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past three decades, many questions remain unanswered. With this book, we highlight the
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Abstract

On October 17, 2018, Canada became the first G20 nation to legalize the use of Cannabis 
sativa for both medicinal and recreational purposes. This change in legislation and end of 
prohibition are indicative of a larger global movement to understand Cannabis—and the 
bioactive chemicals present within Cannabis known as the cannabinoids—for its potential 
biomedical uses, harms, and economic values. Currently, interest in Cannabis and canna-
binoid research is surging as the many knowledge gaps in basic biology, pharmacology, 
epidemiology, and clinical efficacy are identified. The purpose of this book is to summa-
rize some leading areas of research in the cannabinoid field where knowledge gaps have 
been or are being actively addressed. The research described herein spans between basic 
biological and clinical research. As the editors of this text, we are grateful to the work of 
the chapter authors and their important contributions to this rapidly growing field.

Keywords: cannabinoids, Cannabis sativa, phytochemicals, cell signaling, animal 
models, clinical trials, pediatrics, epilepsy, crystallography, Tourette’s syndrome

1. Introduction

Cannabis sativa has been used medicinally and recreationally for millennia by societies around 
the world, but our comprehension of Cannabis and cannabinoids from a modern perspective 
is still very much in its infancy [1]. The field of cannabinoid research has evolved from a curi-
osity following the first report of the medicinal properties of Cannabis in 1840 [2] to becoming 
a controlled product in 1925 following the signing of an international treaty controlling its 
trade [3] to ultimately becoming a highly active basic and clinical research discipline. The 
psychoactive and intoxicating constituent of Cannabis sativa, ∆9-tetrahydrocannabinol (THC), 
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was first isolated and described by Dr. Raphael Mechoulam in 1964 [4]. Following this dis-
covery, it was not until 1991 that a human cannabinoid receptor—later named the type 1 
cannabinoid receptor (CB1R)—was identified, isolated, and cloned [5]. Other components 
of the endogenous cannabinoid system (ECS) were subsequently identified in rapid succes-
sion, including the endogenous cannabinoid anandamide (AEA) and 2-arachidonoylglycerol 
(2-AG), the type 2 cannabinoid receptor (CB2R), and the anabolic and catabolic enzymes that 
synthesize and degrade the endogenous cannabinoids, respectively [6]. During this period 
there was also a rapid growth in tool compounds (synthetic cannabinoids) to study the ECS 
and a race to understand the physiological and behavioral effects cannabinoids evoke in vivo 
[7]. With this rapid growth came some of the first modern preclinical and clinical data to 
suggest clinical efficacy of cannabinoid-based medicines in the treatment of pain, anxiety, 
addiction, and metabolic disorders [8], as well as preclinical and clinical data that indicated 
the potential harms associated with Cannabis use, in particular the long-term use of THC in 
the context of the developing brain [9]. Our understanding of Cannabis sativa itself was also 
growing during the 1990s and 2000s, with the draft sequence of the genome published in 2011 
[10] and more than 220 identified constituents (>100 cannabinoids and >120 terpenes) now 
identified in the plant [11, 12]. Most recently, several crystal structures of CB1R were solved 
in 2016 and 2017 by large interdisciplinary research groups [13–15]. These crystal structures 
will allow for rational drug design and comprehension of drug-receptor relationships for the 
first time in the cannabinoid field.

Although the field of cannabinoid research has seen incredible growth during the past three 
decades, many questions remain unanswered. As a demonstration of the cannabinoid field’s 
infancy, the clinically relevant pharmacological effects of morphine have been documented 
since 1817 [16], and the crystal structure of the μ-opioid receptor was solved in 2012 [17]. The 
illegal status of Cannabis in most constituencies has represented a significant barrier to basic, 
epidemiological, and clinical research. However, interest in the potential applications of can-
nabinoids and their biology has grown tremendously since the discovery of the ECS. What 
was once a field with a single manuscript in 1964 has now grown to an area averaging 1500 
studies per year in a veritable gold rush into a relatively poorly characterized system. With 
this book, our goal is to highlight the impressive work of some researchers in this field as they 
address what will become the critical scientific questions of our time concerning Cannabis.

2. Preclinical research

This book presents a collection of chapters addressing important preclinical topics, including 
the utility of the zebrafish model in cannabinoid research (Chapter 1), insights derived from 
the structural analysis of CB1R crystal structures (Chapter 2), and the analysis of medical 
Cannabis quality traits (Chapter 3). Dr. Ellis describes the historical usage of the zebrafish 
model and its applicability to studies of various aspects of vertebrate and mammalian biology, 
including neurobiology and neurological disorders, while focusing on the role of the endo-
cannabinoid system. Dr. Al-Zoubi et al. provide an in-depth analysis of the unique aspects 
of cannabinoid receptors gleaned from studies of hCB1R crystal structures. These authors 
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present an extensive review of studies using mutation and labeling of CB1R to characterize the 
orthostatic binding site and identify issues with crystal structures that could impact their util-
ity in rational drug design. Dr. Calvi et al. provide a description of state-of-the-art analytical 
methods used to assess the quality attributes of medical Cannabis products. This is a particu-
larly timely topic as the necessity to characterize Cannabis chemotypes has increased with the 
recent legalization and regulation of medicinal Cannabis in major markets around the world.

3. Clinical research

The clinical research described in this book focuses on the clinical effects of Cannabis and can-
nabinoids on cognition (Chapter 4), the treatment of pain (Chapter 5), Tourette’s syndrome 
(Chapter 6), Cannabis use disorder and Cannabis withdrawal (Chapters 7 and 8), cannabinoid 
dosing considerations in pediatric populations (Chapter 9), and Cannabis use for treating 
pediatric and adult epilepsy (Chapter 10). Dr. Weston-Green provides a comprehensive 
overview of cannabinoid-dependent effects on cognition, including discussions about (1) 
the many “lesser-known” plant cannabinoids beyond THC and cannabidiol that have been 
under-assessed to date and (2) the potential “entourage effects” of cannabinoid combinations 
occurring in Cannabis products. Dr. Uhelski et al. review the anti-nociceptive properties of 
cannabinoids and the preclinical as well as clinical evidence for the use of cannabinoids as 
analgesics for peripheral pain. Cannabis-based medicines (CBM) are presently being exam-
ined for a wide array of psychiatric conditions for which the evidence base is small yet grow-
ing. Dr. Szejko provides a review of the clinical evidence for CBM in Tourette’s syndrome and 
the potential mechanisms of action at work for cannabinoids in this disorder. Cannabis and 
the ECS are now recognized for their potential to treat substance abuse disorders, including 
opioid addiction and Cannabis use disorder itself. Dr. Balodis et al. provide a comprehen-
sive review of Cannabis use disorder, its epidemiology, potential harms, and other important 
considerations. Dr. Ferreira et al. review the potential of cannabinoids—including novel bio-
ligands—to treat substance use disorders. At long last, cannabidiol is now recognized and 
accepted as an anticonvulsant medication for the treatment of refractory pediatric epilepsies, 
such as Dravet and Lennox-Gastaut syndromes, with the recent FDA approval of Epidiolex® 
for these conditions. In the final chapters of this book, Dr. Huntsman et al. review the clinical 
evidence for high-cannabidiol Cannabis herbal extracts for the treatment of pediatric and adult 
epilepsies, while Dr. Alcorn et al. review critical dosing considerations and pharmacokinetic 
parameters for Cannabis in the pediatric population.

4. Looking forward

Basic and clinical cannabinoid research has recently become a greater priority due to the 
increasing number of jurisdictions where legalization of Cannabis use for both medical and 
recreational purposes has occurred. There have been numerous health claims attributed to 
Cannabis, and the evidence supporting some of the claims remains inconclusive. According 
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sive review of Cannabis use disorder, its epidemiology, potential harms, and other important 
considerations. Dr. Ferreira et al. review the potential of cannabinoids—including novel bio-
ligands—to treat substance use disorders. At long last, cannabidiol is now recognized and 
accepted as an anticonvulsant medication for the treatment of refractory pediatric epilepsies, 
such as Dravet and Lennox-Gastaut syndromes, with the recent FDA approval of Epidiolex® 
for these conditions. In the final chapters of this book, Dr. Huntsman et al. review the clinical 
evidence for high-cannabidiol Cannabis herbal extracts for the treatment of pediatric and adult 
epilepsies, while Dr. Alcorn et al. review critical dosing considerations and pharmacokinetic 
parameters for Cannabis in the pediatric population.

4. Looking forward

Basic and clinical cannabinoid research has recently become a greater priority due to the 
increasing number of jurisdictions where legalization of Cannabis use for both medical and 
recreational purposes has occurred. There have been numerous health claims attributed to 
Cannabis, and the evidence supporting some of the claims remains inconclusive. According 
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to the conclusion of a report by a Committee On The Health Effects Of Marijuana, the thera-
peutic benefit of Cannabis on chronic pain, chemotherapy-induced nausea and vomiting, and 
multiple sclerosis spasticity has been deemed effective, whereas insufficient evidence was 
available to support a similar conclusion in the treatment of cancer, anorexia and weight loss, 
irritable bowel syndrome, epilepsy, spinal cord injury-induced spasticity, Tourette’s syn-
drome, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, dystonia, 
dementia, glaucoma, traumatic brain injury or intracranial hemorrhage, addiction, anxiety, 
depression, sleep disorders, posttraumatic stress disorder, schizophrenia, and other psycho-
ses [8]. Thus, while tremendous advances have been made in understanding the biology of 
the ECS and of Cannabis sativa, it is clear that many aspects of the medical use of Cannabis 
require further clarification. Additionally, there has been a marked increase in the generation 
of novel synthetic cannabinoids over the last decade [18], the general availability of which has 
prompted concern among regulatory agencies due to their unknown safety profiles [19, 20]. 
This is highlighted by the rapidly increasing number of case reports detailing the effects of 
acute synthetic cannabinoid intoxication [21–23]. The potential dangers of synthetic cannabi-
noid use are attributable to the intrinsic properties of these substances and their metabolites. 
The potential for harm is further exacerbated by the poor pharmacological and toxicological 
characterization of synthetic cannabinoids. Thus, intensified research efforts into the health 
benefits and harms of Cannabis and cannabinoids will hasten the positive exploitation of 
Cannabis and reduce the drawbacks of Cannabis and synthetic cannabinoids.
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Abstract

Zebrafish represent an established vertebrate model system that helps to bridge the 
research gap between cell line/invertebrate studies and mammalian systems. While the 
initial testing of tetrahydrocannabinol (THC) using Zebrafish occurred in 1975, zebrafish 
are currently a burgeoning model for testing the bioactivity of cannabinoids. Zebrafish 
express both CB1 and CB2 receptors along with all of the other major endocannabinoid-
related genes. Zebrafish endocannabinoid gene function has been associated with 
addiction, anxiety, development, energy homeostasis and food intake, immune system 
function, learning and memory. Both adult and larval zebrafish have been used to test 
the therapeutic potential of THC and cannabidiol (CBD) against various disease models 
such as models of nociception, epilepsy, stress/anxiety and addiction. This chapter will 
review recent studies that have used zebrafish as a model for testing the bioactivity of 
cannabinoids and provide insight on potential future work in this area.

Keywords: zebrafish, cannabinoid, pain, stress, addiction, epilepsy

1. Introduction

The use of zebrafish as a vertebrate model for biological research began in the late 1960s in the 
lab of George Streisinger at the University of Oregon. However, it was not until the middle 
of the 1980s that a community of researchers working on zebrafish began to emerge. Since 
that time the use of zebrafish as a model organism has continued to increase. Over the past 
3 decades the use of zebrafish as a model species has contributed to our understanding of 
developmental biology, toxicology, drug efficacy and disease.
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As a vertebrate, the zebrafish model provides more information than can be obtained from 
cell lines and invertebrate studies, while at the same time remaining low-cost and high-
throughput compared with mammalian models. It has been estimated that screening 1 drug 
with rodent models costs approximately 50× more than through zebrafish assays and zebraf-
ish testing can be done in days versus weeks to months for analogous rodent assays [1].

Another major advantage to using zebrafish as a model species is that they show high genetic 
homology to mammals. The sequencing of the zebrafish genome was begun in 2001 and the 
reference genome was published in 2013 [2]. This revealed that ~70% of human genes have 
at least 1 zebrafish ortholog and ~84% of genes known to be associated with human disease 
have a zebrafish counterpart. This then provides an important platform with which to begin 
to study genes linked to human disease. The initial studies that made use of zebrafish were 
largely entrenched in forward genetic screening, which revealed their genetic tractability 
and helped to lead the way to the generation of clonal lines [3]. While these original studies 
were begun nearly 40 years ago, since then an ever increasing number of genetic tools have 
been developed and used to alter the zebrafish genome such as zinc finger nucleases (ZFNs), 
transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced 
short palindromic repeats (CRISPR) [4, 5]. These tools along with a fully sequenced genome 
provide a stage for the creation of any number of informative transgenic and knockdown/
knockout lines. Along with this, zebrafish reach maturity by 90 days post fertilization and 
produce hundreds of eggs per clutch on a weekly basis. As screening for germline transmis-
sion is the general bottle neck in the generation of transgenic lines, the high fecundity of 
zebrafish allows for more rapid screening and development of transgenic lines compared 
with mammalian models. The use of transgenic models has a broad applicability and can 
potentially contribute to all facets of zebrafish research.

One of the major advantages of zebrafish as a model species is that their embryos are fer-
tilized and develop externally providing easy access to embryos and larvae. Importantly, 
all major organs are formed by 1 day post fertilization (dpf) and larvae hatch from their 
chorion and become free swimming by 3 dpf. Larvae can live off of the nutrition provided 
by their yolk sac until 5 dpf, at which time they begin to feed. During this period, larvae are 
largely transparent making the development of organs and body patterning visible. Their 
rapid development and transparency provides an ideal setting for testing the effects of vari-
ous compounds on normal development along with their potential acute toxicity. Standard 
toxicity testing models exist, including the OECD recognized fish embryo toxicity assay 
(FET) that tests the effects of compound exposure on normal development from 6 to 72 hpf 
(OECD guideline 236, adopted July 2013). The general and behavioral toxicity (GBT) assay 
tests the effects of compound exposure on larvae from 72 to 120 hpf [6]. Additionally, the 
effect of compounds on the larval heart rate has been shown to be a predictive indicator of 
potential bradycardia related cardiotoxicity [7]. This is important when screening neuroac-
tive compounds as the blockage of numerous ion channels, often the target of neuroactives, 
can lead to arrhythmias [8]. The toxicity profiling of potential therapeutics at early stages 
of development allows for the identification of off-target side effects as well as the potential 
to calculate a therapeutic window when the toxicity profile is compared with the level of 
compound required to have a positive effect on disease models.
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The use of zebrafish in the field of neuroscience continues to increase and a number of recent 
reviews have highlighted both the strengths and weaknesses of using zebrafish to study 
neuroactive compounds and brain disorders [9–15]. The zebrafish brain has many analogous 
regions to those of higher vertebrates and the complexity of both juvenile and adult zebrafish 
brains has been well documented [16]. In addition to brain morphology, the neurochemistry 
and endocrine responses linked to zebrafish neuroactivity is highly homologous to other ver-
tebrates including the same neurotransmitters, receptors, synthetic/metabolic enzymes and 
hypothalamo-pituitary hormones [9–11, 15, 17–19].

It has been demonstrated that zebrafish are sensitive to a large number of neurotropic drugs 
including: antipsychotics, mood stabilizers, anxiolytics, antidepressants, ethanol, hypnotics, 
stimulants, hallucinogens, antiepileptics, analgesics and cognitive enhancers [15, 16]. In addi-
tion, both adult and larval zebrafish can be used to model numerous neural disorders includ-
ing pain/nociception, anxiety, stress, PTSD, ADHD, Autism, epilepsy, learning & memory 
deficits, psychiatric disorders, Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), 
Parkinson’s disease, schizophrenia, bi-polar disorder, addiction and brain cancer [6, 9, 11, 
14–16, 20–25]. This provides in vivo models with which to test not only the bioactivity of vari-
ous neuroactive compounds, but also allows for the testing of their potential efficacy against 
numerous models of disease. Use of these models can provide an indication of the level of 
compound required to oppose a disease phenotype, which is required for the calculation of a 
therapeutic window for new drugs. The disease models also provide a platform for the testing 
and potential re-purposing of neuroactive compounds currently on the market. Finding an 
effective treatment for the disease models may help to provide clues to the etiology of human 
disease and insights into additional therapeutic targets.

Many of the neuronal disease models developed using zebrafish are centered on the assess-
ment of aberrant behavior in both larvae and adults, which each provide their own distinct 
advantages [9, 11, 15, 16]. One of the major advantages of using larvae over adults stems from 
their reproducible patterns of behavior and potential to be screened in a high throughput 
fashion. Activity patterns can be assessed in multi-well plates allowing for up to 96 larvae to 
be tested simultaneously using benchtop tracking systems. As mentioned, larvae become free 
swimming between 3 and 5 dpf and develop stereotypical behavioral and stimulus response 
patterns. These include their response to startling stimuli such as noise, light–dark transitions 
and touch. Importantly the behavioral activity patterns are highly quantifiable and can be 
altered by neuroactive compounds with various targets. The assessment of adult behavior, 
while much lower throughput, does have some advantages over larval testing as it can often 
provide more intricate behavioral paradigms than can be obtained with larvae. Specifically, 
adult behavior can be tracked in 3 dimensions and various models of learning and memory, 
conspecific interactions and place preference exist that are not found for larvae. Many of these 
models are analogous to rodent behavioral models [16].

In addition to models of behavior, as previously mentioned, larval zebrafish are nearly 
transparent for their first week of development and a number of transgenic lines exist that 
completely lack pigment. This provides unparalleled access to an intact vertebrate brain. 
Numerous studies have used in situ hybridization and immunohistochemistry to map and 
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As a vertebrate, the zebrafish model provides more information than can be obtained from 
cell lines and invertebrate studies, while at the same time remaining low-cost and high-
throughput compared with mammalian models. It has been estimated that screening 1 drug 
with rodent models costs approximately 50× more than through zebrafish assays and zebraf-
ish testing can be done in days versus weeks to months for analogous rodent assays [1].

Another major advantage to using zebrafish as a model species is that they show high genetic 
homology to mammals. The sequencing of the zebrafish genome was begun in 2001 and the 
reference genome was published in 2013 [2]. This revealed that ~70% of human genes have 
at least 1 zebrafish ortholog and ~84% of genes known to be associated with human disease 
have a zebrafish counterpart. This then provides an important platform with which to begin 
to study genes linked to human disease. The initial studies that made use of zebrafish were 
largely entrenched in forward genetic screening, which revealed their genetic tractability 
and helped to lead the way to the generation of clonal lines [3]. While these original studies 
were begun nearly 40 years ago, since then an ever increasing number of genetic tools have 
been developed and used to alter the zebrafish genome such as zinc finger nucleases (ZFNs), 
transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced 
short palindromic repeats (CRISPR) [4, 5]. These tools along with a fully sequenced genome 
provide a stage for the creation of any number of informative transgenic and knockdown/
knockout lines. Along with this, zebrafish reach maturity by 90 days post fertilization and 
produce hundreds of eggs per clutch on a weekly basis. As screening for germline transmis-
sion is the general bottle neck in the generation of transgenic lines, the high fecundity of 
zebrafish allows for more rapid screening and development of transgenic lines compared 
with mammalian models. The use of transgenic models has a broad applicability and can 
potentially contribute to all facets of zebrafish research.

One of the major advantages of zebrafish as a model species is that their embryos are fer-
tilized and develop externally providing easy access to embryos and larvae. Importantly, 
all major organs are formed by 1 day post fertilization (dpf) and larvae hatch from their 
chorion and become free swimming by 3 dpf. Larvae can live off of the nutrition provided 
by their yolk sac until 5 dpf, at which time they begin to feed. During this period, larvae are 
largely transparent making the development of organs and body patterning visible. Their 
rapid development and transparency provides an ideal setting for testing the effects of vari-
ous compounds on normal development along with their potential acute toxicity. Standard 
toxicity testing models exist, including the OECD recognized fish embryo toxicity assay 
(FET) that tests the effects of compound exposure on normal development from 6 to 72 hpf 
(OECD guideline 236, adopted July 2013). The general and behavioral toxicity (GBT) assay 
tests the effects of compound exposure on larvae from 72 to 120 hpf [6]. Additionally, the 
effect of compounds on the larval heart rate has been shown to be a predictive indicator of 
potential bradycardia related cardiotoxicity [7]. This is important when screening neuroac-
tive compounds as the blockage of numerous ion channels, often the target of neuroactives, 
can lead to arrhythmias [8]. The toxicity profiling of potential therapeutics at early stages 
of development allows for the identification of off-target side effects as well as the potential 
to calculate a therapeutic window when the toxicity profile is compared with the level of 
compound required to have a positive effect on disease models.

Recent Advances in Cannabinoid Research12

The use of zebrafish in the field of neuroscience continues to increase and a number of recent 
reviews have highlighted both the strengths and weaknesses of using zebrafish to study 
neuroactive compounds and brain disorders [9–15]. The zebrafish brain has many analogous 
regions to those of higher vertebrates and the complexity of both juvenile and adult zebrafish 
brains has been well documented [16]. In addition to brain morphology, the neurochemistry 
and endocrine responses linked to zebrafish neuroactivity is highly homologous to other ver-
tebrates including the same neurotransmitters, receptors, synthetic/metabolic enzymes and 
hypothalamo-pituitary hormones [9–11, 15, 17–19].

It has been demonstrated that zebrafish are sensitive to a large number of neurotropic drugs 
including: antipsychotics, mood stabilizers, anxiolytics, antidepressants, ethanol, hypnotics, 
stimulants, hallucinogens, antiepileptics, analgesics and cognitive enhancers [15, 16]. In addi-
tion, both adult and larval zebrafish can be used to model numerous neural disorders includ-
ing pain/nociception, anxiety, stress, PTSD, ADHD, Autism, epilepsy, learning & memory 
deficits, psychiatric disorders, Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), 
Parkinson’s disease, schizophrenia, bi-polar disorder, addiction and brain cancer [6, 9, 11, 
14–16, 20–25]. This provides in vivo models with which to test not only the bioactivity of vari-
ous neuroactive compounds, but also allows for the testing of their potential efficacy against 
numerous models of disease. Use of these models can provide an indication of the level of 
compound required to oppose a disease phenotype, which is required for the calculation of a 
therapeutic window for new drugs. The disease models also provide a platform for the testing 
and potential re-purposing of neuroactive compounds currently on the market. Finding an 
effective treatment for the disease models may help to provide clues to the etiology of human 
disease and insights into additional therapeutic targets.

Many of the neuronal disease models developed using zebrafish are centered on the assess-
ment of aberrant behavior in both larvae and adults, which each provide their own distinct 
advantages [9, 11, 15, 16]. One of the major advantages of using larvae over adults stems from 
their reproducible patterns of behavior and potential to be screened in a high throughput 
fashion. Activity patterns can be assessed in multi-well plates allowing for up to 96 larvae to 
be tested simultaneously using benchtop tracking systems. As mentioned, larvae become free 
swimming between 3 and 5 dpf and develop stereotypical behavioral and stimulus response 
patterns. These include their response to startling stimuli such as noise, light–dark transitions 
and touch. Importantly the behavioral activity patterns are highly quantifiable and can be 
altered by neuroactive compounds with various targets. The assessment of adult behavior, 
while much lower throughput, does have some advantages over larval testing as it can often 
provide more intricate behavioral paradigms than can be obtained with larvae. Specifically, 
adult behavior can be tracked in 3 dimensions and various models of learning and memory, 
conspecific interactions and place preference exist that are not found for larvae. Many of these 
models are analogous to rodent behavioral models [16].

In addition to models of behavior, as previously mentioned, larval zebrafish are nearly 
transparent for their first week of development and a number of transgenic lines exist that 
completely lack pigment. This provides unparalleled access to an intact vertebrate brain. 
Numerous studies have used in situ hybridization and immunohistochemistry to map and 
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profile neural activity using indicators such as c-Fos. Recent technical advances have allowed 
for a more in depth assessment of neuronal activity than is possible in mammalian systems. 
The assessment of neural activity has been accomplished using genetically encoded calcium 
indicators and whole brain imaging in immobilized larvae [26]. More recently the assessment 
of neural activity in freely behaving larvae at near cellular resolution has become possible 
[27]. The development of this new technology now allows for links to be made between local-
ized brain activity and various behaviors and stimulus response patterns that is currently not 
possible with mammalian models.

While the original use of zebrafish as a model species was focused on genetics, they are cur-
rently contributing ever evolving models to the fields of developmental biology, neurosci-
ence, molecular biology and pharmacology research.

2. Functions of the zebrafish endocannabinoid system

The initial use of zebrafish for testing the toxicity of THC occurred in 1975 [28]. However, it has 
only been the last 10–15 years that interest in the study of the zebrafish endocannabinoid system 
(ECS) has begun to grow. As outlined below, the zebrafish ECS shows genetic homology to 
mammalian systems and is involved in many of the same physiological processes. Importantly, 
the route of administration for cannabinoids to zebrafish is relatively straight forward as they can 
be added to the bath solution with either methanol or dimethyl sulfoxide (DMSO) as a solvent.

2.1. Gene expression patterns

The initial sequencing and mapping of the expression pattern of the CB1 receptor (CB1R) in 
both larvae and adults found that the zebrafish CB1R showed a 69% nucleotide identity and 
a 73.6% amino acid identity with the human CB1R [29]. Larvae begin to express the CB1R 
by the 3 somite stage of development [30] and, as expected, show a widespread and distinct 
expression pattern throughout the CNS (preoptic area, dorsal telencephalon, periventricular 
hypothalamus, tegmentum and anterior hindbrain) by 48 hpf that continues into adulthood 
[29, 31]. The general pattern of expression for the CB1R in the adult zebrafish brain appears to 
be homologous to that of mammals.

Shortly after the cloning of the CB1R zebrafish were found to express two CB2 receptor (CB2R) 
orthologs that showed 98% genetic identity with each other and a 39% amino acid identity 
with the human CB2R [32]. Importantly, similar to the CB1R, the expression patterns of the 
CB2R were homologous to those found in mammals with low levels in the brain and higher 
levels in the intestine, retina, gills, heart, muscle, pituitary and spleen.

Zebrafish also express the transient receptor potential vanilloid type 1 cation channel (TrpV1) 
and the G-protein coupled receptor 55 (Gpr55) early in development. Both receptors are 
known to bind endocannabinoids [33]. The cannabinoid receptor interacting protein (CRIP1A) 
is also expressed early in development [31].

In addition to the cannabinoid receptor genes, the genes responsible for the synthesis and catab-
olism of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) begin to 
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become expressed between 1 and 12 hpf and their expression levels continue to increase throughout 
development. These include the AEA biosynthetic enzymes N-acylphosphatidylethanolamine-
selective phospholipase D (NAPE-pld) and αβ-hydrolase domain containing 4 (Abhd4), the 
AEA catabolic enzyme fatty acid amide hydrolase (faah), the 2-AG biosynthetic enzyme diac-
ylglycerol lipase α (DAGL α) and the 2-AG catabolic enzymes monoglyceride lipase (mgll) and 
prostaglandin-endoperoxide synthase 2 (ptgs2b) [31, 33]. Importantly the expression of these 
biosynthetic enzymes is accompanied by an increase in the protein levels of AEA and 2-AG 
[33]. The tissue distribution pattern of these enzymes is vast with high levels found in the brain, 
muscle, heart, intestine, eyes and reproductive organs (ovary and testis) of adults (Table 1) [31]. 
In larvae mgll, dagla and cnr1 are expressed in different regions of the brain and all 3 show some 
overlap with the expression pattern of CB1R [31, 33].

2.2. Growth and development

The CB1 receptor is present at early developmental stages in mammals and it has been sug-
gested that the ECS may contribute to CNS development, such as axonal elongation, myelina-
tion, migration, cell proliferation and synaptogenesis [34].

In zebrafish it has been shown that the developmental expression of the CB1R and Dagl2α 
occurs at the same time during larval development, suggesting that larvae are able to both 
synthesize and respond to 2-AG during development [35]. The same study demonstrated that 
morpholino knockdown of the CB1R expression lead to aberrant patterns of axonal growth. 
It was subsequently shown that knockdown of Dagl2 alters axon formation in the midbrain-
hindbrain region and alters different patterns of behavior which suggests that 2-AG plays 
a role in axon formation which subsequently affects the control of vision and movement in 
larvae [33]. Additionally, the highest level of CB1R expression in the developing larvae occurs 
at the time of hatching, which may suggest that the proper expression of the CB1R is neces-
sary for the increase in movement that is required for the hatching process [30].

In addition to neuronal development, it has also been shown that endocannabinoid signal-
ing is required for normal embryonic liver development and function [36]. Alteration of this 
normal development appears to impact the structure and function of the adult liver and may 
impact metabolic homeostasis. It has also been shown that the CB2R plays a role in the pro-
duction, expansion and migration of hematopoietic stem cells suggesting that it may play a 
role hematopoiesis during development [37].

2.3. Feeding and lipid metabolism

The consumption of cannabis is well known to stimulate appetite and numerous animal and 
human studies have detailed the role that the endocannabinoid system plays in appetite regu-
lation, weight gain, energy balance, and lipid metabolism. Rodent models have shown that 
both the endocannabinoids as well as THC stimulate appetite and can produce hyperphagia 
[38–41], while CB1R antagonists can suppress appetite [42, 43]. In humans genetic variations 
in the CB1 receptor and a dysregulation of the endocannabinoid system have been linked to 
obesity [44, 45]. The first therapeutic targeting this system that was brought to market was 
the inverse agonist for the CB1 receptor rimonabant. It was shown to lead to weight loss in 
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profile neural activity using indicators such as c-Fos. Recent technical advances have allowed 
for a more in depth assessment of neuronal activity than is possible in mammalian systems. 
The assessment of neural activity has been accomplished using genetically encoded calcium 
indicators and whole brain imaging in immobilized larvae [26]. More recently the assessment 
of neural activity in freely behaving larvae at near cellular resolution has become possible 
[27]. The development of this new technology now allows for links to be made between local-
ized brain activity and various behaviors and stimulus response patterns that is currently not 
possible with mammalian models.

While the original use of zebrafish as a model species was focused on genetics, they are cur-
rently contributing ever evolving models to the fields of developmental biology, neurosci-
ence, molecular biology and pharmacology research.

2. Functions of the zebrafish endocannabinoid system

The initial use of zebrafish for testing the toxicity of THC occurred in 1975 [28]. However, it has 
only been the last 10–15 years that interest in the study of the zebrafish endocannabinoid system 
(ECS) has begun to grow. As outlined below, the zebrafish ECS shows genetic homology to 
mammalian systems and is involved in many of the same physiological processes. Importantly, 
the route of administration for cannabinoids to zebrafish is relatively straight forward as they can 
be added to the bath solution with either methanol or dimethyl sulfoxide (DMSO) as a solvent.

2.1. Gene expression patterns

The initial sequencing and mapping of the expression pattern of the CB1 receptor (CB1R) in 
both larvae and adults found that the zebrafish CB1R showed a 69% nucleotide identity and 
a 73.6% amino acid identity with the human CB1R [29]. Larvae begin to express the CB1R 
by the 3 somite stage of development [30] and, as expected, show a widespread and distinct 
expression pattern throughout the CNS (preoptic area, dorsal telencephalon, periventricular 
hypothalamus, tegmentum and anterior hindbrain) by 48 hpf that continues into adulthood 
[29, 31]. The general pattern of expression for the CB1R in the adult zebrafish brain appears to 
be homologous to that of mammals.

Shortly after the cloning of the CB1R zebrafish were found to express two CB2 receptor (CB2R) 
orthologs that showed 98% genetic identity with each other and a 39% amino acid identity 
with the human CB2R [32]. Importantly, similar to the CB1R, the expression patterns of the 
CB2R were homologous to those found in mammals with low levels in the brain and higher 
levels in the intestine, retina, gills, heart, muscle, pituitary and spleen.

Zebrafish also express the transient receptor potential vanilloid type 1 cation channel (TrpV1) 
and the G-protein coupled receptor 55 (Gpr55) early in development. Both receptors are 
known to bind endocannabinoids [33]. The cannabinoid receptor interacting protein (CRIP1A) 
is also expressed early in development [31].

In addition to the cannabinoid receptor genes, the genes responsible for the synthesis and catab-
olism of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) begin to 
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become expressed between 1 and 12 hpf and their expression levels continue to increase throughout 
development. These include the AEA biosynthetic enzymes N-acylphosphatidylethanolamine-
selective phospholipase D (NAPE-pld) and αβ-hydrolase domain containing 4 (Abhd4), the 
AEA catabolic enzyme fatty acid amide hydrolase (faah), the 2-AG biosynthetic enzyme diac-
ylglycerol lipase α (DAGL α) and the 2-AG catabolic enzymes monoglyceride lipase (mgll) and 
prostaglandin-endoperoxide synthase 2 (ptgs2b) [31, 33]. Importantly the expression of these 
biosynthetic enzymes is accompanied by an increase in the protein levels of AEA and 2-AG 
[33]. The tissue distribution pattern of these enzymes is vast with high levels found in the brain, 
muscle, heart, intestine, eyes and reproductive organs (ovary and testis) of adults (Table 1) [31]. 
In larvae mgll, dagla and cnr1 are expressed in different regions of the brain and all 3 show some 
overlap with the expression pattern of CB1R [31, 33].

2.2. Growth and development

The CB1 receptor is present at early developmental stages in mammals and it has been sug-
gested that the ECS may contribute to CNS development, such as axonal elongation, myelina-
tion, migration, cell proliferation and synaptogenesis [34].

In zebrafish it has been shown that the developmental expression of the CB1R and Dagl2α 
occurs at the same time during larval development, suggesting that larvae are able to both 
synthesize and respond to 2-AG during development [35]. The same study demonstrated that 
morpholino knockdown of the CB1R expression lead to aberrant patterns of axonal growth. 
It was subsequently shown that knockdown of Dagl2 alters axon formation in the midbrain-
hindbrain region and alters different patterns of behavior which suggests that 2-AG plays 
a role in axon formation which subsequently affects the control of vision and movement in 
larvae [33]. Additionally, the highest level of CB1R expression in the developing larvae occurs 
at the time of hatching, which may suggest that the proper expression of the CB1R is neces-
sary for the increase in movement that is required for the hatching process [30].

In addition to neuronal development, it has also been shown that endocannabinoid signal-
ing is required for normal embryonic liver development and function [36]. Alteration of this 
normal development appears to impact the structure and function of the adult liver and may 
impact metabolic homeostasis. It has also been shown that the CB2R plays a role in the pro-
duction, expansion and migration of hematopoietic stem cells suggesting that it may play a 
role hematopoiesis during development [37].

2.3. Feeding and lipid metabolism

The consumption of cannabis is well known to stimulate appetite and numerous animal and 
human studies have detailed the role that the endocannabinoid system plays in appetite regu-
lation, weight gain, energy balance, and lipid metabolism. Rodent models have shown that 
both the endocannabinoids as well as THC stimulate appetite and can produce hyperphagia 
[38–41], while CB1R antagonists can suppress appetite [42, 43]. In humans genetic variations 
in the CB1 receptor and a dysregulation of the endocannabinoid system have been linked to 
obesity [44, 45]. The first therapeutic targeting this system that was brought to market was 
the inverse agonist for the CB1 receptor rimonabant. It was shown to lead to weight loss in 
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overweight subjects and was marketed as a therapeutic for the treatment of obesity [46]. In 
line with this, it has been shown that CB1 receptor knockout animals are thinner than controls 
and have less adipose tissue, which is thought to relate to both decreased caloric intake as well 
as changes in metabolic factors [47]. Less adipose tissue may also be linked to the therapeutic 
potential of targeting the CB1 receptor in the treatment of obesity, as obesity in humans is 
linked to hepatic stenosis, which was shown to be reduced by treatment with rimonabant [44]. 
Since the initial development of rimonabant, the endocannabinoid system has been of interest 

Distribution

Protein name Abbreviation High levels Low levels

Cannabinoid receptor 1 CB1R Brain Eyes, testis

Cannabinoid receptor 2 CB2R Intestine, eyes, gills, heart, 
muscle, pituitary, kidney, spleen

Brain, testis

Transient receptor potential vanilloid type 1 
cation channel

TrpV1 Sensory neurons

G protein-coupled receptor 55A GPR55A Brain, spleen, testis

Cannabinoid receptor interacting protein (CRIP1A) Brain, eyes, testis

N-acylphosphatidylethanolamine-selective 
phospholipase D

NAPE-pld All organs

αβ-Hydrolase domain containing 4 Abhd4 Spleen, testis All organs

Fatty acid amide hydrolase faah Brain Skin, testis

Fatty acid amide hydrolase 2a faah2a Brain Intestine, eyes, 
testis

Diacylglycerol lipase α DAGL α Brain, muscle, kidney, eyes, 
testis, spleen

Diacylglycerol lipase β DAGL β Brain, muscle, kidney, eyes, testis Spleen

Monoglyceride lipase mgll Brain, kidney, spleen, eyes

Prostaglandin-endoperoxide synthase 2 ptgs2a Skin, spleen, eyes

αβ-Hydrolase domain containing 6b Abhd6b Not detectable

αβ-Hydrolase domain containing 6a Abhd6a Intestine, liver, testis

αβ-Hydrolase domain containing 12 abhd12 Brain, muscles, eyes, 
reproductive organs

Kidney, heart, 
intestine

Glycerophosphodiester phosphodiesterase1 gde1 All organs

N-acylspihingosine amidohydrolase 1a naaa1a Reproductive organs

Peroxisome proliferator-activated receptor αβ pparab Muscles, spleen, brain, heart, 
eyes

Peroxisome proliferator-activated receptor γ pparg Muscles, spleen, testis

Adapted from Oltrabella et al. [31].

Table 1. Organ distribution patterns of cannabinoid related proteins in adult zebrafish
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for the potential role its dysregulation may play in obesity [44]. Unfortunately, the side effect 
profile of rimonabant resulted in its withdrawal from the marketplace.

Zebrafish provide a model with which to study the role of the endocannabinoid system in 
appetite regulation and lipid bioaccumulation. Similar to what was found for mammals, 
rimonabant led to the suppression of feeding in juvenile fish [48]. In larvae it was found that 
rimonabant exposure led to larger yolk sacs during development, suggesting a decrease in 
the use of fat stores, which may be related to a decreased appetite. Exposure of adult zebraf-
ish to melatonin, a known regulator of energy homeostasis, suppressed appetite through the 
downregulation of the CB1R gene expression [49]. It then appears that similar to rodents, 
modulation of the zebrafish endocannabinoid system can regulate appetite.

Zebrafish are also an established model for the study of lipid biology [50–52]. With respect to 
the endocannabinoid system, it has been shown that overexpression of the CB1R in liver leads 
to hepatic lipid accumulation, while suppression leads to a loss of lipid accumulation during 
hepatogenesis [53]. It has also been found that bisphenol A exposure produces hepatostenosis 
in adult zebrafish liver by increasing the liver levels of 2-AG and AEA [33]. Stimulation of 
the endocannabinoid system through CB1 and CB2 receptor activation can influence lipid 
deposition during embryogenesis through an up-regulation of the lipoprotein lipase gene 
[54]. Additionally, exposure to two non-psychoactive cannabinoids, namely CBD and tetra-
hydrocannabivarin (THCV), can lead to a decrease in intracellular lipid levels in zebrafish 
yolk along with human hepatocytes and adipocytes [55]. This activity does not appear to be 
linked to CB1R or TRPV1-R activation, but it may suggest a use for both cannabinoids in the 
treatment of obesity.

2.4. Learning and memory

The effects of cannabinoids on learning and memory in mammalian models is complex and 
often depends on the model employed and the neural pathways that are activated. However, 
cannabinoid exposure has been shown to lead to memory impairments for numerous rodent 
learning paradigms [56].

Zebrafish also have a number of different learning paradigms that include habituation learn-
ing, conditioned place preference, avoidance learning, associative learning and spatial mem-
ory tests. These learning paradigms are largely based on appetitive and/or fear conditioning 
[57]. Importantly, a number of these training models have been used to test the cognitive 
effects of various psychoactive drugs [58]. As many of these models involve the activation of 
different neuronal pathways, only some of which express cannabinoid receptors, the role of 
cannabinoid exposure on the development, retention and recall of memories can vary. One 
such example is a model of fear learning where adult fish were taught to associate the presen-
tation of the alarm pheromone known as the Schreckstoff substance [59] with the presentation 
of a red light [60]. The response to Schreckstoff substance typically resulted in an increase in 
bottom dwelling and an increase in erratic movements, both of which are linked to stress-
ful stimuli. Following training, the fish then respond to the red light stimulus, a previously 
inert stimulus, by showing a similar pattern of behavior. Pre-exposure to THC reduced, but 
did not eliminate the bottom dwelling and had only a minor effect on erratic movements 
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overweight subjects and was marketed as a therapeutic for the treatment of obesity [46]. In 
line with this, it has been shown that CB1 receptor knockout animals are thinner than controls 
and have less adipose tissue, which is thought to relate to both decreased caloric intake as well 
as changes in metabolic factors [47]. Less adipose tissue may also be linked to the therapeutic 
potential of targeting the CB1 receptor in the treatment of obesity, as obesity in humans is 
linked to hepatic stenosis, which was shown to be reduced by treatment with rimonabant [44]. 
Since the initial development of rimonabant, the endocannabinoid system has been of interest 

Distribution

Protein name Abbreviation High levels Low levels

Cannabinoid receptor 1 CB1R Brain Eyes, testis

Cannabinoid receptor 2 CB2R Intestine, eyes, gills, heart, 
muscle, pituitary, kidney, spleen

Brain, testis

Transient receptor potential vanilloid type 1 
cation channel

TrpV1 Sensory neurons

G protein-coupled receptor 55A GPR55A Brain, spleen, testis

Cannabinoid receptor interacting protein (CRIP1A) Brain, eyes, testis

N-acylphosphatidylethanolamine-selective 
phospholipase D

NAPE-pld All organs

αβ-Hydrolase domain containing 4 Abhd4 Spleen, testis All organs

Fatty acid amide hydrolase faah Brain Skin, testis

Fatty acid amide hydrolase 2a faah2a Brain Intestine, eyes, 
testis

Diacylglycerol lipase α DAGL α Brain, muscle, kidney, eyes, 
testis, spleen

Diacylglycerol lipase β DAGL β Brain, muscle, kidney, eyes, testis Spleen

Monoglyceride lipase mgll Brain, kidney, spleen, eyes

Prostaglandin-endoperoxide synthase 2 ptgs2a Skin, spleen, eyes

αβ-Hydrolase domain containing 6b Abhd6b Not detectable

αβ-Hydrolase domain containing 6a Abhd6a Intestine, liver, testis

αβ-Hydrolase domain containing 12 abhd12 Brain, muscles, eyes, 
reproductive organs

Kidney, heart, 
intestine

Glycerophosphodiester phosphodiesterase1 gde1 All organs

N-acylspihingosine amidohydrolase 1a naaa1a Reproductive organs

Peroxisome proliferator-activated receptor αβ pparab Muscles, spleen, brain, heart, 
eyes

Peroxisome proliferator-activated receptor γ pparg Muscles, spleen, testis

Adapted from Oltrabella et al. [31].

Table 1. Organ distribution patterns of cannabinoid related proteins in adult zebrafish
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for the potential role its dysregulation may play in obesity [44]. Unfortunately, the side effect 
profile of rimonabant resulted in its withdrawal from the marketplace.

Zebrafish provide a model with which to study the role of the endocannabinoid system in 
appetite regulation and lipid bioaccumulation. Similar to what was found for mammals, 
rimonabant led to the suppression of feeding in juvenile fish [48]. In larvae it was found that 
rimonabant exposure led to larger yolk sacs during development, suggesting a decrease in 
the use of fat stores, which may be related to a decreased appetite. Exposure of adult zebraf-
ish to melatonin, a known regulator of energy homeostasis, suppressed appetite through the 
downregulation of the CB1R gene expression [49]. It then appears that similar to rodents, 
modulation of the zebrafish endocannabinoid system can regulate appetite.

Zebrafish are also an established model for the study of lipid biology [50–52]. With respect to 
the endocannabinoid system, it has been shown that overexpression of the CB1R in liver leads 
to hepatic lipid accumulation, while suppression leads to a loss of lipid accumulation during 
hepatogenesis [53]. It has also been found that bisphenol A exposure produces hepatostenosis 
in adult zebrafish liver by increasing the liver levels of 2-AG and AEA [33]. Stimulation of 
the endocannabinoid system through CB1 and CB2 receptor activation can influence lipid 
deposition during embryogenesis through an up-regulation of the lipoprotein lipase gene 
[54]. Additionally, exposure to two non-psychoactive cannabinoids, namely CBD and tetra-
hydrocannabivarin (THCV), can lead to a decrease in intracellular lipid levels in zebrafish 
yolk along with human hepatocytes and adipocytes [55]. This activity does not appear to be 
linked to CB1R or TRPV1-R activation, but it may suggest a use for both cannabinoids in the 
treatment of obesity.

2.4. Learning and memory

The effects of cannabinoids on learning and memory in mammalian models is complex and 
often depends on the model employed and the neural pathways that are activated. However, 
cannabinoid exposure has been shown to lead to memory impairments for numerous rodent 
learning paradigms [56].

Zebrafish also have a number of different learning paradigms that include habituation learn-
ing, conditioned place preference, avoidance learning, associative learning and spatial mem-
ory tests. These learning paradigms are largely based on appetitive and/or fear conditioning 
[57]. Importantly, a number of these training models have been used to test the cognitive 
effects of various psychoactive drugs [58]. As many of these models involve the activation of 
different neuronal pathways, only some of which express cannabinoid receptors, the role of 
cannabinoid exposure on the development, retention and recall of memories can vary. One 
such example is a model of fear learning where adult fish were taught to associate the presen-
tation of the alarm pheromone known as the Schreckstoff substance [59] with the presentation 
of a red light [60]. The response to Schreckstoff substance typically resulted in an increase in 
bottom dwelling and an increase in erratic movements, both of which are linked to stress-
ful stimuli. Following training, the fish then respond to the red light stimulus, a previously 
inert stimulus, by showing a similar pattern of behavior. Pre-exposure to THC reduced, but 
did not eliminate the bottom dwelling and had only a minor effect on erratic movements 
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[60]. A previous study from the same group evaluating spatial memory and found that THC 
exposure did not affect associative memory but did impair spatial cognition and memory 
retrieval [60]. In addition to THC, high levels of CBD also appear to reduce memory retention 
in a spatial memory test [61]. While the number of studies testing the role of cannabinoids 
on learning and memory using zebrafish is currently limited, it appears the model has great 
potential in assessing the role of the endocannabinoid system in multiple aspects of learning 
and how this can be influenced by various cannabinoids.

3. Developing models

3.1. Pain

The treatment of chronic pain is the largest indication for medical cannabis [62–67]. This 
is not surprising given that endocannabinoids are known to act as retrograde transmitters 
blocking the transmission of pain signals at both GABAergic and glutamatergic synapses [68]. 
Unfortunately the etiology of pain is vast and thus there is not an all-encompassing treatment 
for pain. Often, an analgesic is only effective for a subset of patients or can only partially 
reduce pain, but cannot eliminate it [69, 70]. This often leads to multiple drugs being used in 
combination, which opens the door to various drug interactions that can lead to a number of 
potential adverse effects and an increased side effect profile.

It is now widely accepted that zebrafish have similar somatosensory systems to higher ver-
tebrates and they can detect painful stimuli (nociception) [71–83]. The models that have 
been developed vary and include thermal and chemical stimuli that is either bath applied 
or focally by injection. The models also make use of both acute and chronic nociceptive 
stimuli and have been developed using larvae and adults. This then provides a number of 
platforms with which to test potential analgesics that may have links to different disease 
etiologies.

Recently, a novel model of nociception has been developed and used to test and compare a 
number of known therapeutics with THC and CBD. The model made use of a short-term expo-
sure to acetic acid which led to tissue damage on the surface of zebrafish larvae and a distinct, 
reproducible, activity pattern that appears to indicate a multifaceted nociceptive response [83]. 
The study revealed that THC and CBD had different effects on the behavioral response pattern 
that varied from those of the known analgesics. Interestingly, of the compounds tested CBD 
had the most unique effect increasing the rate at which the larval activity pattern returned to 
that of controls. This would seem to suggest that CBD shortened the recovery from the nocicep-
tive stimulus. This is consistent with literature that has suggested CBD is a strong candidate for 
pain management [84–86]. Importantly, this activity was found at a concentration of CBD that 
had no effect on baseline activity for controls, suggesting that there would be a low potential 
for side effects. One of the major issues surrounding the therapeutics currently used for pain 
management lies in their side effect profile, which is often vast and can range from relatively 
minor (constipation) to severe (addiction). This is especially evident for opioids, which are 
the most commonly used therapeutic for chronic pain, but have one of the highest addictive 
potentials [87]. While more work is required to test the effect of other cannabinoids and extracts 
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on the various zebrafish models of nociception, the initial indications are that zebrafish will be 
valuable for assessing the efficacy of potential therapeutics for pain management.

3.2. Addiction

Recent data suggests that approximately 9% of individuals that use cannabis show symptoms 
associated with addiction, including tolerance and withdrawal [88]. Comparatively the rate of 
dependence for tobacco is 67.5% and for alcohol is 22.7% [89]. Zebrafish represent an unde-
rutilized model with which to study the addictive properties of cannabinoids. While it has 
been demonstrated that zebrafish can be used to study the pathology of addiction to numerous 
drugs of abuse, including, alcohol, cocaine, morphine, nicotine, amphetamine, diazepam and 
salvinorin A [90–95], thus far their use to study the addictive properties of cannabinoids has 
been minimal. Changes in both larval and adult zebrafish behavior can be linked to numerous 
phenotypes associated with addiction that include conditioned place preference for drugs of 
abuse, relapse, changes in social behavior, along with symptoms indicating the development 
of tolerance and withdrawal [90, 93, 96–99]. It has also been found that the genetic pathways 
linked to addiction are highly conserved in zebrafish [100]. Currently, with respect to cannabi-
noids, only one study has shown that zebrafish larvae develop tolerance to the effects of can-
nabinoids after chronic exposure [101]. As the levels of THC in cannabis plant strains is varied 
and the refinement and extraction processes allow for other cannabinoids to be used at higher 
levels both medicinally and recreationally, there is a need to develop models with which to test 
the addictive properties of both pure cannabinoids on their own, in combination and as part of 
a complex mixture or extract. Zebrafish have the potential to be such a model.

3.3. Stress and anxiety

One of the known difficulties in using cannabinoids as therapeutics lies in their effect on stress 
and anxiety. A sought after symptom of cannabis use is the euphoric feeling that often leads 
to it being considered an anxiolytic. However, it has been broadly shown that as the levels of 
cannabinoids (specifically THC) are elevated there can be an increase in anxiety-related effects 
[102]. This is important not only from a side effect perspective, but also becomes an issue 
when cannabinoids are used to treat anxiety related disorders such as PTSD.

Zebrafish provide numerous models with which to assess stress responses in both larvae and 
adults. Measurements such as scototaxis (light-dark preference), thigmotaxis (wall hugging), 
shoaling and the amount of time spent in the bottom of a tank are used as standard measures of 
stress. Induction of stress can occur by chemical means such as neuro-hyperactive compounds 
or exposure to the alarm substance. Stress can also be induced physically by touch or following 
the placement of a fish in a novel setting (novel tank response). Various visible stimuli can also 
lead to stress responses such as changes in back ground light/dark levels or the appearance 
of an image of prey. All of these models seem to activate both unique and overlapping neural 
pathways and thus could provide insight into the mechanism of action of any potential anxio-
lytic effect [103–105]. An example of the use of zebrafish stress models for testing cannabinoids 
was outlined in a recent paper that evaluated the acute effects of both THC and CBD on larval 
behavior [106]. Zebrafish larvae show a preference for light and a transition from a light to a 
dark setting results in an increase in activity in the form of darting type movements which are 
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[60]. A previous study from the same group evaluating spatial memory and found that THC 
exposure did not affect associative memory but did impair spatial cognition and memory 
retrieval [60]. In addition to THC, high levels of CBD also appear to reduce memory retention 
in a spatial memory test [61]. While the number of studies testing the role of cannabinoids 
on learning and memory using zebrafish is currently limited, it appears the model has great 
potential in assessing the role of the endocannabinoid system in multiple aspects of learning 
and how this can be influenced by various cannabinoids.

3. Developing models

3.1. Pain

The treatment of chronic pain is the largest indication for medical cannabis [62–67]. This 
is not surprising given that endocannabinoids are known to act as retrograde transmitters 
blocking the transmission of pain signals at both GABAergic and glutamatergic synapses [68]. 
Unfortunately the etiology of pain is vast and thus there is not an all-encompassing treatment 
for pain. Often, an analgesic is only effective for a subset of patients or can only partially 
reduce pain, but cannot eliminate it [69, 70]. This often leads to multiple drugs being used in 
combination, which opens the door to various drug interactions that can lead to a number of 
potential adverse effects and an increased side effect profile.

It is now widely accepted that zebrafish have similar somatosensory systems to higher ver-
tebrates and they can detect painful stimuli (nociception) [71–83]. The models that have 
been developed vary and include thermal and chemical stimuli that is either bath applied 
or focally by injection. The models also make use of both acute and chronic nociceptive 
stimuli and have been developed using larvae and adults. This then provides a number of 
platforms with which to test potential analgesics that may have links to different disease 
etiologies.

Recently, a novel model of nociception has been developed and used to test and compare a 
number of known therapeutics with THC and CBD. The model made use of a short-term expo-
sure to acetic acid which led to tissue damage on the surface of zebrafish larvae and a distinct, 
reproducible, activity pattern that appears to indicate a multifaceted nociceptive response [83]. 
The study revealed that THC and CBD had different effects on the behavioral response pattern 
that varied from those of the known analgesics. Interestingly, of the compounds tested CBD 
had the most unique effect increasing the rate at which the larval activity pattern returned to 
that of controls. This would seem to suggest that CBD shortened the recovery from the nocicep-
tive stimulus. This is consistent with literature that has suggested CBD is a strong candidate for 
pain management [84–86]. Importantly, this activity was found at a concentration of CBD that 
had no effect on baseline activity for controls, suggesting that there would be a low potential 
for side effects. One of the major issues surrounding the therapeutics currently used for pain 
management lies in their side effect profile, which is often vast and can range from relatively 
minor (constipation) to severe (addiction). This is especially evident for opioids, which are 
the most commonly used therapeutic for chronic pain, but have one of the highest addictive 
potentials [87]. While more work is required to test the effect of other cannabinoids and extracts 
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on the various zebrafish models of nociception, the initial indications are that zebrafish will be 
valuable for assessing the efficacy of potential therapeutics for pain management.

3.2. Addiction

Recent data suggests that approximately 9% of individuals that use cannabis show symptoms 
associated with addiction, including tolerance and withdrawal [88]. Comparatively the rate of 
dependence for tobacco is 67.5% and for alcohol is 22.7% [89]. Zebrafish represent an unde-
rutilized model with which to study the addictive properties of cannabinoids. While it has 
been demonstrated that zebrafish can be used to study the pathology of addiction to numerous 
drugs of abuse, including, alcohol, cocaine, morphine, nicotine, amphetamine, diazepam and 
salvinorin A [90–95], thus far their use to study the addictive properties of cannabinoids has 
been minimal. Changes in both larval and adult zebrafish behavior can be linked to numerous 
phenotypes associated with addiction that include conditioned place preference for drugs of 
abuse, relapse, changes in social behavior, along with symptoms indicating the development 
of tolerance and withdrawal [90, 93, 96–99]. It has also been found that the genetic pathways 
linked to addiction are highly conserved in zebrafish [100]. Currently, with respect to cannabi-
noids, only one study has shown that zebrafish larvae develop tolerance to the effects of can-
nabinoids after chronic exposure [101]. As the levels of THC in cannabis plant strains is varied 
and the refinement and extraction processes allow for other cannabinoids to be used at higher 
levels both medicinally and recreationally, there is a need to develop models with which to test 
the addictive properties of both pure cannabinoids on their own, in combination and as part of 
a complex mixture or extract. Zebrafish have the potential to be such a model.

3.3. Stress and anxiety

One of the known difficulties in using cannabinoids as therapeutics lies in their effect on stress 
and anxiety. A sought after symptom of cannabis use is the euphoric feeling that often leads 
to it being considered an anxiolytic. However, it has been broadly shown that as the levels of 
cannabinoids (specifically THC) are elevated there can be an increase in anxiety-related effects 
[102]. This is important not only from a side effect perspective, but also becomes an issue 
when cannabinoids are used to treat anxiety related disorders such as PTSD.

Zebrafish provide numerous models with which to assess stress responses in both larvae and 
adults. Measurements such as scototaxis (light-dark preference), thigmotaxis (wall hugging), 
shoaling and the amount of time spent in the bottom of a tank are used as standard measures of 
stress. Induction of stress can occur by chemical means such as neuro-hyperactive compounds 
or exposure to the alarm substance. Stress can also be induced physically by touch or following 
the placement of a fish in a novel setting (novel tank response). Various visible stimuli can also 
lead to stress responses such as changes in back ground light/dark levels or the appearance 
of an image of prey. All of these models seem to activate both unique and overlapping neural 
pathways and thus could provide insight into the mechanism of action of any potential anxio-
lytic effect [103–105]. An example of the use of zebrafish stress models for testing cannabinoids 
was outlined in a recent paper that evaluated the acute effects of both THC and CBD on larval 
behavior [106]. Zebrafish larvae show a preference for light and a transition from a light to a 
dark setting results in an increase in activity in the form of darting type movements which are 
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thought to be a stress response. It was found that while THC reduced the baseline activity in 
the light, the response to a light-dark transition was still evident. Exposure to CBD had a much 
different response with almost no effect on the baseline activity in the light accompanied by 
a concentration-dependant reduction in the light-dark transition until it was eliminated. This 
may suggest that CBD is showing anxiolytic effects at the levels tested [107].

It is currently felt that there is insufficient evidence to support the use of cannabis for the 
treatment more complex stress disorders such as PTSD [108]. Recently work has begun to 
establish zebrafish models of complex disorders such as PTSD [109, 110]. The development 
of these models will provide additional systems with which to test the efficacy of various 
cannabinoids and combinations thereof in the treatment of anxiety related disorders and may 
help provide insight into their etiology.

3.4. Uptake and metabolism

The adsorption and bioavailability of cannabinoids provides a challenge for their use as thera-
peutics. This is particularly true for orally ingested cannabinoids, which show low and, at 
times, unpredictable bioavailability [111]. The interaction between various cannabinoids along 
with their interaction with other therapeutics can affect their bioavailability. This is important 
since the effects of various cannabinoids can be bimodal (hyperactivity at low concentrations 
and sedation at higher concentrations). Having the ability to measure their uptake, bioac-
cumulation and excretion will provide insights into the exact levels found within the fish. 
Knowing the true concentration response profile based on the amount of compound found 
within zebrafish may also allow for comparisons to be made to the dose-response patterns 
found for mammals.

Previous work has shown that testing the uptake, metabolism and secretion of cannabinoids 
is possible using zebrafish larvae [106]. A number of important findings came from this study. 
First it was found that common pharmacokinetic cannabinoid metabolites are produced 
by the zebrafish larvae including the phase 1 and phase 2 metabolites hydroxylated THC 
(11-hyrdoxy-THC, 8-hydroxy-THC), 11-nor-9-carboxy THC, THC-glucuronide, hydroxyl-
CBD and CBD-glucuronide. Both the cannabinoids and their metabolites were found to accu-
mulate in the larvae with the metabolites eventually excreted into the bath. It was also shown 
that there appeared to be bioaccumulation of the cannabinoids in the larvae and a non-linear 
increase in the amount found in the larvae compared with the bath levels. The same study 
also revealed that when THC and CBD were co-administered the levels of metabolites that 
were produced was altered compared to when they were administered alone. This suggests 
that the complex chemical composition of various cannabis plant strains will also affect the 
normal metabolism of the individual cannabinoids. It then appears that it will be important 
to evaluate the uptake kinetics and metabolism of various cannabis derived compounds both 
alone and in combination.

3.5. Seizures

Approximately 1% of the world’s population is purported to have epilepsy with 30% of those 
affected having multi-drug resistant epilepsy. This often leads to the requirement for strong 
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anti-seizure medications or drug cocktails. In general this leads to an ever increasing side effect 
profile that is often debilitating in and of itself. The treatment of seizures is one of the oldest 
reported uses of cannabis and it has recently garnered attention along with the use of pure 
cannabinoids (CBD) for their ability to treat severe forms of refractory childhood epilepsy (i.e. 
Dravet syndrome [112]). However, to date there still remains some controversy regarding 
its efficacy, with some groups suggesting there is no concrete evidence that it is effective 
[113]. While it has been purported that cannabinoids, in particular CBD, can mitigate, to some 
degree, epileptic seizures, unfortunately, with the exception of the childhood epilepsy study 
[112], the numerous human studies that have evaluated the effect of cannabinoids on seizures 
have either been from small sample groups, had insufficient controls or were not blinded, 
which confounds any potential outcomes of the studies [114]. The study was able to show 
that there was a reduction in seizure frequency in patients with Dravet syndrome following 
the addition of CBD to their current prescription regime. The one question that does remain is 
whether the reduction in seizures was due to the direct effect of CBD or if the effect was due 
to the effect of CBD on the patient’s current medication.

The lack of high-quality human trials for testing anti-epileptics stem from the difficulty in prop-
erly designing and/or interpreting the results of human studies. This is partially due to the fact 
that most study participants are already on another anti-epileptic drug, which often varies 
between participants in either the drug target or the dosage. During the course of the clinical 
trials often the levels of either the cannabinoid or the existing therapeutic have to be modified 
for an individual in order to resolve issues relating to side effects. This makes the proper group-
ing of different treatment regimens difficult.

There are currently a number of zebrafish models of epilepsy that have been generated to 
provide a platform for identifying new seizure medications and potentially to understand the 
etiology of the disease [115]. For instance, a number of small molecules that target different 
receptors or ion channels can be used to induce seizures or neural hyperactivity in larvae 
[103, 116, 117]. These platforms provide high throughput testing models with multiple etiolo-
gies. While CBD has been shown to be effective in the treatment of some forms of epilepsy, the 
mechanism of action is still largely unknown. The existing zebrafish seizure models provide 
multiple platforms with which to evaluate both the efficacy and potentially the mechanism of 
action for cannabinoids in the treatment of epilepsy. The further development of these models 
will be of great benefit for discerning the true therapeutic potential of various cannabinoids 
for the treatment of epilepsy.

3.6. Smoke toxicity

Currently the main delivery method for cannabinoids both medicinally and recreationally is 
by the inhalation of smoke from marijuana cigarettes. This is generally because of the rapid 
onset of effects compared with other delivery methods, which is beneficial from the perspec-
tive of symptom relief and also allows for a level of self-regulated dose control that is not 
possible with other delivery methods such as edibles, which can often take up to 90 min to 
reach peak effect [111]. Unfortunately, some of the major caveats to an inhaled product are 
that dosing is often inconsistent and difficult to titrate and they have the potential to have 
similar health risks as are found for smoked tobacco [118]. It has been suggested that high 
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thought to be a stress response. It was found that while THC reduced the baseline activity in 
the light, the response to a light-dark transition was still evident. Exposure to CBD had a much 
different response with almost no effect on the baseline activity in the light accompanied by 
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may suggest that CBD is showing anxiolytic effects at the levels tested [107].
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of these models will provide additional systems with which to test the efficacy of various 
cannabinoids and combinations thereof in the treatment of anxiety related disorders and may 
help provide insight into their etiology.

3.4. Uptake and metabolism

The adsorption and bioavailability of cannabinoids provides a challenge for their use as thera-
peutics. This is particularly true for orally ingested cannabinoids, which show low and, at 
times, unpredictable bioavailability [111]. The interaction between various cannabinoids along 
with their interaction with other therapeutics can affect their bioavailability. This is important 
since the effects of various cannabinoids can be bimodal (hyperactivity at low concentrations 
and sedation at higher concentrations). Having the ability to measure their uptake, bioac-
cumulation and excretion will provide insights into the exact levels found within the fish. 
Knowing the true concentration response profile based on the amount of compound found 
within zebrafish may also allow for comparisons to be made to the dose-response patterns 
found for mammals.

Previous work has shown that testing the uptake, metabolism and secretion of cannabinoids 
is possible using zebrafish larvae [106]. A number of important findings came from this study. 
First it was found that common pharmacokinetic cannabinoid metabolites are produced 
by the zebrafish larvae including the phase 1 and phase 2 metabolites hydroxylated THC 
(11-hyrdoxy-THC, 8-hydroxy-THC), 11-nor-9-carboxy THC, THC-glucuronide, hydroxyl-
CBD and CBD-glucuronide. Both the cannabinoids and their metabolites were found to accu-
mulate in the larvae with the metabolites eventually excreted into the bath. It was also shown 
that there appeared to be bioaccumulation of the cannabinoids in the larvae and a non-linear 
increase in the amount found in the larvae compared with the bath levels. The same study 
also revealed that when THC and CBD were co-administered the levels of metabolites that 
were produced was altered compared to when they were administered alone. This suggests 
that the complex chemical composition of various cannabis plant strains will also affect the 
normal metabolism of the individual cannabinoids. It then appears that it will be important 
to evaluate the uptake kinetics and metabolism of various cannabis derived compounds both 
alone and in combination.

3.5. Seizures

Approximately 1% of the world’s population is purported to have epilepsy with 30% of those 
affected having multi-drug resistant epilepsy. This often leads to the requirement for strong 
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anti-seizure medications or drug cocktails. In general this leads to an ever increasing side effect 
profile that is often debilitating in and of itself. The treatment of seizures is one of the oldest 
reported uses of cannabis and it has recently garnered attention along with the use of pure 
cannabinoids (CBD) for their ability to treat severe forms of refractory childhood epilepsy (i.e. 
Dravet syndrome [112]). However, to date there still remains some controversy regarding 
its efficacy, with some groups suggesting there is no concrete evidence that it is effective 
[113]. While it has been purported that cannabinoids, in particular CBD, can mitigate, to some 
degree, epileptic seizures, unfortunately, with the exception of the childhood epilepsy study 
[112], the numerous human studies that have evaluated the effect of cannabinoids on seizures 
have either been from small sample groups, had insufficient controls or were not blinded, 
which confounds any potential outcomes of the studies [114]. The study was able to show 
that there was a reduction in seizure frequency in patients with Dravet syndrome following 
the addition of CBD to their current prescription regime. The one question that does remain is 
whether the reduction in seizures was due to the direct effect of CBD or if the effect was due 
to the effect of CBD on the patient’s current medication.

The lack of high-quality human trials for testing anti-epileptics stem from the difficulty in prop-
erly designing and/or interpreting the results of human studies. This is partially due to the fact 
that most study participants are already on another anti-epileptic drug, which often varies 
between participants in either the drug target or the dosage. During the course of the clinical 
trials often the levels of either the cannabinoid or the existing therapeutic have to be modified 
for an individual in order to resolve issues relating to side effects. This makes the proper group-
ing of different treatment regimens difficult.

There are currently a number of zebrafish models of epilepsy that have been generated to 
provide a platform for identifying new seizure medications and potentially to understand the 
etiology of the disease [115]. For instance, a number of small molecules that target different 
receptors or ion channels can be used to induce seizures or neural hyperactivity in larvae 
[103, 116, 117]. These platforms provide high throughput testing models with multiple etiolo-
gies. While CBD has been shown to be effective in the treatment of some forms of epilepsy, the 
mechanism of action is still largely unknown. The existing zebrafish seizure models provide 
multiple platforms with which to evaluate both the efficacy and potentially the mechanism of 
action for cannabinoids in the treatment of epilepsy. The further development of these models 
will be of great benefit for discerning the true therapeutic potential of various cannabinoids 
for the treatment of epilepsy.

