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Preface 

A broad variety of fungi can cause fungal infections and lead to life-threatening 
diseases, typically in critically ill patients. Several risk factors are significantly 
associated with the development of invasive fungal infections, including immu-
nosuppression, broad-spectrum antibiotics, total parenteral nutrition, mechanical 
ventilation, breakdown of anatomical barriers, and fungal colonization. Despite 
therapeutic advances in diagnostic techniques, prophylaxis, and treatment regi-
mens, invasive fungal infections are still important causes of morbidity and mortal-
ity, and several groups of patients remain susceptible to these types of infections. 

Fungi are heterotrophic organisms that can parasitize animals, plants, and even 
other fungi, using them as a source of nutrients. It is important to study these 
interactions in order to understand how these species adapt and cause infections in 
mammals. So, knowing how these microorganisms are distributed and how they 
respond to environmental pressures is critical for determining the epidemiology of 
the diseases they engender. 

This book is organized in a collection of writings by experts from distinct research 
areas, aiming to provide up-to-date information on the epidemiology of fungal 
infections, host-pathogen interactions, the relationships between fungal growth 
and the environment, the use of fungal species to control soil parasites, and the 
antifungal properties of thiosulfonates. 

On behalf of all the authors, I would like to warmly thank Ms. Sara Debeuc, from 
IntechOpen, who has tirelessly contributed to and assisted in the success of this 
publication. 

Érico Silva de Loreto and Juliana Simoni Moraes Tondolo 
SOBRESP—Faculty of Health Sciences, 

Santa Maria, RS, Brazil 
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Chapter 1

Introductory Chapter: 
Epidemiology of Invasive Fungal 
Infection - An Overview
Erico S. Loreto and Juliana S.M. Tondolo

1. Introduction

Invasive fungal infections (IFIs) are a significant cause of morbidity and mortality
in hospitalized patients and the immunocompromised populations. Candidemia,
invasive aspergillosis, mucormycosis, cryptococcosis, and Pneumocystis pneumonia
(PCP) are IFIs associated with the highest incidence and mortality. The broader use
of more aggressive treatment modalities, such as hematopoietic stem cell transplanta-
tion (HSCT) and solid organ transplantation (SOT), as well as chemotherapy for
cancer patients and prolonged corticosteroid therapy, has increased the population of
immunocompromised patients at risk for IFIs. Other groups at risk include individu-
als who have HIV/AIDS in which PCP is an AIDS-defining disease [1]. In this chapter,
we aim to overview the epidemiology of the leading causes of IFIs in humans.

2. Aspergillosis

The genus Aspergillus contains more than 300 species described and is divided
into 20 sections [2]. However, only a few are known to cause human disease. Human
aspergillosis is primarily caused by Aspergillus fumigatus (the most common spe-
cies described in aspergillosis cases), A. flavus, A. niger, A. terreus, and A. nidulans. 
Aspergillus species are ubiquitous, are found in soil and several organic debris,
and produce conidia that are easily aerosolized. These conidia, when inhaled, can
colonize the host’s lungs, which can develop various clinical syndromes depending
on their degree of immunocompetence. Ingestion of spores via the gastrointestinal
tract or direct inoculation via skin injuries is an uncommon way of inoculation [3–5].

The major risk factors for infection include prolonged neutropenia, HSCT, 
SOT, corticosteroid therapy, chronic granulomatous disease, immunosuppressive
treatment for malignancies, hematologic malignancy, myelodysplastic syndrome or
aplastic anemia, advanced stage of human immunodeficiency virus (HIV) infection
(facilitated by low CD4+ cell counts), previous infections (such as cytomegalovi-
rus infection), and patients with critical illness [4, 6]. The spectrum of disease is
determined by the host’s immune status and the virulence of Aspergillus species.

In immunocompetent hosts, aspergillosis causes mainly allergic symptoms
without invasion and destruction of the host’s tissues and chronic pulmonary asper-
gillosis. Allergic bronchopulmonary aspergillosis (ABPA) is a syndrome that arises
from a hypersensitivity reaction to antigens from Aspergillus and may be developed 
in patients with asthma and cystic fibrosis [7]. In the chronic pulmonary aspergil-
losis, a preexisting pulmonary condition is generally observed. Chronic cavitary

  

 
 

 
 

  
 

   

 
 

 

 
 

  
  

  

 
 

  

  
  

 

 
 

 
 



  

 
 

 
 

  
 

   

 
 

 

 
 

  
  

  

 
 

  

  
  

 

 
 

 
 

Chapter 1 

Introductory Chapter: 
Epidemiology of Invasive Fungal 
Infection - An Overview 
Erico S. Loreto and Juliana S.M. Tondolo 

1. Introduction 

Invasive fungal infections (IFIs) are a significant cause of morbidity and mortality 
in hospitalized patients and the immunocompromised populations. Candidemia, 
invasive aspergillosis, mucormycosis, cryptococcosis, and Pneumocystis pneumonia 
(PCP) are IFIs associated with the highest incidence and mortality. The broader use 
of more aggressive treatment modalities, such as hematopoietic stem cell transplanta-
tion (HSCT) and solid organ transplantation (SOT), as well as chemotherapy for 
cancer patients and prolonged corticosteroid therapy, has increased the population of 
immunocompromised patients at risk for IFIs. Other groups at risk include individu-
als who have HIV/AIDS in which PCP is an AIDS-defining disease [1]. In this chapter, 
we aim to overview the epidemiology of the leading causes of IFIs in humans. 

2. Aspergillosis 

The genus Aspergillus contains more than 300 species described and is divided 
into 20 sections [2]. However, only a few are known to cause human disease. Human 
aspergillosis is primarily caused by Aspergillus fumigatus (the most common spe-
cies described in aspergillosis cases), A. flavus, A. niger, A. terreus, and A. nidulans. 
Aspergillus species are ubiquitous, are found in soil and several organic debris, 
and produce conidia that are easily aerosolized. These conidia, when inhaled, can 
colonize the host’s lungs, which can develop various clinical syndromes depending 
on their degree of immunocompetence. Ingestion of spores via the gastrointestinal 
tract or direct inoculation via skin injuries is an uncommon way of inoculation [3–5]. 

The major risk factors for infection include prolonged neutropenia, HSCT, 
SOT, corticosteroid therapy, chronic granulomatous disease, immunosuppressive 
treatment for malignancies, hematologic malignancy, myelodysplastic syndrome or 
aplastic anemia, advanced stage of human immunodeficiency virus (HIV) infection 
(facilitated by low CD4+ cell counts), previous infections (such as cytomegalovi-
rus infection), and patients with critical illness [4, 6]. The spectrum of disease is 
determined by the host’s immune status and the virulence of Aspergillus species. 

In immunocompetent hosts, aspergillosis causes mainly allergic symptoms 
without invasion and destruction of the host’s tissues and chronic pulmonary asper-
gillosis. Allergic bronchopulmonary aspergillosis (ABPA) is a syndrome that arises 
from a hypersensitivity reaction to antigens from Aspergillus and may be developed 
in patients with asthma and cystic fibrosis [7]. In the chronic pulmonary aspergil-
losis, a preexisting pulmonary condition is generally observed. Chronic cavitary 
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Fungal Infection 

pulmonary aspergillosis (aspergilloma or fungus ball) is the best-recognized form 
of pulmonary involvement due to Aspergillus, usually occurring in a preformed 
cavity in the lung (due to tuberculosis, sarcoidosis, or other necrotizing pulmonary 
processes) or in the paranasal sinuses [8, 9]. Subacute invasive aspergillosis (also 
called chronic necrotizing pulmonary aspergillosis) is a locally destructive invasion 
of lung parenchyma without invasion or dissemination to other organs [9, 10]. 

In immunocompromised patients, invasive aspergillosis (IA) can be a rapidly, 
progressive and frequently fatal disease. Invasive pulmonary aspergillosis (IPA) 
and rhinocerebral aspergillosis are the most common clinical forms of IA. Other 
clinical conditions included tracheobronchitis, invasive Aspergillus infection of 
the eye or heart, gastrointestinal invasive aspergillosis, cutaneous aspergillosis, 
and disseminated invasive aspergillosis [5]. Data from the Transplant-Associated 
Infection Surveillance Network (TRANSNET) [11] described that in HSCT 
recipients, invasive aspergillosis was the most common IFI (425 cases, 43%), 
followed by invasive candidiasis (276 cases, 28%) and zygomycosis (77 cases; 8%). 
One-year overall mortality rate reaches 75% [11]. In the Prospective Antifungal 
Therapy Alliance (PATH Alliance®) registry, from a cohort study of 960 cases 
of proven/probable IA, 48.3% of patients had hematologic malignancy, 29.2% 
received SOT, 27.9% were HSCT recipients, and 33.8% were neutropenic. The lung 
was the organ most frequently affected (76% of cases). The tracheobronchial tree, 
sinuses, skin, soft tissues, and the central nervous system were the most common 
extrapulmonary sites of infections. The most predominant species was A. fumiga-
tus (72.6%), followed by A. flavus (9.9%), A. niger (8.7%), and A. terreus (4.3%). 
Overall Kaplan-Meier survival (12-week post-diagnosis) among all patients with 
IA was 64.4%. 

3. Candidiasis 

Candida species are ubiquitous yeasts, being frequent colonizers of the skin and 
normal flora of mucocutaneous membranes of humans. Also, it was also recovered 
from soil, hospital environment, food, inanimate objects, and nonanimal environ-
ments [12]. Candida albicans, Candida dubliniensis, Candida glabrata, Candida guil-
liermondii, Candida intermedia, Candida kefyr, Candida krusei, Candida lusitaniae, 
Candida parapsilosis, Candida pseudotropicalis, Candida stellatoidea, and Candida 
tropicalis are the main species associated with candidiasis, although more than 200 
species of Candida have been identified. 

Candida albicans remains the predominant species in most studies [13]. 
However, a shift in the etiology can be observed in different regions of the world 
[14]. For example, in northwestern Europe and the United States, Candida glabrata 
is generally recovered as the most common species, whereas in Southern Europe, 
some Asian countries and Latin America, Candida parapsilosis and Candida tropi-
calis are more frequently recovered than Candida glabrata. Of notable concern is 
the emergence of Candida auris, a multiresistant species associated with outbreaks 
of candidemia in many countries that presents a serious global health threat [12, 
14–16]. 

As opportunistic pathogens, Candida infections can occur due to factors related 
to the host, the microorganism, or both. The three major conditions that predispose 
the human infection are: (i) the use of broad-spectrum antibiotics (long-term 
and/or repeated use), (ii) mucosal barrier breakdown, such as those induced by 
cytotoxic chemotherapy and medical interventions, and (iii) iatrogenic immuno-
suppression, such as corticosteroid therapy or chemotherapy-induced neutropenia 
[15]. Long hospital or intensive care unit (ICU) stay is the most common health 
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care-associated risk [17]. Among the several virulence factors described for 
Candida, (i) the ability of most species to switch between yeast, pseudohypha, 
and hyphae morphotypes; (ii) the secretion of a variety of factors, such as secreted 
aspartyl proteases, phospholipases and candidalysin toxin; and (iii) the effective 
capacity of adherence (mediated by proteins such as agglutinin-like protein 3) and 
biofilm formation are the main microorganism-related factors that contribute to 
candidiasis [15]. 

The incidence of Candida infections varies according to several epidemiologi-
cal and geographic characteristics. Candida species are among the top four main 
pathogens causing health care-associated bloodstream infections, particularly in 
ICU, affecting 250,000 people and causing more than 50,000 deaths worldwide 
every year, based on conservative estimates [18–20]. In an international study of 
prevalence and outcomes of infection in ICU, Candida was the third most common 
cause of infection (17%), after Staphylococcus aureus (20.5%) and Pseudomonas 
species (19.9%) [21]. 

Candida was the most common fungal pathogen that causes invasive infection 
in SOT population [22]. In bone marrow transplantation (BMT) under flucon-
azole prophylaxis, Aspergillus species replaced Candida as main cause of IFI [11]. 
Newborn infants [23], HIV-infected patient (without the use of antiretroviral 
therapy) [24], and patients who underwent abdominal surgery [25] are other 
populations at increased risk for Candida infections. Unadjusted mortality rates 
vary widely (from 29 to 76%) for candidemia. In the United States, the attributed 
mortality rate ranges from >30 to 40% and the median cost for inpatient care was 
$46,684 [15, 19, 26, 27]. 

4. Cryptococcosis 

Cryptococcus neoformans and Cryptococcus gattii are the two species that com-
monly cause cryptococcosis in humans. Historically, these species were classified 
into three varieties, five serotypes, and eight molecular subtypes. However, based 
on phylogenetic and genotyping studies, it was proposed to split Cryptococcus neo-
formans into two species (Cryptococcus deneoformans and Cryptococcus neoformans) 
and Cryptococcus gattii into five species (Cryptococcus bacillisporus, Cryptococcus 
decagatti, Cryptococcus deuterogattii, Cryptococcus gattii, and Cryptococcus tetragattii) 
[28]. Nonetheless, considering that more data about the genetic diversity of 
Cryptococcus were recently described and the absence of defined biological and 
clinical differences between the seven new species, some authors recommend the 
use of “Cryptococcus neoformans species complex” and “Cryptococcus gattii species 
complex” as a practical intermediate step until this species differentiation is clini-
cally relevant [29]. 

Cryptococcus neoformans has been isolated in decaying material within hollows of 
several tree species, fruit, and soil enriched by avian excreta (such as feral pigeons) 
and is globally distributed. Cryptococcus gattii is classically associated with eucalyp-
tus tree and limited to tropical and subtropical regions. However, recent outbreaks 
in Canada, Northern Europe, and Northern USA suggest that the ecological range 
of this species may not be fully recognized. Both species can survive and replicate in 
environmental scavengers such as free-living amoebae and nematodes [30, 31]. The 
respiratory tract is the main portal of entry for the aerosolized infectious particles 
from the disrupted and contaminated environment (soil, tree, or bird droppings-
enriched areas). Lung and the central nervous system (CNS) are the primary sites 
of infection, but eyes, prostate, and skin can be frequently involved. Traumatic 
inoculation may occur but is infrequent [31–33]. 

5 

http://dx.doi.org/10.5772/intechopen.85955


  

 

 

  
 

  
  

 
 

 

 

        
  

 
  

 
 

 
  

 

 
 

  
  

 
       

 
 

 

 

 
 

 

 

 

Fungal Infection 

HIV infection, idiopathic CD4+ lymphopenia, corticosteroid treatment, SOT, 
malignant and lymphoproliferative disorders, sarcoidosis, treatment with some 
monoclonal antibodies (such as alemtuzumab, infliximab, etanercept, adalimumab, 
or anti-GM CSF), rheumatologic diseases (such as systemic lupus erythematosus 
and rheumatoid arthritis), chronic liver disease, renal failure and/or peritoneal 
dialysis, hyper-IgM syndrome or hyper-IgE syndrome are the main risk factors for 
cryptococcosis [31, 33, 34]. 

Cryptococcus infections in humans were considered uncommon before the 
1970s. Cryptococcosis incidence increased significantly in the HIV epidemics in 
the 1980s. The overall incidence of 0.8 cases per million persons per year in the 
pre-AIDS era reached almost five cases per 100,000 persons per year in the peak of 
the AIDS epidemic. The incidence of cryptococcosis declined and stabilized from 
the mid-1990s with the use of fluconazole for the treatment of oral candidiasis and 
with the widespread use of active antiretroviral therapy (ART) [34–36]. However, 
HIV-associated cryptococcosis mortality remains unacceptably high, and globally, 
cryptococcal meningitis accounts for 15% of AIDS-related deaths. Cryptococcal 
infection-related deaths were estimated at 181,100 globally, with 75% (135,900) 
occurring in sub-Saharan Africa [37–39]. 

In HIV-negative individuals, cryptococcosis occurs in transplant recipients and other 
patients with primary or acquired defects in cell-mediated immunity [32]. In a recently 
multicenter, longitudinal cohort study in the United States [40], the demographics 
of 145 HIV-negative patients with cryptococcosis demonstrated that SOT (49 cases, 
33.8%) was the main underlying disease, followed by autoimmune syndromes (15.9%), 
hematologic malignancy (11.7%), decompensated liver disease (9.7%), solid tumor 
(5.6%), primary immunodeficiency (2.1%), and HSCT (2.8%). Glucocorticoid therapy 
and cytotoxic chemotherapy were the immunosuppressive medications described for 
more than 40% of patients. CNS involvement was observed in 71 patients (49%). 

5. Mucormycosis 

Rhizopus is the most common genera causative of human disease, followed 
by Mucor, Lichtheimia, Apophysomyces, Rhizomucor, and Cunninghamella spe-
cies. Less frequently, members include Actinomucor, Cokeromyces,  aksenaea, and 
 yncephalastrum [41–43]. These members from Mucorales family are ubiquitous 
in the environment, are taken by the host via inhalation of spores or ingestion of 
contaminated food, but rarely cause infection without obvious predisposing host 
factors [44]. 

Uncontrolled diabetes, hematological malignancy, malnutrition, solid organ 
transplantation, hematopoietic stem cell transplant, and liver disease are the primary 
underlying conditions associated with mucormycosis. Predisposing factors include 
corticosteroid use, neutropenia, trauma, anticancer therapy, use of calcineurin 
inhibitors, biological and renal replacement therapies, prior antifungal prophylaxis 
(e.g., voriconazole), iron overload and deferoxamine therapy [41, 42, 44]. 

Rhinocerebral, pulmonary, cutaneous, gastrointestinal, and disseminated 
mucormycosis are the common types of disease described. The mortality and mor-
bidity rates are dependent on affected organ, Mucorales species, and medical status 
of the patient. Mucormycosis can be an extremely aggressive disease, and mortality 
rates can reach 46% in sinus infection, 73% in mucormycosis after exposure to vori-
conazole, 76% in pulmonary disease, and 96% in disseminated infections [42, 45]. 

Based on autopsy reports [46], mucormycosis is the third most common cause 
of invasive fungal infection, after candidiasis and aspergillosis. In developed 
countries, hematologic malignancies and hematopoietic stem cell transplantation 
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are the leading underlying conditions in mucormycosis cases while in develop-
ing countries, particularly in India, the major causes of the disease are associated 
with uncontrolled diabetes or trauma [43, 47]. Data from Transplant-Associated 
Infection Surveillance Network show that mucormycosis (formerly zygomycosis) 
was the third most common IFI (8%) in HSCT [11] and sixth most common IFI 
(2%) among organ transplant recipients [22]. 

6. Pneumocystis 

Pneumocystis jirovecii (previously Pneumocystis carinii f. sp. hominis) is an oppor-
tunistic pathogen causing pneumonia in patients with immunodeficiencies and can 
colonize the lung of healthy individuals. Initially classified as a protozoan species, it 
is now recognized as a fungus based on phylogenetic data and the genus comprising 
a group of highly diversified species with a high degree of hosts-species specificity 
[48]. The environmental reservoir was not identified so that the mammalian hosts 
can be considered as reservoirs. Indeed, it was demonstrated that close person-to-
person contact could facilitate the transmission, and nosocomial transmission has 
been reported [48, 49]. 

Despite the genus Pneumocystis being known for years, its life cycle remains poorly 
understood, principally by the lack of a reliable continuous culture system. The 
hypothesized life cycle comprises different morphologic forms: trophozoites, cysts, 
and intracystic bodies (sporozoites) and all these forms reside in the alveoli of the 
lung with the cyst being considered the infectant and transmissible form [48, 50]. 
Evidence suggests that the gateway to infection is through inhalation since controlled 
studies in different animal models have demonstrated airborne transmission [48, 51]. 
As the organism is host specific, transmission from animals to humans is unlikely [51]. 

The occurrence of Pneumocystis pneumonia (PCP) is related to severely immuno-
compromised people, principally in HIV/AIDS patients, and with other immunosup-
pressed conditions, that is, cancers, autoimmune disorders, transplantation, chronic 
lung disease, especially obstructive pulmonary disease (COPD) [48]. Colonization 
rates have been reported on the order of 20–69% for HIV patients, from 0 to 20% for 
healthy adults, and in 6% of organ transplant recipients if no prophylaxis is given 
[51]. Primary exposure appears to occur at early childhood as demonstrated by the 
seroconversion seen in 85% of children up to 20 months of age [52]. Colonization of 
both children and adults may be a source of transmission of Pneumocystis jirovecii, 
serving as potential reservoirs. Guidelines for prevention and treatment of oppor-
tunistic infections in HIV-infected adults and adolescents include: treating patients 
with PCP together with prophylaxis of susceptible individuals (HIV patients with 
CD4 counts of <200 cells/μl or CD4 percentages of <14%); it is also recommended 
that a patient with PCP should not be placed in the same room with an immunodefi-
cient patient. The prophylaxis among transplant recipients has been proved to be the 
most effective approach for ending outbreaks of PCP [48, 53]. 

7. Conclusions 

The changes in the spectrum of the fungal infections associated with new risk 
factors and the emergence of resistant fungi highlight the necessity of a continuous 
update on knowledge of the epidemiology of fungal infections. Besides, the reduc-
tion of mortality among patients with IFIs must be accompanied by research that 
allows the development of new antifungal treatment strategies and earlier diagnosis 
by traditional and non-culture-based molecular tests. 
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Chapter 2 

Cryptococcus neoformans-Host 
Interactions Determine Disease 
Outcomes 
Jintao Xu, Peter R. Wiliamson and Michal A. Olszewski 

Abstract 

The fungal pathogen Cryptococcus neoformans can infect the central nervous sys-
tem (CNS) and cause fatal meningoencephalitis, which accounts for an estimated 
180,000 deaths per year. Cryptococcal meningoencephalitis (CM) occurs mainly in 
the individuals with compromised immune systems. Thus, cryptococcal disease in 
the CNS has been predominantly attributed to insufficient immune responses and 
subsequent uncontrolled fungal growth. However, evidence has emerged that an 
inappropriate immune response, as much as an insufficient response, may promote 
clinical deterioration and pathogenesis. In this chapter, we will review the different 
types of immune responses to C. neoformans and their contribution to tissue damage 
and diseases. 

Keywords: Cryptococcus neoformans, pathogenesis, immune pathology 

1. Introduction 

The human fungal pathogen Cryptococcus neoformans causes substantial morbid-
ity and mortality worldwide, with an estimated 1 million infections and 180,000 
deaths per year [1–3]. Although the primary route of infection is through inhala-
tion of yeast into the lungs, fungal dissemination to the central nervous system 
(CNS) leads to severe meningoencephalitis that can cause death or long-lasting 
neurological sequelae, including memory loss, vision deficiencies, hearing and 
speech impairments, and motor deficits [4–6]. Treatment options for cryptococcal 
meningoencephalitis (CM) are limited and often unsuccessful due to the increasing 
development of drug resistance, the high toxicity of the antifungal drugs and the 
poor permeability of the blood brain barrier [7–9]. Unsuccessful treatments are 
often accompanied with high mortality rates up to 15% and relapse rates of 30–50% 
[10–12]. Thus, there is a pressing need for understanding the pathogenesis of 
C. neoformans infection to develop more effective therapeutic strategies. 

Cryptococcal infections usually manifest in patients who are immunocompro-
mised secondary to HIV infection, cancer therapies, or organ transplantation [3]. 
This has led to the characterization of C. neoformans as an “opportunistic pathogen” 
that causes disease only when the immune system cannot control its growth. Prior 
studies have established a central role for T cell mediated immunity in fungal clear-
ance from the lungs and suggested that T-cell mediated immunity is also beneficial 
in the CNS [13–25]. These studies also support a paradigm that clinical failures are 
predominantly due to a deficiency in microbiological control. However, attempts 
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to develop immunotherapies that enhance the immune responses in CM have been 
largely unsuccessful, indicating other factors may also participate in the disease 
pathology [26]. Furthermore, clinical and experimental studies increasingly show 
that an exaggerated host immune response can promote cryptococcal pathogenesis. 
For example, a common complication of CM in HIV/AIDS patients is the immune 
reconstitution inflammatory syndrome (cIRIS) that develops after initiation 
of anti-retroviral therapy [27, 28]. A parallel syndrome occurs among non-HIV 
patients with severe cryptococcal CNS infection, termed post infectious immune 
inflammatory syndrome (PIIRS) [29–31]. These patients develop severe neurologi-
cal sequela and morbidity with persisting inflammatory responses, often despite 
fungal eradication [28, 32–36]. A detrimental role of host inflammation is further 
supported by the therapeutic effects of corticosteroids in ameliorating IRIS and 
PIIRS symptoms and by observations that premature or abrupt steroid-weaning 
may result in the recurrence of CNS lesions and clinical relapse [29, 30, 37]. 

