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Preface

Reference evapotranspiration is one of the most difficult components of the hydro-
logic cycle to quantify accurately. Estimation or measurement of evapotranspiration
is demanding because there are a number of climatic parameters that can affect the
process, notably temperature, relative humidity, wind speed, and solar radiation. 
However, estimation methods are constantly evolving and accuracy should continu-
ally improve further. This is precisely the purpose of this book: to explore improve-
ments in the accuracy of estimates for evapotranspiration.

Direct methods have the limitations of measurement errors, expense, and the
impracticality of acquiring point measurements for spatially variable locations, 
whereas indirect methods have the limitations of the unavailability of all neces-
sary climate data and a lack of generalizability (the need for local calibration). In
contrast to conventional methods, soft computing models can estimate reference
evapotranspiration accurately with minimum climate data, which may have the
advantages of being inexpensive, independent of specific climatic conditions and 
unaware of physical relations, and precise modeling of the nonlinear complex
system. Results of studies in India suggest that artificial neural network models
perform better compared to multiple linear regression for all locations.

Taking the same limitations of current evapotranspiration methods into account, 
researchers from the United States focused on the developing evapotranspira-
tion method using general meteorological data and the Normalized Difference
Vegetation Index. Moreover, they evaluated the potential use of the evapotranspira-
tion method for drought monitoring to support agricultural risk management and 
food security.

Another team has been exploring improvements in the accuracy of estimates for
evapotranspiration over complete growing seasons and for monthly periods when
more frequent Landsat imagery was available. By assessing decreases in the accu-
racy of evapotranspiration estimated values as the frequency of available Landsat
images reduces, it was found that for the studied area, a four-day revisit time, as
represented by the full run of analysis, was required to ensure robustness in the
development of time-integrated evapotranspiration estimates over months and 
growing seasons. South Asian researchers also studied farmers’ livelihoods to iden-
tify a set of measures for improving both agricultural land and water productivity
under changing climates in recent decades.

Green infrastructure is a common solution for stormwater management in an
urban environment, with associated environmental benefits such as flood control, 
urban heat island relief, adaptations to climate change, biodiversity protection, 
air pollution reduction, and food production. Evapotranspiration controls a green
infrastructure’s hydrologic performance and affects all related benefits. This book
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is an interesting study that summarizes the current research progress and existing 
challenges regarding the benefits, measurements, and simulation of the evapotrans-
piration process from green infrastructures.

Dr. Daniel Bucur
Professor,

University of Agricultural Science and Veterinary Medicine in Iasi,
Iasi, Romania
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Chapter 1

Field-Scale Estimation of
Evapotranspiration
Jerry E. Moorhead

Abstract

Evapotranspiration (ET) is a major component of the water cycle, which makes
it an integral part of water resources management, especially in arid and semiarid
environments. ET data are used for water management, irrigation scheduling, var-
ious modeling activities, and much more. Some areas of scarce water resources
place limitations on water use, which are typically determined from various model-
ing approaches. As many models use ET as an input, or for validation, accurate ET
data is essential to ensure accurate model outputs. In addition, most water manage-
ment practices are done at the field scale; ET data of a similar scale is needed. Many
ET measurement or estimation methods exist and vary widely in approach, instru-
mentation, complexity, and purpose. A lysimeter is considered the standard for ET
measurement and is the most accurate. Other, more portable options are available,
such as eddy covariance, scintillometer, Bowen ratio, and remote sensing, all capa-
ble of estimating actual field ET within approximately 30% of actual values.
Although other methods may not be as accurate as a lysimeter, each has benefits in
certain situations. Depending on the purpose, the level of accuracy may be suitable.
ET estimation methods are constantly evolving, and accuracy should continually
improve further.

Keywords: irrigation scheduling, energy balance, water balance, lysimeter, eddy
covariance, scintillometer, remote sensing

1. Introduction

Fresh water is an essential resource that is becoming increasingly limited. In
some arid and semiarid regions, groundwater resources are being exhausted with
little to no surface water available as an alternate source. Proper water resources
management is essential for these areas. In many cases, water management strate-
gies rely on the use of evapotranspiration (ET) to account for some of the water
losses. ET is a combined term that represents water lost through evaporation from
the soil or plant surface, as well as water lost through transpiration from the plant.
In many regions, such as the Texas High Plains, ET is the largest water loss compo-
nent in the hydrologic budget. This fact makes accurate ET estimates vital for
accurately and properly managing crop water. In the Texas High Plains, and the rest
of the southern Ogallala Aquifer region, groundwater recharge is very low at
�11 mm yr�1 [1]. With such little recharge, the Ogallala Aquifer is deemed a finite
resource. In order to preserve this natural resource for future generations, conserv-
ing the remaining water is paramount.
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The Texas High Plains lies in the Southern Great Plains near the southern end of
the Ogallala Aquifer (see Figure 1). Agriculture is the predominant land use and
irrigated land accounts for the majority of the agricultural production in this region.
In the state of Texas, irrigation accounts for 60% of total water use; however, in the
Texas High Plains, irrigation accounts for 89% of the total water use [2]. The Texas
High Plains is a major corn-, cotton-, wheat-, and sorghum-producing region with
much of the agricultural production under irrigation. The vast majority of irrigation
water is withdrawn from the Ogallala Aquifer. With limited and sporadic rainfall,
the Ogallala Aquifer receives little to no recharge in this region and is essentially
being mined; therefore, conservation is an integral part of the regional water plan
[3]. The northern and southern parts of the Texas High Plains are similar in size;
however, the northern Texas High Plains irrigates over 1.1 million ha, while the
southern Texas High Plains irrigates over 760,000 ha [4]. In both the northern and
southern regions, irrigated crop yields are at least double that of dryland yields (on
average).

In the northern Texas High Plains (see Figure 1), about 55% of the cropland is
irrigated and uses about 1.76 billion m3 (1.43 million ac-ft) of water annually for
irrigation [3]. Irrigated winter wheat, grain corn, cotton, and grain sorghum are the
predominant crops, comprising 30, 26, 23, and 10% of the total irrigated area,
respectively [4]. Corn is a relatively large water use crop, requiring an annual
average of over 480 mm (19 in.) of irrigation [3], and all of the corn area in this
region requires irrigation. Currently, silage and forage crops are minor crops in the
region but are increasing dramatically to meet the demands of new dairy operations
that continue to expand into the area.

Figure 1.
Ogallala Aquifer and Texas High Plains regions.
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In the southern Texas High Plains (see Figure 1), cotton is the major crop
comprising 65% of the total irrigated area [4]. The popularity of cotton in this area
is a reflection of the water resource limitations where the saturated thickness of the
Ogallala Aquifer decreases near the southern boundary. Cotton only requires an
annual average of 170 mm (6.7 in.) of irrigation in the Texas High Plains [3].
Peanuts are the second most grown crop in the southern region with about 9% of
total irrigated area. Grain corn only accounts for 3% of irrigated area with winter
wheat and grain sorghum at 7% each [4].

The decline in the saturated thickness of the Ogallala Aquifer has caused some
local groundwater conservation districts to begin regulating annual water with-
drawals. In Texas, groundwater conservation districts have been granted the
authority to regulate water withdrawals to extend the life of the Ogallala Aquifer
and meet the goals of regional water plans approved by the state. As part of the
Texas State Water Plan, the Panhandle Water Regional Planning Group set the goal
of nominally, on average, retaining 50% of current available water in 50 years [5].

Currently, regional irrigation demand is determined by advanced models such as
MODFLOW [6] and the Texas A&M-Amarillo [3] model. MODFLOW is a complex
model that assesses groundwater resources, which requires ET as an input. In 1999,
the Texas A&M-Amarillo (TAMA) model was developed as a new estimation
methodology for the region [5]. It was used to accurately estimate irrigation
demand in the northern Texas High Plains. The TAMAmodel estimates the seasonal
irrigation demand per crop per county for 21 counties in the northern region of the
Texas High Plains. The TAMA model requires inputs of ET, precipitation, and soil
characteristics. Accurate ET data and local acreage knowledge beyond USDA-Farm
Service Agency values are essential for model accuracy.

Since modeling is one of the main ways regional water plans are developed and
assessed, accurate model outputs are highly desired. Many of the models use ET as
an input, and the outputs are heavily affected by the accuracy of the inputs. High
levels of accuracy are beneficial in regional water planning so that the best decisions
are made regarding water allotment and water availability. This creates the need for
high levels of accuracy in ET estimation.

1.1 Evapotranspiration

Measuring or estimating ET can be difficult but numerous instruments and
methods do exist. A common (and relatively simple) method of estimating ET is
using reference ET (ETref [7]) which uses meteorological data to estimate the water
demand of a reference crop, usually a short, clipped grass or alfalfa. To get ET for a
specific crop from the reference ET, a crop coefficient (Kc) can be applied to yield
potential crop ET or ETc [7]. When measured ETc data are available, the Kc values
can be obtained by dividing ETc by ETref. This approach requires accurate data for
ETc to obtain the best results. Kc values for a wide variety of crops are available
throughout the literature [7–9].

Single and dual crop coefficient methods are available. For the single crop
coefficient approach, water loss through transpiration is combined with soil evapo-
ration, and a single Kc value is used. In the dual crop coefficient approach, the
transpiration and evaporation components are split into a basal crop coefficient
(Kcb) for transpiration and a soil evaporation (Ke) component [7]. The ETc from the
Kc approach provides the amount of water that would be used by the crop if there is
no water limitation. In most cases, ET can be lower than the potential rate due to
stresses from water, nutrients, pests, etc. A stress coefficient (Ks) can be applied to
the Kc to account for water stress when using ETref [7]. To account for reduced ET
due to stresses, the term actual ET (ETa) is used. ETa corresponds to the actual
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amount of water lost from a specific field, with a specific crop, under specific
environmental conditions. Ks is calculated by

Ks ¼ TAW �Dr

1� pð ÞTAW (1)

where TAW is the total available soil water, Dr is the root zone depletion (mm),
p is the fraction of TAW allowed before the crop experiences water stress (typically
0.50 for most crops [7]), and Dr is typically calculated using a water balance
approach. TAW is calculated as

TAW ¼ 1000 θFC � θWPð ÞZr (2)

where θFC is the field capacity water content, θWP is the wilting point water
content, and Zr is the rooting depth (m). Additional information on calculating Ks is
available in [7].

Since ETref assumes no water limitations, it represents the atmospheric demand
for water, which is why most ETref equations only require weather data. ETc

derived from ETref provides the potential, or maximum, water use by the crop,
assuming no crop water stress, or if the Ks is used, only accounts for water stress.
One potential issue with this technique is that crops can typically encounter stress
from multiple sources throughout the season, especially in arid and semiarid cli-
mates. Another issue is the use of limited crop coefficients during the growth cycle.
It is more advantageous to use ETa in water planning and irrigation scheduling, but
acquiring ETa can be challenging.

To maximize the effectiveness of irrigation scheduling, ETa is more beneficial
than ETref or even ETc. Confusion exists regarding what each ET term corresponds
to, which can lead to the use of ETref instead of ETc. Using ETref in irrigation
scheduling is considered better than no irrigation scheduling, but it can lead to over
application of water, as can ETc. Even though ETc corresponds to the ET of the
specific crop, it does not take ET reduction due to stress into account. One problem
with using ETa in irrigation scheduling is that ETa can be very difficult to obtain.
Where ETref can be calculated from weather parameters, using a relatively simple
weather station on a reference surface, ETa requires more advanced (and expen-
sive) instrumentation. Current technologies for determining ETa are described in
detail below.

1.2 Water balance

ET is used in production agriculture in the practice of irrigation scheduling. This
practice involves tracking ET from the field and applying the water balance. The
water balance is based on the equation:

ΔS ¼ P� ET� R�D (3)

where ΔS is change in soil moisture, P is precipitation, R is the sum of runoff and
run-on, and D is drainage [10]. All units are in mm. The R term is negative when
run-on exceeds runoff and positive if runoff is greater. In many arid and semiarid
regions, the drainage term is often miniscule. In addition, most current agricultural
practices employ measures to control runoff/run-on, such as furrow diking. This
practice can make the runoff term minute. In other climates/regions where runoff
and run-on can be significant, the values can be estimated from precipitation
intensity and infiltration rate [11]. Other methods could also be used, such as from
soil moisture sensors or runoff flumes. Drainage, or deep percolation, can be

6

Advanced Evapotranspiration Methods and Applications

determined from soil moisture content below the root zone. Deep soil moisture can
be measured using soil moisture sensors, neutron probes, or soil cores.

In arid and semiarid regions where precipitation does not meet crop water
requirements and is supplemented with irrigation, it is also important to account
for the effective addition of water by irrigation. In most cases in areas such as the
Texas High Plains (where runoff/run-on and drainage are negligible), the water
balance is written as

Pþ I þ ΔS ¼ ET (4)

In addition, in these drier climates, soil moisture change between the growing
seasons is typically minor, so precipitation and irrigation are the main water inputs.
Since precipitation is typically small and highly variable in arid and semiarid
regions, irrigation is required for maximum agricultural production. One problem
in these areas is that water supplies are rapidly diminishing. This illustrates the
importance of maximizing the efficiency of water use. With effective irrigation
scheduling, producers can apply only the amount of water required for the respec-
tive crop.

In Texas, and especially the Texas High Plains, irrigation is the largest consumer
of fresh water, most of which comes from the declining Ogallala Aquifer. In a
previous study [2], it was found that reducing irrigation applications by 25 mm
(1 in.) over the typical summer growing season for all the irrigated acreage in the
northern Texas High Plains would save 92.5 million m3 (75,000 ac-ft) of water, also
decreasing pumping costs by over $6 million. For perspective, that 92.5 million m3

of water equates to over 2.5 months of municipal water use for the city of Houston,
TX, with a population over 2 million.

The water balance approach has been widely used to estimate ET. It can be
modeled seasonally by obtaining volumetric water content from soil samples at the
beginning and end of the growing season. If precipitation and irrigation is mea-
sured, the change in soil moisture can be used to calculate seasonal ET. With soil
moisture sensors, the same accounting approach can be performed on any time
scale. The spatial resolution, however, of the water balance approach depends on
the amount and spacing of soil moisture sensors or soil samples. Installing numerous
sensors or taking numerous soil samples is often prohibitive due to time and
funding constraints. In addition, both sensors and soil samples are specific to the
small area of measurement and may not represent the surrounding field, especially
in areas with highly variable soils.

1.2.1 Soil moisture measurements

Soil moisture measurements are used to determine ET through the water bal-
ance. The soil moisture measurements allow for the determination of ΔS, and with
measurements of P and I, the water balance can be solved to yield ET.

Time-domain reflectometry (TDR) is a method to determine the soil moisture
content and can be used to calculate change in soil water content as a surrogate for
ET using the water balance. A TDR instrument consists of multiple probes (typi-
cally three) connected to a cable tester. The instrument works on the theory that
changes in soil water content change the apparent permittivity of the soil as deter-
mined by the probes [10]. The soil moisture status can be calculated by the velocity
of an electrical pulse through the probes.

A neutron soil moisture meter, or neutron probe, is an instrument that contains
a radiation source that emits high energy neutrons. The high energy neutrons
collide with water molecules in soil, and the reflected slower (lower energy)
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amount of water lost from a specific field, with a specific crop, under specific
environmental conditions. Ks is calculated by

Ks ¼ TAW �Dr

1� pð ÞTAW (1)

where TAW is the total available soil water, Dr is the root zone depletion (mm),
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TAW ¼ 1000 θFC � θWPð ÞZr (2)

where θFC is the field capacity water content, θWP is the wilting point water
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available in [7].
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ΔS ¼ P� ET� R�D (3)

where ΔS is change in soil moisture, P is precipitation, R is the sum of runoff and
run-on, and D is drainage [10]. All units are in mm. The R term is negative when
run-on exceeds runoff and positive if runoff is greater. In many arid and semiarid
regions, the drainage term is often miniscule. In addition, most current agricultural
practices employ measures to control runoff/run-on, such as furrow diking. This
practice can make the runoff term minute. In other climates/regions where runoff
and run-on can be significant, the values can be estimated from precipitation
intensity and infiltration rate [11]. Other methods could also be used, such as from
soil moisture sensors or runoff flumes. Drainage, or deep percolation, can be
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determined from soil moisture content below the root zone. Deep soil moisture can
be measured using soil moisture sensors, neutron probes, or soil cores.