3.6. Smoke toxicity

Currently the main delivery method for cannabinoids both medicinally and recreationally is 
by the inhalation of smoke from marijuana cigarettes. This is generally because of the rapid 
onset of effects compared with other delivery methods, which is beneficial from the perspec-
tive of symptom relief and also allows for a level of self-regulated dose control that is not 
possible with other delivery methods such as edibles, which can often take up to 90 min to 
reach peak effect [111]. Unfortunately, some of the major caveats to an inhaled product are 
that dosing is often inconsistent and difficult to titrate and they have the potential to have 
similar health risks as are found for smoked tobacco [118]. It has been suggested that high 
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doses of THC containing products are associated with an increased risk of developing respi-
ratory infections [119]. However, it has been difficult to establish a clear relationship between 
smoked cannabis and more severe lung disorders, such as cancer, since tobacco use is often 
co-morbid with cannabis. While in general the number of smoked cannabis cigarettes is lower 
on a per day basis, this risk cannot be overlooked. Additionally, the inhalation delivery meth-
ods for cannabis smoke are somewhat more diverse than for tobacco and include pipes, water 
pipes, burning on metal and vaporizers. All of these delivery methods produce smoke with its 
own set of chemical characteristics that depend on the temperature at which the smoke was 
created and any filtering that occurred before the smoke was inhaled. Processing of the plant 
material into oils or resins before combustion adds another level of complexity to the potential 
chemical diversity of the smoke that is inhaled.

Zebrafish larvae are an established model for testing vertebrate toxicity, teratogenicity and 
environmental risk assessment [120–122]. The use of these models has proven to be a valuable 
resource for testing the toxicity of various extracts and condensates obtained from tobacco 
cigarette smoke [6, 123, 124]. It was found that smoke from tobacco cigarettes was more toxic 
and produced different phenotypes than that of nicotine alone, suggesting, that the other toxic 
components found in tobacco smoke are having an effect. The use of the previously validated 
smoke testing models for testing cannabis smoke has the potential to provide information on 
developmental, cardiac, behavioral/neural and acute toxicity.

3.7. Multi-drug interactions and polypharmacology

One of the major complexities of working with cannabis is the fact that it is currently known to be 
comprised of 500+ constituents and more than 100 cannabinoid molecules [125]. The potential of 
interactions between many of these compounds is high and has been widely demonstrated for 
THC and CBD. It has been shown that the zebrafish can be used to assess the interaction of THC 
and CBD with respect to their effects on locomotor activity along with the uptake and metabo-
lism of each compound [106]. Many of the aforementioned zebrafish models have the potential 
to be used to assess the potential interaction of THC and CBD and likely other cannabinoids. 
This is important as one of the next steps in the use of the zebrafish models for testing cannabi-
noids is to begin to test various extracts and isolates from cannabis for their bioactivity. Having 
an understanding of how the pure compounds interact in an in vivo system and how this relates 
to their activity in complex mixtures derived from plant material will be extremely valuable. In 
addition to the interaction of the various compounds found within cannabis, the use of cannabis 
or cannabinoids as therapeutics is also complicated by the fact that many patients are already 
taking a prescription drug for their particular indication. The zebrafish testing platforms appear 
to have the potential to characterize some of these interactions as well.

Understanding the pharmacokinetics and pharmacodynamics of cannabis is complicated by the 
fact that CBD (and potentially other cannabinoids) has numerous targets and mechanisms of 
action that contribute to its various biological effects. Similar to CBD a high percentage of neu-
roactive compounds have multiple targets and act on them within similar concentration ranges. 
This polypharmacology has both advantages and disadvantages. As many disease etiologies are 
not entirely known and may be multifactorial, there may be a substantial benefit of having activ-
ity on multiple targets. However, this may also increase the side effect potential and the potential 
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of interacting with other therapeutics. It has been suggested that large-scale zebrafish behavioral 
testing models can be used to help discern the polypharmacological mechanisms of neuroactive 
compounds [126]. This provides an ideal platform with which to test cannabis derivatives.

4. Discussion

One of the unique characteristics of researching the effects of cannabis and cannabinoids 
using various models and for various disease indications is that often there is already clinical 
data on the effects in humans. While much of the data is often anecdotal in nature, it does 
allow for animal model testing to be used to back validate the findings of the clinical trials. 
By designing top-down translational research studies we can begin to elucidate the biological 
basis of the clinical findings and potentially provide information on the mechanism of action 
of therapeutic compounds. This is particularly true for cannabis uses where the cannabinoid 
mechanism of action is often difficult to discern. The use of animal models of disease may 
help to elucidate these mechanisms and further define the etiology of the disease.

As outlined in this chapter, zebrafish have an established endocannabinoid system that is 
highly analogous to that of humans. Additionally, as a model system both adults and larval 
zebrafish provide numerous models of disease that have been shown to be efficacious for test-
ing the therapeutic potential of novel compounds. Importantly the response patterns in these 
various disease models following exposure to different cannabinoids reveal unique character-
istics for each cannabinoid. Thus far, only a limited number of these models have been used 
to test the efficacy of cannabinoids. However, the framework is in place for an expansion of 
the use of zebrafish in this field.
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doses of THC containing products are associated with an increased risk of developing respi-
ratory infections [119]. However, it has been difficult to establish a clear relationship between 
smoked cannabis and more severe lung disorders, such as cancer, since tobacco use is often 
co-morbid with cannabis. While in general the number of smoked cannabis cigarettes is lower 
on a per day basis, this risk cannot be overlooked. Additionally, the inhalation delivery meth-
ods for cannabis smoke are somewhat more diverse than for tobacco and include pipes, water 
pipes, burning on metal and vaporizers. All of these delivery methods produce smoke with its 
own set of chemical characteristics that depend on the temperature at which the smoke was 
created and any filtering that occurred before the smoke was inhaled. Processing of the plant 
material into oils or resins before combustion adds another level of complexity to the potential 
chemical diversity of the smoke that is inhaled.

Zebrafish larvae are an established model for testing vertebrate toxicity, teratogenicity and 
environmental risk assessment [120–122]. The use of these models has proven to be a valuable 
resource for testing the toxicity of various extracts and condensates obtained from tobacco 
cigarette smoke [6, 123, 124]. It was found that smoke from tobacco cigarettes was more toxic 
and produced different phenotypes than that of nicotine alone, suggesting, that the other toxic 
components found in tobacco smoke are having an effect. The use of the previously validated 
smoke testing models for testing cannabis smoke has the potential to provide information on 
developmental, cardiac, behavioral/neural and acute toxicity.

3.7. Multi-drug interactions and polypharmacology

One of the major complexities of working with cannabis is the fact that it is currently known to be 
comprised of 500+ constituents and more than 100 cannabinoid molecules [125]. The potential of 
interactions between many of these compounds is high and has been widely demonstrated for 
THC and CBD. It has been shown that the zebrafish can be used to assess the interaction of THC 
and CBD with respect to their effects on locomotor activity along with the uptake and metabo-
lism of each compound [106]. Many of the aforementioned zebrafish models have the potential 
to be used to assess the potential interaction of THC and CBD and likely other cannabinoids. 
This is important as one of the next steps in the use of the zebrafish models for testing cannabi-
noids is to begin to test various extracts and isolates from cannabis for their bioactivity. Having 
an understanding of how the pure compounds interact in an in vivo system and how this relates 
to their activity in complex mixtures derived from plant material will be extremely valuable. In 
addition to the interaction of the various compounds found within cannabis, the use of cannabis 
or cannabinoids as therapeutics is also complicated by the fact that many patients are already 
taking a prescription drug for their particular indication. The zebrafish testing platforms appear 
to have the potential to characterize some of these interactions as well.

Understanding the pharmacokinetics and pharmacodynamics of cannabis is complicated by the 
fact that CBD (and potentially other cannabinoids) has numerous targets and mechanisms of 
action that contribute to its various biological effects. Similar to CBD a high percentage of neu-
roactive compounds have multiple targets and act on them within similar concentration ranges. 
This polypharmacology has both advantages and disadvantages. As many disease etiologies are 
not entirely known and may be multifactorial, there may be a substantial benefit of having activ-
ity on multiple targets. However, this may also increase the side effect potential and the potential 
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of interacting with other therapeutics. It has been suggested that large-scale zebrafish behavioral 
testing models can be used to help discern the polypharmacological mechanisms of neuroactive 
compounds [126]. This provides an ideal platform with which to test cannabis derivatives.

4. Discussion

One of the unique characteristics of researching the effects of cannabis and cannabinoids 
using various models and for various disease indications is that often there is already clinical 
data on the effects in humans. While much of the data is often anecdotal in nature, it does 
allow for animal model testing to be used to back validate the findings of the clinical trials. 
By designing top-down translational research studies we can begin to elucidate the biological 
basis of the clinical findings and potentially provide information on the mechanism of action 
of therapeutic compounds. This is particularly true for cannabis uses where the cannabinoid 
mechanism of action is often difficult to discern. The use of animal models of disease may 
help to elucidate these mechanisms and further define the etiology of the disease.

As outlined in this chapter, zebrafish have an established endocannabinoid system that is 
highly analogous to that of humans. Additionally, as a model system both adults and larval 
zebrafish provide numerous models of disease that have been shown to be efficacious for test-
ing the therapeutic potential of novel compounds. Importantly the response patterns in these 
various disease models following exposure to different cannabinoids reveal unique character-
istics for each cannabinoid. Thus far, only a limited number of these models have been used 
to test the efficacy of cannabinoids. However, the framework is in place for an expansion of 
the use of zebrafish in this field.
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Abstract

Over the past 2 years, X-ray crystal structures of the antagonist- and agonist-bound CB1 
receptor have been reported. Such structures are expected to accelerate progress in the 
understanding of CB1 and should provide an exceptional starting point for structure-
based drug discovery. This chapter examines the consistency of these X-ray structures 
with the CB1 experimental literature, including mutation, NMR and covalent labeling 
studies. These comparisons reveal discrepancies between this literature and the TMH1-
2-3 region of each CB1 crystal structure. The chapter also examines crystal packing issues 
with each X-ray structure and shows that the discrepancies with the experimental lit-
erature can be attributed to crystal packing problems that force the N-terminus deep in 
the binding pocket of the two inactive state structures and force TMH2 to bend at G2.53/
S2.54 and invade the binding pocket in the activated state structure. Revision is advisable 
before these structures are used for structure-based drug discovery.

Keywords: cannabinoid CB1 receptor, CB1 mutation, CB1 cross-linking, CB1 nuclear 
magnetic resonance, crystal packing

1. Introduction

The cannabinoid receptor type 1 (CB1) belongs to the G-protein coupled receptors (GPCRs) 
superfamily. GPCRs comprise the largest group of integral membrane proteins that mediate 
cellular responses to a wide spectrum of signaling molecules including peptides, lipids, neu-
rotransmitters, glycoproteins, as well as light, taste and odor substances. They act via coupling 
and activating intracellular effector proteins including G-proteins and arrestins leading to an 
array of intracellular signaling cascades.
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GPCRs have a common architecture of seven transmembrane helices (TMHs) joined by extra-
cellular (EC) and intracellular (IC) loops of varied lengths, in addition to an extracellularly 
extending N terminus, and an intracellular C terminus that begins with an amphipathic alpha 
helical segment (Helix 8) oriented parallel to the cell membrane. In Class A GPCRs, the bind-
ing site for the endogenous ligand is generally formed by the EC core within the TMH bundle, 
and may extend to EC loops, referred to as the orthosteric binding site. Ligands may also bind 
to distinct (allosteric) binding sites in the receptor.

Due to the various physiological functions mediated by GPCRs, they are considered major 
targets for drug discovery and design of novel therapeutics. However, understanding the 
structure-function relationship of these proteins and the design of high affinity, selective 
ligands that target these receptors requires a detailed knowledge of the three-dimensional 
structure of the receptor in general and of the ligand binding site in specific. However, struc-
tural characterization for membrane proteins in general has been a challenge due to their low 
expression in recombinant hosts and their inherent instability in surfactants. It was not until 
the year 2000 that the first high resolution GPCR structure was resolved by X-ray crystal-
lography, Rhodopsin in its inactive state [1]. The following 10 years witnessed the release 
of other inactive state crystal structures of class A GPCRs (e.g. the Adenosine A2A, and the 
β1 and β2 adrenergic receptors [2–4]), in addition to the release of the active state crystal 
structure of Rhodopsin in complex with a synthetic peptide resembling the C-terminus of the 
G-alpha subunit of transducing [5]. Available structures during that time served as templates 
for homology modeling for other GPCRs including the CB1 receptor. And parallel with bio-
physical studies, available crystal structures provided structural insights for their activation 
mechanism. A breakthrough in GPCR structural characterization has been achieved in the 
last 8 years with more than 200 structures for different GPCRs being deposited in the Protein 
Data Bank, including the CB1 inactive and active state crystal structures which have been 
resolved in 2016, and in 2017 respectively [6–8]. Before that, structural characterization of CB1 
orthosteric as well as allosteric binding domains have been extensively studied via mutations, 
site-directed labeling, mass spectrometry, SAR studies, and in-silico methods, and will be 
discussed in detail throughout this chapter.

2. Structural divergence of the cannabinoid receptors from class  
A GPCRs

The CB1 receptor is a class A (Rhodopsin-like) GPCR (Figure 1). Different phylogenetic stud-
ies and multidimensional scaling analysis of Class A GPCRs classify cannabinoid receptors 
(CB1/CB2) into one cluster along with the endothelial differentiation G-protein coupled recep-
tors (EDGRs) (including Sphingosine 1-phosphate receptors (S1P) and Lysophosphatidic acid 
receptors (LPA)) [9–12]. Receptors from those families, except for the LPA4–6, share common 
sequence divergence from other Class A GPCRs. Specifically, the absence of helix kinking 
proline residues in TMH2 and TMH5, and the absence of a disulfide bridge between the EC-2 
loop and C3.25 at the EC end of TMH3. Instead, they share an internal disulfide bridge in 
the EC-2 loop, a conserved PxxGW motif at the EC end of TMH4, in addition to a Y5.39 that 
forms an aromatic pi-pi stack with W4.64 in that motif resulting in a similar shape of the EC2 
loop as seen in the crystal structures for the CB1, S1P1, and LPA1 receptors [6, 7, 13, 14]. At the 
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binding site, they share a common basic residue (K/R 3.28) on TMH3 and an aromatic residue 
(F/Y 2.57) on TMH2. In addition, the S1P receptors are like CB1/CB2 in the presence of E1.49 at 
TMH1. E1.49 has been reported to be a key interaction site for pregnenolone (an endogenous 
negative allosteric modulator that protects the brain from cannabis intoxication) with CB1 
[15], while the LPA1–3 receptors share a W5.43 with CB1/CB2 that has been shown to affect 
antagonist binding to the cannabinoid receptors [16]. In addition, S1P1, and the cannabinoid 
receptors recognize lipid-derived ligands that have been shown to bind to the receptor by 
diffusing from bulk lipid towards the binding site via a transmembrane portal [6, 7, 14, 17, 18].

Figure 1. Helix net representation of the hCB1 receptor. The most highly conserved residue in each helix is shown in 
bold. Residues are numbered using the BW#: Ballesteros-Weinstein residue numbering system in GPCRs which uses 
the X.YY format; X denotes the transmembrane helix number and (YY) denotes residue position relative to the most 
conserved residue in the helix (X.50). Loop regions are numbered using absolute sequence numbers.
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3. CB1 receptor crystal structures

Two inactive state crystal structures for the hCB1 receptor have been resolved. The first struc-
ture (PDB ID: 5TGZ) was resolved at 2.8 Å; the receptor was truncated at both the N-terminus 
(1–98) and the C-terminus (415–472), with a flavodoxin protein fused into the IC3 loop (V306, 
P332), the receptor was crystalized in complex with a biaryl-pyrazole derivative (AM6358, 
Figure 2) and using thermo-stabilizing mutations (T3.46A, E5.37K, T5.47V, and R6.32E) [6]. 
The second structure was resolved at 2.6 Å (PDB ID: 5U09) in complex with an acyclic high 
affinity inverse agonist of the CB1 receptor, taranabant (Figure 2) [7]. In this structure, fewer 
amino acid residues were truncated from the N-terminus (1–76) and the C-terminus (422–472), 
and P. abysii glycogen synthase protein was fused into the IC3 loop (A301, D333) of a single 
point mutant (T3.46A) hCB1 receptor [7]. In both structures, resolved residues were from E100 
at the N-terminus to F412 at the C-terminus of the receptor.

Figure 2. Compounds discussed in this chapter.
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Agonist bound hCB1 crystal structures (PDB IDs: 5XRA, 5XR8) were resolved at 2.80 and 
2.95 Å resolution and in complex with the classical cannabinoids (AM11542, AM841) respec-
tively (Figure 2). The receptor was constructed in a similar way to the AM6358-bound crystal 
structure. Resolved residues included D104-S414 and F102-S414 in the 2.80 and 2.95 Å resolu-
tion structures respectively [8].

Inactive state CB1 structures show a transmembrane portal for antagonist entry between TMH1 
and TMH7 that is similar to the S1P1 structure. However, the membrane proximal region in the 
CB1 receptor forms a loop that extends towards the orthosteric binding site with two amino 
acid residues (F102, M103) invading unpredictably the binding site in the inactive state struc-
tures and forming Van der Waal (VDW) interactions with the antagonists (Figure 3) [6, 7].

Active state structures show characteristic conformational changes featuring class A GPCR 
activation including an outward movement and a counterclockwise rotation (EC view) of the 
IC end of TMH6, resulting in a break in the R3.50/D6.30 inactive state “ionic lock” [19, 20]. 
Unlike inactive state structures, a transmembrane portal is not present in active state structures 
due to the packing of the EC domain of TMH1 towards TMH7. In addition, the N-terminus 
resides at the top of the receptor with no invasion of the orthosteric binding site. On the other 
hand, the active state binding site displays a profound (53%) reduction in size that is resulting 
from an inward kink of the EC domain of TMH2 towards the orthosteric binding site, as well 
as, rotation of TMH3 towards TMH2 [8].

4. Mutation and labeling studies on CB1: consistency with CB1 
crystal structures

Multiple mutation studies on either mCB1 or hCB1 were aimed to study the receptor’s bind-
ing site and to identify key residues for CB1 receptor activation (Figure 4). While different 
ligands where used in functional and binding affinity assessment, WIN55212, SR141716A and 
CP55940, were used primarily, due to the availability of tritiated versions of these compounds. 

Figure 3. N-terminus residues F102 and M103 (green VdW) penetrate the binding crevice in the inactive state CB1 
structure (PDB ID: 5U09. This influences the positions of K3.28 (magenta tube), D2.63 and D184 (wheat tube) which form 
an interaction with each other.
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Figure 4. Mutations in or near the binding crevice of the CB1 receptor. The key represents changes in binding affinities 
of ligands to mutant CB1 receptor compared to WT. Residues are numbered using Ballesteros-Weinstein numbers. See 
Figure 1 for more details.
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Other ligands characterized include HU210, ∆9-THC, taranabant, and AM251. The discussion 
here will be focused on mutation and labeling studies near the orthosteric binding site and 
those affecting crystalized ligands or closely related structures such as SR141716A, HU201, or 
CP55940 (Figure 2).

4.1. K3.28 residue

One of the earliest mutational studies on the CB1 receptor targeted K3.28 [21, 22]. The lipophilic 
nature of CB1 ligands and the fact that the third TMH in CB1 has a V3.32 instead of an acidic 
residue at that position (as being conserved in aminergic receptors), directed the attention 
towards K3.28 to investigate its role in ligand binding.

Song and Bonner first reported that the binding of CP55940, HU210, and anandamide to a 
K3.28A mutant hCB1 expressed in HEK293 cells resulted in severe impairment, with more than 
100-fold decrease in their potencies in inhibiting cAMP accumulation. On the other hand, the 
binding and the potency of WIN55212 at the K3.28A mutant receptor were comparable to WT, 
suggesting that the receptor is still functioning [21]. Shortly afterwards, Kendall’s Lab dem-
onstrated retained binding affinity and potency for CP55940 in CHO cells expressing K3.28R 
hCB1 mutant, with no binding for up to 75 nM concentration in cells expressing K3.28Q or 
K3.28E mutants compared to cells expressing WT receptor (Kd = 7.7 ± 3.5 nM). In the same 
study, WIN55212 displayed comparable affinity for the three mutants with more than one order 
of magnitude decrease in potency in the K3.28E mutant, while its potency in K3.28Q mutant 
was not determined due to low receptor density [22]. A significant loss of CP55940’s potency 
in stimulating [35S]GTPγS binding in HEK293 cells expressing the K3.28A hCB1 mutant were 
also reported where the EC50 values for the WT and the mutant receptor were 1.3 and 225 nM 
respectively [23].

Results suggested that the loss of potencies of anandamide, and the classical and non-classical 
cannabinoids, but not WIN55212 at the K3.28A mutant is due to their low affinities to the 
receptor, and a basic residue at 3.28 is required for CP55940 binding. Based on mutation data, 
modeling studies suggested a hydrogen bond interaction between K3.28 and the amide oxygen 
of anandamide [16, 24], and with classical and non-classical cannabinoids [25–27]. While Shim 
argued later that K3.28 is important for stabilizing the binding site for the endocannabinoids 
and the classical and non-classical cannabinoids and not directly involved in their binding [28].

K3.28 mutations have also been demonstrated to affect affinities and deactivation profile 
of biaryl-pyrazole derivatives. The affinity of SR141716A to K3.28A hCB1 mutant has been 
reported to be 17-fold lower compared to the WT [29]. In addition, SR141716A was reported 
to act as neutral antagonist with loss of ability to turn off receptor’s basal activity in inhibiting 
Ca2+ currents in SCG neurons microinjected with K3.28A hCB1 mutant cDNA [30]. This data 
prompted a mutant cycle study using an SR141716A analog (VCHSR) to test the hypothesis 
that an interaction between the carboxamide oxygen in SR141716A and K3.28 is essential 
for its inverse agonist activity. The results supported the hypothesis by demonstrating that 
VCHSR acts as neutral antagonist with comparable affinities to both K3.28A and WT receptor 
[29]. A set of SR141716A analogues were also designed later that support the hypothesis [31]. 
A K3.28L mutation at hCB1 has been also reported to lower the binding affinity of AM251 by 
17-fold compared to the WT, while it had no effect on the affinity of the acyclic antagonist, 
taranabant, to the receptor [32]. The discriminatory effect of K3.28 mutants on different classes 
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of antagonists may suggest different binding interactions within the receptor’s binding site, 
especially that taranabant acts also as an inverse agonist [33].

CB1 crystal structures, on the other hand, do not support proposed hydrogen bonding of 
ligands to K3.28. In both inactive state and the active state structures of CB1, K3.28 orients its 
side chain towards the TMH2/3 interface forming salt bridges with D184 in the EC1 loop and 
D2.63 at the top of TMH2. The K3.28/D2.63 interaction is only noticeable in the inactive state 
crystal structures (Figure 3).

4.2. D2.63 mutations

As described above, this residue forms a salt bridge with K3.28 in the inactive state crystal 
structures (Figure 4). This K3.28/D2.63 salt bridge has been previously proposed to be essen-
tial for CB1 basal activity [34]. However, an earlier study on K3.28A mutant reported a compa-
rable basal activity to the WT receptor in inhibiting Ca2+ currents which does not support the 
role of K3.28/D2.63 salt bridge in controlling receptor’s basal activity [30]. Individual effects of 
D2.63 mutation on ligand binding and receptor activation have been also reported. In HEK293 
cells expressing a D2.63N hCB1 mutant, binding affinities for the classical cannabinoid 
(HU210), non-classical cannabinoid (CP55940), and the amino alkyl indole (WIN55212) were 
not significantly different from WT, while the affinity for SR141716A was 5-fold decreased 
compared to the WT. In addition, the potencies of CP55940 and HU210 in stimulating [35S]
GTPγS binding were significantly different from WT with about 12-fold increase in their 
EC50 values, while the basal activity of the D2.63N mutant was not different from WT [35]. 
In a different study, a double hCB1 mutant (L3.43A/D2.63A) was shown to lower the affinity 
of CP55940 to the receptor by 7-fold, while increasing the affinity of SR141716A by 3-fold. 
The L3.43A single mutant had an opposite effect by increasing the affinity of CP55940 to the 
receptor by 6-fold and lowering the affinity of SR141716A by 7-fold. Knowing that L3.43A 
mutation has been shown to increase the basal signaling of CB1 receptor in stimulating [35S]
GTPγS binding, combining D2.63A with L3.43A mutation lowered the basal signaling below 
CB1 WT levels. Results suggest that D2.63 may be involved in receptor activation and that 
mutation into alanine stabilizes the inactive state of the receptor [34, 36]. A modeling and 
mutation study suggested that an ionic interaction between D2.63 and K373 in the EC-3 loop 
is important for receptor activation. In the study, a reciprocal mutant D2.63K/K373D resulted 
in similar potencies for CP55940 and WIN55212 in stimulation for [35S]GTPγS compared to 
the WT receptor, while their potencies were more than 5-fold lower in the single and double 
alanine mutants [37]. Such an interaction is not present in the crystal structures.

4.3. Mutation studies on the CB1 N-terminus

The CB1 receptor is unique in having a relatively long (114 amino-acid residues) N-terminus 
compared to other class A GPCRs. Analysis of the amino acid sequence of the membrane prox-
imal region (MPR) of the amino terminus reveals a remarkably high degree of conservation in 
that region (Figure 5).

Early studies on the N-terminus reported no effect on prolylglycine insertion in the N-terminus 
(at A73, L86, and E100) of hCB1 receptor expressed in HEK 293T cells on agonist (CP55940) and 
antagonist (SR141716A) binding. In addition, S1.30A and Q1.31A mutants at the N-terminal 
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Figure 5. Sequence alignment of the CB1 N-terminus of 11 different species downloaded from the UniProt online 
database (www.uniprot.org).
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of antagonists may suggest different binding interactions within the receptor’s binding site, 
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CB1 crystal structures, on the other hand, do not support proposed hydrogen bonding of 
ligands to K3.28. In both inactive state and the active state structures of CB1, K3.28 orients its 
side chain towards the TMH2/3 interface forming salt bridges with D184 in the EC1 loop and 
D2.63 at the top of TMH2. The K3.28/D2.63 interaction is only noticeable in the inactive state 
crystal structures (Figure 3).

4.2. D2.63 mutations

As described above, this residue forms a salt bridge with K3.28 in the inactive state crystal 
structures (Figure 4). This K3.28/D2.63 salt bridge has been previously proposed to be essen-
tial for CB1 basal activity [34]. However, an earlier study on K3.28A mutant reported a compa-
rable basal activity to the WT receptor in inhibiting Ca2+ currents which does not support the 
role of K3.28/D2.63 salt bridge in controlling receptor’s basal activity [30]. Individual effects of 
D2.63 mutation on ligand binding and receptor activation have been also reported. In HEK293 
cells expressing a D2.63N hCB1 mutant, binding affinities for the classical cannabinoid 
(HU210), non-classical cannabinoid (CP55940), and the amino alkyl indole (WIN55212) were 
not significantly different from WT, while the affinity for SR141716A was 5-fold decreased 
compared to the WT. In addition, the potencies of CP55940 and HU210 in stimulating [35S]
GTPγS binding were significantly different from WT with about 12-fold increase in their 
EC50 values, while the basal activity of the D2.63N mutant was not different from WT [35]. 
In a different study, a double hCB1 mutant (L3.43A/D2.63A) was shown to lower the affinity 
of CP55940 to the receptor by 7-fold, while increasing the affinity of SR141716A by 3-fold. 
The L3.43A single mutant had an opposite effect by increasing the affinity of CP55940 to the 
receptor by 6-fold and lowering the affinity of SR141716A by 7-fold. Knowing that L3.43A 
mutation has been shown to increase the basal signaling of CB1 receptor in stimulating [35S]
GTPγS binding, combining D2.63A with L3.43A mutation lowered the basal signaling below 
CB1 WT levels. Results suggest that D2.63 may be involved in receptor activation and that 
mutation into alanine stabilizes the inactive state of the receptor [34, 36]. A modeling and 
mutation study suggested that an ionic interaction between D2.63 and K373 in the EC-3 loop 
is important for receptor activation. In the study, a reciprocal mutant D2.63K/K373D resulted 
in similar potencies for CP55940 and WIN55212 in stimulation for [35S]GTPγS compared to 
the WT receptor, while their potencies were more than 5-fold lower in the single and double 
alanine mutants [37]. Such an interaction is not present in the crystal structures.

4.3. Mutation studies on the CB1 N-terminus

The CB1 receptor is unique in having a relatively long (114 amino-acid residues) N-terminus 
compared to other class A GPCRs. Analysis of the amino acid sequence of the membrane prox-
imal region (MPR) of the amino terminus reveals a remarkably high degree of conservation in 
that region (Figure 5).

Early studies on the N-terminus reported no effect on prolylglycine insertion in the N-terminus 
(at A73, L86, and E100) of hCB1 receptor expressed in HEK 293T cells on agonist (CP55940) and 
antagonist (SR141716A) binding. In addition, S1.30A and Q1.31A mutants at the N-terminal 
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Figure 5. Sequence alignment of the CB1 N-terminus of 11 different species downloaded from the UniProt online 
database (www.uniprot.org).
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end of TMH1 did not affect the binding affinity for SR141716A, while they reduced the bind-
ing affinity of CP55940 by 5- and 10-fold respectively [38].

In addition, CP55940 binding to truncated receptor at the N-terminal region (Δ64, Δ80, Δ89, 
Δ103 shCB1) was comparable to the WT receptor [39, 40]. On the other hand, the binding 
affinity of SR141716A to the Δ103 synthetic hCB1 (shCB1) truncation mutant was higher com-
pared to the WT with retained ability to inhibit basal signaling of the truncated mutant [39]. 
As described earlier, in the (inactive state CB1 X-ray crystal structures, two amino acid resi-
dues from the N-terminus occupy the receptor’s orthosteric binding site, forming strong VDW 
interactions with the antagonists, those are F102, M103. Affinity data of SR141716A to the Δ103 
shCB1 truncation mutant is inconsistent with the inactive state crystal structures.

Reduction of the proposed disulfide bridge at the N-terminus C98/C107 reduces CP55940 
potency in [35S]GTPγS binding assay [39]. However, a previous study reported that a double 
mutant of the two cysteine residues into serine subtly affected CP55940 binding, but did not 
affect SR141716A binding [41]. It is worth-mentioning that the C98/C107 residues are con-
served among all 11-CB1 species available from UniProt. This sulfide bridge is not apparent in 
crystal structures.

Interestingly, a recent mutational, and modeling study from the Kunos lab identified an 
N-terminal residue (M106 in rodent CB1 compared to I105 in hCB1) as the determinant of 
the species differential affinity of {5-(4-chlorophenyl)-N-{(1R,2R)-2-hydroxycyclohexyl}-6-(2-
methoxyethoxy)-3-pyridinecarboxamide} (14 h) at the CB1 receptor [42]. The compound, has 
been described previously as a peripherally selective, high affinity CB1 receptor antagonist 
[43]. However, this compound has been shown to have higher affinity for the hCB1 receptor 
compared to mouse and rat CB1 receptor [42]. This residue faces the ligand binding site in 
crystal structures, but with a changed position in the different structures.

4.4. EC1 loop

Mutations of the EC1 loop negatively impacted CP55940 but not SR141716A binding, the Ki value 
of CP55940 was 26-fold higher in D184A hCB1 mutant compared to the WT receptor expressed in 
HEK293 cells. Here, the Ki was determined by competition binding against [3H]SR141716A [38]. 
This aspartate residue forms an ionic interaction with K3.28 in both the active and inactive state 
CB1 crystal structures (Figure 3) [6–8]. H181A, R182A, and K183A have also lowered CP55940 
affinity by 3–4-fold compared with the WT [38]. None of the EC1 loop residues forms direct 
contact with crystallized ligands.

4.5. Aromatic residues lining the orthosteric binding site

The orthosteric binding site of CB1 is lined with multiple aromatic residues located on TMH2/ 
3/5/6/7, as well as, F286 in the EC2 loop.

4.5.1. F2.57, F2.61, and F2.64

F2.57 is two turns extracellular to the conserved D2.50, facing the orthosteric binding site. 
In the inactive state CB1 crystal structures, this residue has been shown to form an aromatic 
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π-π stack with the 2,4-dichlorophenyl ring in AM6538 [6], and with the cyanophenyl ring in 
taranabant [7]. Mutation data show a reduced affinity for taranabant and AM251 (a diarylpyr-
azole antagonist) by 30- and 97-fold respectively in F2.57L hCB1 mutant [32]. In addition, both 
SR141716A and AM6538 failed to antagonize 100 nM CP55940-induced inhibition of cAMP 
in F2.57A hCB1 mutant while preserving their abilities in F2.57W hCB1 mutant [6]. Results 
indicate a major role for this residue in antagonist binding via aromatic interactions and in 
shaping the antagonist binding site. On the other hand, while this residue shows a major 
contact with the agonists (A-ring, Figure 2) in the AM11542 and the AM841 bound crystal 
structures, [8] CP55940 displayed similar potency for inhibition of cAMP in both F2.57A, and 
F2.57W mutants compared to WT [8].

Mutations on F2.61 revealed effects on antagonist and agonist binding and potencies. In the 
inactive state CB1 structures, this residue is rotated towards TMH1 and its side chain is at the 
TMH1/TMH2 interface, yet it forms moderate VDW interactions with the piperidine and with 
the trifluoro-methyl pyridine in AM6538 and taranabant respectively [6, 7]. While in the active 
state structures, this residue faces the binding site and forms strong VDW interactions with the 
agonists (AM11542 and AM841) B-ring (Figure 2) [8]. SR141716A displayed only 5-fold higher 
Kd value in F2.61A hCB1 mutant transiently expressed in HEK293 cells [44], but both SR141716A 
and AM6538 failed to antagonize 100 nM CP55940-induced inhibition of cAMP in F2.61A mutant 
while preserving their potencies in F2.61W mutant (mutations were on hCB1, and functional 
assays were done in stably transfected CHO cells) [6]. Also, CP55940 displayed similar potency 
in both F2.61A and F2.61W in inhibition of cAMP compared to the hCB1 WT stably transfected 
in CHO cells, [8] while the binding affinities for CP55940, HU210, and ∆9-THC determined 
against [3H]SR141716A were severely affected by F2.61A mutation transiently transfected in 
HEK293 cells [45]. In the same study, the potency of HU210 in inducing [35S]GTPγS binding has 
been reported to be 30-fold less in F2.61A hCB1 mutant compared to the WT [45].

The F2.64A mutation has also been shown to be detrimental for agonists (HU210, CP55940, 
and ∆9-THC) binding [45]. CP55940, AM841, and AM11542 displayed about an order of mag-
nitude lower potency in inhibition of forskolin-stimulated cAMP in CHO cells expressing the 
mutant receptor [8]. In crystal structures, this residue forms major contacts with the agonists’ 
(C-ring, Figure 2) [8], and does not display any contact with the antagonists due to the pres-
ence of the N-terminus [6, 7], and no mutation data are available to characterize antagonists 
binding or potency in this mutant.

4.5.2. F3.25

Different studies determined binding affinity of CP55940 to F3.25A mutant; in one study, the 
binding affinity of CP55940 determined by saturation binding against [3H]SR141716A was 
60-fold lower in F3.25A hCB1 stably transfected in CHO-K1 cells compared to WT [38]. In 
other studies, CP55940 affinity was not affected in F3.25A mCB1 mutant receptor stably trans-
fected into HEK293 cells, affinity was determined using [3H]CP55940 [16, 46]. The discrepancy 
in binding affinities here could be due to species differences. F3.25A did not affect SR141616A 
binding in those studies [16, 38, 46]. Basal [35S]GTPγS binding was also determined for the 
F3.25A mCB1 mutant stably transfected in HEK293 cells and was not significant from WT, 
while the WIN55212-2 induced [35S]GTPγS binding was lower in the mutant with EC50 value 
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end of TMH1 did not affect the binding affinity for SR141716A, while they reduced the bind-
ing affinity of CP55940 by 5- and 10-fold respectively [38].

In addition, CP55940 binding to truncated receptor at the N-terminal region (Δ64, Δ80, Δ89, 
Δ103 shCB1) was comparable to the WT receptor [39, 40]. On the other hand, the binding 
affinity of SR141716A to the Δ103 synthetic hCB1 (shCB1) truncation mutant was higher com-
pared to the WT with retained ability to inhibit basal signaling of the truncated mutant [39]. 
As described earlier, in the (inactive state CB1 X-ray crystal structures, two amino acid resi-
dues from the N-terminus occupy the receptor’s orthosteric binding site, forming strong VDW 
interactions with the antagonists, those are F102, M103. Affinity data of SR141716A to the Δ103 
shCB1 truncation mutant is inconsistent with the inactive state crystal structures.

Reduction of the proposed disulfide bridge at the N-terminus C98/C107 reduces CP55940 
potency in [35S]GTPγS binding assay [39]. However, a previous study reported that a double 
mutant of the two cysteine residues into serine subtly affected CP55940 binding, but did not 
affect SR141716A binding [41]. It is worth-mentioning that the C98/C107 residues are con-
served among all 11-CB1 species available from UniProt. This sulfide bridge is not apparent in 
crystal structures.

Interestingly, a recent mutational, and modeling study from the Kunos lab identified an 
N-terminal residue (M106 in rodent CB1 compared to I105 in hCB1) as the determinant of 
the species differential affinity of {5-(4-chlorophenyl)-N-{(1R,2R)-2-hydroxycyclohexyl}-6-(2-
methoxyethoxy)-3-pyridinecarboxamide} (14 h) at the CB1 receptor [42]. The compound, has 
been described previously as a peripherally selective, high affinity CB1 receptor antagonist 
[43]. However, this compound has been shown to have higher affinity for the hCB1 receptor 
compared to mouse and rat CB1 receptor [42]. This residue faces the ligand binding site in 
crystal structures, but with a changed position in the different structures.

4.4. EC1 loop

Mutations of the EC1 loop negatively impacted CP55940 but not SR141716A binding, the Ki value 
of CP55940 was 26-fold higher in D184A hCB1 mutant compared to the WT receptor expressed in 
HEK293 cells. Here, the Ki was determined by competition binding against [3H]SR141716A [38]. 
This aspartate residue forms an ionic interaction with K3.28 in both the active and inactive state 
CB1 crystal structures (Figure 3) [6–8]. H181A, R182A, and K183A have also lowered CP55940 
affinity by 3–4-fold compared with the WT [38]. None of the EC1 loop residues forms direct 
contact with crystallized ligands.

4.5. Aromatic residues lining the orthosteric binding site

The orthosteric binding site of CB1 is lined with multiple aromatic residues located on TMH2/ 
3/5/6/7, as well as, F286 in the EC2 loop.

4.5.1. F2.57, F2.61, and F2.64

F2.57 is two turns extracellular to the conserved D2.50, facing the orthosteric binding site. 
In the inactive state CB1 crystal structures, this residue has been shown to form an aromatic 
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π-π stack with the 2,4-dichlorophenyl ring in AM6538 [6], and with the cyanophenyl ring in 
taranabant [7]. Mutation data show a reduced affinity for taranabant and AM251 (a diarylpyr-
azole antagonist) by 30- and 97-fold respectively in F2.57L hCB1 mutant [32]. In addition, both 
SR141716A and AM6538 failed to antagonize 100 nM CP55940-induced inhibition of cAMP 
in F2.57A hCB1 mutant while preserving their abilities in F2.57W hCB1 mutant [6]. Results 
indicate a major role for this residue in antagonist binding via aromatic interactions and in 
shaping the antagonist binding site. On the other hand, while this residue shows a major 
contact with the agonists (A-ring, Figure 2) in the AM11542 and the AM841 bound crystal 
structures, [8] CP55940 displayed similar potency for inhibition of cAMP in both F2.57A, and 
F2.57W mutants compared to WT [8].

Mutations on F2.61 revealed effects on antagonist and agonist binding and potencies. In the 
inactive state CB1 structures, this residue is rotated towards TMH1 and its side chain is at the 
TMH1/TMH2 interface, yet it forms moderate VDW interactions with the piperidine and with 
the trifluoro-methyl pyridine in AM6538 and taranabant respectively [6, 7]. While in the active 
state structures, this residue faces the binding site and forms strong VDW interactions with the 
agonists (AM11542 and AM841) B-ring (Figure 2) [8]. SR141716A displayed only 5-fold higher 
Kd value in F2.61A hCB1 mutant transiently expressed in HEK293 cells [44], but both SR141716A 
and AM6538 failed to antagonize 100 nM CP55940-induced inhibition of cAMP in F2.61A mutant 
while preserving their potencies in F2.61W mutant (mutations were on hCB1, and functional 
assays were done in stably transfected CHO cells) [6]. Also, CP55940 displayed similar potency 
in both F2.61A and F2.61W in inhibition of cAMP compared to the hCB1 WT stably transfected 
in CHO cells, [8] while the binding affinities for CP55940, HU210, and ∆9-THC determined 
against [3H]SR141716A were severely affected by F2.61A mutation transiently transfected in 
HEK293 cells [45]. In the same study, the potency of HU210 in inducing [35S]GTPγS binding has 
been reported to be 30-fold less in F2.61A hCB1 mutant compared to the WT [45].

The F2.64A mutation has also been shown to be detrimental for agonists (HU210, CP55940, 
and ∆9-THC) binding [45]. CP55940, AM841, and AM11542 displayed about an order of mag-
nitude lower potency in inhibition of forskolin-stimulated cAMP in CHO cells expressing the 
mutant receptor [8]. In crystal structures, this residue forms major contacts with the agonists’ 
(C-ring, Figure 2) [8], and does not display any contact with the antagonists due to the pres-
ence of the N-terminus [6, 7], and no mutation data are available to characterize antagonists 
binding or potency in this mutant.

4.5.2. F3.25

Different studies determined binding affinity of CP55940 to F3.25A mutant; in one study, the 
binding affinity of CP55940 determined by saturation binding against [3H]SR141716A was 
60-fold lower in F3.25A hCB1 stably transfected in CHO-K1 cells compared to WT [38]. In 
other studies, CP55940 affinity was not affected in F3.25A mCB1 mutant receptor stably trans-
fected into HEK293 cells, affinity was determined using [3H]CP55940 [16, 46]. The discrepancy 
in binding affinities here could be due to species differences. F3.25A did not affect SR141616A 
binding in those studies [16, 38, 46]. Basal [35S]GTPγS binding was also determined for the 
F3.25A mCB1 mutant stably transfected in HEK293 cells and was not significant from WT, 
while the WIN55212-2 induced [35S]GTPγS binding was lower in the mutant with EC50 value 
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being 6-fold higher compared to the WT. In crystal structures, this residue shows moderate 
VDW interactions with the crystallized agonists (C-ring, Figure 2) [8], and no direct interac-
tions with the antagonists [6, 7].

4.5.3. Y5.39, W5.43

Y5.39 is a conserved residue in many class A GPCRs. In the active state crystal structures, Y5.39 
interacts with the agonists and forms a hydrogen bond interaction with the isothiocyanate 
moiety in AM841. Mutation data published along with the crystal structures show that muta-
tion of this residue in hCB1 into phenylalanine or alanine results in significant reduction in 
the potencies of CP55940, AM841, and AM11542 in the inhibition of forskolin-induced cAMP, 
with pEC50 values for CP55940 being 8.3 ± 0.15 for the WT and 6.7 ± 0.13 and 5.4 ± 0.95 for the 
Y5.39F and Y5.39A mutants respectively [8]. Efficacy data for CP55940 are consistent with 
previous report from Abood’s Lab [47]. In this report, WIN55212-2 has been shown to retain its 
WT potency in the Y5.39F mutant. In addition, the Y5.39F hCB1 mutant generally retained WT 
binding affinities for CP55940, ∆9-THC, WIN55212-2, and SR141716A and resulted in 17-fold 
lower Ki value for anandamide. On the other hand, Y5.39I hCB1 mutant resulted in loss of 
ligand binding. Authors concluded that aromaticity is required at this position [47]. Results 
from Abood’s lab suggest that aromaticity is required for ligand binding generally, while the 
phenolic ring is required for signal transduction for classical and non-classical cannabinoids.

The W5.43A mutation in mCB1 was detrimental for the binding of SR141716A [16, 46], this 
mutation also negatively affected the binding affinity of AM251 to the mutant hCB1 with 54-fold 
lower affinity, while it resulted in only 7-fold lower affinity for taranabant [32]. This mutant 
resulted in 16-fold reduction in affinity of WIN55212-2, but did not affect either CP55940 or 
anandamide binding [16, 46]. The potency of CP55940 in stimulation of [35S]GTPγS, however, 
was 66-fold lower in the mutant receptor compared to the WT, while the basal [35S]GTPγS 
binding for the W5.43A mutant being comparable to WT [46]. In active state crystal structures, 
this residue forms strong VDW interaction with AM841 and AM11542 aliphatic tails. In inac-
tive state structures, the residue forms moderate VDW interactions with the 4-chlorophenyl 
ring in taranabant and the aliphatic chain-substituted phenyl ring in AM6538, an interaction 
that is inconsistent with the mutation data which suggests that W5.43 stabilizes the binding 
site of the antagonists, rather than being a strong interaction site with the antagonists.

4.5.4. W6.48, F3.36: the rotamer toggle switch

W6.48 belongs to the conserved CWXP hinge motif in TMH6. A W6.48 χ1 rotameric state 
change from g+ to trans has been proposed to be the binding pocket trigger for the hinge 
motion of TMH6 that occurs during receptor activation. Here the IC end of TMH6 moves away 
from the TMH bundle, providing an opening into which the alpha-5 helix of the G-protein can 
insert [48–52]. This rotameric change is manifest for class A GPCRs in Molecular Dynamics 
(MD) simulations [18, 53–55], even though available active state crystal structures of class A 
GPCRs do not show evidence for this rotameric change. The W6.48A mCB1 mutation resulted 
in a 7-fold increase in binding affinity (Ki) of SR141716A compared to the WT receptor, while 
it had no effect on the dissociation constant of CP55940 [16, 46]. In the CB1 crystal structures, 
only antagonists show mild VDW interaction with W6.48.
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Computational modeling and mutation studies targeting F3.36 in CB1 receptor suggested that 
the F3.36/W6.48 interaction represents a toggle switch that stabilizes the inactive state of the 
receptor [46, 56]. Consistent with the inactive and active state CB1 crystal structures, the mod-
eling study suggested that F3.36/W6.48 contact is broken during activation with a rotameric 
change of the χ1 dihedral of F3.36 from trans in the inactive state to g+ upon activation. The 
F3.36A CB1 mutation resulted in increased basal signaling of the receptor and did not affect 
the CP55940 dissociation constant, but reduced the binding affinity of SR141716A [16, 46, 57, 
58]. An F3.36L mutation generally restored the binding affinity of SR141716A to the receptor 
[57]. In a different study, the F3.36L mutation resulted in a 7- and 9-fold lower binding affini-
ties for taranabant and AM251 respectively [32]. In the CB1 crystal structures, only agonists 
show mild VDW interaction with F3.36 via their dimethyl substituent. Thus, the reduction 
in the binding affinity of SR141716A to the F3.36A mutant could be a result of shifting the 
equilibrium towards active state.

While the rotameric change of F3.36 only and not W6.48 is evident in the CB1 crystal struc-
tures, it is essential to notice that this change requires a synchronized rotameric change in the 
χ1, as well as, the χ2 dihedrals of W6.48. Thus, it could be proposed that a transient rotameric 
change in χ1 dihedral of W6.48 from g+ to trans or vice-versa is required to permit conforma-
tional changes in F3.36. In addition, the major rotameric change in F3.36 is associated with a 
rotational movement of TMH3 towards TMH2. Agonists appear to stabilize this conforma-
tional change in TMH3 by blocking F3.36 in g+, thus stabilizing the active state of the receptor. 
While in the inactive state structures, it could be noticed that the antagonists seem to prohibit 
the rotameric change of W6.48 into trans, thus acting as inverse agonists at the CB1 receptor.

4.5.5. F7.35

This residue has been shown to mildly affect SR141716A binding with ~4-fold increase in Kd in 
F7.35A hCB1 mutant [44]. Potencies of SR141716A and AM6538 in inhibiting 100 nM CP55940 
activity were also retained in F7.35A and F7.35W hCB1 mutations [6]. However, the potency 
of CP55940, AM841, and AM11542 in inhibition of forskolin-induced cAMP has been shown 
to be around one order of magnitude affected by F7.35W mutation which might be due to 
steric hindrance, while their potencies were majorly affected by a 7.35A mutation [6, 8]. This 
residue shows moderate VDW interactions with the gem dimethyl group at C1’ of agonists 
and very mild VDW interactions with the antagonists in the active and inactive state crystal 
structures respectively.

4.6. EC2 loop residues

The CB1 EC2 loop lines the binding site with five amino acid residues residing on top of 
the ligand binding site; 267-IFPHI-271. Mutations at the EC2 loop have been shown to affect 
CP55940 binding generally and have no effect on SR141716A binding. Replacement of the 
entire hCB1 EC2 loop (254-GWNCEKLQSVCSDIFPHIDETYL-276) by the hCB2 EC2 loop 
(GWTCCPRP - - CSELFPLIPNDYL) did not affect SR141716A binding but resulted in a com-
plete loss of CP55940 binding, while replacing EKLQSV in CB1 by CPRP (CB2/EC2) resulted 
in receptor sequestration [41]. In addition, the C257/C264 internal disulfide bridge has been 
determined to be required for membrane expression [41, 59]. Single point alanine mutations 
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being 6-fold higher compared to the WT. In crystal structures, this residue shows moderate 
VDW interactions with the crystallized agonists (C-ring, Figure 2) [8], and no direct interac-
tions with the antagonists [6, 7].

4.5.3. Y5.39, W5.43

Y5.39 is a conserved residue in many class A GPCRs. In the active state crystal structures, Y5.39 
interacts with the agonists and forms a hydrogen bond interaction with the isothiocyanate 
moiety in AM841. Mutation data published along with the crystal structures show that muta-
tion of this residue in hCB1 into phenylalanine or alanine results in significant reduction in 
the potencies of CP55940, AM841, and AM11542 in the inhibition of forskolin-induced cAMP, 
with pEC50 values for CP55940 being 8.3 ± 0.15 for the WT and 6.7 ± 0.13 and 5.4 ± 0.95 for the 
Y5.39F and Y5.39A mutants respectively [8]. Efficacy data for CP55940 are consistent with 
previous report from Abood’s Lab [47]. In this report, WIN55212-2 has been shown to retain its 
WT potency in the Y5.39F mutant. In addition, the Y5.39F hCB1 mutant generally retained WT 
binding affinities for CP55940, ∆9-THC, WIN55212-2, and SR141716A and resulted in 17-fold 
lower Ki value for anandamide. On the other hand, Y5.39I hCB1 mutant resulted in loss of 
ligand binding. Authors concluded that aromaticity is required at this position [47]. Results 
from Abood’s lab suggest that aromaticity is required for ligand binding generally, while the 
phenolic ring is required for signal transduction for classical and non-classical cannabinoids.

The W5.43A mutation in mCB1 was detrimental for the binding of SR141716A [16, 46], this 
mutation also negatively affected the binding affinity of AM251 to the mutant hCB1 with 54-fold 
lower affinity, while it resulted in only 7-fold lower affinity for taranabant [32]. This mutant 
resulted in 16-fold reduction in affinity of WIN55212-2, but did not affect either CP55940 or 
anandamide binding [16, 46]. The potency of CP55940 in stimulation of [35S]GTPγS, however, 
was 66-fold lower in the mutant receptor compared to the WT, while the basal [35S]GTPγS 
binding for the W5.43A mutant being comparable to WT [46]. In active state crystal structures, 
this residue forms strong VDW interaction with AM841 and AM11542 aliphatic tails. In inac-
tive state structures, the residue forms moderate VDW interactions with the 4-chlorophenyl 
ring in taranabant and the aliphatic chain-substituted phenyl ring in AM6538, an interaction 
that is inconsistent with the mutation data which suggests that W5.43 stabilizes the binding 
site of the antagonists, rather than being a strong interaction site with the antagonists.

4.5.4. W6.48, F3.36: the rotamer toggle switch

W6.48 belongs to the conserved CWXP hinge motif in TMH6. A W6.48 χ1 rotameric state 
change from g+ to trans has been proposed to be the binding pocket trigger for the hinge 
motion of TMH6 that occurs during receptor activation. Here the IC end of TMH6 moves away 
from the TMH bundle, providing an opening into which the alpha-5 helix of the G-protein can 
insert [48–52]. This rotameric change is manifest for class A GPCRs in Molecular Dynamics 
(MD) simulations [18, 53–55], even though available active state crystal structures of class A 
GPCRs do not show evidence for this rotameric change. The W6.48A mCB1 mutation resulted 
in a 7-fold increase in binding affinity (Ki) of SR141716A compared to the WT receptor, while 
it had no effect on the dissociation constant of CP55940 [16, 46]. In the CB1 crystal structures, 
only antagonists show mild VDW interaction with W6.48.
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Computational modeling and mutation studies targeting F3.36 in CB1 receptor suggested that 
the F3.36/W6.48 interaction represents a toggle switch that stabilizes the inactive state of the 
receptor [46, 56]. Consistent with the inactive and active state CB1 crystal structures, the mod-
eling study suggested that F3.36/W6.48 contact is broken during activation with a rotameric 
change of the χ1 dihedral of F3.36 from trans in the inactive state to g+ upon activation. The 
F3.36A CB1 mutation resulted in increased basal signaling of the receptor and did not affect 
the CP55940 dissociation constant, but reduced the binding affinity of SR141716A [16, 46, 57, 
58]. An F3.36L mutation generally restored the binding affinity of SR141716A to the receptor 
[57]. In a different study, the F3.36L mutation resulted in a 7- and 9-fold lower binding affini-
ties for taranabant and AM251 respectively [32]. In the CB1 crystal structures, only agonists 
show mild VDW interaction with F3.36 via their dimethyl substituent. Thus, the reduction 
in the binding affinity of SR141716A to the F3.36A mutant could be a result of shifting the 
equilibrium towards active state.

While the rotameric change of F3.36 only and not W6.48 is evident in the CB1 crystal struc-
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4.6. EC2 loop residues
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the ligand binding site; 267-IFPHI-271. Mutations at the EC2 loop have been shown to affect 
CP55940 binding generally and have no effect on SR141716A binding. Replacement of the 
entire hCB1 EC2 loop (254-GWNCEKLQSVCSDIFPHIDETYL-276) by the hCB2 EC2 loop 
(GWTCCPRP - - CSELFPLIPNDYL) did not affect SR141716A binding but resulted in a com-
plete loss of CP55940 binding, while replacing EKLQSV in CB1 by CPRP (CB2/EC2) resulted 
in receptor sequestration [41]. In addition, the C257/C264 internal disulfide bridge has been 
determined to be required for membrane expression [41, 59]. Single point alanine mutations 
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were investigated for the majority of the EC2 loop. Among the residues that face the binding 
site, F268A/N hCB1 mutation impaired receptor membrane expression. F268Y hCB1 mutation 
had no effect on ligand binding, while F268W mutation drastically affected CP55940 binding 
with no effect on SR141716A binding. In addition, P267A, H270A, and I271A mutants showed 
no effect on SR141716A binding while drastically affecting CP55940 binding [60]. In crystal 
structures, F268 forms strong VDW interaction with both agonists and antagonists in addi-
tion to an aromatic stacking with the agonists. P267 and I271 form week VDW interaction 
with agonists while the H270 side chain points towards TMH3 and is packed against F3.25. 
In addition, due to closer packing of the EC end of TMH5/6 towards the ligand binding site 
in the active state compared to the inactive state, and the fact that agonists are cupping F268 
compared to the antagonists, it could be interpreted that F268W mutation data regarding the 
binding of agonists versus the antagonists could be consistent with crystal structures.

4.7. Cysteine residues in the EC domain of CB1; labeling and mutation studies

Among the 13 cysteine residues in the CB1 receptor, C6.47, C7.38, and C7.42 reside in the EC 
transmembrane domain and are not engaged in a disulfide bond. C6.47 is only available in the 
binding pocket in the activated state of Class A GPCRs. Consistent with this, the earliest CB1 
cysteine reactivity study using the isothiocyanate derivatized agonist, AM841, showed that 
AM841 labels C6.47 [61]. A subsequent study showed that AM841 also labels C6.47 in CB2 [62]. 
The isothiocyanate derivatized anandamide analog, AM3677, was also found to label C6.47 
[63]. This has led to the hypothesis that cannabinoid agonists enter CB1 via a portal between 
TMH6 and TMH7 at the level of C6.47. The active state crystal structure, is not consistent with 
cysteine crosslinking studies of AM841, since the AM841 alkyl tail points towards Y5.39 in the 
crystal structure.

In another cysteine reactivity study, C7.42, was found reactive, suggesting that it faces the 
binding pocket. Mutation of C7.42 to a larger amino acid resulted in loss of SR141716A bind-
ing, but not CP55940 binding. In all reported crystal structures, C7.42 faces into the binding 
pocket. Further, if C7.42 is mutated to M in the active state structure, it does not affect the 
agonist binding pocket. However, a methionine residue at that position in the inactive state 
structures clashes severely with the antagonists and surrounding residues, such clashes are 
not relieved by rotameric changes for nearby residues.

4.8. Serine residues in CB1

Mutation of S7.39 in hCB1 to alanine in was generally detrimental for CP55940, HU201 and 
AM4056 binding to the CB1 receptor, while it had no effect on the binding affinities for 
SR141716A, AM251, as well as, WIN55212 [32, 57, 64]. On the other hand, it resulted in a pro-
found reduction in the binding affinity of taranabant to the receptor [32]. In the inactive state 
crystal structure in complex with taranabant, as well as, the active state crystal structure, there is 
a hydrogen bond interaction between S7.39 and the ligand. The residue adopts a g− χ1 dihedral 
that allows this interaction. In the AM6358/inactive state crystal structure, this residue adopts a 
g+ χ1 dihedral. In this structure, the ligand is incapable of forming a hydrogen bond interaction 
with S7.39, since such an interaction requires a high energy conformation of the antagonist.
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Mutation data show that the S2.60A mutation in hCB1 has no effect on the binding affinities 
of both CP55940 and SR141716A [64]. S2.60 does not seem to be involved in any interactions 
with ligands in the crystal structures. This is due to the rotation of TMH2 towards TMH3 
caused by the G2.53/S2.54 motif in TMH2 allowing a wider turn in that region.

4.9. L3.29A, M6.55A, and T3.33A mutations

L3.29 faces the ligand binding site and has been shown to interact with both agonists and 
antagonists. Such interactions are stronger in the active state due to the rotation of TMH3 
towards TMH2, allowing L3.29 to be more oriented towards the binding site. The L3.29A muta-
tion in hCB1 has been shown to mildly affect the binding affinity of SR141716A to the receptor, 
while having a profound effect on the binding of CP55940, HU210 and ∆9-THC. The L3.29A 
mutations resulted in reduced efficacy of both HU210 in stimulation of [35S]GTPγS binding and 
in the efficacy of CP55940 in the inhibition of forskolin-induced cAMP accumulation [8, 44, 45].

Both T3.33A and M6.55A mutations did not have any effect on the binding affinity of 
SR141716A which is consistent with the inactive state crystal structures [44]. M6.55A muta-
tion in hCB1 resulted in a 15- and 4-fold reduction in the affinity of HU210 and CP55940 
respectively while it did not affect the affinity of ∆9-THC [45]. This residue shows moderate 
VDW interactions with the agonists in the crystal structures.

5. NMR and circular dichroism (CD) studies on the C-terminus

Both NMR and CD studies have been performed on the C-terminus of CB1 employing pep-
tide segments that correspond to that receptor region. Results show a helical segment resem-
bling helix 8 that is parallel to the plane of the membrane [65–67]. Ahn et al., reported two 
amphipathic α-helical domains; S410-F412 that corresponds to helix 8, and a second helical 
segment (A440-M461) that is also parallel to the membrane, (Figure 1) [65].

6. Crystal contacts

In the inactive and active state CB1 crystal structures, crystal packing impinges on the ligand 
binding site (Figure 6). In the first published CB1 inactive state structure [6], receptor bundles 
are crystallized top-to-top, forcing the N-terminus to invade the binding pocket and flatten-
ing the EC loops. In the second inactive state CB1 structure [7], adjacent bundles impinge on 
receptor EC loops and N-terminus around the “rim” of the receptor’s EC domain (Figure 6). 
The effect on CB1 structure is similar to that discussed above for the first inactive crystal 
structure. Crystal packing in the active state structure [8] also causes an impact on the CB1 
binding pocket. Packing causes TMH2 to hinge at G2.53/S2.54 (S2.54 has a χ1 = g−) and invade 
the binding pocket. Packing also impacts the N-terminus, TMH1 above N1.50, the EC top of 
TMH3, the EC-2 loop and the EC end of TMH4.
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Such packing issues can promote non-genuine conformations in the structure that is promoted 
by the crystalline low energy state. A recently published crystal structure of the μ-opioid 
receptor (MOR) has revealed a histidine H54 residue in the N-terminus of the receptor that 

Figure 6. Unit cell TM region and extracellular loop crystal contacts for hCB1 receptor crystal structures. CB1 ribbon 
colors: TMH1 (red), TMH2 (orange), TMH3 (yellow), TMH4 (pale green), TMH5 (green), TMH6 (cyan), TMH7 (blue), 
crystal mate ribbons (white). Top panel: inactive state structure (PDB ID: 5TGZ) [6]. Middle panel: inactive state structure 
(PDB ID: 5U09) [7]. Bottom panel: active state structure (PDB ID: 5XRA) [8]. Amino acid residues for crystal mates are 
colored cyan, while inactive and active state structures are shown in orange and green respectively.
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is positioned 2.6 Å from the secondary amine of the bound agonist. Mutation of this residue 
into alanine did not affect the affinity of the ligand to the receptor, suggesting that the result-
ing conformation of the N-terminus in MOR structure is a result of crystallization and not 
relevant in the real state [68].

7. Conclusions

Because X-ray crystal structures are used frequently for drug design projects, it is critical to 
identify any issues with these structures, such as crystal packing effects and to evaluate how 
consistent these structures are with the body of structural information in the literature for a 
given receptor, such as mutation, cross-linking and NMR studies. Results presented in this 
chapter show that crystal packing issues impact both of the CB1 inactive state crystal structures 
and the activated state CB1 crystal structures. Impacts include N-terminus insertions deep into 
the binding pocket seen in the CB1 inactive state structures, as well as, TMH1 and TMH2 bend-
ing into the binding pocket seen in the activated state structures. Not surprisingly, we find 
here that the CB1 structures have important inconsistencies with mutation data, particularly in 
their TMH1-2-3 regions. In addition, the CB1 crystal structures do not capture the movement 
of W6.48 during receptor activation, or the existence of a ligand portal in the activated state, 
however, X-ray structures by their very nature will not capture all transient changes. In conclu-
sion, then, the CB1 crystal structures are an important contribution to the drug design field, 
but revisions are advisable before these structures are used for structure-based drug discovery.
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1. Introduction

Cannabis (Cannabis sativa L.) is the most controversial plant ever exploited, with considerable
discrepancy in the praise and disapproval it receives. It is intriguing that cannabis produces
the natural substances that appear to target key protein receptors of important physiological
systems quite selectively [1]. Plants containing such secondary metabolites usually belong to
unique chemotaxa that induce potent pharmacological effects and have typically been used for
recreational and medicinal purposes. Cannabis sativa L. has a long history as a medicinal plant
and was fundamental in the discovery of the endocannabinoid system.

Over the past decades, considerable research has been carried out to enable a clear distinction
to be made between cannabis as a hazardous drug and as a beneficial medicine [2, 3].The
authorised medicinal use of cannabis is still associated with doubts on its safe use due to a few
ambiguous issues including quantity, dynamics and way of administration [4].

Medications based on cannabis have been used for therapeutic purposes in many cultures for
centuries. In Europe, they were used at the end of the nineteenth century to treat pain, spasms,
asthma, sleep disorders, depression, and loss of appetite. In the first half of the twentieth
century, cannabinoid medications fell into almost complete disuse, partly because scientists
were unable to establish the chemical structure of the main cannabis plant ingredients. The
emergence of interest in botanical medicinal cannabis is thought by many to be a collateral
effect of the opioid abuse epidemic; public perception surrounding the use of medicinal
cannabis suggests that this plant-based therapy is viewed as not very different from a botanical
drug product or supplement used for health or relief of symptoms if disease persists. Like
some herbal preparations or supplements, however, medicinal cannabis may similarly pose
health risks associated with its use, including psychoactive, intoxicating, and impairing effects,
which have not been completely elucidated through clinical trials.

The method of its application for therapeutic purposes certainly depends on its phytocan-
nabinoid profile: over 70 cannabinoids are defined in Cannabis sativa L. They are classified
chemically into 10 most important categories where the THC, cannabidiol (CBD), cannabigerol
(CBG), cannabichromene (CBC), and cannabinol (CBN)-types are recognised as the most
relevant [5].

The main constituent of cannabis is THC, which is responsible for the psychoactive features of
cannabis due to its high affinity to cannabinoid receptors. Most of the effects of cannabis
preparations are based on the agonistic action of THC on the various cannabinoid receptors.
Two primary endocannabinoid receptors have been identified: CB1 and CB2 [6]. CB1 receptors
are found predominantly in the brain and nervous system, as well as in peripheral organs and
tissues, and are the main molecular target of the endocannabinoid binding molecule, ananda-
mide, as well as its mimetic phytocannabinoid, THC.

Another important component is cannabidiol (CBD) which was proven to possess several
pharmacological properties (analgesic, antioxidant and antiepileptic), but not psychotropic
activity as THC [7]. The presence and amount of CBD is essential in the therapeutic usage of
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cannabis, because it reduces THC collateral effects. Furthermore, minor constituents such as
CBC and CBG exhibit anti-inflammatory, antibacterial and antifungal activity, while CBN has
strong sedative properties [5, 7]. As regards cannabidiol (CBD)-based preparations that are
becoming extremely popular as CBD has been shown to have beneficial effects on human
health, a recent work highlighted a wide variability in the cannabinoid profile that justifies
the need for strict and standardised regulations [8].

Although CBD and THC are the key molecules, the plant itself is capable of producing only
their acid counterparts: cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA)
[9]. Decarboxylation of these forms leads to the formation of bioactive chemical species, CBD
and THC, respectively. CBDA and THCA are the major components of cannabis inflorescence
while among other cannabinoid acids, cannabigerolic acid (CBGA) is shown to be essential
due to the fact that it is a precursor of all the other cannabinoid acids. It is worth mentioning
the other minor acidic cannabinoids such as cannabichromenic acid (CBCA) which also gives
corresponding neutral analogues upon decarboxylation.

At present, the international medical and scientific community has widely recognised Cannabis
sativa L. as a promising source of therapeutic agents for the treatment of certain diseases such
as multiple sclerosis, HIV, epilepsy, glaucoma, chemotherapy, chronic pain, nausea/vomiting
[10, 11].

Unfortunately, despite the emergence of a huge amount of preclinical literature that describes
the actions and effects of some cannabinoids, there have, as yet, been relatively few publica-
tions describing the effects produced by cannabinoids in clinical studies performed with
human subjects. Importantly, a cannabis-based medication, Sativex®, approved by the Euro-
pean medical association (EMA), was recently licenced in 18 European countries for the
treatment of tremor and spasticity symptoms associated with multiple sclerosis [12]. Besides,
other cannabinoid drugs, Cesamet® (Nabilone) andMarinol® (synthetic tetrahydrocannabinol
(THC)) were successfully applied for the treatment of vomiting and nausea caused by cancer
therapy. Some other cannabis-derived substances seem to be on hold. For example, Epidolex®,
an experimental drug derived from cannabis-based medicine for the treatment of child epi-
lepsy is on the brink of becoming the first of its kind to obtain FDA government approval [13].