This evidence challenges the view that cryptococcal disease is a consequence of 
a compromised immune system. Instead, the outcomes of cryptococcal disease can 
be better understood as a balance of C. neoformans-host interactions. The effect of 
C. neoformans on host disease can be explained by the damage-response framework 
(DRF), a theory for microbial pathogenesis proposed in 1999 [38]. The DRF theory 
incorporates the contributions of host-microbe interaction, rather than presenting 
microbial pathogenesis as a singular outcome of either microbial factors or host fac-
tors. The results of host-microbe interaction can be visualized with a single parabola 
depicting host damage as a function of the strength of the immune response [26]. 
Weak host immune responses due to HIV infection or immunosuppressive thera-
pies fail to control fungal growth, which results in fungus-mediated host damage. 
However, strong immune responses elicited by C. neoformans can also lead to host 
damages and diseases. In this chapter, we will review recent human clinical and 
experimental animal studies that have enhanced our understanding of the complex 
mechanisms involved in immunopathogenesis during C. neoformans infection. 
Uncovering the mechanisms that are involved in anticryptococcal host defense or in 
immunopathogenesis will facilitate the discovery of new intervention strategies to 
treat cryptococcal infections. 

2. Cryptococcal immune reconstitution inflammatory syndrome 

C. neoformans can cause infection in both the meninges and the Virchow-Robin 
channels surrounding the penetrating vessels within the brain parenchyma [39]. 
Although the exact mechanism by which this encapsulated pathogen migrates into 
the CNS is currently unclear, studies have found that circulating C. neoformans was 
trapped in the brain capillary and can actively transmigrate the microvasculature 
with contributions from urease and metalloprotease [40–42]. After migration, C. 
neoformans causes fatal meningoencephalitis which accounts for 15–20% of AIDS-
related deaths [1, 43, 44]. The high fungal burdens during CM in AIDS are associ-
ated with mortality, suggesting a prominent role of the fungal pathogen for host 
damage [45]. Thus, in HIV infection/AIDS, susceptibility to CM is thought to occur 
due to lack of T cell-mediated fungal clearance. Indeed, studies have shown that 
presence of CSF cytokine and chemokine responses consisting primarily of IL-6, 
IFN-γ, IL-8, IL-10, IL-17, CCL5 and TNF-α, are associated with increased macro-
phage activation, more rapid fungal clearance from the CSF, and patient survival 
[45]. The overall low levels of cytokine production in AIDS patients and insufficient 
activation of resident or recruited macrophages in the absence of T cells producing 
IFN-γ/TNF-α lead to uncontrolled fungal growth [45, 46]. 
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Antiretroviral therapy (ART) in AIDS patients rapidly restores host T cell 
responses. However, in a portion of patients it leads to a highly lethal complica-
tion, cIRIS, which is defined as a paradoxical clinical deterioration after initiation 
of ART, despite efficient control of fungal infection [28]. cIRIS occurs in 15–30% 
of HIV-infected individuals with cryptococcosis [28, 47]. Similarly, patients who 
undergo immune suppressive regiments during bone marrow transplantation or 
autoimmune diseases can develop cIRIS like syndromes once the host immune 
response is restored when immunosuppressive therapy is tapered [48]. Previous 
studies have found that paucity of initial CSF inflammation, low IFN-γ levels, and 
high fungal loads are risk factors for the development of IRIS [27, 45]. During cIRIS, 
the immune response in the brain is characterized by excessive activation of Th1 
CD4+ subsets with elevated production of cytokines including IFN-γ and TNF-α 
[27, 33, 49]. 

While the exact pathogenic mechanisms of IRIS have not been unraveled, the 
lymphopenic environment during HIV infection may result in abnormal func-
tion of residual CD4 T cells, rendering them more pathogenic as the population 
expands after ART [50]. Furthermore, it has also been proposed that there exists a 
decoupling of innate and adaptive immune responses in AIDS patients prior to ART 
due to deficient T cell responses, which sets the stage for excessive inflammation 
after T cell reconstitution. Indeed, several lines of evidence show that mononuclear 
immune cells are implicated in cIRIS. Predisposition to cIRIS has been shown to be 
associated with higher CCL2/MCP-1, CCL3/MIP-1α, and GMCSF production in the 
CSF, which promotes trafficking and activation of macrophages in the infection 
sites [45]. Patients with cIRIS had increased numbers of proinflammatory interme-
diate monocytes (CD14highCD16+) which produce reactive oxygen species 
[51, 52]. Although macrophages can be primed by fungal pathogens in AIDS 
patients prior to ART, they never become fully activated in the absence of T cell help 
to exert their effector functions in fungal clearance. This results in high levels of 
pathogen replication as the disease progresses. Nevertheless, increasing numbers of 
primed macrophages accumulate and create a state of immunological hyperre-
sponsiveness to the subsequently CD4+ T cell help. ART rapidly restores Th1 type 
response in the host with high level of IFN-γ production. Large numbers of primed 
macrophages then become fully activated to produce an acute spike in proinflam-
matory mediators, which may drive immunopathology during cIRIS. Thus, mac-
rophage activation in cIRIS may act in concert with T-cell responses resulting in 
tissue-destructive inflammatory responses. 

The mechanisms of tissue damage by host inflammation during fungal infec-
tions are still under active research. Macrophage or T cell production of TNF-α, 
IL-1β, reactive oxygen species (ROS) and nitrogen species (RNS), may contribute to 
irreversible tissue damage and/or lead to neuronal apoptosis [53–55]. C. neoformans 
infection also induces cerebral edema and raised CSF pressure that are associated 
with symptoms including headache, nausea, and mental status deterioration. 

3. Postinfectious inflammatory response syndrome 

Another example showing that strong host immune responses during C. neo-
formans infection can induce immunopathology is post-infectious inflammatory 
response syndrome (PIIRS). It is characterized in non-HIV patients during initial 
therapy by severe mental deficits despite antifungal therapy and their apparent 
immunocompetent state. Reports showed that up to 25% of cases in the United States 
and 60% in the Far East occur in apparently immune competent patients [56, 57]. 
Despite antifungal therapy and negative CSF-C. neoformans cultures, PIIRS patients 
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many times require ventricle-peritoneal shunts to relieve the high CSF pressure 
caused by inflammation. Recent studies have shown that patients with PIIRS exhibit 
strong intrathecal Th1 responses with high levels of IFN-γ production and a relatively 
lack of Th2 responses [30]. Importantly, elevated levels of CSF neurofilament light 
chain (NFL), a marker of axonal injury, indicate ongoing immunological host neuron 
damage. Interestingly, macrophages recruited to the CNS infection site are often alter-
natively activated (M2) and exhibit poor phagocytic effect during PIIRS [30]. This 
apparent Th1-M2 discrepancy suggests that PIIRS patients may have downstream 
defects in monocyte activation. New therapies that consider immune-mediated host 
injury may decrease mortality in these severe or refractory clinical cases [43]. 

4. Animal models of IRIS and PIIRS 

Detrimental roles for immune responses in the pathogenesis of cryptococcus-
associated IRIS or PIIRS have also been recently demonstrated in experimental 
mouse models. A recent study in our lab established a reproducible mouse model 
of CM using C57BL/6 mice infected intravenously with 106 CFU of C. neoformans 
strain 52D [58]. Using this model, we found that infected mice displayed overt and 
severe symptoms similar to that of human patients, including increased cranial 
pressure, ataxia, and limb paralysis after 21 days post infection (dpi). Importantly, 
over 50% of animals succumbed to infection between 21 and 35 dpi, despite appar-
ent fungal control in the CNS (Figure 1). Thus, we showed that the magnitude of 
CNS fungal burden does not directly correlate with the intensity of disease symp-
toms or mortality during CM. 

Brain cellular inflammation, marked by leukocyte accumulation after 21 dpi and 
dominated by CD4+ T cell infiltration, plays an important role in the pathology of 
the CNS in cryptococcal-infected mice. Similar to human patients with IRIS and 
PIIRS, infiltrating CD4+ T cells in brains of cryptococcal-infected mice exhibit a 
Th1-type bias and produce high levels of IFN-γ. Critically, the influx of immune 
cells into the CNS after 21 dpi was synchronized with the onset of fungal clearance, 
development of neurological symptoms, and mortality. The depletion of CD4 + T 
cells leads to a reduction in mortality and inflammatory pathology, providing con-
ceptual evidence that CD4 + T cells are a principal mediator of inflammation and 
pathology in this model. Notably, over the course of the study, the survival of CD4+ 

Figure 1. 
Depletion of CD4+ T cells resulted in improved survival despite higher fungal burden during CM. C57BL/6 
mice were infected with 106 CFU of C. neoformans 52D via retro-orbital intravenous inoculation. (A) Fungal 
burdens were measured in whole-brain homogenates at the indicated time points. Naive mice and animals 
that succumbed to infection (†) are indicated. (B) Representative images of severe cranial swelling and CNS 
tissue injury in infected mice. (C) Survival of infected CD4-depleted (broken line) and isotype-treated mice 
through 35 dpi. (D) Brain fungal burdens were calculated on day 21 and 35 dpi. *, P < 0.05; **, P < 0.01; ****, 
P < 0.0001. Reproduced from Neal et al., [58]. 
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T cell depleted mice significantly improved despite having higher fungal loads in 
the CNS compared to mice with sufficient CD4+ T cells (Figure 1). Depletion of 
CD4+ T cells during CM also broadly inhibited all other aspects of the CNS inflam-
matory response, including accumulation of CD8+ T cells and CD11b + Ly6C+ 
myeloid effector cells. Taken together, these data strongly support the idea that 
CD4+ T cells exert dual but opposing roles during CM: promoting the elimina-
tion of the fungal pathogen in the CNS but simultaneously driving tissue damage, 
neurological deterioration, and death. 

Another animal model has also demonstrated the pathological role of CD4+ T 
cells in cIRIS. Eschke and colleagues reconstituted RAG−/− mice, which are deficient 
in T and B cells, with WT CD4+ T cells after infection with C. neoformans [59]. They 
found that mice receiving CD4 T cells displayed high levels of Th1-type cytokines 
such as TNF-α and IFN-γ compared to mice not receiving CD4+ T cells. These 
results suggested that CD4+ T cell reconstitution in mice infected with C. neofor-
mans may lead to syndromes similar to IRIS in HIV-infected patients [59]. These 
animal models provide important tools for further investigating the mechanism of 
cryptococcal pathology. 

5.  Host immunity to C. neoformans infection: protective or non-
protective, the yin and yang 

Protective immunity is conferred by a fine balance between immune responses 
that eliminate the pathogen and those that limit host damages. However, an immune 
response induced by the pathogen may be non-protective for any one or combina-
tion of the following reasons: (1) it could occur in the wrong location or timeframe, 
promoting inflammatory injury without effective clearance of pathogens; (2) it 
could be too strong and cause immunopathology despite control of pathogen bur-
den; 3) regulatory mechanisms meant to maintain host tissue integrity may lead to 
microbial survival and persistence and thus result in chronic inflammation. Below, 
we describe cellular and molecular mechanisms by which dysregulation of immune 
responses contribute to host disease during infection with C. neoformans. 

5.1 Host immune responses contribute to fungal clearance but also tissue damage 

Upon infection, C. neoformans is sensed by a variety of innate receptors 
including Toll-like receptors [60–62], mannose receptors [60], and β-glucan 
receptors [63–65]. Macrophages [66, 67], DCs [68], natural killer cells [69–72] 
and neutrophils [73] have been shown to mediate killing C. neoformans, how-
ever, the development of the adaptive immune response is required for control-
ling the fungal growth in the host [74–76]. Specifically, the development of Th1 
and Th17 responses that are associated with classical activation of macrophages 
(M1) promotes fungal clearance in both humans and experimental mouse mod-
els [14, 77]. DCs and macrophages function as the potential sensors for infection 
through PRRs or inflammasomes, and produce cytokines such as IL-12, IL-23, 
IL-6, IL-18, TNF-α and IL-1β, which have been shown to promote the Th1/Th17 
response during C. neoformans infection [78–84]. During this response, Th1 
and Th17 cells produce cytokines such as IFN-γ, IL-17 and IL-22, which act on 
macrophages, neutrophils or epithelial cells and induce robust antimicrobial 
and phagocytic responses, including the production of reactive oxygen and 
nitrogen species [16, 85–90]. As a result, resident and/or recruited macrophages 
and DCs can become highly activated and function as the main effector cells for 
controlling fungal infection [91, 92]. 

17 

http://dx.doi.org/10.5772/intechopen.83750


  
 

 
 

  
 

 
 

 

  

 
 

 
 

 
 

 
  

 
 

  
 

 
 

 
 

 

 
  

 

Fungal Infection 

Figure 2. 
RIPK3 and FADD modulate host responses against C. neoformans infection. (A) Ripk3−/− and Ripk3−/−Fadd−/− 

mice were more susceptible to C. neoformans infection. (B) Diminished fungal clearance in lungs of Ripk3−/− 

and Ripk3−/−Fadd−/− mice. (C) RIPK3 or FADD deletions altered Th-polarizing and pro-inflammatory 
cytokine profiles in pulmonary response to cryptococcal infection. *, P < 0.05; **, P < 0.01; ****, P < 0.0001. 
Reproduced from Fa et al., [93]. 

Although generation of the Th1/Th17 response and subsequent M1 activation 
play a critical role in controlling fungal growth, excessive immune responses can 
become destructive and cause lung immunopathology following fungal infection. 
Recent studies demonstrated that FADD and RIPK3 proteins, which are mediators 
of death receptor-triggered extrinsic apoptosis, play a crucial immune regulatory 
role in preventing excessive inflammation during C. neoformans infection [93]. 
Deletion of RIPK3 and FADD led to a robust Th1-biased response with M1-biased 
macrophage activation, which is accompanied by marked upregulation of cytokines 
like TNF-α, IL-1α, IL-1β, IL6, and IFN-γ (Figure 2). Rather than being protective, 
this robust host response was deleterious and is associated with paradoxical fungal 
growth and rapid clinical deterioration (Figure 2). These findings showed that 
excessive inflammation can mediate tissue damage and host disease during cryp-
tococcal infection [93]. Furthermore, the balance between Th1 and Th17 immune 
responses plays important roles in optimizing clearance and minimizing inflamma-
tory damage to the host tissues during fungal infections. For example, it has been 
shown that IL-23 and Th17 pathway act as a negative regulator of Th1 response and 
thus contribute to fungal growth during C. albicans and A. fumigatus infection [94]. 
Recent studies show that the Th1, Th2, Th17 responses and cytokines co-exist and 
evolve during different time points in a chronic fungal infection [13], while fungus 
adapts to and exploit the dysregulation of this immune balance. Thus, therapeutic 
cytokines and vaccines may create a new therapeutic mean to restore protective 
host responses and fungal control, but would need to be introduced with extreme 
caution not to induce an excessive immune bias. 

DCs play a critical role in modulating host antifungal responses. Distinct PRRs 
and intracellular signaling pathways in DCs help to define the immune response 
to fungal pathogens [95]. Studies from Bonifazi et al. showed that C. albicans 
exploits multiple, functionally distinct, receptor-signaling pathways in DCs 
ultimately affecting the local inflammatory/anti-inflammatory state in the gut [96]. 
Furthermore, depletion of DC through administration of diphtheria toxin to trans-
genic mice resulted in rapid clinical deterioration and death of mice infected with 
C. neoformans [97]. Early mortality in DC-depleted mice was related to increased 
neutrophil accumulation accompanied with histopathologic evidence of alveolar 
damage, including hemorrhagic and proteinaceous exudates [97]. Similar changes 
mediated by neutrophils were associated with respiratory failure and death [98]. 
Collectively, these data define an important role for DC in regulating the initial 
innate and adaptive response following fungal infections. 
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5.2  Host immune responses normally associated with homeostasis can contribute 
to fungal persistence 

Cryptococcal virulence includes evasion of immune recognition, interference 
with phagocytosis, and modulation of host immune responses [56, 99]. Many 
fungal factors have been shown to promote allergic Th2 or Treg responses. These 
types of responses are characterized by alternatively activated macrophages and 
may promote uncontrolled fungal growth [56]. However, the regulatory immune 
response is also crucial for maintaining host tissue homeostasis and limiting the 
inflammatory responses that can cause tissue damage. 

Th2: In murine models, C. neoformans exhibits a remarkable ability to induce 
Th2 response, which is associated with fungal growth, fungus-associated allergic 
responses and disease relapse. Although rare for C. neoformans infection, other 
fungal pathogens such as Aspergillus fumigatus can induce devastating allergic bron-
chopulmonary mycosis in human patients that is accompanied by a Th2 response 
[100, 101]. Additionally, enhancing the Th2 response in a mouse model has been 
shown to exacerbate pulmonary disease during cryptococcal infection, supporting a 
causal role of Th2 response in pathology [102]. 

IL-4 and IL-13 provide the most potent proximal signals for Th2 cell polarization 
[13, 17, 103]. The epithelial-derived cytokines thymic stromal lymphopoietin (TSLP), 
IL-25, and IL-33 have been shown to regulate the development of Th2 response during 
asthma [104, 105]. A time-dependent increase in IL-33 expression in the lungs has 
been found during C. neoformans infection, and IL-33 signaling can promote Th2 
response and facilitates cryptococcal growth in the lungs [106]. In addition, chitin 
recognition via host chitotriosidase promotes harmful Th2 cell differentiation by 
CD11b + conventional DCs in response to pulmonary fungal infection [102]. However, 
Th2 polarization may play beneficial roles at certain stage of infection. IL-4Ra has 
been shown to afford protection early upon infection associated with increased 
IFN-γ and nitric oxide production. More importantly, Th2 response plays important 
roles in wound healing to tissue destructive pathogens [107] and down regulating 
inflammatory responses [108]. Many of the proteins produced in response to IL-4 
and IL-13, such as arginase, MMP12, and TREM-2, are associated with injury [109]. 
Th2-activated macrophages also produce TGF-β which can suppress pro-inflammatory 
responses while at the same time serving as a potent pro-fibrotic mediator [110]. 

Treg: CD4+ CD25+ Treg cells expressing the transcription factor forkhead box 
protein 3 (FoxP3) play critical roles in down-regulating immune responses and pro-
moting homeostasis [111, 112]. Accumulation of antigen specific Treg has been shown 
during infection with fungal pathogens [113–116]. Multiple studies have shown that 
Treg can suppress effector cells and lead to fungal persistence. For example, Treg in 
mice infected with C. albicans were shown to be capable of inhibiting Th1 activity, 
thereby limiting protective responses. However, the roles of Treg in modulating Th17 
activity are still controversial, with both positive and negative effects reported 
[117, 118]. Similar enhancement of effector function in the absence of Treg can be 
found in multiple other models of viral, bacterial, and parasitic infection [119]. 

While Treg may lead to pathogen persistence, they can actually be benefi-
cial in protecting against immune-mediated damage to the host. This has been 
demonstrated in diseases caused by Pneumocystis pneumonia, HSV, Schistosoma 
mansoni where depletion of Treg leads to enhanced pathology [120–123]. It has 
been shown that depletion of Tregs enhanced Th2 response during pulmonary 
cryptococcal infection as evidenced by increased mucus production, enhanced 
eosinophilia, and increased IgE production [113]. Interestingly, Treg-depleted 
mice exhibited elevated fungal burden compared to control mice, suggesting 
that Treg mediated enhanced fungal control by inhibiting non-protective Th2 
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responses [113]. Confirming these observations, therapeutic expansion of Tregs 
during pulmonary cryptococcal infection has been shown to limit allergic airway 
inflammation, as demonstrated by reduced production of IgE and Th2 cytokines 
[116, 124]. Since laboratory mice show a strong tendency to develop a detrimen-
tal Th2 response during C. neoformans infection, Tregs may be protective in this 
context by inhibiting the tissue-damaging Th2 response. Furthermore, Tregs 
have also been demonstrated to be required for resistance to reinfection with 
C. albicans [120]. 

IL-10 is a critical effector molecule involved in the immunoregulatory func-
tions of Treg cells [125]. IL-10 has been reported to inhibit production of cytokines 
such as IL-1, IL-6, IL-23, IFN-γ, TNF-α and chemokines including CCL2(MCP-1), 
CCL12(MCP-5), CCL5(RANTES), IL-8, CXCL10(IP-10), and CXCL2(MIP-2) [126]. 
During C. neoformans infection, IL-10-deficient mice display reduced expression 
of IL-4, IL-5, and IL-13, but enhanced TNF-α and IL-12 expression [127]. Studies 
have further shown that IL-10 signaling blockade can promote fungal control even 
if administered after persistent infection has been established [128]. IL-10 expres-
sion also occurs and dampens fungal control in response to other fungal pathogens 
such as C. albicans, H. capsulatum and A. fumigatus [129–131]. These studies suggest 
that IL-10 production plays an essential role in the development of persistent fungal 
infections. Deficiency or blockade of IL-10 may result in better fungal control, 
however, it comes at the cost of excessive inflammation that may cause greater 
tissue damage [127, 132, 133]. 

The roles of Tregs in the CNS during fungal infection, however, remain less 
studied. One report shows an increase in the abundance of Treg cells within cIRIS 
patients [134]. Further clinical and animal studies are needed to investigate the 
functions of Tregs during fungal CNS infections. 

6. Conclusions and future directions 

A tightly-regulated balance between inflammatory and regulatory mechanisms 
is required to control fungal infection, maintain host homeostasis, and ultimately 
develop protective immunity (Figure 3). Recent studies have demonstrated that 
disease and mortality in cryptococcal infection can result from either uncontrolled 
fungal growth due to defective host immunity, or excessive host inflammation. As 
the spectrum of hosts with cryptococcal disease expands, it is critical to understand 
and distinguish pathology caused by the pathogen or host responses. For example, 
additional suppression of weak immunity by steroid therapy in patients with 
uncontrolled fungal growth may lead to enhanced fungus-mediated damage and 
mortality in HIV-associated cryptococcal patients [135]. Instead, adjunctive IFN-γ 
therapy to bolstering immunity in these patients has the potential to ameliorate 
fungus-mediated damage and mortality [136]. However, in cIRIS patients, who 
experience inflammation-mediated tissue damage and mortality, corticosteroids 
can be effective to control disease-related deterioration [30]. Furthermore, mount-
ing evidence implies that the top priority for cIRIS and PIIRS is to control the 
devastating immunopathology. Thus, comprehensive therapeutic strategies that 
take fungus- and host mediated damage into account could have the potential to 
significantly improve therapeutic outcomes. 

Recent studies have identified the involvement of a number of immunopatho-
genic mechanisms including CD4+ T cells. However, the function of CD4 T cells 
overlaps with the mechanisms required for fungal clearance. Little is known about 
whether it is possible to uncouple the anti-fungal host defense mechanisms from 
the host immune responses that mediate deleterious immunopathology. One of 
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Figure 3. 
C. neoformans and host interactions determine disease outcomes. In the center, innate immune cells such as 
DCs recognize C. neoformans using multiple pattern recognition receptors. A weak immune response due to 
HIV, cancer, or organ transplant can result in fungal-mediated tissue damage. Macrophages recruited into the 
infected tissue without T cell stimulation fail to control fungal growth. In healthy individuals, the DC-initiated 
Th1 response, which completely activated macrophages to efficiently control C. neoformans infection. Cytokines 
such as TNF-α and IFN-γ, as well as iNOS, are critical for fungal control. Tregs play important roles in 
limiting inflammation and maintaining homeostasis of the host. During IRIS and PIIRS, however, excessive 
inflammation can cause tissue damage despite fungal control. Whether Tregs are functional under this state 
is not clear. Macrophages may not be activated in PIIRS patients even with strong Th1 and IFN-γ production. 
Overproduction of cytokines and iNOS may promote tissue damage and cause disease. For certain host genetic 
backgrounds or highly virulent strains, an allergic Th2 response is developed and control of fungal growth fails. 
Host tissue damage in this circumstance may stem from both the pathogen and the detrimental Th2 responses. 

the future directions in this research field is to identify mechanisms that are not 
required for fungal clearance but are major culprits in immunopathology which 
could be promising targets for future immunotherapies. 
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Invasive Candidiasis: 
Epidemiology and Risk Factors 
Jorge Alberto Cortés and Ivohne Fernanda Corrales 

Abstract 

Invasive candidiasis is a severe infection caused by the yeast of the genus 
Candida. This highly lethal infection can affect any organs, but it is usually identi-
fied by the growth of the yeast in bloodstream samples. Although C. albicans was 
the most frequently found species, there has been a global trend to the non-albicans 
isolates. The appearance of C. auris, a newly identified species around the world, is 
a cause of concern because of resistance to antifungals. In this chapter, the 
epidemiology and risk factors for the acquisition of candidemia and other forms of 
invasive candidiasis are reviewed, while showing the current knowledge of 
worldwide epidemiology. 

