 
processing (Gonzalez & Woods, 2007) as a technique for data compression, data dimension 
reduction, and data fusion.  Original images constitute the input data, and the result of this 
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transformation is to obtain non-correlated new bands, called the principal components.  
PCA in signal processing can be described as a transform of a given set of n input vectors 
(variables) with the same length K formed in n-dimensional vector [ ]1 2, , T

nx x x= …x  into a 
vector y according to  

 ( )P= − xy x m  (20) 

The vector mx is the vector of mean values of all input variables defined by the relation 

 { }
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E
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= = ∑xm x x  (21) 

Matrix P is determined by the covariance matrix Cx, where rows in P are formed from the 
eigenvectors e of Cx  ordered according to corresponding eigenvalues in descending order.  
The evaluation of the Cx matrix is possible according to relation 
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For n-dimensional input vector x, the size of Cx is n × n. The elements Cx(i,i) lying in its main 
diagonal are the variances of x, and the other values  Cx(i,j) determine the covariance 
between input variables xi, xj.  The rows of P are orthonormal so the inversion of PCA is 
possible.    
Both IHS and PCA mergers are based on the same principle: to separate most of the spatial 
information of multispectral image from its spectral information by means of linear 
transforms.  The IHS transform separates the spatial information of the multispectral image 
as the intensity (I) component. In the same way, PCA separates the spatial information of 
the image into the first principal component PC1. PCA allows synthesizing the original 
bands creating new bands, the principal components, which pick up and reorganize most of 
the original information. In general, the first principal component PC1 collects the 
information that is common to all the bands used as input data in the PCA, i.e., the spatial 
information, while the spectral information that is specific to each band is picked up in the 
other principal components (Kwarteng & Chavez, 1989).  
The proposed PCA method is similar to the described IHS method, with the main advantage 
that an arbitrary number of bands can be used as shown in Fig. 3. If more than three images 
to be fused using IHS, PCA is used as a first step.  PC1 is replaced by the HR image, whose 
histogram has previously been matched with that of PC1.  Finally, the inverse transformation 
is applied to the whole dataset formed by the modified HR image and the PC2, … PCn.   

8.3 Improved IHS based on multi-resolution wavelet decomposition (MWD) fusion  
The IHS fusion method usually can integrate color and spatial features smoothly.  If the 
correlation between the IHS intensity image and the HR image is high, the IHS fusion can 
well preserve the color information.  However, the color distortion can be significant for low 
correlation values, between the intensity image and the HR image, especially when the 
input images and HR images originally from different sensors.   
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The generated fused image provides the full details of the HR image but introduces color 
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component I.  
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Fig. 3. Arbitrary number of inputs IHS fusion system 

On the other hand, the discrete wavelet transform (DWT) image fusion can usually preserve 
color information better than other fusion methods, since the high-resolution spatial 
information from HR image is injected into all the three low-resolution multispectral bands.  
However, the spatial detail from HR image is often different from that of a multispectral 
band having the same spatial resolution. This difference may introduce some color 
distortion into the wavelet frame fusion results.  To better utilize the advantages of the IHS 
and the DWT fusion techniques, and to overcome the shortcomings of the two techniques, 
an integrated IHS and wavelet frame fusion approach is proposed here as shown in Fig. 4. 
The shift invariant wavelet transform obtained using á trous (with holes) algorithm 
overcomes image artifacts (Wang et al., 2005) and (Fowler, 2005), the un-decimated multi-
resolution wavelet decomposition (MWD) or shift invariant discrete wavelet transform 
(SIDWT) was used for the IHS fusion improvement.  
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Fig. 4.  Improved IHS fusion based on MWD 

The steps of this approach are summarized as: 
Registration. All images are first registered. 
IHS Transform.  the multispectral image is transformed into IHS components as illustrated 
before. 
Histogram match.  The histogram of the HR image and the intensity component I of the IHS 
color space are matched and a new HR image (NHR) is obtained.   
SIDWT Decomposition:  Apply the un-decimated wavelet decomposition, to the intensity 
component I and to the corresponding histogram matched NHR image using the 
Daubechies four coefficient wavelet.   
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Fuzzy selection: after the decomposition has been made a selection based on the application 
needed should be made.  For example one possible application is to fuse optical image that 
has information about the rivets and joints for example with inspection EC images, in this 
case the best selection would be to take the approximation of the optical image and the 
detail of the EC images. Another application is to replace high spatial resolution information 
with low spatial resolution of the fused images, in this case the detail of the NHR is selected. 
Inverse SIWT:  the shift invariant reconstruction transform applied to the selected wavelet 
coefficients to form the new intensity image. 
Inverse IHS transform:  The final fused image is generated by transforming the new 
intensity image together with the hue and saturation components back into RGB space. 

8.4 NDE fusion results 
The evaluation of the IHS proposed fusion with application to NDE were peformred using 
simulation as well as experimental signals. 

8.4.1 Simulation results 
Fig. 5 presents ten images generated with 128x128 resolution, representing probe resistance 
values (images R1-R5) on the top row, and probe inductance values (images L1-L5) on the 
bottom row.  Images R1 and L1 on the left side correspond to lowest frequency while R5 & L5 
on the right side correspond to the highest frequency. First some of fusion results presented, 
before the presentation of a comparison of various fusion algorithms. Fig. 6 is based on IHS 
fusion with high frequency high-resolution PEC image generated at 256x256. Fig. 7 presents 
the first four principal components images computed from R1-R5 (the first row of Fig. 5).  
Examples of image fusion with shift invariant wavelet decomposition are presented in  
Fig. 8, where Daubechies wavelets of order 4 are used.  Four images were selected to make 
the comparison of fusion algorithms that have been applied to the NDE technology with the 
proposed fusion algorithms. The selected simulation images presented in Fig. 9 were two 
frequency domain images, and two time domain images. 
 

 
Fig. 5. Ten images representing probe resistance values R1-R5 (top row, left to right) and 
inductance values L1-L5 (bottom row, left to right) corresponding to five different frequency 
values: 100 Hz, 1 kHz, 10 kHz, 100 kHz, and 1M Hz 
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Fig. 6. Fusion obtained with IHS transformation. Top-left is L3(10 kHz) image, top-right is 
R3(10 kHz) image, down-left is PEC image and down-right is fused image 

 

 
Fig. 7. The first four principal components images computed from R1-R5 

 

 
Fig. 8. Fusion obtained with wavelet decomposition, where the high spatial resolution image 
was taken as R5.  Top-left is R2(1 kHz) image, top-right is L3(10 kHz) image, down-left is 
PEC image and down-right is fused image 

The proposed IHS based fusion algorithms, and the improved IHS based on MWD fusion 
termed as IHSW were compared with three fusion algorithms mostly presented in literature 
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8.4.1 Simulation results 
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values (images R1-R5) on the top row, and probe inductance values (images L1-L5) on the 
bottom row.  Images R1 and L1 on the left side correspond to lowest frequency while R5 & L5 
on the right side correspond to the highest frequency. First some of fusion results presented, 
before the presentation of a comparison of various fusion algorithms. Fig. 6 is based on IHS 
fusion with high frequency high-resolution PEC image generated at 256x256. Fig. 7 presents 
the first four principal components images computed from R1-R5 (the first row of Fig. 5).  
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Fig. 8, where Daubechies wavelets of order 4 are used.  Four images were selected to make 
the comparison of fusion algorithms that have been applied to the NDE technology with the 
proposed fusion algorithms. The selected simulation images presented in Fig. 9 were two 
frequency domain images, and two time domain images. 
 

 
Fig. 5. Ten images representing probe resistance values R1-R5 (top row, left to right) and 
inductance values L1-L5 (bottom row, left to right) corresponding to five different frequency 
values: 100 Hz, 1 kHz, 10 kHz, 100 kHz, and 1M Hz 
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Fig. 6. Fusion obtained with IHS transformation. Top-left is L3(10 kHz) image, top-right is 
R3(10 kHz) image, down-left is PEC image and down-right is fused image 

 

 
Fig. 7. The first four principal components images computed from R1-R5 

 

 
Fig. 8. Fusion obtained with wavelet decomposition, where the high spatial resolution image 
was taken as R5.  Top-left is R2(1 kHz) image, top-right is L3(10 kHz) image, down-left is 
PEC image and down-right is fused image 

The proposed IHS based fusion algorithms, and the improved IHS based on MWD fusion 
termed as IHSW were compared with three fusion algorithms mostly presented in literature 
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with application to NDE i.e. the Laplacian pyramid (LAP), the discrete wavelet transform 
(DWT), and the shift invariant discrete wavelet transform (SIDWT). The maximum 
frequency rule was used which selects the coefficients with the highest absolute value for 
LAP, DWT, and SIDWT fusion methods. 
Fig. 10 presents the fusion results of the compared fusion algorithms where the input 
images for all were shown in Fig. 9. Table 3 shows the estimated quality measure for these 
fused images.  Notice that the standard deviation (SD) and the entropy (H) illustrated that 
the IHS based methods are better in performance, while .IHS based methods are not. There 
are six parameters in the QI performance measure that are determined via optimization 
process to maximize the correspondence measure between objective and subjective image 
fusion assessment.  It is not thus a relabile performance measure for genral application.  
Investegating these quality measure revealed that, a small change in these constant highly 
affect the performance. 
 

Fusion method Standard 
deviation (SD) Entropy (H) quality index (QI) 

Laplacian pyramid (LAP)  30.1900 6.8695 0.7565 
Discrete wavelet transform (DWT) 35.1318 6.8822 0.8077 
Shift invariant discrete wavelet 
transform (SIDWT) 

27.7046 6.7731 0.7588 

Intensity hue saturation (IHS) 45.8145 7.1791 0.6008 
Intensity hue saturation with 
wavelet (IHSW) 

33.3772 7.3190 0.5484 

Table 3. Comparison of the quality measures for the fused images shown in Fig. 10 

 

 
 a)  b)  c)   d) 

Fig. 9.  Images used to evaluate the fusion algorithms, (a) maximum amplitude feature PEC image, 
(b) time to maximum PEC image, (c) probe-L image at 10 kHz, (d) probe-L at 1MHz as a HR 

With the Gaussian noise added to the input images according to a predefined signal to noise 
ratio SNR, the performance of the fusion methods were compared with standard deviation 
SD, and entropy H, the results plotted in Fig. 11. It is clear from the results that the IHS 
based methods perform better.  Also it is noticed out that the SD of the IHS based methods 
increases with the increase of SNR of input images. Entropy is used to measure the amount 
of uncertainty or information of an image, but it is sensitive to noise (Naidu & Raol, 2008).  
The dynamic range of SD and H are very small when the SNR exceed 20 dB which is 
typically the acceptable image SNR.  Subjectively, IHS based fusion methods ranked higher 
than the other fusion methods. 
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 a)  b)  c)  d) e) 
Fig. 10.   Fusion results of the images shown in Fig. 7 using LAP (a), DWT (b),  SIDWT (c), 
IHS (d), IHSW (e) techniques 

8.4.2 Experimental eddy current images 
Experimental EC images produced employing EC measurement device measurement system 
(Rohmann B300) (Rohmann Documentation), connected  to a scanning system, based on six 
degree of freedom robot arm manufactured by Staubli (Staubli Documentation) which can 
gives a resolution of 0.1.  The main parts of the system are shown in Fig. 12. The output of the 
EC measurement system for both scanning systems was connected to a data acquisition 
system manufactured by National Instruments (National Instruments Documentation).  The 
data was then stored for future processing. The standard sample used for experimental 
measurements is shown in Fig. 13.  This plate was manufactured by Olympus NDT (Olympus 
NDT, Documentation), and it has been chosen because of the  artificial cracks have different 
sizes, shapes, and orientation with respect to the scanning direction.  
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Fig. 11.  Performance of fusion with standard deviation  and entropy quality metric 
Four experimental images at frequencies 10 kHz, 100 kHz, 300 kHz, and 800 kHz, respectively 
are shown in Fig. 14. These images represent the amplitude of the vertical component after 
the rotation of the axes to reduce the effect of liftoff noise. 
After the registration of EC to the optical image, three of the EC images of Fig. 14 and the 
optical image were used as input to the fusion algorithms. IHS and IHSW use three EC 
images as input to the IHS transform, and optical image as the HR image, while the other 
fusion methods LAP, DWT, and SIDWT normally accept two input images only, so a multi-
stage fusion process were conducted for the comparison. A comparison using the three 
lowest frequency value images and the three highest frequency images of Fig. 12 are shown 
in Fig. 15 and Fig. 16 respectively.  Notice that with high frequency images used, the good 
resolution of the fused images is noticeable.  
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degree of freedom robot arm manufactured by Staubli (Staubli Documentation) which can 
gives a resolution of 0.1.  The main parts of the system are shown in Fig. 12. The output of the 
EC measurement system for both scanning systems was connected to a data acquisition 
system manufactured by National Instruments (National Instruments Documentation).  The 
data was then stored for future processing. The standard sample used for experimental 
measurements is shown in Fig. 13.  This plate was manufactured by Olympus NDT (Olympus 
NDT, Documentation), and it has been chosen because of the  artificial cracks have different 
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Fig. 11.  Performance of fusion with standard deviation  and entropy quality metric 
Four experimental images at frequencies 10 kHz, 100 kHz, 300 kHz, and 800 kHz, respectively 
are shown in Fig. 14. These images represent the amplitude of the vertical component after 
the rotation of the axes to reduce the effect of liftoff noise. 
After the registration of EC to the optical image, three of the EC images of Fig. 14 and the 
optical image were used as input to the fusion algorithms. IHS and IHSW use three EC 
images as input to the IHS transform, and optical image as the HR image, while the other 
fusion methods LAP, DWT, and SIDWT normally accept two input images only, so a multi-
stage fusion process were conducted for the comparison. A comparison using the three 
lowest frequency value images and the three highest frequency images of Fig. 12 are shown 
in Fig. 15 and Fig. 16 respectively.  Notice that with high frequency images used, the good 
resolution of the fused images is noticeable.  
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Fig. 12. Eddy current measurement system (Rohmann B 300) (left) and  Staubli robot (right), 
which are the main parts of the scanning system 
 

 
Fig. 13. Optical photo of the plate used in experimental measurements 

 

 
Fig. 14. Measured EC images at 10 kHz, 100 kHz, 300 kHz, and 800 kHz, top to bottom, 
respectively 
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Fig. 15. Fusion results with the first three lowest frequency value images shown in Fig. 14, 
along with the optical image.  Results reveal IHS, IHSW, SIDWT, DWT, LAP fusion, top to 
bottom, respectively 

 
Fig. 16. Fusion results with the last three highest frequency value images shown in Fig. 14, 
along with the optical image.  Results reveal IHS, IHSW, SIDWT, DWT, LAP fusion, top to 
bottom, respectively 
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Fig. 15. Fusion results with the first three lowest frequency value images shown in Fig. 14, 
along with the optical image.  Results reveal IHS, IHSW, SIDWT, DWT, LAP fusion, top to 
bottom, respectively 

 
Fig. 16. Fusion results with the last three highest frequency value images shown in Fig. 14, 
along with the optical image.  Results reveal IHS, IHSW, SIDWT, DWT, LAP fusion, top to 
bottom, respectively 
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e) 

Fig. 17. Performance of fusion with mutual information metric (a), structure information, 
structural similarity metric (b), correlation metric (c), root mean square error metric (d), and 
peak SNR quality metric (e) 
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Gaussian noise added to the experimental images used as inputs to the fusion methods 
according to a predefined signal to noise ratio SNR, and the performance of the fusion 
methods were compared with five objective evaluation measures that require reference 
image, namely, mutual information (MI), structure information, structural similarity (SSIM), 
correlation coefficient (Corr), root mean square error (RMSE), and peak signal to noise ratio 
(PSNR). The reference image was produced depending on the standard sample used. Fig. 17 
shows the results of the five mentioned metrics and how these metrics are affected by noise.  
Results illustrate that the IHS based methods perform better than the others three fusion 
methods for all performance measures used in the range of acceptable image SNR. 

9. Conclusions and future work 
The emerging concept of data fusion, particularly in NDE image fusion is used to develop 
robust NDE systems, which can easily be adapted in industrial applications. Novel systems 
are introduced implementing image fusion in electromagnetic NDE applications. The focus 
is directed toward the emerging techniques based on eddy current (EC) inspection methods, 
which are among the most promising electromagnetic inspection modalities, due to their 
simplicity, versatility, high sensitivity, and high speeds of testing.  Results are presented for 
fusing conventional as well as pulsed eddy current images. EC scanning of sample under 
test is done based on automatic robotic system to obtain c-scan images. 
Image fusion algorithms exploit both the redundancy and complementary information to 
enhance the robustness of the resulting image.  Redundant information is used to improve 
the SNR and complementary information is used to augment the overall information 
content, which increases the accuracy and reliability of inspection systems.  The developed 
systems can be used to fuse multi-spectral, multi-temporal, and multi-spatial information in 
EC images. Results reveal that the proposed fusion system performs better than 
conventional fusion system applied to NDE, according to the performance quality measures.  
Various image metrics are used to assess the quality of resulting fusion images.  Effective 
quality metrics help automate NDE fusion systems in industrial environments. The obtained 
results of the objective evaluation metrics are found to be almost consistent with the 
subjective evaluation.   
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1. Introduction  
In the current context of increased surveillance and security, more sophisticated and robust 
surveillance systems are needed. One idea relies on the use of pairs of video (visible 
spectrum) and thermal infrared (IR) cameras located around premises of interest. To 
automate the system, a robust person detection algorithm and the development of an 
efficient technique enabling the fusion of the information provided by the two sensors 
becomes necessary and these are described in this chapter. 
Recently, multi-sensor based image fusion system is a challenging task and fundamental to 
several modern day image processing applications, such as security systems, defence 
applications, and intelligent machines. Image fusion techniques have been actively 
investigated and have wide application in various fields. It is often a vital pre-processing 
procedure to many computer vision and image processing tasks which are dependent on the 
acquisition of imaging data via sensors, such as IR and visible. One such task is that of 
human detection. To detect humans with an artificial system is difficult for a number of 
reasons as shown in Figure 1 (Gavrila, 2001). The main challenge for a vision-based 
pedestrian detector is the high degree of variability with the human appearance due to 
articulated motion, body size, partial occlusion, inconsistent cloth texture, highly cluttered 
backgrounds and changing lighting conditions.  
 

 
Fig. 1. Typical dangerous situation – A child suddenly crossing the street  

Moreover, the applications, to protect pedestrians, define hard real-time requirements and 
rigid performance criteria. In night-time environment, only limited visual information can 
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be captured by CCD cameras under poor lightning conditions, thus making it difficult to do 
surveillance only by visual sensor. Meanwhile IR camera, that is IR sensor, captures thermal 
image of object. Thermal image of pedestrian in night-time environment can be seen clearly 
in IR video sequence used for this work. IR video provides rich information for higher 
temperature objects, but poor information for lower temperature objects. Visual video, on 
the other hand, provides the visual context to the objects. Thus, the fusion of the two videos 
will provide good perceptibility to human vision under poor lightning condition. This will 
help detect the moving objects (pedestrian) during night-time (Chen & Han, 2008). 
Combining visible and thermal infrared images is advantageous since visible images are 
much affected by lighting conditions while IR images provide enhanced contrast between 
human bodies and their environment. However in outdoor conditions, it was noticed that IR 
images are somewhat sensitive to wind and temperature changes. Nevertheless, these 
limitations for both modalities are independent and usually do not occur simultaneously. In 
the person detection and tracking literature, many approaches have been proposed to 
combine the information from multiple sources, in order to provide more accurate and 
robust detection and tracking. Probabilistic methods are commonly used to fuse information 
sources (Malviya & Bhirud, 2009).  
The term fusion in general means an approach to extract information acquired in several 
domains. Image fusion is the process of combining relevant information from two or more 
videos into a single image. The resulting image will be more informative than any of the 
input image. The goal of image fusion is to integrate complementary multi-sensor, multi-
temporal and/or multi-view information into one new image containing information, the 
quality of which cannot be achieved otherwise. An intelligent fusion of the information 
provided by both sensors reduces detection errors, thereby increasing the performance of 
tracking and the robustness of the surveillance system. A literature search reveals a few 
interesting papers on the exploitation of near-infrared information to track humans 
(Bertozzi et al., 2003). These papers generally deal only with the face of observed people and 
a few are concerned with the whole body. However, when looking to the efforts in the 
visible part of the spectrum for the same task, many papers are available such as (Masoud & 
Papanikolopoulos, 2003). Surprisingly, the idea to couple visible and thermal infrared is not 
yet seen as a popular research field for this application. One reason explaining this is 
probably due to the still high cost of the thermal infrared cameras versus their visible 
counter parts. Moreover outdoor scenarios are obviously more challenging to visible 
imagery due to shadows, light reflections, levels of darkness and luminosity. However, on 
the other hand, moving leaves and grass, cooling winds, moving shadows with clouds, 
reflecting snow, etc., are challenging for IR imagery too. 
Thus, fusion of IR and visual image is a potential solution to improve person detection, 
tracking, recognition, and fusion performance (Wang et al., 2007). Tracking and recognition 
using the visual image is sensitive to variations in illumination conditions. On the other 
hand, tracking and recognition of targets based on IR images has become an area of growing 
interest. Thermal IR imagery is nearly invariant to changes in ambient illumination, and 
provides a capability for identification under all lighting conditions including total 
darkness. IR sensors are routinely used in remote sensing applications. Coupling an IR 
sensor with a visual sensor - for frame of reference or for additional spectral information - 
and properly processing the two information streams has the potential to provide valuable 
information in night and/or poor visibility conditions (Park et al., 2008). 
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In a review of video surveillance and sensor networks research (Cucchiara, 2005), it is said 
that the integration or fusion of video technology with sensors and other media streams will 
constitute the fundamental infrastructure for new generations of multimedia surveillance 
systems. Also reviewing surveillance research (Hu et al., 2004), it is worth to note on future 
developments in surveillance that surveillance using multiple different sensors seems to be 
a very interesting subject. Moreover, image fusion in multi-sensors has two advantages. 
First, multi-sensor image has inherent redundancy for each sensor because it can be fused 
each image from a various multi sensor. Second, multi-sensor differs from a single sensor 
because it is included information of each sensor and is separated information of object 
easily in real environments. The main problem is how to make use of their respective merits 
and fuse information from such kinds of sensors. 
The challenge remains whether using stationary or moving imagery system. This is due to a 
number of key factors like lighting changes (shadow vs. sunny day, indoor/night vs. 
outdoor), cluttered backgrounds (trees, vehicles, animals), artificial appearances (clothing, 
portable objects), non-rigid kinematics of pedestrians, camera and object motions, depth and 
scale changes (child vs. adult), and low video resolution and image quality. In this chapter, 
we shall propose a new approach to person detection that combines both thermal and 
visible information and subsequently models the motion in the scene using the multi-slit 
method and movement of Gravity Center (GC) patterns. Example images are shown in 
Figure 2 (Alex et al., 2007). 
 

          
Fig. 2. Thermal image of the scene (left), visual image of the same scene (right) 
To be specific, we shall briefly describe the problems, motivation, approach, challenges, and 
applications as follows.  

1.1 Problems  
The detection of the moving persons has become more and more important over the past 
few years. Numerous applications in the area of security and surveillance are emerging. The 
objective of this chapter is to develop a new prototype system which combines an IR and 
visible sensor to enable the detection and surveillance of pedestrians over a period of time. 
More specifically, we will focus the problems in an environment where pedestrians are 
moving in a range of specified distances within an area affected by various lighting and 
atmospheric conditions.  

1.2 Motivation  
The addition of an IR sensor will provide information which complements the images 
obtained in the visible range. Visible images offer a rich content where the detection of 
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people can however be limited by a change in lighting conditions. IR images generally allow 
a better contrast to be obtained between a person and the environment, but these images are 
not as robust to changes in temperature and wind conditions. An intelligent fusion of the 
information provided by both sensors could reduce false alarms and the advent of non 
detected pedestrians, thereby increasing the performance of a pedestrian detection and 
surveillance system. 

1.3 Approach  
The detection of pedestrians is a process involving several interdependent steps. The quality 
of the steps involving data acquisition, locating zones of movement, classification and 
monitoring over time is crucial for a more robust detection. Data acquisition requires the 
constitution of a database which combines sequences of visible and IR images obtained 
under difference climatic and lighting conditions. The extraction of each region of interest 
makes use of movement and is carried out independently for each sequence. A new 
methodology for matching of the nominated regions of interest is developed using multi-
slits method and GC movement patterns .Finally, for the step involving the classification, 
critical parameters indicating the presence of people are determined on the basis of 
characteristics such as temperature, geometry and ratios compared to the rest of the 
environment. 

1.4 Challenges  
The detection and tracking of people in interior and exterior environments involves 
numerous challenges. Systems treating the detection of people already exist in the 
Computer Vision and Systems Laboratory and perform well for visible images (extraction of 
regions of interest, geometric calibration). One of the challenges is to adapt these systems for 
the treatment of IR images. Then, the respective limitations of the two sensors must be 
clearly identified so as to extract the complementary information. The greatest challenge 
involves the development of a method of intelligent fusion which will enable the robustness 
of human detection to be improved while reducing false alarms and the advent of non 
detected pedestrians. In this chapter, we will make some significant contributions to tackle 
these challenges. 

1.5 Applications  
The applications of a visible sensor for pedestrian detection and monitoring are already 
numerous and can be applied to many public areas such as airports, train stations ,shopping 
malls, parking lots, and etc.. With the addition of an IR sensor, these systems will become 
more robust and will be able to function under varying lighting and climatic conditions, 
both day and night, in summer as well as in winter. 

2. Fusion of infrared and visible images 
In many modern multi-sensor systems, fusion algorithms significantly reduce the amount of 
raw data that needs to be presented or processed without loss of information content as well 
as provide an effective way of information integration. Over the years there has been 
numerous image fusion algorithms developed to address the growing need for image 
fusion. The algorithms can be roughly divided into two groups; Multi-Scale-Decomposition 
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(MSD)-based fusion methods, and Non-Multi-Scale-Decomposition (NMSD)-based fusion 
methods (Blum, 2006). The basic idea of a MSD based fusion method is that a multi-scale 
transform is performed on the source images, and then a composite multi-scale 
representation of these images is constructed based on a predetermined selection rule. The 
fused image is obtained by taking the inverse of the original multi-scale transform. The most 
common MSD methods include pyramid transforms and Wavelet Transforms (WT). All 
NMSD are not based on multi-scale transforms. Most common NMSD fusion methods 
include, Principal Component Analysis (PCA), Weighted Average technique, Estimation 
Theory methods, and Artificial Neural Networks. 
Image fusion techniques can also be classified based on the level of processing where the 
fusion takes place (Hall, 2001). There are three main levels where image fusion may take 
place and they include: 
• Pixel Level, 
• Feature Level and 
• Decision Level. 
Universal fusion system structure that illustrates them is shown in Figure 3.  
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Fig. 3. Universal fusion system architecture 

Main difference between the levels is in the amount of processing that is performed on the 
image prior to fusion and hence the format in which this information is fused and the type 
of fusion techniques applied. The information is captured from an observation of the scene 
by the sensors, which present it to the system in form of two digital image signals (Input 
Images). These images can be combined directly (pixel-level fusion) into a fused image that 
represents the information present in the input images in a single signal. Alternatively, 
input images (and potentially the fused) can be processed (e.g. edge detection, 
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people can however be limited by a change in lighting conditions. IR images generally allow 
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characteristics such as temperature, geometry and ratios compared to the rest of the 
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involves the development of a method of intelligent fusion which will enable the robustness 
of human detection to be improved while reducing false alarms and the advent of non 
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malls, parking lots, and etc.. With the addition of an IR sensor, these systems will become 
more robust and will be able to function under varying lighting and climatic conditions, 
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In many modern multi-sensor systems, fusion algorithms significantly reduce the amount of 
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as provide an effective way of information integration. Over the years there has been 
numerous image fusion algorithms developed to address the growing need for image 
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(MSD)-based fusion methods, and Non-Multi-Scale-Decomposition (NMSD)-based fusion 
methods (Blum, 2006). The basic idea of a MSD based fusion method is that a multi-scale 
transform is performed on the source images, and then a composite multi-scale 
representation of these images is constructed based on a predetermined selection rule. The 
fused image is obtained by taking the inverse of the original multi-scale transform. The most 
common MSD methods include pyramid transforms and Wavelet Transforms (WT). All 
NMSD are not based on multi-scale transforms. Most common NMSD fusion methods 
include, Principal Component Analysis (PCA), Weighted Average technique, Estimation 
Theory methods, and Artificial Neural Networks. 
Image fusion techniques can also be classified based on the level of processing where the 
fusion takes place (Hall, 2001). There are three main levels where image fusion may take 
place and they include: 
• Pixel Level, 
• Feature Level and 
• Decision Level. 
Universal fusion system structure that illustrates them is shown in Figure 3.  
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Main difference between the levels is in the amount of processing that is performed on the 
image prior to fusion and hence the format in which this information is fused and the type 
of fusion techniques applied. The information is captured from an observation of the scene 
by the sensors, which present it to the system in form of two digital image signals (Input 
Images). These images can be combined directly (pixel-level fusion) into a fused image that 
represents the information present in the input images in a single signal. Alternatively, 
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segmentation) to extract information about the basic features present in them. This 
information is of a more descriptive nature and can be combined from all cues into a single 
feature description set (fused feature set) by applying feature-level fusion techniques. This 
information then forms a basis for reaching decisions about (evaluating) the observed scene. 
Local decision makers produce probabilistic inferences about the scene from the feature sets 
provided by the lower level and these can be fused using decision level fusion techniques 
into a final evaluation (of the state) of the observed scene. This structure is important in the 
context of the concepts presented in this chapter since it illustrates well the one directional 
flow of information to obtain a more reliable and visually acceptable fused image. 

2.1 Pixel level image fusion  
Image fusion at the pixel level means fusion at the lowest processing level referring to the 
merging of the physical parameters of the source images. Among the three fusion levels, 
pixel level fusion is the most mature and encompasses the majority of image fusion 
algorithms in the literature today. Figure 4 illustrates a schematic of pixel level fusion 
process. 
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Fig. 4. A schematic of pixel level fusion process 

All input images are aligned first and then the algorithm is performed across the pixels of all 
the input images. Therefore, to perform pixel level fusion all input images need to be 
spatially registered exactly to all other input images, so that all pixel positions of all the 
input images correspond to the same location in the real world. There can be some generic 
requirements imposed on the fusion result from pixel level fusion: 
• The fusion process should preserve all relevant information on the input imagery in the 

composite image (pattern conservation); 
• The fusion scheme should not introduce any inconsistencies which would distract the 

human observer or following processing stages and 
• The fusion scheme should be shift and rotational invariant, i.e. the fusion result should 

not depend on the location or orientation of an object in the input imagery.  
The most common pixel level fusion algorithms are (i) a simple averaging technique, (ii) 
principle components analysis, (iii) pyramid fusion schemes and (iv)wavelet transforms 
(Discrete Wavelet Transform and Shift Invariant Discrete Wavelet Transform) etc. 

2.2 Feature level image fusion  
Feature level methods are the next stage of processing where image fusion may take place. 
Fusion at the feature level requires extraction of objects (features) from the input images. 
These features are then combined with the similar features present in the other input images 
through a predetermined selection process to form the final fused image. Since, one of the 
essential goals of fusion is to preserve the image features, feature level methods have the 
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ability to yield subjectively better fused images than pixel based techniques (Samadzadegan, 
2004). Common algorithms that fuse images at the feature level include edge detection 
methods and artificial neural networks. Figure 5 illustrates a schematic of feature level 
fusion process. 
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Fig. 5. A schematic of feature level fusion process 

2.3 Decision level image fusion  
Decision level methods are at the highest level of processing where image fusion can take 
place. Fusion at the Decision level takes Feature level fusion one step further by declaring 
identities to the objects recognized, by the individual input images, and then assigning a 
quality measure to the extracted features - See Figure 6. The obtained information is then 
combined by applying decision rules to reinforce common interpretation and resolve 
differences of the observed objects. 
 

Feature 
extraction

Feature 
extraction

Infrared 
image

Visible 
image

Decision level 
fusion Results

Object 
recognition

Object 
recognition

Feature 
extraction

Feature 
extraction

Infrared 
image

Visible 
image

Decision level 
fusion Results

Object 
recognition

Object 
recognition

 
Fig. 6. A schematic of decision level fusion process 

Due to fact that decision level fusion methods rely on the object recognition by all sensors in 
order to produce a valid representation of the input images, if an object is not recognized by 
all the sensors (via input images) then the output image will not utilize the full benefits of 
image fusion (Gunatilaka & Baertlein, 2001). Decision level fusion also creates another 
source of possible error when compared to the other fusion levels. If there is an error in 
recognition of objects from one of the sensors this error will be transferred to the output 
fused image. Some common algorithms used in decision level fusion include Fuzzy Logic, 
Rule-based Fusion, and Bayesian Networks. 

2.4 Fusion evaluation methods  
The ultimate aim of image fusion is to create a faithful and composite image that retains the 
important information from the source images while minimizing the noise caused by fusing 
the images. For the application, these images will be typically viewed and interpreted 
(perceived) by an operator. A number of evaluation approaches and metrics have been 
proposed to quantify and qualify image fusion performance: Fusion performance has been 
investigated using subjective and objective approaches. 
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segmentation) to extract information about the basic features present in them. This 
information is of a more descriptive nature and can be combined from all cues into a single 
feature description set (fused feature set) by applying feature-level fusion techniques. This 
information then forms a basis for reaching decisions about (evaluating) the observed scene. 
Local decision makers produce probabilistic inferences about the scene from the feature sets 
provided by the lower level and these can be fused using decision level fusion techniques 
into a final evaluation (of the state) of the observed scene. This structure is important in the 
context of the concepts presented in this chapter since it illustrates well the one directional 
flow of information to obtain a more reliable and visually acceptable fused image. 

2.1 Pixel level image fusion  
Image fusion at the pixel level means fusion at the lowest processing level referring to the 
merging of the physical parameters of the source images. Among the three fusion levels, 
pixel level fusion is the most mature and encompasses the majority of image fusion 
algorithms in the literature today. Figure 4 illustrates a schematic of pixel level fusion 
process. 
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All input images are aligned first and then the algorithm is performed across the pixels of all 
the input images. Therefore, to perform pixel level fusion all input images need to be 
spatially registered exactly to all other input images, so that all pixel positions of all the 
input images correspond to the same location in the real world. There can be some generic 
requirements imposed on the fusion result from pixel level fusion: 
• The fusion process should preserve all relevant information on the input imagery in the 

composite image (pattern conservation); 
• The fusion scheme should not introduce any inconsistencies which would distract the 

human observer or following processing stages and 
• The fusion scheme should be shift and rotational invariant, i.e. the fusion result should 

not depend on the location or orientation of an object in the input imagery.  
The most common pixel level fusion algorithms are (i) a simple averaging technique, (ii) 
principle components analysis, (iii) pyramid fusion schemes and (iv)wavelet transforms 
(Discrete Wavelet Transform and Shift Invariant Discrete Wavelet Transform) etc. 

2.2 Feature level image fusion  
Feature level methods are the next stage of processing where image fusion may take place. 
Fusion at the feature level requires extraction of objects (features) from the input images. 
These features are then combined with the similar features present in the other input images 
through a predetermined selection process to form the final fused image. Since, one of the 
essential goals of fusion is to preserve the image features, feature level methods have the 
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ability to yield subjectively better fused images than pixel based techniques (Samadzadegan, 
2004). Common algorithms that fuse images at the feature level include edge detection 
methods and artificial neural networks. Figure 5 illustrates a schematic of feature level 
fusion process. 
 

Feature 
extraction

Feature 
extraction

Infrared 
image

Visible 
image

Fusion based on 
joint features

Decision 
makers

Feature 
extraction

Feature 
extraction

Infrared 
image

Visible 
image

Fusion based on 
joint features

Decision 
makers

 
Fig. 5. A schematic of feature level fusion process 

2.3 Decision level image fusion  
Decision level methods are at the highest level of processing where image fusion can take 
place. Fusion at the Decision level takes Feature level fusion one step further by declaring 
identities to the objects recognized, by the individual input images, and then assigning a 
quality measure to the extracted features - See Figure 6. The obtained information is then 
combined by applying decision rules to reinforce common interpretation and resolve 
differences of the observed objects. 
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Due to fact that decision level fusion methods rely on the object recognition by all sensors in 
order to produce a valid representation of the input images, if an object is not recognized by 
all the sensors (via input images) then the output image will not utilize the full benefits of 
image fusion (Gunatilaka & Baertlein, 2001). Decision level fusion also creates another 
source of possible error when compared to the other fusion levels. If there is an error in 
recognition of objects from one of the sensors this error will be transferred to the output 
fused image. Some common algorithms used in decision level fusion include Fuzzy Logic, 
Rule-based Fusion, and Bayesian Networks. 

2.4 Fusion evaluation methods  
The ultimate aim of image fusion is to create a faithful and composite image that retains the 
important information from the source images while minimizing the noise caused by fusing 
the images. For the application, these images will be typically viewed and interpreted 
(perceived) by an operator. A number of evaluation approaches and metrics have been 
proposed to quantify and qualify image fusion performance: Fusion performance has been 
investigated using subjective and objective approaches. 
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2.4.1 Subjective evaluation approaches  
Two basic subjective evaluation approaches were noted in the literature, active or task 
related (quantitative) and descriptive (qualitative). Quantitative approaches were utilized by 
(Toet, 2001), (Dixon, 2006) where subjects assessed different fusion approaches on target 
detection and recognition, as well as subject perception of situational awareness. 
Quantitative fusion assessment has focused on the target detection, recognition and 
situational awareness. Target detection and recognition assessment has been assessed in 
naturalistic and in laboratory settings. By their nature, real time assessments are difficult to 
duplicate, instead most fusion assessment experiments have focused on the capture of still 
or live video of targets in operational settings. The fusion community has captured and 
shared a number of multi-spectra reference images for algorithm development and 
assessment. In addition to quantitative subjective tests, a large number of qualitative 
evaluations have been undertaken to rate or rank the quality of fusion images evaluated 
both target detection performance and fused image quality generated from four fusion 
approaches. A variety of scales and methods have been used to evaluate the quality of 
fusion images, typically a subject is asked to rank or rate the quality of the image on a linear 
or ordinal scale. Three approaches are discussed in the literature (Petrovic, 2007), (Chen & 
Varshney, 2005) simple ranking, Single Stimulus Continuous Quality Evaluation (SSCQE) 
and Double Stimulus Continuous Quality Evaluation (DSCQE). 

2.4.2 Objective evaluation approaches  
Objective measures utilize input images and the fusion image to develop a numerical score 
of the success of the fusion process (Petrovic, 2007). And unlike subjective assessments 
which have significant organizational and logistic requirements, objective measures can be 
computed automatically. Objective metrics have also been developed to assess fusion 
performance. Unlike traditional image quality metrics which use a “ground truth” image, 
ideal fusion images are not available. Adjusting fusion filter bands, decomposition levels, 
weighting parameters, window sizes, etc. will affect fusion performance. 
A large number of objective measures have been proposed to evaluate fusion performance, 
these include Root Mean Square Error (RMSE), Image Quality (QW), Fusion Quality 
Measure (Q) to name a few. The objective measure can be classified into four categories: 
• Methods based on statistical characteristics, 
• Methods based on definition, 
• Methods based on information theory and 
• Methods based on important features. 
For image fusion, researchers have suggested a variety of objective measures to assess the 
success of the fusion. Ideally the researcher has developed a theory upon which to base the 
validity of their measure (theoretical constructs). Construct validity is the assessment of how 
well the researcher translated their theories into actual measures. The limited review of the 
literature did not identify theoretical constructs for many of the older statistical objective 
measures. Given the limitations of simple metrics, researchers have focused on developing 
metrics based on information theory and human perception (important features). Moreover, 
leading investigators in the image fusion community have indicated that they are now or 
soon will be, investigating task-specific fusion performance and the characterization of 
video fusion performance. The timing of the proposed fusion study in this chapter is thus 
occurring at an opportune time. 
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3. Potential applications of image fusion in surveillance 
The objective of this section is to present a new robust pedestrian detection and tracking 
system which will exploit the information provided by a visible spectrum sensor and an IR 
sensor, while functioning within a complex environment. To-date, few detection and 
tracking systems have made use of IR information to track people (Xu & Fujimura, 2002). 
However, many researchers have addressed the same task using the visible part of the 
spectrum (Thi Thi Zin, 2009). The addition of an IR sensor will provide information which 
complements that obtained with visible images. The latter offer a rich content where the 
detection of pedestrians can however be limited by a change in lighting conditions. IR 
images generally enable a better contrast to be achieved between the pedestrian and his 
environment, but they are less robust to temperature and wind changes. Exploiting the 
complementary information obtained and improving the precision and robustness of 
tracking requires the development of an efficient technique allowing the fusion of this 
complementary information.  
Fusion of visible and IR information can be done at different levels in the image processing. 
Sensor fusion has become an increasingly important direction in computer vision and in 
particular human detection and tracking systems in recent years. In this section, we have 
considered a strategy where information from both channels is fused at the highest level. 
Obviously, the main part of the work concerns image processing. An important hypothesis 
is that cameras do not move during the recording of one given sequence. Figure 7 presents 
the overall image processing algorithm. After the image acquisition, moving regions are 
extracted with a newly developed background subtraction algorithm. Detection processing 
is performed at two levels: blob and object.  
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Fig. 7. Image processing flowchart 

3.1 Two-level detection process 
The algorithms of the first segmentation often provide data where the people are detected in 
the form of several blobs surrounded by noise and lacking certain body parts. The detection 
algorithm presented here supports the incomplete and noisy data provided by the first 
segmentation. In order to do this, the processing is continued on two levels. While the first 
level of the algorithm consists in following the blobs in an image sequence (both visible and 
IR), the second level builds on the first and tracks a combination of one or more blobs, i.e. 
objects.  The output results of this two level processing can illustratively described as shown 
in Figure 8.  
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2.4.1 Subjective evaluation approaches  
Two basic subjective evaluation approaches were noted in the literature, active or task 
related (quantitative) and descriptive (qualitative). Quantitative approaches were utilized by 
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3. Potential applications of image fusion in surveillance 
The objective of this section is to present a new robust pedestrian detection and tracking 
system which will exploit the information provided by a visible spectrum sensor and an IR 
sensor, while functioning within a complex environment. To-date, few detection and 
tracking systems have made use of IR information to track people (Xu & Fujimura, 2002). 
However, many researchers have addressed the same task using the visible part of the 
spectrum (Thi Thi Zin, 2009). The addition of an IR sensor will provide information which 
complements that obtained with visible images. The latter offer a rich content where the 
detection of pedestrians can however be limited by a change in lighting conditions. IR 
images generally enable a better contrast to be achieved between the pedestrian and his 
environment, but they are less robust to temperature and wind changes. Exploiting the 
complementary information obtained and improving the precision and robustness of 
tracking requires the development of an efficient technique allowing the fusion of this 
complementary information.  
Fusion of visible and IR information can be done at different levels in the image processing. 
Sensor fusion has become an increasingly important direction in computer vision and in 
particular human detection and tracking systems in recent years. In this section, we have 
considered a strategy where information from both channels is fused at the highest level. 
Obviously, the main part of the work concerns image processing. An important hypothesis 
is that cameras do not move during the recording of one given sequence. Figure 7 presents 
the overall image processing algorithm. After the image acquisition, moving regions are 
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is performed at two levels: blob and object.  
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3.1 Two-level detection process 
The algorithms of the first segmentation often provide data where the people are detected in 
the form of several blobs surrounded by noise and lacking certain body parts. The detection 
algorithm presented here supports the incomplete and noisy data provided by the first 
segmentation. In order to do this, the processing is continued on two levels. While the first 
level of the algorithm consists in following the blobs in an image sequence (both visible and 
IR), the second level builds on the first and tracks a combination of one or more blobs, i.e. 
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Fig. 8. Image fusion for visibility improvement (Source of image: 
http://www.imagefusion.org) 

3.2 Robust person detection in far infrared images 
Here, we propose two novel methods for robust person detection in Far Infrared (FIR) 
images. The first one is a generalized method to be branded as a multi-slit method for 
person detection with various standing postures at near and far distances. It is based on 
body parts detection by using multi-slits to extract head region. Among many things, the 
special feature of this multi-slit method using only a single camera is a key component and 
provides monocular vision. This is a significant and advantageous step to move forward for 
advances in person detection while other existing methods use more than one camera for 
stereo vision. In our method, the combined approach of multi-slits with vanishing line is 
also a new concept. The second one is a simplified method that is very useful at near 
distances which is a sequential decision method using GC movement patterns. Moreover, 
the simplified method makes a significant progress in differentiating person and non-person 
in almost all environments. This is due to the use of GC movement patterns which has been 
never seen in the existing literature. In both methods, we focus on a single frame person 
detection algorithm using step-by-step approach. Figure 9 shows two proposed methods. 
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3.2.1 Multi-slit method using vanishing line 
This method consists of two major steps: (i) extracting head nominators by multi-slits and 
(ii) verifying nominated head regions. The multi-slit method utilizes y-position of vanishing 
line as the scale factor. The block diagram is shown in Figure 10(a). 

3.2.2 Extracting head nominators by multi-slit method 
Each horizontal slit with height h(d) for a distance d is considered, for example, d = 5m, 6m, 
7m, .… Our method can determine the position and height of each slit from the vanishing 
line in an input FIR image. This aspect is shown in Figure 10(b). For distance d, we use the 
following parameters which are the coordinates on an input FIR image. 
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Fig. 10. Multi-slit method: (a) block diagram, (b) multi-slits using vanishing line, (c) relation 
between yi(d) and yi′(d), i = 0,1 

x1(d) and x2(d): x-positions of left and right side of head, respectively, 
y0(d): y-position of ground level, 
y1(d), and y2(d): y-positions of top and bottom of a head (a matched slit for a distance d), 
y∝: y-position of vanishing line.  
For reference, we adopt a person 174cm tall standing at a distance of 5m. The parameters 
x1(5), x2(5), y0(5), y1(5), y2(5), and y∞ are manually obtained:  

x1(5)=331, x2(5)=362, y0(5)=341, y1(5)=102, y2(5)=140, and y∞ =195. 
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Fig. 8. Image fusion for visibility improvement (Source of image: 
http://www.imagefusion.org) 

3.2 Robust person detection in far infrared images 
Here, we propose two novel methods for robust person detection in Far Infrared (FIR) 
images. The first one is a generalized method to be branded as a multi-slit method for 
person detection with various standing postures at near and far distances. It is based on 
body parts detection by using multi-slits to extract head region. Among many things, the 
special feature of this multi-slit method using only a single camera is a key component and 
provides monocular vision. This is a significant and advantageous step to move forward for 
advances in person detection while other existing methods use more than one camera for 
stereo vision. In our method, the combined approach of multi-slits with vanishing line is 
also a new concept. The second one is a simplified method that is very useful at near 
distances which is a sequential decision method using GC movement patterns. Moreover, 
the simplified method makes a significant progress in differentiating person and non-person 
in almost all environments. This is due to the use of GC movement patterns which has been 
never seen in the existing literature. In both methods, we focus on a single frame person 
detection algorithm using step-by-step approach. Figure 9 shows two proposed methods. 
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3.2.1 Multi-slit method using vanishing line 
This method consists of two major steps: (i) extracting head nominators by multi-slits and 
(ii) verifying nominated head regions. The multi-slit method utilizes y-position of vanishing 
line as the scale factor. The block diagram is shown in Figure 10(a). 

3.2.2 Extracting head nominators by multi-slit method 
Each horizontal slit with height h(d) for a distance d is considered, for example, d = 5m, 6m, 
7m, .… Our method can determine the position and height of each slit from the vanishing 
line in an input FIR image. This aspect is shown in Figure 10(b). For distance d, we use the 
following parameters which are the coordinates on an input FIR image. 
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Fig. 10. Multi-slit method: (a) block diagram, (b) multi-slits using vanishing line, (c) relation 
between yi(d) and yi′(d), i = 0,1 

x1(d) and x2(d): x-positions of left and right side of head, respectively, 
y0(d): y-position of ground level, 
y1(d), and y2(d): y-positions of top and bottom of a head (a matched slit for a distance d), 
y∝: y-position of vanishing line.  
For reference, we adopt a person 174cm tall standing at a distance of 5m. The parameters 
x1(5), x2(5), y0(5), y1(5), y2(5), and y∞ are manually obtained:  

x1(5)=331, x2(5)=362, y0(5)=341, y1(5)=102, y2(5)=140, and y∞ =195. 
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If the camera position and angle are not changed, then it is not necessary to update them. 
Under perspective projection, we can obtain the following equation for a distance d: 

 yi(d) = y∞ +5 (yi(5) - y∞)/d,     i=0,1,2,  (1) 

when yi(d) ≠ y∞ , we get 

 (5)5
( )

i

i

y yd
y d y

∞

∞

⎛ ⎞−
= ⎜ ⎟

−⎝ ⎠
.   (2)  

The above equation means that distance d can be computed after getting yi(d) by monocular 
camera. In our experiments, y1(d) and y2(d) are used, and y0(d) is not used. If a head is 
detected at a distance d using these reference parameters, we can consider a person t′ cm tall 
standing at a distance d′ instead of a person 174cm tall standing at a distance d, for t′ and d′ 
which satisfy the following conditions. 

 0 0
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Thus, 

 0 0 0 0(5) ( (5) (5)) (5) ( (5) (5)) (5),i i iy t t y y y t t y y y′ ′ ′ ′= − + = − +    (4) 

where 0 0( ) ( ), and ( ) and ( )i iy d y d y d y d′ ′=  are y-positions of persons 174cm and t′cm tall at a 
distance d, respectively. It is noted that the distance between the camera and a person with 
height 174cm can be computed by Eq.(2), but some error is caused for a person with 
different height t′cm. From Eq.(1), we obtain 

 ( )( ) 5 (5) / .i iy d y y y d∞ ∞′ ′ ′ ′= + −   (5) 

Setting ( ) ( )i iy d y d′ ′ =  in Eq.(1) and Eq.(5) and substituting Eq.(4), we obtain 
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This means that it is possible to find a person t′ cm tall standing at a distance d′ m using data 
of a person 174cm tall standing at a distance dm as long as Eq.(6) is satisfied. If y0(d) or “y1(d) 
and y2(d)” is obtained with satisfactory accuracy, then the distance d′ and the height t′ are 
uniquely determined. But it is not straightforward calculation in practice because of using 
low resolution images. For simplicity, here we suppose ( ) ( )1( ) ( )t t y d y y d y∞ ∞′ ′≈ − − . 
We can extract head regions from vertical histogram (summation of pixel values) within 
each slit. Then to find the Local Maximum (LM) of the vertical histogram, some operations 
using morphological dilations with line shape Structuring Element (SE) are applied. Dilation 
Dj using SEj are defined as: 

 ,j jD SE V= ⊕   j = 1, 2,  (7) 
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where V is the vertical histogram of the slit and ⊕ is morphological dilation. We can extract 
nominated head regions from D1-D2 by thresholding using Th1. An example is shown in 
Figure 11 (a-i, a-ii, a-iii). 
In the next step, we set two slits with height h/2 at both upper and lower sides of the 
original slit with height h, as shown in Figure 11(b-i). In Figure 11(b-ii), we then compute V-
Vu-Vl, where Vu and Vl are the vertical histograms of the upper and lower slits, respectively. 
By using some thresholds, the system nominates the head region from Figure 11(a-iii, b-ii), 
as shown in Figure 11 (c). One can see that this method is very simple, robust, effective, and 
does not require any complex computational procedures. Moreover, this method can extract 
not only the person head, but also can give approximate distance from the camera position, 
that is, where and how tall the person is.  
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Fig. 11. Head region extraction by multi-slit method: (a-i) original slit for 5m distance with 
height h, (a-ii) vertical histogram V for the slit, (a-iii) LM from D1-D2, (b-i) two slits with 
height h/2 in both upper and lower sides of the original slit, (b-ii) V-Vu-Vl, and (c) 
nominated head region 

3.2.3 Verifying nominated head regions 
For each nominated region, the person body and legs region are roughly estimated. To 
verify and segment person regions, the system will check whether or not the following 
conditions are satisfied.  
1. The values m1 and m2 of LMB and LML must be higher than a predetermined threshold, 

i.e. m1 > Th, m2 > Th, where LMB and LML are LM of histogram of body and legs region, 
respectively.     
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This means that it is possible to find a person t′ cm tall standing at a distance d′ m using data 
of a person 174cm tall standing at a distance dm as long as Eq.(6) is satisfied. If y0(d) or “y1(d) 
and y2(d)” is obtained with satisfactory accuracy, then the distance d′ and the height t′ are 
uniquely determined. But it is not straightforward calculation in practice because of using 
low resolution images. For simplicity, here we suppose ( ) ( )1( ) ( )t t y d y y d y∞ ∞′ ′≈ − − . 
We can extract head regions from vertical histogram (summation of pixel values) within 
each slit. Then to find the Local Maximum (LM) of the vertical histogram, some operations 
using morphological dilations with line shape Structuring Element (SE) are applied. Dilation 
Dj using SEj are defined as: 

 ,j jD SE V= ⊕   j = 1, 2,  (7) 
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where V is the vertical histogram of the slit and ⊕ is morphological dilation. We can extract 
nominated head regions from D1-D2 by thresholding using Th1. An example is shown in 
Figure 11 (a-i, a-ii, a-iii). 
In the next step, we set two slits with height h/2 at both upper and lower sides of the 
original slit with height h, as shown in Figure 11(b-i). In Figure 11(b-ii), we then compute V-
Vu-Vl, where Vu and Vl are the vertical histograms of the upper and lower slits, respectively. 
By using some thresholds, the system nominates the head region from Figure 11(a-iii, b-ii), 
as shown in Figure 11 (c). One can see that this method is very simple, robust, effective, and 
does not require any complex computational procedures. Moreover, this method can extract 
not only the person head, but also can give approximate distance from the camera position, 
that is, where and how tall the person is.  
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Fig. 11. Head region extraction by multi-slit method: (a-i) original slit for 5m distance with 
height h, (a-ii) vertical histogram V for the slit, (a-iii) LM from D1-D2, (b-i) two slits with 
height h/2 in both upper and lower sides of the original slit, (b-ii) V-Vu-Vl, and (c) 
nominated head region 

3.2.3 Verifying nominated head regions 
For each nominated region, the person body and legs region are roughly estimated. To 
verify and segment person regions, the system will check whether or not the following 
conditions are satisfied.  
1. The values m1 and m2 of LMB and LML must be higher than a predetermined threshold, 

i.e. m1 > Th, m2 > Th, where LMB and LML are LM of histogram of body and legs region, 
respectively.     
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2. 1.2 3h b hw w w< < , where wb and wh are widths of body and head regions, respectively. 
3. two x-positions of LMB and LML: one must be in the left side of the center of head 

region, another in the right side. 
Although the conditions are defined as a whole, they are used as conditions for body 
detection and legs detection separately. The roughly estimated rectangular regions are 
determined as a person body and legs when all conditions for both body and legs are 
satisfied. But, if all conditions for body or legs only are satisfied, then we will say that a 
person is detected. These aspects are illustrated in Figure 12(a). In Figure 12(b), one example 
of correct nominator is shown. The proposed algorithm is able to detect person regions for 
various standing poses at near and far distances. 
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Fig. 12. Head Verification using histograms of body and legs regions: (a) Illustration of body 
and legs region, (b) example of correct nominator 
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3.3 Method using GC movement patterns 
In this section, we present a person detection method using GC movement patterns which 
can segment by using appropriate threshold and differentiate human and other objects from 
the inputs. This approach based on sequential decision process. The GCs of enlarging 
connected regions have special movement patterns, if they are real head regions. By a 
binarized image using an appropriate threshold ThI being changed in descending order, the 
regions are obtained. So, the regions become larger and larger. These aspects are shown in 
Figure 13. The GC movement patterns on each connected region for person are absolutely 
different from the others (non-person). This fact is the key point of our approach. More 
precisely, the GC of person moves slowly downward from the head regions and then goes 
to the legs region rapidly after passing body region. Finally, the regions spread widely 
including surrounding areas. In Figure 13(d), the red one is person region. Since this method 
utilizes the GC movement patterns, it is able to recognize the gradual changes which occur 
only in human body parts. Thus, this method can differentiate significantly human head 
region and artificially made human-like head region as shown in Figure 14. 
Generally, the temperature of person regions is higher than that of the environment and 
their heat radiation is sufficiently high compared to the background. Therefore FIR imagery 
is particularly suited to person localization. Obviously, other objects that actively radiate 
heat, such as automobiles, trucks, busses, and motorcycles, heater, table lamp, have a similar 
behavior. But, our simplified approach demonstrates to be able to differentiate person and 
non-person from the GC movement patterns. 
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Fig. 13. GC movement pattern method: (a) input image, (b) smoothed histogram, (c) 
thresholding (thresholds are changing in descending order), (d-i) GC movement pattern (a 
person), and (d-ii) GC movement pattern (heater: non-person) 
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3. two x-positions of LMB and LML: one must be in the left side of the center of head 

region, another in the right side. 
Although the conditions are defined as a whole, they are used as conditions for body 
detection and legs detection separately. The roughly estimated rectangular regions are 
determined as a person body and legs when all conditions for both body and legs are 
satisfied. But, if all conditions for body or legs only are satisfied, then we will say that a 
person is detected. These aspects are illustrated in Figure 12(a). In Figure 12(b), one example 
of correct nominator is shown. The proposed algorithm is able to detect person regions for 
various standing poses at near and far distances. 
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Fig. 12. Head Verification using histograms of body and legs regions: (a) Illustration of body 
and legs region, (b) example of correct nominator 
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3.3 Method using GC movement patterns 
In this section, we present a person detection method using GC movement patterns which 
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the inputs. This approach based on sequential decision process. The GCs of enlarging 
connected regions have special movement patterns, if they are real head regions. By a 
binarized image using an appropriate threshold ThI being changed in descending order, the 
regions are obtained. So, the regions become larger and larger. These aspects are shown in 
Figure 13. The GC movement patterns on each connected region for person are absolutely 
different from the others (non-person). This fact is the key point of our approach. More 
precisely, the GC of person moves slowly downward from the head regions and then goes 
to the legs region rapidly after passing body region. Finally, the regions spread widely 
including surrounding areas. In Figure 13(d), the red one is person region. Since this method 
utilizes the GC movement patterns, it is able to recognize the gradual changes which occur 
only in human body parts. Thus, this method can differentiate significantly human head 
region and artificially made human-like head region as shown in Figure 14. 
Generally, the temperature of person regions is higher than that of the environment and 
their heat radiation is sufficiently high compared to the background. Therefore FIR imagery 
is particularly suited to person localization. Obviously, other objects that actively radiate 
heat, such as automobiles, trucks, busses, and motorcycles, heater, table lamp, have a similar 
behavior. But, our simplified approach demonstrates to be able to differentiate person and 
non-person from the GC movement patterns. 
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Fig. 13. GC movement pattern method: (a) input image, (b) smoothed histogram, (c) 
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Fig. 14. Comparison of human head and artificial head: (a) enlarged regions due to changing 
threshold, (b) comparison of GC movement patterns 

3.4 Image fusion algorithm for person detection 
The fusion or merging algorithm improves the precision of the size and position of the 
predicted or nominated area computed during the first level processing. It is driven by three 
goals. The first one consists in establishing a correspondence between the objects detected in 
the visible and the IR images. For each pair of objects, the identification of the best object 
detected (in visible or IR images) describes our second goal. The objects with the best 
detection are called master and the second one slave. The confidence is used as a criterion for 
better detection and is computed for all the objects of each frame in the sequence. In this 
manner the identification of the master and the slave will change rapidly for an object when 
fast light illumination or temperature variation is present. Our last goal consists in using the 
information of the master object to help in tracking the slave one. The merging process is 
done independently for each pair of objects. For example, if at time t, three objects can be 
detected in the visible and IR images, two objects can be master in the IR image, and one 
object can be a master in the visible image. The merging algorithm has to determine 
situations where the position and the size of the predicted area need to be modified. These 
situations only occur when a great difference between the primitive area of the master object 
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and the slave object is detected. In this case we enter in the “enslavement” mode where the 
master predicted area controls the slave predicted area. For example, if a pedestrian has a 
green T-shirt and walks in front of a green hedge, this person’s trunk will tend to disappear 
and the slave object will be put in the enslavement mode. The IR object will maintain a good 
detection and will help in tracking the pedestrian in the visible image because the body 
temperature is higher than the temperature of the green hedge. 
The fusion algorithm is very useful in cases where two objects disappear and will allow 
objects to stay present in the system and allow the position of the predictive area to be 
assessed using the mean speed of the predictive area in the last frame. For example, if a 
pedestrian passes behind a tree, the objects will disappear in both images. If the pedestrian 
maintains his speed and direction, the object will be recovered when it appears on the other 
side of the tree. But, if the pedestrian stopped behind the tree and returns to the same side, 
the algorithm will create a new object. 