Capsules, cannabis extracts such as mouth spray or oils, dry cannabis for inhalation or as tea
are the main medical products approved by the EU, according to the European Monitoring
Center for Drugs and Drug Addiction (EMCDDA) 2017 [14].

Within the EU there is no agreement on the legalisation of medical cannabis, but it appears to
be moving toward greater use faster than in the past [15, 16]. For the time being, only Austria,
the Czech Republic, Finland, Germany, Italy, Portugal, Poland, Spain and Croatia have
allowed the use of cannabis in medicine in the EU, while other countries are planning to
legalise it. As a confirmation of the blurred legal status of Cannabis sativa L. within the EU
community, it took a 4-year trial before the Danish Parliament approved the use of medical
cannabis for patients suffering from various diseases starting from January 1, 2018. Moreover,
in 2017, an increasing number of EU members, such as Greece and Ireland, announced or
proposed changes in legislation and the use of medical cannabis. Since November 2017,
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1. Introduction

Cannabis (Cannabis sativa L.) is the most controversial plant ever exploited, with considerable
discrepancy in the praise and disapproval it receives. It is intriguing that cannabis produces
the natural substances that appear to target key protein receptors of important physiological
systems quite selectively [1]. Plants containing such secondary metabolites usually belong to
unique chemotaxa that induce potent pharmacological effects and have typically been used for
recreational and medicinal purposes. Cannabis sativa L. has a long history as a medicinal plant
and was fundamental in the discovery of the endocannabinoid system.

Over the past decades, considerable research has been carried out to enable a clear distinction
to be made between cannabis as a hazardous drug and as a beneficial medicine [2, 3].The
authorised medicinal use of cannabis is still associated with doubts on its safe use due to a few
ambiguous issues including quantity, dynamics and way of administration [4].

Medications based on cannabis have been used for therapeutic purposes in many cultures for
centuries. In Europe, they were used at the end of the nineteenth century to treat pain, spasms,
asthma, sleep disorders, depression, and loss of appetite. In the first half of the twentieth
century, cannabinoid medications fell into almost complete disuse, partly because scientists
were unable to establish the chemical structure of the main cannabis plant ingredients. The
emergence of interest in botanical medicinal cannabis is thought by many to be a collateral
effect of the opioid abuse epidemic; public perception surrounding the use of medicinal
cannabis suggests that this plant-based therapy is viewed as not very different from a botanical
drug product or supplement used for health or relief of symptoms if disease persists. Like
some herbal preparations or supplements, however, medicinal cannabis may similarly pose
health risks associated with its use, including psychoactive, intoxicating, and impairing effects,
which have not been completely elucidated through clinical trials.

The method of its application for therapeutic purposes certainly depends on its phytocan-
nabinoid profile: over 70 cannabinoids are defined in Cannabis sativa L. They are classified
chemically into 10 most important categories where the THC, cannabidiol (CBD), cannabigerol
(CBG), cannabichromene (CBC), and cannabinol (CBN)-types are recognised as the most
relevant [5].

The main constituent of cannabis is THC, which is responsible for the psychoactive features of
cannabis due to its high affinity to cannabinoid receptors. Most of the effects of cannabis
preparations are based on the agonistic action of THC on the various cannabinoid receptors.
Two primary endocannabinoid receptors have been identified: CB1 and CB2 [6]. CB1 receptors
are found predominantly in the brain and nervous system, as well as in peripheral organs and
tissues, and are the main molecular target of the endocannabinoid binding molecule, ananda-
mide, as well as its mimetic phytocannabinoid, THC.

Another important component is cannabidiol (CBD) which was proven to possess several
pharmacological properties (analgesic, antioxidant and antiepileptic), but not psychotropic
activity as THC [7]. The presence and amount of CBD is essential in the therapeutic usage of
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cannabis, because it reduces THC collateral effects. Furthermore, minor constituents such as
CBC and CBG exhibit anti-inflammatory, antibacterial and antifungal activity, while CBN has
strong sedative properties [5, 7]. As regards cannabidiol (CBD)-based preparations that are
becoming extremely popular as CBD has been shown to have beneficial effects on human
health, a recent work highlighted a wide variability in the cannabinoid profile that justifies
the need for strict and standardised regulations [8].

Although CBD and THC are the key molecules, the plant itself is capable of producing only
their acid counterparts: cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA)
[9]. Decarboxylation of these forms leads to the formation of bioactive chemical species, CBD
and THC, respectively. CBDA and THCA are the major components of cannabis inflorescence
while among other cannabinoid acids, cannabigerolic acid (CBGA) is shown to be essential
due to the fact that it is a precursor of all the other cannabinoid acids. It is worth mentioning
the other minor acidic cannabinoids such as cannabichromenic acid (CBCA) which also gives
corresponding neutral analogues upon decarboxylation.

At present, the international medical and scientific community has widely recognised Cannabis
sativa L. as a promising source of therapeutic agents for the treatment of certain diseases such
as multiple sclerosis, HIV, epilepsy, glaucoma, chemotherapy, chronic pain, nausea/vomiting
[10, 11].

Unfortunately, despite the emergence of a huge amount of preclinical literature that describes
the actions and effects of some cannabinoids, there have, as yet, been relatively few publica-
tions describing the effects produced by cannabinoids in clinical studies performed with
human subjects. Importantly, a cannabis-based medication, Sativex®, approved by the Euro-
pean medical association (EMA), was recently licenced in 18 European countries for the
treatment of tremor and spasticity symptoms associated with multiple sclerosis [12]. Besides,
other cannabinoid drugs, Cesamet® (Nabilone) andMarinol® (synthetic tetrahydrocannabinol
(THC)) were successfully applied for the treatment of vomiting and nausea caused by cancer
therapy. Some other cannabis-derived substances seem to be on hold. For example, Epidolex®,
an experimental drug derived from cannabis-based medicine for the treatment of child epi-
lepsy is on the brink of becoming the first of its kind to obtain FDA government approval [13].

Capsules, cannabis extracts such as mouth spray or oils, dry cannabis for inhalation or as tea
are the main medical products approved by the EU, according to the European Monitoring
Center for Drugs and Drug Addiction (EMCDDA) 2017 [14].

Within the EU there is no agreement on the legalisation of medical cannabis, but it appears to
be moving toward greater use faster than in the past [15, 16]. For the time being, only Austria,
the Czech Republic, Finland, Germany, Italy, Portugal, Poland, Spain and Croatia have
allowed the use of cannabis in medicine in the EU, while other countries are planning to
legalise it. As a confirmation of the blurred legal status of Cannabis sativa L. within the EU
community, it took a 4-year trial before the Danish Parliament approved the use of medical
cannabis for patients suffering from various diseases starting from January 1, 2018. Moreover,
in 2017, an increasing number of EU members, such as Greece and Ireland, announced or
proposed changes in legislation and the use of medical cannabis. Since November 2017,

Quality Traits of Medical Cannabis sativa L. Inflorescences and Derived Products Based on Comprehensive…
http://dx.doi.org/10.5772/intechopen.79539

57



cannabis-based medicines in Poland can be sold if they are made in pharmacies with the use of
an imported substance.

The current status of cannabis highlights that, since it causes “psychoactive activity,” its use in
medicine should follow the legal provisions of member states, including “control of the use of
narcotics and psychotropic substances” [17]. European countries have an obligation to control
cannabis according to the three UN Conventions on Drug Control that require them to restrict
drug supplies and use it exclusively for medical and scientific purposes.

At an EU level there are no harmonised laws on the recreational and medical use of cannabis
and the member states themselves decide whether to legalise them.

As an example, medical cannabis in Italy represents a multifaceted reality [16, 18]. At present
varieties Bedrocan, Bediol, Bedica and Bedrolite produced by company Bedrocan from Neth-
erlands [19] and the new strain FM2 produced by the Military Pharmaceutical Chemical Works
of Florence, Italy (authorised in November 2015 with a Ministerial Decree) can be prescribed to
treat a wide range of pathological conditions [16]. In relation to this, Italian galenic pharmacies
are authorised to prepare precise cannabis doses for vaping, herbal teas, resins, micronised
capsules and oils [20]. The latter, prepared by using European Pharmacopoeia olive oil (FU) as
extraction solvent has received great attention due to the easiness with which dosage can be
modulated or titrated during the treatment period. Also, oil formulations are high-steamed
because of the extended bioavailability of the active compounds contained.

As regards Cannabis sativa composition, beyond and besides cannabinoids, a substantial amount
of the approximately 500 compounds (terpenes, flavonoids, stilbenoids, fatty acids, alkaloids,
carbohydrates, and phenols) are described [21]. Terpenes represent the volatile component of the
plant and have been proven to have a synergic action with cannabinoids [19]. Cannabis plants
produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the
surface of the female inflorescence [22]. Bouquets of different monoterpenes and sesquiterpenes
are important components of cannabis resin as they define some of the unique organoleptic
properties and may also influence medicinal qualities of different cannabis strains and varieties
[23]. Differences between the pharmaceutical properties of different cannabis strains have been
attributed to interactions (or an ‘entourage effect’) between cannabinoids and terpenes [24].
Terpenes themselves exhibit a wide array of pharmacological properties, including interaction
with the mammalian endocannabinoid system: sesquiterpene β-caryophyllene interacts with
mammalian cannabinoid receptors [25, 26]. Some terpenes like β-myrcene, limonene and linalool
display anxiolytic, antibacterial, anti-inflammatory, and sedative effects, too [27].

The chemical complexity of cannabis makes its pharmaceutical standardisation challenging
and must include well-defined methodologies that would characterise the plant chemotype
and the herbal drug as well as extraction procedures. As a matter of fact, it was found that the
concentrations of target cannabinoids obtained for the same plant chemotype originating from
different suppliers varied by more than 25% [28]. This lack of standardisation could be over-
come with two distinct approaches.

The first is a botanical issue and points toward strict control of varieties and strains during
cultivation in order to assure the highest homogeneity in the final plants, especially if the
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cannabis inflorescence is the final product. The other tactic is focused on extraction and
purification procedures, which are fundamental if cannabis-derived formulations such as oils
or tinctures are targeted. As recently reviewed by Citti et al. [29] and Calvi et al. [30], the choice
of the analytical approach(es) employed represents a pivotal task, with particular emphasis on
the need for a comprehensive chemical characterisation of the composition of cannabis and
derived products. Nowadays, analytical methods based on gas chromatography-mass spec-
trometry (GC-MS) and/or high pressure liquid chromatography (HPLC) coupled to the
recently introduced high resolution mass spectrometer HRMS-Orbitrap, represent the gold
standard techniques for the investigation of the highly complex cannabis composition due to
their excellent resolution, precision and sensitivity. Consequently, it is now crucial to complete
the chemical and pharmacological characterisation of all phytocannabinoids known to be
present in cannabis.

Based on the above-mentioned considerations, in the first part of the here presented research
project different analytical procedures involving the combination of headspace-solid-phase
microextraction (HS-SPME) coupled to GC-MS and accelerated solvent extraction (ASE)
coupled to high resolution mass-spectrometry (HPLC-Q Orbitrap®) were applied for the in-
depth profiling and fingerprinting of cannabinoids and terpenes in authorised medical grade
varieties of Cannabis sativa L. flos (Bediol®) and in corresponding macerated oil preparation.
Particular emphasis was given to the study of untargeted cannabinoids so as to investigate and
obtain an exhaustive and realistic profile of medical Bediol® inflorescences and derived mac-
erated oil preparations, since they have so far received less attention compared to target
compounds (THC, THC-A, CBD, CBD-A). This approach could add new knowledge to the
field of “omic” analytical applications as well.

2. Materials and methods

2.1. Chemical and reagents

All HPLC or analytical grade chemicals were from Sigma (Sigma-Aldrich, St. Louis, MO,
USA). Formic acid 98–100% was from Fluka (Sigma-Aldrich, St. Louis, MO, USA). Ultrapure
water was obtained through a Milli-Q system (Millipore, Merck KGaA, Darmstadt, Germany).
For headspace (HS) analysis, the SPME coating fibre (DVB/CAR/PDMS, 50/30 μm) was from
Supelco (Bellefonte, PA, USA). Acetonitrile, 2-propanol, formic acid LC-MS grade were pur-
chased from Carlo Erba (Milan, Italy). CBD, THC, CBN, CBG, CBNA, THCA, CBGA were
purchased from Sigma Aldrich (Round Rock, Texas). High intensity planetary mill Retsch
(model MM 400, Retsch, GmbH, Retsch-Allee, Haan) was used to obtain representative ali-
quots of cannabis flos samples powder.

2.2. Cannabis plant material and superfine grinding (SFG) sample preparation

Bediol® medical Cannabis chemotype that contains 6.5% THC and 8% CBD as standardised and
certified by the company Bedrocan was used for all analyses. It was selected as representative
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cannabis-based medicines in Poland can be sold if they are made in pharmacies with the use of
an imported substance.

The current status of cannabis highlights that, since it causes “psychoactive activity,” its use in
medicine should follow the legal provisions of member states, including “control of the use of
narcotics and psychotropic substances” [17]. European countries have an obligation to control
cannabis according to the three UN Conventions on Drug Control that require them to restrict
drug supplies and use it exclusively for medical and scientific purposes.

At an EU level there are no harmonised laws on the recreational and medical use of cannabis
and the member states themselves decide whether to legalise them.

As an example, medical cannabis in Italy represents a multifaceted reality [16, 18]. At present
varieties Bedrocan, Bediol, Bedica and Bedrolite produced by company Bedrocan from Neth-
erlands [19] and the new strain FM2 produced by the Military Pharmaceutical Chemical Works
of Florence, Italy (authorised in November 2015 with a Ministerial Decree) can be prescribed to
treat a wide range of pathological conditions [16]. In relation to this, Italian galenic pharmacies
are authorised to prepare precise cannabis doses for vaping, herbal teas, resins, micronised
capsules and oils [20]. The latter, prepared by using European Pharmacopoeia olive oil (FU) as
extraction solvent has received great attention due to the easiness with which dosage can be
modulated or titrated during the treatment period. Also, oil formulations are high-steamed
because of the extended bioavailability of the active compounds contained.

As regards Cannabis sativa composition, beyond and besides cannabinoids, a substantial amount
of the approximately 500 compounds (terpenes, flavonoids, stilbenoids, fatty acids, alkaloids,
carbohydrates, and phenols) are described [21]. Terpenes represent the volatile component of the
plant and have been proven to have a synergic action with cannabinoids [19]. Cannabis plants
produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the
surface of the female inflorescence [22]. Bouquets of different monoterpenes and sesquiterpenes
are important components of cannabis resin as they define some of the unique organoleptic
properties and may also influence medicinal qualities of different cannabis strains and varieties
[23]. Differences between the pharmaceutical properties of different cannabis strains have been
attributed to interactions (or an ‘entourage effect’) between cannabinoids and terpenes [24].
Terpenes themselves exhibit a wide array of pharmacological properties, including interaction
with the mammalian endocannabinoid system: sesquiterpene β-caryophyllene interacts with
mammalian cannabinoid receptors [25, 26]. Some terpenes like β-myrcene, limonene and linalool
display anxiolytic, antibacterial, anti-inflammatory, and sedative effects, too [27].

The chemical complexity of cannabis makes its pharmaceutical standardisation challenging
and must include well-defined methodologies that would characterise the plant chemotype
and the herbal drug as well as extraction procedures. As a matter of fact, it was found that the
concentrations of target cannabinoids obtained for the same plant chemotype originating from
different suppliers varied by more than 25% [28]. This lack of standardisation could be over-
come with two distinct approaches.

The first is a botanical issue and points toward strict control of varieties and strains during
cultivation in order to assure the highest homogeneity in the final plants, especially if the
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cannabis inflorescence is the final product. The other tactic is focused on extraction and
purification procedures, which are fundamental if cannabis-derived formulations such as oils
or tinctures are targeted. As recently reviewed by Citti et al. [29] and Calvi et al. [30], the choice
of the analytical approach(es) employed represents a pivotal task, with particular emphasis on
the need for a comprehensive chemical characterisation of the composition of cannabis and
derived products. Nowadays, analytical methods based on gas chromatography-mass spec-
trometry (GC-MS) and/or high pressure liquid chromatography (HPLC) coupled to the
recently introduced high resolution mass spectrometer HRMS-Orbitrap, represent the gold
standard techniques for the investigation of the highly complex cannabis composition due to
their excellent resolution, precision and sensitivity. Consequently, it is now crucial to complete
the chemical and pharmacological characterisation of all phytocannabinoids known to be
present in cannabis.

Based on the above-mentioned considerations, in the first part of the here presented research
project different analytical procedures involving the combination of headspace-solid-phase
microextraction (HS-SPME) coupled to GC-MS and accelerated solvent extraction (ASE)
coupled to high resolution mass-spectrometry (HPLC-Q Orbitrap®) were applied for the in-
depth profiling and fingerprinting of cannabinoids and terpenes in authorised medical grade
varieties of Cannabis sativa L. flos (Bediol®) and in corresponding macerated oil preparation.
Particular emphasis was given to the study of untargeted cannabinoids so as to investigate and
obtain an exhaustive and realistic profile of medical Bediol® inflorescences and derived mac-
erated oil preparations, since they have so far received less attention compared to target
compounds (THC, THC-A, CBD, CBD-A). This approach could add new knowledge to the
field of “omic” analytical applications as well.

2. Materials and methods

2.1. Chemical and reagents

All HPLC or analytical grade chemicals were from Sigma (Sigma-Aldrich, St. Louis, MO,
USA). Formic acid 98–100% was from Fluka (Sigma-Aldrich, St. Louis, MO, USA). Ultrapure
water was obtained through a Milli-Q system (Millipore, Merck KGaA, Darmstadt, Germany).
For headspace (HS) analysis, the SPME coating fibre (DVB/CAR/PDMS, 50/30 μm) was from
Supelco (Bellefonte, PA, USA). Acetonitrile, 2-propanol, formic acid LC-MS grade were pur-
chased from Carlo Erba (Milan, Italy). CBD, THC, CBN, CBG, CBNA, THCA, CBGA were
purchased from Sigma Aldrich (Round Rock, Texas). High intensity planetary mill Retsch
(model MM 400, Retsch, GmbH, Retsch-Allee, Haan) was used to obtain representative ali-
quots of cannabis flos samples powder.

2.2. Cannabis plant material and superfine grinding (SFG) sample preparation

Bediol® medical Cannabis chemotype that contains 6.5% THC and 8% CBD as standardised and
certified by the company Bedrocan was used for all analyses. It was selected as representative
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because it represents the most common medical variety actually prescribed alone or in combina-
tion for several pathologies. Superfine cannabis inflorescence powder was prepared using
mechanical grinding-activation in an energy intensive vibrational mill. Different samples (1.0 g
each) were ground in a high intensity planetary mill. The mill was vibrating at a frequency of
25 Hz for 1 min, using two 50 mL jars with 20 mm stainless steel balls. Prior to use, jars were pre-
cooled with liquid nitrogen. The speed differences between balls and jar result in the interaction
of frictional and impact forces, releasing high dynamic energies. The interplay of all these forces
results in the very effective energy input of planetary ball mills. Mechano-chemical technology
has been developed and successfully adopted in different fields (synthesis of superfine powder,
surface modification, drug and pharmaceutical applications) and could represent a novel
research tool.

2.3. Accelerated Solvent Extraction (ASE) for cannabinoid analysis

All extractions to define the cannabinoid profile of Bediol® medical chemotype were executed
using an ASE 350 (Thermo-Fisher Scientific, Waltham, MA, USA). 34-mL stain steel cells were
used for the extraction. 100 mg of Cannabis flos powder obtained by using SFG was weighed
and then homogenised with an equal weight of diatomaceous earth and transferred into the
cell. Then, 100 μL of extraction solution containing the IS (diazepam 1 mg mL�1) was added.
Different extraction solvents were tested and were: methanol, methanol:CH3Cl (9:1), hexane,
acetonitrile and ethanol. Diatomaceous earths were added in order to fill the remaining empty
part of the cell. Room temperature of 25�C, pressure (1500 psi), number of static cycles (2 cycles,
5 min each), purging time (60 s with nitrogen) and rinse volume (90%) were used for the study.
Organic extracts were finally collected in 66 mL vials and treated with sodium sulphate to
remove any possible humidity. Afterwards, the extract was collected and dried under vacuum
in a centrifugal evaporator. The residue was dissolved in 1 mL of acetonitrile and after proper
dilution, 2 μL were submitted to analysis by HPLC-Q-Exactive-Orbitrap-MS. Validation was
performed according to the European Union SANTE/2015 guidelines usually adopted to test
ASE performance especially for trace residue analysis [31].

The method was completely optimised investigating the typologies of extraction solvents,
number of extraction cycles and extraction temperature to define the optimum analytical
conditions as well. To realise the matrix-matched calibration curves (MMCs) blank samples
(100 mg officinal plant previously analysed for the absences of cannabinoids) were used and
spiked with appropriate standard solution of THC, THC-A, CBD, CBD-A and CBN covering
the concentration range from 0.1 to 10 μg g�1. Recoveries were calculated by comparing the
concentrations of the extracted compounds with those from the MMC calibration curves at two
different fortification levels (1.0 and 10 μg g�1).

2.4. HS-SPME and GC-MS analysis for terpenes investigation

One gram of oil or 100 mg of inflorescence previously grinded were weighed and put into
20 mL glass vials along with 100 μL of the IS (4-nonylphenol, 2000 μg/mL in 2-propanol). Each
vial was fitted with a cap equipped with a silicon/PTFE septum (Supelco, Bellefonte, PA, USA).
A temperature of 37�C was selected as both the extraction and equilibration temperature
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according to previous published research, in order to prevent possible matrix alterations
ensuring the most efficient adsorption of volatile compounds onto the SPME fibre [15, 16]. To
keep the temperature constant during analysis, the vials were maintained in a cooling block
(CTC Analytics, Zwingen, Switzerland). At the end of the sample equilibration time (30 min), a
conditioned (60 min at 280�C) SPME fibre was exposed to the headspace of the sample for
120 min using a CombiPAL system injector autosampler (CTC Analytics, Zwingen, Switzer-
land). All analytical parameters had already been validated in our previous research [32].

Analyses were performed with a Trace GC Ultra coupled to a Trace DSQII quadrupole mass
spectrometer (MS) (Thermo-Fisher Scientific, Waltham, MA, USA) equipped with an Rtx-Wax
column (30 m � 0.25 mm i.d. � 0.25 μm film thickness) (Restek, Bellefonte, PA, USA). The
oven temperature program was: from 35�C, held for 8 min, to 60�C at 4�C/min, then from 60 to
160�C at 6�C/min and finally from 160 to 200 at 20�C/min. Helium was the carrier gas, at a flow
rate of 1 mL/min. Carry over and peaks originating from the fibres were regularly assessed by
running blank samples. After each analysis fibres were immediately thermally desorbed in the
GC injector for 5 min at 250�C to prevent contamination. The MS was operated in electron
impact (EI) ionisation mode at 70 eV. An alkane mixture (C8-C22, Sigma R 8769, Saint Louis,
MO, USA) was run under the same chromatographic conditions as the samples to calculate the
Kovats retention indices (RI) of the detected compounds. The mass spectra were obtained by
using a mass selective detector, a multiplier voltage of 1456 V, and by collecting the data at a
rate of 1 scan/s over the m/z range of 35–350. Compounds were identified by comparing the
retention times of the chromatographic peaks with those of authentic compounds analysed
under the same conditions when available, by comparing the Kovats retention indices with the
literature data and through the National Institute of Standards and Technology (NIST) MS
spectral database. The quantitative evaluation was performed using the internal standard
procedure and the results were finally expressed as μg/g or mg/g IS equivalents of each volatile
compound. All analyses were done in triplicate.

2.5. Cannabis macerated oil preparations

Three different methods for oil preparation were performed and evaluated. The preparation
conditions were selected on the basis of previously published methods [31]. Briefly, common
issues for all three methods were the amount of Bediol® inflorescence used (1 g) and the Euro-
pean Pharmacopoeia (FU) olive oil volume (10 mL) that served as extraction matrix. The crucial
differences concerning the preheating temperature of the inflorescence to perform the decarbox-
ylation step and extraction process are highlighted in Table 1. After extraction and cooling down
(methods 1 and 2) the oils were filtrated and subsequently prepared for LC-Q-Exactive-Orbitrap-
MS analysis.

2.6. Cannabinoids LC-Q-Exactive-Orbitrap-MS analysis

The cannabinoid profile in plants and the corresponding oil were assessed applying the
method recently published with particular emphasis on method development [31]. In order to
perform HPLC-Q-Exactive-Orbitrap®-MS analysis, samples extracted with ASE were pre-
pared as indicated in Section 2.4, while oil samples were prepared by dissolving 100 mg of
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because it represents the most common medical variety actually prescribed alone or in combina-
tion for several pathologies. Superfine cannabis inflorescence powder was prepared using
mechanical grinding-activation in an energy intensive vibrational mill. Different samples (1.0 g
each) were ground in a high intensity planetary mill. The mill was vibrating at a frequency of
25 Hz for 1 min, using two 50 mL jars with 20 mm stainless steel balls. Prior to use, jars were pre-
cooled with liquid nitrogen. The speed differences between balls and jar result in the interaction
of frictional and impact forces, releasing high dynamic energies. The interplay of all these forces
results in the very effective energy input of planetary ball mills. Mechano-chemical technology
has been developed and successfully adopted in different fields (synthesis of superfine powder,
surface modification, drug and pharmaceutical applications) and could represent a novel
research tool.

2.3. Accelerated Solvent Extraction (ASE) for cannabinoid analysis

All extractions to define the cannabinoid profile of Bediol® medical chemotype were executed
using an ASE 350 (Thermo-Fisher Scientific, Waltham, MA, USA). 34-mL stain steel cells were
used for the extraction. 100 mg of Cannabis flos powder obtained by using SFG was weighed
and then homogenised with an equal weight of diatomaceous earth and transferred into the
cell. Then, 100 μL of extraction solution containing the IS (diazepam 1 mg mL�1) was added.
Different extraction solvents were tested and were: methanol, methanol:CH3Cl (9:1), hexane,
acetonitrile and ethanol. Diatomaceous earths were added in order to fill the remaining empty
part of the cell. Room temperature of 25�C, pressure (1500 psi), number of static cycles (2 cycles,
5 min each), purging time (60 s with nitrogen) and rinse volume (90%) were used for the study.
Organic extracts were finally collected in 66 mL vials and treated with sodium sulphate to
remove any possible humidity. Afterwards, the extract was collected and dried under vacuum
in a centrifugal evaporator. The residue was dissolved in 1 mL of acetonitrile and after proper
dilution, 2 μL were submitted to analysis by HPLC-Q-Exactive-Orbitrap-MS. Validation was
performed according to the European Union SANTE/2015 guidelines usually adopted to test
ASE performance especially for trace residue analysis [31].

The method was completely optimised investigating the typologies of extraction solvents,
number of extraction cycles and extraction temperature to define the optimum analytical
conditions as well. To realise the matrix-matched calibration curves (MMCs) blank samples
(100 mg officinal plant previously analysed for the absences of cannabinoids) were used and
spiked with appropriate standard solution of THC, THC-A, CBD, CBD-A and CBN covering
the concentration range from 0.1 to 10 μg g�1. Recoveries were calculated by comparing the
concentrations of the extracted compounds with those from the MMC calibration curves at two
different fortification levels (1.0 and 10 μg g�1).

2.4. HS-SPME and GC-MS analysis for terpenes investigation

One gram of oil or 100 mg of inflorescence previously grinded were weighed and put into
20 mL glass vials along with 100 μL of the IS (4-nonylphenol, 2000 μg/mL in 2-propanol). Each
vial was fitted with a cap equipped with a silicon/PTFE septum (Supelco, Bellefonte, PA, USA).
A temperature of 37�C was selected as both the extraction and equilibration temperature
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according to previous published research, in order to prevent possible matrix alterations
ensuring the most efficient adsorption of volatile compounds onto the SPME fibre [15, 16]. To
keep the temperature constant during analysis, the vials were maintained in a cooling block
(CTC Analytics, Zwingen, Switzerland). At the end of the sample equilibration time (30 min), a
conditioned (60 min at 280�C) SPME fibre was exposed to the headspace of the sample for
120 min using a CombiPAL system injector autosampler (CTC Analytics, Zwingen, Switzer-
land). All analytical parameters had already been validated in our previous research [32].

Analyses were performed with a Trace GC Ultra coupled to a Trace DSQII quadrupole mass
spectrometer (MS) (Thermo-Fisher Scientific, Waltham, MA, USA) equipped with an Rtx-Wax
column (30 m � 0.25 mm i.d. � 0.25 μm film thickness) (Restek, Bellefonte, PA, USA). The
oven temperature program was: from 35�C, held for 8 min, to 60�C at 4�C/min, then from 60 to
160�C at 6�C/min and finally from 160 to 200 at 20�C/min. Helium was the carrier gas, at a flow
rate of 1 mL/min. Carry over and peaks originating from the fibres were regularly assessed by
running blank samples. After each analysis fibres were immediately thermally desorbed in the
GC injector for 5 min at 250�C to prevent contamination. The MS was operated in electron
impact (EI) ionisation mode at 70 eV. An alkane mixture (C8-C22, Sigma R 8769, Saint Louis,
MO, USA) was run under the same chromatographic conditions as the samples to calculate the
Kovats retention indices (RI) of the detected compounds. The mass spectra were obtained by
using a mass selective detector, a multiplier voltage of 1456 V, and by collecting the data at a
rate of 1 scan/s over the m/z range of 35–350. Compounds were identified by comparing the
retention times of the chromatographic peaks with those of authentic compounds analysed
under the same conditions when available, by comparing the Kovats retention indices with the
literature data and through the National Institute of Standards and Technology (NIST) MS
spectral database. The quantitative evaluation was performed using the internal standard
procedure and the results were finally expressed as μg/g or mg/g IS equivalents of each volatile
compound. All analyses were done in triplicate.

2.5. Cannabis macerated oil preparations

Three different methods for oil preparation were performed and evaluated. The preparation
conditions were selected on the basis of previously published methods [31]. Briefly, common
issues for all three methods were the amount of Bediol® inflorescence used (1 g) and the Euro-
pean Pharmacopoeia (FU) olive oil volume (10 mL) that served as extraction matrix. The crucial
differences concerning the preheating temperature of the inflorescence to perform the decarbox-
ylation step and extraction process are highlighted in Table 1. After extraction and cooling down
(methods 1 and 2) the oils were filtrated and subsequently prepared for LC-Q-Exactive-Orbitrap-
MS analysis.

2.6. Cannabinoids LC-Q-Exactive-Orbitrap-MS analysis

The cannabinoid profile in plants and the corresponding oil were assessed applying the
method recently published with particular emphasis on method development [31]. In order to
perform HPLC-Q-Exactive-Orbitrap®-MS analysis, samples extracted with ASE were pre-
pared as indicated in Section 2.4, while oil samples were prepared by dissolving 100 mg of
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each oil in 10 mL of isopropanol. After adding 1 μg/mL of IS, 10 μL of each sample were
diluted in 890 μL of initial mobile phase from which 2 μL was injected.

Chromatography was accomplished on an HPLC system (Thermo Fisher Scientific, San Jose,
CA, USA) that was made up of a Surveyor MS quaternary pump with a degasser, a Surveyor
AS autosampler with a column oven and a Rheodyne valve with a 20 μL loop. Analytical
separation was carried out using a reverse-phase HPLC column 150� 2 mm i.d., 4 μm, Synergi
Hydro RP, with a 4 � 3 mm i.d. C18 guard column (Phenomenex, Torrance, CA, USA). The
mobile phase contained a binary combination of 0.1% aqueous formic acid and acetonitrile.
The gradient was initiated with 60% eluent 0.1% aqueous formic acid with a linear decrease up
to 95% in 10 min. This condition was maintained for 4 min. The mobile phase was returned to
initial conditions at 14 min, followed by a 6-min re-equilibration period. The flow rate was
0.3 mL/min. The column and sample temperatures were 30 and 5�C, respectively. The mass
spectrometer Thermo Q-Exactive Plus (Thermo Scientific, San Jose, CA, USA) was equipped
with a heated electrospray ionisation (HESI) source. Capillary temperature and vaporiser
temperature were set at 330 and 280�C, respectively, while the electrospray voltage was
adjusted at 3.50 kV (operating in both positive and negative mode). Sheath and auxiliary gas
were 35 and 15 arbitrary units, with S lens RF level of 60. The mass spectrometer was con-
trolled by Xcalibur 3.0 software (Thermo Fisher Scientific, San Jose, CA, USA). The exact mass
of the compounds was calculated using Qualbrowser in Xcalibur 3.0 software. The FS-dd-MS2

(full scan data-dependent acquisition) in both positive and negative mode was used for both
screening and quantification purposes. Resolving power of FS adjusted on 140,000 FWHM at
m/z 200, with scan range of m/z 215-500. Automatic gain control (AGC) was set at 3e6, with an
injection time of 200 ms. A targeted MS/MS (dd-MS2) analysis operated in both positive and
negative mode at 35,000 FWHM (m/z 200). The AGC target was set to 2e5, with the maximum
injection time of 100 ms. Fragmentation of precursors was optimised as two-stepped
normalised collision energy (NCE) (25 and 40 eV). Detection was based on calculated exact
mass of the protonated/deprotonated molecular ions, at least one corresponding fragment and
on retention time of target compounds [12]. Extracted ion chromatograms (EICs) were

Preparation’s step Preparation method

Romano and
Hazekamp [32]

Pacifici et al. [33] Calvi et al. [30]

(1) (2) (3)

Decarboxylation step (conversion acid form in
neutral form of cannabinoids)

No Yes/145�C, 30 min
static oven

Yes/145�C, 30 min
static oven

Amount inflorescence/FU oil volume 1 g:10 mL 1 g:10 mL 1 g:10 mL

Extraction process Heating in water bath
(98�C 120 min)

Heating in water bath
(98�C 60 min)

Ultrasound (35
KHz 30 min)

Filtration Yes/filter paper Yes/filter paper Yes/filter paper

Preparation time (min) 150 120 90

Table 1. Preparation procedures details for Bediol® macerated oils.

Recent Advances in Cannabinoid Research62

obtained with an accuracy of 2 ppm m/z from total ion chromatogram (TIC) engaging the m/z
corresponding to the molecular ions [M+H]+ 315,23145 for CBD and THC, 311,20020 for CBN.
317,24716 for CBG and 311,2024 for CBN. In ESI– the molecular ions [M�H]� considered were
357,2164 for CBDA and THCA, while CBGA was detected by 359,22269.

3. Results and discussion

3.1. Quality analysis of Cannabis inflorescences

3.1.1. ASE Cannabis sample preparations from Bediol® medical chemotype

The choice of the appropriate analytical approach for cannabinoid profiling in cannabis inflo-
rescences is extremely important, considering the need for a comprehensive chemical charac-
terisation of cannabis and derived products [34]. For these reasons, analytical techniques based
on high resolution mass spectrometer (HRMS-Orbitrap), due to their excellent resolution,
precision and sensitivity [35], nowadays represent the gold standard techniques for the inves-
tigation of the highly complex cannabis composition. Proper purification and extraction meth-
odology must also be implemented and is considered crucial in order to achieve an in-depth
screening of the cannabinoids in Cannabis sativa L. inflorescence [32, 33].

The traditional solvent extraction methods often used for the extraction of different bioactive
compounds from plants carry certain drawbacks [30]. Often, they are time consuming, labori-
ous, have low selectivity or low extraction yields and usually large amounts of toxic solvents
are required. Emphasis has currently shifted toward the use of sub- and supercritical fluids
and generally-recognised-as-safe (GRAS) solvents as also detailed elsewhere [34]. Recent
advances using accelerated solvent extraction (ASE) systems, as described in several publica-
tions [35, 36] include procedures for selective removal of interferences during sample extrac-
tion, thus combining extraction and purification into a single step. ASE is considered one of the
most promising extraction process because, unlike standard extraction methods, it utilises high
temperature and pressure to improve the extraction of the analyte from the solid sample.
These conditions enhance the diffusion of the extraction solvent throughout the sample matrix
which result in the more complete dissolution and recovery of the investigated compounds.
The sample to be extracted is placed in a sealed metal cell that is then allocated automatically
in a heated oven chamber and filled with the extraction solvent. The extraction cell is then
pressurised, allowing for an increase in the boiling point of the extraction solvent, and for the
solubilisation of the analytes at a temperature higher than would be possible at atmospheric
pressure. Hereafter, the sample is extracted and collected by the automated filling and voiding
of the cell through repeated static cycles. Compared to other solid sample extraction tech-
niques, ASE requires less time, consumes less solvent during extraction and, with the added
benefit of automation, has proven effective for several food solid samples.

Evaluation of the performance of ASE for the extraction of natural compounds like curcuminoids,
saponins, flavonolignans, terpenes, taxanes, xanthone, flavonoids and artemisinin has already
been conducted, as well as the application of ASE for the characterisation of phenolic compounds

Quality Traits of Medical Cannabis sativa L. Inflorescences and Derived Products Based on Comprehensive…
http://dx.doi.org/10.5772/intechopen.79539

63



each oil in 10 mL of isopropanol. After adding 1 μg/mL of IS, 10 μL of each sample were
diluted in 890 μL of initial mobile phase from which 2 μL was injected.

Chromatography was accomplished on an HPLC system (Thermo Fisher Scientific, San Jose,
CA, USA) that was made up of a Surveyor MS quaternary pump with a degasser, a Surveyor
AS autosampler with a column oven and a Rheodyne valve with a 20 μL loop. Analytical
separation was carried out using a reverse-phase HPLC column 150� 2 mm i.d., 4 μm, Synergi
Hydro RP, with a 4 � 3 mm i.d. C18 guard column (Phenomenex, Torrance, CA, USA). The
mobile phase contained a binary combination of 0.1% aqueous formic acid and acetonitrile.
The gradient was initiated with 60% eluent 0.1% aqueous formic acid with a linear decrease up
to 95% in 10 min. This condition was maintained for 4 min. The mobile phase was returned to
initial conditions at 14 min, followed by a 6-min re-equilibration period. The flow rate was
0.3 mL/min. The column and sample temperatures were 30 and 5�C, respectively. The mass
spectrometer Thermo Q-Exactive Plus (Thermo Scientific, San Jose, CA, USA) was equipped
with a heated electrospray ionisation (HESI) source. Capillary temperature and vaporiser
temperature were set at 330 and 280�C, respectively, while the electrospray voltage was
adjusted at 3.50 kV (operating in both positive and negative mode). Sheath and auxiliary gas
were 35 and 15 arbitrary units, with S lens RF level of 60. The mass spectrometer was con-
trolled by Xcalibur 3.0 software (Thermo Fisher Scientific, San Jose, CA, USA). The exact mass
of the compounds was calculated using Qualbrowser in Xcalibur 3.0 software. The FS-dd-MS2

(full scan data-dependent acquisition) in both positive and negative mode was used for both
screening and quantification purposes. Resolving power of FS adjusted on 140,000 FWHM at
m/z 200, with scan range of m/z 215-500. Automatic gain control (AGC) was set at 3e6, with an
injection time of 200 ms. A targeted MS/MS (dd-MS2) analysis operated in both positive and
negative mode at 35,000 FWHM (m/z 200). The AGC target was set to 2e5, with the maximum
injection time of 100 ms. Fragmentation of precursors was optimised as two-stepped
normalised collision energy (NCE) (25 and 40 eV). Detection was based on calculated exact
mass of the protonated/deprotonated molecular ions, at least one corresponding fragment and
on retention time of target compounds [12]. Extracted ion chromatograms (EICs) were

Preparation’s step Preparation method

Romano and
Hazekamp [32]

Pacifici et al. [33] Calvi et al. [30]

(1) (2) (3)

Decarboxylation step (conversion acid form in
neutral form of cannabinoids)

No Yes/145�C, 30 min
static oven

Yes/145�C, 30 min
static oven

Amount inflorescence/FU oil volume 1 g:10 mL 1 g:10 mL 1 g:10 mL

Extraction process Heating in water bath
(98�C 120 min)

Heating in water bath
(98�C 60 min)

Ultrasound (35
KHz 30 min)

Filtration Yes/filter paper Yes/filter paper Yes/filter paper

Preparation time (min) 150 120 90

Table 1. Preparation procedures details for Bediol® macerated oils.
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obtained with an accuracy of 2 ppm m/z from total ion chromatogram (TIC) engaging the m/z
corresponding to the molecular ions [M+H]+ 315,23145 for CBD and THC, 311,20020 for CBN.
317,24716 for CBG and 311,2024 for CBN. In ESI– the molecular ions [M�H]� considered were
357,2164 for CBDA and THCA, while CBGA was detected by 359,22269.

3. Results and discussion

3.1. Quality analysis of Cannabis inflorescences

3.1.1. ASE Cannabis sample preparations from Bediol® medical chemotype

The choice of the appropriate analytical approach for cannabinoid profiling in cannabis inflo-
rescences is extremely important, considering the need for a comprehensive chemical charac-
terisation of cannabis and derived products [34]. For these reasons, analytical techniques based
on high resolution mass spectrometer (HRMS-Orbitrap), due to their excellent resolution,
precision and sensitivity [35], nowadays represent the gold standard techniques for the inves-
tigation of the highly complex cannabis composition. Proper purification and extraction meth-
odology must also be implemented and is considered crucial in order to achieve an in-depth
screening of the cannabinoids in Cannabis sativa L. inflorescence [32, 33].

The traditional solvent extraction methods often used for the extraction of different bioactive
compounds from plants carry certain drawbacks [30]. Often, they are time consuming, labori-
ous, have low selectivity or low extraction yields and usually large amounts of toxic solvents
are required. Emphasis has currently shifted toward the use of sub- and supercritical fluids
and generally-recognised-as-safe (GRAS) solvents as also detailed elsewhere [34]. Recent
advances using accelerated solvent extraction (ASE) systems, as described in several publica-
tions [35, 36] include procedures for selective removal of interferences during sample extrac-
tion, thus combining extraction and purification into a single step. ASE is considered one of the
most promising extraction process because, unlike standard extraction methods, it utilises high
temperature and pressure to improve the extraction of the analyte from the solid sample.
These conditions enhance the diffusion of the extraction solvent throughout the sample matrix
which result in the more complete dissolution and recovery of the investigated compounds.
The sample to be extracted is placed in a sealed metal cell that is then allocated automatically
in a heated oven chamber and filled with the extraction solvent. The extraction cell is then
pressurised, allowing for an increase in the boiling point of the extraction solvent, and for the
solubilisation of the analytes at a temperature higher than would be possible at atmospheric
pressure. Hereafter, the sample is extracted and collected by the automated filling and voiding
of the cell through repeated static cycles. Compared to other solid sample extraction tech-
niques, ASE requires less time, consumes less solvent during extraction and, with the added
benefit of automation, has proven effective for several food solid samples.

Evaluation of the performance of ASE for the extraction of natural compounds like curcuminoids,
saponins, flavonolignans, terpenes, taxanes, xanthone, flavonoids and artemisinin has already
been conducted, as well as the application of ASE for the characterisation of phenolic compounds

Quality Traits of Medical Cannabis sativa L. Inflorescences and Derived Products Based on Comprehensive…
http://dx.doi.org/10.5772/intechopen.79539

63



from fine Alpine plant roots [37]. The advantage of applying pressure is due to the fact that it is
able to force the extracting solvent into the matrix and therefore may improve extraction effi-
ciency dramatically. To the best of our knowledge, the present study reports an ASE-based
method applied to the extraction of cannabinoids from cannabis row material (inflorescences)
for the first time.

Bediol® chemotype was chosen for the optimisation of the ASE working parameters as it
encompasses a combination of balanced amounts of THC and CBD, two cannabinoids respon-
sible for most of the clinical effects that medical cannabis can express. In addition, it has been
repeatedly suggested that the effect of isolated THC or of any other single cannabinoid is not
equivalent to that of whole cannabis preparations, since some of the bioactivity observed could
be related also to the presence of acidic cannabinoids. In this context, the use of an analytical
method allowing the qualitative and quantitative exhaustive extraction of neutral cannabi-
noids and its native, acidic forms (THCA and CBDA) from cannabis plant is fundamental to
characterise different cannabis varieties, a particularly relevant point when considering medi-
cal varieties. That is why the extraction efficacy of ASE was evaluated also for THCA and
CBDA.

However, the optimization of effective extraction from cannabis plant is a strategic and very
important issue in cannabinoid determination, as it determines the accuracy of the whole
analytical method. Therefore, several extraction solvents for ASE extraction of cannabinoids
from Bediol® chemotype were evaluated herein.

The best combination in terms of relative area (area analyte/IS) was obtained using methanol as
extraction solvent at room temperature and 2 extraction cycles of 5 min each, with a resulting
total extraction time of 15 min (Figure 1). These results are in line with a recent study that
investigated the use of different extraction methods (dynamic maceration, ultrasound, micro-
wave and supercritical fluid extraction) for the analysis of cannabinoids from fibre-type cannabis
varieties [38]. Recoveries calculated by comparing the concentrations of the extracted com-
pounds with those from the MMC calibration curves at two different fortification levels showed
an average recovery of 93 and 5.7% as coefficient of variation. Based on obtained MMC calibra-
tion curves used for the purpose of validation of ASE procedures the percentage of THC, THCA,
CBD and CBDA in Bediol® inflorescence by means of LC-Q-Exactive-Orbitrap-MS analysis was
calculated as being: 0.88, 5.7, 0.96 and 7.4%, respectively.

3.1.2. HS-SPME and GC-MS for terpenes fingerprint from Bediol® medical chemotype

In comparison with cannabinoid derivatives, the volatile constituents of Cannabis sativa L. have
received much less attention. At present, scarce emphasis has been given toward the exhaus-
tive characterisation of the terpenes profile obtained from Cannabis chemotype standardised
and certified for medical use [18, 27]. In relation to recent evidence concerning the synergic role
of terpenes and cannabinoids (entourage effect) [21], the comprehensive evaluation of terpene
compounds especially characterising medical strains is nowadays crucial to correctly manag-
ing Cannabis as a complete therapeutic tool. In addition, several medical applications of
Cannabis flos involve the vaporisation of inflorescence by using medical vaping equipment to
heat the herb thus releasing both cannabinoids and terpenes into the vapour phase. The need
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to understand the real terpene profile emitted by medical varieties in order to select the most
appropriate varieties for therapeutic use is particularly evident. In the present study, an HS-
SPMEmethod was adopted for the preconcentration of the volatile compounds with particular
focus on terpenes fraction (mono-di-tri terpenes and sesquiterpenes). HS-SPME is considered a
gold analytical technique for the analysis of volatile compounds in general (ref), but scarce
data are available about the application of HS-SPME in the analysis of terpenes and in general
of the volatile profile frommedical cannabis varieties. Nevertheless, a study published recently
demonstrates the convenience of HS-SPME in the characterisation of hashish terpene profile
[35]. In particular, by the means of HS-SPME, authors were able to isolate and identify a
potential volatile marker that might serve as a substance by which the resin and plant material

Figure 1. Impact of extraction solvents, temperature and number of extraction cycles on extractability of cannabinoids by
using accelerated solvent extraction (ASE) from Bediol® chemotype.
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from fine Alpine plant roots [37]. The advantage of applying pressure is due to the fact that it is
able to force the extracting solvent into the matrix and therefore may improve extraction effi-
ciency dramatically. To the best of our knowledge, the present study reports an ASE-based
method applied to the extraction of cannabinoids from cannabis row material (inflorescences)
for the first time.
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repeatedly suggested that the effect of isolated THC or of any other single cannabinoid is not
equivalent to that of whole cannabis preparations, since some of the bioactivity observed could
be related also to the presence of acidic cannabinoids. In this context, the use of an analytical
method allowing the qualitative and quantitative exhaustive extraction of neutral cannabi-
noids and its native, acidic forms (THCA and CBDA) from cannabis plant is fundamental to
characterise different cannabis varieties, a particularly relevant point when considering medi-
cal varieties. That is why the extraction efficacy of ASE was evaluated also for THCA and
CBDA.

However, the optimization of effective extraction from cannabis plant is a strategic and very
important issue in cannabinoid determination, as it determines the accuracy of the whole
analytical method. Therefore, several extraction solvents for ASE extraction of cannabinoids
from Bediol® chemotype were evaluated herein.

The best combination in terms of relative area (area analyte/IS) was obtained using methanol as
extraction solvent at room temperature and 2 extraction cycles of 5 min each, with a resulting
total extraction time of 15 min (Figure 1). These results are in line with a recent study that
investigated the use of different extraction methods (dynamic maceration, ultrasound, micro-
wave and supercritical fluid extraction) for the analysis of cannabinoids from fibre-type cannabis
varieties [38]. Recoveries calculated by comparing the concentrations of the extracted com-
pounds with those from the MMC calibration curves at two different fortification levels showed
an average recovery of 93 and 5.7% as coefficient of variation. Based on obtained MMC calibra-
tion curves used for the purpose of validation of ASE procedures the percentage of THC, THCA,
CBD and CBDA in Bediol® inflorescence by means of LC-Q-Exactive-Orbitrap-MS analysis was
calculated as being: 0.88, 5.7, 0.96 and 7.4%, respectively.

3.1.2. HS-SPME and GC-MS for terpenes fingerprint from Bediol® medical chemotype

In comparison with cannabinoid derivatives, the volatile constituents of Cannabis sativa L. have
received much less attention. At present, scarce emphasis has been given toward the exhaus-
tive characterisation of the terpenes profile obtained from Cannabis chemotype standardised
and certified for medical use [18, 27]. In relation to recent evidence concerning the synergic role
of terpenes and cannabinoids (entourage effect) [21], the comprehensive evaluation of terpene
compounds especially characterising medical strains is nowadays crucial to correctly manag-
ing Cannabis as a complete therapeutic tool. In addition, several medical applications of
Cannabis flos involve the vaporisation of inflorescence by using medical vaping equipment to
heat the herb thus releasing both cannabinoids and terpenes into the vapour phase. The need
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to understand the real terpene profile emitted by medical varieties in order to select the most
appropriate varieties for therapeutic use is particularly evident. In the present study, an HS-
SPMEmethod was adopted for the preconcentration of the volatile compounds with particular
focus on terpenes fraction (mono-di-tri terpenes and sesquiterpenes). HS-SPME is considered a
gold analytical technique for the analysis of volatile compounds in general (ref), but scarce
data are available about the application of HS-SPME in the analysis of terpenes and in general
of the volatile profile frommedical cannabis varieties. Nevertheless, a study published recently
demonstrates the convenience of HS-SPME in the characterisation of hashish terpene profile
[35]. In particular, by the means of HS-SPME, authors were able to isolate and identify a
potential volatile marker that might serve as a substance by which the resin and plant material

Figure 1. Impact of extraction solvents, temperature and number of extraction cycles on extractability of cannabinoids by
using accelerated solvent extraction (ASE) from Bediol® chemotype.

Quality Traits of Medical Cannabis sativa L. Inflorescences and Derived Products Based on Comprehensive…
http://dx.doi.org/10.5772/intechopen.79539

65



could be discriminated. Volatiles in some Bedrocan® varieties have been previously investi-
gated for their terpene content by GC-FID [29], a technique that provides only a partial volatile
profile and is severely limited, as it does not furnish the identification of unknown volatiles, as
is feasible with GC-MS facilities accompanied by adequate, up-dated mass spectrum libraries
[31, 40].

Furthermore, the terpenes were extracted using ethanol as an extraction solvent [29] and then
quantified by using a calibration curve constructed by using generic internal standard. This
approach is usually limitative as the polarity of the solvent could dramatically influence the
terpene profile obtained and lead to the underestimation of the complex mixture of secondary
metabolites emitted by plants as a result [40]. Methods involving headspace sampling appear
to be the most opportune option to investigate cannabis volatile profile to obtain a representa-
tive profile of their volatile constituents avoiding interference potentially brought by predom-
inant cannabinoids in the resulting chromatogram [41].

It is worth mentioning that the terpenes family includes a great variety of compounds (mono-
di-tri and sesquiterpenes) with pronounced chemical differences which consequentially aggra-
vate the dissimilarities in terms of potential clinical effects. It was possible to identify more
than 40 monoterpenes in Bediol® medical chemotype by using the optimised HS-SPME and
GC-MS. The most representative are presented in Figure 2. As a general consideration, β-
myrcene was the predominant terpene in Bediol® chemotype as was reported previously
[22, 29, 41]. Moreover, this is an extremely important finding as this monoterpene demon-
strates a prominent narcotic-like effect that is seemingly responsible for the ‘couch lock’
phenomenon frequently associated with modern cannabis phenomenology [24]. Furthermore,
five other monoterpenes, namely α-terpinolene, β-ocimene, β-phellandrene α-and β-pinene
are the major monoterpenes in Bediol® chemotype, as was revealed for other Cannabis sativa
L. varieties [42]. Interestingly, our analysis revealed the presence of limonene (930 μg/g), which

Figure 2. Representative terpenes fraction extracted from Bediol® chemotype by means of HS-SPME and identified using
the GC-MS (μg/g).
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is in contrast to previously published data for Bediol® inflorescence [29]. This finding is
remarkable because the Bediol® chemotype is obtained by hybridising the Bedrocan variety
(high THC content) with CBD-predominant varieties. Although the mechanisms underlying
the regulation of terpene synthesis in cannabis plants remain to be elucidated, it is possible that
selective, individual breeding could influence terpene proportion profiles [22].

Besides the chemical composition of the terpene fraction of Bediol® inflorescence that is
comprehensively documented herein, the sesquiterpene fraction was also investigated in detail
(Figure 3). This flos was particularly rich in trans-caryophyllene which is typical for most of
Cannabis sativa L. varieties [19, 41, 42], but the significant amount of selina-3,7(11)-dione might
be more specific to the Bediol® chemotype. In addition, by the means of mass spectrometry it
was possible to identify a compound with a sesquiterpene structure which does not corre-
spond to any known substance from this class. Considering its abundance, a profound exam-
ination of this “new”, unknown compound is mandatory, as it could be used as a specific
Bediol® marker.

Also, this chemotype was principally rich in esters, volatile compounds responsible for, and
associated with, “fruity” flavour notes (Figure 4). The most abundant ester found is butanoic
acid-hexyl ester, which is recognised by its sweet, apple, and apple peel flavour [43]. Its
domination in the ester profile of Bediol® candidates this compound as the principal natural
flavouring substance for this Cannabis sativa L. chemotype.

3.2. Quality analysis of Bediol® oil formulations: cannabinoids and VOC profile

In line with the approval by the Italian Ministry of Health of a decree that regulates the
cultivation, processing, and therapeutic uses of Cannabis [16], there has been increasing request
for the medicinal oil extracts obtained from the dried flowers [43]. A standardised protocol for
oily preparations is therefore also required, but until now has not been formulated. In this

Figure 3. Representative sesquiterpenes fraction extracted from Bediol® chemotype by means of HS-SPME and identified
using the GC-MS (μg/g).
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could be discriminated. Volatiles in some Bedrocan® varieties have been previously investi-
gated for their terpene content by GC-FID [29], a technique that provides only a partial volatile
profile and is severely limited, as it does not furnish the identification of unknown volatiles, as
is feasible with GC-MS facilities accompanied by adequate, up-dated mass spectrum libraries
[31, 40].

Furthermore, the terpenes were extracted using ethanol as an extraction solvent [29] and then
quantified by using a calibration curve constructed by using generic internal standard. This
approach is usually limitative as the polarity of the solvent could dramatically influence the
terpene profile obtained and lead to the underestimation of the complex mixture of secondary
metabolites emitted by plants as a result [40]. Methods involving headspace sampling appear
to be the most opportune option to investigate cannabis volatile profile to obtain a representa-
tive profile of their volatile constituents avoiding interference potentially brought by predom-
inant cannabinoids in the resulting chromatogram [41].

It is worth mentioning that the terpenes family includes a great variety of compounds (mono-
di-tri and sesquiterpenes) with pronounced chemical differences which consequentially aggra-
vate the dissimilarities in terms of potential clinical effects. It was possible to identify more
than 40 monoterpenes in Bediol® medical chemotype by using the optimised HS-SPME and
GC-MS. The most representative are presented in Figure 2. As a general consideration, β-
myrcene was the predominant terpene in Bediol® chemotype as was reported previously
[22, 29, 41]. Moreover, this is an extremely important finding as this monoterpene demon-
strates a prominent narcotic-like effect that is seemingly responsible for the ‘couch lock’
phenomenon frequently associated with modern cannabis phenomenology [24]. Furthermore,
five other monoterpenes, namely α-terpinolene, β-ocimene, β-phellandrene α-and β-pinene
are the major monoterpenes in Bediol® chemotype, as was revealed for other Cannabis sativa
L. varieties [42]. Interestingly, our analysis revealed the presence of limonene (930 μg/g), which

Figure 2. Representative terpenes fraction extracted from Bediol® chemotype by means of HS-SPME and identified using
the GC-MS (μg/g).
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is in contrast to previously published data for Bediol® inflorescence [29]. This finding is
remarkable because the Bediol® chemotype is obtained by hybridising the Bedrocan variety
(high THC content) with CBD-predominant varieties. Although the mechanisms underlying
the regulation of terpene synthesis in cannabis plants remain to be elucidated, it is possible that
selective, individual breeding could influence terpene proportion profiles [22].

Besides the chemical composition of the terpene fraction of Bediol® inflorescence that is
comprehensively documented herein, the sesquiterpene fraction was also investigated in detail
(Figure 3). This flos was particularly rich in trans-caryophyllene which is typical for most of
Cannabis sativa L. varieties [19, 41, 42], but the significant amount of selina-3,7(11)-dione might
be more specific to the Bediol® chemotype. In addition, by the means of mass spectrometry it
was possible to identify a compound with a sesquiterpene structure which does not corre-
spond to any known substance from this class. Considering its abundance, a profound exam-
ination of this “new”, unknown compound is mandatory, as it could be used as a specific
Bediol® marker.

Also, this chemotype was principally rich in esters, volatile compounds responsible for, and
associated with, “fruity” flavour notes (Figure 4). The most abundant ester found is butanoic
acid-hexyl ester, which is recognised by its sweet, apple, and apple peel flavour [43]. Its
domination in the ester profile of Bediol® candidates this compound as the principal natural
flavouring substance for this Cannabis sativa L. chemotype.

3.2. Quality analysis of Bediol® oil formulations: cannabinoids and VOC profile

In line with the approval by the Italian Ministry of Health of a decree that regulates the
cultivation, processing, and therapeutic uses of Cannabis [16], there has been increasing request
for the medicinal oil extracts obtained from the dried flowers [43]. A standardised protocol for
oily preparations is therefore also required, but until now has not been formulated. In this

Figure 3. Representative sesquiterpenes fraction extracted from Bediol® chemotype by means of HS-SPME and identified
using the GC-MS (μg/g).
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context, cannabis extraction was performed using olive oil and a standardised medicinal canna-
bis “flos” (according to pharmaceutical standards) [31, 34, 39, 44, 45].

HPLC-MS/MS based analysis has recently been employed for the analysis of cannabinoids in
plant materials, extracts and biological matrices [8, 29, 45]. This detection technique has proven
to be particularly trustworthy, as there is no risk of native cannabinoids decomposition (decar-
boxylation of cannabinoid acids during the analysis), which may compromise the accurate
assessment of the overall cannabinoids profile. Currently, the most widely used analysers for
cannabinoids quantification are the triple quadrupole instruments, which possess excellent
sensitivity and selectivity [31, 46]. However, they do not allow structural identification of
“non-target” compounds.

In this respect, high-resolution accurate mass (HRMS) analyser such as Q-Exactive-Orbitrap-
MS, offers the possibility to operate generating an “in-depth” qualitative analysis of thousands
of compounds in complex biological, environmental or food matrixes providing insights
beyond what is currently achievable with classic mass spectrometry instrumentation. Orbitrap
mass spectrometer technology is rapidly developing also for cannabinoids profiling in differ-
ent matrices, because it uniquely provides accurate molecular masses and specific fragmenta-
tion patterns for detected species. Moreover, HRMS acquisition mode accumulates all sample
data, enabling identification of “unpredicted” compounds with cannabinolic structure and
retrospective data analysis without the need to re-run samples.

As an example, a simultaneous identification of 24 synthetic and natural cannabinoids for a wide
variety of samples such as herbal cannabis plant material by means of Orbitrap was reported [3].
Moreover, our research group has also recently published results concerning HPLC-Q-Exactive-
Orbitrap-MS method for the determination of the seven most important cannabinoids, including
four essential cannabinoids (THC, CBD, THCA and CBDA) accompanied with quantification of

Figure 4. Esters fraction extracted from Bediol® chemotype by means of HS-SPME and identified using the GC-MS (μg/g).
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CBN, CBG and CBGA [30]. Applying this method, we were able to determine the cannabinoid
profile in Bediol® chemotype oils prepared by three different methods, as described in the
materials and methods section.

Method 3 (realised by applying a preheating/ultrasounds assisted extraction), showed the
highest extraction yields of the neutral cannabinoids CBD and THC. In contrast, method 1
provided the maximal concentrations of THCA, CBDA and CBGA, as a preheating step was
not involved. At present, it is important to emphasise that, in the field of the therapeutic uses of
cannabinoids related to pharmacological and clinical effects, THC and CBD in their neutral
forms are of primary interest, even if there is growing attention toward the acidic forms
(Table 2) [3].

Furthermore, apart from the targeted compounds revealed, several other untargeted cannabi-
noids were detected, as well. HRMS analysis has proven to be very useful also in the retro-
spective evaluation of untargeted isomeric cannabinoids. The structural interpretation of
untargeted compounds was accomplished from the mass spectra collected in the FS and
corresponding dd-MS2 scan mode, and relied on the information found in the literature
[30, 45, 46, 47, 49] and mass spectrum libraries [48]. In this respect, Q-Exactive-Orbitrap-MS
analyser is often used in order to obtain structural information of the compounds detected as it
provides accurate mass identification for both the precursor and the product ions. Among
untargeted molecules, we verified the presence of THCV and CBDV that expressed the same
fragmentation behaviour as their C5 equivalents but differed in fragments that contained the
C3 side chain [30]. The presence and further quantification of those two compounds seems to
be essential as it was revealed that in three models of seizure, cannabis-derived “botanical
drug substances” rich in CBDV and CBD exerted significant anticonvulsant effects that were
not mediated by the CB1 receptor and were of comparable efficacy with purified CBDV [50].
On the other hand, it is well-known that THCV (also as THC) binds to CB1 and CB2 receptors
and acts as a cannabimimetic agonist [50, 51]. Therefore, the pharmacological potency of
CBDV and THCV is substantial and, regardless of their relatively small amounts in oil prepa-
rations, they may contribute to the physiological efficiency of the overall cannabinoids profile
[18], at least as far as Bediol® oil preparation is concerned.

Moreover, in the Bediol® oil extract samples in full scan negative acquisition mode at least four
different cannabinoids with the same molecular ions (m/z 343.1915) but different retention times
were noted (Figure 5). Their appearance and intensity varies according to the preparation method
used. The fragmentation pattern of peaks at retention time (RT) 9.91 and 12.24 min correspond to
tetrahydrocannabinolic acid—C4 (THCA-C4) and cannabidiolic acid—C4 (CBDA-C4). Those two

Preparation method THC CBD CBN CBG THC-A CBD-A CBG-A

1 [32] 370 � 23 2010 � 56 10 � 0.5 7 � 0.8 8300 � 507 14,120 � 1002 260 � 23

2 [33] 4520 � 102 5503 � 89 56 � 7 125 � 21 1808 � 201 1208 � 750 114 � 15

3 [30] 5214 � 87 7304 � 108 47 � 4 102 � 12 487 � 42 29 � 0.75 18 � 6

Table 2. Quantitative analysis of main cannabinoids from Bediol®’s macerated oil preparations obtained by three
different preparation procedures (μg/g, mean � SD, n = 3).
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context, cannabis extraction was performed using olive oil and a standardised medicinal canna-
bis “flos” (according to pharmaceutical standards) [31, 34, 39, 44, 45].

HPLC-MS/MS based analysis has recently been employed for the analysis of cannabinoids in
plant materials, extracts and biological matrices [8, 29, 45]. This detection technique has proven
to be particularly trustworthy, as there is no risk of native cannabinoids decomposition (decar-
boxylation of cannabinoid acids during the analysis), which may compromise the accurate
assessment of the overall cannabinoids profile. Currently, the most widely used analysers for
cannabinoids quantification are the triple quadrupole instruments, which possess excellent
sensitivity and selectivity [31, 46]. However, they do not allow structural identification of
“non-target” compounds.

In this respect, high-resolution accurate mass (HRMS) analyser such as Q-Exactive-Orbitrap-
MS, offers the possibility to operate generating an “in-depth” qualitative analysis of thousands
of compounds in complex biological, environmental or food matrixes providing insights
beyond what is currently achievable with classic mass spectrometry instrumentation. Orbitrap
mass spectrometer technology is rapidly developing also for cannabinoids profiling in differ-
ent matrices, because it uniquely provides accurate molecular masses and specific fragmenta-
tion patterns for detected species. Moreover, HRMS acquisition mode accumulates all sample
data, enabling identification of “unpredicted” compounds with cannabinolic structure and
retrospective data analysis without the need to re-run samples.

As an example, a simultaneous identification of 24 synthetic and natural cannabinoids for a wide
variety of samples such as herbal cannabis plant material by means of Orbitrap was reported [3].
Moreover, our research group has also recently published results concerning HPLC-Q-Exactive-
Orbitrap-MS method for the determination of the seven most important cannabinoids, including
four essential cannabinoids (THC, CBD, THCA and CBDA) accompanied with quantification of

Figure 4. Esters fraction extracted from Bediol® chemotype by means of HS-SPME and identified using the GC-MS (μg/g).
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CBN, CBG and CBGA [30]. Applying this method, we were able to determine the cannabinoid
profile in Bediol® chemotype oils prepared by three different methods, as described in the
materials and methods section.

Method 3 (realised by applying a preheating/ultrasounds assisted extraction), showed the
highest extraction yields of the neutral cannabinoids CBD and THC. In contrast, method 1
provided the maximal concentrations of THCA, CBDA and CBGA, as a preheating step was
not involved. At present, it is important to emphasise that, in the field of the therapeutic uses of
cannabinoids related to pharmacological and clinical effects, THC and CBD in their neutral
forms are of primary interest, even if there is growing attention toward the acidic forms
(Table 2) [3].

Furthermore, apart from the targeted compounds revealed, several other untargeted cannabi-
noids were detected, as well. HRMS analysis has proven to be very useful also in the retro-
spective evaluation of untargeted isomeric cannabinoids. The structural interpretation of
untargeted compounds was accomplished from the mass spectra collected in the FS and
corresponding dd-MS2 scan mode, and relied on the information found in the literature
[30, 45, 46, 47, 49] and mass spectrum libraries [48]. In this respect, Q-Exactive-Orbitrap-MS
analyser is often used in order to obtain structural information of the compounds detected as it
provides accurate mass identification for both the precursor and the product ions. Among
untargeted molecules, we verified the presence of THCV and CBDV that expressed the same
fragmentation behaviour as their C5 equivalents but differed in fragments that contained the
C3 side chain [30]. The presence and further quantification of those two compounds seems to
be essential as it was revealed that in three models of seizure, cannabis-derived “botanical
drug substances” rich in CBDV and CBD exerted significant anticonvulsant effects that were
not mediated by the CB1 receptor and were of comparable efficacy with purified CBDV [50].
On the other hand, it is well-known that THCV (also as THC) binds to CB1 and CB2 receptors
and acts as a cannabimimetic agonist [50, 51]. Therefore, the pharmacological potency of
CBDV and THCV is substantial and, regardless of their relatively small amounts in oil prepa-
rations, they may contribute to the physiological efficiency of the overall cannabinoids profile
[18], at least as far as Bediol® oil preparation is concerned.

