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Preface

Neurons, Dendrites and Axons is an update of the information that exists about how
axons develop and which signaling pathways are involved in the process. This book
is divided into five chapters. The first chapter is about axon guidance through the
action of the interaction between neurons, as well as the interaction with the extra-
cellular matrix, leading to elucidate the complex connection that exists in the brain
during its origin and development. The second chapter is about semaphorins and 
their relationship with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, 
and sclerosis. It also describes the molecular mechanisms that could generate
protection as a possible therapy for neurodegenerative diseases. Neurodegenerative
diseases and their therapeutic approaches are described in third chapter. The
fourth chapter focuses on the gap junction of the dorsal root of the ganglion
where the morphology of neurons is described, as well as their neurobiology. Last
chapter focuses on the development of bioelectrical nerve interfaces that could be
implanted to regenerate damaged nerves.

The editors would like to express their deep gratitude to all the authors who con-
tributed their knowledge to the development of this book. We also thank InTech
Publishing for spreading the knowledge worldwide.

Dr. Gonzalo Emiliano Aranda Abreu
Dr. María Elena Hernández Aguilar

Centro de Investigaciones Cerebrales/Universidad Veracruzana, 
Xalapa, Veracruz, México
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Chapter 1

Cell-Cell and Cell-Matrix
Interactions during Axons
Guidance
Vela-Alcántara Ana and Tamariz Elisa

Abstract

The establishment of neuronal connections during development is a critical
process for the correct function of central nervous system and for their regeneration
during adult stages. Axon extension and guidance toward their targets are a com-
plex process involving several signals provided by extracellular milieu where
secreted factors, other cells, axons, and extracellular matrix proteins are interacting
to establish the wiring of the brain. The expression of those signals at specific time
and space, and their mechanisms of action during axon projection are the subject
of numerous studies. This knowledge had contributed to understand the complex
panorama of brain wiring during development and the origin and possible cure of
central nervous system diseases. In this chapter, we focus on cell-cell and cell-
matrix interactions as two important signals during axon guidance, and how these
interactions impact the response to diffusible guidance cues. We emphasize the
need and the challenge to understand the complex relations among simultaneous
signals to guide axons projections, and how this knowledge could influence
approaches to deal with neural regeneration issues.

Keywords: growth cone, guidance cues, fasciculation, extracellular matrix,
axonal regeneration

1. Introduction

After neural tube formation, multipotent stem cells migrate and generate pre-
cursor cells that will differentiate into neurons and glial cells. Neurons will extend
cell projections to become integrated to the brain circuits by a finely regulated
process. Through cell extensions, classified as dendrites and axons, neurons are
responsible for the perception of the external world, the former are in charge of
receiving electric impulses of other cells, and the last transmit the impulses far from
the cell body. Axons projections are stereotyped, and the accuracy of reaching their
target is fundamental for the correct central nervous system (CNS) functioning.
Axons project by specialized and motile structures located at the end of the axons
called growth cones. These specialized regions sense the external milieu, detecting
signals that originate complex cellular mechanism involved in axon elongation;
therefore, neuronal pathfinding is highly regulated by the availability of the exter-
nal signals, by the expression of cell receptors, and by specific molecular mecha-
nisms that stimulate or inhibit growth cone displacement. Extracellular matrix
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components present in axons pathway can be signaling by forming soluble
chemotropic protein gradients and/or by direct interaction with membrane recep-
tors at the growth cones. Besides, other axons present in the pathway could be
promoting axons-axons interactions or fasciculation, allowing the guidance of pro-
jections toward their final targets. In this chapter, we make a rough description of
cellular mechanisms of growth cone motility that drives axon elongation, mainly
focused in the cell adhesion and cytoskeleton regulation by guidance cues, followed
by some of the evidences about cell-extracellular matrix and cell-cell interactions
relevance during axons projection; finally, we address the importance of synergic
interaction among the signals, and how they can modulate the response of axons
during pathfinding toward their targets.

2. Cellular mechanisms of axon projection

The growth cone is a specialized structure located at the end of axons or den-
drites, capable to detect extracellular guidance cues and to integrate them into a
projection or retraction movement that guides the axon toward their innervation
target [1]. During axonal elongation, changes in the growth cone morphology and in
the direction of its projection depend on the cytoskeleton dynamics and on the
regulation of cell adhesion, inducing the formation of filopodia and lamellipodia at
the leading edge and exerting tensile and traction forces that will influence neuron
elongation [2, 3]. According to the cytoskeleton distribution, the growth cone can
be divided into three structural domains: the central domain (C domain), in which
there are stable microtubule (MT) bundles entering the growth cone from the axon
axis, organelles, vesicles and actin bundles; the peripheral domain (P domain),
located in the distal part of the growth cone, containing actin filaments (F-actin
bundles) that form the filopodia and lamellipodia, and dynamic MT that extends
from the C domain and invades the P domain following the F-actin bundles. Finally,
the intermediate zone between the C and P domain called the transition zone
(T zone), which contains actomyosin contractile structures located perpendicular
to the F-actin bundles [4, 5].

The lamellipodia and filopodia are dynamic structures, from which the elonga-
tion process starts. Lamellipodia are broader structures, rich in actin filament net-
works, while the filopodia are thin extensions, about 100–200 nm diameter and
10 μm in length, constituted by a 10–30 very close actin filaments arranged in
parallel [5]. The rate of F-actin and MT polymerization and the retrograde flow of
F-actin determine the extension and retraction of the growth cone. In a rough
description, actin monomers assemble into F-actin filaments at the cell membrane
boundary of the P zone, pushing the membrane during the elongation, thus gener-
ating tensile forces. By a retrograde flow driven by actomyosin contractility and by
the cell-extracellular matrix interaction, filaments push themselves backward to the
T region where filaments are severed and recycled [2, 5, 6]. Assembly and disas-
sembly of the F-actin filaments by controlling the polymerization rate of globular
monomeric actin (G-actin) are important for the advance or retraction and is
influenced by guidance cues [7, 8]. At the same time, MT plus ends point toward
axon tips, and their assembly and disassembly at growth cone are regulated by the
F-actin bundles and by the traction force exerted by the actomyosin contractility,
allowing the capture and guidance of MT extension through the T and P domain,
stabilizing the filopodia [5]. MT polymerization and invasion of P domain, coupled
to substrate anchor of growth cone projections by cell adhesion sites linked to the
cytoskeleton, promotes growth cone, pulling forward using the actomyosin-mediated
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force projection; therefore, MT advances while the C domain transforms in an
axon segment, consolidating the axon elongation [9]. Cytoskeleton dynamics and
cell adhesion regulation therefore are very important during the response to
guidance cues, for example, at the side of the growth cone turning toward an attrac-
tant cue, a stabilization and a decrease of F-actin retrograde flow and anchoring
through adhesion sites is present, while the inhibition of F-actin and MT polymeri-
zation occurs at the growth cone side retracted in response to a repulsive guidance
cues [10–12].

Adhesion of growth cones to the substrate is finely regulated during axon elon-
gation or retraction. Adhesion sites or “contact points” (CP) are constituted by
protein complexes that allow the adhesion and generation of traction force on the
substrate [13]; these complexes mediate the anchoring of cells by the transmem-
brane protein integrins that have a primordial role, coupling the cytoskeleton to the
extracellular matrix and by recruiting adaptor and signaling proteins at the cytosolic
side [14]. Adhesion complexes include several associated proteins that mediate the
interactions with the cytoskeleton, regulate actin polymerization, and participate in
the signaling exerted by cell adhesion [2, 14, 15]. During axon projection, assembly-
disassembly of CP are involved in response to guidance cues; the inhibition of
turnover of CP inhibits axons outgrowth, while localized assembly and turnover of
CP promote axon extension in response to guidance cues [13, 16, 17], for example,
activation of integrins and subsequent focal adhesion kinase (FAK) phosphoryla-
tion are involved in the attraction of dendrites mediated by the chemotrophic
protein semaphorin 3A [18], while repellant factors as myelin-associated glycopro-
tein (MAG) induce growth cone turning by a rapid endocytosis of integrins and loss
of cell adhesions [19]. In summary, the projection or retraction of growth cones
responds to extracellular signals that guide them to specific targets and trigger a
complex network of signal transduction mechanisms that includes the dynamic
remodeling of cell adhesion sites and cytoskeleton that together translate into elon-
gation or retraction movements for the redirection of the neuronal projections.

2.1 Cell-extracellular matrix interactions

As mentioned earlier, neurons project their neurites to specific targets, guided
by extracellular signals integrated by the growth cone. The mechanisms to direct
axons projection are triggered by secreted chemotropic proteins, by proteins
anchored to the substrate, or by direct interactions between axons mediated by
proteins anchored to the cell membrane, as cell adhesion proteins or even
chemotropic protein receptors [20, 21]. Growth cones respond to gradients of
diffusible molecules, or of proteins associated with the substrate, that guide them to
the innervation target; these molecules can be chemoattractive or chemorepellant,
and the extracellular matrix can stabilize the gradients from target cells or interme-
diate cells, extending them at a greater distance [21]. Although classical
chemotropic proteins as ephrins, netrins, slits, and semaphorins are some of the
more studied guidance cues, in this chapter, we focus our attention to ECM and
cell-anchored proteins as axon guidance cues.

The interaction with extracellular matrix (ECM) components was one of the
first proposed axon guidance cues that exert a “contact guidance” effect, improving
axon projection [22]. ECM components surround cells and are distributed along the
pathways of axon projection [23, 24]; therefore, they are not only part of the
support in which neurons are divided and maintained but also has a relevant role in
the signaling and the determination of the differentiation and migration of neurons,
and in the elongation processes of neurites [25–27]. In addition, the physical
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properties of ECM as topography and stiffness have now an increasing interest as
factors that influence axon projection [28].

ECM comprises about 40% of extracellular space in developing brains as com-
pared with the 20% in adult brains [29]. Some of the most relevant ECM proteins
implicated in axonal projection are laminin, fibronectin, collagen, and tenascin.
Laminins are a heterotrimeric glycoproteins family, formed of α, β, and γ subunits.
During CNS development, laminins have an important role in promoting cell
migration and axonal outgrowth [26], and the absence of laminins results in impor-
tant axon-targeting alterations [30–32]. Fibronectin is a glycoprotein present in the
early development at central and peripheral nervous system in the spinal cord and
cortex [33, 34] and is involved in cell migration, cell adhesion, and in stimulation of
neurite outgrowth during development and after peripheral nervous system injury
[35–37]. Both laminins and fibronectin have an important role in modulating the
response to chemotropic proteins [38, 39]. Collagen is a family of fibrillar glyco-
proteins that gives structure and support to cells as well as anchorage for other
proteins [40, 41]. Collagens have an important role in neurite outgrowth, axon
guidance, and axon targeting, and their absence impacts central and peripheral
axons, targeting as a motor axon guidance and retinal ganglion cell projection
[42–44]. Tenascin is another ECM glycoprotein family with several functional
domains [45]. In vitro and in vivo experiments have shown an inhibitory effect of
tenascin for several kinds of axons as hippocampal and cerebellar neurons [46, 47];
however, specific alternative spliced variants promote neurite outgrowth, as the
fibronectin type-III domain of tenascin C that induce cerebellar neurons outgrowth
[48]. Chondroitin sulfate proteoglycans (CSPGs) are ECM proteoglycans with both
inhibitory and attractant effects on axonal outgrowth. The accumulation of CSPG in
scar tissue, after injuries in adult CNS, inhibits axon outgrowth [49]; however, it is
also a permissive signal along axonal pathways during the development of retinal
projection, or in the cortex [50–53], and their inhibitory effects are attenuated by
the presence of laminin-1 [54, 55].

Recent studies have shown that the ECM stiffness determines cellular processes
such as differentiation, proliferation, and migration [56–58]. Particularly, the work
of Engler et al. demonstrated for the first time that the stiffness of the substrate in
which stem cells are grown in vitro can modulate their differentiation into cell types
such as bone, muscle, or neurons [59]. Probably, one of the first studied aspects has
been the role of stiffness in the elongation of neurites; Flanagan et al. reported that
when primary neurons of the mouse spinal cord (E13.5) grew in matrices with less
stiffness, close to that found in the brain, the elongation of the neurites was greater
[60]. However, there are divergences in the data depending on the model, since it
has been reported that on softer substrates, PC12 cells show few neurites, relatively
short and unbranched, whereas on stiffer substrates, cortical neurons and astrocytes
(E17-E19) turn out to have longer and branched projections [57, 60, 61].

In the case of developing nervous system, variations in stiffness during devel-
opment stages, and at different regions as cerebral cortex and optic tectum have
been reported [62, 63]. Guidance by chemotropic proteins as slits and semaphorins
of retinal ganglion cell (RGC) axons projecting from the retina to the optic tectum
(OT) has been extensively reported [64, 65]; interestingly, tissue stiffness also
determines their projection, since RGC axons project toward softer OT and grow as
fascicles while traversing stiffer regions. Once the axons arrive at the OT, the softer
tissue slows down the projections and splays apart the fascicles to branch them and
to form synapses with their stereotypic targets [63]. On the other hand, the pre-
vention of axon regeneration after injury can be in part due to changes in ECM and
tissue stiffness, as shown for glial scar after spinal cord injury, where components as
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collagen IV and laminin, and changes in glial intermediate filaments as vimentin
and GFAP, soften the tissue at the scar [66].

Besides stiffness, ECM topography is also a factor that determines the orienta-
tion and projection of neurites. Since early observation about the alignment and
orientation of axons by “contact guidance,” and the improving of axon elongation
by aligned collagen fibrils [22, 67], advance in micro- and nanofabrication of bio-
compatible fibrous substrates, with specific topography and orientation, has shown
to improve neurite elongation and orientation, promoting nerve regeneration [68].
Fibers alignment and dimensions are important to improve axonal guidance and
elongation, for example, the micrometer versus nanometer dimensions of
poly(lactic-glycolic acid) PLGA fibers improve the alignment of neurites [69],
and aligned versus nonaligned gelatin and chitosan fibers induce a higher formation
of filopodia in Schwann cells, improving the orientation of axon projections along
the fibers [70].

2.2 Cell-cell interactions

During the first stages of CNS formation, neuron clusters projects pioneering
axons to form longitudinal, transversal, and commissural tracts [71], functioning as
scaffolds for latter or follower axons. Early axon scaffolds are well conserved in
vertebrates, and common tracts had been described in zebrafish, chick, mouse, sea
lamprey, and others. Among common tracts, the ventral longitudinal tract (VLT)
formed by the medial longitudinal fascicle (MLF) and the tracts of the post-optic
commissure (TPOC) are present in all the studied vertebrates. In amniotes, there
are five early axon scaffolds: the MLF, the TPOC, the mammillo-tegmental tract
(MTG), the tract of the posterior commissure (TPC), and the tract of the mesence-
phalic nucleus of the trigeminal nerve (DTmesV) [72]. Axons scaffolds are
established as early as embryonic day (E) 8.5 for the DTmesV or E9.5 for MLF in
mouse, soon after neural tube closure [73]. Axon-axon interactions are regulated
during axon projection, and fasciculation and de-fasciculation could be present
along the neural pathfinding, as reported early in insect embryos as grasshopper
[74] or fruit fly Drosophila [75]. Fasciculation is a regulated process since growth
cones can distinguish among different fascicles, and this behavior is driven by the
recognition of cell adhesion molecules, as will be mentioned ahead, mediating a
stereotyped targeting. Axons fasciculation can be a permissive or a repulsive cue,
promoting or inhibiting axon projection by guiding axons through previously
established “routes” by pioneering axons, or by limiting axon projections away of
the previously established fascicles. Pioneering axons therefore become an impor-
tant guidance cue that can determine the routes and the correct pattern of tracts
[76]; moreover, their growth cones exhibit different morphology as compared with
growth cones of follower axons, and a different speed while approaching the mid-
line at the post-optic commissure in zebrafish embryos, indicating that the response
to guidance cues as extracellular matrix or chemotropic proteins is different in
pioneering and follower axons, probably by modifying their accessibility or sensi-
bility to the guidance cues [77]; however, if the pioneering axons are eliminated,
follower axons can convert to pioneering to establish normal tracts [77, 78].

Axons fasciculation is mediated by cell adhesion proteins (CAMs). CAMs are
proteins linked to cell membrane as transmembrane proteins or as GPI-anchored
proteins, with homophilic or heterophilic interactions [79]. Among the most rele-
vant CAMs are the members of the calcium-independent cell adhesion immuno-
globulin superfamily, like neural cell adhesion proteins (NCAM), several proteins
of L1 family as L1, CHL1, neurofascin and NrCAM, and a member of the classic
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properties of ECM as topography and stiffness have now an increasing interest as
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calcium-dependent cadherins family, N-cadherin [20, 79]. The regulation of axons
fasciculation could be exerted by modifying CAM expression or by modifying CAM
interactions by post-translational modifications, as the addition of polysialic acid to
NCAM (PSA-NCAM) [80]. Enhancement of axonal outgrowth has been previously
shown by culturing neurons over transfected fibroblast expressing NCAM, N-
cadherin, or L1 [81–83], allowing homophilic interactions of CAM expressed in
fibroblasts and axon. CAMs also establish heterophilic interactions among proteins as
integrin β1 [84], and receptors of chemotropic proteins as the ephrin receptors,
EphA3, EphA4 [85], or semaphorins receptor, neuropilin-1 (Npn-1) with L1 [86], or
EphA7 receptor with CHL1 [85], modulating the response to chemotropic proteins
but also their adhesion. It has been shown that Npn-1, a receptor for class 3
semaphorins, is involved in the fasciculation of motor and sensory axons during limb
innervation, and the selective depletion of Npn-1 in dorsal root ganglion neurons
leads to defasciculation of motor projections, even when motor neurons still express
Npn1, resulting in dorso-ventral incorrect targeting of motor neurons [87]. Npn-1
depletion also affects fasciculation and targeting of cranial nerves and Schwann cells
migration [87]. Interestingly, altered projections of descending GAD65-positive fas-
cicles from the MTG tract, present in double knockout mice for Slit chemotropic
protein receptors Robo1/2, modify the nigrostriatal projection (NP) of dopaminergic
neurons, impairing both tracts interactions, probably by the absence of homophilic
Robo-Robo interactions and heterophilic interaction with NCAM proteins [88],
explaining some of the Slit1/2 independent role of Robo-expressing axons during NP
projection [89]. These results show that besides their role of mediating attraction or
repulsive responses, some receptors for chemotropic proteins also mediate axons
fasciculation by homo- and heterophilic interactions, and this role could be concealed
or dismissed by the more characterized chemotropic response. Moreover, the absence
of the expression of receptors Npn-1 and 2 in some of the DA axons projecting to the
striatum and driven by semaphorins during NP formation suggests that fasciculation
could be a relevant mechanism of guidance for these axons, and a complementary
strategy for the projection of DA axons in addition to the chemotropic response [90].

3. Synergic effects of guidance cues

As mentioned before, chemotropic proteins, extracellular matrices, and axon
fasciculation are the main guidance cues during axon projection, their effects and
mechanisms of action had been mainly studied as a separated stimulus by in vitro
assays in explants or cell cultures, or in knockout animals; however, the panorama
of axon projection during CNS formation implies simultaneous guidance cues, and
projecting neurons should be responding and adapting according to all of them.
Interactions among ECMwith secreted chemotropic factors can modify their effects
on axon projection, for example, it has been shown that the attraction response of
RGC to chemotropic protein netrin-1 can be modified to repulsion after neurons
interact with laminin-1 or with a laminin-soluble peptide fragment [38]; a similar
substrate-dependent response was observed for the membrane-bound chemotropic
protein ephrin A-5 in RGC of Xenopus; a repulsive response was observed when cells
were grown on fibronectin, while a response of attraction was exerted when cells
grew over laminin [91]. The induction of neurite outgrowth in DRG neurons by
nerve growth factor (NGF) and neurotrophin-3 (NT3) is inhibited when aggrecan
or aggregates of aggrecan and hyaluronan are present [92], indicating that ECM
component can also modify neurite response to secreted trophic factors. Cross-talk
among ECM receptors, chemotropic proteins, and neurotrophin receptors has been
well documented, for example, the proper innervation of sensory DRG seems to be
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dependent on the integrin expression, since a differential expression of α7 integrin
in the subpopulations of DRG determines their response to NGF and NT-3
neurotrophin [93]. Semaphorin 3D, a repulsive chemotropic protein, can regulate
MLF axons fasciculation by regulating the expression of L1 CAM in zebrafish,
suggesting that besides the reported repulsive effects of semaphorins, their action
could be exerted by the regulating expression of cell adhesion molecules [32].
Moreover, a complex interrelation among ECM, response to neurotropic factors,
and cell-cell interactions has been reported for chick embryo DRG axons from
in vitro explants cultured over a bioactive substrate; the NGF-induced outgrowth of
DRG axons and Schwann cells from tissue explants was dependent on the density of
the Arg-Gly-Asp (RGD) integrin-binding domain of fibronectin, and this effect was
mediated by the upregulation of L1 and NCAM proteins by NGF that allowed the
interactions among DRG neurons and Schwann cells [94].

4. Guidance cues during regeneration

The generated knowledge about guidance cues as chemotropic proteins and ECM
in axon guidance has led to multiple approaches to use them into the regeneration of
CNS [95–97]. When the axonal continuity is interrupted by an injury or a disease, a
correct axonal regeneration is required to effectively restore the nerve; in this process,
cells and ECM interactions, chemotropic proteins, and factors as substrate stiffness
are important. In vitro use of ECM as fibronectin has shown to support mouse cortical
and hippocampal neurons axonal outgrowth mediated by α5β1 integrin [98]; in vivo
application of fibrin/fibronectin gel at the rat spinal cord injury site is permissive to
axonal outgrowth [99], and when fibrin glue is applied as a microsurgery suture at a
sciatic nerve transplantation model in mouse, axons were more branched and travel
longer distances reducing the regeneration time [100]. In the area of biomaterials
engineering for axonal regeneration, several approaches promote neural outgrowth,
combining ECM components and neurotrophic factors as laminin plus microspheres
with neural growth factor and neurotrophin-3 for the repair of sciatic nerve in rats
[101], or carbon-coated microfibers plus basic fibroblast growth factor and fibronec-
tin for spinal cord injury [102]; moreover, the integration of stiffness, porosity, and
adhesion promotion shows that an approach considering multiple factors can help to
promote and orient axon outgrowth [103], and a soft and aligned fibrillary fibrin
hydrogel promotes and directs axonal projection in a spinal cord injury in mouse
[104]. The big challenge therefore is to integrate several cues to obtain a better and
controlled growth cone response; the desired response could be obtained by develop-
ing biocompatible materials that allow an adequate scaffold containing both the
chemical and physical cues, to allow an effective neural regeneration.
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and hippocampal neurons axonal outgrowth mediated by α5β1 integrin [98]; in vivo
application of fibrin/fibronectin gel at the rat spinal cord injury site is permissive to
axonal outgrowth [99], and when fibrin glue is applied as a microsurgery suture at a
sciatic nerve transplantation model in mouse, axons were more branched and travel
longer distances reducing the regeneration time [100]. In the area of biomaterials
engineering for axonal regeneration, several approaches promote neural outgrowth,
combining ECM components and neurotrophic factors as laminin plus microspheres
with neural growth factor and neurotrophin-3 for the repair of sciatic nerve in rats
[101], or carbon-coated microfibers plus basic fibroblast growth factor and fibronec-
tin for spinal cord injury [102]; moreover, the integration of stiffness, porosity, and
adhesion promotion shows that an approach considering multiple factors can help to
promote and orient axon outgrowth [103], and a soft and aligned fibrillary fibrin
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Chapter 2

Roles of Semaphorins in 
Neurodegenerative Diseases
Sebastian Quintremil, Fernando Medina Ferrer, Javier Puente, 
María Elsa Pando and María Antonieta Valenzuela

Abstract

Semaphorins are secreted and transmembrane proteins that bind plexin/
neuropilin or integrin receptors, providing paracrine axonal guidance signals and 
ultimately leading to a functional and developed neuronal network. Following 
semaphorin’s initial discovery, their relevance in the central nervous system (CNS) 
soon intrigued researchers about the possible links between semaphorins, their 
receptors and signaling mechanisms and different neurodegenerative diseases. 
Here, we explore the current knowledge of semaphorin’s function and signaling in 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Charcot-Marie-Tooth disease 
(CMT), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Human 
T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic 
paraparesis (HAM/TSP). We focus on the effects of the most known semaphorin 
subclasses 3A and 4D, yet extending our discussion to other semaphorins that 
have been found involved in specific neuropathologies and the potential effect 
of semaphorins modulating the immune system in disorders with inflammatory 
components. Molecular, cellular, and genetic evidences are reviewed, highlight-
ing the relevance of semaphorins on each disease etiology, pathophysiology, and 
progression. The newly discovered semaphorin functions in neurological disorders 
even suggest alternative therapies that may be highly valuable in diseases that have 
no current cure.

Keywords: semaphorin, neuropilin, plexin, neuroimmune cross talk, 
neurodegeneration

1. Introduction

Semaphorins (Sema) are a large family of proteins originally discovered as 
axon guidance signals during development as signals toward proper innervation of 
targets [1]. Semaphorin function is fundamental during embryonic development, 
yet they are also largely expressed in the adult brain. In the past decades, an increas-
ing amount of evidence shows that semaphorins participate in refining synapto-
genesis, dendritic and axonal exuberance, remodeling of the synaptic network, 
and even modulating neuronal response to reactive oxygen species and neuronal 
apoptosis. The association of semaphorins to neuronal function and cell death was 
soon explored in the context of neurological diseases [2–6]. Several reports linking 
alteration of semaphorin function or expression in neuropathologies opened an 
unexplored door to understand the mechanisms and look for treatment alternatives 
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of disorders with unknown or poorly understood pathological origins. Here, we 
aim to summarize the state of the art involving semaphorins on Alzheimer’s disease 
(AD), Parkinson’s disease (PD), Charcot-Marie-tooth disease (CMT), amyotrophic 
lateral sclerosis (ALS), multiple sclerosis (MS), and Human T-cell lymphotropic 
virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/
TSP caused by HTLV-1 infection).

The role of semaphorins in neurological diseases depends on the different types 
of semaphorins, their receptors, different signaling pathways they activate, and the 
neuronal context [1]. For instance, some semaphorins are considered axon repellent 
in a particular neuronal context/disease, while chemoattractant in others. Similarly, 
some semaphorins are toxic to neurons and promote apoptosis, while others are 
neuroprotective. The bifunctionality of semaphorins is mirrored in a myriad of 
neurological affections and, therefore we, by no means, attempt to provide the 
reader with a complete list of diseases affected by Sema signaling or a thorough 
understanding of the Sema family members, their receptor, and their signaling 
pathways (refer to [2] instead), but rather provide an introductory reading for 
understanding semaphorin function in neurological pathologies.

1.1 Neurological disorders and the common factor of semaphorin

Neurological disorders of the central nervous system (CNS) are diseases with 
structural, biochemical, or electrical abnormalities in the brain and spinal cord 
caused by gene mutations, neuron damage, dysfunction of axon-dendrite connec-
tions, myelin loss, and/or damage of the surrounding vascular system. Neurological 
disorders include AD, PD, CMT, and ALS, sometimes showing an important 
immune component as MS and HAM/TSP [7, 8]. Currently, semaphorins are 
related with health and disease in the cardiovascular, immune, and central nervous 
systems. Although neurological disorders have different pathological origins, the 
participation of Sema signaling is a common factor [1, 9, 10]. Activation of sema-
phorin receptors in the neuronal growth cone promotes changes of cytoskeletal 
dynamics, resulting in an axon extension alteration and therefore possible neuronal 
dysfunctions in the context of neuropathologies [1, 11].