Keywords: Candida, Candida albicans, invasive, candidiasis, fungemia, 
candidemia, intensive care units, surgery, immunosuppression, microbiota 

1. Introduction 

Candidiasis is the common name for diseases produced by the yeast of the genus 
Candida. This is the most frequently found yeast in human microbiome and is 
capable of causing disease at different sites of the human anatomy and with diverse 
severity [1]. Invasive candidiasis refers to severe fungal infections in which the 
yeast might be found in deep organs or blood [2]. Due to the difficulty of identify-
ing Candida yeasts in tissues, since it requires a biopsy of the tissue compromised, 
invasive candidiasis in the literature has been primarily found as bloodstream 
infections, alone or with accompanying tissue compromise. 

2. Microbiology and environment 

Candida species are yeasts (i.e., they mainly have a unicellular form). They are 
small, with a size of 4–6 μm, with a thin wall and an ovoid aspect, named blasto-
spores [3]. They reproduce by budding. Using the microscope, these yeasts can be 
seen in the form of pseudohyphae, budding cells that do not separate, or truly 
hyphae (multicellular organisms). Candida organisms belong to the class Ascomy-
cetes, order Saccharomycetales, and family Saccharomycetes [4]. There are around 
200 species of Candida; however, a limited number has a pathogenic effect on 
humans [4]. Table 1 shows the most frequently found species. Due to their previous 
prevalence and pathogenic significance, they were usually classified as albicans 
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Species Characteristic 

C. albicans Usually the most frequently found 

C. parapsilosis C. parapsilosis, C. orthopsilosis, C. metapsilosis 
complex 

C. tropicalis Related to cancer 

C. glabrata Usually resistant to azoles, seen more frequently in developed scenarios and 
older patients 

C. guilliermondii Less pathogenicity 

C. lusitaniae Potentially resistant to amphotericin 

C. krusei Intrinsically resistant to azoles 

C. dubliniensis Difficult to differentiate from C. albicans 

C. auris Responsible for a global outbreak 

Table 1. 
Most frequently found Candida species in human disease. 

versus non-albicans Candida species. However, due to changes in epidemiology, this 
overall classification might not be useful any more. 

They grow in agar as colonies with a smooth, creamy, white appearance. The 
formal identification can be made by use of biochemical physiological reactions, 
which can differentiate an important number of isolates. The metabolic reactions 
include carbohydrate fermentation, nitrate use, and urease production. 

Candida yeasts might be seen with direct stains like KOH with 10–20% concen-
trations, but also with others like Gram, Giemsa, Wright para amino-salicylic (PAS) 
acid, and Papanicolaou. In direct stains, Candida might be seen as big aggregates of 
blastoconidiae, with short and large pseudohyphae. Usual growth media include 
Sabouraud agar, brain infusion, heart, and yeast extract. While C. albicans and C. 
dubliniensis grow in usual Sabouraud agar with antibiotics, some species might be 
inhibited by cycloheximide [4]. Usual growth time is 2–3 days at 28–37°C. Chro-
mogenic agars were developed more than 20 years ago and are capable of identify-
ing the most commonly found species, and speciation is desirable due to pathogenic 
and susceptibility differences among them. There are several commercial methods 
using chromogenic agars. The sensitivity for detection of Candida yeast is over 95%, 
usually with a low number or no false positive results [5]. The finding of a positive 
culture does not imply an invasive infection, and a special consideration has to be 
made for isolates from sterile sites. 

Candida species differ in their susceptibility to different antifungals available in 
different countries. Most frequently found isolates of C. albicans and C. parapsilosis 
are susceptible to all antifungals available. C. tropicalis might have some resistance 
to fluconazole, while maintaining susceptibility to equinocandins and amphotericin 
B. C. glabrata tends to have higher minimal inhibitory concentrations (MICs) to 
azoles, while remaining susceptible to equinocandins and amphotericin B. C. 
lusitaniae isolates can be found to be resistant to amphotericin B. The recently found 
that C. auris is frequently found multidrug resistant. 

Susceptibility testing can be performed by different methods, including broth 
microdilution (recommended in the USA and Europe), but there are other different 
commercial methods available in hospitals. Two slightly different standards for 
susceptibility testing are currently available. One is suggested by the Clinical Labo-
ratory Standards Institute (CLSI, in USA), while the other is proposed by the 
European Committee on Antimicrobial Susceptibility Testing (EUCAST), spon-
sored by the European Society of Clinical Microbiology and Infectious Diseases 
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(ESCMID). Basic differences between both methodologies include time and instru-
ment to read the results. Different clinical breakpoints have been established for the 
most commonly found species, with the intention of differentiating the risk of 
clinical failure after treatment. The experience with fluconazole has allowed to 
develop better prediction models, in comparison with newer antifungals [6]. In 
summary, an isolate of Candida is exposed to different concentrations of the anti-
fungal and the in vitro growth is observed. If there is no important growth, deter-
mined optically or by a spectrophotometer, a minimal inhibitory concentration 
(MIC) is established. As mentioned, data from clinical trials and observation 
cohorts with common species such as C. albicans and C. glabrata have allowed to 
identify clinically relevant breakpoints to differentiate isolates with low MICs (sus-
ceptible); intermediate MICs (also called susceptible dose dependent—SDD), in 
which an increase in the administered antifungal can control the infection; and high 
MICs, (resistant), for which a lower probability of success is expected. For some 
other uncommon species, only epidemiological breakpoints are available. These 
breakpoints are also MICs, but there is no clinical evidence of correlation with the 
clinical outcome after treatment. However, since MICs are higher than those in 
usual isolates, a worse outcome might be expected. These breakpoints are expected 
to identify isolates with natural or acquired mechanisms of antifungal resistance. 
The epidemiological breakpoints are based on the statistical distribution of MICs of 
the wild-type isolates (i.e., isolates without any previous resistant pressure). Com-
mercial methods are modifications of the standard methods that use dyes to identify 
the growth (e.g., Alamar Blue) of the microorganisms. Examples include 
Sensititre™ and YeastOne™. Other methods are based on agar, in which a gradient 
of the antifungal is diffused in the solid growth media, which allows to directly read 
the MIC (e.g., Etest ™) [7]. 

Candida species are part of the human microbiota and they live in human 
mucosae and skin. Candida species can be found in the ground, animals, fruits and 
vegetables, and in the hospital environment. It is not considered a laboratory con-
taminant. It is considered an endogenous pathogen since around 60–75% of the 
people might have it in the mucosal epithelium, especially in the gastrointestinal 
and genital tracts [8]. In the hospital area, they have been found over inanimate 
surfaces, including percutaneous catheters and tubes. They might even be found in 
the hands of healthcare workers. Among patients in healthcare centers, the coloni-
zation of the mucosae has been related to antibiotic use and hospitalization time [9]. 
In patients in the intensive care unit (ICU), colonization might be found in different 
anatomical sites with ample variations [10, 11]. Pharyngeal colonization rate has 
been found to be between 34 and 65%, gastric colonization between 42 and 67%, 
rectal colonization between 21 and 40%, and colonization in other sites between 11 
and 40% [10, 11]. These data show the possibility of colonization that has this 
microorganism in patients under stress conditions (in this case, severe disease). In 
the normal host, the colonization rate might reach over 50% in the mouth, 40% in 
the vaginal tissue in women, and 73% in any mucosa of the gastrointestinal or 
genital tracts [8]. 

3. Pathogenesis 

Candida species have some characteristics that permit them to adapt to different 
environments and act as an opportunistic pathogen. These factors include adapta-
tion to pH changes, permitting to survive in blood or some alkaline environments, 
as well as in the acidic environment of the vaginal tissue; these species have 
adhesins, mannoproteins with capacity to adhere to different cells and cell products. 
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These adherence proteins allow the isolates to survive in tissues, but also over 
inanimate surfaces that have been exposed to plasma or inflammatory host proteins 
like urinary or endotracheal catheters. Candida species have also important 
enzymes as virulence factors, since some of them have keratinolytic, peptidase, 
hemolysin, and other effects. One of the most frequently mentioned virulence 
factors include the possibility of a morphologic transition, which has been exten-
sively studied. It refers to the possibility of morphologic changes of blastoconidia to 
pseudohyphae to real hyphae. These changes are stimulated by environmental 
conditions. The filamentous forms are related to active infection in the host, except 
for C. glabrata. Other factors related to pathogenicity or virulence also include a 
phenotyping change, the possibility of adopting different phenotypes in the cul-
tures (color or aspect of the colonies), and biofilm formation. A biofilm is a large 
community of symbiotic microorganisms adhered to a surface. This conformation 
allows the microorganisms to have a highly defensive capacity, persistence, and a 
highly antimicrobial resistance. 

As mentioned before, Candida might be part of the human flora. The majority of 
infections are due to the interplay between the risk factors, that pose a risk to the 
individual, the interaction with other microorganisms present in the skin or mucosa 
and the total quantity of microorganisms present. This was demonstrated some 
years ago in an experiment [12]. An individual ingested directly from a C. albicans 
culture. After some hours, this immunocompetent individual began to have fever. 
After 12 hours, Candida isolates were found in the bloodstream and, after 16 hours, 
they were found in the urine. After 24 hours, Candida isolates were cleared from 
the body and the individual returned to the normal state. This experiment proved 
the importance of colonization. With posterior evidence, it has been demonstrated 
that the first step to have an infection is colonization by Candida especially in the 
gastrointestinal tract, but otherwise in contact with indwelling catheters, the skin, 
or wounds that may permit the entry of the yeast into the bloodstream. In another 
critical observation, patients in the ICU were followed with cultures. The coloniza-
tion index (it is the proportion of positive cultures for the same Candida species 
taken from different anatomical places) increased over time and was correlated to 
the probability of developing an invasive candidiasis [9]. These studies suggest that 
in individuals with Candida colonization, those factors that promote the grow of the 
yeast, by eliminating the bacteria that can compete for the environment, that alter 
or facilitate the penetration of the yeast to the bloodstream (lesions in the gastroin-
testinal mucosa, indwelling catheters) will promote the entry of Candida yeast to 
the blood, while the net state of compromise of the immune system will affect the 
probability of fungal clearance and the possibility of seeding on specific organs. 

4. Epidemiology 

4.1 Risk factors 

4.1.1 Candida infection in the intensive care unit 

Patients in the ICU have the highest rate of Candida infections in the hospital. In 
comparison with patients in other wards, patients in the ICU have more frequent 
abdominal surgery, stay longer in the hospital, and are more severely ill [13]. They 
also have a worse prognosis in the long term, with increased mortality after one year 
of the event. 
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4.1.1.1 Vascular devices 

Patients in the ICU have higher rates of Candida infection in comparison with 
patients in other wards. Critically ill patients often require multiple vascular and 
other indwelling devices for their management and candidemia has been related to 
catheter colonization in 20–80% of the cases [14, 15]. One study in Japan identified 
the presence of a solid tumor, the use of total parenteral nutrition, and the admin-
istration of anti-anaerobic agents as the main risk factors for the development of 
Candida infections [16]. As mentioned, Candida colonization of the catheter might 
provide a route for entering into the bloodstream without a heavy gastrointestinal 
colonization. Studies have shown that Candida catheter-related bloodstream infec-
tions have a shorter time to grow in comparison with those from other sources [14]. 
With a breakpoint of 30 hours, the time to grow in patients with Candida blood-
stream infection might identify 100% of those catheter-related infection. Probably, 
patients with catheter-related infection have a higher inoculum, which would 
explain the faster time to grow and the fact that observational studies have shown a 
lower mortality when catheter is removed [17, 18]. On the other hand, patients with 
non-catheter-related candidemia were more seriously ill, had a higher mortality, 
and the removal of the catheter did not affect the outcome [17]. 

4.1.1.2 Parenteral nutrition 

Another commonly identified risk factor is the use of parenteral nutrition or the 
length of its use [15, 19]. This group of patients shares several risk factors, but 
parenteral nutrition has been identified in multivariate analysis [20]. Usually, they 
have an abdominal procedure (see below) and they require parenteral nutrition for 
several days. Lack of appropriate measures to handle the nutrition, colonization 
of the catheter or the ports used to infuse it, and probably the availability of 
optimal growing conditions are conditions related to its use. But clearly, the use of 
parenteral nutrition leads to the development of mucosal atrophy and a loss of 
mucosal epithelial barrier function [21], which might affect the relationship 
between microorganisms in the gut and the possibility of gaining access to blood 
vessels. Total parenteral nutrition has also a profound effect in the gastrointestinal 
microbiome [22]. 

4.1.1.3 Surgical procedures 

Several studies have shown the relationship between candidemia and a previous 
surgical procedure [19, 23], specially an abdominal surgery. There are several 
explanations to this observation, but gut manipulation, and the effect of resected 
sections over the gut microbiology, microbiota abundance, and epithelial function 
might contribute to the possibility of candidemia. Studies have shown that patients 
with high anastomotic leak, as well as those with recurrent gastrointestinal perfo-
ration, or acute necrotizing pancreatitis, have a higher risk of candidemia [15]. 

4.1.1.4 Antibiotic use 

Almost all studies of candidemia have shown an extremely high use of antibi-
otics previous to the identification of bloodstream or tissue infection. The propor-
tion of patients with antibiotic use is over 80% [24]. The number and spectrum of 
the antibiotics used might affect the risk of candidemia. Antimicrobials also have an 
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effect over gut microbiota, and some studies have shown some impact from antibi-
otics with anti-anaerobic effect, and those with higher gastrointestinal concentra-
tion [25]. They contribute to the observed increased colonization over time 
observed in patients in the ICU. With more antibiotic effect, there is a net decrease 
in the number of species in the gastrointestinal tract, an increase in the number of 
patients colonized, and the proportion of them being heavily colonized [26]. 

4.1.1.5 Other risk factors 

Studies have identified several risk factors that alone, or in combination, might 
increase the probability of having candidemia. The presence of renal failure, the use 
of antihistaminic blockers, the severity of illness, and the length of stay in the ICU 
contribute to colonization and development of candidemia [24, 27]. All these factors 
contribute to the acquisition of Candida, its colonization, or failure in the gastroin-
testinal epithelial function, favoring the entry of the yeast to the bloodstream. 

4.1.1.6 Scores based on risk factors 

The identification of risk factors lead to the use of some scores based in the 
presence of such factors to identify patients with higher risk of Candida infection. 
The first and most simple of those scores was introduced in mid-1990s. Pittet et al. 
in a surgical ICU followed prospectively patients admitted in the ward with cultures 
of several anatomical sites [9]. They defined the colonization index as previously 
stated, establishing that with an index of 0.5 or more (50% of the sites with the 
same species), there was an increase in the risk of candidemia. With a lower 
colonization index, the risk in the original study was 0%. They defined a second 
index based on the density of colonization, in which patients overpassing some 
thresholds in the number of colonies isolated per site, being able to improve the 
identification of the patients at risk. 

A second score to identify risk factors in patients was developed in Spain by 
León and his collaborators [20]. They identified colonization (with a different 
definition from that used by Pittet et al.), surgery at ICU admission, and use of total 
parenteral nutrition as risk factors independently associated with candidemia. They 
also identified sepsis as independently related, but this is clearly more a clinical 
syndrome than a risk factor. A third score was developed by a multicenter collabo-
ration group, in which they again identified the same risk factors [28]: antibiotic 
use, having an intravascular catheter, in conjunction with at least two additional 
risk factors such as any surgery, immunosuppressive use, pancreatitis, total paren-
teral nutrition, dialysis, or steroid use. 

Common to these scores has been the presence of the aforementioned risk 
factors. The problem, however, is that such scores identify a huge number of 
patients at risk with a final intermediate risk of developing candidemia, in a range 
from 7 to 30% [29, 30]. The great advantage of the diagnostic scores relies in their 
high negative predictive value. Patients with a negative score have a low probability 
of candidemia, below a 1% probability. 

4.1.2 Hematological malignancy, solid organ transplantation, and other 
immunosuppressive states 

These disorders share a common factor: immunosuppression. However, differ-
ent types of immunocompromise entail different risks for the patients. The inci-
dence of candidemia among patients with cancer is higher in comparison with other 
patients in the hospital. In a multicenter study in Greece, patients with 
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hematological disease had an incidence of candidemia of 1.4 cases per 1000 admis-
sions, while other patients hospitalized had an incidence of 0.83 cases per 1000 
admissions [31]. A multicenter European study found an incidence of 1.2% cases of 
candidemia among patients with bone marrow transplantation (BMT) and leuke-
mia [32]. An Italian multicenter study from a surveillance network showed a 
diminishing trend for candidemia among patients with cancer, especially among 
those with acute myeloid leukemia [33]. Whether this trend can be inferred to other 
European countries or not is not known, and the most likely explanation for this 
decrease in the number of cases could be related to the use of prophylaxis among 
those patients with acute leukemia with posaconazole. In general, non-albicans 
Candida species are more frequently found among these groups of patients [31]. 

4.1.2.1 Neutropenia 

Neutropenia, a count of leukocytes in peripheral blood below 500 cells per μl, is 
the common risk factor among patients with hematological disorders (i.e., leuke-
mia, lymphoma, multiple myeloma among others) as well as those with bone 
marrow transplantation (BMT). Neutropenia might be a consequence of the activity 
of the hematological disease, an effect of chemotherapeutic strategies or side effect 
of multiple medications including antimicrobials. It also is a marker of the intensity 
of chemotherapy. Patients with chemotherapy-induced neutropenia accumulate 
various risk factors: they usually receive wide spectrum antibiotics for several days, 
they have serious gastrointestinal epithelial tissue dysfunction, usually with diar-
rhea and signs of mucosal damage, and the use of vascular catheters for the infusion 
of chemotherapeutic drugs and antibiotics [34]. Several studies have shown that 
isolates of C. tropicalis are more frequently found among patients with cancer [35]. 
A study that looked for risk factors identified underlying leukemia as one of the 
major risk factors, together with chronic lung disease [36]. 

In patients with prolonged neutropenia, a condition called hepatosplenic candi-
diasis might be seen. In it, seeding of yeasts occurs during the neutropenic phase 
which might be not clinically evident until neutropenia recovery. In these patients, 
fever persists and lesions can be seen in the liver, usually known as bull-eye lesions 
[37] (Figure 1). 

Figure 1. 
Tomographic image of liver and spleen showing abscesses (bull’s eye, arrows) and hypodense lesions in a patient 
with chronic disseminated candidiasis. Reproduced with permission from Cortés et al. [37]. 
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4.1.2.2 Concurrent conditions in patients with cancer 

In patients with cancer and candidemia, several factors were identified in com-
parison with those with cancer and bacterial infections [38]. Total parenteral nutri-
tion over 5 days, urinary catheter for more than 2 days, distant metastasis of cancer, 
and gastrointestinal cancer were independent risk factors. Patients with solid 
tumors might accumulate factors as patients in critical care, since they have 
abdominal surgery (gastrointestinal neoplasm), require vascular catheters for 
extended periods of time (for chemotherapy or antibiotics), total parenteral nutri-
tion and received antibiotics frequently [39]. A study to identify factors predicting 
catheter-related infections with Candida identified solid tumors and the use of anti-
anaerobic antibiotics as risk factors [16]. 

Among patients with leukemia and BMT, the risk factors for occurrence of 
candidemia included bone marrow or cord blood stem cell source, T-cell depletion, 
use of total body irradiation, and acute graft versus host disease [32]. These data 
were derived from a huge multicenter registry of patients with cancer and trans-
plantation, which allowed to identify more precisely the risk factors. 

4.1.3 Neonates 

Newborns have no gastrointestinal flora at birth and have to be colonized by 
enterobacteria and other microorganisms, which is made via maternal breast feed-
ing. Any alteration in the normal process can lead to colonization by pathogenic 
microorganisms, including yeasts [40]. Neonates in the intensive care unit usually 
have limited breastfeeding, indwelling vascular catheters, total parenteral nutrition, 
and antibiotics [41]. Such combination of risk factors put. this group of patients at a 
higer risk of infection, reaching over 10% of patients in units with extreme pre-
matures and low weight at birth (the group that requires more invasive interven-
tions) [42]. Some studies have illustrated this relationship with proportion of 
candidemia between 3 and 10% among those with a weight of less than 1000 g 
while showing an incidence of less than 1% for those weighting over 2500 g [43]. In 
this scenario, disseminated candidemia can be found and near 10% of those with 
invasive disease can compromise the central nervous system. Another important 
risk factor includes the time that the patient has been in the unit [44]; clearly, 
patients with low weight, lower gestational age, and more comorbidity tend to 
spend more time in the neonatal ICU and to accumulate other risk factors (surgery, 
indwelling catheter, antibiotics, etc.) [45]. There are some high-risk units, in which 
the incidence of candidemia traditionally has been high, usually over 10% of the 
admitted cases. In this scenario, prophylaxis has been suggested for the prevention 
of infection [46]. 

4.1.4 Outbreaks 

Candida yeast can survive in inanimate surfaces and in the hands of healthcare 
personnel, which confers the risk of outbreak and cross dissemination among high-
risk units such as neonatal, intensive care, and surgical intensive care units [44, 47]. 
An interesting study in Iceland over a long period of time allowed to confirm the 
presence of clonal isolates of different Candida species among patients in the ICU 
and other wards [48]. The proportion of patients involved at one time with an 
outbreak of all patients with Candida isolates might be as high as 38%. Other study 
in Spain showed that clusters (of patients with candidemia) were possible with C. 
albicans and C. parapsilosis, and reached in a period as high as 40% of the isolates 
[49]. Besides, the use of chlorhexidine has been shown to diminish the number of 
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candidemia events in patients in the ICU, showing the importance of colonization 
and cross infection among high-risk patients and establishing this recommendation 
in the guidelines for the prevention of candidemia [50]. 

As shown, colonization is the preliminary step to infection. Besides, a number of 
interventions are common to immunosuppressed and critically ill patients including 
indwelling catheters (urinary and vascular), severity of illness, total parenteral 
nutrition, etc. These conditions predispose the patients to cross contamination. An 
outbreak among newborns was demonstrated to be due to poor practices of catheter 
ports disinfection [51]. 

A study in China in a cancer institute showed that 21 out of 36 episodes of 
candidemia were caused by two endemic genotypes [52]. In this study, gastrointes-
tinal cancer and insertion of a nasogastric tube were related to infection. As men-
tioned before, cancer patients with solid and hematological tumors share several of 
the risk factors of colonization and infection. 

4.2 Global epidemiology 

Since 2013, the Leading International Fungal Education (LIFE) portal has facil-
itated an important effort to know the epidemiology and burden of fungal infec-
tions around the world and allowed a better understanding of their epidemiology in 
different countries [53]. The real incidence of candidemia is difficult to calculate 
due to differences in the approach. While studies based on hospitals might 
overestimate the importance of some groups of high-risk patients, they are difficult 
to compare. Data from population studies might reflect better the real situation, but 
this kind of information is scarce. Studies have shown ample differences in the 
incidence in some regions and at specific times [54]. 

4.2.1 Changing trend for non-albicans Candida 

Traditionally, C. albicans had been the most frequently isolated species. How-
ever, a trend toward non-albicans species has been observed around the world in 
the last 15 years. In United States, C. glabrata has been identified as second in 
frequency, while C. parapsilosis or C. tropicalis dispute this place in other regions. 
Table 2 shows the proportion of isolates in some studies around the world in the last 
10 years [55–59]. 

Two studies deserve a detailed description. The first one is a multicenter study 
from the Southeast Asia region, including 25 hospitals from 6 countries: China, 
Hong Kong, India, Singapore, Taiwan, and Thailand [60]. They found differences 
between the countries that include the frequency of C. tropicalis isolation, being 

Area and 
publication year 

C. albicans (%) C. glabrata (%) C. tropicalis C. parapsilosis References 

USA 2012 38 29 17 10 [49] 

Latin America 2013 37.6 6.3 17.6 26.5 [48] 

Spain 2014 45.4 13.4 7.7 24.9 [50] 

Asia-Pacific region 
2016 

20–55 5–22 2–20 8–27 [51] 

France 2014 56 18.6 9.3 11.5 [52] 

Table 2. 
Proportion of Candida species in selected studies of candidemia around the world. 
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more commonly found in hematology-oncology wards and in tropical areas. This 
study confirmed the observed trend for a lower frequency of C. albicans isolates. 
The other study is the Latin-American surveillance study [55]. It involved patients 
from 20 centers in 7 seven countries: Argentina, Brazil, Colombia, Chile, Honduras, 
Mexico, and Venezuela. Important differences were seen among institutions, 
reflecting difference in healthcare systems, access, population types, and risk fac-
tors. However, in these two studies, the incidence of candidemia is higher than in 
developed countries in Europe and North America. In Latin America, C. parapsilosis 
frequency is over 30% of the isolates while this place is occupied by C. tropicalis in 
the Asian countries. 

4.2.2 Epidemiology in Europe and North America 

There are data from some population surveillance surveys in Europe and United 
States. In general, the incidence might be lower than in some other areas of the 
world. Table 3 shows the incidence from data from North America and European 
countries [61–77]. In Europe, the highest incidence has been observed in Hungary, 
while in North America the highest incidence has been seen in some cities in United 
States. 