In arid and semiarid regions where precipitation does not meet crop water
requirements and is supplemented with irrigation, it is also important to account
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Texas High Plains (where runoff/run-on and drainage are negligible), the water
balance is written as
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In addition, in these drier climates, soil moisture change between the growing
seasons is typically minor, so precipitation and irrigation are the main water inputs.
Since precipitation is typically small and highly variable in arid and semiarid
regions, irrigation is required for maximum agricultural production. One problem
in these areas is that water supplies are rapidly diminishing. This illustrates the
importance of maximizing the efficiency of water use. With effective irrigation
scheduling, producers can apply only the amount of water required for the respec-
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In Texas, and especially the Texas High Plains, irrigation is the largest consumer
of fresh water, most of which comes from the declining Ogallala Aquifer. In a
previous study [2], it was found that reducing irrigation applications by 25 mm
(1 in.) over the typical summer growing season for all the irrigated acreage in the
northern Texas High Plains would save 92.5 million m3 (75,000 ac-ft) of water, also
decreasing pumping costs by over $6 million. For perspective, that 92.5 million m3

of water equates to over 2.5 months of municipal water use for the city of Houston,
TX, with a population over 2 million.

The water balance approach has been widely used to estimate ET. It can be
modeled seasonally by obtaining volumetric water content from soil samples at the
beginning and end of the growing season. If precipitation and irrigation is mea-
sured, the change in soil moisture can be used to calculate seasonal ET. With soil
moisture sensors, the same accounting approach can be performed on any time
scale. The spatial resolution, however, of the water balance approach depends on
the amount and spacing of soil moisture sensors or soil samples. Installing numerous
sensors or taking numerous soil samples is often prohibitive due to time and
funding constraints. In addition, both sensors and soil samples are specific to the
small area of measurement and may not represent the surrounding field, especially
in areas with highly variable soils.

1.2.1 Soil moisture measurements

Soil moisture measurements are used to determine ET through the water bal-
ance. The soil moisture measurements allow for the determination of ΔS, and with
measurements of P and I, the water balance can be solved to yield ET.

Time-domain reflectometry (TDR) is a method to determine the soil moisture
content and can be used to calculate change in soil water content as a surrogate for
ET using the water balance. A TDR instrument consists of multiple probes (typi-
cally three) connected to a cable tester. The instrument works on the theory that
changes in soil water content change the apparent permittivity of the soil as deter-
mined by the probes [10]. The soil moisture status can be calculated by the velocity
of an electrical pulse through the probes.

A neutron soil moisture meter, or neutron probe, is an instrument that contains
a radiation source that emits high energy neutrons. The high energy neutrons
collide with water molecules in soil, and the reflected slower (lower energy)
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neutrons are counted by the probe counter. The neutron count is related to the
soil moisture by a calibration. The amount of lower energy neutrons that is
reflected back to the sensor provides an accurate indication to the soil moisture
status [12]. In addition, the sphere of influence of the neutron meter is
correlated to the soil moisture content with lower moisture contents having larger
contributing values.

2. ET measurement

2.1 Energy balance

Many ET estimation methods use or are based on the energy balance. The energy
balance concept describes the processes of radiation in the atmospheric boundary
layer. Solar radiation is the sole energy input for radiation processes. The incoming
shortwave and longwave radiation is either reflected or absorbed by the surface of
the earth. The net radiation (Rn) is the amount of radiation absorbed by the earth’s
surface and is measured by subtracting the reflected radiation from the total
incoming radiation. The absorbed radiation contributes to soil heat flux, sensible
heat flux, and latent heat flux. Soil heat flux (G) is the amount of radiation gained
or lost by the soil surface though conduction. Sensible heat flux (H) is the energy
that increases the temperature of the atmosphere causing advection, and latent heat
flux (LE) is the energy available for the evaporation of water. Due to the law of
thermodynamics, the net radiation must be distributed among the other three
fluxes. This yields the basic energy balance equation:

Rn ¼ LEþH þ G (5)

Net radiation can be measured by a variety of instruments where the incoming
solar radiation will be measured in addition to the reflected radiation. The soil heat
flux can be measured by soil heat flux plates which measure the amount of energy
gained or lost by the soil. H and LE require advanced instruments and methods for
measurement. Since LE is the energy used for evaporating water, it can be
converted to ET by dividing by the latent heat of vaporization. Measuring H and LE
is more challenging and requires more sophisticated instrumentation.

2.2 Lysimeter

A lysimeter is considered the most accurate ETa measurement instrument. A
lysimeter consists of a mass of soil in an enclosed container which can be accurately
weighed to determine the amount of water lost or gained per unit time. Lysimeters
can be very complex and expensive to install and operate but are a direct measure-
ment of soil water storage. Thus, lysimeters are considered the most accurate for ET
measurement [13, 14]. Lysimeters are point measurements and only have the mea-
surement area of the container. However, if the surrounding field is properly
managed to match the lysimeter, the ET data can represent field conditions. This
intensive management is typically only possible at research locations. One example
of large continuously weighing lysimeters are those located at the USDA-ARS Con-
servation and Production Research Laboratory (CPRL) in Bushland, TX. This loca-
tion houses four lysimeters within a 20 ha (50 acre) field, divided into four
quadrants.

Each large weighing lysimeter measures 3 by 3 m on the surface by 2.3 m deep
over a fine sand drainage base (see Figure 2). It contains an undisturbed monolithic
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Pullman clay loam soil profile with subsurface drip irrigation at 23 cm depth or mid
elevation sprinkler irrigation. The soil container rests on a large agronomic scale
equipped with a counterbalance and load cell system. Initial design and installation
details of the lysimeter are provided by [15, 16]. The lysimeters were later equipped
with drainage effluent tanks suspended from the lysimeter by load cells for separate
measurement of drainage mass without changing total lysimeter mass. Load cell
output is measured and recorded by a precision data logger. Load cell voltage out-
puts are converted to mass using calibration equations, and 5 minute means are
used to develop a base dataset for subsequent processing [17]. Lysimeter mass in kg
is converted to a mass-equivalent relative lysimeter storage value (mm of water) by
dividing it by the relevant surface area of the lysimeter (�9 m2) and the density of
water (1000 kg m3). Equivalent mass values allow for changes in lysimeter mass to
be expressed in terms of water flux, defined as mm of water lost or gained per unit
time. The lysimeter data logger mass resolution is better than 0.001 mm when
converted to equivalent depth of water. Lysimeter accuracy is, however, deter-
mined by the RMSE of calibration, which has ranged from 0.05 mm to 0.01 mm
[14, 17]. Lysimeter quality assurance and quality control (QA/QC) and data
processing techniques are provided by [18].

Calculating ET in units of equivalent depth of water requires that the change in
lysimeter mass be divided by the effective evaporating and transpiring area of the
lysimeter [13]. The Bushland lysimeter inside surface area is 8.95 m2 [14]; however,
the area of contribution from captured precipitation or irrigation, as well as ET, is
beyond the lysimeter container, resulting in an effective area larger than the phys-
ical area of the lysimeter. The reported the outside lysimeter surface area was
9.35 m2 [10]. In this case, a correction factor of 1.05 (9.35/8.95 m2) is applied to ET
measurements from the lysimeter.

Figure 2.
Large weighing lysimeters at the USDA-ARS Conservation and Production Research Laboratory (CPRL),
Bushland,TX. The view from the surface (a) shows the outline of the lysimeter container during the growing
season with a crop planted. A photo taken during installation (b) illustrates the size of the container and the
below ground access housing.
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neutrons are counted by the probe counter. The neutron count is related to the
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can be very complex and expensive to install and operate but are a direct measure-
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managed to match the lysimeter, the ET data can represent field conditions. This
intensive management is typically only possible at research locations. One example
of large continuously weighing lysimeters are those located at the USDA-ARS Con-
servation and Production Research Laboratory (CPRL) in Bushland, TX. This loca-
tion houses four lysimeters within a 20 ha (50 acre) field, divided into four
quadrants.

Each large weighing lysimeter measures 3 by 3 m on the surface by 2.3 m deep
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The lysimeter is designed to be the representative of the surrounding field so
that measured lysimeter ET closely mimics field ET. Experienced support scientists
and technicians are responsible for maintaining lysimeter representativeness as
compared to surrounding fields. Careful attention is given to agronomic operations
including planting, harvesting, tillage, fertilization, irrigation, and pesticide appli-
cation such that there should be no distinguishable differences, particularly in
height, between the crop grown on the lysimeter and that grown in the surrounding
field. To confirm this, multiple neutron probe access sites were located both
throughout the field and in the lysimeter to monitor the soil profile water content.
Weekly soil water content (SWC) readings from the neutron probes throughout the
field are compared to SWC readings from the lysimeter to determine similitude
representativeness. In addition to SWC readings, plant mapping and stand counts
were periodically taken to ensure the crop growth on the lysimeter approximates
the surrounding field. The lysimeter box contains a �50 mm freeboard lip that
extends above the soil surface to limit runoff or run-on to the lysimeter. Similarly,
furrow dikes are used to limit runoff and run-on for the surrounding field.

The lysimeters at the CPRL are a great example of large weighing lysimeters.
However, there are many types and sizes of lysimeters. Some are constantly
weighing, such as those at the CPRL, while others are weighed periodically. In
addition, lysimeters can vary in size. The large weighing lysimeters at the CPRL are
considered highly accurate due to their large size, where the effects of the enclosed
space on the plants are minimal. Smaller lysimeters will contain more error, espe-
cially if the soil volume is small enough where root growth is impeded. With
lysimeters, the accuracy is dependent on the lysimeter design, representativeness,
maintenance, and operation. Smaller lysimeters can have value, even if they are not
highly accurate. An example of the usefulness of smaller lysimeters is the Soil-Plant-
Environment Research (SPER) facility, also at the CPRL (see Figure 3). This facility
is equipped with 48 lysimeters, each measuring 1 m by 0.75 m by 2.3 m deep [19].
The 48 lysimeters are comprised of 12 replications each of Ulysses silt loam soil
from the Garden City, KS area; Pullman clay loam soil from Bushland, TX; Amarillo
sandy loam soil from the Big Spring, TX area; and Vingo fine sand soil from the
Dalhart, TX area. These represent the four main soil types of the Southern Great
Plains of the United States. The SPER contains an automatically controlled rainout
shelter that covers the lysimeters during precipitation events, which allows water
additions to be precisely controlled through surface drip irrigation. The size of the

Figure 3.
The Soil-Plant-Environment Research (SPER) facility at the Conservation and Production Research
Laboratory (CPRL) in Bushland,TX. This facility contains 48 smaller lysimeters consisting of 12 replications of
the 4 main soil types throughout the Southern Great Plains region of the United States. An automatic rainout
shelter (seen in the background) covers the lysimeters during precipitation events so that water can be precisely
controlled through surface drip irrigation.
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lysimeters at the SPER, and the open space between the lysimeters, limits their
absolute accuracy. However, this facility can provide good comparisons between
treatments and soil types. This illustrates that even though the quantitative mea-
surements from some lysimeters may be lacking, the qualitative data can still be
quite valuable. More information regarding lysimeter research at the CPRL can be
found in [20].

Even smaller lysimeters can also have value. Temporary “micro lysimeters” have
been used to measure soil evaporation on a daily time step (see Figure 4). Lysime-
ters such as these are useful in research involving partitioning evaporation and
transpiration separately. Like the small lysimeters at the CPRL, the micro lysimeters
are not perfectly accurate but can still provide meaningful data for certain purposes.
Many other lysimeter designs have been used and can be permanent or temporary.
Large weighing lysimeters are the most accurate, but other, simpler, and more cost-
effective options are available. As with most instruments, the accuracy and useful-
ness of the data will depend on the purpose and management of the lysimeter.

2.3 Bowen ratio

Bowen ratio is a method of partitioning fluxes between latent and sensible heat
based on flux-profile relationships for energy and mass exchange [21]. This method
assumes flux directions are vertical and no horizontal flux movement occurs. Mea-
surements of air temperature and relative humidity are taken at two different
heights in the same location. The relative humidity is used to calculate the vapor
pressure. The Bowen ratio is the ratio of sensible heat flux to latent heat flux and can
be calculated as

β ¼ γ
ΔT
Δe

(6)

Figure 4.
An example of a “micro lysimeter” used to determine soil evaporation. The inner soil container can be removed
from the outer housing and manually weighed.
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lysimeters at the SPER, and the open space between the lysimeters, limits their
absolute accuracy. However, this facility can provide good comparisons between
treatments and soil types. This illustrates that even though the quantitative mea-
surements from some lysimeters may be lacking, the qualitative data can still be
quite valuable. More information regarding lysimeter research at the CPRL can be
found in [20].

Even smaller lysimeters can also have value. Temporary “micro lysimeters” have
been used to measure soil evaporation on a daily time step (see Figure 4). Lysime-
ters such as these are useful in research involving partitioning evaporation and
transpiration separately. Like the small lysimeters at the CPRL, the micro lysimeters
are not perfectly accurate but can still provide meaningful data for certain purposes.
Many other lysimeter designs have been used and can be permanent or temporary.
Large weighing lysimeters are the most accurate, but other, simpler, and more cost-
effective options are available. As with most instruments, the accuracy and useful-
ness of the data will depend on the purpose and management of the lysimeter.

2.3 Bowen ratio

Bowen ratio is a method of partitioning fluxes between latent and sensible heat
based on flux-profile relationships for energy and mass exchange [21]. This method
assumes flux directions are vertical and no horizontal flux movement occurs. Mea-
surements of air temperature and relative humidity are taken at two different
heights in the same location. The relative humidity is used to calculate the vapor
pressure. The Bowen ratio is the ratio of sensible heat flux to latent heat flux and can
be calculated as

β ¼ γ
ΔT
Δe

(6)

Figure 4.
An example of a “micro lysimeter” used to determine soil evaporation. The inner soil container can be removed
from the outer housing and manually weighed.
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where β is the Bowen ratio, γ is the psychometric constant, ΔT is the temperature
difference between the two measurements, and Δe is the vapor pressure difference
between the two measurements. Using the Bowen ratio, the sensible and latent heat
flux are calculated by

LE ¼ Rn �G
1þ β

(7)

and

H ¼ β

1þ β
Rn �Gð Þ (8)

where LE is the latent heat flux, Rn is net radiation, G is soil heat flux, and H is
sensible heat flux [21]. All units are W m�2. The Bowen ratio method has been
shown to contain errors of 25–30% [22, 23].

2.4 Eddy covariance

Eddy covariance (EC) systems are based on the theory that as wind moves, it
does not move unidirectionally but in three-dimensional circular patterns, or eddies
[24]. In addition, as the air moves, it carries with it molecules of water vapor and
other gases such as carbon dioxide, methane, and others. If the speed of these eddies
can be determined in all three directions, then the movement of the molecules can
be determined. In conjunction, a gas analyzer can be used to measure the amounts
of water vapor (or other gases) the air contains at that moment in time. The
covariance between the movement of the air mass and the composition of that same
air mass can be used to determine the water flux (or fluxes of carbon dioxide and
methane), in addition to H, LE, and ET. This is the basis for EC systems
(see Figure 5), where a three-dimensional sonic anemometer and an infrared gas
analyzer (or krypton hygrometer) are used to collect the aforementioned data.

Figure 5.
A typical eddy covariance system consisting of a three-dimensional sonic anemometer (CSAT-3, Campbell
Scientific Inc., Logan, UT) and an infrared gas analyzer (LI-7500, LI-COR Biosciences, Lincoln, NE).
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The flux for any gas can be calculated from the EC data by

F ¼ ρw`s` (9)

where ρ is the mean air density and w` and s` are deviations from the mean for
wind speed and dry mole fraction, respectively [24]. The dry mole fraction can be
determined for any gas or variable of interest. From this principle, H and LE can be
calculated by

H ¼ ρCpw`T` (10)

and

LE ¼ λ
Mw=Ma

P
ρw`e` (11)

where Cp is the specific heat of air, T` is deviation from mean temperature, λ is
latent heat of vaporization, Mw is the molecular weight of water vapor, Ma is the
molecular weight of dry air, P is mean atmospheric pressure, and e` is the deviation
from mean vapor pressure.