2. Semaphorin signaling

Semaphorins are a family of eight different subclasses with several members each, 
grouped based on amino acid sequence and structural similarities. Semaphorins 
include secreted and membrane-bound glycoproteins that bind mainly to plexin recep-
tors (most relevant semaphorins related with neurological disorders are summarized 
in Table 1) [1, 2]. Plexins (PLXN) are a family of nine types of transmembrane sema-
phorin receptors (plexins A1, A2, A3, A4, B1, B2, B3, C1, and D1). Class 3 semaphorins 
bind to neuropilins (NRP1 and NRP2) that act as co-receptors forming an heterocom-
plex with type A plexins (the transducing unit), and in some cases, the Sema3-plexin-
neuropilin complex may also associate with cell adhesion molecules of the IgCAM 
superfamily. Class 7 semaphorins bind to integrin receptors instead of plexins and 
neuropilins [1–3, 11–15]. While plexins seem to act as receptors for semaphorins only, 
the cell surface NRP receptors have pleiotropic functions, being also co-receptors for 
vascular endothelial growth factor (VEGF). NRP1 has high affinity for VEGF-A and 
is required for signal transduction after association to the VEGF receptor [16, 17]. 
Competition between VEGF and Sema3A for partially overlapping binding sites on 
NRP1 may produce a signaling unbalance potentially involved in neuropathologies.
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Once semaphorins bind to their receptors, the transducing unit triggers signal-
ing pathways linking several protein kinases and downstream substrates that over-
all change microtubule and actin dynamics, promoting growth cone collapse and 
axon repulsion in neurons. Nevertheless, changes in the neuronal environment 
or the type of semaphorin/receptor complex may shape a different transduction 
effect. Plexin receptors contain a cytoplasmic region acting as a GTPase-activating 
protein to bind and stimulate GTPase activity of Rho, Rac1, Rnd1, and R-Ras 
proteins. For instance, the G-protein R-Ras is involved in neuronal sprouting and 
cell adhesion via activation of integrins. Semaphorin signaling via plexin A1/B1 
inactivates R-Ras. Sema3A- and Sema4D-mediated signaling, therefore, inhibit 
integrin β1 subunits through downregulation of R-Ras, leading to a reduction of 
growth cone adhesion and allowing collapse responses [1, 2, 10, 15]. Another cen-
tral protein participating in semaphorin-induced growth cone collapse signaling 
is collapsin response mediator protein-2 (CRMP-2). CRMP-2 is a phosphoprotein 
mostly expressed in the CNS and involved in the cytoskeleton structure and func-
tion of neuronal cells through the induction of microtubule dynamics/assembly 
by binding to α- and β-tubulin heterodimers. The complex CRMP-2/kinesin-1 
regulates soluble tubulin transport to the distal part of the growing axon and also 
neurite formation by modulating tubulin GTPase via intramolecular interaction 
with its N-terminal inhibitory region [18–20]. The affinity of CRMP-2 for tubulin 
is significantly diminished when specific residues are phosphorylated, leading to 
axon retraction and growth cone collapse [21, 22].

Sema Disease Receptors/coreceptors Cell 
expression

Functions

Sema2A CMT Plexin B
Sema1A

Neurons Neuronal connectivity, cell 
migration

Sema3A
Sema3B
Sema3C
Sema3D
Sema3E
Sema3F

AD, PD,
ALS, MS

Plexin A1-4/Nrp1/Nrp2, 
IgCAM, RTK, integrins, 
proteoglycans VEGFR2

Neurons, 
glia, immune 
cells

Cytoskeletal organization, 
neuronal connectivity, 
regeneration, synaptic 
transmission, regeneration, 
cell migration, angiogenesis, 
immune responses

Sema4A
Sema4D

MS, HAM/
TSP

Plexin B1/Met, ErbB2, 
Timp2, RTK

Neurons, 
glia, immune 
cells, 
endothelial 
cells, thymus

Cytoskeletal organization, 
neuronal connectivity, 
angiogenesis, cell migration, 
synaptic transmission, 
regeneration, immune 
responses

Sema5A AD, PD, Plexin B3/Nrp2, CSPGs, 
HSPGs, TK

Neurons, glia Cytoskeletal organization, 
neuronal connectivity, 
synaptogenesis, vascular 
patterning

Sema7A PD, MS b1-integrins, α,b- 
integrins, plexin C1

Neurons, 
glia, immune 
cells, 
fibroblasts, 
thymus

Cytoskeletal 
organization, cell 
migration, cell adhesion, 
immunomodulation, 
stimulating cytokine 
production, 
proinflammatory responses

Receptors [1, 2, 10, 12, 15], cell expression [9, 10] functions [9], and diseases discussed here are indicated.

Table 1. 
Semaphorins in neurological diseases.
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tions, myelin loss, and/or damage of the surrounding vascular system. Neurological 
disorders include AD, PD, CMT, and ALS, sometimes showing an important 
immune component as MS and HAM/TSP [7, 8]. Currently, semaphorins are 
related with health and disease in the cardiovascular, immune, and central nervous 
systems. Although neurological disorders have different pathological origins, the 
participation of Sema signaling is a common factor [1, 9, 10]. Activation of sema-
phorin receptors in the neuronal growth cone promotes changes of cytoskeletal 
dynamics, resulting in an axon extension alteration and therefore possible neuronal 
dysfunctions in the context of neuropathologies [1, 11].

2. Semaphorin signaling

Semaphorins are a family of eight different subclasses with several members each, 
grouped based on amino acid sequence and structural similarities. Semaphorins 
include secreted and membrane-bound glycoproteins that bind mainly to plexin recep-
tors (most relevant semaphorins related with neurological disorders are summarized 
in Table 1) [1, 2]. Plexins (PLXN) are a family of nine types of transmembrane sema-
phorin receptors (plexins A1, A2, A3, A4, B1, B2, B3, C1, and D1). Class 3 semaphorins 
bind to neuropilins (NRP1 and NRP2) that act as co-receptors forming an heterocom-
plex with type A plexins (the transducing unit), and in some cases, the Sema3-plexin-
neuropilin complex may also associate with cell adhesion molecules of the IgCAM 
superfamily. Class 7 semaphorins bind to integrin receptors instead of plexins and 
neuropilins [1–3, 11–15]. While plexins seem to act as receptors for semaphorins only, 
the cell surface NRP receptors have pleiotropic functions, being also co-receptors for 
vascular endothelial growth factor (VEGF). NRP1 has high affinity for VEGF-A and 
is required for signal transduction after association to the VEGF receptor [16, 17]. 
Competition between VEGF and Sema3A for partially overlapping binding sites on 
NRP1 may produce a signaling unbalance potentially involved in neuropathologies.
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Once semaphorins bind to their receptors, the transducing unit triggers signal-
ing pathways linking several protein kinases and downstream substrates that over-
all change microtubule and actin dynamics, promoting growth cone collapse and 
axon repulsion in neurons. Nevertheless, changes in the neuronal environment 
or the type of semaphorin/receptor complex may shape a different transduction 
effect. Plexin receptors contain a cytoplasmic region acting as a GTPase-activating 
protein to bind and stimulate GTPase activity of Rho, Rac1, Rnd1, and R-Ras 
proteins. For instance, the G-protein R-Ras is involved in neuronal sprouting and 
cell adhesion via activation of integrins. Semaphorin signaling via plexin A1/B1 
inactivates R-Ras. Sema3A- and Sema4D-mediated signaling, therefore, inhibit 
integrin β1 subunits through downregulation of R-Ras, leading to a reduction of 
growth cone adhesion and allowing collapse responses [1, 2, 10, 15]. Another cen-
tral protein participating in semaphorin-induced growth cone collapse signaling 
is collapsin response mediator protein-2 (CRMP-2). CRMP-2 is a phosphoprotein 
mostly expressed in the CNS and involved in the cytoskeleton structure and func-
tion of neuronal cells through the induction of microtubule dynamics/assembly 
by binding to α- and β-tubulin heterodimers. The complex CRMP-2/kinesin-1 
regulates soluble tubulin transport to the distal part of the growing axon and also 
neurite formation by modulating tubulin GTPase via intramolecular interaction 
with its N-terminal inhibitory region [18–20]. The affinity of CRMP-2 for tubulin 
is significantly diminished when specific residues are phosphorylated, leading to 
axon retraction and growth cone collapse [21, 22].

Sema Disease Receptors/coreceptors Cell 
expression

Functions

Sema2A CMT Plexin B
Sema1A

Neurons Neuronal connectivity, cell 
migration

Sema3A
Sema3B
Sema3C
Sema3D
Sema3E
Sema3F

AD, PD,
ALS, MS

Plexin A1-4/Nrp1/Nrp2, 
IgCAM, RTK, integrins, 
proteoglycans VEGFR2

Neurons, 
glia, immune 
cells

Cytoskeletal organization, 
neuronal connectivity, 
regeneration, synaptic 
transmission, regeneration, 
cell migration, angiogenesis, 
immune responses

Sema4A
Sema4D

MS, HAM/
TSP

Plexin B1/Met, ErbB2, 
Timp2, RTK

Neurons, 
glia, immune 
cells, 
endothelial 
cells, thymus

Cytoskeletal organization, 
neuronal connectivity, 
angiogenesis, cell migration, 
synaptic transmission, 
regeneration, immune 
responses

Sema5A AD, PD, Plexin B3/Nrp2, CSPGs, 
HSPGs, TK

Neurons, glia Cytoskeletal organization, 
neuronal connectivity, 
synaptogenesis, vascular 
patterning

Sema7A PD, MS b1-integrins, α,b- 
integrins, plexin C1

Neurons, 
glia, immune 
cells, 
fibroblasts, 
thymus

Cytoskeletal 
organization, cell 
migration, cell adhesion, 
immunomodulation, 
stimulating cytokine 
production, 
proinflammatory responses

Receptors [1, 2, 10, 12, 15], cell expression [9, 10] functions [9], and diseases discussed here are indicated.

Table 1. 
Semaphorins in neurological diseases.



Neurons - Dendrites and Axons

24

3. Semaphorin regulatory functions on neuronal and non-neuronal cells

3.1 Axonal degeneration associated to cytoskeleton organization

The roles of Sema3A and Sema4D are to produce alteration of both actin and 
microtubule dynamics in the cytoskeleton organization (ratio of the polymerization/
depolymerization rates). The effects of Sema3A and Sema4D on actin dynamics 
include the downregulation of PI3K-Akt signaling pathway, inhibiting integrin-
mediated adhesion as well as repulsive effects on axonal growing associated to 
actin-rich structure loss of lamellipodia and filopodia as part of the cofilin pathway 
triggered by Sema3A, or activation of myosin II (MyoII) and F-actin bundles 
promoted by Sema4D-ROCK signaling [2, 23, 24]. Sema3A additionally mediates an 
increase of the nonphosphorylated active form of myosin II (MyoII) and decreases 
the phosphorylation levels of Ezrin, Radixin, and Moesin (ERM) proteins. The 
nonphosphorylated active form of MyoII promotes retraction, while low ERM 
phosphorylation reduces the crosslinking between actin filaments and the plasma 
membrane [2, 25, 26]. Regarding microtubule dynamics, Sema4D signaling induces 
the inactivation of CRMP-2 by glycogen synthase kinase 3 beta (GSK3B)-mediated 
phosphorylation, leading to reduced binding of CRMP-2 to tubulin and consequently 
limiting its stabilizing function at the plus end of microtubules. Sema3A induces a 
similar CRMP-2-inactivating mechanism, yet requiring phosphorylation by cyclin-
dependent kinase 5 (Cdk5) at Ser522 and GSK3B at Thr509/514 [2, 21, 22].

3.2 Axonal degeneration associated to synaptogenesis and synaptic plasticity

Synapsis formation of the neuronal network requires local participation of 
cell adhesion molecules, extracellular proteins, and axon guidance molecules at 
axodendritic sites [6]. Sema3A and VEGF signaling have been proposed to actively 
modulate the synaptogenesis and synaptic plasticity, since they are dysregulated in 
neurological diseases, such as AD [4, 16, 17]. Proper regulation of the synapse for-
mation and dendritic branching contributes to a normal balance between excitatory 
and inhibitory synaptic transmission; dysregulation of this balance would interfere 
with the regeneration of damaged CNS axons [6, 11, 15, 27, 28].

3.3 Semaphorin function on axonal regeneration

Models of axonal regeneration have been studied after spinal cord injury, which 
can produce a permanent damage because axonal growth and regeneration are 
limited after injury [29]. In adult mammals, some myelin proteins produced by 
myelinating oligodendrocytes, such as Nogo-A, MAG and OMgp, inhibit spinal 
cord regeneration [4]. Additionally, glial cells release chondroitin sulfate proteogly-
cans (CSPGs) and lecticans, such as neurocan, brevican, phosphacan, and tenascin 
to form the neuronal extracellular matrix (perineuronal nets). The perineuronal 
nets, together with other extracellular proteins, such as, ephrins, slits, netrins, 
bone morphogenic proteins, Wnts, and semaphorins are among the molecules most 
likely involved in limiting axonal regeneration [4, 30–33]. However, the func-
tion of semaphorins is dependent on the cellular context and may also favor axon 
regeneration. For instance, nerve growth factor (NGF) co-injected with Sema3A in 
trigeminal neuronal cell culture induced neuron regeneration [34]. Sema3A has also 
been implicated in the restoration of functionally motor innervation required to 
regenerate fibers [35]. Sema4D has shown enhanced locomotor recovery and axon 
regeneration when expressed in motoneurons, attributed to regulation of microglia 
function following spinal cord injury in adult zebrafish [36].
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3.4 Semaphorin function on revascularization

Revascularization (restoration of perfusion) is regulated by several growth factors 
secreted from endothelial cells, such as VEGFA, FGF, and PDGFs [4]. Class 3 sema-
phorins are considered anti-angiogenic semaphorins (e.g., Sema3A, Sema3E, and 
Sema3F), because they interfere with the effect of VEGF by competing for the same 
NRP receptor [37, 38]. Sema3A not only targets the actin cytoskeleton, but also the 
assembly/disassembly of focal adhesions, altering migration, proliferation, and adher-
ence of endothelial cells [37]. Sema3A and Sema4D also produce alteration on the 
blood-brain barrier (BBB) by disrupting endothelial tight junctions and thus increas-
ing its permeability. BBB damage has been related to higher infiltration of immune 
cells mediated by increasing levels of Sema4D in MS [4, 39]. As opposed to Sema3A, 
Sema4D is pro-angiogenic and promotes endothelial cell migration via plexin-B1-
PI3K-Akt signaling pathway [37, 40].

3.5 Semaphorin function on remyelination

Axon myelination in the CNS is essential for regulating fast and slow axonal 
transport rates. Myelination requires interaction among axons, oligodendrocytes, 
and semaphorins. Semaphorins regulate the migration of oligodendrocyte precur-
sor cells (OPC) during normal development and toward demyelinated lesions. 
Demyelinization, caused by loss of oligodendrocytes and myelin sheaths around 
axons, is a pathological condition that results in axonal dysfunction, degeneration 
and loss of sensory and motors neurons  [2, 4, 41–43]. Oligodendrocyte death can 
be produced by genetic defects, infections, autoimmune reactions, and trauma, 
along with unknown causes. In some CNS pathologies related to myelination, 
astrocytes clear off myelin debris, modulating oligodendrocyte activity, myelin 
maintenance, and its synthesis [43]. Semaphorins (Sema3A, Sema4D, Sema5A, 
Sema6A, and Sema7A) inhibit OPC recruitment into demyelinated lesions and its 
differentiation to oligodendrocytes [9, 42, 44, 45]. Sema4D, Sema6, and Sema7A 
have been detected in myelin, and their expression found strongly upregulated in 
oligodendrocytes located near the injury site [9, 2, 45].

3.6 Semaphorin function on immune responses

Sema4D, formerly known as CD100, was called the “immune semaphorin” 
because it was originally found in lymphocytes [3]. The Sema4D receptor in 
neuronal cells is plexin B1, whereas in immune cells, besides binding to plexin 
B1, Sema4D also binds to a signaling surface receptor CD72. CD72 is considered 
a regulatory receptor, because it activates suppressive signals and prevents some 
forms of autoimmunity [46, 47]. Sema4D is a membrane-bound protein that can be 
proteolytically cleaved by MT1-MMP metalloprotease, releasing a 120-kDa soluble 
form of Sema4D, which can act paracrinally on other systems [40, 47]. Immune 
semaphorins also include Sema3A, Sema4A, Sema6D, and Sema7A expressed on 
T-cells, B-cells, natural killer cells, neutrophils, platelets, and mature dendritic cells 
(DC) [39, 47]. The neuronal system sense changes to maintain CNS homeostasis 
and communicates to the immune system by soluble factors to inhibit further 
inflammatory responses. For instance, neurons control T-cell and glia functions 
mediated by membrane-bound or secreted molecules such as semaphorins, neuro-
trophins, neurotransmitters, neuropeptides, and cytokines [48, 49]. Sema3A and 
Sema7A expression in neurons attenuate T-cell activation, proliferation, and func-
tion through T-cell receptor signaling [49–51]. Sema3A, additionally, downregulates 
autoimmunity by suppressing B- and T-cell-mediated autoimmune over-activity 
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responses [52]. In addition, cell adhesion molecules expressed by neurons, such as 
NCAM, cadherins, and integrins are active molecules in neurogenesis and synaptic 
plasticity that also can ameliorate inflammation and neurotoxic effects, while 
strengthening neuroprotection of immune components in pathology [48].

4. Semaphorins and their current association to neurological diseases

4.1 Alzheimer’s disease

Alzheimer’s disease (AD) is the most invalidating, common, and widespread 
elderly associated neuropathology. An estimated of over 30 million people are 
affected worldwide, increasing its incidence with age [53]. Patients with AD suffer 
progressive neuron lost, mostly from the prefrontal cortex and the hippocampus. 
As a consequence of neuronal death, patients experience memory, cognitive, and 
behavioral problems, leading within an average of less than 10 years to dementia 
and/or death [53]. Given its prevalence and the continuing aging of the population, 
AD threatens to generate an epidemic healthcare crisis in the next decades and yet 
its cause remains unknown. Current treatments target late symptoms, improv-
ing the patient’s quality of life; however, they have a minute contribution on the 
disease impact and its inevitable progression. Two major features are distinct from 
Alzheimer’s brains that have intrigued researchers since Alois Alzheimer described 
them in 1906: presenile plaques and neurofibrillary tangles (NFT). Plaques are 
extracellular insoluble aggregates, mostly composed of a misfolded amyloid beta 
(Aβ) peptide, whereas NFT are intraneuronal aggregates of hyperphosphorylated 
Tau (a microtubule-associated protein). It is yet controversial whether tangles, 
plaques, or both are causes or consequences of AD. Semaphorins have been long 
suggested to play a role in AD, because they initially were found largely expressed in 
adult brain tissues [54] and later found to have abnormal neurohistological patterns 
in affected cortical and hippocampal areas of AD brains [55], especially on vulner-
able neurons [56, 57].

It has been hypothesized that Sema3A may be involved in the early stages of 
Alzheimer’s degeneration. By analyzing the histological localization of Sema3A in 
vulnerable hippocampal areas that are first affected by neurodegeneration, a dys-
regulation in Sema3A expression and release has been proposed as a possible early 
sign in AD brains, observed even in neurons lacking NFT and therefore possible 
preceding Tau hyperphosphorylation and aggregation [57]. An intracellular form 
of Sema3A was also found associated to NFT, along with Plexins, hyperphosphory-
lated CRMP-2, and microtubule-associated protein 1B (MAP-1B) [57]. The associa-
tion between Sema3A and a possible downstream Tau hyperphosphorylation may 
come from the kinases involved in Sema3A signaling. Yoshida et al. initially found 
a phosphorylated form of CRMP-2 associated to NFT and significantly higher 
in AD brains [58]. CRMP-2 was originally discovered form its chicken homolog, 
CRMP-62, as a downstream effector of semaphorin (formerly known as collapsin) 
signaling. Injection of blocking antibodies against CRMP-62 into dorsal root 
ganglion inhibited the growth cone collapse induced by Sema3A, suggesting that 
CRMP-62 is a downstream effector in Sema3A signaling [59]. Since then, CRMP-2 
has been associated to NFT in AD [58] and found phosphorylated as a result of 
semaphorin signaling [60, 61]. The signaling mechanism involves phosphoryla-
tion of CRMP-2 by GSK3B after a priming phosphorylation at Ser522 [61, 62]. The 
phosphorylation at Ser522 is required for further phosphorylation of GSK3B. In 
rat models, Cdk5 has been found responsible of Ser522 phosphorylation, priming 
the phosphorylation site of GSK3B both in vitro and in vivo [63, 64]. The sequential 

27

Roles of Semaphorins in Neurodegenerative Diseases
DOI: http://dx.doi.org/10.5772/intechopen.82046

phosphorylation of CRMP-2 reduces its affinity to tubulin and triggers microtu-
bule destabilization and Sema3A-mediated growth cone collapse associated to AD 
pathogenesis [63, 64]. Other kinases, such as Fyn, cyclin-dependent kinase 1, and 
dual specificity tyrosine-phosphorylation-regulated kinase 2 may also be involved 
in the priming phosphorylation at Ser522 [61, 64, 65]. The participating kinases 
and the Sema3A-mediated sequential phosphorylation mechanisms of CRMP-2 are 
strikingly similar to the pathway leading to Tau hyperphosphorylation, aggrega-
tion, and microtubule destabilization observed in AD [66].

A recent study also links Tau phosphorylation to Sema3A signaling by discovering 
several single-nucleotide polymorphisms (SNPs) associated to AD in the PLXNA4 
gene, which codifies for plexin A4 [62]. Most of the top-ranked SNPs associated to 
AD were located in the region coding the Sema3A-binding site [62]. Cells expressing 
PLXNA4 and stimulated with Sema3A showed Sema3A-induced phosphorylation 
of Tau, enhanced by overexpression of the full-length PLXNA4 receptor, whereas 
expression of soluble forms of PLXNA4 inhibited Tau phosphorylation, presumably 
by binding Sema3A and competing with the endogenous Plexin receptor, both in a 
cell line model and in rat hippocampal neurons [62]. The full-length PLXNA4 expres-
sion was found higher in AD brains, and also significantly correlates with clinical and 
neuropathological disease severity measures, such as dementia. The Sema3A-induced 
kinase activities affecting CRMP-2 and Tau may ultimately lead to neurofibril-
lary tangle formation and neuronal dead in AD. If Sema3A signaling is effectively 
involved in the early stages of neurodegeneration, it would be worth to further study 
its association with AD toward the discovery of new biomarkers and drugs, such as 
specific kinase inhibitors (some of them already in clinical trial) [67]. An example of 
a different treatment approach involves modulating the interaction of semaphorins 
with the neuronal extracellular matrix or perineuronal nets. Differential expression 
of several proteins related to the extracellular matrix, among them Sema3C, has been 
found in AD-vulnerable brain areas [56]. Additionally, memory restoration in AD 
mice models has been achieved by digesting CSPs, a major component of perineuro-
nal nets, using chondroitinase [68, 69]. Disruption of perineuronal nets presumably 
allows the formation of new synapsis sites and thus increases adult brain plasticity. 
An important effector of perineuronal nets is Sema3A by binding to chondroitin 
sulfate, a main component of CSPs [70]. A recent study showed restoration of object 
recognition memory in a tauopathy mice model via reducing Sema3A binding to peri-
neuronal nets by perirhinal cortex injections of an inhibitory proteoglycan-neutral-
izing antibody against chondroitin 4-sulfate [69]. Therefore, blocking the binding of 
Sema3A to perineuronal nets can restore memory function in adult AD-mice model.

It is also interesting to note the bifunctional effect of semaphorins in AD. For 
instance, Sema3A has been shown to promote apoptosis and neurodegeneration [57, 
61], whereas Sema3C has been related to neuroprotection [56, 71]. Such duality, 
along with several other genetic, environmental, and aging components, gives to 
AD its multifactorial category. Genetic factors are thought to account for over 50% 
of the disease, yet these risk factors are not determinants to causing AD. In rare 
cases of early-onset familial AD, the disease is linked to mutations on genes involv-
ing Aβ metabolism, such as the amyloid precursor protein (APP) and presenilin 
(PSEN1/2) genes. APP is a transmembrane protein from which Aβ peptide is gener-
ated by the cleavage of a gamma secretase complex. Presenilin-1 and presenilin-2 
are part of the gamma secretase complex. However, in the most common sporadic 
(nonfamilial) late-onset AD, the genetic variants only explain part of the disease 
etiology. Several genes have been considered a risk factor, such as the APOE-ε4 
polymorphic isoform of the apolipoprotein E gene (APOE), the main cholesterol 
carrier in the CNS. The role of apolipoprotein E in AD is, however, poorly under-
stood and thought to be related to Aβ degradation [72]. Semaphorin polymorphs 
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tion between Sema3A and a possible downstream Tau hyperphosphorylation may 
come from the kinases involved in Sema3A signaling. Yoshida et al. initially found 
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tion of CRMP-2 by GSK3B after a priming phosphorylation at Ser522 [61, 62]. The 
phosphorylation at Ser522 is required for further phosphorylation of GSK3B. In 
rat models, Cdk5 has been found responsible of Ser522 phosphorylation, priming 
the phosphorylation site of GSK3B both in vitro and in vivo [63, 64]. The sequential 
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phosphorylation of CRMP-2 reduces its affinity to tubulin and triggers microtu-
bule destabilization and Sema3A-mediated growth cone collapse associated to AD 
pathogenesis [63, 64]. Other kinases, such as Fyn, cyclin-dependent kinase 1, and 
dual specificity tyrosine-phosphorylation-regulated kinase 2 may also be involved 
in the priming phosphorylation at Ser522 [61, 64, 65]. The participating kinases 
and the Sema3A-mediated sequential phosphorylation mechanisms of CRMP-2 are 
strikingly similar to the pathway leading to Tau hyperphosphorylation, aggrega-
tion, and microtubule destabilization observed in AD [66].
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gene, which codifies for plexin A4 [62]. Most of the top-ranked SNPs associated to 
AD were located in the region coding the Sema3A-binding site [62]. Cells expressing 
PLXNA4 and stimulated with Sema3A showed Sema3A-induced phosphorylation 
of Tau, enhanced by overexpression of the full-length PLXNA4 receptor, whereas 
expression of soluble forms of PLXNA4 inhibited Tau phosphorylation, presumably 
by binding Sema3A and competing with the endogenous Plexin receptor, both in a 
cell line model and in rat hippocampal neurons [62]. The full-length PLXNA4 expres-
sion was found higher in AD brains, and also significantly correlates with clinical and 
neuropathological disease severity measures, such as dementia. The Sema3A-induced 
kinase activities affecting CRMP-2 and Tau may ultimately lead to neurofibril-
lary tangle formation and neuronal dead in AD. If Sema3A signaling is effectively 
involved in the early stages of neurodegeneration, it would be worth to further study 
its association with AD toward the discovery of new biomarkers and drugs, such as 
specific kinase inhibitors (some of them already in clinical trial) [67]. An example of 
a different treatment approach involves modulating the interaction of semaphorins 
with the neuronal extracellular matrix or perineuronal nets. Differential expression 
of several proteins related to the extracellular matrix, among them Sema3C, has been 
found in AD-vulnerable brain areas [56]. Additionally, memory restoration in AD 
mice models has been achieved by digesting CSPs, a major component of perineuro-
nal nets, using chondroitinase [68, 69]. Disruption of perineuronal nets presumably 
allows the formation of new synapsis sites and thus increases adult brain plasticity. 
An important effector of perineuronal nets is Sema3A by binding to chondroitin 
sulfate, a main component of CSPs [70]. A recent study showed restoration of object 
recognition memory in a tauopathy mice model via reducing Sema3A binding to peri-
neuronal nets by perirhinal cortex injections of an inhibitory proteoglycan-neutral-
izing antibody against chondroitin 4-sulfate [69]. Therefore, blocking the binding of 
Sema3A to perineuronal nets can restore memory function in adult AD-mice model.

It is also interesting to note the bifunctional effect of semaphorins in AD. For 
instance, Sema3A has been shown to promote apoptosis and neurodegeneration [57, 
61], whereas Sema3C has been related to neuroprotection [56, 71]. Such duality, 
along with several other genetic, environmental, and aging components, gives to 
AD its multifactorial category. Genetic factors are thought to account for over 50% 
of the disease, yet these risk factors are not determinants to causing AD. In rare 
cases of early-onset familial AD, the disease is linked to mutations on genes involv-
ing Aβ metabolism, such as the amyloid precursor protein (APP) and presenilin 
(PSEN1/2) genes. APP is a transmembrane protein from which Aβ peptide is gener-
ated by the cleavage of a gamma secretase complex. Presenilin-1 and presenilin-2 
are part of the gamma secretase complex. However, in the most common sporadic 
(nonfamilial) late-onset AD, the genetic variants only explain part of the disease 
etiology. Several genes have been considered a risk factor, such as the APOE-ε4 
polymorphic isoform of the apolipoprotein E gene (APOE), the main cholesterol 
carrier in the CNS. The role of apolipoprotein E in AD is, however, poorly under-
stood and thought to be related to Aβ degradation [72]. Semaphorin polymorphs 
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have also been studied given their relevance in neuronal apoptosis and the findings 
of semaphorin polymorphisms related to other syndromes. The first attempts in 
relating semaphorin SNPs with AD were, however, unfruitful. Evaluation of two 
exonic SNPs of semaphorin 3A and 4D genes in patients with AD showed no cor-
relation, even though modeling analysis predicted a damaged variant of the affected 
proteins [73]. Recently, however, a novel proposed method for detecting hidden 
SNPs that would otherwise appear undetected by commonly used tests found six 
SNPs on noncoding regions near the semaphorin 5A gene [74]. Schott et al. [75] also 
found in a noncodifying region of the SEMA3C gene a polymorphism associated to 
posterior cortical atrophy, a variant of AD. The SEMA3C SNP, therefore, suggests 
a role of Sema3C during development that may influence later neurodegeneration 
associated to specific brain regions that ultimately lead to differential degeneration 
phenotypes [75]. In light of these recent associations of semaphorins to AD [62, 74, 
75], semaphorin gene variants and their receptors are expected to participate as a 
risk factor of AD and its associated neuropathologies, opening a relatively underex-
plored door toward new discoveries.