3.4.1 Multi-slit HOG fusion innovation 
In addition to general fusion approach, we shall explore a new hybrid-based feature level 
fusion method to fuse multi-slit features and Histograms of Oriented Gradients (HOG) 
features for pedestrian detection from Near Infrared (NIR) images. The fused feature set 
utilizes both the multi-slit method’s capability of accurately capturing the local spatial 
layout of body parts (head, torso, and legs) in individual frames and the HOG’s capability in 
region information relevant to higher frequency components. The hybrid feature vector 
describing various types of poses is then constructed and used for detecting the pedestrians. 
The part based pattern matching analysis indicates that the fused features have much higher 
feature space separation than the pure features. Experiments with a database of NIR images 
show that proposed method achieves a substantial improvement in tackling some difficult 
cases such as side view, back view which the conventional HOG method cannot handle. 
Detection and recognition performance is less computationally expensive than existing 
approaches. Specifically, an overview of our fusion method is described as shown in Figure 
15. 
 

                   

Input NIR Images

Multi-slit process 
(head, body, legs)

HOG 
on each region

Feature extraction

Nominated regions

Verification

Pedestrian detection

Input NIR Images

Multi-slit process 
(head, body, legs)

HOG 
on each region

Feature extraction

Nominated regions

Verification

Pedestrian detection  
 a) b) 
Fig. 15. Multi-slit HOG Fusion: (a) various poses of pedestrians, (b) system overview 



 Image Fusion 

 

254 
Human head

Artificial head

ThI ThI -10 ThI -20

ThI -10 ThI -20ThI

This is made of paper and 
heated for a while by toaster.

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Human head

Artificial head

ThI ThI -10 ThI -20

ThI -10 ThI -20ThI

This is made of paper and 
heated for a while by toaster.

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

 
a) 

(2),(3),(4)

Human head

(7),(8), 
(9),(10)

(11)

slowly

rapidly

(1)

(12)

rapidly 
in this case

unpredictable

Artificial head

(2),(3),(4), 
(5),(6),(7)

(1)

(9)

(10)

(8)

(2),(3),(4)

Human head

(7),(8), 
(9),(10)

(11)

slowly

rapidly

(1)

(12)

rapidly 
in this case

unpredictable

Artificial head

(2),(3),(4), 
(5),(6),(7)

(1)

(9)

(10)

(8)

 
b) 

Fig. 14. Comparison of human head and artificial head: (a) enlarged regions due to changing 
threshold, (b) comparison of GC movement patterns 

3.4 Image fusion algorithm for person detection 
The fusion or merging algorithm improves the precision of the size and position of the 
predicted or nominated area computed during the first level processing. It is driven by three 
goals. The first one consists in establishing a correspondence between the objects detected in 
the visible and the IR images. For each pair of objects, the identification of the best object 
detected (in visible or IR images) describes our second goal. The objects with the best 
detection are called master and the second one slave. The confidence is used as a criterion for 
better detection and is computed for all the objects of each frame in the sequence. In this 
manner the identification of the master and the slave will change rapidly for an object when 
fast light illumination or temperature variation is present. Our last goal consists in using the 
information of the master object to help in tracking the slave one. The merging process is 
done independently for each pair of objects. For example, if at time t, three objects can be 
detected in the visible and IR images, two objects can be master in the IR image, and one 
object can be a master in the visible image. The merging algorithm has to determine 
situations where the position and the size of the predicted area need to be modified. These 
situations only occur when a great difference between the primitive area of the master object 
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and the slave object is detected. In this case we enter in the “enslavement” mode where the 
master predicted area controls the slave predicted area. For example, if a pedestrian has a 
green T-shirt and walks in front of a green hedge, this person’s trunk will tend to disappear 
and the slave object will be put in the enslavement mode. The IR object will maintain a good 
detection and will help in tracking the pedestrian in the visible image because the body 
temperature is higher than the temperature of the green hedge. 
The fusion algorithm is very useful in cases where two objects disappear and will allow 
objects to stay present in the system and allow the position of the predictive area to be 
assessed using the mean speed of the predictive area in the last frame. For example, if a 
pedestrian passes behind a tree, the objects will disappear in both images. If the pedestrian 
maintains his speed and direction, the object will be recovered when it appears on the other 
side of the tree. But, if the pedestrian stopped behind the tree and returns to the same side, 
the algorithm will create a new object. 
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In addition to general fusion approach, we shall explore a new hybrid-based feature level 
fusion method to fuse multi-slit features and Histograms of Oriented Gradients (HOG) 
features for pedestrian detection from Near Infrared (NIR) images. The fused feature set 
utilizes both the multi-slit method’s capability of accurately capturing the local spatial 
layout of body parts (head, torso, and legs) in individual frames and the HOG’s capability in 
region information relevant to higher frequency components. The hybrid feature vector 
describing various types of poses is then constructed and used for detecting the pedestrians. 
The part based pattern matching analysis indicates that the fused features have much higher 
feature space separation than the pure features. Experiments with a database of NIR images 
show that proposed method achieves a substantial improvement in tackling some difficult 
cases such as side view, back view which the conventional HOG method cannot handle. 
Detection and recognition performance is less computationally expensive than existing 
approaches. Specifically, an overview of our fusion method is described as shown in Figure 
15. 
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The basic idea is that local object appearance and shape can often be characterized rather 
well by the distribution of local intensity gradients or edge directions, even without precise 
knowledge of the corresponding gradient or edge positions. In our system, these 
appearances will be described in a series of multi-slits for head, torso, and legs regions. The 
corresponding regions are extracted based on the properties of coplanar plane structures 
and distances. More precisely, vanishing line concepts are to be used for these purposes. We 
then divide the multi-slit into small spatial regions (cells), for each cell accumulating 
histogram of gradient directions or orientations over the pixels of the cell. The combined 
histogram entries form the representation. For better invariance to illumination, shadowing, 
etc., it is also useful to contrast-normalize the local responses before using them. This can be 
done by accumulating a measure of local histogram energy over somewhat larger spatial 
regions (blocks) and using the results to normalize all of the cells in the block. We will refer 
to the normalized descriptor blocks as Multi-slit HOG descriptors. The use of orientation 
histograms has been developed in many aspects, but it can only be reached maturity when 
combined with local spatial histograms and normalization in multi-slit approach to wide 
baseline image matching. So far our experiments show that even the best current 
approaches are likely to have false positive rates higher than our Multi-slit HOG approach 
for pedestrian detection. 
The procedure for the complete system starts detecting people in images by selecting a 
suitable sub-window from the top left corner of the image as an input for head, the second 
sub-window of different size for torso and the third for legs. These inputs are then 
independently classified by appropriate similarity measure as either a respective body parts 
or a non-body part and finally those are fused into a proper geometrical configuration in a 
full window as a person. All of these nominated regions are processed by the respective 
component features to find the strongest candidate components. The component detectors 
process the candidate regions by applying the modified HOG features and then these 
features become fusion data vector for respective classifications. 
In order to investigate the robustness and effectiveness of our proposed methods, 
experiments are carried out under various environments such as indoor, outdoor at 
daytime, outdoor at nighttime with distance variations. The results will be presented in the 
next section. 

4. Experimental works and results 
4.1 For FIR images 
The algorithms described in the previous sections was tested on several sequences under 
various environments such as indoor, outdoor at daytime, outdoor at nighttime with 
distance variations. Input images are taken originally by FIR camera 3600 AS by L3 Co. Ltd.. 
The horizontal view angle is 50° and the image resolution is 160×120. In this experimental 
setting, the selection of parameters is quite general even though we have used a particular 
type of camera. However, it is worthwhile to point out that using the particular type of 
camera can not be considered as a. limitation of our methods. Higher resolution cameras 
with more acute view angle will increase the precision and recall rate at further distances. 
Since the original image is captured through NTSC (National Television Standards 
Committee), the digitized input image has the resolution 640×480. Some examples of head 
regions extracted by multi-slit method and our previous head shape-based method (Thi Thi 
Zin, 2007) for comparison are shown in Figure 16 and Figure 17, respectively. 
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Fig. 16. Head regions extracted by multi-slit method at (6m, 8m, 9m) distances 
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Fig. 17. Head regions extracted by head shape-based method: (a) input FIR image, (b) 
thresholding, (c) MG using disk shape SE, (d) after noise removal, (e) initial nominated regions, 
(f) narrow down process on initial nominators, and (g) shortlist of nominated head regions 
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The basic idea is that local object appearance and shape can often be characterized rather 
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Fig. 16. Head regions extracted by multi-slit method at (6m, 8m, 9m) distances 
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Fig. 17. Head regions extracted by head shape-based method: (a) input FIR image, (b) 
thresholding, (c) MG using disk shape SE, (d) after noise removal, (e) initial nominated regions, 
(f) narrow down process on initial nominators, and (g) shortlist of nominated head regions 
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Concerning with head region extraction, it would be appropriate to present a brief outlines 
of our previous head shape-based method. The initial nominators of head regions are 
extracted using the intensity information in the process of thresholding and Morphological 
Gradient (MG). The pixels larger than the mean value of the whole image region are shown 
with white pixels in Figure 17(b). Generally, person heads close to ellipse shape, so we adopt 
MG using disk shape SE shown in Figure 17(c). In Figure 17(e), the initial nominated head 
regions are described with red rectangles. Among the extracted initial nominators of head 
regions, the next process will remove the incorrect nominators as many as possible. Figure 
17(f) shows the narrow down process on Sobel edge of each nominator. To confirm the 
performance of the proposed method, the experiments are conducted in outdoor and indoor 
scenes including various postures at near and far distances. Some of images used in our 
experiment are shown in Figure 18. 
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Fig. 18. Example of images used in our experiments 

To compare the performance of two methods, the precision rate (the ratio of number of 
correct detected regions to the total number of detected regions) and recall rate (the ratio of 
number of correct detected regions to the number of relevant correct regions) are shown in 
Figure 19. For method using GC movement patterns, a variety of experiments have been 
carried out to show wide range of applications. We conduct experiments on standing and 
sitting postures in indoor and outdoor together with experiments to differentiate real and 
artificial heads. According to our experiments, this method is highly stable under various 
conditions and postures at near distances. The results based on various environments are 
summarized in Figure 20. From Figure 19 and Figure 20, under almost all conditions, multi-
slit method gives so high precision rates that the noise removal and verification processes 
are virtually unnecessary. The precision rate and recall rate for head shape-based method 
can be increased when the complete three processes (stage1 through stage3), initial 
nominator extraction, noise removal, and verification are applied. As a result, the multi-slit 
method is more effective for person detection than head shape-based method. In addition, 
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by multi-slit method, we can obtain the height of the detected person and the camera 
distance. The statement is also strengthened by calculations done from the geometrical point 
of view. Suppose that a person 174cm tall is standing at a distance 5m, the person with 
shorter height (say 165cm) standing at the same distance of 5m is detected at the distance of 
approximately 6m. This aspect is shown in Figure 21 with the relation between height and 
distance. 
Here, it would be appropriate to make a few remarks on the input of FIR camera resolution. 
Nowadays, FIR cameras with image resolutions 320×240 and 640×480 are available at 
relatively low cost. Using such cameras with more acute view angle will increase the 
precision and recall rates at farther distances than 30m which we used in our experiment. 
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Fig. 19. Precision and recall rates based on distances for multi-slit and head shape-based 
methods 
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Fig. 20. Precision and recall rates based on environments for three methods 
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4.2 For fused images 
The fusion algorithms described in the previous sections was tested on several sequences. 
Various cases are illustrated in Figure 22 and Figure 23. It is obviously not possible to render 
the dynamics of these sequences in a paper and thus, some interesting situations were 
selected. In Figure 22, an indoor situation of multiple pedestrians standing in an office is 
presented. While the blob of one pedestrian is not well detected in visible image but it can 
be successfully detected in the IR image. In Figure 23 multiple outdoor pedestrians are 
shown where the blobs of some pedestrians at far distance are not well detected in visible 
images. It can be seen that those pedestrians are detected in the IR image. The fusion 
algorithm improved detection for the predicted area of this pedestrian. 

4.2.1 Multi-slit HOG fusion experimental results 
We tested our detector on the well-established pedestrian database, containing 4 types of 
training sets and 100 test images of pedestrians. It contains various views with a relatively 
wide range of poses. Our detectors give essentially perfect results on this data set, so we 
produced a new and significantly more challenging detector, Figure 24 shows some 
samples. The people are usually standing, but appear in any orientation and against a wide 
variety of background image including crowds. We have confirmed the effectiveness of our 
proposed method under difficult illumination such as the influence of flare and also various 
views of pedestrians including side view, back view, pedestrian carrying bag and so on.  
 

    
(a)                                                          (b) 

Fig. 22. Outdoor scene illustrating pedestrian extraction: (a, b) representation of the blob 
detected for both IR and visible images 
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 (a)                                                                            (b) 

Fig. 23. Night scene showing pedestrian extraction: (a, b) representation of the blob detected 
for both IR and visible images 

The people are usually standing, but appear in any orientation and against a wide variety of 
background image including crowds. We have confirmed the effectiveness of our proposed 
method under difficult illumination such as the influence of flare and also various views of 
pedestrians including side view, back view, pedestrian carrying bag and so on. Moreover, 
we can see that our fusion method (multi-slit & HOG) has better accuracy compared to 
HOG of the conventional method. With a false positive rate of one digit percentages, our 
method has 25% lower false negative rate than the HOG. This means that the appearance 
and spatiotemporal features are suitable for people detection. 
 
 

 
            a)                                                                               b) 

 
     c)                              d)                        e)                                   f) 

Fig. 24. Example of detected pedestrians: (a) the image is influenced by flare and pedestrian 
with bags from back view, (b) pedestrians are in the dark and from side view, (c) side view 
pedestrian, (d) back view pedestrian, (e) pedestrian in far distance, and (f) multiple 
pedestrians 
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5. Conclusion and image fusion research challenges 
In this chapter, we presented person detection methods in FIR images and outlined image 
fusion approach for person detection. The implementation has been done to detect near and 
faraway persons. Among the proposed methods, the multi-slit method is easy to apply and 
does not require any complex computational techniques for head region detection. 
Moreover, we can state that multi-slit method is more robust than head shape-based 
method. On the other hand, the GC movement patterns method can detect the targeted 
regions with high accuracy especially at near distances. In addition, this approach has 
versatile application for various poses. Moreover, it can differentiate person and non-
person. It is worthwhile to note that these methods would lead to further steps for person 
detection research by using FIR images.  
On the whole, through the proposed person detection methodology is by no means perfect 
for real world applications and it is still needed to further improve the detection 
performance. It has made much progress, considering the current research stages, and it 
presents encouraging results. Also, our approach collaborates with one another. Future 
work includes region-based image fusion for visibility improvement. The development of a 
visibility improvement is essential for poor vision at night, in bad weather, under smoke 
and so on. We also expect to consider for distance estimation of the person using FIR and 
visible images. Additional issues rise for future research widen application areas not only 
for night vision but also for finding people under smoke, flame, and for rescue at disaster 
site, and so on.  
Therefore, horizon of our proposed person detection algorithm can be widen and applied to 
the tasks of region-based fusion method using FIR and visible images. In this aspect, both 
thermal infrared and visible spectrum video have some fundamental, as well as 
technological differences. In certain scenarios, one modality might have particular 
advantages over the other. The challenge, therefore, is to develop techniques to 
automatically decide on which modality is best to use at any one time, or how best to 
combine them to play on their strengths and allow them to compensate for each other’s 
weaknesses. 
Presently, visible spectrum technology is far more developed than thermal infrared, which 
has only recently come to the consumer market, after years of military development. 
Therefore visible spectrum cameras have a superior resolution to thermal cameras. The 
standard visible spectrum camera has roughly six times more pixels than a thermal camera. 
The visible spectrum allows robust tracking of objects using their color and texture, when 
there is good lighting.  
However, there are many benefits to using thermal infrared. When an object has a 
temperature that is outside the background temperature distribution, it will have a very 
sharp edge around it in the thermal image. Thermal infrared video is also almost completely 
immune to lighting changes, as it depends primarily on emitted radiation. It can operate in 
total darkness when visible spectrum analysis would fail completely. The decimation/ 
saturation effect mentioned earlier can be very beneficial depending on the task at hand. If a 
segmentation mask is required, a simple thresholding of the thermal image can suffice. 
Future work will focus on further development of both low-level algorithms for modality 
fusion in a computer vision system and the use of these algorithms in an application. Low-
level algorithms such as change-detection and segmentation have been extensively 
researched for single modality. The future challenge now is to understand how the current 
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state-of the- art can be used to benefit multimodal analysis, or whether new algorithms and 
fusion techniques are necessary to fully exploit the extra benefits of multiple modalities. 
Research into whether current methods of representational fusion can benefit analytical 
fusion is also of interest. Finally, the use of these low-level techniques in an application, such 
as people detection and tracking, will be the true test of their usefulness. 
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1. Introduction  
1.1 Context  
With the development of new satellite systems and the accessibility of data from public 
through web services like Google Earth, remote sensing imagery, knows today an important 
growing which advanced and still advances researches in this area on different aspects. 
Especially in cartography, many studies have been conducted for multi-source satellite 
images classification. These studies aim to develop automatic tools in order to facilitate the 
interpretation and provide a semantic land cover classification. 
Classical tools based on satellite images deal essentially with one category of satellite images 
which allows a partial interpretation. Multi-sensor or multi-source image fusion have been 
applied in the field of remote sensing since 20 years and continues today to provide efficient 
solutions to problems related to detection and classification. The work presented in this 
chapter is a part of multi-source fusion research efforts to have reliable and automatic 
satellite image interpretation. We propose to apply the new fusion concepts and theories for 
multi-source satellite images. Our main motivation is to measure the real contribution of 
multi-source image fusion according to the exploitation of satellite images separately.  
Recent studies suggest that the combination of imagery from satellites with different 
spectral, spatial, and temporal information may improve land cover classification 
performance. The use of multi-source satellites images fully take into account the 
complementary and supplementary information provided by different data sources and 
considerably optimize the classification of cartographic objects. Particularly, combination of 
optical and radar remote sensing data may improve the classification results because of the 
complementarities of these two sources. Spectral features extracted form optical data may 
remove some difficulties faced when using only radar images. However, radar images 
present the following massive advantage: the possibility of penetrating the clouds. Thus, 
data fusion technique is applied to combine these two kinds of information.  

1.2 Proposed approach 
In literature, there is a huge variety of fusion theories mainly probabilistic and Bayesian 
theory [Mitchell, 2007], fuzzy and possibility theory [Milisavljevi'C & Bloch, 2009], 
Dumpster and Shafer theory, etc. [Milisavljević & Bloch, 2008]. However, most of them are 
investigated in four steps which are: modeling, estimation, combination and decision (cf. 
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Fig. 1.). For radar and optical images fusion, we choose to apply a Bayesian fusion 
framework in order to take into account the speckle radar texture which can be better 
represented by a Markovian gamma distribution [Rui-hui et al., 2009].  
The originality of the proposed method is on one hand, the introduction of spatial and 
contextual information in fusion process using Markovian modeling with an optimal 
neighborhood order. Indeed, it has been shown [Meddeb et al., 2007] that the optimal 
neighborhood order allows a better representation of the speckle radar texture in terms of 
contrast, homogeneity, isotropy, etc. On the other hand, the given approach characterizes 
the radar texture data with a Markovian gamma auto-model. The radar texture is being 
usually modeled by a Gaussian model in probabilistic fusion processes.  
Fig. 1. presents the main steps for multi-source image classification. As we can see, before 
applying fusion processing, some pretreatments must be applied to both satellites data due 
to the different nature of optical and radar images. The first pretreatment is the geometric 
correction which allows the superposition of the two remote sensing images [Zitova & 
Flusser, 2003]. The second pretreatment is the single image classification applied to both 
radar and optic images using a Fuzzy C-Means (FCM) algorithm [Wang, 1990]. Radar 
images are gamma MAP [Hosomura & Jayasekera, 1993] filtered before classification in 
 

 
Fig. 1. Multi-source probabilistic fusion approach for land cover classification: main steps. 
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order to smooth the granular texture and reduce speckle noise. For each pixel, we model its 
posterior probability by a Besag Markov Gaussian auto-model in optical case and a Besag 
Markov gamma auto-model in radar case [Besag, 1974]. Parameters models are estimated 
using Expectation Maximization (EM) algorithm [Hogg et al., 2005]. Then the posterior 
probabilities are combined by the way of Bayesian fusion theory [Bloch, 2008]. 
This chapter is organized as follows. First, we describe briefly the three pretreatments 
phases. Secondly, the posterior probability modeling is presented for both radar and optical 
images. These probabilities are then used to present the Bayesian fusion process. Finally, 
pretreatments and fusion results are exposed in order to show land cover classification 
performances. Qualitative and Quantitative evaluations of the obtained results are also 
presented.  

2. Fusion preprocessing  
The exploitation of multi-source satellite images allows the obtaining of new signatures. 
However, these images are generated from various sensors, have different features 
(geometric, resolution, lighting, etc.) and are mainly not associated to the pixel level. Fusion 
process appears then complex and very sensitive to these data. To deal with this problem, 
some pretreatments must be done before combination step in order to correct images and 
prepare them for a simultaneous exploitation. 
These preprocessing steps are essentially: 
- Geometric correction  
- Filtering  
- Single image classification 
- Data representation or modeling. 

2.1 Geometric correction 
The first pretreatment is the geometric superposition and geocoding [Hong & 
Schowengerdt, 2005]. For both optical and radar images, acquisition process is not the same 
and the measured data have different natures. Because of sampling and oblique geometric 
acquisition in radar imagery, there is no direct transformation from radar to optical image 
and inversely. Several registration techniques exist. Each registration method is 
characterized by four criteria that are essentially:  
- The attributes: these are features extracted from both images to guide the 

transformation. There are extrinsic attributes (e.g. fixed external markers) and intrinsic 
attributes (e.g. the grayscale or extracted geometric primitives).  

- The similarity criterion: it sets a certain distance between images attributes to quantify 
the notion of similarity.  

- The deformation model: it determines how the image is geometrically changed. It can 
be local or global, and is characterized by a certain number of degrees of freedom.  

- The optimization strategy: it determines the best processing within the meaning of a 
certain similarity criteria and a deformation model.  

Depending on the type of deformation model, there are two types of registration: rigid and 
elastic registration [Shabou et al., 2007]. Among rigid registration family, there are linear or 
nonlinear transformations. The control points based registration is a non linear approach for 
which the geometric correction is determined according to a polynomial model 
(deformation model). The polynomial coefficients are calculated by minimizing the 
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Fig. 1.). For radar and optical images fusion, we choose to apply a Bayesian fusion 
framework in order to take into account the speckle radar texture which can be better 
represented by a Markovian gamma distribution [Rui-hui et al., 2009].  
The originality of the proposed method is on one hand, the introduction of spatial and 
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images are gamma MAP [Hosomura & Jayasekera, 1993] filtered before classification in 
 

 
Fig. 1. Multi-source probabilistic fusion approach for land cover classification: main steps. 
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order to smooth the granular texture and reduce speckle noise. For each pixel, we model its 
posterior probability by a Besag Markov Gaussian auto-model in optical case and a Besag 
Markov gamma auto-model in radar case [Besag, 1974]. Parameters models are estimated 
using Expectation Maximization (EM) algorithm [Hogg et al., 2005]. Then the posterior 
probabilities are combined by the way of Bayesian fusion theory [Bloch, 2008]. 
This chapter is organized as follows. First, we describe briefly the three pretreatments 
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images. These probabilities are then used to present the Bayesian fusion process. Finally, 
pretreatments and fusion results are exposed in order to show land cover classification 
performances. Qualitative and Quantitative evaluations of the obtained results are also 
presented.  
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However, these images are generated from various sensors, have different features 
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some pretreatments must be done before combination step in order to correct images and 
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Schowengerdt, 2005]. For both optical and radar images, acquisition process is not the same 
and the measured data have different natures. Because of sampling and oblique geometric 
acquisition in radar imagery, there is no direct transformation from radar to optical image 
and inversely. Several registration techniques exist. Each registration method is 
characterized by four criteria that are essentially:  
- The attributes: these are features extracted from both images to guide the 

transformation. There are extrinsic attributes (e.g. fixed external markers) and intrinsic 
attributes (e.g. the grayscale or extracted geometric primitives).  

- The similarity criterion: it sets a certain distance between images attributes to quantify 
the notion of similarity.  

- The deformation model: it determines how the image is geometrically changed. It can 
be local or global, and is characterized by a certain number of degrees of freedom.  

- The optimization strategy: it determines the best processing within the meaning of a 
certain similarity criteria and a deformation model.  

Depending on the type of deformation model, there are two types of registration: rigid and 
elastic registration [Shabou et al., 2007]. Among rigid registration family, there are linear or 
nonlinear transformations. The control points based registration is a non linear approach for 
which the geometric correction is determined according to a polynomial model 
(deformation model). The polynomial coefficients are calculated by minimizing the 
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geometric errors between two sets of control points selected manually in both images 
(optimization strategy). These points should be visible on the two images. The quality of the 
geometric correction depends on the precision of these points’s localization, their 
distribution in the image and their number. More, are the marked points, better is the 
correction. The polynomial transformation is then performed projecting one image onto 
another.  

2.2 Radar texture filtering 
The exploitation of radar images in terms of land cover classification presents some 
difficulties mainly because of the speckle noise. 
The Synthetic Aperture Radar (SAR) is a coherent imaging system where backscattered 
signals coming from multiple distributed targets may interfere in any point of the space. If 
the interference is constructive, it results a brilliant point otherwise a dark point. The speckle 
noise, which gives the SAR image a granular character, reduces the correlation between 
pixels increasing thus the variance and the mean radar reflectivity of a local area. This 
phenomenon is a serious problem that degrades the quality of SAR images and causes 
difficulties for targets detection thus image interpretation.  It is often compared to a 
multiplicative noise i.e. in direct proportion of the radar reflectivity which increases the 
difficulty of completely eliminating it.  
It appears therefore necessary to reduce the speckle noise before using SAR images. Many 
techniques exist in the literature. Two techniques are often used: the multi-look processing, 
usually done at acquisition time, averages out the speckle noise by taking several "looks" at 
a single pixel of the radar image and the spatial filtering technique which includes adaptive 
and non-adaptive filters, is applied locally on a neighborhood around each pixel. The 
optimal choice of a filter depends on the ability of this filter to reduce speckle noise when 
preserving radiometric and radar texture information. The non-adaptive filters apply the 
same weights uniformly across the entire image thus they do not take into account 
backscattered signal local properties (example, the median and simple mean filters). 
The adaptive filters adapt their weights across the image to the speckle level. They explicitly 
take account of the speckle and integrate local backscattering properties in their 
mathematical models. There are many forms of adaptive speckle filtering [Lee et al., 1994], 
including the Lee filter, the Frost filter, and the Gamma Maximum-A-Posteriori (GMAP) 
filter [Baraldi & Panniggiani, 1995]. The last one is based on the assumption that the radar 
intensity follows a gamma distribution. This filter, relatively to other filters, improves 
detection of edges and details in high-texture areas using second order spatial statistics and 
without losing information. Many other filters have been recently introduced [Maître, 2000] 
[Lee et al., 1994] but they have all comparable smoothing effects.  

2.3 Single image classification 
A critical step of multi-source satellite images processing is classification, whose objective is 
to identify all land cover types. There are mainly two categories of classification techniques:  
- The supervised classification: it relies on prior information knowledge to search for 

classes. Training areas corresponding to sample pixels that are representative of specific 
classes, are selected manually by the user who also designates the outputs. The 
classification system is then used to develop a statistical characterization of each class 
basing on the training samples. The image is then classified by examining each pixel 
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and making a decision about which of the signatures it is closest to. The most known 
supervised classification methods include neuronal network [Benediktsson et al., 1990] 
and SVM based approaches [Bazi & Melgani, 2006].  

- The non-supervised classification: it uses data discriminating features to separate pixels 
in different classes as homogeneous as possible. The number of classes is often 
unknown by the user. These automatic methods are usually iterative and construct 
gradually classes basing on distances or pseudo-distances. Among these methods, we 
can mention the K-means algorithm [Philips, 2002] which has been largely used. Then, 
the “ISODATA (Iterative Self Organizing Data Analysis) clustering” algorithm [Philips, 
2002], the FCM (Fuzzy C-means) method [Wang, 1990] [Bezdek et al., 1984], the 
"Competitive Learning" technique [Tang, 1998], etc. In the presented work, we focused 
on two non-supervised classification methods which have been used for satellite 
images: "ISODATA clustering" and FCM algorithm. The ISODATA algorithm is similar 
to the k-means algorithm with the distinct difference that the number of clusters is not 
previously known. It minimizes the distance to the mean as method of clustering and 
iterates through the data until user specified thresholds are reached and the optimal set 
of output classes is obtained. The ISODATA algorithm is very sensitive to initial 
starting values. Another commonly used unsupervised classification method is the 
FCM algorithm which is very similar to K-Means, but fuzzy logic is incorporated and 
recognizes that class boundaries may be imprecise or gradational. The FCM 
classification method creates an initial set of prototype classes and then determines a 
membership grade for each class for every pixel. The grades are used to adjust the class 
assignments and calculate new class centres, and the process is repeated until the 
iteration limit is reached. The FCM algorithm is more adaptive than other hard 
clustering methods and performs extremely well in situations of large variability of 
cluster shapes, densities and number of data points in each cluster.  

Each optical and filtered radar image is classified using an automatic unsupervised FCM 
algorithm [Wang, 1990] to allow cartographic objects detection and classification. The results 
of FCM algorithm classification constitute the input of the fusion process. 

2.4 Data representation  
The exploitation of spatial information is fundamental for image processing, more 
particularly in image fusion. We often require specific developments to adapt the methods 
for each application. In the context of this work, we aim to introduce spatial information at 
the level of combination in fusion processing. Probabilistic Markov Random Fields (MRF) 
offer a natural framework to this. Markovian modelling implies that the probability that a 
random variable, in a pixel takes a given value knowing the entire image is equal to the 
probability in this pixel knowing its neighbours. It allows thus describing spatial interaction 
between level's pixels, by their neighbor's graph which coverage is quantified by a field 
order.  
Previous works [Decombes et al., 1999] [Lorette et al., 2000] show Markov models 
effectiveness for texture and region characterization. Besag Markovian auto-models [Besag, 
1974] form a class of Markov Random fields particularly simple and useful for spatial 
statistics. They are based on conditional distributions which are assumed to belong to an 
exponential family.  
A Besag auto-model is defined as a Markovian field associated to Gibbs energy by: 
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geometric errors between two sets of control points selected manually in both images 
(optimization strategy). These points should be visible on the two images. The quality of the 
geometric correction depends on the precision of these points’s localization, their 
distribution in the image and their number. More, are the marked points, better is the 
correction. The polynomial transformation is then performed projecting one image onto 
another.  

2.2 Radar texture filtering 
The exploitation of radar images in terms of land cover classification presents some 
difficulties mainly because of the speckle noise. 
The Synthetic Aperture Radar (SAR) is a coherent imaging system where backscattered 
signals coming from multiple distributed targets may interfere in any point of the space. If 
the interference is constructive, it results a brilliant point otherwise a dark point. The speckle 
noise, which gives the SAR image a granular character, reduces the correlation between 
pixels increasing thus the variance and the mean radar reflectivity of a local area. This 
phenomenon is a serious problem that degrades the quality of SAR images and causes 
difficulties for targets detection thus image interpretation.  It is often compared to a 
multiplicative noise i.e. in direct proportion of the radar reflectivity which increases the 
difficulty of completely eliminating it.  
It appears therefore necessary to reduce the speckle noise before using SAR images. Many 
techniques exist in the literature. Two techniques are often used: the multi-look processing, 
usually done at acquisition time, averages out the speckle noise by taking several "looks" at 
a single pixel of the radar image and the spatial filtering technique which includes adaptive 
and non-adaptive filters, is applied locally on a neighborhood around each pixel. The 
optimal choice of a filter depends on the ability of this filter to reduce speckle noise when 
preserving radiometric and radar texture information. The non-adaptive filters apply the 
same weights uniformly across the entire image thus they do not take into account 
backscattered signal local properties (example, the median and simple mean filters). 
The adaptive filters adapt their weights across the image to the speckle level. They explicitly 
take account of the speckle and integrate local backscattering properties in their 
mathematical models. There are many forms of adaptive speckle filtering [Lee et al., 1994], 
including the Lee filter, the Frost filter, and the Gamma Maximum-A-Posteriori (GMAP) 
filter [Baraldi & Panniggiani, 1995]. The last one is based on the assumption that the radar 
intensity follows a gamma distribution. This filter, relatively to other filters, improves 
detection of edges and details in high-texture areas using second order spatial statistics and 
without losing information. Many other filters have been recently introduced [Maître, 2000] 
[Lee et al., 1994] but they have all comparable smoothing effects.  

2.3 Single image classification 
A critical step of multi-source satellite images processing is classification, whose objective is 
to identify all land cover types. There are mainly two categories of classification techniques:  
- The supervised classification: it relies on prior information knowledge to search for 

classes. Training areas corresponding to sample pixels that are representative of specific 
classes, are selected manually by the user who also designates the outputs. The 
classification system is then used to develop a statistical characterization of each class 
basing on the training samples. The image is then classified by examining each pixel 
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and making a decision about which of the signatures it is closest to. The most known 
supervised classification methods include neuronal network [Benediktsson et al., 1990] 
and SVM based approaches [Bazi & Melgani, 2006].  

- The non-supervised classification: it uses data discriminating features to separate pixels 
in different classes as homogeneous as possible. The number of classes is often 
unknown by the user. These automatic methods are usually iterative and construct 
gradually classes basing on distances or pseudo-distances. Among these methods, we 
can mention the K-means algorithm [Philips, 2002] which has been largely used. Then, 
the “ISODATA (Iterative Self Organizing Data Analysis) clustering” algorithm [Philips, 
2002], the FCM (Fuzzy C-means) method [Wang, 1990] [Bezdek et al., 1984], the 
"Competitive Learning" technique [Tang, 1998], etc. In the presented work, we focused 
on two non-supervised classification methods which have been used for satellite 
images: "ISODATA clustering" and FCM algorithm. The ISODATA algorithm is similar 
to the k-means algorithm with the distinct difference that the number of clusters is not 
previously known. It minimizes the distance to the mean as method of clustering and 
iterates through the data until user specified thresholds are reached and the optimal set 
of output classes is obtained. The ISODATA algorithm is very sensitive to initial 
starting values. Another commonly used unsupervised classification method is the 
FCM algorithm which is very similar to K-Means, but fuzzy logic is incorporated and 
recognizes that class boundaries may be imprecise or gradational. The FCM 
classification method creates an initial set of prototype classes and then determines a 
membership grade for each class for every pixel. The grades are used to adjust the class 
assignments and calculate new class centres, and the process is repeated until the 
iteration limit is reached. The FCM algorithm is more adaptive than other hard 
clustering methods and performs extremely well in situations of large variability of 
cluster shapes, densities and number of data points in each cluster.  

Each optical and filtered radar image is classified using an automatic unsupervised FCM 
algorithm [Wang, 1990] to allow cartographic objects detection and classification. The results 
of FCM algorithm classification constitute the input of the fusion process. 

2.4 Data representation  
The exploitation of spatial information is fundamental for image processing, more 
particularly in image fusion. We often require specific developments to adapt the methods 
for each application. In the context of this work, we aim to introduce spatial information at 
the level of combination in fusion processing. Probabilistic Markov Random Fields (MRF) 
offer a natural framework to this. Markovian modelling implies that the probability that a 
random variable, in a pixel takes a given value knowing the entire image is equal to the 
probability in this pixel knowing its neighbours. It allows thus describing spatial interaction 
between level's pixels, by their neighbor's graph which coverage is quantified by a field 
order.  
Previous works [Decombes et al., 1999] [Lorette et al., 2000] show Markov models 
effectiveness for texture and region characterization. Besag Markovian auto-models [Besag, 
1974] form a class of Markov Random fields particularly simple and useful for spatial 
statistics. They are based on conditional distributions which are assumed to belong to an 
exponential family.  
A Besag auto-model is defined as a Markovian field associated to Gibbs energy by: 
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Where xs is the current pixel, S is the whole set of pixels in the image, C2 represents the set of 
all possible order 2 cliques, xr are order 2 neighborhood pixels of pixel xs. Both 1 and 2 
characterize totally the Markovian field: 

1( )sxφ is the data description potential.  

2( , )s rx xφ is the interaction potential between xs and xr.  
Order 2 is the lowest order to convey contextual information. It is widely used because of its 
simple formulation and low computational cost. However, previous works [Meddeb et al., 
2007] show that superior orders neighborhoods allow a better representation of the optical 
and the radar texture. The optimal neighborhood order is determined basing on descriptors 
such as contrast, homogeneity, isotropy, entropy, texture coefficients, etc. Experimental 
results (cf. Fig. 2.) showed a convergence of descriptors majority to order 4.  However, the 
obtained curves show a small loss of performances between order 3 and 4.  For this reason 
and due to calculation complexity, we choose the third order neighborhood.  
 

 
Fig. 2. Radar texture features versus neighborhood order for three region of interest: Left 
(water area), middle (Urban area), right (vegetation area) [Meddeb et al., 2007] 

The auto-models can be classified according to the energy potential 1 i.e. to assumptions 
made about xs probability laws.  Among these models, we can distinguish the auto-logistic, 
the auto-binomial, the auto-normal and the auto-gamma models. The following describes 
briefly the two last MRF models for representing respectively optical and radar image 
textures. 

2.4.1 Auto-normal model  
An auto-normal model also called Gaussian MRF is much used in the literature especially 
for segmentation, restoration and regularization problems. The corresponding energy is of 
the following form: 

 
2 2

( , )
( ) s s s r

s S s r C
U x x x xα μ β

∈ ∈
= − + −∑ ∑  (2) 

Where C is the set of cliques around the pixel xs, μs is the local mean and: 

- 
2

s s
s S

xα μ
∈

−∑ is the potential describing the data, 

Remote Sensing Image Fusion for Unsupervised Land Cover Classification   

 

271 

- 2

( , )
s r

s r C
x xβ

∈
−∑ is the regularization term describing interaction between pixels.  

The conditional probability density function (pdf) of the site s, is given by: 

 2( / , ) ( , )s s r r s s sP X x X x r V N μ σ= = ∈ =  (3) 

Where Xs, Xr represent respectively the random variables associated to sites s with value xs 
and r of value xr and Vs is the neighbourhood of the site s. 
The mean and the variance of the site s are defined by: 
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Where ms and mr are respectively the means around the site s and r and βsr is the interaction 
parameter between sites s and r.  
Thus the conditional probability becomes:  

 

2
2

2
2

1exp( ( ( )) )
2

( / , ) 1exp( ( ( )) )
2

s

s

s s sr r r
r V

s s r r s

s s sr r r
s S r V

x m x m
P X x X x r V

x m x m

β
σ

β
σ

∈

∈ ∈

− − − −

= = ∈ =
− − − −

∑

∑ ∑
 (5) 

Where μs, σs and βsr are the normal auto-model parameters to be estimated.  
Several works [Descombes et al., 1999] demonstrate that Gaussian MRF shows better 
representation of optical images mainly because of texture homogeneity of the most 
cartographic objects. Other works [Belhadj et al. 2000] showed that the auto-gamma model 
is more adapted to radar images than auto-normal one because of the granular nature of 
radar texture.  

2.4.2 Auto-gamma model  
The auto-gamma model takes into account simultaneously the radar and speckle texture 
which guarantees to this model a considerable advantage [Belhadj et al., 2000]. Indeed, it 
makes it possible to be free from the pretreatment step which is speckle filtering. However, 
filtering is necessary before single radar image classification to limit the number of classes 
and to regularize their contours.  
The auto-gamma model law is given by: 
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Where a and αs are the auto-gamma model parameters.  
The local conditional probability becomes starting from this expression by:  
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Where μs, σs and βsr are the normal auto-model parameters to be estimated.  
Several works [Descombes et al., 1999] demonstrate that Gaussian MRF shows better 
representation of optical images mainly because of texture homogeneity of the most 
cartographic objects. Other works [Belhadj et al. 2000] showed that the auto-gamma model 
is more adapted to radar images than auto-normal one because of the granular nature of 
radar texture.  

2.4.2 Auto-gamma model  
The auto-gamma model takes into account simultaneously the radar and speckle texture 
which guarantees to this model a considerable advantage [Belhadj et al., 2000]. Indeed, it 
makes it possible to be free from the pretreatment step which is speckle filtering. However, 
filtering is necessary before single radar image classification to limit the number of classes 
and to regularize their contours.  
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Where a, αs and βsr are the gamma auto-model parameters to be estimated.  

2.4.3 Parameter estimation  
One of the main tasks of Bayesian classification is parameters estimation. In order to 
estimate the auto-models parameters by the maximum likelihood method we use the 
Expectation-Maximizing (EM) algorithm. Proposed by Dumpster et al. [Dumpster et al., 
1977], the EM algorithm is an iterative algorithm for the calculation of the estimator of the 
maximum likelihood parameter of a model. The EM algorithm proceeds in two steps: an 
expectation step, followed by a maximization step which are iterated until convergence.  
Parameters estimation algorithm was applied on both auto-normal and auto-gamma 
simulated images in order to validate the estimation process.   

3. Probabilistic fusion model  
In this section, we present a definition of data fusion in the field of image processing as well 
as the principal fusion steps applied to multi-source images. We will especially focus on the 
Bayesian probabilistic approach which has been adopted in this work.  

3.1 Fusion steps 
In the literature, there are several definitions for data fusion. Most of them are quoted in 
[Bloch, 2008] [Klein, 2004]. The definition that we adopt here was introduced by Bloch in 
[Bloch, 2008] and is adapted to the case of multi-source images: “The information fusion 
consists in combining heterogeneous information resulting from several sources in order to 
improve the decision.” This definition is sufficiently general to include the diversity of 
fusion problems in signal and image processing.  
Fusion is not usually a simple task. It can be investigated into four steps. We describe them 
briefly here, because they will be used for the presentation of fusion Bayesian theory. Let us 
consider a general fusion problem for which one has K sources, S1, S2,…, SK and for which 
the goal is to make a decision chosen from N possible decisions d1, d2,…, dN. The principal 
steps necessary to build fusion process are as follows [Bloch, 2008]: 
- Modelling 
- Estimation 
- Combination 
- Decision. 
1. Modelling: this step includes the formalism choice and the mathematical expressions to 

be connected to this formalism. This step can be guided by additional or prior 
information about the context or the field of study. Let us suppose that each source Sj 
provides information represented by the model Mij for the decision di. The shape of Mij 
depends of course on the selected formalism.   

2. Estimation: the majority of modelling techniques require a parameters estimation phase 
(for example all the distributions based methods). Here also additional information can 
be used.  

3. Combination: this step relates on the choice of a compatible operator to the modelling 
formalism. It is also guided by additional information.  

4. Decision: it represents the crucial fusion step, which makes it possible to change the 
information (provided by the sources) to the choice of a decision di.  
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The way in which these stages are arranged defines the fusion system and its architecture. In 
the literature, there are several fusion approaches. We focus here on probabilistic fusion 
theory and describe in details its main steps.  

3.2 Bayesian fusion theory 
The probabilistic fusion theory is the most useful fusion tool which is associated to Bayesian 
decision theory. This approach treats information uncertainty and is based on solid 
mathematical tools.  
- Modelling 
Information in probabilistic theory is modelled by a conditional probability. For example, 
the probability that a pixel x belongs to a particular class Ci, given the available image Ij has 
the following form [Bloch, 2008]:  
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This probability is calculated starting from the information extracted from the image 
features fj(x). In the simplest case, it can be the considered pixel grey level, or more complex 
information requiring some pretreatments. The previous equation does not then depend any 
more on the entire image Ij and is written in the simplified form as:  
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probability according to class Ci, of the information provided by the image Ij. They are 
learned or estimated by enumeration on test areas (the simplest case) or by training on these 
areas the parameters of a given probabilistic law.  
- Combination within a Bayesian framework 
Once information resulting from each sensor, represented by a convenient model, they can 
be combined according to specific rules according to the selected theoretical framework. The 
probabilistic and Bayesian fusion can be carried out by two equivalent ways and at two 
different levels [Bloch, 2008]:  
- The fusion can be done at the modelling step. Then we calculate probabilities for l 

images sources as 1( / ,..., )i lp x C I I∈ . Using the Bayes rule:  
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The different terms are estimated by training. 
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Very often, known the complexity of the training starting from several sensors and the 
difficulty of obtaining sufficient statistics, these equations are simplified under the 
independence assumption. Several criteria were proposed to check the validity of this 
assumption. The previous formula becomes then:  
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( ,..., )
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j i ij

i l
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The equation (12) revealed clearly the type of information combination as a product. We can 
notice also that the prior probability p(x∈Ci) plays the same role as the sources in the 
combination. Let us mention here that the Bayesian combination has a conjunctive character 
[Bloch, 2008] by the means of multiplication. 
- Decision 
The last fusion step is the decision. For example, the choice of the class to which a point 
belongs. This binary decision can be weighted with a quality measurement, allowing its 
acceptance or its rejection. The most used rule for the probabilistic and Bayesian decision is 
the maximum a posteriori:  

 { }1 1( / ,..., ) max ( / ,..., ),1i i l k lx C si p x C I I p x C I I k N∈ ∈ = ∈ ≤ ≤  (13) 

Several other criteria were developed to adapt the user needs and the decision context as 
well as possible. Especially, we cite: the maximum probability, the maximum entropy, the 
maximum hope, the minimal risk, etc. 
The next section presents the results corresponding to each processing step and the final 
fusion results.   

4. Results 
4.1 Pretreatments results  
4.1.1 Data description 
The proposed Bayesian fusion approach was applied using seven satellite images covering 
Tunis City area, North Africa: three ERS images acquired at three different dates 
(acquisitions relatively close, cf. Fig. 3.) and one Spot4 image containing four spectral bands 
(cf. Fig. 4.).  
 

    
Fig. 3. The multi-temporal radar ERS image composed of three images acquired at three 
different dates. 
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Fig. 4. The Spot4 image composed of four spectral bands. 

4.1.2 Geometric correction  
There are two types of geometric corrections:  
- The correction of distortions due to the geometry variations between the ground and 

the sensor, 
- The transformation of the data into true coordinates i.e. into ground geometry 

coordinates.  
We firstly identify several clearly distinct points on the image to be corrected i.e. the radar 
image. The Spot4 image is geo-referenced (ground known reference).  Then, these points are 
connected to another set of points selected on the optical image.   
Fig. 5. illustrates the geometric correction result applied to the seven images. This 
preprocessing step is very delicate since its accuracy disturbs fusion results. Registration 
errors are chosen less than 10-2.  
 

    
 

Fig. 5. Result of geometric correction applied between optical and radar images. 
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4.1.3 Speckle filtering   
The proposed fusion approach does not require radar images filtering phase since the radar 
texture model takes into account the speckle. However, we need filtering for single image 
classification since it necessitates a strong homogeneity degree inside the classes to be able 
to distinguish between them.  
As explained in paragraph 2.2, the gamma Map filter was retained because it makes it 
possible to smooth the scene and reduce the speckle noise while preserving the radiometric 
and textural radar features.  
 

 

  
 

Fig. 6. Filtering results: original radar image (left). Radar image obtained after gamma MAP 
filtering (right). 

The window size of the gamma MAP filter is fixed at 5x5. Fig. 6. shows the radar texture 
before and after speckle filtering. Radar filtering improves classification results.  

4.1.4 Single image classification results  
FCM classification algorithm was applied on both radar and optical images. To choose the 
classes number, we study auxiliary data such as maps and High Resolution (HR) images. 
We identify six classes. For the considered region, there are two types of vegetation: small 
trees and vegetation under water that we call humid area. There are also two types of urban 
areas: dense and disperse agglomeration regions.    
Fig. 7. and 8. show Fuzzy classification results for the Spot4 four spectral bands and the 
three ERS radar images. As we can notice the single classification results vary from one 
image to another. This is due to differences between spectral features and speckle noise. 
Single classification results give good reason to combine all this kind of information in order 
to improve land cover classification. 

4.1.5 Parameter estimation results  
EM algorithm (cf. paragraph 2.4.3) was applied for Markovian parameters estimation. Both 
auto-normal and auto-gamma models parameters exposed in 2.4 are estimated for each 
classified area.  
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Fig. 7. FCM classification results for Spot4 XS1, XS2, XS3 and XS4 bands (from left to right). 
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Fig. 8. FCM classification results for ERS images. 

4.2 Fusion results  
In order to highlight the contribution of spatial and contextual information introduced at the 
modelling level, we will present and compare fusion results obtained with and without 
spatial information exploitation. The four principal fusion steps are then investigated one by 
one in both cases. 

4.2.1 Fusion without spatial information 
First, we combine the optical and radar images without taking into account the pixel 
neighbourhood using Bayesian fusion. The expression of the posterior probability is given 
by the equation (12). In the case of radar and optical images, it becomes: 
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The modelling step consists in representing the conditional probability related to optical 
image by a Gaussian distribution and the one related to the radar image by a gamma 
distribution. The two probabilities are thus written: 

 2( / ) ( , )
jradar i i ip I x C N μ σ∈ =  (15) 

Where μi and σi2 represent the Gaussian distribution parameters for the optical image Ij and 
the class Ci, they correspond respectively to the average and the variance.  