To detect the fast movements of certain eddies, EC measurements are typi-
cally taken at very short intervals, often 10–20 measurements per second (10–
20 Hz sampling rate). A very fine measurement resolution is needed to capture
the rapid changes in gas concentration and eddy movements. The quantity of
data acquired also provides adequate sample size for the covariance analysis.
Although measurement acquisition is very frequent, the data will typically be
averaged to 30 minutes for flux computations. The 30 minute time step is
comparable to the period of significant, unsteady atmospheric motions [25]. The
spatial scale of EC measurements is directly affected by sensor height. A sensor
height of 2 m will have a measurement footprint of approximately 150 m, and
the footprint will increase with higher sensor heights [24].

Several corrections are typically applied to raw EC data to compensate for
instrumentation arrangement and ensure that the assumptions of the EC tech-
nique are generally valid [26]. These include corrections for coordinate rota-
tion, air density, frequency-dependent signal loss, and Webb, Pearman, and
Leuning (WPL) corrections [27]. The coordinate rotation correction converts
the flux data so that the orientation is where fluxes are perpendicular to the
surface. The air density correction accounts for density fluctuations due to
temperature and humidity fluctuations [26]. Frequency-dependent signal loss
corrections account for signal losses in the high and the low frequency ranges
[27]. The WPL corrections account for fluctuations in gas concentration due to
temperature and humidity fluctuations, which do not contribute to the gas
fluxes.

ETa can be determined from EC systems where the water vapor flux is
calculated. EC systems can be used to determine the energy balance when the
Rn and G are also measured. The basic energy balance equation is given in
Eq. 4. Based on this equation, the sum of H and LE should equal the difference
between Rn and G. It has been acknowledged that EC systems have an issue
with energy balance closure where Rn–G 6¼ LE + H [28]. Previous studies have
typically shown that there will be residual energy which is unaccounted. Even
with the energy balance closure error, the error of ET calculated from the LE
using EC is around 20–30% [29].
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2.5 Scintillometry

Scintillometers consist of a transmitter and receiver, separated by a specified
path length. Scintillometry uses a beam of electromagnetic radiation of known
wavelength transmitted across a relatively large distance (100 m–4.5 km). The
beam intensity fluctuates as it encounters gases in the air due to absorption and
diffraction. These fluctuations, or scintillations, can be used to determine the struc-
tural parameters for temperature and the refractive index of air, which can be used
to calculate the H. The calculations to obtain H from scintillometers are based on
Monin-Obukhov Similarity Theory (MOST). This theory describes the relationship
between the parameters of friction velocity, the temperature scale, and the specific
humidity scale, in reference to the process of turbulence, mainly from buoyancy
and horizontal shear.

MOST describes the vertical flow and turbulence properties in the lower
atmospheric boundary layer or surface layer [30]. This theory provides a set of
equations that relate turbulence properties, using dimensionless parameters, to
atmospheric processes including H. One of the parameters derived from similarity
theory is the Obukhov length, which is the height above the surface that turbu-
lence is caused by wind shear. Above the Obukhov length, turbulence is driven
more by buoyancy, or the action of radiant heat moving the air mass upwards.
MOST was developed on the idea that turbulence properties, when made dimen-
sionless using friction velocity, temperature scale, and other variables, are a uni-
versal function of the Obukhov length [31, 32]. The key parameters of MOST are
the friction velocity, u∗; temperature scale, θ∗; and the specific humidity scale, q∗
[33]. These parameters are calculated as

u∗ ¼ τ0
ρ

� �1=2

(12)

θ∗ ¼ � H0

ρcpu∗
(13)

q∗ ¼ � E0

ρu∗
(14)

where ρ is the air density, cp is the specific heat of air, τ0 is the turbulent stress
at the surface, H0 is the vertical flux of heat, and E0 is the vertical flux of water
vapor. τ0, H0, and E0 can be calculated by

τ0 ¼ ρCDU2
r (15)

H0 ¼ ρCDCHUr Θs � Θrð Þ (16)

E0 ¼ ρCWUr Qs � Qrð Þ (17)

whereUr is the wind speed at reference height, Θr is air temperature at reference
height, Qr is specific humidity at reference height, Θs is air temperature at the
surface, Qs is specific humidity at the surface, CD is the drag coefficient, CH is the
heat transfer coefficient, and CW is the water vapor transfer coefficient [33].
Monin, Lumley [34] determined that turbulence properties at height z depend on
only five quantities: z, ϱ, g

T, u∗, and
q
cpρ
. From these parameters, one dimensionless

parameter, the stability parameter ζ, can be derived. Using ζ, surface flow proper-
ties can be described as a function of ζ using dimensional analysis. ζ is calculated as
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ζ ¼ z
L

(18)

where z is the height above the surface and L is the Obukhov length

L ¼ � u3∗
k g
T0

q
cpρ0

(19)

where k is the von Karman constant, g is the acceleration due to gravity, ρ0 is the
air density at temperature T0, and q is the kinematic heat flux [34].

There are different scintillometer models available, which differ based on the
wavelength of the radiation beam and aperture diameter. The aperture diameter
determines the path length where a larger aperture will need a longer path length.
All models use a transmitter and receiver to send the beam and measure the scintil-
lations. The most common wavelengths are visible (670 nm), infrared (880 nm),
and microwave (1 mm to 1 cm). The aperture size for most infrared (large aperture)
scintillometers (LAS) is 10–15 cm (see Figure 6), while the aperture for visible
(surface layer) scintillometers (SLS) is 2.7 mm (see Figure 7). Microwave scintil-
lometer aperture sizes can be much larger, up to 30 cm. The SLS is sometimes
termed as a displaced-beam small aperture scintillometer (DBSAS) since the SLS
beam is split into two parallel beams, displaced by 2.7 mm. Based on the correlation
of the intensity fluctuations between the two beams, the inner scale parameter, l0,
can be determined [31].

The benefits of each scintillometer come from the differences between them.
For instance, the visible wavelength scintillometers have a much smaller aperture,
which allows for better representation of small eddies and greater sensitivity to
smaller changes in temperature and wind fluctuations. The larger apertures can

Figure 6.
Large aperture scintillometer (LAS MKII, Kipp& Zonen, Delft, the Netherlands) with aperture restrictor plate
reducing aperture from 15 cm to 10 cm.
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detect larger eddies better. Microwave scintillometers are more sensitive to humid-
ity fluctuations than the other wavelengths, providing an inference to accurate ETa

determination [35]. Infrared scintillometers have been used for some time; how-
ever, visible and microwave scintillometers are relatively new and have not been
used as extensively.

Scintillometers have been considered to be very beneficial for ET remote sensing
studies due to their large path length. Specifically, large aperture scintillometers
(LAS), which can have path lengths up to a few km, can have a large enough spatial
footprint to be similar to most remote sensing data resolution. In addition, the path
averaging of the scintillometer provides an integrated benefit in that a homogenous
surface is not required to meet any assumptions. This allows the scintillometer to be
used across varying terrain and provide an averaged value. The averaging for
variable surfaces is similar to that of remote sensing data. The previous points
illustrate how the scintillometer can serve as a ground-truthing instrument or as a
source of validation data for remote sensing. Since most of the ET remote sensing
models are based on the surface energy balance, similarly to scintillometry, mea-
surements other than just ET can be evaluated. The surface fluxes H and LE are
determined by both scintillometers and ET remote sensing models, which provide
more data for comparison. One benefit scintillometry has over EC is the lack of
corrections [36].

One advantage SLS offers over other point source measurements is that the
fluxes can be determined over shorter lengths and at heights closer to the surface
[37]. In addition, the fluxes can be calculated on shorter temporal scales, as low as
1 minute, compared to EC, for example, which typically uses a 30 minute interval.
An advantage the SLS has over the LAS is that the SLS determines the l0, which is
proportional to the dissipation rate of the turbulent kinetic energy, ε, and CT

2,

Figure 7.
Surface layer scintillometer (SLS-20, Scintec AG, Rottenburg, Germany).
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which are used to determine the H. Without determining the l0, the LAS requires
additional measurements to estimate the friction velocity. The SLS has been found
to be more accurate than the LAS with errors of 15–30% [29] compared to greater
than 30% for the LAS [38].

2.6 Remote sensing

Many ET models are available for use with remote sensing data. In addition,
there are a variety of satellite data sources such as Moderate Resolution Imaging
Spectrometer (MODIS), Landsat, Advanced Very High-Resolution Radiometer
(AVHRR), Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), and many others. Additional information on satellite sources and avail-
able models can be found in [39]. Most remote sensing models are based on the
energy balance where the reflectance from remote sensing is used with weather
data from nearby weather stations and the four components of the energy balance
are calculated. Typically, LE is calculated as the residual of the energy balance and
converted to ET at an hourly and daily time step.

The biggest issue with using satellite data for creating ET maps is poor spatial
and temporal resolution. Many energy balance-based models such as METRIC [40],
SEBS [41], SEBAL [42], and others require thermal data to calculate surface tem-
perature. These models are more limited on available data. ASTER, MODIS, and
Landsat are the main data sources available with thermal sensors. ASTER has the
highest spatial resolution at 15 m for visible wavelengths and 90 m for thermal
wavelengths but has a return interval of 16 days [43]. Landsat data has 100 m
resolution for thermal wavelengths and can provide data on an 8 day interval if
Landsat 7 and Landsat 8 are both used [44]. MODIS provides daily data but has
poor spatial resolution of 1000 m [45]. Although the models typically only provide
hourly and daily ET estimates, methods are available to interpolate between satellite
passes and for monthly and seasonal sums [46].

The aforementioned remote sensing models not only provide ETa maps but can
also provide estimates of leaf area index, surface temperature, surface albedo, and
many others. Although the spatial and temporal resolution of existing satellites
limits applications to field-scale agricultural use, the rapid increase in unmanned
aerial vehicle (UAV) technology shows vast potential to acquire remote sensing
data with spatial resolution at a centimeter scale and as frequent as desired.
Satellite-based ET maps typically have accuracy of 20–30% at best [47]; however,
the accuracy of using UAV data for ET maps is not currently known.

3. Conclusions

The methods mentioned above can all be used to determine ET; however, there
are disadvantages to each one of them. With the soil water balance approach, the
drainage and runoff terms can be difficult to determine. Although they are com-
monly miniscule in arid and semiarid regions, they would still need to be accounted
for to obtain the greatest accuracy. Lysimeters are the most accurate but are very
expensive and intrusive to install and operate. In addition, they require a high level
of knowledge and experience to obtain the best measurements. The Bowen ratio
method has been used to determine ET from the energy balance, but it is an indirect
measurement. EC is a direct measurement method of turbulent fluxes but is known
to have energy balance closure and other errors associated with it. Scintillometers
are another indirect measurement method that has been extensively used, but they
also have known errors. EC and scintillometers are two of the more common
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which are used to determine the H. Without determining the l0, the LAS requires
additional measurements to estimate the friction velocity. The SLS has been found
to be more accurate than the LAS with errors of 15–30% [29] compared to greater
than 30% for the LAS [38].
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Many ET models are available for use with remote sensing data. In addition,
there are a variety of satellite data sources such as Moderate Resolution Imaging
Spectrometer (MODIS), Landsat, Advanced Very High-Resolution Radiometer
(AVHRR), Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), and many others. Additional information on satellite sources and avail-
able models can be found in [39]. Most remote sensing models are based on the
energy balance where the reflectance from remote sensing is used with weather
data from nearby weather stations and the four components of the energy balance
are calculated. Typically, LE is calculated as the residual of the energy balance and
converted to ET at an hourly and daily time step.

The biggest issue with using satellite data for creating ET maps is poor spatial
and temporal resolution. Many energy balance-based models such as METRIC [40],
SEBS [41], SEBAL [42], and others require thermal data to calculate surface tem-
perature. These models are more limited on available data. ASTER, MODIS, and
Landsat are the main data sources available with thermal sensors. ASTER has the
highest spatial resolution at 15 m for visible wavelengths and 90 m for thermal
wavelengths but has a return interval of 16 days [43]. Landsat data has 100 m
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passes and for monthly and seasonal sums [46].
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Satellite-based ET maps typically have accuracy of 20–30% at best [47]; however,
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also have known errors. EC and scintillometers are two of the more common
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turbulent flux and ET measurement instruments typically used. Remote sensing
model studies are also widely available in the literature; however, each method,
other than a lysimeter, typically has 20–30% error. For irrigation scheduling and
some water resources management, 20–30% error may not be adequate, but for
other purposes, such as modeling and land use change monitoring, the error may be
acceptable. With many options available, the most suitable instrument/method will
be dependent on the purpose and use of the ET data.
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turbulent flux and ET measurement instruments typically used. Remote sensing
model studies are also widely available in the literature; however, each method,
other than a lysimeter, typically has 20–30% error. For irrigation scheduling and
some water resources management, 20–30% error may not be adequate, but for
other purposes, such as modeling and land use change monitoring, the error may be
acceptable. With many options available, the most suitable instrument/method will
be dependent on the purpose and use of the ET data.
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Chapter 2

Nonlinear Evapotranspiration
Modeling Using Artificial Neural
Networks
Sirisha Adamala

Abstract

Reference evapotranspiration (ETo) is an important and one of the most difficult
components of the hydrologic cycle to quantify accurately. Estimation/measure-
ment of ETo is not simple as there are number of climatic parameters that can affect
the process. There exists copious conventional (direct and indirect) and non con-
ventional/soft computing (artificial neural networks, ANNs) methods for estimat-
ing ETo. Direct methods have the limitations of measurement errors, expensive,
impracticality of acquiring point measurements for spatially variable locations,
whereas the indirect methods have the limitations of unavailability of all necessary
climate data and lack of generalizability (needs local calibration). In contrast to
conventional methods, soft computing models can estimate ETo accurately with
minimum climate data which have advantages over limitations of conventional ETo

methods. This chapter reviews the application of ANN methods in estimating ETo

accurately for 15 locations in India using six climatic variables as input. The perfor-
mance of ANN models were compared with the multiple linear regression (MLR)
models in terms of root mean squared error, coefficient of determination and ratio
of average output and target ETo values. The results suggested that the ANNmodels
performed better as compared to MLR for all locations.

Keywords: evapotranspiration, ANN, climate, data, Gaussian, lysimeter

1. Introduction

Evapotranspiration (ET) is the combining process of evaporation and transpira-
tion losses. Almost 62% of precipitation falls on continents are returned back to the
atmosphere through the ET process [1]. ET plays a significant role in the hydrolog-
ical cycle and its estimation is very important in various fields of water resources. A
common procedure for estimating actual crop evapotranspiration (ETcrop) is to first
estimate reference evapotranspiration (ETo) and to then apply an appropriate crop
coefficient (kc). ETo is an important and one of the most difficult components of the
hydrologic cycle to quantify accurately. ETo is measured from a hypothetic crop of
uniform height (12 cm), active growing (crop resistance of 70 s m�1), completely
shading the ground (albedo of 0.23) and unlimited supply of water [2]. The Food
and Agricultural Organization (FAO) consider the above definition as standard and
sole method for estimating ETo if sufficient climatic data are available [3, 4].
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Estimation of ETo is complex due to influence of various climatic variables
(maximum and minimum air temperature, wind speed, solar radiation and maxi-
mum and minimum relative humidity) and existence of nonlinearity in between
climatic data and ETo. Though users have number of methods for measuring or
estimating ETo directly or indirectly, most of them have some limitations regarding
data availability or regional applicability. In addition, in order to use these
methods, users are required to make reasonable estimates for some of the
parameters in the employed ETo models, which involve some uncertainties and
might not result in reliable ETo estimates [5]. Further, it is difficult to develop
accurately representative physically based models for the complex non-linear
hydrological processes, such as ETo. This is because the physical relationships
involving in a system can be too complicated to be accurately represented in a
physically based manner.