4.2 Parkinson’s disease

Parkinson’s disease (PD) is the second most prevalent neurodegenerative 
disorder after AD, affecting up to 1% of the worldwide population above 60 years 
old [76]. PD patients suffer a progressive and selective loss of dopaminergic 
neurons in the Substantia Nigra pars compacta (SNpc), which innervates neurons 
in the dorsal striatum and regulates its effects on motor functions. The result of 
neurodegeneration manifests mostly with movement disorders or dyskinesia, where 
tremor at rest, rigidity, and bradykinesia are cardinal for diagnosis [76]. The reason 
why SNpc dopaminergic neurons die is not well understood. A composite interac-
tion between genetics and environmental factors in the context of aging has been 
intensively studied to find the causes, preventing strategies and potential therapies 
of PD. Semaphorins in their role of apoptotic mediators in neurodegeneration have 
early on been suggested to be involved in the pathogenesis of PD [77–80].

Even though it is currently accepted that genetic plays a minor role in sporadic 
(nonfamilial) PD based on studies with relatives [81], several genes are known 
to be involved in the disease etiology and progression. For instance, mutations in 
the SNCA gene are known to be associated with familial PD and increased risk of 
sporadic PD. The SNCA gene encodes alpha-synuclein, which is the main protein 
found in Lewy bodies as insoluble aggregates inside SNpc neurons of patients with 
PD. Interestingly, population genetic studies have also found SNPs in the Sema5A 
gene that may be related to PD. In the pioneer work of Maraganore et al., 11 SNPs 
were associated to PD in Caucasian Americans by using a two-stage whole-genome 
association analysis including 198,345 SNPs. The SNP with the lowest p-value asso-
ciated to increased risk of PD was located in the Sema5A gene (rs7702187 polymor-
phism, corresponding to a thymine substituted by adenine in an intronic sequence) 
[82]. Given the relevance of semaphorins in neuronal apoptosis, the polymorphism 
in Sema5A found by Maraganore et al. [82] was soon assessed by different research 
groups, though having conflicting results that still remain unclear. The controver-
sies may come from the different populations evaluated in each analysis. Some stud-
ies have shown that the rs7702187 polymorphism is not associated to PD [83, 84] 
or even conflict to the extent of finding the polymorphic variant protective rather 
than a risk factor on a population-dependent basis [85]. Taiwanese Asians showed 
significant associations of the Sema5A rs7702187 polymorphism [85], whereas 
Finnish Caucasians, Polish Caucasians, Singapore Asians, and Chinese Han popula-
tions were not associated to PD [83–86]. In addition, a different SNP, the rs3798097 
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(C > T), located in the 5’UTR of the Sema5A gene, was also found associated with 
PD [85]. Ding et al. [86] showed that although the genotypes are not necessar-
ily associated to PD in a Chinese Han population, the haplotypes involving these 
two SNPs in the context of a particular ethnicity may be implicated in the disease 
by finding the AC haplotype associated with an increased risk of PD compared 
to the common TC haplotype, whereas the AT haplotype was found protective 
against PD [86]. A more recent meta-analysis on the rs7702187 polymorphism 
concluded that the A allele frequency was associated to increased risk of PD only 
in Western population [87]. Both polymorphisms do not affect the sequence of the 
protein, but rather may be regulatory sequences affecting expression dynamics of 
Sema5A. These SNPs may be associated to PD; however, less studied polymorphic 
variants together with other cellular and molecular factors should be considered 
as well, such as the expression of other semaphorin classes and their receptors that 
may result as a confounding factor across different population genetic studies.

Besides the genetic highlights on PD, the mechanisms by which semaphorins 
participate in the disease etiology and progression are poorly understood. Although 
semaphorins had been suggested to promote neurodegeneration in PD, limited 
studies were known to link semaphorins in the context of the disease pathogenesis 
[77, 78, 88, 89]. After a decade of research since the study of Maraganore et al. 
[82], several lines of evidence indicate possible direct mechanisms of semaphorins 
(though, not Sema5A) in PD etiology. Recent evidence in a neurotoxin (MPTP)-
induced PD mouse model directly involves Sema3A effects through Rho-ROCK 
signaling pathway. Rho kinase inhibition as well as heterozygous mice knockouts 
in both Rho and ROCK protect from MPTP-induced damage of dopaminergic 
neurons, increase dopamine and its metabolic products at the striatum, showed 
reduced protein expression of Sema3A and its receptors, plexin A and NRP-1, and 
overall alleviate the behavior damage compared to control PD mice [90–93]. The 
effects of Sema3A on Rho-ROCK signaling pathway could mediate several cyto-
skeleton effectors, contributing to growth cone collapse as well as regulation of 
neuronal apoptosis. Animal models and SNpc of human brains from PD-affected 
subjects show apparent neuronal apoptotic processes, probably triggered by oxida-
tive stress [94]. Whether semaphorins are directly involved in causing neuronal 
apoptosis in PD is debatable and may be associated in part to their specific recep-
tors and signaling pathways. For instance, although Sema3A through plexin A/
NRP-1 and activation of Rho kinase was found to promote dopaminergic damage 
[92], Sema7A has been found protective against ROS-mediated neurodegeneration 
[95]. Sema7A binds to integrin receptors and could potentially regulate apoptosis 
through different mechanism. Sema7A reduces the large axonal arborization 
on dopaminergic neurons, which potentially decreases mitochondrial oxygen 
demand, ROS production, and neuronal vulnerability observed in PD [95]. 
However, even different ligands to the same receptor for Sema3A have been found 
protective against neuronal apoptosis. For instance, VEGF shows neuroprotec-
tion in PD models likely by binding to neuropilin receptors, though it is unclear 
whether the downstream VEGF signaling effectors differ from the semaphorin 
transduction pathway or VEGF indirectly promotes protection by competition to 
the same receptor. Alternatively, VEGF could mediate apoptosis by other processes 
such angiogenesis [89]. It would be interesting to evaluate in future research 
different ROS-mediated apoptotic pathways and their interplay with semaphorin-
induced signaling, such as the phosphorylation targets of ROCK resulting in 
growth cone collapse (which could mediate CRMP-2 phosphorylation by a similar 
mechanism to what described previously for AD), to find out how these pathways 
are regulated in an effort to evaluate new drug candidates for PD prevention and 
treatment.
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(C > T), located in the 5’UTR of the Sema5A gene, was also found associated with 
PD [85]. Ding et al. [86] showed that although the genotypes are not necessar-
ily associated to PD in a Chinese Han population, the haplotypes involving these 
two SNPs in the context of a particular ethnicity may be implicated in the disease 
by finding the AC haplotype associated with an increased risk of PD compared 
to the common TC haplotype, whereas the AT haplotype was found protective 
against PD [86]. A more recent meta-analysis on the rs7702187 polymorphism 
concluded that the A allele frequency was associated to increased risk of PD only 
in Western population [87]. Both polymorphisms do not affect the sequence of the 
protein, but rather may be regulatory sequences affecting expression dynamics of 
Sema5A. These SNPs may be associated to PD; however, less studied polymorphic 
variants together with other cellular and molecular factors should be considered 
as well, such as the expression of other semaphorin classes and their receptors that 
may result as a confounding factor across different population genetic studies.

Besides the genetic highlights on PD, the mechanisms by which semaphorins 
participate in the disease etiology and progression are poorly understood. Although 
semaphorins had been suggested to promote neurodegeneration in PD, limited 
studies were known to link semaphorins in the context of the disease pathogenesis 
[77, 78, 88, 89]. After a decade of research since the study of Maraganore et al. 
[82], several lines of evidence indicate possible direct mechanisms of semaphorins 
(though, not Sema5A) in PD etiology. Recent evidence in a neurotoxin (MPTP)-
induced PD mouse model directly involves Sema3A effects through Rho-ROCK 
signaling pathway. Rho kinase inhibition as well as heterozygous mice knockouts 
in both Rho and ROCK protect from MPTP-induced damage of dopaminergic 
neurons, increase dopamine and its metabolic products at the striatum, showed 
reduced protein expression of Sema3A and its receptors, plexin A and NRP-1, and 
overall alleviate the behavior damage compared to control PD mice [90–93]. The 
effects of Sema3A on Rho-ROCK signaling pathway could mediate several cyto-
skeleton effectors, contributing to growth cone collapse as well as regulation of 
neuronal apoptosis. Animal models and SNpc of human brains from PD-affected 
subjects show apparent neuronal apoptotic processes, probably triggered by oxida-
tive stress [94]. Whether semaphorins are directly involved in causing neuronal 
apoptosis in PD is debatable and may be associated in part to their specific recep-
tors and signaling pathways. For instance, although Sema3A through plexin A/
NRP-1 and activation of Rho kinase was found to promote dopaminergic damage 
[92], Sema7A has been found protective against ROS-mediated neurodegeneration 
[95]. Sema7A binds to integrin receptors and could potentially regulate apoptosis 
through different mechanism. Sema7A reduces the large axonal arborization 
on dopaminergic neurons, which potentially decreases mitochondrial oxygen 
demand, ROS production, and neuronal vulnerability observed in PD [95]. 
However, even different ligands to the same receptor for Sema3A have been found 
protective against neuronal apoptosis. For instance, VEGF shows neuroprotec-
tion in PD models likely by binding to neuropilin receptors, though it is unclear 
whether the downstream VEGF signaling effectors differ from the semaphorin 
transduction pathway or VEGF indirectly promotes protection by competition to 
the same receptor. Alternatively, VEGF could mediate apoptosis by other processes 
such angiogenesis [89]. It would be interesting to evaluate in future research 
different ROS-mediated apoptotic pathways and their interplay with semaphorin-
induced signaling, such as the phosphorylation targets of ROCK resulting in 
growth cone collapse (which could mediate CRMP-2 phosphorylation by a similar 
mechanism to what described previously for AD), to find out how these pathways 
are regulated in an effort to evaluate new drug candidates for PD prevention and 
treatment.
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Paradoxically, the Sema3A found to promote neurodegeneration in PD patho-
genesis, at the same time may be useful for steam cell transplantation therapy in 
PD patients [96–99]. Given that semaphorins participate in the formation of the 
nigrostriatal pathway during prenatal development, they have also been proposed 
to guide axons to their appropriate targets after possible cell replacement therapy 
with dopaminergic neurons [96, 100–105]. Embryonic stem cells differentiated 
to tyrosine hydroxylase-expressing neurons have been shown to have similar 
phenotype, expression of neuropilins, and response to Class 3 semaphorins than 
embryonic ventral mesencephalon neurons [96, 97, 106]. Via neuropilin-mediated 
signaling, Sema3A increases axonal length in collagen gel coculture experiments. 
Sema3C, besides increasing length, also attracts axons, whereas Sema3F produces 
either no effect or axon repulsion [96, 97]. Semaphorin axonal guidance results are 
promising toward the recovery of parkinsonian symptoms in transplanted PD ani-
mal models [98, 99]. Therefore, even though semaphorins may be directly involved 
in promoting PD neurodegeneration, they could also be a strategy to restore the 
dopaminergic function by providing axon guidance cues after embryonic stem cell 
intranigral transplantation.

4.3 Charcot-Marie-Tooth disease

Charcot-Marie-Tooth disease (CMT) is an inherited peripheral neuropathy 
associated with mutations in more than 90 different genes. CMT is divided into dif-
ferent forms based on the inheritance pattern and neurophysiological observations. 
The most common types are autosomal-dominant forms, and they are categorized 
into demyelinating with reduced nerve conduction velocities (CMT type 1) and 
axonal-loss type with relatively normal nerve conduction velocities (CMT type 2). 
Patients with CMT type 2 comprise about 20% of all cases [107–110].

Mutations in the gene GARS, encoding glycyl-tRNA synthetase (GlyRS), have 
been related to peripheral nerve degeneration and CMT type 2 [111]. In addition, 
mutated GlyRS has shown to bind neuropilin-1 in mice [112]. Besides its house-
keeping intracellular function during protein synthesis, GlyRS can be secreted and 
produce different cellular effects from the extracellular space [113]. In Drosophila, 
the Cader lab showed that mutant GlyRS is secreted by muscles and interacts with 
the neuromuscular junction [114]. Recently, they showed that the P234KY mutant 
version of GlyRS (mutation associated to CMT type 2) colocalizes with plexin B in 
presynaptic neurons. Also, Sema2A overexpression, but not Sema1A overexpres-
sion, decreased the effect that mutant GlyRS produced on muscle contraction, 
suggesting that plexin B signaling could be affected by mutated GlyRS by com-
petition with Sema2A [115]. Also, other ligands for neuropilin should be taken 
into account, such as VEGF. He et al. suggest that CMT type 2 mutations in GlyRS 
promote its abnormal binding to neuropilin-1, antagonizing the binding of VEGF 
and blocking the VEGF/neuropilin-1 signaling essential for survival and function 
of motor neurons [112]. Nevertheless, the neuropilin sequestration by mutant 
GlyRS has shown to be less detrimental in other tissues, given that this abnormal 
interaction is permissive to maturation and maintenance of the vasculature in 
CMT type 2 mice [116].

It is important to consider that in addition to the extracellular function, mutated 
GlyRS can have abnormal intracellular functions that could also contribute to the 
CMT pathogenesis, suggesting that multiple mechanisms could be participating. 
For example, human GlyRS mutations related to CMT (S581 L and G598A E71G, 
L129P, S211F, G240R, E279D, H418R, and G526R) have shown to have a gain-of-
function effect binding to histone deacetylase 6 (HDAC6) and enhance its function, 
promoting α-tubulin de-acetylation and leading to axonal transport deficit. It is 
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relevant to highlight that G598A patients have more severe distal weakness and 
wasting in the lower limbs, and in that same article, this mutation showed one of 
the strongest affinities for HDAC6 [117]. Thus, the most severe mutations in GlyRS 
could eventually promote abnormal interaction with both NRP1 and HDAC6. A 
combination of intracellular and extracellular effects could eventually explain 
the severity and early-onset clinical symptoms of the patients carrying the G598A 
mutation, as the authors suggested. Future experiments will have to address in more 
detail the contributions that different plexin/neuropilin ligands may have in CMT, 
and also link the phenotypes with abnormal activation or deactivation of transduc-
tion pathways controlled by these receptors.

4.4 Amyotrophic lateral sclerosis

ALS is a neurological disorder with motor neuron degeneration. Neuron loss 
leads to paralysis in muscles and death mostly by respiratory failure. Most of the 
studies in animal models related to ALS use superoxide dismutase (SOD) mutations 
in mice (in particular, the SOD1G93A transgenic mouse), although the mechanism 
by which SOD mutations cause ALS is not clear. In these mice models, modifications 
in axons and nerve terminals are observed even before the clinical symptoms [118].

The first report linking semaphorins and ALS was published in 2006 by De 
Winter et al. showing increased Sema3A mRNA levels in the SOD1G93A transgenic 
mice model [119]. Nevertheless, a more recent report from the same lab showed that 
ALS mice expressing a mutant version of Sema3A (K108 N mutation that produces 
diminished signaling capacity) had no difference in ALS-induced decline in motor 
behavior, contrary to what was initially expected [120]. These last results point to a 
minor contribution of Sema3A to ALS pathology, although other articles are in clear 
contradiction with this claim. A clear example is the article published by Venkova 
et al. who hypothesized that Sema3A is able to trigger distal axonopathy and muscle 
denervation in the SOD1G93A mouse model of ALS [121]. They propose that 
Sema3A released from terminal Schwann cells activates plexin-A/neuropilin-1, pro-
moting the regulation of kinases such as CDK5 and GSK3B that could alter CRMP-2 
phosphorylation and leading to microtubule instability and actin cytoskeletal 
rearrangements. The Sema3A-mediated signaling could inhibit compensatory axon 
sprouting and coordination of neuromuscular junction remodeling after injury, 
contributing to distal axonopathy [121]. Anti-neuropilin-1 antibodies that block the 
Sema3A docking site in differentiated motor neuron-like cells (NSC-34) prevented 
Sema3A-induced growth cone collapse. Furthermore, injections of blocking 
antibodies delayed and even temporarily reversed the motor functional decline 
while prolonging the life span of SOD1G93A mice. Histologically, the antibody 
reduced neuromuscular junction denervation and attenuated pathologic alterations 
in ventral roots at late stages of the disease [121] [121].

In parallel, Miyazaki et al. focused on extracellular protein changes in 
SOD1G93A mice during the development of ALS to characterize changes in the 
cellular environment that could affect regeneration [122]. They found decreased 
Sema3A levels in the anterior half of the lumbar cord of ALS mice. Sema3A 
immunochemistry at ages 15 and 18 weeks showed a progressive decrease of stain-
ing in the neuropil of ALS mice compared to wild type, while Sema3A-positive 
astrocyte appeared [122]. In addition, it was found that Sema3D gene expression 
levels are decreased 2.5-fold with respect to wild type in another ALS mouse model 
(SOD1G37R mutation) [123].

Another piece of evidence for the role of semaphorins on ALS is related to 
microribonucleic acids (miRNAs). miRNAs are small single-stranded, noncod-
ing RNAs that alter gene expression through post-transcriptional regulation by 
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sion, decreased the effect that mutant GlyRS produced on muscle contraction, 
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GlyRS can have abnormal intracellular functions that could also contribute to the 
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L129P, S211F, G240R, E279D, H418R, and G526R) have shown to have a gain-of-
function effect binding to histone deacetylase 6 (HDAC6) and enhance its function, 
promoting α-tubulin de-acetylation and leading to axonal transport deficit. It is 
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relevant to highlight that G598A patients have more severe distal weakness and 
wasting in the lower limbs, and in that same article, this mutation showed one of 
the strongest affinities for HDAC6 [117]. Thus, the most severe mutations in GlyRS 
could eventually promote abnormal interaction with both NRP1 and HDAC6. A 
combination of intracellular and extracellular effects could eventually explain 
the severity and early-onset clinical symptoms of the patients carrying the G598A 
mutation, as the authors suggested. Future experiments will have to address in more 
detail the contributions that different plexin/neuropilin ligands may have in CMT, 
and also link the phenotypes with abnormal activation or deactivation of transduc-
tion pathways controlled by these receptors.

4.4 Amyotrophic lateral sclerosis

ALS is a neurological disorder with motor neuron degeneration. Neuron loss 
leads to paralysis in muscles and death mostly by respiratory failure. Most of the 
studies in animal models related to ALS use superoxide dismutase (SOD) mutations 
in mice (in particular, the SOD1G93A transgenic mouse), although the mechanism 
by which SOD mutations cause ALS is not clear. In these mice models, modifications 
in axons and nerve terminals are observed even before the clinical symptoms [118].

The first report linking semaphorins and ALS was published in 2006 by De 
Winter et al. showing increased Sema3A mRNA levels in the SOD1G93A transgenic 
mice model [119]. Nevertheless, a more recent report from the same lab showed that 
ALS mice expressing a mutant version of Sema3A (K108 N mutation that produces 
diminished signaling capacity) had no difference in ALS-induced decline in motor 
behavior, contrary to what was initially expected [120]. These last results point to a 
minor contribution of Sema3A to ALS pathology, although other articles are in clear 
contradiction with this claim. A clear example is the article published by Venkova 
et al. who hypothesized that Sema3A is able to trigger distal axonopathy and muscle 
denervation in the SOD1G93A mouse model of ALS [121]. They propose that 
Sema3A released from terminal Schwann cells activates plexin-A/neuropilin-1, pro-
moting the regulation of kinases such as CDK5 and GSK3B that could alter CRMP-2 
phosphorylation and leading to microtubule instability and actin cytoskeletal 
rearrangements. The Sema3A-mediated signaling could inhibit compensatory axon 
sprouting and coordination of neuromuscular junction remodeling after injury, 
contributing to distal axonopathy [121]. Anti-neuropilin-1 antibodies that block the 
Sema3A docking site in differentiated motor neuron-like cells (NSC-34) prevented 
Sema3A-induced growth cone collapse. Furthermore, injections of blocking 
antibodies delayed and even temporarily reversed the motor functional decline 
while prolonging the life span of SOD1G93A mice. Histologically, the antibody 
reduced neuromuscular junction denervation and attenuated pathologic alterations 
in ventral roots at late stages of the disease [121] [121].

In parallel, Miyazaki et al. focused on extracellular protein changes in 
SOD1G93A mice during the development of ALS to characterize changes in the 
cellular environment that could affect regeneration [122]. They found decreased 
Sema3A levels in the anterior half of the lumbar cord of ALS mice. Sema3A 
immunochemistry at ages 15 and 18 weeks showed a progressive decrease of stain-
ing in the neuropil of ALS mice compared to wild type, while Sema3A-positive 
astrocyte appeared [122]. In addition, it was found that Sema3D gene expression 
levels are decreased 2.5-fold with respect to wild type in another ALS mouse model 
(SOD1G37R mutation) [123].

Another piece of evidence for the role of semaphorins on ALS is related to 
microribonucleic acids (miRNAs). miRNAs are small single-stranded, noncod-
ing RNAs that alter gene expression through post-transcriptional regulation by 
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binding to the 3′-untranslated region of target mRNAs [124]. The Perlson lab [125] 
analyzed miRNA profiles from axons and somas of two ALS mouse models, SOD1 
with G93A mutation and TDP43 with A315T mutation. They showed that different 
miRNAs were significantly altered in the axons expressing ALS mutations, but not 
in the somas, indicating that miRNA could be regulating local functions in motor 
neuron axons [125]. Later, the same lab using qRT-PCR showed that one of these 
miRNAs, miR126-5p, downregulates Sema3A, Sema3B, neuropilin-1, and neuropi-
lin-2 transcript levels in HeLa cells. Primary myoblasts with the SOD1G93A muta-
tion were transfected with miR126-5p and cultured in a distal compartment of a 
microfluidic chamber together with a motor neuron explant placed in the proximal 
compartment. They showed that in the microfluidic chamber, the rate of axons that 
traversed the distal compartment was increased respect to the control condition 
of myoblasts transfected with an irrelevant miRNA. In addition, the injection of 
miR126-5p to ALS mice increased the amount of intact neuromuscular junctions 
revealing higher innervation in treated muscles compared to the mock condition. 
Three parameters: Mean Stand Index (measurement of the speed at which the 
paws detach from the walking surface), single-support parameter (the relative 
duration of all combined paws in contact with the glass floor), and base of support 
parameter (the average width of limb spreading between front or hind paws) were 
measured in ALS mice, and in all cases, the injection of miR126-5p improved all 
parameters respect to the control [126]. Based on these observations and previous 
reports, the authors suggested an attractive model of Sema3A/neuropilin-1 interac-
tion that explains how the motor neuron degeneration in ALS could be regulated by 
miR126-5p. miR126-5p decrease in ALS could enhance Sema3A secretion in muscle 
and overexpression of neuropilin-1 in axons, increasing Sema3A signaling in the 
neuromuscular junction and leading to axon degeneration [126].

It is of consideration to test the results obtained with ALS mouse models in 
human samples. Motor cortex tissue samples showed increased Sema3A mRNA lev-
els by quantitative RT-PCR in ALS patients (eight cases aged 44–72 years) compared 
to control samples (six subjects aged 45–84 years, with no neurological disease 
history). Likewise, by immunohistochemistry, the motor cortex showed stronger 
cytoplasmic and axonal Sema3A labeling in motor neurons of ALS patients com-
pared to controls. Sema3A mRNA levels and immunohistological labeling showed, 
however, no difference between ALS patients and controls in spinal cord tissue 
samples [127]. Sema3A levels in human samples support the previous findings in 
ALS mouse models discussed above. However, other semaphorins and neurological 
factors not studied yet in the context of ALS may provide a better understanding of 
semaphorin function and mechanisms on ALS pathology.

4.5 Spastic paraparesis associated to HTLV-1

HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is 
produced by infection with the retrovirus HTLV-1 (Human T-cell lymphotropic 
virus type 1 (HTLV-1) [128, 129]. HTLV-1 is transmitted by breast-feeding, sexual 
intercourse, and parenterally [130]. Worldwide, around 15–20 million people 
are infected with HTLV-1; however, only 3–5% develop HAM/TSP. Another ~5% 
develop adult T-cell leukemia/lymphoma (ATL), whereas over 90% of infected 
people are asymptomatic carriers [131]. The most common HAM/TSP symptom 
is lower limb motor dysfunction, followed with bladder/bowel dysfunctions and 
sensory alterations [132]. The virus mainly infects CD4+-T-cells, while monocytes, 
B-cells, CD8+-T-cells, and DC are infected to a lesser extent and found in spinal cord 
lesions together with infected astrocytes and endothelial cells [7, 133]. HAM/TSP 
causes alteration of CNS axonal transport based on the presence of APP deposits 
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in the axons, a classical marker of defects in fast axonal transport [134, 135]. 
Immunological studies have shown a chronic infiltration of activated CD4+ and 
CD8+-T-cells into the CNS [136].

It is a consensus that the paraparesis axonopathy generates as a consequence of 
chronic extracellular action of viral proteins secreted by the infected lymphocytes 
present in the CNS [137, 138]. Among secreted proteins, Tax viral protein acts on 
several viral and cellular processes, modulates various cellular signaling pathways, 
and has also been detected in the CSF of HAM/TSP patients. In the cytoplasm of 
infected lymphocytes, Tax activates NF-kB pathway responsible for proliferation 
and differentiation of T-cells, whereas in the nucleus, Tax activates the ATP/CREB 
pathway. Tax can also be secreted via endoplasmic reticulum-Golgi apparatus and 
by exosomes [136–141]. Tax secreted from activated peripheral blood mononuclear 
cells (PBMCs) could explain the presence of Tax in the plasma and CSF of infected 
patients and carriers [141].

Using in vitro culture of PBMCs from HAM/TSP patients, it has been recently 
found that the levels of secreted Sema4D were increased compared to healthy 
subjects [142]. Elevated Sema4D could be explained as a result of increased levels 
of MT1-MMP—the enzyme responsible for generating soluble Sema4D (Sema4D) 
from the transmembrane Sema4D—found in PBMCs from HAM/TSP patients. 
It has been also found that Tax and SEMA4D co-immunoprecipitate from PBMC 
culture medium. To test the effect of Tax and Sema4D (or the Tax/Sema4D 
complex) in neuronal cells, culture media from infected lymphocytes were added 
to PC12 cells during their differentiation to neuronal type, finding decreased 
neurite length as a result. The effect of HTLV-1-infected PBMC culture media was 
blocked by both anti-Sema4D and anti-Tax antibodies, suggesting neurite length 
reduction by a Tax/Sema4D complex [142]. In the same report, it was shown that 
infected lymphocytes strongly migrate in response to Sema4D using a trans-well 
system. It was found that in the population of migrated lymphocytes, the levels of 
CRMP-2 phosphorylation at Ser522 were increased [142]. A change in Sema4D-
mediated phosphorylation of CRMP-2 could be responsible for the increased 
motility. Authors proposed  that infected lymphocytes have an increased migra-
tory response toward Sema4D, making them able to cross the BBB [142]. Once 
in the CNS, infected lymphocytes secrete Tax and Sema4D, attracting more 
HTLV-1-infected lymphocytes at the same time that these proteins could mediate 
pathological disturbances on neuronal cells.