Moreover, in the Bediol® oil extract samples in full scan negative acquisition mode at least four
different cannabinoids with the same molecular ions (m/z 343.1915) but different retention times
were noted (Figure 5). Their appearance and intensity varies according to the preparation method
used. The fragmentation pattern of peaks at retention time (RT) 9.91 and 12.24 min correspond to
tetrahydrocannabinolic acid—C4 (THCA-C4) and cannabidiolic acid—C4 (CBDA-C4). Those two

Preparation method THC CBD CBN CBG THC-A CBD-A CBG-A

1 [32] 370 � 23 2010 � 56 10 � 0.5 7 � 0.8 8300 � 507 14,120 � 1002 260 � 23

2 [33] 4520 � 102 5503 � 89 56 � 7 125 � 21 1808 � 201 1208 � 750 114 � 15

3 [30] 5214 � 87 7304 � 108 47 � 4 102 � 12 487 � 42 29 � 0.75 18 � 6

Table 2. Quantitative analysis of main cannabinoids from Bediol®’s macerated oil preparations obtained by three
different preparation procedures (μg/g, mean � SD, n = 3).
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acids are respectively homologues of main acids (THCA and CBDA) from which they differ just
in the butyl side chain (instead of pentyl). In addition, the presence of the peak 10.31 and its
fragmentation profile indicate the presence of cannabichromenic acid C4 (CBCA-C4). In a
completely analogous way, the extracted ion chromatograms for m/z 329.17580 confirm the
occurrence of THCVA and CBDVA, the acidic precursors of the above-mentioned THCV and
CBDV, just for the oil samples from methods 1 and 2 (Figure 6). Additionally, the oil extract
obtained by extraction method 3 revealed the presence of cannabichromevarinic acid (CBCVA).
This compound, like its neutral counterpart cannabichromevarin CBCV, is not supported by
adequate research work to fully understand its eventual distinctive pharmacological and physio-
logical behaviour. However, the fact that extraction method 3 (preheating/ultrasounds) transfers
this compound from the inflorescence to the medicinal oil has to be taken into consideration,
especially when the signals of THCVA and CBDVA were practically absent in extract 3. This is
most likely due to different kinetics of extraction performed by ultrasound that preserves the
benzopiranic structure of CBCVA.

All in all, our retrospective analysis of Bediol® medical oil provides clear evidence of the need
to develop a standardised procedure for extraction, especially in terms of time and extraction
method, since they unambiguously affect the chemical composition of the final product, thus
influencing the pharmacological effect of the medicinal preparation that is eventually dis-
pensed to patients.

As far as VOCs profile is concerned, all three preparation methods extracted substantial
amounts of terpenes, resembling the profile obtained for the Bediol® inflorescence. Comparing
the three different preparation methods, it can be observed that method 1 extracted the highest

Figure 5. Extracted ion chromatograms from retrospective data analysis which point toward the presence of CBDA-C4;
THCA-C4 and CBCA-C4.
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amount of terpenes, followed by methods 3 and 2 (Table 3). This was predictable, as method 1
did not include preheating for decarboxylation, thus the terpene fraction was preserved with
evident domination of β-Myrcene. Although preheating the plant material released more of
the known active neutral cannabinoids, it simultaneously led to the loss of components such as
terpenes by degradation or evaporation.

As regards lipid oxidation products, the opposite trend was shown among the three prepara-
tion procedures. In particular, method 3, realised without any heating step, showed minor
concentrations of lipid oxidation products. The macerated oil obtained using the method by
Romano-Hazekamp (method 1) contained the highest levels of oxidation products, compared
with the other two procedures, as expected. This can be related to preparation conditions in
which the oil is heated at 98�C for 120 min. The data concerning the formation of lipid
oxidation products in cannabis medical oil preparations are extremely limited [30]. The occur-
rence of aldehydes in the sample obtained by method 1 indicates the initiation of lipid perox-
idation of polyunsaturated fatty acids (PUFA) from oils used as a matrix [52, 53]. It is well
documented that peroxidation of PUFA leads to the formation of a well-defined series of
aldehydes and ketones such as nonenal, hexanal and pentanal, 2-heptenal [54]. The formation
rate of lipid oxidation products depends closely on several factors among which the most
important are: method preparation temperature, fatty acid composition of oil in which canna-
bis extract is dissolved and storage conditions [55]. These parameters are crucial to define the
ultimate characteristics of the final products to be used for medical treatment. Finally, the
presence of 2-furancarboxaldehyde in the oil sample obtained by method 1 confirmed that
preheating initiates the series of reactions that leads to the formation of potentially toxic
compounds.

Figure 6. Extracted ion chromatograms from retrospective data analysis which point toward the presence of CBDVA;
THCVA and CBCVA.
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Compound class/name Preparation method

1 [32] 2 [33] 3 [30]

Alcohols

1-Hexanol 31.10 � 2.8 15 � 1.3 13.15 � 2.12

3-Hexen-1-ol 1.10 � 0.14 0.56 � 0.12 0.7 � 0.1

2-Ethyl-1-hexanol 0.22 � 0.03 n.d. n.d.

3,3,6-Trimethyl-1,5-heptadien-4-ol 13.1 � 0.5 7.3 � 1.93 5.3 � 0.45

α-Toluenol 0.16 � 0.03 0.10 � 0.02 0.08 � 0.02

Aldehydes

2-Methyl-butanal 0.42 � 0.05 n.d. n.d.

3-Methyl-butanal 0.26 � 0.03 n.d. n.d.

Hexanal 1.51 � 0.13 n.d. n.d.

Heptanal 1.06 � 0.29 n.d. n.d.

2-Hexenal 1.90 � 0.22 n.d. n.d.

Octanal 0.54 � 0.09 0.36 � 0.01 0.04 � 0.02

Ketones

6-Methyl-5 hepten-2 one 1.8 � 0.15 0.98 � 0.14 0.28 � 0.08

3-Methyl-3-cyclohexen-1-one 3.01 � 0.67 0.58 � 0.14 0.19 � 0.05

Esters

Acetic acid-methyl ester 0.41 � 0.09 n.d. n.d.

3-Hexen-1-ol-acetate 0.51 � 0.02 0.22 � 0.03 0.18 � 0.01

Propanoic acid-hexyl ester 1.84 � 0.01 0.99 � 0.17 0.90 � 0.1

Propanoic acid-2-methyl-hexyl ester 2.47 � 0.01 1.55 � 0.25 1.70 � 0.09

Butanoic acid-hexyl ester 21.01 � 0.21 10.80 � 2.72 16 � 0.82

Hexanoic acid-hexyl ester 1.78 � 0.54 1.23 � 0.28 1.43 � 0.22

Benzoic acid-2-amino-methyl ester 0.55 � 0.04 0.53 � 0.16 0.53 � 0.04

Mono/di/triterpenes

α-Pinene 109 � 1.4 12.37 � 2.54 29.0 � 0.39

α-Thujene 5.41 � 0.45 2.12 � 0.34 2.71 � 0.11

Camphene 2.27 � 0.15 0.67 � 0.09 0.30 � 0.01

β-Pinene 55.04 � 7.0 14.57 � 1.54 17.20 � 0.67

Sabinene 1.82 � 0.14 0.2 � 0.07 n.d.

δ-3-Carene 18.4 � 1.93 6.62 � 0.90 7.44 � 0.13

α-Phellandrene 19.00 � 2.21 10.67 � 1.93 5.57 � 0.51

β-Myrcene 1074.2 � 30 227.77 � 35.1 458.0 � 2.74

α-Terpinene 13.90 � 1.27 10.20 � 1045 16.56 � 1.14

Limonene 32.4 � 4.13 14.39 � 1.75 18.17 � 1.38
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Compound class/name Preparation method

1 [32] 2 [33] 3 [30]

Eucalyptol 5.2 � 0.58 3.14 � 0.76 4.84 � 0.46

β-Phellandrene 52.00 � 7.57 27.25 � 4.37 35.83 � 1.57

Cis-ocimene 2.70 � 0.20 1.47 � 0.24 0.72 � 0.11

γ-Terpinene 13.87 � 1.13 14 � 2.36 8.50 � 0.48

β-Ocimene 107.22 � 6 49.0 � 6.7 64.88 � 1.15

p-Cymene 11.86 � 1.11 6.7 � 0.63 4.7 � 0.49

α-Terpinolene 253.3 � 20.9 157.78 � 19.46 197.14 � 1.08

1,3,8-p-Menthatriene 0.63 � 0.01 0.37 � 0.03 0.27 � 0.04

p-Cymenyl 6.3 � 0.18 6.84 � 1.46 8.07 � 0.33

Isomenthone n.d. 0.16 � 0.02 0.57 � 0.08

4,8-Epoxy-p-menth-1-ene 12.11 � 0.12 4.57 � 1.01 2.80 � 0.27

β-Linalool 0.89 � 0.05 0.83 � 0.19 0.66 � 0.05

p-Menth-2-en-1-ol 0.42 � 0.05 n.d. n.d.

4-Terpineol 2.60 � 0.01 2.65 � 0.78 2.61 � 0.18

Verbenol 2.41 � 0.13 1.56 � 0.63 2.21 � 0.08

1,8-Menthadien-4-ol 7.00 � 0.32 5.34 � 1.55 6.15 � 0.25

α-Terpineol 4.66 � 0.15 3.63 � 1.15 3.45 � 0.20

Borneol 1.07 � 0.16 0.89 � 0.26 0.77 � 0.02

p-Menth-1-en-3-ol 0.85 � 0.03 0.39 � 0.06 0.25 � 0.03

Trans-3-caren-2-ol 1.00 � 0.05 0.64 � 0.11 0.52 � 0.04

Cuminol 4.60 � 0.36 3.42 � 0.66 4.29 � 0.23

Sesquiterpenes

α-Santalene 0.94 � 0.16 0.61 � 0.08 0.57 � 0.06

α-Bergamotene 4.66 � 1.03 3.17 � 0.63 4.28 � 0.83

α-Guaiene 8.94 � 2.17 6.97 � 1.14 7.05 � 1.93

Trans-caryophyllene 27.64 � 4.78 20.60 � 3.11 21.07 � 3.13

α-Humulene 10.62 � 2.35 7.11 � 1.39 8.00 � 1.73

δ-Guaiene 7.50 � 2.11 5.84 � 0.94 5.90 � 1.41

β-Selinene 1.15 � 0.26 0.83 � 0.11 0.90 � 0.29

α-Selinene 1.78 � 0.07 1.07 � 0.11 1.90 � 0.45

α-Farnesene 0.63 � 0.20 0.42 � 0.06 0.54 � 0.16

Selina-3,7(11)-diene 7.40 � 2.30 5.60 � 0.78 6.65 � 1.93

Nerolidol 0.37 � 0.08 0.35 � 0.11 0.46 � 0.18

Furans

2-Furancarboxaldehyde 0.32 � 0.05 n.d. n.d.
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Compound class/name Preparation method

1 [32] 2 [33] 3 [30]
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1-Hexanol 31.10 � 2.8 15 � 1.3 13.15 � 2.12

3-Hexen-1-ol 1.10 � 0.14 0.56 � 0.12 0.7 � 0.1

2-Ethyl-1-hexanol 0.22 � 0.03 n.d. n.d.

3,3,6-Trimethyl-1,5-heptadien-4-ol 13.1 � 0.5 7.3 � 1.93 5.3 � 0.45

α-Toluenol 0.16 � 0.03 0.10 � 0.02 0.08 � 0.02

Aldehydes

2-Methyl-butanal 0.42 � 0.05 n.d. n.d.

3-Methyl-butanal 0.26 � 0.03 n.d. n.d.

Hexanal 1.51 � 0.13 n.d. n.d.

Heptanal 1.06 � 0.29 n.d. n.d.

2-Hexenal 1.90 � 0.22 n.d. n.d.

Octanal 0.54 � 0.09 0.36 � 0.01 0.04 � 0.02

Ketones

6-Methyl-5 hepten-2 one 1.8 � 0.15 0.98 � 0.14 0.28 � 0.08

3-Methyl-3-cyclohexen-1-one 3.01 � 0.67 0.58 � 0.14 0.19 � 0.05

Esters

Acetic acid-methyl ester 0.41 � 0.09 n.d. n.d.

3-Hexen-1-ol-acetate 0.51 � 0.02 0.22 � 0.03 0.18 � 0.01

Propanoic acid-hexyl ester 1.84 � 0.01 0.99 � 0.17 0.90 � 0.1

Propanoic acid-2-methyl-hexyl ester 2.47 � 0.01 1.55 � 0.25 1.70 � 0.09

Butanoic acid-hexyl ester 21.01 � 0.21 10.80 � 2.72 16 � 0.82

Hexanoic acid-hexyl ester 1.78 � 0.54 1.23 � 0.28 1.43 � 0.22

Benzoic acid-2-amino-methyl ester 0.55 � 0.04 0.53 � 0.16 0.53 � 0.04

Mono/di/triterpenes

α-Pinene 109 � 1.4 12.37 � 2.54 29.0 � 0.39

α-Thujene 5.41 � 0.45 2.12 � 0.34 2.71 � 0.11

Camphene 2.27 � 0.15 0.67 � 0.09 0.30 � 0.01

β-Pinene 55.04 � 7.0 14.57 � 1.54 17.20 � 0.67

Sabinene 1.82 � 0.14 0.2 � 0.07 n.d.

δ-3-Carene 18.4 � 1.93 6.62 � 0.90 7.44 � 0.13

α-Phellandrene 19.00 � 2.21 10.67 � 1.93 5.57 � 0.51

β-Myrcene 1074.2 � 30 227.77 � 35.1 458.0 � 2.74

α-Terpinene 13.90 � 1.27 10.20 � 1045 16.56 � 1.14

Limonene 32.4 � 4.13 14.39 � 1.75 18.17 � 1.38
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Compound class/name Preparation method

1 [32] 2 [33] 3 [30]

Eucalyptol 5.2 � 0.58 3.14 � 0.76 4.84 � 0.46

β-Phellandrene 52.00 � 7.57 27.25 � 4.37 35.83 � 1.57

Cis-ocimene 2.70 � 0.20 1.47 � 0.24 0.72 � 0.11

γ-Terpinene 13.87 � 1.13 14 � 2.36 8.50 � 0.48

β-Ocimene 107.22 � 6 49.0 � 6.7 64.88 � 1.15

p-Cymene 11.86 � 1.11 6.7 � 0.63 4.7 � 0.49

α-Terpinolene 253.3 � 20.9 157.78 � 19.46 197.14 � 1.08

1,3,8-p-Menthatriene 0.63 � 0.01 0.37 � 0.03 0.27 � 0.04

p-Cymenyl 6.3 � 0.18 6.84 � 1.46 8.07 � 0.33

Isomenthone n.d. 0.16 � 0.02 0.57 � 0.08

4,8-Epoxy-p-menth-1-ene 12.11 � 0.12 4.57 � 1.01 2.80 � 0.27

β-Linalool 0.89 � 0.05 0.83 � 0.19 0.66 � 0.05

p-Menth-2-en-1-ol 0.42 � 0.05 n.d. n.d.

4-Terpineol 2.60 � 0.01 2.65 � 0.78 2.61 � 0.18

Verbenol 2.41 � 0.13 1.56 � 0.63 2.21 � 0.08

1,8-Menthadien-4-ol 7.00 � 0.32 5.34 � 1.55 6.15 � 0.25

α-Terpineol 4.66 � 0.15 3.63 � 1.15 3.45 � 0.20

Borneol 1.07 � 0.16 0.89 � 0.26 0.77 � 0.02

p-Menth-1-en-3-ol 0.85 � 0.03 0.39 � 0.06 0.25 � 0.03

Trans-3-caren-2-ol 1.00 � 0.05 0.64 � 0.11 0.52 � 0.04

Cuminol 4.60 � 0.36 3.42 � 0.66 4.29 � 0.23

Sesquiterpenes

α-Santalene 0.94 � 0.16 0.61 � 0.08 0.57 � 0.06

α-Bergamotene 4.66 � 1.03 3.17 � 0.63 4.28 � 0.83

α-Guaiene 8.94 � 2.17 6.97 � 1.14 7.05 � 1.93

Trans-caryophyllene 27.64 � 4.78 20.60 � 3.11 21.07 � 3.13

α-Humulene 10.62 � 2.35 7.11 � 1.39 8.00 � 1.73

δ-Guaiene 7.50 � 2.11 5.84 � 0.94 5.90 � 1.41

β-Selinene 1.15 � 0.26 0.83 � 0.11 0.90 � 0.29

α-Selinene 1.78 � 0.07 1.07 � 0.11 1.90 � 0.45

α-Farnesene 0.63 � 0.20 0.42 � 0.06 0.54 � 0.16

Selina-3,7(11)-diene 7.40 � 2.30 5.60 � 0.78 6.65 � 1.93

Nerolidol 0.37 � 0.08 0.35 � 0.11 0.46 � 0.18

Furans

2-Furancarboxaldehyde 0.32 � 0.05 n.d. n.d.
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4. Conclusions

In this study, an analytical protocol involving the combination of HS-SPME coupled to GC–MS
and ASE coupled to HPLC-HRMS (Orbitrap®) was applied for the in-depth profiling and
fingerprinting of cannabinoids and terpenes in an authorised medical grade variety of Canna-
bis sativa L. (Bediol®). HS-SPME was shown to be an excellent technique to investigate both the
cannabis inflorescence and derived macerated oil volatile composition. In particular, HS-SPME
extraction provides an accurate profile concerning plausible terpenes fingerprint of different
cannabis chemotypes, as presented in this study.

LC-HRMS-Orbitrap, used to investigate cannabinoids extracted from inflorescences and mac-
erated oils, showed high-throughput performances, as it can be used both for quantification of
target analytes and to investigate untargeted fraction to obtain a very complex prolife as an
expression of plant phytocomplex at the same time.

These approaches are nowadays essential and pivotal in order to understand the composition
of Cannabis sativa chemotypes currently used for their role in therapeutic management, as they
are able to provide comprehensive information essential to then correlate the phytochemical
characteristics of cannabis and the clinical results obtained when managed and administered
to patients as well.

Acknowledgements

The present study was conducted according to the authorization released to Dr. Lorenzo Calvi
by Ministero della Salute (SP/065, protocol number) for the supply and detention of narcotic

Compound class/name Preparation method

1 [32] 2 [33] 3 [30]

Dihydro-2(3H)-furanone 0.24 � 0.06 0.16 n.d.

5-Ethyl-2(5H)-furanone 0.32 � 0.04 0.27 � 0.03 n.d.

Miscellaneous

Dimethyl sulfide 0.63 � 0.12 n.d. n.d.

Methyl-pyrazine n.d. n.d. n.d.

2,5-Dimethyl-pyrazine n.d. 0.22 � 0.07 0.16 � 0.09

Dibutylformamide n.d. n.d. n.d.

Acetylpyrrole 0.32 � 0.07 0.41 � 0.05 0.38 � 0.06

Data are expressed in μg/g (mean value � SD, n = 3).

Table 3. Volatile compounds extracted and identified by HS-SPME-GC/MS in Bediol® oil obtained from different
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Abstract

‘Medicinal cannabis’ can be defined as pharmaceutical grade cannabis-based products 
used for the treatment of illness. Beneficial treatment effects of cannabidiol (CBD), a 
major non-intoxicating compound isolated from the cannabis plant, have been shown 
in multiple states of cognitive impairment, including neurodegenerative (Alzheimer’s, 
Huntington’s and Parkinson’s disease), neuroinflammatory (sepsis-induced encepha-
lopathy) and neurological disorders (ischemic brain injury). CBD can also treat some of 
the symptoms of schizophrenia, including cognitive deficits (impairments in learning 
and memory), which is a major symptom domain of the illness that is largely resistant to 
existing antipsychotic medications. However, empirical evidence suggests the presence 
of an ‘entourage effect’ in cannabis; that is, observations that medicinal cannabis seems 
to work better in some instances when administered as a whole-plant extract. While 
scientific evidence highlights isolated CBD as a strong candidate for treating cognitive 
impairment, the entourage effect suggests that the co-operation of other plant molecules 
could provide further benefits. This chapter explores the scientific evidence surrounding 
the benefits of CBD and other specific key phytochemicals in cannabis: linalool, α-pinene, 
β-caryophyllene, flavonoids and anthocyanin, on brain health and cognition.

Keywords: medicinal cannabis, entourage effect, synergy, cannabidiol, CBD, terpenes, 
linalool, alpha-pinene, beta-caryophyllene, phenol, flavonoid, anthocyanins, purple 
cannabis, marijuana, cognition, learning, memory, brain, therapeutics, neuroprotection, 
inflammation

1. Introduction

Research shows that certain molecules identified in the cannabis plant are able to improve 
aspects of cognition. Cognition encompasses multiple aspects of thought processing including 
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decision-making, processing speed, attention span, learning and memory. Cognitive dysfunc-
tion can occur in a range of illnesses and disease states, for example Alzheimer’s disease, 
dementia, Parkinson’s disease, schizophrenia, hypoxic ischemia, stroke and meningitis. There 
is particularly strong evidence in the existing literature to support the pro-cognitive effects of 
the cannabinoid, cannabidiol (CBD) in disease states. There is also evidence that other phyto-
chemicals in cannabis provide benefits for brain health and cognitive function. Furthermore, 
the suggested presence of an ‘entourage effect’ may mean that the therapeutic potential of 
CBD could be boosted through synergistic interactions with other phytochemicals. Therefore, 
certain cannabis strains may confer greater benefits for particular clinical indications, present-
ing unique opportunities for the discovery of novel personalised therapeutics. Identifying 
specific beneficial compounds could underpin selective breeding of plant cultivars with phy-
tochemical profiles optimised towards restoring brain function in diseases associated with 
cognitive dysfunction.

2. Cannabidiol (CBD) and the brain

CBD is a major cannabinoid of C. sativa, considered a metabolic by-product rather than a 
biosynthetic product of the plant [1]. There has been a recent burst of studies showing benefi-
cial effects of CBD in the brain, with evidence pointing to CBD as a promising novel therapy 
for a range of disorders. Based on its ability to change brain function and behaviour, it is, 
by definition ‘psychoactive’, but CBD is non-intoxicating and there is currently no evidence 
that it causes the deleterious hallucinogenic, paranoia and anxiety-inducing effects of the 
delta-tetrahydrocannabinol (Δ-THC) type chemicals, particularly Δ9-THC that is primarily 
responsible for the ‘high’ induced by recreational cannabis [2]. Instead, CBD has a broad 
spectrum of therapeutic properties, including antipsychotic, anxiolytic, immunomodulatory, 
anti-inflammatory, neuroprotective and pro-cognitive benefits in humans and preclinical dis-
ease models. Although its mechanisms of action are currently unclear, studies show that CBD 
is a cannabinoid 1 receptor (CB1) negative allosteric modulator [3], is a partial agonist of the 
dopamine D2 high receptor sub-type [4] and increases anandamide (AEA) signalling [5], pos-
sibly through inhibition of the AEA catabolic enzyme, fatty acid amide hydrolase (FAAH) [6].

2.1. Cannabidiol protects against cognitive harms of high-THC Cannabis

In terms of cognition, our recent systematic review by Osborne et al. [7] revealed a body 
of clinical and pre-clinical evidence supporting the pro-cognitive effects of CBD. We identi-
fied reports demonstrating that CBD can protect against cognitive harms of cannabis. For 
example, recreational users of cannabis containing higher (>0.75%) CBD performed better in 
verbal memory testing during acute intoxication compared to users of cannabis with the same 
Δ9-THC levels but low (<0.14%) CBD [reviewed in 7]. CBD pre-treatment (600 mg oral) also 
protected against deficits in verbal learning and memory, and aspects of working memory 
during a Δ9-THC (1.5 mg/kg intravenous (i.v.)) challenge in healthy participants (n = 22) 
[reviewed in 7].

Recent Advances in Cannabinoid Research84

Imaging studies over the past decade have revealed altered brain morphology in key regions 
of the brain implicated in cognition in cannabis users. For example, chronic heavy cannabis 
users (n = 15) exhibit reduced brain volume in the hippocampus and amygdala compared to 
matched non-using controls (n = 16) [8], and hippocampal shape aberrations were detected 
in cannabis users (n = 15 male chronic heavy users) that were exacerbated in people with co-
morbid schizophrenia (n = 8 males) compared to healthy controls [9]. Interestingly, regular 
users of low CBD cannabis had reduced hippocampal volumes compared to non-users; a 
reduction that was not observed in the participants either using cannabis containing CBD 
or in former users [10]. The authors of that study concluded that CBD could reduce harm to 
brain health caused by cannabis use, while periods of abstinence could recover damage in 
the parameters examined [10]. Recently, it was reported that 10-weeks of oral CBD treatment 
(200 mg) increased the volume of discrete hippocampal regions in cannabis users (n = 18), 
with higher growth observed in heavy compared to light cannabis users [11]. Overall, these 
studies point to a protective effect of CBD on cognitive regions of the brain during canan-
bis use in humans; however, larger scale placebo-controlled trials are required. A potential 
mechanism for these benefits may relate to the neuroprotective characteristics of CBD, par-
ticularly its ability to stimulate neurogenesis, synaptic formation and neurite outgrowth 
(reveiwed in [12]).

Similar results supporting a protective role of CBD have been reported in pre-clinical stud-
ies. For example, CBD (0.5 mg/kg) increased visual learning and memory, and procedural 
learning in Rhesus monkeys co-administered Δ9-THC (0.2 or 0.5 mg/kg) compared to those 
administered Δ9-THC alone; however, spatial working memory was further impaired by 
combined treatment (reviewed in [7]). Chronic Δ9-THC exposure in adolescent mice (3 mg/kg 
daily) reduced recognition memory that persisted into adulthood, but this was not apparent 
in the group receiving CBD (3 mg/kg CBD) co-treatment during Δ9-THC exposure [13]. On 
the other hand, research shows that there are no beneficial effects of CBD on cognition, includ-
ing verbal learning and memory, social recognition, executive function, spatial memory or 
conditioned learning, when administered to healthy subjects (humans or rodents) (reviewed 
in [7, 13]).

2.2. Cannabidiol treatment for neurological disorders and inflammatory disease 
states

2.2.1. Alzheimer’s disease

Alzheimer’s disease is the most common form of dementia. It is a progressive neurological 
disorder characterised by the presence of plaques and neurofibrillary tangles in the brain. 
Amyloid β peptides form densely packed extracellular filaments (plaques) that block cell 
signalling and trigger neuroinflammation. Neurofibrillary tangles are caused by transport-
associated proteins called tau that form twisted structures during oxidative stress and block 
transport of nutrients and other essentials for neuronal function [14]. The progressive dis-
ruption and destruction of synapses results in memory loss and cognitive dysfunction. A 
role for cannabinoids as a therapy for Alzheimer’s disease has been proposed, in part due to 
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associated proteins called tau that form twisted structures during oxidative stress and block 
transport of nutrients and other essentials for neuronal function [14]. The progressive dis-
ruption and destruction of synapses results in memory loss and cognitive dysfunction. A 
role for cannabinoids as a therapy for Alzheimer’s disease has been proposed, in part due to 
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the neuroprotective, anti-inflammatory and anti-oxidant properties of cannabinoids, as well 
as the role of the endocannabinoid system in memory and Alzheimer’s disease pathology 
(reviewed in [15]). One study found that Sativex®, containing Δ9-THC and CBD, reduced 
tau and amyloid deposition in the hippocampus and cortex in a mouse model of tauopathy 
[16]. In addition, Δ9-THC and CBD administration improved memory deficits in AβPP/PS1 
transgenic mice with an Alzheimer-like phenotype, but not in mice with cognitive decline 
associated with healthy ageing [17]. Another study attributed CBD treatment (20 mg/kg oral, 
daily for 8 months) of social recognition deficits in AβPP/PS1 mice with the prevention of 
neuroinflammation and cholesterol homeostasis rather than a reduction in amyloid load [18]. 
Clinical studies are required to confirm whether CBD/Δ9-THC therapies can improve brain 
health and function in people with Alzheimer’s disease or dementia.

2.2.2. Huntington’s disease

Huntington’s disease is a progressive neurodegenerative disease of genetic origins, manifest-
ing in motor impairment, cognitive decline and behavioural symptoms. In a double-blinded, 
placebo-controlled, cross-over clinical trial, Sativex® (orally administered in 12 sprays/day) 
was unable to improve cognitive, motor or behavioural scores in a cohort of patients with 
Huntington’s disease (n = 24) compared to placebo-treated controls after 12-weeks of treat-
ment [19]. In a smaller double-blinded, randomised cross-over study, CBD alone (10 mg/
kg/day, oral) also yielded no symptom efficacy, including recall memory, in 15 patients 
Huntington’s disease after 6-weeks of treatment [20]. However, large cohort studies of CBD 
administration in people with Huntington’s disease are required.

2.2.3. Parkinson’s disease

Parkinson’s disease occurs through the progressive degeneration of dopaminergic neurons in 
the midbrain, resulting in severe motor impairment and loss of motor control. CBD is a prime 
novel therapeutic candidate for the treatment of Parkinson’s disease due to its neuroprotec-
tive properties. However, one clinical study reported no improvement in motor or general 
symptoms scores in patients treated with CBD (75 or 300 mg/day) compared to placebo-
treated controls (n = 7/group), although, overall quality of life was significantly improved 
in the 300 mg CBD treatment group compared to placebo-treated controls [21]. Another 
clinical study (open-label pilot study, n = 6) of Parkinson’s disease patients with psychosis 
revealed significant improvements to psychiatric scores, but not motor function following 
CBD (>150 mg/day oral CBD) administration for 4-weeks in combination with existing L-dopa 
medication [22]. On the other hand, CBD (0.5 or 5 mg/kg CBD administered in four injections) 
prevented cognition and motor dysfunction when administered prior to reserpine treatment 
in a rodent model of Parkinson’s disease [23].

2.2.4. Ischemic brain injury

Brain injury due to blood flow impediment and hypoxic damage can result in immediate 
and progressive cognitive decline. Ischemic brain injury can occur following events such as a 
stroke, cardiac arrest, near drowning or birth complications resulting in perinatal asphyxia. 
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Rats exposed to hypoxic ischemia at birth exhibited recognition memory deficits that were 
attenuated by CBD (1 mg/kg) administered subcutaneously 10 min post-ischemia, while CBD 
treatment (3, 10 or 30 mg/kg 30 min pre- and 3, 24 and 48 h post-ischemic insult) increased 
spatial memory compared to placebo-treated ischemic rats (reviewed in [7]). In a subsequent 
study, acute CBD treatment (5 mg/kg, intraperitoneal (i.p.)) reduced apoptosis, neuronal loss 
and neuroinflammation in ischemic in neonatal rats [24], providing mechanistic clues about 
the behavioural restorative effects of CBD during hypoxic brain damage. A clinical trial inves-
tigating THC:CBD efficacy on spasticity following a stroke has been registered [25]; however, 
cognitive testing has not been proposed as a treatment outcome.

2.2.5. Sepsis-induced encephalopathy

Sepsis is a potentially life-threatening systemic inflammatory state that occurs as the body 
attempts to eliminate a pathogen. It can cause rapid cognitive impairment, particularly mem-
ory decline that was initially considered a transient state restored through the destruction of 
the pathogen and attenuation of the inflammatory response. However, sepsis is also associ-
ated with encephalopathy, a disease state of the brain that can manifest symptoms ranging 
from mild personality changes to cognitive and motor impairment, lethargy and coma. Sepsis-
induced encephalopathy can be caused by increased permeability of the blood brain barrier 
and neuroinflammation that can lead to permanent functional impairment and enhance sus-
ceptibility to subsequent neurodegenerative disorders post-recovery [26]. Sub-chronic CBD 
treatment improved associative learning in a rodent model of sepsis (CBD administered either 
2.5, 5 or 10 mg/kg daily for 9 days) compared to vehicle-treated controls (reviewed in [7]).  
CBD (single acute dose 3 mg/kg, i.v.) treatment also preserved blood–brain barrier integ-
rity, restored normal vascular endothelial function and reduced inflammation in the mouse 
brain during endotoxic shock induced by administration of lipopolysaccharide (LPS) [27], a 
cell wall component of Gram-negative bacteria that can be used to model an excessive pro-
inflammatory response in the host.

2.2.6. Schizophrenia

Schizophrenia is a chronic neurodevelopmental disorder characterised by three main symp-
tom domains: positive (e.g., hallucinations, delusions and paranoia), negative (e.g., social 
withdrawal, flattened emotional expression, lack of motivation) and cognitive deficits. 
Existing antipsychotic medications confer minimal to no cognitive benefits (in some instances 
can further impair cognition) [28], and can cause serious weight gain and diabetes side-effects 
[29, 30]. We recently discovered that chronic CBD (10 mg/kg CBD, i.p., twice daily (b.i.d.)) 
treated cognitive impairment (learning, working and recognition memory) and social interac-
tion deficits in a rat prenatal infection (poly I:C) model of schizophrenia-like phenotypes [31]. 
No behavioural changes were observed in healthy rats administered CBD and CBD did not 
cause weight gain side-effects [31]. An earlier clinical study (phase II, single-centred, double-
blinded, randomised parallel-group controlled clinical trial of CBD vs. amisulpride) had 
reported improved positive and negative symptoms in people with schizophrenia following 
4 weeks of CBD treatment, with therapeutic efficacy similar to the commercial antipsychotic, 
amisulpride; however, cognitive function was not examined [5]. More recently, a multi-centre 
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the neuroprotective, anti-inflammatory and anti-oxidant properties of cannabinoids, as well 
as the role of the endocannabinoid system in memory and Alzheimer’s disease pathology 
(reviewed in [15]). One study found that Sativex®, containing Δ9-THC and CBD, reduced 
tau and amyloid deposition in the hippocampus and cortex in a mouse model of tauopathy 
[16]. In addition, Δ9-THC and CBD administration improved memory deficits in AβPP/PS1 
transgenic mice with an Alzheimer-like phenotype, but not in mice with cognitive decline 
associated with healthy ageing [17]. Another study attributed CBD treatment (20 mg/kg oral, 
daily for 8 months) of social recognition deficits in AβPP/PS1 mice with the prevention of 
neuroinflammation and cholesterol homeostasis rather than a reduction in amyloid load [18]. 
Clinical studies are required to confirm whether CBD/Δ9-THC therapies can improve brain 
health and function in people with Alzheimer’s disease or dementia.

2.2.2. Huntington’s disease

Huntington’s disease is a progressive neurodegenerative disease of genetic origins, manifest-
ing in motor impairment, cognitive decline and behavioural symptoms. In a double-blinded, 
placebo-controlled, cross-over clinical trial, Sativex® (orally administered in 12 sprays/day) 
was unable to improve cognitive, motor or behavioural scores in a cohort of patients with 
Huntington’s disease (n = 24) compared to placebo-treated controls after 12-weeks of treat-
ment [19]. In a smaller double-blinded, randomised cross-over study, CBD alone (10 mg/
kg/day, oral) also yielded no symptom efficacy, including recall memory, in 15 patients 
Huntington’s disease after 6-weeks of treatment [20]. However, large cohort studies of CBD 
administration in people with Huntington’s disease are required.

2.2.3. Parkinson’s disease

Parkinson’s disease occurs through the progressive degeneration of dopaminergic neurons in 
the midbrain, resulting in severe motor impairment and loss of motor control. CBD is a prime 
novel therapeutic candidate for the treatment of Parkinson’s disease due to its neuroprotec-
tive properties. However, one clinical study reported no improvement in motor or general 
symptoms scores in patients treated with CBD (75 or 300 mg/day) compared to placebo-
treated controls (n = 7/group), although, overall quality of life was significantly improved 
in the 300 mg CBD treatment group compared to placebo-treated controls [21]. Another 
clinical study (open-label pilot study, n = 6) of Parkinson’s disease patients with psychosis 
revealed significant improvements to psychiatric scores, but not motor function following 
CBD (>150 mg/day oral CBD) administration for 4-weeks in combination with existing L-dopa 
medication [22]. On the other hand, CBD (0.5 or 5 mg/kg CBD administered in four injections) 
prevented cognition and motor dysfunction when administered prior to reserpine treatment 
in a rodent model of Parkinson’s disease [23].

2.2.4. Ischemic brain injury

Brain injury due to blood flow impediment and hypoxic damage can result in immediate 
and progressive cognitive decline. Ischemic brain injury can occur following events such as a 
stroke, cardiac arrest, near drowning or birth complications resulting in perinatal asphyxia. 
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attenuated by CBD (1 mg/kg) administered subcutaneously 10 min post-ischemia, while CBD 
treatment (3, 10 or 30 mg/kg 30 min pre- and 3, 24 and 48 h post-ischemic insult) increased 
spatial memory compared to placebo-treated ischemic rats (reviewed in [7]). In a subsequent 
study, acute CBD treatment (5 mg/kg, intraperitoneal (i.p.)) reduced apoptosis, neuronal loss 
and neuroinflammation in ischemic in neonatal rats [24], providing mechanistic clues about 
the behavioural restorative effects of CBD during hypoxic brain damage. A clinical trial inves-
tigating THC:CBD efficacy on spasticity following a stroke has been registered [25]; however, 
cognitive testing has not been proposed as a treatment outcome.

2.2.5. Sepsis-induced encephalopathy

Sepsis is a potentially life-threatening systemic inflammatory state that occurs as the body 
attempts to eliminate a pathogen. It can cause rapid cognitive impairment, particularly mem-
ory decline that was initially considered a transient state restored through the destruction of 
the pathogen and attenuation of the inflammatory response. However, sepsis is also associ-
ated with encephalopathy, a disease state of the brain that can manifest symptoms ranging 
from mild personality changes to cognitive and motor impairment, lethargy and coma. Sepsis-
induced encephalopathy can be caused by increased permeability of the blood brain barrier 
and neuroinflammation that can lead to permanent functional impairment and enhance sus-
ceptibility to subsequent neurodegenerative disorders post-recovery [26]. Sub-chronic CBD 
treatment improved associative learning in a rodent model of sepsis (CBD administered either 
2.5, 5 or 10 mg/kg daily for 9 days) compared to vehicle-treated controls (reviewed in [7]).  
CBD (single acute dose 3 mg/kg, i.v.) treatment also preserved blood–brain barrier integ-
rity, restored normal vascular endothelial function and reduced inflammation in the mouse 
brain during endotoxic shock induced by administration of lipopolysaccharide (LPS) [27], a 
cell wall component of Gram-negative bacteria that can be used to model an excessive pro-
inflammatory response in the host.

2.2.6. Schizophrenia

Schizophrenia is a chronic neurodevelopmental disorder characterised by three main symp-
tom domains: positive (e.g., hallucinations, delusions and paranoia), negative (e.g., social 
withdrawal, flattened emotional expression, lack of motivation) and cognitive deficits. 
Existing antipsychotic medications confer minimal to no cognitive benefits (in some instances 
can further impair cognition) [28], and can cause serious weight gain and diabetes side-effects 
[29, 30]. We recently discovered that chronic CBD (10 mg/kg CBD, i.p., twice daily (b.i.d.)) 
treated cognitive impairment (learning, working and recognition memory) and social interac-
tion deficits in a rat prenatal infection (poly I:C) model of schizophrenia-like phenotypes [31]. 
No behavioural changes were observed in healthy rats administered CBD and CBD did not 
cause weight gain side-effects [31]. An earlier clinical study (phase II, single-centred, double-
blinded, randomised parallel-group controlled clinical trial of CBD vs. amisulpride) had 
reported improved positive and negative symptoms in people with schizophrenia following 
4 weeks of CBD treatment, with therapeutic efficacy similar to the commercial antipsychotic, 
amisulpride; however, cognitive function was not examined [5]. More recently, a multi-centre 
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double-blinded parallel-group clinical trial examined the efficacy of CBD co-treatment with 
the patient’s existing antipsychotic medication on a range of endpoints, including positive, 
negative and cognitive scores and Clinical Global Impression scales (CGI, measuring illness 
severity, improvement and response to treatment) [32]. Results showed significant improve-
ments in positive (not negative) symptoms and CGI scores, as well as some improvement in 
cognitive performance (did not reach statistical significance, p = 0.068 CBD vs. placebo) when 
CBD was combined with the patient’s existing antipsychotic medications [32].

2.3. Conclusions on the use of CBD in neurological disease

There is substantial scientific evidence to show the beneficial effects of CBD in the brain, 
with protection and treatment efficacy for various cognitive behaviours conferred in mul-
tiple disease states. Overall, there seems to be a general requirement for further placebo-
controlled clinical trials, as well as investigation of long-term efficacy and safety in different 
populations of people. Evidence for illness-specific optimal dosing regimens (dose, route 
of administration, timing and number of daily doses, effect of concurrent medications, 
etc.) is also required. In addition, similar to our rodent study of CBD effects on cognition in 
schizophrenia [31], most studies use either isolated CBD or combined THC and CBD. While 
this methodology enables investigators to attribute results to a specific compound, it may 
not be the optimal therapeutic approach as cannabis-derived plant molecules are thought 
to interact and produce a synergy that enhances therapeutic effects—termed the ‘entou-
rage effect’.

3. The entourage effect

The entourage effect is defined as the act by which compounds (both cannabis phytochemi-
cals and compounds from the endogenous cannabinoid system) augment or support the 
effects of major cannabinoids, for example, Δ9-THC, CBD, 2-arachidonoyl-glycerol (2-AG) 
[33, 34]. This phenomenon has been likened to an orchestra where ‘many musicians support 
and harmonise the melody provided by the soloists’ [34]. Compounds can exert synergistic 
effects through several mechanisms, for example by interacting with each other to improve 
bioavailability of beneficial compounds, or through combined actions on different therapeutic 
targets [35].

The concept of a cannabis entourage effect is largely based on anecdotal evidence from medic-
inal and recreational users attesting to the notion that cannabis ‘works better’ as a whole 
plant extract and its existence has been argued back and forth over time. However, there is 
evidence to suggest that the cannabis plant contains active ingredients as well as ‘synergists’ 
that boost drug effects above that of the isolated compound. Indeed, early description of a 
potential synergy between molecules in the cannabis plant came from a study in the 1970s 
that reported a 2–4 times greater deficits in parameters such as processing tasks and motor 
function in subjects administered Brazilian cannabis samples compared to Δ9-THC [36]. The 
phrase ‘entourage effect’ was first described in 1998 in response to the finding that certain 
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endogenous molecules (2-linoleoyl-glycerol (2-LG) and 2-palmitoyl-glycerol (2-PG)) poten-
tiated the effects of the endocannabinoid, 2-AG [33]. Interestingly, cultured hippocampal 
neurons exposed to CBD-rich plant extracts exhibit a significantly greater intracellular sig-
nalling response compared to CBD alone [37]. This provides preliminary (in-vitro) evidence 
that CBD-rich plant extracts exert greater effects on cells of the hippocampus (a region of the 
brain highly implicated in learning and memory) than isolated CBD. Overall, it may be pos-
sible to boost the pro-cognitive therapeutic efficacy of CBD through a synergistic approach. 
Studies show that cannabinoids other than CBD could confer beneficial effects on the brain 
through synergistic mechanisms, for example, the parent phytocannabinoid cannabigerol 
(CBG) exerted greater analgesic effects on mice than Δ9-THC alone, while CBG and canna-
bichromene (CBC) both have anti-depressant effects in rodents (reviewed in [38]) and CBG 
is neuroprotective in a mouse model of Huntington’s Disease [39]. However, section 4 will 
focus on several key non-cannabinoid cannabis phytochemicals with promising evidence of 
positive effects on brain function.

4. Non-cannabinoid phytochemicals of Cannabis: terpenes, 
flavonoids and anthocyanins

The cannabis plant contains hundreds of phytochemicals, with new compounds and metabo-
lites frequently identified. The concentration of chemicals in a cannabis plant can be influ-
enced by multiple factors including nutrition, humidity, temperature, age of plant, strain, 
harvest time, plant stress, organ and storage conditions [1, 40]. Therefore, plant phytochemi-
cal composition is highly variable. Variability identified even within the same strain has led 
some authors to conclude that the name of a plant strain does not necessarily indicate potency 
or chemical composition [41]. However, others found that when grown under standardised 
conditions, certain cannabis strains can provide reproducible terpene and phytocannabinoid 
profiles that have been considered chemotaxonomic markers [42]. Furthermore, cannabinoid 
content can be used to classify plants into chemovars (plants with distinct photochemical pro-
files): Type I Δ9-THC-dominant, Type II Δ9-THC and CBD, Type III CBD-dominant and dis-
tinctions can be made outside these classes based on specific terpene profiles [43]. Therefore, 
it is possible to optimise plants to reproduce a distinct chemical composition and, potentially, 
specific medicinal characteristics.

4.1. Terpenes: linalool, alpha-pinene and beta-caryophyllene

Terpenes have been described as the most abundant class of small natural molecules by mass 
on Earth, undertaking innumerable structural and functional roles in most life forms on the 
planet (e.g., cholesterols for structural and signalling components of cell membranes, retinal 
in the eye for vision, carotenoids in photosynthesis) [44]. In cannabis, they create fragrances 
and flavours, but are also found in other plants and commonly used as safe food additives 
[38]. Terpenes can cross the blood brain barrier due to their lipophilic nature and studies have 
demonstrated a range of health benefits for some terpenes found in cannabis.
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ments in positive (not negative) symptoms and CGI scores, as well as some improvement in 
cognitive performance (did not reach statistical significance, p = 0.068 CBD vs. placebo) when 
CBD was combined with the patient’s existing antipsychotic medications [32].
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tiple disease states. Overall, there seems to be a general requirement for further placebo-
controlled clinical trials, as well as investigation of long-term efficacy and safety in different 
populations of people. Evidence for illness-specific optimal dosing regimens (dose, route 
of administration, timing and number of daily doses, effect of concurrent medications, 
etc.) is also required. In addition, similar to our rodent study of CBD effects on cognition in 
schizophrenia [31], most studies use either isolated CBD or combined THC and CBD. While 
this methodology enables investigators to attribute results to a specific compound, it may 
not be the optimal therapeutic approach as cannabis-derived plant molecules are thought 
to interact and produce a synergy that enhances therapeutic effects—termed the ‘entou-
rage effect’.

3. The entourage effect

The entourage effect is defined as the act by which compounds (both cannabis phytochemi-
cals and compounds from the endogenous cannabinoid system) augment or support the 
effects of major cannabinoids, for example, Δ9-THC, CBD, 2-arachidonoyl-glycerol (2-AG) 
[33, 34]. This phenomenon has been likened to an orchestra where ‘many musicians support 
and harmonise the melody provided by the soloists’ [34]. Compounds can exert synergistic 
effects through several mechanisms, for example by interacting with each other to improve 
bioavailability of beneficial compounds, or through combined actions on different therapeutic 
targets [35].

The concept of a cannabis entourage effect is largely based on anecdotal evidence from medic-
inal and recreational users attesting to the notion that cannabis ‘works better’ as a whole 
plant extract and its existence has been argued back and forth over time. However, there is 
evidence to suggest that the cannabis plant contains active ingredients as well as ‘synergists’ 
that boost drug effects above that of the isolated compound. Indeed, early description of a 
potential synergy between molecules in the cannabis plant came from a study in the 1970s 
that reported a 2–4 times greater deficits in parameters such as processing tasks and motor 
function in subjects administered Brazilian cannabis samples compared to Δ9-THC [36]. The 
phrase ‘entourage effect’ was first described in 1998 in response to the finding that certain 
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neurons exposed to CBD-rich plant extracts exhibit a significantly greater intracellular sig-
nalling response compared to CBD alone [37]. This provides preliminary (in-vitro) evidence 
that CBD-rich plant extracts exert greater effects on cells of the hippocampus (a region of the 
brain highly implicated in learning and memory) than isolated CBD. Overall, it may be pos-
sible to boost the pro-cognitive therapeutic efficacy of CBD through a synergistic approach. 
Studies show that cannabinoids other than CBD could confer beneficial effects on the brain 
through synergistic mechanisms, for example, the parent phytocannabinoid cannabigerol 
(CBG) exerted greater analgesic effects on mice than Δ9-THC alone, while CBG and canna-
bichromene (CBC) both have anti-depressant effects in rodents (reviewed in [38]) and CBG 
is neuroprotective in a mouse model of Huntington’s Disease [39]. However, section 4 will 
focus on several key non-cannabinoid cannabis phytochemicals with promising evidence of 
positive effects on brain function.

4. Non-cannabinoid phytochemicals of Cannabis: terpenes, 
flavonoids and anthocyanins

The cannabis plant contains hundreds of phytochemicals, with new compounds and metabo-
lites frequently identified. The concentration of chemicals in a cannabis plant can be influ-
enced by multiple factors including nutrition, humidity, temperature, age of plant, strain, 
harvest time, plant stress, organ and storage conditions [1, 40]. Therefore, plant phytochemi-
cal composition is highly variable. Variability identified even within the same strain has led 
some authors to conclude that the name of a plant strain does not necessarily indicate potency 
or chemical composition [41]. However, others found that when grown under standardised 
conditions, certain cannabis strains can provide reproducible terpene and phytocannabinoid 
profiles that have been considered chemotaxonomic markers [42]. Furthermore, cannabinoid 
content can be used to classify plants into chemovars (plants with distinct photochemical pro-
files): Type I Δ9-THC-dominant, Type II Δ9-THC and CBD, Type III CBD-dominant and dis-
tinctions can be made outside these classes based on specific terpene profiles [43]. Therefore, 
it is possible to optimise plants to reproduce a distinct chemical composition and, potentially, 
specific medicinal characteristics.

4.1. Terpenes: linalool, alpha-pinene and beta-caryophyllene

Terpenes have been described as the most abundant class of small natural molecules by mass 
on Earth, undertaking innumerable structural and functional roles in most life forms on the 
planet (e.g., cholesterols for structural and signalling components of cell membranes, retinal 
in the eye for vision, carotenoids in photosynthesis) [44]. In cannabis, they create fragrances 
and flavours, but are also found in other plants and commonly used as safe food additives 
[38]. Terpenes can cross the blood brain barrier due to their lipophilic nature and studies have 
demonstrated a range of health benefits for some terpenes found in cannabis.
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4.1.1. Linalool

Linalool is a monoterpene abundant in aromatic plants, such as lavender and purple basil 
[45]. Evidence shows that chronic administration of linalool reverses deficits in spatial 
memory and learning, with reduced amyloid plaque deposition and tau dysfunction in the 
hippocampus in rodent models of Alzheimer’s disease [46, 47], using 25 mg/kg and 100 mg/
kg linalool, respectively. Linalool also prevented deficits in spatial memory, motor function, 
neuroinflammation and post-ischemic neurodegeneration in a rat model of global cerebral 
ischemia, following oral daily administration (25 mg/kg) for 1 month [48]. However, reduced 
short and long-term recognition memory (50 and 100 mg/kg linalool, i.p.) [49] and memory 
acquisition (3% preparation for inhalation) [50] were found when linalool was administered 
as a single dose to healthy rats. This apparent contradiction in findings could be attributed 
to the administration of linalool to healthy vs. cognitively impaired rats, suggesting that the 
compound exerts benefits in a disease state but is detrimental when not patho physiologically 
required; however, further investigation is necessary to confirm.

4.1.2. Alpha-pinene

Alpha-pinene (α-pinene) is a highly abundant monoterpene found in coniferous trees (e.g., 
pine and fir) and cannabis [51] that, according to cannabis culture, provides pine-needle fra-
grances and tastes to cannabis. In mice with cognitive deficits caused by scopolamine-induced 
blockade of acetylcholine neurotransmission (apparent in advanced stages of Alzheimer’s 
disease [52]), α-pinene (10 mg/kg, i.p.) improved working and spatial memory, and increased 
markers of acetylcholine synthesis in the cortex [53]. Inhalation of α-pinene can also influence 
major neurotransmitter signalling in the brain, for example it improved quality and dura-
tion of sleep in mice by modulating the major inhibitory neurotransmitter signalling system, 
gamma-aminobutyric acid (γ-aminobutyric acid, GABA)) [54], and decreased anxiety-like 
behaviour that was associated with increased tyrosine hydroxylase (the rate limiting enzyme 
for dopamine synthesis) in the midbrain [55]. Another study reported significant improve-
ments in avoidance memory of cognitively impaired mice following administration of an 
essential oil obtained from a Korean fir tree containing α-pinene [56]; however, the results 
cannot be entirely attributed to this terpene due to the use of whole-plant extract containing 
other constituents.

4.1.3. Beta-caryophyllene

Beta-caryophyllene (β-caryophyllene) is a sesquiterpene that has a weak woody-spicy char-
acteristic, abundant in cloves, black pepper, cinnamon and thyme [57, 58]. In a mouse model 
of Alzheimer’s disease, β-caryophyllene reversed spatial memory deficits, reduced β-amyloid 
deposition in the hippocampus and cortex, and reduced neuroinflammation when admin-
istered for 10 weeks (48 mg/kg, oral) [59]. In rats with chronic cerebral ischemia resembling 
vascular dementia, β-caryophyllene (administered in a hydroxypropyl-β-cyclodextrin inclu-
sion complex delivery system to enhance its bioavailability) attenuated cognitive deficits 
and increased cerebral blood flow [60]. β-caryophyllene also prevented oxidative stress 
in the cortex of rats following transient global cerebral hypoperfusion/reperfusion [61]. 
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Neurological scores were improved in mice administered β-caryophyllene (24 and 72 mg/
kg, i.p.) following an induced stroke [62] and anti-depressant-like behaviour was reported 
in healthy mice following β-caryophyllene, through mechanisms involving catecholamine 
(adrenergic) neurotransmission [63]. Overall, the studies provide some evidence to support 
the role of β-caryophyllene as pro-cognitive, with anti-inflammatory, neuroprotective and 
anti-depressant effects.

4.2. Phenolic acids: flavonoids and anthocyanins

In addition to terpenes, cannabis plants contain phenolic compounds, including flavonoids 
and anthocyanins [40, 64–66]. Flavonoids are commonly consumed by humans through 
dietary fruit, vegetable, tea and wine intake. Anthocyanins are a group of flavonoids respon-
sible for the blue-violet and red-orange colours of plant organs. Certain strains of cannabis 
plants exhibit a purple phenotype (Figure 1), which is widely attributed to anthocyanin con-
tent in recreational cannabis culture; however, experimental data showing anthocyanin levels 
of purple compared to non-purple strains appear to be lacking.

Flavonoids and anthocyanins are extensively researched due to their neuroprotective, anti-
inflammatory and pro-cognitive characteristics and can pass the blood brain barrier [67]. 
For example, one study found that anthocyanin pre-treatment (200 mg/kg orally for 7 days) 
prevented cognitive deficits in a rat model of dementia [68]. Flavonoids improve working 
memory, processing speed, executive function and episodic memory in humans (reviewed in 
[69, 70]) and stimulate neurogenesis, synaptic plasticity and reduced neuroinflammation in the 
hippocampus (reviewed in [71]). Anthocyanin-rich cherry juice improved verbal fluency and 
short- and long-term memory performance in people with mild-to-moderate dementia during 
a 12 week randomised, controlled clinical trial of older people (+70 years) with mild to moder-
ate dementia (200 ml/day cherry juice vs. control juice lacking anthocyanin) [72]. Interestingly, 
both cherries and cannabis plants contain phenolic acids related to flavonoid and anthocyanin 
biosynthesis pathways [65, 73]. Indeed, hemp seed extract can contain phenolic compound lev-
els that are comparable to Japanese plums [74, 75]. Japanese plums are an important source of 

Figure 1. Inflorescence of purple cannabidiol (CBD)-rich, low Δ9-tetrahydrocannabinol (Δ9-THC) medicinal cannabis 
cultivar, GHM Genetic Development, Amsterdam, The Netherlands (2018).
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4.1.1. Linalool

Linalool is a monoterpene abundant in aromatic plants, such as lavender and purple basil 
[45]. Evidence shows that chronic administration of linalool reverses deficits in spatial 
memory and learning, with reduced amyloid plaque deposition and tau dysfunction in the 
hippocampus in rodent models of Alzheimer’s disease [46, 47], using 25 mg/kg and 100 mg/
kg linalool, respectively. Linalool also prevented deficits in spatial memory, motor function, 
neuroinflammation and post-ischemic neurodegeneration in a rat model of global cerebral 
ischemia, following oral daily administration (25 mg/kg) for 1 month [48]. However, reduced 
short and long-term recognition memory (50 and 100 mg/kg linalool, i.p.) [49] and memory 
acquisition (3% preparation for inhalation) [50] were found when linalool was administered 
as a single dose to healthy rats. This apparent contradiction in findings could be attributed 
to the administration of linalool to healthy vs. cognitively impaired rats, suggesting that the 
compound exerts benefits in a disease state but is detrimental when not patho physiologically 
required; however, further investigation is necessary to confirm.

4.1.2. Alpha-pinene

Alpha-pinene (α-pinene) is a highly abundant monoterpene found in coniferous trees (e.g., 
pine and fir) and cannabis [51] that, according to cannabis culture, provides pine-needle fra-
grances and tastes to cannabis. In mice with cognitive deficits caused by scopolamine-induced 
blockade of acetylcholine neurotransmission (apparent in advanced stages of Alzheimer’s 
disease [52]), α-pinene (10 mg/kg, i.p.) improved working and spatial memory, and increased 
markers of acetylcholine synthesis in the cortex [53]. Inhalation of α-pinene can also influence 
major neurotransmitter signalling in the brain, for example it improved quality and dura-
tion of sleep in mice by modulating the major inhibitory neurotransmitter signalling system, 
gamma-aminobutyric acid (γ-aminobutyric acid, GABA)) [54], and decreased anxiety-like 
behaviour that was associated with increased tyrosine hydroxylase (the rate limiting enzyme 
for dopamine synthesis) in the midbrain [55]. Another study reported significant improve-
ments in avoidance memory of cognitively impaired mice following administration of an 
essential oil obtained from a Korean fir tree containing α-pinene [56]; however, the results 
cannot be entirely attributed to this terpene due to the use of whole-plant extract containing 
other constituents.

4.1.3. Beta-caryophyllene

Beta-caryophyllene (β-caryophyllene) is a sesquiterpene that has a weak woody-spicy char-
acteristic, abundant in cloves, black pepper, cinnamon and thyme [57, 58]. In a mouse model 
of Alzheimer’s disease, β-caryophyllene reversed spatial memory deficits, reduced β-amyloid 
deposition in the hippocampus and cortex, and reduced neuroinflammation when admin-
istered for 10 weeks (48 mg/kg, oral) [59]. In rats with chronic cerebral ischemia resembling 
vascular dementia, β-caryophyllene (administered in a hydroxypropyl-β-cyclodextrin inclu-
sion complex delivery system to enhance its bioavailability) attenuated cognitive deficits 
and increased cerebral blood flow [60]. β-caryophyllene also prevented oxidative stress 
in the cortex of rats following transient global cerebral hypoperfusion/reperfusion [61]. 
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Neurological scores were improved in mice administered β-caryophyllene (24 and 72 mg/
kg, i.p.) following an induced stroke [62] and anti-depressant-like behaviour was reported 
in healthy mice following β-caryophyllene, through mechanisms involving catecholamine 
(adrenergic) neurotransmission [63]. Overall, the studies provide some evidence to support 
the role of β-caryophyllene as pro-cognitive, with anti-inflammatory, neuroprotective and 
anti-depressant effects.

4.2. Phenolic acids: flavonoids and anthocyanins

In addition to terpenes, cannabis plants contain phenolic compounds, including flavonoids 
and anthocyanins [40, 64–66]. Flavonoids are commonly consumed by humans through 
dietary fruit, vegetable, tea and wine intake. Anthocyanins are a group of flavonoids respon-
sible for the blue-violet and red-orange colours of plant organs. Certain strains of cannabis 
plants exhibit a purple phenotype (Figure 1), which is widely attributed to anthocyanin con-
tent in recreational cannabis culture; however, experimental data showing anthocyanin levels 
of purple compared to non-purple strains appear to be lacking.

Flavonoids and anthocyanins are extensively researched due to their neuroprotective, anti-
inflammatory and pro-cognitive characteristics and can pass the blood brain barrier [67]. 
For example, one study found that anthocyanin pre-treatment (200 mg/kg orally for 7 days) 
prevented cognitive deficits in a rat model of dementia [68]. Flavonoids improve working 
memory, processing speed, executive function and episodic memory in humans (reviewed in 
[69, 70]) and stimulate neurogenesis, synaptic plasticity and reduced neuroinflammation in the 
hippocampus (reviewed in [71]). Anthocyanin-rich cherry juice improved verbal fluency and 
short- and long-term memory performance in people with mild-to-moderate dementia during 
a 12 week randomised, controlled clinical trial of older people (+70 years) with mild to moder-
ate dementia (200 ml/day cherry juice vs. control juice lacking anthocyanin) [72]. Interestingly, 
both cherries and cannabis plants contain phenolic acids related to flavonoid and anthocyanin 
biosynthesis pathways [65, 73]. Indeed, hemp seed extract can contain phenolic compound lev-
els that are comparable to Japanese plums [74, 75]. Japanese plums are an important source of 

Figure 1. Inflorescence of purple cannabidiol (CBD)-rich, low Δ9-tetrahydrocannabinol (Δ9-THC) medicinal cannabis 
cultivar, GHM Genetic Development, Amsterdam, The Netherlands (2018).
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anthocyanins, with particularly high levels in darker purple, blue and black coloured fruits [75]. 
Similar to cannabis plants, the phytochemical profile of Japanese plum varieties is influenced 
by horticultural practices, processing and storage conditions [75]. Other commercial plants, 
such as violet cauliflower and Thai purple basil, gain their unusual purple colouring through 
modifications to anthocyanin regulatory genes [76, 77]. Therefore, it is possible that plants can 
be manipulated naturally and artificially (i.e., genetically) to maximise anthocyanin content.

4.3. Conclusions on the effects of terpenes and flavonoids on the brain

The terpenes linalool, α-pinene and β-caryophyllene, as well as flavonoids and anthocyanins 
confer pro-cognitive, neuroprotective and anti-inflammatory effects in models of cerebral 
ischemia and Alzheimer’s disease, as well as some anxiolytic effects. Most studies have been 
conducted in pre-clinical (rodent) models; however, pro-cognitive effects of flavonoids and 
anthocyanins have been shown in human clinical studies of dementia. Overall, combinations 
of CBD with  other key phytochemicals found in cannabis could confer benefits on brain health 
through a multi-target synergy (entourage effect); however, further research is required.

5. Overall conclusion

This chapter has identified a consensus in the scientific literature that specific phytochemi-
cals (CBD, linalool, α-pinene, β-caryophyllene, flavonoids and anthocyanins) found in can-
nabis plants are beneficial for cognition and brain health in a number of disease states. These 
compounds are psychoactive as they alter the brain to effect behaviour, and there is some 
evidence that they can differentially affect healthy individuals (e.g., CBD has no cognitive 
benefits and linalool has detrimental effects on cognition in healthy subjects). Therefore, 
societal consideration of ‘medicinal cannabis’ as a true medicine is necessary, that is, pre-
scribed for patients who require treatment of a clinically diagnosed illness. Further research 
is needed to inform optimal prescription for treating specific illnesses, including dose, route 
of administration, long-term clinical efficacy, safety and side effects. There is some evidence 
to support the existence of an ‘entourage effect’—such synergism could arise from a multi-
target approach. The united benefits of specific terpenes and flavonoids could boost the ther-
apeutic potential of CBD to improve cognition in disease states that manifest impairment; 
we are currently investigating these synergies in my laboratory. An other exciting future 
area of investigation is the identification of select cannabis phytochemical profiles that will 
treat specific illnesses with optimal efficacy. Following this, efforts towards standardising 
horticultural and cannabis plant processing practices to ensure optimal and reproducible 
medicines can be directed towards a proven goal—a translational interface between medical 
science and horticulture.
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Abstract

Activation of cannabinoid receptors using systemic treatments produces analgesia in 
a variety of experimental pain models, but these effects are hindered by sedation and 
motor impairment mediated by receptors in the central nervous system. Targeting the 
endocannabinoid system in the periphery can bypass these unwanted side effects while 
still producing analgesia in both acute and chronic pain states. This chapter discusses the 
different approaches to increasing peripheral endocannabinoid activity in experimental 
models of acute and chronic pain, including inflammatory pain, neuropathic pain, and 
sickle cell disease. We also explore how these treatments alter nociceptive activity in the 
peripheral nervous system.

Keywords: pain, hyperalgesia, nociceptors, primary afferent nerve fibers, cannabinoids

1. Introduction

Although the cannabis plant (Cannabis sativa) has been used as a folk remedy to treat various 
ailments for thousands of years, it is only within the last century that its active components 
have been isolated and identified. While some of its effects are well documented, its impact 
on pain had been less clear due to confounding effects on mood, motor impairment, and 
sedation. Isolation of the psychoactive components of the cannabis plant and the develop-
ment of synthetic cannabinoid compounds enabled more rigorous testing. Identification of a 
cannabinoid receptor (CB1) in 1988 gave insight into the mechanisms of the cannabis effect, 
as did the discovery of endogenous ligands, referred to as endocannabinoids [1–4]. Studies 
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in rats showed that when applied intravenously or directly to the spinal cord, cannabinoid 
agonists attenuated responses to noxious mechanical and thermal stimulation in nocicep-
tive spinal neurons [5–7]. These early studies provided the first evidence of a direct effect of 
cannabinoids in pain inhibition and led to further investigations to identify the mechanisms 
underlying cannabinoid effects on neuronal activity.

The endogenous cannabinoid system consists of two well-characterized receptor subtypes, 
CB1 and CB2, and their endogenous ligands, from which anandamide (AEA) and 2-arachi-
donoyl glycerol (2-AG) are the most studied [8–10]. Cannabinoid receptors are G-protein 
coupled, mainly to Gi/o, which inhibits adenylyl cyclase [3, 11], and voltage-dependent Ca2+ 
channels [12]. CB1 receptors are expressed primarily in the nervous system, but are also pres-
ent in non-neuronal tissues. CB2 receptors are mainly located peripherally, and are associated 
with modulation of immune cells [4, 13, 14]. Since CB receptors are widely distributed, their 
activation produces a wide variety of behavioral and physiological responses.

1.1. Role of the endocannabinoid system in anti-nociception and neuroprotection

Activation of cannabinoid receptors has been shown to produce anti-nociception in experi-
mental models of inflammatory pain, including formalin [15, 16], carrageenan [17–19], CFA, 
complete Freund’s adjuvant [20], and capsaicin [19, 21–24]. In addition, the administration 
of cannabinoid antagonists has been shown to enhance pain behavior in formalin and car-
rageenan models [15, 18], suggesting that tonic activation of cannabinoid receptors contributes 
to anti-nociception in response to inflammation. Systemic administration of cannabinoid ago-
nists has also been shown to attenuate neuropathic pain following peripheral nerve injury (CCI 
model [25], partial sciatic nerve ligation [26], spinal nerve injury [27], L5/L6 ligation [28, 29]), 
diabetic neuropathy (type 1 [30–32] and type 2 [32]), and chemotherapy induced peripheral 
neuropathy [33–36]. In humans, cannabinoid agonists attenuated post-operative pain [37] and 
also enhanced the analgesic efficacy of opioids [38]. Two small clinical evaluations of the effi-
cacy of (−)Δ9-tetrohydrocannabinol (THC), the main psychoactive compound of the cannabis 
plant, reported pain relief comparable to codeine [39, 40]. Unfortunately, higher doses tended 
to produce significant side effects including sedation, dizziness, ataxia and blurred vision.