The above limitations lead to the need of developing some techniques that can
accurately estimate ETo values with a minimum input data and are also easy to
apply without knowing physical process inside the system. Artificial neural
network (ANN) techniques, which can provide a model to predict and
investigate the process without having a complete understanding of it, can be a
useful tool for the above purpose. These techniques are also interesting because of
its knowledge discovering property. In contrast to conventional methods, ANNs can
estimate ETo accurately with minimum climate data, which may have the advan-
tages of being inexpensive, independent of specific climatic condition, ignored
physical relations, and precise modeling of nonlinear complex system. In the last
decade, many researchers have used ANN techniques for modeling of the ETo

process [6–25].

2. Review of literature

This section follows the discussion of some of the significant contributions made
by various researchers in the application of different ANN techniques for modeling
ETo or pan evaporation (Ep). A radial basis function (RBF) neural network was
developed in C language to estimate daily soil water evaporation [26]. The input
layer of network consists of average relative air humidity, air temperature, wind
speed (Ws) and soil water content. They compared the results of RBF networks
with the multiple linear regression (MLR) techniques. A feed-forward back propa-
gation (FFBP)-based ANN model was developed to estimate daily Ep based on
measured weather variables [27]. They used different input combinations to model
Ep. They compared the developed ANN models with the Priestly-Taylor & MLR
models. RBF neural network model was developed to estimate the FAO Blaney-
Criddle b factor [28]. The input layer to RBF model consists of minimum daily
relative humidity (RHmin), day time Ws and mean ratio of actual to possible sun-
shine hours (n/N). The b values estimated by the RBF models were compared to the
appropriate b values produced using regression equations. FFBP ANN models were
implemented for the estimation of daily ETo using six basic climatic parameters as
inputs [16]. They trained ANNs using three learning methods (with different
learning rates and momentum coefficients), different number of processing ele-
ments in the hidden layers, and the number of hidden layers. The compared the
results of developed ANN models with the Penman Monteith (PM) method and
with a lysimeter measured ETo. ANN-based back propagation models for estimating
Class A Ep with minimum climate data (four input combinations) were developed
and compared with the existing conventional methods [22].
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The potential of RBF neural network for estimating the rice daily crop ET using
limited climatic data was demonstrated [23]. Six RBF networks, each using varied
input combinations of climatic variables were trained and tested. The model
estimates were compared with measured lysimeter ET. A sequentially adaptive
RBF network was applied for forecasting of monthly ETo [29]. Sequential adapta-
tion of parameters and structure was achieved using extended Kalman filter.
Criterion for network growing was obtained from the Kalman filter’s consistency
test. Criteria for neuron/connections pruning were based on the statistical param-
eter significance test. The results showed that the developed network was learned
to forecast ETo,t + 1 (current or next month) based on ETo,t-11 (at a lag of
12 months) and ETo,t-23 (at a lag of 24 months) with high reliability. The study
examined that whether it is possible to attain the reliable estimation of ETo only on
the basis of the temperature data [24]. He developed RBF neural network for
estimating ETo and compared the developed model with temperature-based
empirical models.

ANN-based daily ETo models were trained based on different categories of
conventional ETo estimation methods such as temperature based (FAO-24 Blaney-
Criddle), radiation based (FAO-24 Radiation method for arid and Turc method for
humid regions) and combinations of these (FAO-56 PM) [14]. A comparison of the
Hargreaves and ANN methods for estimating monthly ETo only on the basis of
temperature data was done [19]. They developed ANN models with the data from
six stations and tested these developed models with the data from remaining six
stations, which were not used in model development. The capability of ANN for
converting Ep to ETo was studied using temperature data [18]. The conventional
method that uses pan coefficient (Kp) as a factor to convert Ep to ETo was consid-
ered for this comparison. Generalized ANN (GANN)-based ETo models
corresponding to FAO-56 PM, FAO-24 Radiation, Turc and FAO-24 Blaney-Criddle
methods were developed [15]. These models were trained using the pooled data
from four California Irrigation Management Information System (CIMIS) stations
with FAO-56 PM computed values as targets. The developed GANN models were
tested with different stations which were not used in training. Multilayer
perceptron (MLP) neural networks for estimating the daily Ep using input data of
maximum and minimum air temperature and the extraterrestrial radiation was
developed [20]. The potential for the use of ANNs to estimate the ETo based on air
temperature data was examined [21]. He also conducted comparison of estimates
provided by the ANNs and by Hargreaves equation by using the FAO-56 PM model
as reference model.

3. Study area and data collected

For the purpose of this study, 15 meteorological stations in India were chosen.
Figure 1 shows the geographical locations of these selected stations and their related
agro-ecological regions (AERs). These stations are having daily meteorological data of
from 2001 to 2005 of following variables: minimum air temperature (Tmin), maxi-
mum air temperature (Tmax), minimum relative humidity (RHmin), maximum rela-
tive humidity (RHmax), mean wind speed (ws), and solar radiation (Sra). Table 1
shows the details of 15 climatic stations of India along with altitude and duration of
available data. The study area is bounded between the longitudes of 68° 70 and 97° 250

E and the latitudes of 8° 40 and 37° 6’ N. The annual potential evapotranspiration of
India is 1771 mm. It varies from a minimum of 1239 mm in Jammu and Kashmir to a
maximum of 2100 mm in Gujarat [30].
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process [6–25].

2. Review of literature

This section follows the discussion of some of the significant contributions made
by various researchers in the application of different ANN techniques for modeling
ETo or pan evaporation (Ep). A radial basis function (RBF) neural network was
developed in C language to estimate daily soil water evaporation [26]. The input
layer of network consists of average relative air humidity, air temperature, wind
speed (Ws) and soil water content. They compared the results of RBF networks
with the multiple linear regression (MLR) techniques. A feed-forward back propa-
gation (FFBP)-based ANN model was developed to estimate daily Ep based on
measured weather variables [27]. They used different input combinations to model
Ep. They compared the developed ANN models with the Priestly-Taylor & MLR
models. RBF neural network model was developed to estimate the FAO Blaney-
Criddle b factor [28]. The input layer to RBF model consists of minimum daily
relative humidity (RHmin), day time Ws and mean ratio of actual to possible sun-
shine hours (n/N). The b values estimated by the RBF models were compared to the
appropriate b values produced using regression equations. FFBP ANN models were
implemented for the estimation of daily ETo using six basic climatic parameters as
inputs [16]. They trained ANNs using three learning methods (with different
learning rates and momentum coefficients), different number of processing ele-
ments in the hidden layers, and the number of hidden layers. The compared the
results of developed ANN models with the Penman Monteith (PM) method and
with a lysimeter measured ETo. ANN-based back propagation models for estimating
Class A Ep with minimum climate data (four input combinations) were developed
and compared with the existing conventional methods [22].
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The potential of RBF neural network for estimating the rice daily crop ET using
limited climatic data was demonstrated [23]. Six RBF networks, each using varied
input combinations of climatic variables were trained and tested. The model
estimates were compared with measured lysimeter ET. A sequentially adaptive
RBF network was applied for forecasting of monthly ETo [29]. Sequential adapta-
tion of parameters and structure was achieved using extended Kalman filter.
Criterion for network growing was obtained from the Kalman filter’s consistency
test. Criteria for neuron/connections pruning were based on the statistical param-
eter significance test. The results showed that the developed network was learned
to forecast ETo,t + 1 (current or next month) based on ETo,t-11 (at a lag of
12 months) and ETo,t-23 (at a lag of 24 months) with high reliability. The study
examined that whether it is possible to attain the reliable estimation of ETo only on
the basis of the temperature data [24]. He developed RBF neural network for
estimating ETo and compared the developed model with temperature-based
empirical models.

ANN-based daily ETo models were trained based on different categories of
conventional ETo estimation methods such as temperature based (FAO-24 Blaney-
Criddle), radiation based (FAO-24 Radiation method for arid and Turc method for
humid regions) and combinations of these (FAO-56 PM) [14]. A comparison of the
Hargreaves and ANN methods for estimating monthly ETo only on the basis of
temperature data was done [19]. They developed ANN models with the data from
six stations and tested these developed models with the data from remaining six
stations, which were not used in model development. The capability of ANN for
converting Ep to ETo was studied using temperature data [18]. The conventional
method that uses pan coefficient (Kp) as a factor to convert Ep to ETo was consid-
ered for this comparison. Generalized ANN (GANN)-based ETo models
corresponding to FAO-56 PM, FAO-24 Radiation, Turc and FAO-24 Blaney-Criddle
methods were developed [15]. These models were trained using the pooled data
from four California Irrigation Management Information System (CIMIS) stations
with FAO-56 PM computed values as targets. The developed GANN models were
tested with different stations which were not used in training. Multilayer
perceptron (MLP) neural networks for estimating the daily Ep using input data of
maximum and minimum air temperature and the extraterrestrial radiation was
developed [20]. The potential for the use of ANNs to estimate the ETo based on air
temperature data was examined [21]. He also conducted comparison of estimates
provided by the ANNs and by Hargreaves equation by using the FAO-56 PM model
as reference model.

3. Study area and data collected

For the purpose of this study, 15 meteorological stations in India were chosen.
Figure 1 shows the geographical locations of these selected stations and their related
agro-ecological regions (AERs). These stations are having daily meteorological data of
from 2001 to 2005 of following variables: minimum air temperature (Tmin), maxi-
mum air temperature (Tmax), minimum relative humidity (RHmin), maximum rela-
tive humidity (RHmax), mean wind speed (ws), and solar radiation (Sra). Table 1
shows the details of 15 climatic stations of India along with altitude and duration of
available data. The study area is bounded between the longitudes of 68° 70 and 97° 250

E and the latitudes of 8° 40 and 37° 6’ N. The annual potential evapotranspiration of
India is 1771 mm. It varies from a minimum of 1239 mm in Jammu and Kashmir to a
maximum of 2100 mm in Gujarat [30].
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4. Theoretical consideration

The concept of neural networks was introduced by [31]. The neural-network
approach, also referred to as ‘connectionism’ or ‘paralleled distributed processing’,

Figure 1.
Geographical locations of study sites in India.

AER Location Alt.
(m)

Period Tmax

(°C)
Tmin

(°C)
RHmax

(%)
RHmin

(%)
Ws

(km h�1)
Sra

(MJ m�2 day�1)

Semi-
arid

Parbhani 423 2001–2005 33.75 18.32 71.13 41.02 5.04 20.87

Solapur 25 2001–2005 34.15 20.14 73.28 45.09 6.15 18.96

Bangalore 930 2001–2005 28.90 17.70 89.15 47.30 8.68 18.95

Kovilpatti 90 2001–2005 35.11 23.37 80.36 48.52 6.60 19.30

Udaipur 433 2001–2005 31.81 16.33 72.36 36.44 3.74 19.45

Arid Anantapur 350 2001–2005 34.43 21.78 73.32 33.91 9.64 20.27

Hissar 215 2001–2005 31.17 16.23 81.00 44.27 5.20 17.26

Sub-
humid

Raipur 298 2001–2005 32.60 19.91 80.62 44.08 5.33 17.80

Faizabad 133 2001–2005 31.56 18.18 87.02 52.11 3.51 17.88

Ludhiana 247 2001–2005 30.06 17.42 83.97 49.14 4.26 18.10

Ranichauri 1600 2001–2005 20.08 9.66 81.15 61.55 4.99 16.23

Humid Palampur 1291 2001–2005 24.41 13.24 69.70 57.88 5.56 16.35

Jorhat 86 2001–2005 27.97 19.23 92.70 75.27 3.00 14.68

Mohanpur 10 2001–2005 32.20 21.04 96.18 61.48 1.27 18.06

Dapoli 250 2001–2005 31.13 18.87 93.77 69.22 4.92 18.02

Table 1.
Station locations and period of records.
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adopts a “Brain metaphor” of information processing. Information processing in a
neural network occurs through interactions involving large number of simulated
neurons. A neural network (NN) is a simplified model of the human brain nervous
system consisting of interconnected neurons in a parallel distributed system, which
can learn and memorize the information. In NN, the interneuron connection
strengths, known as ‘synaptic weights’ are used to store the acquired knowledge
[32]. In other words, ANN discovers the relationship between a set of inputs and
desired outputs without giving any information about the actual processes involved;
it is in essence based on pattern recognition. ANNs consist of a number of
interconnected processing elements or neurons. How the inter-neuron connections
are arranged determines the topology of a network. A neuron is the fundamental
unit of human brain’s nervous system that receives and combines signals from other
neurons through input paths called ‘dendrites’. Each signal coming to a neuron along
a dendrite passes through a junction called ‘synapse’, which is filled with neuro-
transmitter fluid that produce electrical signals to reach to the soma or cell body
where processing of the signals occurs [16]. If the combined input signal after
processing is stronger than the threshold value, the neuron activates, producing an
output signal, which is transferred through the axon to the other neurons. Similarly,
ANN consists of a large number of simple processing units called neurons (or nodes)
linked by weighted connections. A comprehensive description of neural networks
was presented in a series of papers [33–35], which provide valuable information for
the researchers.

4.1 Model of a neuron

The main function of artificial neuron is to generate output from an activated
nonlinear function with the weighted sum of all inputs. Figure 2 illustrates a
nonlinear model of a neuron, which forms the basis for designing ANN. The input
layer neurons receive the input signals (xi) and these signals are passed to the cell
body through the synapses. A set of synapses or connecting links is characterized by
its own weight or strength. A signal at the input of synapse ‘i’ connected to neuron
‘k’ is multiplied by the synaptic weight ‘wki’. The input signals, weighted by the
respective synapses of the neuron are added by a linear combiner. An activation
function or squashing function is used for limiting the permissible amplitude range
of the output of a neuron to some finite value. An external bias (bk) has an effect of
increasing or decreasing the net input of the activation function depending on
whether it is positive or negative, respectively.

Figure 2.
A nonlinear model of a neuron.
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adopts a “Brain metaphor” of information processing. Information processing in a
neural network occurs through interactions involving large number of simulated
neurons. A neural network (NN) is a simplified model of the human brain nervous
system consisting of interconnected neurons in a parallel distributed system, which
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In the mathematical form, a neuron k may be described by the following
equations:

uk ¼ ∑
n

i¼1
wkixi (1)

yk ¼ ϕ ukþ bkð Þ (2)

where x1, x2, x3, ……….. xn = input signals; wk1,wk2,…….wkn = synaptic weights of
neuron k; uk = linear combiner output due to the input signal; bk = bias; φ(.) = acti-
vation function; yk = output signal of the neuron k.

Let vk be the induced local field or activation potential, which is given as:

vk ¼ uk þ bk (3)

Now, Eqs. (1), (2) and (3) can be written as:

vk ¼ ∑
m

i¼0
wknxn (4)

yk ¼ ϕðvkÞ (5)

In Eq. (5), a new synapse with input x0 = +1 is added and its weight is wk0 = bk to
consider the effect of the bias.

4.2 Neural network architecture parameters

Determination of appropriate neural network architecture is one of the most
important tasks in model-building process. Various types of neural networks are
analyzed to find the most appropriate architecture of a particular problem. Multi-
layer feed forward networks are found to outperform all the others. Although
multilayer feed forward networks are one of the most fundamental models, they are
the most popular type of ANN structure suited for practical applications.

4.3 Number of hidden layers

There is no fixed rule for selection of hidden layers of a network. Therefore, trial
and error method was used for selection of number of hidden layers. Even one
hidden layer of neuron (operating sigmoid activation function) can also be suffi-
cient to model any solution surface of practical interest [36].

4.4 Number of hidden neurons

The ability of the ANN to generalize data not included in training depends on
selection of sufficient number of hidden neurons to provide a means for storing
higher order relationships necessary for adequately abstracting the process. There is
no direct and precise way of determining the most appropriate number of neurons
to include in hidden layer and this problem becomes more complicated as number
of hidden layer increases. Some studies indicated that more number of neurons in
hidden layer provide a solution surface that closely fit to training patterns. But in
practice, more number of hidden neurons results the solution surface that deviate
significantly from the trend of the surface at intermediate points or provide too
literal interpretation of the training points which is called ‘over fitting’. Further,
large number of hidden neurons reduces the speed of operation of network during
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training and testing. However, few hidden neurons results inaccurate model and
provide a solution surface that deviates from training patterns. Therefore, choosing
optimum number of hidden neurons is one of the important training parameter in
ANN. To solve this problem, several neural networks with different number of
hidden neurons are used for calibration/training and one with best performance
together with compact structure is accepted.