4.6 Multiple sclerosis

MS is a CNS disease mostly considered of autoimmune etiology. It shows 
demyelinated plaques that sometimes remyelinate spontaneously. Remyelination 
involves the recruitment of OPC, which differentiate into mature oligodendrocytes 
in damaged areas to promote remyelination. Nevertheless, the remyelination 
process is prone to fail, leading to progressive disability [41, 143]. Even though there 
are multiple reports linking semaphorins with lymphocyte signaling during MS; 
in this section, we will focus on discussing the reports that have linked semaphorin 
signaling in oligodendrocytes during MS.

Sema3 proteins are the main semaphorins related to MS, although there is an 
increasing evidence of Sema4 involvement as well. Using postmortem human 
samples, the Lubetzki lab [144] showed the presence of numerous cells positive 
for Sema3A or Sema3F transcripts around and within demyelinating white matter 
lesions in MS brains, whereas these transcripts were absent in control adult brain 
white matter. The differential expression of Sema3A and Sema3F was strictly 
restricted to active plaques. No expression was detected in normal white matter 



Neurons - Dendrites and Axons

32

binding to the 3′-untranslated region of target mRNAs [124]. The Perlson lab [125] 
analyzed miRNA profiles from axons and somas of two ALS mouse models, SOD1 
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miRNAs were significantly altered in the axons expressing ALS mutations, but not 
in the somas, indicating that miRNA could be regulating local functions in motor 
neuron axons [125]. Later, the same lab using qRT-PCR showed that one of these 
miRNAs, miR126-5p, downregulates Sema3A, Sema3B, neuropilin-1, and neuropi-
lin-2 transcript levels in HeLa cells. Primary myoblasts with the SOD1G93A muta-
tion were transfected with miR126-5p and cultured in a distal compartment of a 
microfluidic chamber together with a motor neuron explant placed in the proximal 
compartment. They showed that in the microfluidic chamber, the rate of axons that 
traversed the distal compartment was increased respect to the control condition 
of myoblasts transfected with an irrelevant miRNA. In addition, the injection of 
miR126-5p to ALS mice increased the amount of intact neuromuscular junctions 
revealing higher innervation in treated muscles compared to the mock condition. 
Three parameters: Mean Stand Index (measurement of the speed at which the 
paws detach from the walking surface), single-support parameter (the relative 
duration of all combined paws in contact with the glass floor), and base of support 
parameter (the average width of limb spreading between front or hind paws) were 
measured in ALS mice, and in all cases, the injection of miR126-5p improved all 
parameters respect to the control [126]. Based on these observations and previous 
reports, the authors suggested an attractive model of Sema3A/neuropilin-1 interac-
tion that explains how the motor neuron degeneration in ALS could be regulated by 
miR126-5p. miR126-5p decrease in ALS could enhance Sema3A secretion in muscle 
and overexpression of neuropilin-1 in axons, increasing Sema3A signaling in the 
neuromuscular junction and leading to axon degeneration [126].

It is of consideration to test the results obtained with ALS mouse models in 
human samples. Motor cortex tissue samples showed increased Sema3A mRNA lev-
els by quantitative RT-PCR in ALS patients (eight cases aged 44–72 years) compared 
to control samples (six subjects aged 45–84 years, with no neurological disease 
history). Likewise, by immunohistochemistry, the motor cortex showed stronger 
cytoplasmic and axonal Sema3A labeling in motor neurons of ALS patients com-
pared to controls. Sema3A mRNA levels and immunohistological labeling showed, 
however, no difference between ALS patients and controls in spinal cord tissue 
samples [127]. Sema3A levels in human samples support the previous findings in 
ALS mouse models discussed above. However, other semaphorins and neurological 
factors not studied yet in the context of ALS may provide a better understanding of 
semaphorin function and mechanisms on ALS pathology.

4.5 Spastic paraparesis associated to HTLV-1

HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is 
produced by infection with the retrovirus HTLV-1 (Human T-cell lymphotropic 
virus type 1 (HTLV-1) [128, 129]. HTLV-1 is transmitted by breast-feeding, sexual 
intercourse, and parenterally [130]. Worldwide, around 15–20 million people 
are infected with HTLV-1; however, only 3–5% develop HAM/TSP. Another ~5% 
develop adult T-cell leukemia/lymphoma (ATL), whereas over 90% of infected 
people are asymptomatic carriers [131]. The most common HAM/TSP symptom 
is lower limb motor dysfunction, followed with bladder/bowel dysfunctions and 
sensory alterations [132]. The virus mainly infects CD4+-T-cells, while monocytes, 
B-cells, CD8+-T-cells, and DC are infected to a lesser extent and found in spinal cord 
lesions together with infected astrocytes and endothelial cells [7, 133]. HAM/TSP 
causes alteration of CNS axonal transport based on the presence of APP deposits 
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in the axons, a classical marker of defects in fast axonal transport [134, 135]. 
Immunological studies have shown a chronic infiltration of activated CD4+ and 
CD8+-T-cells into the CNS [136].

It is a consensus that the paraparesis axonopathy generates as a consequence of 
chronic extracellular action of viral proteins secreted by the infected lymphocytes 
present in the CNS [137, 138]. Among secreted proteins, Tax viral protein acts on 
several viral and cellular processes, modulates various cellular signaling pathways, 
and has also been detected in the CSF of HAM/TSP patients. In the cytoplasm of 
infected lymphocytes, Tax activates NF-kB pathway responsible for proliferation 
and differentiation of T-cells, whereas in the nucleus, Tax activates the ATP/CREB 
pathway. Tax can also be secreted via endoplasmic reticulum-Golgi apparatus and 
by exosomes [136–141]. Tax secreted from activated peripheral blood mononuclear 
cells (PBMCs) could explain the presence of Tax in the plasma and CSF of infected 
patients and carriers [141].

Using in vitro culture of PBMCs from HAM/TSP patients, it has been recently 
found that the levels of secreted Sema4D were increased compared to healthy 
subjects [142]. Elevated Sema4D could be explained as a result of increased levels 
of MT1-MMP—the enzyme responsible for generating soluble Sema4D (Sema4D) 
from the transmembrane Sema4D—found in PBMCs from HAM/TSP patients. 
It has been also found that Tax and SEMA4D co-immunoprecipitate from PBMC 
culture medium. To test the effect of Tax and Sema4D (or the Tax/Sema4D 
complex) in neuronal cells, culture media from infected lymphocytes were added 
to PC12 cells during their differentiation to neuronal type, finding decreased 
neurite length as a result. The effect of HTLV-1-infected PBMC culture media was 
blocked by both anti-Sema4D and anti-Tax antibodies, suggesting neurite length 
reduction by a Tax/Sema4D complex [142]. In the same report, it was shown that 
infected lymphocytes strongly migrate in response to Sema4D using a trans-well 
system. It was found that in the population of migrated lymphocytes, the levels of 
CRMP-2 phosphorylation at Ser522 were increased [142]. A change in Sema4D-
mediated phosphorylation of CRMP-2 could be responsible for the increased 
motility. Authors proposed  that infected lymphocytes have an increased migra-
tory response toward Sema4D, making them able to cross the BBB [142]. Once 
in the CNS, infected lymphocytes secrete Tax and Sema4D, attracting more 
HTLV-1-infected lymphocytes at the same time that these proteins could mediate 
pathological disturbances on neuronal cells.

4.6 Multiple sclerosis

MS is a CNS disease mostly considered of autoimmune etiology. It shows 
demyelinated plaques that sometimes remyelinate spontaneously. Remyelination 
involves the recruitment of OPC, which differentiate into mature oligodendrocytes 
in damaged areas to promote remyelination. Nevertheless, the remyelination 
process is prone to fail, leading to progressive disability [41, 143]. Even though there 
are multiple reports linking semaphorins with lymphocyte signaling during MS; 
in this section, we will focus on discussing the reports that have linked semaphorin 
signaling in oligodendrocytes during MS.

Sema3 proteins are the main semaphorins related to MS, although there is an 
increasing evidence of Sema4 involvement as well. Using postmortem human 
samples, the Lubetzki lab [144] showed the presence of numerous cells positive 
for Sema3A or Sema3F transcripts around and within demyelinating white matter 
lesions in MS brains, whereas these transcripts were absent in control adult brain 
white matter. The differential expression of Sema3A and Sema3F was strictly 
restricted to active plaques. No expression was detected in normal white matter 
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distant to active lesions, around/within chronically demyelinated lesions or remy-
elinated plaques [144]. Later, also in human MS tissue samples, it was shown that 
although the chemoattractant Sema3F and chemorepellent Sema3A had similar 
protein expression patterns in some lesions, Sema3A was predominantly expressed 
in chronic active lesions, which mostly contain few OPCs [145].

The Lubetzki lab [42] also used a mouse model where demyelinated lesions are 
induced by lysophosphatidylcholine injection. They found that adult OPCs express 
Sema3 receptors (plexin A and neuropilin 1 and 2) and that the expression of these 
receptors, together with Sema3A and Sema3F, is increased after the induction of 
lesions. Interestingly, in vivo lentiviral expression of Sema3A decreased the OPC 
density in induced lesions, whereas Sema3F produced the opposite effect. When a 
transgenic mouse with a mutated NRP1 preventing Sema3A binding was used, an 
increase in OPC density was found after the induction of lesions compared to wild-
type mice. The density of remyelinated axons increased in lesions of animals receiv-
ing the Sema3F, but not the Sema3A lentiviral vector [42]. Using a similar approach, 
in a more recent publication 145, the authors injected recombinant Sema3A and 
Sema3F to mice. Sema3A-treated mice had significantly fewer OPCs on the side of 
the lesion compared to the opposite side without lesion, whereas Sema3F-treated 
mice had increased number of OPCs in the lesion side [145]. Parallel studies in rats 
have shown that Sema3A inhibits CNS remyelination and the lineage progression 
of OPCs in demyelinated lesions, arresting OPCs at a premyelinating state [44]. 
Finally, a recent report using exome sequencing analysis found an association of a 
missense mutation in the plexin A3 gene (receptor of Sema3A and Sema3F) with 
increased disability in MS males. Given the gender association, the authors debated 
whether the plexin A3 mutation could alter the protein stability, interfering with 
its ligand binding and arguing the possibility of protective effects of estradiol in 
females [146]. Considering that in MS lesions, Sema3A and its receptors are also 
expressed in neurons, reactive astrocytes, and microglia/macrophages [147], the 
source of Sema3A can be multiple and simultaneously affect not only OPCs signal-
ing, but also other cell types.

There are also some reports linking MS with Sema4. Ferritin uptake by oligo-
dendrocytes is mediated by the Tim2 receptor and required for iron acquisition. 
In addition to ferritin, Tim2 binds Sema4A [148]. Recombinant Sema4A exposure 
to primary rat OPCs resulted in dose-dependent OPC cytotoxicity. Astrocytes 
and mature oligodendrocytes were, however, unaffected. The authors suggested 
that the observed cytotoxicity could be mediated by Tim2 receptor. Lymphocytes, 
macrophages, or microglia could be the source of Sema4A in vivo [149]. Later, the 
same group found that human oligodendrocytes undergo apoptosis when exposed to 
Sema4A and that the levels of this protein are increased in multiple sclerosis patients 
[150]. A different research group used recombinant Sema4D in an in vitro model of 
cultured OPC, resulting in actin filament rearrangement indicative of cytoskeletal 
collapse, along with an increase in apoptotic cells and fewer OPC differentiating into 
mature oligodendrocytes. All these effects were avoided by incubation with anti-
Sema4D antibody [39]. The relative contribution of different semaphorins remains 
to be tested in future experiments in order to understand their role in the nervous 
system during MS.

4.7 Cross talk between the immune and the nervous systems

Even though the semaphorin signaling in lymphocytes is not the main subject 
of this chapter, it is impossible to completely dissociate the semaphorin signaling 
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in the nervous system from their roles in the immune system. The cross talk 
between these systems is extensive, and different neurological disorders are 
considered to have an important neuroinflammatory component. For example, 
the most commonly used animal model for MS is the experimental autoimmune 
encephalomyelitis (EAE) model, which resembles neuroinflammatory condi-
tions. Different authors suggest that the effect of semaphorins in the nervous 
system is most likely an indirect effect through modulation of the neuroinflam-
mation produced by immune cells in the nervous system, supported by using 
the EAE model. For instance, the EAE pathology is exacerbated in Sema7A-
deficient mice, and T cells are hyperactive in response to activation in this model. 
Similarly, Sema4A is increased in MS patients and associated to nonresponsive-
ness to IFN-β therapy. Anti-Sema4D antibodies inhibited neuroinflammation 
during EAE [151–153].

Most of the patients who later will develop MS, usually, have an acute episode 
of neurological disturbance known as clinically isolated syndrome (CIS). The 
Montalban lab [154], using mass-spectrometry analysis, identified proteins associ-
ated with conversion to MS in CSF samples from CIS patients in a follow-up study. 
They found that Sema7A was downregulated in patients who later converted to MS 
[154, 155]. Using the EAE model, the same group found that Sema3A is increased 
in the CNS and decreased in the immune system, whereas Sema7A is increased in 
both systems [156]. The above results suggest an intricated system where different 
semaphorins can be participating at the same time. It is important to understand the 
relative contribution of different neuronal types and different immune cell types to 
the pathology and also the amount of soluble semaphorins available to interact with 
these cells.

5. Conclusion and future perspectives

Throughout this chapter, we have reviewed the currently known implications of 
different semaphorin classes to some relevant neurological disorders, highlighting 
their receptors and signaling pathways that could be affected in neuropathologies. 
Even though the diseases we discussed here represent just a fraction among several 
other semaphorin-affected neurodegenerative, psychiatric, and immunological 
disorders, they are also likely representative of the semaphorin function. The 
advances so far in this field are promising, yet the results obtained from murine 
systems require testing on human models and subsequently, approaching to 
eventual therapies and clinical trials. We have already mentioned the potential of 
semaphorins for cell replacement therapy, such as in the recent approaches on PD 
[105], or the alternative new drug developments to target specific semaphorin-
induced kinases, such as in AD [67]. All these new treatment alternatives emerged 
in the recent years from the advances in understanding semaphorin-mediated 
mechanisms on human diseases. In addition, semaphorins have been recently 
pointed as the center for new therapeutic strategies using blocking antibodies. 
For example, the VX15/2503, an anti-Sema4D antibody has been characterized 
for clinical development on MS, Huntington’s disease, and cancer [157]. LaGanke 
et al. carried out a phase 1 study providing evidence that the VX15/2503 anti-
semaphorin 4D antibody administered at various doses was safe and tolerated in 
patients with MS [158]. It is expected in following years that new breakthroughs 
will further highlight semaphorin function in neurodegenerative conditions and 
contribute to future therapeutic strategies.
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mature oligodendrocytes. All these effects were avoided by incubation with anti-
Sema4D antibody [39]. The relative contribution of different semaphorins remains 
to be tested in future experiments in order to understand their role in the nervous 
system during MS.

4.7 Cross talk between the immune and the nervous systems

Even though the semaphorin signaling in lymphocytes is not the main subject 
of this chapter, it is impossible to completely dissociate the semaphorin signaling 
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in the nervous system from their roles in the immune system. The cross talk 
between these systems is extensive, and different neurological disorders are 
considered to have an important neuroinflammatory component. For example, 
the most commonly used animal model for MS is the experimental autoimmune 
encephalomyelitis (EAE) model, which resembles neuroinflammatory condi-
tions. Different authors suggest that the effect of semaphorins in the nervous 
system is most likely an indirect effect through modulation of the neuroinflam-
mation produced by immune cells in the nervous system, supported by using 
the EAE model. For instance, the EAE pathology is exacerbated in Sema7A-
deficient mice, and T cells are hyperactive in response to activation in this model. 
Similarly, Sema4A is increased in MS patients and associated to nonresponsive-
ness to IFN-β therapy. Anti-Sema4D antibodies inhibited neuroinflammation 
during EAE [151–153].

Most of the patients who later will develop MS, usually, have an acute episode 
of neurological disturbance known as clinically isolated syndrome (CIS). The 
Montalban lab [154], using mass-spectrometry analysis, identified proteins associ-
ated with conversion to MS in CSF samples from CIS patients in a follow-up study. 
They found that Sema7A was downregulated in patients who later converted to MS 
[154, 155]. Using the EAE model, the same group found that Sema3A is increased 
in the CNS and decreased in the immune system, whereas Sema7A is increased in 
both systems [156]. The above results suggest an intricated system where different 
semaphorins can be participating at the same time. It is important to understand the 
relative contribution of different neuronal types and different immune cell types to 
the pathology and also the amount of soluble semaphorins available to interact with 
these cells.

5. Conclusion and future perspectives

Throughout this chapter, we have reviewed the currently known implications of 
different semaphorin classes to some relevant neurological disorders, highlighting 
their receptors and signaling pathways that could be affected in neuropathologies. 
Even though the diseases we discussed here represent just a fraction among several 
other semaphorin-affected neurodegenerative, psychiatric, and immunological 
disorders, they are also likely representative of the semaphorin function. The 
advances so far in this field are promising, yet the results obtained from murine 
systems require testing on human models and subsequently, approaching to 
eventual therapies and clinical trials. We have already mentioned the potential of 
semaphorins for cell replacement therapy, such as in the recent approaches on PD 
[105], or the alternative new drug developments to target specific semaphorin-
induced kinases, such as in AD [67]. All these new treatment alternatives emerged 
in the recent years from the advances in understanding semaphorin-mediated 
mechanisms on human diseases. In addition, semaphorins have been recently 
pointed as the center for new therapeutic strategies using blocking antibodies. 
For example, the VX15/2503, an anti-Sema4D antibody has been characterized 
for clinical development on MS, Huntington’s disease, and cancer [157]. LaGanke 
et al. carried out a phase 1 study providing evidence that the VX15/2503 anti-
semaphorin 4D antibody administered at various doses was safe and tolerated in 
patients with MS [158]. It is expected in following years that new breakthroughs 
will further highlight semaphorin function in neurodegenerative conditions and 
contribute to future therapeutic strategies.
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Chapter 3

Neurodegenerative Diseases and 
Their Therapeutic Approaches
Farhin Patel and Palash Mandal

Abstract

Alzheimer’s disease and Parkinson’s disease are characterized as a chronic and 
progressive neurodegenerative disorder and are manifested by the loss of neurons 
within the brain and/or spinal cord. In the present chapter, we would like to sum-
marize the molecular mechanism focusing on metabolic modification associated with 
neurodegenerative diseases or heritable genetic disorders. The identification of the 
exact molecular mechanisms involved in these diseases would facilitate the discovery 
of earlier pathophysiological markers along with substantial therapies, which may 
consist (of) mitochondria-targeted antioxidant therapy, mitochondrial dynamics 
modulators, epigenetic modulators, and neural stem cell therapy. Therefore, all these 
therapies may hold particular assurance as influential neuroprotective therapies in the 
treatment of neurodegenerative diseases.

Keywords: neurons, mitochondria-targeted antioxidants, mitochondrial dynamics, 
epigenetic regulations, stem cell, neurodegenerative diseases

1. Introduction

1.1 What are neurons?

Neurons or nerve cells are the functional unit of the brain and nervous system, 
and they produce electrical signals known as action potentials. Action potentials 
permit them to speedily pass on the details over long distances. Their connections 
define who we are as a person. The creation of new neurons in the brain is known as 
neurogenesis [1].

1.2 Anatomy of a neuron

Different types of neurons may differ in a number of ways, but they all include 
three distinct regions with differing functions, that is, the cell body (soma), fol-
lowed by the dendrites, the axons, and the connected axon terminals (Figure 1).

a. Cell body: It is the place of biogenesis of almost all neuronal proteins and 
membranes. It contains a nucleus.

b. Dendrites: The extensions of neurons that receive signals and conduct them 
toward the cell body (soma) are known as dendrites.
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and they produce electrical signals known as action potentials. Action potentials 
permit them to speedily pass on the details over long distances. Their connections 
define who we are as a person. The creation of new neurons in the brain is known as 
neurogenesis [1].

1.2 Anatomy of a neuron

Different types of neurons may differ in a number of ways, but they all include 
three distinct regions with differing functions, that is, the cell body (soma), fol-
lowed by the dendrites, the axons, and the connected axon terminals (Figure 1).

a. Cell body: It is the place of biogenesis of almost all neuronal proteins and 
membranes. It contains a nucleus.

b. Dendrites: The extensions of neurons that receive signals and conduct them 
toward the cell body (soma) are known as dendrites.
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c. Axon (nerve fiber): The extensions of neurons that conduct the signals away 
from the cell body to the other nerve cells or neuron are known as axons.

d. Axon terminal (end-plate): The end part or terminal part of axons that makes 
a synaptic contact with other nerve cells is known as an axon terminal. It is 
responsible for the initiation of transmission of nerve impulse to another nerve 
cell [2].

1.3 Functions of neurons

a. Conduction and transmission of nerve impulses

b. Initiation and conduction of action potential

c. Synaptic transmission [3]

1.4 How neurons transmit information throughout the body?

Neurons converse with other neurons through axons and dendrites. When a 
neuron receives information from another neuron, it transmits an electrical signal 
along the length of the respective axon, known as action potential. At the axon 
terminal, the electrical signal is changed into chemical signal. The axon releases 
chemical messengers called neurotransmitters. The neurotransmitters are released 
into the gap between the axon terminal and the tip of a dendrite (receptor site) of 
a further neuron. The space between the axon terminal and the tip of a dendrite 
is called a synapse. The neurotransmitters travel along the short distance through 
the synaptic gap to the dendrite. The dendrite receives the neurotransmitters and 
translates the chemical signal into electrical signal. This electrical signal travels all 
the way through the neuron, to be converted back into a chemical signal when it 
gets to adjoining neurons [4].

Figure 1. 
Anatomy of neuron.
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2. Neurodegenerative diseases

Etymologically, the word neurodegeneration comprises of “neuro,” which refers 
to neurons, and “degeneration,” which refers to the process of losing structure and/
or function of either tissues or organs [5]. A neurodegenerative disease is consid-
ered as a slow, progressive failure of nerve cells within the central nervous system 
(CNS). This leads to deficits in particular brain functions like learning, movement, 
and cognition generally performed by the CNS (brain and spinal cord).

2.1 Factors associated with neurodegenerative diseases

a. Aberrant protein dynamics with aggregation and degradation of defective 
protein [6]

b. Oxidative stress and reactive oxygen species (ROS) formation

c. Impaired bioenergetics and mitochondrial dysfunction

d. Excessive exposure to metals and pesticides (Figure 2)

2.2 Classification based on molecular defects

a. Trinucleotide repeat diseases: HD, spinal cerebellar atrophy, and myotonic 
dystrophy [7].

b. Prion diseases: Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker 
syndrome, and fetal familial insomnia [8].

Figure 2. 
Factors associated with neurodegenerative diseases.
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c. Synucleinopathies: PD, progressive supranuclear palsy and diffuse Lewy body 
dementia [9].

d. Tauopathies: Corticobasal degeneration, frontotemporal dementia with parkin-
sonism linked to chromosome 1\(FTDP-17), and pick disease [10].

3. Alzheimer’s disease

Alzheimer’s disease (AD) is an irreparable, progressive neurodegenerative disease 
that affects normal brain functioning [11]. It is mainly the general cause of dementia 
[12]. Dementia is a syndrome associated with memory loss and loss of abilities like 
thinking, reasoning, and language skills along with other mental illness [12].

3.1 History

This disease is named after Dr. Alois Alzheimer. He observed some brain tissue 
abnormalities in an old woman who died due to some unusual mental illness. Later, 
he examined her brain and found many abnormal tangled bundles of fibers (called 
as tau tangles, neurofibrillary) and clumps (called as amyloid plaques). That is how 
he found the cause of AD [13].

3.2 Causes

The cause of AD is not clearly understood.

a. Genetic: Nearly, 70% of the cases are related to genetic factors with the involvement 
of many specific genes [14].

1. Autosomal dominant inheritance: Also known as early-onset familial AD 
[15], it occurs due to the mutation in one of the three genes: Presenilin 1, 
presenilin 2, or amyloid precursor protein (APP) [16].

Aβ42: A protein that is the main component of senile plaques, and the levels are 
increased due to mutation in APP and presenilin genes [17].

2. Sporadic Alzheimer’s disease: In this type of AD, genetic and environmental 
factors play a major role.

Example: Inheritance of the epsilon 4 allele of the apolipoprotein E (APOE) [18, 19].

b. Cholinergic hypothesis: The cholinergic hypothesis states that AD is caused  
by the reduced synthesis of neurotransmitter acetylcholine [20].

c. Amyloid hypothesis: The amyloid hypothesis states that AD is caused by the 
deposits of extracellular amyloid beta (Aβ) [21].

d. Tau hypothesis: The tau hypothesis states that AD is caused due to abnormalities 
in tau protein, leading to the disintegration of microtubules in nerve cells [22, 23].

3.3 Molecular mechanism

(a) Proteopathy: AD has been recognized by plaque formation occurring due to 
abnormal folding of amyloid beta (Aβ) protein and tau protein in the nerve cells 

53

Neurodegenerative Diseases and Their Therapeutic Approaches
DOI: http://dx.doi.org/10.5772/intechopen.82129

(brain) leading to the degeneration of nerve cells [24]. The amyloid precursor 
protein (APP) leads to the formation of Aβ. APP plays an important role in neuron-
like developments and post-injury repair mechanism and survival [25, 26]. In AD, 
secreting enzymes like β-secretase and γ-secretase together will break down APP 
into small fragments that penetrate through the neuron membrane [27]. This leads 
to the formation of Aβ fibrils that later cluster together to form senile plaques and 
deposits in the outer side of neurons [28, 29]. Aggregated amyloid fibrils accumu-
lation leads to the disruption of cell’s calcium ion homeostasis, which results in 
apoptosis [30] (Figure 3).

(b) Tauopathy: In AD, there is an abnormal accumulation of tau protein. 
Upon phosphorylation, tau protein stabilizes the microtubules, and it is known as 
microtubule-associated protein. Tau protein undergoes certain chemical changes, 
and becomes hyperphosphorylated. This leads to the formation of neurofibrillary 
tangles upon aggregation with other threads, which results in decaying the neuro-
transport system [31].

3.4 Therapeutic approaches

3.4.1 Mitochondrial-directed therapies

Decline of N-acetyl aspartate and creatine is associated with dementia [32]. 
Supplementation of creatine was found to protect neurons in AD [33]. In hip-
pocampal neurons, administration of creatine defends against glutamate and Aβ 
toxicity in rats [34].

In AD patients, administration of lipoic acid (600 mg/day) [LA - an antioxi-
dant; coenzyme for pyruvate dehydrogenase and α-ketoglutarate dehydrogenase] 

Figure 3. 
Molecular mechanism of AD.
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stabilizes the cognitive measures [35, 36]. Decreased oxidative stress of mitochon-
dria in fibroblasts was found in AD patients due to LA and/or N-acetyl cysteine 
(antioxidant and glutathione precursor) administration [37].

CoQ10 (an antioxidant and cofactor of the electron transport chain) blocks 
apoptosis by inhibiting the permeability transition pore (PTP) of mitochondria 
[38]. Treatment of CoQ10 neutralizes the brain mitochondrial alterations made by 
amyloid-β1–40 [39]. CoQ10 was shown to protect paraquat and rotenone-induced 
mitochondrial dysfunction and neuronal death in SHSY-5Y cells (human neuro-
blastoma cells) and primary rat mesencephalic neurons, [40, 41]. In R6/2 mice, 
combined treatment of CoQ10 and minocycline reduces HTT accumulation, brain 
atrophy, and striatal neuron atrophy [42].

MitoQ (mitochondrial coenzyme Q ) reduces oxidative stress and prevents mito-
chondrial dysfunction [43]. Oral administration of MitoQ (1 mg/kg body weight) 
showed better pharmacokinetics behavior with plasma (Cmax = 33.15 ng/ml and 
Tmax = 1 hr.) in Phase I trial (Antipodean Pharmaceuticals Inc., San Francisco, 
CA).

3.4.2 Stem cell therapy

Neural stem cell therapy provides a potential to neurons derived from stem 
cells to integrate with existing neuronal network of the host brain [44]. In animal 
models, stem cell transplantation elevates the level of acetylcholine, resulting in an 
improved cognitive and memory function. Stem cells secrete neurotrophic factors, 
which modulate neuroplasticity and neurogenesis [45, 46].

Embryonic stem cells (ESCs)-derived neuron progenitor cells (NPCs) when 
transplanted into an amyloid-β injured in vitro model, after 2 weeks of amyloid-β 
injection, showed an increased escape latency when compared with phosphate-
buffered saline-treated controls [47]. It has been reported that ESCs-derived NPCs 
improve memory impairment in AD models [48].