In addition to anti-nociception, the endocannabinoid system has a neuroprotective function. 
In a model of cerebral ischemia, cannabinoid agonists, cannabidiol and THC attenuated toxic-
ity related to the activity of excitatory neurotransmitters in the rat cerebral cortex independent 
from CB1 and CB2 receptors [41]. Cannabidiol is known to have low affinity for cannabinoid 
receptors, and has also been shown to act as a negative allosteric modulator at the CB1 recep-
tor and a reverse agonist at the CB2 receptor [42, 43]. Another study reported the involvement 
of CB1 receptors in the reduction of neuronal loss [44]. Further, an in vitro study of hypoxic 
ischemia demonstrated a possible role for CB2 receptors [45]. The endogenous cannabinoid 
ligand, 2-AG, was shown to be neuroprotective in a model of traumatic brain injury, result-
ing in reduced edema and neuronal loss in the hippocampus [46]. Endocannabinoids have 
also been shown to protect against neurodegenerative diseases, including Alzheimer’s dis-
ease, where the inhibition of microglial activation may prevent pathological changes associ-
ated with beta amyloid [47]. There is also evidence that cannabinoids possess antioxidant 
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properties through the activity of cannabinoid receptors located on microglia, astrocytes, 
and other immune cells, where activation inhibits the release of pro-inflammatory substances  
[48–54]. Increased expression of CB2 on microglia and astrocytes has been observed in the 
area of lesion [54]. The administration of a CB2 agonist slowed the progression of amyotrophic 
lateral sclerosis in mice, and the activation of the endocannabinoid system protected against 
myelin degeneration in multiple sclerosis through a combination of immunosuppression and 
neuroprotection [55–57]. In studies of peripheral neuropathy produced by chemotherapy, 
WIN 55,212-2 prevented the development of neuropathy induced by cisplatin treatment [33], 
and when WIN 55,212-2 treatment was initiated after sciatic nerve ligation (CCI model of 
neuropathic pain), mechanical hyperalgesia failed to develop by 14 days post-injury [58].

2. Targeting the peripheral endocannabinoid system in chronic pain

A major limitation to the systemic use of cannabinoid agonists as treatment for chronic pain is 
that activation of cannabinoid receptors in the central nervous system is associated with unde-
sirable side effects, including sedation and catalepsy [59]. Targeting endocannabinoid activity 
in the peripheral nervous system bypasses these unwanted side effects while still producing 
analgesia in animal models of inflammatory pain, bone cancer pain, neuropathic pain and 
sickle cell disease. Continued research into the specific mechanisms of analgesia produced 
by activation of the endocannabinoid system in the periphery could identify new targets for 
pain which could serve as stand-alone therapies or be integrated into a multifaceted treatment 
approach. This chapter will review studies that have investigated the analgesic effects of treat-
ments that target the peripheral endocannabinoid system, whether through direct activation 
of cannabinoid receptors or through modulation of endocannabinoid metabolism.

2.1. Synthetic cannabinoids in rodent models of pain: inflammation, bone cancer 
pain, neuropathic pain and sickle cell disease

Local administration of cannabinoid receptor agonists, as opposed to systemic treatment, can 
produce analgesia without centrally-mediated side effects. Intraplantar administration of the 
non-selective cannabinoid receptor agonist WIN 55,212–2 attenuated heat and mechanical 
hyperalgesia in an acute cutaneous heat injury model in rats. This was blocked by a CB1 recep-
tor antagonist, and partially blocked by a CB2 receptor antagonist, suggesting that while both 
receptor subtypes play a role in anti-nociception during acute pain, the effect was primarily 
mediated through activation of CB1 receptors [60]. WIN 55,212–2 also decreased mechanical 
hyperalgesia in the tumor-bearing hind paw in a mouse model of bone cancer pain [61]. The 
anti-hyperalgesic effect was mediated by both CB1 and CB2 receptors. Importantly, intra-
plantar administration did not induce catalepsy, which normally occurs when cannabinoid 
agonists are injected systemically and can confound behavioral measures of nociception [62]. 
Recordings from the tibial nerve of tumor-bearing mice showed that intraplantar WIN 55,212-2 
attenuated sensitization of C-fiber nociceptors as evidenced by a decrease in spontaneous dis-
charge and reduced responses evoked by mechanical stimuli responses evoked by mechanical 
stimulation, effects which were blocked by both CB1 and CB2 antagonists [63] (Figure 1).
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In a model of inflammatory pain, intraplantar administration of the non-selective cannabi-
noid receptor agonist CP 55,940 attenuated CFA-induced hyperalgesia in mice expressing 
human sickle hemoglobin (BERK and hBERK1) as well as controls expressing normal human 
hemoglobin (HbA-BERK) [64].

Figure 1. Effect of non-selective cannabinoid receptor agonist WIN 55,212-2 on responses of C-fiber nociceptors evoked 
by suprathreshold mechanical stimulation. (A) Representative examples of nociceptor responses evoked by 147 mN 
before injection and at 15, 30, 45 and 60 min after intraplantar administration of vehicle or WIN 55,212-2 alone or 
preceded by the CB1 receptor antagonist AM281 or CB2 antagonist AM630. The time of application of the stimulus is 
shown at the bottom of each column. (B) Mean (±SEM) number of evoked impulses before and at 15, 30, 45 and 60 min 
after intraplantar administration of vehicle, WIN 55,212–2, WIN 55,212–2 + AM281, and WIN 55,212–2 + AM630. Evoked 
responses were not changed following injection of vehicle but decreased following WIN 55,212-2. This was blocked by 
pretreatment with AM281 or AM630. * p < .05, ** p ≤ .01, *** p < .001 vs. WIN 55,212–2; ### p < .001 vs. pre-injection value 
(from Uhelski et al. [63]).
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The analgesic effect of intraplantar WIN 55,212-2 showed more variability in models of neu-
ropathic pain. In a sciatic nerve ligation model, only the highest dose tested (250 μg) pro-
duced an anti-hyperalgesic effect, but the injection altered withdrawal latencies to heat and 
mechanical response thresholds in both the treated and non-treated hind paw, suggesting 
that the drug effect was not limited to the periphery [65]. This effect was also seen in rats 
with partial sciatic nerve ligation (Seltzer model of neuropathic pain); however, the effect 
was blocked by the intraplantar administration of a CB1 antagonist but not when that same 
antagonist was administered by the intrathecal route [26], indicating that the ability of WIN 
55,212-2 to produce anti-nociception in the contralateral paw is not necessarily mediated by 
activation of CB1 receptors in the central nervous system. In a rat model of chemotherapy-
induced peripheral neuropathy produced by paclitaxel treatment, intraplantar administration 
of WIN 55,212-2 had no effect on mechanical or heat hyperalgesia, whereas systemic treat-
ment produced anti-nociception [65]. In contrast, intraplantar administration of WIN 55,212-2 
attenuated mechanical allodynia associated with streptozotocin-induced diabetic neuropathy 
[31]. A non-selective cannabinoid receptor agonist naphthalen-1-yl-(4-pentyloxynaphthalen-
1-yl)methanone, a novel compound which does not appear to cross the blood–brain barrier, 
reduced mechanical hyperalgesia in a rats with partial sciatic nerve ligation when adminis-
tered orally [66], indicating that peripherally-restricted activation of cannabinoid receptors 
can produce adequate analgesia with an oral dosing regimen.

Receptor-selective synthetic cannabinoids also produce analgesic effects. In rats given an intra-
plantar injection of CFA, arachidonyl-2′-chloroethylamide (ACEA) and (R)-(+)-methanandamide 
(methAEA), stable mimics of AEA that preferentially bind CB1 receptors, reduced mechani-
cal hyperalgesia and decreased evoked responses in Aδ-fiber nociceptors. The reduction in 
mechanical hyperalgesia was blocked by a CB1 receptor antagonist, but not by a CB2 antagonist. 
Notably, neither drug had any effect on mechanical withdrawal thresholds or paw withdrawal 
frequency in naïve rats, and no changes were seen in evoked responses of Aδ-fiber nociceptors 
isolated from nerves innervating normal, non-inflamed paws [67]. The CB1 receptor agonist 
arachidonylcyclopropylamide (ACPA) attenuated hyperalgesia in a mouse model of bone can-
cer pain [68].

Intraplantar administration of AM1241, which preferentially binds to the CB2 receptor, 
reduced withdrawal responses to noxious heat in naïve rats, and no central side effects were 
observed when this compound was administered systemically [69]. Intraplantar adminis-
tration of AM1241 reduced capsaicin-evoked nocifensive behaviors and hyperalgesia [70], 
reduced hyperalgesia and edema in carrageenan-induced inflammation [71], and reduced 
hyperalgesia in a mouse model of bone cancer pain [68].

The endocannabinoids AEA and 2-AG have also been assessed for their peripheral anti-
nociceptive properties. Intraplantar administration of AEA prevented the development of 
CFA-induced hyperalgesia and inflammation, while systemic administration of AEA had no 
effect [19]. This indicates that in order for AEA to inhibit the inflammatory pain that follows 
CFA injection, high levels of the drug must be present at the site of injury, which is difficult to 
achieve under normal conditions given that AEA has a short half-life due to rapid degradation 
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In a model of inflammatory pain, intraplantar administration of the non-selective cannabi-
noid receptor agonist CP 55,940 attenuated CFA-induced hyperalgesia in mice expressing 
human sickle hemoglobin (BERK and hBERK1) as well as controls expressing normal human 
hemoglobin (HbA-BERK) [64].
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preceded by the CB1 receptor antagonist AM281 or CB2 antagonist AM630. The time of application of the stimulus is 
shown at the bottom of each column. (B) Mean (±SEM) number of evoked impulses before and at 15, 30, 45 and 60 min 
after intraplantar administration of vehicle, WIN 55,212–2, WIN 55,212–2 + AM281, and WIN 55,212–2 + AM630. Evoked 
responses were not changed following injection of vehicle but decreased following WIN 55,212-2. This was blocked by 
pretreatment with AM281 or AM630. * p < .05, ** p ≤ .01, *** p < .001 vs. WIN 55,212–2; ### p < .001 vs. pre-injection value 
(from Uhelski et al. [63]).
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arachidonylcyclopropylamide (ACPA) attenuated hyperalgesia in a mouse model of bone can-
cer pain [68].

Intraplantar administration of AM1241, which preferentially binds to the CB2 receptor, 
reduced withdrawal responses to noxious heat in naïve rats, and no central side effects were 
observed when this compound was administered systemically [69]. Intraplantar adminis-
tration of AM1241 reduced capsaicin-evoked nocifensive behaviors and hyperalgesia [70], 
reduced hyperalgesia and edema in carrageenan-induced inflammation [71], and reduced 
hyperalgesia in a mouse model of bone cancer pain [68].

The endocannabinoids AEA and 2-AG have also been assessed for their peripheral anti-
nociceptive properties. Intraplantar administration of AEA prevented the development of 
CFA-induced hyperalgesia and inflammation, while systemic administration of AEA had no 
effect [19]. This indicates that in order for AEA to inhibit the inflammatory pain that follows 
CFA injection, high levels of the drug must be present at the site of injury, which is difficult to 
achieve under normal conditions given that AEA has a short half-life due to rapid degradation 
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by enzymes. Intraplantar AEA also inhibited capsaicin-induced edema and reduced forma-
lin-induced nociceptive behaviors via CB1 receptor activation [15, 19, 72]. Intraplantar AEA 
was far more effective at inhibiting formalin-induced behaviors than intravenous AEA [15]. 
Formalin-evoked behaviors were also inhibited by intraplantar administration of 2-AG, 
an effect blocked by a CB2 receptor antagonist but not a CB1 antagonist [73]. In rats with 
inflammation produced by carrageenan administration to the hind paw, evoked responses of 
nociceptive spinal dorsal horn neurons were reduced following intraplantar administration 
of AEA [74]. The reduction in evoked activity was blocked by a CB2 antagonist, but not a 
CB1 antagonist. Intraplantar administration of AEA did not produce any changes in evoked 
responses of spinal neurons in control rats. Intraplantar AEA decreased hyperalgesia in the 
tumor-bearing paw in a mouse model of bone cancer pain, and this was blocked by a CB1 
receptor antagonist [75]. Intraplantar 2-AG also decreased hyperalgesia in the tumor-bearing 
paw and the anti-hyperalgesia was mediated by CB2 receptors [76]. Intraplantar AEA has 
also been shown to decrease hyperalgesia following cisplatin treatment [77]. The mechanism 
of anti-nociception produced by AEA is complex, and the subtype of cannabinoid receptors 
involved in its effect seems to differ under acute and chronic pain states. AEA has strong anal-
gesic effects when applied to the site of inflammation or neuropathic pain; however, it should 
be noted that elevated levels of AEA can also increase excitability of nociceptors through 
activation of TRPV1 receptors that induces Ca2+ influx. This effect was shown in cultured 
dorsal root ganglion (DRG) neurons sensitive to heat stimulation [78]. It should also be noted 
that endocannabinoid interactions with ion channels and other binding sites separate from 
cannabinoid receptors can also produce changes in neuronal function.

In addition to direct cannabinoid receptor agonists, there are drugs which modify endocan-
nabinoid metabolism and thereby alter levels of endocannabinoids. For example, compounds 
that inhibit enzymes that break down endocannabinoids increase the amount of endocan-
nabinoids available for binding to cannabinoid receptors. URB597 ((3′-(aminocarbonyl)
[1,1′-biphenyl]-3-yl)-cyclohexylcarbamate) targets fatty acid amide hydrolase (FAAH), an 
enzyme which breaks down AEA. Intraplantar administration of URB597 decreased hyper-
algesia and C-fiber nociceptor sensitization in chemotherapy-induced peripheral neuropathy 
following cisplatin treatment, effects which were blocked by a CB1 receptor antagonist but 
not a CB2 antagonist. Biochemical analysis of skin showed that URB597 increased local levels 
of AEA without altering the levels of other endocannabinoids [79], indicating that increased 
activation of CB1 receptors by AEA was the source of decreased nociceptor excitability and 
analgesia. Intraplantar URB597 also decreased hyperalgesia and C-fiber nociceptor sensitiza-
tion in a transgenic mouse model of sickle cell disease (SCD, HbSS-BERK). These effects were 
also blocked by a CB1 receptor antagonist but not by a CB2 receptor antagonist (Figure 2). 
Importantly, intraplantar administration of URB597 still had an anti-hyperalgesic effect in 
sickle mice with CB2 receptors knocked out (HbSS-BERK-CBR2−/−, [80], confirming mediation 
by CB1 receptors.

Systemic application of URB937 (N-cyclohexyl-carbamic acid, 3′-(aminocarbonyl)-6-hydroxy 
[1,1′-biphenyl]-3-yl ester), a FAAH inhibitor that is restricted to the periphery and cannot cross 
the blood-brain barrier, produced analgesic effects in sciatic nerve ligation (Bennett model of 
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neuropathic pain) and carrageenan-induced inflammation in the affected hind paw, but did not 
alter responses on the non-affected hind paw [81, 82]. In cisplatin-treated mice, URB597 delayed 
and decreased the hyperalgesic effect of cisplatin [77]. Unfortunately, sustained pharmacologi-
cal inhibition of FAAH results in endocannabinoid catabolism by alternative pathways, which 
are not dependent upon FAAH [83], thus limiting their clinical effectiveness. FAAH knockout 
mice have elevated levels of N-acylethanolamines and N-acyl taurines, show reduced responses 
to noxious stimuli, and are hypersensitive to AEA [84].

Figure 2. (A) Intraplantar administration of the FAAH inhibitor URB597 decreased evoked responses in C-fiber 
nociceptors isolated from HbSS-BERK sickle mice. Data show the mean (±SEM) number of impulses evoked by 147 
mN before and at 30, 60, 90 and 120 min after various drug treatments. The number of evoked impulses was reduced 
following intraplantar administration of URB597 at 30, 60, 90, and 120 min post-injection, and this effect was blocked 
by the CB1 receptor antagonist AM281, but not CB2 receptor antagonist AM630. *p < .05, **p < .005, ***p ≤ .001 vs. the 
vehicle-treated group. ###p < .001 indicates significant differences from pre-injection value. (B) Representative examples 
of responses of individual C-fibers evoked by 147 mN for 5 s before (pre-injection) and at 30, 60, 90 and 120 min after 
intraplantar injection of vehicle, URB597, URB597 + AM281, and URB597 + AM630. The time of mechanical stimulation 
is illustrated at the bottom of each column. Reproduced from Uhelski et al. [80].
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following cisplatin treatment, effects which were blocked by a CB1 receptor antagonist but 
not a CB2 antagonist. Biochemical analysis of skin showed that URB597 increased local levels 
of AEA without altering the levels of other endocannabinoids [79], indicating that increased 
activation of CB1 receptors by AEA was the source of decreased nociceptor excitability and 
analgesia. Intraplantar URB597 also decreased hyperalgesia and C-fiber nociceptor sensitiza-
tion in a transgenic mouse model of sickle cell disease (SCD, HbSS-BERK). These effects were 
also blocked by a CB1 receptor antagonist but not by a CB2 receptor antagonist (Figure 2). 
Importantly, intraplantar administration of URB597 still had an anti-hyperalgesic effect in 
sickle mice with CB2 receptors knocked out (HbSS-BERK-CBR2−/−, [80], confirming mediation 
by CB1 receptors.

Systemic application of URB937 (N-cyclohexyl-carbamic acid, 3′-(aminocarbonyl)-6-hydroxy 
[1,1′-biphenyl]-3-yl ester), a FAAH inhibitor that is restricted to the periphery and cannot cross 
the blood-brain barrier, produced analgesic effects in sciatic nerve ligation (Bennett model of 
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neuropathic pain) and carrageenan-induced inflammation in the affected hind paw, but did not 
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are not dependent upon FAAH [83], thus limiting their clinical effectiveness. FAAH knockout 
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to noxious stimuli, and are hypersensitive to AEA [84].
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nociceptors isolated from HbSS-BERK sickle mice. Data show the mean (±SEM) number of impulses evoked by 147 
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vehicle-treated group. ###p < .001 indicates significant differences from pre-injection value. (B) Representative examples 
of responses of individual C-fibers evoked by 147 mN for 5 s before (pre-injection) and at 30, 60, 90 and 120 min after 
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Monoacylglycerol lipase (MAGL) is an enzyme that breaks down 2-AG. Inhibition of MAGL 
 produces analgesia under inflammatory conditions. Intraplantar administration of MAGL-
inhibitor URB602 (N-[1,1’-Biphenyl]-3-yl-carbamic acid, cyclohexyl ester) attenuated formalin-
evoked nociceptive behaviors [73]. Combining URB602 with 2-AG enhanced the anti-nociceptive 
effects of each [73]. The effect of URB602 was blocked by both CB1 and CB2 antagonists, whereas 
the effects of 2-AG were only blocked by a CB2 antagonist, suggesting that the URB602 does not 
behave as selective and/or potent inhibitor of MAGL [85] and that its effects are not dependent 
on only 2-AG, but may involve the inhibition of FAAH as well. In a mouse model of bone cancer 
pain, JZL184, a selective MAGL inhibitor, attenuated hyperalgesia in the tumor-bearing hind paw 
[76]. JZL184 elevates levels of 2-AG but not AEA following acute systemic administration, and the 
anti-hyperalgesic effect was shown to be dependent on CB2 (but not CB1) receptors. In contrast, 
intraplantar injection of JZL184 in cisplatin-treated mice decreased hyperalgesia by inhibiting 
both MAGL and FAAH and normalizing 2-AG and AEA levels in the plantar skin and DRG [86].

2.2. Mechanisms underlying peripheral effects of endocannabinoids

There is a large body of evidence demonstrating that activation of cannabinoid receptors in 
the periphery produces analgesia. This effect appears to be the result of decreased nocicep-
tor excitability, and there are several mechanisms that could contribute to this effect. These 
include direct activation of cannabinoid receptors that are expressed by nociceptors as well 
as activation of cannabinoid receptors expressed in the surrounding non-neuronal tissue that 
indirectly modulate neuronal excitability.

Studies of mRNA and protein expression have identified CB1 receptors on nociceptive neu-
rons, and selectively knocking out CB1 receptors in Nav1.8-expressing neurons increased sen-
sitivity to noxious heat, enhanced CFA-induced inflammation, and decreased the analgesic 
effect of WIN 55,212-2 [87–89]. Further, blocking either CB1 or CB2 receptors in the periphery 
inhibited the anti-nociceptive effect of systemic WIN 55,212-2 to the same degree, suggesting 
that peripheral cannabinoid receptors are a major site of action for cannabinoid receptor-
mediated analgesia [90]. The application of cannabinoid agonist WIN 55, 212–2 and CP 55,940 
to cultured primary afferent neurons reduced evoked Ca2+ influx in intermediate-diameter 
neurons, but not small-diameter neurons, though immunoreactivity for CB1 was detected in 
both cell populations [12, 91]. This indicates that reduction of calcium influx is just one of the 
inhibitory actions that can result from CB1 activation. Activation of CB1 receptors has also 
been shown to inhibit the release of calcitonin gene-related peptide (CGRP) from the nerve 
terminals of nociceptive primary afferent fibers in isolated skin from the rat hind paw [19], 
which could lead to reduced nociceptor excitability.

Expression of cannabinoid receptors can be modified in chronic pain states, which can enhance 
the effects of cannabinoid agonists. In a mouse model of bone cancer pain, the DRG ipsilat-
eral to the tumor-bearing hind paw showed increased expression of CB1 receptors. Enhanced 
CB1 receptor expression in the DRG may explain why small-diameter neurons co-cultured 
with cancer cells were responsive to CB1 receptor agonists (which attenuated evoked calcium 
influx), while small-diameter DRG neurons in naïve mice were not [75] (Figure 3).
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CB2 receptor mRNA and protein are increased in the lumbar DRG after spinal nerve liga-
tion (SNL) or CCI (Bennett model of neuropathic pain), but not CFA-induced inflammation 
[92]. The effect appears to be localized to microglia [92, 93], though there is some evidence 
of enhanced neuronal expression after SNL, including increased expression in the nerve 
proximal to the ligation [94]. In a mouse model of bone cancer pain, tumors showed high 
levels of CB2 receptor protein levels, and CB2 receptor proteins were also elevated in 
plantar skin of the tumor-bearing hind paw [76]. Taken together, these results support to 
the notion that endocannabinoid-mediated inhibition of peripheral nociceptor activity is 
necessary to prevent exaggerated responses to noxious stimuli and that tonic activation of 
endocannabinoids aids in suppressing pain, inflammation, and nociceptor sensitization 
after injury. Further evidence is shown by differences in levels of endocannabinoids in 
naïve, acute inflammation, and chronic pain conditions. In models of chronic pain from 
bone cancer and chemotherapy-induced peripheral neuropathy, the level of AEA was 
decreased in the skin of the plantar hind paw due to increased FAAH mRNA expres-
sion and AEA uptake in DRG neurons ipsilateral to a tumor-bearing hind paw [75, 95]. In 
cisplatin-treated mice, expression of 2-AG and AEA are both decreased in the plantar skin 
and DRG [86].

Figure 3. Small DRG neurons (<500 μm2) isolated from DRG L3-L5 of tumor-bearing mice and maintained in vitro 
in control medium for 20–28 h exhibited a change in sensitivity to the CB1 agonist ACEA. (A) The trace represents 
cannabinoid agonist inhibition of the Ca2+ transient evoked by brief superfusion with KCl (50 mM, 10 s, arrows). 
ACEA (1 μM) was included in the superfusate following the first test with KCl. (B) ACEA attenuated the Ca2+ transient 
evoked by KCl (50 mM) in neurons isolated from L3-L5 DRGs of tumor-bearing mice, but not in those from naïve mice. 
Involvement of CB1 receptors in the response to ACEA was confirmed by blocking the inhibitory effect by co-application 
of the CB1 receptor antagonist SR141716A (SR, 1 μM). Relative response was defined as the amplitude of the response of 
a neuron to KCl in the presence of ACEA divided by the amplitude of the response in the absence of ACEA. *Significantly 
different at p < 0.001; #significantly different at p < 0.01 (one-way ANOVA with Tukey’s multiple comparisons test). 
Reproduced from Khasabova et al. [75].
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Monoacylglycerol lipase (MAGL) is an enzyme that breaks down 2-AG. Inhibition of MAGL 
 produces analgesia under inflammatory conditions. Intraplantar administration of MAGL-
inhibitor URB602 (N-[1,1’-Biphenyl]-3-yl-carbamic acid, cyclohexyl ester) attenuated formalin-
evoked nociceptive behaviors [73]. Combining URB602 with 2-AG enhanced the anti-nociceptive 
effects of each [73]. The effect of URB602 was blocked by both CB1 and CB2 antagonists, whereas 
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behave as selective and/or potent inhibitor of MAGL [85] and that its effects are not dependent 
on only 2-AG, but may involve the inhibition of FAAH as well. In a mouse model of bone cancer 
pain, JZL184, a selective MAGL inhibitor, attenuated hyperalgesia in the tumor-bearing hind paw 
[76]. JZL184 elevates levels of 2-AG but not AEA following acute systemic administration, and the 
anti-hyperalgesic effect was shown to be dependent on CB2 (but not CB1) receptors. In contrast, 
intraplantar injection of JZL184 in cisplatin-treated mice decreased hyperalgesia by inhibiting 
both MAGL and FAAH and normalizing 2-AG and AEA levels in the plantar skin and DRG [86].

2.2. Mechanisms underlying peripheral effects of endocannabinoids

There is a large body of evidence demonstrating that activation of cannabinoid receptors in 
the periphery produces analgesia. This effect appears to be the result of decreased nocicep-
tor excitability, and there are several mechanisms that could contribute to this effect. These 
include direct activation of cannabinoid receptors that are expressed by nociceptors as well 
as activation of cannabinoid receptors expressed in the surrounding non-neuronal tissue that 
indirectly modulate neuronal excitability.

Studies of mRNA and protein expression have identified CB1 receptors on nociceptive neu-
rons, and selectively knocking out CB1 receptors in Nav1.8-expressing neurons increased sen-
sitivity to noxious heat, enhanced CFA-induced inflammation, and decreased the analgesic 
effect of WIN 55,212-2 [87–89]. Further, blocking either CB1 or CB2 receptors in the periphery 
inhibited the anti-nociceptive effect of systemic WIN 55,212-2 to the same degree, suggesting 
that peripheral cannabinoid receptors are a major site of action for cannabinoid receptor-
mediated analgesia [90]. The application of cannabinoid agonist WIN 55, 212–2 and CP 55,940 
to cultured primary afferent neurons reduced evoked Ca2+ influx in intermediate-diameter 
neurons, but not small-diameter neurons, though immunoreactivity for CB1 was detected in 
both cell populations [12, 91]. This indicates that reduction of calcium influx is just one of the 
inhibitory actions that can result from CB1 activation. Activation of CB1 receptors has also 
been shown to inhibit the release of calcitonin gene-related peptide (CGRP) from the nerve 
terminals of nociceptive primary afferent fibers in isolated skin from the rat hind paw [19], 
which could lead to reduced nociceptor excitability.

Expression of cannabinoid receptors can be modified in chronic pain states, which can enhance 
the effects of cannabinoid agonists. In a mouse model of bone cancer pain, the DRG ipsilat-
eral to the tumor-bearing hind paw showed increased expression of CB1 receptors. Enhanced 
CB1 receptor expression in the DRG may explain why small-diameter neurons co-cultured 
with cancer cells were responsive to CB1 receptor agonists (which attenuated evoked calcium 
influx), while small-diameter DRG neurons in naïve mice were not [75] (Figure 3).
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cannabinoid agonist inhibition of the Ca2+ transient evoked by brief superfusion with KCl (50 mM, 10 s, arrows). 
ACEA (1 μM) was included in the superfusate following the first test with KCl. (B) ACEA attenuated the Ca2+ transient 
evoked by KCl (50 mM) in neurons isolated from L3-L5 DRGs of tumor-bearing mice, but not in those from naïve mice. 
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Reproduced from Khasabova et al. [75].
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3. Conclusions

Concerns about the safety of commonly used analgesic drugs have hindered the treatment 
of patients with chronic pain. Continued exploration of mechanisms underlying nociceptive 
processing under naïve, acute and chronic pain states has helped identify specific targets for 
the development of new treatment approaches that could solve some of the problems associ-
ated with chronic use of opiates and NSAIDs. This includes the use of drugs which target 
the endocannabinoid system. Early investigations identified problems with the systemic use 
of compounds derived from the cannabis plant, including sedation, mood alterations, and 
motor effects, a direct consequence of binding to cannabinoid receptors in the brain. By target-
ing the peripheral endocannabinoid system, the negative side effects of cannabinoids can be 
bypassed, providing analgesia without impairment of normal function. Work with animal 
models has shown that activation of cannabinoid receptors in the periphery can be useful for 
a wide variety of pain conditions, including inflammation, bone cancer pain, chemotherapy-
induced peripheral neuropathy, and sickle cell disease. Analgesia can be achieved through 
direct receptor activation or through the restoration of endocannabinoid levels, both of which 
decrease signs of sensitization in peripheral nociceptors. Thus, specific treatments could 
target known alterations in endocannabinoid levels associated with different chronic pain 
conditions. Drugs targeting the peripheral endocannabinoid system could be used as effective 
analgesics or in combination with currently available therapies to maximize pain relief while 
minimizing harmful side effects.
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3. Conclusions

Concerns about the safety of commonly used analgesic drugs have hindered the treatment 
of patients with chronic pain. Continued exploration of mechanisms underlying nociceptive 
processing under naïve, acute and chronic pain states has helped identify specific targets for 
the development of new treatment approaches that could solve some of the problems associ-
ated with chronic use of opiates and NSAIDs. This includes the use of drugs which target 
the endocannabinoid system. Early investigations identified problems with the systemic use 
of compounds derived from the cannabis plant, including sedation, mood alterations, and 
motor effects, a direct consequence of binding to cannabinoid receptors in the brain. By target-
ing the peripheral endocannabinoid system, the negative side effects of cannabinoids can be 
bypassed, providing analgesia without impairment of normal function. Work with animal 
models has shown that activation of cannabinoid receptors in the periphery can be useful for 
a wide variety of pain conditions, including inflammation, bone cancer pain, chemotherapy-
induced peripheral neuropathy, and sickle cell disease. Analgesia can be achieved through 
direct receptor activation or through the restoration of endocannabinoid levels, both of which 
decrease signs of sensitization in peripheral nociceptors. Thus, specific treatments could 
target known alterations in endocannabinoid levels associated with different chronic pain 
conditions. Drugs targeting the peripheral endocannabinoid system could be used as effective 
analgesics or in combination with currently available therapies to maximize pain relief while 
minimizing harmful side effects.
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Since there is increasing evidence that cannabis-based medicine (CBM) is effective in the 
treatment of TS, an involvement of the endocannabinoid system in the pathophysiology 
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1. Introduction

1.1. Symptoms of Tourette syndrome

Tourette syndrome (TS) is a childhood onset neuropsychiatric disorder that is present in 
approximately 1% of the population [1]. For unknown reasons, it occurs 3–4 times more often 
in men than in women. To fulfill the diagnostic criteria for TS, multiple motor and at least one 
vocal tic must be present for a minimal period of 1 year before 18 years of age.

Tics are sudden, repetitive involuntary movements or vocalizations. Both vocal and motor 
tics can be further differentiated into a simple or complex presentation. Simple motor tics 
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1.1. Symptoms of Tourette syndrome

Tourette syndrome (TS) is a childhood onset neuropsychiatric disorder that is present in 
approximately 1% of the population [1]. For unknown reasons, it occurs 3–4 times more often 
in men than in women. To fulfill the diagnostic criteria for TS, multiple motor and at least one 
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involve only one group of muscles in a brief jerk-like movement, with examples such as eye 
blinking, head jerking or shoulder shrugging. Complex motor tics, on the contrary, involve 
multiple groups of muscles or resemble purposeful movements. Examples of complex motor 
tics are as follows: touching people or objects, echopraxia (mirroring another person’s actions) 
or copropraxia (involuntary performing of obscene gestures). Simple vocal tics are short 
vocalizations, for example throat clearing, sniffing or grunting. Complex vocal tics involve 
the involuntary production of words or entire sentences, for example echolalia (repeating 
another person’s words), palilalia (repeating one’s own words) and coprolalia (involuntary 
pronunciation of obscene words). Although coprolalia is often associated with TS, it is only 
present in approximately 10% of patients [2]. The majority of patients report a premonitory 
urge that proceeds the tics. This is often described as an “uncomfortable” physical sensation 
located in a particular body part or as a more generalized feeling [3]. Most (adult) patients are 
able to control their tics for a short period of time.

In almost 90% of TS patients, tics are accompanied by other co-occurring psychiatric disor-
ders such as attention deficit/hyperactivity disorder (ADHD), obsessive–compulsive disorder 
(OCD), self-injurious behaviors (SIB), anxiety disorders and depression [4].

1.2. Course and causes of Tourette syndrome

Tics typically first emerge between 5 and 7 years of age and increase in severity until they 
reach a peak in early adolescence (most often at the age of 10–12 years). After this worst-ever 
period, tics—in most cases—decrease until a mild to minimal degree of severity is reached 
in early adulthood [5]. At the same time, TS is characterized by spontaneous fluctuations and 
waxing and waning over time. The occurrence of tics is influenced by various environmental 
factors. While the majority of patients experience fewer tics when relaxing or concentrating 
(e.g. when practicing sports, playing musical instruments or computer games), tics often 
increase with stress, tiredness and infections.

To date, no single cause of TS was identified; instead, several lines of evidence suggested that 
TS is caused by an interplay between genetic [6] and environmental factors [7]. For example, 
there is clear evidence that prenatal and perinatal complications including low birth weight 
and maternal smoking during pregnancy [8, 9] may represent such epigenetic factors. In 
contrast, the influence of infections [7] and immunological factors [10] is still unclear. As for 
the pathophysiology of TS, most studies suggest a major involvement of the dopaminergic 
system [11–17]; however, several other neurotransmitter systems might play a role including 
the serotonergic [12, 18], histaminergic [19], glutamatergic [20], GABAergic [21], cholinergic 
[22], and noradrenergic systems [23]. Furthermore, it is believed that disturbances of cortico-
striato-thalamo-cortical (CSTC) pathways play a role in the generation of tics [24].

1.3. Treatment of Tourette syndrome

Both European [25–27] as well as Canadian [28] treatment guidelines for TS recommend appli-
cation of behavioral psychotherapy techniques (either habit reversal training or exposure and 
response prevention training), pharmacotherapy and, in otherwise treatment resistant very 
severely affected patients, surgical intervention using deep brain stimulation. Like in the case 
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of many psychiatric disorders, treatment is only available on a symptomatic level. Available 
treatments for TS alleviate symptoms to more tolerable degree quite successfully, but cannot 
eradicate tics completely. However, treatment for tics is not necessary in all cases, but should 
be taken into consideration, when tics interfere with daily life functions or cause significant 
emotional distress. The drugs most often used in the treatment of tics are atypical antipsy-
chotics including aripiprazole, risperidone, sulpiride, and (in Germany) tiapride. If these 
drugs are not effective or not well tolerated, only few alternative options remain, including 
alpha-2-agonists (in case of comorbid ADHD), topiramate, tetrabenazine and, rarely, botuli-
num toxin. While the antipsychotics are by far the most widely used drugs for the treatment 
of TS, they bring along considerable side effects load such as sedation, weight gain, metabolic 
changes, and acute dyskinesia [25].

In summary, a large number of patients with TS are unsatisfied with available treatments—
either due to insufficient efficacy or because of clinically relevant side effects—and therefore, 
further treatment alternatives need to be developed.

2. Possible role of the endocannabinoid system in Tourette 
syndrome

The main function of the central endocannabinoid system (ECS) is inhibitory modulation of 
other neurotransmitter systems. Among other brain regions, cannabinoid type 1 receptors 
(CB1) are expressed with high density in the basal ganglia [29] indicating a paramount role of 
the ECS in the control of movements. In TS, there is substantial evidence for an involvement of 
the dopaminergic system. However, until today it is unclear, whether these alterations repre-
sent the primary cause of the disease or are related to secondary or compensatory changes. In 
addition to the dopaminergic hypothesis in TS, changes in several other transmitter systems 
have been suggested including the glutamatergic, GABAergic, serotonergic, noradrenergic 
and histaminergic systems. Since the ECS is a highly important modulatory system in the brain 
that influences and controls all important neurotransmitter systems, it can be speculated that 
TS might be caused by a dysfunction in the ECS system. This hypothesis is in line with studies 
reporting about an involvement of several different neurotransmitter systems in TS. In addi-
tion, alterations within the ECS would explain the complex clinical presentation of TS includ-
ing both hyperkinetic movements with tics and a large variety of psychiatric manifestations.

Noteworthy, there is a strong interaction between the dopaminergic and the ECS [29, 30], 
particularly in basal ganglia regions including the striatum [31] and the globus pallidus [32]. 
Since there is substantial evidence for an involvement of the dopaminergic system in the 
pathobiology of TS, it, therefore, can also be speculated that CBM may inhibit dopaminergic 
activity in brain areas associated with motor control resulting in a reduction of hyperkinetic 
movements such as tics [33]. However, one might also speculate that the modulation of 
other neurotransmitter systems including glutamate and GABA might result in a reduction 
of tics.

Until today, only one neuroimaging study has been performed using single photon emission 
computed tomography (SPECT) and [123I]AM281 to investigate the ECS in patients with TS [34].  
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In this study, it could be demonstrated that CB1 receptor binding is reduced after treatment 
with THC. Since in this study, no control group has been included, no statement is possible, 
whether CB1 receptor binding is changed in patients with TS. So far, genetic analyses failed to 
demonstrate any genetic variations in the cannabinoid receptor gene (CNR1) in TS [35].

3. Cannabis-based medicine in patients with Tourette syndrome

3.1. Retrospective reports on self-medication

A substantial number of patients with TS report using cannabis illegally in order to improve 
their tics or comorbid psychiatric disorders. While doing so, most of these patients rely on 
their own judgment and self-medicate without a proper consultation with their treating phy-
sician. Such an observation was first described in two small case series published in 1988 and 
1993 [36]. Sandyk et al. [37] described three male patients, who benefitted both in terms of 
tics and comorbid psychiatric symptoms after smoking 0.5–2 marijuana cigarettes per day. 
Hemming et al. [36] reported a case of a 36-year-old man, who smoked a marijuana cigarette 
every day and claimed to be symptom-free for 1 year. More recently, Müller-Vahl et al. [38] 
conducted a retrospective survey about self-medication with cannabis in 64 patients with TS 
seen at a specialized Tourette outpatient clinic in Germany. Seventeen patients indicated to 
use marijuana illegally as self-treatment for their symptoms, and 14 of them reported ben-
eficial effects not only on tics, but also on different comorbidities. Interestingly, none of the 
patients reported clinically relevant adverse events (AEs) or a deterioration of tics after the 
use of marijuana. This effect was not influenced by concomitant use of antipsychotics or selec-
tive serotonin reuptake inhibitors (SSRIs).

Finally, Abi-Jaoude et al. [39] in Canada reported results from a retrospective analysis inves-
tigating efficacy and safety of smoked cannabis in 19 adults with TS. Patients experienced an 
average improvement of their tic severity measured with the Total Tic Score (TTS) of the Yale 
Global Tic Severity Scale (YGTSS) of approximately 60%. Altogether, 18 out of 19 patients 
experienced an improvement of their TS symptoms. All patients included in this study had 
used cannabis for self-medication for more than 1 year. Most often reported AEs were a feel-
ing of “being high”, decreased concentration, increased anxiety, increased appetite, seda-
tion, irritability, dry mouth, and dry eyes. However, no serious adverse events (SAEs) were 
reported.

3.2. Prospective case studies using different cannabis-based medicines

To date, there is a small number of prospective case studies available providing increasing 
evidence that CBM might be effective and well tolerated in adults with TS. Interestingly, in 
these case reports, different CBMs have been used. While most of these studies report about 
beneficial effects in adults, only very recently, first promising case reports in minors have 
been published.
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3.2.1. Case studies using tetrahydrocannabinol

In 1999, Müller-Vahl et al. [40] published the first case of a 25-year old patient with TS treated 
with oral tetrahydrocannabinol (THC). This patient suffered from a complex TS and a number 
of additional psychiatric disorders such as ADHD, obsessive–compulsive behavior (OCB), 
SIB, anxiety disorder, and impulsivity. According to the patient’s report, self- medication 
with smoked cannabis (2–3 g/day) caused a clinically relevant improvement of all these 
symptoms. Therefore, the patient was prospectively treated once with a single dose of 10 mg 
THC. This resulted in a significant reduction of tics of about 80% as well as an improvement 
in attention, impulse control, OCB, and premonitory urges. In addition, neuropsychological 
tests showed improvements in signal detection, sustained attention, and reaction time in the 
absence of AEs.

The same group described another case of a 24-year old female, who had an improvement of 
tics and premonitory urges after combined therapy of THC and the antipsychotic amisulpride 
[41]. The patient did far better on this combination than on monotherapy with either THC or 
amisulpride.

In addition, in 2011, Brunnauer et al. [42] reported the case of a 42-year-old male with TS, 
who suffered from multiple motor and vocal tics as well as OCB. Treatment with 15 mg THC 
resulted in a 75% tic reduction. As this patient was a professional driver, his driving abilities 
were assessed by professional computerized tests. Interestingly, the patient’s concentration 
and visual abilities improved after THC administration.

Finally, Jakubovski and Müller-Vahl [43] reported about a 16-year old patient with vocal tics 
resembling stuttering-like phenomena accompanied by multiple simple and complex vocal 
tics as well as simple motor tics. Apart from tics, he was also experiencing further psychiat-
ric problems including rage attacks, sleeping problems, tic-related anxiety and shame about 
speaking in public, depressed mood, and OCB (e.g., ordering of pencils, not just right feeling, 
and rumination) resulting in difficulties concentrating. Due to treatment resistance and intol-
erable AEs after established therapeutic interventions, it was decided to implement treatment 
with vaporized THC (up to a maximum dose of 22.4–33.6 mg THC/day). This leads to an 
improvement of his tics including complex vocal tics resulting in improved speech fluency. 
Moreover, coexisting psychiatric conditions improved.

3.2.2. Case studies using nabiximols

The first case report about effective treatment with nabiximols in a patient with TS was pub-
lished by Trainor et al. [44] in 2016. This 26-year-old male suffered from treatment-resistant 
TS with severe motor and vocal tics, OCD, SIB, and depression. Administration of 4 puffs 
nabiximols (=10.8 mg of THC and 10 mg cannabidiol (CBD)) resulted in a 85% reduction of 
motor and 90% reduction of vocal tics after 4 weeks of treatment measured via the Rush Video 
Tape Rating Scale [45] and a 35% tic improvement according to the YGTSS-TTS. No AEs were 
reported.
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conducted a retrospective survey about self-medication with cannabis in 64 patients with TS 
seen at a specialized Tourette outpatient clinic in Germany. Seventeen patients indicated to 
use marijuana illegally as self-treatment for their symptoms, and 14 of them reported ben-
eficial effects not only on tics, but also on different comorbidities. Interestingly, none of the 
patients reported clinically relevant adverse events (AEs) or a deterioration of tics after the 
use of marijuana. This effect was not influenced by concomitant use of antipsychotics or selec-
tive serotonin reuptake inhibitors (SSRIs).

Finally, Abi-Jaoude et al. [39] in Canada reported results from a retrospective analysis inves-
tigating efficacy and safety of smoked cannabis in 19 adults with TS. Patients experienced an 
average improvement of their tic severity measured with the Total Tic Score (TTS) of the Yale 
Global Tic Severity Scale (YGTSS) of approximately 60%. Altogether, 18 out of 19 patients 
experienced an improvement of their TS symptoms. All patients included in this study had 
used cannabis for self-medication for more than 1 year. Most often reported AEs were a feel-
ing of “being high”, decreased concentration, increased anxiety, increased appetite, seda-
tion, irritability, dry mouth, and dry eyes. However, no serious adverse events (SAEs) were 
reported.

3.2. Prospective case studies using different cannabis-based medicines

To date, there is a small number of prospective case studies available providing increasing 
evidence that CBM might be effective and well tolerated in adults with TS. Interestingly, in 
these case reports, different CBMs have been used. While most of these studies report about 
beneficial effects in adults, only very recently, first promising case reports in minors have 
been published.
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3.2.1. Case studies using tetrahydrocannabinol

In 1999, Müller-Vahl et al. [40] published the first case of a 25-year old patient with TS treated 
with oral tetrahydrocannabinol (THC). This patient suffered from a complex TS and a number 
of additional psychiatric disorders such as ADHD, obsessive–compulsive behavior (OCB), 
SIB, anxiety disorder, and impulsivity. According to the patient’s report, self- medication 
with smoked cannabis (2–3 g/day) caused a clinically relevant improvement of all these 
symptoms. Therefore, the patient was prospectively treated once with a single dose of 10 mg 
THC. This resulted in a significant reduction of tics of about 80% as well as an improvement 
in attention, impulse control, OCB, and premonitory urges. In addition, neuropsychological 
tests showed improvements in signal detection, sustained attention, and reaction time in the 
absence of AEs.

The same group described another case of a 24-year old female, who had an improvement of 
tics and premonitory urges after combined therapy of THC and the antipsychotic amisulpride 
[41]. The patient did far better on this combination than on monotherapy with either THC or 
amisulpride.

In addition, in 2011, Brunnauer et al. [42] reported the case of a 42-year-old male with TS, 
who suffered from multiple motor and vocal tics as well as OCB. Treatment with 15 mg THC 
resulted in a 75% tic reduction. As this patient was a professional driver, his driving abilities 
were assessed by professional computerized tests. Interestingly, the patient’s concentration 
and visual abilities improved after THC administration.

Finally, Jakubovski and Müller-Vahl [43] reported about a 16-year old patient with vocal tics 
resembling stuttering-like phenomena accompanied by multiple simple and complex vocal 
tics as well as simple motor tics. Apart from tics, he was also experiencing further psychiat-
ric problems including rage attacks, sleeping problems, tic-related anxiety and shame about 
speaking in public, depressed mood, and OCB (e.g., ordering of pencils, not just right feeling, 
and rumination) resulting in difficulties concentrating. Due to treatment resistance and intol-
erable AEs after established therapeutic interventions, it was decided to implement treatment 
with vaporized THC (up to a maximum dose of 22.4–33.6 mg THC/day). This leads to an 
improvement of his tics including complex vocal tics resulting in improved speech fluency. 
Moreover, coexisting psychiatric conditions improved.

3.2.2. Case studies using nabiximols

The first case report about effective treatment with nabiximols in a patient with TS was pub-
lished by Trainor et al. [44] in 2016. This 26-year-old male suffered from treatment-resistant 
TS with severe motor and vocal tics, OCD, SIB, and depression. Administration of 4 puffs 
nabiximols (=10.8 mg of THC and 10 mg cannabidiol (CBD)) resulted in a 85% reduction of 
motor and 90% reduction of vocal tics after 4 weeks of treatment measured via the Rush Video 
Tape Rating Scale [45] and a 35% tic improvement according to the YGTSS-TTS. No AEs were 
reported.
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Another single case study using nabiximols was reported by Kanaan et al. [46]. This was a 
22-year-old male with complex and severe treatment resistant TS. Nabiximols (up-titrated to 
9 puffs/day = 24.3 mg THC and 22.5 mg CBD) resulted in a reduction of tics measured with 
YGTSS-TTS, Tourette’s Syndrome Symptom List (TSSL), and Rush Video Tape Rating Scale, 
premonitory urges, and a general improvement of quality of life without causing clinically 
relevant AEs.

3.2.3. Case studies using medicinal cannabis

Recently, Jakubovski and Müller-Vahl published a case report of a patient with TS treated 
with medicinal cannabis [43]. He suffered from a rare form of TS: a severe, impairing and 
treatment resistant vocal blocking and stuttering-like vocal tics as well as palilalia. These 
symptoms significantly impaired social contacts and daily living. The 19-year old patient 
received medicinal cannabis at a dose of 0.1 g cannabis once daily. After 8 months of follow-
up, the symptoms improved significantly, especially speech fluency, but also other tics. After 
cannabis inhalation, beneficial effects lasted for about one and a half hour. Although the acute 
effect resolved thereafter, he experienced an overall positive effect during most time of the 
day. Only at the beginning of the treatment, he experienced a “high sensation” that resolved 
later on.

3.2.4. Treatment of minors with Tourette syndrome using cannabis-based medicines

Until today, only three single case studies are available reporting about treatment of minors 
with TS using CBM. The first report was published by Hasan et al. [47] in 2010. They described 
a 15-year old adolescent with severe and treatment resistant TS and comorbid ADHD. In this 
boy, augmentation of preexisting medication with risperidone (1 mg), aripiprazole (10 mg), 
and methylphenidate (15 mg) with oral THC (gradually up-titrated to 15 mg/day during 
9 weeks) resulted in a significant tic reduction (global score of the YGTSS (range, 0–100) 
decreased from 97 to 54) and improved quality of life. The only AE observed was mild and 
transient euphoria.

The first ever case report of a child with TS treated with CBM was published only recently 
by Szejko et al. [48]. This 7-year-old boy suffered from severe tics and comorbid ADHD, 
which prevented him to attend school and finally resulted in social isolation, depression, and 
suicidal ideation. As all previous therapies including behavioral interventions and various 
medications (including risperidone, aripiprazole, tiapride, methylphenidate, and guanfacine) 
turned out to be unsuccessful, THC was proposed as a therapy of last choice. THC (in com-
bination with risperidone (2 mg/day) and guanfacine (2 mg/day)) were gradually up-titrated 
to a maximal dose of 29.4 mg/day. Follow-up for more than 4 months demonstrated not only 
a clinically relevant improvement of tics, but also of accompanying psychiatric symptoms 
resulting in overall improved quality of life and social performance. Despite the relatively 
high dose of THC, no AEs were reported.

Furthermore, there is another single case report available describing beneficial effects of a 
combined treatment with vaporized medicinal cannabis and oral THC in a 12-year-old boy 
with TS (unpublished data, under revision). The boy complained of severe motor tics causing 
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significant insomnia. Therefore, the boy’s parents—both of whom were medical doctors—
decided to medicate their son with 0.02 g vaporized cannabis (Bedrocan® variety containing 
22% THC and 1% CBD, corresponding to a dose equivalent of 4.4 mg THC). This resulted—
according to their reports—in a tremendous symptom improvement. Because of a further 
tic increase, the family presented at our Tourette outpatient clinic. Since the family reported 
about an ongoing effect while using cannabis with a relevant tic decrease, we decided to 
implement a combined treatment with vaporized medicinal cannabis (up to 0.1 g cannabis 
per day, varieties Bedrocan® and Amnesia Haze®, corresponding to 22 mg THC/day) plus 
oral THC drops (up to 12.5 mg/day). This combined therapy resulted not only in a marked tic 
reduction, but also an improvement of premonitory urges without any AEs.

Thus, currently, the database for treatment of minors with TS using CBM is very limited. 
However, from available preliminary results, it is suggested that CBM is effective and well 
tolerated even in this age group. At present time, no long-term follow-up data are avail-
able, and therefore, no statement is possible about positive and possible negative long-term 
effects, in particular with respect to detrimental effects on the developing brain. From 
observational oncological studies in children, however, it is also suggested that controlled 
application of CBM is safe and well tolerated. It is unknown, whether in children with TS 
the risk for psychosis is increased after treatment with CBM comparable to the increased 
risk in healthy children after excessive recreational cannabis use. Assuming a dysfunction in 
the ECS in TS, it can also be speculated that CBM may have beneficial effects on the course 
of the disease.

3.2.5. Controlled trials using tetrahydrocannabinol

Up to this date, only two small controlled studies have been conducted in adult patients with 
TS using CBM. Both of them were performed by Müller-Vahl’s group. Dr. Müller-Vahl is an 
internationally renowned expert in the field of TS and tic disorders. She introduced CBM in 
the treatment of TS, conducted the first randomized controlled trials in this group of patients 
in the early 2000s, and since then dedicated a large part of her research endeavors in this area. 
In both controlled studies, efficacy and safety of pure THC have been investigated. The first 
one, published in 2002 by Müller-Vahl et al. [48], was a randomized double-blind placebo-
controlled cross-over single-dose trial using 5.0, 7.5 or 10 mg of THC. The trial included 12 
adult TS patients with a mean age of 34 ± 13 years. Tic severity was assessed both via a self-rat-
ing (TSSL) and different examiner-rating scales (Shapiro Tourette’s syndrome Severity Scale 
(STSSS) and YGTSS). The Tourette’s syndrome Global Impression Scale (TS-CGI) was used to 
assess global disease severity. To assess changes in psychiatric comorbidities (including OCB, 
ADHD, and anxiety), the self-assessment of the TSSL was used. According to TSSL, there 
was a significant improvement of tics and OCB compared to placebo. According to examiner 
rating scales for the assessment of tic severity, there was an improvement in the subscore 
“complex motor tics” and a trend toward a reduction in the subscores “motor tics,” “simple 
motor tics” and “vocal tics.” The following AEs were recorded: headache, nausea, dizziness, 
tiredness, cheerfulness, dry mouth, anxiety, sensitivity to noise and light, ataxia and poor 
concentration, but no SAEs were reported. Plasma levels of the THC metabolite 11-hydroxy-
delta-tetrahydrocannabinol correlated with tic reduction as assessed by TSSL.
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Another single case study using nabiximols was reported by Kanaan et al. [46]. This was a 
22-year-old male with complex and severe treatment resistant TS. Nabiximols (up-titrated to 
9 puffs/day = 24.3 mg THC and 22.5 mg CBD) resulted in a reduction of tics measured with 
YGTSS-TTS, Tourette’s Syndrome Symptom List (TSSL), and Rush Video Tape Rating Scale, 
premonitory urges, and a general improvement of quality of life without causing clinically 
relevant AEs.

3.2.3. Case studies using medicinal cannabis

Recently, Jakubovski and Müller-Vahl published a case report of a patient with TS treated 
with medicinal cannabis [43]. He suffered from a rare form of TS: a severe, impairing and 
treatment resistant vocal blocking and stuttering-like vocal tics as well as palilalia. These 
symptoms significantly impaired social contacts and daily living. The 19-year old patient 
received medicinal cannabis at a dose of 0.1 g cannabis once daily. After 8 months of follow-
up, the symptoms improved significantly, especially speech fluency, but also other tics. After 
cannabis inhalation, beneficial effects lasted for about one and a half hour. Although the acute 
effect resolved thereafter, he experienced an overall positive effect during most time of the 
day. Only at the beginning of the treatment, he experienced a “high sensation” that resolved 
later on.

3.2.4. Treatment of minors with Tourette syndrome using cannabis-based medicines

Until today, only three single case studies are available reporting about treatment of minors 
with TS using CBM. The first report was published by Hasan et al. [47] in 2010. They described 
a 15-year old adolescent with severe and treatment resistant TS and comorbid ADHD. In this 
boy, augmentation of preexisting medication with risperidone (1 mg), aripiprazole (10 mg), 
and methylphenidate (15 mg) with oral THC (gradually up-titrated to 15 mg/day during 
9 weeks) resulted in a significant tic reduction (global score of the YGTSS (range, 0–100) 
decreased from 97 to 54) and improved quality of life. The only AE observed was mild and 
transient euphoria.

The first ever case report of a child with TS treated with CBM was published only recently 
by Szejko et al. [48]. This 7-year-old boy suffered from severe tics and comorbid ADHD, 
which prevented him to attend school and finally resulted in social isolation, depression, and 
suicidal ideation. As all previous therapies including behavioral interventions and various 
medications (including risperidone, aripiprazole, tiapride, methylphenidate, and guanfacine) 
turned out to be unsuccessful, THC was proposed as a therapy of last choice. THC (in com-
bination with risperidone (2 mg/day) and guanfacine (2 mg/day)) were gradually up-titrated 
to a maximal dose of 29.4 mg/day. Follow-up for more than 4 months demonstrated not only 
a clinically relevant improvement of tics, but also of accompanying psychiatric symptoms 
resulting in overall improved quality of life and social performance. Despite the relatively 
high dose of THC, no AEs were reported.

Furthermore, there is another single case report available describing beneficial effects of a 
combined treatment with vaporized medicinal cannabis and oral THC in a 12-year-old boy 
with TS (unpublished data, under revision). The boy complained of severe motor tics causing 
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significant insomnia. Therefore, the boy’s parents—both of whom were medical doctors—
decided to medicate their son with 0.02 g vaporized cannabis (Bedrocan® variety containing 
22% THC and 1% CBD, corresponding to a dose equivalent of 4.4 mg THC). This resulted—
according to their reports—in a tremendous symptom improvement. Because of a further 
tic increase, the family presented at our Tourette outpatient clinic. Since the family reported 
about an ongoing effect while using cannabis with a relevant tic decrease, we decided to 
implement a combined treatment with vaporized medicinal cannabis (up to 0.1 g cannabis 
per day, varieties Bedrocan® and Amnesia Haze®, corresponding to 22 mg THC/day) plus 
oral THC drops (up to 12.5 mg/day). This combined therapy resulted not only in a marked tic 
reduction, but also an improvement of premonitory urges without any AEs.

Thus, currently, the database for treatment of minors with TS using CBM is very limited. 
However, from available preliminary results, it is suggested that CBM is effective and well 
tolerated even in this age group. At present time, no long-term follow-up data are avail-
able, and therefore, no statement is possible about positive and possible negative long-term 
effects, in particular with respect to detrimental effects on the developing brain. From 
observational oncological studies in children, however, it is also suggested that controlled 
application of CBM is safe and well tolerated. It is unknown, whether in children with TS 
the risk for psychosis is increased after treatment with CBM comparable to the increased 
risk in healthy children after excessive recreational cannabis use. Assuming a dysfunction in 
the ECS in TS, it can also be speculated that CBM may have beneficial effects on the course 
of the disease.

3.2.5. Controlled trials using tetrahydrocannabinol

Up to this date, only two small controlled studies have been conducted in adult patients with 
TS using CBM. Both of them were performed by Müller-Vahl’s group. Dr. Müller-Vahl is an 
internationally renowned expert in the field of TS and tic disorders. She introduced CBM in 
the treatment of TS, conducted the first randomized controlled trials in this group of patients 
in the early 2000s, and since then dedicated a large part of her research endeavors in this area. 
In both controlled studies, efficacy and safety of pure THC have been investigated. The first 
one, published in 2002 by Müller-Vahl et al. [48], was a randomized double-blind placebo-
controlled cross-over single-dose trial using 5.0, 7.5 or 10 mg of THC. The trial included 12 
adult TS patients with a mean age of 34 ± 13 years. Tic severity was assessed both via a self-rat-
ing (TSSL) and different examiner-rating scales (Shapiro Tourette’s syndrome Severity Scale 
(STSSS) and YGTSS). The Tourette’s syndrome Global Impression Scale (TS-CGI) was used to 
assess global disease severity. To assess changes in psychiatric comorbidities (including OCB, 
ADHD, and anxiety), the self-assessment of the TSSL was used. According to TSSL, there 
was a significant improvement of tics and OCB compared to placebo. According to examiner 
rating scales for the assessment of tic severity, there was an improvement in the subscore 
“complex motor tics” and a trend toward a reduction in the subscores “motor tics,” “simple 
motor tics” and “vocal tics.” The following AEs were recorded: headache, nausea, dizziness, 
tiredness, cheerfulness, dry mouth, anxiety, sensitivity to noise and light, ataxia and poor 
concentration, but no SAEs were reported. Plasma levels of the THC metabolite 11-hydroxy-
delta-tetrahydrocannabinol correlated with tic reduction as assessed by TSSL.
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In 2003, Müller-Vahl et al. published results of a randomized, double-blind, placebo-con-
trolled follow-up trial [49]. In this study, 24 adult patients with TS were treated for a period 
of 6 weeks with up to 10 mg THC/day. Tic severity was evaluated at six different time points. 
For tic assessment, both self-rating scales as well as examiner rating scales were used (TSSL, 
YGTSS, STSSS, and Rush Video-Based Tic Rating Scale) [45]. Nearly all rating scales indicated 
a significant superiority of the THC arm compared to placebo at visits 3 and 4. The Rush 
Video-Based Tic Rating Scale also showed a significant difference or trends toward significant 
group differences at visits 2 and 4 for the items “motor tic intensity” and “motor tic frequency,” 
respectively. Seven patients dropped out of the study, but only one due to AEs (restlessness 
and anxiety). Five patients in the THC group reported AEs (tiredness, dry mouth, dizziness 
and fuzziness), while three in the placebo group (tiredness, dizziness, anxiety, depression) in 
the absence of SAEs.

3.2.6. Efficacy of cannabis-based medicines in the treatment of psychiatric comorbidities in 
patients with Tourette syndrome

Up to 90% of patients with TS suffer from psychiatric comorbidities and studies investigating 
quality of life in these patients clearly demonstrate that most patients are more impaired by 
ADHD, OCD, and depression, respectively, than their tics. Thus, in the majority of patients 
with TS, effective treatment of comorbidities is even more important than treatment of tics. 
Until today, however, there is no treatment strategy known that improves both tics and 
comorbidities. Therefore, in patients with complex TS combined therapy using different treat-
ment strategies in parallel is inevitable.

Interestingly, from all available case studies and controlled trials, it is suggested that CBM 
improves not only tics, but also psychiatric symptoms. Therefore, it can be speculated that 
CBM might be the first treatment strategy that is useful in the treatment of the complete spec-
trum of symptoms. More specifically, there is preliminary evidence that CBM also improves 
ADHD [39], OCB/OCD [40] impulsivity [43], depression [50], sleeping problems [51], and 
anxiety [43].

For example, in the retrospective survey by Abi-Jaoude et al. [39], all patients reported in 
addition to the tic improvement also an improvement of psychiatric symptoms after treat-
ment with cannabis including sleeping disturbances, anxiety, OCB, impulsivity, irritability 
and rage attacks. With respect to comorbid ADHD, only one out of 13 patients demonstrated 
no improvement of ADHD symptoms. This data in patients with TS is in line with preliminary 
results in patients suffering from pure ADHD (without tics or TS). In 2017, Cooper et al. [52] 
published results of a randomized placebo-controlled pilot study using nabiximols in patients 
with ADHD. In this trial, 30 adults with ADHD were included, and cognitive performance 
was assessed using an objective assessment for inattention, hyperactivity, and impulsivity 
(Qb-Test). Although for the primary outcome, no significant difference was observed, sev-
eral secondary outcomes demonstrated superiority of nabiximols compared to placebo with 
improvements in hyperactivity, impulsivity and inattention, respectively. In the active group, 
three mild AEs and one SAE (muscular spasms/seizures) were recorded, while in the placebo 
group, one SAE (cardiovascular problems) occurred.
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Although most patients with TS treated with CBM report about an improvement of one or 
even more psychiatric comorbidities, larger controlled trials are needed to confirm these 
promising, but preliminary results.

3.2.7. Safety profile and influence on psychomotor functioning in patients with Tourette 
syndrome

From the available preliminary results, it is suggested that—on average—the AE profile of 
CBM in the treatment of patients with TS is very similar to that in other groups of patients. In 
line with data from recent meta-analyses including mixed patients’ groups [52], for example, 
in the retrospective study by Abi-Jaoude et al. [53], a relatively high number of AEs were 
reported in patients with TS, but most AEs were mild and transient, respectively. Most often 
reported AEs after use of cannabis in patients with TS were a “feeling of high,” decreased 
concentration, decreased short-term memory, increased anxiety, increased appetite, sedation, 
irritability, dry mouth and eyes, and wheezing.

Contrary to these reports from open uncontrolled studies, from preliminary controlled data, 
it is suggested that the impact of THC on neuropsychological performance in adults with TS 
may differ as compared to both healthy people and other patient groups. In two controlled 
studies investigating the effects of THC in patients with TS, additionally, neuropsychological 
tests were performed. In the first study [54], the influence of a single dose treatment of THC 
on neuropsychological performance was investigated. However, no negative impact of THC 
compared to placebo was found on verbal and visual memory, reaction time, intelligence, 
sustained attention, divided attention, and vigilance. In another study, Müller-Vahl et al. [55] 
investigated the influence of a 6-week THC treatment as compared to placebo on neuropsy-
chological performance using different neuropsychological tests to assess verbal learning, 
attention, and memory. Again, THC had no detrimental effects on neuropsychological per-
formance and immediate verbal memory span even improved after treatment with THC.

These results are completely in line with observations in two open uncontrolled single case studies. 
In 2007, Strohbeck-Kühner et al. [56] published a case of a 28 year-old male with ADHD (without 
TS), who benefitted from treatment with THC, and, moreover, his fitness to drive improved after 
treatment. A similar case was reported by Brunnauer et al. [42] some years later. They described 
an effective treatment with THC in a 42 year-old male. Furthermore, his driving ability (concentra-
tion and visual abilities) was better under treatment with THC as compared to the off-medication 
state. The authors, therefore, suggested that in TS, CBM such as THC may have beneficial effects 
on psychomotor functions related to driving performance. Thus, from this preliminary data, it 
is strongly suggested that the influence of CBM on neuropsychological performance in patients 
with TS may differ from effects in healthy people and other groups of patients.

Finally, until today, very little is known about safety of CBM in children and adolescents with TS 
[47–49]. However, from available preliminary case reports, it is suggested that in this group of 
patients CBM such as THC is well tolerated or even better tolerated than in adults. This observa-
tion is in line with reports in other groups of young patients. For example when using CBM in 
antineoplastic therapy [30] it has been suggested that CBM—even at high doses—are well toler-
ated in children.

Possible Role of the Endocannabinoid System in Tourette Syndrome
http://dx.doi.org/10.5772/intechopen.79895

127



In 2003, Müller-Vahl et al. published results of a randomized, double-blind, placebo-con-
trolled follow-up trial [49]. In this study, 24 adult patients with TS were treated for a period 
of 6 weeks with up to 10 mg THC/day. Tic severity was evaluated at six different time points. 
For tic assessment, both self-rating scales as well as examiner rating scales were used (TSSL, 
YGTSS, STSSS, and Rush Video-Based Tic Rating Scale) [45]. Nearly all rating scales indicated 
a significant superiority of the THC arm compared to placebo at visits 3 and 4. The Rush 
Video-Based Tic Rating Scale also showed a significant difference or trends toward significant 
group differences at visits 2 and 4 for the items “motor tic intensity” and “motor tic frequency,” 
respectively. Seven patients dropped out of the study, but only one due to AEs (restlessness 
and anxiety). Five patients in the THC group reported AEs (tiredness, dry mouth, dizziness 
and fuzziness), while three in the placebo group (tiredness, dizziness, anxiety, depression) in 
the absence of SAEs.

3.2.6. Efficacy of cannabis-based medicines in the treatment of psychiatric comorbidities in 
patients with Tourette syndrome

Up to 90% of patients with TS suffer from psychiatric comorbidities and studies investigating 
quality of life in these patients clearly demonstrate that most patients are more impaired by 
ADHD, OCD, and depression, respectively, than their tics. Thus, in the majority of patients 
with TS, effective treatment of comorbidities is even more important than treatment of tics. 
Until today, however, there is no treatment strategy known that improves both tics and 
comorbidities. Therefore, in patients with complex TS combined therapy using different treat-
ment strategies in parallel is inevitable.

Interestingly, from all available case studies and controlled trials, it is suggested that CBM 
improves not only tics, but also psychiatric symptoms. Therefore, it can be speculated that 
CBM might be the first treatment strategy that is useful in the treatment of the complete spec-
trum of symptoms. More specifically, there is preliminary evidence that CBM also improves 
ADHD [39], OCB/OCD [40] impulsivity [43], depression [50], sleeping problems [51], and 
anxiety [43].