4.2.3 Epidemiology in Central and South America and the Caribbean 

This region has profound differences in healthcare systems, access to care, and 
medical technology development. With a transition toward a higher income, a 
growing number of institutions with capacity to attend cancer patients, and more 

Country/region Publication Year Incidence (per 100.000 inhabitants) References 

Belgium 2015 5 [54] 

Denmark 2008 10.4 [55] 

Finland 2010 2.8 [56] 

Germany 2015 4.6 [57] 

Hungary 2015 11 [58] 

Ireland 2015 7.3 [59] 

Norway 2018 3.8 [60] 

Portugal 2017 2.57 [61] 

Romania 2018 6.8 [62] 

Russia 2015 8.29 [63] 

Serbia 2018 10 [64] 

Spain 2015 8.1 [65] 

Sweden 2013 4.2 [66] 

Ukraine 2015 5.8 [67] 

Canada 2017 2.91 [68] 

México 2015 8.6 [69] 

USA 2015 9.5–14.4 [70] 

Table 3. 
Estimated incidence of invasive candidiasis or candidemia in countries of the European or North American 
regions. 
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Country/region Publication year Incidence (per 100,000 inhabitants) References 

Argentina 2018 6.25 [71] 

Brazil 2016 14.9 [72] 

Chile 2017 5.8 [73] 

Colombia 2018 14.7 [74] 

Ecuador 2017 7.2 [75] 

Guatemala 2017 6.4 [76] 

Jamaica 2015 5.8 [77] 

Perú 2017 5.8 [78] 

Trinidad and Tobago 2015 5.8 [79] 

Uruguay 2018 36.5 [80] 

Table 4. 
Estimated incidence of invasive candidiasis or candidemia in countries of Central and South America and the 
Caribbean. 

complex medical needs, the number of candidemia cases seems to be higher than in 
developed countries. 

Ample information exists about the problem in Brazil, where a number of 
studies have been carried out in high-complexity hospitals in the main cities of the 
country [78, 79]. These studies show a higher frequency of invasive candidiasis in 
comparison with developed countries, an increased isolation of C. glabrata for the 
last period and an important exposition to fluconazole (which might have increased 
the selection for non-albicans species) [79]. Country-wise estimates for incidence 
are shown in Table 4 [80–89]. 

4.2.4 Epidemiology in Africa and Asia 

A multicenter in Asia gathered information from various countries, including 
nine hospitals from China [60]. The incidence rate among patients hospitalized was 
0.38 per 1000 admissions, which is lower than that observed in the Latin-American 
region with 1.08 cases per 1000 admissions [55]. The estimated incidence of 
candidemia in countries in Asia is shown in Table 5 [90–100]. In Asia, the highest 
incidence has been observed in Pakistan, followed by Qatar and Israel. In China, 
geographic variations in the causative species and susceptibilities were noted, with 
increasing isolates resistant to fluconazole [101]. The numbers for the African 
countries are lacking and for some countries like Algeria, Burkina Faso, Cameroon, 
Egypt, Malawi, Mozambique, and Tanzania, the estimated incidence is 5.8 cases per 
100,000 inhabitants, a standard calculation based on previously reported incidence 
in other countries [102–108]. 

4.2.5 Azole resistance epidemiology 

Azole-resistant Candida isolates have had an increased frequency over the years. 
Susceptibility changes with the species, and fluconazole use has been related to an 
increase in the frequency of C. glabrata and C. krusei, and a low increase in the 
number of resistant C. albicans or C. tropicalis. A large multicenter study in French 
ICUs identified the age and the exposure to antifungals as independent risk factors 
for resistance [109]. Patients with isolates resistant to fluconazole tended to be older 
than 15 years and to have been exposed to this drug, while those with 
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Country/region Publication year Incidence (per 100,000 inhabitants) References 

Bangladesh 2017 5 [83] 

Israel 2015 11 [84] 

Jordan 2018 5.75 [85] 

Kazakhstan 2018 4.3 [86] 

Korea 2017 4.57 [87] 

Malaysia 2018 5.8 [88] 

Pakistan 2017 21 [89] 

Philippines 2017 2.25 [90] 

Qatar 2015 15.4 [91] 

Thailand 2015 13.3 [92] 

Uzbekistan 2017 5.93 [93] 

Table 5. 
Estimated incidence of invasive candidiasis or candidemia in countries of Africa and Asia. 

equinocandin-resistant isolates were younger and found to have been exposed to 
equinocandin. In general, risk factors for resistance remain the same as in resistant 
bacteria: immunosuppression, previous use of antifungals [110, 111]. Other 
identified risk factors include chronic renal failure and anti-tuberculous treatment. 
This last one might be due to a medication interaction. 

Among patients with cancer, not only are non-albicans Candida species more 
frequently found, but also resistance to azoles has increased. In a study in Greece, 
resistance to fluconazole among patients with cancer reached 27% [31]. Since azoles 
have been widely used in the prophylaxis against fungal infections among cancer 
patients [112, 113], this seems to be a natural consequence of their use. Among 
patients with cancer, isolates of C. tropicalis, C. glabrata, and C. krusei have 
increased resistant proportions [35]. 

4.2.6 Candida auris global outbreak 

Up to 2009, there was no report on C. auris. In that year, a clinical case from 
Japan was published, and 2 years later three cases of candidemia were identified 
[114, 115]. During the following years, isolates of C. auris were responsible of out-
breaks around the world, affecting hospitals in India, Pakistan, South Africa, 
England, and Venezuela [116–119]. It was detected in the USA in 2013 with 
growing frequency [120]. A worldwide alarm was raised in 2016 because of two 
problems related to this species. The first one was the difficulty in proper identifi-
cation [121]. C. auris is most commonly identified as C. haemulonii and 
Rhodotorula glutinis by the commercial systems and sometimes as C. famata, C. 
guilliermondii, and C. parapsilosis [121]. The other problem is the higher frequency 
of resistance to multiple antifungals, including azoles and amphotericin [122]. Cur-
rently, C. auris has been isolated in several areas in the USA, continental Europe, 
and the Caribbean coast of South America, including the islands [123–125], and 
continue to extend to other areas, where reports are being published. A search for 
virulence factors in the isolates of C. auris has shown some different properties, 
specially the capacity for biofilm formation [126]. Molecular observations have 
diverse geographic dissemination caused by unique clades in each geographic 
region [127]. 
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5. Outcomes 

Patients with candidemia and cancer are considered to have higher mortality, 
but this issue has not been clearly assessed. Older studies showed an attributable 
mortality around 40%. Although mortality among patients with candidemia or 
invasive candidiasis is reported usually around 40–50%, they occur in patients with 
important comorbidity. A recent multicenter analysis showed a crude mortality for 
patients with candidemia of 53%, while those without candidemia had a mortality 
of 26% [128]. After adjusting in a propensity score analysis, the crude mortality was 
51% for the candidemic patients and 37% for the others and the difference was not 
statistically significant. The study shows that an increase in mortality might exist 
for those patients with candidemia, but it is clear that patients with candidemia also 
have severe comorbidity and some of them can die with candidemia instead of 
because of it. 

Risk factors for mortality among patients with candidemia include ascites, pres-
ence of septic shock, ICU admission, concomitant bacterial infection and catheter-
related infections [129]. Studies with diverse population have shown that elderly 
patients have higher mortality [130]. In these patients, a combination of comorbid-
ity, poor clinical situation, and more pathogenic species might contribute to their 
mortality [131]. A pooled analysis from patients included in randomized clinical 
trials comparing micafungin and amphotericin B showed differences among geo-
graphic regions, severity of disease (measured with Apache score for patients crit-
ically ill), and catheter removal [132]. In those with abdominal candidiasis, the lack 
of control of the source of infection has been related to increased risk of death [133]. 
Among patients with cancer, risk factor for mortality includes infection by a C. 
tropicalis isolate, a high Charlson index score, neutropenia, and septic shock 
[35, 134]. One multicenter study identified tachypnea as a risk factor for mortality 
[135], while others identified respiratory failure and use of non-antifungal medica-
tions [39]. Besides, antifungal prophylaxis and remission of the underlying cancer 
had a protective effect over mortality [135]. 

The impact of the antifungal treatment in the mortality of patients with 
candidemia is not entirely clear. There are several constrains to identify the benefits 
of the antifungal treatment: An important proportion of patients did not receive 
antifungal treatment despite the identification of a bloodstream infection; of those 
that receive the treatment, some of them can receive it as empirical treatment, 
based on the risk factors, clinical condition, while others have an antifungal started 
upon detection of candidemia. Besides, some of them are infected with a resistant 
isolate and some do poorly, and an additional antifungal must be started. Although 
meta-analysis with patient-level data has showed the benefit of equinocandin use 
(in contrast to azole treatment) [136], neither the cohort data [137], nor the ran-
domized trials have confirmed this finding [138]. There is an additional complica-
tion in understanding this relationship; the laboratory breakpoints for identification 
of susceptible versus resistant isolates have changed over the time, especially for 
azoles [130]. Among those patients with septic shock, the delay in the administra-
tion of the antifungal treatment has been associated with increased mortality. 

6. Conclusion 

Candidemia is the most frequently found form of invasive candidiasis. The 
Candida species might be found as part of the flora and patients with previous 
colonization are at risk of developing an infection. They share some common factors 
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like antibiotic exposure, use of indwelling catheters, parenteral nutrition, and sur-
gery. These factors affect the normal physiology of the gastrointestinal tract or 
provide access to the bloodstream to yeast in patients with some comorbidities, in 
critical care or with immunosuppressive states. 
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Chapter 4

Fungal Growth and Aerosolization
from Various Conditions and 
Materials
Jacob Mensah-Attipoe and Oluyemi Toyinbo

Abstract

Microorganisms, especially fungi, from damp indoor environments are known
to be one of the main causes of degradation of indoor air quality and can pose
serious health hazard to occupants because of the production of airborne particles. 
Particles produced during microbial growth include both living and non-living par-
ticles, which can be submicrometer in size. Individuals are exposed to fungi from
various sources and in various conditions. The exposure may occur when the fungi 
grow in hidden areas and on materials that are in common areas and released under
various conditions. The proliferation of fungi detected in a particular area depends
on the species of fungi, the growth material and the conditions under which they
are grown and released. Fungi aerosolized from any growth material include intact
spores, which grow when deposited on favorable material surfaces and other frag-
ments of the growth ranging from a few millimeters to micrometers in size. The
types and amounts of intact spores and fragments aerosolized depend on factors
such as air velocity blowing over the growth surface, the type of substrate, type of
fungi, and relative humidity of the growth and the age of the fungal growth.

Keywords: fungi, growth, aerosolization, infections, exposure

1. Introduction

Fungal spores and fragments usually in the sub-micrometer size range can be
released from contaminated materials into air, and if inhaled, may cause adverse
health effects for people and animals [1–3]. There is increased interest in the role
of aerosolized fungal spores and their submicrometer fragments in adverse effects
considering the strong association between the numbers of fine particles and 
adverse health effects [4–7]. Furthermore, fungal exposures are receiving increas-
ing attention as an occupational and public health problem; this is due to the high
prevalence of fungal contamination in buildings. Dampness and moisture-related 
problems are the main sources of fungal contaminations [8, 9] in homes and other
domestic dwellings [10] as well as schools [11].

Fungal spores and fragments are one of the most common classes of airborne
biological aerosols in many indoor environments and they form part of the complex
community of indoor biological agents [12–17]. Most of these particles are encoun-
tered in indoor environments where we spend about 90% of our time [18]. Because
of this, it is important to determine the sources of these fungal spores and their
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fragments in such environments. Fungi from damp indoor environments are known 
to be one of the main causes of degradation of indoor air quality and can pose a seri-
ous health hazard to occupants [19, 20]. The submicrometer fragments are of utmost 
importance, because they tend to stay longer in air, and are easily inhaled. The 
smallest fragments (>0.1 μm) can deposit deep in the respiratory tract having the 
potential for causing adverse health effects [21–23]. Furthermore, the large surface 
area of the fragments relative to their mass may evoke high biological activity [22]. 

The high number of released fungal fragments in combination with their poten-
tial to deliver harmful antigens and mycotoxins to the alveolar region of the lung 
suggests the need for their characterization. Furthermore, the properties of spores 
and fragments released from fungal growth are dependent on the type of materials, 
the species of fungi, the cultivation time as well as the air volume passing over the 
growth. The characterization of fungal particles is important to help us understand 
the potential health effects associated with the exposure [21, 24]. Fungal spores are 
considered the most abundant fraction of these particles; they have an aerodynamic 
diameter (da) in the size range of 1–10 μm [25]. 

Indoor air, like outdoor air, has many sources of contaminants that affect health 
adversely. However, it is not clear which source is associated with the adverse 
health effects. As earlier explained, because we spend most of our time indoors, 
it is important to characterize fungal fragments based on their origin since this 
knowledge can improve our understanding of the potential adverse health effects 
associated with exposure to these particles. 

It has been estimated that dampness and mold growth can be detected in most 
home as reviewed by Mudarri and Fisk [26] and have been associated with increases of 
30–50% in several respiratory and asthma-related health outcomes [27]. Furthermore, 
approximately 8–18% of cases of acute bronchitis and 9–20% of respiratory infections 
are estimated to occur in environments contaminated with fungi [28]. 

The review of Samson et al. [29] claimed that floods, wet seasons, thermal 
modernization of residential buildings, air-conditioning systems, construction 
or material faults, and poor and improper ventilation are the major reasons for 
increase in the relative humidity and dampness of materials in the indoor environ-
ment. When moist conditions are prolonged in indoor environments, for example, 
when building materials stay damp for a long time, then the growth of microbes 
is promoted and there is an increased risk of microbial contamination [29–31]. In 
addition, certain characteristics of the home [32] as well as personal activities of its 
occupants [33] influence the microbial profile in indoor environments. 

Generally, a wide range of fungal species may be encountered in the indoor air. 
For example, Zyska [34] surveyed the available literature and compiled a list of more 
than 200 fungal species present in air or growing on structural materials in indoor 
environments and therefore likely to contribute to the airborne fungal burden. Fungi 
in indoor environments can be inhaled and exposure via the airways is especially 
problematic. Furthermore, the presence of fungal particles has been linked to many 
diseases and symptoms among the occupants of moisture damage buildings [9, 19]. 

2. Indoor sources of fungi 

There are several sources of fungal particles in the indoor environment. This 
includes fungal particles exclusively generated from indoor sources and those that 
infiltrate from the outdoor environment as shown in Figure 1. 

Fungi found indoors may be from different sources. However, the majority 
(70–80%) of indoor fungal aerosol and fugal allergens (80%) are generated in the 
indoor environment [3]. In a study by Adams et al. [35], they observed that fungal 
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Figure 1. 
Schematic diagram showing the sources of fungal particles in the indoor environment [3]. Reproduced with 
permission from Yamamoto et al. 

composition indoor was related to dispersal from the outdoor environment and are 
passively collected by indoor surfaces, although they rarely grow on the surfaces. 

In addition to the above, the basic characteristics and parts of a building can 
also affect the emergence of fungi. Different researches including Despot and 
Klarić [36] and Toyinbo et al. [37] have associated buildings with basements with 
the emergence of indoor mold. This may be due to the high humidity and cold 
temperature in the building basement. The high humidity and/moisture content 
may occur from leaky pipes or cracks in the basement walls that allow ground water 
to penetrate the basement. Another source of moisture in the basement is flooding 
which makes water to move down to the basement and usually dry at a slow rate due 
to lack of adequate ventilation. This creates a favorable condition for fungal growth. 
The kitchen and bathroom sections of a building may also encourage the growth of 
fungi since these places have a high moisture content and substrates [38]. 

Outdoor generated indoor fungi enter a building through the ventilation system. 
This can be a mechanical ventilation system without adequate air filter for pollut-
ants or through a naturally ventilated building with open windows and doors where 
outdoor to indoor ratio of pollutants can be close to unity. A ventilation system can 
also be a reservoir for indoor fungi especially when the ducts and filters are dirty 
with dust that serves as a substrate for fungi growth [39]. A DNA-based analysis of 
air handling unit filters by Luhung et al. [40] shows diverse genera of fungi, which 
includes Cladosporium, Aspergillus and Lentinus. Oil residues in ventilation ducts 
can also trap dusts and serves as a source of nutrients for fungal growth that can be 
transferred indoor through the ventilation system [39]. 

3. Health effects of fungi in indoor environment 

The health effects associated with fungal exposures may be caused by the fungi 
themselves, fungal mycotoxins, and fungal cell wall components or metabolically 
produced volatile compounds. The health effects can be categorized into three 
groups: (1) infections, which are caused mostly by the viable cells; (2) allergic reac-
tions, which are usually caused by both viable and non-viable cells and components 
of the cell wall of the fungi if they carry antigens and (3) toxic responses, usually in 
response to the mycotoxins produced by the fungi. 

Exposure to fungal particles has been linked to a range of adverse health effects 
[41]. For example, exposure to fungi has been associated with the onset of asthma 
in both infants and adults [42–47]. 
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There is convincing data in the literature suggesting an association between 
moisture damage in a building and the incidence of diseases such as new asthma 
cases, current asthma, respiratory infections, cough, allergic rhinitis, eczema 
and bronchitis [2, 42, 43, 46–49]. In contrast, quantitative assessments have not 
detected any consistent associations between fungal measurements and adverse 
health effects. Nevertheless, limited or sufficient associations have been docu-
mented between the fungal concentration in dust by qPCR, cultured airborne fungi 
sampled from indoor air as well as several microbial compounds such as ergosterol, 
endotoxins and beta-glucans in dust and adverse health effects [50–53]. There is 
credible scientific evidence to support the association between moisture damage, 
visible fungal growth measured indoors and adverse health effects. The World 
Health Organization (WHO) has stated that approximately 25% of residents in 
social housing stocks are prone to experience elevated health risks associated with 
their exposure to indoor molds. 

4. Fungi and fungal growth 

Fungi are eukaryotic organisms that lack chlorophyll and obtain their nutrients 
from the growth media by the use of enzymes that they secrete. On the other hand, 
molds are filamentous fungi that grow with branched multi-cellular filamentous 
structures called mycelium [54]. In general, fungi are characterized by a visible 
vegetative body or a colony composed of a network of threadlike filaments which 
infiltrate the materials on which they feed. Fungi are usually saprophytic in nature; 
thus, they obtain nutrients from dead organic matter provided there is sufficient 
moisture. They can live off many of the materials present in the indoor environment 
such as wood, cellulose, insulations, wallpapers, glue and everyday dust and dirt 
[55–57]. Thus, fungi have the remarkable capability to degrade almost all natural 
and man-made materials [15, 58, 59] especially if they are hygroscopic [10, 60].  
Fungi obtain nutrients by releasing extracellular enzymes and acids that break 
down the materials prior to their absorption. In the process, particles, including 
microbial degraded materials as well as gases, especially microbial volatile organic 
compounds (MVOCs), are released into the environment [61]. 

The MVOCs may form sub-micrometer particles through a process of second-
ary aerosol formation [61, 62]. These sub-micrometer particles have been shown 
to be aerosolized into the indoor environment following exposure to the effects of 
airflows and vibration [62, 63] Figure 2. 

Figure 2. 
Schematic diagram showing the growth of fungi on a material surface with the subsequent release of particles 
of the fungal growth [64]. Reproduced with permission from Morse and acker. 
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5. Conditions that promote fungal growth indoors 

5.1 Material characteristics 

Distinct characteristics of the growth material can play an important role in 
the creation and accumulation of moisture which eventually lead to mold growth 
on their surfaces [65, 66]. For example, when building are constructed with very 
good insulations in order to reduce heat loss and improve thermal performance, 
the several layers of insulation prevent easy movement of air in and through the 
building materials leading to accumulation of moisture within the building materi-
als as well as the building. Consequently, the building becomes a microbiological 
reservoir and a contributor to the microbial exposure due to their ability to absorb 
and accumulate moisture [67]. 

Due to the heterogeneous nature of new buildings, there are varieties of materi-
als that serve as micro-niches, that is, they have a favorable temperature, water 
activity (aw) and relative humidity (RH). For example, the surfaces of affected 
building materials (such as concrete and ceramic tiles in moist walls, ceiling tiles, 
dust laden wooden furniture) create specific niches suitable for the growth of 
microorganisms including bacteria and fungi. As expected, the climate within the 
building varies from one part of the indoor environment to the next. Thus, fungal 
growth would also be predicted to vary with the microclimate created. Moisture 
damage and dampness in buildings often affect a variety of structural components 
of building materials, leading to a deterioration of the indoor air quality. 

5.2 Water, nutrients and temperature requirements 

Water-damaged building materials, particularly those rich in organic matter, can 
support microbial growth if they remain wet for a prolonged period of time [55, 59]. 
Under certain required conditions such as temperature, nutrient and pH conditions, 
microbial growth can occur within an hour [24]. Nonetheless, the principal limiting 
factor is the availability of moisture [55, 68]. It has been established that the lowest RH 
of a material at which fungi can grow is in a range around 75–80%, which corresponds 
to a water activity (aw) of 0.75–80 [55, 69, 70]. The moisture of the substrate that is 
available to the fungi for growth is the so-called free water and this amount is influ-
enced by the relative humidity of the surrounding air. This does not include bound 
water that is a component of the chemistry of the substrate [24]. Moisture sources for 
fungal growth on materials indoors may be internal or external with moisture move-
ment into and through building cavities by convection, gravity or capillary action. 

Pasanen et al. [71] found that relative humidity values of 70–90% are required if 
there is to be fungal growth on building materials. Furthermore, the relative humid-
ity required for growth depends on the particular material and the fungal species 
involved. Since most materials are porous in nature, adsorption of water into the 
materials first occurs via the pores before the material surface and become available 
to the microbes. Thus, porous materials support fungal growth when their RH is 
higher than 80% [68]. These conditions influence the extent of colonization and the 
types of fungi that will be present, since any changes in moisture availability will 
change also the composition of the microbial species present in that environment. 
For example, certain species of Penicillium, Erotium and Aspergillus grow in relatively 
dry environments with RH between 75 and 85% (e.g., in settled house dust on 
material surfaces with a relatively low RH). As RH increases, different species such 
as Basidiomycetes and Eratonium begin to grow, requiring continuously wet substrates 
such as soaked wallboard with RH range of 80–90%, while others like Fusarium, 
Cladosporium and Stachybotrys only grow at RH exceeding 90% [29, 70–73]. 
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Fungal Infection 

In addition to humidity and water, fungi need adequate nutrition and tempera-
tures to grow. The availability of nutrients depends on the composition of the build-
ing material. Building materials like wood and ceiling tiles are organic in nature; 
they contain complex polymers like starch, cellulose and lignin. These components 
are broken down by the extracellular enzymes of the fungi into simple sugars, 
amino acids and other simple nutrients [74, 75]. As fungi can utilize many complex 
polymers, a wide range of materials can act as nutrient sources. 

Fungi can grow over a wide temperature range (5–39°C), [76]. However, at 
low temperatures (0–5°C), the fungal metabolic activities necessary for growth 
are slowed down, rendering the fungi dormant until an optimum temperature 
is reached [77]. At a higher temperature (34–36°C) the metabolic reaction rates 
increase and at temperatures above 46°C, the fungi become stressed and die [78]. 
This is because most of the activities of the fungi are dependent on DNA and 
enzymes. Due to the above, the concentration of fungi is usually high during the 
summer season as compared to winter season [79]. 

5.3 Types of building materials 

Fungal growth on building materials is dependent on the chemical composition 
of the materials [58]. The most susceptible materials to microbial growth and bio-
degradation are those with a natural organic composition, for example, wood and 
paper. These materials contain starch, cellulose and hemicellulose, pectin and lignin 
[74, 80, 81]. Based on these components, a wide variety of materials are potentially 
suitable for supporting fungal growth [15, 58, 59]. 

Buildings contain a wide variety of materials that affect the germination and 
growth rate of fungi [82]. Thus, each material serves as a niche for a specific 
microorganism, depending on the composition of the material, water activity and 
nutrient content [58, 83]. These properties of the building materials determine the 
diversity and extent of growth of the microbes [84, 85]. 

Wood remains the most extensively used material in buildings [81, 86]. Wood 
is able to absorb and retain water and moisture from both standing water and the 
environment [81, 87]. This characteristic in addition to the high nitrogen-bound 
compounds and low molecular carbohydrates that are transferred to the wood 
surface during processing mean that wood is very susceptible to fungal growth [87]. 
For example, a study by Meklin et al. [88] found school constructed with wood to 
have a higher concentration of fungi (5–950 cfu/m3) than those constructed with 
concrete (<2–5 to 500 cfu/m3). Although concrete is also hygroscopic, it has a low 
moisture permeability which reduces its rate of degradation and it contains very 
little or no nutrient for fungi growth [89]. Fungal species commonly found on 
moisture-damaged wood include Aspergillus versicolor, Penicillium brevicompactum, 
[81, 84, 85]. 