Human induced pluripotent stem cell (iPSC) therapy delivers a possible strategy 
for drug development against AD [49]. Neurons differentiated from iPSCs increase 
the secretion of amyloid-β42 as it is affected by γ-secretase inhibitors [50].

Bone marrow (BM)-derived mesenchymal stem cells (MSCs) play an important 
role in the removal of amyloid-β plaques from the hippocampus [51]. Human MSCs 
promoted amyloid-β clearance and enhanced autophagy and neuronal survival in 
an amyloid-β-treated mouse model [46]. Transplantation of adipose-derived MSCs 
(AMSCs) into AD brain improved the acetylcholine levels along with microglia 
activation and cognitive functions [52, 53]. In a transgenic mouse model, human 
umbilical cord-derived MSCs differentiated themselves into neuron-like cells, and 
these cells when transplanted into an amyloid-β precursor protein (AβPP) and 
PS1 (AβPP/PS1) resulted in improved cognitive function and decreased amyloid β 
deposition [54].

3.4.3 Epigenetic modulators

Histone deacetylases have been linked to AD. Treatment with HDACi (histone 
deacetylase inhibitors) induced dendrite growth, increased the number of syn-
apses, and restored learning and memory deficits in mice with AD [55] (Table 1).

3.4.4 Mitochondrial dynamics modulators

Two recent studies have also shown the protective effects mediated by inhibition 
of mitochondrial fission via Drp1 deficiency on mitochondria and neurons in tau 
and APP transgenic animal models for AD [60, 61].
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4. Parkinson’s disease

Parkinson’s disease (PD) is a progressive, long-term neurodegenerative disorder 
that affects the motor neurons [62]. It is caused by a loss of neurons in the brain 
part known as substantia nigra leading to a reduction in a neurotransmitter called 
dopamine [62].

4.1 History

In 1817, James Parkinson (before known as Jean-Martin Charcot) published 
an essay named “Shaking Palsy” describing six cases of paralysis agitans showing 
certain characteristics of this disease [63, 64].

In 1865, William Sanders termed this disease as Parkinson’s disease [65].

4.2 Causes

The following are the causes of PD:
(a) Environmental factors: Exposure to metals, solvents, and pesticides, or any 

head injuries are considered to be a factor for the onset of PD [66, 67].
(b) Genetics: Few percent of cases are developing this disease due to mutation in 

one specific gene out of several genes related to PD (Table 2).

4.3 Molecular mechanism

The mechanism involved in the development of PD includes various factors 
like the aggregations of misfolded proteins, activation of protein degradation 

HDACi Function References

Sodium butyrate In neuroblastoma cells, it induces phosphorylation of tau 
protein and programmed cell death resulting in restoring 
memory.

[56]

Phenylbutyrate
(4-PBA)

InTg2576 mouse model, 4-PBA restores fear learning and 
rescues dendritic spine losses that are associated with memory 
shortage.

[57]

Suberoylanilide 
hydroxamic acid

In mutant mice model, systemic treatment restores contextual 
memory

[58]

Resveratrol
(activator of class III 
HDAC)

In in vivo and in vitro studies, SIRT1 reduces the 
amyloidogenic processing of APP

[59]

Table 1. 
Histone deacetylase inhibitors and their respective functions in AD.

Name Gene References

Autosomal-dominant PD PARK1/PARK4 SNCA (α-synuclein) [68, 69, 72]

PARK2 Parkin [68, 69, 72]

PARK5 UCHL [68, 69, 72]

PARK8 LRRK2 [68, 69, 72]

Autosomal-recessive PD PARK6 PINK1 [68, 70–72]

PARK7 DJ-1 [68, 70–72]

Table 2. 
Genes involved in PD.
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pathways, mitochondrial damage, and oxidative stress, along with certain gene 
mutations [73–75].

4.3.1 Aggregation of misfolded proteins

- Accumulation of Lewy bodies in dopamine neurons of the substantia nigra 
pars compacta [75]

- Hyperphosphorylation of tau protein causes accumulation of neurofibrillary 
tangles [76]

4.3.2 Protein degradation pathways

- Ubiquitin-proteasome system (UPS): It is responsible for the degradation of 
misfolded or damaged proteins in the cytosol, nucleus, or endoplasmic reticulum 
(ER) [77]. Impairment in this system leads to aggregation of misfolded amyloid 
proteins (Lewy bodies) [78]. Other proteins like UCH-L1 and Parkin are involved in 
the degradation of misfolded α-synuclein [79]

- Chaperones (heat shock proteins/HSP): Chaperones undergo dysfunction-
ing in PD, as they play a vital role in cell-defense mechanism involved in protein 
degradation and folding of proteins. Major HSPs involved are HSP 26, HSP40, HSP 
60, HSP 70, HSP 90, and HSP 100 [80]. HSPs aggregate with α-synuclein or tau 
protein and form insoluble structures resulting in reduced toxicity of α-synuclein or 
tau protein [81, 82]

- Autophagy-lysosomal pathway (ALP): It serves to clear Lewy bodies in PD act-
ing as an alternative clearance mechanism for proteins [83, 84]. Chaperone-mediated 
autophagy (CMA) helps in the degradation of α-synuclein by selectively translocat-
ing into lysosomes [83]. Therefore, dysfunctioning of CMA decreases the efficiency 
of α-synuclein, leading to excessive accumulation of this protein. This results in 
impaired neuronal activity as observed in PD [73, 85]. Failure of formation of 
autophagosome, its inability to bind with lysosomes due to deficiency of lysozymes, 
or dysfunction of HSP70 results in dysfunction of ALP in PD [73, 85] (Figure 4)

4.3.3 Damage to mitochondria and oxidative stress

- Abnormality of complex-I in mitochondria directly interferes with ATP pro-
duction in the cell, resulting in cell death [86]. Monoamines such as dopamine are 
cleaved by monoamine oxidase-B (MAO-B) and combined with oxygen-forming 
reactive oxygen species (ROS) [87]. Increased oxidative stress was observed in PD.

4.3.4 Genetic mutations

The most common genes related to PD are α-synuclein, DJ-1, PINK1, and Parkin 
[88] (Table 3).

4.4 Therapeutic approaches

4.4.1 Mitochondria-directed therapies

Administration of creatine increases tyrosine hydroxylase immunoreactive 
fiber density and soma size of dopaminergic neurons in mesencephalic cultures by 
protecting against neurotoxic insults induced by serum and glucose deprivation, 
MPP+, and 6-hydroxydopamine [33, 92]. It has been reported that dopamine loss 
was prevented by administration of creatine. In substantia nigra, creatine also 
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reduces loss of neuron in the mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) [93].

CoQ10 protects against iron-induced apoptosis in dopaminergic neurons [94]. In 
vitro, CoQ10 exerts anti-amyloidogenic effects by disrupting preformed amyloid-β 
fibrils [95].

SS peptides (Szeto Schiller) act as antioxidants that target mitochondria in an 
independent manner. In mice, reports showed that SS-20 and SS-31 provide protec-
tion against MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) neurotoxicity. 
SS-31 provides protection against dopamine loss in the striatum. In substantia 
nigra, SS-31 also provides protection against the loss of tyrosine hydroxylase 
immunoreactive neurons. In MPTP-treated mice, SS-20 provides potential neuronal 
protection on dopaminergic neurons in PD [96].

4.4.2 Stem cell therapy

In the first trial of cell-based therapy, post-mitotic dopamine neuroblasts iso-
lated from human embryonic mesencephalic tissue have been successfully grafted 
in PD patients [97]. It has been confirmed through increase in 18F-dopa intake, 

Figure 4. 
Molecular mechanism of PD.

Genes Dysfunction References

α-synuclein Aggregation of misfolded amyloid proteins [89]

Parkin Aggregation of misfolded amyloid proteins within SNpc [89]

DJ-1 (PARK7) Activities like transcriptional regulation, antioxidants, chaperone, and 
protease are dysregulated

[90]

PINK1 
(PARK6)

Mitochondrial dysfunctioning
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pathways, mitochondrial damage, and oxidative stress, along with certain gene 
mutations [73–75].

4.3.1 Aggregation of misfolded proteins
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reactive oxygen species (ROS) [87]. Increased oxidative stress was observed in PD.

4.3.4 Genetic mutations

The most common genes related to PD are α-synuclein, DJ-1, PINK1, and Parkin 
[88] (Table 3).

4.4 Therapeutic approaches
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protecting against neurotoxic insults induced by serum and glucose deprivation, 
MPP+, and 6-hydroxydopamine [33, 92]. It has been reported that dopamine loss 
was prevented by administration of creatine. In substantia nigra, creatine also 
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reduces loss of neuron in the mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) [93].

CoQ10 protects against iron-induced apoptosis in dopaminergic neurons [94]. In 
vitro, CoQ10 exerts anti-amyloidogenic effects by disrupting preformed amyloid-β 
fibrils [95].

SS peptides (Szeto Schiller) act as antioxidants that target mitochondria in an 
independent manner. In mice, reports showed that SS-20 and SS-31 provide protec-
tion against MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) neurotoxicity. 
SS-31 provides protection against dopamine loss in the striatum. In substantia 
nigra, SS-31 also provides protection against the loss of tyrosine hydroxylase 
immunoreactive neurons. In MPTP-treated mice, SS-20 provides potential neuronal 
protection on dopaminergic neurons in PD [96].

4.4.2 Stem cell therapy

In the first trial of cell-based therapy, post-mitotic dopamine neuroblasts iso-
lated from human embryonic mesencephalic tissue have been successfully grafted 
in PD patients [97]. It has been confirmed through increase in 18F-dopa intake, 
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detected through positron emission tomography (PET) [98, 99]. The grafts restore 
dopamine release. Disadvantages of this therapy are limited tissue availability and 
grafts standardization.

Recently, researchers have shed light on stem cell therapy. The production of 
dopamine neuroblasts from stem cells for transplantation in PD patients has been 
focused on. The aim was to release dopamine in a stable manner and exhibit the 
electrophysiological, molecular, and morphological properties of substantia nigra 
neurons [100, 101]. In clinical trials, it has been found that dopaminergic cells 
derived from embryonic stem cells can survive and reverse behavioral deficits after 
transplantation in PD animal models [102, 103].

4.4.3 Epigenetic modulators

In sporadic PD patients, there is an increased α-synuclein expression in dopami-
nergic neurons, which is linked with α-synuclein hypomethylation [104]. In familial 
PD patients, decreased histone acetylation is linked with increased α-synuclein lev-
els [105]. In vitro model, mutation in α-synuclein leads to increased histone acetyla-
tion mediated through HDAC Sirt2. Treatment of Sirt2 siRNA resulted in decreased 
α-synuclein-mediated toxicity [106]. Administration of levodopa elevated the 
dopamine level, which partially showed decreased symptoms of PD.  
It is correlated with deacetylation of H4K5, K12, and K16 [107].

4.4.4 Mitochondrial dynamics modulators

Recombinant adeno-associated virus expressing the dominant negative Drp1 
(dynamin-related protein 1) mutant or Mdivi-1, a small molecular inhibitor of 
Drp1, has been reported to inhibit mitochondrial fragmentation, restore dopamine 
release, and prevent dopamine neuron loss in PD animal models [108].

Activation of DRP1-mediated mitochondrial fission is an important contribut-
ing factor in the progression of PD. Neurons lacking PINK or Parkin accumulate 
DRP1, resulting in excessive mitochondrial fission, increased oxidative stress, and 
reduced ATP production [108, 109]. These defects can be reversed by the inhibition 
of mitochondrial fission with the use of mdivi-1, an inhibitor of the DRP1 pathway, 
or by overexpression of MFN2 (Mitofusin 2) or OPA1 (Optic atrophy protein 1) 
[109, 110].

In vitro models of glutamate-toxicity or OGD (oxygen-glucose deprivation) in 
mouse hippocampal neurons or in vivo mouse models of transient focal ischemia 
can be protected from enhanced mitochondrial fission and apoptosis by DRP1 
knockdown or mdivi-1 inhibition [111, 112].

5. Conclusion

The recent advancements in the field of neurodegenerative diseases like AD and 
PD are based on targeting the degenerative progressions that lead to the death of 
neurons. The death of neurons leads to irreversible neuropathological conditions, 
making it difficult to be functional in humans. Because of the intricacy involved 
in respective neurodegenerative diseases, researchers have identified few potential 
biomarkers. At present, many therapeutic approaches have been suggested to treat 
the symptoms of both neurodegenerative diseases. Yet there exists a lacuna for the 
effective therapies. Hence, few therapeutic approaches like mitochondria-targeted 
antioxidant therapy, mitochondrial dynamics modulators, epigenetic modulators, 
and neural stem cell therapy may prove to have a potential in treating AD and PD.
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Chapter 4

Gap Junctions in the Dorsal Root 
Ganglia
Vishwajit Ravindra Deshmukh

Abstract

Dorsal root ganglion (DRG) or spinal ganglia are present in relation to the 
dorsal ramus of the spinal nerves. The neurons in the dorsal root ganglion are 
pseudounipolar in type. The single process from the soma or body will divide 
into the central and peripheral processes. Dorsal root ganglion neurons con-
stitute the first-order neurons for the pain pathways and can be categorized 
as small, medium and large varieties. Peripheral process collects the impulses 
from the peripheral receptors and the central process reaches out to the central 
nervous system. The neurons in the DRG were surrounded by the satellite glial 
cells (SGC). These cells ensheath the neurons from all the sides. Besides cover-
ing the neurons, they share features very much similar to the astrocytes such as 
expression of glutamine synthetase. Many quantitative studies have identified 
the different proportion of satellite glial cells for individual neurons. These cells 
have been identified to get activated when confronted by the noxious stimuli, 
injury or inflammation. Clinically, these cells were implied to be related to the 
many neurological disorders.

Keywords: neurons, satellite glial cells, communicating junctions, pain, connexin-43, 
glial fibrillary acidic protein, peripherin, Nissl stain, immunohistochemistry

1. Introduction

The human nervous system is an extremely efficient, compact, fast and reliable 
computing system, yet it weighs substantially less than most of the computers and 
performs at an incredibly greater capacity.

The nervous system is subdivided, morphologically into two components, the 
central nervous system (CNS) consisting of the brain and spinal cord and the 
peripheral nervous system (PNS) comprising of cranial and spinal nerves and 
ganglia.

Discrete collections of nerve cell bodies in the CNS are known as nuclei while 
in PNS, these are called ganglia. The nerve cell bodies are of varying sizes and 
shapes. Ganglia are present in the dorsal root of spinal nerves, the sensory root of 
the trigeminal nerve (Vth), Facial (VIIth), Glossopharyngeal (IXth), Vagus (Xth) 
nerves and in the autonomic nervous system [1]. Some of them have independent 
nomenclature like the “Gasserian ganglion” for the Vth nerve. Thus ganglia can be 
divided into two types somatic and autonomic (Figure 1). The nerve cell bodies in 
each of these differ in their size and shape. Somatic ganglia contain small to large 
pseudounipolar neurons while the autonomic ganglia contain small multipolar 
neurons.
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Depending on the number of processes, a neuron can be classified into various 
categories. Unipolar neurons (no dendrites only an axon) are rare in vertebrates, 
bipolar neurons (possesses an axon and a dendrite) present in olfactory mucosa and 
the retina and multipolar neurons (single axon and two or more dendrites) present 
in the central nervous system except the mesencephalic nucleus of the Vth cranial 
nerve. An additional type of neuron, the pseudounipolar neuron is present in 
sensory ganglia and the ganglia of Vth, VIIth, IXth and Xth cranial nerves. It divides 
into a central and peripheral process (Figure 2).

The neurons in sensory ganglia are at first bipolar, but the two neurites soon 
unite to form a single process during development. Structurally and electrophysi-
ologically, both these processes show characteristic features of the axon [2]. Small 
satellite glial cells tightly wrap the cell bodies of the pseudounipolar neurons in the 
ganglion. The satellite cells that surround the pseudounipolar neuron are continu-
ous with the Schwann cell sheath that surrounds the axon [3]. A distinctive feature 
of satellite glial cells by which they are distinguished from astrocytes is that they 
completely surround the individual sensory neuron. The neuron and its surround-
ing satellite glial cells form a distinct morphological and probably a functional unit 
[4]. The somatic ganglia of all the mammalian and avian species demonstrate this 
arrangement [5]. Satellite glial cells have been implicated in neuronal nutrition, 
homeostasis, and the process of apoptosis. It is known that astrocytes in the central 
nervous system perform ‘spatial buffering’ (regulation of K+) and it is presumed 

Figure 1. 
Differences in sensory and autonomic ganglia (courtesy: Cranial Nerves and Functional Anatomy, 1st ed. p. 12).

Figure 2. 
Types of neurons in nervous system.
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that SGCs also perform the same function [5]. Removing K+ from the perineuronal 
environment would reduce neuronal excitation and therefore contribute to the 
lowering of pain.

2. Morphology of Dorsal root ganglia (DRG)

Dorsal root ganglia (sensory ganglia) contain the cell bodies of primary afferent 
neurons that transmit the sensory information from the periphery into the central 
nervous system (CNS) [6]. Sensory ganglia were located near the entrance of dorsal 
root into the spinal cord, and are not a part of CNS. Sensory (somatic) ganglia lie 
outside the blood-brain barrier and are densely vascularized by fenestrated capil-
laries, making the neurons and SGCs easily accessible to compounds in the circula-
tion, including chemotherapeutic drugs [7]. Chemotherapeutic drugs show greater 
accumulation in sensory ganglia than in peripheral nerves [8]. Dorsal root ganglia 
are more sensitive to heat than other nervous tissues [9]. It is known that pulsed 
radiofrequency can selectively block sensory nerves while minimizing the destruc-
tion of motor nerves. Sluijter et al. reported that the placement of a cannula 1–2 cm 
peripheral to the dorsal root ganglia could result in maximum effect when pulsed 
radiofrequency was applied on dorsal root ganglia of the spinal cord [10]. Kikuchi 
et al. [9] classified anatomical positions and variations of dorsal root ganglia into 
intraspinal (IS), intraforaminal (IF), and extraforaminal (EF) (Figure 3).

Figure 3. 
Positions of dorsal root ganglia (DRG) were determined by two schematic lines and classified into three types. 
Line A: aligning the medial borders of L4 and L5 pedicles, Line B: aligning the centers of L4 and L5 pedicles, 
Intraspinal type (IS): DRG located proximal to line A, Intraforaminal type: DRG located between line A and 
B, Extraforaminal type: DRG located distal to line B [9].
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3. Morphology and histology of sensory (somatic) ganglia

The segmental nature of the spinal cord is demonstrated by the presence of 31 
pairs of spinal nerves, but there is little indication of segmentation in its internal 
structure. Each dorsal root is broken up into a series of rootlets that are attached to 
the spinal cord along the corresponding segment. The ventral root arises similarly 
as a series of rootlets. These rootlets join to form the ventral and dorsal roots. The 
dorsal and ventral roots traverse the subarachnoid space and pierce the arachnoid 
and dura mater. At this point, the dura mater becomes continuous with the epineu-
rium. After passing through the epidural space, the roots reach the intervertebral 
foramina, where the dorsal root ganglia are located on the dorsal root.

Certain authors have put forward their views regarding the classification of 
the neurons in the dorsal root ganglia based upon their staining properties into 
two histological types called “large light” and “small dark”, visible under the light 
microscope. This has been confirmed by recent electron microscopic analysis that 
indicates [11] the existence of two basic types of DRG neurons usually termed 
as type A and type B rather than large light and small dark [12]. The neurons in 
the dorsal root ganglion can also be divided into three types (small, medium and 
large neurons) based upon the size of their cell bodies. This classification seems 
to be more appropriate because the size of the neuronal cell bodies determine 
their function. The large neurons are mainly concerned with the transmission of 
proprioception and discriminative touch while the medium-sized neurons transmit 
nerve impulses associated with sensations like light touch, pressure, pain and tem-
perature. However, the small-sized neurons exclusively transmit action potentials 
related to pain and temperature.

Glial cells are involved in various pathological processes affecting the central ner-
vous system [13]. There is strong evidence that CNS glial cells are involved (microglia 
and astrocytes) in the induction and maintenance of neuropathic pain [14]. Following 
injury of a peripheral nerve, satellite glial cells (SGCs) in the dorsal root ganglia 
undergo changes in cell number, structure and function, similar to those in the CNS 

Figure 4. 
Schematic diagram describing the structural and functional relations between SGCs and neurons in sensory 
ganglia, and the consequences of peripheral injury.
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[15]. Peripheral nerve transection increases gap junctions and intercellular coupling 
of SGCs. SGCs also upregulated the production of proinflammatory cytokines such as 
tumor necrosis factor-α after lumbar facet joint injury [16].

Thus it is well established that glial cells play a critical role in the genesis and 
persistence of pain [17]. This is particularly true for the sensory ganglia. Though 
there are far fewer satellite glial cells than astrocytes or Schwann cells, yet because 
of their unique location in sensory ganglia, SGCs can strongly influence the afferent 
sensation. They also respond to the nerve injury by upregulating glial fibrillary acidic 
protein (GFAP) [18]. One of the ways glial cells in the sensory ganglia transmit sig-
nals is through intercellular calcium waves (ICWs) via gap junctions and adenosine-
5′-triphosphate (ATP) acting on purinergic type 2 (P2) receptors [19]. This signaling 
has been shown to be bi-directional between SGCs and neurons (Figure 4).

4. Classification of pseudounipolar neurons of dorsal root ganglia into 
small, medium and large

Older literature suggests that neurons in dorsal root ganglia can be divided into 
two histological types called “large light (LL)” and “small dark (SD)” on the basis of 
staining properties under the light microscope [20]. This population overlaps, but 
still, they show the several physiological, biochemical and functional differences. 
Small dark neurons transmit the sensation particularly carried by C fibers (non-
myelinated, slow conducting) [21]. Whereas Large light transmits the sensation 
carried via a fiber (myelinated and fast conducting). Many of the small dark neurons 
contain substance P or calcitonin gene-related peptide, and they are concerned with 
thermo- and mechanoreception, and many of them are nociceptive. The terminals of 
Large light neurons are low threshold mechanoreceptors [22]. Neurons in the sensory 
ganglia have no dendrites and also do not receive synapses but are still endowed 
with receptors for numerous neurotransmitters. More recently depending upon the 
electron microscopic appearance neurons in the dorsal root ganglia were divided into 
Type A and Type B for large light and small dark neurons respectively. Various other 
electrophysiological classification depending upon conduction velocity, modality and 
adaptation rate serves to distinguished large number of functional types of sensory 
neurons, but it is not clear how these are related to the two basic histological types.

There are contradictions among the researchers regarding the classification of 
dorsal root ganglia neurons into small, medium and large categories.

One of the studies involving chronic constriction injury model of Bennet 
and Xie [23] that retains the connection with the original receptive field so that 
hyperalgesia and allodynia can be demonstrated, classify the neurons in DRG into 
small (23–30 μm), medium (31–40 μm) and large (41–53 μm), based on the optical 
measurement of the average diameter [23]. These grouping roughly correspond to 
those giving rise to C, Aδ and Aβ fibers, respectively [21].

More recently sensory neurons in dorsal root ganglia were classified depending 
upon the immunohistochemical staining such as Nav1.8 expression in sensory neu-
rons isolated from dorsal root ganglia into small (27–31 μm), medium (31–40 μm) 
and large (40–50 μm) [24]. There are two factors, namely DNA content and tran-
scriptional activity, that are determinants of cell size [25]. Differences in neuronal 
body size seem to be primarily determined by the transcriptional activity. A positive 
correlation between the cell body and total RNA synthesis has been demonstrated in 
frog neurons, indicating that large neurons need higher transcriptional activities to 
maintain their large size [26]. The neurons transcription rate is, in turn, positively 
related to the magnitude of interactions between neurons and their targets, which 
contributes to the regulation of the soma size and metabolic activity [27].
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3. Morphology and histology of sensory (somatic) ganglia
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their function. The large neurons are mainly concerned with the transmission of 
proprioception and discriminative touch while the medium-sized neurons transmit 
nerve impulses associated with sensations like light touch, pressure, pain and tem-
perature. However, the small-sized neurons exclusively transmit action potentials 
related to pain and temperature.

Glial cells are involved in various pathological processes affecting the central ner-
vous system [13]. There is strong evidence that CNS glial cells are involved (microglia 
and astrocytes) in the induction and maintenance of neuropathic pain [14]. Following 
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undergo changes in cell number, structure and function, similar to those in the CNS 

Figure 4. 
Schematic diagram describing the structural and functional relations between SGCs and neurons in sensory 
ganglia, and the consequences of peripheral injury.

75

Gap Junctions in the Dorsal Root Ganglia
DOI: http://dx.doi.org/10.5772/intechopen.82128

[15]. Peripheral nerve transection increases gap junctions and intercellular coupling 
of SGCs. SGCs also upregulated the production of proinflammatory cytokines such as 
tumor necrosis factor-α after lumbar facet joint injury [16].

Thus it is well established that glial cells play a critical role in the genesis and 
persistence of pain [17]. This is particularly true for the sensory ganglia. Though 
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of their unique location in sensory ganglia, SGCs can strongly influence the afferent 
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nals is through intercellular calcium waves (ICWs) via gap junctions and adenosine-
5′-triphosphate (ATP) acting on purinergic type 2 (P2) receptors [19]. This signaling 
has been shown to be bi-directional between SGCs and neurons (Figure 4).
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ganglia have no dendrites and also do not receive synapses but are still endowed 
with receptors for numerous neurotransmitters. More recently depending upon the 
electron microscopic appearance neurons in the dorsal root ganglia were divided into 
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neurons, but it is not clear how these are related to the two basic histological types.

There are contradictions among the researchers regarding the classification of 
dorsal root ganglia neurons into small, medium and large categories.
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and Xie [23] that retains the connection with the original receptive field so that 
hyperalgesia and allodynia can be demonstrated, classify the neurons in DRG into 
small (23–30 μm), medium (31–40 μm) and large (41–53 μm), based on the optical 
measurement of the average diameter [23]. These grouping roughly correspond to 
those giving rise to C, Aδ and Aβ fibers, respectively [21].
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rons isolated from dorsal root ganglia into small (27–31 μm), medium (31–40 μm) 
and large (40–50 μm) [24]. There are two factors, namely DNA content and tran-
scriptional activity, that are determinants of cell size [25]. Differences in neuronal 
body size seem to be primarily determined by the transcriptional activity. A positive 
correlation between the cell body and total RNA synthesis has been demonstrated in 
frog neurons, indicating that large neurons need higher transcriptional activities to 
maintain their large size [26]. The neurons transcription rate is, in turn, positively 
related to the magnitude of interactions between neurons and their targets, which 
contributes to the regulation of the soma size and metabolic activity [27].
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Sensory neurons of the dorsal root ganglia express multiple voltage-gated 
sodium channels that substantially differ in gating kinetics and pharmacology. 
Small diameter (less than 25 μm) neurons isolated from the rat DRG express a com-
bination of fast tetrodotoxin-sensitive (TTX-S) and slow TTX-resistant (TTX-R) 
sodium channels while large diameter neurons (more than 30 μm) predominantly 
expresses TTX-S Na current [28].

Viral study including adeno-associated viral vectors (AAV) are increasingly 
used to deliver therapeutic genes to the central nervous system where they 
promote transgene expression in postmitotic neurons for long periods with little 
or no toxicity. In adult rat dorsal root ganglia authors investigated the cellular tro-
pism of AAV8 containing green fluorescent protein gene (GFP) after intra-lumbar 
DRG injection. And after injection, 2% of small DRG neurons (less than 30 μm) 
were GFP (+) as compared to 32% large (more than 60 μm) DRG neurons [29].

Electron microscopic features of dorsal root a ganglion divides the neurons 
depending upon their size and the distribution of their organelles (Figure 5). 
They were further subdivided into six subtypes according to the arrangement and 
three-dimensional organization of the Nissl bodies and Golgi apparatus in the 
perikarya. Type A1 cells were large, clear neurons in which Nissl bodies, separated 
from each other by pale narrow strands of cytoplasm containing small stacks of 
Golgi saccules and rod-like mitochondria, were evenly distributed throughout the 
perikaryon. In type A2, the Nissl bodies assumed a similar distribution but were 
separated by much wider strands of cytoplasm. Type A3, the smallest of the type A 
category, displayed densely packed Nissl bodies and long stacks of Golgi saccules 
which formed a perinuclear ring in the midportion of the perikaryon. Type B cells 
were smaller and showed a concentric zonation of their organelles. In type B1, 
large Nissl bodies located in an outer cytoplasmic zone were made of long piles of 
parallel cisternae interrupted by curved Golgi stacks. Type B2 was characterized by 
a ring-like Golgi apparatus separating the perikaryon in a cortical zone composed 
mainly of Nissl substance and a juxtanuclear zone containing mitochondria and 
smooth endoplasmic reticulum. Type C cells were the smallest of the ganglion cells 

Figure 5. 
Nissl’s staining showing the variety of neurons in the dorsal root ganglion. Black arrow represents the large 
neurons, red arrow represents the surrounding capsule and the asterisk showed the location of centrally placed 
collection of nerve fibers [33].
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and contained small, poorly demarcated Nissl bodies and a juxtanuclear Golgi 
apparatus [30].