 ( / ) ( , )
joptical i i ip I x C aγ α∈ =  (16)   

Where, ai and αi represent the gamma distribution parameters for the radar image radar Ij 
and the class Ci. 
Let us notice here, that we assume the sources independence which is justified by different 
nature of sensors.  
Concerning the choice of the prior probability p(x∈Ci), we fixed the same probability for 
each class. Indeed, since we do not have prior information about the real percentage of each 
class in the studied zones, one of the prior probabilities can be considered as equally 
probable.  
Other choices can be carried out for the prior probability such as the occupation percentage 
of each class according to the most reliable image source, the Markovian modelling, etc. 
The second step which is the estimation consists in determining for each class Ci, μI, σi2, ai 
and αi  by likelihood maximization. The combination is done using the Bayesian rule and the 
decision criterion is the posterior maximum.  
4.2.1.1 Qualitative evaluation 
We can notice here that the multi-source image fusion allows the characterization of humid 
and small vegetation dispersed areas inside Tunis City Lake.  The fusion of two set of 
images of different nature highlights the presence of these zones. As we can see from high 
resolution Google earth image (cf. Fig. 9.), these areas have already existed and are not 
selected by a single image classification which underline the need of multi-source image 
classification. 
The fusion of the seven images also characterizes better the urban zones and the road 
network. Indeed, we can observe the good detection of linear and fine structures at the level 
of the airport crossing raising thus confusion with vegetation areas. Moreover, the bare 
ground class is not too present after fusion; there is a certain confusion with urban classes, 
especially around Tunis City Lake. 
4.2.1.2 Quantitative evaluation  
Beside qualitative results, a manual classified image delimited by the help of higher 
resolution images, is used to evaluate quantitatively results accuracies. Thus we calculate  
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Fig. 8. FCM classification results for ERS images. 
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Fig. 9. The fist image corresponds to Bayesian fusion results without spatial information and 
the second image represents a high resolution Google Earth image. 

the confusion matrix [Bloch, 2008] according to the manual classified image (table1). This 
quantitative measure expresses the good detection and false alarms rates according to each 
class. As we can see, without taking into acount spatial information, we obtain suffisent 
results. 
 

Water  Vegetation Urban 1  Bare ground  Urban 2 Humid zone  

Water  97.50%  0.00%  1.70% 0.00%  0.00%  2.61%  
Vegetation  0.00%  91,65%  1.00% 1.50%  3.10%  0.35%  
Urban 1  0.00%  1.50%  89%  3.40%  2.67%  3.36%  
Bare ground  0.00%  2.55%  4.98% 91.55%  0.10  0.15  

Urban 2  0.00%  3.00%  1.32% 3.20%  92.44  1.13%  
Humid zone  2.50%  1.30%  2%  0.35%  0.79%  92.40%  

Table 1. The resulted Bayesian fusion confusion matrix. Case of the non exploitation of 
spatial information.  

For the second step, we introduce space information into the fusion process. 

4.2.2 Fusion with  spatial information 
The introduction of spatial information is done using the Markovian modelling of each class 
conditional probability. Besag auto-models are attributed to each source of information. We 
used auto-normal model for optical images because of optical texture homogeneity and 
auto-gamma model for non filtered radar images (cf. paragraph 2.4). Indeed, it has been 
shown that radar speckle texture follows a gamma distribution which has different features 
compared to a Gaussian distribution. Comparisons between Gaussian and gamma modeling 
are carried out to highlight the efficiency of gamma modeling in case of radar texture. Thus 
for optical texture the conditional probability is defined as: 
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Where μi, σi and βi are the Markov Gaussian model parameters for each class and Vs is the 
neighborhood of each site s in the image. As for non filtered radar texture the conditional 
probability is defined by the following equation: 
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Where αi, αi and βi are the gamma auto-model parameters for each considered class. Vs is the 
neighborhood of each site s. We remind here that radar images are not filtered for fusion 
process as for classification, because the gamma model takes into accounts the speckle 
granular texture [Belhadj et al., 2000]. 
The prior probability is chosen as a uniform probability to avoid FCM initial classifications 
influence in fusion process. The second step of the proposed fusion process consists in 
Markovian auto-models parameters estimation. Therefore, the parameters ˆˆ ˆ( , , )i i iμ σ β  for 
Gaussian model and ˆˆ ˆ( , , )i i ia α β  for gamma model are estimated using an EM algorithm.  
The neighborhood order is fixed at 3 [Meddeb et al., 2007] for both radar and optical images. 
The fusion combination step is done by multiplying the modeled posterior probability of 
each source of information following the Bayesian fusion theory. We refer to equation (14) to 
replace the conditional probability term by its corresponding expression, equation (17) for 
optical data and equation (18) for non filtered radar texture. Class decision is the last step of 
the fusion process. It is assured for each pixel using the Maximum A Posteriori probability 
(MAP) method.  
4.2.2.1 Qualitative evaluation  
Comparing to single FCM classification and fusion by introducing spatial information 
results, we point out a clear improvement of class distribution. Indeed, on the one hand, 
urban zones are better delimited (cf. fig. 10.). On the other hand, humid and vegetation  
 

 
Fig. 10. The fist image corresponds to Bayesian fusion results by introducing the spatial 
information and the second image represents a high resolution Google Earth image. 
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Fig. 9. The fist image corresponds to Bayesian fusion results without spatial information and 
the second image represents a high resolution Google Earth image. 

the confusion matrix [Bloch, 2008] according to the manual classified image (table1). This 
quantitative measure expresses the good detection and false alarms rates according to each 
class. As we can see, without taking into acount spatial information, we obtain suffisent 
results. 
 

Water  Vegetation Urban 1  Bare ground  Urban 2 Humid zone  
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Table 1. The resulted Bayesian fusion confusion matrix. Case of the non exploitation of 
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For the second step, we introduce space information into the fusion process. 

4.2.2 Fusion with  spatial information 
The introduction of spatial information is done using the Markovian modelling of each class 
conditional probability. Besag auto-models are attributed to each source of information. We 
used auto-normal model for optical images because of optical texture homogeneity and 
auto-gamma model for non filtered radar images (cf. paragraph 2.4). Indeed, it has been 
shown that radar speckle texture follows a gamma distribution which has different features 
compared to a Gaussian distribution. Comparisons between Gaussian and gamma modeling 
are carried out to highlight the efficiency of gamma modeling in case of radar texture. Thus 
for optical texture the conditional probability is defined as: 
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areas in the middle of Tunis City Lake are refined. However, there are some false alarms 
especially for vegetation areas and missed detections for urban areas.  
The urban zones 1 and 2 are quite present on the image with some confusion with the bare 
ground class which is less present after fusion. Also, the false alarm water areas selected 
away from Tunis City Lake are not present any more, and confusion with the vegetation 
was raised.  
4.2.2.2 Quantitative evaluation  
Looking at the obtained confusion matrix, we notice that diagonal values corresponding to 
good classification rates are sufficiently important. Besides, false alarm water areas outside 
Tunis City Lake are removed (comparing to single classification) reducing confusion with 
vegetation areas. However, there are still confusions between humid and vegetation areas, 
urban and bare ground areas.  
By comparing tables 1 and 2, we notice an improvement for the good classification rate. On 
the other hand, it is noted that certain false alarms are less important. The introduction of 
spatial information is then quantitatively justified.  
 

Water  Vegetation Urban 1  Bare ground  Urban 2 Humid zone  

Water  98.10%  0.00%  1.71%  0.00%  0.00%  1.23%  
Vegetation  0.00%  92,00%  1.00%  1.50%  2.10%  0.00%  
Urban 1  0.00%  1.50%  93.88% 1.78%  0.55%  1.20%  
Bare ground  0.00%  2.55%  2.33%  94.22%  0.10  1.35  

Urban 2  0.00%  3.00%  0.15%  2.15%  96.40  0.12%  
Humid zone  1.90%  1.30%  1.54%  0.35%  0.85%  96.10%  

Table 2. The resulted Bayesian fusion confusion matrix. 

5. Conclusion 
Two Besag Markovian auto-models are used to characterize remote sensing data issued 
from two different sensors. Gaussian model is applied on optical images whereas gamma 
model is used to represent radar images. For both models, an optimal Markov 
neighborhood order is used. Confusion matrix rates show that the proposed Bayesian fusion 
approach gives sufficient results according to single FCM classification. For future works 
and in order to improve the obtained results, we can introduce a reliability degree to each 
source of information in a fuzzy Bayesian fusion framework.   
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1. Introduction 
Thermal cameras and image intensifiers are common night vision (NV) cameras, which 
enable operations during night and in adverse weather conditions. NV cameras deliver 
monochrome images that are usually hard to interpret and may give rise to visual illusions 
and loss of situational awareness. The two most common NV imaging systems display 
either emitted infrared radiation or reflected low level light (LLL). In this way the different 
imaging modalities give complementary information about the objects or area under 
inspection. Thus, techniques for fusing infrared and LLL images should be employed in 
order to provide a compact representation of the scene with increased interpretation 
capabilities. 
Image fusion can be classified into two types based on pixel-level: pixel-based and region-
based. The pixel-based image fusion is characterized by simplicity and highest popularity. 
Because pixel-based methods fail to take into account the relationship between points and 
points, the fused image with either of them might lose some gray and feature information. 
However, for most image fusion applications, it seems more meaningful to combine objects 
rather than pixels. The region-based fusion, on the contrary, can obtain the best fusion 
results by considering the nature of points in each region altogether. Therefore, region-based 
fusion has advantages over the other two counterparts. At present, region-based methods 
use some segmentation algorithm to separate an original image into different regions, and 
then design different rules for different regions.  
During the last decade, a number of gray fusion algorithms have been proposed, and the 
fusion methods based on the multiscale transform (MST) are the most typical. The 
commonly used MST tools include the Laplacian pyramid and the wavelet transform 
(DWT). In general, due to the perfect properties of the DWT such as multi-resolution, spatial 
and frequency localization, and direction, the DWT-based methods are superior to the 
pyramid-based methods. However, the DWT also has some limitations such as limited 
directions and non-optimal-sparse representation of images. Thus, some artifacts are easily 
introduced into the fused images using the DWT-based methods, which will reduce the 
quality of the resultant image consequently. The Dual-Tree Complex Wavelet Transform 
(DT-CWT) has been introduced by Nick Kingsbury, which has the following properties: 
Approximate shift invariance; Good directional selectivity in 2-D with Gabor-like filters also 
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(DT-CWT) has been introduced by Nick Kingsbury, which has the following properties: 
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true for higher dimensionality; Perfect reconstruction using short linear-phase filters; 
Limited redundancy: independent of the number of scales. Therefore, the Dual-Tree 
Complex Wavelet Transform is more suitable for image fusion.  
In the context of NV imaging, a number of color fused-based representations have been 
proposed. A simple mapping of infrared and visual bands into the three components of an 
RGB image can provide an immediate benefit, since the human eye can discriminate several 
thousands of colors but only a few dozens of gray levels. On the other hand, inappropriate 
color mappings may hinder situational awareness due to lack of color constancy. Hence, an 
image fusion method for night vision imagery must result in color images with natural 
appearance and a high degree of similarity with the corresponding natural scenes. To make 
the coloration of false-color images appear more natural, Reinhard recently introduced a 
method that enabled the transfer of colors from one image to another. Subsequently, Toet 
demonstrated that Reinhard’s method could be adapted to transfer the natural color 
characteristics of daylight imagery into multi-band infrared and LLL images. Essentially, 
Toet’s natural color mapping method matches the statistical properties of the NV imagery to 
that of a natural daylight color image. However, this particular color mapping method 
colors the image regardless of scene content, weights all regions of the source image by the 
‘‘global’’ color statistics, and thus the accuracy of the coloring is very much dependent on 
how well the target and source images are matched.  
In this chapter, we present a region-based gray fusion method using the DT-CWT and a 
region-based color fusion method for infrared and LLL images. Segmentation is very 
important because segmentation precision has a great influence on the following fusion 
process. Here, we adopt two segmentation methods: the morphologic mehod and the 
nonlinear diffusion method. In the gray fusion method, the infrared and LLL images are 
decomposed by DT-CWT, the segmentation regions are mapped into each level, and fusion 
is carried out region by region in terms of some fusion rules. The region-based color fusion 
method is based on Toet’s global-coloring framework. 
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Fig. 1. Diagram of the proposed region-based method with DT-CWT 
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2. Image fusion based on region segmentation and complex wavelets 
The region-based fusion method for infrared and LLL images adopts the DT-CWT because 
of its approximate shift invariance and limited redundancy. Diagram of the proposed 
region-based method with DT-CWT is shown in Fig. 1. Segmentation is firstly performed on 
the infrared image and LLL images respectively with top-bottom-hat filtering and the 
threshold method, consequently, the DT-CWT coefficients from the different regions are 
merged separately. Finally the fused image is obtained by performing inverse DT-CWT. 

2.1 Image segmentation using morphology 
The morphologic filters have been proven as powerful methods in the denoising and 
smoothing of image intensities while retaining and enhancing edges. The combination of 
different morphologic filters makes the segmentation flexible. The top-hat transform and the 
bottom-hat transform are all the combination of open operation, close operation and the 
original image. 
The top-hat transform means subtracting a morphologically opened image from the original 
image and it can be used to enhance contrast in an image. The bottom-hat transform means 
subtracting the original image from a morphologically closed version of the image and it can 
be used to find intensity troughs in an image. The formula of the top-hat transform and 
bottom-hat transform are given by respectively 

 ( )topH f f p= −   (1) 

 ( )bottomH f p f= • −   (2) 

Here f is the original image, " " and " "• are open operation and close operation, topH and 
bottomH are results of the top-hat transform and bottom-hat transform. Add the original 

image f to the top-hat filtered image topH , and then subtract the bottom-hat filtered 
image bottomH , we can obtain the enhanced image. At the same time, noises of the original 
image f are eliminated. The enhanced image EH is given by 

 E top bottomH H H f= − +    (3) 

Then the threshold method is used to segment the enhanced image EH . We can get the 
binary segmentation image based on this method. Because the physical significance of the 
pixel at the same location of the heterogeneous source images is different, the shapes of 
segmentation regions obtained by the former method are also different. So we must deal the 
segmentation region with the associate methods. The information of segmentation region 
should be added to the associated-segmentation image and is used to guide the fusion rules.  
The following steps are used to generate the associated-segmentation image: 
1. If there is no overlapping area between the region (1)R and the region (2)R , then the 

associated- segmentation image is mapped into two regions, ( ) (1)
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threshold method, consequently, the DT-CWT coefficients from the different regions are 
merged separately. Finally the fused image is obtained by performing inverse DT-CWT. 

2.1 Image segmentation using morphology 
The morphologic filters have been proven as powerful methods in the denoising and 
smoothing of image intensities while retaining and enhancing edges. The combination of 
different morphologic filters makes the segmentation flexible. The top-hat transform and the 
bottom-hat transform are all the combination of open operation, close operation and the 
original image. 
The top-hat transform means subtracting a morphologically opened image from the original 
image and it can be used to enhance contrast in an image. The bottom-hat transform means 
subtracting the original image from a morphologically closed version of the image and it can 
be used to find intensity troughs in an image. The formula of the top-hat transform and 
bottom-hat transform are given by respectively 

 ( )topH f f p= −   (1) 

 ( )bottomH f p f= • −   (2) 

Here f is the original image, " " and " "• are open operation and close operation, topH and 
bottomH are results of the top-hat transform and bottom-hat transform. Add the original 

image f to the top-hat filtered image topH , and then subtract the bottom-hat filtered 
image bottomH , we can obtain the enhanced image. At the same time, noises of the original 
image f are eliminated. The enhanced image EH is given by 

 E top bottomH H H f= − +    (3) 

Then the threshold method is used to segment the enhanced image EH . We can get the 
binary segmentation image based on this method. Because the physical significance of the 
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segmentation region with the associate methods. The information of segmentation region 
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3. If region (1)R  overlaps the region (2)R completely, the associated-segmentation image is 
mapped into the same region, ( ) (1) (2)jR R R= = ; 

4. If one region completely contains the other region, for example, (1) (2)R R⊂ , then the 
associated- segmentation image is mapped into two regions, ( ) (1)

1
jR R= , 

( ) (2) (1)
2

jR R R= − . Here, (1)R is presented a part of one source image, (2)R  is presented a 

part of the other source image. ( )jR is presented a part of associated-segmentation 
image. Fig. 2 is some typical examples of the associated region maps. There are some 
small regions in the associated-segmentation image, and they don’t contain enough 
region information, which will cause false image in the fused image. We may merge 
these small regions using morphological operators.  

 

 
 a)   b)       c) 

Fig. 2. Associated region maps for the fused image. (a) region map1, (b) region map2, (c) 
associated region map 

2.2 Pixel fusion with complex wavelets 
The dual-tree complex wavelet transform (DT-CWT) is a relatively recent enhancement to 
the discrete wavelet transform (DWT), with important additional properties: It is nearly 
shift invariant and directionally selective in two and higher dimensions. It achieves this with 
a redundancy factor of only 2d for d-dimensional signals, which is substantially lower than 
the undecimated DWT. The multidimensional (M-D) DT-CWT is non-separable but is based 
on a computationally efficient, separable filter bank (FB).  
For 2-D signals, we can filter separately along columns and then rows by the way like 1-D. 
Kingsbury figured out in that, to represent fully a real 2-D signal, we must filter with 
complex conjugates of the column and row filters. So it gives 4:1 redundancy in the 
transform. Furthermore, it remains computationally efficient, since actually it is close to a 
classical real 2-D wavelet transform at each scale in one tree, and the discrete transform can 
be implemented by a ladder filter structure. The quad-tree transform is designed to be, as 
much as possible, translation invariant. It means that if we decide to keep only the details or 
the approximation of a given scale, removing all other scales, shifting the input image only 
produces a shift of the reconstructed filtered image, without aliasing. The most important 
property of DT-CWT is that it can separate more directions than the real wavelet transform. 
The 2-D DWT produces three band-pass subimages at each level, which are corresponding 
to LH, HH, HL, and oriented at angles of 0o, ± 45 o, 90 o. The 2-D DT-CWT can provide six 
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subimages in two adjacent spectral quadrants at each level, which are oriented at angles of 
±15 o, ±45 o, ±75 o. The strong orientation occurs because the complex filters are asymmetry 
responses. They can separate positive frequencies from negative ones vertically and 
horizontally. Therefore, positive and negative frequencies will not be aliasing.  
 

 
Fig. 3. The pixel-based image fusion scheme using the DT-CWT 

The pixel-level fusion scheme used here employs the DT-CWT to obtain a MR 
decomposition of the input images. The wavelet coefficients are then combined, using a 
maximum-selection fusion rule to produce a single set of coefficients corresponding to the 
fused image. This process is shown in Fig. 3. The maximum-selection scheme selects the 
largest absolute wavelet coefficient at each location from the input images as the coefficient 
at that location in the fused image. As wavelets tend to pick out the salient features of an 
image, this scheme works well producing good results. 

2.3 Image fusion based on region segmentation and complex wavelet 
Decomposed by the multi-resolution DT-CWT, low-frequency part of the images denotes 
their approximate components, which contains spectral information of the source image. 
High-frequency part of the images denotes their detail components, which contains edge 
detail information of the source images. So, fusion algorithms after the source images 
decomposed are very important for the quality of fusion. At present, the fusion rules are 
commonly that average operator or weighted average operator is used in low-frequency 
domain, max absolute operator is used in high-frequency domain. For the two fused 
heterogeneous source images of the same scene, spectral information of one image is usually 
much richer than the other. For example, spectral information of visible light image is much 
richer than the infrared image. If the fusion rules of weighted average is adopted, part of 
spectrum information of visible light images will be lost, which results in that the spectrum 
information of fused image is less than visible light image.  
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To overcome these problems, we adopt spatial frequency to guide region-based fusion. The 
spatial frequency, which originated from the human visual system, indicates the overall 
active level in an image. The human visual system is too complex to be fully understood 
with present physiological means, but the use of spatial frequency has led to an effective 
objective quality index for image fusion. The spatial frequency of an image block is defined 
as follows: Consider an image, the row ( FR ) and column ( FC ) frequencies of the image 
block are given by 

 2
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Here Ω is a certain segmentation region. The total spatial frequency FS of the image is  

 2 2
F F FS R C= +    (6) 

We use the fusion of two registration source images A  and B  as an example, the image 
fusion process based on region segmentation and DT-CWT is accomplished by the following 
steps: 
Step 1: Partition the source images A and B , then we get the region segmentations named 

AR and BR , using associated processing, then we can get the associated-segmentation image 
JR . Calculate FS of each region in the associated-segmentation image. 

Step 2: Compare the spatial frequency of the corresponding regions of the two source 
images to decide fusion coefficients: 
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Here F
iR  is the i th region of the fused image, A

FiS and B
FiS are the spatial frequencies of the 

i th region of image A and B , respectively, k is a threshold. 
Step 3: Multi-level DT-CWT transform on the source images A  and B , then we can get DT-
CWT coefficients at different scale Layers, which contain low-frequency coefficient and 
high-frequency coefficient at different scale layers. 
Step 4: Deal low-frequency and high-frequency part with fusion rules and fusion operators, 
then we get low-frequency coefficient and high-frequency coefficient at different scale 
Layers after fusion. 
Step 5: Deal low-frequency coefficient and high-frequency coefficient at different scale 
Layers with DT-CWT inverse transform, then the reconstruction image is to be fused image. 
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2.4 Experiment results 
To evaluate the presented fusion algorithm, we fuse the infrared and visible images of the 
same scene with this algorithm, and compare the fusion image with the fusion images with 
the DWT method (method 1) and SIDWT method (method 2). Fig. 4(a) is an infrared image, 
which presents the clear shapes such as a human being, trees and some high-temperature 
objects; Fig. 4(b) is a visible light (low light level) image, which provides more details than 
the infrared image. Besides this, it also shows some light sources. Fig. 4(c) is the 
segmentation region of the infrared image and Fig. 4(d) is the segmentation region of the 
visual image. Fig. 4(e) is associated region map of infrared/visible images, Fig. 4(f) is fused 
image with method 1 and Fig. 4(g) is fused image with method 2; Fig. 4(h) is fused image 
with the presented method. 
According to the fusion images, the presented fusion algorithm has better effectiveness, 
which preserves not only the spectral information of the visible light image, but also the 
thermal target information of the infrared image. The details of the fusion image with the 
presented algorithm is clear, which shows that region segmentation has a function of 
extracting targets, also shows that the DT-CWT has the capability of capturing edge 
information. Though the fusion images with method 1 and 2 also reserve main scene 
information of the two images, they lose some details slightly. Edge of objects looks blurry 
slightly. 
 
 

    
 

 a) b) c) d)  
 

    
 

 e)  f)  g) h) 
 

Fig. 4. Source images and fused results with different methods. (a) infrared image, (b) visible 
light image, (c) region map of the infrared image, (d) region map of the visible light image, 
(e) associated region map of infrared/visible light images, (f) fused image with method 1, 
(g) fused image with method 2, (h) fused image with the presented method 
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Fig. 4. Source images and fused results with different methods. (a) infrared image, (b) visible 
light image, (c) region map of the infrared image, (d) region map of the visible light image, 
(e) associated region map of infrared/visible light images, (f) fused image with method 1, 
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We use entropy, standard deviation, average gradient, structural similarity (SSIM) and 
/AB FQ to objectively evaluate the fusion images. Entropy reflects the average information of 

the image; standard deviation reflects the gray contrast of the fusion images and average 
gradient reflects the capability of expressing details of images; SSIM(x,y , f )  is an efficient 
metric of image fusion performance assessments. Given two images x and y of size M N× , 
let xμ  denote the mean of x , let 2

xσ  and xyσ  be the variance of x  and covariance 
of x and y . The SSIM index between signals x and y  is : 

 1 2
2 2 2 2

1 2

(2 )(2 )
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In this paper, we use an 11× 11 circular-symmetric Gaussian weighting function to 
modify xμ , yμ , xyσ , xσ and yσ . With such a windowing approach, the quality maps exhibit a 
locally isotropic property. In practice, one usually requires a single overall quality measure 
of the entire image. We use a mean SSIM index to evaluate the overall image quality. 
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j j
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where X  and Y  are the reference and the distorted images, respectively; jx  and jy  are the 
image contents at the jth local window; and M  is the number of local windows of the 
image. 
We use the Wang-Bovik SSIM index in Eq. (9) to define a quality measure SSIM(x,y , f )  for 
image fusion. Here x , y are two input images and f  is the composite image resulting from 
the fusion of x  and y . The measure SSIM(x,y , f )  should express the “quality” of the 
composite image given the inputs x , y . 
We denote by s(x|w)  some saliency of image x  in window w . It should reflect the local 
relevance of image x  within the window w , and it may depend on, e.g. contrast, variance, 
or entropy. Given the local saliencies s(x|w)  and s(y|w)  of the two input images x  and 
y , we compute a local weight x(w)λ  between 0 and 1 indicating the relative importance of 
image x  compared to image y : the larger x(w)λ , the more weight is given to image x . A 
typical choice for x(w)λ  is 

 x
s(x|w)(w)

s(x|w) s(y|w)
λ =

+
  (10) 

In a similar fashion we compute y(w)λ . Note that in this case 1y x(w) (w)λ λ= − . Now we 
define the fusion quality measure SSIM(x,y , f )  as  

 1
x y

w W
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Thus, in regions where image x  has a large saliency compared to y , the quality measure 
SSIM(x,y , f )  is mainly determined by the “similarity” of f  and input image x . On the 
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other hand, in regions where the saliency of y  is much larger than that of x , the measure 
SSIM(x,y , f )  is mostly determined by the “similarity” of f  and input image y . 

/AB FQ is based on the idea that a fusion algorithm that transfers input gradient information 
into the fused image more accurately performs better. For the fusion of input images 
A and B  resulting in a fused image F , gradient strength g and orientation ( [0, ])α π∈  are 

extracted at each location ( , )n m  from each image using the Sobel operator and used to 
define relative strength and orientation “change” factors G and A , between each input and 
the fused image:  
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where M is 1 for F Ag g> and -1 otherwise. An edge information preservation measure 
AFQ models information loss between A and F  with respect to the ‘change’ parameters with 

sigmoid functions defined by constants Γ , gκ , gσ , ακ , and ασ :  
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Total fusion performance /AB FQ  is evaluated as a sum of local information preservation 
estimates between each of the inputs and fused, AFQ and BFQ , weighted by local perceptual 
importance factors Aw  and Bw  usually defined as local gradient strength: 
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Table 1 gives the evaluation results of the three former algorithms. The evaluation results 
show the validity of the presented algorithm. 
 

 Entropy Average 
gradient 

Standard 
deviation 

SSIM(x,y , f )  /AB FQ  

Method 1 6.8313 0.0218 32.2700 0.6133 0.4282 

Method 2 6.8774 0.0221 33.4626 0.6012 0.5010 

The presented 
algorithm 6.9329 0.0226 34.1770 0.6304 0.5090 

Table 1. Evaluation results of entropy, average gradient, standard deviation, SSIM x y f( , , )  

and AB FQ /  

3. Region-based color fusion for infrared and LLL images 
Toet demonstrated that transfer of colors could be adapted to transfer the natural color 
characteristics of daylight imagery into multi-band infrared and LLL images. However, this 
particular color mapping method colors the image regardless of scene content, weights all 
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We use entropy, standard deviation, average gradient, structural similarity (SSIM) and 
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In this paper, we use an 11× 11 circular-symmetric Gaussian weighting function to 
modify xμ , yμ , xyσ , xσ and yσ . With such a windowing approach, the quality maps exhibit a 
locally isotropic property. In practice, one usually requires a single overall quality measure 
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Thus, in regions where image x  has a large saliency compared to y , the quality measure 
SSIM(x,y , f )  is mainly determined by the “similarity” of f  and input image x . On the 
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other hand, in regions where the saliency of y  is much larger than that of x , the measure 
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regions of the source image by the ‘‘global’’ color statistics, and thus the accuracy of the 
coloring is very much dependent on how well the target and source images are matched. 
Based on Toet’s global-coloring framework, we present a new region-based method that the 
image segmentation is firstly carried out and then region coloring is realized.  

3.1 Review of global-coloring method 
The aim of the global-coloring is to give NV images the appearance of normal daylight color 
images. A false-color image (source image) is first formed by assigning multi-band NV 
images to three RGB channels. The false-color images usually have an unnatural color 
appearance. Then, a true-color daylight image (reference image) is manually selected with 
similar scenery (e.g., syntactic content and color appearance) to the NV images. Both source 
and reference images are transformed into a Luminance–Alpha–Beta ( lαβ ) color space, 
followed by calculating the global mean and standard deviation for each lαβ  plane. Next, a 
‘‘statistic- matching’’ procedure is carried out between the source and reference image. The 
mapped source image is then transformed back to RGB space. Finally, the mapped source 
image is transformed into YCbCr space and the ‘‘value’’ component (similar to the 
luminance component in lαβ decomposition) of the mapped source image is replaced with 
the ‘‘fused NV image’’, which is a grayscale image made with multi-band NV images (e.g., 
image intensified and infrared image). This fused image replacement is necessary to make 
the colorized image have a proper and consistent contrast. Notice that the ‘‘luminance’’ 
component in lαβ  space cannot be used directly for this replacement because its dynamic 
range is very different from that of the fused image, whereas the “value” component in 
YCbCr space has the same gray-level range as the fused image. The lab space is utilized for 
color mapping because of its decorrelation property of three channels, whereas the YCbCr 
space is suitable for human interface.  
The fusion process can be summarized in the following steps: 
1. Set the R channel with the infrared image data, G and B channel with low-light-level 

image data and generate the rough color fusion image. Choose a reference image with 
good contrast 
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2. The RGB values can be converted to LMS space by using the following equation 

 
L R
M G
S B

0.3811 0.5783 0.0402
0.1967 0.7244 0.0782
0.0241 0.1288 0.8444

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   (16) 

3. A logarithmic transform is employed here to reduce the data skew that existed in the 
above color space 
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4. lαβ space can decorrelate the three axes in the LMS space 
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5. A simple technique, termed “statistic matching”, used to transfer the color 
characteristics from natural daylight imagery to false-color night-vision imagery is 
formulated as 
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where IC  is the colored image, SI  is the source (false-color) image in lαβ  space; μ  
denotes the mean and σ denotes the standard deviation; the subscripts ‘ S ’ and ‘ T ’ 
refer to the source and reference images, respectively; and the superscript ‘ k ’ is one of 
the color components { , ,l α β }.After this transformation the pixels comprising source 
image have means and standard deviations that conform to the reference daylight color 
image in lαβ space.  

6. The inverse transform from the lab space to the LMS space can be expressed by 
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7. The transform depicted above can be inverted by raising the LMS pixel values to the 
tenth order back to linear LMS space, and then using the inverse transform of Eq. (10) to 
RGB space 
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8. Transfer the fusion image data from RGB space to B RYC C space 
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9. The brightness fY  acquired by transforming the fusion image and reference image from 
RGB space to lαβ  space is not usually appropriate, because fY  is the weight sum of the 
infrared and low-light-level images. Thereby, we adopt the fusion image by laplacian 
pyramid fusion method replacing fY . 

10. Transfer the adjusted rough fusion image data from B RYC C space back to RGB space, 
and we can get the ultimate re-staining rough fusion image. 
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3.2 The region-based coloring fusion method 
Based on the framework of the global-coloring method as described in Section 3.1, we 
present a region-based coloring fusion method (see Fig. 5.) that makes the fusion images 
appear more like daylight imagery. The major points for this new method are as follows. 
(a) The infrared and LLL images are rendered segment-by-segment. (b)  The segmented 
regions of the two images are combined and form a new segmented map. (c)  These 
regions are classified according to the target types and the spatial frequencies, and some 
valuable targets are extracted according to the luminance of the infrared images or the 
motion trend of the infrared and LLL video. At present, our classification is still carried 
out manually. (d) The infrared and LLL images are mapped into the RGB space. A lot of 
mapping color methods has been provided, but the simplest mapping method is still 
suitable. For example, the infrared image is mapped into the R channel and the LLL image 
is mapped into the G channel and the average of the infrared and LLL images is mapped 
into the B channel.  (e) Some typical scene images must be chosen as the reference images. 
These images should include some features similar to a certain segmented region. (f) 
Transfer of color is run region by region in the lαβ  space according to Reinhard’s 
method. (g) The gray fusion image is used to replace the Y of the color fusion image in the 
YCbCr space. Here, the gray fusion method may be the fusion method in Section 2 or 
some other classical ones. 
Image segmentation is quite challenging because image contents vary greatly from image 
to image. We adopt two segmentation methods. One is the morphologic method in 
Section 2, the other is the nonlinear diffusion method. The two methods have been proven 
as powerful methods in the denoising and smoothing of image intensities while retaining 
and enhancing edges. Such an image smoothing process can be summarized as a 
successive coarsening of any given image while certain structures in that image are 
retained on a fine scale.  
Basically, diffusion is a PDE (partial differential equation) method that involves two 
operators, smoothing and gradient, in 2D image space. The nonlinear diffusion equation 
is 

 ( )I x x I x
t
( ) ( ) ( )ω∂

= ∇ ⋅ ∇
∂

   (24) 

Where ∇ is a vector containing gradients taken at different neighboring configurations (i.e., 
nearest-neighbors, second-neighbors, etc.) and ( )xω are the nonlinear diffusion coefficients. 
The diffusion process smoothes the regions with lower gradients whereas stops smoothing 
at region boundaries with higher gradients. Nonlinear diffusion means the smoothing 
operation depends on the region gradient distribution. In other words, the diffused result is 
a nonlinear function of local gradients. Diffusion must be used with clustering and region 
merging techniques together, which make the segmentation flexible. 
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Fig. 5. Diagram of the proposed local-coloring method 

3.3 Experiment result 
Here two experiments have been carried out with the region-based coloring fusion method. 
The only difference is that the morphologic method is adopted in experiment 1 and the 
nonlinear diffusion method is adopted in experiment 2.  

3.3.1 Experiment 1 
To evaluate the region-based coloring fusion method, we fuse the infrared and LLL images 
of the same scene, and compare the fusion images with the presented method and the 
global-coloring method. Fig. 6(a) is an infrared image, which presents the clear shapes such 
as a human being, trees, building, pool and some high-temperature objects; Fig. 6(b) is a LLL 
image, which provides more details than the infrared image. Besides this, it also shows 
some light sources. Fig. 6(c) is the fusion image acquiring by Section 2. Fig. 6(e), (g), (i) and 
(k) are the fusion images with global-coloring method separately using Fig. 6(d), (f), (h) and 
(j) as reference image. Fig. 6(l) is the segmentation region of the infrared image with 
morphology method and Fig. 6(m) is the segmentation region of the visual image with 
morphology method. Fig. 6(n) is associated region map of infrared/ visible images. In the 
region image, that “person” was perfectly partitioned. The backgrounds such as road, 
building and so on are also well segmented. Fig. 6(o) is fused image with local-coloring 
method using Fig. 6(d), (f), (h) and (j) as reference images. Compared to Fig. 6(e), (g), (i) and 
(k), Fig. 6(o) has a clear color distinction between tree, person, building, pool and lawn. 
From Fig. 6(o) we can see that region-based coloring fusion method result can significantly 
improve observers’ performance and reaction time. 
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suitable. For example, the infrared image is mapped into the R channel and the LLL image 
is mapped into the G channel and the average of the infrared and LLL images is mapped 
into the B channel.  (e) Some typical scene images must be chosen as the reference images. 
These images should include some features similar to a certain segmented region. (f) 
Transfer of color is run region by region in the lαβ  space according to Reinhard’s 
method. (g) The gray fusion image is used to replace the Y of the color fusion image in the 
YCbCr space. Here, the gray fusion method may be the fusion method in Section 2 or 
some other classical ones. 
Image segmentation is quite challenging because image contents vary greatly from image 
to image. We adopt two segmentation methods. One is the morphologic method in 
Section 2, the other is the nonlinear diffusion method. The two methods have been proven 
as powerful methods in the denoising and smoothing of image intensities while retaining 
and enhancing edges. Such an image smoothing process can be summarized as a 
successive coarsening of any given image while certain structures in that image are 
retained on a fine scale.  
Basically, diffusion is a PDE (partial differential equation) method that involves two 
operators, smoothing and gradient, in 2D image space. The nonlinear diffusion equation 
is 

 ( )I x x I x
t
( ) ( ) ( )ω∂

= ∇ ⋅ ∇
∂

   (24) 

Where ∇ is a vector containing gradients taken at different neighboring configurations (i.e., 
nearest-neighbors, second-neighbors, etc.) and ( )xω are the nonlinear diffusion coefficients. 
The diffusion process smoothes the regions with lower gradients whereas stops smoothing 
at region boundaries with higher gradients. Nonlinear diffusion means the smoothing 
operation depends on the region gradient distribution. In other words, the diffused result is 
a nonlinear function of local gradients. Diffusion must be used with clustering and region 
merging techniques together, which make the segmentation flexible. 
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Fig. 5. Diagram of the proposed local-coloring method 

3.3 Experiment result 
Here two experiments have been carried out with the region-based coloring fusion method. 
The only difference is that the morphologic method is adopted in experiment 1 and the 
nonlinear diffusion method is adopted in experiment 2.  

3.3.1 Experiment 1 
To evaluate the region-based coloring fusion method, we fuse the infrared and LLL images 
of the same scene, and compare the fusion images with the presented method and the 
global-coloring method. Fig. 6(a) is an infrared image, which presents the clear shapes such 
as a human being, trees, building, pool and some high-temperature objects; Fig. 6(b) is a LLL 
image, which provides more details than the infrared image. Besides this, it also shows 
some light sources. Fig. 6(c) is the fusion image acquiring by Section 2. Fig. 6(e), (g), (i) and 
(k) are the fusion images with global-coloring method separately using Fig. 6(d), (f), (h) and 
(j) as reference image. Fig. 6(l) is the segmentation region of the infrared image with 
morphology method and Fig. 6(m) is the segmentation region of the visual image with 
morphology method. Fig. 6(n) is associated region map of infrared/ visible images. In the 
region image, that “person” was perfectly partitioned. The backgrounds such as road, 
building and so on are also well segmented. Fig. 6(o) is fused image with local-coloring 
method using Fig. 6(d), (f), (h) and (j) as reference images. Compared to Fig. 6(e), (g), (i) and 
(k), Fig. 6(o) has a clear color distinction between tree, person, building, pool and lawn. 
From Fig. 6(o) we can see that region-based coloring fusion method result can significantly 
improve observers’ performance and reaction time. 
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Fig. 6. Source images, reference images and fused results with different methods. (a) 
infrared image, (b) LLL image, (c) fusion image using method in Section 2, (e), (g), (i) and (k) 
fusion images with global-coloring method separately using (d), (f), (h) and (j) as reference 
image, (l) region map of the infrared image, (m) region map of the LLL image, (n) associated 
region map of (l) and (m), (o) fused image with the region-based coloring fusion method 
using (d), (f), (h) and (j) as reference color images 

Region-Based Fusion for Infrared and LLL Images 

 

299 

3.3.2 Experiment 2 
To evaluate the presented region-based coloring fusion method, we fuse the infrared and 
visible light images of the same scene with this algorithm, and compare the fusion image 
with the fusion images with global-coloring method. Fig. 7(a) is an infrared image, which 
presents the clear shapes such as trees, building, sky and some high-temperature objects; 
Fig. 7(b) is a visible light image, which provides more details than the infrared image.  
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Fig. 7. Source images, reference images and fused results with different methods. (a) infrared 
image, (b) visible light image, (c) fusion image using gradient pyramid method, (e), (g) and (i) 
fusion images with global-coloring method separately using (d), (f) and (h) as reference image, 
(j) region map of the infrared image, (k) region map of the visible light image, (l) fused image 
with the region-based coloring fusion method using (d), (f) and (h) as reference images 
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fusion images with global-coloring method separately using (d), (f), (h) and (j) as reference 
image, (l) region map of the infrared image, (m) region map of the LLL image, (n) associated 
region map of (l) and (m), (o) fused image with the region-based coloring fusion method 
using (d), (f), (h) and (j) as reference color images 
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with the fusion images with global-coloring method. Fig. 7(a) is an infrared image, which 
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Fig. 7(b) is a visible light image, which provides more details than the infrared image.  
 

   
 a) b)  c) 

   
 d) e)  f) 

   
 g) h)  i) 

   
 j) k)  l) 

Fig. 7. Source images, reference images and fused results with different methods. (a) infrared 
image, (b) visible light image, (c) fusion image using gradient pyramid method, (e), (g) and (i) 
fusion images with global-coloring method separately using (d), (f) and (h) as reference image, 
(j) region map of the infrared image, (k) region map of the visible light image, (l) fused image 
with the region-based coloring fusion method using (d), (f) and (h) as reference images 
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Besides this, it also shows some light sources. Fig. 7(c) is the fusion image using gradient 
pyramid method. Fig. 7(e), (g) and (i) are the fusion images with global-coloring method 
separately using Fig. 7(d), (f) and (h) as reference image. Fig. 7(j) is the segmentation region 
of the infrared image with clustering method and Fig. 7(k) is the segmentation region of the 
visual image with clustering method. Fig. 7(l) is fused image with local-coloring method 
using (d), (f) and (h) as reference color images. Compared to Fig. 7(e), (g) and (i), Fig. 7(l) has 
a clear color distinction between tree, building and sky. From Fig. 7(i) we can see that local-
coloring method result can significantly improve observers’ performance and the colors are 
more nature than global-coloring method result. 

4. Conclusion 
This chapter presents a gray image fusion method and a color image fusion method based 
on the region segmentation. The region-based fusion methods use the different feature 
regions of original image and compound the pixel level and feature level of image fusions. 
The effective way to separate target and background proves crucial for the quality of image 
fusion. The proposed method preserves the details of the LLL image and the legible target of 
the infrared image, therefore, the fused image enables the exact location of the target to be 
easily observed and provides all-around information for further processing tasks.  
In the gray method, segmentation is firstly performed on the IR image and LLL images with 
top-bottom-hat filtering and the threshold method, consequently, the DT-CWT coefficients 
from the different regions are merged separately. Finally the fused image is obtained by 
performing inverse DT-CWT. This method keeps the approximate shift invariance and the 
limited redundancy. Region segmentation performs us to using different rules for each 
region of each level. Experimental results evidence this method which could provide better 
fusion than classical fusion methods in terms of objective fusion metric values such as 
entropy, average gradient, standard deviation, SSIM x y f( , , )  and AB FQ /  
In the color fusion method, segmentation is firstly performed on the IR image and LLL 
image with the morphologic method or the diffusion method. At the same time, the IR 
image and LLL image are mapped into the RGB space, and the gray fusion of the two 
images is conducted. Here, the color map rule and the gray fusion method are not very 
important. The false-color images usually have an unnatural color appearance, but a chance 
of region by region color transferring is given to ensure the fusion image similar to natural 
images. The fusion images are transformed into B RYC C space and the brightness is replaced 
by the gray fusion images. Experimental results evidence this method which could provide 
better sense of hierarchy than the global color fusion method in terms of subjective 
evaluation. 
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Besides this, it also shows some light sources. Fig. 7(c) is the fusion image using gradient 
pyramid method. Fig. 7(e), (g) and (i) are the fusion images with global-coloring method 
separately using Fig. 7(d), (f) and (h) as reference image. Fig. 7(j) is the segmentation region 
of the infrared image with clustering method and Fig. 7(k) is the segmentation region of the 
visual image with clustering method. Fig. 7(l) is fused image with local-coloring method 
using (d), (f) and (h) as reference color images. Compared to Fig. 7(e), (g) and (i), Fig. 7(l) has 
a clear color distinction between tree, building and sky. From Fig. 7(i) we can see that local-
coloring method result can significantly improve observers’ performance and the colors are 
more nature than global-coloring method result. 

4. Conclusion 
This chapter presents a gray image fusion method and a color image fusion method based 
on the region segmentation. The region-based fusion methods use the different feature 
regions of original image and compound the pixel level and feature level of image fusions. 
The effective way to separate target and background proves crucial for the quality of image 
fusion. The proposed method preserves the details of the LLL image and the legible target of 
the infrared image, therefore, the fused image enables the exact location of the target to be 
easily observed and provides all-around information for further processing tasks.  
In the gray method, segmentation is firstly performed on the IR image and LLL images with 
top-bottom-hat filtering and the threshold method, consequently, the DT-CWT coefficients 
from the different regions are merged separately. Finally the fused image is obtained by 
performing inverse DT-CWT. This method keeps the approximate shift invariance and the 
limited redundancy. Region segmentation performs us to using different rules for each 
region of each level. Experimental results evidence this method which could provide better 
fusion than classical fusion methods in terms of objective fusion metric values such as 
entropy, average gradient, standard deviation, SSIM x y f( , , )  and AB FQ /  
In the color fusion method, segmentation is firstly performed on the IR image and LLL 
image with the morphologic method or the diffusion method. At the same time, the IR 
image and LLL image are mapped into the RGB space, and the gray fusion of the two 
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1. Introduction  
The increasing availability and deployment of imaging sensors operating in multiple 
spectral bands has led to a requirement for methods that combine the signals from these 
sensors in an effective and ergonomic way for presentation to the human operator. Effective 
combinations of complementary and partially redundant multispectral imagery can provide 
information that is not directly evident from the individual input images.  
Image fusion for human inspection should combine information from two or more images 
of a scene into a single composite image that is more informative than each of the input 
images alone, and that requires minimal cognitive effort to understand. The fusion process 
should therefore maximize the amount of relevant information in the fused image, while 
minimizing the amount of irrelevant details, uncertainty and redundancy in the output. 
Thus, image fusion should preserve task relevant information from the source images, 
prevent the occurrence of artifacts or inconsistencies in the fused image, and suppress 
irrelevant features (e.g. noise) from the source images (Smith & Heather, 2005). The 
representation of fused imagery should optimally agree with human cognition, so that 
humans can quickly grasp the gist and meaning of the displayed scenes. For instance, the 
representation of spatial details should effortlessly elicit the recognition of known Gestalts, 
and the color schemes used should be natural (ecologically correct) and thus agree with 
human intuition. Irrelevant details (clutter) should be suppressed to minimize cognitive 
workload and to maximize recognition speed. 
Some potential benefits of image fusion are: wider spatial and temporal coverage, decreased 
uncertainty, improved reliability, and increased robustness of the system. Image fusion has 
applications in defense for situation awareness (Toet et al., 1997b), surveillance (Riley & 
Smith, 2006), target tracking (Zou & Bhanu, 2005), intelligence gathering (O'Brien & Irvine, 
2004), and person authentication (Kong et al., 2007). Other important applications are found 
in industry and medicine  (for a recent survey of different applications of image fusion 
techniques see Blum & Liu, 2006).  
The way images are combined depends on the specific application and on the type of 
information that is relevant in the given context (Smith & Heather, 2005). By examining the 
effects of several image fusion methods on different cognitive tasks, Krebs et al. (Krebs & 
Ahumada, 2002) showed that the benefits of sensor fusion are task dependent. However, 
until now the human end user has not been involved in the design process and the 
development of image fusion algorithms to any great extent. Mostly, image fusion 
algorithms are developed in isolation, and the human end-user is little more than an 
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1. Introduction  
The increasing availability and deployment of imaging sensors operating in multiple 
spectral bands has led to a requirement for methods that combine the signals from these 
sensors in an effective and ergonomic way for presentation to the human operator. Effective 
combinations of complementary and partially redundant multispectral imagery can provide 
information that is not directly evident from the individual input images.  
Image fusion for human inspection should combine information from two or more images 
of a scene into a single composite image that is more informative than each of the input 
images alone, and that requires minimal cognitive effort to understand. The fusion process 
should therefore maximize the amount of relevant information in the fused image, while 
minimizing the amount of irrelevant details, uncertainty and redundancy in the output. 
Thus, image fusion should preserve task relevant information from the source images, 
prevent the occurrence of artifacts or inconsistencies in the fused image, and suppress 
irrelevant features (e.g. noise) from the source images (Smith & Heather, 2005). The 
representation of fused imagery should optimally agree with human cognition, so that 
humans can quickly grasp the gist and meaning of the displayed scenes. For instance, the 
representation of spatial details should effortlessly elicit the recognition of known Gestalts, 
and the color schemes used should be natural (ecologically correct) and thus agree with 
human intuition. Irrelevant details (clutter) should be suppressed to minimize cognitive 
workload and to maximize recognition speed. 
Some potential benefits of image fusion are: wider spatial and temporal coverage, decreased 
uncertainty, improved reliability, and increased robustness of the system. Image fusion has 
applications in defense for situation awareness (Toet et al., 1997b), surveillance (Riley & 
Smith, 2006), target tracking (Zou & Bhanu, 2005), intelligence gathering (O'Brien & Irvine, 
2004), and person authentication (Kong et al., 2007). Other important applications are found 
in industry and medicine  (for a recent survey of different applications of image fusion 
techniques see Blum & Liu, 2006).  
The way images are combined depends on the specific application and on the type of 
information that is relevant in the given context (Smith & Heather, 2005). By examining the 
effects of several image fusion methods on different cognitive tasks, Krebs et al. (Krebs & 
Ahumada, 2002) showed that the benefits of sensor fusion are task dependent. However, 
until now the human end user has not been involved in the design process and the 
development of image fusion algorithms to any great extent. Mostly, image fusion 
algorithms are developed in isolation, and the human end-user is little more than an 
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afterthought, so that separate follow-up evaluation studies are usually required to assess to 
what extent humans benefit from these methods (Aguilar et al., 1999; Dixon et al., 2005; 
Dixon et al., 2006a; Dixon et al., 2006b; Essock et al., 1999; Essock et al., 2005; Krebs & Sinai, 
2002; Smith et al., 2002; Toet & Franken, 2003; Waxman et al., 2006). Recently has it been 
realized that the only way to guarantee the ultimate effectiveness of image fusion methods 
for human observers is to include human evaluation as an integral part of the design process 
(Muller & Narayanan, 2009). 
In this chapter we present some image fusion techniques and assessment methods that are 
based on the principles of cognitive engineering. Cognitive image fusion is based on 
concepts derived from neural models of visual perception and pattern recognition. Here we  
focus on the intuitive representation of spatial structures (outlines) and image color. We will 
argue that cognitive fusion leads to fused image representations that are optimally tuned to 
the human information processing capabilities. 

1.1 The representation of spatial detail in fused imagery 
Human visual image recognition performance depends on the amount of informative 
spatial features (like edges, corners, and lines) that are available in the image (Ullman, 2007). 
Hence, for optimal interpretation a fusion scheme should maximize the number of 
meaningful details in the resulting fused image. However, there is still a large semantic gap 
between computer image representations and human image understanding (Vogel & 
Schiele, 2007). This is a significant obstacle for the development of effective image fusion 
schemes. For instance, image segmentation and decomposition schemes still lead to 
undesirable over- and under- segmentation of semantically contiguous boundaries. Edge 
representations of images still yield incomplete object boundaries or numerous spurious 
(noise related) edges. As a result most image representation schemes do not correspond to 
human perception. It has been suggested to use cognitive principles to bridge the gap 
between human and computer image understanding (Jakobson et al., 2004). Some first 
attempts to apply concepts derived from neural models of visual processing and pattern 
recognition to image fusion and interpretation have been quite successful (Chiarella et al., 
2004; Fay et al., 2004; Waxman et al., 2003).  

1.2 Color representation of fused imagery 
Fused imagery has traditionally been represented in graytones.  However, the increasing 
availability of fused and multi-band vision systems has led to a growing interest in color 
representations of fused imagery (Li & Wang, 2007; Shi et al., 2005a; Shi et al., 2005b; 
Tsagiris & Anastassopoulos, 2005; Zheng et al., 2005). In principle, color imagery has several 
benefits over monochrome imagery for human inspection. While the human eye can only 
distinguish about 100 shades of gray at any instant, it can discriminate several thousands of 
colors. As a result, color may improve feature contrast, thus enabling better scene 
segmentation and object detection (Walls, 2006). Color imagery may yield a more complete 
mental representation of the perceived scene, resulting in better situational awareness. Scene 
understanding and recognition, reaction time, and object identification are indeed faster and 
more accurate with color imagery than with monochrome imagery (Cavanillas, 1999; 
Gegenfurtner & Rieger, 2000; Goffaux et al., 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Sampson, 1996; Spence et al., 2006; Wichmann et al., 2002).  Also, observers are able to 
selectively attend to task-relevant color targets and to ignore non-targets with a task-
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irrelevant color (Ansorge et al., 2005; Folk & Remington, 1998; Green & Anderson, 1956). As 
a result, simply producing a fused image by mapping multiple spectral bands into a three 
dimensional color space already generates an immediate benefit, and provides a method to 
increase the dynamic range of a sensor system (Driggers et al., 2001).   
However, the color mapping should be chosen with care and should be adapted to the task 
at hand. Although general design rules can be used to assure that the information available 
in the sensor image is optimally conveyed to the observer (Jacobson & Gupta, 2005), it is not 
trivial to derive a mapping from the various sensor bands to the three independent color 
channels, especially when the number of sensor bands exceeds three (e.g. with hyperspectral 
imagers; Jacobson et al., 2007). In practice, many tasks may benefit from a representation 
that renders fused imagery in natural colors. Natural colors facilitate object recognition by 
allowing access to stored color knowledge (Joseph & Proffitt, 1996). Experimental evidence 
indicates that object recognition depends on stored knowledge of the object’s chromatic 
characteristics (Joseph & Proffitt, 1996). In natural scene recognition paradigms, optimal 
reaction times and accuracy are obtained for normal natural (or diagnostically) colored 
images, followed by their grayscale version, and lastly by their (nondiagnostically) false 
colored version (Goffaux et al., 2005; Oliva, 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Wichmann et al., 2002).   
When sensors operate outside the visible waveband, artificial color mappings inherently 
yield false color images whose chromatic characteristics do not correspond in any intuitive 
or obvious way to those of a scene viewed under natural photopic illumination (e.g. 
Fredembach & Süsstrunk, 2008). As a result, this type of false color imagery may disrupt the 
recognition process by denying access to stored knowledge. In that case, observers need to 
rely on color contrast to segment a scene and recognize the objects therein. This may lead to 
a performance that is even worse compared to single band imagery alone (Sinai et al., 
1999a). Experiments have indeed convincingly demonstrated that a false color rendering of 
fused night-time imagery which resembles natural color imagery significantly improves 
observer performance and reaction times in tasks that involve scene segmentation and 
classification (Essock et al., 1999; Sinai et al., 1999b; Toet et al., 1997a; Toet & IJspeert, 2001; 
Vargo, 1999; White, 1998), whereas color mappings that produce counterintuitive 
(unnaturally looking) results are detrimental to human performance (Krebs et al., 1998; Toet 
& IJspeert, 2001; Vargo, 1999). One of the reasons often cited for inconsistent color mapping 
is a lack of physical color constancy (Vargo, 1999). Thus, the challenge is to give nightvision 
imagery not merely an intuitively meaningful (“naturalistic”) color appearance, but also one 
that is stable for camera motion and changes in scene composition and lighting conditions. 
A natural and stable color representation serves to improve the viewer’s scene 
comprehension and enhance object recognition and discrimination (Scribner et al., 
1999).Several techniques have been proposed to render night-time imagery in color (e.g. Sun 
et al., 2005; Toet, 2003; Tsagiris & Anastassopoulos, 2005; Wang et al., 2002; Zheng et al., 
2005). Simply mapping the signals from different nighttime sensors (sensitive in different 
spectral wavebands) to the individual channels of a standard color display or to the 
individual components of perceptually decorrelated color spaces, sometimes preceded by 
principal component transforms or followed by a linear transformation of the color pixels to 
enhance color contrast, usually results in imagery with an unnatural color appearance (e.g. 
Howard et al., 2000; Krebs et al., 1998; Li et al., 2004; Schuler et al., 2000; Scribner et al., 
2003). More intuitive color schemes may be obtained through opponent processing through 
feedforward center-surround shunting neural networks similar to those found in vertebrate 
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afterthought, so that separate follow-up evaluation studies are usually required to assess to 
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In this chapter we present some image fusion techniques and assessment methods that are 
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argue that cognitive fusion leads to fused image representations that are optimally tuned to 
the human information processing capabilities. 
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Human visual image recognition performance depends on the amount of informative 
spatial features (like edges, corners, and lines) that are available in the image (Ullman, 2007). 
Hence, for optimal interpretation a fusion scheme should maximize the number of 
meaningful details in the resulting fused image. However, there is still a large semantic gap 
between computer image representations and human image understanding (Vogel & 
Schiele, 2007). This is a significant obstacle for the development of effective image fusion 
schemes. For instance, image segmentation and decomposition schemes still lead to 
undesirable over- and under- segmentation of semantically contiguous boundaries. Edge 
representations of images still yield incomplete object boundaries or numerous spurious 
(noise related) edges. As a result most image representation schemes do not correspond to 
human perception. It has been suggested to use cognitive principles to bridge the gap 
between human and computer image understanding (Jakobson et al., 2004). Some first 
attempts to apply concepts derived from neural models of visual processing and pattern 
recognition to image fusion and interpretation have been quite successful (Chiarella et al., 
2004; Fay et al., 2004; Waxman et al., 2003).  