4.5 Types of activation functions

The activation function or transfer function, denoted by φ(v), defines the output
of a neuron in terms of the induced local field v. It is valuable in ANN applications
as it introduces a degree of nonlinearity between inputs and outputs. Logistic
sigmoid, hyperbolic tangent and linear functions are some widely used transfer
function in ANN modeling.

Logistic sigmoid function: This function is a continuous function that reduces the
output into the range of 0–1 and is defined as [32]:

φ vð Þ ¼ 1
1þ exp �vð Þ (6)

Hyperbolic tangent function: It is used when the desired range of output of a
neuron is between �1 and 1 and is expressed as [32]:

φ vð Þ ¼ tanh vð Þ ¼ 1� e�2v

1þ e�2v (7)

Linear function: It calculates the neuron’s output by simply returning the value
passed to it. It can be expressed as:

φ vð Þ ¼ v (8)

4.6 Neural network architectures

The manner in which the neurons of a neural network are structured is intimately
linked with the learning algorithm used to train the network. This leads to the
formation of network architectures. The neural network architectures are classified
into distinct classes depending upon the information flow. The different network
architectures are: (a) multilayer perceptions, (b) recurrent, (c) RBF, (d) Kohonen
self-organizing feature map, etc.

4.7 Multilayer perceptions (MLPs)

MLPs are layered (single-layered or multi-layered) feed forward networks typ-
ically trained with static back-propagation (Figure 3). Therefore, it is also called as
FFBP neural networks. These networks have found their way into countless appli-
cations requiring static pattern classification. This architecture consists of input
layers, output layer(s) and one or more hidden layers. The input signal moves in
only forward direction from the input nodes to the output nodes through the hidden
nodes. The function of hidden layer is to perform intermediate computations in
between input and output layers through weights. The major advantage of FFBP
is that they are easy to handle and can easily approximate any input-output
map [37].
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4.8 Recurrent neural networks (RNN)

RNN may be fully recurrent networks (FRN) or partially recurrent networks
(PRN). FNN sent the outputs of the hidden layer back to itself, whereas PRN
initiates the fully RNN and add a feed-forward connection (Figure 3). A simple
RNN could be constructed by a modification of the multilayered feed-forward
network with the addition of a ‘context layer’. At first epoch, the new inputs are
sent to the RNN and previous contents from the hidden layer are passed to context
layer and at next epoch, the information is fed back to the hidden layer. Similarly,
weights are calculated hidden to context and vice versa. The RNN can have an
infinite memory depth and thus find relationship through time as well as through
the instantaneous input space. Recurrent networks are the state-of-the-art in
nonlinear time series prediction, system identification, and temporal pattern
classification [37–39].

4.9 Radial basis function (RBF) networks

RBF is a three-layer feed-forward network that consists of nonlinear Gaussian
transfer function in between input and hidden layers and linear transfer function in
between hidden and output layers (Figure 3). The requirement of hidden neurons
for the RBF network is more as compared to standard FFBP, but these networks
tend to learn much faster than MLPs [37]. The most common basis function used is
Gauss function and is given by:

Ri ¼ � exp �∑
n

i¼1

xi � cik k2
2σij2

 !
(9)

where Ri = basis or Gauss function; c = cluster center; σij = width of the Gaussian
function. The centers and widths of the Gaussians are set by unsupervised learning
rules, and supervised learning is applied to the output layer. After the center is
determined, the connection weights between the hidden layer and output layer can
be determined simply through ordinary back-propagation (gradient-descent)
training. The output layer performs a simple weighted sum with a linear output and
the weights of the hidden layer basis units (input to hidden layer) are set using some
clustering techniques.

y ¼ ∑
n

i¼1
wiRi xið Þ þwo (10)

where wi = connection weight between the hidden neuron and output neuron;
wo = bias; xi = input vector.

Figure 3.
Types of neural network architectures [37]. (a) Multilayer perception; (b) recurrent neural network;
(c) radial basis function network.
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4.10 ANN learning paradigms

Broadly speaking, there are two types of learning process namely, supervised
and unsupervised. In supervised learning, the network is presented with examples
of known input-output data pairs, after which it starts to mimic the presented input
output behavior or pattern. In unsupervised learning, the network learns on their
own, in a kind of self-study without teacher.

Supervised learning: It is also called ‘associative learning’ involves a mechanism of
providing the network with a set of inputs and desired outputs. It is like learning with
the help of a teacher. The so-called teacher has the knowledge of the environment and
the knowledge is represented by a set of input-output examples. The environment is,
however, unknown to the neural network. The network parameters (i.e., synaptic
weights and error) are adjusted iteratively in a step-by-step fashion under the com-
bined influence of the training vector and the error signal. After the completion of
training, the neural network is able to deal with the environment completely by itself
[32]. In supervised learning, FFBP NN is the most popular ones. In the FFBP NNs,
neurons are organized into layers where information is passed from the input layer to
the final output layer in a unidirectional manner. Any network in ANN consists of
‘neurons or nodes or parallel processing elements’ which interconnects the each layer
with weights (W). A three layer (input (i), hidden (j) and target/output (k)) FFBP
NN with weights Wij and Wjk is shown in Figure 4. During training the FFBP NN,
the initial or randomized weight values are corrected or adjusted as per calculated
error in between output and target values and back-propagates these errors (from
right to left in Figure 4) un till minimum error criteria achieved.

Unsupervised learning: Network is provided with inputs but not with desired
outputs. The system itself must then decide what features it will use to group the
input data. This is often referred to as self-organization or adaption. Provision is
made for a task-independent measure of the quality of representation that the
network is required to learn and the free parameters of the network are optimized
with respect to that measure [32]. The most widely used unsupervised neural
network is the Kohonen self-organizing map, KSOM.

4.11 Kohonen self-organizing map (KSOM)

KSOM maps the input data into two-dimensional discrete output map by clus-
tering similar patterns. It consists of two interconnected layers namely, multi-
dimensional input layer and competitive output layer with ‘w’ neurons (Figure 5).

Figure 4.
A three layer feed-forward ANN model [7].
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4.9 Radial basis function (RBF) networks

RBF is a three-layer feed-forward network that consists of nonlinear Gaussian
transfer function in between input and hidden layers and linear transfer function in
between hidden and output layers (Figure 3). The requirement of hidden neurons
for the RBF network is more as compared to standard FFBP, but these networks
tend to learn much faster than MLPs [37]. The most common basis function used is
Gauss function and is given by:

Ri ¼ � exp �∑
n

i¼1

xi � cik k2
2σij2

 !
(9)

where Ri = basis or Gauss function; c = cluster center; σij = width of the Gaussian
function. The centers and widths of the Gaussians are set by unsupervised learning
rules, and supervised learning is applied to the output layer. After the center is
determined, the connection weights between the hidden layer and output layer can
be determined simply through ordinary back-propagation (gradient-descent)
training. The output layer performs a simple weighted sum with a linear output and
the weights of the hidden layer basis units (input to hidden layer) are set using some
clustering techniques.

y ¼ ∑
n

i¼1
wiRi xið Þ þwo (10)

where wi = connection weight between the hidden neuron and output neuron;
wo = bias; xi = input vector.

Figure 3.
Types of neural network architectures [37]. (a) Multilayer perception; (b) recurrent neural network;
(c) radial basis function network.
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4.10 ANN learning paradigms

Broadly speaking, there are two types of learning process namely, supervised
and unsupervised. In supervised learning, the network is presented with examples
of known input-output data pairs, after which it starts to mimic the presented input
output behavior or pattern. In unsupervised learning, the network learns on their
own, in a kind of self-study without teacher.

Supervised learning: It is also called ‘associative learning’ involves a mechanism of
providing the network with a set of inputs and desired outputs. It is like learning with
the help of a teacher. The so-called teacher has the knowledge of the environment and
the knowledge is represented by a set of input-output examples. The environment is,
however, unknown to the neural network. The network parameters (i.e., synaptic
weights and error) are adjusted iteratively in a step-by-step fashion under the com-
bined influence of the training vector and the error signal. After the completion of
training, the neural network is able to deal with the environment completely by itself
[32]. In supervised learning, FFBP NN is the most popular ones. In the FFBP NNs,
neurons are organized into layers where information is passed from the input layer to
the final output layer in a unidirectional manner. Any network in ANN consists of
‘neurons or nodes or parallel processing elements’ which interconnects the each layer
with weights (W). A three layer (input (i), hidden (j) and target/output (k)) FFBP
NN with weights Wij and Wjk is shown in Figure 4. During training the FFBP NN,
the initial or randomized weight values are corrected or adjusted as per calculated
error in between output and target values and back-propagates these errors (from
right to left in Figure 4) un till minimum error criteria achieved.

Unsupervised learning: Network is provided with inputs but not with desired
outputs. The system itself must then decide what features it will use to group the
input data. This is often referred to as self-organization or adaption. Provision is
made for a task-independent measure of the quality of representation that the
network is required to learn and the free parameters of the network are optimized
with respect to that measure [32]. The most widely used unsupervised neural
network is the Kohonen self-organizing map, KSOM.

4.11 Kohonen self-organizing map (KSOM)

KSOM maps the input data into two-dimensional discrete output map by clus-
tering similar patterns. It consists of two interconnected layers namely, multi-
dimensional input layer and competitive output layer with ‘w’ neurons (Figure 5).

Figure 4.
A three layer feed-forward ANN model [7].
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Each node or neuron ‘i’ (i = 1, 2, …w) is represented by an n-dimensional weight
or reference vector wi = [wi1,….,win]. The ‘w’ nodes can be ordered so that similar
neurons are located together and dissimilar neurons are remotely located on the
map. The topology of network is indicated by the number of output neurons and
their interconnections. The general network topology of KSOM is either a rectan-
gular or a hexagonal grid. The number of neurons (map size), w, may vary from a
few dozen up to several thousands, which affects accuracy and generalization
capability of the KSOM. The optimum number of neurons (w) can be determined
by below equation [41].

w ¼ 5√N (11)

where N = total number of data samples or records. Once ‘w’ is known, the
number of rows and columns in the KSOM can be determined as:

l1
l2
¼

ffiffiffiffiffi
e1
e2

r
(12)

where l1 and l2 = number of rows and columns, respectively; e1 = biggest eigen
value of the training data set; e2 = second biggest eigen value.

4.12 Training the KSOM

The KSOM is trained iteratively: initially the weights are randomly assigned.
When the n-dimensional input vector x is sent through the network, the Euclidean
distance between weight ‘w’ neurons of SOM and the input is computed by,

x‐wj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
xi‐wið Þ2

s
(13)

where xi = ith data sample or vector; wi = prototype vector for xi;jdenotes
Euclidian distance.

The best matching unit (BMU) is also called as ‘winning neuron’ is the weight
that closely matching to the input. The learning process takes place in between
BMU and its neighboring neurons at each training iteration ‘t’with an aim to reduce
the distance between weights and input.

Figure 5.
Kohonen self organizing map [40].
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w tþ 1ð Þ ¼ w tð Þ þ α tð Þhlm x‐w tð Þð Þ (14)

where α = learning rate; l and m = positions of the winning neuron and its
neighboring output nodes; hlm = neighborhood function of the BMU l at iteration t.

The most commonly used neighborhood function is the Gaussian which is
expressed as:

hlm ¼ exp ‐ l‐m2
�� ��
2σ tð Þ2

 !
(15)

where l-m = distance between neurons l and m on the map grid; σ = width of the
topological neighborhood.

The training steps are repeated until convergence. After the KSOM network is
constructed, the homogeneous regions, that is, clusters are defined on the map. The
KSOM trained network performance is evaluated using two errors namely, total
topographic error (te) and quantization error (qe).

The topographic error, te, is an indication of the degree of preservation of the
topology of the data when fitting the map to the original data set.

te ¼ 1
N

∑
N

i¼1
u xið Þ (16)

where u(xi) = binary integer such that it is equal to 1 if the first and second best
matching units of the map are not adjacent units; otherwise it is zero.

The quantization error, qe, is an indication of the average distance between each
data vector and its BMU at convergence, that is, the quality of the map fitting to
the data.

qe ¼
1
N

∑
N

i¼1
xi‐wlij j (17)

where wli = prototype vector of the best matching unit for xi.

4.13 Type of ANN training algorithms

Training basically involves feeding training samples as input vectors through a
neural network, calculating the error of the output layer, and then adjusting the
weights of the network to minimize the error. There are different methods for
adjusting the weights. These methods are called as “training algorithms”. The
objective of the training algorithm is to minimize the difference between the
predicted output values and the measured output values [6]. Different training
algorithms are: (i) gradient descent with momentum backpropagation (GDM)
algorithm, (ii) Levenberg-Marquardt (LM) algorithm, (iii) Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi Newton algorithm, (iii) resilient back propagation
(RBP) algorithm, (iv) conjugate gradient algorithm, (v) one-step secant (OSS)
algorithm, (vi) cascade correlation (CC) algorithm, and (vii) Bayesian regulari-
zation (BR) algorithm. The training algorithms used in this study are only briefly
described below.

4.14 Gradient descent with momentum back propagation (GDM) algorithm

This method uses back-propagation to calculate derivatives of performance cost
function with respect to the weight and bias variables of the network. Each variable
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w tþ 1ð Þ ¼ w tð Þ þ α tð Þhlm x‐w tð Þð Þ (14)

where α = learning rate; l and m = positions of the winning neuron and its
neighboring output nodes; hlm = neighborhood function of the BMU l at iteration t.

The most commonly used neighborhood function is the Gaussian which is
expressed as:

hlm ¼ exp ‐ l‐m2
�� ��
2σ tð Þ2

 !
(15)

where l-m = distance between neurons l and m on the map grid; σ = width of the
topological neighborhood.

The training steps are repeated until convergence. After the KSOM network is
constructed, the homogeneous regions, that is, clusters are defined on the map. The
KSOM trained network performance is evaluated using two errors namely, total
topographic error (te) and quantization error (qe).

The topographic error, te, is an indication of the degree of preservation of the
topology of the data when fitting the map to the original data set.
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where u(xi) = binary integer such that it is equal to 1 if the first and second best
matching units of the map are not adjacent units; otherwise it is zero.

The quantization error, qe, is an indication of the average distance between each
data vector and its BMU at convergence, that is, the quality of the map fitting to
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where wli = prototype vector of the best matching unit for xi.

4.13 Type of ANN training algorithms

Training basically involves feeding training samples as input vectors through a
neural network, calculating the error of the output layer, and then adjusting the
weights of the network to minimize the error. There are different methods for
adjusting the weights. These methods are called as “training algorithms”. The
objective of the training algorithm is to minimize the difference between the
predicted output values and the measured output values [6]. Different training
algorithms are: (i) gradient descent with momentum backpropagation (GDM)
algorithm, (ii) Levenberg-Marquardt (LM) algorithm, (iii) Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi Newton algorithm, (iii) resilient back propagation
(RBP) algorithm, (iv) conjugate gradient algorithm, (v) one-step secant (OSS)
algorithm, (vi) cascade correlation (CC) algorithm, and (vii) Bayesian regulari-
zation (BR) algorithm. The training algorithms used in this study are only briefly
described below.

4.14 Gradient descent with momentum back propagation (GDM) algorithm

This method uses back-propagation to calculate derivatives of performance cost
function with respect to the weight and bias variables of the network. Each variable
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is adjusted according to the gradient descent with momentum. The equation used
for update of weight and bias is given by:

Δwji nð Þ ¼ α:Δwji n� 1ð Þ þ η
∂E
∂wji

(18)

where Δwji(n) = correction applied to the synaptic weight connecting neuron i to
neuron j; α = momentum; η = learning-rate parameter; E = error function. The
equation is known as the generalized delta rule and this is probably the simplest and
most common way to train a network [37].

4.15 Levenberg-Marquardt (LM) algorithm

This method is a modification of the classic Newton algorithm for finding an
optimum solution to a minimization problem. In particular the LM utilizes the so
called Gauss-Newton approximation that keeps the Jacobian matrix and discards
second order derivatives of the error. The LM algorithm interpolates between the
Gauss-Newton algorithm and the method of gradient descent. To update weights,
the LM algorithm uses an approximation of the Hessian matrix.