Gypsum board, on the other hand, is mostly used as the inner wall liners in 
buildings [90]. The paper liners used to reinforce the gypsum core makes gypsum 
board susceptible to fungal growth. Since the inner core (gypsum) is able to retain 
water and make it available to the surface paper lining, there can be a prolonged 
presence of water and moisture required to sustain fungal growth [10]. While the 
inner core (gypsum) may not be susceptible to fungal growth, the glue and paper 
serve as good media due to their organic nature [91]. The fungal species routinely 
found on gypsum board are the cellulolytic Stachybotrys chartarum [70] and 
Cladosporium cladosporioides [91]. 

Plastic materials are also becoming a common material used in buildings, as 
either sheets or pipes. As sheets, they are used as material envelopes, which insulate 
the building. Though plastics are known to be resistant to microbial attack because 
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microbes do not possess any enzymes capable of degrading synthetic polymers [92], 
the addition of plasticizers can make the plastics susceptible to microbial growth 
[93]. These plasticizers are commonly organic acid esters such as dioctylphthalates 
(DOP) and dioctyladipate (DOA) which are added to the polyvinyl chloride (PVC) 
to modify the polymer’s physical or mechanical properties [93]. 

Glass fibers used in insulation materials do not support fungal growth. However, 
the glue used as binders does contain nutrients that may promote fungal growth 
[90] since these glues can be synthetic or plant-based. For example, the urea-based 
derivatives, polyurethanes, which are used as binders, are known to support fungal 
growth [94]. Plant-based binders are also used in binding certain building materials 
such as plywood, and ceiling tiles and may contain nutrients suitable to allow fungal 
growth. 

5.4 Contamination or soiling 

All materials, both organic and inorganic, are able to sustain fungal life espe-
cially when the materials have dust, dirt or other deposits on their surface which 
represent sources of carbon and nitrogen [56, 57]. Dust is known to contain micro-
organisms, debris and other animal or insect parts that serve as nutrients for fungal 
growth [95]. Thus, more growth is observed on materials with dust on their surfaces 
compared to those without dust [56, 96]. Furthermore, settled dust or soil alters 
the water absorbing and retentive characteristics of the material surface, making 
the material surface continually moist, conditions in which fungi thrive [10]. Dust 
absorbs water from the atmosphere. It has been shown that dust competes with the 
material surface for moisture, with the dust holding more water due to its more 
hygroscopic nature. Therefore, dust may promote fungal growth even on materials 
that naturally would not support microbial growth [56, 57]. It is therefore impor-
tant for indoor surfaces to be continually cleaned to avoid fungal growth and any 
health effect associated with it. 

6. Aerosolization of fungal spores and fragments 

Forces such as turbulence, temperature, air velocity, vibration and zone of 
convection are usually associated with the release of fungal spores and hyphae from 
fungal colonies. In addition, factors such as the maturity of the colony, changes in 
temperature, relative humidity over the culture surface, light periods, nutritional 
composition of the substrate and the specific fungal species will determine the 
frequency and the number of spores that will be liberated and transported into the 
air at any given time. Furthermore, the dispersal of the fungal particles depends 
upon their size, shape, roughness, density, electrostatic charge, air movement and 
activities that influence the circulation of the air [24]. 

Release of fungal particles usually occurs by two mechanisms; active and passive 
release [68]. Active release refers to an adaptive type of particle aerosolization, via 
forces arising inside the fungi attributable to a burst of energy by a mechanism 
known as osmotic pressure and surface tension discharge [97]. Passive release 
occurs by energy originating from outside the fungi, such as mechanical distur-
bances of the fungal colonies by mechanical handling, vibration or air currents. 
The latter forces can also cause secondary release of settled spores from surfaces. 
Activities that have been shown to increase fungal spore concentrations in indoor 
air include daily activities such as vacuuming, sweeping, walking etc. [98–103]. 

During fungal growth and sporulation, as well as when the culture is in a 
dormant phase, spores and bioactive agent containing fragments are released into 
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the indoor environment [21, 61, 104–107]. As mentioned earlier, hyphal fragments 
are of high importance since they make up about 6–56% of the total fungal particles 
based on microscopic sample analysis [108, 109]. Aerosolized fungal particles in 
chamber studies have shown that fungal fragments are released at levels up to 514 
times higher than spores [21, 61, 106, 107, 110]. In other studies, Li and Kendrick 
[111] used microscopic counting and found that hyphal fragments accounted 
for only 6.3% of the total number of fungal particles in indoor environments. In 
addition, by applying a biomass determination, Adhikari et al. [112] detected lower 
amounts of β-N-acetylhexosaminidase (NAHA) enzyme in fungal fragments <1 μm 
compared to spores >1.8 μm. 

Though both types of particles (spores and fragments) released from the fungal 
cultures during aerosolization are potentially harmful, the fragments are of greater 
importance since they tend to suspend longer in air than the spores [61, 62, 106, 
107, 113]. They also have a tendency to penetrate deep into alveolar regions of the 
respiratory tract when inhaled [21, 114]. Cho et al. [21] have used a computer-
based model to assess the deposition of spores and fragments of A. versicolor and S. 
chartarum in the respiratory tract. For both fungi, they found that the vast majority, 
65–90%, of inhaled fungal spores deposited in the nasal and extra thoracic regions 
while only 3–15 and 2–5% of the spores deposited in the alveoli-interstitial and 
bronchial-bronchiolar regions, respectively. They also demonstrated that about 
60% of fungal fragments deposited in the alveoli-interstitial region with 14–15% 
being trapped in the nasal and extrathoracic regions. It can therefore be deduced 
from the above modeling analysis that the different deposition efficiencies could 
have consequences on the potential adverse health effects induced by inhaled fungal 
particles of different sizes. 

Fungal fragments have been shown to contain antigens [61, 62], allergens 
[5, 115, 116], mycotoxins [23, 117], and (1 → 3)-β-D-glucans [23, 52]. Their size 
in relation to their numbers and their biological properties all contribute to their 
potential to evoke adverse health effects. It is known from atmospheric studies 
investigating the adverse health effects of ultrafine particles that it is the number 
concentration rather than mass concentration which is important [118, 119]. 

Different fungal species have characteristic structures and thus behave differ-
ently when they become airborne. In addition, the growth substrate providing the 
nutrients for the fungi may also affect the properties of the spores and fragments 
and could contribute to fragments released from the biodegradation of the substrate 
itself during fungal metabolism. The amount of fungal particles released may also 
depend on the type of substrate and the conditions under which the fungi were 
grown. It is very important to evaluate spore properties under a variety of condi-
tions in order to gain insights into the contribution these factors have on the adverse 
health effects produced by these particles. 

7. Aerosolization and characterization of fungal spores and fragments 

One of the ways fungal particles are characterized is by their properties when 
they are released from contaminated materials. The particles released are affected 
by the growth substrate, fungal species, age of the culture and air velocity to which 
the cultures had been exposed [120]. The same factors affected the fragment/spore 
(F/S) ratios [121]. 

Biological particles are usually distinguished from non-biological particles 
by their ability to fluoresce when excited with photons at a certain wavelength. 
The fluorescence property is based on molecules such as tryptophan, tyrosine, 
or phenylalanine, reduced nicotinamide adenine dinucleotide (NADH), and 
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nicotinamide adenine dinucleotide phosphate (NADPH) as well as riboflavins, 
flavin adenine dinucleotide (FADH) and flavin mononucleotide (FMN). Depending 
on the conditions under which the fungi grow, differences in fluorescence proper-
ties are observed. For example, spores obtained from cultures on building materials, 
such as, gypsum board, have been shown to have lower fluorescent properties than 
spores from agar. This indicates that cultures growing on nutrient poor substrates 
contain less compounds capable of fluorescence. Studies by Agranovski et al. [121] 
and Kanaani et al. [122] measuring fungal amounts from agar using fluorescence 
measuring devices in laboratory settings resulted in good detection efficiency of 
the instruments. However, the use of fluorescence properties may underestimate 
the concentration of fungal particles due to influences of nutrient availability on the 
growth of the fungi. 

The type of species also affects the fluorescence properties. For example, lower 
fluorescent particle fraction (FPF) values have been observed for C. cladosporioides 
compared to A. versicolor and P. brevicompactum [120, 123]. The structure of the 
spore plays a major role in allowing devices to measure fluorescence properties. 
C. cladosporioides has a dark-skinned coating preventing impinging photons from 
penetrating to reach the exterior pigments to excite fluorescence from internal 
fluorescence. It can be deduced that C. cladosporioides concentrations may be 
underestimated in field measurements. 

In recent study by Mensah-Attipoe et al. [121] and Afanou et al. [104], they 
observed that A. versicolor produced a higher F/S-ratio compared to C. cladospo-
rioides and P. brevicompactum. The increased sub-micrometer fragments from A. 
versicolor can be attributed to the outer-wall spines, which are easily sheared away 
during sampling. 

Studies have shown that the type of material and nutrient affects how much 
particles are released [120, 121]. For example, the fragment/spore ratio (F/S) for 
agar was higher compared to wood and gypsum board. Seo et al. [124] observed 
a higher F/S ratio for A. versicolor cultivated on agar than on gypsum board and 
ceiling tiles. Generally, higher concentrations of fungal particles are aerosolized 
from dry surfaces with low moisture contents than wet surfaces with high humidity 
[62]. Agar may have a different moisture content and moisture dynamics during the 
fungal growth than wood and gypsum board. During growth, the moisture content 
becomes reduced [23] and it is possible that agar loses more moisture than wood 
and gypsum. Therefore, fungal growth on agar undergoes desiccation stress and 
releases more fragment particles than when it grows on wood and gypsum board. 

It has been observed that fragment/spore ratio (F/S) increases with increasing 
age of the culture. Moisture content of wood and gypsum increases with incubation 
time. Therefore, before aerosolization can yield enough particles, the material must 
be dried. With differences in the absorption and retention of moisture by the vari-
ous materials, fungal biomass is also affected and hence affects the release dynamics 
of fungal particles from the material surfaces. Seo et al. [124] demonstrated that 
F/S increased with age. They attributed the increase in particle release from older 
cultures to changes in fungal biomass and moisture content. Dryness on the sur-
face of the culture increases the aerosolization of fungal particles by reducing the 
adhesion forces between the fungal structures and making these structures more 
brittle [124]. Therefore, it has been concluded that with time, fungal growth in 
buildings may increase the contribution of sub-micrometer-sized fungal fragments 
to the overall mold exposure [124]. Spores aerosolized from older cultures displayed 
lower fluorescence than younger cultures. Kanaani et al. [125] reported a decrease 
in fluorescence emitted by Penicillium and Aspergillus from 2 days to 21 days. They 
suggested that fluorescent intensity of biomolecules such as nicotinamide-adenine 
dinucleotide phosphate NAD(P)H and surrogates of metabolic function such as 
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riboflavin found in fungal spores may vary according to the environmental condi-
tions under which the fungal colonies are growing and also on their concentration 
at a particular point in time. The decrease in fluorescence with age could also be due 
to changes in the fluorescent compounds as the culture ages. 

Concentration of fungal spores and fragments has been shown to increase 
with increasing air velocity, but the F/S ratios decreased with increase in air 
velocity. A decrease in fluorescence per spore was observed when the air velocity 
was increased. It is also possible that as larger particles are carried along with the 
increased air currents in the sampling lines, they impact on the sides of the walls 
resulting in the breakage; as posited by Afanou et al. [104, 105]. 

Fragments have been proposed to be secondary organic aerosols formed 
from MVOCs released from fungal growths (secondary formation of aerosol 
particles) [61]. If fragment particles are formed by this mechanism in the 
presence of ozone, the concentration of fragments should decrease with higher 
flow rates due to their increased dilution. However, the opposite was observed 
by Mensah-Attipoe et al. [121], meaning that secondary aerosol formation may 
not be a relevant process for origin of fungal fragments. Instead, fragments are 
mainly formed through mechanical processes. It has been shown that fungal 
fragments are aerosolized at low air velocity [61]. Studies by Mensah-Attipoe 
et al. [121] show that fragments and spore concentrations increased with 
greater air velocities, however, the spore concentration increased more than 
the fragment concentration. This explains the decrease in F/S ratio when the 
air velocity is increased. A decrease in fluorescence in response to the increase 
in air velocity has been postulated to be due to a decrease in relative humidity 
of the culture causing desiccation stress to the fungal spores [125]. In addition, 
due to the increased air velocity, larger fungal hyphae are aerosolized together 
with spores due to increased stress and desiccation of the colony. The desicca-
tion stress and decrease in fluorescence induced by increased air velocity has 
been attributed to a loss of spore viability [125]. 

8. Conclusions 

The type of building material and fungal species affect the amount of growth 
measured on the contaminated surfaces. In addition, these factors together with air 
velocity and age of the culture affect the properties of the fungal particles aerosol-
ized from fungal contaminated surfaces. The nutritional value, chemical composi-
tion and moisture requirements as well as sources of external nutrients potentially 
affect fungal growth. 

Fluorescence property of the particles which is sometimes attributed to their 
viability decreases when fungi are grown on poor nutrient substrates, released 
from older cultures and released in the presence of high air velocities. Since a 
building has many different materials in its structure and varying airflows pass-
ing over different ages of the growths at any point in time, it is concluded that 
fungal viability and their ability to cause infections may vary under different 
conditions. 

F/S ratios decrease with increasing air velocity while spore concentra-
tion increase. This suggests that the conditions under which individuals are 
exposed to fungal particles may be different. A fraction of the fragments could 
be derived from building materials due to biodegradation of substrates when 
they are subjected to fungal metabolism. Fragments aerosolized from building 
materials could represent a potential health hazard depending on the composi-
tion of the material. 
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Chapter 5

High Incidence of an Emerging 
Opportunistic Pathogen Candida 
parapsilosis in Water-Related 
Domestic Environments
Jerneja Zupančič, Monika Novak Babič
and Nina Gunde-Cimerman

Abstract

Candidiasis is one of the common fungal opportunistic infections, usually
associated with diverse Candida species. Candida albicans, C. glabrata complex, C.
parapsilosis complex, C. tropicalis and C. auris are often identified in affected patients.
Candida parapsilosis sensu stricto is an emerging cause of hospital-acquired Candida
infections, predominantly in Southern Europe, South America and Asia. Home envi-
ronment is a less known source of infection despite frequent isolation of C. parapsi-
losis from kitchen surfaces and household appliances such as dishwashers, washing
machines and refrigerators. C. parapsilosis is one of the first colonisers of novel
dishwashers and a member of stable fungal communities on rubber seals worldwide
in concentrations up to 102 CFU/cm2. It colonises also drawers for detergents in wash-
ing machines and drainage channels in refrigerators. Tap water and groundwater
act as vector for entrance of C. parapsilosis in the indoor environments. Within C.
parapsilosis, four clinically relevant phenotypes can be distinguished. Experimental
data on the prevalence of C. parapsilosis isolates phenotypes, obtained from indoor
environments, will be presented. Smooth phenotype prevails in dishwashers and
washing machines, while crepe and crater dominate in water. In conclusion, the abil-
ity to colonise diverse environments and accordingly switch phenotypes defines C.
parapsilosis as a versatile, domestic environment-related opportunistic pathogen.

Keywords: emerging opportunistic pathogen, water, household appliances,
phenotype occurrence in domestic environments

1. Introduction

Yeast Candida parapsilosis sensu stricto (Ascomycota, Saccharomycetes, 
Saccharomycetales, Debaryomycetaceae) is the most commonly isolated species
from C. parapsilosis complex, followed by its closest relative C. orthopsilosis and C. 
metapsilosis [1]. Its primary natural habitat remains undefined to date although it
was recently reported from different fresh water sources [2–4] as well as from pine
trees [5]. On the other hand, the presence of C. parapsilosis in relation to humans
is well documented [1, 6]. The species is one of the asymptomatic colonisers of
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1. Introduction 

Yeast Candida parapsilosis sensu stricto (Ascomycota, Saccharomycetes, 
Saccharomycetales, Debaryomycetaceae) is the most commonly isolated species 
from C. parapsilosis complex, followed by its closest relative C. orthopsilosis and C. 
metapsilosis [1]. Its primary natural habitat remains undefined to date although it 
was recently reported from different fresh water sources [2–4] as well as from pine 
trees [5]. On the other hand, the presence of C. parapsilosis in relation to humans 
is well documented [1, 6]. The species is one of the asymptomatic colonisers of 

79 



 
   

 
 

 
 

 
 

 
  

 
   

 
 

   

 
  

 

  
  

  
  

  

  

  
     

  
   

 
 

   
  

 
  

 
    

Fungal Infection 

gastrointestinal and reproductive tract of most healthy humans [6]. In addition, 
it is commonly found on the skin and nails [1, 6]. Thus, the carriage and transfer 
of C. parapsilosis via hands of healthcare workers to patients have been for long 
recognised as a cause of opportunistic infections in hospitals [7]. The significance 
and prevalence of the yeast in clinical settings and samples dramatically increased 
during the past two decades, which ranks it among emerging opportunistic human 
pathogens [8]. C. parapsilosis is globally one of the most frequent non-albicans 
Candida (NAC) species causing a broad spectrum of infections from superficial to 
invasive candidiasis, including vulvovaginal infections, nosocomial bloodstream 
infections, pericarditis, endocarditis, endophthalmitis and sepsis [1, 9–12]. 
Individuals at the highest risk for severe infection include neonates and patients 
in intensive care units [8]. Infections with C. parapsilosis are often related to con-
taminated catheters, due to its remarkable ability to produce biofilms on plastic and 
silicone surfaces of catheter instruments [6, 8, 13]. Ability for successful biofilm 
formation was linked with observed phenotypic differences of C. parapsilosis strains 
[14]. Among four described phenotypes (smooth, crepe, crater and concentric), the 
yeastlike smooth phenotype reportedly formed less biofilm in comparison to the 
entirely filamentous concentric phenotype [14]. 

In our study we focused on little known phenotypic diversity of C. parapsilosis 
strains, isolated from clinical material in comparison to those isolated from human-
made indoor environments, particularly related to tap water and household appli-
ances, such as washing machines, dishwashers and refrigerators. In addition, we 
discuss the ability for biofilm formation among tested strains and possible sources 
of infection originating from the household environment. 

2. Daily home-related activities pose an overlooked infection risk 

The risk for infection caused by C. parapsilosis is reportedly the highest in 
hospitals and healthcare facilities, as C. parapsilosis is commonly transferred via 
hands of healthcare workers [1, 7]. However, recent discoveries reveal domestic 
environments as sites where people are exposed to this emerging pathogen on a 
daily basis. Exposure points include water and hygiene-related activities, cooking 
area and household appliances, like dishwashers, washing machines and refrigera-
tors. C. parapsilosis was isolated in high frequencies from these areas, pointing 
towards its preference for indoor environment [4, 15–18]. 

2.1 Water as a vector for transmission of Candida parapsilosis into household 
environment 

In a modern society, microbiologically safe and potable water is not only one 
of the essential human rights but also remains one of the biggest concerns for the 
future [19]. Despite well-established water cleaning procedures, both, filamentous 
fungi and yeasts, are widely present in water intended for human consumption 
[19]. Except Swedish legislation, fungal parameters are not included in the present 
directives, and the lack of monitoring leaves out opportunistic and emerging fungal 
pathogens [19]. During the last 10 years, different water sources were identified as 
vectors for C. parapsilosis. Raw natural water, contaminated with C. parapsilosis, 
included streams [2], rivers [3], and groundwater [4]. Its presence positively corre-
lated with the occurrence of dry season [3], the presence of middle-hard water type 
and nitrates [4, 18, 20]. Due to its ability to withstand filtration and chlorination 
process [21], C. parapsilosis is one of the building blocks in biofilms within munici-
pal water systems, with the number of yeast cells in a range of 3.1–4.6 CFU/cm2 [22]. 
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Consequently, C. parapsilosis is regularly present in tap water at consumers’ points, 
where it was isolated from 11 to 50% of samples [4, 17, 21, 23, 24]. Taps need thus to 
be taken into consideration as one of the important exposure points in households, 
where people may become infected with C. parapsilosis via drinking, food prepara-
tion and personal hygiene, like showering and bathing [19, 25]. 

2.2 Kitchens without dishwashers more likely host Candida parapsilosis 

In every household, preparation and consumption of food cause dirty dishes, which 
can be cleaned manually or in a dishwasher. During the cleaning of kitchen utensils, 
the prewashing and washing steps are usually carried out using sponges in order to 
remove food residues. In due course, some food residues could adhere to the sponges 
and, together with retained humidity, tender a positive environment for growth and 
survival of pathogenic bacteria [26] and yeasts [27], including C. parapsilosis. From 
a microbiological point of view, kitchen surfaces are one of the most contaminated 
environments of our homes [17, 28–30]. Kitchen surfaces are not aseptic, but with 
proper cleaning, microorganisms may be reduced to the level that is generally recog-
nised as safe. The most probable entryways of C. parapsilosis into domestic kitchen 
are water [4, 17] and human skin [15]. Adams et al. [15] reported that the highest 
incidence of C. parapsilosis is on the skin of the inhabitants (40%) and kitchen drains 
(25%) but the same yeast has a very low settle index on windowsills in kitchens (up to 
2%). Zupančič et al. [17] reported the presence of C. parapsilosis on kitchen surfaces in 
high frequencies (up to 77% of tested kitchen surfaces were populated with C. parapsi-
losis). However, fungal diversity and occurrence varied considerably between kitchens 
containing dishwasher and kitchens without. The most significant difference was the 
presence of C. parapsilosis, which strongly dominated kitchens using handwashing 
only. The most contaminated sites in these kitchens were drain (43%), followed by dish 
drying rack and sink in the same occurrence (36%). Settlement index of C. parapsilosis 
on rubber seal in kitchen drain and kitchen counter did not exceed 25% [17]. 

2.3 Candida parapsilosis is the first coloniser of new dishwashers 

In modern societies, dishwashers are a permanent utility in kitchens facilitating 
residents’ daily tasks. Washing in a dishwasher is usually carried out at high tempera-
tures of 55–65°C, followed by a shorter hot water rinse cycle (~85°C) and the use of 
alkaline detergents. The mechanical power of water jets cleans the vessels [31]. The 
dishwashers do not disinfect the dishes, but reduce the number of microorganisms 
to a level that is considered safe [32]. The number of bacteria on the vessels is partly 
reduced due to high pH and temperature [33]. Recent studies have shown that under 
these unfavourable conditions, such as high temperature, wet and dry periods, high 
and low pH, presence of high concentrations of salt (NaCl) and water shearing forces, 
a certain group of microorganisms—polyextremotolerant ones—are enriched [34]. 
These unfavourable circumstances can defy also the opportunistic pathogenic species 
like C. parapsilosis [17], which seems to be one of the first colonisers of new dishwash-
ers [20], providing a biotic surface for the construction of mixed bacterial-fungal 
biofilms [35]. C. parapsilosis forms together with Exophiala dermatitidis, Exophiala 
phaeomuriformis, Rhodotorula mucilaginosa, Aureobasidium melanogenum, Bisifusarium 
dimerum (formerly Fusarium dimerum), Fusarium oxysporum and Saprochaete clavata, 
a stable microbiota of dishwasher rubber seals worldwide [17, 34, 36, 37]. It is globally 
present on rubber seals of dishwashers [34, 36] with settlement up to 102 CFU/cm2 

[17]. It can be found in high frequencies also on dishwasher doors and walls. Drains, 
cutlery racks and side nozzles are less exposed [17]. Higher dishwasher frequency 
of use (7–14 times per week) and connection to tap water system with moderately 
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hard tap water hardness (1.5–2 mmol/l CaCO3) significantly affect the incidence of 
C. parapsilosis [20]. C. parapsilosis can be released from dishwashers via waste water, 
cleaned vessels and hot aerosols, formed at the end of the washing cycle [17]. 

2.4 The use of softeners increases the likelihood of Candida parapsilosis 
settlement inside washing machines 

Knowledge on washing machines’ microbiomes is relevant particularly in hospi-
tals and other healthcare facilities due to the possible transfer of pathogenic micro-
organisms between clothes being washed at the same time [38, 39]. Washing cycles 
at elevated temperatures may prevent cross-contamination lowering the number 
of microorganisms, but recent energy-saving trends promote washing with biode-
gradable detergents and usage of eco-programmes with temperatures of washing 
not exceeding 40°C [16]. These features favour microbial growth and propagation, 
resulting in persistent odour of textiles and elevated risk for infections [39, 40]. The 
main worries remain the bacteria of the genera Pseudomonas and Staphylococcus, 
together with dermatophyte fungi [38]. However, recent studies conducted globally 
reported C. parapsilosis as one of the most common fungi in washing machines, 
colonising 8–25% of sampled machines [16, 18, 41]. It was isolated mainly from 
biofilms at water-entry points, drawers for detergent and softener and rubber seals 
[16, 18, 41]. Its presence in washing machines positively correlated with the regular 
use of commercial softeners and washing temperatures ≤40°C [16]. Forty-eight 
percent of tested C. parapsilosis strains from washing machines showed a remark-
able ability of biofilm formation, while none of the tested strains grew on 0.1% 
cycloheximide [18]. 