1.2 Color representation of fused imagery 
Fused imagery has traditionally been represented in graytones.  However, the increasing 
availability of fused and multi-band vision systems has led to a growing interest in color 
representations of fused imagery (Li & Wang, 2007; Shi et al., 2005a; Shi et al., 2005b; 
Tsagiris & Anastassopoulos, 2005; Zheng et al., 2005). In principle, color imagery has several 
benefits over monochrome imagery for human inspection. While the human eye can only 
distinguish about 100 shades of gray at any instant, it can discriminate several thousands of 
colors. As a result, color may improve feature contrast, thus enabling better scene 
segmentation and object detection (Walls, 2006). Color imagery may yield a more complete 
mental representation of the perceived scene, resulting in better situational awareness. Scene 
understanding and recognition, reaction time, and object identification are indeed faster and 
more accurate with color imagery than with monochrome imagery (Cavanillas, 1999; 
Gegenfurtner & Rieger, 2000; Goffaux et al., 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Sampson, 1996; Spence et al., 2006; Wichmann et al., 2002).  Also, observers are able to 
selectively attend to task-relevant color targets and to ignore non-targets with a task-
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irrelevant color (Ansorge et al., 2005; Folk & Remington, 1998; Green & Anderson, 1956). As 
a result, simply producing a fused image by mapping multiple spectral bands into a three 
dimensional color space already generates an immediate benefit, and provides a method to 
increase the dynamic range of a sensor system (Driggers et al., 2001).   
However, the color mapping should be chosen with care and should be adapted to the task 
at hand. Although general design rules can be used to assure that the information available 
in the sensor image is optimally conveyed to the observer (Jacobson & Gupta, 2005), it is not 
trivial to derive a mapping from the various sensor bands to the three independent color 
channels, especially when the number of sensor bands exceeds three (e.g. with hyperspectral 
imagers; Jacobson et al., 2007). In practice, many tasks may benefit from a representation 
that renders fused imagery in natural colors. Natural colors facilitate object recognition by 
allowing access to stored color knowledge (Joseph & Proffitt, 1996). Experimental evidence 
indicates that object recognition depends on stored knowledge of the object’s chromatic 
characteristics (Joseph & Proffitt, 1996). In natural scene recognition paradigms, optimal 
reaction times and accuracy are obtained for normal natural (or diagnostically) colored 
images, followed by their grayscale version, and lastly by their (nondiagnostically) false 
colored version (Goffaux et al., 2005; Oliva, 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Wichmann et al., 2002).   
When sensors operate outside the visible waveband, artificial color mappings inherently 
yield false color images whose chromatic characteristics do not correspond in any intuitive 
or obvious way to those of a scene viewed under natural photopic illumination (e.g. 
Fredembach & Süsstrunk, 2008). As a result, this type of false color imagery may disrupt the 
recognition process by denying access to stored knowledge. In that case, observers need to 
rely on color contrast to segment a scene and recognize the objects therein. This may lead to 
a performance that is even worse compared to single band imagery alone (Sinai et al., 
1999a). Experiments have indeed convincingly demonstrated that a false color rendering of 
fused night-time imagery which resembles natural color imagery significantly improves 
observer performance and reaction times in tasks that involve scene segmentation and 
classification (Essock et al., 1999; Sinai et al., 1999b; Toet et al., 1997a; Toet & IJspeert, 2001; 
Vargo, 1999; White, 1998), whereas color mappings that produce counterintuitive 
(unnaturally looking) results are detrimental to human performance (Krebs et al., 1998; Toet 
& IJspeert, 2001; Vargo, 1999). One of the reasons often cited for inconsistent color mapping 
is a lack of physical color constancy (Vargo, 1999). Thus, the challenge is to give nightvision 
imagery not merely an intuitively meaningful (“naturalistic”) color appearance, but also one 
that is stable for camera motion and changes in scene composition and lighting conditions. 
A natural and stable color representation serves to improve the viewer’s scene 
comprehension and enhance object recognition and discrimination (Scribner et al., 
1999).Several techniques have been proposed to render night-time imagery in color (e.g. Sun 
et al., 2005; Toet, 2003; Tsagiris & Anastassopoulos, 2005; Wang et al., 2002; Zheng et al., 
2005). Simply mapping the signals from different nighttime sensors (sensitive in different 
spectral wavebands) to the individual channels of a standard color display or to the 
individual components of perceptually decorrelated color spaces, sometimes preceded by 
principal component transforms or followed by a linear transformation of the color pixels to 
enhance color contrast, usually results in imagery with an unnatural color appearance (e.g. 
Howard et al., 2000; Krebs et al., 1998; Li et al., 2004; Schuler et al., 2000; Scribner et al., 
2003). More intuitive color schemes may be obtained through opponent processing through 
feedforward center-surround shunting neural networks similar to those found in vertebrate 
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color vision  (Aguilar et al., 1998; Aguilar et al., 1999; Fay et al., 2000a; Fay et al., 2000b; 
Huang et al., 2007; Warren et al., 1999; Waxman et al., 1995; Waxman et al., 1997; Waxman et 
al., 1998). Although this approach produces fused nighttime images with appreciable color 
contrast, the resulting color schemes remain rather arbitrary and are usually not strictly 
related to the actual daytime color scheme of the scene that is registered. We recently 
developed a color transform that can give fused multisensor imagery a natural color 
appearance (Hogervorst & Toet, 2008a; Hogervorst & Toet, 2008b; Hogervorst & Toet, 2010). 
The method derives an optimal color mapping by optimizing the match between a set of 
corresponding samples taken from a daytime color reference image and a multi-band 
nighttime image. Once the mapping has been determined, it can be implemented as a color 
lookup-table transform. As a result, the color transform is extremely simple and fast, and 
can easily be applied in real-time with standard hardware. Moreover, it yields fused images 
with a natural color appearance and provides object color constancy, since the relation 
between sensor output and colors is fixed. Since the mapping is sample-based, it is highly 
specific for different types of materials in the scene and can therefore easily be adapted for 
the task at hand, such as optimizing the visibility of camouflaged objects. 

1.3 The need for image fusion quality metrics 
Because the number of image fusion techniques and systems available is steadily increasing, 
there is a growing need for metrics to evaluate and compare the quality of fused imagery. 
Clearly, the ultimate image fusion scheme should use semantically meaningful image 
representations, and should use fusion rules that give higher priority (weights) to regions 
with semantically higher importance to the operator. Generally the ideal fused image 
(reference) is not available.  In applications where the fused images are intended for human 
observation, the performance of fusion algorithms can be measured in terms of 
improvement in user performance in tasks like detection, recognition, tracking, or 
classification. This approach requires a well defined task that allow quantification of human 
performance (e.g. Toet et al., 1997b; Toet & Franken, 2003). However, this usually means 
time consuming and often expensive experiments involving a large number of human 
subjects. In recent years, a number of computational image fusion quality assessment 
metrics have therefore been proposed (e.g. Angell, 2005; Blum, 2006; Chari et al., 2005; Chen 
& Varshney, 2005; Chen & Varshney, 2007; Corsini et al., 2006; Cvejic et al., 2005a; Cvejic et 
al., 2005b; Piella & Heijmans, 2003; Toet & Hogervorst, 2003; Tsagiris & Anastassopoulos, 
2004; Ulug & Claire, 2000; Wang & Shen, 2006; Xydeas & Petrovic, 2000; Yang et al., 2007; 
Zheng et al., 2007; Zhu & Jia, 2005). Although some of these metrics agree with human 
visual perception to some extent, most of them cannot predict observer performance for 
different input imagery and scenarios. Metrics that accurately describe human performance 
are of great value, since they can be used to optimize image fusion systems and to predict 
human observer performance for different scenarios. However, since reliable human 
performance related metrics are extremely difficult to design, they are not yet available at 
present.  

1.4 Overview of this chapter 
In the rest of this chapter we investigate how different grayscale and color image fusion 
methods affect the perception of scene layout, object recognition, and the detection of 
camouflaged objects. We assessed the different fusion techniques by quantifying the 
performance of human observers using the fused imagery. 
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2. Scene layout recognition 
In this section we investigate the effects of grayscale and color image fusion on a spatial 
localization task. We assess the different fusion techniques by quantifying the (objective) 
localization accuracy and the (subjective) confidence of human observers performing the 
task using the fused imagery. 

2.1 Imagery 
We recorded spatially registered visible light and mid-wave (3-5 μm) thermal motion 
sequences representing three military surveillance scenarios  (for details see Toet et al., 1997b). 
The individual images used in this study correspond to successive frames from these time 
sequences. Corresponding visual and thermal frames were fused using an opponent color 
fusion technique developed by the MIT Lincoln Laboratory (Waxman et al., 1995; Waxman et 
al., 1996a; Waxman et al., 1996b; Waxman et al., 1996c; Waxman et al., 1997; Waxman et al., 
1999). Grayscale fused images were obtained by taking the luminance component of the 
corresponding color fused images. The MIT color fusion method provides images with a semi 
natural color appearance, and enhances image contrast by filtering the input images with a 
feedforward center-surround shunting neural network (Grossberg, 1988). 
In all three scenarios, the thermal images provide a poor representation of the scene layout, 
whereas they clearly show the presence of a person in the scene (Fig. 1). In contrast, the 
visible images clearly show the scene structure, whereas they poorly represent the person. 
In the fused images, both the background details and the person are clearly visible. 
Situational awareness is tested by asking observers to report the perceived position of the 
person relative to characteristic details in the scene. Because the relevant information is 
distributed over the individual image modalities (the images are complementary), this task 
cannot be performed with any of the individual image modalities. We used schematic 
(cartoon-like) representations of the actual scenes to obtain a baseline performance and to 
register the observer responses. Fig. 1 shows an example of a scenario in which the reference 
features are the poles that support the fence. These poles are clearly visible in the CCD 
images but not represented in the IR images because they have nearly the same temperature 
as the surrounding terrain. In the (graylevel and color) fused images the poles are again 
clearly visible. 

2.2 Experiment 
Each image was briefly (2s) shown on a  CRT display, followed by the presentation of a 
corresponding schematic reference image. The subject's task was to indicate the perceived 
location of the person in the scene by placing a mouse controlled cursor at the 
corresponding location in this reference image. When the left mouse button was pressed the 
computer registered the coordinates corresponding to the indicated image location (the 
mouse coordinates) and computed the distance in the image plane between the actual 
position of the person and the indicated location. The subject pressed the right mouse button 
if the person in the displayed scene could not be detected. The subject could only perform 
the localization task by memorizing the perceived position of the person relative to the 
reference features in the scene.  
The schematic reference images were also used to determine the optimal (baseline) 
localization accuracy of the observers. Baseline test images (Fig. 1) were created by placing a 
binary (dark) image of a walking person at different locations in the reference scene. In the 
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al., 1998). Although this approach produces fused nighttime images with appreciable color 
contrast, the resulting color schemes remain rather arbitrary and are usually not strictly 
related to the actual daytime color scheme of the scene that is registered. We recently 
developed a color transform that can give fused multisensor imagery a natural color 
appearance (Hogervorst & Toet, 2008a; Hogervorst & Toet, 2008b; Hogervorst & Toet, 2010). 
The method derives an optimal color mapping by optimizing the match between a set of 
corresponding samples taken from a daytime color reference image and a multi-band 
nighttime image. Once the mapping has been determined, it can be implemented as a color 
lookup-table transform. As a result, the color transform is extremely simple and fast, and 
can easily be applied in real-time with standard hardware. Moreover, it yields fused images 
with a natural color appearance and provides object color constancy, since the relation 
between sensor output and colors is fixed. Since the mapping is sample-based, it is highly 
specific for different types of materials in the scene and can therefore easily be adapted for 
the task at hand, such as optimizing the visibility of camouflaged objects. 
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Because the number of image fusion techniques and systems available is steadily increasing, 
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Clearly, the ultimate image fusion scheme should use semantically meaningful image 
representations, and should use fusion rules that give higher priority (weights) to regions 
with semantically higher importance to the operator. Generally the ideal fused image 
(reference) is not available.  In applications where the fused images are intended for human 
observation, the performance of fusion algorithms can be measured in terms of 
improvement in user performance in tasks like detection, recognition, tracking, or 
classification. This approach requires a well defined task that allow quantification of human 
performance (e.g. Toet et al., 1997b; Toet & Franken, 2003). However, this usually means 
time consuming and often expensive experiments involving a large number of human 
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are of great value, since they can be used to optimize image fusion systems and to predict 
human observer performance for different scenarios. However, since reliable human 
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binary (dark) image of a walking person at different locations in the reference scene. In the 
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resulting set of schematic images both the reference features and the person are highly 
visible. Also, there are no distracting features in these images that may degrade localization 
performance. Therefore, observer performance for these schematic test images should be 
optimal and may serve as a baseline to compare performance obtained with the other image 
modalities. 
A total of 6 subjects, aged between 20 and 30 years, served in the experiments reported 
below (for details see Toet et al., 1997b). 
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Fig. 1. Original intensified visual image (II), original thermal image (IR), graylevel fused 
(GF) image, color fused (CF) image, baseline test image (Baseline), and reference (Reference) 
image. 

2.3 Results and discussion 
Fig. 2 shows that subjects are uncertain about the location of the person in the scene for 
about 20% of the visual image presentations and 22% of the thermal image presentations.  
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The (graylevel and color) fused images result in a smaller fraction of about 13%  “not sure'' 
replies. The lowest number of “not sure'' replies is obtained for the baseline reference 
images: only about 4%. This indicates that the increased amount of detail in fused imagery 
does indeed improve an observer's subjective situational awareness. 
Fig. 3 shows the mean weighted distance between the actual position of the person in each 
scene and the position indicated by the subjects (the perceived position), for the visual 
(CCD) and thermal (IR) images, and for the graylevel and color fusion schemes. This Figure 
also shows the optimal (baseline) performance obtained for the schematic test images 
representing only the segmented reference features and the walking person. A low value of 
this mean weighted distance measure corresponds to high observer accuracy and a correctly 
perceived position of the person in the displayed scenes relative to the main reference 
features. High values correspond to a large discrepancy between the perceived position and 
the actual position of the person.   
Fig. 3 shows that the localization error obtained with the fused images is significantly lower 
than the error obtained with the individual thermal and visual image modalities (p=0.0021). 
The smallest errors in the relative spatial localization task are obtained for the schematic 
images. This result represents the baseline performance, since the images are optimal in the 
sense that they do not contain any distracting details and all the features that are essential to 
perform the task (i.e. the outlines of the reference features) are represented at high visual 
contrast. The lowest overall accuracy is achieved for the thermal images. The visual images 
appear to yield a slightly higher accuracy. However, this accuracy is misleading since 
observers are not sure about the person in a large percentage of the visual images, as shown 
by Fig. 2. The difference between the results for the graylevel fused and the color fused 
images is not significant (p=0.134), suggesting that spatial localization of targets (following 
detection) does not exploit color contrast as long as there exists sufficient brightness contrast 
in the gray fused imagery. 
 

 
Fig. 2. Percentage of image presentations in which observers are uncertain about the relative 
position of the person in the scene, for each of the 5 image modalities tested (IR, intensified 
CCD, graylevel fused, color fused, and schematic reference images). 
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Fig. 3. The mean weighted distance between the actual position of the person in the scene 
and the perceived position for each of the 5 image modalities tested (IR, intensified CCD, 
graylevel fused, color fused, and schematic reference images). The error bars indicate the 
size of the standard error in the perceived location. 

Summarizing, for the scenarios investigated here, we conclude that fused images provide a 
better representation of the layout of the scene, but color does not help to localize the 
targets. 

3. Scene gist recognition 
In this section we investigate the effects of grayscale and color image fusion on the 
perception of detail and the global structure of scenes. We assess the different fusion 
techniques by quantifying the sensitivity of human observers performing the task using the 
fused imagery. 

3.1 Imagery 
A variety of outdoor scenes, displaying several kinds of vegetation (grass, heather, semi 
shrubs, trees), sky, water, sand, vehicles, roads, and persons, were registered at night with a 
dual-band visual intensified (DII) camera (see below), and with a middle wavelength band 
(3-5 μm) infrared (IR) camera (Radiance HS). An example is shown in Fig. 4. 
The DII camera provided a two-color registration of the scene, applying two bands covering 
the part of the electromagnetic spectrum ranging from visual to near infrared (400-900 nm). 
The crossover point between the bands of the DII camera lies approximately at 700 nm. The 
short (visual) wavelength part of the incoming spectrum is mapped to the R channel of an 
RGB color composite image. The long (near infrared) wavelength band corresponds 
primarily to the spectral reflection characteristics of vegetation, and is therefore mapped to 
the G channel. This approach utilizes the fact that the spectral reflection characteristics of 
plants are distinctly different from other (natural and artificial) materials in the visual and 
near infrared range (Onyango & Marchant, 2001). The spectral response of the 
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Fig. 4. Example of the different image modalities used in this study. II and DII: the long 
wavelength band and both bands of the false color intensified CCD image. IR: the thermal 3-
5 μm IR image. GF: the greylevel fused image and CF1(2) and color fused images produced 
with Method 1(2). This image shows a scene with a road, a house, and a vehicle. 
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Fig. 4. Example of the different image modalities used in this study. II and DII: the long 
wavelength band and both bands of the false color intensified CCD image. IR: the thermal 3-
5 μm IR image. GF: the greylevel fused image and CF1(2) and color fused images produced 
with Method 1(2). This image shows a scene with a road, a house, and a vehicle. 
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long-wavelength channel (‘G’) roughly matches that of a Generation III image intensifier (II) 
system, and is stored separately. 
The images were registered, and patches displaying different types of scenic elements were 
selected and cut out from corresponding images in the different spectral bands. These 
patches were deployed as stimuli in the pyschophysical tests. The signature of the target 
items (i.e. buildings, persons, vehicles etc.) in the image test sets varied from highly distinct 
to hardly visible. 
To test the perception of detail, small patches were selected that display either buildings, 
vehicles, water, roads, or humans. To investigate the perception of global scene structure, larger 
patches were selected, that represent either the horizon (to perform a horizon perception 
task), or a large amount of different terrain features (to enable the distinction between an 
image that is presented upright and one that is shown upside down).  
Grayscale fused (GF) images were produced by combining the IR and II images though a 
pyramidal image fusion scheme (Burt & Adelson, 1985; Toet et al., 1989; Toet, 1990b). Color 
fused imagery was produced by the following two methods. 
- Color Fusion Method 1  (CF1): The short and long wavelength bands of the DII camera 

were respectively mapped to the R and G channels of an RGB color image. The 
resulting RGB color image was then converted to the YIQ (NTSC) color space. The 
luminance (Y) component was replaced by the corresponding aforementioned grayscale 
(II and IR) fused image, and the result was transformed back to the RGB color space 
(note that the input Y from combining the R and G channel is replaced by a Y which is 
created by fusing the G channel with the IR image). This color fusion method results in 
images in which grass, trees and persons are displayed as greenish, and roads, 
buildings, and vehicles are brownish.  

- Color Fusion Method 2 (CF2): First, an RGB color image was produced by assigning the 
IR image to the R channel, the long wavelength band of the DII image to the green 
channel (as in Method 1), and the short wavelength band of the DII image to the blue 
channel (instead of the red channel, as in Method 1). This color fusion method results in 
images in which vegetation is displayed as greenish, persons are reddish, buildings are 
red-brownish, vehicles are whitish/bluish, and the sky and roads are most often bluish. 

The multiresolution grayscale image fusion scheme employed here, selects the perceptually 
most salient contrast details from both of the individual input image modalities, and 
fluently combines these pattern elements into a resulting (fused) image. As a side effect of 
this method, details in the resulting fused images can be displayed at higher contrast than 
they appear in the images from which they originate, i.e. their contrast may be enhanced 

(Toet, 1990a; Toet, 1992). To distinguish the perceptual effects from contrast enhancement 
from those of the fusion process, observer performance was also tested with contrast 
enhanced versions of the individual image modalities, using a multiresolution local contrast 
enhancement scheme. This scheme enhances the contrast of perceptually relevant details for 
a range of spatial scales, in a way that is similar to the approach used in the hierarchical 
fusion scheme (for details see Toet, 1990a; Toet, 1992). 

3.2 Experiment 
A computer was used to briefly (400ms) present the images on a CRT display, measure the 
response times and collect the observer responses.  A total of 12 subjects, aged between 20 
and 55 years, served in the experiments reported below. All subjects have corrected to 
normal vision, and no known color deficiencies. 
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The perception of the global structure of a depicted scene was tested in two different ways. 
In the first test, scenes were presented that had been randomly mirrored along the 
horizontal, and the subjects were asked to distinguish the orientation of the displayed scenes 
(i.e. whether a scene was displayed right side up or upside down). In this test, each scene 
was presented twice: once upright and once upside down. In the second test, horizon views 
were presented together with two horizontally aligned short markers on the left and right 
side of the image. In this test, each scene was presented twice: once with the markers located 
at the true position (height) of the horizon, and once when the markers coincided with a 
horizontal structure that was opportunistically available (like a band of clouds) and that 
could be mistaken for the horizon. The task of the subjects was to judge whether the 
markers indicated the true position of the horizon. The perception of the global structure of 
a scene is likely to determine situational awareness.  
The capability to discriminate fine detail was tested by asking the subjects to judge whether 
a presented scene contained an exemplar of a particular category of objects. The following 
categories were investigated: buildings, vehicles, water, roads, and humans. The perception 
of detail is relevant for tasks involving visual search, detection and recognition. 

3.3 Results and discussion 
For each visual discrimination task the numbers of hits (correct detections) and false alarms 
(fa) were recorded to calculate d' = Zhits-Zfa , an unbiased estimate of sensitivity (Macmillan 
& Creelman, 1991). 
The effects of contrast enhancement on human visual performance is similar for all tasks. 
Fig. 5 shows that contrast enhancement significantly improves the sensitivity of human 
observers performing with II and DII imagery. However, for IR imagery, the average 
sensitivity decreases as a result of contrast enhancement. This is probably a result of the fact 
that the contrast enhancement method employed in this study increases the visibility of 
irrelevant detail and clutter in the scene. Note that this result does not indicate that (local) 
contrast enhancement in general should not be applied to IR images. 
Fig. 6 shows the results of all scene recognition and target detection tasks investigated here. 
As stated before, the ultimate goal of image fusion is to produce a combined image that 
displays more information than either of the original images. Fig. 6 shows that this aim is 
only achieved for the following perceptual tasks and conditions: 
- the detection of roads, where CF1 outperforms each of the input image modalities, 
- the recognition of water, where CF1 yields the highest observer sensitivity, and  
- the detection of vehicles, where three fusion methods tested perform significantly better 

than the original imagery. 
These tasks are also the only ones in which CF1 performs better than CF2. An image fusion 
method that always performs at least as good as the best of the individual image modalities 
can be of great ergonomic value, since the observer can perform using only a single image. 
This result is obtained for the recognition of scene orientation from color fused imagery 
produced with CF2, where performance is similar to that with II  and DII imagery. For the 
detection of buildings and humans in a scene, all three fusion methods perform equally well 
and slightly less than IR. CF1 significantly outperforms grayscale fusion for the detection of 
the horizon and the recognition of roads and water. CF2 outperforms grayscale fusion for 
both global scene recognition tasks (orientation and horizon detection). However, for CF2 
observer sensitivity approaches zero for the recognition of roads and water.  
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Fig. 5. The effect of contrast enhancement on observer sensitivity d’. 
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Fig. 6. Observer sensitivity d’ for discrimination of global layout (orientation and horizon) 
and local detail (buildings, humans, roads, vehicles, and water), for six different image 
modalities. These modalities are (in the order in which they appear in the labeled clusters 
above): infrared (IR), single-band or grayscale (II) and double-band or color (DII) intensified 
visual, grayscale (GF) and color fused (CF1, CF2) imagery. 

Table 1 summarizes the main findings of this study. IR has the lowest overall performance 
of all modalities tested.  This results from a low performance for both large scale orientation 
tasks, and for the detection and recognition of roads, water, and vehicles. In contrast, 
intensified visual imagery performs best in both orientation tasks. The perception of the 
horizon is significantly better with II and DII imagery. IR imagery performs best for the 
perception and recognition of buildings and humans- DII has the best overall performance 
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of the individual image modalities. Thus, IR on one hand and (D)II images on the other 
hand contain complementary information, which makes each of these image modalities suited 
for performing different perception tasks. 
 

 IR II DII GF CF1 CF2 

Upright -1 2 1   2 
Horizon -1 2 1    
Building 2 -1  1 1 1 
Human 2 -1  1 1 1 

Road -1  1  2  
Vehicle -1   2 2 1 
Water -1    2  

Overall -1 2 3 4 8 5 

Table 1. The relative performance of the different image modalities for the seven perceptual 
recognition tasks. Rank orders -1,1, and 2 indicate respectively the worst, second best, and 
best performing image modality for a given task. The tasks involve the perception of the 
global layout (orientation and horizon) of a scene, and the recognition of local detail 
(buildings, humans, roads, vehicles, and water). The different image modalities are: infrared 
(IR), greyscale (II) and dual band false-color (DII) intensified visual, grayscale fused images 
(GF) and two different color fusion (CF1, CF2) schemes. The sum of the rank orders 
indicates the overall performance of the modalities. 
CF1 has the best overall performance of the image fusion schemes tested here. The 
application of an appropriate color mapping scheme in the image fusion process can indeed 
significantly improve observer performance compared to grayscale fusion. In contrast, the 
use of an inappropriate color scheme can severely degrade observer sensitivity. Although 
the performance of CF1 for specific observation tasks is below that of the optimal individual 
sensor, for a combination of observation tasks (as will often be the case in operational 
scenarios) the CF1 fused images can be of great ergonomic value, since the observer can 
perform using only a single image. 

4. Object recognition 
In this section we will show how manual segmentations of a set of corresponding input and 
fused images can be used to evaluate the perceptual quality of image fusion schemes. 
Human visual perception is mostly concerned with object detection and boundary 
discrimination. The method is therefore based on the hypothesis that fused imagery should 
provide an optimal representation of the object boundaries that can be determined from the 
individual input image modalities. To compute the quality of the different image fusion 
schemes we formulate boundary-detection as a classification problem of discriminating non-
boundary from boundary pixels, and apply the precision-recall framework, using reference 
contour images derived from the human-marked boundaries as a reference standard.  

4.1 Imagery 
Seven sets of IR and visible images, including noisy, clean, cluttered and uncluttered 
images, were used in this study (Fig. 7). These multi-sensor images are part of the Multi-
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application of an appropriate color mapping scheme in the image fusion process can indeed 
significantly improve observer performance compared to grayscale fusion. In contrast, the 
use of an inappropriate color scheme can severely degrade observer sensitivity. Although 
the performance of CF1 for specific observation tasks is below that of the optimal individual 
sensor, for a combination of observation tasks (as will often be the case in operational 
scenarios) the CF1 fused images can be of great ergonomic value, since the observer can 
perform using only a single image. 

4. Object recognition 
In this section we will show how manual segmentations of a set of corresponding input and 
fused images can be used to evaluate the perceptual quality of image fusion schemes. 
Human visual perception is mostly concerned with object detection and boundary 
discrimination. The method is therefore based on the hypothesis that fused imagery should 
provide an optimal representation of the object boundaries that can be determined from the 
individual input image modalities. To compute the quality of the different image fusion 
schemes we formulate boundary-detection as a classification problem of discriminating non-
boundary from boundary pixels, and apply the precision-recall framework, using reference 
contour images derived from the human-marked boundaries as a reference standard.  

4.1 Imagery 
Seven sets of IR and visible images, including noisy, clean, cluttered and uncluttered 
images, were used in this study (Fig. 7). These multi-sensor images are part of the Multi-
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Sensor Image Segmentation Data Set (Lewis et al., 2006), and are publicly available through 
the ImageFusion.org website (ImageFusion.Org, 2007). These images were fused with three 
different pixel-based fusion algorithms: Contrast Pyramid (PYR); Discrete Wavelet 
Transform (DWT); and the Dual-Tree Complex Wavelet Transform (CWT; see Lewis et al., 
2007).  

4.2 Experiment 
A group of 63 subjects with normal or corrected to normal vision manually segmented both 
the individual and the fused images. The average subject’s age was 21.3 years (standard 
deviation = 2.7 years). A mixture of CRT (37) and TFT (26) screens were used. The 
segmentation instructions quite general, in order not to bias the subject to produce a specific 
type of segmentation. Thus, variations in segmentations were due to differences in 
perception and not to some other aspect of the experimental set up.  

4.3 Results and discussion 
Fig. 8 shows the annotated union of the human segmentations of each of the 7 scenes used in 
this study. In general the manual segmentations represent the actual scene layout quite well. 
Typical examples of human segmentations are shown in Fig. 12.  
To compare the performance of subjects with the different individual (visual and infrared) 
and (CWT, DWT, and Pyramid) fused image modalities we adopted the following 
approach. For all features marked by the human subjects, we computed the percentage of 
subjects that completely delineated them. Then we defined the relevant features in the 
different scenes as those features that were fully segmented in either the visual or infrared 
images by more than half of the number of subjects. In previous studies we found a clear 
distinction in the performance of human observers using the different individual and fused 
image modalities for the detection of respectively terrain features, persons and man-made 
objects like buildings and cars (Toet et al., 1997b; Toet & Franken, 2003). In this study, we 
therefore classify the relevant features in three categories: terrain features, living creatures, 
and man-made objects. Typical terrain features are roads, trees, hills, and clouds. Typical 
man-made objects are houses, fences, poles, chimneys, boats, and buoys. Living creatures 
are for instance people and dogs. Then we computed the average percentage of subjects that 
fully segmented image features, for each feature category and for all image modalities.  
The results are shown in Fig. 9. It appears that terrain features are best detected in the visual 
image modality, which yields the worst performance for the detection of living creatures. 
For the set of images tested in this study, human performance for the detection of man-
made objects is quite similar for all image modalities. The CWT fusion scheme appears to 
yield the best overall performance. Each of the fused image modalities performs similar to 
the infrared image modality for the detection of living creatures, indicating that these 
schemes correctly include details from the infrared images in the resulting fused images. 
However, the performance of the fused image modalities for the detection of terrain features 
is below the performance with the visual image modality. This suggests that the 
representation of the visual details is not optimal in the fused images. Finally, for each of the 
fused image modalities we computed the mean percentage of objects that were segmented 
by a percentage of the human subjects that was larger than the percentage that segmented 
the same objects in either of the input image modalities. This number represents the 
percentage of cases in which a fused image is more than the sum of its parts: subjects can 
perceive details better in the fused image than in each of the individual input images.  
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Fig. 7. The visual (2nd column) and infrared (3rd column) images of each of the 7 different 
scenes used in this study, with a list of the characteristic man-made and terrain features, as 
well as people or animals that were used to score subject performance. 
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4.2 Experiment 
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the individual and the fused images. The average subject’s age was 21.3 years (standard 
deviation = 2.7 years). A mixture of CRT (37) and TFT (26) screens were used. The 
segmentation instructions quite general, in order not to bias the subject to produce a specific 
type of segmentation. Thus, variations in segmentations were due to differences in 
perception and not to some other aspect of the experimental set up.  

4.3 Results and discussion 
Fig. 8 shows the annotated union of the human segmentations of each of the 7 scenes used in 
this study. In general the manual segmentations represent the actual scene layout quite well. 
Typical examples of human segmentations are shown in Fig. 12.  
To compare the performance of subjects with the different individual (visual and infrared) 
and (CWT, DWT, and Pyramid) fused image modalities we adopted the following 
approach. For all features marked by the human subjects, we computed the percentage of 
subjects that completely delineated them. Then we defined the relevant features in the 
different scenes as those features that were fully segmented in either the visual or infrared 
images by more than half of the number of subjects. In previous studies we found a clear 
distinction in the performance of human observers using the different individual and fused 
image modalities for the detection of respectively terrain features, persons and man-made 
objects like buildings and cars (Toet et al., 1997b; Toet & Franken, 2003). In this study, we 
therefore classify the relevant features in three categories: terrain features, living creatures, 
and man-made objects. Typical terrain features are roads, trees, hills, and clouds. Typical 
man-made objects are houses, fences, poles, chimneys, boats, and buoys. Living creatures 
are for instance people and dogs. Then we computed the average percentage of subjects that 
fully segmented image features, for each feature category and for all image modalities.  
The results are shown in Fig. 9. It appears that terrain features are best detected in the visual 
image modality, which yields the worst performance for the detection of living creatures. 
For the set of images tested in this study, human performance for the detection of man-
made objects is quite similar for all image modalities. The CWT fusion scheme appears to 
yield the best overall performance. Each of the fused image modalities performs similar to 
the infrared image modality for the detection of living creatures, indicating that these 
schemes correctly include details from the infrared images in the resulting fused images. 
However, the performance of the fused image modalities for the detection of terrain features 
is below the performance with the visual image modality. This suggests that the 
representation of the visual details is not optimal in the fused images. Finally, for each of the 
fused image modalities we computed the mean percentage of objects that were segmented 
by a percentage of the human subjects that was larger than the percentage that segmented 
the same objects in either of the input image modalities. This number represents the 
percentage of cases in which a fused image is more than the sum of its parts: subjects can 
perceive details better in the fused image than in each of the individual input images.  
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Fig. 7. The visual (2nd column) and infrared (3rd column) images of each of the 7 different 
scenes used in this study, with a list of the characteristic man-made and terrain features, as 
well as people or animals that were used to score subject performance. 
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Fig. 8. Annotated union of all human segmentations of each of the 7 scenes used in this 
study. Indicated and labeled are the terrain features (green), man-made objects (gray) and 
living creatures (red) used to score the subject  performance.   
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Fig. 9. Performance of subjects with the (CWT, DWT, and Pyramid) fused image modalities, 
expressed as the mean percentage of objects segmented by a fraction of subjects that was 
equal to or larger than the fraction of subjects that segmented these objects in either the 
visual (v) or infrared (i) image modalities. 

 

 
 

Fig. 10. The mean percentage of subjects that detected relevant features, for each class of 
objects (terrain, living creatures and man-made objects) and for each of the individual 
(visual and infrared) and (CWT, DWT, and Pyramid) fused image modalities. 
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Fig. 8. Annotated union of all human segmentations of each of the 7 scenes used in this 
study. Indicated and labeled are the terrain features (green), man-made objects (gray) and 
living creatures (red) used to score the subject  performance.   
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Fig. 9. Performance of subjects with the (CWT, DWT, and Pyramid) fused image modalities, 
expressed as the mean percentage of objects segmented by a fraction of subjects that was 
equal to or larger than the fraction of subjects that segmented these objects in either the 
visual (v) or infrared (i) image modalities. 

 

 
 

Fig. 10. The mean percentage of subjects that detected relevant features, for each class of 
objects (terrain, living creatures and man-made objects) and for each of the individual 
(visual and infrared) and (CWT, DWT, and Pyramid) fused image modalities. 
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Fig. 10 shows the percentage of cases in which the performance with fused imagery was 
both equivalent to (equal or larger than) or better (larger) than the performance with each of 
the input image modalities. This figure confirms the results in Fig. 9 by showing that most 
image modalities yield a performance for the detection of living creatures that is equivalent 
to that obtained with the input image modalities. The performance for the detection of man-
made objects is below the performance with the input images. The performance for the 
detection of terrain features is considerably reduced, suggesting that the details from the 
visual images are not optimally represented in the fused images. There are only a few cases 
in which the performance with fused imagery exceeds the performance with the individual 
image modalities. This only occurs for the detection of living creatures and of terrain 
features. 
Currently no well-established methods for objective image segmentation quality evaluation 
are available (Correia & Pereira, 2002; Correia & Pereira, 2006; Correia & Pereira, 2003). We 
will therefore use the boundary precision-recall measure, which has become a standard 
evaluation procedure in the information retrieval community (van Rijsbergen, 1979), as the 
evaluation criterion in the comparison of the human segmentation boundaries for the 
different image modalities. Precision is the fraction of detections that are true positives 
rather than false positives, while recall is the fraction of true positives that are detected 
rather than missed. Precision and recall are traditionally used to measure the performance 
of information extraction and information retrieval systems (van Rijsbergen, 1979), and have 
more recently also been applied to measure the performance of edge detection and image 
segmentation schemes (Martin et al., 2004), and the efficacy of multimodal image fusion 
schemes (Davis & Sharma, 2007). In the context of boundary detection, two types of errors 
arise. Type-I errors occur if a true object boundary has not been detected by the segmenter 
(boundary deletion). Type-II errors occur if a detected object boundary does not correspond 
to a segment boundary in  
the reference (false alarm, or boundary insertion). Precision and recall can then be expressed 
by the Type-I and Type-II error rates as follows: 

 number of correctly detected reference boundary pixels
total number of reference boundary pixelsR =  (1)  

and  

 number of correctly detected reference boundary pixels
total number of detected boundary pixelsP =  (2) 

Thus, precision is the fraction of detected boundaries that are indeed true boundaries, while 
recall is the fraction of true boundaries in the image that are actually detected. Note that 
both precision and recall are bounded between 0 and 1. 
In the context of boundary detection, the precision and recall measures are particularly 
meaningful in applications that make use of boundary maps, such as stereo or object 
recognition. It is reasonable to characterize this type of higher level processing in terms of 
how much true signal is required to succeed (recall), and how much noise can be tolerated 
(precision). A particular application can define a relative cost α between these quantities. 
The F-measure (van Rijsbergen, 1979), defined as  

 /( (1 ) )F P R R Pα α= + −  (3) 
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captures this trade off as the weighted harmonic mean of the precision P and the recall R. 
Like R and P the F-measure is bounded between 0 and 1. In a precision-recall graph, higher 
F-measures correspond to points closer to (P,R) = (1,1), representing maximal precision and 
recall for a given α. In our present experiments we choose the neutral parameterization and 
set α equal to 0.5, so that precision and recall are weighted equally, and (3) becomes 

 2 /( )F P R R P= +  (4) 

Here we propose to use a combination of the manual segmentations of each of the 
individual image modalities to construct a reference contour image that can be used to 
evaluate the different fusion schemes. The segmentation data set provides multiple human 
segmentations for each image. Simply constructing a reference contour image by taking the 
union of individual manual boundary maps is not effective because of the localization errors 
present in the data set itself. Localization errors are inherent in a human image 
segmentation task, since human subjects are limited in the accuracy with which they can 
draw the edges they observe in the images. Evidently, some objects simply have no well 
defined boundaries (grass, trees, clouds). Moreover, for the type of imagery used in this 
study, the object representations are often not sharp. As a result, there is an inherent 
positional uncertainty in the manually drawn boundaries for the imagery used in this study. 
In the rest of this study we will use procedures to match different boundary representations. 
Simply matching corresponding coincident boundary pixels and declaring all unmatched 
pixels either false positives or misses would not tolerate any localization error. Therefore, 
we permit a controlled amount of localization error, by adopting a distance tolerance region 
with a radius of 20 pixels (this value was found to yield appreciable results throughout the 
entire procedures presented in this study). Any boundary pixel detected within this 
tolerance region around the location of a true (reference) boundary pixel is regarded as a 
correct detection.  
Now we will discuss the steps taken in the construction of a reference contour image. First, 
the individual boundary maps resulting from the human segmentations are converted into 
binary mask images. For a given object boundary, a boundary mask image represents all 
pixels that are within a given tolerance distance of this boundary. These boundary masks 
are introduced to allow for small localization errors in the human segmentation data. The 
binary boundary mask image is obtained by first computing the exact squared two-
dimensional Euclidean distance transform of the binary contour image (Figure 6a) using a 
square 3x3 structuring element (Lotufo & Zampirolli, 2001). The result of this transform is a 
graylevel image in which the value of each background pixel represents the Euclidian 
distance to the nearest boundary pixel (Fig. 11b; e.g.  
http://en.wikipedia.org/wiki/Distance_transform). Thresholding this distance image at the 
aforementioned distance threshold level of 20 pixels gives the binary mask image (Fig. 11). 
Next, for each image modality, the corresponding binary boundary mask images from all 
subjects are summed. The summed mask image represents the number of subjects that have 
marked each individual pixel as a boundary pixel. The summed mask image is then 
thresholded at a level corresponding to half the number of subjects that contributed to the 
sum. Thus we obtain a binary mask image that represents the consensus among at least half 
of the subjects about the boundary status of each pixel (i.e. a pixel has value 1 if at least half 
of the subjects have marked this pixel as a boundary pixel; Fig. 12 lower left).  
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Fig. 10 shows the percentage of cases in which the performance with fused imagery was 
both equivalent to (equal or larger than) or better (larger) than the performance with each of 
the input image modalities. This figure confirms the results in Fig. 9 by showing that most 
image modalities yield a performance for the detection of living creatures that is equivalent 
to that obtained with the input image modalities. The performance for the detection of man-
made objects is below the performance with the input images. The performance for the 
detection of terrain features is considerably reduced, suggesting that the details from the 
visual images are not optimally represented in the fused images. There are only a few cases 
in which the performance with fused imagery exceeds the performance with the individual 
image modalities. This only occurs for the detection of living creatures and of terrain 
features. 
Currently no well-established methods for objective image segmentation quality evaluation 
are available (Correia & Pereira, 2002; Correia & Pereira, 2006; Correia & Pereira, 2003). We 
will therefore use the boundary precision-recall measure, which has become a standard 
evaluation procedure in the information retrieval community (van Rijsbergen, 1979), as the 
evaluation criterion in the comparison of the human segmentation boundaries for the 
different image modalities. Precision is the fraction of detections that are true positives 
rather than false positives, while recall is the fraction of true positives that are detected 
rather than missed. Precision and recall are traditionally used to measure the performance 
of information extraction and information retrieval systems (van Rijsbergen, 1979), and have 
more recently also been applied to measure the performance of edge detection and image 
segmentation schemes (Martin et al., 2004), and the efficacy of multimodal image fusion 
schemes (Davis & Sharma, 2007). In the context of boundary detection, two types of errors 
arise. Type-I errors occur if a true object boundary has not been detected by the segmenter 
(boundary deletion). Type-II errors occur if a detected object boundary does not correspond 
to a segment boundary in  
the reference (false alarm, or boundary insertion). Precision and recall can then be expressed 
by the Type-I and Type-II error rates as follows: 

 number of correctly detected reference boundary pixels
total number of reference boundary pixelsR =  (1)  

and  
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total number of detected boundary pixelsP =  (2) 

Thus, precision is the fraction of detected boundaries that are indeed true boundaries, while 
recall is the fraction of true boundaries in the image that are actually detected. Note that 
both precision and recall are bounded between 0 and 1. 
In the context of boundary detection, the precision and recall measures are particularly 
meaningful in applications that make use of boundary maps, such as stereo or object 
recognition. It is reasonable to characterize this type of higher level processing in terms of 
how much true signal is required to succeed (recall), and how much noise can be tolerated 
(precision). A particular application can define a relative cost α between these quantities. 
The F-measure (van Rijsbergen, 1979), defined as  
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captures this trade off as the weighted harmonic mean of the precision P and the recall R. 
Like R and P the F-measure is bounded between 0 and 1. In a precision-recall graph, higher 
F-measures correspond to points closer to (P,R) = (1,1), representing maximal precision and 
recall for a given α. In our present experiments we choose the neutral parameterization and 
set α equal to 0.5, so that precision and recall are weighted equally, and (3) becomes 

 2 /( )F P R R P= +  (4) 

Here we propose to use a combination of the manual segmentations of each of the 
individual image modalities to construct a reference contour image that can be used to 
evaluate the different fusion schemes. The segmentation data set provides multiple human 
segmentations for each image. Simply constructing a reference contour image by taking the 
union of individual manual boundary maps is not effective because of the localization errors 
present in the data set itself. Localization errors are inherent in a human image 
segmentation task, since human subjects are limited in the accuracy with which they can 
draw the edges they observe in the images. Evidently, some objects simply have no well 
defined boundaries (grass, trees, clouds). Moreover, for the type of imagery used in this 
study, the object representations are often not sharp. As a result, there is an inherent 
positional uncertainty in the manually drawn boundaries for the imagery used in this study. 
In the rest of this study we will use procedures to match different boundary representations. 
Simply matching corresponding coincident boundary pixels and declaring all unmatched 
pixels either false positives or misses would not tolerate any localization error. Therefore, 
we permit a controlled amount of localization error, by adopting a distance tolerance region 
with a radius of 20 pixels (this value was found to yield appreciable results throughout the 
entire procedures presented in this study). Any boundary pixel detected within this 
tolerance region around the location of a true (reference) boundary pixel is regarded as a 
correct detection.  
Now we will discuss the steps taken in the construction of a reference contour image. First, 
the individual boundary maps resulting from the human segmentations are converted into 
binary mask images. For a given object boundary, a boundary mask image represents all 
pixels that are within a given tolerance distance of this boundary. These boundary masks 
are introduced to allow for small localization errors in the human segmentation data. The 
binary boundary mask image is obtained by first computing the exact squared two-
dimensional Euclidean distance transform of the binary contour image (Figure 6a) using a 
square 3x3 structuring element (Lotufo & Zampirolli, 2001). The result of this transform is a 
graylevel image in which the value of each background pixel represents the Euclidian 
distance to the nearest boundary pixel (Fig. 11b; e.g.  
http://en.wikipedia.org/wiki/Distance_transform). Thresholding this distance image at the 
aforementioned distance threshold level of 20 pixels gives the binary mask image (Fig. 11). 
Next, for each image modality, the corresponding binary boundary mask images from all 
subjects are summed. The summed mask image represents the number of subjects that have 
marked each individual pixel as a boundary pixel. The summed mask image is then 
thresholded at a level corresponding to half the number of subjects that contributed to the 
sum. Thus we obtain a binary mask image that represents the consensus among at least half 
of the subjects about the boundary status of each pixel (i.e. a pixel has value 1 if at least half 
of the subjects have marked this pixel as a boundary pixel; Fig. 12 lower left).  
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Then, we compute the morphological skeleton (Maragos & Schafer, 1986) of the binary 
consensus mask image (Fig. 12 lower right). This is done by a morphological thinning 
operation (Serra, 1982) that successively erodes away pixels from the boundary (while 
preserving the end points of line segments) until no more thinning is possible, at which 
point what is left represents the skeleton. 
Finally, a joined binary mask for the combination of visual and infrared boundaries is 
produced as the logical union of the corresponding individual binary consensus mask 
images (Fig. 13 lower left). From the resulting binary mask image a joined skeleton image is 
then constructed (Fig. 13 lower right). In the following we will refer to the joined binary 
consensus mask and its morphological skeleton as respectively the reference mask and the 
reference contour image. Note that the reference contour image represents the combination of 
the maximal amount of object boundary information that was extracted by human visual 
inspection from each of the individual image modalities. 
For each of the fused image modalities precision and recall measures are then computed as 
follows. First, we count the number of non-zero (object) pixels in the reference contour 
image (n_ref) and those in the corresponding boundary image manually drawn by a human 
subject (n_subject). To compute the number of pixels in the boundary image drawn by the 
subject that are accounted for by the reference mask (the number of hits: na_subject) we take 
the intersection of the subject’s boundary image and the reference mask, and count the 
number of non-zero pixels. Similarly, to compute the number of pixels in the reference 
contour image that are accounted for by the subject’s boundary drawing  (na_reference) we 
 

(a) 
 

(b) 

(c) 

 
 

Fig. 11. (a)  Boundary drawn for the visual image of the UNCamp scene (see Fig. 7)  by a 
human subject. (b) Distance transform of (a).  (c)  Mask image obtained by thresholding  (b) 
at distance level 20.  
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Fig. 12.  Boundaries drawn by 6 human subjects for the visual image of the UNCamp scene, 
the union of all these boundaries, the consensus mask image (lower left) representing the 
thresholded sum of all boundary masks (i.e. the dilated boundary images; not shown here), 
and the resulting reference contour (lower right). 
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Fig. 11. (a)  Boundary drawn for the visual image of the UNCamp scene (see Fig. 7)  by a 
human subject. (b) Distance transform of (a).  (c)  Mask image obtained by thresholding  (b) 
at distance level 20.  
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Fig. 12.  Boundaries drawn by 6 human subjects for the visual image of the UNCamp scene, 
the union of all these boundaries, the consensus mask image (lower left) representing the 
thresholded sum of all boundary masks (i.e. the dilated boundary images; not shown here), 
and the resulting reference contour (lower right). 
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Visual image 
 

Infrared image 

Visual reference contour 
 

Infrared reference contour 

Joint reference mask 
 

Joint reference contour 

Fig. 13. The visual and infrared input images of the UNCamp scene (top row), their 
reference contour representations (middle row), and the joint reference contour mask and 
contour image (lower row). 

take the intersection of the reference contour image and the subject’s boundary mask image, 
and count the number of non-zero pixels. For each individual human subject i the precision 
( iP ) and recall ( iR ) measures are then computed as the fraction of accounted pixels in both 
the subject’s drawing and the reference contour image: 

 /subject subject reference reference; /i iP na n R na n= =  (5) 

The F-measure for each human subject i is then be computed from (5) as: 

 subject reference

reference subject reference subject

2 na na
Fi n na na n

⋅⋅
= ⋅ + ⋅  (6) 
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The overall precision, recall and F-measures are then computed as the mean over all N 
subjects: 

 
1 1 1
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1 1 1N N N

i i i
i i i
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= = =∑ ∑ ∑  (7) 

Fig. 14 shows the precision and recall measures computed for each of the individual 
skeletons of the visual, infrared, CWT, DWT and Pyramid fused image modalities. This 
figure shows that the individual manual segmentations agree to a large extent with their 
overall skeleton representation (median value of F=0.72). A collection of manual image 
segmentations can therefore be represented by a single overall skeleton.  
Fig. 15 shows the precision and recall measures computed for the unified skeleton 
representation of the visual and infrared human boundary data, and the human boundary 
data for each of the (CWT, DWT and Pyramid-) fused image modalities. This result shows 
that the precision of the boundaries drawn by the subjects is actually quite high, meaning 
that the fusion schemes do not seem to introduce any spurious details. However, the 
fraction of recalled details is around 0.5, which is rather low. This reflects the effect that 
terrain details are not well perceived by the subjects in the fused images.  
Summarizing, we conclude that reference contour images are a useful tool to evaluate the 
performance of image fusion schemes. 
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Fig. 14. Consistency between the skeleton representation of each of the individual (visual, 
infrared) and each of the fused (CWT, DWT, PYR) image modalities and the subject data. 
This figure shows that the skeleton is a  reliable representation of the data. 
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Fig. 13. The visual and infrared input images of the UNCamp scene (top row), their 
reference contour representations (middle row), and the joint reference contour mask and 
contour image (lower row). 
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Fig. 15. Consistency between the unified skeleton representation of the visual and infrared 
human boundary data, and the human boundary data for each of the (CWT, DWT and 
Pyramid-) fused image modalities. 

5. Camouflage detection 
Although natural color mapping schemes provide many perceptual benefits, they are not 
suitable for all purposes. A typical example is the task of detecting soldiers wearing 
camouflage suits in a rural setting, using a two-band nightvision system sensitive to the 
visual and thermal part of the electromagnetic spectrum. When the false color 
representation of the fused nightvision image optimally agrees with the daytime appearance 
of the scene, the soldiers will blend in with their environment (will be camouflaged), which 
makes it nearly impossible to perform the task. In such cases a color mapping scheme 
should be used which displays the objects of interest with higher color contrast while 
retaining an intuitive (natural) color setting for the rest of the scene.  
As an example we present the results of a color mapping which optimizes the detection of 
man-made camouflaged targets in a rural setting, while retaining a natural color 
representation of the environment. 

5.1 Imagery 
We registered optically aligned visual (wavelengths shorter than 700 nm) and near-infrared 
(NIR; wavelengths longer than 700 nm) nighttime images of a rural scene containing grass 
and trees, with and without targets in the scene. The targets were blue and green foam tubes 
(Fig. 16). For comparison we also created a standard intensified image of each scene 
containing both bands, since this is the type of image typically provided by standard night 
vision goggles. First, a red-green false color representation of the fused dual-band sensor 
image was obtained by mapping the visual band to the Red channel and the NIR band to the 
Green channel of an RGB-image (Fig. 17d). Next, for each combination of sensor outputs  
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(a) 
 

(b) 

Fig. 16. Images showing the two target types, the green target (a) and the blue target (b). 
 

(a) (b) 
 

(c) 

(d) (e) 

 

Fig. 17. Lookup table based color remapping applied to a dual-band visual (a) and NIR (b) 
image.  (c) A regular intensified image representation for comparison (e.g. a standard night 
vision goggle image). (d) A red-green false color representation of the dual-band image with 
the visual band assigned to the Red and NIR band assigned to the Green channel of an RGB 
display. The inset in (d) shows all possible dual-band outputs as shades of red (large 
response in band 1, small in band 2), green (small response in band 1, large in band 2) and 
yellow (large responses in both bands). (e) The result of the color transformation. The inset 
shows how the colors in the inset of (d) are transformed.  
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Fig. 15. Consistency between the unified skeleton representation of the visual and infrared 
human boundary data, and the human boundary data for each of the (CWT, DWT and 
Pyramid-) fused image modalities. 
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representation of the fused nightvision image optimally agrees with the daytime appearance 
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makes it nearly impossible to perform the task. In such cases a color mapping scheme 
should be used which displays the objects of interest with higher color contrast while 
retaining an intuitive (natural) color setting for the rest of the scene.  
As an example we present the results of a color mapping which optimizes the detection of 
man-made camouflaged targets in a rural setting, while retaining a natural color 
representation of the environment. 