Wkþ1 ¼ Wk � JTJ þ λI
� ��1

JTe (19)

where W = weight; e = errors; I = identity matrix; λ = learning parameter;
J = Jacobian matrix (first derivatives of errors with respect to the weights and
biases); JT ¼ transpose of J; JTJ ¼ Hessian matrix. For λ = 0 the algorithm becomes
Gauss-Newton method. For very large λ the LM algorithm becomes steepest decent
algorithm. The ‘λ’ parameter governs the step size and is automatically adjusted
(based on the direction of the error) at each iteration in order to secure conver-
gence. If the error decreases between weight updates, then the ‘λ’ parameter is
decreased by a factor of λ�. Conversely, if the error increases then ‘λ’ parameter is
increased by a factor of λþ. The λ� and λþ are defined by user. In LM algorithm
training process converges quickly as the solution is approached, because Hessian
does not vanish at the solution. LM algorithm has great computational and memory
requirements and hence it can only be used in small networks. It is often character-
ized as more stable and efficient. It is faster and less easily trapped in local minima
than other optimization algorithms [37].

4.16 Online and batch modes of training

On-Line learning updates the weights after the presentation of each exemplar. In
contrast, Batch learning updates the weights after the presentation of the entire
training set. When the training datasets are highly redundant, the online mode is
able to take the advantage of this redundancy and provides effective solutions to
large and difficult problems. On the other hand, the batch mode of training pro-
vides an accurate estimate of gradient vector; convergence of local minimum is
thereby guaranteed under simple conditions [23].

4.17 Multiple linear regression (MLR)

MLR technique attempts to model the relationship between two or more
explanatory (independent) variables and a response (dependent) variable by
fitting a linear equation to the observed data. The general form of a MLR model is
given as [42]:
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Yi ¼ β0 þ β1X1, i þ β2X2, i þ ⋯ þ βkXk, i þ εi (20)

where Yi = ith observations of each of the dependent variable Y; X1, i, X2,i, ⋯, Xk,

i = ith observations of each of the independent variables X1, X2, ⋯, Xk respectively;
β0, β1, β2, ⋯, βn = fixed (but unknown) parameters; εi = random variable that is
normally distributed.

The task of regression modeling is to estimate the unknown parameters (β0, β1,
β2, ⋯, βn) of the MLR model [Eq. (20)]. Thus, the pragmatic form of the statistical
regression model obtained after applying the least square method is as follows [42].

Yi ¼ b0 þ b1X1, i þ b2X2, i þ ⋯ þ bkXk, i þ ei (21)

where i ¼ 1, 2,…:,n;b0, b1, b2,⋯,bk estimates or unstandardized regression
coefficients of β0, β1, β2,⋯, βn respectively; ei = estimated error (or residual) for the
ith observation.

Therefore, estimate of

Y ¼ Ŷ ¼ b0 þ b1X1, i þ b2X2, i þ ⋯ þ bkXk, i (22)

The difference between the observed Y and the estimated Ŷ is called the residual
(or residual error).

The purpose of developing MLR models is to establish a simple equation which is
easy to use and interpret. The MLR modeling is very useful, especially in case of
limited field data. Moreover, it is versatile as it can accommodate any number of
independent variables [43].

4.18 The FAO-56 Penman-Monteith method

The FAO-56 PM method is recommended as the standard method for estimating
ETo in case of locations where measured lysimeter data is not available. The equa-
tion for the estimation of daily ETo can be written as [3]:

ETo ¼
0:408Δ Rn �Gð Þ þ γ 900

Tþ273Ws es � eað Þ
Δþ γ 1þ 0:34Wsð Þ (23)

where ETo = reference evapotranspiration calculated by FAO-56 PM method
(mm day�1); Rn = daily net solar radiation (MJ m�2 day�1); γ = psychrometric
constant (kPa oC�1); Δ = slope of saturation vapor pressure versus air temperature
curve (kPa oC�1); es and ea = saturation and actual vapor pressure (kPa), respec-
tively; T = average daily air temperature (°C); G = soil heat flux (MJ m�2 day�1);
Ws = daily mean wind speed (m s�1).

The ETo values obtained from above equation are used as target data in ANN due
to unavailability of lysimeter measured values.

5. Methodology

For the purpose of this study, 15 different climatic locations distributed over
four agro-ecological regions (AERs) are selected. The selected locations are
Parbhani, Kovilpatti, Bangalore, Solapur, Udaipur (semi-arid); Anantapur and
Hissar (arid); Raipur, Faizabad, Ludhiana, and Ranichauri, (sub-humid); and
Palampur, Jorhat, Mohanpur, and Dapoli (humid). Daily climate data of Tmin,
Tmax, RHmin, RHmax, Ws, Sra for the period of 5 years (January 1, 2001 to
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limited field data. Moreover, it is versatile as it can accommodate any number of
independent variables [43].
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December 31, 2005) was collected from All India Coordinated Research Project on
Agrometeorology (AICRPAM), Central Research Institute for Dryland Agriculture
(CRIDA), Hyderabad, Telangana, India. These data were used for the development
and testing of various ANN-based ETo models. Due to the unavailability of lysimeter
measured ETo values for these stations, it is estimated by the FAO-56 PM method,
which has been adopted as a standard equation for the computation of ETo and
calibrating other Eqs. [10]. The normalization technique was applied to both the
input and target data before training and testing such that all data points lies in
between 0 and 1. The normalization process removes the cyclicity of the data. The
following procedure was adopted for normalizing the input and output data sets.
Each variable, Xi, in the data set was normalized (Xi, norm) between 0 and 1 by
dividing its value by the upper limit of the data set, Xi, max. Resulting data was then
used for mapping.

Xi,norm ¼ Xi=Xi,max (24)

ANN simulated ETo was converted back to original form by denormalization
procedure. The data from 2001 to 2005 was splitted into training (70% of 2001–
2004), validation (30% of 2001–2004), and testing (2005) sets. ANN models were
trained with the LM algorithm consists of one hidden layer (sigmoid transfer func-
tion) and one output layer (linear transfer function). The parameters that were
fixed after a number of trials include: RMSE = 0.0001, learning rate = 0.65,
momentum rate = 0.5, epochs = 500, and initial weight range = �0.5 to 0.5. The
developed various ANN models were compared with basic statistical MLR models.
The developed ANN models were evaluated and compared based on different error
functions described in Table 2. Training window of the model contains general
information used for training the networks like, error tolerance, Levenberg param-
eter (lambda) and maximum cycles of simulation. For weights selection, two
options are there, weights can be randomized or it can be read from an existing
weight file of previous training.

6. Results and discussion

6.1 Development of ANN models for daily ETo estimation

ANN model with six climatic variables (Tmax, Tmin, RHmax, RHmin,WS, and Sra)
were trained and tested to evaluate the feasibility of ANN models corresponding to
FAO-56 PM conventional ETo method for 15 individual locations in India. In order

Evaluation criteria Formulae

Root Mean Squared Error (RMSE) RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1 Ti‐Oið Þ2

q

Coefficient of determination (R2)
R2 ¼ ∑n

i¼1 Oi‐Oð Þ Ti‐Tð Þ½ �2
∑n

i¼1 Oi‐Oð Þ2∑n
i¼1 Ti‐Tð Þ2

Ratio of average output and target ETo values (R) R ¼ O
T

where Ti and Oi = target (FAO-56 PM ETo) and output (ETo resulted from MLR or ANN models) values at the ith
step, respectively; n = number of data points, Tand O ¼ average of target (FAO-56 PM ETo) and output (ETo from
MLR or ANN models) values, respectively.

Table 2.
Performance evaluations of ANN and MLR models.
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to highlight the necessity of using complex ANN models, it is necessary to show the
results obtained using MLR models.

6.2 Training of ANN models for daily ETo estimation

All the ANN models were trained as per the procedure mentioned in methodol-
ogy and after each training run; three performance indices (RMSE, R2, and Rratio)
were calculated, to find the optimum neural network. Several runs were used for
determining the optimal number of hidden neurons with different architectural
configurations. The optimum neural network was selected based on criteria such
that the model has minimum RMSE and maximum R2 values. Here, it is worth to
mention that the Rratio is used only to know whether the models overestimated or
underestimated ETo values. Training with higher number of hidden nodes might
increase the performance of ANN models. But training with a several number of
hidden nodes requires more computation time and cause complexity in architecture
as it has to complete number of epochs [7]. Therefore, to avoid the above difficulty,
the selection of an optimum node was fixed with a trial run of 1–15 hidden nodes
only (i.e., not tried beyond 15 hidden nodes). Figure 6 shows the relationship
between RMSE and number of hidden nodes of ANN models for four locations
(Parbhani, Hissar, Faizabad, and Dapoli) during training. These locations are cho-
sen randomly from each agro-ecological region such that Parbhani, Hissar, Faiza-
bad, and Dapoli represent semi-arid, arid, sub-humid, and humid climates,
respectively.

For ANN models, the best network was resulted at a hidden node of i + 1
(where i = number of nodes in the input layer) for most of the locations. Thus, i + 1
hidden nodes are sufficient to model the ETo process using the ANN models
[13–16, 44–46]. Table 3 shows the performance statistics of ANN models for 15
locations during training. The results pertaining to the optimal network structure
of ANN models, resulted at i + 1 hidden nodes, are only summarized in Table 3 for
15 locations.

Figure 6.
RMSE variations with number of hidden nodes for ANN models.
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Root Mean Squared Error (RMSE) RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1 Ti‐Oið Þ2

q

Coefficient of determination (R2)
R2 ¼ ∑n

i¼1 Oi‐Oð Þ Ti‐Tð Þ½ �2
∑n

i¼1 Oi‐Oð Þ2∑n
i¼1 Ti‐Tð Þ2

Ratio of average output and target ETo values (R) R ¼ O
T

where Ti and Oi = target (FAO-56 PM ETo) and output (ETo resulted from MLR or ANN models) values at the ith
step, respectively; n = number of data points, Tand O ¼ average of target (FAO-56 PM ETo) and output (ETo from
MLR or ANN models) values, respectively.

Table 2.
Performance evaluations of ANN and MLR models.
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to highlight the necessity of using complex ANN models, it is necessary to show the
results obtained using MLR models.
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AER Location ANN

RMSE R2 Rratio

Semi-arid Parbhani 0.141 0.991 0.997

Solapur 0.271 0.969 1.000

Bangalore 0.296 0.972 1.005

Kovilpatti 0.254 0.991 1.000

Udaipur 0.391 0.952 1.003

Arid Anantapur 0.363 0.972 0.986

Hissar 0.052 0.999 1.000

Sub-humid Raipur 0.255 0.981 0.982

Faizabad 0.060 0.999 1.001

Ludhiana 0.289 0.977 0.999

Ranichauri 0.909 0.411 1.004

Humid Palampur 0.177 0.988 0.999

Jorhat 0.615 0.943 1.001

Mohanpur 0.377 0.904 1.002

Dapoli 0.150 0.990 1.000

RMSE = mm day�1; R2 and Rratio = dimensionless.

Table 3.
Performance of ANN based ETo models during training.

AER Location MLR ANN

RMSE R2 Rratio RMSE R2 Rratio

Semi-arid Parbhani 0.308 0.963 1.002 0.115 0.995 0.994

Solapur 0.313 0.959 1.003 0.228 0.979 0.988

Bangalore 0.159 0.980 1.000 0.201 0.968 0.994

Kovilpatti 0.233 0.977 0.999 0.200 0.984 1.004

Udaipur 0.295 0.975 1.001 0.119 0.996 0.992

Arid Anantapur 0.275 0.977 1.000 0.222 0.984 0.998

Hissar 0.434 0.951 0.999 0.280 0.980 1.000

Sub-humid Raipur 0.420 0.943 1.002 0.296 0.972 1.005

Faizabad 0.357 0.957 1.002 0.286 0.973 1.011

Ludhiana 0.348 0.971 0.999 0.279 0.981 1.000

Ranichauri 0.265 0.961 0.999 0.137 0.989 1.005

Humid Palampur 0.313 0.952 1.003 0.228 0.979 1.031

Jorhat 0.151 0.978 1.000 0.137 0.985 1.019

Mohanpur 0.170 0.983 1.001 0.123 0.991 1.007

Dapoli 0.177 0.973 1.001 0.152 0.981 1.009

RMSE = mm day�1; R2 and Rratio = dimensionless.

Table 4.
Performance of ANN and MLR based ETo models during testing.
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6.3 FAO-56 PM-based ANN models

ETo process is a function of various climatic factors (Tmax, Tmin, RHmax, RHmin,
WS, and Sra). Therefore, it is pertinent to take into account the combined influence
of all the climatic parameters on ETo estimation. The ANNmodels corresponding to

Figure 7.
Scatter plots of ANN models estimated ETo with respect to FAO-56 PM ETo for 15 climatic locations in India.

39

Nonlinear Evapotranspiration Modeling Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.81369



AER Location ANN

RMSE R2 Rratio

Semi-arid Parbhani 0.141 0.991 0.997

Solapur 0.271 0.969 1.000

Bangalore 0.296 0.972 1.005

Kovilpatti 0.254 0.991 1.000

Udaipur 0.391 0.952 1.003

Arid Anantapur 0.363 0.972 0.986

Hissar 0.052 0.999 1.000

Sub-humid Raipur 0.255 0.981 0.982

Faizabad 0.060 0.999 1.001

Ludhiana 0.289 0.977 0.999

Ranichauri 0.909 0.411 1.004

Humid Palampur 0.177 0.988 0.999

Jorhat 0.615 0.943 1.001

Mohanpur 0.377 0.904 1.002

Dapoli 0.150 0.990 1.000

RMSE = mm day�1; R2 and Rratio = dimensionless.

Table 3.
Performance of ANN based ETo models during training.

AER Location MLR ANN

RMSE R2 Rratio RMSE R2 Rratio

Semi-arid Parbhani 0.308 0.963 1.002 0.115 0.995 0.994

Solapur 0.313 0.959 1.003 0.228 0.979 0.988

Bangalore 0.159 0.980 1.000 0.201 0.968 0.994

Kovilpatti 0.233 0.977 0.999 0.200 0.984 1.004

Udaipur 0.295 0.975 1.001 0.119 0.996 0.992

Arid Anantapur 0.275 0.977 1.000 0.222 0.984 0.998

Hissar 0.434 0.951 0.999 0.280 0.980 1.000

Sub-humid Raipur 0.420 0.943 1.002 0.296 0.972 1.005

Faizabad 0.357 0.957 1.002 0.286 0.973 1.011

Ludhiana 0.348 0.971 0.999 0.279 0.981 1.000

Ranichauri 0.265 0.961 0.999 0.137 0.989 1.005

Humid Palampur 0.313 0.952 1.003 0.228 0.979 1.031

Jorhat 0.151 0.978 1.000 0.137 0.985 1.019

Mohanpur 0.170 0.983 1.001 0.123 0.991 1.007

Dapoli 0.177 0.973 1.001 0.152 0.981 1.009

RMSE = mm day�1; R2 and Rratio = dimensionless.

Table 4.
Performance of ANN and MLR based ETo models during testing.

38

Advanced Evapotranspiration Methods and Applications

6.3 FAO-56 PM-based ANN models

ETo process is a function of various climatic factors (Tmax, Tmin, RHmax, RHmin,
WS, and Sra). Therefore, it is pertinent to take into account the combined influence
of all the climatic parameters on ETo estimation. The ANNmodels corresponding to

Figure 7.
Scatter plots of ANN models estimated ETo with respect to FAO-56 PM ETo for 15 climatic locations in India.
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the FAO-56 PM were developed considering Tmax, Tmin, RHmax, RHmin, Ws, and Sra
as input and the FAO-56 PM ETo as target. Table 4 shows the performance statistics
of ANN and MLR models for 15 locations during testing. Comparison of results
obtained using MLR and ANN models indicated that the ANN models performed
better than the MLR models for all locations except for Bangalore. This is confirmed
from the low values of RMSE (mm day�1) and high values of R2 for ANN models as
compared to the MLR models.