2.5 Candida parapsilosis colonises refrigerators’ rubber and moist parts 

Primarily basidiomycetous yeasts but to a lesser extent also ascomycetous 
yeasts have been reported from extremely cold natural environments, including 
C. parapsilosis [42]. Extremely cold environments are also present indoors, in the 
form of refrigerators and freezers. Until date, there are no reports of yeasts, isolated 
from freezers, and few are reporting their isolation from refrigerators. Yeasts have 
been isolated from plastic refrigerator vegetable compartments, rubber seals, walls 
and water dispensers [43, 44]. Candida species have been isolated most frequently, 
with Pichia kudriavzevii prevailing in refrigerator air [45]. Our preliminary results 
showed the presence of C. parapsilosis on the shelves and in drainage channel of 
domestic refrigerators. 

3.  Phenotypic diversity of Candida parapsilosis in domestic 
environments 

Phenotypic diversity of C. parapsilosis was first described by Enger et al. [46] 
who identified five different phenotypes originating from one isolate (crepe, 
concentric, snowball, rough and smooth) [46]. They were later reidentified into 
four groups, crepe, concentric, smooth and crater, with a described ability to switch 
from one phenotype into another [14]. Phenotypic differences of the strains were 
linked with micromorphological features, growth rate and the ability to form 
biofilm [14]. The yeast cells of smooth phenotype grow most rapidly but form less 
biofilm in comparison to the crepe or crater phenotype. On the other hand, concen-
tric phenotype produces entirely filamentous cells and forms biofilm most success-
fully (Table 1) [14]. 
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Phenotype properties Phenotypes 

Crepe Crater Concentric Smooth 

Micromorphology Pseudohyphae Elongated, 
yeastlike 

Wide, 
pseudohyphae 

Small, 
yeastlike 

Chitin distribution Cell wall Cell wall, bud 
neck 

Cell wall, bud neck Bud scar 

Growth rate Medium Medium Low High 

Biofilm formation ability Medium Medium High Low 

Table 1. 
The main differences between four phenotypic groups of C. parapsilosis according to Laffey and Butler (2005) [14]. 

3.1 Smooth phenotype of Candida parapsilosis prevails in domestic environment 

One-hundred and eighty-four strains of C. parapsilosis sensu lato, deposited in 
Ex Culture Collection of the Infrastructural Centre Mycosmo, MRIC UL, Slovenia: 
http://www.ex-genebank.com/, at the Department of Biology, Biotechnical Faculty, 
University of Ljubljana, were included in the present study. Tested strains origi-
nated from clinical material (N = 7), groundwater (N = 2) and domestic environ-
ment, like tap water (N = 23), bathrooms (N = 14), washing machines (N = 16), 
kitchens (N = 22), dishwashers (N = 96) and refrigerators (N = 4). All strains 
were plated onto malt extract agar and incubated at 30°C for 4 weeks. Phenotypic 
diversity of the strains (Figure 1) was evaluated weekly (Table 2). 

Identification of yeasts from the C. parapsilosis complex can often be false or 
incorrect, since the species C. parapsilosis, C. metapsilosis and C. orthopsilosis are 
genetically very similar. Commercially available reagents currently do not allow 
accurate distinction within the C. parapsilosis complex [47]. One of the methods 

Figure 1. 
C. parapsilosis phenotypes in domestic environment. (A) Crepe phenotype, (B) concentric phenotype, (C) 
crater phenotype and (D) smooth phenotype. 
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used for genetic differentiation between the complex species is also the analysis 
of the restriction polymorphism of the secondary alcohol dehydrogenase (SADH) 
gene [48]. After DNA extraction, identification based on the whole internal tran-
scribed spacer (ITS) region and partial 28S rDNA, D1/D2 domains, was performed. 
All tested strains were checked for accurate identification of C. parapsilosis species 
complex by RFLP analyses of the SADH gene fragment. SADH amplicons obtained 
with the primer set S1F and S1R [49] were digested with the restriction enzyme 
BanI. All tested strains belonged to C. parapsilosis sensu stricto group. 

Obtained results showed differences between abundance of phenotypes in clini-
cal strains in comparison to the environmental strains (Figure 2). The prevalent 
phenotype among clinical strains was crepe (57.1%), while the others were evenly 
distributed (14.3%). The results are similar to already reported by Laffey and Butler 
[14]. Among environmental strains, the crepe phenotype was the only one observed 
in strains isolated from groundwater (2/2). It was represented in a lesser extent in 
household appliances, with the highest incidence on kitchen surfaces (22.7%) and 
in dishwashers (27.1%), and the lowest in washing machines (12.5%). 

C. parapsilosis strains isolated from groundwater-derived tap water mostly 
formed smooth (34.8%) or crater (30.4%) phenotypes, followed by crepe (21.7%) 
and concentric (13.0%) phenotype. Tap water serves as a vector for fungi entering 
water-related niches in households [4], where environmental pressure leads to 
the selection of the most tolerant strains [17], even on the phenotypic level. Room 
interior and household appliances that are usually present in these rooms (bath-
room and washing machine, kitchen and dishwasher) show similar phenotype 
distribution (Figure 3). In addition, co-occurrence of different phenotypes from 

Figure 2. 
Prevalence of C. parapsilosis phenotype in indoor environments and among clinical isolates. Prevailing indoor 
phenotype of C. parapsilosis is the smooth one; crepe phenotype is a predominant phenotype in clinical isolates. 

86 



 

   
 

  
 

 
   

   
  

 

  

 
   

   

 
 

  
 
 

 

 
  

  
 

  

 

High Incidence of an Emerging Opportunistic Pathogen Candida parapsilosis in Water-Related… 
DOI: http://dx.doi.org/10.5772/intechopen.81313 

Figure 3. 
Distribution of C. parapsilosis phenotypes in indoor environments. In clinical strains, crepe phenotype was 
prevailing, while in household appliances, such as washing machines, dishwashers and refrigerators, the 
predominant phenotype was smooth. Crepe phenotype was present to a lesser extent. 

the same sampling spot was observed. Smooth phenotype was positively selected in 
all appliances, washing machine, refrigerator and dishwasher, with 81.3, 75.0 and 
44.8%, respectively. Slightly positive selection was observed also for concentric 
phenotype in kitchens (22.7%) and inside dishwashers (17.7%) in comparison 
to bathrooms (7.1%) and washing machines (6.3%). On the other hand, negative 
selection was observed for crater phenotype, which was among all tested habitats 
most commonly found in tap water (30.4%), but its presence was low on kitchen 
(13.6%) and bathroom (14.3%) surfaces, with total absence in washing machines 
and refrigerators. 

Survival of microorganisms invading household niches is higher due to biofilm 
formation [17]. Next-generation sequencing of dishwasher biofilm community and 
further usage of several statistical models showed that Candida (C. parapsilosis) is 
one of the first colonisers of rubber seals in dishwashers [20]. 

4. Conclusions 

C. parapsilosis is a commonly known opportunistic pathogen, particularly in a 
connection with hospital care, as a natural coloniser of health workers’ hands and 
skin. Superficial or invasive infections usually occur via catheters, due to yeast’s 
biofilm formation ability. Recent studies revealed human-made indoor environ-
ments as a previously unrecognised hot spot of their occurrence. This completely 
new aspect enables many possible routes for infection with this emerging oppor-
tunistic pathogen. C. parapsilosis is commonly present in tap water, bathrooms, 
washing machines, kitchens surfaces, dishwashers and refrigerators. While tap 
water carried all four phenotypes of the species, with a slight preference for the 
crater phenotype, selection inside household appliances clearly promoted the 
smooth phenotype. In accordance, the smooth phenotype showed the most abun-
dant biofilm formation on polystyrene. On the other hand, tested clinical strains 
mainly formed the crepe phenotype, which was isolated also from all sampled 
indoor niches, with the highest incidence in kitchens, dishwashers and refrigera-
tors. In the future, household environments where people maintain and prepare 
food and personal hygiene should be taken into consideration as possible routes for 
infection with C. parapsilosis. 
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4.1 Objectives 

There are four different phenotypes of C. parapsilosis strains, smooth, crepe, 
crater and concentric. As C. parapsilosis is commonly present in domestic environ-
ment, we were interested in occurrence and prevalence of these phenotypes in 
different indoor environments. 

4.2 Experimental methods used 

All tested strains, stored in deep frozen stock (−80°C), were inoculated 
with a loop on malt extract agar plates (MEA) and incubated for 4 weeks at 
30°C. Phenotype check-up was made after 1, 2, 3 and 4 weeks of incubation. Results 
of C. parapsilosis phenotype occurrence after 4 weeks are presented in Table 2. 

4.2.1 Extraction and molecular characterisation of DNA 

Pure fungal cultures were revived from deep frozen stock of EX culture 
collection by inoculation on a fresh malt extract agar medium. After 3 days of 
incubation at 30°C, the DNA was extracted using PrepMan Ultra reagent (Applied 
Biosystems), according to the manufacturer instructions. 

Identification was based on amplification and sequencing of the large subunit 
ribosomal DNA sequences (LSU; partial 28S rDNA, D1/D2 domains), using the NL1 
and NL4 primer set [50]. A fragment of the rDNA including internal transcribed 
spacer (ITS) region 1, 5.8S rDNA and ITS2 was also amplified and sequenced for 
identification, using the ITS5 and ITS4 primer set [51]. The ITS and LSU nucleotide 
sequences were determined by direct PCR sequencing, performed by Microsynth 
AG, Switzerland. BigDye terminator cycle sequencing kits were used in the sequence 
reactions (Applied Biosystems, Foster City, CA, USA). The sequences were obtained 
using an ABI Prism 3700 Big Dye Sequencer (Applied Biosystems). The sequences 
were assembled using FinchTV 1.4 (Geospiza, PerkinElmer, Inc.) and automatically 
and manually aligned using the Molecular Evolutionary Genetics Analysis (MEGA) 
software, version 6.06 [52]. The assembled DNA sequences were examined using 
the BLAST software of the National Center for Biotechnology Information (NCBI) 
database and were compared to the appropriate sequences of the reference and type 
strains. All strains, included into this research, were sequenced as C. parapsilosis 
sensu lato. 

4.2.2 Determination of Candida parapsilosis species complex 

Amplification of SADH gene was performed using S1F and S1R primer set 
according to [49]. After the final amplification, PCR products were treated with 
restriction enzyme BanI (BshNI) (Thermo Fisher Scientific™, USA) according 
to the manufacturer instructions. After restriction the obtained fragments were 
checked on 1% agarose gel (Sigma-Aldrich) for 20 minutes at 120 V. The expected 
fragment length for Candida metapsilosis was 400 bp, for Candida orthopsilosis was 
700 bp and for Candida parapsilosis was 550 bp [49]. After restriction profile, all 
tested strains were determined as Candida parapsilosis sensu stricto. 
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Chapter 6

Thiosulfonates: The Prospective
Substances against Fungal 
Infections
Vira Lubenets, Nataliya Stadnytska, Diana Baranovych, 
Sofiya Vasylyuk, Olena Karpenko, Viktoriya Havryliak 
and Volodymyr Novikov

Abstract

The synthesis of new analogs of natural biologically active substances is a prom-
ising direction for the development of effective antifungal agents. Thiosulfonic
acid esters (thiosulfonates) are the structural analogs of biocidal compounds from
garlic, onion, cabbage, cauliflower, etc. More than 1000 thiosulfonates of various
structures of the general formula RSO2SR’ were synthesized at the Lviv Polytechnic
National University, where their physicochemical properties were characterized. 
A high antifungal activity of the obtained substances was established in relation to
the representatives of fungi of different genera. The thiosulfonates are perspective
as basis for the development of effective antifungal means for the modern phar-
maceutical, food industry, for the protection of various materials and agricultural 
products. To increase their effectiveness, antimicrobial compositions based on
thiosulfonates and surfactants of microbial origin (biosurfactants) in the form of
stable suspensions were developed and studied. It has been established that the use
of biosurfactants in the compositions allows the enhancement of the antifungal 
activity of thiosulfonates and reduction of their active concentration. The possible
mechanisms of the joint action of thiosulfonates and biosurfactants on fungal 
pathogens are proposed.

Keywords: fungal infection, thiosulfonates, biosurfactants, biological activity,
pathogens

1. Introduction

Thiosulfonic acids and their esters of the general formula RSO2SR’ are close
structural analogs of the natural phytoncides of garlic (Allium sativum), onion
(Allium cepa), various types of cabbage, especially cauliflower [1, 2], and also
deep-sea urchin Echinocardium cordatum [3]. It is well known that synthetic esters
of thiosulfonic acids exhibit a wide range of biological activity that often exceeds
the efficiency of natural analogs. Some of these esters are proposed as effective
antifungal compounds [4, 5], promising substances for other applications [6–12], 
preservatives of fruits and vegetables, effective plant protection products, growth
regulators, biocidal additives [7, 13–15], insecticides, and radioprotectors [16–19]. 
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thiosulfonates and surfactants of microbial origin (biosurfactants) in the form of 
stable suspensions were developed and studied. It has been established that the use 
of biosurfactants in the compositions allows the enhancement of the antifungal 
activity of thiosulfonates and reduction of their active concentration. The possible 
mechanisms of the joint action of thiosulfonates and biosurfactants on fungal 
pathogens are proposed. 

Keywords: fungal infection, thiosulfonates, biosurfactants, biological activity, 
pathogens 

1. Introduction 

Thiosulfonic acids and their esters of the general formula RSO2SR’ are close 
structural analogs of the natural phytoncides of garlic (Allium sativum), onion 
(Allium cepa), various types of cabbage, especially cauliflower [1, 2], and also 
deep-sea urchin Echinocardium cordatum [3]. It is well known that synthetic esters 
of thiosulfonic acids exhibit a wide range of biological activity that often exceeds 
the efficiency of natural analogs. Some of these esters are proposed as effective 
antifungal compounds [4, 5], promising substances for other applications [6–12], 
preservatives of fruits and vegetables, effective plant protection products, growth 
regulators, biocidal additives [7, 13–15], insecticides, and radioprotectors [16–19]. 
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Esters of thiosulfonic acids are effective sulfenilating reagents in organic synthesis 
[19, 20] and also have valuable properties for solving complex problems of molecu-
lar biology and biochemistry [16]. 

Nowadays, synthesis and investigation of thiosulfoesters are carried out by 
Japanese [21], American [22], Italian [23], Spanish [17, 24], Korean [25], and 
Chinese [26] scientists from leading research centers. In Ukraine, for many 
years, the study on the synthesis and physicochemical and biological proper-
ties of thiosulfonic acid esters is carried out at the Lviv Polytechnic National 
University by the staff of the Department of Technology of Biologically Active 
Compounds, Pharmacy, and Biotechnology [16, 27]. At the present time, a 
scientific school has been formed that develops a methodology for research on 
the synthesis of biologically active compounds of the thiosulfonate structure. 
During this time more than 1000 compounds of the general structure RSO2SR’ 
were synthesized: 

′ 
Alk − SO 2 − S − Alk Ar − SO 2 − S − Alk Alk − SO 2 − S − Ar Ar − SO 2 − S − Ar 

cykl − C 5 H 9 − SO 2 − S − Alk cykl − C 6 H 11 − SO 2 − S − Alk 

Alk − SO 2 − S − C 5 H 9 − cykl Alk − SO 2 − S − C 6 H 11 − cykl 

Among esters of thiosulfoacids, there are compounds with fungicidal 
activities against fungi of the genera Candida, Fusarium, Mucor, Phragmidium, 
Ramularia, Penicillium, Aspergillus, Cladosporium, Paecilomyces, Phoma, Rhizopus, 
Saccharomyces,  otrytis, Stachybotrys, Alternaria, Aureobasidium, Chaetomium, 
Myrothecium, Epidermophyton, Trichophyton, Microsporum, Sclerotinia, 
Monilia, Trichoderma, Verticillium, Pullularia, Cryptococcus, Trichosporon, and 
Geotrichum [4–16]. 

Investigation of esters of thiosulfonic acids began after the isolation of natural 
antibiotic allicin from the garlic juice, which manifests the antimicrobial activities. 
Allicin is a low stable allyl ester of allylthiosulfine acid [17]. Esters of thiosulfonic 
acid, in comparison with esters of thiosulfine acid, are stable compounds; the effec-
tiveness of its antimicrobial activity, in particular, antifungal, is equal to or higher 
than the activity of thiosulfinates [17]. 

The antimicrobial activity of esters of thiosulfoacids is closely related to their 
ability to block the normal metabolism of microorganisms through sulfenylation of 
thiol groups of their enzymes [28]. It is known that these esters are highly reactive 
compounds that interact with nucleophiles, electrophiles, and radicals. Nucleophilic 
substitution reactions occur with breaking of -S-S-bond due to the redistribution 
of electron density in thiosulfogroup that determines the direction of nucleophile 
attack [9, 16, 29]. 

The information in the review about the possibility of practical application of 
thiosulfonates as antifungal substances is based on published data on its use in the 
modern pharmaceutical, food, other industries, and agriculture. 

2. Protection of agricultural products 

Plant-fungal infections cause great economic losses due to the reduction in crop 
yields during its growing and storage. The loss of crops at all stages of production 
ranges from 15 to 40%. To solve these problems, esters of thiosulfonic acid can be 
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used because they are characterized by low toxicity and are permitted as preser-
vatives for the food industry [30–34]. The products of their decomposition are 
environmentally safe, so these substances do not harm the environment [29, 35]. 

S-esters of thiosulfonic acid are proposed for the prevention and control of agri-
cultural products damage, in particular, fruit and vegetable, as these compounds are 
capable of inhibiting or eliminating rotting processes [36]. 

2.1 Effect of thiosulfoesters on microorganisms 

The minimal inhibitory concentrations (MIC) against such fungi (Penicillium 
sp., Aspergillus sp., Fusarium sp., Rhizopus sp., Mucor sp., Saccharomyces ellipsoideus, 
Candida albicans) were determined for alkyl, cycloalkyl, trichloromethyl, aryl, and 
alkyl-functionalized esters of alkane and cycloalkane thiosulfonic acids (Table 1). 

Table 1. 
Minimal inhibitory concentrations of AlkSO2SR’ [37]. 
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It has been shown that the fungicidal activity of cyclopentyl (## 9, 20, 22, 24, 
Table 1) and cyclohexyl S-esters of alkanthiosulfonic acids (## 10, 21, 23, 25, 
Table 1) is similar or higher than the activity of alkyl S-esters of alkanthiosulfonic 
acid (## 1–4, 11–14, Table 1), especially for Fusarium sp., Mucor sp., and Candida 
albicans. 

The minimal inhibitory concentration for cyclopentyl S-esters (## 9, 20, 22, 
24, Table 1) varied from 0.5 to 50.0 μg/ml, and for cyclohexyl S-esters, it was 
in the range of 0.2–5.0 μg/ml. For cyclohexyl S-esters of alkanthiosulfonic acid 
(## 10, 21, 23, 25, Table 1), the inhibitory concentration is from 0.2 to 2.0 μg/ml 
relative to Fusarium sp., and Candida albicans [28, 29]. For cyclohexyl S-esters 
of alkanthiosulfonic acid (## 10, 21, 23, 25, Table 1), the minimal inhibitory 
concentration ranged from 0.2 to 2.0 μg/ml against Fusarium sp. and Candida 
albicans [37, 38]. 

Among the S-esters of cyclopentane-hexanethiosulfonic acid (## 1–19, Table 2) 
and cyclohexanethiosulfonic acid (## 10–19, Table 2), trichloromethyl S-esters 
(## 4, 13, Table 2) are most effective against Fusarium sp. and Candida albicans but 
less active against Mucor sp. [38]. 

It has been found that cyclopentyl C6H5-SO2-S-C6H11-cycl (# 6, Table 3) 
and cyclohexyl C6H5-SO2-S-C5H9-cycl (# 3, Table 3) S-esters of benzenethio-
sulfonic acid C6H5-SO2-S-C6H11-cycl (# 6, Table 3) exhibit high activity against 
Candida albicans (MIC 2.0 μg/ml and 1 μg/ml, respectively), Fusarium avena-
ceum (MIC 5.0 μg/ml and 2.0 μg/ml, respectively), and a lower activity against 
Mucor sp. [38]. 

Table 2. 
Minimal inhibitory concentrations of cycl-AlkSO2SR’ [38]. 

100 



 

 

 
 

 

  

Thiosulfonates: The Prospective Substances against Fungal Infections 
DOI: http://dx.doi.org/10.5772/intechopen.84436 

Table 3. 
Minimal inhibitory concentrations of 4-R-C6H4-SO2-S-Alk-cycl [38]. 

2.2 Anti-phytopathogenic activities of esters of thiosulfoacids 

The prospects for the use of esters of thiosulfonic acid for the control of clamp 
rot of beet have revealed. The causative agents of clamp rot of beet are phytopatho-
gens Botrytis cinerea, Fusarium betae, and Phoma betae, which cause the loss of root 
resource during its storage. 

These pathogens damage the roots of beet seedlings, cause spotty leaves, and dry 
rot of root crops, which lead to a decrease in the taste and commodity performance 
of products. In laboratory conditions, 18 esters of thiosulfoacid were investigated 
against these phytopathogens (Table 4) [39]. 

Table 4. 
Minimal fungicidal concentrations of RSO2SR’ against pathogens of clamp rot [39]. 
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The highest efficacy against Botrytis cinerea and Fusarium betae was observed for 
trichloromethyl S-esters of ethane and propanethiosulfonic acid (# 7, 11, Table 4). 
Trichloromethyl S-ester β-naphthalene thiosulfonic acid is less active among the 
synthesized trichloromethyl esters. The most effective against Phoma betae are 
methyl S-ester of methanethiosulfonic acid (# 1, Table 4), ethyl and butyl S-esters 
of ethanethiosulfonic acid (# 5, 6, Table 4), and propyl ester of propanethio-
sulfonic acid [10]. It has been shown that thiosulfoesters (# 1, 7, 11, Table 4) at a 
concentration of 200 μg/ml are toxic to sugar beet (Beta vulgaris var. saccharifera) 
but have fungicidal activity against these phytopathogens. 

It is interesting that trichloromethyl S-esters of methane- and propanethiosul-
fonic acids, as well as methyl S-esters of methanesulfonic acid at a concentration 
of 200.0 μg/ml, are nontoxic to sugar beet but exhibit a fungicidal effect on the 
abovementioned phytopathogenic fungi. 

Approval in the farm conditions of the trichloromethyl S-ester of propanethio-
sulfonic acid (# 11 Table 4), as well as its mixtures with methyl-S-ester of meth-
anesulfonic acid, revealed its effectiveness for the treatment of sugar beet root crops 
for prolonged storage. Improvement of the quality parameters of sugar beet after 
treatment with the synthesized preparations was established. 

Thus, the objects of study were the roots of beet of different qualities. Wilted 
roots on 15%, damaged ones near the head and tail, roots with 3–4% of green mass 
and 10% of the earth, and healthy clean roots were used in experiments. After 
104 days of storage, all samples of beet treated with solutions of these substances 
had rotten roots in 2.5–4.0 times less than in untreated control. 

The effectiveness of the preparations based on the esters of thiosulfonic acid 
against the causative agents of clamp rot is confirmed by comparative studies of 
healthy sugar beet with control, where the amount of rotten mass is greater by 9.3 
times [39]. 

The high antifungal activity of alkyl and trichloromethyl esters of methane-, 
ethane-, and propanethiosulfonic acids in experiments in vitro was discovered. 
These data indicate that these compounds can be used for the prevention of fruits 
and vegetables against fungal damage during prolonged storage. Effective fungi-
cidal concentrations of synthesized nine esters of alkanthiosulfonic acid were found 
for 13 genera of fungi (Table 5): 

C2 H5 SO 2 SR 
" 

(#2с, 2е), RSO2 SCH 3 (#1а, 2а, 3а), RSO2 SCl3 (#1b, 2 b, 2d, 3b) 

The highest fungicidal activity of trichloromethyl esters was found at con-
centrations of 40–1.25 μg/ml, while alkyl esters of alkanthiosulfonic acids exhibit 
fungicidal activity at concentrations of 5–100 μg/ml against fungi of the genera 
Fusarium, Rhizopus, and Mucor, which in some cases is higher than for trichloro-
methyl esters [40]. 

The antifungal activity of some alkyl and trichloromethyl esters of aromatic 
thiosulfonic acids as preservatives for protecting fruits and vegetables during stor-
age against fungal damage was also studied (Table 6) [40]. 