Neurotransmitter study involving tachykinin like substance P (SP) and neurokinin 
A, which are released by the C-type primary afferent terminals of the small DRG 
neurons, plays important role in spinal nociception. By means of non-radioactive in 
situ hybridization and whole-cell recording, authors showed that the small rat DRG 
neurons also express the NK-1 tachykinin receptor. In situ hybridization demonstrated 
that the positive neurons in rat DRG sections were mainly small with a diameter 
of less than 25 μm. And the remaining positive neurons were cells with a medium 
diameter between 26 and 40 μm. No positive large neurons (more than 40 μm) were 
observed [31].

Depending upon the molecular weight of neurofilaments and their expression in 
various categories of neurons in dorsal root ganglia, three different neurofilament 
subunits have been identified, i.e. light (NF-L), middle (NF-M) and high (NF-H). 
Previous data showed that all the dorsal root ganglia neurons express NF-M and 
NF-H while only NF-L defines a distinct group of neurons and significantly large-
light neurons [32].

5. Peripherin: marker to differentiate the neurons in the DRG

Peripherin, a protein formerly called Y, was first identified by two-dimen-
sional gel electrophoresis in the insoluble fraction of cellular extracts from 
mouse neuroblastoma cell lines [34]. Its presence has been previously established 
in the rodent peripheral nervous system mostly by biochemical studies; more-
over, biochemical characterization following nerve transection also supports 
its localization in neurons within the peripheral nervous system [35]. This 
observation leads to coining of the term “Peripherin” to designate this particular 
protein entity. Peripherin is a 57-kDa-type III neuronal intermediate filament 
protein, which is capable of either self-assembling or co-assembling with all of 
the individual neurofilament subunits [36]. In particular, the small cells of the 
dorsal root ganglia neurons selectively contain peripherin [35] and thus becom-
ing a useful marker to define the small ganglion cell subpopulation. The exact 
function of the peripherin is still unknown though it has been suggested to be 
a determinant of the shape and architecture of the peripheral nerve axons and 
also provides structural integrity to the cells [37]. Peripherin immunolabeling 
has seen to be an important marker especially for the study of peripheral nerve 
development and regeneration since this intermediate filament protein is highly 
over-expressed during axon elongation [38]. Previously this neurofilament were 
thought to be inert but in fact these are highly dynamic structures with many 
diverse function such as relaying the signals from the plasma membrane to the 
nucleus [39], maintaining the position and function of cellular organelles, and 
also regulating the protein synthesis [40]. This neurofilament is clinically rel-
evant because of their association with the pathogenesis of some major neuronal 
disorders. Mainly, accumulation of neurofilament protein and peripherin in 
proximal axons are associated with amyotrophic lateral sclerosis [41] and also 
seen in other diseases such as Alzheimer’s disease [42]. Peripherin was used to 
identify the small to medium-sized neurons in the rat dorsal root ganglia in the 
present study as because these are associated with the transmission of pain from 
the periphery to the central nervous system. This would give an idea as to the 
actual number of neurons within the dorsal root ganglia involved in the trans-
mission of pain (Figure 6).
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and contained small, poorly demarcated Nissl bodies and a juxtanuclear Golgi 
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A, which are released by the C-type primary afferent terminals of the small DRG 
neurons, plays important role in spinal nociception. By means of non-radioactive in 
situ hybridization and whole-cell recording, authors showed that the small rat DRG 
neurons also express the NK-1 tachykinin receptor. In situ hybridization demonstrated 
that the positive neurons in rat DRG sections were mainly small with a diameter 
of less than 25 μm. And the remaining positive neurons were cells with a medium 
diameter between 26 and 40 μm. No positive large neurons (more than 40 μm) were 
observed [31].

Depending upon the molecular weight of neurofilaments and their expression in 
various categories of neurons in dorsal root ganglia, three different neurofilament 
subunits have been identified, i.e. light (NF-L), middle (NF-M) and high (NF-H). 
Previous data showed that all the dorsal root ganglia neurons express NF-M and 
NF-H while only NF-L defines a distinct group of neurons and significantly large-
light neurons [32].

5. Peripherin: marker to differentiate the neurons in the DRG

Peripherin, a protein formerly called Y, was first identified by two-dimen-
sional gel electrophoresis in the insoluble fraction of cellular extracts from 
mouse neuroblastoma cell lines [34]. Its presence has been previously established 
in the rodent peripheral nervous system mostly by biochemical studies; more-
over, biochemical characterization following nerve transection also supports 
its localization in neurons within the peripheral nervous system [35]. This 
observation leads to coining of the term “Peripherin” to designate this particular 
protein entity. Peripherin is a 57-kDa-type III neuronal intermediate filament 
protein, which is capable of either self-assembling or co-assembling with all of 
the individual neurofilament subunits [36]. In particular, the small cells of the 
dorsal root ganglia neurons selectively contain peripherin [35] and thus becom-
ing a useful marker to define the small ganglion cell subpopulation. The exact 
function of the peripherin is still unknown though it has been suggested to be 
a determinant of the shape and architecture of the peripheral nerve axons and 
also provides structural integrity to the cells [37]. Peripherin immunolabeling 
has seen to be an important marker especially for the study of peripheral nerve 
development and regeneration since this intermediate filament protein is highly 
over-expressed during axon elongation [38]. Previously this neurofilament were 
thought to be inert but in fact these are highly dynamic structures with many 
diverse function such as relaying the signals from the plasma membrane to the 
nucleus [39], maintaining the position and function of cellular organelles, and 
also regulating the protein synthesis [40]. This neurofilament is clinically rel-
evant because of their association with the pathogenesis of some major neuronal 
disorders. Mainly, accumulation of neurofilament protein and peripherin in 
proximal axons are associated with amyotrophic lateral sclerosis [41] and also 
seen in other diseases such as Alzheimer’s disease [42]. Peripherin was used to 
identify the small to medium-sized neurons in the rat dorsal root ganglia in the 
present study as because these are associated with the transmission of pain from 
the periphery to the central nervous system. This would give an idea as to the 
actual number of neurons within the dorsal root ganglia involved in the trans-
mission of pain (Figure 6).



Neurons - Dendrites and Axons

78

6. Satellite glial cells

Sensory neurons in the dorsal root ganglia are ensheathed by specialized glial 
cells termed ‘satellite glial cells’ (SGCs). Recently, there has been considerable 
interest in these cells as they are profoundly altered by peripheral injuries used to 
study pain behavior and appear to contribute to chronic pain [43]. Satellite glial 
cells are the peripheral glial cells, but share many properties with astrocytes in 
the central nervous system (CNS), including the expression of glutamine synthe-
tase and transporters of amino acids neurotransmitters. However, satellite glial 
cells differ in some respects from astrocytes, particularly by the tight sheath they 
make around the neuronal cell bodies [44]. In the dorsal root ganglion, Schwann 
cells and the satellite cells are activated in response to ischemia, traumatic injury 
and inflammation [45]. Application of various cytokines to the exposed Dorsal 
root ganglia resulted in an increase in the discharge rate as well as increased 
mechanosensitivity of DRG and peripheral receptive fields [46]. Satellite glial 
cells are the consistent component of the DRG in all the species, yet their contri-
bution to the basic neuronal function remains unknown, although these satellite 
cells were implicated in neuronal nutrition, homeostasis and the process of 
apoptosis [5].

Recent studies have demonstrated that a specific glial cell population, the satellite 
glial cells, has the ability to regulate ion concentration [47] and possess mechanisms 
for the release of cytokines [48], ATP [19] and other chemical messengers like 
calcium. Satellite glial cells influence neuronal excitability via the gap junctions [49]. 
The satellite glial cells undergo major changes as a result of injury to peripheral nerves 
and appear to contribute to chronic pain [4]. Quantitative studies on several species 
showed that a number of satellite glial cells per neuron increases in proportion to the 
neuron’s volume, consistent with the idea that these satellite glial cells support the 
neurons metabolically [50].

During pathological conditions, such as nerve injury or inflammation, SGCs 
demonstrate an altered phenotype similar to that seen in activated astrocytes, 
which includes increased expression of the glial fibrillary acidic protein (GFAP) 
and synthesis of cytokines [51]. SGCs are therefore said to undergo activation due 

Figure 6. 
Immunohistochemical stained section with peripherin antibody of dorsal root ganglion representing the specific 
staining in small to medium sized neurons (white arrows). Larger neurons (black arrows) [33].

79

Gap Junctions in the Dorsal Root Ganglia
DOI: http://dx.doi.org/10.5772/intechopen.82128

to injury. Increased coupling by gap junctions between SGCs has been observed in 
several inflammatory pain and axotomy models [52].

7. Satellite glial cells as a structural unit

Satellite glial cells (SGCs) in sensory ganglia wraps completely around the 
neuron. Several investigators claimed that SGCs bear processes and are therefore 
structurally similar to astrocytes but recent researches are that SGCs are laminar 
and have no true processes. In general, each sensory neuron has its own SGCs 
sheath, which usually consists of several SGCs, and thus the neuron and its sur-
rounding satellite glial cells form a distinct morphological and probably functional 
unit. The region containing connective tissue separates these units. In some cases 
(5.6% in rat DRG) neurons from a small group containing two to three cells that are 
enclosed in common connective tissue space [44]. The neurons in the clusters are 
in most cases separated from each other by SGC sheath. The SGCs envelope usu-
ally consists of flat processes that lie close to the neuronal plasma membrane. The 
distance between the glial cell and neuronal plasma membrane is about 20 nm [44]. 
The neurons send numerous fine processes (microvilli), some of which fit into the 
invaginations of SGCs thus increasing the neuronal surface area and may allow an 
extensive exchange of chemicals between two cell types. A study on cultured SGCs 
of embryonic and neonatal rats showed that SGCs could transform into astrocytes, 
Schwann cells and oligodendrocytes [53].

Quantitative studies on several species showed that the number of SGCs per 
neuron increases in proportion to the neuron volume [50] consistent with the 
idea that SGCs support the neurons metabolically. It was also found that the 
mean volume of the nerve cell body corresponding to an SGC was lower for small 
neurons than for large neurons, which implies that the metabolic needs of small 
neurons are better satisfied than those of large ones. Therefore, smaller neurons 
have a higher resistance to insults, which seems to be the case for mercury poison-
ing. However, there is experimental evidence that smaller neurons are more likely 
to die following axonal damage [54]. As sensory ganglia are not protected from 
substances circulating in the blood, SGCs may be important in the context of 
exposure to toxic substances. In several studies, SGCs were examined after poison-
ing with heavy metals and it was found that these cells take up organic mercury 
compounds [55], and lead [56]. Mercury poisoning also caused SGCs proliferation 
[57]. Nineteen days after the administration of organic mercury to rats, SGCs 
in DRG were heavily labeled for mercury, and their ability to take up GABA was 
greatly diminished. Interestingly, small neurons were considerably less labeled 
for mercury than large neurons, which could be attributed to a more effective 
protection by SGCs. Prolonged (3–18 months) administration of lead acetate to 
rats resulted in prominent changes in SGCs in DRG, which included proliferation 
and hypertrophy of these cells. Although a certain degree of neuronal damage was 
observed, it can be proposed that the changes in SGCs provide a better protection 
to the neurons during lead poisoning.

8. Satellite glial cells maintain ionic concentration

The satellite glial cells neighboring the pseudounipolar neurons have a highly 
negative resting membrane potential and noticeable potassium permeability. The 
primary means of limiting extracellular levels of potassium in the sensory ganglia 
occurs through the process commonly called spatial buffering or syphoning which 
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to injury. Increased coupling by gap junctions between SGCs has been observed in 
several inflammatory pain and axotomy models [52].

7. Satellite glial cells as a structural unit

Satellite glial cells (SGCs) in sensory ganglia wraps completely around the 
neuron. Several investigators claimed that SGCs bear processes and are therefore 
structurally similar to astrocytes but recent researches are that SGCs are laminar 
and have no true processes. In general, each sensory neuron has its own SGCs 
sheath, which usually consists of several SGCs, and thus the neuron and its sur-
rounding satellite glial cells form a distinct morphological and probably functional 
unit. The region containing connective tissue separates these units. In some cases 
(5.6% in rat DRG) neurons from a small group containing two to three cells that are 
enclosed in common connective tissue space [44]. The neurons in the clusters are 
in most cases separated from each other by SGC sheath. The SGCs envelope usu-
ally consists of flat processes that lie close to the neuronal plasma membrane. The 
distance between the glial cell and neuronal plasma membrane is about 20 nm [44]. 
The neurons send numerous fine processes (microvilli), some of which fit into the 
invaginations of SGCs thus increasing the neuronal surface area and may allow an 
extensive exchange of chemicals between two cell types. A study on cultured SGCs 
of embryonic and neonatal rats showed that SGCs could transform into astrocytes, 
Schwann cells and oligodendrocytes [53].

Quantitative studies on several species showed that the number of SGCs per 
neuron increases in proportion to the neuron volume [50] consistent with the 
idea that SGCs support the neurons metabolically. It was also found that the 
mean volume of the nerve cell body corresponding to an SGC was lower for small 
neurons than for large neurons, which implies that the metabolic needs of small 
neurons are better satisfied than those of large ones. Therefore, smaller neurons 
have a higher resistance to insults, which seems to be the case for mercury poison-
ing. However, there is experimental evidence that smaller neurons are more likely 
to die following axonal damage [54]. As sensory ganglia are not protected from 
substances circulating in the blood, SGCs may be important in the context of 
exposure to toxic substances. In several studies, SGCs were examined after poison-
ing with heavy metals and it was found that these cells take up organic mercury 
compounds [55], and lead [56]. Mercury poisoning also caused SGCs proliferation 
[57]. Nineteen days after the administration of organic mercury to rats, SGCs 
in DRG were heavily labeled for mercury, and their ability to take up GABA was 
greatly diminished. Interestingly, small neurons were considerably less labeled 
for mercury than large neurons, which could be attributed to a more effective 
protection by SGCs. Prolonged (3–18 months) administration of lead acetate to 
rats resulted in prominent changes in SGCs in DRG, which included proliferation 
and hypertrophy of these cells. Although a certain degree of neuronal damage was 
observed, it can be proposed that the changes in SGCs provide a better protection 
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8. Satellite glial cells maintain ionic concentration

The satellite glial cells neighboring the pseudounipolar neurons have a highly 
negative resting membrane potential and noticeable potassium permeability. The 
primary means of limiting extracellular levels of potassium in the sensory ganglia 
occurs through the process commonly called spatial buffering or syphoning which 
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is mediated by satellite glial cells. The maintenance of a low extracellular potassium 
concentration is crucial for controlling the neuronal resting membrane potential 
and neuronal excitability. In sensory ganglia increased neuronal excitability has 
been associated with the occurrence of altered sensation, including the develop-
ment of the neuropathic pain [58]. In the CNS buffering of extracellular potassium 
ions is carried by astrocytes, which consist of uptake by inwardly rectifying potas-
sium (Kir) channels and dissipation through other channels and gap junctions [59]. 
It is established that the Kir current and Kir4.1 expression occur in the satellite glial 
cells [60]. Voltage-gated potassium channels are one of the important physiological 
regulators of the membrane potentials in excitable cells including sensory ganglion 
neurons.

9. Neuron-glial interactions

Central nervous system glial cells are increasingly known to be important regula-
tor of synaptic activity and the key functional unit of nervous system [61]. Even 
though many of the same voltage-sensitive ion channels and neurotransmitter recep-
tors of neurons are found in glia; glial cells lack the membrane properties obligatory 
to fire action potentials. Nevertheless, these ion channels and electrogenic membrane 
transporters permit glia to sense indirectly the level of neuronal activity by monitor-
ing activity-dependent changes in the chemical surroundings shared by these two cell 
types. Complex imaging methods, which allow observation of changes in intracel-
lular and extracellular signaling molecules in real time, show that glia, communicate 
with one another and with neurons primarily through chemical signals rather than 
electrical signals. Many of these signaling systems overlap with the neurotransmitter 
signaling systems of neurons, but some are specialized for glial-glial and neuron-glial 
communication. Neuron-glia cell interaction through gap junctions and extracellular 
paracrine/autocrine processes are believed to be important in the development of 
peripheral sensitization within the trigeminal ganglia [62]. Peripheral sensitization, 
which is characterized by increased neuronal excitability and a lowered threshold 
for activation, may possibly trigger a migraine attack. Moreover, activation and 
sensitization of the trigeminovascular afferent fibers appear crucial for initiation of 
migraine pain and for subsequent central centralization, in which increased excit-
ability of second-order neurons leads to pain and allodynia. Increased gap junction 
communication between neurons and satellite glial cells was observed in the trigemi-
nal ganglion in response to chemical activation of sensory trigeminal nerves [62].

Increased neuronal-glial signaling by way of gap junctions is common in neu-
roinflammatory CNS disorders, such as cerebral ischemia and Alzheimer’s disease 
and may have underlying pathological significance [63]. Tonabersat (SB-220453), a 
compound that binds selectively and with high affinity to a unique stereoselective 
site i.e. the gap junctions and inhibits it in rats and human brains [64]. After an 
injury, the numbers of gap junctions that connect satellite glial cells increases [43] 
in a probable adjust to the greater release of potassium ions with intense neuronal 
activity. Injury to a peripheral nerve does not directly impact satellite glial cells 
integrity. However, changes in injured neurons can influence the ability of the sur-
rounding SGCs to regulate K+ via neuromodulators such as adenosine triphosphate 
(ATP) and nitric oxide (NO) [65].

Satellite glial cells have unique proteins that include the inwardly rectifying K+ 
channel Kir4.1 [43], the connexin-43 (Cx43) subunit of gap junctions the purinergic 
receptor P2Y4 [66] and soluble guanylate cyclase. There is also evidence of the pres-
ence of small-conductance Ca2+−activated K+ channel SK3 that is present only in 
satellite glial cells. All the above proteins are involved, either directly or indirectly, 
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in potassium ion (K+) buffering and, thus, can influence the level of neuronal 
excitability, which, in turn, has been associated with neuropathic pain conditions 
(Figure 7). They also used in vivo RNA interference to reduce the expression of 
Cx43 (present only in SGCs) in the rat trigeminal ganglion and showed that this 
resulted in the development of spontaneous pain behavior. The pain behavior is 
present only when Cx43 is reduced and returns to normal when Cx43 concentra-
tions are restored [66, 67].

10.  Glial fibrillary acidic protein (GFAP): locator molecule for the 
satellite glial cells

Glial fibrillary acidic protein is principle intermediate filament in mature astro-
cytes of the central nervous system and satellite glial cells of sensory ganglia [4]. 
GFAP is strongly unregulated in response to CNS damage [68]. It is thought to be 
important in astrocyte neuronal interactions, astrocyte mobility and shape and for 
maintenance of homeostasis and vascular permeability at the blood-tissue interface 
[69]. GFAP is essential for normal white matter architecture and blood-brain barrier 
integrity and its absence leads to late-onset CNS dysmyelination [70]. Increased 
GFAP expression occurs in activated glial cells. Activated astrocytes are character-
ized by hypertrophy, the release of pro-inflammatory cytokines (IL-1, IL-6 and 
TNF-a), the release of nitric oxide and prostaglandins, and up-regulation of the 
intermediate filaments GFAP and vimentin [17]. Likewise, satellite glial cells (SGCs) 
display increased expression of GFAP after neuronal injury or inflammation and 
undergo a number of changes similar to those seen in astrocytes, such as synthesis 
of cytokines [71]. GFAP expression increases in the satellite glial cells of trigeminal 
ganglia after tooth pulp injury [72]. The present study also investigated the expres-
sion of GFAP in the satellite glial cells following acute pain (Figure 8).

GFAP is a marker of activated satellite glial cells and astrocytes [48]. These ropes 
like filaments are called intermediate filaments because their diameter of 8–10 nm is 

Figure 7. 
Satellite glial cells involved in maintenance of potassium homeostasis [66].
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is mediated by satellite glial cells. The maintenance of a low extracellular potassium 
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and neuronal excitability. In sensory ganglia increased neuronal excitability has 
been associated with the occurrence of altered sensation, including the develop-
ment of the neuropathic pain [58]. In the CNS buffering of extracellular potassium 
ions is carried by astrocytes, which consist of uptake by inwardly rectifying potas-
sium (Kir) channels and dissipation through other channels and gap junctions [59]. 
It is established that the Kir current and Kir4.1 expression occur in the satellite glial 
cells [60]. Voltage-gated potassium channels are one of the important physiological 
regulators of the membrane potentials in excitable cells including sensory ganglion 
neurons.
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Central nervous system glial cells are increasingly known to be important regula-
tor of synaptic activity and the key functional unit of nervous system [61]. Even 
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tors of neurons are found in glia; glial cells lack the membrane properties obligatory 
to fire action potentials. Nevertheless, these ion channels and electrogenic membrane 
transporters permit glia to sense indirectly the level of neuronal activity by monitor-
ing activity-dependent changes in the chemical surroundings shared by these two cell 
types. Complex imaging methods, which allow observation of changes in intracel-
lular and extracellular signaling molecules in real time, show that glia, communicate 
with one another and with neurons primarily through chemical signals rather than 
electrical signals. Many of these signaling systems overlap with the neurotransmitter 
signaling systems of neurons, but some are specialized for glial-glial and neuron-glial 
communication. Neuron-glia cell interaction through gap junctions and extracellular 
paracrine/autocrine processes are believed to be important in the development of 
peripheral sensitization within the trigeminal ganglia [62]. Peripheral sensitization, 
which is characterized by increased neuronal excitability and a lowered threshold 
for activation, may possibly trigger a migraine attack. Moreover, activation and 
sensitization of the trigeminovascular afferent fibers appear crucial for initiation of 
migraine pain and for subsequent central centralization, in which increased excit-
ability of second-order neurons leads to pain and allodynia. Increased gap junction 
communication between neurons and satellite glial cells was observed in the trigemi-
nal ganglion in response to chemical activation of sensory trigeminal nerves [62].

Increased neuronal-glial signaling by way of gap junctions is common in neu-
roinflammatory CNS disorders, such as cerebral ischemia and Alzheimer’s disease 
and may have underlying pathological significance [63]. Tonabersat (SB-220453), a 
compound that binds selectively and with high affinity to a unique stereoselective 
site i.e. the gap junctions and inhibits it in rats and human brains [64]. After an 
injury, the numbers of gap junctions that connect satellite glial cells increases [43] 
in a probable adjust to the greater release of potassium ions with intense neuronal 
activity. Injury to a peripheral nerve does not directly impact satellite glial cells 
integrity. However, changes in injured neurons can influence the ability of the sur-
rounding SGCs to regulate K+ via neuromodulators such as adenosine triphosphate 
(ATP) and nitric oxide (NO) [65].

Satellite glial cells have unique proteins that include the inwardly rectifying K+ 
channel Kir4.1 [43], the connexin-43 (Cx43) subunit of gap junctions the purinergic 
receptor P2Y4 [66] and soluble guanylate cyclase. There is also evidence of the pres-
ence of small-conductance Ca2+−activated K+ channel SK3 that is present only in 
satellite glial cells. All the above proteins are involved, either directly or indirectly, 
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in potassium ion (K+) buffering and, thus, can influence the level of neuronal 
excitability, which, in turn, has been associated with neuropathic pain conditions 
(Figure 7). They also used in vivo RNA interference to reduce the expression of 
Cx43 (present only in SGCs) in the rat trigeminal ganglion and showed that this 
resulted in the development of spontaneous pain behavior. The pain behavior is 
present only when Cx43 is reduced and returns to normal when Cx43 concentra-
tions are restored [66, 67].

10.  Glial fibrillary acidic protein (GFAP): locator molecule for the 
satellite glial cells

Glial fibrillary acidic protein is principle intermediate filament in mature astro-
cytes of the central nervous system and satellite glial cells of sensory ganglia [4]. 
GFAP is strongly unregulated in response to CNS damage [68]. It is thought to be 
important in astrocyte neuronal interactions, astrocyte mobility and shape and for 
maintenance of homeostasis and vascular permeability at the blood-tissue interface 
[69]. GFAP is essential for normal white matter architecture and blood-brain barrier 
integrity and its absence leads to late-onset CNS dysmyelination [70]. Increased 
GFAP expression occurs in activated glial cells. Activated astrocytes are character-
ized by hypertrophy, the release of pro-inflammatory cytokines (IL-1, IL-6 and 
TNF-a), the release of nitric oxide and prostaglandins, and up-regulation of the 
intermediate filaments GFAP and vimentin [17]. Likewise, satellite glial cells (SGCs) 
display increased expression of GFAP after neuronal injury or inflammation and 
undergo a number of changes similar to those seen in astrocytes, such as synthesis 
of cytokines [71]. GFAP expression increases in the satellite glial cells of trigeminal 
ganglia after tooth pulp injury [72]. The present study also investigated the expres-
sion of GFAP in the satellite glial cells following acute pain (Figure 8).

GFAP is a marker of activated satellite glial cells and astrocytes [48]. These ropes 
like filaments are called intermediate filaments because their diameter of 8–10 nm is 

Figure 7. 
Satellite glial cells involved in maintenance of potassium homeostasis [66].
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between those of actin filaments and microtubules. Nearly all-intermediate filaments 
consist of subunits with a molecular weight of about 50 kDa. Some evidence suggests 
that many of the stable structural proteins in intermediate filaments evolved from 
highly conserved enzymes, with only minor genetic modification. Intermediate fila-
ments are formed from nonpolar and highly variable intermediate filament subunits. 
Unlike those of microfilaments and microtubules, the protein subunits of intermediate 
filaments show considerable diversity and tissue specificity. In addition, they do not 
possess enzymatic activity and form nonpolar filaments. Intermediate filaments also 
do not typically disappear and reform in the continuous manner characteristic of most 
microtubules and actin filaments. For these reasons, intermediate filaments are believed 
to play a primarily structural role within the cell and to compose the cytoplasmic link 
of a tissue-wide continuum of cytoplasmic, nuclear, and extracellular filaments. A 
highly variable central rod-shaped domain with strictly conserved globular domains at 
either end characterizes intermediate filament proteins. Although the various classes 
of intermediate filaments differ in the amino acid sequence of the rod-shaped domain 
and show some variation in molecular weight, they all share a homologous region that is 
important in filament self-assembly. Intermediate filaments are assembled from a pair 
of helical monomers that twist around each other to form coiled-coil dimers. Then, two 
coiled-coil dimers twist around each other in antiparallel fashion (parallel but pointing 
in opposite directions) to generate a staggered tetramer of two coiled-coil dimers, thus 
forming the nonpolarized unit of the intermediate filaments. Each tetramer, acting 
as an individual unit, is aligned along the axis of the filament. The ends of the tetra-
mers are bound together to form the free ends of the filament. This assembly process 
provides a stable, staggered, helical array in which filaments are packed together and 
additionally stabilized by lateral binding interactions between adjacent tetramers [2].

Total six classes of intermediate filament are present in body, e.g., Class II and I 
include keratin and cytokeratin and class III include vimentin, glial acidic fibrillary 
protein (GFAP) and peripherin.