5.1 Imagery 
We registered optically aligned visual (wavelengths shorter than 700 nm) and near-infrared 
(NIR; wavelengths longer than 700 nm) nighttime images of a rural scene containing grass 
and trees, with and without targets in the scene. The targets were blue and green foam tubes 
(Fig. 16). For comparison we also created a standard intensified image of each scene 
containing both bands, since this is the type of image typically provided by standard night 
vision goggles. First, a red-green false color representation of the fused dual-band sensor 
image was obtained by mapping the visual band to the Red channel and the NIR band to the 
Green channel of an RGB-image (Fig. 17d). Next, for each combination of sensor outputs  
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Fig. 16. Images showing the two target types, the green target (a) and the blue target (b). 
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(d) (e) 

 

Fig. 17. Lookup table based color remapping applied to a dual-band visual (a) and NIR (b) 
image.  (c) A regular intensified image representation for comparison (e.g. a standard night 
vision goggle image). (d) A red-green false color representation of the dual-band image with 
the visual band assigned to the Red and NIR band assigned to the Green channel of an RGB 
display. The inset in (d) shows all possible dual-band outputs as shades of red (large 
response in band 1, small in band 2), green (small response in band 1, large in band 2) and 
yellow (large responses in both bands). (e) The result of the color transformation. The inset 
shows how the colors in the inset of (d) are transformed.  
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(represented by a shade of red, green, yellow; see inset of Fig. 17d) a color was selected to 
display this sensor output. This process was implemented by transforming the red-green 
image (Fig. 17d) into an indexed image in which each pixel value refers to the entry of a color 
lookup table. When a different color lookup table is used, the colors in the indexed image are 
automatically transformed, such that all pixels with the same index are displayed in the same 
color. The method is described in detail elsewhere (Hogervorst & Toet, 2008a; Hogervorst & 
Toet, 2010).  We found that the color transformation which maximizes the visibility of the 
targets while preserving the natural appearance of the scene is quite similar to the red-green 
representation, with a few modifications that specifically address the target colors.  
The inset of Fig. 17e shows the colors assigned to all dual-band outputs (the inset of Fig. 
17d) by the chosen color scheme. This color scheme emphasizes the distinction between 
objects containing chlorophyll (the background plants) and objects containing no 
chlorophyll (e.g. the foam tube targets; notable from the sharp transition between green and 
red at the diagonal). The dual band sensor system separates the incoming light in a part 
with wavelengths below 700nm and one with wavelengths above 700 nm. Since chlorophyll 
shows a steep rise around 700nm, this dual-band system is especially suited for 
discriminating materials containing chlorophyll from materials containing no chlorophyll. 
Elements containing chlorophyll (e.g. plants) are displayed in green (i.e. in their natural 
color), while objects without chlorophyll are displayed in the perceptually opposite color 
red. To further increase the naturalness, elements with high output in both channels are 
displayed in white (bottom right corner of the inset of Fig. 17e). The result of our color 
mapping is shown in Fig. 17e. 

5.2 Experiment 
We evaluated the abovementioned color mapping in a target detection paradigm. We 
registered both nighttime dual-band (visual and NIR) images and daytime full color digital 
photographs of a scene containing grass and trees, with and without targets present. 
Performance for detecting targets was established for imagery of the dual-band fusion 
system, each of the individual sensor bands (visual and NIR), standard NVG, and daytime 
images (taken with a regular digital photo camera). The visual angle and display area of the 
daytime images were matched to those of the nighttime images.  
The targets were green (Fig. 18a) and blue (Fig. 18b) foam insulation tubes. The reflectance 
of the tubes was such the green tubes were mostly undetectable in a standard intensified  
 

(a) (b) 

Fig. 18. The green target (a) and the blue target (b) situated in a background with grass and trees. 
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image representation and in the NIR band (see Fig. 17), but quite distinct (as bright objects) 
in the visible band (see Fig. 17). In contrast, the blue tubes were mostly undetectable in the 
visual band, but clearly visible (as dark objects) in the NIR band and in regular intensified 
images (Fig. 19). 
 

(a) (b) (c) 

Fig. 19. Visual (a), NIR (b) and the color fused dual-band image (c) for a scene including a 
blue target. The target is visible in the NIR band as a dark tube. The dual-band image shows 
the target as a reddish object. 
We recorded whether subjects detected the targets when present (Hits and Misses), and 
whether they judged there to be a target when no target was present (False Alarms and 
Correct Rejections). We also recorded the response times. Since no False Alarms occurred in 
this experiment (i.e. the False-Alarm rate was zero), observer performance is fully 
characterized by the Hit-rate, i.e. the fraction of targets that was detected (ph = #Hits / 
(#Hits + #Misses)). Observer performance was measured for 5 different image modalities:  
1. Daytime: full color daylight images (taken with a standard digital daytime camera), 
2. II: grayscale intensified images, combining both visual and NIR part of the spectrum, 
3. VIS: grayscale intensified images representing only the visual part of the spectrum, 
4. NIR: grayscale intensified images representing only the NIR part of the spectrum, 
5. FC: false color images resulting from the natural color remapping method. 
Seven subjects participated in the experiment. The images were shown on a CRT. The 
subjects indicated as quickly as possible whether a target was present or not, by clicking the 
appropriate mouse button. Next, the image disappeared and was replaced by a low 
resolution equivalent of the image, consisting of 20x15 uniformly colored squares (to 
prevent subjects from continuing their search after responding). We registered the time 
between onset of the stimulus and detection (the response time). The subject then indicated 
the perceived target location or clicked on an area outside the image labeled “no target 
found”. Responses outside an ellipse with horizontal diameter of 162 and vertical diameter 
of 386 pixels centered on the vertically elongated target were considered as incorrect. 

5.3 Results and discussion 
Fig. 20 shows the fraction of hits (hit-rate) for the various sensor conditions and target 
colors. Shown are the average hit-rates over subjects. Not surprisingly, performance is 
highest in the Daytime condition. As expected (see Fig. 17 and Fig. 19), performance for 
detecting the green targets is high in the visual (VIS) condition and low in the image 
intensified (II) and NIR sensor conditions. Performance for detecting the blue targets is 
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image representation and in the NIR band (see Fig. 17), but quite distinct (as bright objects) 
in the visible band (see Fig. 17). In contrast, the blue tubes were mostly undetectable in the 
visual band, but clearly visible (as dark objects) in the NIR band and in regular intensified 
images (Fig. 19). 
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subjects indicated as quickly as possible whether a target was present or not, by clicking the 
appropriate mouse button. Next, the image disappeared and was replaced by a low 
resolution equivalent of the image, consisting of 20x15 uniformly colored squares (to 
prevent subjects from continuing their search after responding). We registered the time 
between onset of the stimulus and detection (the response time). The subject then indicated 
the perceived target location or clicked on an area outside the image labeled “no target 
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5.3 Results and discussion 
Fig. 20 shows the fraction of hits (hit-rate) for the various sensor conditions and target 
colors. Shown are the average hit-rates over subjects. Not surprisingly, performance is 
highest in the Daytime condition. As expected (see Fig. 17 and Fig. 19), performance for 
detecting the green targets is high in the visual (VIS) condition and low in the image 
intensified (II) and NIR sensor conditions. Performance for detecting the blue targets is 
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somewhat poorer in the single-band conditions. These targets can be detected in the NIR 
condition (reasonably well) and in the II condition (poorly), while they are hardly detected 
in the VIS condition. Detection performance for both targets is high with the false-color 
dual-band sensor. Optimal fusion results in performance that equals maximum performance 
in the individual bands. The hit-rate for the green targets is somewhat lower for the dual-
band than for the visual condition. But the hit-rate for the blue targets is somewhat higher 
for dual-band than for NIR condition. The average hit-rate of the false color dual band 
sensor (0.75) is not significantly different from the average of the hit-rate for green in VIS 
and the hit-rate for blue in NIR (0.78). This means that this fusion scheme is near optimal. 
The results also show that the performance with the standard intensified imagery is clearly 
much worse than with the false-color dual-band NVG system. 
 

 
Fig. 20. Average (over all subjects) hit-rate (fraction of hits) for each of the 5 different image 
modalities and the 2 target colors, including the overall hit-rate (“all”). The error bars 
represent standard errors in the mean derived from the variance between subjects. 

Fig. 21 shows the response times of the trials containing a target (shown are the geometric 
means over the response times, i.e. the exponent of the average log response times) for all 
conditions for the hits and misses. Note that the hits for the NIR and II modalities 
correspond primarily to the trials containing blue targets; the hits for the Visual modality 
correspond primarily to the trials containing green targets. The response times for the false 
color dual-band condition are comparable, but slightly larger than in the single-band Visual 
and NIR conditions. This may be due to the fact that in this condition subjects had to attend 
to two types of targets, while in the single band conditions only one of the target colors was 
apparent.  
It turns out that the response times for missed targets are comparable to the response times 
for stimuli in which no target is present. The average response times for missed targets do 
not correlate with the hit-rates (see Fig. 21b). In contrast, the average response times for hits 
is highly correlated with the hit-rate (r = -0.90, p < 0.01, see Fig. 21b). This indicates that 
when targets are more easily detected, the hit-rate goes up and the response time goes 
down. 
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Fig. 21. (a) The geometric mean (i.e. averaged in log) response times for the various image 
modalities, separated for hits and misses. (b) Relationship between the hit-rate for each 
image modality and the (geometric) mean response times for hits and misses for the two 
target colors. 

The results show that performance of the false color dual-band system is just as good as the 
maximum performance that can be attained using either of its individual bands (visual and 
NIR). While the green targets can be detected with the visual band of the system alone, the 
blue targets are mostly missed when subjects have to rely on this band alone. In contrast, the 
blue targets can be detected with the NIR band, but the green targets are then largely missed 
in this modality. With the false color dual-band image modality both targets can be 
detected. The total number of targets detected in the dual band image modality is the same 
as the total number of targets detected in the visual and modality plus the number of targets 
detected in the NIR image modality. This indicates that the fused color representation of the 
two bands is (nearly) optimal from a perceptual standpoint. 
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Fig. 21. (a) The geometric mean (i.e. averaged in log) response times for the various image 
modalities, separated for hits and misses. (b) Relationship between the hit-rate for each 
image modality and the (geometric) mean response times for hits and misses for the two 
target colors. 

The results show that performance of the false color dual-band system is just as good as the 
maximum performance that can be attained using either of its individual bands (visual and 
NIR). While the green targets can be detected with the visual band of the system alone, the 
blue targets are mostly missed when subjects have to rely on this band alone. In contrast, the 
blue targets can be detected with the NIR band, but the green targets are then largely missed 
in this modality. With the false color dual-band image modality both targets can be 
detected. The total number of targets detected in the dual band image modality is the same 
as the total number of targets detected in the visual and modality plus the number of targets 
detected in the NIR image modality. This indicates that the fused color representation of the 
two bands is (nearly) optimal from a perceptual standpoint. 
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6. Conclusions 
We find that observers can localize persons in a scene more accurately using fused 
intensified visual and thermal imagery, than with each of the individual image modalities. 
The addition of color does not improve this accuracy. A spatial localization task is useful 
tool to assess the information content of fused imagery intended for surveillance and 
navigation tasks. 
IR and intensified visual imagery contain complementary information. IR imagery mainly 
contributes to the recognition of buildings and living creatures, whereas intensified visual 
imagery predominantly shows natural terrain features and efficiently provides the gist of 
the scene. Experiments testing scene recognition and situational awareness can be used to 
investigate the perceptual quality of images fusion and color mapping schemes. 
The fusion methods used in this study degrade the perception of terrain features. Our 
finding that the fraction of recalled boundary contours is rather low suggests that details 
from the visual images are not fully transferred to the fused images. The detection of living 
creatures is similar in all fused images, indicating that these high-contrast details from the 
IR images are correctly represented in the fused images. Reference contour images obtained 
from human segmentations are a useful tool to systematically evaluate the quality of the 
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1. Introduction  
Confocal Scanning Laser Microscopy (CSLM) represents one of the most important 
advances in optical microscopy of the last decades. It is widely accepted that the confocal 
microscope was invented by Marvin Minsky, who filed a patent in 1957 (Minsky, 1957). 
However, at that time such a system was very difficult, if not impossible, to implement, due 
to the unavailability of required laser sources, sensitve photomultipliers or computer image 
storage possibilities. A laser scanning microscope using mechanical object scanning was 
developed in Oxford in 1975, and a review of this work was later published (Sheppard, 
1990). The Oxford microscope was the first commercial confocal microscope. Other 
important contributors to this era of the development of confocal microscopy were 
Brakenhoff (Brakenhoff et al., 1979) and Cox (Cox, 1984).  
The architecture of a CSLM system provides the possibility to acquire images representing 
optical sections on a sample’s volume. In order to achieve this, in a CSLM system an 
excitation source emits coherent light (laser) which is scanned across the sample surface. As 
it reaches the sample the light is reflected towards a detector, in reflection work mode, the 
same optical path being used as well in fluorescence work mode. While in conventional 
microscopy, the detector is subjected to light which is reflected by out of focus planes, 
resulting in out-of-focus blur being contained in the final image, the architecture of a CSLM 
system helps avoid this situation. In order to acquire images corresponding to certain 
optical sections, a confocal aperture (usually known as pinhole) is situated in front of the 
detector. More precisely, the pinhole is placed in a plane conjugate to the intermediate 
image plane and, thus, to the object plane of the microscope. As a result, only light reflected 
from the focal plane reaches the detector, out-of-focus light being blocked by the pinhole 
(Fig. 1). The dimension of the pinhole is variable and together with the wavelength which is 
being used and the numerical aperture of the objective, dictates the thickness of the volume 
which contributes to the collected image (Shepard et. al., 1997; Wilson, 2001). 
In the case of CSLM systems, the detector is a photo multiplier tube (PMT), which presents a 
wide dynamic range and has high photon sensitivity suitable for detecting both strong and 
weak signal at a very quick refresh rates, in a time range of nano-seconds. The PMT detects 
light and converts photon hits into analogue electron flow as electrons leave the 
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light and converts photon hits into analogue electron flow as electrons leave the 
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photocathode of the PMT, having the energy of the incoming photon. After the electrons 
follow a path which amplifies their number, they reach the anode of the PMT, where the 
accumulation of charge results in a sharp current pulse indicating the arrival of a photon at 
the photocathode. The continuous analogue current signal is then sampled at separate time 
point, digitized into discrete digital signal by analogue to digital converter (ADC), then 
processed by image processor resulting in digital images of the sample area contained in the 
system’s field of view.  
Besides CSLM specific advantages such as increased resolution and better contrast, the 
provided possibility of achieving images corresponding to optical sections represents as 
well a significant advantage to people working in fields such as biology, medicine, material 
science or microelectronics, as CSLM image stacks can be used for 3D reconstructions of the 
studied sample (Rigaut et al., 1991, Liu et al. 1997, Pironon, 1998, Rodriguez et al, 2003, 
Sugawara et al., 2005).  
 

 
Fig. 1. Principle of Confocal Scanning Laser Microscopy 

In some circumstances, a CSLM image corresponding to an optical section may contain 
defocused, low contrast or over-saturated areas. This problem can be present due to various 
reasons, such as region non-uniformity or sample regions which contribute to the image not 
being in the same focal plane at the same time due to non-uniform size or sample tilt (Fig. 2). 
For certain types of  investigations conclusions can be drawn only based on images of 
uniform quality or uniform focus. These types of images allow better morphological 
observations of the sample details. One method for obtaining this type of representation is 
image fusion. Image fusion will provide an artificial image, which will consist of image 
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regions belonging to different images of the CSLM stack. The purpose of this operation is to 
achieve an image representing a better description of the imaged scene or object than any of 
the individual source images. Ideally, the fusion algorithm should preserve relevant 
information from the fused images and suppress image regions or components which are 
subjected to noise or which are irrelevant in respect to a defined purpose (Nikolov, 98).  
Applications of image fusion have been implemented with great success in different 
microscopy and medical applications. For example, excellent results have been achieved in 
the case of three- dimensional microscopy, where certain limitations imposed by the low 
axial resolution of the system have been overcome by fusing images acquired at different 
placements of the sample (Swoger et al., 2007), while in (Forster et al., 2004) wavelet based 
image fusion is presented as a solution which provides good results for extending the depth 
of field in the case of multichannel microscopy images. In (Chen, et al 2010) an image fusion 
algorithm based on bidimensional empirical mode decomposition (BEMD) is applied to 
multi-focus color microscopic images achieving a balanced result between local feature 
enhancement and global tonality rendition. 
 

 
Fig. 2. Possible scenario for the acquisition of a CSLM images of non uniform focus 

Image fusion can be performed in both frequency and spatial domains. Our approach, 
which deals with the fusion of CSLM images, was developed on a region level basis. Lately, 
much attention has been focused towards region-based image fusion because of its 
perceived advantages. With fusion rules based on combining regions instead of pixels, more 
useful tests for choosing the adequate regions from the source images, based on various 
properties of a region, can be implemented prior to fusion. Problems such as sensitivity to 
noise, blurring effects and misregistration in the case of pixel-fusion techniques, can be 
overcome by processing semantic regions rather than individual pixels (Li & Yang, 2008).   
In the case of the four  fusion methods that we experiment, each image in the CSLM stack is 
divided into the same number of square regions, same as in (Huang & Jing, 2007). Two of 
the proposed methods are based on a focus assesment operator, while the other two are 
based on a quality assesement operator. In the first two methods, which we entitled FFMAX 
and FFAVG, a focus assessment for the same region in all the images in the stack is 
calculated by Tenenabaum’s algorithm (Tenengrad). In FFMAX the region of the best focus 
is chosen to appear in the fused image, as in (Huang & Jing, 2007), while in  FFAVG, instead 
of building the fused image from blocks which belong to a single image, we build it by 
mean averaging the blocks of all images in the stack, the contribution of each source image 
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to the fused image being proportional to its response to the focus measure, as in (Stanciu et 
al., submitted 2010). The same approach is used in the 3rd and 4th presented methods, 
QFMAX and QFAVG, where instead of using a focus assesement operator as a decision 
criterion which dicates the inclusions of an image region to the fused image, a quality 
assesement operator is used. All four methods aim to obtain a fused image of better focus or 
quality uniformity, with morphological details of the structure being more visible than in 
any other image that contributed to the fusion. 

2. Fusion methods 
2.1 Focus assesment 
The first two fusion methods we have experimented, FFMAX and FFAVG, are based on an 
image clarity measure, namely a focus measure. A well-focused image has the best average 
focus over an entire field of view, even though objects often reside at multiple focus planes 
in thick sample slides. In the case of the first two experimented methods the focus 
assessment dictates the inclusion or the contribution of an image region to the final fused 
image. Once an image of the stack is divided into blocks of a certain size, for all these blocks 
a focus measure is calculated. Focus measures have been deeply studied in the field of 
autofocusing. There are two kinds of focus measures, spatial domain focus measures and 
frequency domain focus measures. However, frequency domain focus measures will not be 
used in a real-time system because of their complexity. Detailed discussions on the topics of 
focus measures and auto-focusing can be found in the literature (Nayar & Nakagawa, 1994; 
Subbaro et al., 1992; Yeo et al., 1993; Geusebroek et al., 2000). In (Huang & Jing, 2007), 
several focus measures were compared according to the focus measure’s capability of 
distinguishing clear image blocks from blurred image blocks. The results of the experiments 
performed on natural images showed that the Sum-Modified Laplacian (SML) can provide 
better performance than other focus measures when the execution time is not included in 
the evaluation, but other measures such as Energy of Laplacian of the image,  Tenenbaum’s 
algorithm or Energy of image gradient provided good results as well. In (Osibote et al., 
2010), a comparison of automated focusing methods for brightfield microscopy was 
conducted. It was showed that Vollath’s F4 algorithm provided best results, but in the same 
time Brenner and Tenenbaum’s algorithm provided very good results as well. For 
estimating the focus of a certain region we use a spatial domain focus measure, 
Tenenbaum’s algorithm (Tenengrad) (Krotkov, 1897; Yeo et al., 1993), which is a gradient 
magnitude maximization method that measures the sum of the squared responses of the 
horizontal and vertical Sobel masks. In its original implementation, the summation is for 
pixels that are above a certain threshold; however, we chose to use a variation in which all 
pixel locations can be included in the summation (Santos et al., 1997). 
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2.2 Quality assesement 
For estimating the quality of image regions we have chosen to use the same quality metric as 
defined in (Stanciu et al, 2010) : f f f gq μ σ μ= , where μf is the average grey level of the image,  

fσ is the standard deviation of the image pixels, and μg is the mean intensity of the gradient 
image. We have chosen this quality factor, as it takes into consideration three important 
aspects which define quality when referring to CSLM images: image brightness, image 
contrast and presence of edges and boundaries.  
A good measure of image brightness is the average gray level of the image. Let us consider 
the analyzed square region as a discrete image f:[0,M-1] x [0,N-1]->[0,L-1] and let H={h(0), 
h(1),… h(L-1)} be its histogram. The average gray level, μf, immediately follows: 
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The standard deviation can be regarded as a measure of image contrast. This can be easily 
understood since σ is a measure of how widely spread the values in a data set are. An 
unbiased estimate of the standard deviation is:     
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Another important factor that we take into consideration when choosing the reference 
image is related to the edges contained in the image. If an image is of good quality we can 
discern very clearly the objects contained in it.  Edges characterize boundaries and are 
therefore a problem of fundamental importance in image processing. Edges represent 
discontinuities between image regions of rather uniform graylevel or color. In a fashion 
simillar to the focus assesesment method described in 2.1, we considered the Sobel edge 
detector (Eq. 2), where Sx estimates the gradient in the x-direction (columns), while Sy 
estimates the gradient in the y-direction (rows). We consider the measure of the edges 
contained in image f as the mean intensity of its gradient magnitude image, namely μg.  

2.3 Fusion of square regions 
In all four methods which we have experimented each of the images in the stack is divided 
into a set of square regions. The dimension of the square regions can be chosen according to 
the content of the images that are to be fused. Higher region size is equivalent to less 
discriminative power between image areas, while a lower region size will bring a larger 
number of disturbing artifacts at the boundaries of the fused regions, also known as seams. 
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2.2 Quality assesement 
For estimating the quality of image regions we have chosen to use the same quality metric as 
defined in (Stanciu et al, 2010) : f f f gq μ σ μ= , where μf is the average grey level of the image,  

fσ is the standard deviation of the image pixels, and μg is the mean intensity of the gradient 
image. We have chosen this quality factor, as it takes into consideration three important 
aspects which define quality when referring to CSLM images: image brightness, image 
contrast and presence of edges and boundaries.  
A good measure of image brightness is the average gray level of the image. Let us consider 
the analyzed square region as a discrete image f:[0,M-1] x [0,N-1]->[0,L-1] and let H={h(0), 
h(1),… h(L-1)} be its histogram. The average gray level, μf, immediately follows: 
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The standard deviation can be regarded as a measure of image contrast. This can be easily 
understood since σ is a measure of how widely spread the values in a data set are. An 
unbiased estimate of the standard deviation is:     
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Another important factor that we take into consideration when choosing the reference 
image is related to the edges contained in the image. If an image is of good quality we can 
discern very clearly the objects contained in it.  Edges characterize boundaries and are 
therefore a problem of fundamental importance in image processing. Edges represent 
discontinuities between image regions of rather uniform graylevel or color. In a fashion 
simillar to the focus assesesment method described in 2.1, we considered the Sobel edge 
detector (Eq. 2), where Sx estimates the gradient in the x-direction (columns), while Sy 
estimates the gradient in the y-direction (rows). We consider the measure of the edges 
contained in image f as the mean intensity of its gradient magnitude image, namely μg.  

2.3 Fusion of square regions 
In all four methods which we have experimented each of the images in the stack is divided 
into a set of square regions. The dimension of the square regions can be chosen according to 
the content of the images that are to be fused. Higher region size is equivalent to less 
discriminative power between image areas, while a lower region size will bring a larger 
number of disturbing artifacts at the boundaries of the fused regions, also known as seams. 
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The computational time is also directly linked to the size of the square region, larger regions 
being equivalent to faster processing time.  Because of these aspects, a compromise should 
be made when choosing the size of the square region. Usually for an image of 1024 x 1024 
pixels we have obtained best results for square regions of 32 and 64 pixels.  
FFMAX, the first method we experimented, is simillar to the methods described in  (Huang 
& Jing, 2007), for each square region, its inclusion in the fused image is decided by 
calculating its response to the Tenengrad operator in all the images in the stack (source 
images). The block with the maximum response to the Tenengrad operator will be included 
in the fused image (Fig. 3), while others will be discarded . A simillar approach is used for 
the QFMAX method (Stanciu et al, 2009), where instead of deciding a region’s inclusion into 
the fused image based on a focus assesment operator, we use the quality estimate defined in 
section 2.2. For both FFMAX and QFMAX methods, a decision operator (F) is calculated for 
each square region in all images. The number of the image in the stack which contains the 
region of maximum response to the decision operator  is introduced into the correspondence 
matrix. Once the correspondence matrix is completed, a fused image is constructed as 
presented in Fig. 3. In the case of FFMAX the decision operator is represented by the 
Tenengrad focus assesment operator, while in QFMAX it is represented by the quality 
estimate operator described in 2.2.  
 

 
Fig. 3. Image fusion process for FFMAX and QFMAX methods 
Further on, we propose two other methods FFAVG and QFAVG. In these methods each of 
the source images will contribute to the fused image in a certain proportion. The 
contribution of a square region belonging to a source image to the value of the 
correspondent square region in the fused image is proportional to its responses to the 
decision operator. Hence, the responses to the decision operator (F) represent weights in a 
weighted mean based image fusion process (Fig 4). In FFAVG the decision operator is 
represented by Tenengrad focus assessment operator, while in QFAVG it is represented by 
the quality estimate operator described in 2.2.      
While in FFMAX and FFAVG only information regarding gradient magnitude is used in the 
decision regarding a region’s inclusion or contribution to the fused image, in QFMAX and 
QFAVG along with information regarding gradient magnitude, estimates on image 
brightness and image contrast contribute as well to the decision criterion, which results in 
brighter resulted images. 
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Fig. 4. Image fusion process for FFAVG and QFAVG 

3. Objectives and results 
3.1 Objective of the technical work carried out 
The PQR ‘mesa’ lasers are three-dimensional (3D) whispering gallery (WG) mode lasers 
with doughnut type Laguerre-Gaussian (LG) beam patterns (Ahn et al., 1999). During our 
investigations (Stanciu et al., 2008) on this type of devices several aspects related to their 
geometry could not be resolved from the original images obtained by CSLM as it was not 
possible to have all the regions of the device structure in focus at the same time. In Figure 5 
we present a stack of images obtained on PQR devices by CSLM. The number in the top left 
corner depicts the numerical order of optical sections in the full series. The stack consisted of 
50 CSLM images acquired at different levels along the Z axis. In order to enhance the results of 
our investigations on PQR devices, it was needed to construct an artificial image, constructed 
based on the CSLM set, that would contain information from different focal planes (thus from 
different images corresponding to different optical sections). The four image fusion algorithms 
presented in 2.3 have been experimented as a solution for this problem.  
The CSLM system that was used is a Leica TCS SP. The images of the PQR structures were 
obtained by scanning a  HeNe laser beam (633nm). The power of the laser beam on the 
sample surface was kept at 10μW. The objective that was used was HC PL  FLUOTAR  20.0 
X, with a numerical aperture of 0.5.  
By looking at the images in the stack (Fig. 5), we can observe that each one contains different 
details with their origin in different optical sections; to be more precise there are images 
with more details from the top of the structure (see images 25,31),  and others with more 
details from the background (see images 37, 43).  
For our investigations on the PQR devices Laser Beam Induced Current (LBIC) 
investigations were conducted in order to study the distribution of photocurrents density 
when illuminating the PQR structure with a laser beam, Fig. 6. In order to establish the 
relationships which occur between the sample’s geometry and the photocurrent distribution  
comparisons over CSLM and LBIC representations of the devices were conducted. 



 Image Fusion 

 

346 

The computational time is also directly linked to the size of the square region, larger regions 
being equivalent to faster processing time.  Because of these aspects, a compromise should 
be made when choosing the size of the square region. Usually for an image of 1024 x 1024 
pixels we have obtained best results for square regions of 32 and 64 pixels.  
FFMAX, the first method we experimented, is simillar to the methods described in  (Huang 
& Jing, 2007), for each square region, its inclusion in the fused image is decided by 
calculating its response to the Tenengrad operator in all the images in the stack (source 
images). The block with the maximum response to the Tenengrad operator will be included 
in the fused image (Fig. 3), while others will be discarded . A simillar approach is used for 
the QFMAX method (Stanciu et al, 2009), where instead of deciding a region’s inclusion into 
the fused image based on a focus assesment operator, we use the quality estimate defined in 
section 2.2. For both FFMAX and QFMAX methods, a decision operator (F) is calculated for 
each square region in all images. The number of the image in the stack which contains the 
region of maximum response to the decision operator  is introduced into the correspondence 
matrix. Once the correspondence matrix is completed, a fused image is constructed as 
presented in Fig. 3. In the case of FFMAX the decision operator is represented by the 
Tenengrad focus assesment operator, while in QFMAX it is represented by the quality 
estimate operator described in 2.2.  
 

 
Fig. 3. Image fusion process for FFMAX and QFMAX methods 
Further on, we propose two other methods FFAVG and QFAVG. In these methods each of 
the source images will contribute to the fused image in a certain proportion. The 
contribution of a square region belonging to a source image to the value of the 
correspondent square region in the fused image is proportional to its responses to the 
decision operator. Hence, the responses to the decision operator (F) represent weights in a 
weighted mean based image fusion process (Fig 4). In FFAVG the decision operator is 
represented by Tenengrad focus assessment operator, while in QFAVG it is represented by 
the quality estimate operator described in 2.2.      
While in FFMAX and FFAVG only information regarding gradient magnitude is used in the 
decision regarding a region’s inclusion or contribution to the fused image, in QFMAX and 
QFAVG along with information regarding gradient magnitude, estimates on image 
brightness and image contrast contribute as well to the decision criterion, which results in 
brighter resulted images. 

Image Fusion Methods for Confocal Scanning Laser Microscopy experimented  
on Images of Photonic Quantum Ring Laser Devices 

 

347 

 
Fig. 4. Image fusion process for FFAVG and QFAVG 

3. Objectives and results 
3.1 Objective of the technical work carried out 
The PQR ‘mesa’ lasers are three-dimensional (3D) whispering gallery (WG) mode lasers 
with doughnut type Laguerre-Gaussian (LG) beam patterns (Ahn et al., 1999). During our 
investigations (Stanciu et al., 2008) on this type of devices several aspects related to their 
geometry could not be resolved from the original images obtained by CSLM as it was not 
possible to have all the regions of the device structure in focus at the same time. In Figure 5 
we present a stack of images obtained on PQR devices by CSLM. The number in the top left 
corner depicts the numerical order of optical sections in the full series. The stack consisted of 
50 CSLM images acquired at different levels along the Z axis. In order to enhance the results of 
our investigations on PQR devices, it was needed to construct an artificial image, constructed 
based on the CSLM set, that would contain information from different focal planes (thus from 
different images corresponding to different optical sections). The four image fusion algorithms 
presented in 2.3 have been experimented as a solution for this problem.  
The CSLM system that was used is a Leica TCS SP. The images of the PQR structures were 
obtained by scanning a  HeNe laser beam (633nm). The power of the laser beam on the 
sample surface was kept at 10μW. The objective that was used was HC PL  FLUOTAR  20.0 
X, with a numerical aperture of 0.5.  
By looking at the images in the stack (Fig. 5), we can observe that each one contains different 
details with their origin in different optical sections; to be more precise there are images 
with more details from the top of the structure (see images 25,31),  and others with more 
details from the background (see images 37, 43).  
For our investigations on the PQR devices Laser Beam Induced Current (LBIC) 
investigations were conducted in order to study the distribution of photocurrents density 
when illuminating the PQR structure with a laser beam, Fig. 6. In order to establish the 
relationships which occur between the sample’s geometry and the photocurrent distribution  
comparisons over CSLM and LBIC representations of the devices were conducted. 



 Image Fusion 

 

348 

 
Fig. 5. Stack of PQR images obtained by CSLM  
 

 
Fig. 6. Photocurrent image of the PQR laser 
Our investigations on PQR devices relied on obtaining images at the same  Z levels, for both 
induced photocurrent map obtained in Laser Beam Induced Current (LBIC) mode, and for 
the reflection signal of the PQR structure collected by CSLM, in order to determine the 
region where the current was generated. Due to the device geometry and the limitations of 
the investigation technique (limited depth of field and limited axial resolution), we had 
obtained images of generated current, by LBIC, even for Z levels for which there was no 
image in the reflection workmode of the CSLM, due to the structure slope. In this situations 
we were not able to link the physical regions of the device to the regions in which 
photocurrent was present. A solution to this problem was represented by the fusion of 
images of the CSLM stack acquired on a PQR device as described in 2.3. Comparing the 
photocurrent image acquired in LBIC to an artificial image containing details from different 
optical sections (the image resulted after image fusion) had enhanced our understanding of 
the phenomena which takes place in studied devices.  
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3.2 Results  
In Fig 7 we illustrate the fused images constructed based on the CSLM stack presented in 
Fig. 5, by using the FFMAX method. 
 

 
Fig. 7. Resulted images achieved by FFMAX method. The dimension of the square fused 
regions : a) 16 pixels, b) 32 pixels, c) 64 pixels, d) 128 pixels 

The fused images consist of blocks belonging to different images in the stack according to 
the calculated correspondence matrix (Table 1). Each number in the correspondence matrix 
represents the number of the image in the stack which contributes with the respective region 
to the fused image. 
In Fig. 8 we illustrate fused images obtained by using the QFMAX method, while in Table 2 
one of the correspondences matrix resulted after a quality estimation of square regions of 
the initial images is presented.  Both FFMAX and QFMAX methods provide fused images 
with better focus or quality uniformity than the intial images in the stack. However the 
images provided by both methods contain a large number of artefacts around the borders of 
the fused square regions. This problems are attenuated in the second group of methods, 
FFAVG and QFAVG, which are based on an averaging of the square regions having the 
response to a decision operator as weight. 
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Table 1. Correspondence matrix for FFMAX method when division into 64 pixel square 
regions was considered 

 

 
Fig. 8. Resulted images achieved by QFMAX method. The dimension of the square fused 
regions :  a) 16 pixels, b) 32 pixels, c) 64 pixels, d) 128 pixels 
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Table 2. Correspondence matrix for QFMAX method when division into 64 pixel square 
regions was considered 
In Fig. 9 and Fig 10 we illustrate the results obtained when fusing images by the FFAVG and 
QFAVG methods. Artefacts around square fused regions are still visible but their intensity is 
diminuated. However this advantage offered by averaging comes at the expense of loosing 
image sharpness, thus a compromise between image sharpness and intensity of border 
artefacts must be considered when choosing to use one of the experimented methods.  
 

 
Fig. 9. Resulted images achieved by FFAVG method. The dimension of the square fused 
regions :  a) 16 pixels, b) 32 pixels, c) 64 pixels, d) 128 pixels 
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Fig. 10. Resulted images achieved by QFAVG method. The dimension of the square fused 
regions : a) 16 pixels, b) 32 pixels, c) 64 pixels, d) 128 pixels 

4. Conclusion 
In this chapter we describe the results obtained by experimenting four region based fusion 
methods on CSLM image stacks. The four methods have been experimented on image stacks 
collected on PQR devices. The presented results highlight some of the advantages and 
limitations of the experimented image fusion methods in connection to CSLM imaging. In 
the case of CSLM when different regions of the investigated area are not in focus at the same 
time, the collected image will contain both sharp and bright areas correspodning to the 
regions in focus, but also blured areas of low contrast or over saturated areas corresponding 
to the sample regions which contribute to the image but are not in focus. By the 
experimented image fusion methods we have obtained representations of the investigated 
sample constituted from image regions belonging to different images in the CSLM stack, 
corresponding to different optical sections, thus containing details from various focal planes. 
In two of the experimented methods, FFMAX and FFAVG, the fused image consists of 
image blocks of a fixed size which have been extracted or calculated from various images in 
the stack based on the response to the Tenengrad focus assessment operator, while in the 
remaining methods, QFMAX and QFAVG the contribution of an image in the stack to the 
fused image is decided based on a quality estimate of the sqaure regions. In two of the 
methods, FFMAX and QFMAX the fused imge consists of blocks which provide a maximum 
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response to a decision operator, while in the other two, QFAVG and FFAVG all square 
regions from the images in the stack contribute to the fused image proportional to their 
response to to the decision operator. In the case of our experiments both types of methods 
provided artificial images which had enabled us to have a better estimate on the 
morphology of the studied sample in the purpose of correlating the photocurrent 
distribution to the device geometry than any of the source images. In the methods where the 
maximum response to a decision operator is considered the resulted images preserve the 
original sharpness but contain a large number of high intensity artefacts around the borders 
of the fused regions, while in the methods where averaging is performed using as weights 
the response to the decision operator, the intensity of the border artefacts is reduced at the 
cost of image sharpness.  
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Fig. 10. Resulted images achieved by QFAVG method. The dimension of the square fused 
regions : a) 16 pixels, b) 32 pixels, c) 64 pixels, d) 128 pixels 
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response to a decision operator, while in the other two, QFAVG and FFAVG all square 
regions from the images in the stack contribute to the fused image proportional to their 
response to to the decision operator. In the case of our experiments both types of methods 
provided artificial images which had enabled us to have a better estimate on the 
morphology of the studied sample in the purpose of correlating the photocurrent 
distribution to the device geometry than any of the source images. In the methods where the 
maximum response to a decision operator is considered the resulted images preserve the 
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1. Introduction

Image fusion can be defined as the combination of raw or processed images establishing the
input information from different sources like cameras or other imaging sensors. Its aim is to
obtain new or more precise knowledge which is the output information about the scene and
which comprises, e.g., objects, events, or more complex situations. Depending on the task of
the image acquisition, the output quantities can be images, features, or symbolic information
such as decisions.
In automated visual inspection, the ultimate aims in most cases are to gain macroscopic
geometrical information (e.g., length, width, or position of an object), to characterize the
surface (e.g., reflectance properties, roughness, microstructure, occurrence of surface defects
like dents, grooves or other marks), or to obtain volume properties of an object (e.g., material
classification, degree of transparency, spatial distribution of components or defects). This
information can then be used in various ways in industrial production engineering, e.g., for
quality inspection or materials management.
In other application areas of image acquisition and processing, the tasks are similar: finally,
some specific information about the observed scene is to be brought to light. Examples are
autonomous vehicles, where the vision is one among the exteroceptive sensors serving to
sense the surrounding of the vehicle and to recognize objects, and remote sensing, where the
task is to reconstruct the properties of a remote object of interest (e.g., the Earths’s surface)
from acquired images.
However, many relevant scene properties cannot be determined automatically by evaluating
just one image. Instead, the information of interest can often be captured in an image series by
means of a properly designed imaging setup using homogeneous or inhomogeneous imaging
sensors. The task of image fusion is then to collect and combine the desired information from
the image series by means of an adequate extraction of the useful information.
This approach has a direct correspondence to the common visual examination performed by
a human in everyday live: if a human is not able to determine the property of interest at first
glance, he will alter the visual setup until this property is clearly visible with this setup or he
is able to reconstruct the property in his mind.
Besides this essential justification for the use of image fusion in many situations, there are also
several other task-dependent reasons:
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some specific information about the observed scene is to be brought to light. Examples are
autonomous vehicles, where the vision is one among the exteroceptive sensors serving to
sense the surrounding of the vehicle and to recognize objects, and remote sensing, where the
task is to reconstruct the properties of a remote object of interest (e.g., the Earths’s surface)
from acquired images.
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is able to reconstruct the property in his mind.
Besides this essential justification for the use of image fusion in many situations, there are also
several other task-dependent reasons:

17
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– A higher accuracy and reliability of the inspection result can be obtained when redundant
or complementary information is available. In this case, sensors which receive identical or
comparable scene properties are required.

– A feature vector with a higher dimensionality than just visual intensities can be generated
by evaluating distributed or orthogonal information. For this, sensors receiving different
physical scene properties may be appropriate.

– The acquisition of information can be accelerated by simultaneous operation of multiple
sensors of similar type.

– The costs for the acquisition of information can be reduced when several low-cost sensors
are substituted for an expensive special sensor. In this case, image fusion is used for indirect
measurement of the quantity of interest.

This contribution focusses mainly on theoretic considerations on the information content in
image series and on systematic aspects of architectures for image fusion originating from the
former considerations. The concepts presented in the contribution will be illustrated by means
of several examples from automated visual inspection. They will demonstrate how these
concepts can be transferred to efficient approaches for image fusion. That way, they offer
a systematic approach for the conception of systems and algorithms of image acquisition and
fusion, not only for automated visual inspection.

2. Acquisition of information

The basis of image fusion is established by imaging sensors delivering the data which contains
the desired information of the scene. Even if there are many different types of imaging sensors
with specific physical properties, they all feature some basic characteristics relevant to image
fusion.

2.1 Reduction of information
The process of acquiring images can be divided into several stages: the radiance emitted from
the scene is projected onto an imaging sensor by means of an optical setup, which is usually
the lens, possibly equipped with optical filters. Then the imaging sensor converts this optical
signal into a digitized image.
The processing chain from the scene radiance to the digitized image involves a reduction
of information, which generally causes the mapping of the scene to be non-invertible. For
example, the visual information emitted by the scene is reduced with respect to the following
aspects when a matrix imaging sensor is used:

– Images have a finite support, i.e., they are limited spatially (by the field stop, which
is usually defined by the sensor size) and temporally (even in the case that a temporal
series—e.g., a video—be taken).

– The image acquisition is a projection in several respects: spatially, the three-dimensional
scene is projected onto a two-dimensional imaging plane. The infinite-dimensional space
of wavelengths is projected onto one spectral dimension (in the case of gray-value images),
three (RGB images) or few more spectral dimensions. Finally, the exposure corresponds to
a projection in the temporal dimension.

– The irradiance E(ξξξ,τ) on the imaging sensor with continuous support at a certain time τ ∈
R in the image plane I � ξξξ := (ξ,η)T ∈ R

2 is spatially and temporally integrated, sampled,
and quantized, thus resulting in the digital image with reduced information content.

356 Image Fusion Architectures for Image Fusion 3

In terms of system theory, the irradiance E(ξξξ,τ) is convolved with the aperture function
A(ξξξ) of a single pixel and sampled with the pixel spacings Δ1,Δ2 ∈ R

2 to obtain a spatially
discrete image g(xxx,τ), xxx := (x,y) ∈ Z

2:

g(xxx,τ) := g((nΔ1,mΔ2)
T,τ) with g(ξξξ,τ) ∝

(
E(ξξξ,τ)∗∗

ξξξ
A(ξξξ)

)
· D(ξξξ) , (1)

where the operator ∗∗
ξξξ

denotes the two-dimensional convolution with respect to ξξξ, D(ξξξ) :=

∑i ∑j δ(ξξξ − iΔ1 − jΔ2) , i, j ∈ Z , describes the grid pattern of the imaging sensor, n,m ∈ N

are the pixel coordinates, and δ(x) = 1 for x = 0, δ(x) = 0 else. Since the pixels do not

overlap, supp{A(ξξξ)} ∩ supp{A(ξξξ − iΔ1 − jΔ2)} !
= ∅ ∀i, j ∈ Z\{0} holds.

Analogously, the temporal exposure can be interpreted as a convolution of the image
g(xxx,τ), which has a continuous temporal support, with a temporal exposure function and a
sampling with the refresh rate in order to get the digital image g(xxx, t) with discrete temporal
support t ∈ Z.

– Further disturbances are added to the useful information, e.g., caused by thermal noise of
the imaging sensor or by atmospherical disturbances in the light path.

2.2 Characteristics of imaging sensors
Sensor systems and their resulting data can be classified with respect to several properties
concerning the degree of conformity of the data’s information content. In the case of image
fusion, the sensor systems may be characterized by the following properties:

– Commensurability: due to the optical projection of the three-dimensional scene onto the
two-dimensional image plane, the spatial dimensions of images taken by matrix sensors
always have the same physical meaning. Therefore, matrix sensors provide spatially
commensurable data. Only if the imaging sensors have different numbers of dimensions
(e.g., when images from matrix sensors and from line sensors are to be compared),
their respective data are spatially not commensurable. In the case of color sensors (e.g.,
with three color values representing a color dimension) resulting in three-dimensional
data, commensurability with gray-value images can be effectuated by projecting the color
dimension onto one gray-value, thus resulting in two-dimensional data.

– Homogeneity: if the sensors capture identical or comparable physical quantities of the scene,
the sensors are called homogeneous. This is an important feature for practical reasons:
after the images from homogeneous sensors have been registered such that their definition
areas are properly aligned, the data of the images can be combined mostly without complex
preprocessing, e.g., in a data fusion. If, in contrast, the sensors are not homogeneous, a
preprocessing (such as feature extraction or classification) is usually necessary to properly
link the information of the images.
The homogeneity of different images depends on the kind of processing which has been
applied to the images prior to the fusion step: for example, when the images of a
stereo camera pair are evaluated, a depth map is obtained, which is an inhomogeneous
information compared to the original intensity images.
The notion of homogeneity for imaging sensors may also depend on semantic aspects of
the image data: if, for example, the images of a spectral series are interpreted as simple
intensities which are observed from the scene, the corresponding sensor systems may
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be regarded as homogeneous. If, however, these images are used to characterize the
scene material, they may be regarded as inhomogeneous, since they represent the spectral
reflectance of the material in different bands, which can be interpreted as different physical
quantities.

– Virtuality: in many applications, image series are recorded by a single imaging sensor which
has been used several times with at least one varying illumination or acquisition parameter.
Since in reality, the images are taken with the same physical sensor, the sensors referring to
the images in the series are called virtual.
The images of virtual sensors always differ in at least one imaging parameter: the
acquisition time. Since this acquisition parameter is irrelevant for time-invariant scenes,
virtual cameras can favorably be used to record redundant information, if no other
illumination or acquisition parameter is varied during the acquisition of the image series.

– Collocatedness: if the positions of the imaging sensors, their orientations and pixel spacings
together with the optical properties of the imaging lens are kept constant over the series, the
sensors are called collocated. In consequence, the reproduction scale remains unchanged,
and the images show identical areas of the scene. Collocated sensors are often realized
as virtual sensors, when an illumination or acquisition parameter except the scene pose is
varied for a time-invariant scene.
A typical example of non-virtual collocated imaging sensors is a three-chip RGB-sensor,
where the individual sensors for the three color values are located at the same optical
position by means of a beam splitter.
If the imaging sensors are not collocated, an image registration, e.g., by considering image
features is usually required to align the images in the series by means of geometrical
transforms (e.g., translation, rotation, scaling or projective transform; see, e.g., (Modersitzki,
2004)).

2.3 Image series
Once the images have been acquired, they establish the data foundation of image fusion
in the form of image series g(xxx, ppp), which are functions of the discrete position vector xxx
and a discrete parameter vector ppp := (p1, p2, . . . , pn)T , ppp ∈ Z

n , n ∈ N. The image series is
obtained by taking images while the imaging parameters p1, p2, . . . are varied consecutively or
simultaneously. Considering the acquisition of a time-invariant scene by means of a camera
system, the variable parameters can refer either to the illumination or to the scene (Heizmann
& Beyerer, 2005).
Useful illumination parameters comprise the position of the illumination sources relative
to the scene (expressed, e.g., by the azimuth ϕi and the polar angle θi in a surface related
coordinate system), the spatial distribution of irradiance (to describe homogeneous or
structured illuminations), the illumination spectrum, its polarization state, and its coherence.
Observation parameters for common camera systems are the camera position and orientation
relative to the scene (in terms of the extrinsic camera parameters (Faugeras & Luong, 2001)
or the scene pose), the spectral sensitivity of the sensor system including spectral filters, the
polarization sensitivity of the sensor system including polarization filters, parameters of the
optical system such as the focus setting, the aperture or the focal length, and the exposure time.
The classical intrinsic parameters (see, e.g., (Faugeras & Luong, 2001; Shapiro & Stockman,
2001)) are not considered as relevant parameters for image fusion in most cases, since they
usually cannot be varied.
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Fig. 1. Visualization of concurrent (a) and complementary (b) information: whereas in the
case of concurrent information sources, the useful information (indicated as dark areas) is
basically spread equally over the location-parameter domain (here simplified as
one-dimensional domains each), it is concentrated in local regions for complementary
information sources.

In consequence, the image series g(xxx, ppp) establishes a multidimensional data object with a
dimension for each varied parameter. An image g(xxx, pppi) , i ∈ {1, . . . ,n} which is sensed by the
imaging sensor is a subspace of the image series for a fixed parameter vector pppi.
In order to apply this definition of image series also in case that other sensor systems than
cameras be used, the interpretation of the parameter vector ppp can be extended. If, for example,
several inhomogeneous sensor systems should contribute to an image series, a nominally
scaled parameter component can be used to distinguish the information sources.

3. Information content of image series

The information content in an image g(xxx, pppi) , i ∈ {1, . . . ,n} , of the series g(xxx, ppp) depends
obviously on the imaging constellation which has been used during acquisition and, in
consequence, the information content of the entire series depends on the variation of the
parameter vector ppp. Although it is often not possible to assign particular distributions of the
information content in the image series to specific parameter variations, several elementary
types of how information is distributed in image series can be identified. It is important to
distinguish these types in order to identify suitable methods for fusing image series.

– Redundant information: in this case, the useful information is distributed similarly over
all images of the series, i.e., it is spread equally over the location-parameter domain, see
Fig. 1(a). In consequence, disturbances affect the useful information also in a similar
manner. This type of relation can only be present when homogeneous sensors are used.
A concurrent fusion, where all images contribute equivalently to the fusion result (e.g., by
averaging over the image series), may be expedient to exploit the useful information.
A typical example is noise reduction which can be achieved by image accumulation,
i.e., averaging the intensity values for each location xxx over an image series acquired by
homogeneous and collocated imaging sensors. If, for example, a stationary camera records
n images disturbed by an additive white Gaussian noise, the observed images can be
modeled as g(xxx, i) = d(xxx) + r(xxx, i) , i ∈ {1, . . . ,n}, where the useful information d(xxx) is
deterministic and represents the desired scene property, and the additive noise r(xxx, i)
is the realization of a random process R(xxx, i) with mean value E{R(xxx, i)} = 0 ∀xxx, i and
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Once the images have been acquired, they establish the data foundation of image fusion
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n , n ∈ N. The image series is
obtained by taking images while the imaging parameters p1, p2, . . . are varied consecutively or
simultaneously. Considering the acquisition of a time-invariant scene by means of a camera
system, the variable parameters can refer either to the illumination or to the scene (Heizmann
& Beyerer, 2005).
Useful illumination parameters comprise the position of the illumination sources relative
to the scene (expressed, e.g., by the azimuth ϕi and the polar angle θi in a surface related
coordinate system), the spatial distribution of irradiance (to describe homogeneous or
structured illuminations), the illumination spectrum, its polarization state, and its coherence.
Observation parameters for common camera systems are the camera position and orientation
relative to the scene (in terms of the extrinsic camera parameters (Faugeras & Luong, 2001)
or the scene pose), the spectral sensitivity of the sensor system including spectral filters, the
polarization sensitivity of the sensor system including polarization filters, parameters of the
optical system such as the focus setting, the aperture or the focal length, and the exposure time.
The classical intrinsic parameters (see, e.g., (Faugeras & Luong, 2001; Shapiro & Stockman,
2001)) are not considered as relevant parameters for image fusion in most cases, since they
usually cannot be varied.
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scaled parameter component can be used to distinguish the information sources.
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obviously on the imaging constellation which has been used during acquisition and, in
consequence, the information content of the entire series depends on the variation of the
parameter vector ppp. Although it is often not possible to assign particular distributions of the
information content in the image series to specific parameter variations, several elementary
types of how information is distributed in image series can be identified. It is important to
distinguish these types in order to identify suitable methods for fusing image series.

– Redundant information: in this case, the useful information is distributed similarly over
all images of the series, i.e., it is spread equally over the location-parameter domain, see
Fig. 1(a). In consequence, disturbances affect the useful information also in a similar
manner. This type of relation can only be present when homogeneous sensors are used.
A concurrent fusion, where all images contribute equivalently to the fusion result (e.g., by
averaging over the image series), may be expedient to exploit the useful information.
A typical example is noise reduction which can be achieved by image accumulation,
i.e., averaging the intensity values for each location xxx over an image series acquired by
homogeneous and collocated imaging sensors. If, for example, a stationary camera records
n images disturbed by an additive white Gaussian noise, the observed images can be
modeled as g(xxx, i) = d(xxx) + r(xxx, i) , i ∈ {1, . . . ,n}, where the useful information d(xxx) is
deterministic and represents the desired scene property, and the additive noise r(xxx, i)
is the realization of a random process R(xxx, i) with mean value E{R(xxx, i)} = 0 ∀xxx, i and
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variance E{R(xxx, i)R(xxx, j)}= δ
j
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G = σ2

R, the variance of the noise in the
accumulated image f (xxx) := 1

n ∑
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i=1 g(xxx, i) is reduced to σ2

F = 1
n σ2
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– Complementary information: this relation applies if the useful information from
homogeneous sensors is concentrated in the location-parameter domain such that, for a
given location of the scene, only few images of the series are meaningful. Hence, the
useful information is concentrated in local areas of the location-parameter domain, see
Fig. 1(b). In order to merge the useful information, a complementary fusion is appropriate,
where the contribution of an individual image to the fusion result depends on its local
content of useful information. The local concentration of useful information may be
caused by an inhomogeneous influence of disturbances, but it may also originate from the
illumination-scene-sensor interdependence, when the susceptibility of the sensor depends
on local differences in the constellation of illumination, scene, and camera (e.g., when the
scene distance is varied in a focus series).
An example is given below in Subsect. 5.1: in order to generate an image with synthetically
enhanced depth of field, a focus series is taken. The useful information is identified by
determining the parameter values (i.e., the scene distances) for each image location leading
to a locally optimal focus indicator (Heizmann & Puente León, 2003; Puente León, 2002).
Only these areas in the location-parameter domain are then used to build the fusion result.
The same approach can be used for enhancing the image contrast by fusing illumination
series (Heizmann & Puente León, 2003).

– Distributed information: this is the case when the useful information from homogeneous or
inhomogeneous sensors is distributed over the series such that basically only the evaluation
of all images allows a statement on the properties of interest. In contrast to redundant
information, a single image alone does not contain enough information to conclude on the
desired information. In comparison to complementary information, the useful information
is not locally concentrated in the location-parameter domain. The inference from the image
series to the useful information implies an image evaluation or interpretation, i.e., the image
data must be transferred to a higher abstraction level (see Subsect. 4.2). Consequently, at
least a feature extraction must be accomplished prior to the image fusion.
As examples, distance maps can be generated by fusing stereo image series (Gheţa, Frese,
Krüger, Saur, Heinze, Heizmann & Beyerer, 2007) or by fusing at least three images with
varied directional illumination (photometric stereo) (Horn & Brooks, 1989). In the former
case, the image values are interpreted as different views on the same scene which can be
matched by means of epipolar geometry (Hartley & Zisserman, 2004). In the latter case,
the image values are interpreted as response of the local surface shape and reflectance to
the direction and intensity of the incident light. In both cases, a single image would not be
enough to conclude on the desired distance map.
A third example is given by methods of texture classification and surface inspection, when
significant features are only obtainable by evaluating the entire series (Xin et al., 2004;
Heizmann, 2006; Pérez Grassi & Puente León, 2007). Meaningful features for classifying
topological textures can be developed especially when illumination series with varied
azimuth of a directional illumination source are used, since the observed radiance of a
topological texture strongly depends on the constellation of illumination. Examples in
which distributed information is used are given in Subsections 5.2 and 5.3.
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Fig. 2. Exemplary evaluation schemes for different combinations of information distributions
in an image series: (a) When disjoint subsets of the image series contain redundant
information, these subsets can be fused in a first stage to intermediate fusion results. The
redundant, complementary, distributed or orthogonal information in these intermediate
results is then fused in a second stage to the final result. (b) In the case of the image series
being evaluated in more than one way, the respective information, which is usually
complementary or distributed, is fused in a first stage to intermediate results, which are then
fused to the final result.