The positive effect was observed after the use of 4-aminophenyl ester of 
4- aminobenzenesulfonic acid (# 2a, Table 6) to prevent potato rot during storage. 
It is significant that this ester is less toxic than alkyl esters of alkanthiosulfonic acid. 
The potato was treated with a solution of this substance at concentrations of 40 
and 20 μg/ml (at a rate of 100 ml or 4–8 mg of dry substance per 1 ton of potatoes). 
After 1.5 months storage, the amount of potato waste decreased by 2.5 times. The 
ability of some esters of thiosulfonic acids to protect tomatoes from fungal dam-
age during storage was also studied. The most active and low toxic were the ethyl 
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Table 5. 
Minimal fungicidal concentrations of RSO2SR’ for the prevention of fruits and vegetables [40]. 

Table 6. 
Minimal fungicidal concentrations of 4-RC6H4SO2SR’ for the prevention of fruits and vegetables [40]. 
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esters of 4-acetylamino- and 4-aminobenzenethiosulfonic acids. It was established 
that the treatment of tomatoes by these preparations in laboratory conditions was 
accompanied by a significant decrease in the amount of waste after 10–12 days of 
storage. 

The effectiveness of alkyl esters of 4-aminobenzenethiosulfonic acids against 
phytopathogens—the causative agents of citrus fruits’ damage—was studied. 
Citrus fruits were purchased in the Ukrainian trade networks (Lviv). Mycelial 
fungi Ramularia chelidonii and Phragmidium fragariae were isolated and identi-
fied as pathogens, which cause the damage of lemons and mandarins. It has been 
shown that isolated cultures exhibit middle and high sensitivity to all studied esters 
(Table 7). Growth inhibition zones of isolated microorganisms at concentrations of 
active substances of 0.5% and 1% were on average 25–30 mm [41]. 

In experiments, the ability of S-ethyl ester of 4-aminobenzenethiosulfoacid 
(ETS) to elicit an antifungal effect against pathogens of fruit and vegetable damage 
was tested. Minimal inhibitory and minimal fungicidal concentrations against four 
genera of fungi Aspergillus, Penicillium, Paecilomyces, and Cladosporium by methods 
of diffusion and serial dilutions at a microbial load of 5 × 105 CFU/ml were deter-
mined (Table 8) [41]. 

2.3 Effect of Propyl propanethiosulfinate and Propyl propanethiosulfonate on 
phytopathogens 

Propyl propanethiosulfinate (PTS), C3H7SOSС3Н7, and propylpropylthiosul-
fonate (PTSO), C3H7SO2SС3Н7, isolated from garlic (Allium sativum L.) and onion 
(Allium cepa L.) were proposed by the Spanish researches for the prevention and 
control of fungal diseases of plants, for crop storage and as disinfectants for food 
industry, and for the sanitary treatment of cold rooms, equipment, fruit packaging, 
and vegetables. PTS and PTSO can be used both in pure form and in the form of 
aqueous mixtures or suspensions with other synthetic or natural antifungal agents, 
fertilizers, antioxidants, and plant growth regulators. These compounds can be used 
in different ways such as immersion, wetting, spraying, applying to soil, etc. [17]. 

The results, presented in Table 9, indicate that PTSO is more active compound 
against Penicillium solitum (wild-type strain) than less stable PTS. 

These substances are effective protection agents of tomatoes, peppers, cucum-
bers, melons, lettuce, stone fruits, citrus fruits, strawberries, tropical fruits like 
avocado, and mango against Pseudoperonospora cubensis, Phytophthora infestans, 
Erysiphe sp., Sphaerotheca sp., Leveillula taurica, Botrytis cinerea Pers., Alternaria 
dauci, Alternaria citri, Venturia inaequalis, Monilia fructicola, Monilia laxa, 

Table 7. 
Antifungal activity of NH2C6H4SO2Salk [41]. 
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Table 8. 
Antifungal activity of NH2C6H4SO2SC2H5 [41]. 

Table 9. 
Comparative activities of PTS and PTSO against test-microorganisms [17]. 

Taphrina deformans, Phytophthora spp., Phytophthora infestans, Oidium fragariae, and 
Colletotrichum gloeosporioides [17], which cause downy mildew, Botrytis (gray mold), 
alternariosis, spotted, powdery mildew, Monilia, bruised, Alternaria of citrus fruits, 
and gummosis. 

Pathogens Penicillium expansum, Botrytis cinerea, Physalospora obtusa, Glomerella 
cingulata, and Botryosphaeria ribis can cause blue mold, gray mold, black rot, sour 
rot, and white rot in postharvested apples, pears, and quince [17]. 

3. Protection of materials against biodamage 

A serious problem is the biodamage to various materials and products, which 
is accompanied by annual economic losses. Therefore, there is a need to find ways 
to solve problems related to the protection of raw materials and products from 
the action of causative agents during its prolonged storage, transportation, and 
operation. 

In view of this, S-esters of thiosulfonic acid RSO2SR can be promising biocides 
to protect materials and products since they have a wide range of antifungal and 
antibacterial effects. The sulfonyl and thiol component of S-esters determines their 
biocidal action spectrum; therefore, it is important to expand the information on 
the correlation of the dependence of the structure of S-esters of thiosulfonic acids 
with its useful characteristics [14, 42]. 

Ninety-three esters of thiosulfonic acids of various structures in relation to the 
protection of industrial materials (adhesives, wood, paper, textiles, leather, lubri-
cating liquids, paints, and polymer products) against the fungi, yeasts, bacteria, 
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algae, and mucilages were studied by researchers of the concern “Bayer.” These 
compounds are also proposed as biocidal additives in circulating water circuits at 
industrial plants, in particular, oil refineries [43]. 

The effectiveness of the synthesized compounds was studied on the follow-
ing species of fungi: Alternaria tenuis, Aspergillus niger, Chaetomium globosum, 
Coniophora puteana, Lentinus tigrinus, Penicillium glaucum, Polyporus versicolor, 
Aureobasidium pullulans, Sclerophoma pithyophila, and Trichoderma viride. These 
thiosulfoesters can be used in various forms: powders, wet powders, suspensions, 
pastes, soluble powders, dust, and granules [43]. 

The optimal active concentrations of esters of thiosulfoacids were investigated in 
the range of 0.001–5.0% by weight. Effective fungicidal concentrations to protec-
tion of the materials are ranged within 0.05–1.0% by weight [43]. 

The minimal inhibitory concentration of some esters against Penicillium 
brevicaule (200 μg/ml), Chaetomium globosum (300 μg/ml), and Aspergillus niger 
(400 μg/ml) were determined. 

The antifungal effect of S-esters of thiosulfonic acids for the protection of vari-
ous materials (lubricating liquids, products of the oil refining industry and equip-
ment at profile enterprises) is determined [44, 45]. 

These substances can be used for biocidal protection and conservation of works 
of art, library, and archive funds for long-term storage [46]. 

3.1 Effect of esters of thiosulfonic acids on paper protection from biodamage. 

The effectiveness of the paper protection with S-esters of thiosulfonic acids 
against test-cultures—Aspergillus niger, Penicillium chrysogenum, and Candida 
tenuis—compared with reference nipagin (methyl ester of 4-hydroxybenzoic acid) 
was established [47]. 

Ethyl S-ester 4′-nitrobenzylidene-4-aminobenzenesulfonic acid in a concentra-
tion of 0.01% inhibits the growth of test-cultures of mold fungi by 20%, more than 
nipagin at a concentration of 0.1% [47]. 

A comparative study of the resistance of the paper treated with solutions of syn-
thesized compounds (S-ethyl-4’-nitrobenzylidene-4-aminobenzenethiosulfonate, 
a mixture of ethylthiosulfanilate and polyvinylpyrrolidone in a ratio of 1:2, nipa-
gin) was performed at 100% humidity and 28°C for 36 days against test-cultures 
(Penicillium chrysogenum BKMF-245, Aspergillus niger BKMF-1119, Mucor plumbeus 
BKPMF-520) and evaluated by conditional score (Table 10) [48]. 

It is interesting that the reference preparation nipagin was less effective against 
fungal action than thiosulfonates (Table 10) [48]. Acetone solutions based on 
thiosulfonates and their formulations with polyvinylpyrrolidone were developed. 
Adding polyvinylpyrrolidone improves the physico-mechanical and fungal resistant 
indices of paper [46, 49]. 

3.2 Influence of esters of thiosulfonic acids on the protection of the oil and oil 
refining industry equipment and lubricants from biodegradation 

Oil, refined products, and equipment for the oil, oil refining, and petrochemical 
industries can also be subjected to biological damage. Therefore, the main way to fight 
the harmful microflora is to use environmentally friendly biocides that violate the 
enzymatic systems of microorganisms and inhibit its activity [50, 51]. To solve this 
problem, a nontoxic (LD50 = 2000 mg/kg) ethyl S-ester 4-aminobenzenethiosulfonic 
acid (ETC) biocide was proposed [44]. Comparing the antifungal activity of the 
ETS with the reference industrial biocide on the basis of water-soluble 1,3,5-tris-
(2-hydroxyethyl)-perhydro-1,3,5-triazine, it was found that the reference biocide 
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Table 10. 
Fungal resistance of paper, treated by biocides RC6H4SO2SC2H5 [48]. 

even at a concentration of 0.15% by weight is noneffective, whereas the effective fun-
gicidal concentration of the ETS is 0.01% by weight (Table 11). The MIC and MFC of 
the ethyl S-ester of 4-aminobenzenethiosulfonic acid are, respectively, 40–160 and 
2–160 times lower than those of the reference preparation. The advantage of the ETC 
is its solubility in organic hydrocarbon compounds, which provides its effect in the 
total volume of the organic phase of petroleum products. 

In addition, the introduction of the ETC into the emulsion reduces the damage 
to the equipment of the oil and oil refining industry as a result of increasing the 
corrosion resistance of materials [44]. 

Experimental and industrial studies have shown the stabilization of the lubricat-
ing liquids by the addition of ETC, which increases the usage period of ones. In the 
control cycle during cold rolling of the metal, the number of microorganisms in 
lubricating liquids after 6 days was 60 million/ml, that is, 30 times more than in the 
experimental cycle after using the ETS (2 million/ml). 

The ETC improves the physicochemical parameters of lubricating liquids and 
reduces emulsion consumption and the time to replace the spent emulsion. As a 

Table 11. 
Antifungal activity of ethyl ester of 4-amino-benzenethiosulfonic acid and 1,3,5-tris- (2-hydroxyethyl)– 
perhydro-1,3,5-triazine [44]. 
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whole, productive time of the equipment of enterprises significantly increases. The 
use of ETC as an antifungal agent for lubricating liquids and emulsion in techno-
logical processes creates favorable sanitary and hygienic conditions of work and 
solves a number of environmental issues [44]. 

4. The effect of ethylthiosulfanilate on the fungal infections 

According to the WHO, more than 20% of the world’s population of different 
age groups is affected by mycoses, especially mycoses of the feet and hands with the 
damage to the nail plate. The resistance of fungal pathogens to known drugs causes 
increased mycosis diseases and their complications (secondary infections, allergic 
reactions, eczema, etc.). 

It is well known that ETS exhibits a broad spectrum of antifungal activity 
against pathogenic fungi [4, 5, 14]. The antifungal effects of ETS against 17 strains 
of various fungi were studied. It has been found that the MIC of the ETC varies 
from 3.6 to 500 μg/ml (Table 12) and depends on the genus and strain [5, 52]. 

The causative agents that cause skin and systemic diseases are yeast of the 
genus Candida. The antifungal activity of ETS was determined for the most 
virulent representatives of Candida albicans, Candida tropicalis, and Candida stel-
latoidea. The MIC of ETS for C. albicans is 30 μg/ml, C. tropicalis 250 μg/ml, and 
for C. stellatoidea 500 μg/ml. ETS is highly effective against Aspergillus foetidus and 
Acremonium chrysogenum, MIC of which is 3.6 μg/ml and 62.5 μg/ml, respectively 
(Table 12) [5, 52, 53]. 

ETC was proposed as an active substance of the antifungal 1% Esulanum 
ointment after a detailed study of the antimicrobial effects of a number of esters 
of thiosulfonic acids in S. Ordzhonikidze All-Union Scientific-Research Institute 

Table 12. 
Antifungal activity of NH2C6H4SO2SC2H5 [5, 52, 53]. 
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of Pharmaceutical Chemistry (Moscow). This ointment was developed based on 
doegling oil and intended for the treatment of tinea pedis and other fungal skin 
diseases [4, 5, 54]. 

The advantage of the Esulanum ointment is its keratolytic properties, which 
promotes rapid penetration of the drug in the deep tissue and provides an effec-
tive long-term therapeutic effect [5, 54]. The study of antimicrobial activity of 
1% Esulanum emulsion ointment in vitro against a number of microorganisms 
(Staphylococcus aureus, Streptococcus haemolyticus, Escherichia coli, Salmonella 
typhosa, Flexner’s Bacillus dysenteriae, Diphtheria bacillus (strain PW3), Bacillus 
pyocyaneus, Proteus vulgaris, Anthrax spores, Human tubercle bacillus (H37), Avian 
tubercle bacillus, Mycobacterium B5, Microsporum lanosum, Trichophyton gypseum, 
Achorion schoenleinii, Actinomycetes, and fungi Candida albicans, Aspergillus niger) 
showed fungicidal properties of the active substance of the ETS. In this case, the 
MIC and MFC of ETS are practically similar [5]. 

Clinical studies of the therapeutic effect of 1% ETS ointment in patients with 
various forms of fungal skin diseases (epidermophytosis, rubrophytosis, micro-
sporia, and trichophytosis) and different clinical manifestations have proven their 
effectiveness. Based on these results, an instruction for the application of 1% ETC 
ointment (Esulanum) was developed by the Pharmacological Committee of the 
Ministry of Health of the former USSR [5]. 

Experimental part production of 1% Esulanum was introduced into medical 
practice, but taking into account that the basis of the dosage form was doegling oil, 
which resources were limited, industrial production was not realized. 

The study of the qualitative and quantitative composition of the dosage form 
based on the ETS and its therapeutic effects is ongoing. The dynamics of the death 
of C. tropicalis cells affected by fungicidal concentrations of the ETS on the model 
system, similar to human organism processes (37°C), using a microorganism 
suspension with a cell load of 4 × 105 cells/ml, were detected. It has been found that 
the minimum fungicidal concentration for cells is 250 μg/ml [52]. Thus, the fungi-
cidal effect of the ETS on C. tropicalis is founded after 30 min of exposure (9.09%) 
and after an hour by 98.48%, and the full therapeutic effect is achieved after 6 h of 
exposure. 

Adding ETS in fungicidal concentrations to the growth medium changes the 
morphogenesis of C. tropicalis. Bumps and fractures appear on the surface of yeast 
cells, and their manifestation depends on the time of exposure [52]. ETC affects the 
metabolism of C. tropicalis, suppressing endogenous respiration by 87% and the 
decrease in nucleic acid pool in pathogen cells to 27.52% for DNA and up to 39.13% 
for RNA. Significant differences were observed in C. tropicalis lipogenesis under the 
influence of this biocide. Thus, subfungicidal concentration of ETS reduces the con-
centration of almost all classes of phospholipids in cells but increases in the content 
of lysophosphatidylcholine by 16.25% and phosphatidylcholine by 11.11% [52]. 

The ETC at fungistatic and subfungicidal concentrations exhibits a membra-
notropic effect and provides a high degree of co-operability of the membrane 
structural transitions of cells [55, 56]. The functional state of cell membranes of C. 
tropicalis was assessed by the release of low molecular nucleotide component from 
cells (pyrimidine and purine bases) under the action of various concentrations of 
the ETS. Detection of substances at λ = 260 nm is a sensitive test that characterizes 
the state of the barrier permeability of the membrane and can be used to study the 
kinetics of this process. 

The obtained results showed that the release of low molecular nucleotide 
components from C. tropicalis begins immediately after the adding of ETS into the 
medium (C. tropicalis cells concentration, 106 cells/ ml). The increase of output of 
purine and pyrimidine-containing compounds from the cell in 4.8 times compared 
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to reference cells was observed, changing the concentration of ETS from 0 to 
62.5 μg/ml. The concentration of ETS in the range of 62.5–125 μg/ml causes almost 
complete loss of these compounds’ pool. 

The increase in the permeability of C. tropicalis membranes under the influ-
ence of different concentrations of the ETS or different time of its exposure can be 
related to high saturation of cell membranes by lipids. The change in permeability 
of membranes under the action of ETC is probably due to their dynamic structure. 

Interaction of ETS and the surface structures of the cell initiate deep structural 
rearrangements of membranes, which results in increased permeability and, pos-
sibly, inhibition of one’s physiological functions. 

The obtained data suggest that the mechanism of action of the ETS may be 
related to the disruption of the cytoplasmic membrane, which will lead to signifi-
cant defects in the delivery of nutrient components to cells and the removal of vital 
metabolites from them. 

So, summing up our results, it can be considered that the mechanism of ETS 
effects can be related to the disruption of the cytoplasmic membrane that leads to 
significant defects in the flow of nutrients into the cells and the removal of metabo-
lites from ones [55]. 

5.  Compositions of esters of thiosulfoacids and biosurfactants and their 
effects on microorganisms 

Alkyl esters of alkane- and arene-thiosulfonic acids are hydrophobic com-
pounds, since they are poorly soluble in water, which limits their use as antimicro-
bial agents. In addition, the surfaces of microbial cells provide the protective barrier 
to antimicrobials. To increase the solubility and bioavailability of the thiosulfonates, 
substances that are capable of their solubilization are used, in particular, surface-
active substances (surfactants), which can be used as components of ointments, 
gels, and creams. The most promising ones are biogenic surfactants—products 
of microbial synthesis (biosurfactants) [57, 58]. Vasileva-Tonkova et al. [59] and 
Sotirova (2012) described the permeabilizing effect of biosurfactants. They can 
interact with membrane phospholipids, influence cell hydrophobicity, and have 
emulsifying ability [53, 59]. 

The formation of the supramolecular complexes of rhamnolipids with model 
membrane phospholipids is considered as a possible molecular mechanism of mem-
branothropic action of the biosurfactant, which was shown by electrospray ioniza-
tion mass spectrometry [60]. These complexes can affect the liquid-crystalline state 
of the lipid matrix of microbial membranes and change some membrane processes 
such as cells transport [61]. 

The permeabilization of cell membranes with surfactants can overcome the 
barriers and increase the efficacy of various antimicrobial agents. In this regard, 
biosurfactants can play a significant role as additives in the development of pharma-
ceuticals due to their ability to enhance solubility or bioavailability of poorly soluble 
substances [58]. 

A new promising approach to the creation of effective antimicrobials is 
proposed, which consists in a synergistic combination of thiosulfonic esters, 
ethylthiosulfanilate (ETS) or methylthiosulfanilate (MTS), with the biosurfactants 
of Pseudomonas sp. PS-17 strain—rhamnolipid biocomplex (RBC) and rhamno-
lipids (RL). The introduction of biosurfactants into the compositions allowed the 
reduction of the active concentrations of thiosulfonates in the resulting products. 
The antimicrobial potential of compositions based on ETS and MTS with RL 
was investigated against model strains of various genera and taxonomic groups, 
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Table 13. 
Influence of the contents of ointment compositions on the growth of microorganisms [54]. 

capable of causing damages to human health, agriculture, industrial products, as 
well as phytopathogens. So, for culture Rhizopus nigricans, MFCs for MTS, 30 μg/ 
ml, and for ETS, 50 μg/ml, and for their compositions RL were, respectively, 10 
and 20 μg/ml [53, 60]. 

The explanation of these results could be related to permeabilization of the 
microbial cell membranes by rhamnolipids (increase in levels of extracellular pro-
teins). Biosurfactants provoke changes in cell surface and affect different compo-
nents of the membranes [62]. Biosurfactant also can damage the surface structure 
of the spores [53, 63]. 

The developed ointment composition exhibits high antifungal and antibacterial 
activity in comparison with known biocidal agents. The addition of rhamnolipid 
biosurfactants into thiosulfonate compositions contributed to the decrease of 
minimal fungicidal and bactericidal concentrations [53, 64]. The criteria for 
selecting the ratios of ETS and RBC in the compositions were the formation of 
stable emulsions and the antifungal and antibacterial activity of the compositions. 
Comparative studies of the effectiveness of ointment preparations based on ETC 
and the composition of ETS + RBC with respect to microorganisms of various 
taxonomic groups were carried out (Table 13). 

Thus, the presence of the biosurfactant enhanced the biocidal effect of MTS and 
ETS. A possible explanation could be related to the higher protein leakage as a result 
of permeabilization with the rhamnolipid biosurfactant. Probably, the decrease in 
concentrations of the studied substances, which are able to suppress the microbial 
growth completely, is due to the increased access of inhibitors to the bacterial cell. 
The use of rhamnolipids or other biosurfactants active against variety of microor-
ganisms, in combination with antibiotic treatment, or antimicrobials, may repre-
sent new productive antimicrobial strategy [65]. 

6.  Antifungal activity of various esters of carboxylic and heterocyclic 
thiosulfonic acids 

The series of alkyl-, cycloalkyl- and aryl-esters of arylthiosulfonic acids 
RNHC6H4SO2SR’ was synthesized, and the spectrum of their antifungal action was 
studied (Table 14) [27]. 

For RNHC6H4SO2SR’ (Table 14), MIC was determined for Candida albicans 
ATCC 90028, Candida glabrata ATCC 90030, Aspergillus fumigatus IHEM 13934, 
and MFC for Candida albicans, Verticillium dahliae, Trichophyton gypseum. All syn-
thesized esters are characterized by rather high fungicidal activity. The compounds 
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Table 14. 
Minimal inhibitory and fungicidal concentrations of substances of structure RNHC6H4SO2SR’ [27]. 

with an acetyl fragment exhibit a higher fungicidal activity than compounds 
with a 3-chloropropionyl or trifluoroacetyl fragments. The MIC of ethyl ester of 
4-acetylaminobenzenethiosulfonic acid relative to C. albicans is 25 μg/ml and for 
fungi A. fumigatus, 12.5 μg/ml, while the MIC of the ethyl ester of 4-trifluoroacetyl 
aminobenzenethiosulfonic acid was, respectively, 50 and 25 μg/ml. Regarding the 
influence of substituents (R’) from the side of sulfide sulfur, cycloalkyl- and aryl 
thiosulfone esters were more active than alkylic. The MFC values of phenyl esters of 
4-acetyl and 3-chloropropionyl aminobenzenethiosulfonic acids were determined 
between 2–10 and 10–40 μg/ml, respectively. 

The evaluation of the fungistatic effect of methyl, ethyl, and allyl esters of 
3-acetylamino-4-methoxybenzenethiosulfonic on test-cultures of C. albicans and 
Penicillium sp. with an exposure time of 24–120 h was conducted [64]. At a concen-
tration of 200 μg/ml methyl and allyl esters partially delay growth at exposure for 
24 h. With an exposure of 48 h at a concentration of 100 μg/ml, allyl ester com-
pletely inhibits the growth of C. albicans, which is associated with a change in the 
antifungal mechanism [66]. 

People with reduced immunity are often exposed to disease, provoked by fungal 
infections. It was established that alkyl esters of alkane and arylthiosulfonic acids, 
alkyl esters of heterocyclic thiosulfonic acids have high antifungal activity. MIC 
of alkyl esters of 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-6-thiosulfonic acid was 
established for various fungal strains of Candida, Cryptococcus, Trichosporon, and 
Geotrichum [67–71]. For fungi of the genus Candida, the most effective is the allyl 
ester (C3H5) (Table 15). 
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Table 15. 
Fungicidal action of alkyl esters of 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-6-thiosulfonic acid against 
Candida sp. [67]. 

Table 16. 
Fungicidal action of alkyl esters of 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-6-thiosulfonic acid against 
Cryptococcus, Trichosporon, and Geotrichum [67]. 

This regularity is characteristic to fungi of genera Cryptococcus, Trichosporon, 
and Geotrichum (Table 16). 

The fungistatic effect of methyl, ethyl, and allyl esters of 8-quinolinethiosulfonic 
acid on the test-culture of C. albicans exposed during 24–120 h was evaluated. For all 
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investigated esters, the inhibitory concentration is 200 μg/ml. Ethyl and allyl esters 
are more active and their MIC is 100 μg/ml. At a concentration of 1.0 μg/ml, the 
ethyl ester partially delay the growth of the test-culture exposed for 24–48 h [70, 71]. 

Summing up our results of the antimicrobial activity of esters of thiosulfonic 
acids, various ways of their practical application can be proposed. It has been 
shown that there is a correlation between the structure of thiosulfonate esters, their 
reactivity in chemical and biochemical reactions, and biological activity. This is 
confirmed by the specificity of the effects of thiosulfonates against various patho-
genic fungi, depending on the structure of their sulfenyl and thiol components. 

Our finding showed the advantages of synthetic esters of thiosulfonic acids in 
comparison with their natural analogs by the biological activity, as well as their 
competitiveness compared with commercial antifungal substances. The competi-
tiveness of thiosulfonates is determined by their low fungicidal and bactericidal 
concentrations and low resistance of microorganisms to their action. 