GFAP is the principal intermediate filament in mature astrocytes. GFAP is a 
soluble protein isolated from the multiple sclerosis plaques and presumably aris-
ing from the glial filaments [73]. The GFAP gene is located on the long (q) arm of 
chromosome 17 at position 21. Mutation in the GFAP results in Alexander disease 

Figure 8. 
Immunohistochemical staining for the section of DRG using GFAP antibody. Black arrows representing the 
location of satellite glial cells. Red arrow showing the communication between two neurons [33].
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characterized by rare leukoencephalopathy affecting predominantly the brainstem 
and cervical cord with insidious onset of clinical features and unified by the presence 
in astrocytes of Rosenthal fibers (protein aggregates mainly contain glial fibrillary 
acidic protein (GFAP) and small stress proteins) in the astrocytes especially in the 
subpial and subependymal in location. It is strongly upregulated in response to the 
CNS damage [68]. It is thought to be important in astrocyte-neuronal communica-
tion and is believed to modulate astrocyte motility and shape. Satellite glial cells 
(SGCs) responsible for the maintenance of homeostasis and vascular permeability at 
the blood-tissue interface [69]. In the peripheral nervous system, neurons located in 
sensory ganglia are tightly surrounded by SGCs, following injury these cells undergo 
modification in structure and function [15]. According to Feng et al., after ligation of 
the L5 spinal nerve, mechanical allodynia developed in the ipsilateral hind paw and 
expression of GFAP in the ipsilateral DRG increased significantly as early as 4 hours 
after surgery, and gradually increases up to peak level at day 7 and then stayed at high 
level till day 56 [74]. Significant change seen among the sizes of neurons means small 
to medium size neurons shows maximum GFAP immunoreactivity at 12 hours and on 
day 7, a number of larger neurons was surrounded by GFAP stained satellite cells.

11. Gap junctions in the nervous system

Gap junctions, tight junctions, adherens junctions, desmosomes, hemidesmo-
somes, focal adhesions, chemical synapses, and immunological synapses are complex 
multiunit plasma membrane structures that assemble in a localized spatial and 
temporal organization to maintain structural tissue organization and to provide the 
cell signaling functions. At least nine connexins (Cx26, Cx32, Cx33, Cx36, Cx37, 
Cx40, Cx43, Cx45, Cx46) are expressed to various degrees in the nervous system. 
Functional studies in diverse cell types and in various exogenous expression systems 
have revealed that gap junction channels formed by different connexins are regulated 
differently, both at the single channel level (gating controls such as voltage sensitiv-
ity and variations in unitary conductance) and at the level of synthesis (expression, 
altered for example by hormones, extracellular matrix). Some gap junction channels 
are more sensitive to various gating stimuli than others, some display some degree 
of ionic selectivity, and some will pair promiscuously with other connexins (heter-
ologous channels) while others are quite selective in their interaction (homologous 
channels). Such differences are important from the standpoint of the physiologi-
cal roles of gap junctions in different cell types, as well as in the establishment of 
communication compartments within the nervous system [75]. Connexins are 
differentially expressed in the brain during ontogeny. Most recently, tissue culture 
preparations from embryonic neural tissue have allowed manipulation of individual 
cells and evaluation of changes in junctional distribution and expression during 
maturation. Such studies have clarified the relationships between sequential changes 
in phenotypes of neural cells, with the extent of coupling mediated by Cx43 (which is 
abundant in neural precursor populations) and the appearance of other gap junction 
proteins. Expression pattern of Cx32, Cx43 and Cx30 during the development in rat 
brain indicates the Connexin-43 appears first at embryonic days 12-18 [76] and that 
Cx32 protein and mRNA appear during first or second postnatal week and increases 
during development. Immunohistochemical analysis of postnatal rat brain has shown 
that Cx43 first appears along radial glial cells and is most intense along cerebel-
lar Bergmann glial cells [77]. Glia represents the major cell population in the CNS 
coupled by gap junctions. Indeed, compared to neurons, the level of connexin expres-
sion is high in these cells and persists until the adult stage [75]. For the two main types 
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between those of actin filaments and microtubules. Nearly all-intermediate filaments 
consist of subunits with a molecular weight of about 50 kDa. Some evidence suggests 
that many of the stable structural proteins in intermediate filaments evolved from 
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of a tissue-wide continuum of cytoplasmic, nuclear, and extracellular filaments. A 
highly variable central rod-shaped domain with strictly conserved globular domains at 
either end characterizes intermediate filament proteins. Although the various classes 
of intermediate filaments differ in the amino acid sequence of the rod-shaped domain 
and show some variation in molecular weight, they all share a homologous region that is 
important in filament self-assembly. Intermediate filaments are assembled from a pair 
of helical monomers that twist around each other to form coiled-coil dimers. Then, two 
coiled-coil dimers twist around each other in antiparallel fashion (parallel but pointing 
in opposite directions) to generate a staggered tetramer of two coiled-coil dimers, thus 
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as an individual unit, is aligned along the axis of the filament. The ends of the tetra-
mers are bound together to form the free ends of the filament. This assembly process 
provides a stable, staggered, helical array in which filaments are packed together and 
additionally stabilized by lateral binding interactions between adjacent tetramers [2].

Total six classes of intermediate filament are present in body, e.g., Class II and I 
include keratin and cytokeratin and class III include vimentin, glial acidic fibrillary 
protein (GFAP) and peripherin.

GFAP is the principal intermediate filament in mature astrocytes. GFAP is a 
soluble protein isolated from the multiple sclerosis plaques and presumably aris-
ing from the glial filaments [73]. The GFAP gene is located on the long (q) arm of 
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Figure 8. 
Immunohistochemical staining for the section of DRG using GFAP antibody. Black arrows representing the 
location of satellite glial cells. Red arrow showing the communication between two neurons [33].
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characterized by rare leukoencephalopathy affecting predominantly the brainstem 
and cervical cord with insidious onset of clinical features and unified by the presence 
in astrocytes of Rosenthal fibers (protein aggregates mainly contain glial fibrillary 
acidic protein (GFAP) and small stress proteins) in the astrocytes especially in the 
subpial and subependymal in location. It is strongly upregulated in response to the 
CNS damage [68]. It is thought to be important in astrocyte-neuronal communica-
tion and is believed to modulate astrocyte motility and shape. Satellite glial cells 
(SGCs) responsible for the maintenance of homeostasis and vascular permeability at 
the blood-tissue interface [69]. In the peripheral nervous system, neurons located in 
sensory ganglia are tightly surrounded by SGCs, following injury these cells undergo 
modification in structure and function [15]. According to Feng et al., after ligation of 
the L5 spinal nerve, mechanical allodynia developed in the ipsilateral hind paw and 
expression of GFAP in the ipsilateral DRG increased significantly as early as 4 hours 
after surgery, and gradually increases up to peak level at day 7 and then stayed at high 
level till day 56 [74]. Significant change seen among the sizes of neurons means small 
to medium size neurons shows maximum GFAP immunoreactivity at 12 hours and on 
day 7, a number of larger neurons was surrounded by GFAP stained satellite cells.

11. Gap junctions in the nervous system

Gap junctions, tight junctions, adherens junctions, desmosomes, hemidesmo-
somes, focal adhesions, chemical synapses, and immunological synapses are complex 
multiunit plasma membrane structures that assemble in a localized spatial and 
temporal organization to maintain structural tissue organization and to provide the 
cell signaling functions. At least nine connexins (Cx26, Cx32, Cx33, Cx36, Cx37, 
Cx40, Cx43, Cx45, Cx46) are expressed to various degrees in the nervous system. 
Functional studies in diverse cell types and in various exogenous expression systems 
have revealed that gap junction channels formed by different connexins are regulated 
differently, both at the single channel level (gating controls such as voltage sensitiv-
ity and variations in unitary conductance) and at the level of synthesis (expression, 
altered for example by hormones, extracellular matrix). Some gap junction channels 
are more sensitive to various gating stimuli than others, some display some degree 
of ionic selectivity, and some will pair promiscuously with other connexins (heter-
ologous channels) while others are quite selective in their interaction (homologous 
channels). Such differences are important from the standpoint of the physiologi-
cal roles of gap junctions in different cell types, as well as in the establishment of 
communication compartments within the nervous system [75]. Connexins are 
differentially expressed in the brain during ontogeny. Most recently, tissue culture 
preparations from embryonic neural tissue have allowed manipulation of individual 
cells and evaluation of changes in junctional distribution and expression during 
maturation. Such studies have clarified the relationships between sequential changes 
in phenotypes of neural cells, with the extent of coupling mediated by Cx43 (which is 
abundant in neural precursor populations) and the appearance of other gap junction 
proteins. Expression pattern of Cx32, Cx43 and Cx30 during the development in rat 
brain indicates the Connexin-43 appears first at embryonic days 12-18 [76] and that 
Cx32 protein and mRNA appear during first or second postnatal week and increases 
during development. Immunohistochemical analysis of postnatal rat brain has shown 
that Cx43 first appears along radial glial cells and is most intense along cerebel-
lar Bergmann glial cells [77]. Glia represents the major cell population in the CNS 
coupled by gap junctions. Indeed, compared to neurons, the level of connexin expres-
sion is high in these cells and persists until the adult stage [75]. For the two main types 
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of macroglial cells, the astrocytes and the oligodendrocytes, several connexins have 
been detected [78]. Gap junctional communication is not limited to either astrocyte-
to-astrocyte or oligodendrocyte-to-oligodendrocyte, but it also occurs in between 
both cell types. In the adult brains, the predominant connexin is Cx43, which is 
abundant in astrocytes and is also expressed in leptomeninges, endothelial cells and 
ependyma. The second type of microglia, the oligodendrocytes (and their periph-
eral counterparts, the Schwann cells), appear to express a different gap junction 
protein, Cx32, although to a lower extent in situ than the level of Cx43 expression 
exhibited by astrocytes. Astrocytes express Cx43 and are well coupled in vivo and 
under culture conditions. However, the strength of coupling and degree of Cx43 
expression between astrocytes varies depending on brain regions being higher in 
the hypothalamus than in the striatum. Although glial gap junctions do not generate 
action potentials in normal conditions and are devoid of synaptic contacts, connexin 
channels provide a route that allows changes in membrane potential to be transmitted 
from one cell to its neighbors. Recently, the participation of astrocytic gap junction 
in neuroprotection has been investigated by comparing neuronal vulnerability in the 
presence of either communicating or non-communicating astrocytes [75].

12. Gap junctions and connexins

Gap junctions and their consistent connexin proteins have represented a new 
challenge in all tissues where they occur but no structure is more complex or more 
interconnected than the mammalian central and peripheral nervous systems (CNS 
and PNS). The term “Gap junctions” arose from the work of Revel and Karnovsky, 
who described the fine structure of the interconnections between mouse cardio-
myocytes and between hepatocytes. Later development of specific antibodies to gap 
junction proteins and eventually the cloning of these connexin molecules have now 
led to the availability of a variety of techniques by which the distribution and expres-
sion patterns of specific types of gap junctions have been defined in a varied number 
of tissues, including the brain. Gap junctions are the clusters of intercellular chan-
nels that are composed of 12 subunits, 6 of which form a connexion or hemichannel 
contributed by each of the coupled cells [79]. Gap junctions are permeant to molecules 
up to 1 kDa and are found in virtually all cell types in mammals; few exceptions 
include circulating erythrocytes, spermatozoids and adult innervated skeletal muscle 
cells [80]. Gap junctional communication is essential for many physiological events, 
including cell synchronization, differentiation, cell growth, and metabolic coordina-
tion of avascular organ including epidermis and lens [81]. Connexin family members 
share a similar structural topology. Each connexin has four transmembrane domains 
that constitute the wall/pore of the channels. These domains are linked by two extra-
cellular loops that play roles in the cell-cell recognition and docking processes. There 
are three unchanged cysteine residues in each loop, which solely form intraconnexin 
disulfide bonds [82]. The transmembrane domains and extracellular loops are highly 
conserved among the family members. Furthermore, connexin proteins have cyto-
plasmic N- and C-terminal and a cytoplasm loop linking the second and third trans-
membrane domains. Although the N-terminus is conserved, the cytoplasmic loop and 
C-terminus show great variation in terms of sequence and length. The cytoplasmic tail 
and loop are susceptible to various post-translational modifications (e.g., phosphory-
lation), which are believed to have regulatory roles [83]. Connexons (hemichannels) 
are then carried to the cell surface via vesicles transported through microtubules, 
which fuse to the plasma membrane. These hemichannels can either form nonjunc-
tional channels in unopposed areas of the cell membrane or diffuse freely to regions 
of cell-to-cell contact to find a partner connexon from a neighboring cell to complete 
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the formation of intercellular channels. Intercellular channels then cluster into gap 
junction plaques, a highly dynamic event involving removal of old channels from the 
center of the plaque, while adding new gap junction subunits to the periphery [84]. 
The intercellular channels from the middle of the plaque are internalized into vesicular 
structures called “annular junctions” [85], which either fuse with the lysosome for 
degradation by lysosomal enzymes or are targeted to the proteasomal pathway [86]. 
The continuous synthesis and degradation of connexins through these mechanisms 
may provide for the quick adaptation of tissues to changing environmental conditions. 
Unopposed hemichannels can also be functional under certain conditions, including 
mechanical and ischemic stress. Under these circumstances, open hemichannels are 
thought to facilitate the release of a variety of factors such as ATP, glutamate, and 
NAD+ into the extracellular space, generating different physiological responses [87].

Up to date, there were 20 proposed members of the connexin family of proteins 
that form gap junctional intercellular communication channels in mammalian tis-
sues, and over half are reported to be present in the nervous system. Identification 
of the several connexin proteins at gap junctions between each neuronal and glial 
cell type is necessary for the sensible design of investigations into the functions of 
gap junctions between glial cells and into the functional contributions of electri-
cal and “mixed” (chemical plus electrical) synapses to communication between 
neurons in the mammalian nervous system (Figure 9).

13. Pathophysiology of connexins

Gap junction’s role has been well evaluated concerning cell-to-cell interaction. 
There are two effects derived from gap junction’s function that may determine life 
and death of the connected cells [89]. The bystander effect promotes the death of 
normal cells adjacent to an apoptotic cell by diffusing toxic metabolites through 
gap junctions. In the same way there is the Good Samaritan effect that allows 

Figure 9. 
Immunohistochemical staining using connexin-43 antibody. Black arrows represent the location of gap junctions 
between the satellite glial cells and the neuronal bodies [33].
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of macroglial cells, the astrocytes and the oligodendrocytes, several connexins have 
been detected [78]. Gap junctional communication is not limited to either astrocyte-
to-astrocyte or oligodendrocyte-to-oligodendrocyte, but it also occurs in between 
both cell types. In the adult brains, the predominant connexin is Cx43, which is 
abundant in astrocytes and is also expressed in leptomeninges, endothelial cells and 
ependyma. The second type of microglia, the oligodendrocytes (and their periph-
eral counterparts, the Schwann cells), appear to express a different gap junction 
protein, Cx32, although to a lower extent in situ than the level of Cx43 expression 
exhibited by astrocytes. Astrocytes express Cx43 and are well coupled in vivo and 
under culture conditions. However, the strength of coupling and degree of Cx43 
expression between astrocytes varies depending on brain regions being higher in 
the hypothalamus than in the striatum. Although glial gap junctions do not generate 
action potentials in normal conditions and are devoid of synaptic contacts, connexin 
channels provide a route that allows changes in membrane potential to be transmitted 
from one cell to its neighbors. Recently, the participation of astrocytic gap junction 
in neuroprotection has been investigated by comparing neuronal vulnerability in the 
presence of either communicating or non-communicating astrocytes [75].

12. Gap junctions and connexins

Gap junctions and their consistent connexin proteins have represented a new 
challenge in all tissues where they occur but no structure is more complex or more 
interconnected than the mammalian central and peripheral nervous systems (CNS 
and PNS). The term “Gap junctions” arose from the work of Revel and Karnovsky, 
who described the fine structure of the interconnections between mouse cardio-
myocytes and between hepatocytes. Later development of specific antibodies to gap 
junction proteins and eventually the cloning of these connexin molecules have now 
led to the availability of a variety of techniques by which the distribution and expres-
sion patterns of specific types of gap junctions have been defined in a varied number 
of tissues, including the brain. Gap junctions are the clusters of intercellular chan-
nels that are composed of 12 subunits, 6 of which form a connexion or hemichannel 
contributed by each of the coupled cells [79]. Gap junctions are permeant to molecules 
up to 1 kDa and are found in virtually all cell types in mammals; few exceptions 
include circulating erythrocytes, spermatozoids and adult innervated skeletal muscle 
cells [80]. Gap junctional communication is essential for many physiological events, 
including cell synchronization, differentiation, cell growth, and metabolic coordina-
tion of avascular organ including epidermis and lens [81]. Connexin family members 
share a similar structural topology. Each connexin has four transmembrane domains 
that constitute the wall/pore of the channels. These domains are linked by two extra-
cellular loops that play roles in the cell-cell recognition and docking processes. There 
are three unchanged cysteine residues in each loop, which solely form intraconnexin 
disulfide bonds [82]. The transmembrane domains and extracellular loops are highly 
conserved among the family members. Furthermore, connexin proteins have cyto-
plasmic N- and C-terminal and a cytoplasm loop linking the second and third trans-
membrane domains. Although the N-terminus is conserved, the cytoplasmic loop and 
C-terminus show great variation in terms of sequence and length. The cytoplasmic tail 
and loop are susceptible to various post-translational modifications (e.g., phosphory-
lation), which are believed to have regulatory roles [83]. Connexons (hemichannels) 
are then carried to the cell surface via vesicles transported through microtubules, 
which fuse to the plasma membrane. These hemichannels can either form nonjunc-
tional channels in unopposed areas of the cell membrane or diffuse freely to regions 
of cell-to-cell contact to find a partner connexon from a neighboring cell to complete 
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the formation of intercellular channels. Intercellular channels then cluster into gap 
junction plaques, a highly dynamic event involving removal of old channels from the 
center of the plaque, while adding new gap junction subunits to the periphery [84]. 
The intercellular channels from the middle of the plaque are internalized into vesicular 
structures called “annular junctions” [85], which either fuse with the lysosome for 
degradation by lysosomal enzymes or are targeted to the proteasomal pathway [86]. 
The continuous synthesis and degradation of connexins through these mechanisms 
may provide for the quick adaptation of tissues to changing environmental conditions. 
Unopposed hemichannels can also be functional under certain conditions, including 
mechanical and ischemic stress. Under these circumstances, open hemichannels are 
thought to facilitate the release of a variety of factors such as ATP, glutamate, and 
NAD+ into the extracellular space, generating different physiological responses [87].

Up to date, there were 20 proposed members of the connexin family of proteins 
that form gap junctional intercellular communication channels in mammalian tis-
sues, and over half are reported to be present in the nervous system. Identification 
of the several connexin proteins at gap junctions between each neuronal and glial 
cell type is necessary for the sensible design of investigations into the functions of 
gap junctions between glial cells and into the functional contributions of electri-
cal and “mixed” (chemical plus electrical) synapses to communication between 
neurons in the mammalian nervous system (Figure 9).

13. Pathophysiology of connexins

Gap junction’s role has been well evaluated concerning cell-to-cell interaction. 
There are two effects derived from gap junction’s function that may determine life 
and death of the connected cells [89]. The bystander effect promotes the death of 
normal cells adjacent to an apoptotic cell by diffusing toxic metabolites through 
gap junctions. In the same way there is the Good Samaritan effect that allows 

Figure 9. 
Immunohistochemical staining using connexin-43 antibody. Black arrows represent the location of gap junctions 
between the satellite glial cells and the neuronal bodies [33].
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a condemned cell to live by draining the toxic metabolites to adjacent cells and 
maintaining cells integrity and thus tissue homeostasis. In this way gap junctions 
perform a dual function either saving or killing interconnected cells [88]. Some 
pathological conditions are directly related to gap junctions or to their altered 
function. Some human diseases are caused by mutated connexins [89]. Mutations 
on Cx32 induce a peripheral neuropathy named Charcot-Marie-Tooth disease. 
The many conductivity changes observed in this disease may be caused by altered 
protein traffic to the junctions, altered channel permeability and, sometimes, 
altered conformation of heterotypic channels [78]. Mutations of Cx36 may lead 
to the most common hereditary non-syndromic deafness. Cx43 structure may be 
altered in some forms of human epilepsy where Cx43 mRNA expression may or may 
not be altered. High Cx43 levels have been detected in β-4 positive amyloid plaques 
of Alzheimer’s disease [77], indicating either astrocytes invasion of the plaques or 
increased Cx43 expression by astrocytes, as observed in PC12 cells (cells from a 
rat pheochromocytoma) with increased expression of carboxy-terminal portions 
of amyloid precursor protein [90]. However a higher Cx43 expression in that area 
may reflect the existence of many activated macrophages/microglia. The decrease 
of Cx43 within an inflammatory focus suggests that factors as IL-1 β are involved 
in astrocytic connectivity decrease as observed in autoimmune experimental 
encephalitis.
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of amyloid precursor protein [90]. However a higher Cx43 expression in that area 
may reflect the existence of many activated macrophages/microglia. The decrease 
of Cx43 within an inflammatory focus suggests that factors as IL-1 β are involved 
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Chapter 5

Interface Nerve Tissue-Silicon 
Nanowire for Regeneration of 
Injured Nerve and Creation of Bio-
Electronic Device
Klimovskaya Alla, Chaikovsky Yuri, Liptuga Anatoliy, 
Lichodievskiy Volodymyr and Serozhkin Yuriy

Abstract

This overview presents the results of scientific and practical research into the 
development of the interface “neuron-electronic device” based on silicon nanowire. 
The work has been carried out for several years by a team of scientists specializing in 
various fields of science and technology: neuroscience, surface science, nanoelectron-
ics, crystal growth, physics and chemistry of nanotechnology, and nanocomputing. 
The technology of formation of the interface “nerve fiber-silicon nanowire” was devel-
oped. The experiments were performed in vivo on Wistar rats. The developed technol-
ogy was used in the manufacture of implants for the regeneration of the injured sciatic 
nerve. The results of the studies showed the effectiveness of using such implants not 
only for the regeneration of nerves with severe injuries but also for the creation of a 
bioelectronic interface for neurocomputers that can be used in vivo for a long time.

Keywords: interface, silicon nanowires, Wistar rats, sciatic nerve, experiment  
in vivo, laser heterodyne interferometric technique, application of SiNW-FET, 
physical model of the interface nervous tissue-silicon nanowires

1. Introduction

In the last decade, along with the solution of medical problems on the restora-
tion of the human nervous system by traditional methods, a new direction of neu-
roscience arose related to the development of hybrid intellect that has to combine 
the best intellectual resources of human brain and the best achievements of nano- 
and quantum computing. By the computation speed, modern computers consider-
ably exceed human capabilities, but they have two significant drawbacks. Providing 
their work with the intellectual capabilities of man using modern nanoelectronics 
requires considerable power consumption. This leads to an increase in the physi-
cal dimensions of the computer in order to provide a thermal regime acceptable 
for modern nanoelectronics. On the other hand, the human brain, accomplishing 
a huge amount of work on physical and intellectual interaction and to ensure the 
correlated work of the organism as a whole, is characterized by extremely low energy 
costs in comparison with quantum computers. Therefore, an idea arisen on creating 
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a hybrid intellect that physically combines the neural networks of the brain with 
modern, including quantum, computing devices. The development of such devices 
required detailed studies of the structure of neural networks of the brain and subse-
quent modeling of such networks on silicon nanostructures using living neurons 
or by implanting silicon nanostructures into a neural network of a living organism. 
The end product of this device will be a hybrid brain that is capable, unlike tradi-
tional computers, including quantum ones, to apply both logical and associative 
methods of solving problems with low energy consumption. The main task of the 
hybrid brain is to provide a constant two-way communication between the central 
and peripheral nervous system, which will allow, in extreme case, to constantly 
monitor the organism as a whole and, if necessary, already in the first stages of the 
disease, to correct the work of those organs that have deviations from the norm, 
using, first of all, the internal resources of the body.

By 2015, the strategy for creating hybrid brain has already been developed [1], 
and a call has been issued [2, 3] to the international community to concentrate scien-
tific and financial resources on the solution of the problem that will make a revolu-
tion not only in the field of medicine but also in all spheres of human existence.

Detailed studies of neural networks were started about 10 years ago with the 
work on the study of the morphology of neural network [4]. Then, a large number 
of animal studies were made of the relationship between the structure of neural 
networks and the behavioral characteristics of animals. A detailed review of these 
studies was published recently [5]. In parallel with studies of the central nervous sys-
tem and its connection with the peripheral nervous system, work was begun on the 
creation of a bioelectronic complex on silicon nanostructures with the artificial culti-
vation of neural networks in a biological environment [6–8]. The results obtained in 
experiments in vitro allowed the transition to animal experiments and then to begin 
clinical experiments for the treatment of diseases that could not be treated with 
application of traditional medicine. Massachusetts General Hospital and Draper Labs 
develop a tiny, implanted chip to place it between a patient’s skull and scalp. A series 
of electrodes placed at varying depths in different regions of the brain would record 
neurological data. In the framework of the program ElectRx, a closed-loop system is 
developed to monitor and to regulate organ functions using the internal resources 
of the body. Silent speech information generated directly from the activity of neurons is 
involved in speech production via an intracortical microelectrode brain-computer 
interface [9]. It was shown that Macaca nemestrina monkeys can directly control 
stimulation of muscles using the activity of neurons in the motor cortex. Monkeys learned 
to use artificial connections from cortical cells to muscles to generate bidirectional 
wrist torques and controlled multiple neuron-muscle pairs simultaneously [10].

Despite encouraging results in the development and testing of bioelectronic 
complexes capable of recording neural impulses produced by a neuron and transfer-
ring them to subsequent processing into a nanocomputer, there are still many unre-
solved problems, the first of which is the development of a central link of the hybrid 
intelligence the “neuron-electronic device” interface [11–15]. To date, the greatest 
difficulty in creating such an interface is the problem of maintaining its working 
capacity in a living organism for a time comparable to the human lifespan. The most 
suitable material for creating such an interface is crystalline silicon. First, silicon is 
a biocompatible material, and, second, it is the main material of nano- and micro-
electronic technology, which makes it easy to integrate it into electronic circuits 
for subsequent signal processing. Taking into account the size of neurons (of the 
order of tens of micrometers), the silicon wires are the most suitable for creating an 
interface with a neuron. So, in the past decade, the “silicon crystal-nervous tissue” 
interface has been attracting huge interest. Various designs of electronic circuits of 
field-effect transistors [16] (SiNW-FET) have been developed. The main attention 
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in the development of these devices was given to obtaining a high sensitivity of the 
device for reliable registration of nerve impulses. For this purpose, the SiNW-FET 
design was developed, in which a dielectric layer between the neuron and the SiNW 
was created of the ultimate small thickness. The best results on the sensitivity of 
the SiNW-FET were obtained using the chemical compound poly-L-Lysine as a 
dielectric between neuron and FET. However, after long-term tests of this design, 
it was found that the lifetime of such an interface is estimated in a several days or a 
maximum of a few weeks.

So, a major hurdle in brain-machine interfaces (BMIs) is the lack of an implant-
able neural interface system that remains viable for a substantial fraction of the user’s 
lifetime and the lack of a high-density, chronic interface to enable recording and stimu-
lation from thousands of sites in a clinically relevant manner with little or no tissue 
response remains as one of the grand challenges of the twenty-first century.

The success of the research of our group in experiments on laboratory animals 
has shown the prospects for application of silicon nanowires in creation of bio-con-
sistent and bioactive implants. The key problem of these works was the study of the 
biophysical state of the interface “neuron-silicon nanowire” and the development of 
methods for the purposeful management of its properties. At present, on the basis 
of this interface, we have developed and patented technology for the manufacture 
of implants [17], which provides auto-electronic stimulation of the regenerative 
processes of damaged nerve tissue. The most important feature of the developed 
technology that significantly distinguishes it from existing ones is to provide condi-
tions for the continuous effective migration of biological cells to the implant site. 
This feature indicates the promise of its use for the development of neuro-electronic 
interfaces for neurocomputers, suitable for use over a long period of time, compa-
rable to the years of human life.

In 2-d part of the overview, we present the research on formation of the interface 
“silicon wire-nerve tissue.” Experiments were carried out in vivo by simulation of a 
sciatic nerve injury and following recovery of the injury using silicon nanowires.

In 3-d part, we present experimental techniques used to test how nerve fibers 
restore functional ability after implantation a conduit with silicon nanowires. In addi-
tion to the techniques traditionally used for this purpose, we apply a test to evaluate 
bidirectional communication between the brain and corresponding peripheral nerve 
by registration in real-time in vivo a nerve displacement initiated due to action potential 
propagation. We apply additionally SiNW-FET to measure charge state of the inter-
face, when it forms. Furthermore, this experiment gives rise to direct definition of sign 
and surface charge densities both on silicon wire and nerve fiber in living organism.

In 4-d part we present experimental results on evolution of the restore function-
ality of the damaged nerve after implantation conduit with silicon nanowires. We 
analyze prospects to use the interface nervous tissue—silicon nanowire in the global 
problem brain-computer interface—particularly on possible application quantum 
HEM device [18] based on silicon nanowires as a nerve pulse binary adder [19, 20].