Figure 8.
Time series plots ofANNandFAO-56PMETo for (a)Parbhani, (b)Hissar, (c)Faizabad, and (d)Dapoli locations.
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The Rratio values of MLR models for 15 locations are nearly approaching one,
which simply indicates that on an average these models neither over- nor under-
estimated ETo. However, high values of RMSE and R2 indicate that on a daily basis,
these models over- and under-estimated ETo values. Though the performance of
ANN models was good as compared to MLR models, in some locations these models
over- or under-estimated the ETo values. The ANNmodels overestimated (Rratio > 1)
ETo values at Palampur. The over- and under-estimations by all ANNmodels for the
above locations were less than 3% which is negligible. The overall performance of all
the models was represented as ANN > MLR for most of the locations except for
Bangalore where, the performance of models was represented as MLR > ANN. The
results suggest that the non-linearity of ETo process can be adequately modeled
using ANN models.

The scatter plots of the FAO-56 PM ETo and ETo estimated with the ANN
models for 15 climatic locations in India are shown in Figure 7. The scatter plots
confirm the statistics given in Table 4. Regression analysis was performed between
the FAO-56 PM ETo and ETo estimated with the ANN and the best-fit lines are
shown in Figure 7. The values of R2 for ANN models were found to be >0.968. The
fit line equations (y = a0x + a1) in Figure 7 gave the values of a0 and a1 coefficients
closer to one and zero, respectively. Due to the superior performance of ANN
models over the MLR models, the time series plots of these models with 1 year data
(during testing) for four selected locations Parbhani, Hissar, Faizabad, and Dapoli
are shown in Figure 8. The location figures indicated that, ETo estimated using
ANNmodels matched well with the FAO-56 PM ETo except for a few peak values in
case of Faizabad.

7. Summary and conclusions

Evapotranspiration is an important and one of the most difficult components of
the hydrologic cycle to quantify accurately. Prior to designing any irrigation system,
the information on crop water requirements or crop evapotranspiration is needed,
which can be calculated using reference evapotranspiration. There exist direct
measurement methods (lysimeters) and indirect estimation procedures (physical
and empirical based) for modeling ETo. Direct methods have the limitations of
arduous, cost-effective, and lack of skilled manpower to collect accurate measure-
ments. The difficulty in estimating ETo with the indirect physically based methods
is due to the limitations of unavailability of all necessary climate data, whereas the
application of empirical methods are limited due to unsuitability of these methods
for all climatic conditions and need of local calibration. ANNs are efficient in
modeling complex processes without formulating any mathematical relationships
related to the physical process. This study was undertaken to develop ANN models
corresponding to FAO-56 PM conventional ETo method for 15 individual stations
in India.

The potential of ANN models corresponding to the FAO-56 PM method was
evaluated for 15 locations. The ANN models were developed considering six inputs
(Tmax, Tmin, RHmax, RHmin, Ws, and Sra) and the FAO-56 PM ETo as target. The
optimum number of hidden neurons was finalized with a trial of 1–15 hidden nodes.
The ANN models gave lower RMSE values at i + 1 (i = number of inputs) hidden
nodes for estimating ETo. Comparison results of MLR and ANN models indicated
that the ANNmodels performed better for all locations. However, on an average the
over- and under-estimations of ETo (<3% which is negligible) estimated by using
MLR models was less as compared to ANN models. In brief, based on the above
discussion on ETo modeling, the following specific conclusions are drawn:
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above locations were less than 3% which is negligible. The overall performance of all
the models was represented as ANN > MLR for most of the locations except for
Bangalore where, the performance of models was represented as MLR > ANN. The
results suggest that the non-linearity of ETo process can be adequately modeled
using ANN models.

The scatter plots of the FAO-56 PM ETo and ETo estimated with the ANN
models for 15 climatic locations in India are shown in Figure 7. The scatter plots
confirm the statistics given in Table 4. Regression analysis was performed between
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fit line equations (y = a0x + a1) in Figure 7 gave the values of a0 and a1 coefficients
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models over the MLR models, the time series plots of these models with 1 year data
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are shown in Figure 8. The location figures indicated that, ETo estimated using
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for all climatic conditions and need of local calibration. ANNs are efficient in
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corresponding to FAO-56 PM conventional ETo method for 15 individual stations
in India.

The potential of ANN models corresponding to the FAO-56 PM method was
evaluated for 15 locations. The ANN models were developed considering six inputs
(Tmax, Tmin, RHmax, RHmin, Ws, and Sra) and the FAO-56 PM ETo as target. The
optimum number of hidden neurons was finalized with a trial of 1–15 hidden nodes.
The ANN models gave lower RMSE values at i + 1 (i = number of inputs) hidden
nodes for estimating ETo. Comparison results of MLR and ANN models indicated
that the ANNmodels performed better for all locations. However, on an average the
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discussion on ETo modeling, the following specific conclusions are drawn:
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• For estimating ETo using ANN model, a network of single hidden layer with
i + 1 (i = number of input nodes) number of hidden nodes was found as
adequate.

• ANN-based ETo estimation models performed better than the MLR models for
all locations.

However, it should be noted that only climate data from different agro-
ecological regions of India was used in this analysis and the results might be differ-
ent for various climates in other countries.
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Chapter 3

Influence of Landsat Revisit 
Frequency on Time-Integration 
of Evapotranspiration for 
Agricultural Water Management
Ricardo Trezza, Richard G. Allen, Ayse Kilic, Ian Ratcliffe  
and Masahiro Tasumi

Abstract

The objective of this study was to explore the improvement in accuracy of esti-
mates for evapotranspiration (ET) over complete growing seasons and monthly 
periods, when more frequent Landsat imagery is made available. Conversely, we 
explored the reduction in accuracy in ET estimates when frequency of Landsat 
imagery was reduced. The study was implemented by conducting a series of METRIC 
applications for two Landsat WRS path overlap areas, one in southern Idaho (paths 39 
and 40) during 2000, and a second one in Nebraska (paths 29 and 30) during 2002, 
years when two fully functioning satellites, Landsat 5 and Landsat 7, were in orbit. 
The results indicated that high frequency imagery provided by two satellites covering 
a WRS path overlap was more able to capture the impacts of rapid crop development 
and harvest, and evaporation associated by wetting events. That data set simulated 
a nominal four-day revisit time. Three-simulated 16-day revisit data sets created 
using a single Landsat series for a single path were unable to produce monthly and 
growing season ET due to the lack of sufficient number of images to even begin the 
time-integration process. This emphasizes the need to maintain two Landsat satellites 
in orbit and the high value of four-day revisit times. Limiting the data set to one path 
and two satellites (eight-day revisit) underestimated growing season ET accordingly 
by about 8% on average. Error in monthly ET was relatively high when image avail-
ability was limited to that for an eight-day revisit. This is due to the importance of 
timing of images to identify key inflection points in the ETrF curves and to capture 
special events such as wetting events from irrigation and rain or from water stress or 
cuttings, as in the case of forage crops. Results suggest that a four-day revisit time as 
represented by the full-run (run 1) of our analysis provides robustness in the devel-
opment of time-integrated ET estimates over months and growing seasons, and is a 
valuable backstop for mitigation of clouded images over extended periods.

Keywords: evapotranspiration, remote sensing, METRIC, LANDSAT, temporal resolution

1. Introduction

Evapotranspiration (ET) transfers large volume of water from soil and veg-
etation into the atmosphere. Quantifying the consumption of water over large 
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areas and within irrigated projects is important for solving water right disputes, 
hydrologic water balances, and water resources planning. Estimation of actual ET 
at relatively high spatial resolutions is of interest to agriculture, water resources 
management, and can serve as an indicator of crop water deficits.

With the availability of free satellite imagery, especially Landsat, there has been 
substantial investigation to retrieve actual evapotranspiration (ET) over large areas 
from remotely sensed data. The major advantage of applying remote sensing is 
that ET can be computed directly without the need for quantifying other complex 
hydrological processes. A detailed review of remote sensing algorithms to estimate 
ET are presented in Kustas and Norman [1], Bastiaanssen [2], Courault et al. [3], and 
Kalma et al. [4]. There are two general approaches to estimate ET via remote sensing: 
(a) scaling ET based on a vegetation index [5, 6] and (b) using thermal information 
to drive a surface energy balance [7, 8] or to more simply scale the ET values [9]. 
The thermal approach is the only one that can effectively estimate ET from water-
stressed vegetation as well as evaporation from wet soil when using a surface energy 
balance [10]. The estimation of ET implies the use of remotely sensed spectral data, 
thermal imagery, and ground-based meteorological inputs to evaluate net radiation 
(Rn), sensible heat (H), and soil heat flux (G) components of the surface energy 
balance to obtain latent heat flux (LE) as the residual from the energy balance. Some 
information is commonly supplied by a soil water balance [10].

Many applications in water resources planning, hydrological modeling, and 
agricultural water management require seasonal/annual ET estimates. The 
determination of seasonal ET based on remote sensing data is very challenging 
when daily ET is not available due to temporal resolution of satellites (revisiting) 
and/or gaps in imagine acquisition due to cloud cover. The methods discussed in 
the previous paragraph are useful to estimate ET for the days when cloud-free 
satellite imagery is available, which generally represents just a small portion of 
the total number of days during the growing season. For that reason, methods 
are needed to extrapolate and/or interpolate those ET snapshots to represent the 
whole growing season.

One approach for estimating monthly and seasonal ET from a given number 
of satellite-derived ET maps is based on the construction of a crop coefficient 
curve, for every pixel, similar to the proposed by FAO-56 [11]. In this approach, 
satellite-derived ET is converted to alfalfa reference ET fraction (ETrF = ET/ETr) 
or grass reference ET fraction (EToF = ET/ETo) by dividing ET to alfalfa reference 
evapotranspiration (ETr) or grass reference evapotranspiration (ETo), respectively. 
Basically, each ET image would provide one point of the ETrF or EToF curve. 
The rest of the curve is later completed by interpolation (linear, spline, or other 
method), providing ETrF (or EToF) for every day during the growing season. 
Finally, daily ETrF (or EToF) is multiplied by daily ETr (or ETo) to produce daily ET, 
which can be summarized into monthly and seasonal values.

Allen et al. [12] used METRIC [13] and interpolation of daily alfalfa reference 
ET fraction (ETrF) for computing seasonal ET in Southern Idaho. This approach 
resulted is less than 3% difference on seasonal ET when compared to lysimeter 
data [11]. The authors attributed this good estimation of seasonal ET to the 
random distribution of daily ET from the METRIC model. Chavez et al. [14] used 
interpolation of grass reference ET fraction (EToF) to estimate ET in between 
satellite overpasses.

Singh et al. [15] employed three different methods of ETrF interpolation to 
compute seasonal ET for 6 months (July–December) and compare these values 
with daily ET measurements collected with eddy covariance in Nebraska. The first 
method assumed that ETrF on each acquired image date was constant during a 
representative period for daily ET computation. The second method involved linear 
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interpolation of ETrF in between two consecutive images; the hypothesis here was 
that the errors caused by underestimation or overestimation of daily ET are can-
celed out while computing seasonal ET. These methods are convenient if satellite 
images are available at regular intervals. The third interpolation method used was 
a cubic spline of the ETrF values. The spline method is the procedure that better 
mimic the natural behavior of the crop coefficient curve. The results indicated that 
there was no statistically significant difference among the three methods; overall, 
the cubic spline method resulted in the lowest standard error.

Mohamed et al. [16] used SEBAL [17] to describe the temporal variability of 
ET in swamps of the upper Nile. The authors estimate ET during days with no 
satellite image by assuming that the daily ratio of daily evaporation and reference 
evapotranspiration (Kc = ET/ETo) could be kept constant during the month. ETo 
represents the grass-based reference evapotranspiration calculated using Allen et al. 
[11] and ET was calculated using SEBAL.

Bashir et al. [18] used LANDSAT and MODIS imagery to estimate the spatial distri-
bution of daily, monthly, and seasonal ET for irrigated Sorghum in the Gezira scheme, 
Sudan. The authors used SEBAL to estimate daily ET. The monthly and seasonal ET 
was computed by linearly interpolating the ratio of ET and grass reference ETo (EToF) 
in between two consecutive images; the estimation of seasonal ET by SEBAL and EToF 
interpolation was within 8% of an estimation of seasonal ET from water balance.

A second approach that is implemented to generate seasonal or annual ET 
utilized soil-vegetation-atmosphere transfer (SVAT) models to estimate ET in 
between satellite dates. Olioso et al. [19] combined remote sensing inputs and a 
SVAT model to estimate ET and photosynthesis. The authors indicate that is useful 
to assimilate remote sensing data into SVAT models, which are able to give access 
to a detailed description of soil and vegetation canopy processes. SVAT models are 
capable of simulating intermediary variables linked to hydrological and physiologi-
cal processes. Various remote sensing data may be used to drive those SVAT models. 
Spectral reflectance in the visible and near infrared portions of the spectrum can 
provide information on the structure and characteristics of the vegetation canopy, 
such as LAI and albedo. Thermal remote sensing data can be used as indirect 
indicators of moisture in the soil or vegetative surface. Dhungel et al. [20] proposed 
a surface energy balance model that uses gridded weather data to interpolate ET 
between two consecutive satellite dates; bulk surface resistance for satellite dates 
was obtained by inversion of the Penman-Monteith equation, where ET came from 
application of the METRIC model on Landsat images.

1.1 Objective

The objective of this study was to explore the improvement in accuracy of esti-
mates for ET over complete growing seasons and for monthly periods, when more 
frequent Landsat imagery is made available.

The study was implemented by conducting a series of METRIC applications 
for a Landsat WRS path overlap area in southern Idaho (paths 39 and 40) during a 
period (year 2000) when two fully functioning satellites, Landsat 5 and Landsat 7, 
were in orbit. During that year, Landsat 5 (L5) and Landsat 7 (L7) passed over the 
overlap area twice, each, per 16 day period, providing four imaging opportunities 
every 16 days. Monthly and growing season ET was integrated using all available 
cloud-free imagery during the April–October growing period to provide a baseline 
representing our most accurate estimate. The frequency of imagery was then spars-
ened by removing imagery from one path or the other and by removing imagery 
from one satellite or the other. Monthly and seasonal ETs were then recomputed 
with the sparsened image series and compared with the baseline data.
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between satellite dates. Olioso et al. [19] combined remote sensing inputs and a 
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cal processes. Various remote sensing data may be used to drive those SVAT models. 
Spectral reflectance in the visible and near infrared portions of the spectrum can 
provide information on the structure and characteristics of the vegetation canopy, 
such as LAI and albedo. Thermal remote sensing data can be used as indirect 
indicators of moisture in the soil or vegetative surface. Dhungel et al. [20] proposed 
a surface energy balance model that uses gridded weather data to interpolate ET 
between two consecutive satellite dates; bulk surface resistance for satellite dates 
was obtained by inversion of the Penman-Monteith equation, where ET came from 
application of the METRIC model on Landsat images.

1.1 Objective

The objective of this study was to explore the improvement in accuracy of esti-
mates for ET over complete growing seasons and for monthly periods, when more 
frequent Landsat imagery is made available.

The study was implemented by conducting a series of METRIC applications 
for a Landsat WRS path overlap area in southern Idaho (paths 39 and 40) during a 
period (year 2000) when two fully functioning satellites, Landsat 5 and Landsat 7, 
were in orbit. During that year, Landsat 5 (L5) and Landsat 7 (L7) passed over the 
overlap area twice, each, per 16 day period, providing four imaging opportunities 
every 16 days. Monthly and growing season ET was integrated using all available 
cloud-free imagery during the April–October growing period to provide a baseline 
representing our most accurate estimate. The frequency of imagery was then spars-
ened by removing imagery from one path or the other and by removing imagery 
from one satellite or the other. Monthly and seasonal ETs were then recomputed 
with the sparsened image series and compared with the baseline data.
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1.2 Background

In this chapter, Mapping EvapoTranspiration at High Resolution with 
Internal Calibration (METRIC) was used to produce ET maps in Idaho and 
Nebraska using Landsat imagery. METRIC is an image processing model 
for calculating ET as a residual of the surface energy balance. METRIC was 
developed by the University of Idaho [7, 8, 16] for the application to Landsat 
satellite imagery to maximize ET product resolution (30 m). METRIC uses as 
its foundation, the pioneering SEBAL energy balance process developed in the 
Netherlands by Bastiaanssen et al. [12, 17], where near surface temperature 
gradients for estimating the sensible heat component of the surface energy 
balance are an indexed function of radiometric surface temperature, thereby, 
eliminating the need for absolutely accurate surface temperature and the need 
for air temperature measurements. The surface energy balance is inversely and 
internally calibrated in METRIC using ground-based reference ET to reduce 
computational biases inherent to remote sensing-based energy balance compo-
nents and to provide congruency with traditional methods for ET [8]. Slope and 
aspect functions and temperature lapsing are used in applications in mountain-
ous terrain. The primary inputs to the METRIC model are short wave and long 
wave (thermal) images from satellite (e.g., Landsat or MODIS), a digital eleva-
tion model (DEM), and ground-based weather data measured within or near 
the area of interest. ET “maps” (i.e., images) via METRIC provide the means 
to quantify ET on a field-by-field basis in terms of both the rate and spatial 
distribution.