– Orthogonal information: in this case, the images to be fused contain information on disjoint
properties of the scene. Orthogonal information can be gained when inhomogeneous sensor
systems, which deliver different physical properties of the scene, are deployed. It can also
originate from different processing methods applied to data from basically homogeneous
sensors, e.g., when reflectance information is used to generate a depth map by means of
photometric stereo, the information in the resulting depth map is orthogonal to any of the
original reflectance images. Since the information in the depth map and in a reflectance
image is not directly linkable, a sensible fusion can only take place on the abstraction level
of features or classification results.
A typical example is the combination of 3D data of the scene and its visual appearance.
Whereas the 3D data contains information on the spatial arrangement of the scene, the
visual appearance is mainly governed by the reflectance of the scene. Their fusion implies
the abstraction from 3D and visual data to object points featuring a position (specified in
the 3D data) and a reflectance (observed in the visual image).

These basic types of distributions of the information content in the image series to be fused
can also be combined in many ways. A typical combination appears when disjoint subsets of
the set of all images originate from homogeneous sensors and contain redundant information,
which is fused in a first stage, see Fig. 2(a). The information of the intermediate fusion results,
which can be redundant, complementary, distributed or orthogonal, is then fused in a second
stage to obtain the final result.
Another typical case of combination occurs when the information content of the image series
can be exploited in several ways, see Fig. 2(b). Here, the usually complementary or distributed
information which is extracted by the different processing methods represents intermediate
fusion results, which are then fused to the final result.
The latter type of information processing usually appears when multivariate image series, in
which the images differ in more than one imaging parameter, are evaluated. As an example,
when images from differently positioned cameras with different focus settings are used to
capture a scene, combined stereo and focus series are recorded (Gheţa et al., 2006; Gheţa,
Frese, Heizmann & Beyerer, 2007). Such image series can be evaluated by exploiting the stereo
and the focus information separately, e.g., by means of the approaches depth from stereo and
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– Complementary information: this relation applies if the useful information from
homogeneous sensors is concentrated in the location-parameter domain such that, for a
given location of the scene, only few images of the series are meaningful. Hence, the
useful information is concentrated in local areas of the location-parameter domain, see
Fig. 1(b). In order to merge the useful information, a complementary fusion is appropriate,
where the contribution of an individual image to the fusion result depends on its local
content of useful information. The local concentration of useful information may be
caused by an inhomogeneous influence of disturbances, but it may also originate from the
illumination-scene-sensor interdependence, when the susceptibility of the sensor depends
on local differences in the constellation of illumination, scene, and camera (e.g., when the
scene distance is varied in a focus series).
An example is given below in Subsect. 5.1: in order to generate an image with synthetically
enhanced depth of field, a focus series is taken. The useful information is identified by
determining the parameter values (i.e., the scene distances) for each image location leading
to a locally optimal focus indicator (Heizmann & Puente León, 2003; Puente León, 2002).
Only these areas in the location-parameter domain are then used to build the fusion result.
The same approach can be used for enhancing the image contrast by fusing illumination
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– Distributed information: this is the case when the useful information from homogeneous or
inhomogeneous sensors is distributed over the series such that basically only the evaluation
of all images allows a statement on the properties of interest. In contrast to redundant
information, a single image alone does not contain enough information to conclude on the
desired information. In comparison to complementary information, the useful information
is not locally concentrated in the location-parameter domain. The inference from the image
series to the useful information implies an image evaluation or interpretation, i.e., the image
data must be transferred to a higher abstraction level (see Subsect. 4.2). Consequently, at
least a feature extraction must be accomplished prior to the image fusion.
As examples, distance maps can be generated by fusing stereo image series (Gheţa, Frese,
Krüger, Saur, Heinze, Heizmann & Beyerer, 2007) or by fusing at least three images with
varied directional illumination (photometric stereo) (Horn & Brooks, 1989). In the former
case, the image values are interpreted as different views on the same scene which can be
matched by means of epipolar geometry (Hartley & Zisserman, 2004). In the latter case,
the image values are interpreted as response of the local surface shape and reflectance to
the direction and intensity of the incident light. In both cases, a single image would not be
enough to conclude on the desired distance map.
A third example is given by methods of texture classification and surface inspection, when
significant features are only obtainable by evaluating the entire series (Xin et al., 2004;
Heizmann, 2006; Pérez Grassi & Puente León, 2007). Meaningful features for classifying
topological textures can be developed especially when illumination series with varied
azimuth of a directional illumination source are used, since the observed radiance of a
topological texture strongly depends on the constellation of illumination. Examples in
which distributed information is used are given in Subsections 5.2 and 5.3.
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– Orthogonal information: in this case, the images to be fused contain information on disjoint
properties of the scene. Orthogonal information can be gained when inhomogeneous sensor
systems, which deliver different physical properties of the scene, are deployed. It can also
originate from different processing methods applied to data from basically homogeneous
sensors, e.g., when reflectance information is used to generate a depth map by means of
photometric stereo, the information in the resulting depth map is orthogonal to any of the
original reflectance images. Since the information in the depth map and in a reflectance
image is not directly linkable, a sensible fusion can only take place on the abstraction level
of features or classification results.
A typical example is the combination of 3D data of the scene and its visual appearance.
Whereas the 3D data contains information on the spatial arrangement of the scene, the
visual appearance is mainly governed by the reflectance of the scene. Their fusion implies
the abstraction from 3D and visual data to object points featuring a position (specified in
the 3D data) and a reflectance (observed in the visual image).

These basic types of distributions of the information content in the image series to be fused
can also be combined in many ways. A typical combination appears when disjoint subsets of
the set of all images originate from homogeneous sensors and contain redundant information,
which is fused in a first stage, see Fig. 2(a). The information of the intermediate fusion results,
which can be redundant, complementary, distributed or orthogonal, is then fused in a second
stage to obtain the final result.
Another typical case of combination occurs when the information content of the image series
can be exploited in several ways, see Fig. 2(b). Here, the usually complementary or distributed
information which is extracted by the different processing methods represents intermediate
fusion results, which are then fused to the final result.
The latter type of information processing usually appears when multivariate image series, in
which the images differ in more than one imaging parameter, are evaluated. As an example,
when images from differently positioned cameras with different focus settings are used to
capture a scene, combined stereo and focus series are recorded (Gheţa et al., 2006; Gheţa,
Frese, Heizmann & Beyerer, 2007). Such image series can be evaluated by exploiting the stereo
and the focus information separately, e.g., by means of the approaches depth from stereo and
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Fig. 3. General concept for image fusion (image series are indicated with continuous lines,
single images are indicated with dotted lines): first, the images of the series are processed
separately in the input transform in order to obtain meaningful descriptors of the useful
information. During the optimization step, the useful information is selected from the
descriptors. In this step, beneficial information from higher abstraction levels and prior
knowledge can be included. The resulting fusion map is then converted into the desired
fusion result by an output transform. During the input and the output transform, a change of
the abstraction level can take place: whereas in the input transform, the image data may be
lifted to a higher abstraction level in order to extract the useful information, the abstraction
level of the fusion map as result of the optimization step may be lowered to obtain the
desired fusion result.

depth from focus. Stereo and focus evaluations both use distributed information in the series,
but each one with reference to the respective information content.

4. General concept for image fusion

Many approaches of image fusion can be traced back to a common concept with respect to
an underlying processing scheme and abstraction levels involved, see Fig. 3. Although in
many specific realizations, some of the processing steps or abstraction levels may be missing
or cannot be strictly assigned to a step or level mentioned here, this general concept is
justified since it can help to analyze existing fusion approaches and to synthesize new fusion
approaches by suitably combining existing methods.

4.1 Processing scheme
In many image fusion approaches, a general processing scheme can be identified leading
from the acquisition of the image series to the fusion result containing the concentrated useful
information (Heizmann & Puente León, 2007), see Fig. 3.
Starting from the recorded images series, the first step is to transform the images into
signals on an abstraction level where the actual combination of the useful information will
take place. The aim of this input transform is to map the information in the image series
onto significant descriptors such that the relevant information content becomes manifest
for the following optimization step. The transform may include a conversion of the image
data within the abstraction level of images or processing steps of feature extraction or
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classification in order to obtain information on higher abstraction levels. Since the descriptors
may belong to different domains such as the spatial domain, frequency domain, parameter
domain, parameter frequency domain etc., operators suitable for these domains must be
used. Common operators to extract significant image features in the input transform comprise
geometrical, intensity, Fourier, wavelet or morphological transforms, principal component
analysis, cross-correlation, or local operators, and may not only refer to spatial dimensions,
but also to any other parameter dimension.
In the second step, an optimization is performed to select the useful information from the
transformed image series. By means of a suitable quality criterion, the descriptors obtained
by the input transform are assessed and combined to form a fusion map which contains
the desired fused information and which is afterwards used in the output transform. The
optimization takes place in the descriptor domain reached by the input transform. During
the optimization process, prior knowledge (e.g., known constraints, physical laws, and
required or desired properties of the fusion result) which is related to the fusion task must
be included in order to ensure a consistent result. Common methods for the optimization step
comprise linear and nonlinear operators, energy minimization methods, Bayesian statistics,
Kalman filtering, and many other methods used in pattern recognition. An example of a
classification-based optimization is given in Subsect. 5.3.
To establish a comprehensive formulation of the optimization problem, energy functionals
have shown to be a universal approach (Clark & Yuille, 1990; Beyerer et al., 2008). To express
relevant information contained in sensor data and prior knowledge, energy terms Ek(r(xxx), .)
are introduced. They are modeled such that the relevant information is reflected in monotonic
functions, which take lower values for more desirable properties of the fusion result r(xxx) or
intermediate descriptors. The optimization task is expressed for the energy functional

E(r(xxx)) := ∑
k

λk Ek(r(xxx), .) , k = {1, . . . ,n}, λk > 0. (2)

The desired optimal fusion result is then obtained by minimizing the energy functional
E(r(xxx)) with respect to the fusion result r(xxx). The energy formalism has several advantages:
the fusion task is represented implicitly and compactly, all kinds of information and
constraints can be included by introducing suitable energy terms, and the relevance of
different contributions can be considered explicitly by adjusting the weights λk. However, the
main drawback of the energy formalism is that there exists no universally applicable method
for minimizing the energy functional E(r(xxx)). Suitable minimization approaches strongly
depend on the information used for the fusion, and hence, an approach found suitable for a
specific task is hardly transferable to a different task.
In the last step, the fusion map representing the fused information is used as a construction
plan for building the fusion result. To obtain the fusion result in the desired form, the
fusion map is converted to the desired abstraction level. Depending on the domains of the
descriptors and the optimization result in comparison to the abstraction level of the desired
fusion result, a specialization may be used to lower the abstraction level. Examples of output
transforms are the use of the fusion map as a look-up table or the trivial identity, e.g., in the
case of depth maps which are obtained from fusing focus series, see Subsect. 5.1, or in the
example of defect detection presented in Subsect. 5.2.

4.2 Abstraction levels
The fusion of the information in an image series can take place on different abstraction levels,
see Fig. 3. In the following, three main abstraction levels are introduced: the level of the
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single images are indicated with dotted lines): first, the images of the series are processed
separately in the input transform in order to obtain meaningful descriptors of the useful
information. During the optimization step, the useful information is selected from the
descriptors. In this step, beneficial information from higher abstraction levels and prior
knowledge can be included. The resulting fusion map is then converted into the desired
fusion result by an output transform. During the input and the output transform, a change of
the abstraction level can take place: whereas in the input transform, the image data may be
lifted to a higher abstraction level in order to extract the useful information, the abstraction
level of the fusion map as result of the optimization step may be lowered to obtain the
desired fusion result.

depth from focus. Stereo and focus evaluations both use distributed information in the series,
but each one with reference to the respective information content.

4. General concept for image fusion

Many approaches of image fusion can be traced back to a common concept with respect to
an underlying processing scheme and abstraction levels involved, see Fig. 3. Although in
many specific realizations, some of the processing steps or abstraction levels may be missing
or cannot be strictly assigned to a step or level mentioned here, this general concept is
justified since it can help to analyze existing fusion approaches and to synthesize new fusion
approaches by suitably combining existing methods.

4.1 Processing scheme
In many image fusion approaches, a general processing scheme can be identified leading
from the acquisition of the image series to the fusion result containing the concentrated useful
information (Heizmann & Puente León, 2007), see Fig. 3.
Starting from the recorded images series, the first step is to transform the images into
signals on an abstraction level where the actual combination of the useful information will
take place. The aim of this input transform is to map the information in the image series
onto significant descriptors such that the relevant information content becomes manifest
for the following optimization step. The transform may include a conversion of the image
data within the abstraction level of images or processing steps of feature extraction or
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classification in order to obtain information on higher abstraction levels. Since the descriptors
may belong to different domains such as the spatial domain, frequency domain, parameter
domain, parameter frequency domain etc., operators suitable for these domains must be
used. Common operators to extract significant image features in the input transform comprise
geometrical, intensity, Fourier, wavelet or morphological transforms, principal component
analysis, cross-correlation, or local operators, and may not only refer to spatial dimensions,
but also to any other parameter dimension.
In the second step, an optimization is performed to select the useful information from the
transformed image series. By means of a suitable quality criterion, the descriptors obtained
by the input transform are assessed and combined to form a fusion map which contains
the desired fused information and which is afterwards used in the output transform. The
optimization takes place in the descriptor domain reached by the input transform. During
the optimization process, prior knowledge (e.g., known constraints, physical laws, and
required or desired properties of the fusion result) which is related to the fusion task must
be included in order to ensure a consistent result. Common methods for the optimization step
comprise linear and nonlinear operators, energy minimization methods, Bayesian statistics,
Kalman filtering, and many other methods used in pattern recognition. An example of a
classification-based optimization is given in Subsect. 5.3.
To establish a comprehensive formulation of the optimization problem, energy functionals
have shown to be a universal approach (Clark & Yuille, 1990; Beyerer et al., 2008). To express
relevant information contained in sensor data and prior knowledge, energy terms Ek(r(xxx), .)
are introduced. They are modeled such that the relevant information is reflected in monotonic
functions, which take lower values for more desirable properties of the fusion result r(xxx) or
intermediate descriptors. The optimization task is expressed for the energy functional

E(r(xxx)) := ∑
k

λk Ek(r(xxx), .) , k = {1, . . . ,n}, λk > 0. (2)

The desired optimal fusion result is then obtained by minimizing the energy functional
E(r(xxx)) with respect to the fusion result r(xxx). The energy formalism has several advantages:
the fusion task is represented implicitly and compactly, all kinds of information and
constraints can be included by introducing suitable energy terms, and the relevance of
different contributions can be considered explicitly by adjusting the weights λk. However, the
main drawback of the energy formalism is that there exists no universally applicable method
for minimizing the energy functional E(r(xxx)). Suitable minimization approaches strongly
depend on the information used for the fusion, and hence, an approach found suitable for a
specific task is hardly transferable to a different task.
In the last step, the fusion map representing the fused information is used as a construction
plan for building the fusion result. To obtain the fusion result in the desired form, the
fusion map is converted to the desired abstraction level. Depending on the domains of the
descriptors and the optimization result in comparison to the abstraction level of the desired
fusion result, a specialization may be used to lower the abstraction level. Examples of output
transforms are the use of the fusion map as a look-up table or the trivial identity, e.g., in the
case of depth maps which are obtained from fusing focus series, see Subsect. 5.1, or in the
example of defect detection presented in Subsect. 5.2.

4.2 Abstraction levels
The fusion of the information in an image series can take place on different abstraction levels,
see Fig. 3. In the following, three main abstraction levels are introduced: the level of the
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image data itself, the level of features which are extracted from the image data and which are
usually used to describe scene properties, and the level of symbols which can be obtained as
results of a classification step. Apparently, the assignment of a specific fusion approach to
a distinct abstraction level cannot always be strict, since, e.g., the image values themselves
may be interpreted as features in certain cases. The differentiation of three abstraction levels
is rather intended to demonstrate how common methods of image processing and pattern
recognition fit into the introduced concept for image fusion.

– Data-level fusion (pixel-level fusion): in this case, the combination of information takes place
on the level of the image data itself, i.e., on the intensity values, without any abstraction
step. The precondition of a data fusion is that the image series contains redundant or
complementary information and that the images have been recorded with homogeneous
sensors, such that the image intensities refer to the same physical properties of the scene.
A typical objective is to obtain a fusion result with an image quality which is better with
respect to some quality criterion, for example by means of a concurrent (e.g., to reduce the
sensor noise) or a complementary fusion (e.g., to synthetically enhance the depth of field).

– Feature-level fusion: here, the combination of information takes place on the level of features
which must have been extracted from the image series before. These features may be
generated from single images (e.g., local texture features) or by a simultaneous evaluation of
the entire series (e.g., the variance of intensities for an image location within a series). While
the latter case applies to distributed information recorded with homogeneous sensors,
possibly inhomogeneous sensors which allow the extraction of at least comparable features
are sufficient in the former case.
A first typical task of feature-level fusion is to improve the extraction of image features,
e.g., with respect to their accuracy or reliability. A second typical task is to gain access to
information (e.g., features) which is distributed over the series.
An example of the latter task is the fusion of images obtained from a camera array which
is equipped with different spectral filters. A possible approach for the spatial and spectral
assessment of the scene is given by a region based fusion: the properties of regions in the
image series are used as features and fused with respect to their disparity (to obtain the
spatial reconstruction) and the spectral intensities (to obtain a spectral characterization of
the scene) (Gheţa et al., 2010).

– Symbol-level fusion (decision-level fusion): symbolic information, which is gained by a
preceding feature extraction and a classification from single images, is combined. A fusion
on this abstraction level imposes the least restrictions to the relation of information in the
image series and to the choice of sensors: any type of relation and inhomogeneous sensors
are admissible, if the symbolic information resulting from the respective classification
approaches is connectable.
The objective of symbol-level fusion is mainly to improve the accuracy and reliability of
a classification, e.g., for defect detection or object recognition. In this case, the symbolic
information is given by object hypotheses established by single sensors, which are fused to
a consolidated hypothesis.

During the fusion on a certain abstraction level, it may be necessary or reasonable to use
information from a higher abstraction level which has been processed from single images
prior to the actual fusion step.
As an example, in order to fuse complementary information, the areas in the
location-parameter domain containing the desired useful information must be identified, if
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they are not a priori known. This identification requires a criterion which is usually at least
on the abstraction level of features. In the application example of Subsect. 5.1, the criterion for
identifying focussed image regions is a contrast measure on the level of features.
An important practical issue concerns the question of which abstraction level should
be chosen to solve a given fusion task. There exists a tradeoff between a moderate
implementation effort and an optimal exploitation of the useful information in the image
series: concerning the necessary development and implementation effort, a fusion approach
on a higher abstraction level is often easier to realize in comparison to lower abstraction levels.
For the abstraction of single images to a higher level, standard algorithms of image processing
and pattern recognition can be used in most cases. The optimization is then often performed
by relatively simple operations of logical combination.
However, the quality of a fusion result obtained on an abstraction level which is as low as
possible is mostly superior to the results obtained on higher abstraction levels. This can be
traced back to the modification and potential reduction of the useful information during the
abstraction step applied to the single images. When the information fusion is performed on a
lower abstraction level, the processing which must be individually adapted to the information
contained in the images and to the fusion task can ensure that the useful information is
conserved for the fusion result at the best.

5. Examples

5.1 Fusion of focus series
The following example is used to demonstrate the concepts shown above, see Fig. 4: in order
to evaluate a firing pin print for an automated database search, a visual image which shows
the impression in detail and a depth map reflecting the spatial structure of the impression are
needed (Heizmann & Puente León, 2003; Puente León, 2002). As information sources, images
taken with a camera which is equipped with a macroscopic lens are to be used. Whereas a
focussed image cannot be taken from the whole impression due to the limited depth of field
Δz of the macroscope used, the depth map is a feature image which is not directly accessible
from the single images.
Both tasks can be solved by applying methods of image fusion to a focus series: a series
of n images g(xxx,z) , z ∈ {z1, . . . ,zn} with varied distance z of the camera to the scene is
taken such that each surface point is depicted in focus in at least one image, i.e., zi+1 − zi ≤
Δz ∀i ∈ {1, . . . ,n − 1}, and each surface point is mapped onto the same element of the imaging
sensor in all images of the series. Thus, the sensors of the focus series are commensurable,
homogeneous, virtual, and collocated with respect to the image plane.
In the input transform, significant descriptors for focussed imaging must be extracted from
the focus series. The useful information to describe a visually sharp image is the local contrast
v(xxx,z), which can also be used to determine the in-focus plane for each image point and thus
the desired depth map. A suitable descriptor for the useful information is therefore located
on the abstraction level of features and determined for each image, e.g., by using the local
variance.
In the optimization step, the useful information is selected from the descriptors of the images.
For both tasks, the scene distance leading to the maximal local contrast represents the desired
information and must be determined for each image point, i.e., d̄(xxx) := argmaxz v(xxx,z).
Although this preliminary depth map indicates the optimal scene distances based on the
sensor information, it is not yet satisfactory, since high depth steps and estimation errors may
occur, e.g., in surface regions with faint texture. At this point, prior knowledge stating that
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may be interpreted as features in certain cases. The differentiation of three abstraction levels
is rather intended to demonstrate how common methods of image processing and pattern
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step. The precondition of a data fusion is that the image series contains redundant or
complementary information and that the images have been recorded with homogeneous
sensors, such that the image intensities refer to the same physical properties of the scene.
A typical objective is to obtain a fusion result with an image quality which is better with
respect to some quality criterion, for example by means of a concurrent (e.g., to reduce the
sensor noise) or a complementary fusion (e.g., to synthetically enhance the depth of field).

– Feature-level fusion: here, the combination of information takes place on the level of features
which must have been extracted from the image series before. These features may be
generated from single images (e.g., local texture features) or by a simultaneous evaluation of
the entire series (e.g., the variance of intensities for an image location within a series). While
the latter case applies to distributed information recorded with homogeneous sensors,
possibly inhomogeneous sensors which allow the extraction of at least comparable features
are sufficient in the former case.
A first typical task of feature-level fusion is to improve the extraction of image features,
e.g., with respect to their accuracy or reliability. A second typical task is to gain access to
information (e.g., features) which is distributed over the series.
An example of the latter task is the fusion of images obtained from a camera array which
is equipped with different spectral filters. A possible approach for the spatial and spectral
assessment of the scene is given by a region based fusion: the properties of regions in the
image series are used as features and fused with respect to their disparity (to obtain the
spatial reconstruction) and the spectral intensities (to obtain a spectral characterization of
the scene) (Gheţa et al., 2010).

– Symbol-level fusion (decision-level fusion): symbolic information, which is gained by a
preceding feature extraction and a classification from single images, is combined. A fusion
on this abstraction level imposes the least restrictions to the relation of information in the
image series and to the choice of sensors: any type of relation and inhomogeneous sensors
are admissible, if the symbolic information resulting from the respective classification
approaches is connectable.
The objective of symbol-level fusion is mainly to improve the accuracy and reliability of
a classification, e.g., for defect detection or object recognition. In this case, the symbolic
information is given by object hypotheses established by single sensors, which are fused to
a consolidated hypothesis.

During the fusion on a certain abstraction level, it may be necessary or reasonable to use
information from a higher abstraction level which has been processed from single images
prior to the actual fusion step.
As an example, in order to fuse complementary information, the areas in the
location-parameter domain containing the desired useful information must be identified, if
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they are not a priori known. This identification requires a criterion which is usually at least
on the abstraction level of features. In the application example of Subsect. 5.1, the criterion for
identifying focussed image regions is a contrast measure on the level of features.
An important practical issue concerns the question of which abstraction level should
be chosen to solve a given fusion task. There exists a tradeoff between a moderate
implementation effort and an optimal exploitation of the useful information in the image
series: concerning the necessary development and implementation effort, a fusion approach
on a higher abstraction level is often easier to realize in comparison to lower abstraction levels.
For the abstraction of single images to a higher level, standard algorithms of image processing
and pattern recognition can be used in most cases. The optimization is then often performed
by relatively simple operations of logical combination.
However, the quality of a fusion result obtained on an abstraction level which is as low as
possible is mostly superior to the results obtained on higher abstraction levels. This can be
traced back to the modification and potential reduction of the useful information during the
abstraction step applied to the single images. When the information fusion is performed on a
lower abstraction level, the processing which must be individually adapted to the information
contained in the images and to the fusion task can ensure that the useful information is
conserved for the fusion result at the best.

5. Examples

5.1 Fusion of focus series
The following example is used to demonstrate the concepts shown above, see Fig. 4: in order
to evaluate a firing pin print for an automated database search, a visual image which shows
the impression in detail and a depth map reflecting the spatial structure of the impression are
needed (Heizmann & Puente León, 2003; Puente León, 2002). As information sources, images
taken with a camera which is equipped with a macroscopic lens are to be used. Whereas a
focussed image cannot be taken from the whole impression due to the limited depth of field
Δz of the macroscope used, the depth map is a feature image which is not directly accessible
from the single images.
Both tasks can be solved by applying methods of image fusion to a focus series: a series
of n images g(xxx,z) , z ∈ {z1, . . . ,zn} with varied distance z of the camera to the scene is
taken such that each surface point is depicted in focus in at least one image, i.e., zi+1 − zi ≤
Δz ∀i ∈ {1, . . . ,n − 1}, and each surface point is mapped onto the same element of the imaging
sensor in all images of the series. Thus, the sensors of the focus series are commensurable,
homogeneous, virtual, and collocated with respect to the image plane.
In the input transform, significant descriptors for focussed imaging must be extracted from
the focus series. The useful information to describe a visually sharp image is the local contrast
v(xxx,z), which can also be used to determine the in-focus plane for each image point and thus
the desired depth map. A suitable descriptor for the useful information is therefore located
on the abstraction level of features and determined for each image, e.g., by using the local
variance.
In the optimization step, the useful information is selected from the descriptors of the images.
For both tasks, the scene distance leading to the maximal local contrast represents the desired
information and must be determined for each image point, i.e., d̄(xxx) := argmaxz v(xxx,z).
Although this preliminary depth map indicates the optimal scene distances based on the
sensor information, it is not yet satisfactory, since high depth steps and estimation errors may
occur, e.g., in surface regions with faint texture. At this point, prior knowledge stating that
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Fig. 4. Fusion of a focus series in order to obtain an image with synthetically enhanced
contrast and a depth map (image series are indicated with continuous lines, single images
are indicated with dotted lines): from the original image series g(xxx,z), the local contrast
v(xxx,z) establishing a suitable descriptor of the useful information is estimated in the input
transform (lighter areas have higher contrast). In the optimization step, a preliminary depth
map d̄(xxx) is distilled first from the series of contrast images, which is then combined with
prior information to a smoothed depth map d(xxx) constituting the fusion map (darker areas
are farther away than lighter areas). To obtain the desired image with enhanced depth of
field, the fusion map is used as look-up table to compose the fusion result r1(xxx) from the
focus series. The depth map itself represents the second desired fusion result r2(xxx).

the maximal inclination of the object surface is limited is incorporated in the fusion process
by smoothing the preliminary depth map. The smoothed depth map d(xxx) is then the result of
the optimization step, i.e., the fusion map. It shows where the desired useful information is
concentrated in the location-parameter domain.
The aim of the last step is to transform the fusion map into the desired result on the respective
abstraction level. In order to construct the image with synthetically enhanced depth of field,
the fusion map on the feature level must be specialized. To that aim, it is used as a lookup
table: for each image point xxx, the intensity value from the image with the respective scene
distance d(xxx) is selected from the focus series in order to form the fusion result, i.e., r1(xxx) :=
g(xxx,d(xxx)). The second desired result, the depth map, is the fusion map, since it reflects just
the vertical position of the in-focus plane, i.e., r2(xxx) := d(xxx).
In this example, the construction of the image with enhanced depth of field can be classified
as a fusion of complementary information. Although the actual combination of the input
information takes place on the level of image signals, the evaluation and optimization of the
useful information is performed on the abstraction level of features. The determination of the
depth map, however, uses distributed information which is fused on the level of features.
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5.2 Detection of defects based on illumination series
The second example is concerned with the detection of defects on membranes of pressure
sensors. It is based on fusion of illumination series, and yields a feature image as the fusion
result. The field of inspection is about 10 mm2; the defects themselves are in the order of a few
hundredths of a square millimeter. Figure 5(a) shows an example of a defective membrane
illuminated with diffuse light. It features several local defects, whose actual position can be
determined by comparing this image with the fusion result in Figure 5(c). It is obvious that
images taken with a diffuse illumination hardly allow to discern intact regions from defective
areas. Consequently, an inspection strategy based on an analysis of such images—i.e. without
employing any fusion methods—is not likely to succeed.
Figure 5(b) shows eight of the n = 16 images of the original illumination series, which was
obtained by rotating azimuthally a light source in steps of Δϕ = 22.5 degrees. Due to the
geometry of the machined membrane surface, images obtained with an illumination angle
differing by 180 degrees one from another have a similar appearance. If now a faultless surface
point xxx0 is observed at a certain illumination angle ϕ0, its intensity g(xxx0, ϕ0) is particularly
high, if the illumination direction is perpendicular to the machining grooves. Each facet of
a groove acts then as a mirror that reflects the light incident from a direction perpendicular
to the local direction of the groove. Consequently, the intensity signal g(xxx0, ϕ) obtained for a
varying illumination angle ϕ features a characteristic shape that allows to discern whether the
point xxx0 belongs to a defective region or not.
By harmonic analysis of the signals g(xxx, ϕi) of the series, a suitable feature image can be
defined as a measure m(xxx) of the local defects:

m(xxx) =
|G(xxx, fϕ = 1)|

|G(xxx, fϕ = 1)|+ |G(xxx, fϕ = 0)| , (3)

where

G(xxx, fϕ) := DFTϕ{g(xxx, ϕ)}

=
n−1

∑
i=0

g(xxx, ϕi) · exp
(
−j 2π

i fϕ

n

)
(4)

denotes the one-dimensional discrete Fourier transform (DFT) of the series with respect to the
illumination angle ϕ.
Equation (3) computes a feature based on the comparison of two frequency components with
respect to the image intensities at the location xxx: the fundamental oscillation, and the DC
component. It is easy to recognize that the values of m(xxx) are all within the range [0, 1],
and that the ratio 0.5 is obtained when the energy of both components is the same. A value
of m(xxx) higher than 0.5 means that the fundamental oscillation—i.e. a non-defective groove
texture—dominates potential defects at the location xxx. Otherwise, xxx is likely to be a local
defect.
Equation (3) performs the initial transform, after which an optimization and—if needed—a
final transform could be performed. However, in the present case both the optimization and
the output transforms are trivial, since

r(xxx) = m(xxx) (5)

holds.
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Fig. 4. Fusion of a focus series in order to obtain an image with synthetically enhanced
contrast and a depth map (image series are indicated with continuous lines, single images
are indicated with dotted lines): from the original image series g(xxx,z), the local contrast
v(xxx,z) establishing a suitable descriptor of the useful information is estimated in the input
transform (lighter areas have higher contrast). In the optimization step, a preliminary depth
map d̄(xxx) is distilled first from the series of contrast images, which is then combined with
prior information to a smoothed depth map d(xxx) constituting the fusion map (darker areas
are farther away than lighter areas). To obtain the desired image with enhanced depth of
field, the fusion map is used as look-up table to compose the fusion result r1(xxx) from the
focus series. The depth map itself represents the second desired fusion result r2(xxx).

the maximal inclination of the object surface is limited is incorporated in the fusion process
by smoothing the preliminary depth map. The smoothed depth map d(xxx) is then the result of
the optimization step, i.e., the fusion map. It shows where the desired useful information is
concentrated in the location-parameter domain.
The aim of the last step is to transform the fusion map into the desired result on the respective
abstraction level. In order to construct the image with synthetically enhanced depth of field,
the fusion map on the feature level must be specialized. To that aim, it is used as a lookup
table: for each image point xxx, the intensity value from the image with the respective scene
distance d(xxx) is selected from the focus series in order to form the fusion result, i.e., r1(xxx) :=
g(xxx,d(xxx)). The second desired result, the depth map, is the fusion map, since it reflects just
the vertical position of the in-focus plane, i.e., r2(xxx) := d(xxx).
In this example, the construction of the image with enhanced depth of field can be classified
as a fusion of complementary information. Although the actual combination of the input
information takes place on the level of image signals, the evaluation and optimization of the
useful information is performed on the abstraction level of features. The determination of the
depth map, however, uses distributed information which is fused on the level of features.
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obtained by rotating azimuthally a light source in steps of Δϕ = 22.5 degrees. Due to the
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differing by 180 degrees one from another have a similar appearance. If now a faultless surface
point xxx0 is observed at a certain illumination angle ϕ0, its intensity g(xxx0, ϕ0) is particularly
high, if the illumination direction is perpendicular to the machining grooves. Each facet of
a groove acts then as a mirror that reflects the light incident from a direction perpendicular
to the local direction of the groove. Consequently, the intensity signal g(xxx0, ϕ) obtained for a
varying illumination angle ϕ features a characteristic shape that allows to discern whether the
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defined as a measure m(xxx) of the local defects:
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Equation (3) computes a feature based on the comparison of two frequency components with
respect to the image intensities at the location xxx: the fundamental oscillation, and the DC
component. It is easy to recognize that the values of m(xxx) are all within the range [0, 1],
and that the ratio 0.5 is obtained when the energy of both components is the same. A value
of m(xxx) higher than 0.5 means that the fundamental oscillation—i.e. a non-defective groove
texture—dominates potential defects at the location xxx. Otherwise, xxx is likely to be a local
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Fig. 5. Detection of defects on membranes of pressure sensors: (a) Image of a defective
membrane obtained with diffuse illumination; (b) Image series of the defective membrane;
(c) Fusion result with highlighted defects.
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Figure 5(c) shows the feature image r(xxx) = m(xxx) obtained through fusion of the image series of
Figure 5(b). The fusion result clearly highlights several defective areas, which appear darker
than the faultless regions. For a better interpretation of the results, the results of a further
defect detection step have been overlaid. To this end, an edge detection method based on a
Laplacian-of-Gaussian (LoG) filter according to (Beyerer & Puente León, 1997) has been used.

5.3 Classification of defects based on illumination series
The method presented in the last subsection is based on a reflection model describing the
intensities of a certain object or defect. Thus, both the design and computational effort will
necessarily increase, if different types of defects need to be distinguished. Instead of a single
feature image m(xxx), a suitable set of features {mi(xxx)} will be necessary to discern the classes
of defects in the feature space.
This example presents an alternative based on the systematic extraction of local features and
a subsequent classification. A major advantage of this approach is that, after a suitable set of
features has been defined, an arbitrary number of defects can be distinguished.
Additionally, if the extracted features are invariant against transforms considered to be
irrelevant (e.g., translation, rotation, scaling or intensity), the computational costs remain
acceptable. Moreover, thanks to the generalization capabilities of classifiers, a higher tolerance
in the case of a class mismatch can be expected.
A common approach to construct a feature m out of an image g(xxx) that is invariant against a
certain transformation group T is integrating over this group:

m :=
∫

T

f (t{g(xxx)})dt =
∫

P

f (t(p){g(xxx)})dppp . (6)

This equation is known as the Haar integral. The function t ∈ T is a transformation
parameterized by the vector p ∈ P, where P is the parameter space and f is an arbitrary, local
kernel function.
In the following, we will focus on a single application scenario, in which different classes of
varnish defects on wood surfaces are to be detected and classified. To achieve a maximal
contrast, the pictures of the surface are taken under directional illumination, which is realized
by means of a distant point light source, whose direction is described by a fixed elevation
angle ϑ and a variable azimuth ϕ.
In this example, we aim at extracting invariant features with respect to the two-dimensional
Euclidean motion, which involves rotation and translation in R

2. The parameter vector of the
transformation function is ppp = (τx,τy,φ)T, where τx and τy denote the translation parameters
in x and y direction, and φ is the rotation parameter. The compactness and finiteness of this
group guarantee the convergence of the integral (Schulz-Mirbach, 1995).
To process all images of the series by the Haar integral, the illumination azimuth ϕ needs to
be added to the parameter vector ppp, and the kernel function has to be extended accordingly
to the third dimension of the input data. However, these modifications are beyond the scope
of this paper. For a more comprehensive discussion of the feature extraction, we refer to
(Pérez Grassi & Puente León, 2008). The resulting features do not only exhibit all invariant
properties discussed above, but they also are invariant with respect to both illumination and
contrast.
After extracting a set of ten features, a classification is performed by a Support Vector Machine.
Since the inspected surfaces may feature areas with and without defects, the presented method
is applied locally. To this end, the series of images is subdivided into local windows of 32× 32
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Fig. 5. Detection of defects on membranes of pressure sensors: (a) Image of a defective
membrane obtained with diffuse illumination; (b) Image series of the defective membrane;
(c) Fusion result with highlighted defects.
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Figure 5(c) shows the feature image r(xxx) = m(xxx) obtained through fusion of the image series of
Figure 5(b). The fusion result clearly highlights several defective areas, which appear darker
than the faultless regions. For a better interpretation of the results, the results of a further
defect detection step have been overlaid. To this end, an edge detection method based on a
Laplacian-of-Gaussian (LoG) filter according to (Beyerer & Puente León, 1997) has been used.

5.3 Classification of defects based on illumination series
The method presented in the last subsection is based on a reflection model describing the
intensities of a certain object or defect. Thus, both the design and computational effort will
necessarily increase, if different types of defects need to be distinguished. Instead of a single
feature image m(xxx), a suitable set of features {mi(xxx)} will be necessary to discern the classes
of defects in the feature space.
This example presents an alternative based on the systematic extraction of local features and
a subsequent classification. A major advantage of this approach is that, after a suitable set of
features has been defined, an arbitrary number of defects can be distinguished.
Additionally, if the extracted features are invariant against transforms considered to be
irrelevant (e.g., translation, rotation, scaling or intensity), the computational costs remain
acceptable. Moreover, thanks to the generalization capabilities of classifiers, a higher tolerance
in the case of a class mismatch can be expected.
A common approach to construct a feature m out of an image g(xxx) that is invariant against a
certain transformation group T is integrating over this group:

m :=
∫

T

f (t{g(xxx)})dt =
∫

P

f (t(p){g(xxx)})dppp . (6)

This equation is known as the Haar integral. The function t ∈ T is a transformation
parameterized by the vector p ∈ P, where P is the parameter space and f is an arbitrary, local
kernel function.
In the following, we will focus on a single application scenario, in which different classes of
varnish defects on wood surfaces are to be detected and classified. To achieve a maximal
contrast, the pictures of the surface are taken under directional illumination, which is realized
by means of a distant point light source, whose direction is described by a fixed elevation
angle ϑ and a variable azimuth ϕ.
In this example, we aim at extracting invariant features with respect to the two-dimensional
Euclidean motion, which involves rotation and translation in R

2. The parameter vector of the
transformation function is ppp = (τx,τy,φ)T, where τx and τy denote the translation parameters
in x and y direction, and φ is the rotation parameter. The compactness and finiteness of this
group guarantee the convergence of the integral (Schulz-Mirbach, 1995).
To process all images of the series by the Haar integral, the illumination azimuth ϕ needs to
be added to the parameter vector ppp, and the kernel function has to be extended accordingly
to the third dimension of the input data. However, these modifications are beyond the scope
of this paper. For a more comprehensive discussion of the feature extraction, we refer to
(Pérez Grassi & Puente León, 2008). The resulting features do not only exhibit all invariant
properties discussed above, but they also are invariant with respect to both illumination and
contrast.
After extracting a set of ten features, a classification is performed by a Support Vector Machine.
Since the inspected surfaces may feature areas with and without defects, the presented method
is applied locally. To this end, the series of images is subdivided into local windows of 32× 32
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(a) (c) (e)

(b) (d) (f)

Fig. 6. Classification of different types of varnish defects on wood surfaces: (a) Surface with
two craters of different radii (the smaller crater is located in the image center); (b) Classified
crater regions based on image (a); (c) Varnished surface with bubbles and other varnish
defects; (d) Classified bubble regions based on image (c); (e) Surface with bubble and fissure
with classified fissure regions; (f) Surface with bubble and fissure with classified bubble
regions.

pixels with a spatial overlap of 50 %. A 10-dimensional feature vector mmm is extracted from each
window according to a list of kernel functions showing the same structure but with different
parameters (Pérez Grassi & Puente León, 2008).
Five different classes were defined to train the system: no defect, bubble, ampulla, fissure, and
crater. A group of 20 series of images of different wooden surfaces featuring different defects
constituted the training list. To test the performance of the system, a disjoint list of series
of images was used. Figure 6 shows a representative selection of the obtained classification
results based on illumination series consisting of n = 8 images.
Figure 6(b) shows the inspection results for a surface showing two craters of different radii
(Fig. 6(a)). Both defects were correctly classified. However, the results do not yield any
information about the size of the detected defects, since craters of different sizes belong to
the same class. The next example illustrates the detection of bubbles. Although the original
image Figure 6(c) does not contain only bubbles, but also elongated defects, the classifier is
able to distinguish between the different types of defects (Fig. 6(d)).
Finally, the Figures 6(e) and (f) show the results for a surface featuring a bubble and a fissure.
The invariant approach introduced in this subsection is able to recognize both defects at one
time using the same group of kernel functions.
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6. Conclusion

Image fusion offers powerful tools to obtain desired information from a scene by using
image series. The main precondition is to find an imaging setup with at least one varied
acquisition parameter—illumination or observation parameter—such that the resulting image
series contains the useful information in the form of redundant, complementary, distributed
or orthogonal information. Once the image series has been acquired, a suitable procedure
of image fusion can often be reduced to a standard concept for image fusion. It comprises a
processing scheme consisting of an input transform, which converts the sensor information
into significant descriptors, an optimization, which selects the useful information from the
descriptors to generate a fusion map, and an output transform, which converts the fusion
map into the desired form. The processing may take place on different abstraction levels—the
levels of image signals, features, and symbols—, incorporating many common methods of
image processing and pattern recognition.
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Applications, Academic Press, Amsterdam, chapter Bayesian Methods for Image
Fusion, pp. 157–192.

Beyerer, J. & Puente León, F. (1997). Detection of defects in groove textures of honed surfaces,
International Journal of Machine Tools and Manufacture 37(3): 371–389.

Clark, J. J. & Yuille, A. L. (1990). Data fusion for sensory information processing systems, Kluwer
Academic Publishers, Boston/Dordrecht/London.

Faugeras, O. D. & Luong, Q.-T. (2001). The geometry of multiple images, MIT Press, Cambridge
(MA).
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Pérez Grassi, A. & Puente León, F. (2007). Translation and rotation invariant histogram

features for series of images, in R. Koschke, O. Herzog, K.-H. Rödiger & M. Ronthaler
(eds), INFORMATIK 2007, Informatik trifft Logistik, Beiträge der 37. Jahrestagung der
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1. Introduction  
Tumor surgeons integrate preoperative two-dimensional images and mentally formulate 
three-dimensional surgical plans of resection and reconstruction. The surgical procedure 
aims to remove tumors with clear surgical margins, while critical anatomical structures not 
infiltrated by tumor can be preserved. This will be particularly difficult in complex areas 
such as pelvis, sacrum, or when joint-saving intercalated resection is contemplated, or when 
custom-made prosthesis is used for reconstruction. Incorporating computer technology to 
aid in this surgical planning and executing the intended resection may improve precision 
and consequently clinical results in musculoskeletal tumor surgery. 
Although primarily developed for neurosurgical applications, computer-assisted 
intraoperative navigation has gained acceptance and has been used effectively in 
orthopaedic trauma, spinal procedures and joint replacement surgery (Anderson KC et al., 
20005; Gebhard F et al., 2004; Grutzner PA et al., 2004; Laine T et al., 2000; Wixson RL et al., 
2005). An extended application of computer navigation assisted resection in pelvic and 
sacral tumors was first described in 2004 (Hüfner T et al., 2004; Krettek C et al., 2004). 
Computer-assisted navigation system could facilitate tumors resection and also 
reconstruction with custom prostheses (Cho HS et al., 2008; Cho HS et al., 2009; Kim JH et 
al., 2010; Reijnders K et al., 2007; Wong KC et al., 2007; Wong KC et al., 2007; Wong KC et al., 
2008), joint sparing limb salvage surgery (Cho HS et al., 2009; Wong KC et al., 2007; Wong 
KC et al., 2008). The technique of fusing computed tomography (CT) and magnetic 
resonance images (MRI) was reported. The fusion image, when combined with surgical 
navigation, helps surgeons reproduce a preoperative plan reliably and may offer substantial 
clinical benefits in musculoskeletal tumor surgery (Wong KC et al., 2008). The current study 
represents the continuation of previous publications (Wong KC et al., 2007; Wong KC et al., 
2008), which were preliminary reports of the techniques. The number of cases has increased 
from 13 to 22, and the average follow-up of all patients increased from 9.5 months to 32.5 
months. This article is to provide more patients with longer follow-up to better assess the 
advantages and potential pitfalls of using the technique in musculoskeletal oncology. 
Surgeons had not yet incorporated this computer technology into their routine 
musculoskeletal bone tumors operation. We therefore investigate the results of image fusion 
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represents the continuation of previous publications (Wong KC et al., 2007; Wong KC et al., 
2008), which were preliminary reports of the techniques. The number of cases has increased 
from 13 to 22, and the average follow-up of all patients increased from 9.5 months to 32.5 
months. This article is to provide more patients with longer follow-up to better assess the 
advantages and potential pitfalls of using the technique in musculoskeletal oncology. 
Surgeons had not yet incorporated this computer technology into their routine 
musculoskeletal bone tumors operation. We therefore investigate the results of image fusion 
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for Computer-Assisted Tumor Surgery (CATS) in musculoskeletal oncology with the help of 
a navigation system. 

2. Methods 
We studied 21 patients with 22 musculoskeletal tumors who underwent CATS from March 
2006 to July 2009. (Table 1) A commercially available CT-based spine navigation system 
(Stryker Navigation, Freiburg, Germany; CT spine, version 1.6) was used. Indications for the 
technique included anticipated difficulties in achieving an accurate tumor resection in 
affected bone with complex anatomy (pelvis, sacrum) or the need for precision in making a 
satisfactory resection plane to accommodate a custom tumor prosthesis. Of the 21 patients, 
10 were males, 11 were females, and the mean age was 32 years at the time of surgery 
(range, 6 - 80 years). Five tumors were located in the pelvis, seven sacrum, eight femur, and 
two tibia. The primary diagnosis was primary bone tumors in 16 (4 benign, 16 sarcoma) and 
metastatic tumors in two. The minimum follow-up was 14 months (average, 32.5 months; 
range, 14 – 49 months). No patient was excluded or lost follow-up in this series. 
Preoperative CT and MRI examination of each patient were performed. Axial CT slices of 
0.0625mm or 1.25mm thickness and various sequences of MR images in Digital Imaging and 
Communications in Medicine (DICOM) format were obtained. The imported image data 
sets were then reformatted into axial, coronal and sagittal views in the navigation system. 
CT and MR images for 22 cases were fused using the navigation software (Fig.1). Navigation 
system (Stryker Navigation, Freiberg, Germany, CT spine, version 1.6) was used for first 
eight patients while (Stryker Navigation; iNtellect Cranial, version 1.1) for the rest. PET 
images were also incorporated into the CT-MR fused images for two patients who had local 
recurrence following previous surgery and radiotherapy. The process of fusing multimodal 
image datasets had been described (Wong KC et al., 2008). A three-dimensional (3-D) bone 
model was created by adjusting the contrast level of the CT images. Tumor extent was 
defined and its volume was extracted from MR images. As different image datasets shared 
identical spatial coordinates after image fusion, segmented MR tumor volume was 
integrated into the CT reconstructed 3-D bone model. A 3-D bone tumor model was 
generated. All the reconstructed two-dimensional (2-D) and 3-D images were used for 
preoperative surgical planning. The plane of tumor resection was defined and marked using 
multiple virtual screws sited along the margin of the planned resection. We also integrated 
the computer-aided design (CAD) data of custom-made prostheses provided by the 
manufacturer (Stanmore Implants Worldwide Ltd, Middlesex, United Kingdom) in the final 
navigation resection planning for eight cases (Fig.1).  
Preoperative tumor resection and prosthetic reconstruction was virtually simulated in two 
patients in the later part of the study by using a commercially CAD software, MIMICS® 
(Materialise’s Interactive Medical Image Control System, Materialise, Ann Arbor, MI) that 
converts DICOM data into a proprietary format. The surgical plan of tumor resection and 
CAD prosthesis reconstruction in MIMICS format were back converted to CT data sets in 
DICOM format. Both original CT data sets and virtual surgical planning CT data sets were 
fused in the navigation software. The data sets of the fused images were then imported back 
into a CT-based navigation system (Stryker Navigation, Freiberg, Germany; CT spine, 
version 1.6) for resection planning. The navigation system was toggled to display the CT 
data sets with virtual surgical plans. Virtual markers (pedicle screws in CT spine navigation 
software) were then placed along the plane and orientation of planned tumor resection. 
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for Computer-Assisted Tumor Surgery (CATS) in musculoskeletal oncology with the help of 
a navigation system. 

2. Methods 
We studied 21 patients with 22 musculoskeletal tumors who underwent CATS from March 
2006 to July 2009. (Table 1) A commercially available CT-based spine navigation system 
(Stryker Navigation, Freiburg, Germany; CT spine, version 1.6) was used. Indications for the 
technique included anticipated difficulties in achieving an accurate tumor resection in 
affected bone with complex anatomy (pelvis, sacrum) or the need for precision in making a 
satisfactory resection plane to accommodate a custom tumor prosthesis. Of the 21 patients, 
10 were males, 11 were females, and the mean age was 32 years at the time of surgery 
(range, 6 - 80 years). Five tumors were located in the pelvis, seven sacrum, eight femur, and 
two tibia. The primary diagnosis was primary bone tumors in 16 (4 benign, 16 sarcoma) and 
metastatic tumors in two. The minimum follow-up was 14 months (average, 32.5 months; 
range, 14 – 49 months). No patient was excluded or lost follow-up in this series. 
Preoperative CT and MRI examination of each patient were performed. Axial CT slices of 
0.0625mm or 1.25mm thickness and various sequences of MR images in Digital Imaging and 
Communications in Medicine (DICOM) format were obtained. The imported image data 
sets were then reformatted into axial, coronal and sagittal views in the navigation system. 
CT and MR images for 22 cases were fused using the navigation software (Fig.1). Navigation 
system (Stryker Navigation, Freiberg, Germany, CT spine, version 1.6) was used for first 
eight patients while (Stryker Navigation; iNtellect Cranial, version 1.1) for the rest. PET 
images were also incorporated into the CT-MR fused images for two patients who had local 
recurrence following previous surgery and radiotherapy. The process of fusing multimodal 
image datasets had been described (Wong KC et al., 2008). A three-dimensional (3-D) bone 
model was created by adjusting the contrast level of the CT images. Tumor extent was 
defined and its volume was extracted from MR images. As different image datasets shared 
identical spatial coordinates after image fusion, segmented MR tumor volume was 
integrated into the CT reconstructed 3-D bone model. A 3-D bone tumor model was 
generated. All the reconstructed two-dimensional (2-D) and 3-D images were used for 
preoperative surgical planning. The plane of tumor resection was defined and marked using 
multiple virtual screws sited along the margin of the planned resection. We also integrated 
the computer-aided design (CAD) data of custom-made prostheses provided by the 
manufacturer (Stanmore Implants Worldwide Ltd, Middlesex, United Kingdom) in the final 
navigation resection planning for eight cases (Fig.1).  
Preoperative tumor resection and prosthetic reconstruction was virtually simulated in two 
patients in the later part of the study by using a commercially CAD software, MIMICS® 
(Materialise’s Interactive Medical Image Control System, Materialise, Ann Arbor, MI) that 
converts DICOM data into a proprietary format. The surgical plan of tumor resection and 
CAD prosthesis reconstruction in MIMICS format were back converted to CT data sets in 
DICOM format. Both original CT data sets and virtual surgical planning CT data sets were 
fused in the navigation software. The data sets of the fused images were then imported back 
into a CT-based navigation system (Stryker Navigation, Freiberg, Germany; CT spine, 
version 1.6) for resection planning. The navigation system was toggled to display the CT 
data sets with virtual surgical plans. Virtual markers (pedicle screws in CT spine navigation 
software) were then placed along the plane and orientation of planned tumor resection. 