For example, in the retrospective survey by Abi-Jaoude et al. [39], all patients reported in 
addition to the tic improvement also an improvement of psychiatric symptoms after treat-
ment with cannabis including sleeping disturbances, anxiety, OCB, impulsivity, irritability 
and rage attacks. With respect to comorbid ADHD, only one out of 13 patients demonstrated 
no improvement of ADHD symptoms. This data in patients with TS is in line with preliminary 
results in patients suffering from pure ADHD (without tics or TS). In 2017, Cooper et al. [52] 
published results of a randomized placebo-controlled pilot study using nabiximols in patients 
with ADHD. In this trial, 30 adults with ADHD were included, and cognitive performance 
was assessed using an objective assessment for inattention, hyperactivity, and impulsivity 
(Qb-Test). Although for the primary outcome, no significant difference was observed, sev-
eral secondary outcomes demonstrated superiority of nabiximols compared to placebo with 
improvements in hyperactivity, impulsivity and inattention, respectively. In the active group, 
three mild AEs and one SAE (muscular spasms/seizures) were recorded, while in the placebo 
group, one SAE (cardiovascular problems) occurred.
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Although most patients with TS treated with CBM report about an improvement of one or 
even more psychiatric comorbidities, larger controlled trials are needed to confirm these 
promising, but preliminary results.

3.2.7. Safety profile and influence on psychomotor functioning in patients with Tourette 
syndrome

From the available preliminary results, it is suggested that—on average—the AE profile of 
CBM in the treatment of patients with TS is very similar to that in other groups of patients. In 
line with data from recent meta-analyses including mixed patients’ groups [52], for example, 
in the retrospective study by Abi-Jaoude et al. [53], a relatively high number of AEs were 
reported in patients with TS, but most AEs were mild and transient, respectively. Most often 
reported AEs after use of cannabis in patients with TS were a “feeling of high,” decreased 
concentration, decreased short-term memory, increased anxiety, increased appetite, sedation, 
irritability, dry mouth and eyes, and wheezing.

Contrary to these reports from open uncontrolled studies, from preliminary controlled data, 
it is suggested that the impact of THC on neuropsychological performance in adults with TS 
may differ as compared to both healthy people and other patient groups. In two controlled 
studies investigating the effects of THC in patients with TS, additionally, neuropsychological 
tests were performed. In the first study [54], the influence of a single dose treatment of THC 
on neuropsychological performance was investigated. However, no negative impact of THC 
compared to placebo was found on verbal and visual memory, reaction time, intelligence, 
sustained attention, divided attention, and vigilance. In another study, Müller-Vahl et al. [55] 
investigated the influence of a 6-week THC treatment as compared to placebo on neuropsy-
chological performance using different neuropsychological tests to assess verbal learning, 
attention, and memory. Again, THC had no detrimental effects on neuropsychological per-
formance and immediate verbal memory span even improved after treatment with THC.

These results are completely in line with observations in two open uncontrolled single case studies. 
In 2007, Strohbeck-Kühner et al. [56] published a case of a 28 year-old male with ADHD (without 
TS), who benefitted from treatment with THC, and, moreover, his fitness to drive improved after 
treatment. A similar case was reported by Brunnauer et al. [42] some years later. They described 
an effective treatment with THC in a 42 year-old male. Furthermore, his driving ability (concentra-
tion and visual abilities) was better under treatment with THC as compared to the off-medication 
state. The authors, therefore, suggested that in TS, CBM such as THC may have beneficial effects 
on psychomotor functions related to driving performance. Thus, from this preliminary data, it 
is strongly suggested that the influence of CBM on neuropsychological performance in patients 
with TS may differ from effects in healthy people and other groups of patients.

Finally, until today, very little is known about safety of CBM in children and adolescents with TS 
[47–49]. However, from available preliminary case reports, it is suggested that in this group of 
patients CBM such as THC is well tolerated or even better tolerated than in adults. This observa-
tion is in line with reports in other groups of young patients. For example when using CBM in 
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3.2.8. Practical clues for the treatment of patients with Tourette syndrome using cannabis-
based medicines

Despite lack of clear evidence, recent European [25] and Canadian treatment guidelines [28] 
for TS acknowledged available data and recommend CBM in otherwise treatment resistant 
adult patients with TS. Most experts suggest treatment with CBM, before taking surgical 
treatment with deep brain stimulation into consideration. Comparable to most other indica-
tions, until today it is unclear, which CBM is the most effective and best tolerated in patients 
with TS. However, from available data, it is suggested that pure CBD is not effective in the 
treatment of tics. Data obtained from both a retrospective and prospective survey performed 
at the Tourette outpatient clinic at Hannover Medical School, Germany, provide preliminary 
evidence that medicinal cannabis might be superior to pure THC and nabiximols (unpub-
lished data). Currently, treatment with CBM in minors with TS should be only taken into 
consideration in otherwise treatment resistant and severely affected patients.

With respect to the dose, no clear recommendation can be given. In any case, starting dose 
should be low (corresponding to 2.5 mg THC/day) and up-titration should be slow, for exam-
ple by 2.5 mg THC every 3–5 days. Maximal dose differs from patient to patient, but usually 
ranges from 0.1 to 1 g cannabis/day, corresponding to about 2.5–30 mg THC/day. However, 
in individual patients, maximal doses can be much higher.

An overview on all available studies investigating efficacy and safety of CBM in TS is given 
in Table 1.

Reference Number 
of patients 
(sex)

Age Substance Study design Outcome

Sandyk et al. 1988 3 (male) 15, 17, 
39

Cannabis sativa L. Case report Reduction of tics, premonitory 
urges and self-injurious behavior; 
general relaxation; improvement 
of attention and hypersexuality

Hemming et al. 
1993

1 (male) 36 Cannabis sativa L. Case report Symptom free

Müller-Vahl et al. 
1998

64 (55 male, 
9 female)

15-64 Medical cannabis Case series Tic reduction or remission; 
premonitory urges; improvement 
of OCB and ADHD

Müller-Vahl et al. 
1999

1 (male) 25 THC Case report Tic reduction, premonitory 
urges; improvement of attention, 
impulse control, and OCB

Müller-Vahl et al. 
2002a

1 (female) 24 THC (in 
combination with 
amisulpride)

Case report Tic reduction, premonitory urges

Müller-Vahl et al. 
2002b

24 (19 male, 
5 female)

18-68 THC Randomized 
double-blind 
parallel group 
placebo-controlled 
trial

Tic reduction; global 
improvement
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4. Future directions

Larger well-designed controlled studies are urgently needed to confirm available prelimi-
nary results. Further studies should investigate not only the efficacy of CBM in the treatment 
of tics, but also their potency to improve typical psychiatric comorbidities in TS including 
ADHD, OCB, depression, anxiety, sleeping disorders, and rage attacks. Finally, the AE profile 
should be investigated in detail, since from available data, it is suggested that neuropsycho-
logical performance may improve—and not deteriorate—after treatment with CBM in this 
group of patients. So far, it is unknown, which CBM is the most effective and best tolerated in 
patients with TS. However, based on available reports, patients with TS seem to prefer CBM 
with median to high THC content.

Reference Number 
of patients 
(sex)

Age Substance Study design Outcome

Müller-Vahl et al. 
2003b

12 (11 male, 
1 female)

18-66 THC Randomized 
double-blind 
placebo-controlled 
crossover trial

Tic reduction; improvement of 
OCB

Hasan et al. 2010 1 (male) 15 THC (in 
combination with 
aripiprazole and 
risperidone)

Case report Tic reduction, improvement of 
quality of life; treatment with 
methylphenidate was tolerated 
without tic increase

Brunnauer et al. 
2011

1 (male) 42 THC Case report Reduction of tics, improvement 
of concentration and visual 
perception

Trainor et al. 2016 1 (male) 26 Nabiximols Case report Reduction of motor and vocal tics

Abi-Jaoude et al. 
2017

19 (16 
males, 3 
females)

18-51 Medical cannabis Case series, 
structured 
interview

Reduction of tics

Jakubovski and 
Müller-Vahl. 2017

2 (male) 16, 19 THC, medical 
cannabis

Case report Improvement of tics including 
complex vocal tics resulting 
in improved speech fluency, 
co-existing psychiatric conditions 
improved

Kanaan et al. 2017 1 (male) 22 Nabiximols Case report Reduction of tics, improvement 
of quality of life

Szejko et al. 2018 1 (male) 8 THC Case report Reduction of tics, improvement 
of comorbid psychiatric 
conditions (ADHD, depression), 
improvement of quality of life

Szejko et al. 
(submitted to 
Frontiers in 
Psychiatry)

1 (male) 12 THC, medical 
cannabis

Case report Reduction of tics, improvement 
of sleeping problems

Table 1. Case studies employing CBM in TS.
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Currently, a large randomized controlled trial in Germany is recruiting to further investi-
gate efficacy and safety of nabiximols in patients with TS (ClinicalTrials.gov Identifier: 
NCT03087201). In this study, in addition, patients’ fitness to drive will be investigated after 
treatment with nabiximols.

While all published studies investigated the effects of different synthetic or plant-derived can-
nabinoids in the treatment of TS, unpublished data from a single dose pilot study in 20 adult 
patients suggests that also modulators of the endocannabinoid system—such as inhibitors of 
the monoacylglycerol lipase (MGLL)— might be effective in the treatment of TS (ClinicalTrials.
gov Identifier: NCT03058562).

5. Conclusions

There is increasing evidence that CBM might be a promising new treatment strategy for 
patients with TS. However, larger well-designed controlled studies are urgently needed 
to confirm preliminary results. However, already today, a substantial number of patients 
use CBM, either prescribed off-label or no-label under the guidance of the treating phy-
sician or as a self-medication without supervision of a medical doctor. Physicians, who 
treat patients with tic disorders and TS, should actively ask their patients about possible 
use of cannabis, since it is well known that many patients with TS use complementary or 
alternative treatments without informing their doctor [57]. If patients with TS report about 
(illegal) self-medication with cannabis, treating physicians should inform their patients 
about legal treatment options and available routes of intake without the risks associated 
with smoking.
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Abstract

Extensive changes in cannabis regulation accompany changing public attitudes toward 
cannabis use and legalization. Cannabis use is more prevalent when the drug is legal; 
therefore, there is a substantial need for an evidence-based understanding of the risks 
associated with cannabinoids. The current chapter reviews the definition of CUD, its 
prevalence and associated conditions, and the contemporary understanding of its causes 
to inform policy, prevention efforts, and treatment of CUD in a dynamic and evolv-
ing legislative landscape. Studies are currently limited by an absence of standardized 
methods to characterize cannabis consumption levels as well as compound composition. 
Understanding the harms associated with cannabis use and CUD will be fundamental in 
informing policy and supporting clinicians.

Keywords: cannabis, addiction, withdrawal, prevalence, neurobiology, neurocognition, 
motivation, comorbidities

1. Introduction

The term ‘cannabis’ refers to any product from plants of the cannabis genus, including mari-
juana and hashish, which are used primarily for their reinforcing effects. The main psychoac-
tive compound in cannabis is ∆9-tetrahydrocannabinol (THC); however, more than 100 other 
cannabinoids have been identified [1]. Other compounds include cannabidiol, cannabinol and 
cannabigerol; there is some evidence for protective effects of cannabidiol on THC’s effects 
[2–4]. In a major shift from the ‘war on drugs’ campaigns that characterized the 1980s, legal-
ization of cannabis for medicinal and recreational purposes is spreading across Canada and 
the United States. These extensive changes in cannabis regulation accompany changing pub-
lic attitudes toward cannabis use and legalization [5]. Cannabis use is more prevalent when 
the drug is legal [5], therefore with the widespread social and legislative changes, there is a 
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substantial need for an evidence-based understanding of the risks associated with cannabi-
noids. Of particular concern is a potential rise in the development of cannabis use disorder 
(CUD), the psychiatric diagnosis of addiction to cannabis, and it is still unclear how legaliza-
tion of the drug relates to the prevalence and severity of CUD [6]. Here we review the defini-
tion of CUD, its prevalence and associated conditions, and the contemporary understanding 
of its causes to inform policy, prevention efforts and treatment of CUD in a dynamic and 
evolving legislative landscape.

2. Definition of CUD

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [7] 
defines CUD as any 2 of 11 diagnostic criteria (Table 1), which include hazardous use of 
the drug (e.g. driving while under the influence), taking the drug in larger/longer amounts 
than intended, preoccupation with cannabis, unsuccessful efforts to cut down, drug toler-
ance, neglecting major roles to use, and social/interpersonal problems related to use. While 
the DSM-IV included two categories, including both abuse (putatively lower severity) and 
dependence (putatively higher severity), research supports a dimensional one-factor model, 
indicating that CUD can best be described as a unidimensional construct [8]. The number of 
endorsed criteria serves as a disorder severity marker: mild (2–3 criteria), moderate (4–5 crite-
ria) and severe (6+ criteria) CUD [7]. Criteria for craving as well as withdrawal were added in 
the DSM-5, with 60% endorsement of craving and over 30% reporting withdrawal symptoms 
in past-year individuals with CUD [9].

3. Cannabis withdrawal syndrome

While it is popularly reported that there are no withdrawal effects from cannabis, there is evi-
dence for withdrawal symptoms in CUD that are comparable to nicotine withdrawal in mag-
nitude and consequences [10, 11]. The DSM-5 now includes a Cannabis Withdrawal Syndrome 
[7] which consists mostly of emotional and behavioral symptoms including anxiety, irritabil-
ity, restlessness, depression, anger, as well as sleep, weight and appetite disturbances [12]. 
Less common physical symptoms include stomach pain, shakiness and sweating [12]. The 
clinical significance of the withdrawal syndrome was originally questioned; however, those 
symptoms are linked with increased functional impairment in normal daily activities [13]. The 
delayed onset of the withdrawal syndrome may explain why it is often overlooked: symptoms 
peak 2–3 days after cessation of heavy cannabis use and can last 2–3 weeks [12, 14]. Given the 
daily use of many individuals with CUD, they may not notice the symptoms. Withdrawal 
symptoms are nevertheless closely linked to relapse: most abstinent individuals experienc-
ing withdrawal symptoms will take the drug to alleviate symptoms, thereby perpetuating 
cannabis use [15, 16]. The withdrawal syndrome is also important in medicinal cannabis use. 
Notably, cannabis withdrawal symptoms overlap with mood and anxiety disorder symptoms 
[7]—the very symptoms that some cannabinoid products are posited to treat. Many individu-
als cite mood modification as a motivation for cannabis use and are unaware that their short 
term use for symptomatic relief may result in a long-term withdrawal syndrome [17]. More 
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generally, medicinal cannabis can be thought of as no different than other medications for 
which the pharmacology results in physiological dependence including a withdrawal syn-
drome (e.g., benzodiazepines and opioids), requiring clinical consideration and management. 
Indeed, the same is true for its abuse liability in the context of CUD.

4. Prevalence of cannabis use and cannabis use disorder (CUD)

Cannabis remains the most commonly used illicit* (*state/country-dependent) psychoactive 
drug. Large epidemiological studies show that ~43% of individuals in the US and Canada 
report having tried cannabis, with ~35% having tried it more than once [18–20]. Cannabis use 

Table 1. Diagnostic criteria for cannabis use disorder in the Diagnostic and Statistical Manual of the American Psychiatric 
Association (5th edition).
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endorsed criteria serves as a disorder severity marker: mild (2–3 criteria), moderate (4–5 crite-
ria) and severe (6+ criteria) CUD [7]. Criteria for craving as well as withdrawal were added in 
the DSM-5, with 60% endorsement of craving and over 30% reporting withdrawal symptoms 
in past-year individuals with CUD [9].

3. Cannabis withdrawal syndrome

While it is popularly reported that there are no withdrawal effects from cannabis, there is evi-
dence for withdrawal symptoms in CUD that are comparable to nicotine withdrawal in mag-
nitude and consequences [10, 11]. The DSM-5 now includes a Cannabis Withdrawal Syndrome 
[7] which consists mostly of emotional and behavioral symptoms including anxiety, irritabil-
ity, restlessness, depression, anger, as well as sleep, weight and appetite disturbances [12]. 
Less common physical symptoms include stomach pain, shakiness and sweating [12]. The 
clinical significance of the withdrawal syndrome was originally questioned; however, those 
symptoms are linked with increased functional impairment in normal daily activities [13]. The 
delayed onset of the withdrawal syndrome may explain why it is often overlooked: symptoms 
peak 2–3 days after cessation of heavy cannabis use and can last 2–3 weeks [12, 14]. Given the 
daily use of many individuals with CUD, they may not notice the symptoms. Withdrawal 
symptoms are nevertheless closely linked to relapse: most abstinent individuals experienc-
ing withdrawal symptoms will take the drug to alleviate symptoms, thereby perpetuating 
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Notably, cannabis withdrawal symptoms overlap with mood and anxiety disorder symptoms 
[7]—the very symptoms that some cannabinoid products are posited to treat. Many individu-
als cite mood modification as a motivation for cannabis use and are unaware that their short 
term use for symptomatic relief may result in a long-term withdrawal syndrome [17]. More 
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generally, medicinal cannabis can be thought of as no different than other medications for 
which the pharmacology results in physiological dependence including a withdrawal syn-
drome (e.g., benzodiazepines and opioids), requiring clinical consideration and management. 
Indeed, the same is true for its abuse liability in the context of CUD.

4. Prevalence of cannabis use and cannabis use disorder (CUD)

Cannabis remains the most commonly used illicit* (*state/country-dependent) psychoactive 
drug. Large epidemiological studies show that ~43% of individuals in the US and Canada 
report having tried cannabis, with ~35% having tried it more than once [18–20]. Cannabis use 

Table 1. Diagnostic criteria for cannabis use disorder in the Diagnostic and Statistical Manual of the American Psychiatric 
Association (5th edition).
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is highest in adults (ages 18–44), with just over half reporting using cannabis [18]. Past-year 
cannabis use in emerging adult populations (18–24 years-olds) is around 33.3%, with daily 
use almost 4% in this age group [18, 19].

Cannabis use prevalence rates from 2002 to 2012 show overall increases across North America 
[5, 18, 19, 21] and, increases in use and frequency of use coincide with declining risk percep-
tions of the drug [5]. Nevertheless, cannabis use trends differ longitudinally across specific 
age groups. For example, since 2002, prevalence rates appear to have increased in adults aged 
25–44 (from 14 to 15.6%), remained stable in 18–24 year olds (around 33%) and decreased in 
the 15–17 age range (from 28.5 to 20%) [18, 19].

Prevalence rates for cannabis use disorder (CUD) range from 2.9% up to 19%—with approxi-
mately 13 million individuals worldwide meeting criteria [9, 22, 23]. Severe lifetime CUD 
rates are around 2%, with rates peaking during the emerging adulthood period (~21 years of 
age) [9]. There are also sociodemographic differences in prevalence rates—lifetime CUD rates 
are almost twice as high in males versus females, in adults 18–29, with a mean age of onset 
in the early twenties [9]. Unmarried individuals and those with lower socio-economic status 
report higher CUD prevalence rates; however, education appears largely unrelated [9].

One large epidemiological study in the United States also suggests that CUDs doubled 
between 2002 and 2012 [21], but not all longitudinal studies report the same prevalence trends 
in CUD [5, 20, 21, 24]. Discrepant prevalence rates may relate to underreporting in earlier 
studies as social acceptance of cannabis use increases [25]. Indeed, there are notable sociocul-
tural influences on harm perception and willingness to acknowledge CUD symptoms varies 
between legal cultures [26]. Endorsement of CUD criteria can differ between countries and 
may relate to legalization status. For example, reports of failed quit attempts and withdrawal 
symptoms differ between the US and Netherlands [26, 27].

Importantly, CUD is associated with high levels of disability, including social and emotional 
functioning and greater CUD severity is associated with increasing levels of disability [9]. 
Information on cannabis-related disability is fairly new, as many previous studies did not 
include cannabis when studying disease burdens, but newer studies demonstrating that CUD 
can produce more years with disability [28]. Disability can persist even after CUD remission, 
although the reason for this is not yet clear [29]. It is also important to note that cannabis use 
and misuse (more broadly than just CUD) are associated with significant economic costs. In 
Canada, the estimated economic burden of cannabis use was 2.8Bn in 2014 and cannabis costs 
exhibited the largest increase among substances from 2007 to 2014, a 19.1% increase [30].

Finally, it is important to contextualize cannabis with other psychoactive drugs. One way 
to quantify addiction liability across substances is to examine the proportion of individu-
als who develop a substance use disorder, such as CUD, relative to the number of indi-
viduals who have at least tried a given substance. Using this metric in the large National 
Epidemiologic Survey on Alcohol and Related Conditions (NESARC) cohort, fewer than 
one in ten (8.9%) individuals transitioned from any cannabis use to cannabis dependence 
(pre-DSM-5), which was lower than tobacco, alcohol, and cocaine [31]. Another way to con-
textualize relative risk is to consider the conditional probability between use and misuse 
(i.e., the proportion of active users of a given drug that have a diagnosable problem). Again, 
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drawing on large-scale NESARC data, 7.96% of cannabis users met criteria for cannabis 
dependence, which was higher than alcohol (5.82%) but substantially lower than tobacco 
(46.13%), heroin (26.96%), and cocaine (23.91%) [32]. In an interesting study of addiction 
experts using a multi-criteria decision analysis to judge substance use harms, cannabis was 
ranked 8th out of 20, behind alcohol, heroin, crack cocaine, methamphetamine, cocaine, 
tobacco, and amphetamine (in that order). Collectively, these findings suggest that although 
cannabis is far from without risk, it can also be thought of as lower risk than a number of 
other psychoactive drugs, both legal and illegal.

5. Common comorbidities

Other comorbid conditions are common in CUD; in particular, high rates of depression, 
anxiety, substance use and personality disorders are consistently associated with CUD [5, 9].  
Understanding associations between CUD and other disorders is important as it provides 
more information on course and progression of the disorder.

Other substance use disorders (SUDs) are most commonly associated with CUD, with greater 
lifetime use of illicit drugs, including sedative/tranquilizers, painkillers, cocaine stimulants, 
club-drugs, hallucinogens, inhalant/solvents, heroin and other prescription drugs [33]. Recent 
epidemiological studies suggest increasing links with stimulant-based substances including 
MDMA, methamphetamine and prescription stimulants such as Ritalin [33]. It is possible 
that cannabis and stimulant co-abuse patterns represent individuals counterbalancing each 
drug’s pharmacokinetic effects; for example applying sedative effects of cannabis following 
stimulant use [33]. Individuals with CUD are also more likely to also be current smokers and 
report high rates of alcohol use [9, 33]. Longitudinal studies are now providing more support 
for a causal relationship between early cannabis use and CUD as well as substance use and 
other psychiatric disorders. One large study demonstrated consistent, dose-response charac-
teristics between early cannabis use and the development of CUD, other illicit substance use, 
depression and suicide attempts [34]. Altogether consistent data show polydrug use with 
CUD even when controlling for other health and psychiatric factors present before or during 
adolescence [33, 34].

In terms of other conditions, personality disorders are highly comorbid, in particular increased 
rates of antisocial and borderline personality disorder are noted [9]. Anxiety disorders are 
also linked to CUD, with Post Traumatic Stress Disorder (PTSD) most highly associated, fol-
lowed by general anxiety and panic disorder [9, 21]. Applying the CUD severity specifiers 
(mild, moderate, severe) shows that increasing CUD severity is associated with the increas-
ing strength of associations with these psychiatric conditions [21]—similar to CUD, clinical 
problems also exist on a severity continuum [5].

Converging lines of preclinical, epidemiological and experimental studies demonstrate 
strong links between cannabinoids and psychosis. The exogenous cannabinoid hypothesis 
posits that cannabinoid exposure is linked to the development of psychosis [35]. In controlled 
human laboratory settings, THC and cannabis extract administration produces increased pos-
itive symptoms, (including delusions, suspiciousness and perceptual alterations), negative 
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is highest in adults (ages 18–44), with just over half reporting using cannabis [18]. Past-year 
cannabis use in emerging adult populations (18–24 years-olds) is around 33.3%, with daily 
use almost 4% in this age group [18, 19].

Cannabis use prevalence rates from 2002 to 2012 show overall increases across North America 
[5, 18, 19, 21] and, increases in use and frequency of use coincide with declining risk percep-
tions of the drug [5]. Nevertheless, cannabis use trends differ longitudinally across specific 
age groups. For example, since 2002, prevalence rates appear to have increased in adults aged 
25–44 (from 14 to 15.6%), remained stable in 18–24 year olds (around 33%) and decreased in 
the 15–17 age range (from 28.5 to 20%) [18, 19].

Prevalence rates for cannabis use disorder (CUD) range from 2.9% up to 19%—with approxi-
mately 13 million individuals worldwide meeting criteria [9, 22, 23]. Severe lifetime CUD 
rates are around 2%, with rates peaking during the emerging adulthood period (~21 years of 
age) [9]. There are also sociodemographic differences in prevalence rates—lifetime CUD rates 
are almost twice as high in males versus females, in adults 18–29, with a mean age of onset 
in the early twenties [9]. Unmarried individuals and those with lower socio-economic status 
report higher CUD prevalence rates; however, education appears largely unrelated [9].

One large epidemiological study in the United States also suggests that CUDs doubled 
between 2002 and 2012 [21], but not all longitudinal studies report the same prevalence trends 
in CUD [5, 20, 21, 24]. Discrepant prevalence rates may relate to underreporting in earlier 
studies as social acceptance of cannabis use increases [25]. Indeed, there are notable sociocul-
tural influences on harm perception and willingness to acknowledge CUD symptoms varies 
between legal cultures [26]. Endorsement of CUD criteria can differ between countries and 
may relate to legalization status. For example, reports of failed quit attempts and withdrawal 
symptoms differ between the US and Netherlands [26, 27].

Importantly, CUD is associated with high levels of disability, including social and emotional 
functioning and greater CUD severity is associated with increasing levels of disability [9]. 
Information on cannabis-related disability is fairly new, as many previous studies did not 
include cannabis when studying disease burdens, but newer studies demonstrating that CUD 
can produce more years with disability [28]. Disability can persist even after CUD remission, 
although the reason for this is not yet clear [29]. It is also important to note that cannabis use 
and misuse (more broadly than just CUD) are associated with significant economic costs. In 
Canada, the estimated economic burden of cannabis use was 2.8Bn in 2014 and cannabis costs 
exhibited the largest increase among substances from 2007 to 2014, a 19.1% increase [30].

Finally, it is important to contextualize cannabis with other psychoactive drugs. One way 
to quantify addiction liability across substances is to examine the proportion of individu-
als who develop a substance use disorder, such as CUD, relative to the number of indi-
viduals who have at least tried a given substance. Using this metric in the large National 
Epidemiologic Survey on Alcohol and Related Conditions (NESARC) cohort, fewer than 
one in ten (8.9%) individuals transitioned from any cannabis use to cannabis dependence 
(pre-DSM-5), which was lower than tobacco, alcohol, and cocaine [31]. Another way to con-
textualize relative risk is to consider the conditional probability between use and misuse 
(i.e., the proportion of active users of a given drug that have a diagnosable problem). Again, 
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drawing on large-scale NESARC data, 7.96% of cannabis users met criteria for cannabis 
dependence, which was higher than alcohol (5.82%) but substantially lower than tobacco 
(46.13%), heroin (26.96%), and cocaine (23.91%) [32]. In an interesting study of addiction 
experts using a multi-criteria decision analysis to judge substance use harms, cannabis was 
ranked 8th out of 20, behind alcohol, heroin, crack cocaine, methamphetamine, cocaine, 
tobacco, and amphetamine (in that order). Collectively, these findings suggest that although 
cannabis is far from without risk, it can also be thought of as lower risk than a number of 
other psychoactive drugs, both legal and illegal.

5. Common comorbidities

Other comorbid conditions are common in CUD; in particular, high rates of depression, 
anxiety, substance use and personality disorders are consistently associated with CUD [5, 9].  
Understanding associations between CUD and other disorders is important as it provides 
more information on course and progression of the disorder.

Other substance use disorders (SUDs) are most commonly associated with CUD, with greater 
lifetime use of illicit drugs, including sedative/tranquilizers, painkillers, cocaine stimulants, 
club-drugs, hallucinogens, inhalant/solvents, heroin and other prescription drugs [33]. Recent 
epidemiological studies suggest increasing links with stimulant-based substances including 
MDMA, methamphetamine and prescription stimulants such as Ritalin [33]. It is possible 
that cannabis and stimulant co-abuse patterns represent individuals counterbalancing each 
drug’s pharmacokinetic effects; for example applying sedative effects of cannabis following 
stimulant use [33]. Individuals with CUD are also more likely to also be current smokers and 
report high rates of alcohol use [9, 33]. Longitudinal studies are now providing more support 
for a causal relationship between early cannabis use and CUD as well as substance use and 
other psychiatric disorders. One large study demonstrated consistent, dose-response charac-
teristics between early cannabis use and the development of CUD, other illicit substance use, 
depression and suicide attempts [34]. Altogether consistent data show polydrug use with 
CUD even when controlling for other health and psychiatric factors present before or during 
adolescence [33, 34].

In terms of other conditions, personality disorders are highly comorbid, in particular increased 
rates of antisocial and borderline personality disorder are noted [9]. Anxiety disorders are 
also linked to CUD, with Post Traumatic Stress Disorder (PTSD) most highly associated, fol-
lowed by general anxiety and panic disorder [9, 21]. Applying the CUD severity specifiers 
(mild, moderate, severe) shows that increasing CUD severity is associated with the increas-
ing strength of associations with these psychiatric conditions [21]—similar to CUD, clinical 
problems also exist on a severity continuum [5].

Converging lines of preclinical, epidemiological and experimental studies demonstrate 
strong links between cannabinoids and psychosis. The exogenous cannabinoid hypothesis 
posits that cannabinoid exposure is linked to the development of psychosis [35]. In controlled 
human laboratory settings, THC and cannabis extract administration produces increased pos-
itive symptoms, (including delusions, suspiciousness and perceptual alterations), negative 
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symptoms (including blunted affect, psychomotor retardation, reduced rapport), cognitive 
deficits (including learning, memory and attention),—some of which are related to schizo-
phrenia including verbal recall impairment with increased “false positives” and “intrusions” 
[36]. In healthy individuals, these acute laboratory effects of cannabis are time-locked to drug 
administration, dose-related and transient [36].

Consistent with acute intoxication experiments, epidemiological studies also provide strong 
evidence for cannabis use increasing the risk for psychosis, even after adjusting for covari-
ates [37]. While these studies have difficulty demonstrating a causal relationship with psy-
chotic disorders, a growing number of longitudinal prospective studies are beginning to 
demonstrate these links [37]. There is still more research needed integrating neurobiology, 
epidemiology and psychopharmacology with particular compounds and potencies (includ-
ing synthetic cannabinoids) to determine the magnitude and mechanisms of a causal effect 
[37]. Nevertheless, many individuals who use cannabis regularly do not develop psychotic 
disorders, therefore understanding those subgroups most at risk to propsychotic effects still 
needs to be clarified [35].

These findings have significant implications for treatment; high comorbidity rates underscore 
the fact that clinicians should screen for other conditions as these are likely present. Additionally, 
treatment approaches may need to target concurrent conditions. The co-relationship between 
CUD and other conditions is also important if CUD prevalence increases with legislative 
changes. While the causal relationship between these co-occurrences is not yet definitive, the 
close association nonetheless highlights important vulnerabilities and speaks to the importance 
of prevention and early intervention efforts.

6. Contemporary biopsychosocial model of etiology

Most individuals who try cannabis do not use it regularly or progress to CUD; therefore 
cannabis use alone is not sufficient to develop a CUD. Modern etiological theories of CUD 
emphasize neurophysiological adaptations that occur with persistent cannabis use, resulting 
in changes in cognition and motivation that recursively sustain drug-seeking, and important 
developmental features in which early cannabis use can create vulnerabilities for subsequent 
misuse and CUD.

6.1. Neurobiology and neurocognition

The endocannabinoid system in the brain modulates the activity of multiple neurotransmit-
ters, including dopamine, through the cannabinoid receptor 1 (CB1) [38].

Most of the rewarding effects of cannabis are mediated through THC at the cannabinoid CB1 
receptor in the brain [39–41]. These feelings of high relate to THC concentrations and can 
be blocked by a CB1 antagonist [42]. Additionally, there is evidence for the CB1 receptor in 
the development of dependence and in the withdrawal syndrome [39]. The brain responds 
to persistent cannabis consumption and the resulting circulating THC by homeostatically 
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downregulating CB1 receptors [43]; full recovery of CB1 receptor density has been detected 
after one-month abstinence and substantial recovery has been detected as soon as 72-hours 
[43, 44].

Both the acute and chronic effects of cannabis on the central nervous system are not well-
understood in humans. CB1 receptors are heavily expressed in the striatum, hippocampus, 
amygdala and prefrontal cortex (PFC) and it is mostly in these regions that regular cannabis 
users show altered neuroanatomy [45]. Understanding neuroanatomic alterations with can-
nabis use is complicated by this drug’s composition changes in recent years including differ-
ent cannabinoid compounds with unique neural effects [45]. Since the 1990s, THC potency 
has increased from 4 to 12%; simultaneously, the average concentration of THC to cannabi-
diol has increased almost 80 times, suggesting plants are now bred with much higher THC 
concentrations (based on confiscated cannabis materials) [46]. These compound alterations 
are important as preclinical evidence suggests neurotoxic effects of THC on CB1 rich areas 
[45]. In humans, volumetric reductions and gray matter density alterations are consistently 
noted in the hippocampus, which relate to duration of use and cannabis dosage [45, 47, 48]. 
There are also links with compound composition; THC levels are inversely related to volu-
metric reductions while higher THC/cannabidiol ratios are associated with reduced volume 
and gray matter [45]. There is some evidence for neuroprotective cannabidiol effects as indi-
viduals with high cannabidiol levels do not show hippocampal volume reductions, however 
the mechanisms by which cannabidiol might offset THC effects are currently unknown [45].

Outside of the hippocampus, neuroanatomic alterations are additionally noted in high-density 
CB1 areas including the amygdala and striatum, PFC, parietal cortex, insula and cerebellum 
[45]. Altogether, these neuroanatomic alterations may result from THC metabolites accumu-
lating and producing neurotoxic effects, cannabinoid receptor adaptations and/or changes in 
cells or vascularity [45]. All of these CB1-rich areas serve core functions in memory, attention, 
learning and reward and cognitive control. The hippocampus, PFC and amygdala are central 
in cognitive processing, indeed behavioral/functional impairments are noted in memory, 
attention and learning in CUD [49].

6.2. Cognitive functioning

Although the findings are mixed, overall subtle neurocognitive deficits in executive function, 
memory and learning are found with cannabis exposure, however, long term cannabis effects, 
and whether they are reversible, are still unclear [49, 50]. The ability to hold and manipulate 
information is consistently impaired with acute cannabis administration, although few stud-
ies report long-term working memory problems [50–53]. Diminished prefrontal cortex and 
hippocampal activity are noted during memory tasks in heavy cannabis users [54].

Of particular relevance to cannabis is the role of impulsivity—a systematic review provides 
support for alterations in inhibitory control in heavy cannabis users [55].

There are mixed behavioral findings when examining attention and concentration in CUD 
as well as impulsive behaviors following acute administration, short-term and long-term 
abstinence [50]. Nevertheless several neuroimaging studies demonstrate reduced prefrontal, 
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administration, dose-related and transient [36].

Consistent with acute intoxication experiments, epidemiological studies also provide strong 
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ing synthetic cannabinoids) to determine the magnitude and mechanisms of a causal effect 
[37]. Nevertheless, many individuals who use cannabis regularly do not develop psychotic 
disorders, therefore understanding those subgroups most at risk to propsychotic effects still 
needs to be clarified [35].

These findings have significant implications for treatment; high comorbidity rates underscore 
the fact that clinicians should screen for other conditions as these are likely present. Additionally, 
treatment approaches may need to target concurrent conditions. The co-relationship between 
CUD and other conditions is also important if CUD prevalence increases with legislative 
changes. While the causal relationship between these co-occurrences is not yet definitive, the 
close association nonetheless highlights important vulnerabilities and speaks to the importance 
of prevention and early intervention efforts.

6. Contemporary biopsychosocial model of etiology

Most individuals who try cannabis do not use it regularly or progress to CUD; therefore 
cannabis use alone is not sufficient to develop a CUD. Modern etiological theories of CUD 
emphasize neurophysiological adaptations that occur with persistent cannabis use, resulting 
in changes in cognition and motivation that recursively sustain drug-seeking, and important 
developmental features in which early cannabis use can create vulnerabilities for subsequent 
misuse and CUD.

6.1. Neurobiology and neurocognition

The endocannabinoid system in the brain modulates the activity of multiple neurotransmit-
ters, including dopamine, through the cannabinoid receptor 1 (CB1) [38].

Most of the rewarding effects of cannabis are mediated through THC at the cannabinoid CB1 
receptor in the brain [39–41]. These feelings of high relate to THC concentrations and can 
be blocked by a CB1 antagonist [42]. Additionally, there is evidence for the CB1 receptor in 
the development of dependence and in the withdrawal syndrome [39]. The brain responds 
to persistent cannabis consumption and the resulting circulating THC by homeostatically 
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downregulating CB1 receptors [43]; full recovery of CB1 receptor density has been detected 
after one-month abstinence and substantial recovery has been detected as soon as 72-hours 
[43, 44].

Both the acute and chronic effects of cannabis on the central nervous system are not well-
understood in humans. CB1 receptors are heavily expressed in the striatum, hippocampus, 
amygdala and prefrontal cortex (PFC) and it is mostly in these regions that regular cannabis 
users show altered neuroanatomy [45]. Understanding neuroanatomic alterations with can-
nabis use is complicated by this drug’s composition changes in recent years including differ-
ent cannabinoid compounds with unique neural effects [45]. Since the 1990s, THC potency 
has increased from 4 to 12%; simultaneously, the average concentration of THC to cannabi-
diol has increased almost 80 times, suggesting plants are now bred with much higher THC 
concentrations (based on confiscated cannabis materials) [46]. These compound alterations 
are important as preclinical evidence suggests neurotoxic effects of THC on CB1 rich areas 
[45]. In humans, volumetric reductions and gray matter density alterations are consistently 
noted in the hippocampus, which relate to duration of use and cannabis dosage [45, 47, 48]. 
There are also links with compound composition; THC levels are inversely related to volu-
metric reductions while higher THC/cannabidiol ratios are associated with reduced volume 
and gray matter [45]. There is some evidence for neuroprotective cannabidiol effects as indi-
viduals with high cannabidiol levels do not show hippocampal volume reductions, however 
the mechanisms by which cannabidiol might offset THC effects are currently unknown [45].

Outside of the hippocampus, neuroanatomic alterations are additionally noted in high-density 
CB1 areas including the amygdala and striatum, PFC, parietal cortex, insula and cerebellum 
[45]. Altogether, these neuroanatomic alterations may result from THC metabolites accumu-
lating and producing neurotoxic effects, cannabinoid receptor adaptations and/or changes in 
cells or vascularity [45]. All of these CB1-rich areas serve core functions in memory, attention, 
learning and reward and cognitive control. The hippocampus, PFC and amygdala are central 
in cognitive processing, indeed behavioral/functional impairments are noted in memory, 
attention and learning in CUD [49].

6.2. Cognitive functioning

Although the findings are mixed, overall subtle neurocognitive deficits in executive function, 
memory and learning are found with cannabis exposure, however, long term cannabis effects, 
and whether they are reversible, are still unclear [49, 50]. The ability to hold and manipulate 
information is consistently impaired with acute cannabis administration, although few stud-
ies report long-term working memory problems [50–53]. Diminished prefrontal cortex and 
hippocampal activity are noted during memory tasks in heavy cannabis users [54].

Of particular relevance to cannabis is the role of impulsivity—a systematic review provides 
support for alterations in inhibitory control in heavy cannabis users [55].

There are mixed behavioral findings when examining attention and concentration in CUD 
as well as impulsive behaviors following acute administration, short-term and long-term 
abstinence [50]. Nevertheless several neuroimaging studies demonstrate reduced prefrontal, 
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anterior cingulate and dorsolateral PFC activity during inhibitory control tasks [56–58]. Delay 
discounting, a behavioral economic measure of impulsivity reflecting preferences for smaller 
immediate rewards relative to larger delayed rewards, has been inconsistently associated 
with CUD, although a recent meta-analysis detected an overall small magnitude association 
[59]. This is consistent with greater impulsivity on this measure in relation to other forms of 
addiction, ADHD, and obesity [60–62].

Decision-making and risk-taking appear altered following acute cannabis administration as 
well as after short-term and longer-term abstinence [50]. It is yet unclear whether these effects 
are short-term or long-lasting or if these represent an exposure effect; while some studies 
report reversible findings following abstinence [63, 64] others report deficits even years after 
drug cessation, suggesting cumulative drug effects [65, 66]. Mixed findings again may relate 
to the changing compound profile of cannabis—most findings reported from acute intoxica-
tion experiments to date administer cannabis concentrations ~3% THC—significantly lower 
levels than the 12% rate often found in current samples [46]. Longitudinal studies with more 
potent drugs and more systematic control for cannabis use will be critical to clarify the effects. 
It is also possible that neurocognitive alterations exist prior to cannabis use; however, few 
longitudinal studies exist testing this hypothesis.

Clarifying neurocognitive impairments associated with CUD is important for understanding 
how the disorder progresses and impacts specific functions. To date, few studies examine 
how these impairments relate to recovery and abstinence. Understanding these impairments 
is also important for clinicians; particular deficits may put into question the usefulness of cog-
nitive therapy [67] as specific cognitive functions may underlie learning adaptive responses 
and skills in behavioral therapies and avoiding relapse [50].

To date, functional neuroimaging studies examining the underlying neural substrates of these 
executive functions provide some evidence for altered processing [2, 50, 54, 56–58, 66]. Mixed 
findings may relate to the neuroimaging techniques employed, the constructs examined and 
the heterogeneity of characteristics in the samples studied.

6.3. Motivation and cannabis

One of the effects of chronic cannabis use in popular culture is changes in motivation. A 
recent longitudinal study showed cannabis use predicted lower persistence and initiative in 
college students [68]. Nevertheless, only a handful of studies have systematically examined 
cannabis’ effects on motivation under controlled conditions. Laboratory studies of cannabis 
on motivation have found pro-motivational effects [69, 70], amotivational effects [71], or no 
effect [72]. These mixed findings may relate to problematic methodology, including differing 
cannabis doses (even within the same study), small sample numbers (e.g. N = 5), cross sec-
tional designs, and differing compound composition over time. The heterogeneity of the can-
nabis users sampled in the studies is quite diverse; indeed, most human studies in cannabis 
users compare groups of cannabis users with varying levels of cannabis related problems (e.g. 
heavy, regular, occasional, light) to controls without assessing CUDs with rigorous diagnostic 
instruments. Additionally, some of the simple finger-tapping tasks that participants are asked 
to perform in the laboratory may not adequately capture the affected motivated behavior.
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A recent study examining chronic effects of cannabis on reward learning, found that non-
intoxicated individuals with CUD did not develop a response bias to reward-paired cues over 
time, suggesting an impaired ability to learn new rewards [73]. The neurobiology underlying 
impaired reward learning in CUD is currently not clear, including whether this is a predispos-
ing factor or a result of heavy cannabis use. Nevertheless, the inability to form new reward 
associations lies at the core of an amotivational syndrome.

There is also evidence for heterogeneity of effects of different active cannabis concentrations 
and compounds. On another task examining effort-related decision-making, acute admin-
istration of cannabis with or without cannabidiol reduced the number of effortful choices 
for monetary reward compared to placebo [73]. Although the effortful choices were not dif-
ferentially affected by the presence of cannabidiol in the compound, the investigators found 
that following cannabis administration with cannabidiol, the expected value of the reward 
(measured as the outcome value X the probability of receiving that outcome) increased the 
likelihood of making a high-effort choice. These results suggest that the presence of cannabi-
diol may affect THC’s effects on processing expected value [73].

Amotivation in CUD may reflect that cannabis itself becomes a predominant motivator over 
other stimuli. One study investigated neural sensitivity to hedonic stimuli and showed that 
long-term daily users showed greater neural responses in reward networks to cannabis 
cues, relative to natural reward (fruit) cues [74]. Moreover, activity in frontostriatal tempo-
ral regions correlated with subjective reports of craving, THC metabolite levels as well as 
cannabis withdrawal scores. These findings suggest a hyper-responsivity and specificity of 
the brain’s response to cannabis cues in heavy users. Additionally, the positive relationship 
between THC levels and neural response suggests that the latter may relate to cannabis use 
[74]. Another large longitudinal fMRI study prospectively examined striatal changes follow-
ing cannabis use in youths at the ages of 20, 22, to 24 [75]. The striatum is a key node of the 
reward network that signals the motivational significance of a stimulus [76]. The results in 
youths showed that past-year cannabis use at each of the 3 scans related to striatal activation 
during reward anticipation, even when covarying for binge drinking or other drug use [75]. 
At the first scan, past-year cannabis use negatively correlated with striatal activation at Time 
2, while past-year cannabis use at Time 2 was negatively associated with striatal activation 
at Time 3. Importantly, blunted striatal response was only present in those individuals with 
escalating drug use, suggesting that cannabis may be triggering these changes. Overall, this is 
the first study to show longitudinal associations between cannabis use and striatal activation 
during a nondrug reward anticipation task. More prospective studies are needed to evaluate 
whether an amotivational syndrome exists and the mechanisms by which it might develop.

6.4. Developmental influences

Given their increased drug experimentation, combined with a developing endocannabinoid 
system, adolescents represent a population particularly vulnerable to cannabis’ effects [77, 78].  
A meta-analysis of cognitive functioning in adolescents reported reduced cognitive function-
ing with frequent or heavy cannabis use, however, abstinence greater than 72 hours appears 
to diminish this effect [79].
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likelihood of making a high-effort choice. These results suggest that the presence of cannabi-
diol may affect THC’s effects on processing expected value [73].

Amotivation in CUD may reflect that cannabis itself becomes a predominant motivator over 
other stimuli. One study investigated neural sensitivity to hedonic stimuli and showed that 
long-term daily users showed greater neural responses in reward networks to cannabis 
cues, relative to natural reward (fruit) cues [74]. Moreover, activity in frontostriatal tempo-
ral regions correlated with subjective reports of craving, THC metabolite levels as well as 
cannabis withdrawal scores. These findings suggest a hyper-responsivity and specificity of 
the brain’s response to cannabis cues in heavy users. Additionally, the positive relationship 
between THC levels and neural response suggests that the latter may relate to cannabis use 
[74]. Another large longitudinal fMRI study prospectively examined striatal changes follow-
ing cannabis use in youths at the ages of 20, 22, to 24 [75]. The striatum is a key node of the 
reward network that signals the motivational significance of a stimulus [76]. The results in 
youths showed that past-year cannabis use at each of the 3 scans related to striatal activation 
during reward anticipation, even when covarying for binge drinking or other drug use [75]. 
At the first scan, past-year cannabis use negatively correlated with striatal activation at Time 
2, while past-year cannabis use at Time 2 was negatively associated with striatal activation 
at Time 3. Importantly, blunted striatal response was only present in those individuals with 
escalating drug use, suggesting that cannabis may be triggering these changes. Overall, this is 
the first study to show longitudinal associations between cannabis use and striatal activation 
during a nondrug reward anticipation task. More prospective studies are needed to evaluate 
whether an amotivational syndrome exists and the mechanisms by which it might develop.

6.4. Developmental influences

Given their increased drug experimentation, combined with a developing endocannabinoid 
system, adolescents represent a population particularly vulnerable to cannabis’ effects [77, 78].  
A meta-analysis of cognitive functioning in adolescents reported reduced cognitive function-
ing with frequent or heavy cannabis use, however, abstinence greater than 72 hours appears 
to diminish this effect [79].
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To date, few neuroimaging studies examine adolescent populations with CUD. Adolescent 
chronic cannabis use is associated with greater performance-related activation in fronto-
temporal areas, despite similar performance, suggesting neuroadaptations, or greater neural 
effort to perform memory and inhibition tasks [56]. A recent prospective cohort study scanned 
adolescents as they performed a working memory task prior to and after their first cannabis 
exposure [80]. The researchers found that those youths that would go on to use cannabis by 
the age of 15 (follow up), showed increased frontoparietal activity at baseline relative to the 
non-using group—these neural differences remained unchanged or increased when exam-
ined longitudinally. This is the first study to demonstrate frontoparietal and neurocognitive 
alterations prior to cannabis use. The researchers also found that at 12 years of age (baseline), 
the adolescents who would go on to use cannabis by the age of 15 (follow-up) had signifi-
cantly lower scores on the cognitive battery. The difference scores on the cognitive battery 
from baseline to follow-up did not change, suggesting no significant neurocognitive changes 
following cannabis initiation. This prospective cohort study is one of the first to demonstrate 
specific neurocognitive features that may exist prior to cannabis exposure.

Given the changing compound composition of cannabis, combined with increasing THC levels 
and availability, understanding the effects of cannabis use on the brain and on memory, learn-
ing and reward processing should be a priority in adolescents. Accordingly, the Adolescent 
Brain Cognitive Development (ABCD) study recently launched by the National Institute of 
Health in the United States will follow 10,000 children longitudinally with multiple measures 
of neural, cognitive and emotional functioning [81]. This prospective cohort study will pro-
vide much-needed information on the long-term effects of cannabis use.

7. Other harms from cannabis

With the exception of nicotine, smoked cannabis includes many of the same chemicals and 
carcinogens found in tobacco that can damage lung tissue [82]. Heavy cannabis smoking 
is associated with chronic bronchitis and inflammation/injury in the larger airways [82]. 
Findings for other types of lung diseases and cancers are mixed, given high rates of comorbid 
tobacco use in regular cannabis users. Some of the chronic respiratory effects appear revers-
ible, particularly in those individuals who only smoke cannabis [83, 84]. The impact of can-
nabis use on lung health may also change, as other methods of intake are gaining popularity, 
such as vaping or edibles [82].

One of the largest public health concerns with legalization of cannabis use is the effect of the 
drug on driving. Driving simulation studies show a relationship between blood THC levels 
and impaired performance, particularly with reaction time and lane position variability (i.e., 
weaving) [85]. One study had occasional cannabis smokers perform a visuomotor tracking 
task while undergoing fMRI after taking low-dose THC and found decreased psychomo-
tor skills as well as reduced activity in fronto-parietal areas [86]. After alcohol, cannabis is 
the most commonly reported drug in driving accidents and fatalities [87]. There is current 
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ongoing research to better understand drug interactions, particularly with alcohol, as psy-
chomotor impairments appear more severe when alcohol and cannabis are combined [85]. 
Indeed, greater information on the pharmacokinetic effects of cannabis on driving is needed, 
together with other drug interactions. One difficult problem for roadside testing remains that 
current cannabis detection through breath, saliva, blood or urine does not provide a reliable 
measure of recency or potency of use.

8. Future directions in CUD research

A fundamental question in cannabis research is whether observed alterations in neurobiology 
and cognition with heavy cannabis use persist with abstinence or whether they are reversible. 
The neurobiological studies are currently limited by an absence of standardized methods 
to characterize cannabis consumption levels as well as compound composition. The vary-
ing compounds in cannabis samples present a challenge to conducting systematic cannabis 
research; it is unknown how all of these might interact [28] and varying cannabinoid levels 
across studies may account for the diverse findings reported in the literature. Most studies 
rely on self-report measures of cannabis use and those that do toxicology analyses provide 
poor measures for quantifying exposure or the timeframe. Additionally, different measures of 
intake (i.e., inhaling, vaping, with/without tobacco) can also influence THC release/metabo-
lism. Given all of the uncertainty between exposure parameters and neural substrates, many 
researchers are now calling for standardization of cannabis use metrics, particularly as the 
drug’s effects appear more closely linked to dosage than duration of use [49]. Questions 
for future research include: (1) understanding CB1 receptor changes and relationships with 
reward, motivation, craving and abstinence, (2) clarifying cognitive and motivational altera-
tions and whether these are precursors or consequences of CUD and (3) understanding the 
links between cannabis use and psychotic disorders. In this changing political, social, psycho-
pharmacological and compositional landscape of cannabis, understanding the harms associ-
ated with cannabis use and CUD will be fundamental in informing policy and supporting 
clinicians.
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To date, few neuroimaging studies examine adolescent populations with CUD. Adolescent 
chronic cannabis use is associated with greater performance-related activation in fronto-
temporal areas, despite similar performance, suggesting neuroadaptations, or greater neural 
effort to perform memory and inhibition tasks [56]. A recent prospective cohort study scanned 
adolescents as they performed a working memory task prior to and after their first cannabis 
exposure [80]. The researchers found that those youths that would go on to use cannabis by 
the age of 15 (follow up), showed increased frontoparietal activity at baseline relative to the 
non-using group—these neural differences remained unchanged or increased when exam-
ined longitudinally. This is the first study to demonstrate frontoparietal and neurocognitive 
alterations prior to cannabis use. The researchers also found that at 12 years of age (baseline), 
the adolescents who would go on to use cannabis by the age of 15 (follow-up) had signifi-
cantly lower scores on the cognitive battery. The difference scores on the cognitive battery 
from baseline to follow-up did not change, suggesting no significant neurocognitive changes 
following cannabis initiation. This prospective cohort study is one of the first to demonstrate 
specific neurocognitive features that may exist prior to cannabis exposure.

Given the changing compound composition of cannabis, combined with increasing THC levels 
and availability, understanding the effects of cannabis use on the brain and on memory, learn-
ing and reward processing should be a priority in adolescents. Accordingly, the Adolescent 
Brain Cognitive Development (ABCD) study recently launched by the National Institute of 
Health in the United States will follow 10,000 children longitudinally with multiple measures 
of neural, cognitive and emotional functioning [81]. This prospective cohort study will pro-
vide much-needed information on the long-term effects of cannabis use.

7. Other harms from cannabis

With the exception of nicotine, smoked cannabis includes many of the same chemicals and 
carcinogens found in tobacco that can damage lung tissue [82]. Heavy cannabis smoking 
is associated with chronic bronchitis and inflammation/injury in the larger airways [82]. 
Findings for other types of lung diseases and cancers are mixed, given high rates of comorbid 
tobacco use in regular cannabis users. Some of the chronic respiratory effects appear revers-
ible, particularly in those individuals who only smoke cannabis [83, 84]. The impact of can-
nabis use on lung health may also change, as other methods of intake are gaining popularity, 
such as vaping or edibles [82].

One of the largest public health concerns with legalization of cannabis use is the effect of the 
drug on driving. Driving simulation studies show a relationship between blood THC levels 
and impaired performance, particularly with reaction time and lane position variability (i.e., 
weaving) [85]. One study had occasional cannabis smokers perform a visuomotor tracking 
task while undergoing fMRI after taking low-dose THC and found decreased psychomo-
tor skills as well as reduced activity in fronto-parietal areas [86]. After alcohol, cannabis is 
the most commonly reported drug in driving accidents and fatalities [87]. There is current 
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ongoing research to better understand drug interactions, particularly with alcohol, as psy-
chomotor impairments appear more severe when alcohol and cannabis are combined [85]. 
Indeed, greater information on the pharmacokinetic effects of cannabis on driving is needed, 
together with other drug interactions. One difficult problem for roadside testing remains that 
current cannabis detection through breath, saliva, blood or urine does not provide a reliable 
measure of recency or potency of use.

8. Future directions in CUD research

A fundamental question in cannabis research is whether observed alterations in neurobiology 
and cognition with heavy cannabis use persist with abstinence or whether they are reversible. 
The neurobiological studies are currently limited by an absence of standardized methods 
to characterize cannabis consumption levels as well as compound composition. The vary-
ing compounds in cannabis samples present a challenge to conducting systematic cannabis 
research; it is unknown how all of these might interact [28] and varying cannabinoid levels 
across studies may account for the diverse findings reported in the literature. Most studies 
rely on self-report measures of cannabis use and those that do toxicology analyses provide 
poor measures for quantifying exposure or the timeframe. Additionally, different measures of 
intake (i.e., inhaling, vaping, with/without tobacco) can also influence THC release/metabo-
lism. Given all of the uncertainty between exposure parameters and neural substrates, many 
researchers are now calling for standardization of cannabis use metrics, particularly as the 
drug’s effects appear more closely linked to dosage than duration of use [49]. Questions 
for future research include: (1) understanding CB1 receptor changes and relationships with 
reward, motivation, craving and abstinence, (2) clarifying cognitive and motivational altera-
tions and whether these are precursors or consequences of CUD and (3) understanding the 
links between cannabis use and psychotic disorders. In this changing political, social, psycho-
pharmacological and compositional landscape of cannabis, understanding the harms associ-
ated with cannabis use and CUD will be fundamental in informing policy and supporting 
clinicians.
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Abstract

Every day, the questions about Cannabis sativa ability to cause chemical dependence are 
closed with the considerable increase in the demand for treatment of addicts to this plant. 
Most drug addicts submitted to treatment have difficulty in achieving and maintaining 
abstinence from Cannabis due to the appearance of symptoms as irritability, anxiety, 
desire to consume marijuana, decreased quality and quantity of sleep, and change in 
appetite, weight loss, and physical discomfort, besides emotional and behavioral symp-
toms. The neurobiological basis for the withdrawal syndrome, that is, withdrawal of 
Cannabis, was established after the discovery of the endogenous cannabinoid system, 
identification of CB1 and CB2 cannabinoid receptors, and demonstrations of precipitated 
removal with antagonists of these receptors. The chapter discusses the main studies cur-
rently conducted for the treatment of withdrawal syndrome based on bioligands that act 
directly on the CB1 cannabinoid receptor.

Keywords: receptor cannabinoid CB1, withdrawal syndrome, Cannabis sativa,  
drugs computer aided

1. Introduction

Cannabis sativa, commonly known as marijuana, is the illicit drug most consumed in many 
countries [1]. The form of Cannabis abuse is predominantly smoked, although it can be found 
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in paste form called hashish, mixed with crack, or as skunk, which is a polymorphic form 
of marijuana [2] cultivated in special appearance and 7–25 times stronger than common 
marijuana causing greater psychotropic effects, as well as adverse effects such as triggering 
of schizophrenia [3].

Studies have found moderate evidence that there is a link between Cannabis use and in rela-
tion to the development of dependence and substance abuse such as alcohol and tobacco 
among other illicit drugs [4], and after a long discussion about the relevance of recent Cannabis 
withdrawal syndrome, this condition was added to the fifth version of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-5) [5]. This syndrome appears within 24 h after 
cessation of Cannabis use, reaches a peak in about days 2–6, and can last from 1 or 2 weeks. 
It affects 55–89% of regular Cannabis users. The Cannabis withdrawal syndrome is clinically 
defined by irritability, anger, nervousness, anxiety, sleep difficulties, decreased appetite or 
weight loss, restlessness, and mood depression, in addition to various physical symptoms 
such as abdominal pain, tremor, or sweating [6–8].

The evidence of Cannabis withdrawal syndrome is based on behavioral observations in animal 
studies [9], clinical observation of patients [10], or epidemiological surveys [11, 12]. However, 
the biological correlates of this phenomenon remain obscure, challenging the validity of the syn-
drome. This lack of knowledge is partly explained by the interindividual variability of delta 9-tet-
rahydrocannabinol (THC) metabolism [13] and the complexity of plasma-tissue exchanges [14].

In the last decades, many studies have been dedicated to discover and understand the diverse 
effects of cannabinoids on the organism whether therapeutic (with the relief of chronic pains 
and muscle spasms related to multiple sclerosis) [15, 16] or derived from the psychoactivity of 
C. sativa, originating the dependence and consequently the withdrawal syndrome [17]. These 
symptoms include physical discomforts such as headaches and stomach psychological symp-
toms accompanied by irritability, anxiety, sleep disturbances, decreased appetite/weight 
loss, restlessness, or depressed mood [18]. The chapter discusses the main studies currently 
conducted for the treatment of Cannabis withdrawal syndrome, that is, molecules which have 
their activity associated with some kind of interaction by structural complementarity beside 
the CB1 cannabinoid receptor.

2. Physiology

2.1. Cannabinoid receptor type 1 (CB1)

After the use of Cannabis, THC interacts with the CB1 cannabinoid receptor, inducing con-
formational changes in this receptor, the interaction with the residue of amino acid TRP356 
and its surroundings being the activation trigger for the signaling [19]. Also, the binding site 
of the CB1 receptor comprises the amino acid residues Phenylalanine 174 (PHE174), Leucine 
193 (LEU193), and Serine 383 (SER383) (Figure 1) that must be in contact or proximity to the 
preferred THC docking position [20].

The morphological differences between CB1 and CB2 cannabinoid receptors indicate that 
most cannabinoid compounds interact differently in both receptors [21], and the location of 
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CB1 receptors in the central nervous system is directly associated with the behavioral effects 
produced by cannabinoids [22, 23]. CB1 gene polymorphisms have been observed and their 
importance is still unknown, but it is suggested that they are linked to increased susceptibility 
to C. sativa dependence and neuropsychiatric disorders [24].

CB1 cannabinoid receptors are present in areas associated with motor control, emotional 
response, learning, memory, goal-oriented behaviors, energy homeostasis, and higher 
cognitive functions, among others [25]. In peripheral organs and tissues, CB1 receptors are 
expressed in low density and have potential implication to regulate inflammation and auto-
immune diseases [26]. Unlike the standard of others neuroreceptor systems, levels of CB1 
receptors in rats are increased in the transition from adolescence to adult age, a fact that sug-
gests the propensity to search for cannabinoid compounds at this stage of life [27].

The CB1 receptor is a subfamily member of the G protein-coupled receptors (GPCRs) [28] and 
is predominantly present in the presynaptic terminal, although small amounts are present in 
peripheral nerves and its function seems to modulate the release of neurotransmitters such as 
dopamine, noradrenaline, glutamate, and serotonin in the synaptic cleft [29].

The inhibition of adenylate cyclase by psychoactive cannabinoids in more densely populated 
regions of CB1 receptors was initially identified in N18TG2 neuroblastoma cells and thereaf-
ter in many other preparations [30]. This inhibition causes modulation of intracellular cAMP 
concentration, thereby regulating protein kinase A (PKA) phosphorylation, fact that may 
result in large changes on cellular activity, such as regulation of K+ channels undergoing PKA 
action in hippocampus [31].

Mitogen-activated protein kinases (MAP kinases) are important signal transduction enzymes  
involved in cell regulation to physiological functions of gene expression control, pro-
liferation, and programmed cell death (apoptosis) [32]. Studies confirm a positive connec-
tion of CB1 receptors with MAP kinase, so that, in vivo, acute administration of Δ9-THC 
and CB1 cannabinoid receptor agonists (CP-55940, WIN 55,212-2, anandamide (AEA), and 
2-O-arachidonoylglycerol (2-AG)) stimulates the MAP kinase of guinea pigs. Synaptic plas-
ticity is considered as the capacity of rearrangement by the neural networks, constitutes 
an important mechanism to recover or adapt in case of injury, and provides the basis for 
most models of learning, memory, and development in neural circuits [33]. Brain-derived 

Figure 1. Amino acid residues present at the cannabinoid receptor binding site CB1.
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in paste form called hashish, mixed with crack, or as skunk, which is a polymorphic form 
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neurotrophic factor (BDNF) and Krox-24 gene have been recognized for their importance in 
synaptic plasticity and are prevented by the activation of MAP kinase [34], including studies 
that indicate that cannabinoid receptors alter this physiological process and may favor the 
induction of long-term depolarization (LTD) [35].

The voltage-dependent ion channels, mainly K+ and Ca2+, are modulated by CB1 receptors, 
suggesting that the release of gamma-aminobutyric acid (GABA), a neurotransmitter respon-
sible for CNS inhibition, is mediated by the opening of these channels [36], thus influencing 
cognitive processes such as learning and memory [37].

Cerebral cortex neurons expressing the G-protein coupled receptors, called CCK receptors, 
are responsible for the release of the neuropeptide cholecystokinin (CCK) [38], whose action 
on the hypothalamus produces the sensation of satiety, and also express the CB1 receptors 
[39]. Activation of CB1 receptors also activates CCK receptors, thus inhibiting the release of 
CCK [40] and negatively influencing satiety [41].

Rich areas in CB1 receptors reveal a high expression of N-methyl d-aspartate (NMDA) 
receptors, a class of receptors involved in glutamate neurotransmission and therefore 
important in movement control and memory formation [42]. Cannabinoid substances have 
shown dual effects on NMDA receptor activity, influencing memory acquisition and learn-
ing mechanisms [43].

2.2. Cannabinoid receptor type 2 (CB2)

The main and most well-known location of CB2 receptors on human beings is in nonneuronal 
tissues, mainly in the immune system and hematopoietic cells. The exclusively peripheral 
location of the CB2 receptors was already questioned when, in 2006, their existence was con-
firmed in the nervous system, principally in neuronal, glial, and endothelial cells in the brain, 
although in lower proportions than the CB1 receptors [44]. As CB2 receptors has an important 
role in neuroinflammatory responses, neurodegenerative diseases such as multiple sclerosis, 
amyotrophic lateral sclerosis, and Alzheimer’s disease become the subject of pharmaceutical 
studies in this regard [45], where the concentration of these receptors seems to be increased in 
specific brain regions related to these pathologies [46].

As with CB1 receptors, CB2 receptors are also coupled to G protein although their action 
seems to be part of a general protection system since its activation has no association with 
psychoactive effects. Agonist molecules of these receptors are being tested in neuropsychiat-
ric, cardiovascular, and hepatic pathologies [47].

3. Chemical dependence and withdrawal syndrome

THC is a partial agonist of CB1 and CB2 receptors, although it is the interaction with CB1 
receptors that is responsible for the psychoactive effects of C. sativa [40, 41]. CB1 receptors are 
found at high densities in the ventral tegmental area, nucleus accumbens, prefrontal cortex, 
hippocampus, amygdala, and cerebellum, whereas CB2 receptors are primarily located in 
immune cells [24, 41].
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THC, as well as other CB1 receptor agonists, has inhibitory effects on the release of GABA and 
glutamate. Excitatory effects on dopamine (DA) are also evident, leading to an increase in the 
level of extracellular DA [42].

The chemical dependence on C. sativa develops in about 10% of the people who experience the 
plant, being more common and on higher levels of use at an early age [48]. Withdrawal syn-
drome was recognized and added to DSM-5 in 2014, mainly due to the increase with the num-
ber of treatment episodes to chronic users of Cannabis in the last years [49]. These treatments 
involve psychosocial approaches, but only 20% of patients achieve definitive abstinence [50], 
manifesting a clear need to develop effective treatments for this pathology.

Studies using positron emission tomography revealed a significantly lower availability of 
CB1 receptors between Cannabis smokers and nonsmokers, in which the level of downregu-
lation correlated with the time of Cannabis use [46]. Interestingly, after a 30-day abstinence 
period, there was an increase in CB1 receptor availability to levels comparable to healthy 
controls [6, 51].

For the diagnosis of C. sativa withdrawal, it is necessary to have criteria such as (1) the devel-
opment in specific syndrome of the substance due to cessation or reduction in use; (2) the 
syndrome causes clinically significant distress or impairment in social, occupational, or other 
important areas of functioning; and (3) the symptoms are not due to a general medical condi-
tion and are not better accounted for by another mental disorder [52].

Following the recognition by the ICD-10 (International Statistical Classification of Diseases 
and Related Health Problems) system of Cannabis withdrawal, the demand for treatment of 
Cannabis abuse has grown in several countries and a large proportion of adults and adoles-
cents who participate in the outpatient treatments have difficulty in achieving and maintain-
ing Cannabis withdrawal [53].

3.1. Symptoms of withdrawal syndrome

Experimental studies on Cannabis withdrawal in humans began in the 1970s and showed mod-
erate withdrawal symptoms (such as transient nervousness) following cessation of marijuana 
use and more robust symptoms (restlessness, sleep problems, poor appetite, and disorienta-
tion). In the 1980s, new withdrawal symptoms were reported as decreased appetite/weight 
loss, hostility, irritability, mild nausea, lack of cooperation, restlessness, sleep EEG changes 
(increased REM sleep), and sleep/insomnia difficulties. These symptoms started within 5–6 h 
of the last dose and decreased by 96 h with a reduction in weight and sleep. Changes in EEG 
(i.e., increase in REM) are also observed [54, 55].