Thus, new thiosulfoacid esters as biologically active compounds are suitable 
for the development of more efficient and safe medicines, biocides, remedies, and 
growth stimulators. 
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Abstract

Although many fungal specimens are responsible for human and/or animal 
infection, other species are advantageous for preventing the infection by soil-trans-
mitted zoonotic parasites. Infection occurs by the accidental ingestion of parasitic
stages (cysts, oocysts, eggs, and larvae), their active penetration through the skin or
through direct contact. Numerous species of helminths develop an external phase
in the soil where the infective stages are attained, thus mammals become infected 
when grazing, drinking, or accidentally. Ectoparasites as ticks perform also in the
soil the phase from egg to larva. Different soil saprophytic fungi that turn into
predatory agents when parasitic stages are near have been isolated and described. 
These species are capable of destroying the pathogens or irreversibly decreasing 
their viability, providing thus a very interesting and sustainable tool to reduce
environmental contamination by pathogenic agents. In the last year, a profound 
knowledge on the most appropriate fungal species, together with the proper way to
disseminate them, has been acquired.

Keywords: Mucor circinelloides, Duddingtonia flagrans, parasiticide, soil, STHs,
zoonoses

1. Introduction

1.1 Organisms in soil

The definition of soil according to the sciences of the earth and life points to the
external part of the earth’s crust, which is biologically active and tends to develop
on the surface of the rocks emerged by the influence of weather and living beings. 
It is also frequent that this concept includes a complex set of physical, chemical, and 
biological elements that make up the natural substrate in which life develops on the
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Fungal Infection 

surface of the continents. The soil is the habitat of a specific biota of microorgan-
isms (bacteria and fungi), plants, and small animals that constitute the edaphon. 

In recent decades, there has been an increasing concern for soil biodiversity, 
on the basis that the interactions between microorganisms, animals, and plants 
provide an undoubted benefit to the well-being of mammalian species, including 
man [1]. This biodiversity conditions both the possibilities of feeding these species, 
oxygenation, as well as the control of the risk of certain diseases. For these reasons, 
it is not difficult to understand that soil biodiversity is directly affected by global 
changes caused by man, especially those related to land use, urbanization, agricul-
ture, deforestation, and desertification, which leads to the logical conclusion that 
the careful and sustainable use of soils would guarantee their benefits. 

Different studies have indicated that exposure to soil microorganisms decreases 
the prevalence of allergic diseases [2]; taking into account the predictions that 
around the year 2050 two-thirds of the world population will reside in cities, the 
stimulation of the immune system by soil organisms will be reduced, and therefore 
allergy cases will increase. 

Other researches highlight the increase in the appearance of bacterial species 
resistant to most known antibiotics, and the same happens with some parasites, 
such as helminths. The use of remedies found in the soil, such as certain types 
of fungi, has not yet come to be considered as a solution to the aforementioned 
problems. It is interesting to know that some bacteria capable of synthesizing effec-
tive antibiotics against Mycobacterium tuberculosis have been isolated in the soil [3]. 
It should also be noted the production of molecules with parasiticide action from 
fungi [4]. Special mention should be made of the use of some fungal species in the 
control of certain endoparasites that, once in the soil, complete a series of phases 
until they reach the infective stage [5]. In recent years, very important achievements 
have been made in the large-scale production of saprophytic fungal spores that are 
found in the soil, such as Mucor circinelloides or Duddingtonia flagrans, filamentous 
species that are in contact with eggs or larvae of some parasites, respectively. They 
have the capacity to destroy them or limit their viability [6, 7]. In this way, it is pos-
sible to reduce the risk of infection in people, and also in animals that are in pasture. 

1.2 Pathogenic organisms transmitted through the soil 

Pathogenic organisms belong mainly to five main groups, viruses, bacteria, 
fungi, and parasites (protozoa, helminths, and ectoparasites) [8]. From an aca-
demic and disease control approach, the importance of soil lies in the fact that a 
significant number of pathogens are found in this habitat, and sometimes they are 
accidentally ingested by animals and people, causing important disorders. There are 
some organisms that do not require ingestion, being able to spread their pathoge-
nicity through bites or penetrating the skin. 

Table 1 summarizes different examples of pathogens present in the soil. It is 
important to note that most soil organisms do not constitute a health risk, and 
pathogenic species represent only a minority. Nor should we forget that some 
species are opportunistic (Pseudomonas and Enterobacter) and can cause alterations 
in mammals, although in the soil they are actually antagonists of root pathogens 
of some plant species, or can act as growth promoters of some plants and even as 
decomposers of organic matter [9]. Other pathogens need to develop part of their 
cycle in the soil, to complete their evolution until the infective phase. These are 
organisms that can survive in the soil for long periods of time, and include spores, 
eggs, or even larvae. These are obligate pathogens that temporarily reside in the 
soil, and that are transmitted to mammals by direct contact, by vectors, or through 
accidental ingestion [10]. For these reasons, it is necessary to know the ecology of 
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Bacteria Bacillus anthracis Agrobacterium tumefaciens 

Listeria monocytogenes Escherichia coli 

Salmonella spp. Clostridium spp. 

Fungi Aspergillus spp. Histoplasma capsulatum 

Coccidioides immitis 

Protozoa Naegleria fowleri Toxoplasma gondii 

Helminths Ascaris spp. Taenia spp. 

Ancylostoma spp. Strongylus spp. 

Ectoparasites Pulex irritans Ixodes spp. 

Table 1. 
Numerous pathogens can be found in the soil. 

the interactions between the soil and the various organisms to determine why some 
are prevalent and persist under certain conditions. 

The concept of Soil Borne Human Diseases offers a very accurate introduction 
about the role that soil can play in the transmission of certain diseases [11]. However, 
it is obvious that this idea is a bit limited, since not only the human species will expe-
rience the risk of contracting diseases from this habitat. From an etiological point of 
view, pathogenic organisms are defined as those whose habitat is the soil, and pathogens 
transmitted by the soil as organisms that can survive for long periods of time in the 
soil, and need to do so to infect the host and continue their biological cycle, but they 
are not part of the soil [12]. Some of the most frequent endoparasites affecting people 
and animals, such as roundworms, cestodes, or strongyles, belong to this group, and 
they are characterized by undergoing a series of changes in the soil to the infecting 
stage. Part of the biological cycle of some ectoparasites such as fleas or ticks occurs 
in the soil also. This underlines the importance of soil as an adequate medium to 
certain parasites can survive and develop to infective stages, pending of proper hosts 
ingest them (flatworms, roundworms, whipworms), contact with soil (hookworms) 
or walk near (ectoparasites). Regardless of their origin (animal/human), control of 
parasites affecting mammals requires some action on the stages in the group, since 
parasiticide therapy acts on the parasites living and affecting them only; thus, the 
risk of reinfection is elevated, even though successful treatments are applied. 

1.3 Mammal parasites developing in the soil 

Soil provides a suitable habitat to different organisms as plants can grow and 
develop, serving as food for the survival of many living creatures (insects and micro-
mammals). This environment enables mammals as herbivores to graze and carnivores 
to find their feeding. 

Most known parasites associated to soil are defined as soil-transmitted helminths 
(STHs), which involve well-known species belonging to flatworms, tapeworms, or 
roundworms. Helminths can develop a direct cycle in the soil, but an intermediate 
host is required for some species, and paratenic hosts participate in the transmission 
of several infections. On the basis of the zoonotic role of different parasites devel-
oping in the soil, it is necessary to know the external phase of their life cycle. 

Transmission of STHs involves that eggs are passed in the feces of infected indi-
viduals. Once in the soil, flatworms (trematodes and cestodes) need to complete sev-
eral stages inside an intermediate host, to attain the infective stage. Fasciola hepatica 
and Schistosoma mansoni (flatworms) are related to humid environments where a 
number of aquatic or amphibious snails take part. After some stages are completed 
and exit-off the snails, the infective stages known as metacercariae mature in herbage 
or water, and infection occurs by the ingestion of herbage or water contaminated [13]. 
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Roundworms (Ascarids) represent the most spread nematodes around the 
world. Although these are host species-specific pathogens, humans can be involved 
as paratenic hosts for many of them such as roundworms infecting domestic 
animals (Toxocara canis, Ascaris suum) or wild species (Baylisascaris procyonis and 
Toxascaris leonina). Infection occurs by the accidental ingestion of larvated eggs 
(containing a second-stage larva inside) (Figure 1). 

Whipworms (Trichuris spp.) have a similar cycle to roundworms. Transmission 
occurs by the oral ingestion of eggs holding a first larva. 

In the case of Ancylostoma, nematodes (hookworms), embryonated eggs are 
passed in the feces and once in the soil, the first-stage larva (L3) emerges and molts 
to a second-stage larva and then to a third-stage larva, the infective stage. Infection 
can occur either by oral ingestion of L3 or through the skin [14]. 

It is well recognized that ticks need to suck blood from mammals for surviving, 
but sometimes it is forgotten that these ectoparasites develop part of their life cycle 
in the soil also. Gravid adult females drop off the final host to the ground to lay 
eggs. Under appropriate conditions, the egg hatches into a larva, which waits for an 
appropriate mammal to bite for feeding and then transform into nymph. 

Appropriate conditions (moisture and temperature) must concur in the soil to 
improve the development of parasites to their infective stages. Nevertheless, evolu-
tion of parasites can be delayed until unfavorable circumstances appear, especially 
low temperatures. Some of them such as roundworms and whipworms are able 
to survive viable for long periods, even under temperatures below zero [15]. This 

Figure 1. 
Numerous parasitic stages can be found in the soil (COPAR archive). 
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resistance is conferred by their eggshells, composed of at least four layers, uterine 
(mucopolysaccharides), vitelin, chithinous, and lipidic (inner). Eggs of ticks can 
also survive in the environment unless the solar light falls directly on them. 

Larval stages (first, second, or third) from nematodes exhibit a certain degree 
of resistance, and it has been reported they can subsist under snowy areas [16]. 
Dry soils in spite of very humid areas are preferred by immature hookworms [5], 
like sandy places. This explains the cutaneous infection of people enjoying outdoor 
activities on beaches, parks, etc. from touristic areas. 

1.4 Importance of infection by parasites from the soil 

Human STHs are frequent in Asia, Africa, and South America, being absent 
in Western Europe and developed countries. Nevertheless, these diseases have 
reemerged due to immigration, travel, and business. Also in recent years, populations 
of ticks are increasing in urban areas, as well as orchards, parks, and gardens [17]. 

There are four main STHs affecting humans, Toxocara canis (round-
worm), Ancylostoma duodenale and Necator americanus (hookworm), and 
Trichuris trichiura (whipworm). Between 1.5 and 2 billion people, it is believed that 
they are probably infected worldwide [18]. The presence of these parasites is asso-
ciated to low standards of hygiene, poverty, and malnutrition because infection 
takes place by the accidental ingestion of eggs or through cutaneous contact with 
larvae of hookworms. It is necessary the exposure to feces of pets, mainly dogs. 
As advised by the WHO (World Health Organization), periodic administration 
of albendazole and mebendazole is helpful to reduce the incidence of these para-
sitoses. Deworming is the most applied measure against STHs, and extension of 
treatment (increment of frequency) looks like a valuable solution, although there 
is a potential emergence of drug resistance as observed in veterinary medicine [19]. 
By considering that infections originate from fecal contamination of the environ-
ment, mammals can become reinfected frequently after parasiticide treatment is 
administered. Consequently, actions on the environment are required to reduce the 
exposure to infective stages, mainly consisting of the use of latrines, together with 
hygienic behaviors. 

Dogs are the definite hosts for T. canis and N. americanus, thus another ques-
tion to address concerns the possibility of humans and animals sharing infections 
by parasites, the so-called parasitic zoonoses. As explained previously, trans-
mission occurs in the same way, but the presence of infected animals becomes 
essential for human infection. In this case, control appears more difficult, due to 
the impossibility to ensure that pets receive an appropriate deworming therapy. 
The problem aggravates when considering that wild/uncontrolled animals can live 
near persons, because there is no way to perform control of their parasites by the 
administration of antiparasitic drugs. In some countries, it is not rare to observe 
feces of stray dogs or cats, foxes or raccoons, in private gardens, public parks, or 
even beaches. As stated above, humans might become infected by roundworms 
or hookworms, and despite infection, it is not completed, serious damage could 
be provoked attributable to the erratic migration of immature stages across the 
organism [20]. At this point, it seems necessary to remember that second-stage 
larvae of Toxocara canis (dog), T. cati (cat), Ascaris suum (pig), or Baylisascaris 
procyonis (raccoon) can cause a visceral larva migrans syndrome after these larvae 
are released at the gut level. Infection by T. canis can be responsible for an ocular 
larva migrans [21], while B. procyonis is associated to a devastating neurological 
syndrome, with children being the riskiest group due to their tendency to play 
with ground, or take and leave sand in the mouth [22]. The possibility of human 
infection through the exposure to eggs of roundworms on the coat of dogs has also 
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been considered [23], which remarks the importance of these parasites are easily 
transmitted to their owners. 

2. Beneficial soil fungi 

2.1 Antagonists of helminths 

By considering that a great number of pathogens develop in the soil, one inter-
esting question refers to why mammals did not infect more frequently, or why 
low to moderate infections are usually detected. Infection depends on the density 
of pathogens and risky situations such as accidental ingestion or active passage 
through the skin (helminths) or walking by places with vegetation (ectoparasites). 
Then, it could be expected that exposure to natural environments might represent a 
great hazard, thus enjoying natural habitats should be avoided (or even forbidden). 

As mentioned previously, a great number of fungal species can be found in the 
soil, together with many other organisms such as viruses, bacteria, earthworms, 
insects, etc. Some of these species are saprophytic and feed on organic matter, but 
in the presence of parasitic stages such as eggs or larvae, they shift to predatory 
agents. Hyphae develop and the mycelium grows toward the parasites in an attempt 
to take certain nutrients, nitrogen and carbon mainly [24]. Other fungal species 
feed on different species of fungi, as succeeds with some mites. 

It has been demonstrated that certain soil saprophytic fungi such as 
Duddingtonia flagrans are able to adapt to the numbers of larvae of nematodes 
developing from eggs shed in feces of infected grazing horses [25]. In the absence 
of nutrients, fungi can remain as resting stages (spores). It should be emphasized 
that different organisms interact simultaneously on the ground, thus soil fungi do 
not persist for long periods (4 months) and need to be replaced by new structures 
such as spores, mycelium, etc. [26]. This must be taken into account when soil fungi 
are going to be used under biological control strategies. Other interesting finding 
consists of the absence of activity on nonparasitic organisms (Figure 2). 

Based on experiments with plants, traditionally the fungal antagonists of 
parasites comprise nematode-trapping species (larvicidal), predacious agents, 
endoparasitic fungi, and egg parasitic fungi (ovicidal) [27]. In the last decades, this 
classification applies also for defining the activity of soil fungi against parasites 
affecting mammals (Table 2). 

In natural conditions, when the environment does not result altered by humans, 
soil albeits not only fungi but other microorganisms as viruses, bacteria, earth-
worms, insects… A number of filamentous fungi feed on organic detritus, certain 

Figure 2. 
Filamentous fungi develop hyphal nets in the soil, and reproduce by spores (COPAR archive). 
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Effect Species Action against 

Ovicidal Pochonia chlamydosporia 

Purpureocillium lilacinus 

Trichoderma spp. 

Mucor circinelloides 

Verticillium chlamydosporium 

Gliocladium spp. 

Flatworms 
Roundworms (ascarids) 
Whipworms 

Larvicidal Duddingtonia flagrans 

Arthrobotrys spp. 

Monacrosporium spp. Hookworms 
Roundworms 
(strongyles) 

Table 2. 
Filamentous soil fungi antagonists of parasites in the soil. 

coprophagous beetles participate in enriching the ground by decomposing organic 
matter as manure, some mites feed on fungi, and several fungi do it also. This means 
that an equilibrium situation takes place, where organisms are controlled mutually, 
and explains also why low risk of infection is usually observed. When agricultural 
procedures affecting the surface of the ground are performed, this habitat is trans-
formed, and beneficial organisms drop or disappear. As a consequence, the density 
of pathogens increases, accordingly the risk of exposure among mammals increases 
and they can become infected. 

Several investigations pointed the efficacy provided by some fungi to limit the 
viability of eggs of roundworms [28]. As drawn in Figures 3 and 4, the addition of 
spores of M. circinelloides to the feces of dogs infected by T. canis decreased their 
viability by half after a period of 30 days [29]. When the spores were sprayed onto 
feces of raccoons parasitized by B. procyonis, egg viability reduced by two-thirds 
also, in agreement with previous experiments [30]. 

A notable efficacy has been reported against larvae of hookworms by using 
trapping-nematode fungi such as D. flagrans. A 57–73.2% reduction of the numbers of 
the third-stage larvae of Ancylostoma spp. has been obtained, and the counts of larvae 
decreased by 24.5–63% when exposed to chlamydospores of D. flagrans [31, 32]. 

By taking into account that the aforementioned parasites are STHs, the use of 
ovicidal and larvicidal fungi could be strongly helpful to limit the development of 
parasites to infective stages in the soil. One interesting question refers to the proper 
way to spread the fungi to ensure their contact with the parasites. Because the eggs 
of parasites are shed by feces, the most useful procedure looks to try that fungi 

Figure 3. 
Viability of eggs of Toxocara canis (left) and Baylisascaris procyonis (right) after 30 days of exposure to spores 
of Mucor circinelloides (Mucor30) or distilled water (Control 30). Points mean average values and bars the SD 
[29]. 
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Figure 4. 
The soil filamentous fungus M. circinelloides is able to attach to the eggshells of roundworms such as T. canis, 
colonize, penetrate, and absorb the inner content (COPAR archive). 

are in the feces at the same time, and for this purpose, oral administration could 
be appropriate. Several investigations demonstrated that the spores of Pochonia 
chlamydosporia, Mucor circinelloides, and Duddingtonia flagrans can survive the 
passage through the gastrointestinal tract of different animal species, and retained 
their antagonistic activity [6, 33, 34]. Later, several assays were performed by 
adding spores or mycelium of Pochonia chlamydosporia or Duddingtonia flagrans 
during the handmade elaboration of nutritional pellets [35–37]. More recently, 
the capability of fungal spores to resist the industrial fabrication of pelleted feed 
has been demonstrated [38, 39]. The usefulness of pellets containing spores of M. 
circinelloides and D. flagrans has been tested on grazing horses, and highly suc-
cessful results were obtained. Through this strategy, it was possible to reduce the 
frequency of deworming from 4 years to 1–1.5 years [7, 40]. This approach has also 
been assayed on wild captive equids maintained in a zoological park, and as a result 
the administration of anthelmintics was significantly lessened [41], supporting the 
results previously collected by administering the spores as a premixed feed [6]. 

2.2 Entomopathological agents 

It has been explained that ectoparasites develop part of their cycle in the soil. 
After mating on the host, gravid female ticks engorge completely and drop to the 
ground, where thousands of eggs are laid mainly in places protected from sun and 
desiccation, with vegetation. Later than a variable period, depending on tempera-
ture and humidity, eggs hatch and larvae exit off, addressing to plants, pending of 
a host to attach and suck blood for molting into nymphae. Beauveria bassiana and 
especially Metarhizium anisopliae are the most investigated entomopathogenic fungi 
capable of infecting and damaging ticks [42, 43]. Trials consisted of the topical 
administration of oil solutions, targeted against immature or adult stages [44]. The 
aim is to reduce the indiscriminate use of chemical acaricides, for avoiding contami-
nation of food and environment, as well as the appearance of chemical resistance 
among tick populations [45]. 

There is little information available concerning the possible effect of fungi on 
tick eggs in the soil. Figure 5 summarizes the results collected after the exposure of 
eggs of Rhipicephalus boophilus to spores of M. circinelloides. The fungal activity was 
estimated by measuring the percentage of egg viability, and the hatching percent-
age, i.e., the percentage of larvae hatched after 15 days. Fungal growth started on 
the eggshells 4 days after exposure, and by 6 days, hyphae penetrated inside. 

Viability of ticks’ eggs decreased to 80% in the controls-untreated eggs, and to 
38% in those exposed to the filamentous fungus. The hatching percentage was 45% 
in the controls, by 15% in the Mucor-treated eggs. 
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Figure 5. 
Viability of eggs of the tick R. boophilus exposed to spores of M. circinelloides (Mucor) or distilled water 
(Control). Points mean average values and bars the SD (COPAR archive). 

Four phases have been described during the activity that the ovicidal fungus 
Verticillium chlamydosporium perform on eggs of helminths, i.e., contact, attach-
ment, penetration, and deliberation [46]. The fungus M. circinelloides develops 
a similar activity on both the eggs of helminths and ticks (Figure 6). When the 
spores contact with the parasites, hyphae grow toward the eggshell and colonize it. 
Those hyphae facing the eggshell in perpendicular are able to penetrate inside. This 
is possible due to the involvement of the appressorium, a pressing organ consisting 
of a flattened and thickened hypha, which is provided of a haustorium, a special-
ized branch which penetrates the tissues of the host and absorbs nutrients and 
water [47]. This mechanism enables the fungus to take all the inner content of the 
egg, without losing anything. Once completed, hyphae exit off and colonize other 
egg (deliberation). 

In view of the mentioned results, certain soil fungi seem very promising agents 
for limiting the viability and evolution of tick eggs in the soil, contributing to 
decrease the risk of infestation. One possible approach could rely on preparing 
aqueous solutions containing the fungal spores, and spreading by using airless 

Figure 6. 
Hyphae of M. circinelloides grow and attach to the eggshells of ticks, penetrate and destroy them (COPAR 
archive). 
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sprayers. This would provide a solution to limit the risk of infestation in outdoor 
areas as waysides or the edge of grass along the roadsides, gardens, or even farms. 
Reduction in the presence of ticks in the soil also provides a sustainable and preven-
tive tool to avoid damage to humans and animals. 

2.3 Biofuel production 

Some strains of several soil fungal species have been isolated according to their 
ability to convert fungal oils into esters, providing thus a sustainable way to obtain 
biofuel [48, 49]. The interest of microbial oils has increased as they are now used 
as commercial sources of several nutritionally important polyunsaturated fatty 
acids [50]. 

2.4 Health and soil fungal employment 

Despite fungi being mostly considered responsible for fungal diseases that can 
range from nonsevere to mortal illnesses, fungal infections have become a serious 
health problem in immunocompromised patients largely. 

Opposite to Duddingtonia flagrans and Monacrosporium thaumasium, the infec-
tion by Mucor circinelloides has been associated to clinical cases of mucormycosis, 
a sporadic and life-threatening infection caused by Mucorales. These are fungi 
distributed far and wide in the environment, in particular on woody surfaces and 
soils, where it can be easily isolated [27]. 

Several reports indicated nosocomial infection by M. circinelloides among immu-
nocompromised people with skin wounds, or suffering diabetes mellitus [51]. 

Among animals, infection by M. circinelloides has been diagnosed in one 
Vietnamese potbellied pig presenting clinical signs of pneumonia, but information 
regarding the habitat or the level of inbreeding has not been provided [52]. 

Until now, long-term assays comprising the frequent administration (daily or 
twice a week) of a blend of spores of M. circinelloides and D. flagrans have been 
developed in pasturing horses. One group of seven horses received daily pellets 
containing the fungal spores during 64 weeks, and no adverse effects regarding 
respiratory, digestive, reproductive, or cutaneous damage were recorded [7]. Other 
group of eight horses was given pellets twice a week with the spores for a 1-year 
period, and after testing the activity of the respiratory, digestive, and reproductive 
systems, no alterations were recorded [41]. No signs of damage on skin integrity 
were observed. 

Until now, there have not been reported any problem with people producing and 
managing spores/mycelium for longer than 10 years. 

2.5 Conclusions 

Inasmuch as STHs are transmitted through soil, it seems essential to develop 
measures on the environment to avoid reinfection, and the abusive administra-
tion of parasiticides. Some STHs originate from animals (domestic and wild), and 
helpful actions to reduce the risk of transmission are also required. Besides public 
education and hygienic behaviors, other activities should be applied to limit the 
presence and survival of infective stages of parasites. There have been described 
several species of soil fungi antagonists of eggs or larvae of helminths and ticks. 
Although several cases of disease have been linked to soil fungi, the absence of 
disease among people managing them or among animals receiving fungal structures 
seems to reinforce their safety, unless the patients are immunocompromised. The 
use of soil fungi against infections transmitted across ground gives a sustainable 

132 



 

 

  
  

 

  

 

  

  

Advantageous Fungi against Parasites Transmitted through Soil 
DOI: http://dx.doi.org/10.5772/intechopen.81027 

measure to prevent damage to persons and animals, and might allow us to limit the 
administration of antiparasitic drugs to imperative situations only. 
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