Image Fusion for Computer-Assisted Tumor Surgery (CATS) 

 

375 
C

as
e 

A
ge

 (y
rs

) 

Se
x 

D
ia

gn
os

is
 

Lo
ca

tio
n 

Su
rg

er
y 

Bo
ne

 re
co

ns
tr

uc
tio

n 

Pr
eo

pe
ra

tiv
e 

fu
si

on
 

im
ag

e 
da

ta
se

ts
 

N
av

ig
at

io
n 

Pl
an

ni
ng

 
tim

e*
 (h

ou
rs

) 

R
eg

is
tr

at
io

n 
er

ro
r 

(m
m

) 

N
av

ig
at

io
n 

tim
e 

(m
in

ut
es

) 

Fu
nc

tio
n 

 
(M

ST
S 

sc
or

e+
) 

Fo
llo

w
up

 
(m

on
th

s)
 

C
om

pl
ic

at
io

ns
 a

nd
 

O
ut

co
m

e 

1 46 F 

Pa
ro

st
ea

l 
os

te
os

ar
co

m
a 

Le
ft

 p
ro

xi
m

al
 ti

bi
a 

(p
os

te
ri

or
 a

sp
ec

t)
 

Jo
in

t-
sa

vi
ng

 re
se

ct
io

n 

V
as

cu
la

ri
ze

d 
fib

ul
ar

 
gr

af
t 

C
T 

an
gi

og
ra

m
 a

nd
 

M
R

I 

3 0.44 40 28 49 -- 

2 42 F 

M
et

as
ta

tic
 u

te
ri

ne
 

ca
rc

in
om

a 

Le
ft

 is
ch

ia
l t

ub
er

os
ity

 

Lo
ca

l r
es

ec
tio

n 

N
o 

C
T 

an
d 

M
R

I 

1.5 0.37 13 -- 49 -- 

3 24 F 

U
nd

iff
er

en
tia

te
d 

bo
ne

 
sa

rc
om

a 

R
ig

ht
 p

ro
xi

m
al

 fe
m

ur
 

Lo
ca

l r
es

ec
tio

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

M
od

ul
ar

 tu
m

or
 p

ro
st

he
si

s 

C
T 

an
d 

M
R

I 

2.5 0.36 18 29 48 -- 

4 53 F 

Sc
hw

an
no

m
a 

R
ig

ht
 S

2 
ne

rv
e 

ro
ot

 

M
ar

gi
na

l e
xc

is
io

n 
vi

a 
po

st
er

io
r a

pp
ro

ac
h 

N
o 

C
T 

an
d 

M
R

I 

1.5 0.38 15 -- 44 -- 



 Image Fusion 

 

376 

5 14 M 
C

on
ve

nt
io

na
l o

st
eo

sa
rc

om
a 

R
ig

ht
 fe

m
ur

 (f
ro

m
 

su
bt

ro
ch

an
te

ri
c 

re
gi

on
 to

 d
is

ta
l 

ph
ys

is
) 

Jo
in

t-
sa

vi
ng

 re
se

ct
io

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

C
us

to
m

 tu
m

or
 p

ro
st

he
si

s 

+ 
C

T 
an

d 
M

R
I 

3.8 0.50 30 30 43 -- 

6 80 F 

C
ho

rd
om

a 

Sa
cr

um
 (b

el
ow

 a
nd

 in
cl

ud
in

g 
S2

) 

R
es

ec
tio

n 

N
o 

C
T 

an
d 

M
R

I 

2.2 0.61 35 -- 42 

su
pe

rf
ic

ia
l w

ou
nd

 in
fe

ct
io

n 
7 6 M 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

R
ig

ht
 d

is
ta

l f
em

ur
 

Jo
in

t s
av

in
g 

re
se

ct
io

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

C
us

to
m

 e
xt

en
da

bl
e 

tu
m

or
 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

2.5 0.41 20 26 38 
D

ie
d 

of
 d

is
ta

nt
 m

et
as

ta
se

s 
5 

m
on

th
s 

po
st

 s
ur

ge
ry

 

8 54 M 

G
ia

nt
 c

el
l t

um
or

 

Sa
cr

um
 (f

ro
m

 S
1 

to
 S

4)
 

In
tr

al
es

io
na

l c
ur

et
ta

ge
 

N
o 

C
T 

an
gi

og
ra

m
 a

nd
 M

R
I 

2.2 0.45 25 -- 37 

Lo
ca

l r
ec

ur
re

nc
e 

26
 m

on
th

s 
po

st
 s

ur
ge

ry
 a

nd
 s

ta
bi

liz
ed

 
w

ith
 b

is
ph

os
ph

on
at

es
 

Image Fusion for Computer-Assisted Tumor Surgery (CATS) 

 

377 

9 8 M 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

Le
ft

 d
is

ta
l f

em
ur

 

Jo
in

t s
av

in
g 

re
se

ct
io

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

C
us

to
m

 e
xt

en
da

bl
e 

tu
m

or
 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

1.2 0.35 15 30 36 -- 

10 50 M 

R
ec

ur
re

nt
 c

ho
rd

om
a 

Le
ft

 p
el

vi
c 

m
et

as
ta

se
s 

R
es

ec
tio

n 
(P

II
) 

C
us

to
m

 p
el

vi
c 

pr
os

th
es

is
 

C
T 

an
gi

og
ra

m
, M

R
I a

nd
 P

ET
 

1.8 0.46 15 23 35 

D
ev

el
op

ed
 s

of
t t

is
su

e 
lo

ca
l r

ec
ur

re
nc

e 
1 

ye
ar

 a
fte

r s
ur

ge
ry

 

11 18 M 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

Sa
cr

um
 (f

ro
m

 S
1 

to
 S

5)
 

To
ta

l s
ac

re
ct

om
y 

N
o 

C
T 

an
d 

M
R

I 

1.1 0.59 15 -- 35 

Po
st

op
er

at
iv

e 
w

ou
nd

 in
fe

ct
io

n 
D

ie
d 

of
 d

is
ta

nt
 m

et
as

ta
se

s 
6 

m
on

th
s 

af
te

r s
ur

ge
ry

 



 Image Fusion 

 

376 

5 14 M 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

R
ig

ht
 fe

m
ur

 (f
ro

m
 

su
bt

ro
ch

an
te

ri
c 

re
gi

on
 to

 d
is

ta
l 

ph
ys

is
) 

Jo
in

t-
sa

vi
ng

 re
se

ct
io

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

C
us

to
m

 tu
m

or
 p

ro
st

he
si

s 

+ 
C

T 
an

d 
M

R
I 

3.8 0.50 30 30 43 -- 

6 80 F 

C
ho

rd
om

a 

Sa
cr

um
 (b

el
ow

 a
nd

 in
cl

ud
in

g 
S2

) 

R
es

ec
tio

n 

N
o 

C
T 

an
d 

M
R

I 

2.2 0.61 35 -- 42 

su
pe

rf
ic

ia
l w

ou
nd

 in
fe

ct
io

n 

7 6 M 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

R
ig

ht
 d

is
ta

l f
em

ur
 

Jo
in

t s
av

in
g 

re
se

ct
io

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

C
us

to
m

 e
xt

en
da

bl
e 

tu
m

or
 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

2.5 0.41 20 26 38 

D
ie

d 
of

 d
is

ta
nt

 m
et

as
ta

se
s 

5 
m

on
th

s 
po

st
 s

ur
ge

ry
 

8 54 M 

G
ia

nt
 c

el
l t

um
or

 

Sa
cr

um
 (f

ro
m

 S
1 

to
 S

4)
 

In
tr

al
es

io
na

l c
ur

et
ta

ge
 

N
o 

C
T 

an
gi

og
ra

m
 a

nd
 M

R
I 

2.2 0.45 25 -- 37 

Lo
ca

l r
ec

ur
re

nc
e 

26
 m

on
th

s 
po

st
 s

ur
ge

ry
 a

nd
 s

ta
bi

liz
ed

 
w

ith
 b

is
ph

os
ph

on
at

es
 

Image Fusion for Computer-Assisted Tumor Surgery (CATS) 

 

377 

9 8 M 
C

on
ve

nt
io

na
l o

st
eo

sa
rc

om
a 

Le
ft

 d
is

ta
l f

em
ur

 

Jo
in

t s
av

in
g 

re
se

ct
io

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

C
us

to
m

 e
xt

en
da

bl
e 

tu
m

or
 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

1.2 0.35 15 30 36 -- 

10 50 M 

R
ec

ur
re

nt
 c

ho
rd

om
a 

Le
ft

 p
el

vi
c 

m
et

as
ta

se
s 

R
es

ec
tio

n 
(P

II
) 

C
us

to
m

 p
el

vi
c 

pr
os

th
es

is
 

C
T 

an
gi

og
ra

m
, M

R
I a

nd
 P

ET
 

1.8 0.46 15 23 35 

D
ev

el
op

ed
 s

of
t t

is
su

e 
lo

ca
l r

ec
ur

re
nc

e 
1 

ye
ar

 a
fte

r s
ur

ge
ry

 

11 18 M 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

Sa
cr

um
 (f

ro
m

 S
1 

to
 S

5)
 

To
ta

l s
ac

re
ct

om
y 

N
o 

C
T 

an
d 

M
R

I 

1.1 0.59 15 -- 35 

Po
st

op
er

at
iv

e 
w

ou
nd

 in
fe

ct
io

n 
D

ie
d 

of
 d

is
ta

nt
 m

et
as

ta
se

s 
6 

m
on

th
s 

af
te

r s
ur

ge
ry

 



 Image Fusion 

 

378 

12 54 F 
R

ec
ur

re
nt

 c
ho

nd
ro

sa
rc

om
a 

Sa
cr

um
 (f

ro
m

 S
1 

to
 S

5)
 

To
ta

l s
ac

re
ct

om
y 

N
o 

C
T 

an
gi

og
ra

m
 a

nd
 M

R
I 

1.2 0.68 25 -- 35 

D
ie

d 
of

 d
is

ta
nt

 m
et

as
ta

se
s 

1 
ye

ar
 a

fte
r s

ur
ge

ry
 

13 17 M 

R
ec

ur
re

nt
 m

al
ig

na
nt

 n
er

ve
 s

he
at

h 
tu

m
or

 

Le
ft

 s
ci

at
ic

 n
er

ve
 a

nd
 in

vo
lv

in
g 

ili
um

 a
nd

 s
ac

ru
m

 

Le
ft 

he
m

ip
el

ve
ct

om
y 

(P
IV

 re
se

ct
io

n)
 

N
o 

C
T 

an
gi

og
ra

m
, M

R
I a

nd
 P

ET
 

1.8 0.44 30 -- 33 

D
ev

el
op

ed
 s

of
t t

is
su

e 
lo

ca
l r

ec
ur

re
nc

e 
5 

m
on

th
s 

af
te

r s
ur

ge
ry

 
an

d 
di

ed
 o

f d
is

ta
nt

 m
et

as
ta

se
s 

11
 m

on
th

s 
po

st
 s

ur
ge

ry
 

14 21 F 

Lo
w

 g
ra

de
 c

ho
nd

ro
sa

rc
om

a 

Le
ft

 p
ro

xi
m

al
 fe

m
ur

 

Jo
in

t s
av

in
g 

re
se

ct
io

n 

C
us

to
m

 tu
m

or
 p

ro
st

he
si

s 

C
T 

an
d 

M
R

I 

2 0.42 50 28 32 -- 

Image Fusion for Computer-Assisted Tumor Surgery (CATS) 

 

379 

15 16 F 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

R
ig

ht
 is

ch
iu

m
 a

nd
 a

ce
ta

bu
lu

m
 

PI
I +

 P
II

I r
es

ec
tio

n 

C
us

to
m

 p
el

vi
c 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

1.5 0.31 30 30 30 -- 

16 24 M 

Pa
ro

st
ea

l o
st

eo
sa

rc
om

a 

Le
ft

 d
is

ta
l f

em
ur

 

Jo
in

t s
av

in
g 

re
se

ct
io

n 

C
us

to
m

 tu
m

or
 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

3 0.34 60 28 26 -- 

17 41 F 

H
em

an
gi

oe
nd

ot
he

-
lio

m
a 

R
ig

ht
 il

iu
m

 

R
es

ec
tio

n 

N
o 

C
T 

an
d 

M
R

I 

1 0.59 45 -- 24 -- 

18 55 M 

Sa
cr

al
 c

ho
rd

om
a 

S1
 a

nd
 b

el
ow

 

To
ta

l s
ac

re
ct

om
y 

Po
st

er
io

r i
ns

tr
um

en
ta

tio
n 

C
T 

an
d 

M
R

I 

1 0.5 30 -- 18 

Lo
ca

l r
ec

ur
re

nc
e 

an
d 

di
st

al
 m

et
as

ta
se

s 
12

 m
on

th
s 

po
st

 s
ur

ge
ry

 



 Image Fusion 

 

378 

12 54 F 

R
ec

ur
re

nt
 c

ho
nd

ro
sa

rc
om

a 

Sa
cr

um
 (f

ro
m

 S
1 

to
 S

5)
 

To
ta

l s
ac

re
ct

om
y 

N
o 

C
T 

an
gi

og
ra

m
 a

nd
 M

R
I 

1.2 0.68 25 -- 35 

D
ie

d 
of

 d
is

ta
nt

 m
et

as
ta

se
s 

1 
ye

ar
 a

fte
r s

ur
ge

ry
 

13 17 M 

R
ec

ur
re

nt
 m

al
ig

na
nt

 n
er

ve
 s

he
at

h 
tu

m
or

 

Le
ft

 s
ci

at
ic

 n
er

ve
 a

nd
 in

vo
lv

in
g 

ili
um

 a
nd

 s
ac

ru
m

 

Le
ft 

he
m

ip
el

ve
ct

om
y 

(P
IV

 re
se

ct
io

n)
 

N
o 

C
T 

an
gi

og
ra

m
, M

R
I a

nd
 P

ET
 

1.8 0.44 30 -- 33 

D
ev

el
op

ed
 s

of
t t

is
su

e 
lo

ca
l r

ec
ur

re
nc

e 
5 

m
on

th
s 

af
te

r s
ur

ge
ry

 
an

d 
di

ed
 o

f d
is

ta
nt

 m
et

as
ta

se
s 

11
 m

on
th

s 
po

st
 s

ur
ge

ry
 

14 21 F 

Lo
w

 g
ra

de
 c

ho
nd

ro
sa

rc
om

a 

Le
ft

 p
ro

xi
m

al
 fe

m
ur

 

Jo
in

t s
av

in
g 

re
se

ct
io

n 

C
us

to
m

 tu
m

or
 p

ro
st

he
si

s 

C
T 

an
d 

M
R

I 

2 0.42 50 28 32 -- 

Image Fusion for Computer-Assisted Tumor Surgery (CATS) 

 

379 

15 16 F 
C

on
ve

nt
io

na
l o

st
eo

sa
rc

om
a 

R
ig

ht
 is

ch
iu

m
 a

nd
 a

ce
ta

bu
lu

m
 

PI
I +

 P
II

I r
es

ec
tio

n 

C
us

to
m

 p
el

vi
c 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

1.5 0.31 30 30 30 -- 

16 24 M 

Pa
ro

st
ea

l o
st

eo
sa

rc
om

a 

Le
ft

 d
is

ta
l f

em
ur

 

Jo
in

t s
av

in
g 

re
se

ct
io

n 

C
us

to
m

 tu
m

or
 

pr
os

th
es

is
 

C
T 

an
d 

M
R

I 

3 0.34 60 28 26 -- 

17 41 F 

H
em

an
gi

oe
nd

ot
he

-
lio

m
a 

R
ig

ht
 il

iu
m

 

R
es

ec
tio

n 

N
o 

C
T 

an
d 

M
R

I 

1 0.59 45 -- 24 -- 

18 55 M 

Sa
cr

al
 c

ho
rd

om
a 

S1
 a

nd
 b

el
ow

 

To
ta

l s
ac

re
ct

om
y 

Po
st

er
io

r i
ns

tr
um

en
ta

tio
n 

C
T 

an
d 

M
R

I 

1 0.5 30 -- 18 

Lo
ca

l r
ec

ur
re

nc
e 

an
d 

di
st

al
 m

et
as

ta
se

s 
12

 m
on

th
s 

po
st

 s
ur

ge
ry

 



 Image Fusion 

 

380 

19 42 M 
Sa

cr
al

 c
ho

rd
om

a 

S3
 a

nd
 S

4 

Pa
rt

ia
l s

ac
re

ct
om

y 

N
o 

C
T,

 M
R

I a
nd

 P
ET

 

1.5 0.49 45 -- 17 -- 

20 6 M 

C
on

ve
nt

io
na

l o
st

eo
sa

rc
om

a 

R
ig

ht
 d

is
ta

l f
em

ur
 

Jo
in

t s
av

in
g 

re
se

ct
io

n 
af

te
r 

ne
oa

dj
uv

an
t c

he
m

ot
he

ra
py

 

C
us

to
m

 e
xt

en
da

bl
e 

tu
m

or
 p

ro
st

he
si

s 

C
T 

an
d 

M
R

I 
2 0.8 25 30 16 -- 

21 16 F 

Lo
w

 g
ra

de
 

ch
on

dr
os

ar
co

m
a 

Le
ft

 p
ro

xi
m

al
 h

um
er

us
 

Jo
in

t s
av

in
g 

re
se

ct
io

n 

Bo
ne

 g
ra

ft
 

C
T 

an
d 

M
R

I 

1 0.54mm 25 30 15 -- 

22 18 F 

C
ho

nd
ro

m
yx

oi
d 

fib
ro

m
a 

R
ig

ht
 p

ro
xi

m
al

 ti
bi

a 

M
ul

ti-
pl

an
ar

 re
sc

tio
n 

Bo
ne

 g
ra

ft
 

C
T 

an
d 

M
R

I 

1.5 0.4 45 28 14 -- 

Table 1. Demographic data for 22 cases in 21 patients. *Navigation planning time included 
time required for performing image fusion, creating 3-D bone tumor models and planning 
of intended resection; +MSTS = Musculoskeletal Tumor Society score. The score was 
obtained at the end of study period. For those patients who died during the study period, 
we took the maximum score that the patients could achieve following their operations 
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Fig. 1. (A) A coronal section of the CT images with incorporation of CAD prosthesis for 
Patient 16 with right distal femur parosteal osteosarcoma is shown. Conversion of CAD data 
of custom prosthesis to DICOM format was made possible using CAD software (MIMICS® - 
Materialise’s Interactive Medical Image Control System). This allowed direct use of CAD 
data for navigation planning of tumor resection. The central cross represented the virtual 
marker (pedicle screw in the CT spine navigation software) that marked one of the locations 
of intended bone resection. (B) A sagittal section of the MR images showed the extent of the 
tumor. (C) A axial section of CT / MR image fusion at the intended resection of distal femur 
is shown. (D) A 3-D bone tumor model reconstructed from CT and MR image data sets is 
shown. The tumor volume was red in color. By analyzing the 2-D CT / MR fused images 
and 3-D model, a joint-saving resection with multiplanar osteotomies were planned at distal 
femur and intended bone resections were marked with virtual screws. The more precise the 
bone resection was, the greater number of virtual screws was needed to define the plane of 
resection 

At the actual surgery, a dynamic reference tracker was attached to the bone in which the 
tumor was located. An image-to-patient registration to match precisely the operative 
anatomy and preoperative virtual CT images was performed by paired points and surface 
points matching. The navigation software calculated the registration errors which indicated 
any mismatch between preoperative CT images and the patient’s anatomy (Fig.2). We next 
calibrated the navigation probe and operative instruments (drill, bone burr or diathermy) 
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Patient 16 with right distal femur parosteal osteosarcoma is shown. Conversion of CAD data 
of custom prosthesis to DICOM format was made possible using CAD software (MIMICS® - 
Materialise’s Interactive Medical Image Control System). This allowed direct use of CAD 
data for navigation planning of tumor resection. The central cross represented the virtual 
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of intended bone resection. (B) A sagittal section of the MR images showed the extent of the 
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is shown. (D) A 3-D bone tumor model reconstructed from CT and MR image data sets is 
shown. The tumor volume was red in color. By analyzing the 2-D CT / MR fused images 
and 3-D model, a joint-saving resection with multiplanar osteotomies were planned at distal 
femur and intended bone resections were marked with virtual screws. The more precise the 
bone resection was, the greater number of virtual screws was needed to define the plane of 
resection 

At the actual surgery, a dynamic reference tracker was attached to the bone in which the 
tumor was located. An image-to-patient registration to match precisely the operative 
anatomy and preoperative virtual CT images was performed by paired points and surface 
points matching. The navigation software calculated the registration errors which indicated 
any mismatch between preoperative CT images and the patient’s anatomy (Fig.2). We next 
calibrated the navigation probe and operative instruments (drill, bone burr or diathermy) 
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mounted with navigation trackers to the navigation system. This allowed the real-time 
tracking the spatial location of the tip of these instruments in relation to the patient’s 
anatomy on the virtual preoperative images (Fig.3). The anatomic locations of virtual 
pedicle screws were identified and intended resection level and plane was marked using 
navigated tools. An oscillating saw or osteotome was used to make the osteotomy and the 
tumor was removed en-bloc. Skeletal defects were reconstructed using custom-made pelvic 
prostheses in two cases, custom-made joint-saving intercalated prostheses in six, modular 
proximal femur prosthesis in one, and a vascularized fibular graft in one. No reconstruction 
was required for twelve cases. Postoperative CT images for Patients 10, 14 and 15 were 
obtained and the achieved positions of custom prostheses were merged with their 
preoperative navigation plans. The workflow for the technique of CATS was summarized in 
Figure 4.  

 

 
Fig. 2. (A) Coronal, (B) sagittal, (C) axial sections of CT/MR fused images and (D) 3-D bone 
tumor model for Patient 9 with left distal femur osteosarcoma are shown. After performing 
image-to-patient registration using paired points and surface matching at the surgery, we 
assessed the real-time matching between operative anatomy and the virtual images by 
running the registration probe on bone surface or by checking some anatomic landmarks. 
The registration was judged to be accurate and acceptable for subsequent navigation 
procedure as the tip of navigation probe matched well with the cartilage surface of distal 
femur 
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Fig. 3. (A) Coronal section of CT image, (B) sagittal and (C) axial sections of CT/MR fused 
images, and (D) 3-D bone tumor model for Patient 12 with recurrent mesenchymal 
chondrosarcoma of sacrum are shown. The patient had two previous operations and 
posterolateral fusion between lower lumbar spines and iliac crest. The tip of navigation 
probe was pointing at the location where previous laminectomy was performed at L5 level. 
Intraoperative navigation helped surgeons to identify with confidence the structures and 
intended bone resections in patients with distorted anatomy from their tumors or previous 
operations 
We determined the results of CT-MR image fusion for CATS with the help of a navigation 
system by evaluating the: (1) additional information not seen on conventional images that 
was obtained for preoperative surgical planning; (2) the accuracy as registration error 
obtained intraoperatively that was defined as the average deviation between the same point 
in the preoperatively acquired navigation image and the actual patient’s anatomy; (3) the 
accuracy of executing surgical plan as determined by comparing the cross sections at the 
resection plane and their preoperative navigation planning, assessing the fit of the custom 
prostheses to the remaining bone at the surgery, and assessing the histology of resection 
margins in all malignant tumor specimens. We did not validate the resections for Patients 4, 
8 who had intralesional or marginal excision of their benign tumors and Patients 11, 12, 
13,18 and 19 as their resection planes were irregular or curved; (4) time required for 
navigation planning; (5) time required for operative set-up and execution of the navigation 
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procedures; (6) complications and local tumor recurrence; (7) functional outcome was 
assessed using the Musculoskeletal Tumor Society (MSTS) score in patients with limb 
salvage surgery (Enneking WF et al., 1993). 
 

 
Fig. 4. The workflow of Computer-Assisted Tumor Surgery (CATS) used in the study is 
shown 

3. Result 
All tumor resections could be carried out as planned under navigation guidance. Navigation 
software enabled surgeons to examine all fused image datasets (CT / MRI / PET scan) 
together in two spatial and three spatial dimensions. It allowed easier understanding of the 
exact anatomical tumor location and relationship with surrounding structures. 
Intraoperatively, image guidance with the help of fusion images, provided precise visual 
orientation, easy identification of tumor extent, neural structures and intended resection 
planes in all cases. The bone resection could be precisely planned and executed in terms of 
exact level and orientation, according to the pre-defined tumor volume and data of custom 
prosthesis. For Patient 14 and 16, incorporation of data of CAD custom prostheses in the 
resection planning enabled multi-planar osteotomies and precise fit of CAD custom 
prostheses (Fig.5,6).  
The resection achieved was as planned in 15 cases that were validated either by comparing 
the dimensions at the resection plane of resected specimens with that in the surgical 
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navigation planning or merging postoperative with preoperative CT images (Fig.7). 
Histological examination of all resected specimens in patients with malignant tumors 
showed a clear tumor margin.  
 

 
Fig. 5. (A) A joint-saving, CAD custom prosthesis in Patient 14 with low grade 
chondrosarcoma of left proximal femur is shown. (B) An antero-posterior view of plain 
radiograph of hip at postoperative one year is shown. The computer navigation technique 
allowed precise surgical planning, tumor resection and an accurate fit of a CAD custom 
prosthesis. (C) A specially designed custom prosthesis is shown. Additional extracortical 
plates and screw at femoral head offered excellent fixation and stability for the 
reconstruction. Hydroxyapatite that could facilitate osseointegration was coated at the 
surface of all bone-implant junctions of the prosthesis 

We found the technique was particularly useful in pelvic, sacral tumors, joint-saving 
intercalated tumor resection and fitting of CAD custom-made prostheses. 
The mean time for preoperative navigation planning was 1.85 hours (1 to 3.8). The mean 
time for intraoperative navigation procedures was 29.6 minutes (13 to 60). The time 
increased with case complexity but lessened with practice. The mean registration error was 
0.47mm (0.31 to 0.8). The virtual preoperative images matched well with the patients’ 
operative anatomy. A postoperative superficial wound infection developed in Patient 6 with 
sacral chordoma that resolved with antibiotic whereas a wound infection in Patient 11 with 
sacral osteosarcoma required surgical debridement and antibiotic. After a mean follow-up of 
32.5 months (14 to 49), five patients died of distant metastases. Three out of four patients 
with local recurrence had tumors at sacral region. Three of them were soft tissue tumor 
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recurrence. The mean functional MSTS score in patients with limb salvage surgery was 28.3 
(23 to 30). All patients (except one) with limb sparing surgery and prosthetic reconstruction 
could walk without aids.   
 

Fig. 6.  (A) A joint-saving, CAD custom prosthesis in Patient 16 with right distal femur 
parosteal osteosarcoma is shown. With navigation planning, multiplanar osteotomies at 
distal femur was possible to allow joint-saving intercalated resection. The intended resection 
preserved soft tissue attachment (femur condylar insertion of cruciate ligaments and lateral 
collateral ligaments insertion) to the distal remaining bone. It allowed sufficient blood 
supply to the small bone segment. (B) An antero-posterior view of plain radiograph at 
postoperative one year is shown. Bone formation was present at the bone-implant junctions. 
The distal bone segment was viable without evidence of osteonecrosis. (C) A specially 
designed custom prosthesis is shown 

4. Discussion 
CT and MRI are complementary preoperative imaging investigations for planning complex 
musculoskeletal bone tumors resection and reconstruction. Conventionally, tumor surgeons 
analyze 2-D imaging information, mentally integrate and formulate a 3-D surgical plan. 
Difficulties are anticipated with increase in case complexity and distorted surgical anatomy. 
Although computer-assisted surgery has been widely used in cranial biopsies and tumor 
resection, only small case series with early experience are recently reported in the field of 
musculoskeletal tumor surgery. By including more patients with longer follow-up period in 
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the study, we investigated the results of image fusion for CATS in musculoskeletal oncology 
with the help of a navigation system. 
 

 
Fig. 7. Postoperative CT images were merged with preoperative planning for (A) Patient 10, 
(B) Patient 15 and (C) Patient 14. The achieved position (yellow colour) of a custom 
prosthesis could be compared to that of planned (silver color). The comparable position 
between the achieved and planned suggested that CATS might improve the surgical 
accuracy of tumor resection and reconstruction with CAD custom prosthesis 
MRI based navigation has been described if fucidual markers for registration are implanted 
prior to MRI scanning (Kim JH et al., 2010). However, an additional operation for inserting 
markers is necessary. The operation is also difficult via a small wound access under local 
anaesthesia, in particularly if the involved bone is deep and covered by thick soft tissue.  
Our results showed that accurate image-to-patient registration of error < 1mm was feasible 
and reproducible in CT-based navigation. It was adopted for computer-assisted bone tumor 
surgery. Fusing multimodal images (CT / MR) could provide additional information 
besides bone information from CT images. 
A study had investigated the surgical accuracy of an experienced surgeon in performing a 
pelvic tumor resection with 1-cm surgical margin (Cartiaux O et al., 2008). Authors reported 
that the surgeon could achieve 1-cm surgical margin (±5mm) in a probability of only 52%. 
The difficult pelvic anatomy and its complex geometry might contribute to the inaccuracy. 
Our results showed that image fusion and CATS technique allowed better surgical planning, 
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improved intraoperative visualization and determination of intended resection. In this 
study, the registration error of < 1mm and the achieved resection comparable to planned 
resection suggested that surgeons should have a higher chance of reproducing their surgical 
plans and enhancing the accuracy of bone tumors surgery. This detailed and interactive 
image analysis is particularly helpful in difficult pelvic, sacral, or joint-saving bone tumor 
resections.  
Currently assessing resection margins intraoperatively is possible by means of frozen 
section. If it is positive, they can be regarded as a guide to additional resection.  When it is 
negative, they add no information about the distance from the tumor. Our results suggested 
that we could validate the clear margin and quantify the distance from the tumor 
boundaries by means of images navigation guidance following tumor resection at the 
surgery. 
Reports have described the use of computer navigation in joint-saving tumor resection (Cho 
HS et al., 2009; Wong KC et al., 2007; Wong KC et al., 2008). We also found that the CATS 
technique enabled us to perform accurate joint-saving tumor resection and precise fit of 
CAD custom prostheses for Patient 5, 7, 9, 14, 16, 20 which would not have been possible 
without an accurate guide to the plane of intended resection. In Patients 14, 16, intended 
resection was not restricted to an osteotomy along a single plane and multiplanar 
osteotomies were possible around bone tumors. It could maximally preserve the adjacent 
normal tissue for subsequent bony reconstruction but yet achieve adequate surgical margin. 
The technique therefore might facilitate an accurate fit of a CAD custom prosthesis to a 
skeletal defect with complex geometry. We believe that the technique with similar workflow 
is feasible for various types of allograft reconstruction in musculoskeletal tumor surgery 
(Muscolo DL et al., 2006). It has great potential for allograft selection in bone bank by CT-CT 
image fusion; transepiphyseal resection intercalary allograft reconstruction; or 
hemicondylar allograft reconstruction, etc.  
Although CAD/CAM software allows surgeons to perform virtual surgical simulation with 
the preoperative image data sets, it still relies on surgeons’ experience to implement the 
exact surgical planning at the time of surgery. The difficulty increases with complexity of 
cases. Commercially available surgical navigation systems only accept medical imaging data 
in DICOM format and do not offer complex surgical simulation on these data. On the other 
hand, CAD/CAM software can import medical imaging data in DICOM format for virtual 
manipulation. However, the surgical simulation in its proprietary format of the software is 
incompatible for direct use in surgical navigation system. We find that image fusion of both 
the original CT data sets and virtual surgical plan data sets (CAD format is back converted 
to DICOM format by MIMICS software) can enhance the capacity of surgical navigation in 
executing virtual surgical plans. For surgical planning of musculoskeletal tumors, image 
fusion of virtual CT data sets with custom prosthesis and original CT data sets allow 
accurate planning of resection planes and thus precise fitting of custom tumor prosthesis to 
the residual bone segment after tumor resection. Therefore, image fusion may enable 
surgeons to precisely execute complex virtual surgical simulation with any CT-based 
surgical navigation system at the time of actual surgery.  
Four patients developed local recurrence and three of them were located at sacral region in 
this study. The higher chance of recurrence in these patients might be explained by the fact 
that the nature of the tumor itself; they all had large soft tissue extraosseous tumor extension 
and two of them were operated as recurrent cases. Although CATS could help visualize and 
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plan the surgery, navigation by itself could only assist and guide the final bone resection at 
the surgery. Surgeons still adopted conventional technique in soft tissue. 
During navigation surgery, surgeons have to look at virtual preoperative images on the 
screen and cannot simultaneously look at the operative site and screen, which can be a 
source of surgical errors. Other potential sources of navigation errors may include 
displacement of patient’s dynamic reference tracker, changes of the operative anatomy in 
relation to the preoperative image data, incorrect calibration of navigation tools, surgeons’ 
perception inaccuracies or hand tremor, etc. Therefore, surgeons should have full 
understanding of the principles and possible errors of the computer technology, so to avoid 
misinterpretation of navigation information for their operations. Procedural and surgical 
skill training is necessary for optimal and correct use of the technique. 
Limitations of this study include patients with heterogeneous diagnosis, the lack of control 
subjects to make a comparative assessment of clinical results. The potential benefits of the 
CATS technique in improving surgical accuracy may not imply good clinical results in terms 
of better patients’ survival and reduced local recurrence. The small study size, 
nonrandomized and the early results may not allow us to confirm the value of using this 
technique, which requires additional financial investment and effort when compared to 
conventional technique. Without well conducted clinical trials with larger sample size, the 
utility of the CATS technique may not be realized. 

6. Conclusion 
Our study suggests Computer-Assisted Tumor Surgery (CATS) with image fusion offers 
advanced preoperative 3-D surgical planning and supports surgeons with precise 
intraoperative visualization and identification of intended resection for pelvic, sacral 
tumors. It enables surgeons to reliably perform joint sparing intercalated tumor resection 
and accurately fit CAD custom-made prostheses for the resulting skeletal defect. Long-term 
clinical studies and basic studies of navigation errors are necessary to confirm its value in 
musculoskeletal tumor surgery.  
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improved intraoperative visualization and determination of intended resection. In this 
study, the registration error of < 1mm and the achieved resection comparable to planned 
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resections.  
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section. If it is positive, they can be regarded as a guide to additional resection.  When it is 
negative, they add no information about the distance from the tumor. Our results suggested 
that we could validate the clear margin and quantify the distance from the tumor 
boundaries by means of images navigation guidance following tumor resection at the 
surgery. 
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exact surgical planning at the time of surgery. The difficulty increases with complexity of 
cases. Commercially available surgical navigation systems only accept medical imaging data 
in DICOM format and do not offer complex surgical simulation on these data. On the other 
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plan the surgery, navigation by itself could only assist and guide the final bone resection at 
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conventional technique. Without well conducted clinical trials with larger sample size, the 
utility of the CATS technique may not be realized. 

6. Conclusion 
Our study suggests Computer-Assisted Tumor Surgery (CATS) with image fusion offers 
advanced preoperative 3-D surgical planning and supports surgeons with precise 
intraoperative visualization and identification of intended resection for pelvic, sacral 
tumors. It enables surgeons to reliably perform joint sparing intercalated tumor resection 
and accurately fit CAD custom-made prostheses for the resulting skeletal defect. Long-term 
clinical studies and basic studies of navigation errors are necessary to confirm its value in 
musculoskeletal tumor surgery.  
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1. Introduction    
Medical image is the technique and process used to create images of the human body for 
medical science or clinical purposes, including medical medical procedures seeking to 
reveal, diagnose or examine disease. In the last 100 years, medical imaging technology has 
grown rapidly and drastically changed the medical profession. Now, physicians can use the 
images obtained by different medical imaging technologies to both diagnose and track the 
progress of illnesses and injuries. When 3D conformal radiotherapy planning (3D CRTP) is 
employed for tumor treatment, the relative position between the tumor and its adjacent 
tissues, should be obtained accurately. Generally, there are two main kinds of medical 
images which provide different information for diagnosis in 3D conformal radiotherapy 
planning (3D CRTP). They are “the anatomical images” and “the functional mages”. The 
anatomical images, such as Computerized Tomography(CT), depict clearly primarily 
morphology of human body through the abundant texture, yet it is not very sensitive to the 
cancer. The functional mages, such as Positron Emission Tomography (PET), depict 
primarily information on the metabolism of the underlying anatomy. Therefore, the relative 
position between the tumor and its adjacent tissues could be obtained easily through 
analyzing the medical data sets which are fused the information of functional mages and 
anatomical images. 
Many methods exist to perform image fusion. The very basic one is the high pass filtering 
technique. Later techniques are based on DWT, uniform rational filter bank, and so on. In 
this chapter, multimodal medical images are fused by applying wavelet transform with 
fusion rule of combining the local standard deviation and energy, which will be describe in 
detail in this chapter. Many documents presented a fusion method based on wavelet 
transform(Park J H et al., 2001), which is useful for image fusion. But the activity measure of 
the coefficients reflecting the significant information of multimodal medical images had not 
been considered in them. In clinic application, physicians are interested in the position signs 
of the tumor. The anatomical images depict clearly primarily morphology of human body 
through the abundant texture. So the local standard deviation is regarded as the activity 
measure of coefficients. Furthermore, the local energy reflects the absolute intensity of the 
signal change, and the large absolute intensity of the signal change reflect the obvious 
feature of the image. So the image feature is described in uniform by the local standard, 
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1. Introduction    
Medical image is the technique and process used to create images of the human body for 
medical science or clinical purposes, including medical medical procedures seeking to 
reveal, diagnose or examine disease. In the last 100 years, medical imaging technology has 
grown rapidly and drastically changed the medical profession. Now, physicians can use the 
images obtained by different medical imaging technologies to both diagnose and track the 
progress of illnesses and injuries. When 3D conformal radiotherapy planning (3D CRTP) is 
employed for tumor treatment, the relative position between the tumor and its adjacent 
tissues, should be obtained accurately. Generally, there are two main kinds of medical 
images which provide different information for diagnosis in 3D conformal radiotherapy 
planning (3D CRTP). They are “the anatomical images” and “the functional mages”. The 
anatomical images, such as Computerized Tomography(CT), depict clearly primarily 
morphology of human body through the abundant texture, yet it is not very sensitive to the 
cancer. The functional mages, such as Positron Emission Tomography (PET), depict 
primarily information on the metabolism of the underlying anatomy. Therefore, the relative 
position between the tumor and its adjacent tissues could be obtained easily through 
analyzing the medical data sets which are fused the information of functional mages and 
anatomical images. 
Many methods exist to perform image fusion. The very basic one is the high pass filtering 
technique. Later techniques are based on DWT, uniform rational filter bank, and so on. In 
this chapter, multimodal medical images are fused by applying wavelet transform with 
fusion rule of combining the local standard deviation and energy, which will be describe in 
detail in this chapter. Many documents presented a fusion method based on wavelet 
transform(Park J H et al., 2001), which is useful for image fusion. But the activity measure of 
the coefficients reflecting the significant information of multimodal medical images had not 
been considered in them. In clinic application, physicians are interested in the position signs 
of the tumor. The anatomical images depict clearly primarily morphology of human body 
through the abundant texture. So the local standard deviation is regarded as the activity 
measure of coefficients. Furthermore, the local energy reflects the absolute intensity of the 
signal change, and the large absolute intensity of the signal change reflect the obvious 
feature of the image. So the image feature is described in uniform by the local standard, 
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which reflects the definition. Therefore, the local standard deviation and energy standard 
are selected as the activity measure of the coefficients here. 
In computer vision, multi-sensor image fusion is the process of combining relevant 
information from two or more images into a single image. The resulting image will be more 
informative than any of the input images. For multimodal medical images, the important 
thing is the fusion of multimodal images, while the registration is the basis for image fusion.  
Given two image sets acquired from the same patient but at different times or with different 
devices, image registration is the process of finding a geometric transformation between the 
two respective image-based coordinate systems that maps a point in the first image set to 
the point in the second set that has the same patient-based coordinates, i.e. represents the 
same anatomic location(David M. et al., 2003). This notion presupposes that the anatomy is 
the same in the two image sets, an assumption that may not be precisely true if, for example, 
the patient has had a surgical resection between the two acquisitions. The situation becomes 
more complicated if two image sets that reflect different tissue characteristics [e.g. computed 
tomography (CT) and positron emission tomography (PET)] are to be registered. The idea 
can still be used that, if a candidate registration matches a set of similar features in the first 
image to a set of features in the second image that are also mutually similar, it is probably 
correct. For example, according to the principle of mutual information, homogeneous 
regions of the first image set should generally map into homogeneous regions in the second 
set(David M. et al., 2003). Usually there are several registration methods for different organs 
or tissues, such as rigid registration, affine registration and elastic registration(M.Betke et al., 
2003) (Maintz J.B.A. et al., 1998) (T. Blaffert et al., 2004). In clinical diagnosis, the application 
of registration methods are just a compromise among the calculation time, accuracy and 
robustness. Up to now, it is still a major challenge to develop a rapid and automatic 
registration method whose accuracy can reach to that of manual guided registration(David 
M. et al., 2003) (Stefan Klein et al., 2007). For the moving organs, non-rigid registration 
methods are needed because the position, size and shape of internal organs and tissues are 
affected by the involuntary and other physiological movements of patient. Among the non-
rigid registration methods, the Free-Form Deformation(FFD) method(Bardinet E et al., 1996) 
based on B-splines can control local deformation and change of the control points. For 
hierarchical B-splines is more smooth and accurate than the common B-splines, so good 
performance can be achieved if it is applied for floating image deformation(Lee Seungyong 
et al., 1997) (Ruechert D. et al., 1999) (Ino Fumihiko et al., 2005) (Zhiyong Xie et al., 2004). 
Thus, the presented automatic fine registration method is designed based on the hierarchical 
B-splines in this chapter. In 3D CRTP, the key problem for the non-rigid registration method 
of medical image is that it is a task of very time-consuming calculation process, which is 
unable to meet the clinical requirement to real-time process. In the mean time, the image 
data sets in 3D CRTP are so mass that it is very difficult to fuse the information of 
multimodal sequence images in real time. Thus some optimization measures should be 
taken. In this chapter, the FFD and maximum mutual information algorithm used in the 
presented registration method are both non-linear algorithms, so it can be taken as a multi-
objective nonlinear problem. Here, the gradient descent algorithm and maximum mutual 
information entropy criterion are used to accelerate the searching speed for FFD coefficients. 
Moreover, parallel computing(Yasuhiro K. et al., 2004) (S.K.Warfield et al., 1998) can 
potentially further increase matching and fusion efficiency, so the parallel matching and 
fusion technique based on high performance computation is used in this chapter.  
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From the aforementioned, in order to realize effectively and efficiently the automatic 
registration and fusion of multimodal medical images data, an image registration and fusion 
method in 3D CRTP is presented in detail in this chapter. This presented automatic 
registration method is based on hierarchical adaptive free-form deformation(FFD) algorithm 
and parallel computing, and the presented parallel multimodal medical image fusion 
method is based on wavelet transform with fusion rule of combining the local standard 
deviation and energy. This study demonstrates the superiority of the presented method. 

2. Algorithm description of multimodal medical image registration and fusion 
The steps of the presented algorithm are illustrated in Fig. 1, which can be described as 
follows: First given two image sets acquired from the same patient but at different times or 
with different devices, e.g. CT and PET. Then the ROI is extracted by using the C-V level 
sets algorithm, and feature points are matched automatically which is based on parallel 
computing method. Then, the global rough registration and automatic fine registration of 
the multimodal medical images is carried out by employing principal axes algorithm and a 
free-form deformation(FFD) method based on hierarchical B-splines. After the registration 
of multimodal images, their sequence images are fused by applying an image fusion method 
based on parallel computing and wavelet transform with the fusion rule of combining the 
local standard deviation and energy. 
 

 
Fig. 1. Flow chart of the presented rapid registration and fusion method of multimodal 
medical image 

3. Data preprocessing of medical images 
In 3D CRTP, before the step of registration and fusion, scan data from PET and CT should 
be normalized or pre-processed according to the requirements of the next fusion step. 
For the calculation of the fusion of PET and CT images, the standard uptake value(SUV) is 
frequently used for fluorodeoxyglucose(FDG) PET image to evaluate its uptake value 
quantitatively(S-C. Huang, 2000) (Aparna Kanakatte et al., 2007). In general, if there exists a 
tumor it will appear brighter than healthy cells in a PET image. This character is commonly 
used to identify healthy tissue from a tumor. Thus, the SUV is also named as the differential 
uptake ratio, or the differential absorption ratio, or the dose uptake ratio or the dose 
absorption ratio.  
In order to obtain the tissue activity in each point, /Bq cc , units as measured by the 
PET/CT scanner, the pixel data is rescaled by tags “Rescale Slope” and “Rescale Intercept” 
available from the dicom header. The SUV is a useful quantitative way comparing tumors 
across different patients. For the calculation of SUV, the body weight of a patient is 
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which reflects the definition. Therefore, the local standard deviation and energy standard 
are selected as the activity measure of the coefficients here. 
In computer vision, multi-sensor image fusion is the process of combining relevant 
information from two or more images into a single image. The resulting image will be more 
informative than any of the input images. For multimodal medical images, the important 
thing is the fusion of multimodal images, while the registration is the basis for image fusion.  
Given two image sets acquired from the same patient but at different times or with different 
devices, image registration is the process of finding a geometric transformation between the 
two respective image-based coordinate systems that maps a point in the first image set to 
the point in the second set that has the same patient-based coordinates, i.e. represents the 
same anatomic location(David M. et al., 2003). This notion presupposes that the anatomy is 
the same in the two image sets, an assumption that may not be precisely true if, for example, 
the patient has had a surgical resection between the two acquisitions. The situation becomes 
more complicated if two image sets that reflect different tissue characteristics [e.g. computed 
tomography (CT) and positron emission tomography (PET)] are to be registered. The idea 
can still be used that, if a candidate registration matches a set of similar features in the first 
image to a set of features in the second image that are also mutually similar, it is probably 
correct. For example, according to the principle of mutual information, homogeneous 
regions of the first image set should generally map into homogeneous regions in the second 
set(David M. et al., 2003). Usually there are several registration methods for different organs 
or tissues, such as rigid registration, affine registration and elastic registration(M.Betke et al., 
2003) (Maintz J.B.A. et al., 1998) (T. Blaffert et al., 2004). In clinical diagnosis, the application 
of registration methods are just a compromise among the calculation time, accuracy and 
robustness. Up to now, it is still a major challenge to develop a rapid and automatic 
registration method whose accuracy can reach to that of manual guided registration(David 
M. et al., 2003) (Stefan Klein et al., 2007). For the moving organs, non-rigid registration 
methods are needed because the position, size and shape of internal organs and tissues are 
affected by the involuntary and other physiological movements of patient. Among the non-
rigid registration methods, the Free-Form Deformation(FFD) method(Bardinet E et al., 1996) 
based on B-splines can control local deformation and change of the control points. For 
hierarchical B-splines is more smooth and accurate than the common B-splines, so good 
performance can be achieved if it is applied for floating image deformation(Lee Seungyong 
et al., 1997) (Ruechert D. et al., 1999) (Ino Fumihiko et al., 2005) (Zhiyong Xie et al., 2004). 
Thus, the presented automatic fine registration method is designed based on the hierarchical 
B-splines in this chapter. In 3D CRTP, the key problem for the non-rigid registration method 
of medical image is that it is a task of very time-consuming calculation process, which is 
unable to meet the clinical requirement to real-time process. In the mean time, the image 
data sets in 3D CRTP are so mass that it is very difficult to fuse the information of 
multimodal sequence images in real time. Thus some optimization measures should be 
taken. In this chapter, the FFD and maximum mutual information algorithm used in the 
presented registration method are both non-linear algorithms, so it can be taken as a multi-
objective nonlinear problem. Here, the gradient descent algorithm and maximum mutual 
information entropy criterion are used to accelerate the searching speed for FFD coefficients. 
Moreover, parallel computing(Yasuhiro K. et al., 2004) (S.K.Warfield et al., 1998) can 
potentially further increase matching and fusion efficiency, so the parallel matching and 
fusion technique based on high performance computation is used in this chapter.  
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From the aforementioned, in order to realize effectively and efficiently the automatic 
registration and fusion of multimodal medical images data, an image registration and fusion 
method in 3D CRTP is presented in detail in this chapter. This presented automatic 
registration method is based on hierarchical adaptive free-form deformation(FFD) algorithm 
and parallel computing, and the presented parallel multimodal medical image fusion 
method is based on wavelet transform with fusion rule of combining the local standard 
deviation and energy. This study demonstrates the superiority of the presented method. 

2. Algorithm description of multimodal medical image registration and fusion 
The steps of the presented algorithm are illustrated in Fig. 1, which can be described as 
follows: First given two image sets acquired from the same patient but at different times or 
with different devices, e.g. CT and PET. Then the ROI is extracted by using the C-V level 
sets algorithm, and feature points are matched automatically which is based on parallel 
computing method. Then, the global rough registration and automatic fine registration of 
the multimodal medical images is carried out by employing principal axes algorithm and a 
free-form deformation(FFD) method based on hierarchical B-splines. After the registration 
of multimodal images, their sequence images are fused by applying an image fusion method 
based on parallel computing and wavelet transform with the fusion rule of combining the 
local standard deviation and energy. 
 

 
Fig. 1. Flow chart of the presented rapid registration and fusion method of multimodal 
medical image 
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available from the dicom header. The SUV is a useful quantitative way comparing tumors 
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commonly used, sometimes, physicians prefer to use body surface or lean body mass 
instead. The SUV for each voxel is calculated assuming 1 1cc g= and applying Eq.(1). 

 YWSUV
D

=  (1) 

where W is the patient weight in kg ; D  is the injected dose at scan start ( Bq ); Y  is the 
activity whose concentration in /Bq cc  is calculated from Eq.(2).  

 Y ax b= +  (2) 

where x  is the original pixel intensity value, a  is the rescale slope and b  is the rescale 
intercept for each image slice of the PET scan. 
According to Aparna(Aparna Kanakatte et al., 2007), the higher the SUV is, the more 
aggressive the tumor is. The SUV is also used to distinguish the malignant tumor and 
benign tumor. An SUV of 2.5 is often considered as the threshold to distinguish benign and 
malignancy, however, the threshold value varies for different body organs, and if taking the 
breathing movement in account, the SUV will increase. 

4. Registration of multimodal medical images 
4.1 Flow chart for image registration 
The presented image registration method applying adaptive FFD which is based on 
hierarchical B-splines algorithm is shown as Fig.2. 
 

 
Fig. 2. Flow chart for image registration method applying adaptive FFD 
The registration for medical images is a big challenge, this is because the position, size and 
shape of internal organs and tissues are affected by involuntary physiological movements 
and  patient’ motion when scanning, where various deformations are existent in the mean 
time, for example, the rigid motion of human body, the local elastic deformations of organs 
in motion. This will require the registration method be done about the global deformation at 
first, and then fine adjusting is conducted about local elastic deformation. Thus, registration 
process can be divided into two sub-process: one is the global rigid deformation by 
adopting principal axes algorithm, the other is the local elastic deformation by adopting 
adaptive FFD based on B-splines. 
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4.2 Measure of similarity for multimodal medical images 
The mutual information[17,18] of multimodal medical images is taken as similarity index for 
registration, which is essentially the expression about the statistical characteristic of gray 
information between two images. An objective function can be used to define the similarity 
measure between the reference image and floating image. 
Suppose the gray intensity of reference image is RI , while that of the floating image is FI , 
the information entropy for RI  is ( )RH I , it is ( )FH I  for FI . Let ( ),R FH I I  denote the 
combined information entropy of RI  and FI , then the mutual information of two images is 
defined as follows: 

 ( ) ( ) ( ) ( ), ,R F R F R FMI I I H I H I H I I= + −  (3) 

When two images are strictly matched, ( ),R FMI I I  will be the maximum. For the 
registration of the multimodal medical images although the two images, i.e. CT and PET 
images, usually come from different imaging equipments, both of them are produced from 
the same organ of the same patient. So when the spatial positions of two images are strictly 
uniform,  ( ),R FMI I I  reaches its peak value. 
Studholme(Studholme C et al., 1999) found that the value of mutual information has some 
relevance which is subject to the overlap degree of two images to be matched. According to 
Studholme(Studholme C et al., 1999), in order to eliminate the effect resulted from the 
relevance, the mutual information is standardized as Eq.(4). The results of experiments 
show that it is more robust than Eq.(3). 

 ( ) ( )( , )
( , )

R F
R F

R F

H I H IMI I I
H I I

+
=  (4) 

4.3 Automatic matching of feature points 
4.3.1 Automatic matching of feature point 
The imaging principle of CT image tells that it reflects the detailed information about 
anatomical structure, while PET image denotes the functional information. Because the 
resolution of CT is higher than that of PET image, in order to realize the registration of two 
modals images, the PET image should be deformed to match the CT image, thus the CT 
image is defined as reference image, and the PET image is taken as floating image. 
The main work for automatic fine registration by the FFD based on hierarchical B-splines is 
to find out some suitable feature points, which contain the points of ROI and the internal 
distribution points. For example, for the thorax, the thorax-wall is regarded as a rigid body 
due to its little deformation, while other organs in thorax such as heart and lung are always 
in the state of motion, so they are taken as non-rigid bodies. For current PET/CT scanning, 
the CT and PET scanning are carried out in sequence actually, not in the same time, in 
addition, the time for PET scanning is much longer than that of CT, thus it may lead to the 
difference of shapes from the PET and CT images in the same layer. For the thorax-wall is a 
rigid body, thus, the points on contour lines of thorax are taken as the feature points, while 
organs such as heart and lung, are always in motion, so internal distribution points can be 
randomly selected as feature points. On the other side, how to match the brighter 
ROI(region of interesting) of PET image with the corresponding ROI of CT image is an 
important task in multimodal medical image registration. 
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So, the operation of automatic matching of feature points is as follows, which is shown as 
Fig.3.  Step 1. Shown as Fig.3(a), first the ROI with larger SUV, such as the pixel “F” of 
Fig.3(a), is selected from PET images by using the C-V level sets algorithm; then the 
corresponding feature points, such as the corresponding feature point “F’ ” of  “F’, are 
searched from CT images by using the mutual information as similarity measure.  Step 
2. Shown as Fig.3(b), the ROI, such the point “B”, should be first extracted from the CT 
images, this can be done by using the C-V level sets algorithm. Then the corresponding 
feature points on the PET image, such the corresponding feature point “B’ ” of “B”, are 
searched by employing the maximum mutual information algorithm.  Step 3. Shown as 
Fig.3(c), internal distribution points are randomly selected on the internal edge. And all of 
the feature points are matched automatically which is based on parallel computing 
method. Thus automatic matching of the initial feature points are realized, and the local 
deformation adjustment will be done according to the follow-up gradient descent 
coefficients correction. 
  

  
(a) step 1 

  
(b) step 2 

  
(c) step 3 

Fig. 3. Illustration of automatic matching of feature points 
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4.3.2 ROI extraction based on improved C-V level sets method 
Traditional Snake active contour modal shows some weaknesses: 1) the contour generated 
by initialization usually should be very near the real boundary, otherwise it will result in 
erroneous results; 2) the active contour is difficult to enter into concave domain. 
Chan and Vese presented the C-V level set method based on optimal technique of curve 
evolution(Chan T F et al., 2001), simple Mumford-Shad Function, in which the image 
segmentation problem is connected with the optimization of Mumford-Shad Function, so 
that the efficiency and robustness of image segmentation are improved.  
In this chapter, ROI, including the organ contour and the focus region, is extracted by the 
improved C-V level set method. The improved C-V level set method is based on a region-
based active contour model, which avoids expensive re-initialization of the evolving level 
set function.  
The partial differential equations(PDE) defined by level set function φ  is: 

 2 2
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where, ( )εδ φ  is slightly regularized versions of Dirac  measure ( )δ φ ; 1 2, , ,μ ν λ λ  represents 
the weight of the corresponding energy term, respectively; 0I  is the object region; 1 2,c c  is 
the average intensity value inside and outside contour. 
The procedure for ROI extraction using the improved C-V level set method are as follows: 
1. Initialize level set function nφ  by 0φ , 0n = . 
2. The initial curve is set, and the SDF(signed distance function) is also set according to the 

shortest distance between the point and curve, in which the value of SDF is positive 
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4. Solve the PDE in level set function φ  iteratively. The iterative 1nφ +  is computed by 
putting the global and local region value into Eq.(5). 

5. Check whether the solution is stationary. If not, 1n n= +  and repeat. 

4.3.3 Auto-matching method of feature points based on parallel computing 
It is well known that the process of feature-points matching accounts for the most runtime 
of all the registration process, that is, the feature-point-matching process is the main factor 
which influences the efficiency of non-rigid registration process. 
Feature points are signed in CT image, then their corresponding feature points are found 
from PET image. The matching process of feature points, which uses local searching strategy 
as said in section 4.3.1, will cost much time. In the matching process of feature points, the 
step of searching and matching of each feature point is independent, so the matching of 
feature points is processed by the method of parallel computing. Parallel computing can 
potentially further increase matching efficiency, in order to implement efficiently the 
registration of multi-model medical images data, the parallel matching technique based on 
high performance computation is used in this chapter. The cluster computing system is very 
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feature points is processed by the method of parallel computing. Parallel computing can 
potentially further increase matching efficiency, in order to implement efficiently the 
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high performance computation is used in this chapter. The cluster computing system is very 
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inexpensive and powerful for high-performance computing. It interconnects general-
propose computers, such as workstation and PC, together to form a powerful computing 
platform through the rapid ethernet and the message-passing project, such as MPI(Message-
Passing Interface) /PVM(Parallel Virtual Machine). In this chapter, the cluster computing 
system is designed to perform with MPI high performance computation-parallel image 
matching algorithm. 
The parallel task partition strategies are a tradeoff between the communication cost and 
load balancing[13]. Here, the task partition could be implemented by domain 
decomposition. The followings are the steps of the parallel algorithm: 
1. The management process broadcasts all of the data, including CT-PET image data and 

position of feature points in CT, to be processed to all the processes of the 
communication domain. 

2. Each process computes the assigned start number, end number and amount of the 
processed feature points according to the process index.  

3. The assigned feature points are matched independently in each process in turn, which 
is according to section 4.3.1.  

4. The result is sent to the management process. And the management process receives 
and saves all the result. 

4.4 Global rigid deformation based on principal axes algorithm 
The global rough registration for rigid deformation is realized by adopting principal axes 
algorithm(Louis K A et al., 1995) in this chapter. First, the corresponding feature points of 
PET and CT images are  searched by using the method presented in section 4.3, respectively. 
And then the centroids of two image contours are calculated, and the centroid of PET image 
couture is adjusted to adapt to that of CT image. 