More recent studies have demonstrated Cannabis withdrawal syndrome associated with sig-
nificantly increased outcomes of anxiety, depression, and irritability; decrease in sleep quality 
and quantity indices; and decreased food intake [56]. Symptoms such as stomach pain and 
decreased assessments of contentment, friendliness, language, sociability, and energy were 
also reported. Most of the mood symptoms begin within 48 h after cessation and appear to 
peak at day 3 or 4 of the withdrawal phases, and it is interesting to note that studies of oral 
THC use have not reported sleep disturbances during the withdrawal phases [57].
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seems to be part of a general protection system since its activation has no association with 
psychoactive effects. Agonist molecules of these receptors are being tested in neuropsychiat-
ric, cardiovascular, and hepatic pathologies [47].

3. Chemical dependence and withdrawal syndrome

THC is a partial agonist of CB1 and CB2 receptors, although it is the interaction with CB1 
receptors that is responsible for the psychoactive effects of C. sativa [40, 41]. CB1 receptors are 
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important areas of functioning; and (3) the symptoms are not due to a general medical condi-
tion and are not better accounted for by another mental disorder [52].

Following the recognition by the ICD-10 (International Statistical Classification of Diseases 
and Related Health Problems) system of Cannabis withdrawal, the demand for treatment of 
Cannabis abuse has grown in several countries and a large proportion of adults and adoles-
cents who participate in the outpatient treatments have difficulty in achieving and maintain-
ing Cannabis withdrawal [53].

3.1. Symptoms of withdrawal syndrome

Experimental studies on Cannabis withdrawal in humans began in the 1970s and showed mod-
erate withdrawal symptoms (such as transient nervousness) following cessation of marijuana 
use and more robust symptoms (restlessness, sleep problems, poor appetite, and disorienta-
tion). In the 1980s, new withdrawal symptoms were reported as decreased appetite/weight 
loss, hostility, irritability, mild nausea, lack of cooperation, restlessness, sleep EEG changes 
(increased REM sleep), and sleep/insomnia difficulties. These symptoms started within 5–6 h 
of the last dose and decreased by 96 h with a reduction in weight and sleep. Changes in EEG 
(i.e., increase in REM) are also observed [54, 55].

More recent studies have demonstrated Cannabis withdrawal syndrome associated with sig-
nificantly increased outcomes of anxiety, depression, and irritability; decrease in sleep quality 
and quantity indices; and decreased food intake [56]. Symptoms such as stomach pain and 
decreased assessments of contentment, friendliness, language, sociability, and energy were 
also reported. Most of the mood symptoms begin within 48 h after cessation and appear to 
peak at day 3 or 4 of the withdrawal phases, and it is interesting to note that studies of oral 
THC use have not reported sleep disturbances during the withdrawal phases [57].
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The symptoms reached the highest levels of aggression on days 3 and 7 of abstinence and 
lasted until day 28, being reported for up to 6 months after cessation of use, showing an effect 
transient. Among chronic and daily users, the appetite decreased after day 9 of abstinence, 
anxiety occurred between days 1 and 11, irritability was greatest on days 1–14, and the mood 
was lower on days 3–9 and was higher on days 1–10. Daily users have higher levels of anxi-
ety, irritability, nervousness, restlessness, tremors, difficulty sleeping, stomach pain, strange 
dreams, excessive sweating, negative mood, physical symptoms, and decreased appetite dur-
ing the abstinence period, suggesting reliable studies of Cannabis abstinence [58, 59].

4. Treatment of withdrawal syndrome

Although there are more than 160 million Cannabis users in the world, no pharmacological 
therapy currently available is considered adequate for the treatment of symptoms caused dur-
ing the withdrawal syndrome. The known effects of withdrawal syndrome, which occur when 
drug use is deprived and disappear with the reintroduction of Δ9-THC [60], favor the recur-
rence of use by users attempting to stop. The main compounds that have activity on the can-
nabinoid receptor and mechanisms related to Cannabis withdrawal syndrome are as follows.

4.1. Agonist compounds

The involvement of the CB1 receptor with the development of dependence, as well as the 
expression of withdrawal symptoms, has already been evidenced in several animal experi-
ments. Therefore, it is suggested that treatment with low doses of CB1 receptor agonists 
could reduce the severity of withdrawal symptoms [61]. Low doses of Δ9-THC were tested 
to improve withdrawal symptoms; however, these doses exhibited reinforcing properties in 
chronic Cannabis users, eliminating THC as a viable treatment [62].

The endocannabinoids AEA and 2-AG, which are low and high efficiency agonists for the 
CB1 receptor, respectively, as well as fatty acid amide hydrolase (FAAH) enzymes responsible 
for the degradation of AEA and monoacylglycerol lipase (MAGL) responsible for the degra-
dation of 2-AG were proposed as mediating mechanisms of Cannabis withdrawal but lack 
further enlightening studies [6, 63].

4.1.1. Synthetic cannabinoids

These synthetic cannabinoid agonists present themselves as promising molecules, provid-
ing ample reduction in Cannabis withdrawal symptoms (mood, sleep, and food intake), both 
in the laboratory and in clinical settings. Unlike the isomer of THC and derived from the 
Cannabis plant, dronabinol, the synthetic cannabinoid nabilone (Figure 2) has potential to 
reduce self-administration of Cannabis, presenting as more promising for treatment [64].

Nabilone has more predictable side effects, and it is well tolerated among Cannabis users, 
better bioavailability, and longer duration of action than dronabinol, allowing the end of 
abstinence with a single daily dose [65]. In addition, nabilone produces non-Cannabis urinary 
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biomarkers that allow monitoring of abstinence through the use of standard urine toxicology 
during nabilone maintenance, but this consistently decreases Cannabis self-administration in 
the laboratory, ensuring that testing occurs in a clinical setting [66].

4.1.2. α2a adrenergic receptor agonist

Preclinical data have demonstrated that abstinence of cannabinoid is associated with adren-
ergic hyperactivity [67], and that α2 receptors agonists decrease the withdrawal symptoms of 
THC. Therefore, the α2a adrenergic receptor agonist, lofexidine (Figure 3), has been tested, and 
its use has improved sleep during the abstinence period and decreased Cannabis relapse [68] but 
is poorly tolerated even at less frequent doses and at lower target dose (0.6 mg three times a day), 
with 40% of patients presenting dizziness and fatigue [69]. Another α2-adrenergic agonist, guan-
facine hydrochloride (Figure 3), which improves memory performance in humans, was tested 
on the hypothesis that nocturnal administration of this drug would reduce Cannabis withdrawal 
while producing little evidence of sedation or hypotension. Daily administration of the compound 
significantly reduced irritability, produced small but significant decreases in blood pressure and 
heart rate, however was well tolerated, producing no sedation, dizziness, or altered food intake 
observed with lofexidine. Due to these results, guanfacine hydrochloride stands out as one of the 
first non-cannabinoid agonists to reduce cannabis abstinence-related irritability [64, 70].

Despite reductions in certain withdrawal symptoms, guanfacine did not reduce self-administration  
of Cannabis and did not worsen abstinence-related anorexia and weight loss but did not 

Figure 2. Chemical structure of isomer of THC, dronabinol and synthetic cannabinoid, and nabilone.

Figure 3. Chemical structure of α2a adrenergic receptor agonist.
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Figure 4. Chemical structure of nabiximols and terpenoids derived from C. sativa plants.

improve both. In contrast, lofexidine decreased self-administration of Cannabis in the labora-
tory after abstinence but worsened the performance of psychomotor tasks [68].

4.1.3. Nabiximols

Nabiximols are used to treat muscle spasticity associated with multiple sclerosis. These pro-
duce little intoxication, tolerance, or abstinence. They are oral spray medications containing 
THC, cannabidiol (CBD), and various terpenoids (Figure 4) derived from C. sativa plants. 
Once CBD attenuated the paranoia and euphoria associated with THC studies, nabiximols 
were used to treat Cannabis withdrawal and observed that they attenuated abstinence symp-
toms and improved patient compliance to treatment, as well as reducing irritability and 
depression of the users [71].

The indirect CBD agonist, which has a relatively low affinity for CB1 and CB2 receptors, inhibits 
AEA reuptake and hydrolysis while maintaining CB1 receptor stimulation, thus potentiating 
endocannabinoid transmission and emerging as an alternative treatment for the abstinence syn-
drome of C. sativa [72]. It is a compound with no significant adverse effects even with chronic 
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and high dose use. Due to this property on the endocannabinoid system, CBD has several phar-
macological effects, including anxiolytic, antipsychotic, neuroprotective, antiinflammatory, and 
antiemetic actions, favoring its use in the treatment of Cannabis withdrawal syndrome [73, 74].

Comparative studies of the use of nabiximols and dronabinol concluded that they did not 
produce significant cognitive or psychomotor adverse effects and showed a similar or lower 
reinforcement potential than dronabinol at lower doses [71, 75]. However, high doses of both 
drugs exhibited some potential for a booster. This fact highlights the need for careful monitor-
ing related to drug administration during future studies and clinical practice for treatment of 
dependence and abstinence from Cannabis with nabiximols.

4.2. Antagonists

The use of CB1 cannabinoid receptor antagonists is more related to the treatment of C. sativa 
dependence than to the treatment of withdrawal syndrome triggered by the withdrawal of 
this use in chronic users, as much as characteristic symptoms of withdrawal syndrome such 
as insomnia, dysphoria, and anxiety manifesting with the use of the CB1 receptor antagonist, 
rimonabant (also known as SR 141716A) (Figure 5) [8]. For this reason, the rimonabant, previ-
ously used in the treatment of obesity, was removed from the market in 2008, but it is useful 
in inducing signs of withdrawal in Cannabis-dependent individuals. One of the explanations 
is that the neural circuits involved with the serotonergic, noradrenergic, and dopaminergic 
systems have been shown to be sensitive to CB1 receptor antagonists [76, 77].

It is important to mention that the endogenous opioid system also contributes to the depen-
dence of Cannabis because it also has G protein-coupled membrane receptors [78], and users 
of opioid-dependent Cannabis are less likely to experience withdrawal symptoms. Opioid 
receptor antagonists, such as naltrexone, reduce self-administration of C. sativa and their sub-
jective positive effects in chronic plant users [79].
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5. New studies on the treatment of withdrawal syndrome

There are no drugs approved for the treatment of addiction or withdrawal syndrome of Cannabis. 
Pharmacotherapy in these cases is focused exclusively on symptoms such as increased anxi-
ety, insomnia, loss of appetite, migraine, and irritability. We disclose these symptoms being 
a result of desensitization of CB1 receptors by THC studies advancing toward the develop-
ment of compounds that act selectively at this receptor. There are four main chemical classes 
of exogenous cannabinoid ligands under study: (a) classical cannabinoids such as Δ9-THC, 
AM2389, cannabinol, nabilone, HU-210, and other tricyclic terpenoid derivatives, such as 
Δ9-tetrahydrocannabivarin (Δ9-THCV) (Figure 6), which contains a polar benzopyran moiety 
attached to a hydrophilic (n-pentyl) alkyl terminus [80]; (b) the nonclassical cannabinoids CP 
55,940, HU-308 (Figure 7) and other bicyclic and tricyclic analogs of Δ9-THC without the 
pyran ring of classical cannabinoids [81]; (c) the aminoalkylindoles WIN55,212-2, JWH-018, 
JWH-073, and AM1241 (Figure 8), which differ in structure, lipophilicity, and binding activity 
at cannabinoid receptors compared to nonclassical cannabinoids [82]; and (d) biarylpyrazole 
ligands such as rimonabant and AM251 antagonists, which are selective for the CB1 receptor, 
and SR144528 (Figure 9), which is selective for the CB2 receptor [83].

5.1. In vivo and in vitro

It is known that because cannabinoid receptors, when bound by agonists or antagonists, have 
the potential to treat a variety of pathologies such as pain, neurodegeneration, obesity, tumors, 

Figure 6. Chemical structure of classical cannabinoids.
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chemical dependency, and immune function, it is important to develop in vitro bioassays activ-
ity determination and the function of these receptors [84]. The in vitro assays established in the 
studies related to CB1 and CB2 receptors involve the use of membranes or tissues containing 

Figure 7. Chemical structure of the non-classical cannabinoids.

Figure 8. Chemical structure of the aminoalkylindoles.
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these receptors [85]. Of particular note is the assay using radiolabeled CB1 or CB2 receptors with 
[3H] CP55940 (Figure 10) and bioassays with preparations of nerve-smooth muscle where the 
ability of the molecule under study to produce inhibition or excitation of cannabinoid receptors 
is verified [86].

In vitro functional bioassays measure the effects of synthetic cannabinoids and their metabo-
lites in relation to cannabinoid receptor signaling CB1/CB2, evaluating the production of 
cyclic ATP and elevation of intracellular calcium. In the middle of the last century, initial 
studies on the effects of cannabinoids used Gayer’s tests (found at the time as a useful test for 
the effects of THC [87]), where corneal areflexia was measured in rabbits, catatonia in mice, 
and increased defecation and aggressiveness in rats stressed by REM sleep deprivation [88]. 
In mice, high-dose catalepsy with Δ9-THC was also observed [95]. In rodents, the main bioas-
say is the measurement of locomotor activity, rectal temperature, and analgesia (in the tail or 
hot plate test) [89].

The sum of the various symptoms observed in the initial studies originated characteristic 
effects in laboratory animals called cannabinoid tetrad and being characterized by hypother-
mia, analgesia, catalepsy, and locomotor suppression [90]. This tetrad is widely used nowa-
days because, since the data obtained through its observation are qualitatively consistent, it is 
common to evaluate the dose-dependence relation of cannabinoids quickly and without any 
specific training of the animals, a fact that is configured as an advantage [89].

The Δ9-THC dependency/withdrawal modeling studies are based on the cannabinoid tetrad 
in which The triggered effects are verified with the administration of cannabinoid antagonist 
(usually rimonabant), and precipitation withdrawal symptoms, being, in general, the syn-
thetic cannabinoids such as UR-144 (Figure 11), responsible to promote effects greater than 
that of Δ9-THC [91].

Studies in rats revealed that individual enzyme activity mainly related to the genetic polymor-
phisms of cytochrome P450 enzymes in the phase I metabolism of cannabinoids has an impor-
tant role in determining the response of an individual on the use of cannabinoids [92]. Thus, 
an individual may experience attenuated effects and other individual effects exacerbated by 

Figure 9. Chemical structure of the biarylpyrazole ligands such as rimonabant and AM251 antagonists.
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cannabinoids, depending on the liver enzyme profile that favors the formation of antagonistic 
or agonist metabolites, respectively [93].

Technological refinement has led to the use of new techniques and different experimental 
models [94] in the studies of compounds in potential for reinforcement, with the search for 

Figure 10. Chemical structure of the CP55940.

Figure 11. Chemical structure UR-144.
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new targets and biomarkers [95]. Among the experimental models emerges the Danio rerio 
(Zebrafish), a small fish, because it has the facility of genetic manipulation and the biology 
of its development [96]. Zebrafish is particularly useful for measuring changes in the devel-
opment of the nervous system [97], and its measures of sensorimotor plasticity, emotional 
function, cognition, and social interaction have been used to characterize the adverse effects 
of drug abuse such as Δ9-THC [98, 99] due to phylogenetic analyzes, which reveal the endo-
cannabinoid system as highly conserved between Zebrafish and mammals [100].

Tolerance and cross-tolerance tests for cannabinoids are also performed in vivo, although 
studies indicate that not all effects of cannabinoids are developed during these tests, for 
example, adrenocorticotropic hormone (ACTH) secretion is not observed in rodents during 
these tests, indicating low reliability and the need for greater improvement in vivo methods 
used in this sense [101, 102].

5.2. In silico

There are several computational methods; among them, homology modeling is being used 
in cannabinoid studies [103], considering that the drugs utilized during the withdrawal syn-
drome of C. sativa act at a symptomatic level. The resolution of the crystalline structure of 
the CB1cannabinoid receptor is recent [19], and this fact favored in silico studies that evolve 
toward the planning of molecules that act as selective agonists of this receptor, mainly stud-
ies related to better understanding of the interaction and the relation structure-activity of 

Figure 12. Chemical structure of Stemphol.
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synthetic cannabinoids [104]. A study can be mentioned where computational tools were 
used, with the objective of proposing drug candidates for the treatment of the abstinence 
syndrome based on the natural ligands of this receptor. A particular compound derived from 
marine fungi, stemphol (Figure 12) [105], presented positive predictions regarding pharma-
cokinetic and toxicological properties for a human CB1 receptor ligand, in addition to having 
a relatively simple molecular structure. Due to these computational results and the recent 
crystallographic elucidation of the cannabinoid CB1 receptor [20], experimental studies are 
being conducted for the development of candidate pharmacotherapeutic alternatives for the 
treatment of C. sativa withdrawal syndrome [106].

6. Conclusion

Studies on cannabinoids were stimulated after the characterization and structural elucidation 
of Δ9-THC in the 1960s, and later on, the discovery of the cannabinoid system represented 
by CB1/CB2 receptors and binding substances to these receptors. Many in vitro, in vivo, and 
in silico trials have been developed in the last decades, and advances mainly regarding the 
mechanism of addiction, abuse, and withdrawal syndrome have been achieved. However, 
with the use of cannabinoid-based drugs and the chemical development of synthetic cannabi-
noids, further studies into these mechanisms are relevant, especially considering that Δ9-THC 
is a low-efficacy cannabinoid compared to the “new cannabinoids.”

It is expected in the future that the investigations will deepen the knowledge on the mechanisms 
of the cannabinoids, especially those that cause chemical dependence, both as cannabinoid 
system and as noncanabinoid physiological systems. In this way, it is possible to increase the 
knowledge about the different classes of these substances and, therefore, favor the development 
of new models and improvement of the tests currently used in the studies related to C. sativa.
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Abstract

For patients who fail conventional therapies, ability to access medical Cannabis may offer 
a therapeutic alternative that addresses their unmet clinical need. However, a paucity 
of clinical trial evidence has led to ambiguous pediatric dosing guidelines for medical 
Cannabis, a situation further complicated by the impact of developmental maturation of 
the pharmacokinetic (PK) and pharmacodynamic (PD) processes governing drug effect 
and dosing requirements. The pediatric population is very heterogeneous, and dissimilar 
developmental trajectories result in important differences in the rate and extent of can-
nabinoid absorption, distribution, elimination, and response both between and within 
pediatric age group classifications. These developmental changes will require the pre-
scribing caregiver to consider age-specific dosage regimens that may demand continual 
modification as the child ages. The chapter that follows emphasizes the impact of age-
related changes in PK and PD processes as important considerations in pediatric dosing 
recommendations for medical Cannabis.

Keywords: medical Cannabis, dosing, pediatric, ontogeny, pharmacokinetics

1. Introduction

Optimal dose selection is fundamental to appropriate clinical care. A comprehensive under-
standing of drug pharmacokinetics (PK) and pharmacodynamics (PD) and the factors that can 
influence the drug exposure-response (PK-PD) relationship is important to facilitate the opti-
mization of dosage regimens. In the pediatric patient, though, normal growth and maturation 
complicates dose selection and optimization. Experience has demonstrated that the usual 
practice of adjusting dose size according to body weight often results in inappropriate pedi-
atric doses as this practice ignores the impact of developmental changes on drug PK and PD 
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processes. To ensure appropriate clinical care, then, dosing recommendations need to consider 
age-related changes in PK and PD. This becomes particularly important for new therapeutics, 
which have limited clinical trial data and experience of use in the pediatric population.

Medical Cannabis herbal extracts are being considered as new therapeutics for the manage-
ment of pediatric conditions refractory to standard of care therapies. With no DIN (Drug 
Identification Number) designation, though, these herbal extracts have limited safety and effi-
cacy data in the pediatric population. The small number of clinical pharmacology trials with 
pharmaceutical grade cannabinoid products as well as anecdotal use lends some support for 
medical Cannabis in such conditions, but no rational pediatric dosing recommendations are 
available for these products. The known age-related changes in drug PK and PD, differences 
further complicated by existing comorbidities and concurrent medications likely to influ-
ence drug PK and PD, have left treating caregivers uncertain and reluctant to recommend 
an appropriate medical Cannabis dosage regimen to their patient. A greater understanding of 
the developmental changes in cannabinoid PK and PD, though, may help to mitigate these 
uncertainties.

This chapter will mainly address issues of developmental maturation of PK and PD processes 
as key determinants of medical Cannabis herbal extract dosage regimens (henceforth referred 
to as Cannabis extracts). The chapter will first summarize the therapeutic applications for 
Cannabis extracts in pediatric populations. It then will highlight the key physiological deter-
minants of PK and PD that undergo change with postnatal maturation and how such changes 
might lead to age-related cannabinoid PK and PD differences based on current understand-
ings from adult populations. Superimposed with normal developmental programming, dose 
selection must also consider the influence of pharmacogenetics, disease, and drug-cannabinoid 
interactions, and these are briefly discussed. This chapter will underscore developmental 
maturation of PK and PD processes as paramount to considerations of medical Cannabis dos-
ing of the pediatric patient.

2. Therapeutic applications

Many studies report the use of Cannabis to aid treatment of a diverse range of health con-
ditions and symptoms. Although Cannabis’ medical use dates back centuries with the first 
written records in China and India around 2900 BC and 900 BC, respectively, Cannabis was 
introduced to western medicine only in the nineteenth century [1, 2]. Today, potential indica-
tions for medical Cannabis include appetite stimulation, chronic pain, spasticity from multiple 
sclerosis or paraplegia, depression, anxiety, sleep problems, psychosis, glaucoma, Tourette’s 
syndrome, epilepsy, dementia, cancer, post-traumatic stress disorder, and osteoarthritis [3]. 
Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most extensively studied can-
nabinoids for medical use. Individually, these cannabinoids have demonstrated therapeutic 
benefit and pharmaceutical grade products are available on the market today. However, 
CBD’s ability to modulate THC’s well-known intoxicating activity along with a growing body 
of evidence for an entourage effect among the many cannabinoids of the Cannabis plant may 
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extend therapeutic benefit beyond the purified cannabinoid leading to greater interest in the 
use of Cannabis herbal extract preparations [4]. Such entourage properties may explain the 
varied therapeutic applications of Cannabis over the centuries.

Limited information is available on the therapeutic use of Cannabis in pediatric patients. 
Cannabis is usually considered when the clinical condition becomes intractable to other 
types of treatments [5]. This is seen, for example, in treatment of children with refractory 
epileptic encephalopathy, in particular Lennox-Gastaut syndrome and Dravet syndrome [6]. 
However, studies supporting medical Cannabis suffer from small sample sizes and lack of 
dose standardization with variations in dose size, formulation, and frequency of administra-
tion. These limitations make it difficult to extrapolate data to the larger pediatric population 
[7]. Furthermore, Cannabis extract use has predated the usual pharmacology and toxicology 
testing applied to other marketed drugs. With virtually no toxicity and efficacy data, dose-
plasma concentration-response data, and information on Cannabis-drug interactions, the 
prescribing caregiver is apprehensive to recommend a Cannabis extract dosage regimen to a 
pediatric patient. This inability to define age-appropriate dosage regimens has compromised 
the acceptability of medical Cannabis as a viable therapeutic for pediatric medical conditions.

3. Pediatric dosing considerations

3.1. Medical cannabis dosage forms

Commercially available medical Cannabis includes the purified pharmaceutical preparations 
and the herbal extracts. The extracts contain well-defined proportions of the major psychoac-
tive cannabinoids, THC and CBD, and poorly documented quantities of other cannabinoids 
and terpenoids [4, 8, 9]. Nonmedical or recreational Cannabis have unknown contents of THC, 
CBD, and other components and should be avoided when used for medical benefit. Much 
of the anecdotal and observational human trial data usually correlates therapeutic benefit 
with content of THC or CBD or some ratio of THC to CBD [10]. Given the differences in the 
pharmacology of THC and CBD, different THC:CBD ratios are promoted within the range 
of possible clinical indications for medical Cannabis. For the pediatric patient, the choice of 
THC:CBD ratio, though, must acknowledge the known dose-related intoxicating effects of 
THC and the potential for adverse neurodevelopmental effects with cannabinoid exposure 
[11]. As well, the selection of Cannabis product should consider the presence of the second-
ary components that often contribute to the more unique characteristics of Cannabis extracts 
[4]. Little is known about the pharmacology of these secondary cannabinoids and terpenes 
and age-related differences in their PK and PD properties [4, 9]. With the current absence of 
product quality control on the composition of these other active Cannabis components, dose 
optimization of Cannabis extracts for different pediatric indications will need to principally 
focus on the specific THC:CBD ratio for now.

At present, age-appropriate formulations of Cannabis extracts are limited to oil-based oral prod-
ucts. Oral dosing is a challenging route of administration in the pediatric population as issues 

Pediatric Dosing Considerations for Medical Cannabis
http://dx.doi.org/10.5772/intechopen.85399

183



processes. To ensure appropriate clinical care, then, dosing recommendations need to consider 
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CBD’s ability to modulate THC’s well-known intoxicating activity along with a growing body 
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extend therapeutic benefit beyond the purified cannabinoid leading to greater interest in the 
use of Cannabis herbal extract preparations [4]. Such entourage properties may explain the 
varied therapeutic applications of Cannabis over the centuries.
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with incomplete dose ingestion and product refusal negatively impact therapeutic outcomes 
[12, 13]. Often formulation development considers the adult patient and when used in the 
pediatric patient can be associated with reduced therapeutic efficacy and safety. For example, 
some excipients commonly used in adult formulations have well known safety concerns in the 
pediatric patient such as the common pharmaceutical formulation excipients propylene gly-
col, benzyl alcohol, and ethanol [14]. As well, factors such as ability to swallow, taste, texture, 
and smell that determine acceptability of an oral dosage formulation undergo developmental 
changes such that acceptable formulations in one pediatric age group may not be acceptable 
in another age group [12, 13]. Currently, medical Cannabis companies are actively pursuing 
product formulation development. Whether these efforts consider the unique requirements 
of the pediatric patient is uncertain, which will necessitate the treating caregiver to exercise 
caution when considering Cannabis product formulations for their pediatric patients.

3.2. Current dosing guidelines

Medical Cannabis dosing guidelines are largely unavailable for the pediatric patient. Such 
guidelines, though, should consider specific age strata since development and maturation 
result in age-dependent dosing requirements [15]. Recommended pediatric age strata are: 
pre-term newborn infants (born at less than 36 weeks of gestation), term newborn infants (age 
0 to <28 days), infants and toddlers (age 28 days to 23 months; infants >28 days to 12 months 
and toddlers >12 months to 23 months), children (age 2–11 years; preschool children 2–5 years 
and school age children 6–11 years), and adolescents (12–18 years). As with other drugs, the 
safety and effectiveness of the cannabinoids likely will vary between the different age strata. 
Consequently, pediatric clinical trials that determine plasma cannabinoid concentration-
effect relationships, efficacy, and safety within specific age strata will be required to develop 
optimal age-specific dosing recommendations.

In the absence of pediatric PK and clinical trial data, adult data become a starting point for 
pediatric dose selection. For simplicity, doses may be normalized to body weight and, in some 
cases, to body surface area. Dose scaling by body weight (or body surface area) requires dose 
adjustment according to the patient’s clinical state and clinical response until a dose is titrated 
to appropriate effect. This process could take some time to identify an appropriate dosage 
regimen for the pediatric patient, if at all. Furthermore, given possible ceiling effects of the 
cannabinoids, where dosing beyond a certain amount per body weight may not yield further 
pharmacological benefit, this approach has risk of adverse therapeutic outcomes.

Other approaches exist to improve upon the simple extrapolation of body weight-adjusted 
adult doses. Allometric scaling approaches use body surface or body weight ratios and allo-
metric models to extrapolate adult doses to the pediatric patient [16]. An important limitation 
of this approach is an assumption of a linear correlation between demographic covariates and 
the dose, which is not the case for the pediatric patient due to developmental maturation of 
PK and PD processes [16–18]. Children differ not only in body weight but also show changes 
in body composition, organ size, and maturation, which influence PK as well as result in 
differences in the therapeutic window (range of exposure concentrations that result in drug 
efficacy) due to PD changes with age. The use of exponential scaling factors adjusted by body 
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size (and age) to predict dosages in pediatric patients is also limited by the complexity of these 
modeling approaches that precludes general application to many drugs [16–18]. Hence, we 
seem left with the current self-titration dosing model where doses, based on weight adjusted 
adult doses, begin low to moderate and are increased slowly, along with adjustments in dos-
ing interval, until the desired effect is achieved [19]. This empirical “trial-and-error” approach 
will not likely result in optimal dosing guidelines for the different pediatric age strata due to 
diverse developmental periods within this population [20, 21].

3.3. Accounting for growth and development in dosage selection

Changes in body size and maturation of the physiological and biochemical processes deter-
mining PK and PD must be considered during dosage selection. Normal growth results in a 
decreasing ratio of body weight to body surface area with age making it difficult to recom-
mend dosing according to patient body weight or body surface area consistent with adult 
guidelines [22]. For example, in an analysis of pediatric patients, dosing adjustments of 
hydrophobic drugs (cannabinoids are hydrophobic) based on body weight provided better 
clinical outcomes in patients between 1 month and 1 year of age, while dosing based on body 
surface area was best in older children [18]. As well, within and between the age strata matu-
rational changes in PK and PD processes occur at considerably different rates and patterns 
suggesting that dosage adjustments with long-term therapy may be necessary to ensure effi-
cacy and avoid risk of adverse events [23, 24]. Other clinical and demographic variables such 
as puberty, which bring hormonal changes known to influence PK in adolescents, and the 
patient’s clinical state, are known to influence dosing requirements [25]. Only with a greater 
understanding of the impact of such factors can we hope to rationally identify doses for dif-
ferent pediatric populations, particularly in the absence of robust clinical data. The following 
section addresses a key determinant of dosing requirements, the age-related changes in the 
PK processes acting upon a dose exposure.

4. Ontogeny of pharmacokinetic processes

4.1. Exposure and exposure route

For many drugs, dosage regimens are designed to attain and maintain drug concentrations 
within a therapeutic window, the range of concentrations that produce a desired effect. 
Pediatric therapeutic windows may be quite different from the adult due to PD differences, 
such as receptor ontogeny (maturation of receptor number and functionality), and organ 
specific distributional differences resulting in different tissue concentrations of drug to elicit 
pharmacological activity. Such differences can result in differences in efficacy and toxicity 
which brings into question use of pediatric therapeutic ranges based on adult clinical data. 
However, the absence of dose-concentration-response data in children results in a void of 
evidence that risks the development of arbitrary therapeutic ranges. This was evident with 
theophylline for neonatal apnea where the therapeutic range adopted in the early 1980s was 
inadequate and a considerable number of neonates were under-dosed [26]. Understanding the 

Pediatric Dosing Considerations for Medical Cannabis
http://dx.doi.org/10.5772/intechopen.85399

185



with incomplete dose ingestion and product refusal negatively impact therapeutic outcomes 
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pharmacological benefit, this approach has risk of adverse therapeutic outcomes.
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differences in the therapeutic window (range of exposure concentrations that result in drug 
efficacy) due to PD changes with age. The use of exponential scaling factors adjusted by body 
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size (and age) to predict dosages in pediatric patients is also limited by the complexity of these 
modeling approaches that precludes general application to many drugs [16–18]. Hence, we 
seem left with the current self-titration dosing model where doses, based on weight adjusted 
adult doses, begin low to moderate and are increased slowly, along with adjustments in dos-
ing interval, until the desired effect is achieved [19]. This empirical “trial-and-error” approach 
will not likely result in optimal dosing guidelines for the different pediatric age strata due to 
diverse developmental periods within this population [20, 21].

3.3. Accounting for growth and development in dosage selection

Changes in body size and maturation of the physiological and biochemical processes deter-
mining PK and PD must be considered during dosage selection. Normal growth results in a 
decreasing ratio of body weight to body surface area with age making it difficult to recom-
mend dosing according to patient body weight or body surface area consistent with adult 
guidelines [22]. For example, in an analysis of pediatric patients, dosing adjustments of 
hydrophobic drugs (cannabinoids are hydrophobic) based on body weight provided better 
clinical outcomes in patients between 1 month and 1 year of age, while dosing based on body 
surface area was best in older children [18]. As well, within and between the age strata matu-
rational changes in PK and PD processes occur at considerably different rates and patterns 
suggesting that dosage adjustments with long-term therapy may be necessary to ensure effi-
cacy and avoid risk of adverse events [23, 24]. Other clinical and demographic variables such 
as puberty, which bring hormonal changes known to influence PK in adolescents, and the 
patient’s clinical state, are known to influence dosing requirements [25]. Only with a greater 
understanding of the impact of such factors can we hope to rationally identify doses for dif-
ferent pediatric populations, particularly in the absence of robust clinical data. The following 
section addresses a key determinant of dosing requirements, the age-related changes in the 
PK processes acting upon a dose exposure.

4. Ontogeny of pharmacokinetic processes

4.1. Exposure and exposure route

For many drugs, dosage regimens are designed to attain and maintain drug concentrations 
within a therapeutic window, the range of concentrations that produce a desired effect. 
Pediatric therapeutic windows may be quite different from the adult due to PD differences, 
such as receptor ontogeny (maturation of receptor number and functionality), and organ 
specific distributional differences resulting in different tissue concentrations of drug to elicit 
pharmacological activity. Such differences can result in differences in efficacy and toxicity 
which brings into question use of pediatric therapeutic ranges based on adult clinical data. 
However, the absence of dose-concentration-response data in children results in a void of 
evidence that risks the development of arbitrary therapeutic ranges. This was evident with 
theophylline for neonatal apnea where the therapeutic range adopted in the early 1980s was 
inadequate and a considerable number of neonates were under-dosed [26]. Understanding the 

Pediatric Dosing Considerations for Medical Cannabis
http://dx.doi.org/10.5772/intechopen.85399

185



therapeutic range of the cannabinoids for the different pediatric age-strata will be necessary 
to optimize dosing guidelines for Cannabis products. This will necessitate the use of popula-
tion PK/PD modeling approaches with medical Cannabis extracts and a greater understanding 
of the age-related changes in PK and PD processes governing drug effect.

The attainment of plasma concentrations within the therapeutic window depends on route 
of administration, dosing frequency, size of dose, and the PK acting on the administered 
dose. Knowledge of the volume of distribution (Vd) is necessary in the design of a loading 
dose (the dose needed to quickly produce therapeutic concentrations, CTher), where Vd and the 
bioavailable dose (F × Dose) determine the plasma concentration (Eq. (1)). Following a chronic 
dosing regimen, the mean steady state therapeutic concentration (CSS,Ther) is the result of the 
bioavailable dose, dosing interval (τ), and systemic clearance (ClS) (Eq. (2)).

   C  Ther   =   
F × Loading Dose

  ______________  V  d      (1)

   C  SS,Ther   =   F ×  Dose ⁄ τ  ____  Cl  S  
    (2)

With extravascular dosing (e.g., oral dosing), compounds must undergo absorption into the 
systemic circulation. Typically, less than 100% of the administered dose becomes available 
to the systemic circulation as presystemic mechanisms can limit the fraction of the oral dose 
that enters the systemic circulation as an unmodified compound (i.e., bioavailability (F)). 
Once absorbed into the blood supply, compounds distribute to the tissues of the body while 
systemic clearance mechanisms function to eliminate the compound. Hence, systemic expo-
sure is determined by the extent of absorption (bioavailability) and by the efficiency of the 
systemic clearance mechanisms, while organ specific exposure additionally depends upon 
tissue distribution properties of the compound. Age-related changes occur with all these PK 
processes such that a standard dosage regimen will produce different systemic and tissue-
specific exposure levels during pediatric development.

4.2. Oral absorption

The most common route of administration for pediatric patients is the oral route. The rate and 
extent of oral absorption is determined by the interaction of the physicochemical properties of 
the cannabinoid and its formulation with the physiological processes governing absorption. 
With oral ingestion of cannabinoids, time (Tmax) to maximum concentrations (Cmax) varies on 
average from 1 to 6 h, and bioavailability is low and quite variable (4–12%) in adults due to 
extensive first pass effects [27, 28]. As well, first-pass metabolism following an oral adminis-
tration results in production of active metabolites (e.g., 11-hydroxy-THC, 7-hydroxy-CBD) 
with potent psychoactive effects that contribute to the pharmacology of the cannabinoids [27]. 
Age-related differences in Tmax, Cmax, and F may cause important differences in the onset and 
intensity of effect of an oral cannabinoid dose.

Growth and maturation of gastrointestinal absorption processes variably influence both 
absorption rate and extent (i.e., bioavailability), a key determinant of the effective dose. 
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pH dependent passive diffusion, biliary excretion, and gastrointestinal (GIT) transit times 
undergo considerable change with maturation [29]. Gastric pH is high at birth, becomes acidic 
in the first 24 h, returns to neutral pH values within the first 10 days of life, and subsequently 
decreases to adult pH levels within the first year or two of life [16]. Intestinal tract pH tends 
to be similar with the adult at all pediatric age groups [30]. Although impact of pH is likely 
limited on cannabinoid bioavailability (as these are neutral compounds), the higher gastric 
pH might reduce the extent of THC degradation [31]. Biliary excretion, though, is lower in the 
neonate (2–4 mM) than the adult (5–6 mM) in the first weeks of life, which is due to imma-
turity of the hepatic transporters responsible for their biliary excretion rather than ability to 
synthesize bile salts [32, 33]. As hydrophobic molecules, this may reduce cannabinoid bio-
availability due to lower GIT solubilization in the first months of life. Gastrointestinal motility 
is also reduced at birth and gastric emptying and intestinal peristaltic function likely become 
similar to adults in the first weeks of life [34, 35]. This suggests Tmax is likely to be similar with 
adults within a month of birth, although differences in motility may not influence Cmax.

Other gastrointestinal physiological factors that have importance on the extent of absorption 
(i.e., bioavailability) include gastrointestinal permeability and first pass effects. All cannabi-
noids undergo passive permeation across the gastrointestinal epithelium. Intestinal permeabil-
ity is initially high at birth given the leakiness of the epithelial tight junctions, but with junction 
closure within the first week of birth overall permeability becomes lower than adult due to a 
smaller intestinal absorptive surface area [36]. Passive transport mechanisms likely reach adult 
values within 4 months of birth. First-pass effects have a longer maturational trajectory. First 
pass effects include the activity of microbiota and gut luminal enzymes, enzymes and trans-
porters of the gastrointestinal epithelia and liver. In adults, the low and variable bioavailability 
of CBD and THC is due to pre-systemic elimination by cytochrome P450 enzymes, principally 
CYP3A4 and CYP2C’s, expressed in the intestinal and hepatic epithelium [37]. Intestinal and 
hepatic CYP3A4 expression and hepatic CYP2C expression principally contribute to consider-
able first-pass metabolism and the low oral bioavailability of cannabinoids [38]. With devel-
opment, hepatic CYP2C expression reaches adult levels by 6 months, exceeds adult levels in 
childhood, and returns to adult levels after puberty [39]. CYP3A4 undergoes a slower matura-
tion with considerable increases in the first 6 months but does not reach adult levels until after 
2 years of age [40, 41]. CYP3A4 activity also exceeds the adult in early childhood and returns to 
adult levels after puberty. Their developmental maturation suggests bioavailability is likely to 
be higher in neonates and infants until these enzymes reach adult expression levels. The xeno-
biotic transporters also contribute to first-pass effects. THC is a substrate of efflux transporters 
including p-glycoprotein (MDR1) and BCRP, while CBD only inhibits these efflux transporters. 
These transporters undergo rapid ontogeny in the first 6 months of life to reach adult values 
by 2 years of age, but may not contribute to age-related differences in bioavailability beyond 
6 months of age [42]. The immaturity of these transporters can further enhance THC bioavail-
ability relative to the adult.

Bacterial activity within the gastrointestinal tract lumen may influence first pass metabolism. 
Whether cannabinoids undergo bacterial metabolism is unknown, but glucuronide metabo-
lites may undergo deconjugation in the gut lumen. Children from 3 to 15 years of age showed 
no differences in activity of bacterial enzymes such as beta-glucuronidase, beta-glucosidase, 
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therapeutic range of the cannabinoids for the different pediatric age-strata will be necessary 
to optimize dosing guidelines for Cannabis products. This will necessitate the use of popula-
tion PK/PD modeling approaches with medical Cannabis extracts and a greater understanding 
of the age-related changes in PK and PD processes governing drug effect.

The attainment of plasma concentrations within the therapeutic window depends on route 
of administration, dosing frequency, size of dose, and the PK acting on the administered 
dose. Knowledge of the volume of distribution (Vd) is necessary in the design of a loading 
dose (the dose needed to quickly produce therapeutic concentrations, CTher), where Vd and the 
bioavailable dose (F × Dose) determine the plasma concentration (Eq. (1)). Following a chronic 
dosing regimen, the mean steady state therapeutic concentration (CSS,Ther) is the result of the 
bioavailable dose, dosing interval (τ), and systemic clearance (ClS) (Eq. (2)).

   C  Ther   =   
F × Loading Dose

  ______________  V  d      (1)

   C  SS,Ther   =   F ×  Dose ⁄ τ  ____  Cl  S  
    (2)

With extravascular dosing (e.g., oral dosing), compounds must undergo absorption into the 
systemic circulation. Typically, less than 100% of the administered dose becomes available 
to the systemic circulation as presystemic mechanisms can limit the fraction of the oral dose 
that enters the systemic circulation as an unmodified compound (i.e., bioavailability (F)). 
Once absorbed into the blood supply, compounds distribute to the tissues of the body while 
systemic clearance mechanisms function to eliminate the compound. Hence, systemic expo-
sure is determined by the extent of absorption (bioavailability) and by the efficiency of the 
systemic clearance mechanisms, while organ specific exposure additionally depends upon 
tissue distribution properties of the compound. Age-related changes occur with all these PK 
processes such that a standard dosage regimen will produce different systemic and tissue-
specific exposure levels during pediatric development.

4.2. Oral absorption

The most common route of administration for pediatric patients is the oral route. The rate and 
extent of oral absorption is determined by the interaction of the physicochemical properties of 
the cannabinoid and its formulation with the physiological processes governing absorption. 
With oral ingestion of cannabinoids, time (Tmax) to maximum concentrations (Cmax) varies on 
average from 1 to 6 h, and bioavailability is low and quite variable (4–12%) in adults due to 
extensive first pass effects [27, 28]. As well, first-pass metabolism following an oral adminis-
tration results in production of active metabolites (e.g., 11-hydroxy-THC, 7-hydroxy-CBD) 
with potent psychoactive effects that contribute to the pharmacology of the cannabinoids [27]. 
Age-related differences in Tmax, Cmax, and F may cause important differences in the onset and 
intensity of effect of an oral cannabinoid dose.

Growth and maturation of gastrointestinal absorption processes variably influence both 
absorption rate and extent (i.e., bioavailability), a key determinant of the effective dose. 
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undergo considerable change with maturation [29]. Gastric pH is high at birth, becomes acidic 
in the first 24 h, returns to neutral pH values within the first 10 days of life, and subsequently 
decreases to adult pH levels within the first year or two of life [16]. Intestinal tract pH tends 
to be similar with the adult at all pediatric age groups [30]. Although impact of pH is likely 
limited on cannabinoid bioavailability (as these are neutral compounds), the higher gastric 
pH might reduce the extent of THC degradation [31]. Biliary excretion, though, is lower in the 
neonate (2–4 mM) than the adult (5–6 mM) in the first weeks of life, which is due to imma-
turity of the hepatic transporters responsible for their biliary excretion rather than ability to 
synthesize bile salts [32, 33]. As hydrophobic molecules, this may reduce cannabinoid bio-
availability due to lower GIT solubilization in the first months of life. Gastrointestinal motility 
is also reduced at birth and gastric emptying and intestinal peristaltic function likely become 
similar to adults in the first weeks of life [34, 35]. This suggests Tmax is likely to be similar with 
adults within a month of birth, although differences in motility may not influence Cmax.

Other gastrointestinal physiological factors that have importance on the extent of absorption 
(i.e., bioavailability) include gastrointestinal permeability and first pass effects. All cannabi-
noids undergo passive permeation across the gastrointestinal epithelium. Intestinal permeabil-
ity is initially high at birth given the leakiness of the epithelial tight junctions, but with junction 
closure within the first week of birth overall permeability becomes lower than adult due to a 
smaller intestinal absorptive surface area [36]. Passive transport mechanisms likely reach adult 
values within 4 months of birth. First-pass effects have a longer maturational trajectory. First 
pass effects include the activity of microbiota and gut luminal enzymes, enzymes and trans-
porters of the gastrointestinal epithelia and liver. In adults, the low and variable bioavailability 
of CBD and THC is due to pre-systemic elimination by cytochrome P450 enzymes, principally 
CYP3A4 and CYP2C’s, expressed in the intestinal and hepatic epithelium [37]. Intestinal and 
hepatic CYP3A4 expression and hepatic CYP2C expression principally contribute to consider-
able first-pass metabolism and the low oral bioavailability of cannabinoids [38]. With devel-
opment, hepatic CYP2C expression reaches adult levels by 6 months, exceeds adult levels in 
childhood, and returns to adult levels after puberty [39]. CYP3A4 undergoes a slower matura-
tion with considerable increases in the first 6 months but does not reach adult levels until after 
2 years of age [40, 41]. CYP3A4 activity also exceeds the adult in early childhood and returns to 
adult levels after puberty. Their developmental maturation suggests bioavailability is likely to 
be higher in neonates and infants until these enzymes reach adult expression levels. The xeno-
biotic transporters also contribute to first-pass effects. THC is a substrate of efflux transporters 
including p-glycoprotein (MDR1) and BCRP, while CBD only inhibits these efflux transporters. 
These transporters undergo rapid ontogeny in the first 6 months of life to reach adult values 
by 2 years of age, but may not contribute to age-related differences in bioavailability beyond 
6 months of age [42]. The immaturity of these transporters can further enhance THC bioavail-
ability relative to the adult.

Bacterial activity within the gastrointestinal tract lumen may influence first pass metabolism. 
Whether cannabinoids undergo bacterial metabolism is unknown, but glucuronide metabo-
lites may undergo deconjugation in the gut lumen. Children from 3 to 15 years of age showed 
no differences in activity of bacterial enzymes such as beta-glucuronidase, beta-glucosidase, 
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and other enzymes and intestinal bacterial colonies approach adult characteristics by 1–4 years 
of age [43]. The gastrointestinal microbiome also influences the regulation of drug metaboliz-
ing enzymes and transporters, but information in the pediatric patient is lacking. A multitude 
of factors can influence the microbiome including age, disease, diet, and drug exposure, and 
our understanding of their impact during development is limited.

Overall, postnatal development of pH, gastrointestinal motility, and first-pass mechanisms 
should reach maturity by 5 years of age [17] at which time the rate and extent of oral absorp-
tion should have similarity to adult estimates. The variable rate and pattern of maturation, 
though, will lead to large ranges in Tmax, Cmax, and bioavailability estimates between the dif-
ferent pediatric age classes. Since variability in blood concentrations is principally inversely 
proportional to oral bioavailability, we may expect important differences in the oral dose 
requirements needed to attain equivalent plasma concentrations and therapeutic responses. 
Variable bioavailability will challenge treating caregivers on advising doses indicated by age, 
and individualization of dosage regimens will remain necessary. This expectation, though, 
creates opportunity for development of pediatric dosage formulations that considers both the 
potential age influences on cannabinoid liberation from the dosage formulation and the need 
to provide higher and more consistent oral bioavailability. Effective oral formulations promise 
more consistent dosage recommendations and reductions in the risk of under- or overdosing.

4.3. Distribution

Age-related differences in the extent of tissue distribution (i.e., volume of distribution, Vd) 
will impact intensity and duration of cannabinoid activity. In adults, the high plasma protein 
binding characteristics (>97% bound in the adult) [44] of the cannabinoids result in a small 
central Vd (2.5–3 L). The cannabinoids undergo rapid and extensive distribution into lipo-
philic tissues (e.g., brain and adipose) and the highly perfused tissues (e.g., heart, lung, and 
liver) resulting in a large steady state Vd with reports ranging from 2.5–3 to 10 L/kg [27, 45]. 
The slow redistribution of cannabinoids from tissues, in particular adipose, as well as entero-
hepatic recirculation lead to long half-lives ranging from 1.5 to 5 days or longer for THC and 
1–2 days for CBD, and even longer for the metabolites [27, 45]. Since the Vd is an important 
determinant of half-life, which, in turn, is used to guide the dosing interval, the expected 
age-related differences in cannabinoid Vd are likely to lead to differences in half-lives between 
the pediatric age strata and a possible need to consider such differences in the dosing interval.

Body composition, plasma and tissue protein binding, and physicochemical characteristics of 
the cannabinoids will influence the extent of their distribution (i.e., Vd). For many compounds, 
Vd demonstrates a linear relationship with body size. In the pediatric population, body size 
can change from less than 1 kg to up to 100 kg or more with development. Consequently, 
Vd expressed on a per body weight basis will show tremendous variability in the pediatric 
population. Ratio of fat, muscle, and intracellular and extracellular water also changes with 
maturation. At birth, total body water is 75%, and total body water-to-fat ratio is the highest 
in neonates and young infants with total body water reaching adult values by 6 months [46]. 
However, older infants and toddlers tend to have the highest fat-to-body water ratio only to 
reach adult ratios in later childhood [46]. Although higher body fat to water ratio may suggest 
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higher Vd for the hydrophobic cannabinoids in these age groups, studies with other highly 
lipophilic drugs suggest that the Vd was not different between adults and infants [47]. Past 
infancy, then, the Vd might be similar between children and adults for the cannabinoids [47]. 
The lipophilic nature of the cannabinoids, though, raise concerns with childhood obesity and 
whether obese children should be dosed based on actual or ideal body weights [48].

Plasma protein binding is an important physiological determinant of Vd and the unbound 
fraction in the blood. In adults, cannabinoids bind extensively to lipoproteins and albumin 
where the unbound fraction can range from 1 to 5% [44, 45]. In the pediatric population, the 
plasma levels of albumin and alpha1-acid glycoprotein, the two major plasma binding pro-
teins, are lower at birth and increase gradually to reach adult values by 1–3 years of age [49]. 
Lipoprotein and triglyceride levels also rise gradually during the first year of life, with fur-
ther increases in childhood and adolescence [50]. Consequently, neonates and infants might 
exhibit lower bound fractions of the cannabinoids due to lower lipoprotein and albumin 
concentrations. These age dependent increases in plasma proteins might also mean higher 
distribution volumes in the neonate and infant and a lower Cmax.

With high binding characteristics, seemingly small differences in binding, though, may result 
in large differences in the availability of cannabinoids to bind to their therapeutic targets. The 
unbound concentration is known to better reflect the pharmacodynamics of highly bound 
drugs [51], and a greater unbound fraction coupled with a lower elimination capacity for 
the cannabinoids (see section below) would enhance the availability of cannabinoids at their 
pharmacological sites of action. This can result in more intense pharmacological or toxico-
logical responses and possibly a need to adjust doses to ensure equivalent PD responses. In 
addition to the amount of protein available for binding, binding affinity shows age-related 
changes. The presence of endogenous competitors for plasma protein binding sites, such as 
bilirubin and free fatty acids, is higher in the neonate [52], and along with exogenous competi-
tors (e.g., co-administered drugs) may further increase the unbound cannabinoid concentra-
tion with subsequent enhancements in their pharmacological or adverse effects. Either way 
this might necessitate a dose reduction.

Relevant to the cannabinoids is the possible influence of age-related differences in the volume 
of the brain and the permeability of the blood-brain-barrier. Brain volume is larger in younger 
children and approaches adult values at 4–6 years of age [53]. THC but not CBD is a substrate 
for P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) [54], 
while both cannabinoids inhibit P-gp and BCRP activity [55, 56]. These transporters func-
tion to limit permeation of THC and other drug substrates across the blood-brain-barrier and 
expedite their elimination from the brain, while CBD brain uptake and removal is not influ-
enced by these transporters [54]. This might suggest a longer residence time of CBD in brain 
tissue relative to THC and a potential disconnect between plasma levels and the psychoactive 
effects of these compounds. As an inhibitor of efflux transporters, CBD might also modu-
late brain disposition of THC, which could explain, in part, its known ability to modulate 
THC psychoactive effects [57]. Important cannabinoid-drug interactions might ensue with 
co-administration of other efflux transporter substrates with a concomitant risk for brain 
accumulation of these drugs and potential adverse effects. Finally, known pharmacogenetic 
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and other enzymes and intestinal bacterial colonies approach adult characteristics by 1–4 years 
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of factors can influence the microbiome including age, disease, diet, and drug exposure, and 
our understanding of their impact during development is limited.

Overall, postnatal development of pH, gastrointestinal motility, and first-pass mechanisms 
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potential age influences on cannabinoid liberation from the dosage formulation and the need 
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will impact intensity and duration of cannabinoid activity. In adults, the high plasma protein 
binding characteristics (>97% bound in the adult) [44] of the cannabinoids result in a small 
central Vd (2.5–3 L). The cannabinoids undergo rapid and extensive distribution into lipo-
philic tissues (e.g., brain and adipose) and the highly perfused tissues (e.g., heart, lung, and 
liver) resulting in a large steady state Vd with reports ranging from 2.5–3 to 10 L/kg [27, 45]. 
The slow redistribution of cannabinoids from tissues, in particular adipose, as well as entero-
hepatic recirculation lead to long half-lives ranging from 1.5 to 5 days or longer for THC and 
1–2 days for CBD, and even longer for the metabolites [27, 45]. Since the Vd is an important 
determinant of half-life, which, in turn, is used to guide the dosing interval, the expected 
age-related differences in cannabinoid Vd are likely to lead to differences in half-lives between 
the pediatric age strata and a possible need to consider such differences in the dosing interval.

Body composition, plasma and tissue protein binding, and physicochemical characteristics of 
the cannabinoids will influence the extent of their distribution (i.e., Vd). For many compounds, 
Vd demonstrates a linear relationship with body size. In the pediatric population, body size 
can change from less than 1 kg to up to 100 kg or more with development. Consequently, 
Vd expressed on a per body weight basis will show tremendous variability in the pediatric 
population. Ratio of fat, muscle, and intracellular and extracellular water also changes with 
maturation. At birth, total body water is 75%, and total body water-to-fat ratio is the highest 
in neonates and young infants with total body water reaching adult values by 6 months [46]. 
However, older infants and toddlers tend to have the highest fat-to-body water ratio only to 
reach adult ratios in later childhood [46]. Although higher body fat to water ratio may suggest 
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higher Vd for the hydrophobic cannabinoids in these age groups, studies with other highly 
lipophilic drugs suggest that the Vd was not different between adults and infants [47]. Past 
infancy, then, the Vd might be similar between children and adults for the cannabinoids [47]. 
The lipophilic nature of the cannabinoids, though, raise concerns with childhood obesity and 
whether obese children should be dosed based on actual or ideal body weights [48].

Plasma protein binding is an important physiological determinant of Vd and the unbound 
fraction in the blood. In adults, cannabinoids bind extensively to lipoproteins and albumin 
where the unbound fraction can range from 1 to 5% [44, 45]. In the pediatric population, the 
plasma levels of albumin and alpha1-acid glycoprotein, the two major plasma binding pro-
teins, are lower at birth and increase gradually to reach adult values by 1–3 years of age [49]. 
Lipoprotein and triglyceride levels also rise gradually during the first year of life, with fur-
ther increases in childhood and adolescence [50]. Consequently, neonates and infants might 
exhibit lower bound fractions of the cannabinoids due to lower lipoprotein and albumin 
concentrations. These age dependent increases in plasma proteins might also mean higher 
distribution volumes in the neonate and infant and a lower Cmax.

With high binding characteristics, seemingly small differences in binding, though, may result 
in large differences in the availability of cannabinoids to bind to their therapeutic targets. The 
unbound concentration is known to better reflect the pharmacodynamics of highly bound 
drugs [51], and a greater unbound fraction coupled with a lower elimination capacity for 
the cannabinoids (see section below) would enhance the availability of cannabinoids at their 
pharmacological sites of action. This can result in more intense pharmacological or toxico-
logical responses and possibly a need to adjust doses to ensure equivalent PD responses. In 
addition to the amount of protein available for binding, binding affinity shows age-related 
changes. The presence of endogenous competitors for plasma protein binding sites, such as 
bilirubin and free fatty acids, is higher in the neonate [52], and along with exogenous competi-
tors (e.g., co-administered drugs) may further increase the unbound cannabinoid concentra-
tion with subsequent enhancements in their pharmacological or adverse effects. Either way 
this might necessitate a dose reduction.

Relevant to the cannabinoids is the possible influence of age-related differences in the volume 
of the brain and the permeability of the blood-brain-barrier. Brain volume is larger in younger 
children and approaches adult values at 4–6 years of age [53]. THC but not CBD is a substrate 
for P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) [54], 
while both cannabinoids inhibit P-gp and BCRP activity [55, 56]. These transporters func-
tion to limit permeation of THC and other drug substrates across the blood-brain-barrier and 
expedite their elimination from the brain, while CBD brain uptake and removal is not influ-
enced by these transporters [54]. This might suggest a longer residence time of CBD in brain 
tissue relative to THC and a potential disconnect between plasma levels and the psychoactive 
effects of these compounds. As an inhibitor of efflux transporters, CBD might also modu-
late brain disposition of THC, which could explain, in part, its known ability to modulate 
THC psychoactive effects [57]. Important cannabinoid-drug interactions might ensue with 
co-administration of other efflux transporter substrates with a concomitant risk for brain 
accumulation of these drugs and potential adverse effects. Finally, known pharmacogenetic 
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polymorphisms in these transporters result in reduced activity, which may enhance brain 
penetration and residence, increase the psychoactive effects, and, in turn, risk Cannabis depen-
dence or possibly brain disorders [58]. Although ontogeny of these transporters at the blood-
brain-barrier is unknown, developmental maturation of the efflux transporters may result in 
a developmental vulnerability to THC use.

4.4. Elimination

The lipophilic cannabinoids are eliminated primarily through hepatic metabolic clearance. 
Hepatic clearance depends on three physiological determinants, plasma protein binding, 
hepatic blood flow, and intrinsic clearance (the overall ability of the liver to metabolize a 
compound). The cannabinoids appear to fall within the class of intermediate to high extrac-
tion ratio compounds (systemic clearance ranging from 600 to 1190 mL/min for THC and 
960 to 1560 mL/min for CBD) [59, 60], suggesting that hepatic clearance is influenced vari-
ably by hepatic blood flow, intrinsic clearance, and plasma protein binding or predominantly 
by the hepatic blood flow at the highest hepatic clearance values. All determinants undergo 
developmental maturation. Hepatic metabolic clearance of the cannabinoids principally 
involves cytochrome P450 enzyme-mediated metabolism. The metabolites generated from 
P450 enzyme reactions may undergo further phase II enzyme conjugation reactions for their 
subsequent renal or biliary excretion. An understanding of the contribution of Phase I and 
II enzymes is important as the rate and pattern of their maturation tend to follow different 
developmental trajectories.

Cannabinoids are principally metabolized by CYP3A4, CYP2C9, and CYP2C19 [45, 61]. As 
a superfamily of enzymes, the developmental trajectories of P450 enzymes are grouped into 
three characteristic classes [62]. CYP3A4 and CYP2C enzymes are class II enzymes, where 
enzymes are expressed at low levels at birth and gradually increase postnatally to achieve 
adult values within a year or two of age [62]. For instance, CYP2C19 activity is less than one-
third adult values at birth, surges to 50% of adult activity in the first month of postnatal life, 
and reaches adult values at 1 year of age [39]. After 1 year, the hepatic clearance of CYP2C19 
substrates show similarity to adult values [62]. Although CYP3A4 is the most abundant 
hepatic P450 enzyme in the adult, the predominant CYP3A isoform at birth is CYP3A7, while 
CYP3A4 expression is only 10% of adult levels [62, 63]. A developmental switch is observed 
such that CYP3A4 activity increases concomitantly with reductions in CYP3A7 activity. By 
1 year of age, CYP3A4 activity is 75% adult levels, while CYP3A7 activity is considerably 
reduced [62, 63]. Although the two isoforms share 95% identity in their nucleotide sequence, 
differences in substrate specificities are noted for the two isoforms as well as a lower metabo-
lism rate by CYP3A7 [64]. No study has evaluated the metabolic activity of CYP3A7 against 
CBD and THC, but CBD was identified as an inhibitor of this CYP3A isoform [65].

CBD, THC, and their respective metabolites also undergo phase II metabolism principally 
by the UDP-glucuronosyltransferase (UGT) enzymes. UGT1 and UGT2 families are involved 
in drug metabolism and typically more than one isoform contributes to the metabolism of 
a single compound [66]. Generally, the UGT enzymes have 25% activity in young infants 
relative to adult levels with adult levels achieved within 6–30 months of birth [66]. However, 
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individual UGT enzymes undergo different maturation patterns leading to considerable vari-
ability reported in the glucuronidation capacity of newborns and infants.

The developmental pattern of the major cannabinoid metabolizing enzymes suggests that 
systemic clearance and oral bioavailability may change throughout the pediatric period. 
Neonates and infants may demonstrate lower systemic clearance and higher oral bioavail-
ability due to reductions in hepatic metabolism, but adolescents may have similar values 
to the adult. Interesting children ages 2–12 may require larger weight adjusted doses. In a 
mechanistic-based analysis, for drugs almost solely eliminated by CYP3A4 children required 
higher (~2 times) doses corrected for body weight relative to the younger child and adult, 
although similar weight-corrected doses between children and adults were required for drugs 
eliminated solely by CYP2C19 or UGT isoforms to achieve equivalent plasma concentrations 
[17]. Given the contribution of both P450 enzymes to the elimination of cannabinoids, higher 
weight adjusted doses may be required in children relative to the adult due to higher systemic 
clearance or first-pass metabolism.

Quantitatively and qualitatively P450 and UGT enzymes show considerable variation in their 
developmental maturation both within and between the age strata. A consequence of this varia-
tion may be altered cannabinoid metabolite profiles relative to the adult. After oral administra-
tion in the adult, extensive first-pass metabolism results in the production of high circulating 
levels of bioactive hydroxylated metabolites of CBD and THC [27]. These active metabolites 
contribute to the pharmacology of Cannabis herbal extracts. A further consideration is the 
genetic polymorphism of P450 and UGT enzymes which divides the population into poor 
metabolizers and fast metabolizers (e.g., CYP2C’s) or results in extensive variability in meta-
bolic rates (e.g., CYP3A4) [67]. The impact of genetic polymorphism in the different pediatric 
age classifications is unknown. A few drugs with available data suggest that phenotype does 
not relate to genotype at birth, but enzyme maturation will eventually result in phenotype-
genotype relationships similar to the adult. Hence, postnatal maturation of P450 and UGT 
enzymes has considerable influence on therapeutic efficacy and toxicity because metabolism 
determines oral bioavailability, hepatic metabolic clearance, and the active metabolite profile.

Renal and biliary excretion mediates the elimination of the cannabinoid phase I and II enzyme 
metabolites. Elimination by the kidney occurs by glomerular filtration and tubular secretion. 
Neonates are born with reduced glomerular and tubular function, which is further compro-
mised in the preterm neonate due to incomplete nephrogenesis [68]. Profound anatomical 
and functional changes in the kidney occur following birth that include enhancements in 
renal blood flow, redistribution of blood flow in the kidney, improvements in glomerular 
filtration efficiency, and the growth and maturation of renal tubules and tubular processes. 
These changes result in rapid attainment of renal elimination function within the first year of 
age [68]. Maturation of glomerular filtration processes precedes tubular processes, such that 
glomerular filtration rate reaches adult levels by 6 months of age and tubular reabsorption 
and excretion processes mature to adult levels by 1 year of age [68]. The excretion rate in 
toddlers and preschool children, though, can exceed adult levels but subsequently returns 
to adult levels in childhood [68]. The anatomical and functional immaturity of the kidney 
and the discordance in the maturation of glomerular and tubule function can contribute to 
considerable interindividual variability in renal elimination in pediatric patients.
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4.5. Transporters

Transporters are categorized into ATP-Binding Cassette (ABC) and Solute Carrier (SLC) families. 
ABC proteins are efflux transporters expressed apically at tissue-blood interfaces and function to 
limit penetration of compounds into these tissues. Maturation of ABC transporters can result in 
a developmental vulnerability to THC use. ABC transporter ontogeny as well as genetic varia-
tion (polymorphisms) is known to influence treatment response to drugs and increase risk for 
psychiatric disorders in pediatric populations as a result of altered disposition to the brain [69]. For 
example, the common P-glycoprotein (ABCB1) genetic variant C3435T, which results in altered 
p-glycoprotein expression, was associated with increased risk of Cannabis dependence [58]. As well, 
transporter ontogeny and genetic polymorphisms can contribute to the interindividual variability 
in response to Cannabis. In general, the ontogeny of ABC and SLC transporters is poorly known.

5. Ontogeny of pharmacodynamic processes

Dosing considerations of the pediatric patient not only need to acknowledge the impact of age-
related changes in PK processes, but also the maturation of the endocannabinoid system and 
how this will influence PD and the relationship between exposure and response. Very little 
data, though, are available from human clinical studies on the developmental maturation of 
the endocannabinoid system and how these may influence cannabinoid pharmacology. What 
is known is that the endocannabinoid system is expressed early in fetal life and plays a critical 
role in normal neurological development. Cannabinoid receptor populations and levels of the 
enzyme systems and endocannabinoids are dynamic in pediatric development particularly 
during adolescence [70]. Some data suggest daily high dose exposure to THC may pose a risk 
to normal neurological development, although the data are not available for CBD [71].

The lack of data on PD ontogeny and age-specific exposure-response relationships risks 
development of inappropriate therapeutic ranges. In the absence of any data, the treating 
caregiver may apply therapeutic ranges in adults or older pediatric age groups to younger 
pediatric age classes on the assumption of a similar exposure-response relationship to help 
inform dose selection [72]. Yet drawing from examples with other drugs, changes in receptor 
density expression with maturation have altered the efficacy and safety of drugs in children, 
such as reduced PD sensitivity to propofol resulting in overdosing and subsequently myocar-
dial failure, metabolic acidosis, multiorgan failure, and death [73]. Given that the endocan-
nabinoid system undergoes continued development, therapeutic windows are likely to be 
different among the different pediatric age strata.

6. Other factors

6.1. Safety and adverse effects

The toxicity of cannabinoids is generally considered quite low. In adults, cannabinoids have 
a number of central nervous system effects that include intoxication, appetite stimulation, 
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disruption of psychomotor behavior, short-term memory impairment, antinociceptive 
actions, and anti-emesis. Lethal doses are unknown, but the size of a single lethal dose is 
likely to be very high. The apparent low toxicity in adults, though, cannot necessarily trans-
late to a low adverse effect potential in pediatric patients. Very little information exists on 
the pediatric specific adverse effects of Cannabis. Further, its use as an adjunct therapy in 
conditions such as pediatric seizure creates uncertainty—are the reported adverse effects the 
result of the cannabinoid or due to a cannabinoid-drug interaction? Experience with other 
drugs suggests that the immature physiological system predisposes pediatric patients to an 
increased risk for adverse effects [74]. It is these examples that highlight the concern among 
the treating caregiver of the safety of Cannabis use in pediatric patients. Unfortunately, the 
typical short-term clinical trial is inadequate to determine safety of medical Cannabis on 
growth and maturation. Pharmacovigilance over the long-term will be necessary, and this 
will require reevaluation of the original cohort of patients in clinical trials years after termi-
nation of the trial.