2. Formation of the interface silicon wire-nerve tissue

The research on formation of the interface “silicon wire-nerve tissue” was 
carried out in vivo on Wistar rats by simulation of a sciatic nerve injury and further 
replacement fault of the nerve trunk by implant with a set of silicon nanowires.

One of the procedures published in details elsewhere [21, 22] includes several stages: 
growing of silicon wires, handling the implants, surgical procedure, and various test 
experiments in vivo for evaluation of motor function recovery by “the method of walk-
ing track” [23] and by recording a bilateral interaction between neuronal nets of a brain 
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and actuators of peripheral nerve by real-time registration nerve displacements due to 
action potential propagation [24–27] and test experiments in vitro to examine morpho-
logical features of the interface by optical and electron transmission microscopy.

2.1 Growth of silicon wires

Silicon wires (see Figure 1) were grown by the technology developed by 
Sandulova et al. [28]. This technology is based on a method of gas-phase reaction in 
a sealed tube at a temperature gradient. In order to provide the chemical reactions 
and to stimulate rapid growth of the wires, we used bromine and gold.

For growing wires with a prespecified type and value of conductivity, we 
added doping impurities into hot part of the tube. Due to differences in the 
reaction-binding energies of gold and the doping impurities with bromine, the 
temperature gradient provides a different amount of precipitation of these mate-
rials along the tube. That is why grown silicon wires are distributed along the 
tube by size (diameter, length) and by the level of doping [29, 30]. The thinner 
the diameter of a wire is, the smaller is the concentration of dopants. The diame-
ter of the grown wires ranges from 10 nm to several tens of microns. Their length 
varies in a range from tens of microns up to a few centimeters. Furthermore, the 
shape of wires depends on their diameter, too.

The wires, which diameter was of nanometers, were cylindrical, while the wires 
with much greater diameters were hexahedral.

2.2 Handling the implants

Wires for preparation of implants are shown in Figure 1. Making of implant 
started from dividing the wires by diameters. The prepared set of nanowires was 
treated for purification of a surface in different etchants. Thereupon, the wires were 
oxidized by storage under ambient atmosphere at room temperature. The thick-
ness of silicon oxide does not exceed one to two nanometers. Just before surgical 
operation, an antispiking gel (“Mesogel,” Linteks Ltd., Russian Federation) was 
introduced into the aorta extracted from another rat. In order to avoid a rejection of 

Figure 1. 
Wires for preparation of implants. Scale bar is 80 μm on the left and 250 μm on the right side of the figure.
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the transplant, the aorta has been prefrozen in liquid nitrogen. Then, the set of the 
wires was placed into the gel and oriented along an axis of the aorta.

2.3 Surgical procedure

Experiment was carried out on rats, weighing 180–250 g, that were housed in 
standard conditions with free access to food and water and natural light-dark cycle. 
The rats were randomly divided into several groups. Under thiopentone general 
anesthesia (40–60 mg/kg intraperitoneally), right sciatic nerve of animals were 
exposed in middle third, separated from surrounding tissues for approximately 
10 mm in length, and isolated from underlying muscles. For the animals of one 
group, after dissection of sciatic nerve, we inserted the implant (Figure 2). Animals 
of the other groups were used for trauma simulating of the nerve and as sham-
operated ones.

Animal care, housing, and all experiments were performed in accordance 
with the National Institutes of Health guide for the care and use of laboratory 
animals (NIH Publications No. 8023, revised 1978). The research was approved 
by Bioethical Committee for human subjects or animal research at Bogomolets 
National Medical University, December 30, 2015.

3 Methods for evaluation of nerve recovery after implantation

Along with traditional methods of evaluation of a nerve recovery, we first used 
laser heterodyne interferometric techniques that give rise to record in vivo in real 
time an evolution of bilateral interaction of a brain and peripheral nerve [31] that 
reflect a quality of the nerve recovery.

3.1 Experiment in vivo for evaluation of motor function recovery

In the course up to 5 months, rats were tested on a degree of nerve regeneration. 
For evaluation of motor function recovery, we used “the method of walking tracks” 
[23]. The degree of motor function recovery was determined by the shape and size 
of prints of hind paws of animals when they pass through a narrow corridor. For 
quantitative assessment of sciatic function index (SFI), we used print length, toe 
spread, and intermediate toe spread on the prints of both post-operated and healthy 
hind limbs.

Figure 2. 
Surgical procedure.
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3.2 Experiment in vivo for evaluation of a bilateral interaction of a brain and 
peripheral nerve

To evaluate a recovery of bilateral interactions between neuronal net of a brain 
and actuators of peripheral nerve, we designed a setup on detection of nanometer 
displacement of nerve fibers [24–27] using laser heterodyne interferometric tech-
niques with next specifications:

• Laser wavelength 0.63 μm

• Power of the probing radiation 1 mW

• Bandwidth of the receiver 1–30 KHz

• Noise level at frequency 1 KHz with bandwidth 3 KHz on distance 1 m about 
0.1 nm

• Optical setup for detecting the surface displacement that is accompanying neu-
ronal activity is presented in Figure 3.

The installation includes a laser heterodyne displacement meter, a computer for 
controlling the meter, and a computer for processing and displaying measurement 
results. The principle of operation of the displacement meter is based on detecting 
changes in the phase of scattered radiation from the object under study, relative to 
the phase of radiation of the laser heterodyne. The information signal is a phase-
modulated variable component of the photodetector current, which is formed as 
a result of interference of laser radiation and scattered radiation from the object 
under study, in the current case from the nerve of rat.

Figure 3. 
Optical setup for detecting neuronal activity.
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3.3 Examination of morphology of the interface

Around 6 weeks after the implantation, animals of the first group were taken 
out of the experiment by decapitation with the use of an overdose of thiopental 
anesthesia. Nerves with the implant were extracted, and slices were produced 
using a cryotome (MK-25, “Tekhnolog” Russia). Thereupon, the slices were stored 
during the day in 10% neutral formalin, next rinsed in distilled water, and fixed on 
a microscope slide. For the purposes of microscope investigation of the nerve fibers, 
samples were stained with silver nitrate [32]. Prepared slices of the interface “nerve 
fiber-silicon wire” were examined by light microscopes Carl Zeiss NU-2E and 
Olympus BX 51 equipped with a digital camera and transmission electron micro-
scope TЕМ-125К (SELMI, Ukraine).

For light microscopy, material was prefixed by intracardiac perfusion with 10% 
formalin in 0.1 M phosphate buffer, postfixed in 10% formalin, dehydrated, and 
embedded in paraffin. Sections were cut and strained with hematoxylin-eosin, by the 
van Gieson method, impregnated with nitric silver. For TEM, material was prefixed by 
intracardiac perfusion with 1% glutaraldehyde in 0.1 M phosphate buffer, postfixed in 
1% glutaraldehyde, 1% osmium oxide, dehydrated, and embedded in epone-araldite. 
Semi-thin and ultrathin sections were cut, contrasted by lead citrate and acetate.

3.4 Experiment on ascertain energy state of the interface nerve tissue-silicon 
nanowire

To elucidate the energy state of both constituents of the interface, we carry out 
experiment with application of SiNW-FET biosensor based on SOI structure with 
two gates [33–35] as the sensor element to evaluate charge states of the surface of 
silicon nanowire and the nerve fiber during the interface formation. A schematic 
representation of this transistor is shown in Figure 4.

In this transistor, the substrate is used as a control gate (back-gate, BG), 
modulating their conductivity. An analyte, which adheres to the free surface of 
the transistor, plays the role of the second gate (virtual local gate). If the charge at 
the surface of the nanotransistor changes due to adsorption of the analyte, so will 
change the conductivity of the nanotransistor and will shift its current-voltage 
Ids(Vbg) characteristic along voltage axis. A sign and value of the shifting allow 
determining both the sign and the density of the adsorbed charge.

Figure 4. 
Schematic presentation a dual-gated SiNW-FET biosensor based on SOI structure.
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To elucidate how the charge state of the nanotransistor surface changes dur-
ing the interface formation, we carried out experiment in vitro and studied the 
current-voltage characteristics Ids(Vbg) in three cases: (1) initial state of the surface 
of the nanotransistor (without any analyte, i.e., a free surface covered with native 
oxide only), (2) the surface of the nanotransistor in contact with the physiological 
environment, and (3) the surface of the nanotransistor after adherence of a neuron 
when it is immersed into the physiological environment. The measured current-
voltage characteristics for these three cases give rise to calculate the surface density 
of the initial charge on silicon nanowire (biosensor), after adherence of compo-
nents of the physiological environment and after adherence of a neuron as well.

4. Results and discussion

4.1 Evaluation of motor function

Results on recovery motor function of the limb by “the method of walking 
tracks” [23] are presented in Figure 5. It is seen that the sciatic function index (SFI) 
related to motor function of the limb, being normal before simulation of a sciatic 
nerve injury, instantly after implantation sharply decreases to abnormal state. 
However, in postoperative period about several months, functionality of the limb, 
even if slowly, improves.

4.2 Evaluation of bidirectional communication between the brain and peripheral 
nerve

To evaluate regeneration of sciatic nerve in vivo, we used additionally the laser 
heterodyne interferometric technique that allows in real-time record of efferent and 
afferent nerve impulses that provide bidirectional communication between neuro-
nal net of a brain and actuators of peripheral nerve, notably a limb.

Propagation of nerve electrical impulses along the axon is known, to be accom-
panying several other phenomena such as displacements of the axon, propagation 
of elastic and thermal waves, and magnetic oscillations as well [36, 37].

Figure 5. 
Evolution of the motor function recovery in postoperative period.
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In this work we study in real-time in vivo displacements of the nerve induced 
by nerve electrical impulses propagation. First of all, it should be noted that we 
measure the sum of the displacements of a bundle of the axons that forms the sciatic 
nerve. That is why the recorded displacements present the sum of independent 
cycles of a large number (about 1000 [38]) of the axon excitations. Consequently, 
we cannot observe a single excitation of regularly shaped spikelike to the observed 
in vitro on squid giant axon [39]. Furthermore, a magnitude of the spikes observed 
in the current experiment considerably exceeds the observed on a single axon.

The first step of our measurement was recording in vivo in real time the dis-
placements of healthy nerve that is shown in Figure 6 (top line). The next step is 
dissection of the healthy nerve and a measurement of activity in both dissected 
proximal and distal parts of the nerve presented in Figure 6 (center and bottom 
lines). From a comparison of the intensities of the nerve impulse generation of a 
healthy nerve, Figure 6 (top line), and the proximal and distal parts of the dis-
sected nerve (central and bottom line accordingly), it is seen that intensity of nerve 
impulses propagation persists enough high, especially on the proximal part.

The second step is to carry out surgical operation on implantation of the aorta 
filled by the silicon nanowires. Then, we measure nerve displacements immediately 
after implantation (Figure 7) in three places of the post-operated nerve: proximal 
part, implant and distal part.

It is seen that immediately after implantation (Figure 7), the intensity of the 
nerve impulses generation on the proximal segment of the nerve slightly decreased, 

Figure 6. 
Record in real-time in vivo displacements of the healthy nerve (the top line) and after dissection of the nerve 
(the center line, the proximal part; the bottom line, the distal part of the nerve).
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To elucidate how the charge state of the nanotransistor surface changes dur-
ing the interface formation, we carried out experiment in vitro and studied the 
current-voltage characteristics Ids(Vbg) in three cases: (1) initial state of the surface 
of the nanotransistor (without any analyte, i.e., a free surface covered with native 
oxide only), (2) the surface of the nanotransistor in contact with the physiological 
environment, and (3) the surface of the nanotransistor after adherence of a neuron 
when it is immersed into the physiological environment. The measured current-
voltage characteristics for these three cases give rise to calculate the surface density 
of the initial charge on silicon nanowire (biosensor), after adherence of compo-
nents of the physiological environment and after adherence of a neuron as well.

4. Results and discussion

4.1 Evaluation of motor function
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tracks” [23] are presented in Figure 5. It is seen that the sciatic function index (SFI) 
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even if slowly, improves.
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heterodyne interferometric technique that allows in real-time record of efferent and 
afferent nerve impulses that provide bidirectional communication between neuro-
nal net of a brain and actuators of peripheral nerve, notably a limb.

Propagation of nerve electrical impulses along the axon is known, to be accom-
panying several other phenomena such as displacements of the axon, propagation 
of elastic and thermal waves, and magnetic oscillations as well [36, 37].

Figure 5. 
Evolution of the motor function recovery in postoperative period.
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which could be expected, because this part of the nerve no longer receives signals 
generated in the paw. Generation of impulses produced in the paw (distal portion of 
the nerve) decreased more significantly. Nerve impulses in the area of the implant 
immediately after surgery are practically absent (Figure 7).

However, after 3 months the passage of nerve impulses through the regener-
ated nerve is already restored (Figure 8). Intensity propagations of nerve impulses 
through implant and distal parts are similar.

We conducted up to 20 experiments to study the passage of nerve impulses 
through the regenerating nerve. Summarizing results of all the test experiments, 
we can conclude that quality of restoration of the limb functionality depends on 
duration of postoperative period, number of silicon wires filling a gap, and physical 
properties of the wires.

4.3. Morphology of the interfaces nerve fiber-silicon nanowires

To understand the mechanism of neural tissue regeneration, a series of experi-
ments were carried out to elucidate the morphological features of the interface 
“neuron-silicon nanowire.” This research was published elsewhere [21, 22, 40], 

Figure 7. 
Record in real-time in vivo displacements of the nerve immediately after implantation in three places of the 
post-operated nerve: the proximal part (the top line), the implant (the central line) and the distal part (the 
bottom line).
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while the main results and discussion are given below. The interfaces prepared 
in vivo were examined in various post-operation periods ranging from 3 weeks 
up to 12 months. The growing nerve fibers formed within the short period were 
unmyelinated, while the others had myelin sheath whose thickness depended on 
the length of the postoperative period. Micrographs of the interfaces “nerve fiber-
silicon wire” studied in light microscope are presented in Figures  9 and 10a.

Before analyzing the micrographs, it is worthy to point out a specification of 
the preparation of slices that induced high difference in mechanical strength of 
nerve fiber and silicon wire. We attempted to prepare all the slices oriented primar-
ily along the large axis of the wires. High deviation from this direction resulted in 
breaking off and falling out a piece of the crystal and in a persistence of a mark of 
the crystal-removed part as a residual of the biomaterial.

This may be seen in the micrographs of Figure 9(a, b). Slight deviation from 
this direction resulted in persistence of beveled cut of biomaterial placed on the 
crystal surface. In case, if the persistent layer of biomaterial is sufficiently thin, 
then one can see crystals, which accrete from every side by arrays of regenerating 
nerve fibers. In another case, interface “nerve fiber-silicon wire” is clearly seen 
along all lengths of the wire (see Figure 9c). High sensitivity of the nerve fibers to 
silicon wires is clearly seen from Figure 9d, which presents how the array of grow-
ing nerve fibers changes a direction of their growth, when it meets the silicon wire, 
adsorbs on a surface of the wire, and carries on further growth across the surface. 

Figure 8. 
Record in real-time in vivo displacements of the nerve after 3 months post-implantation in three places of the 
post-operated nerve: the proximal part (the top line), the implant (the central line), and the distal part (the 
bottom line) of the nerve.
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In all these cases, though their variety, we can conclude on high sensitivity of the 
growing nerve to the surface of silicon crystals. Typical micrographs of the “silicon 
wire-nerve fiber” interfaces made with the light and transmission electron micro-
scopes are shown in Figure 10.

Figure 9. 
Micrographs of the affected nerve with the implanted silicon wires. Scale bar is: (a) 150 μm, (b) 50 μm,  
(c) 60 μm, and (d) 80 μm.

Figure 10. 
Micrographs of the interfaces: (a) made with light microscope, the slice is impregnated with nitric silver; plane 
of the slice coincides with the long axis of the silicon wire; here 1 is the silicon wire, and 2 is a bundle of the 
newly formed nerve fibers; (b) made with transmission electron microscope, the slice treated with 1% water 
solution of osmic acid; plane of the slice was perpendicular to the long axis of the silicon wire; here 1 is the 
silicon wire, 2 is myelin sheath, 3 is axoplasm, and 4 is new layers of the myelin sheath formed of Schwann 
cells. Scale bar: (a) 40 μm and (b) 50 nm.
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Examination of the interface with different magnifications allowed seeing 
general picture of the growing nerve fibers in the vicinity of the silicon wire and 
a set of various cells supporting growth of the nerve. In Figure 10 a micrograph 
of the interface made with light microscope demonstrates how a bundle of the 
newly grown young nerve fibers tightly adhere to the silicon wire. The micro-
graph of the interface made with transmission electron microscope (Figure 10b) 
shows how the newly formed layers of cell membrane of regenerating nerve fiber 
adhere to silicon crystal. The distance between membrane and silicon wire is less 
than a few nanometers. Having analyzed a great number of micrographs, we can 
conclude that young regenerating nerve fibers adhere to the surface of silicon 
crystals.

To understand the affinity of the nerve fiber to the surface of the silicon nanow-
ires found experimentally, we have to consider the composition and the energy state 
of both constituents of the interface, i.e., the nerve fiber and the silicon wire.

The energy state of the near-surface region of the silicon wire at room atmo-
sphere is shown in Figure 11a. In our experiment, we used silicon wires doped by 
boron that means that position of the Fermi level in the bulk of the crystal Ef is 
placed nearby the top of the valence band Ev.

A specific lattice restructuring of a few external atomic layers proper to the 
silicon surface is known [41] to initiate two energy bands located immediately at 
the surface. Density of the states in each of these bands is very high and approaches 
density of atoms at the surface (~1014 cm−2); therefore, the Fermi level at the sur-
face is placed near the middle of the energy gap Ei, and its position slightly depends 
on doping [42, 43] and growth of a thin native oxide as well. However, in p-type 
of silicon, which is used in our experiment, a positive charge at the surficial bands 
exceeds the negative one.

Figure 11. 
(a) The near-surface region of silicon wire, where 1 is the energy structure of the near-surface region of the 
silicon wire and 2 is a native oxide layer on the nanowire surface. (b) A structure of the membrane of nerve 
fiber (axon) in the living organism, where 3 is the extracellular physiological environment, 4 is the axon 
membrane composed of phospholipids molecules, and 5 is the axoplasm. (c) A morphology of the “silicon wire-
nervous tissue” interface generated in the living organism, where 6 is the silicon wire, 2–3 are the interface of a 
negatively charged native oxide and positively charged outer surface of the nerve fiber membrane, 4 is the axon 
membrane, and 5 is the axoplasm.
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Thus, the silicon wire being at vacuum or covered by the thin native oxide is 
entirely neutral, though the external surface of the silicon wire is charged positively.

The structure of the nerve fiber membrane inside a living organism is shown in 
Figure 11b. In our case preparation of the interface from the sciatic nerve of rats, 
the axon membrane is composed of phospholipid molecules that are known [44] 
to consist of polar heads and nonpolar tails and form the membrane in a shape 
of bilayer. It is worthwhile to emphasize that the outer side of the polar heads is 
charged positively. Surface density of this charge, according to the Richardson 
structure model, equals about 2 × 1013 cm−2. So, a large positive charge of about 
2 × 1013 cm−2 is permanently located at the outer side of the membrane.

Summarizing the above consideration, we can draw the following conclusion. 
If the near-surface region of the silicon nanowire conserves its charge state inside 
the living organism, then the silicon wire and the nerve fiber are similarly charged 
and have to repulse each other. Nevertheless, we do observe a strong adherence of 
the nerve fiber to the silicon nanowire that allows supposing that the physiological 
environment (interstitial fluid, cell cytoplasm, etc.) contributes to the formation 
of the interface. Analyzing how the environment may influence the charge state 
of silicon nanowire, we paid attention to the main properties of the physiological 
environment. About 80% of the environment consists of water and its pH > 7. 
On the other hand, thin native oxide layer, that covers the wires, is known [45] 
to consist primarily of intermediate oxidation states of Si atoms, in particular, 
Si1+(Si2O), Si2+(SiO), and Si3+(Si2O3). Thus, we can suppose that sub-oxidized Si 
atoms chemically react with OH− radicals of the environment, charge the surface of 
the nanowire negatively, and, thereby, provide Coulomb attraction between silicon 
wire and nerve fiber. To validate this assumption, we used a model experiment on 
contact of the nerve cells with silicon nanowire in the electrolyte with pH > 7, close 
to the physiological environment.

4.4 Evaluation of the charge state of the interface nerve tissue-silicon nanowire

In this experiment SiNW-FET based on SOI structure with two gates [32–34] 
has been used as the sensor element to evaluate charge states of the silicon nanowire 
during the interface formation.

An optical image of the nerve cell after its adherence on SiNW-FET is shown 
in Figure 12. In this transistor, the substrate is used as a control gate (back-gate, 
BG), modulating their conductivity. An analyte which adheres to the free surface 
of the transistor plays the role of the second gate (virtual local gate). If the charge 
at the surface of the nanotransistor changes due to adsorption of the analyte, so 

Figure 12. 
Micrograph of a neuron adhering to the surface of biosensor.
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will change the conductivity of the nanotransistor and will shift its current-voltage 
Ids(Vbg) characteristic along voltage axis. A sign and value of the shifting allow 
determining both the sign and the density of the adsorbed charge.

To elucidate how the charge state of the nanotransistor surface changes in 
contact with the physiological environment and after adherence of a neuron, we 
studied current-voltage characteristics Ids(Vbg) in three cases: (1) initial state of the 
surface of the nanotransistor (without any analyte, i.e., a free surface covered with 
native oxide only), (2) the surface of the nanotransistor in contact with the physi-
ological environment, and (3) the surface of the nanotransistor after adherence 
of a neuron when it is immersed into the physiological environment. The current-
voltage characteristics for these three cases are shown in Figure 13.

It is seen that, when we immerse the nanotransistor into the physiological 
environment, the current-voltage characteristics shift to the greater voltage Vbg 
that corresponds, by conditions of our experiment, to a negative charging of the 
surface of the nanotransistor. Then, we immerse a neuron into the physiologi-
cal environment and observe its adherence to the surface of the nanotransistor 
(Figure 12). The adherence of the neuron is accompanied by shifting of the 
current-voltage characteristic in the opposite direction, in particular, to the smaller 
voltage Vbg that means an accumulation of a positive charge at the surface of the 
nanotransistor. Knowledge of the shifting of the current-voltage characteristics and 
geometric parameters of the nanotransistor allows calculating the surficial charge 
at the surface of the nanotransistor induced by the adherence of the analyte. We 
calculated the surface density of this charge after adherence of components of the 
physiological environment and after adherence of a neuron as well. We found that 
the charge accumulated in physiological environment on the surface of the silicon 
nanotransistor is negative and its density equals ~1∙1014 cm−2. On the other hand, 
the adsorption of a neuron initiates accumulation of a positive charge on the surface 
of nanotransistor. The density of this charge is equal to ~2 · 1013 cm−2.

So, the experiment in vitro proved the above-made assumption about chemi-
cal reaction of native oxide with OH− radicals and, hereby, negatively charging a 

Figure 13. 
Current-voltage characteristics Ids(Vbg) for three cases of the surface of biosensor. (1) The surface covered by 
native oxide (without any analyte), (2) the surface in contact with the physiological environment, and (3) the 
surface in contact with adsorbed neuron that was immersed into the physiological environment.
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surface of the native oxide of silicon wire. Furthermore, the density of the positive 
charge accumulated at the silicon nanotransistor after adsorption of the neuron 
coincides with the known value of the surface density of polar head of phospholipid 
molecules by the Richardson structure model [44]. So, from the in vitro experi-
ment, we can draw a conclusion on the Coulomb origin of the interface formation 
and present morphology of the “silicon wire-nervous tissue” interface as it is shown 
in Figure 11c.

It is also evident that a propagation of the nerve impulse through the nerve fiber 
has to occur in a quite different way than the case when the nerve impulse passes 
through a free nerve fiber. A charge state of the formed interface during propaga-
tion of nerve impulse schematically is shown in Figure 14.

At a normal (resting) state of the nerve fiber, besides a permanent positive 
charge at the outer side of the membrane, there is an additional positive charge 
located inside the extracellular medium and the negative charge located inside the 
axoplasm. These charges produce potential difference across the axon membrane, 
the so called resting potential (Vrest ~ 70 mV) that acts throughout the entire length 
of the nerve fiber in a normal (resting) state of the nerve. However, when a nerve 
impulse passes along the nerve fiber, it reverses the potential difference across the 
axon membrane, the so called, “action potential” (Vaction ~ 40 mV). So, propagation 

Figure 14. 
Charge state of the nervous fiber in physiological environment (a) and charge state of the interface (b) during 
a nerve impulse propagation (c). Here 1 is the axoplasm; 2 is the axon membrane; 3, 4, and 5 are the ion 
channels; 6 is the extracellular physiological environment; 7 is the native oxide with negative charge on its 
surface; and 8 is the silicon wire.
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of the nerve impulse along the nerve fiber has to be accompanied by a flexural wave 
in the nerve due to recharge of the external side of the membrane and subsequent 
changing of the Coulomb attraction of the nerve fiber to the silicon wire by the 
Coulomb repulsion. Additionally, propagation of the nerve impulse has to generate 
an electronic surficial wave in a space charge region of the silicon wire. The latter 
may be used for extracellular recording of neuronal signal. Details of this process 
have to depend strongly on properties of silicon wires and call for further research.

5. Conclusion

Here we presented the study of the “silicon wire-nerve tissue” interface formed 
both in vivo and in vitro experiments. We have shown experimentally that there is a 
very good adhesion, of a nerve tissue to silicon wire, covered by thin native oxide, in 
the living organism. We analyzed the morphology of the interface from a physical 
point of view taking into account the energy structure of silicon surface, morphol-
ogy of the surface layer of nerve fiber, and the composition of nutrient medium 
as well. Result of the analysis is indicated on Coulomb interaction between the 
constituents of the interface. To verify this conclusion, we carried out experiment 
using doubly gated SOI-SiNW-FET that is given rise to measure the surface densities 
of the charge both on the surface of silicon wire and on the surface of nerve fiber. 
This experiment has shown that strong adhesion of silicon wire and nerve fiber is 
given rise to Coulomb mutual attraction of the oppositely charged surfaces of the 
nerve fiber and silicon wire. We analyzed Coulomb interactions at the interface 
during propagation of a nerve impulse and concluded that nerve impulse has to 
initiate a flexural wave in the nerve fiber and to generate an electronic surficial 
wave in a space charge region of silicon wire. Moreover, the flexural wave has to 
provide metabolism in the nerve fiber and, hereby vital capacity of the interface. On 
the other hand, the electronic wave in the space-charge region of silicon nanowire 
allows using it for extracellular recording of neuronal signal. So, it is evident that 
the proposed method of the interface “nervous tissue-silicon nanowire” preparation 
is promising for application in the global project brain-computer interface, particu-
larly on possible application quantum HEM device based on silicon nanowires as a 
nerve pulse binary adder.
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changing of the Coulomb attraction of the nerve fiber to the silicon wire by the 
Coulomb repulsion. Additionally, propagation of the nerve impulse has to generate 
an electronic surficial wave in a space charge region of the silicon wire. The latter 
may be used for extracellular recording of neuronal signal. Details of this process 
have to depend strongly on properties of silicon wires and call for further research.
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the living organism. We analyzed the morphology of the interface from a physical 
point of view taking into account the energy structure of silicon surface, morphol-
ogy of the surface layer of nerve fiber, and the composition of nutrient medium 
as well. Result of the analysis is indicated on Coulomb interaction between the 
constituents of the interface. To verify this conclusion, we carried out experiment 
using doubly gated SOI-SiNW-FET that is given rise to measure the surface densities 
of the charge both on the surface of silicon wire and on the surface of nerve fiber. 
This experiment has shown that strong adhesion of silicon wire and nerve fiber is 
given rise to Coulomb mutual attraction of the oppositely charged surfaces of the 
nerve fiber and silicon wire. We analyzed Coulomb interactions at the interface 
during propagation of a nerve impulse and concluded that nerve impulse has to 
initiate a flexural wave in the nerve fiber and to generate an electronic surficial 
wave in a space charge region of silicon wire. Moreover, the flexural wave has to 
provide metabolism in the nerve fiber and, hereby vital capacity of the interface. On 
the other hand, the electronic wave in the space-charge region of silicon nanowire 
allows using it for extracellular recording of neuronal signal. So, it is evident that 
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