4.5 Local fine registration based B-splines adaptive FFD 
When only considering local information for image registration, image deformation will be 
resulted, in the mean time, if elastic deformation is directly employed for image registration, 
it may result in mismatch. So the local elastic deformation is realized by applying the 
adaptive FFD based on hierarchical B-splines method. The flow chart is shown as Fig.4. 

4.5.1 Registration based on B-splines FFD method 
The principle of the FFD method(Huang Xiaolei et al., 2006) is that the object shape is 
changed and controlled through controlling the control points of control framework. The 
control framework and a group of basis functions constitute an entity which are some 
Bernstein polynomials. For B-spline only affects local deformation, so, when some of the 
feature points of a two-dimensional image are moved only the vicinal points are affected, 
not all the points in the image are deformed, so cubic B-splines tensor product of two 
variables is adopted as the FFD deformation function. 
Let Π  be a two-dimension image in x y−  plane. Suppose ( , )p u v= is a point on image Π , 
where 1 u m≤ ≤ , 1 v n≤ ≤ . When some deformation of image Π  is generated , its shape can 
be represented by a vector function h( ) ( ( ), ( ))p x p y p= . Let Ψ is a control point grid of 
( 3) ( 3)m n+ × +  covering on Π . Suppose IJψ  expresses the position coordinate ( ,I J ) in Ψ . 
Shape function h can be represented by IJψ  which is shown in Fig.5. 

Multimodal Medical Image Registration  
and Fusion in 3D Conformal Radiotherapy Treatment Planning   

 

399 

 
3 3

( )( )
0 0

h( , ) ( ) ( )k l I k J l
k l

u v B s B t ψ + +
= =

= ∑∑  (6) 

Where, 

1
2

uI
m
⎢ ⎥= −⎢ ⎥+⎣ ⎦

, 1
2

vJ
n
⎢ ⎥= −⎢ ⎥+⎣ ⎦

,
2 2

u us
m m

⎢ ⎥= − ⎢ ⎥+ +⎣ ⎦
,

2 2
v vt

n n
⎢ ⎥= − ⎢ ⎥+ +⎣ ⎦

.  

( )kB s  and ( )lB t  are the uniform cubic B-spline basis function of vectors s and t , 
respectively. For ( )lB t  it can be described as follows: 

 

3 2
0

3 2
1

3 2
2

3
3

( ) ( 3 3 1) /6

( ) (3 6 4) /6

( ) ( 3 3 3 1) /6

( ) /6

B t t t t

B t t t

B t t t t

B t t

= − + − +

= + +

= − + + +

=

  (7) 

where 0 1t≤ ≤ . 
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Fig. 4. Local fine registration using a free-form deformation(FFD) based on hierarchical       
B-splines 
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The expression for ( )kB s  is the same as for ( )lB t . 
 

 
Fig. 4. Local fine registration using a free-form deformation(FFD) based on hierarchical       
B-splines 
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Fig. 5. Initial position of original image and control point lattice 

4.5.2 Reverse mapping - elimination of the hole phenomenon 
In the registration process, the image to be processed should be deformed to form a new 
image. In doing so, there are two kinds of methods to be selected: forward mapping and 
reverse mapping. For forward mapping, it is required that every pixel from input image 
should be mapped to output image through transformation function, which is difficult to 
guarantee that all the points are mapped, i.e., sometimes, some points may be omitted. 
When such case happens, it is called hole phenomenon. On the contrary, the reverse 
mapping method can enable each pixel in output image to find its corresponding point in 
input image, in doing so, there is no hole phenomenon to happen. In this chapter, the 
registration function is established based on the feature points of floating image, each pixel 
of the image to be matched is input to the registration transformation function, then the 
corresponding position of the reference image is obtained. Thus it can eliminate hole 
phenomenon. 

4.5.3 Fine registration of multimodal medical image 
For the position, size and shape of internal organs and tissues are affected by involuntary 
physiological movements or motions of patient, this will lead to elastic deformation in the 
local position of organs. However, due to the local deformation of medical image based on 
local information, so it is easy to result in mismatch if executing elastic deformation directly. 
To solve such problem, B-spline function can be selected to generates a smooth curve(or 
smooth plane) to approximate the control point. By comprehensively considering the 
accuracy of fitting function, the deformation smoothness, the calculation complexity and 
registration accuracy, an automatic fine registration of multimodal medical images based on 
hierarchical B-splines adaptive FFD is presented in this chapter. Flow chart is shown as 
Fig.4. 

4.5.4 Implementation of fast FFD registration 
In the registration process, the image to be processed should be deformed to form a new 
image. In doing so, there are two kinds of methods to be selected: forward mapping and 
reverse mapping. For forward mapping, it is required that every pixel from input image 
should be mapped to output image through transformation function, which is difficult to 
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guarantee that all the points are mapped, i.e., sometimes, some points may be omitted. 
When such case happens, it is called hole phenomenon. On the contrary, the reverse 
mapping method can enable each pixel in output image to find its corresponding point in 
input image, in doing so, there is no hole phenomenon to happen. In this chapter, the 
registration function is established based on the feature points of floating image, each pixel 
of the image to be matched is input to the registration transformation function, then the 
corresponding position of the reference image is obtained. Thus it can eliminate hole 
phenomenon.It is well known that medical image registration is a very time-consuming 
task, which limits the clinical applications of such method to some degree. In order to 
overcome such shortcoming, some optimization measures can be taken to improve it. On 
this aim, a new registration method combining the FFD algorithm and maximum mutual 
information is presented, in which the optimization problem can be regarded as a nonlinear 
programming problem. This chapter adopts gradient descent method to implement fast FFD 
local fine registration, in which step adjusting is adapted based on maximization of mutual 
information. 
The mutual information is taken as the cost function for the presented medical image 
registration method, then a global optimal solution is arg min ( )C∗

ΘΘ = Θ . In this research, 
the gradient descent method is used to solve the extreme value of coefficient matrix Θ . 
Although only the local extrema can be obtained by using the presented method, whose 
operation speed is much faster than the traditional ones, and due to the smoothness 
constraint, this method can overcome the problem of local extrema effectively in calculation 
process of deformation field. 
The calculation process for this method is already described in Fig 3. Here some additional  
explanations are given as follows: 
1. Gradient computation 

The gradient of cost function C is shown as follows: 

 ( , )l

l
CC ∂ Θ Φ

∇ =
∂Φ

 (8) 

where lΦ  is the control grid coordinate of the l -th layer, Θ is deformation coefficient. 
Here, the maximum mutual information entropy is taken as the cost function C , and its 
gradient at the point ( , )u v  is a vector that can be simplified as: 

 | ( , ) ( 1, )| | ( , ) ( , 1)|C f u v f u v f u v f u v∇ = − − + − −  (9) 

2. Correction of deformation coefficient 
In the algorithm, the maximum mutual information entropy is taken as registration 
measure to test whether the pre-set error is achieved or not. If not achieved, the 
deformation coefficients should be corrected. The iterative algorithm for control points 
is shown as follows: 

 ( 1) ( )

|| ||
t t

i i
i

C
C

μ+ ∇
Φ = Φ −  (10) 

where Ci I∈ , CI is the grid spatial image after deformation, t is iterative number, μ is 
iterative step. 
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5. Fusion of multimodal medical image 
5.1 Image fusion based on wavelet transform 
After the registration of CT and PET images, their sequence images are fused by applying a 
image fusion method based on parallel computing and wavelet transform with the fusion 
rule of combining the local standard deviation and energy. The followings are the steps of 
the fusion algorithm: 
Step 1. The CT and PET images are encoded by a 3-level wavelet decomposition with 

Daubechies 9/7 biorthogonal wavelet filter banks.  
Step 2. Compute the average value of wavelet coefficients ( , )CTD i j / ( , )PETD i j  of the CT 

and PET images.  
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Where (i, j) denotes the position of the center of the current window; k denotes the 
level of wavelet decomposition ( 1,2,3k = ); l denotes frequency band; (s, t) denotes 
the position in the current window; ω(s, t) denotes the weight of the coefficient in (s, 
t), and the further away from the center it is, the less the weight 
becomes; ( )

,
, 1

s S t T
s tω

∈ ∈
=∑ , where S and T denote the norm of the current window. 

Step 3. CT and PET images are fused based on wavelet transform by employing fusion rule 
of combining the local standard deviation and energy. 
In clinic application, physicians are interested in the position signs of the tumor. 
The anatomical images depict clearly primarily morphology of human body 
through the abundant texture. Therefore, the selected activity measure should 
reflect the texture pattern of the image. Each pixel value in a smooth region of a 
image is nearly equal, yet it changes severely in a rough region. So the local 
standard deviation is regarded as the activity measure of coefficients. Furthermore, 
the local energy reflects the absolute intensity of the signal change, and the large 
absolute intensity of the signal change reflect the obvious feature of the image. So 
the image feature is described in uniform by the local standard, which reflects the 
definition. Therefore, the local standard deviation and energy standard are selected 
as the activity measure of the coefficients.  

 Let XA  denote the activity measure based on local standard deviation. 
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Let CTδ  and PETδ  denote the weight that the activity measure based on local 
standard deviation assigned to CT and PET, respectively. 
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Where α  is a adjustable parameter. When 0α > , the higher activity measure is, the 
more it weights. Here, let α equal to 1.8。 

Let XB  denote the activity measure based on local energy. 
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Let CTδ  and PETδ  denote the weight that the activity measure based on local energy 
assigned to CT and PET, respectively. 
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After combining the local standard deviation and energy, wavelet coefficients of 
fused image FD  is 

 
( ) ( ) ( )

( ) ( )
, , ,

, ,

F CT CT PET PET

CT CT PET PET

D i j D i j D i j

D i j D i j

δ δ λ

ε ε μ

⎡ ⎤= + ×⎣ ⎦
⎡ ⎤+ + ×⎣ ⎦

 (16) 

Where, λ , μ  are adjustable parameters, 1λ μ+ = . The image intensity gets 
stronger as μ increases; and the edge of intensity get sharper as λ  increases, thus 
the blur of the edge is avoided as possible as we can if λ / μ  is adjusted suitably.  

Step 4. The approximate coefficients CT
JC  and PET

JC  through wavelet transform of CT and 
PET image are processed. ˆ F

JC  is computed by formula 21: 

 ˆ ( ) / 2F CT PET
J J JC C C= +  (17) 

Step 5. The fused image F is gotten by wavelet inverse transform using all of the wavelet 
coefficients FD  and the approximate coefficients. 

and saves all the result. 

5.2 Parallel image fusion 
5.2.1 Necessity of parallel image fusion 
In image fusion, it becomes more computationally expensive as the image data and its level 
of wavelet decomposition increase. Because parallel computing can potentially further 
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Where, λ , μ  are adjustable parameters, 1λ μ+ = . The image intensity gets 
stronger as μ increases; and the edge of intensity get sharper as λ  increases, thus 
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Step 5. The fused image F is gotten by wavelet inverse transform using all of the wavelet 
coefficients FD  and the approximate coefficients. 

and saves all the result. 

5.2 Parallel image fusion 
5.2.1 Necessity of parallel image fusion 
In image fusion, it becomes more computationally expensive as the image data and its level 
of wavelet decomposition increase. Because parallel computing can potentially further 
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increase fusion efficiency, the parallel image fusion technique based on high performance 
computation is used in this chapter. As said in section 4.3.3, the cluster computing system is 
very inexpensive and powerful for high-performance computing. In order to implement 
effectively and efficiently the fusion of mass multimodal medical images data, a parallel 
multimodal medical image fusion method based on wavelet transform is presented. In this 
chapter, the cluster computing system is designed to perform with MPI high performance 
computation-parallel image fusion algorithm based on wavelet transform. 

5.2.2 Implement of parallel image fusion based on wavelet transform 
In image fusion, it becomes more computationally expensive as the image data and its level 
of wavelet decomposition increase. Because parallel computing can potentially further 
increase fusion efficiency, the parallel image fusion technique based on high performance 
computation is used in this chapter. As said in section 4.3.3, the cluster computing system is 
very inexpensive and powerful for high-performance computing. In order to implement 
effectively and efficiently the fusion of mass multimodal medical images data, a parallel 
multimodal medical image fusion method based on wavelet transform is presented. In this 
chapter, the cluster computing system is designed to perform with MPI high performance 
computation-parallel image fusion algorithm based on wavelet transform. 
Partitioning divides the problem into parts, which is the basis of all parallel programming. 
Partitioning can be applied to the programming data. This is called data partitioning or 
domain decomposition. The parallel task partition strategies are a tradeoff between the 
communication cost and load balancing. When an image is encoded or decoded by a M-
level wavelet transform or inverse decomposition, the processed wavelet coefficients of each 
level are the input of the next level, so the processions between two adjacent levels are of 
strong correlation. But it is of high parallelism for each level to implement 1D wavelet 
transform/inverse decomposition row by row or column by column. Moreover, the result 
after implementing 1D wavelet transform/inverse decomposition is used for the next level 
wavelet transform. So when the sub-image is encoded by wavelet transform, the task 
partition could be implemented by domain decomposition. The followings are the steps of 
the parallel algorithm: 
1. The management process broadcasts all of the data to be processed to all the processes 

of the communication domain. 
2. The assigned rows of data are encoded/decoded by 1D wavelet transform/inverse 

decomposition in each of the processes, then the result is sent to the management 
process. 

3. The management process broadcasts all of the data processed to all of the processes of 
communication domain. 

4. The assigned columns of data are encoded/decoded by 1D wavelet transform/inverse 
decomposition in each of the processes, then the result is sent to the management 
process. 

5. Repeat step 1-4, until M-level wavelet transform/inverse decomposition is finished. 
From the above steps, a conclusion could be drawn that there are several times of data 
communication in each of M-level wavelet transform/inverse decomposition, so that the 
parallel efficiency is very low because the communication cost is relatively expensive, 
especially for the image data in miniature. Therefore, in parallel image fusion of medical 
sequence images, domain decomposition is applied. All the processes are processed in 
parallel, however in each process images are fused sequentially.  
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Multimodal medical sequence images are fused in 3D CRTP. The steps of the algorithm of 
parallel image fusion of medical sequence images are illustrated in Fig.6. 
 

MPI_Init

Get the process index id;  Register the processes of the  communication
domain MPI_COMM_WORLD

Check the parameters number of No.0  process

Process 0(The management process):  Register the number of the
images to be fused/ the path of  CT/PET; Broadcast the number to all of

the communication domain

Each process: Compute the number of the images to be processed

Process 0(The management process ):    Send the CT/PET image/ the
storing path of fusion image to  the corresponding  processes.

Process NON-0:  Receive the data sent by Process 0.

Each process in communication domain: The images assigned are
fused, then save the results.

MPI_Finalize

N

Y

 
Fig. 6. The flowchart of parallel sequence images fusion 

6. Experimental results in 3D conformal radiotherapy treatment planning 
In this chapter, a cluster computing system is developed, whose configurations consist of: 

Operation system: Windows Server 2003; Network card: 100M b/s Realtek RTL8139 
Family PCI Fast Ethernet NIC; Parallel software package: MPICH 2-1.0.5p2-win32;  
Node configurations: processor Intel Pentium 4, CPU 3.0GHz/ 1.00GB RAM; display card, 
NVIDIA Quadro FX 1400.  compiler: Visual C++6.0, the programming language is C++. 

6.1 Effect evaluation for medical image registration and fusion 
6.1.1 Effect evaluation for registration method 
The presented image registration method applying adaptive FFD which is based on 
hierarchical B-splines algorithm is shown as Fig.2.The original images CT(512×512) and 
PET(128×128), which come from the thorax image sequences, are shown as Figs 7 and 8, 
respectively. Fig.9 is the processing result of feature points based on parallel computing and 
ROI extraction by applying the C-V level sets method. The edge curve in Fig.9(a) is the 
result by applying the edge extraction method of C-V level sets, the regular points in the 
middle are the selected feature points with 8 interval pixels; the points of Fig.9(b) are the 
corresponding feature points of Fig.9(a). Fig.10 is the global rough registration result using 
the principle axes algorithm. Fig.11 is the result of local fine registration of Fig.10 by 
adopting the presented registration algorithm based on hierarchical B-splines adaptive FFD. 
Fig.12 shows the data field change pre and post registration. 
The effective evaluation for registration method, especially for multimodal medical image is 
always very difficult. Due to multi-images to be matched are obtained at different time or 
under different conditions, it is difficult to find a common standardized criteria for the 
evaluation of the registration method. Usually the following factors are chosen to evaluate 
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increase fusion efficiency, the parallel image fusion technique based on high performance 
computation is used in this chapter. As said in section 4.3.3, the cluster computing system is 
very inexpensive and powerful for high-performance computing. In order to implement 
effectively and efficiently the fusion of mass multimodal medical images data, a parallel 
multimodal medical image fusion method based on wavelet transform is presented. In this 
chapter, the cluster computing system is designed to perform with MPI high performance 
computation-parallel image fusion algorithm based on wavelet transform. 
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chapter, the cluster computing system is designed to perform with MPI high performance 
computation-parallel image fusion algorithm based on wavelet transform. 
Partitioning divides the problem into parts, which is the basis of all parallel programming. 
Partitioning can be applied to the programming data. This is called data partitioning or 
domain decomposition. The parallel task partition strategies are a tradeoff between the 
communication cost and load balancing. When an image is encoded or decoded by a M-
level wavelet transform or inverse decomposition, the processed wavelet coefficients of each 
level are the input of the next level, so the processions between two adjacent levels are of 
strong correlation. But it is of high parallelism for each level to implement 1D wavelet 
transform/inverse decomposition row by row or column by column. Moreover, the result 
after implementing 1D wavelet transform/inverse decomposition is used for the next level 
wavelet transform. So when the sub-image is encoded by wavelet transform, the task 
partition could be implemented by domain decomposition. The followings are the steps of 
the parallel algorithm: 
1. The management process broadcasts all of the data to be processed to all the processes 

of the communication domain. 
2. The assigned rows of data are encoded/decoded by 1D wavelet transform/inverse 

decomposition in each of the processes, then the result is sent to the management 
process. 

3. The management process broadcasts all of the data processed to all of the processes of 
communication domain. 

4. The assigned columns of data are encoded/decoded by 1D wavelet transform/inverse 
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sequence images, domain decomposition is applied. All the processes are processed in 
parallel, however in each process images are fused sequentially.  
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Multimodal medical sequence images are fused in 3D CRTP. The steps of the algorithm of 
parallel image fusion of medical sequence images are illustrated in Fig.6. 
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N
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Fig. 6. The flowchart of parallel sequence images fusion 

6. Experimental results in 3D conformal radiotherapy treatment planning 
In this chapter, a cluster computing system is developed, whose configurations consist of: 

Operation system: Windows Server 2003; Network card: 100M b/s Realtek RTL8139 
Family PCI Fast Ethernet NIC; Parallel software package: MPICH 2-1.0.5p2-win32;  
Node configurations: processor Intel Pentium 4, CPU 3.0GHz/ 1.00GB RAM; display card, 
NVIDIA Quadro FX 1400.  compiler: Visual C++6.0, the programming language is C++. 

6.1 Effect evaluation for medical image registration and fusion 
6.1.1 Effect evaluation for registration method 
The presented image registration method applying adaptive FFD which is based on 
hierarchical B-splines algorithm is shown as Fig.2.The original images CT(512×512) and 
PET(128×128), which come from the thorax image sequences, are shown as Figs 7 and 8, 
respectively. Fig.9 is the processing result of feature points based on parallel computing and 
ROI extraction by applying the C-V level sets method. The edge curve in Fig.9(a) is the 
result by applying the edge extraction method of C-V level sets, the regular points in the 
middle are the selected feature points with 8 interval pixels; the points of Fig.9(b) are the 
corresponding feature points of Fig.9(a). Fig.10 is the global rough registration result using 
the principle axes algorithm. Fig.11 is the result of local fine registration of Fig.10 by 
adopting the presented registration algorithm based on hierarchical B-splines adaptive FFD. 
Fig.12 shows the data field change pre and post registration. 
The effective evaluation for registration method, especially for multimodal medical image is 
always very difficult. Due to multi-images to be matched are obtained at different time or 
under different conditions, it is difficult to find a common standardized criteria for the 
evaluation of the registration method. Usually the following factors are chosen to evaluate 
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the image registration method, for example, registration speed, robustness, registration 
precision, etc.. For medical image registration, the registration effect should be first 
considered. The common evaluation methods mainly are phantom, criteria and visual 
method.  
 

 
Fig. 7. CT image(reference image) 
 

 
Fig. 8. PET image(floating image) 
 

             
(a) CT image                              (b) PET image 

Fig. 9. Feature points matched based on parallel computing and ROI extraction by the C-V 
level sets method 

 
Fig. 10. Global coarse registration by PAA 
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Fig. 11. Local fine registration image by FFD based on hierarchical B-splines method 
 

 

           
                                      (a) Original data set         (b) data set after transformation 

Fig. 12. Data set change pre and post registration 

The quantitative evaluation method based on image statistical characteristics is adopted in 
this chapter. including Maximum Information entropy(MI), Root Mean Square error(RMS 
error), Correlation Coefficient(CC). They can give a quantitative assessment index for 
registration algorithm. Generally speaking, the statistical characteristic method is currently 
an objective and practical evaluation method. 
Suppose there are two images 1 2,I I , the size of image is M N× , then the RMS  is defined 
as follows: 
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If the RMS  value becomes smaller, it indicates the difference between two images is small, 
it proves the registration effect is better. Here, the statistical characteristic CC  is employed 
as the  evaluation criteria: for registration effect 
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where, 1I and 2I are the average gray values of two images: 
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. The CC value ranges from 0 to 1, when there is no any correlation 

between two images, the value is 0; vice versa, if two images are completely matched, 
CC tends to 1, meaning a very ideal situation. As a matter of fact,, the value of CC often is 
very small, especially for multimodal medical image registration.  
The quantitative evaluation results for each registration method are shown in Table.1. The 
MI, RMS, and CC are used to evaluate each registration method, by analyzing the 
qualitative indexes for each method, it can be concluded that the presented registration 
algorithm is better than other traditional methods. 
 

 
Table 1. Comparisons among different registration methods 

6.1.2 Effect evaluation for fusion method 
In the experiment, CT slices(512*512*267) and PET(128*128*267) are from a male lung-cancer 
person. CT and PET sequence images are fused by applying the presented parallel 
multimodal medical image fusion method based on wavelet transform with fusion rule of 
combining the local standard deviation and energy. Results are shown as Fig.13, in which 
Fig.13(a) is No.183 CT slice of sequence images, Fig.13(b) is No.183 PET slice, Fig.13(c) is the 
corresponding matched result of Fig.13(a) and Fig.13(b) by using the presented registration 
method, and Fig.13(d) is the corresponding fusion image of them. There is some nodular 
shadows in basel segment of the lower lobe of left lung by viewing the CT slice. And there is 
a bright spot in the middle of the PET slice, which displays a high absorption region of 
imaging radiopharmaceuticals, yet the morphology of the cancer region is not very clear. 
The fusion image depict clearly the corresponding relation between the region of nodular 
shadows in CT slice and the region of cancer permeability in PET slice. Experimental results 
demonstrate that the edge and texture features of the multimodal images are reserved 
effectively by the presented fusion method based on wavelet transform with the fusion rule 
of combining the local standard deviation and energy. Therefore, the relative position 
between the tumor and its adjacent tissues could be obtained easily through analyzing the 
medical data sets which are fused the information of functional mages and anatomical 
images.  

Multimodal Medical Image Registration  
and Fusion in 3D Conformal Radiotherapy Treatment Planning   

 

409 

    
(a)Original CT image    (b)Original PET image    (c)Matched image         (d) Fusion image 

Fig. 13. Chest CT and PET image fusion 

6.1.1 Effect evaluation for registration method 
Generally, fusion image evaluation criteria includes the subjective evaluation and objective 
evaluation. The objective valuation method is used in this chapter. Various statistical 
characteristics of the image are used, such as mean, standard deviation, entropy and cross-
entropy. 
1. Standard deviation (SD) Gray variance reflects the extent of deviation from the mean of 

the gray value. The greater the standard deviation is, the more dispersed the 
distribution of gray levels is. 

2. Information entropy (IE) Information entropy reflects the average amount of 
information that the fusion image contains. The larger the entropy is, the more 
information the image carries. The image’s information entropy E is defined: 
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Where Z is the maximum gray level, iP  is the probability of i  gray level. 
3. Joint entropy (JE) The larger the joint entropy between fusion image and original image 

is, the more information the fusion image contains. The joint entropy between fusion 
image F and original image A is defined as follows. 
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Where, FAP  represents the joint probability density of two images. 
In this experiment, the fusion results are evaluated by applying the above methods. 
Experiments show that the evaluation indexes of this presented method are superior to 
other fusion methods, the evaluation indexes of each method are shown in Table 2.  

6.2 Efficiency comparison 
6.2.1 Efficiency comparison for registration method 
In this chapter, multimodal medical image registration is adapted based on adaptive free-
form deformation and gradient descent. Moreover, the feature points are matched based on 
parallel computing. So, comparing to the traditional methods, the efficiency of the presented 
registration method has been greatly improved. 
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Where, FAP  represents the joint probability density of two images. 
In this experiment, the fusion results are evaluated by applying the above methods. 
Experiments show that the evaluation indexes of this presented method are superior to 
other fusion methods, the evaluation indexes of each method are shown in Table 2.  

6.2 Efficiency comparison 
6.2.1 Efficiency comparison for registration method 
In this chapter, multimodal medical image registration is adapted based on adaptive free-
form deformation and gradient descent. Moreover, the feature points are matched based on 
parallel computing. So, comparing to the traditional methods, the efficiency of the presented 
registration method has been greatly improved. 
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 SD IE JE (CT) JE(PET) 
weighted mean 328.545 4.691806 6.143996 5.620486 

maximum 385.560 4.830680 8.370359 5.902740 

local energy 162.497 5.052476 8.376337 6.134338 
local standard 

deviation 415.144 5.810895 7.730113 6.800253 

The presented 
method 383.129 5.987878 8.423761 6.997364 

Table 2. Quantitative evaluation of fusion image 

1. Efficiency of registration process of based on adaptive free-form deformation and 
gradient descent 
As shown in Fig.14(a) and Fig.14(b), the average number of cycling for the presented 
method is about 3.12, and the registration position is searched only using about 84.24 steps. 
While the number of cycling for the traditional method is about 50 to 60 and more than 300 
steps for searching, much larger than the presented algorithm. It demonstrates that the 
presented registration method is more efficient, and its searching speed is much faster than 
traditional algorithm. 
 

   
(a) Algorithm search step                             (b) Algorithm cycle number 

Fig. 14. Efficiency of the presented algorithm based on Gradient Descent 

2.  Efficiency of feature-points matching based on parallel computing 
In the experiment, 3 pairs CT-PET images, in which CT resolution is 512*512  and PET 
resolution is 128*128, are from a male lung-cancer person. 
The runtime of feature-points matching based on parallel computing in the cluster 
computing system is shown in Fig.15.The runtime of all the registration process based serial 
computing is 335 seconds. The runtime of the process of feature-points matching based on 
serial computing is 170 seconds, and the runtime of finding the corresponding feature points 
of CT image from PET image is 156.5 seconds, which accounts for 92% of all the feature- 
points-matching process. The runtime of feature-points matching based on parallel 
computing using 5 processors is 32 seconds, and all the registration process costs 43 seconds.  
It is obvious that the runtime of registration decreases obviously. Moreover, the parallel 
system efficiency keeps about 0.97, thus the algorithm is of good expansibility so that the 
runtime will decrease more if more processors is used. It is obvious that the runtime of 
registration decreases obviously.  
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So, comparing to the traditional methods, the efficiency of the presented registration method 
has been greatly improved. Because, on one hand, the presented multimodal medical image 
registration is adapted based on adaptive FFD and gradient descent; on other hand, the 
feature points are matched efficiently based on parallel computing.  
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Fig. 15. Efficiency of the feature-point matching based on parallel computing 

6.2.2 Efficiency comparison for fusion method 
In order to evaluate the performance of parallel computing, two parameters must be 
introduced: the speedup factor ( )S p  and parallel efficiency E (Yasuhiro K. et al., 2004). 

 ( ) /S p ts tp=  (22) 

Where ( )S p  is a measure of relative performance; p  is the number of processors; tp  is the 
execution time for solving the same problem on a multiprocessor; ts  is the execution time of 
the best sequential algorithm running on a single processor. 
It is sometimes useful to know how long processors are being used on the computation, 
which can be found from the system efficiency. The efficiency, E , is defined as 

 ( ) /E S p p=  (23) 

The comparison of run time is shown in Table 3. It is obvious that the runtime of parallel 
sequence images fusion decreases obviously. From Table 3, the runtime of sequences 
image(267 images) fusion is only 43.773 seconds if using parallel computation of 6 
processors, which is far less than that of sequential algorithm. Moreover, the parallel system 
efficiency keeps about 0.97, thus the algorithm is of good expansibility so that the runtime 
will decrease more if more processors is used. So it can be concluded that the calculation 
time is fast enough for clinical use. 
 

Parallel algorithm 
 sequential 

algorithm processor 1 processors 2 processors 4 processors 6 
runtime 251.468s 259.757s 130.103s 65.090s 43.773s 

( )S p  —— 0.97 1.93 3.86 5.74 

E  —— 0.97 0.97 0.97 0.96 

Table 3. Time performance of parallel sequences image fusion(267 images) 
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6.3 Experiment results in 3D Conformal Radiotherapy Treatment Planning 
The experiment results in 3D CRTPS are shown as Fig.16. Fig.16 is the interface of 3D 
Conformal Radiotherapy Treatment Planning System(3D CRTPS) which is developed by 
ourselves. Fig.16(a) and 16(b) consist of four windows respectively: No.1 is the 3D volume 
rendering result; No.3 and No.4 are CT image(512*512) and PET image(128*128), 
respectively. These slices correspond to the position showed by white line in No.1 window; 
No.2 is the registration and fusion result of CT and PET. The technologist can give diagnosis 
by using the system. 
 

    
                        (a) Viewed from the front                                  (b) Viewed from the back 

Fig. 16. Experimental result of cases 

7. Discussions and conclusions 
A rapid image registration and fusion method is presented in this chapter. This presented 
automatic registration method is based on parallel computing and hierarchical adaptive 
free-form deformation(FFD) algorithm. After the registration of multimodal images, their 
sequence images are fused by applying a image fusion method based on wavelet transform 
with the fusion rule of combining the local standard deviation and energy.  
The results of the validation study indicate that the presented multimodal medical image 
registration and fusion method can improve effect and efficiency and meet the requirement 
of 3D conformal radiotherapy treatment planning. And the radiologists who validated the 
results felt the errors were generally within clinically acceptable ranges. 
By analyzing the qualitative indexes, such as MI, RMS, and CC, for each method, it can be 
concluded that the presented registration algorithm is better than other traditional methods. 
And experiments show that the evaluation indexes(SD, IE, JE) of this presented method are 
superior to other fusion methods, such as the weighted mean method, the maximum 
method, the local energy method and the local standard deviation method.  
In addition, comparing to the traditional methods, the efficiency of the presented 
registration and fusion method has been greatly improved, because in this chapter 
multimodal medical image registration is realized based on gradient descent, and the 
feature points are matched based on parallel computing. Moreover, image fusion is also 
carried out by parallel computing. 

1 2

3 4
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                        (a) Viewed from the front                                  (b) Viewed from the back 

Fig. 16. Experimental result of cases 

7. Discussions and conclusions 
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1. Introduction 
Due to the recent increased use of diagnostic abdominal imaging and/or serum prostate 
specific antigen (PSA) test, both incidental small renal tumors and low-risk prostate cancer 
are being detected more frequently. This leads to greater numbers of asymptomatic organ-
confined early cancers in urology. Treatment strategy needs therefore to be reassessed 
because of the lack of comparative evidence in effectiveness and the harm of current 
standard radical invasive treatments especially for such early low-risk asymptomatic 
cancers (Hollingsworth et al 2006, Wilt et al 2007). The precision of the imaging for staging and 
localization of the diseases is an important problem so that this brings patients a benefit, 
avoiding the over-diagnosis of clinically insignificant cancer (which does not need to be 
treated) as well as under-diagnosis of advanced cancers (which definitely need to be 
treated.)  As such, imaging technology is now evolving, and focal therapy for prostate and 
kidney cancer has attracted attention in urology (Gill et al 2010, Eggener et al 2007).  Focal 
therapy aims to achieve targeted control or cure of the malignancy as well as preservation of 
organ function in order to maintain the QOL of individual patients.   
Looking back on the history of urology, there was a definite step when urologists began to 
practise transurethral resection of bladder tumors (TUR-Bt), and this can be clearly categorised 
as a type of minimally invasive focal therapy.  TUR-Bt can achieve the clinical control or cure 
of superficial bladder cancer as well as preservation of the bladder in order to maintain QOL, 
while allowing the patient to urinate through his or her own urethra, avoiding problematic 
urinary stoma on the abdominal skin.  Such focal therapy can be performed generally in the 
out-patient day surgery, and is also repeatable at a certain interval if indicated. Should the 
disease become upgraded or upstaged during active surveillance after such focal therapy, the 
patients would reasonably accept radical treatment when indicated later.  
On the other hand, historically we also find shared critical opinion against focal therapy in 
prostate cancer for 3 main reasons in recent years: firstly, the technological therapeutic 
difficulty of focal treatment; secondly, the lack of reliable imaging to localize and 
characterize potentially multifocal and multi-grade prostate cancers; and thirdly, the 
immaturity of navigation technology to achieve precise 3-dimensional targeting to the 
biopsy-proven cancer lesion.    
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characterize potentially multifocal and multi-grade prostate cancers; and thirdly, the 
immaturity of navigation technology to achieve precise 3-dimensional targeting to the 
biopsy-proven cancer lesion.    
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However, with increased knowledge of the natural history of prostate cancer, it is now 
discussed that the prognostic importance of the index prostate cancer, which is a cancer 
with the highest grade and largest volume in an individual prostate and must determine the 
individual prognosis of the disease. As such, the important hypothesis has arisen that we 
might be able to achieve reasonable oncological control by focal therapy, targeting the 
index-lesion at least, while preserving the healthy parts of the prostate and peri-prostatic 
tissue that contribute to maintaining urinary continence and sexual function. This would be 
recommended for patients who are reluctant to accept active surveillance or conservative 
treatment (Eggener et al, 2007).    
The current therapeutic standard for clinical localized renal cancer is surgical removal, 
preferably in the form of nephron-sparing surgery, supported by durable oncological 
outcomes and overall survival, while active surveillance and minimally invasive ablative 
techniques have emerged as potential alternatives in carefully selected patients (Gill et al, 
2010).   
Accordingly, for both kidney and prostate cancers, we are facing a real challenge towards 
endoscopic robotic-assisted surgery, focal ablative therapy, and further computer-assisted, 
minimally invasive ablation (such as cryosurgery, laser therapy, radiofrequency ablation), or 
extra-corporeal therapy (such as high-intensity focused ultrasound). A reliable image 
navigation system would become an essential tool, to facilitate realization of where the 
surgical pathological targets and vital healthy anatomies are located in the surgical field 
beyond the surgeon’s direct vision or underneath the palpable anatomies.  Image-navigation 
would help intra-operative appropriate decision-making before surgical exposure of the 
target has even been made, to minimize any iatrogenic injury to the surrounding healthy 
tissues, and to lead to precise surgical dissection or appropriate delivery of the ablative 
energy to the surgical target while preserving safe surgical margins. Real-time anatomical 
and pathological visualization is required for intra-operative navigation, although there 
may be no perfect single imaging modality to achieve this image-navigation mission.  In 
addition, instead of free-hand control, computer-assistance and robotic control of the 
surgical instruments or interventional probes could increase procedural accuracy while 
potentially decreasing the learning curve. “Image-fusion” integrated with such computer-
assistance and robotic control would become the key technology.   
Active surveillance could increasingly become an important option for the management of 
low risk kidney and prostate cancers. The optimal biopsy protocol is still controversial in 
both kidney and prostate, and a new reliable biopsy protocol should be considered since the 
pathological evidence given by needle biopsy specimens could be one of the key 
components for determining the oncologic management of these organs.    
To obtain reliable information from biopsy sampling, precise spatial targeting accuracy is 
critical. Since CT-guidance and MR-guidance require expensive facilities and significant 
expertise in intervention, image-fusion guidance, such as real-time US fusion with 
previously acquired enhanced CT for the kidney and enhanced MR for the prostate, would 
provide a clinically relevant opportunity for urologists. The recently emerging technology of 
“image-fusion” in urology includes the spatial tracking system of a 2D US probe or 
interventional needle with attached electromagnetic and/or optical sensors or with robotic 
control. Another technology involves the acquisition of real-time 3D volume data in order to 
track with more reality in the spatial targeted fields. This article intends to discuss the 
advantages and limitations in the current proposed techniques of “image fusion” in biopsy, 
intervention, and surgery in urology.   
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Among the various image-guided procedures in urology, percutaneous 
drainage/aspiration, percutaneous nephrostomy, percutaneous renal biopsy or renal 
ablative therapy (for placement of a cryo-surgery probe or radiofrequency probe), 
transrectal/transperineal prostate biopsy, and transperineal cryo-surgery or brachytherapy 
for prostate cancer could be listed as clinically frequent in diagnostic and interventional 
procedures.   Image-guidance in urology could be performed by an urologist with expertise 
in imaging, but has frequently been performed with the help of an uro-radiologist. The 
choice of the imaging modality for kidney intervention has been based on the preference of 
the physicians. For prostate intervention, transrectal ultrasound (TRUS) has been the gold 
standard as the guidance tool for prostate biopsy delivery. However, controversial issues 
continue due to a current misjudgment of the true value of TRUS as well as emerging MR 
technology. 

2. Percutaneous renal intervention 
Percutaneous imaging guided biopsy and tumor ablation has an increasingly prominent role 
as minimally invasive management for renal tumors. Precise biopsy needle and ablative 
probe placement as well as safe and effective ablation are key steps for successful 
management. In renal intervention such as in the development of neprostomy, investigators, 
especially in the USA, considered fluoroscopy as an essential tool for guide-wire 
introduction, nephrostomy tract dilation, and nephrostomy tube placement (Barbaric et al 
1984, Ko et al 2008). Others, especially in Europe and Japan, have preferred ultrasound 
guidance during puncture of the renal collecting system (Saitoh e al 1982, Skolarikos et al, 
2005). Most often many current investigators now understand the advantages in combining 
the use of these 2 real-time imaging modalities for renal puncture.  Since the pathologic fluid 
collection or renal collecting system are generally dilated to >10 mm, such a dilated 
collection system can be targeted so easily that image-guidance at this setting may not 
require very detailed anatomical signal/noise ratio or imaging expertise. On the other hand, 
in order to achieve precise targeting of a small renal mass, renal tumor biopsy and tumor 
ablative therapy are most often guided by CT fluoroscopy (Remzi e al 2009, Leveridge et al 
2010), although it may be also precisely guided under US-guidance if performed by US 
experts (Atwell et al 2007, Bassignani et al 2004). Although US visualization of the kidney is 
excellent, the major disadvantages of US-guidance include the requirement of significant 
experience in interpretation of the peri-renal anatomy and vasculatures, difficulty of 
obtaining high-quality images in obese patients, and the difficulty in access of the upper-
pole where the US-beam is blocked by the 11th and 12th rib-bones. The major disadvantage of 
CT fluoroscopy is the radiation exposure for both patients and physicians, and almost all of 
these CT-guided procedures were performed by radiologists because of its availability.  In 
addition, since percutaneous CT-guided intervention generally uses un-enhanced CT 
images, intra-renal tumor margins are often hardly identified. Similarly, although the recent 
introduction of real-time MR is a promising tool, there is also the considerable issue in the 
availability of such expensive MR-compatible instruments and facilities. As such, pioneer 
experience of image-guided percutanous renal intervention required considerable expertise 
with such high-resolution imaging, and the limited availability of the expensive imaging 
modality was the significant issue for urologists.   There is no doubt that enhanced CT is the 
most reliable, standard imaging for the diagnosis of renal mass. However, enhanced 
visualization of the renal tumor is dynamically transient. It does not continue long enough 
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to be useful during entire interventional real-time procedures, and importantly, it can not be 
repeated often since the contrast enhancer is harmful to the renal function.     
As such, to my best knowledge, the most promising solution for overcoming both the 
technical difficulties and the lack of availability of enhanced CT imaging is to use image-
fusion of real-time imaging with pre-operatively acquired enhanced CT volume data, which 
can be integrated with a needle/probe tracking system by GPS(global positioning system)-
like technology. Recently, various image-fusion guided techniques have been proposed, 
which are undergoing research to demonstrate their technical feasibility in preliminary 
clinical studies (Ukimura & Gill 2008, Ukimura & Gill 2009, Haber et al 2010). However, it may 
be still challenging to achieve clinically relevant accuracy in image-registration as well as in 
needle/probe placement, which has to be available during the limited computation time, 
taking into account each patient’s deformable anatomies during the real-surgical 
procedures.   
In 2002, Leroy et al reported a pioneer work on the registration of kidney contours by CT 
and US images, and also investigated the automated voxel based registration of CT with 3D 
US, achieving 3.1 mm in registration accuracy, although requiring 80 sec. in computation 
time (Leroy et al 2002, Leroy et al and 2004).  In 2004, Osorio et al presented augmented reality 
visualization that allowed projection of pre-operative CT onto the patient’s body, although 
this system does not achieve real-time monitoring of the procedure (Osorio et al 2004). In 
2005, Mozer et al evaluated the accuracy of the fusion of CT with real-time US for 
percutaneous renal access, reporting the encouraging registration accuracy of 4.7 mm 
between planned and reached targets (Mozer et al 2005).  They noted that error was mainly 
due to needle deflection during puncture.    
For precise needle/probe placement, a GPS-like technique for navigation of the needle tract 
would be ideal in combination with image-fusion guidance. For this purpose, investigators 
have used an infrared optical tracking system, to track optical sensors which were located 3-
dimensionally, and a tracking handle for guidance of the cryoprobe placement (Haber et al 
2010). Similarly, a magnetic sensor mounted radio-frequency ablative probe can be used for 
real-time surgical planning to overlay 3D data of the theoretical therapeutic area onto the 
registered 3D volume of the CT which was pre-registered with real-time US images (Crocetti 
et al 2008).   
In the fusion of two imaging modalities, image-registration has been classified as “rigid 
registration” or “non-rigid registration”. Since the urological organs are often shifted by 
respiration or deformed by surgical manipulation, rigid registration may not be a 
sufficiently precise image-fusion for routine clinical use in urology. Recent efforts in non-
rigid registration between pre-operative high-resolution imaging and real-time imaging 
potentially provide a new powerful opportunity to take into account the deformation of the 
organs in image-fusion guided intervention or surgery. 
Wein et al reported a non-rigid registration for the image fusion of pre-operative contrast 
enhanced CT with intra-operative US images at the time of renal biopsy and radio-
frequency-ablation, to achieve a fiducial registration error of 5 mm (Wein et al 2008).  More 
recently, Oguro et al have proven that a non-rigid registration technique (fiducial 
registration error of 1.7 mm) was more accurate than a rigid registration technique (fiducial 
registration error of 5 mm) when fusing pre-procedural contrast-enhanced MR images to 
unenhanced CT images during CT-guided percutaneous cryoablation of renal tumors 
(Oguro et al 2010).  The non-rigid registration technique promises to improve visualization of 
renal tumors using pre-procedural enhanced imaging during unenhanced CT-guided 
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cryoablation procedures, although current limitation of the highly precise non-rigid 
registration does require the significantly long time of 15 minutes to perform.  Further 
technological improvements are being investigated. 

3. Augmented reality in surgical navigation 
Soft tissue navigation systems in urologic surgery are evolving. The augmented reality 
surgical navigation technique has been most widely used in the field of neurosurgery (Iseki 
et al 1997, Kawamata et al 2002), in which there is a clear advantage of minimum organ 
motion in a relatively fixed surgical field within a bony frame, facilitating the registration of 
the 3D image data. Augmented reality for the management of intra-abdominal soft organs 
was challenging (Marescaux et al 2004, Osorio et al 2004, Ukimura & Gill 2007), because intra-
abdominal organs may suffer more from respiratory motion or deformation by 
manipulation.  
Ukimura and colleagues have demonstrated the feasibility of augmented reality in 
laparoscopic surgery for partial nephrectomy and prostatectomy, using optical tracking 
systems of the dynamic motion of the surgical instruments, with computer-assisted 
synchronization of the developed 3D image from the 3D volume data of enhanced CT or 
intra-operatively acquired 3D volume data of transrectal ultrasound images (Ukimura & Gill 
2007, Ukimura & Gill 2008, Ukimura & Gill 2009).  The approach is technically feasible, but 
many issues need to be resolved before its clinical wide-spread use in the fields of surgery 
dealing with soft tissue organs. Nevertheless, recent advancement in augmented reality in 
urological surgery deserves attention.    
Su et al. described a stereo-endoscopic visualization system for augmented reality overlay 
during robot assisted laparoscopic partial nephrectomy. The stereoscopic system allows the 
3D-to-3D registration system of the preoperative CT scan without external tracking devices, 
using image-based surface tracking technology to track gross movement, with an update 
rate of 10 Hz and an overlay latency of four frames to place a reconstructed 3D CT image 
onto the stereo video footage (Su et al 2009). Teber et al. reported an augmented reality 
assisted soft-tissue navigation system using a mobile C-Arm capable of cone-beam imaging, 
which required the surgeon to insert four or more needle-shaped navigation aids into the 
target organ (Teber et al 2009). Herrell et al. demonstrated an augmented reality guided 
laparoscopic procedure using tissue mimicking phantoms, to compare their named 
‘resection ratio’, that was defined as the ratio of dissected tissue compared to the ideal 
resection, between with and without augmented reality image guidance (Herrel et al 2009). 
The resection ratio (3.26) in using image guidance was significantly smaller than that (9.01) 
in using no image guidance, potentially leading to a decrease of benign tissue removal while 
maintaining an appropriate surgical margin. 
The challenge continues in the real-time tracking of organ motion and deformation, to 
achieve real-time dynamic navigation through an ongoing surgical procedure. In particular,  
conventional optical tracking systems and wired magnetic tracking systems are not suitable 
for tracking internal organ motion. An emerging technology, named the Calypso 4-D 
localization system (calypso Medical Technologies, Inc., Seattle, WA, USA), is a miniature, 
wireless magnetic tracking system, which was applied to tracking the prostate motion 
during external radiotherapy (Kupelian et al 2007). We have applied this new technology for 
an endoscopic augmented reality system to demonstrate real-time dynamic superimposition 
of the pre-operatively acquired CT image onto the endoscopic image of the moving organ 
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during advancing surgical manipulation (Nakamoto et al 2008, Ukimura & Gill 2009). Such 
augmented reality image navigation with a 4D-dynamic organ tracking system, being 
integrated with robotic controlled surgical systems, is likely to herald higher precision 
surgery in the near future. 

4. Image-fusion for radiotherapy, prostate biopsy, and lesion-targeted 
prostate intervention 
Pioneer works in the image-fusion of prostate imaging were reported in the field of 
radiotherapy including external beam radiation therapy and brachytherapy, using fusions of 
CT, MR, ultrasound, and/or fluoroscopy (Holupka et al 1996, Lau et al 1996, Kagawa et al 1997, 
Amdur et al 1999, Reynier et al 2004, Daanen et al 2006, Su et al 2007). In addition, the potential 
value of image fusion of Doppler TRUS with MRI in the staging of prostatic cancer was 
discussed (Selli et al 2007). However, recent attention to image fusion technology for prostate 
cancer is more toward its value in improving the quality of prostate biopsy by precisely 
targeting the image-suspicious area, in mapping the 3D localization of biopsy-proven 
prostate cancer, as well as its value in navigating image-guided focal therapy  
(Ukimura 2010).   
Real-time TRUS has been the gold standard of prostate biopsy guidance, and therapeutic 
intervention, because of the advantages of its real-time nature, its easy-handling, the fact 
that it is urologist-friendly, its relatively inexpensiveness, and its non-invasiveness.  
However, the current role of 2D real-time TRUS imaging to visualize the prostate anatomy 
as a simple delivery tool of biopsy rarely provides information on the spatial location of 
prostate cancer. On the other hand, diagnostic multi-function MRI for the prostate has 
achieved increasingly higher levels of accuracy in detection and localization of cancer in its 
3D volume data (Kirkham et al 2006, Villers et al 2006, Yakara et al 2010). However, since real-
time MR-guided targeted biopsy is still a complicated and expensive procedure, there is 
considerable interest in a technique of MR/ TRUS hybridized image-guided biopsy.    
Reported rigid MR/TRUS fusion techniques (Kaplan et al 2002, Xu et al 2007, Singh et al 2008, 
Turkbey et al 2010) had a limitation when deformation occurred between MR and TRUS.   
Importantly, because the 3-D shapes of the prostate at the time of image-acquisition at 
preoperative MRI are likely to be different from the intra-operative TRUS images, the 
precise registration of each 3-D volume data is critical. In order to reduce the potential errors 
in rigid registration of TRUS with MRI, one solution may include preoperative MR images 
being obtained while a plastic outer-frame, of exactly the same shape as the real TRUS 
probe, is placed in the rectum, in order to simulate the deformation of the prostate caused 
by the absence or presence of a TRUS probe during the acquisition of MR or TRUS images 
(Ukimura 2010). For another potential solution, Hu and colleagues described a technique 
using a patient specific model of MR/TRUS deformation built from simulated data for 
image-registration (Hu et al 2009). A more attractive developed technique for improvement 
of registration in MR/TRUS image-fusion is the introduction of automatic, non-rigid 
(elastic) registration technology (Baumann et al, 2009, Martin et al 2010). This new elastic 
fusion technique allows making automatic segmentation of the prostate in TRUS images by 
deforming a patient specific 3D model built from MR image to TRUS data.  
As mentioned already, unfortunately, clinical urologists generally use TRUS only as a 
simple delivery system for systematic sextant biopsies toward the planned segmental 
locations, with no detailed 3D anatomical records of the sampled localization, and by just 
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naming the biopsy sample with a rough sextant site for review.  Since urologists often need 
repeat biopsies, this led to the current trend of taking an increased number of initial 
biopsies, and also to the risk of delivering the repeat biopsy needle to spots that have 
previously been shown to be negative for cancer, and of failing to make the necessary 
deliveries for previously un-sampled locations. In order to facilitate the emerging strategy of 
focal therapy for prostate cancer which may require precise 3D mapping of biopsy-proven 
cancer, individual recording of the 3D localization of each biopsy would be the key issue.   
As such, transperineal template grid-based 3D mapping biopsy has been proposed (Barzell 
& Melamed 2007, Onik et al 2009). However, current ongoing transperineal template 3D 
mapping biopsy may require 5-mm grid based techniques to detect clinically significant 
cancer, resulting in a tremendous number of required biopsies, for example, over 100 
samples in a large prostate. We are hoping that the improved image-fusion technique of MR 
and TRUS, and the elastic fusion of 3D real-time TRUS for 3D biopsy mapping techniques 
(Mozer et al 2009, Ukimura 2010) could improve the clinically relevant strategy for prostate 
biopsy, and also the image-guided management of prostate cancer in the near future.  

5. Molecular and radionuclide imaging for urology 
Targeted radionuclide therapy offers potential determination of targeted cancer specific 
accumulation by molecular imaging with single photon computed tomography (SPECT) or 
positron emission tomography (PET). In this decade, computer-assisted integration of 
anatomical and functional images has been demonstrated as a hybrid of PET/CT 
[Townsend, 2001] as well as a fusion of SPECT/CT (Schillaci et al 2005), providing us a new 
opportunity of interpretation of side-by-side or overlaid dual modalities. Cancer specific 
molecular imaging and radionuclide therapy is attractive for the early detection and staging 
of malignancies, and for the precise selection of patients who would benefit from molecular-
based targeted therapy and monitoring.     
18F-FDP (fluorodeoxyglucose) PET/CT has been widely used in the management of various 
malignancies showing an increase of glucose metabolism leading to uptake of 18F-FDP, 
although the urinary excretion of 18F-FDP and relatively low uptake of 18F-FDP especially 
in small sized foci (<5mm) of prostate cancer and some types of renal cancer were a clear 
limitation of its expansion in urology. At the same time, other PET tracers have recently 
demonstrated improved accuracy of PET/CT, which include 11C-choline, 18F-fluorocholine, 
11C-acetate, and 18F- fluoride that might correlate to prognosis and localization in prostate 
cancer (Wachter et al 2007, Bouchelouche& Oehr J Urol 2008, Piert et al 2009, Poulsen et al 2010).   
The fusion image of SPECT with CT might also improve the role of imaging in the diagnosis 
and therapy of prostate caner (Krengli et al 2006, Sodee et al 2007). The usefulness of 
pretreatment 111-Indium capromab pendetide radio-immuno-scintigraphy plus SPECT co-
registration with CT scans has been demonstrated in detection of occult metastatic disease 
and predicting for biochemical failure in patients who had evidence of that possibility after 
radiotherapy (Ellis et al 2008). This image-fusion capability leads to a new proposed strategy 
for image-guided radiation therapy to favor dose-escalation to the regions as defined by 
focal uptake on radio-immuno-scintigraphy fusion with anatomical image sets (CT or MRI) 
(Ellis & Kaminsky 2006). 
However, there is still challenge in molecular-based diagnosis and radionuclide therapy for 
clinically personalized use, which requires improved detection and efficacy in large clinical 
trials. 
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6. Conclusions 
Image-fusion technology would improve detection of urological malignancies and precision 
of intervention in minimally invasive urology, and are now increasingly under research for 
biopsy needle guidance and therapeutic navigation. In particular, the non-rigid image 
fusion of real-time US with contrast-enhanced CT/MR, 3-dimensional mapping of biopsy 
localization, 3-dimensional image-guided lesion-targeted ablation therapy, augmented 
reality, and tumor-specific diagnostic imaging have been attracting increased attention. 

7. Figure legends 

 
Fig. 1. Augmented reality during laparoscopic nerve-sparing radical prostatectomy 
The biopsy-proven cancer area (blue), built from intra-operatively acquired 3D TRUS image, 
was overlaid on the real-time laparoscopic image during laparoscopic nerve-sparing radical 
prostatectomy 
 

 
Fig. 2. Augmented reality during laparoscopic partial nephrectomy 
The color-coded zonal anatomy (tumor by red, 0-5 mm margin by yeallow, 5-10 mm margin 
by green, beyond 10mm margin by blue), built from pre-operative contrast enhanced CT 
image, was overlaid on the real-time laparoscopic image during laparoscopic partial 
nephrectomy 
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Fig. 3. 4D Augmented reality navigation  
Using body-GPS (left, Calypso miniature wireless magnetic tracking system) to track real-
timely the motion of the organ, 3D model of pre-operative CT was real-timely overlaid onto 
the laparoscopic view during ongoing surgical manipulation (middle, overlaid image at the 
initial position of the tumor) (right, real-timely overlaid image on the lifted-up tumor with 
safe surgical margin) 

 

 
Fig. 4. MR/TRUS fusion image-guided biopsy with overlaid images of each biopsy 
trajectory 
Left, positive cancer biopsy trajectory overlaid on the MR-visible lesion (low intensity lesion 
on T2 image) 
Middle, overlaid images of each biopsy trajectory on the 3D MR image 
Right, overlaid images of each biopsy trajectory on the 3D TRUS image 
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