6.2. Pharmacokinetic and pharmacodynamic interactions

In pediatric patients, medical Cannabis is typically administered as an add-on to standard of 
care therapies. This practice can result in clinically relevant competitive interactions involv-
ing metabolic enzymes, transporters, or plasma protein binding sites, and at times pharmaco-
logical receptors. Cannabinoids are known to inhibit the metabolism of drugs that share the 
same P450 enzymes, with inhibition constants in the low micromolar range [37]. Conversely, 
drug substrates of CYP2C and CYP3A4 can slow the metabolism of the cannabinoids. A well-
known interaction is the co-administration of CBD with clobazam in refractory pediatric 
epilepsy where CBD is reported to increase clobazam and norclobazam (active metabolite) 
circulating concentrations due to inhibition of CYP2C19 [75]. Interactions between CBD and 
THC are also possible. CBD is known to competitively decrease the metabolism of THC 
resulting in its persistence in the body [76]. Higher ratios of CBD:THC can attenuate THC-
induced effects and can produce more THC active metabolites [77]. P450 enzyme induction 
is possible in all pediatric age classes and can result in clinically significant enhancements 
in the elimination of cannabinoids and shorter half-lives. Without dosage regimen adjust-
ments, enzyme induction and inhibition can result in concentrations outside the therapeutic 
window.

Other PK and PD interactions of concern include interactions at efflux transporters and impact 
of disease. The exposure-response relationship can be affected by clinically relevant interac-
tions at the efflux transporters expressed at the blood brain barrier. Such interactions can 
alter the brain distribution of the pharmacologically active cannabinoid fraction to enhance 
cannabinoid response at a given Cannabis dose. Although our understanding of the impact of 
disease on cannabinoid PK and PD is very limited, clear examples exist where dosing recom-
mendations depend upon the specific comorbidity under treatment. As well, some childhood 
diseases result in unique pathophysiological changes not present in the adult precluding a 
simple extrapolation of dose from adult experience. In the absence of data, pediatric patients 
will need close monitoring to ensure effective, safe therapy in the presence of disease and 
other comorbidities.
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6.3. Perspectives on the use of medical cannabis in pediatric populations

We face a clinical and ethical dilemma in the use of medical Cannabis in pediatric popula-
tions. Product quality, limited age-appropriate formulations, the lack of PK and efficacy data 
spanning the specific pediatric age categories, the possible adverse effects of Cannabis on nor-
mal growth and development, and limited pediatric-specific safety data cause considerable 
uncertainty regarding the use of medical Cannabis and identification of an appropriate dosage 
regimen. It is not surprising that treating caregivers hesitate to give medical authority for use. 
Just as the regulatory agencies have identified a critical need for pediatric data in new drug 
development, so must the medical Cannabis field recognize the danger of inadequate safety and 
efficacy data and inadequate regulation of Cannabis product quality. To realize the full advan-
tages of medical Cannabis, well-powered and rigorous clinical trials will be needed. Ethical 
justification for such studies should weigh toward benefit of the need to understand its safety 
and effectiveness in different pediatric age strata. Such studies must acknowledge the impact 
of physiological maturation and clinical variables on dose requirements and have sufficient 
power to enable evaluation of these factors on cannabinoid PK and PD. In fact, our current 
knowledge of the impact of maturation on PK and exposure-response relationships invalidates 
the practice of empirical methods for dose selection despite their simplicity for treating care-
givers. Pediatric clinical trials for medical Cannabis should be considered mandatory and such 
trials should focus on both PK and the target PD outcome. Finally, a framework for assess-
ing and reporting adverse effects and benefits should accompany the use of medical Cannabis 
in the pediatric population. Eventually, these studies will make possible the development of 
pediatric dosage regimens that are safe and precisely address the therapeutic need. Until then, 
the treating caregiver can rationally approach dose selection in different pediatric age groups 
with an understanding of the impact of growth and maturation on cannabinoid PK and PD.
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Abstract

Epilepsy is a chronic disease of the central nervous system characterized by recurrent 
unprovoked seizures. Up to 30% of patients continue to have seizures despite treatment 
with appropriate anticonvulsant medications. The presence of abnormal oscillatory 
events within neural networks is a major feature of epileptogenesis. The endocannabi-
noid system can modulate these oscillatory events and alter neuronal activity making 
the phytocannabinoids found in Cannabis a potential therapeutic option for patients with 
treatment resistant epilepsy. Many in vitro and in vivo studies have demonstrated the 
anticonvulsant effects of several phytocannabinoids including Δ9-tetrahydrocannabinol 
(Δ9-THC) and Cannabidiol (CBD). Several small observational studies demonstrated a 
favorable response to cannabis herbal extracts (CHE) containing high concentrations of 
CBD in children with treatment resistant epilepsy. Two large double blinded clinical trials 
assessing the efficacy of pharmaceutical grade CBD have also been performed in children 
with treatment resistant seizures in Dravet syndrome and Lennox-Gastaut syndrome. 
Both studies demonstrated an improvement in seizure reduction in children taking CBD 
as compared to the placebo groups. To date there is very limited data regarding the use 
of cannabis based products to treat adult patients with treatment resistant epilepsy with 
only one randomized double blinded placebo controlled clinical trial underway.

Keywords: epilepsy, endocannabinoid system, cannabis, tetrhydrocannabinol, 
cannabidiol

1. Introduction

Recently, there has been renewed interest in the use of cannabis in patients with treatment 
resistant epilepsy. This has, in large part, been driven by a public perception that cannabis 
offers a safe and natural alternative to conventional anticonvulsant therapies. However, the 
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of cannabis based products to treat adult patients with treatment resistant epilepsy with 
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phytocannabinoids found in the cannabis plant do offer some very unique anticonvulsant 
pharmacological properties that warrant further exploration.

In this chapter the authors will provide a brief review of epilepsy and epileptogenesis fol-
lowed by a review of how the endocannabinoid system can alter the processes involved in 
the propagation and suppression of epileptic seizures. This is then followed by a review of 
the phytocannabinoids and their anticonvulsant mechanisms of action. Finally, the authors 
provide a historical background on the use of cannabis to treat patients with epilepsy and a 
review of the most recent clinical trials.

2. Epilepsy

Epilepsy is a chronic disease characterized by recurrent unprovoked seizures. It is defined 
as a disease of the brain in which the patient has either (1) two or more unprovoked seizures 
occurring more than 24 hours apart or (2) one unprovoked seizure and a probability of further 
seizures to be greater than 60% [1]. The prevalence of epilepsy worldwide is estimated to be 
between 4 and 10/1000 people with epilepsy accounting for up to 0.5% of the global burden 
of disease [2, 3]. There is significant geographic variation with prevalence rates of epilepsy 
prevalence rates being much higher in the developing world [4].

Most children and adults with epilepsy respond well to anticonvulsant therapy with approxi-
mately 50% of adults and 70% of children becoming seizure free with their first anticonvul-
sant medication [5, 6, 7]. Up to 30% of patients with epilepsy can be considered to be drug 
resistant which is defined by the International League Against Epilepsy as having failed two 
or more appropriate anticonvulsant treatments at an appropriate dosage [8, 9].

In patients who have failed two appropriate anticonvulsants the likelihood of seizure freedom 
with the addition of further anticonvulsant therapies is low. Treatment options for patients 
with drug resistant epilepsy include further trials of anticonvulsants, resective surgery, neu-
ral pathway stimulation with receptive or vagal nerve stimulation and dietary therapies [10]. 
Further trials of anticonvulsants in adults will result in 16% of patients who had failed their 
first two medications becoming seizure free [11]. In pediatric patients while the likelihood of 
achieving remission for 1 year or more with further medication trials is higher at 57%, many 
will continue to have relapses over time [12]. Resective surgery success rates (as defined as 
obtaining Engel Class 1 seizure freedom) in pediatric and adult patients with surgically ame-
nable epileptogenic lesions range from 34 to 90% depending on the nature and extent of the 
lesion [10, 13].

A full review of the processes that result in brain abnormalities causing seizures (epileptogen-
esis) is beyond the scope of this chapter. However, in order to understand how cannabinoids 
can have potential in treating epilepsy it is worth knowing the basic principles of these pro-
cesses. One of the major hallmarks of epilepsy is the presence of abnormal oscillatory events 
within neuronal networks in the form of recurrent interictal spikes and high frequency oscil-
lations within the epileptic zones of the patients’ brain [14]. These abnormal oscillations then 
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result in excessive synchronous firing of neurons causing an epileptic seizure with alteration 
in the patient’s behavior, motor activity or sensorium. Epilepsy can result from injury (either 
ischemic or traumatic) to cortical brain structures or genetic, inflammatory, structural and 
metabolic disturbances within the brain. The main components of the development of the 
abnormal oscillations within neuronal networks and epileptogenesis (seizure development) 
are (a) neuronal hyperexcitability—the ability of neurons to generate abnormal intrinsic burst 
discharges (b) a loss of GABA mediated interneuron neuronal inhibition that would nor-
mally prevent these discharges from spreading to adjacent neurons and (c) neuronal hyper-
synchrony in which excessive synaptic enhancement of neighboring neurons through the 
development of excitatory pathways allows these bursts to spread in a synchronous manner 
within a group of neurons [15]. Neuronal hyperexcitability can arise from abnormalities in 
excitatory or inhibitory neurotransmitter receptors resulting in a loss of the normal balance 
between neuronal excitation and inhibition. Of particular interest in epileptogenesis are the 
excitatory glutamatergic N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-
4-isoxazole propionate (AMPA) receptors [16]. Alterations in ion channel function as is seen 
in the channelopathy associated epilepsies such as Dravet syndrome also lead to neuronal 
hyperexcitability [17].

3. The endocannabinoid system and epilepsy

The endocannabinoid system comprises the two endogenous endocannabinoid recep-
tors (CB1R and CB2R) their two endogenously produced endocannabinoids; anandamide 
(N-arachidonyl-ethanolamide) and 2-AG (2-arachadonoylglycerol) which act as endogenous 
CBR ligands as well as the enzymes involved in endocannabinoid production and break-
down. Of the endocannabinoids produced in the human brain, 2-AG is produced in much 
higher concentrations and plays the most significant role in regulation of oscillatory networks 
[18]. For a full review of the endocannabinoid system please refer to this book’s introduction 
and the review article by Ligresti et al. [19] CB1R is one of the most abundant G protein-
coupled receptors (GPCR) within the mammalian brain and is expressed on the presynaptic 
axon terminal. In response to activation of the postsynaptic neuron, anandamide (a partial 
CB1R agonist) and 2-AG (a full CB1R agonist) are both produced within and released by the 
postsynaptic neuron. Activation of the presynaptic CB1R receptors by the endocannabinoids 
then results in a temporary suppression in voltage gated Ca2+ channels and activation of K+ 
channels resulting in suppression of further neurotransmitter release from the presynaptic 
neuron [20].

Although CB1R is one of the most abundantly expressed GPCRs in the brain, its expression 
is concentrated within certain groups of neurons. For example, in the hippocampus, CB1R 
expression is concentrated on the axon terminals of inhibitory GABAergic CA1 region inter-
neurons and Schaffer collaterals arising from CA3 pyramidal cells [22]. These interneurons 
play a key role in the formation and maintenance of normal oscillatory behavior in the hip-
pocampus essential for memory formation [18]. The effect of stimulation of CB1R is very 
localized within neuronal networks both from a spatial and temporal point of view. This 
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Further trials of anticonvulsants in adults will result in 16% of patients who had failed their 
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will continue to have relapses over time [12]. Resective surgery success rates (as defined as 
obtaining Engel Class 1 seizure freedom) in pediatric and adult patients with surgically ame-
nable epileptogenic lesions range from 34 to 90% depending on the nature and extent of the 
lesion [10, 13].

A full review of the processes that result in brain abnormalities causing seizures (epileptogen-
esis) is beyond the scope of this chapter. However, in order to understand how cannabinoids 
can have potential in treating epilepsy it is worth knowing the basic principles of these pro-
cesses. One of the major hallmarks of epilepsy is the presence of abnormal oscillatory events 
within neuronal networks in the form of recurrent interictal spikes and high frequency oscil-
lations within the epileptic zones of the patients’ brain [14]. These abnormal oscillations then 
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result in excessive synchronous firing of neurons causing an epileptic seizure with alteration 
in the patient’s behavior, motor activity or sensorium. Epilepsy can result from injury (either 
ischemic or traumatic) to cortical brain structures or genetic, inflammatory, structural and 
metabolic disturbances within the brain. The main components of the development of the 
abnormal oscillations within neuronal networks and epileptogenesis (seizure development) 
are (a) neuronal hyperexcitability—the ability of neurons to generate abnormal intrinsic burst 
discharges (b) a loss of GABA mediated interneuron neuronal inhibition that would nor-
mally prevent these discharges from spreading to adjacent neurons and (c) neuronal hyper-
synchrony in which excessive synaptic enhancement of neighboring neurons through the 
development of excitatory pathways allows these bursts to spread in a synchronous manner 
within a group of neurons [15]. Neuronal hyperexcitability can arise from abnormalities in 
excitatory or inhibitory neurotransmitter receptors resulting in a loss of the normal balance 
between neuronal excitation and inhibition. Of particular interest in epileptogenesis are the 
excitatory glutamatergic N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-
4-isoxazole propionate (AMPA) receptors [16]. Alterations in ion channel function as is seen 
in the channelopathy associated epilepsies such as Dravet syndrome also lead to neuronal 
hyperexcitability [17].

3. The endocannabinoid system and epilepsy

The endocannabinoid system comprises the two endogenous endocannabinoid recep-
tors (CB1R and CB2R) their two endogenously produced endocannabinoids; anandamide 
(N-arachidonyl-ethanolamide) and 2-AG (2-arachadonoylglycerol) which act as endogenous 
CBR ligands as well as the enzymes involved in endocannabinoid production and break-
down. Of the endocannabinoids produced in the human brain, 2-AG is produced in much 
higher concentrations and plays the most significant role in regulation of oscillatory networks 
[18]. For a full review of the endocannabinoid system please refer to this book’s introduction 
and the review article by Ligresti et al. [19] CB1R is one of the most abundant G protein-
coupled receptors (GPCR) within the mammalian brain and is expressed on the presynaptic 
axon terminal. In response to activation of the postsynaptic neuron, anandamide (a partial 
CB1R agonist) and 2-AG (a full CB1R agonist) are both produced within and released by the 
postsynaptic neuron. Activation of the presynaptic CB1R receptors by the endocannabinoids 
then results in a temporary suppression in voltage gated Ca2+ channels and activation of K+ 
channels resulting in suppression of further neurotransmitter release from the presynaptic 
neuron [20].

Although CB1R is one of the most abundantly expressed GPCRs in the brain, its expression 
is concentrated within certain groups of neurons. For example, in the hippocampus, CB1R 
expression is concentrated on the axon terminals of inhibitory GABAergic CA1 region inter-
neurons and Schaffer collaterals arising from CA3 pyramidal cells [22]. These interneurons 
play a key role in the formation and maintenance of normal oscillatory behavior in the hip-
pocampus essential for memory formation [18]. The effect of stimulation of CB1R is very 
localized within neuronal networks both from a spatial and temporal point of view. This 

Cannabis for Pediatric and Adult Epilepsy
http://dx.doi.org/10.5772/intechopen.85719

203



is achieved by the production of monoacylglycerol lipase (MAGL) by astrocytes and nerve 
terminals which breaks down 2-AG in the synaptic cleft. This temporal and spatial control 
allows for precise regulation of oscillations within neuronal networks by the endocannabi-
noid system [18].

During an epileptic seizure there is excessive glutamate release from presynaptic excitatory 
neurons. In rodent models of epilepsy this has been shown to cause increased production of 
both 2-AG and anandamide that in turn active CB1R on the glutamatergic axon terminals to 
decrease the release of further excessive glutamate. This prevents further neuronal hyperex-
citability which may play a role in terminating seizures. The increased anandamide is felt to 
play a role in preventing seizure induced excitatory neurotoxic effects [18, 21].

Temporal lobe epilepsy secondary to mesial temporal sclerosis (scarring of the hippocampi) is 
a common cause of epilepsy in adults that is often amenable to surgical resection of the mesial 
temporal structures. Pathological examination of surgically resected specimens has shown 
alterations in expression of CB1R of neurons within the hippocampi that provide insight 
into how disruption of the endocannabinoid system could predispose to epileptogenesis. In 
resected hippocampi there is a downregulation of CB1R expression on the axon terminals of 
excitatory (glutamatergic) neurons within the inner molecular layer of the dentate gyrus and 
an upregulation of CB1R expression on inhibitory (GABAergic) axon terminals within the 
dentate molecular layer [18]. These changes in CB1R expression result in both a loss of the 
normal inhibition of excessive glutamate release and increased suppression of GABAergic 
activity both of which result in increased neuronal hyperexcitability and subsequent seizure 
generation [22]. In patients with chronic epilepsy, there is also a decrease in the amount of 
anandamide and 2-AG released with excessive neuronal activation further contributing to a 
loss of the endocannabinoid mediated inhibition of excessive neuronal activation [18].

The growing body of evidence demonstrating the role the endocannabinoid system plays in 
the brains’ mechanisms in regulating neuronal network oscillations and preventing excessive 
neuronal hyperexcitability coupled with alterations in the endocannabinoid receptors seen in 
epileptogenic tissue make the endocannabinoid system an attractive therapeutic target in the 
treatment of epilepsy. Modulation of the endocannabinoid system would provide a potential 
novel anticonvulsant mechanism not provided by other anticonvulsant therapies.

4. Phytocannabinoids and epilepsy: mechanisms of action and 
preclinical studies

The phytocannabinoids are a class of cannabinoids that are produced by plants of the can-
nabis species. The phytocannabinoids are C21 aromatic compounds consisting of an aromatic 
isoprenyl terpenophenolic core and resorcinyl side chain. Based on the structure of the oxygen 
bond between the isoprenyl and resorcinyl moieties the phytocannabinoids can be placed into 
6 main families. Within each family, variations of the R-chain on the resorcinyl moiety differ-
entiate each individual cannabinoid [23]. To date, over 140 different phytocannabinoids have 
been identified in C. sativa. While there is a high degree of structural preservation among the 
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phytocannabinoids, they appear to display widely different effects on the mammalian central 
nervous system. The structural and stereochemical requirements for biological activity of the 
cannabinoids have been well established. Most biologically active cannabinoids (with a few 
exceptions) have a hydroxyl group on the C1 and an alkyl group on the C3 aromatic positions. 
As well, naturally occurring cannabinoids are biologically active in the trans (−) enantiomer 
[24]. Following the first isolation of the cannabinoids it did not take long for their anticonvul-
sant properties to be recognized [25]. Of the cannabinoids produced by the C. sativa the most 
comprehensively studied in the field of epilepsy are Δ9-tetrahydrocannabinol (Δ9-THC) and 
cannabidiol (CBD).

Initial research focused on the anticonvulsant effects of Δ9-THC and other CB1R agonists 
such as anandamide. Through their activation of CB1R, anandamide and the synthetic can-
nabinoid WIN 55,212-2 were able to block the production of postsynaptic neuronal spiking 
and excitatory post synaptic potential production. Both compounds were also able to sup-
press the production of abnormal burst activity in neurons placed in Mg2

+ depleted solu-
tion. Depletion of Mg2+ in solution allows activation of NMDA receptors at normal resting 
potentials without the usual prerequisite neuronal depolarization. This effect was abolished 
when CB1R antagonists were added, suggesting that the effect was secondary to activation 
of CB1R by these agents [26]. Δ9-THC is a major phytocannabinoid in C. sativa. It is a high 
affinity partial agonist of both CB1R and CB2R that is competitive with both anandamide 
and 2-AG. The direct activation of CB1R by Δ9-THC is responsible for its psychoactive effects 
[19]. Numerous studies have assessed the anticonvulsant activity of Δ9-THC and its metabo-
lites with conflicting results. These studies showed that Δ9-THC and its metabolites showed 
both anticonvulsant and proconvulsant activity depending on the dosage, animal species and 
seizure model used. In Maximal Electroshock (MES) and Maximal Electroshock Threshold 
(MEST) mouse models which mimic generalized onset convulsive seizures both Δ9-THC and 
its metabolites showed anticonvulsant activity by blocking or increasing the latency to hind 
limb extensor seizures [27]. In other studies Δ9-THC was also shown to potentiate the effects 
of several anticonvulsants [28]. In models that showed an anticonvulsant effect of Δ9-THC, all 
three of its metabolites including 11-OH-Δ9-THC showed anticonvulsant effect. The anticon-
vulsant effect of 11-OH-Δ9-THC was more potent than its parent compound by almost 1 order 
of magnitude suggesting that much of the anticonvulsant activity attributed to Δ9-THC may 
in fact come from its metabolites [27].

In a rat model of electrically induced limbic seizures Δ9-THC increased the threshold of elec-
trically induced after discharges at the site of electrode implantation in the left subiculum. 
However, Δ9-THC increased the duration of cortically recorded after discharges in electrodes 
remote from the site of stimulation. This suggested that Δ9-THC may have both anticonvulsant 
and proconvulsant effects in focal onset epilepsies [27]. In the cobalt model of focal epilepsy 
in rats Δ9-THC increased the frequency of epileptic potentials at the site of the cobalt-induced 
lesion. This was not seen with Δ9-THC’s main metabolite 11-OH-Δ9-THC. Both Δ9-THC and 
11-OH-Δ9-THC seemed to increase generalized cortical excitation as seen by the production 
of brief intermittent cortically recorded after discharges [27]. Similar findings were seen in a 
rat model using iron to induce a seizure focus. While both Δ9-THC and 11-OH-Δ9-THC both 
caused increased cortical excitability, only Δ9-THC provoked clinical seizures. As well, the 
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nabinoid WIN 55,212-2 were able to block the production of postsynaptic neuronal spiking 
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+ depleted solu-
tion. Depletion of Mg2+ in solution allows activation of NMDA receptors at normal resting 
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lites with conflicting results. These studies showed that Δ9-THC and its metabolites showed 
both anticonvulsant and proconvulsant activity depending on the dosage, animal species and 
seizure model used. In Maximal Electroshock (MES) and Maximal Electroshock Threshold 
(MEST) mouse models which mimic generalized onset convulsive seizures both Δ9-THC and 
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in fact come from its metabolites [27].
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trically induced after discharges at the site of electrode implantation in the left subiculum. 
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lesion. This was not seen with Δ9-THC’s main metabolite 11-OH-Δ9-THC. Both Δ9-THC and 
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of brief intermittent cortically recorded after discharges [27]. Similar findings were seen in a 
rat model using iron to induce a seizure focus. While both Δ9-THC and 11-OH-Δ9-THC both 
caused increased cortical excitability, only Δ9-THC provoked clinical seizures. As well, the 
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dose of Δ9-THC required to induce seizures was much higher than that required to induce 
electrographic changes in keeping with cortical excitation [29]. In mice, Δ9-THC has also 
been shown to induce kindling of a second epileptic focus in response to both electroconvul-
sive therapy as well as pentylenetetrazol (PTZ) and picrotoxin induced seizures [30]. When 
administered to rabbits with a genetic mutation causing audiogenic seizures Δ9-THC caused 
signs of neurotoxicity but prevented seizures when the rabbits were stimulated with a sound 
stimulus above their normal seizure threshold range. Conversely, in another breed of rab-
bits, injection with Δ9-THC induced both neurotoxicity and behavioral seizures in a dosage 
dependent manner [31].

The results of these studies show that Δ9-THC and its metabolites display anticonvulsant 
activity in animal models using seizure models with rapidly evoked tonic discharges which 
mimics certain types of generalized onset seizures in humans. However, in models mimick-
ing focal onset seizures, Δ9-THC and its metabolites seem to display a proconvulsant effect. 
This is manifested by increasing the activity at the site of the focal lesion and increasing 
generalized cortical activity [27]. A proconvulsant effect is also seen in models mimicking 
genetic based generalized epilepsies and absence seizures. Δ9-THC and its metabolites seem 
to induce hypersynchrony with slowly propagating epileptic discharges [32]. While Δ9-THC 
showed some potential as an anticonvulsant agent the potential to increase seizure activity 
along with its neurotoxic and psychotropic side effect profile limited its potential benefit in 
patients with epilepsy.

CBD is a low affinity negative allosteric modulator of CB1R with no psychotropic side effects 
due to the fact it does not cause activation of CB1R. It modulates the influx of both Ca2+ and 
Na+ into neurons by binding to human T-type voltage gated Ca2+ channels, Melastatin and 
Vanilloid type Transient Receptor Potential membrane receptors (TRPM and TRPV) and volt-
age gated Na+ channels [19]. This decreases neuronal excitability in response to stimulation. 
CBD has also been shown to inhibit intrasynaptic re-uptake of adenosine as well as activation 
of neuronal Serotonin, Glycine and Vanilloid receptors [33, 34]. The anticonvulsant effect of 
CBD is felt to be independent of activation of the endogenous CBR pathways. While the exact 
mechanism of anticonvulsant activity of CBD remains uncertain it appears to have a poly-
pharmacological effect on modulating neuronal excitability.

In the Cobalt induced focal epilepsy rat model CBD had no effect on focal discharges at the 
lesion site but decreased the frequency of seizures. CBD also blocked the proconvulsant effects 
in of Δ9-THC [27, 35]. In the limbic seizure rat model CBD decreased the frequency, duration 
and amplitude of electrically induced after discharges at the site of stimulation in the left 
subiculum but did not prevent the spread of after discharges from the site of focal stimulation 
to distal electrodes. It had no apparent effect on generalized cortical excitability. This suggests 
that in focal models of epilepsy, CBD acts directly on the site of focal seizure onset [27].

Other animal studies continued to show the anticonvulsant effect of CBD in both transcor-
neal electroshock, drug induced and lesional epilepsies. This anticonvulsant effect was seen 
when a single intraperitoneal (i.p.) dose of CBD was administered alone but like Δ9-THC it 
also potentiated the effects of several anticonvulsant medications [33, 36, 37]. While CBD had 
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potent anticonvulsant effect against tonic seizures its effect against clonic seizures was minimal. 
Consroe et al. hypothesized that this effect was due to the fact that tonic seizures are spread rap-
idly throughout the brain from a focal lesion via post-tetanic stimulation. Unlike Δ9-THC, CBD 
suppressed tetanic potentiation in isolated bullfrog ganglia [27]. This coupled with the fact that 
CBD is effective in preventing 3-Mercaptoproprionic acid (3-MPA) induced seizures suggested 
that some of the anticonvulsant effect of CBD may result from its ability to increase production 
of GABA in presynaptic GABAergic neurons [36]. Unlike Δ9-THC, the brain concentrations of 
CBD correlated well with its anticonvulsant effect in several animal models. This suggests that 
the anticonvulsant effect of CBD is due to the parent compound and not its metabolites [27].

In summary, CBD was shown to display broad spectrum anticonvulsant activity in a wide 
range of animal models of epilepsy including generalized seizures caused by electroshock 
and GABA inhibiting drugs and focal seizures induced by placement of toxic metals on the 
cortex. It however had no effect on models of generalized absence seizures [38]. CBD also 
blocked kindling of a second epileptic focus [36]. Even at high doses it failed to cause any 
behavioral or cognitive side effects in test animals. This would suggest that CBD is a potent 
anticonvulsant with limited cognitive side effects, making it an attractive potential anticon-
vulsant in the pediatric population [33, 37].

4.1. Other cannabinoids and terpenes

In addition, Δ9-THC and CBD several other cannabinoids have been evaluated for the poten-
tial anticonvulsant activity. These include ∆9-tetrahydrocannibivarin (∆9-THCV) and can-
nabidivarin (CBDV) which have been shown to have anticonvulsant effects. ∆9-THCV is a 
non-psychoactive cannabinoid that acts as a CB1R antagonist. In a Mg2+ depleted solution ∆9-
THCV decreased the amplitude and duration of abnormal neuronal burst activity. ∆9-THCV 
potentiated the effects on neuronal bursting of both phenobarbital and valproic acid. In a PTZ 
rat model ∆9-THCV did not decrease the severity or duration of seizures or seizure mortality. 
However significantly fewer rats exposed to PTZ that were treated with ∆9-THCV displayed 
seizures compared to those that were given PTZ alone [39]. Like CBD, CBDV is believed to 
exert its effects via CB1R independent mechanisms and has limited neurotoxicity [40]. CBDV 
has been shown to decrease the amplitude and duration of abnormal bursting in mouse and 
rat hippocampal slices in in both Mg2+ depleted solution and solution to which 4-aminopyri-
dine (4-AP) has been added. CBDV also significantly decreased the number of seizures seen in 
in vitro MES and audiogenic seizure models in mice and PTZ induced seizures in rats. Unlike 
CBD, CBDV also prolonged the latency of seizure induction in a dose dependent manner. 
Administration of CBDV had no effect on motor performance in mice regardless of the ode 
administered [41]. The terpenes, which are another class of compounds found in cannabis, 
also possess a wide range of pharmacological activity on the mammalian nervous system at 
very low concentrations. Individually, these terpenes have not been assessed in patients with 
epilepsy [42, 43].

The combinatorial effect of the chemical components of cannabis has been postulated wherein 
cannabis whole plant extracts may benefit from ‘entourage’ effects to yield greater effectiveness 
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bits, injection with Δ9-THC induced both neurotoxicity and behavioral seizures in a dosage 
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The results of these studies show that Δ9-THC and its metabolites display anticonvulsant 
activity in animal models using seizure models with rapidly evoked tonic discharges which 
mimics certain types of generalized onset seizures in humans. However, in models mimick-
ing focal onset seizures, Δ9-THC and its metabolites seem to display a proconvulsant effect. 
This is manifested by increasing the activity at the site of the focal lesion and increasing 
generalized cortical activity [27]. A proconvulsant effect is also seen in models mimicking 
genetic based generalized epilepsies and absence seizures. Δ9-THC and its metabolites seem 
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showed some potential as an anticonvulsant agent the potential to increase seizure activity 
along with its neurotoxic and psychotropic side effect profile limited its potential benefit in 
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CBD is a low affinity negative allosteric modulator of CB1R with no psychotropic side effects 
due to the fact it does not cause activation of CB1R. It modulates the influx of both Ca2+ and 
Na+ into neurons by binding to human T-type voltage gated Ca2+ channels, Melastatin and 
Vanilloid type Transient Receptor Potential membrane receptors (TRPM and TRPV) and volt-
age gated Na+ channels [19]. This decreases neuronal excitability in response to stimulation. 
CBD has also been shown to inhibit intrasynaptic re-uptake of adenosine as well as activation 
of neuronal Serotonin, Glycine and Vanilloid receptors [33, 34]. The anticonvulsant effect of 
CBD is felt to be independent of activation of the endogenous CBR pathways. While the exact 
mechanism of anticonvulsant activity of CBD remains uncertain it appears to have a poly-
pharmacological effect on modulating neuronal excitability.

In the Cobalt induced focal epilepsy rat model CBD had no effect on focal discharges at the 
lesion site but decreased the frequency of seizures. CBD also blocked the proconvulsant effects 
in of Δ9-THC [27, 35]. In the limbic seizure rat model CBD decreased the frequency, duration 
and amplitude of electrically induced after discharges at the site of stimulation in the left 
subiculum but did not prevent the spread of after discharges from the site of focal stimulation 
to distal electrodes. It had no apparent effect on generalized cortical excitability. This suggests 
that in focal models of epilepsy, CBD acts directly on the site of focal seizure onset [27].

Other animal studies continued to show the anticonvulsant effect of CBD in both transcor-
neal electroshock, drug induced and lesional epilepsies. This anticonvulsant effect was seen 
when a single intraperitoneal (i.p.) dose of CBD was administered alone but like Δ9-THC it 
also potentiated the effects of several anticonvulsant medications [33, 36, 37]. While CBD had 
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potent anticonvulsant effect against tonic seizures its effect against clonic seizures was minimal. 
Consroe et al. hypothesized that this effect was due to the fact that tonic seizures are spread rap-
idly throughout the brain from a focal lesion via post-tetanic stimulation. Unlike Δ9-THC, CBD 
suppressed tetanic potentiation in isolated bullfrog ganglia [27]. This coupled with the fact that 
CBD is effective in preventing 3-Mercaptoproprionic acid (3-MPA) induced seizures suggested 
that some of the anticonvulsant effect of CBD may result from its ability to increase production 
of GABA in presynaptic GABAergic neurons [36]. Unlike Δ9-THC, the brain concentrations of 
CBD correlated well with its anticonvulsant effect in several animal models. This suggests that 
the anticonvulsant effect of CBD is due to the parent compound and not its metabolites [27].

In summary, CBD was shown to display broad spectrum anticonvulsant activity in a wide 
range of animal models of epilepsy including generalized seizures caused by electroshock 
and GABA inhibiting drugs and focal seizures induced by placement of toxic metals on the 
cortex. It however had no effect on models of generalized absence seizures [38]. CBD also 
blocked kindling of a second epileptic focus [36]. Even at high doses it failed to cause any 
behavioral or cognitive side effects in test animals. This would suggest that CBD is a potent 
anticonvulsant with limited cognitive side effects, making it an attractive potential anticon-
vulsant in the pediatric population [33, 37].

4.1. Other cannabinoids and terpenes

In addition, Δ9-THC and CBD several other cannabinoids have been evaluated for the poten-
tial anticonvulsant activity. These include ∆9-tetrahydrocannibivarin (∆9-THCV) and can-
nabidivarin (CBDV) which have been shown to have anticonvulsant effects. ∆9-THCV is a 
non-psychoactive cannabinoid that acts as a CB1R antagonist. In a Mg2+ depleted solution ∆9-
THCV decreased the amplitude and duration of abnormal neuronal burst activity. ∆9-THCV 
potentiated the effects on neuronal bursting of both phenobarbital and valproic acid. In a PTZ 
rat model ∆9-THCV did not decrease the severity or duration of seizures or seizure mortality. 
However significantly fewer rats exposed to PTZ that were treated with ∆9-THCV displayed 
seizures compared to those that were given PTZ alone [39]. Like CBD, CBDV is believed to 
exert its effects via CB1R independent mechanisms and has limited neurotoxicity [40]. CBDV 
has been shown to decrease the amplitude and duration of abnormal bursting in mouse and 
rat hippocampal slices in in both Mg2+ depleted solution and solution to which 4-aminopyri-
dine (4-AP) has been added. CBDV also significantly decreased the number of seizures seen in 
in vitro MES and audiogenic seizure models in mice and PTZ induced seizures in rats. Unlike 
CBD, CBDV also prolonged the latency of seizure induction in a dose dependent manner. 
Administration of CBDV had no effect on motor performance in mice regardless of the ode 
administered [41]. The terpenes, which are another class of compounds found in cannabis, 
also possess a wide range of pharmacological activity on the mammalian nervous system at 
very low concentrations. Individually, these terpenes have not been assessed in patients with 
epilepsy [42, 43].

The combinatorial effect of the chemical components of cannabis has been postulated wherein 
cannabis whole plant extracts may benefit from ‘entourage’ effects to yield greater effectiveness 
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than treatment with a purified cannabinoid [42, 44]. This is supported by preclinical studies. 
In the in vitro oxotremorine-M mouse model of epilepsy, excessive neuronal bursting activity 
can be suppressed with ∆9-THC, but not CBD, while a standardized cannabis extract contain-
ing both ∆9-THC and CBD can abolish the abnormal bursting activity faster than purified 
∆9-THC alone [45]. In another study, both purified ∆9-THC and CBD can increase intracellular 
Ca2+ in rat hippocampal neuronal and glial cells. This effect is compounded when the two 
compounds are mixed together, with the greatest effect occurring with whole plant extract 
containing both ∆9-THC and CBD [46]. These preclinical data support the hypothesis that the 
‘entourage’ effects between the various cannabinoids provide therapeutic benefit of cannabis 
whole plant extract, benefit that exceeds the activity of a single purified cannabinoid. This 
remains to be demonstrated in the human clinical context.

5. Early clinical experience with cannabis for the treatment of 
epilepsy

The use of cannabis as a treatment for a variety of ailments in eastern and Mediterranean 
cultures over the last several millennium has been well documented [47]. The first description 
of the use of cannabis to treat seizures came from Dr. W. O’Shaugnessy who while working 
in India reported its successful use to treat seizures in an infant [48]. Following this, cannabis 
extracts became widely used throughout Europe and North America as an accepted treatment 
for epilepsy [49]. Following prohibition and with the introduction of other anticonvulsants, 
cannabis fell out of use as a treatment for epilepsy in western cultures.

During the mid-twentieth century, several reports on the effect of recreational cannabis con-
sumption surfaced with contrasting effects. Several case reports described patients having 
decreased seizure frequency following the consumption of cannabis [50]. Cannabis consump-
tion was also shown to be protective against first unprovoked seizures. In adult males who 
smoked cannabis in the last 90 days, the odds of having a first unprovoked seizure was 0.38 
compared to adult males who never consumed cannabis [51]. Conversely, a patient with a 
history of epilepsy who had been seizure free for several months on medication was reported 
to have had an exacerbation of seizures following the consumption of cannabis [52].

In 1978, Mechoulam et al. reported their double blinded placebo-controlled study of CBD 
used as an add-on therapy in patients with refractory focal onset seizures. Of the four patients 
who took CBD two were seizure free for the 3 months of the study while another had partial 
improvement. None of the five patients who took placebo had any improvement in their sei-
zures [53]. Cunha et al. reported the results of their study investigating the potential of CBD in 
patients with refractory temporal lobe epilepsy. In the first phase of the study, healthy adult 
volunteers were randomized to receive either placebo or CBD at 3 mg/kg/day for 30 days. Of 8 
volunteers receiving CBD, 2 reported somnolence otherwise no adverse effects were reported. 
In the second phase, 15 adult patients with drug-resistant temporal lobe epilepsy were ran-
domized to receive either placebo or CBD (up to 300 mg/day) for a period of 18 weeks in a 
double-blinded manner. Four of 8 patients dosed with CBD had complete improvement while 
three had partial improvement. No adverse effects were noted in patients given CBD [54].
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Two further studies showed no significant difference in seizure reduction with the addition 
of CBD as an adjunctive therapy. However, in one study patients were given CBD at a dose of 
300 mg/day and their plasma CBD levels were maintained at 20–30 ng/ml. Subsequently one 
participant who had no difference in their seizure frequency was placed on CBD at a higher 
dose of up to 1200 mg/day. CBD plasma levels were higher averaging 150 ng/ml. This patient 
had a significant decrease in their seizure frequency suggesting that higher doses of CBD (and 
higher plasma levels) were required for seizure control [55].

6. Recent clinical trials and experience

In recent years there has been a public perception that cannabis is a potent, natural, and safe 
alternative therapy for epilepsy. This has driven the demand for and use of cannabis and its 
derived products to treat epilepsy especially in those patients whose seizures are medically 
intractable. Coupled with the media exposure showing examples of the apparent miraculous 
effects of CBD oil in select epileptic patients, treating physicians have struggled to balance the 
patient demand for cannabis products and the need for studies to determine their, efficacy, 
dosing, side-effect profile, and indication. To that end, there have been multiple studies, pre-
dominantly in children, looking into these clinical questions. Unfortunately, the overwhelm-
ing majority of these studies have been retrospective, unblinded, and uncontrolled resulting 
in their being hampered by various forms of bias and potential placebo effect. Despite the 
plethora of published research on this topic, questions still remain on the use of cannabis in 
epilepsy.

In this section, we will review the limitations of the studies, the studies using artisanal and 
CBD enriched cannabis herbal extracts (CHE), the studies using highly purified pharmaceuti-
cal grade CBD, and a meta-analysis of the CBD studies.

6.1. Limitations of the studies

The widespread use of cannabis and the effect of bias are highlighted in various published 
surveys. McLachlan performed a survey in London, Ontario, Canada, in which more than 60% 
of patients declared that cannabis was effective for their seizures and stress levels [56]. Ladina 
et al. reported a case series of 18 patients who all found medicinal cannabis very helpful for 
seizure control and improvement of mood disorder [57]. By contrast, Press had reported a 
significant discrepancy in reported responder rate between preexisting Colorado residents 
and those who moved to Colorado to obtain cannabis to treat their child’s epilepsy (22 vs. 
47%) suggesting there is a significant perception bias among these children’s caregivers as to 
the therapeutic benefits of cannabis [58]. Physician bias may also play a role as a recent survey 
by Mathern showed contrasting opinions about CBD between neurologists and the general 
public. In his study, a minority of epileptologists and general neurologists said that there 
were sufficient data safety (34%) and efficacy data (28%) and only 48% would advise using 
medical cannabis and only in severe cases of epilepsy. Conversely, nearly all patients and the 
general public responded that there was sufficient safety (96%) and efficacy (95%) data, and 
98% would recommend cannabis in cases with severe epilepsy [59].
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than treatment with a purified cannabinoid [42, 44]. This is supported by preclinical studies. 
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can be suppressed with ∆9-THC, but not CBD, while a standardized cannabis extract contain-
ing both ∆9-THC and CBD can abolish the abnormal bursting activity faster than purified 
∆9-THC alone [45]. In another study, both purified ∆9-THC and CBD can increase intracellular 
Ca2+ in rat hippocampal neuronal and glial cells. This effect is compounded when the two 
compounds are mixed together, with the greatest effect occurring with whole plant extract 
containing both ∆9-THC and CBD [46]. These preclinical data support the hypothesis that the 
‘entourage’ effects between the various cannabinoids provide therapeutic benefit of cannabis 
whole plant extract, benefit that exceeds the activity of a single purified cannabinoid. This 
remains to be demonstrated in the human clinical context.

5. Early clinical experience with cannabis for the treatment of 
epilepsy

The use of cannabis as a treatment for a variety of ailments in eastern and Mediterranean 
cultures over the last several millennium has been well documented [47]. The first description 
of the use of cannabis to treat seizures came from Dr. W. O’Shaugnessy who while working 
in India reported its successful use to treat seizures in an infant [48]. Following this, cannabis 
extracts became widely used throughout Europe and North America as an accepted treatment 
for epilepsy [49]. Following prohibition and with the introduction of other anticonvulsants, 
cannabis fell out of use as a treatment for epilepsy in western cultures.

During the mid-twentieth century, several reports on the effect of recreational cannabis con-
sumption surfaced with contrasting effects. Several case reports described patients having 
decreased seizure frequency following the consumption of cannabis [50]. Cannabis consump-
tion was also shown to be protective against first unprovoked seizures. In adult males who 
smoked cannabis in the last 90 days, the odds of having a first unprovoked seizure was 0.38 
compared to adult males who never consumed cannabis [51]. Conversely, a patient with a 
history of epilepsy who had been seizure free for several months on medication was reported 
to have had an exacerbation of seizures following the consumption of cannabis [52].

In 1978, Mechoulam et al. reported their double blinded placebo-controlled study of CBD 
used as an add-on therapy in patients with refractory focal onset seizures. Of the four patients 
who took CBD two were seizure free for the 3 months of the study while another had partial 
improvement. None of the five patients who took placebo had any improvement in their sei-
zures [53]. Cunha et al. reported the results of their study investigating the potential of CBD in 
patients with refractory temporal lobe epilepsy. In the first phase of the study, healthy adult 
volunteers were randomized to receive either placebo or CBD at 3 mg/kg/day for 30 days. Of 8 
volunteers receiving CBD, 2 reported somnolence otherwise no adverse effects were reported. 
In the second phase, 15 adult patients with drug-resistant temporal lobe epilepsy were ran-
domized to receive either placebo or CBD (up to 300 mg/day) for a period of 18 weeks in a 
double-blinded manner. Four of 8 patients dosed with CBD had complete improvement while 
three had partial improvement. No adverse effects were noted in patients given CBD [54].
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alternative therapy for epilepsy. This has driven the demand for and use of cannabis and its 
derived products to treat epilepsy especially in those patients whose seizures are medically 
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patient demand for cannabis products and the need for studies to determine their, efficacy, 
dosing, side-effect profile, and indication. To that end, there have been multiple studies, pre-
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ing majority of these studies have been retrospective, unblinded, and uncontrolled resulting 
in their being hampered by various forms of bias and potential placebo effect. Despite the 
plethora of published research on this topic, questions still remain on the use of cannabis in 
epilepsy.
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cal grade CBD, and a meta-analysis of the CBD studies.

6.1. Limitations of the studies

The widespread use of cannabis and the effect of bias are highlighted in various published 
surveys. McLachlan performed a survey in London, Ontario, Canada, in which more than 60% 
of patients declared that cannabis was effective for their seizures and stress levels [56]. Ladina 
et al. reported a case series of 18 patients who all found medicinal cannabis very helpful for 
seizure control and improvement of mood disorder [57]. By contrast, Press had reported a 
significant discrepancy in reported responder rate between preexisting Colorado residents 
and those who moved to Colorado to obtain cannabis to treat their child’s epilepsy (22 vs. 
47%) suggesting there is a significant perception bias among these children’s caregivers as to 
the therapeutic benefits of cannabis [58]. Physician bias may also play a role as a recent survey 
by Mathern showed contrasting opinions about CBD between neurologists and the general 
public. In his study, a minority of epileptologists and general neurologists said that there 
were sufficient data safety (34%) and efficacy data (28%) and only 48% would advise using 
medical cannabis and only in severe cases of epilepsy. Conversely, nearly all patients and the 
general public responded that there was sufficient safety (96%) and efficacy (95%) data, and 
98% would recommend cannabis in cases with severe epilepsy [59].
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Given the present approved indications for medical coverage, the high cost of pharmaceutical 
grade CBD products, and the illegal status of cannabis in some countries and US states, the 
overwhelming majority of patients will at this time be using CBD oil extracts or artisanal 
products. In many jurisdictions these products are unregulated and therefore their content 
and consistency are uncertain and can vary. In Australia, where medical use of cannabis is 
highly restricted, Suraev reported that in parents treating their children with “illicit” cannabis 
extracts, the majority of extract samples used by the families contained low concentrations 
of cannabidiol, while Δ9-THC was present in nearly every sample [60]. These findings high-
lighted the profound variation in the illicit cannabis extracts being used. Studies examining 
the use of artisanal and CBD oil extracts therefore could have had uncertain and inconsistent 
amounts of cannabinoids. This inconsistency in combination the inherent problems of ret-
rospective studies, make the findings of these studies questionable; moreover, none of pub-
lished studies included serum CBD levels.

To date, there are few prospective, double blind, placebo-controlled studies which all only 
examined the use of the highly purified, pharmaceutical grade CBD (Epidiolex). None 
involved artisanal CBD or the CBD oil extracts.

6.2. The artisanal and CBD oil extracts

While keeping the limitations of the studies examining artisanal and CBD oil extracts in epi-
lepsy in mind, most of these studies did find that CBD oil extracts are effective in reducing 
seizures and improving quality of life.

Tzadok reported out of 74 children being treated with a 20% CBD and 1% Δ9-THC CHE, 89% 
reported reduction in seizure frequency with only 43% of patients having a >50% reduction in 
seizures. Five patients reported aggravation of seizures leading to withdrawal from the study. 
Improvement in behavior and alertness, language, communication, motor skills and sleep 
were noted. Adverse reactions included somnolence, fatigue, gastrointestinal disturbances 
and irritability leading to withdrawal of cannabis use in five patients. The CBD dosing ranged 
from 1 to 20 mg/kg/day with 83% taking <10 mg/kg/day [61].

Similarly, Porcari retrospectively studied the efficacy of artisanal CBD preparations in chil-
dren with epilepsy. The study also included a subgroup comparison to determine if the 
addition of clobazam was related to any beneficial effects of CBD. Overall, the addition of 
CBD resulted in 39% of patients having a >50% reduction in seizures, with 10% becoming 
seizure-free. The difference in effect between CBD alone and CBD with clobazam was not 
statistically significant. Increased alertness and improved verbal interactions were reported 
in 14% of patients in the CBD group and 8% of patients in the CBD and clobazam group. The 
average dose of CBD was 2.9 mg/kg/day in the CBD group and 5.8 mg/kg/day in the CBD and 
clobazam group [62].

McCoy et al. performed a prospective open label study using a 2:100 Δ9-THC:CBD CHE in 
20 children with Dravet syndrome. The dose of CBD ranged from 7 to 16 mg/kg/day (mean 
13.3 mg CBD/kg/day). They reported that during the 20-week intervention period the median 
monthly reduction in motor seizures was 70.6%. The CHE also resulted in improvements 
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in quality of life measures and spike index on electroencephalogram (EEG). Adverse events 
during the titration period included somnolence, anorexia and diarrhea [63].

The Cannabinoid Research Initiative of Saskatchewan is currently conducting a Canadian, mul-
ticenter, prospective, open-label, dose-escalation phase 1 trial entitled Cannabidiol in Children 
with Refractory Epileptic Encephalopathy (CARE-E). The source of the CBD oil is consistent 
with a single batch of 1:20 Δ9-THC:CBD CHE used for all study participants. Concentrations 
of the cannabinoids in the CHE were confirmed through Health Canada Quality Assurance 
and Good Manufacturing Practices (GMP) certification [64]. Preliminary data showed that all 
6 participants had improvements in seizure frequency, Quality of Life in Childhood Epilepsy 
(QOLCE) and EEG rating scores—with three participants showing continued improvements in 
these measures after the oil extract was discontinued. In addition, serum CBD levels suggested 
linear dose independent pharmacokinetics in all but one participant. In most participants, serum 
Δ9-THC concentrations remained lower than what would be expected to cause intoxication even 
at the maximum dose of oil extract. None of the participants displayed any evidence of Δ9-THC 
intoxication clinically throughout the study. Preliminary data suggests that an effective and well-
tolerated CBD initial target dose of 5–6 mg/kg/day is effective and well tolerated when a 1:20 Δ9-
THC:CBD CHE is used. In addition, the serum concentration of CBD follows dose-independent 
linear pharmacokinetics for most participants, although non-linear pharmacokinetics might 
occur but requires confirmation. Continued improvement in seizure frequency and QOLCE fol-
lowing the discontinuation of CHE suggest a possible enduring anticonvulsant effect [65].

6.3. The highly purified, pharmaceutical grade CBD products

With the production of a highly purified, pharmaceutical grade CBD (Epidiolex), studies 
could now be performed with a CBD source of greater reliability. Although potential bias 
remained, better clinical studies had been performed.

Devinksy published an open label trial in patients aged 1–30 with severe, intractable, child-
hood-onset, drugs resistant epilepsy. All patients were receiving their regular anti-epileptic 
drugs. Patients were given CBD at 2–5 mg/kg/day, titrated over a period of 2 weeks till intol-
erance or to a maximum dose of 25 mg/kg to 50 mg/kg/day. The main objective of the study 
was to establish safety and tolerability of CBD and the primary end point was the median 
percentage in the mean monthly frequency of motor seizures at 12 weeks. This study included 
mainly patients with Dravet and Lennox-Gastaut syndromes. One hundred and sixty-two 
patients were enrolled. A significant high rate of adverse events was reported in 128 patients 
(79%). The most common were somnolence (n = 41 [25%]), decreased appetite (n = 31 [19%]), 
diarrhea (n = 31 [19%]) and fatigue (n = 21 [13%]). This high rate of side effects (many of 
which were seen during the titration period) suggests that too rapid a titration rate may pre-
dispose toward side effects. The median monthly frequency of motor seizures was 30·0 (IQR 
11·0–96·0) at baseline and 15·8 (5·6–57·6) at 12 weeks of treatment. The median reduction in 
monthly motor seizures was 36·5% (IQR 0–64·7) [66].

From this same cohort, Rosenberg et al. reported that caregivers of 48 patients indicated 
an 8.2–9.9-point improvement in overall patient QOLCE (p < 0.001) following 12 weeks of 
CBD. Subscores with improvement included energy/fatigue, memory, control/helplessness, 
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20 children with Dravet syndrome. The dose of CBD ranged from 7 to 16 mg/kg/day (mean 
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of the cannabinoids in the CHE were confirmed through Health Canada Quality Assurance 
and Good Manufacturing Practices (GMP) certification [64]. Preliminary data showed that all 
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these measures after the oil extract was discontinued. In addition, serum CBD levels suggested 
linear dose independent pharmacokinetics in all but one participant. In most participants, serum 
Δ9-THC concentrations remained lower than what would be expected to cause intoxication even 
at the maximum dose of oil extract. None of the participants displayed any evidence of Δ9-THC 
intoxication clinically throughout the study. Preliminary data suggests that an effective and well-
tolerated CBD initial target dose of 5–6 mg/kg/day is effective and well tolerated when a 1:20 Δ9-
THC:CBD CHE is used. In addition, the serum concentration of CBD follows dose-independent 
linear pharmacokinetics for most participants, although non-linear pharmacokinetics might 
occur but requires confirmation. Continued improvement in seizure frequency and QOLCE fol-
lowing the discontinuation of CHE suggest a possible enduring anticonvulsant effect [65].

6.3. The highly purified, pharmaceutical grade CBD products

With the production of a highly purified, pharmaceutical grade CBD (Epidiolex), studies 
could now be performed with a CBD source of greater reliability. Although potential bias 
remained, better clinical studies had been performed.

Devinksy published an open label trial in patients aged 1–30 with severe, intractable, child-
hood-onset, drugs resistant epilepsy. All patients were receiving their regular anti-epileptic 
drugs. Patients were given CBD at 2–5 mg/kg/day, titrated over a period of 2 weeks till intol-
erance or to a maximum dose of 25 mg/kg to 50 mg/kg/day. The main objective of the study 
was to establish safety and tolerability of CBD and the primary end point was the median 
percentage in the mean monthly frequency of motor seizures at 12 weeks. This study included 
mainly patients with Dravet and Lennox-Gastaut syndromes. One hundred and sixty-two 
patients were enrolled. A significant high rate of adverse events was reported in 128 patients 
(79%). The most common were somnolence (n = 41 [25%]), decreased appetite (n = 31 [19%]), 
diarrhea (n = 31 [19%]) and fatigue (n = 21 [13%]). This high rate of side effects (many of 
which were seen during the titration period) suggests that too rapid a titration rate may pre-
dispose toward side effects. The median monthly frequency of motor seizures was 30·0 (IQR 
11·0–96·0) at baseline and 15·8 (5·6–57·6) at 12 weeks of treatment. The median reduction in 
monthly motor seizures was 36·5% (IQR 0–64·7) [66].

From this same cohort, Rosenberg et al. reported that caregivers of 48 patients indicated 
an 8.2–9.9-point improvement in overall patient QOLCE (p < 0.001) following 12 weeks of 
CBD. Subscores with improvement included energy/fatigue, memory, control/helplessness, 
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other cognitive functions, social interactions, behavior, and global quality of life (QOL). 
Interestingly, these differences were not correlated to changes in seizure frequency or adverse 
events. The results suggest that CBD may have beneficial effects on patient QOL, distinct from 
its seizure reducing effects [67].

Devinsky et al. later performed a double blind, placebo-controlled trial in patients with 
Dravet syndrome including 120 children and young adults using Epidiolex with a CBD dos-
age of 20 mg/kg/day. The median frequency of convulsive seizures per month decreased from 
12.4 (baseline) to 5.9 with CBD, as compared with a decrease from 14.9 (baseline) to 14.1 with 
placebo (adjusted median difference between cannabidiol vs. placebo was −22.8% points [CI], 
−41.1 to −5.4; p = 0.01). The percentage of patients who had at least a 50% reduction in con-
vulsive seizure frequency was 43% with cannabidiol and 27% with placebo (odds ratio, 2.00; 
95% CI, 0.93–4.30; p = 0.08). This study shows an overall benefit of CBD over placebo but also 
a large placebo effect in the control group [68].

Another trial that assessed the efficacy of Epidiolex in reducing atonic seizures in patients with 
Lennox-Gastaut syndrome. In this double blind, placebo-controlled trial, a total of 225 patients 
were enrolled, 76 patients were assigned to a treatment group (20 mg/kg/day CBD) and 76 to 
the placebo group. The median percent reduction from baseline in monthly atonic seizure fre-
quency during the treatment period was 41.9% in the treatment group vs. 21.8% in the placebo 
group. As with the other studies assessing Epidiolex, the most common adverse events among 
the patients in the treatment groups were somnolence, decreased appetite, and diarrhea [69].

A recent systematic review assessed the safety and efficacy of pharmaceutical grade CBD in 
pediatric onset drug resistant epilepsy with outcome measures including 50% seizure reduc-
tion, complete seizure freedom, improved QOL. A total of 36 studies were identified includ-
ing 6 randomized controlled trials and 30 observational studies. Overall CBD at a dose of  
20 mg/kg/day was more effective than placebo in reducing seizure frequency by 50% (Relative 
Risk 1.74: 1.24–2.43). For one patient to achieve a 50% reduction in seizures the number of 
patient needed to treat was 8. In pooled data of 17 of the observational studies CBD at 20 mg/
kg/day resulted in 48.5% of patients achieving a 50% reduction in seizures (95% CI: 39.0–58.1%) 
while pooled data from 14 observational studies showed 8.5% of patients became seizure free 
(95% CI: 3.8–14.5%). Quality of life improved in 55.8% of patients (95% CI: 40.5–70.6%) while 
serious adverse events related to treatment with CBD was very low at 2.2% of patients (95% 
CI: 0.0–7.9%). From this data, the authors concluded that pharmaceutical grade CBD may 
reduce seizure frequency but other randomized controlled trials examining a more diverse 
group of epilepsy syndromes and other cannabinoids was needed [70].

To date, the evidence to support the use of cannabis in adults is minimal. STAR 1 is a phase 
2A, randomized, double blind, placebo-controlled study that evaluated the safety and efficacy 
of synthetic transdermal CBD in adult patients with focal epilepsy. In this study 174 patients 
were randomized to receive either 195 mg CBD, 390 mg CBD or placebo via a transdermal 
patch. Patients who completed the 12-week study were able to continue into the 24-month 
open-label extension STAR 2 study (n = 171). In as of yet published data from these trials 
there was an increase in efficacy of transdermal CBD over 18 months. Median percentage 
change in seizure rates was −25% at 3 months, −40% at 6 months, −48% at 9 months, −52% at 
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12 months, −57% at 15 months and −55% at 18 months. The transdermal patch was well toler-
ated. Serious adverse events were as follows: seizures (n = 2) and increased anxiety (n = 1); one 
death was reported after the 15 month visit. In addition, no significant elevations in alanine 
aminotransferase and aspartate aminotransferase levels >3 times upper limit of normal were 
seen [71].

In comparing cannabis derived treatments to standard therapies, it is worthwhile to note 
that the STICLO group examining the effects of stiripentol in Dravet patients in a double 
blind randomized placebo controlled study showed that 15 (71%) patients had >50% seizure 
reduction (including nine free of clonic or tonic-clonic seizures) compared to only one (5%) on 
placebo (none were seizure free; stiripentol 95% CI 52.1–90.7 vs. placebo 0–14.6). Stiripentol’s 
responder rate is therefore suggested to be superior to Epidiolex with a far lower placebo 
responder rate [72]. Similarly, in a double-blind, randomized, placebo-controlled trial of the 
anti-epileptic drug rufinamide in patients with Lennox-Gastaut syndrome, the median per-
centage reduction in total seizure frequency was greater in the rufinamide therapy group 
than in the placebo group (32.7 vs. 11.7%, p = 0.0015). There was also a difference (p < 0.0001) 
in tonic-atonic (“drop attack”) seizure frequency with rufinamide (42.5% median percentage 
reduction) vs. placebo (1.4% increase). These findings are comparable with the results with 
Epidiolex. One also has to keep in mind that the median reduction of atonic seizures in the 
placebo group was markedly higher with the Epidiolex study suggesting potential bias [73].

Of note, the results from the study by McCoy et al. and the preliminary data from CARE-E study 
showed a much higher responder rate than those with pharmaceutical grade CBD. This appar-
ent superiority of a CHE containing Δ9-THC would be in keeping with the proposed entourage 
effect in which the various cannabinoids can act synergistically with one another [42, 44].

7. Conclusion

The cannabinoids found in cannabis appear to offer a unique pharmacological mode of action 
in the treatment of epilepsy. This, combined with the apparent low risk of serious side effects, 
makes cannabis and an attractive potential option for patients with treatment resistant epilepsy.

Currently, there is a large public perception that cannabis products are superior to and safer 
than conventional anti-epileptic medications especially in treating patients with Dravet syn-
drome and other pediatric onset epileptic encephalopathies. Based on interpretation of the 
available data, the authors feel that cannabis based therapies show promise in the treatment 
of children with treatment resistant epilepsies. While the studies to date assessing cannabis 
based therapies for the treatment of epilepsy have been encouraging, they should be inter-
preted with caution. At this time, the long-term adverse effects, the indicated epilepsy and 
seizure types suitable for treatment with cannabis, the dosing of CBD and other cannabinoids, 
remain unknown. Also, there is minimal data regarding the pharmacokinetics of the canna-
binoids especially in children and when used in patients with multiple concomitant medica-
tions. Moreover, the existing studies are limited with the majority of them being retrospective 
and subject to bias, possible placebo effect, and other limitations.
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other cognitive functions, social interactions, behavior, and global quality of life (QOL). 
Interestingly, these differences were not correlated to changes in seizure frequency or adverse 
events. The results suggest that CBD may have beneficial effects on patient QOL, distinct from 
its seizure reducing effects [67].

Devinsky et al. later performed a double blind, placebo-controlled trial in patients with 
Dravet syndrome including 120 children and young adults using Epidiolex with a CBD dos-
age of 20 mg/kg/day. The median frequency of convulsive seizures per month decreased from 
12.4 (baseline) to 5.9 with CBD, as compared with a decrease from 14.9 (baseline) to 14.1 with 
placebo (adjusted median difference between cannabidiol vs. placebo was −22.8% points [CI], 
−41.1 to −5.4; p = 0.01). The percentage of patients who had at least a 50% reduction in con-
vulsive seizure frequency was 43% with cannabidiol and 27% with placebo (odds ratio, 2.00; 
95% CI, 0.93–4.30; p = 0.08). This study shows an overall benefit of CBD over placebo but also 
a large placebo effect in the control group [68].

Another trial that assessed the efficacy of Epidiolex in reducing atonic seizures in patients with 
Lennox-Gastaut syndrome. In this double blind, placebo-controlled trial, a total of 225 patients 
were enrolled, 76 patients were assigned to a treatment group (20 mg/kg/day CBD) and 76 to 
the placebo group. The median percent reduction from baseline in monthly atonic seizure fre-
quency during the treatment period was 41.9% in the treatment group vs. 21.8% in the placebo 
group. As with the other studies assessing Epidiolex, the most common adverse events among 
the patients in the treatment groups were somnolence, decreased appetite, and diarrhea [69].

A recent systematic review assessed the safety and efficacy of pharmaceutical grade CBD in 
pediatric onset drug resistant epilepsy with outcome measures including 50% seizure reduc-
tion, complete seizure freedom, improved QOL. A total of 36 studies were identified includ-
ing 6 randomized controlled trials and 30 observational studies. Overall CBD at a dose of  
20 mg/kg/day was more effective than placebo in reducing seizure frequency by 50% (Relative 
Risk 1.74: 1.24–2.43). For one patient to achieve a 50% reduction in seizures the number of 
patient needed to treat was 8. In pooled data of 17 of the observational studies CBD at 20 mg/
kg/day resulted in 48.5% of patients achieving a 50% reduction in seizures (95% CI: 39.0–58.1%) 
while pooled data from 14 observational studies showed 8.5% of patients became seizure free 
(95% CI: 3.8–14.5%). Quality of life improved in 55.8% of patients (95% CI: 40.5–70.6%) while 
serious adverse events related to treatment with CBD was very low at 2.2% of patients (95% 
CI: 0.0–7.9%). From this data, the authors concluded that pharmaceutical grade CBD may 
reduce seizure frequency but other randomized controlled trials examining a more diverse 
group of epilepsy syndromes and other cannabinoids was needed [70].

To date, the evidence to support the use of cannabis in adults is minimal. STAR 1 is a phase 
2A, randomized, double blind, placebo-controlled study that evaluated the safety and efficacy 
of synthetic transdermal CBD in adult patients with focal epilepsy. In this study 174 patients 
were randomized to receive either 195 mg CBD, 390 mg CBD or placebo via a transdermal 
patch. Patients who completed the 12-week study were able to continue into the 24-month 
open-label extension STAR 2 study (n = 171). In as of yet published data from these trials 
there was an increase in efficacy of transdermal CBD over 18 months. Median percentage 
change in seizure rates was −25% at 3 months, −40% at 6 months, −48% at 9 months, −52% at 
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death was reported after the 15 month visit. In addition, no significant elevations in alanine 
aminotransferase and aspartate aminotransferase levels >3 times upper limit of normal were 
seen [71].

In comparing cannabis derived treatments to standard therapies, it is worthwhile to note 
that the STICLO group examining the effects of stiripentol in Dravet patients in a double 
blind randomized placebo controlled study showed that 15 (71%) patients had >50% seizure 
reduction (including nine free of clonic or tonic-clonic seizures) compared to only one (5%) on 
placebo (none were seizure free; stiripentol 95% CI 52.1–90.7 vs. placebo 0–14.6). Stiripentol’s 
responder rate is therefore suggested to be superior to Epidiolex with a far lower placebo 
responder rate [72]. Similarly, in a double-blind, randomized, placebo-controlled trial of the 
anti-epileptic drug rufinamide in patients with Lennox-Gastaut syndrome, the median per-
centage reduction in total seizure frequency was greater in the rufinamide therapy group 
than in the placebo group (32.7 vs. 11.7%, p = 0.0015). There was also a difference (p < 0.0001) 
in tonic-atonic (“drop attack”) seizure frequency with rufinamide (42.5% median percentage 
reduction) vs. placebo (1.4% increase). These findings are comparable with the results with 
Epidiolex. One also has to keep in mind that the median reduction of atonic seizures in the 
placebo group was markedly higher with the Epidiolex study suggesting potential bias [73].

Of note, the results from the study by McCoy et al. and the preliminary data from CARE-E study 
showed a much higher responder rate than those with pharmaceutical grade CBD. This appar-
ent superiority of a CHE containing Δ9-THC would be in keeping with the proposed entourage 
effect in which the various cannabinoids can act synergistically with one another [42, 44].

7. Conclusion

The cannabinoids found in cannabis appear to offer a unique pharmacological mode of action 
in the treatment of epilepsy. This, combined with the apparent low risk of serious side effects, 
makes cannabis and an attractive potential option for patients with treatment resistant epilepsy.

Currently, there is a large public perception that cannabis products are superior to and safer 
than conventional anti-epileptic medications especially in treating patients with Dravet syn-
drome and other pediatric onset epileptic encephalopathies. Based on interpretation of the 
available data, the authors feel that cannabis based therapies show promise in the treatment 
of children with treatment resistant epilepsies. While the studies to date assessing cannabis 
based therapies for the treatment of epilepsy have been encouraging, they should be inter-
preted with caution. At this time, the long-term adverse effects, the indicated epilepsy and 
seizure types suitable for treatment with cannabis, the dosing of CBD and other cannabinoids, 
remain unknown. Also, there is minimal data regarding the pharmacokinetics of the canna-
binoids especially in children and when used in patients with multiple concomitant medica-
tions. Moreover, the existing studies are limited with the majority of them being retrospective 
and subject to bias, possible placebo effect, and other limitations.
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As such, further studies assessing the safety and efficacy of cannabis based therapies in 
both adults and children are urgently needed. The authors recommend that these stud-
ies start with well-designed dose finding studies that include age stratified pharmacoki-
netic analysis followed by larger scale clinical trials. When faced with physicians that are 
reluctant to authorize cannabis based products due to a lack of high quality safety and 
efficacy data, parents who are desperate to help their children are then forced to turn to 
unregulated suppliers of cannabis. This puts their children at risk of harm and themselves 
in legal jeopardy.
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As such, further studies assessing the safety and efficacy of cannabis based therapies in 
both adults and children are urgently needed. The authors recommend that these stud-
ies start with well-designed dose finding studies that include age stratified pharmacoki-
netic analysis followed by larger scale clinical trials. When faced with physicians that are 
reluctant to authorize cannabis based products due to a lack of high quality safety and 
efficacy data, parents who are desperate to help their children are then forced to turn to 
unregulated suppliers of cannabis. This puts their children at risk of harm and themselves 
in legal jeopardy.
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