METRIC has significant advantages over conventional methods for estimat-
ing ET from crop coefficient curves in that crop development stages do not need 
to be known with METRIC, nor does the specific crop type need to be known. In 
addition, the energy balance can detect reduced ET caused by water shortage. For 
agricultural crops, METRIC takes significant advantage of basing calibration on 
reference ET, rather than evaporative fraction [18], where reference ET, in the case 
of METRIC, is the ET from a hypothetical 0.5 m tall vegetation having high leaf area 
and low bulk surface resistance. The reference ET is estimated from ground-based 
weather data using the ASCE standardized Penman-Monteith method for the ‘tall 
reference’ [19]. The use of reference ET accounts for regional advection effects can 
cause ET from irrigated and wetland vegetation systems to exceed daily net radia-
tion in many arid or semi-arid locations [16]. Details on the METRIC model are 
provided in Allen et al. [8].

In the METRIC model, ET is computed from satellite images and weather data 
using the surface energy balance. Since the satellite image provides information 
for the overpass time only, METRIC computes an instantaneous ET flux for the 
image time. The ET flux is calculated for each pixel of the image as a “residual” of 
the surface energy budget equation and is expressed as the energy consumed by the 
evaporation process:

  LE =  R  n   − G − H  (1)

where LE is the latent heat flux (W/m2), Rn is the net radiation flux at the surface 
(W/m2), G is the soil heat flux (W/m2), and H is the sensible heat flux to the air 
(W/m2).

ET produced by METRIC is expressed in the form of a reference ET fraction 
(ETrF) that is calculated as the ratio of the computed instantaneous ET (ETinst) 
from a pixel to a reference ET (ETr) that is computed from weather data:
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   ET  r   F =    ET  inst   _____  ET  r  
    (2)

where ETinst is produced from the energy balance of METRIC (mm hr−1) and ETr 
is reference ET based on the standardized 0.5 m tall alfalfa reference at the time of 
the image. ETr represents a near maximum rate of ET based on environmental energy 
availability and advection of sensible heat and dry air from outside irrigated areas. 
Generally, only one or two weather stations are required to estimate ETr for a Landsat 
image that measures 180 km × 180 km. ETrF is same as the well-known crop coeffi-
cient, Kc, when used with an alfalfa reference basis, and is used to extrapolate ET from 
the image time to 24-hour or longer periods because ETr represents a near maximum 
limit for ET; ETrF values produced by METRIC generally range from 0 to 1.0 [20].

1.3 Seasonal evapotranspiration

Monthly and seasonal evapotranspiration “maps” are highly useful for water 
resources management, including water rights litigation, hydrologic water balances, 
ground water studies, and irrigation depletion analyses. Generally, these maps are 
derived from the series of ETrF images produced by METRIC by interpolating ETrF 
between the processed images and then multiplying, on a daily basis, by the ETr 
for each day. The ETr accounts for day-to-day variation in ET caused by weather 
fluctuations and the interpolated ETrF from METRIC accounts for the scaling of 
the weather-based ET according to the effects of vegetation cover, soil water stress, 
and other localized factors. As mentioned before, the interpolation of ETrF between 
image dates is not unlike the construction of a seasonal Kc curve, where interpola-
tion is done between discrete values for Kc.

Cumulative ET for any period, for example, a month, season, or year is calcu-
lated as:

   ET  period   =   ∑ 
i=m

  
n
    [ ( ET  r    F  i  )   (  ET  r24 i  ) ]   (3)

where ETperiod is the cumulative ET for a period beginning on day m and end-
ing on day n, ETrFi is the interpolated ETrF for day i, and ETr24i is the 24-hour ETr 
for day i. Units for ETperiod are in mm, when ETr24 is in mm d−1. The interpolation 
between values for ETrF is generally made using a curvilinear interpolation func-
tion, for example, a spline function, to follow the typical curvilinearity of ET due to 
the phenological development of crops during the growing season [25].

As a general rule of thumb, one clear satellite image per month is normally 
considered sufficient to construct an accurate ETrF curve for purposes of inte-
grating ET over time to estimate seasonal ET. During periods of rapid vegetation 
change, however, a more frequent image interval is highly desirable, as illustrated in 
Figure 1, where the lack of satellite image in mid-July caused an underestimation of 
the ETrF curve for the dry bean crop in Idaho near the beginning of the midseason, 
when ETrF was interpolated linearly between satellite dates.

If a specific pixel must be masked out of an image because of cloud cover, then 
a subsequent image date must be used during the interpolation and the estimated 
ETrF or Kc curve will have reduced accuracy. In actuality, ETrF varies substantially 
from day-to-day due primarily to variability in weather data and surface wetness. 
Therefore, the continuous ETrF curve, whether constructed from a published curve 
or table, or estimated from METRIC, is only an approximation of the actual ETrF on 
any specific day.
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1.2 Background
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for air temperature measurements. The surface energy balance is inversely and 
internally calibrated in METRIC using ground-based reference ET to reduce 
computational biases inherent to remote sensing-based energy balance compo-
nents and to provide congruency with traditional methods for ET [8]. Slope and 
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distribution.

METRIC has significant advantages over conventional methods for estimat-
ing ET from crop coefficient curves in that crop development stages do not need 
to be known with METRIC, nor does the specific crop type need to be known. In 
addition, the energy balance can detect reduced ET caused by water shortage. For 
agricultural crops, METRIC takes significant advantage of basing calibration on 
reference ET, rather than evaporative fraction [18], where reference ET, in the case 
of METRIC, is the ET from a hypothetical 0.5 m tall vegetation having high leaf area 
and low bulk surface resistance. The reference ET is estimated from ground-based 
weather data using the ASCE standardized Penman-Monteith method for the ‘tall 
reference’ [19]. The use of reference ET accounts for regional advection effects can 
cause ET from irrigated and wetland vegetation systems to exceed daily net radia-
tion in many arid or semi-arid locations [16]. Details on the METRIC model are 
provided in Allen et al. [8].

In the METRIC model, ET is computed from satellite images and weather data 
using the surface energy balance. Since the satellite image provides information 
for the overpass time only, METRIC computes an instantaneous ET flux for the 
image time. The ET flux is calculated for each pixel of the image as a “residual” of 
the surface energy budget equation and is expressed as the energy consumed by the 
evaporation process:

  LE =  R  n   − G − H  (1)

where LE is the latent heat flux (W/m2), Rn is the net radiation flux at the surface 
(W/m2), G is the soil heat flux (W/m2), and H is the sensible heat flux to the air 
(W/m2).

ET produced by METRIC is expressed in the form of a reference ET fraction 
(ETrF) that is calculated as the ratio of the computed instantaneous ET (ETinst) 
from a pixel to a reference ET (ETr) that is computed from weather data:
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where ETinst is produced from the energy balance of METRIC (mm hr−1) and ETr 
is reference ET based on the standardized 0.5 m tall alfalfa reference at the time of 
the image. ETr represents a near maximum rate of ET based on environmental energy 
availability and advection of sensible heat and dry air from outside irrigated areas. 
Generally, only one or two weather stations are required to estimate ETr for a Landsat 
image that measures 180 km × 180 km. ETrF is same as the well-known crop coeffi-
cient, Kc, when used with an alfalfa reference basis, and is used to extrapolate ET from 
the image time to 24-hour or longer periods because ETr represents a near maximum 
limit for ET; ETrF values produced by METRIC generally range from 0 to 1.0 [20].

1.3 Seasonal evapotranspiration

Monthly and seasonal evapotranspiration “maps” are highly useful for water 
resources management, including water rights litigation, hydrologic water balances, 
ground water studies, and irrigation depletion analyses. Generally, these maps are 
derived from the series of ETrF images produced by METRIC by interpolating ETrF 
between the processed images and then multiplying, on a daily basis, by the ETr 
for each day. The ETr accounts for day-to-day variation in ET caused by weather 
fluctuations and the interpolated ETrF from METRIC accounts for the scaling of 
the weather-based ET according to the effects of vegetation cover, soil water stress, 
and other localized factors. As mentioned before, the interpolation of ETrF between 
image dates is not unlike the construction of a seasonal Kc curve, where interpola-
tion is done between discrete values for Kc.

Cumulative ET for any period, for example, a month, season, or year is calcu-
lated as:
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i=m
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where ETperiod is the cumulative ET for a period beginning on day m and end-
ing on day n, ETrFi is the interpolated ETrF for day i, and ETr24i is the 24-hour ETr 
for day i. Units for ETperiod are in mm, when ETr24 is in mm d−1. The interpolation 
between values for ETrF is generally made using a curvilinear interpolation func-
tion, for example, a spline function, to follow the typical curvilinearity of ET due to 
the phenological development of crops during the growing season [25].

As a general rule of thumb, one clear satellite image per month is normally 
considered sufficient to construct an accurate ETrF curve for purposes of inte-
grating ET over time to estimate seasonal ET. During periods of rapid vegetation 
change, however, a more frequent image interval is highly desirable, as illustrated in 
Figure 1, where the lack of satellite image in mid-July caused an underestimation of 
the ETrF curve for the dry bean crop in Idaho near the beginning of the midseason, 
when ETrF was interpolated linearly between satellite dates.

If a specific pixel must be masked out of an image because of cloud cover, then 
a subsequent image date must be used during the interpolation and the estimated 
ETrF or Kc curve will have reduced accuracy. In actuality, ETrF varies substantially 
from day-to-day due primarily to variability in weather data and surface wetness. 
Therefore, the continuous ETrF curve, whether constructed from a published curve 
or table, or estimated from METRIC, is only an approximation of the actual ETrF on 
any specific day.
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Figure 2. 
Idaho study area, outlined in blue, that lies in the overlap of Landsat WRS paths 40 (on the left) and 39 (on 
the right) overlaid onto a false color composite from Landsat 7 on August 14, 2000 for path 40 and Landsat 5 
on June 28, 2000 for path 39. Irrigated areas along the Snake River plain are shown as bright reds.

2. Methods and materials

2.1 Study areas

Two application areas were utilized for this test. One area was in southern 
Idaho and the second area was in central Nebraska. Idaho is a relatively ‘clear’ area, 
so that, this analysis represents a somewhat ‘optimistic’ scenario as compared to 
more cloud-prone parts of the USA, for example, the Midwestern states. Central 
Nebraska has relatively high amounts of cloud cover and presents a greater chal-
lenge in obtaining a sufficient temporal density of clear imagery to produce accurate 
time-integrated estimates of ET.

In both areas, a subarea of Landsat images located in a WRS path overlap was 
selected for study. In Idaho, the subarea resided within path 39 row 30 and path 
40 row 30. The area is shown in Figure 2, where the dimensions of the study 
area were approximately 50 km east–west × 80 km north–south. The study area 
contained a mixture of irrigated agriculture comprised of potatoes, sugar beets, 
alfalfa, peas, dry beans, corn, small grains (wheat and barley), and pasture 
surrounded by areas of sagebrush desert with some grasslands. The upper part 
of the study area contains basaltic flows from the Craters of the Moon National 
Monument and some mountainous terrain lies to the south. Annual precipitation 

Figure 1. 
Constructed Kc (or ETrF) curve for a bean crop from METRIC (dark symbols) with comparison against a 
standard Kc curve produced by the US Bureau of Reclamation Agrimet service for a region near Twin Falls, 
Idaho in year 2000.
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is about 200 mm and all agricultural crops are irrigated from surface water or 
from ground water.

In Nebraska, the subarea resided within the domain of the Central Platte 
Natural Resources District (NRD) that lies within the overlap of WRS path 30 
rows 30–31 and path 29 rows 30–31. That study area in central Nebraska is shown 
in Figure 3 and has dimensions of approximately 60 km by 50 km with an area 
of approximately 1900 km2. Corn and soybeans are the predominant agricultural 
crops grown in this section of Nebraska, with some alfalfa cultivation as well. 
Agricultural irrigation is important to this area with over 18,000 irrigation wells 
and over 1 million certified irrigated acres. The dominant irrigation method in 
the area is center pivot and the irrigation season generally lasts from mid-June to 
mid-September. Annual precipitation for this area is approximately 600–650 mm. 
Figure 4 shows a close-up of the Nebraska study area showing the distribution of 
irrigated fields.

2.2 Remote sensing data

Table 1 lists the selection of Landsat images used to time-integrate ET in the 
Idaho study area. Dates for both path 39 and 40 are listed as well as the Landsat 
platform that collected the images. Year 2000 was selected for the analysis because it 
was during a ‘golden period’ of Landsat imagery, where two fully functioning satel-
lites were in operation. Year 2000 was also a year that had previously been processed 
using METRIC so that those results were available for use in this analysis. Asterisks 
in Table 1 indicate the dates used in a particular integration run to estimate monthly 
and growing season ET. The application of METRIC to the two paths for year 2000 
is described in Allen et al. [12] and Trezza [8]. Most of the images listed in Table 1 
were essentially clear images for the small study area and did not require mitigation 
for clouds. The exception was August 23, 2000 that was half-cloud covered. That 
image cloud mask was used with the spline model to signal the need to expand the 
spline to an additional image date. There were a few clear images for the study area 

Figure 3. 
Nebraska study area shaded in yellow where path 29, rows 30–31 and path 30, rows 30–31 overlap. The area 
managed by Central Platte NRD is outlined in white. The images shown are false color composites from 
Landsat 7 on July 29, 2002 for path 29 and Landsat 7 on July 22, 2002 for path 30.
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is about 200 mm and all agricultural crops are irrigated from surface water or 
from ground water.

In Nebraska, the subarea resided within the domain of the Central Platte 
Natural Resources District (NRD) that lies within the overlap of WRS path 30 
rows 30–31 and path 29 rows 30–31. That study area in central Nebraska is shown 
in Figure 3 and has dimensions of approximately 60 km by 50 km with an area 
of approximately 1900 km2. Corn and soybeans are the predominant agricultural 
crops grown in this section of Nebraska, with some alfalfa cultivation as well. 
Agricultural irrigation is important to this area with over 18,000 irrigation wells 
and over 1 million certified irrigated acres. The dominant irrigation method in 
the area is center pivot and the irrigation season generally lasts from mid-June to 
mid-September. Annual precipitation for this area is approximately 600–650 mm. 
Figure 4 shows a close-up of the Nebraska study area showing the distribution of 
irrigated fields.

2.2 Remote sensing data

Table 1 lists the selection of Landsat images used to time-integrate ET in the 
Idaho study area. Dates for both path 39 and 40 are listed as well as the Landsat 
platform that collected the images. Year 2000 was selected for the analysis because it 
was during a ‘golden period’ of Landsat imagery, where two fully functioning satel-
lites were in operation. Year 2000 was also a year that had previously been processed 
using METRIC so that those results were available for use in this analysis. Asterisks 
in Table 1 indicate the dates used in a particular integration run to estimate monthly 
and growing season ET. The application of METRIC to the two paths for year 2000 
is described in Allen et al. [12] and Trezza [8]. Most of the images listed in Table 1 
were essentially clear images for the small study area and did not require mitigation 
for clouds. The exception was August 23, 2000 that was half-cloud covered. That 
image cloud mask was used with the spline model to signal the need to expand the 
spline to an additional image date. There were a few clear images for the study area 

Figure 3. 
Nebraska study area shaded in yellow where path 29, rows 30–31 and path 30, rows 30–31 overlap. The area 
managed by Central Platte NRD is outlined in white. The images shown are false color composites from 
Landsat 7 on July 29, 2002 for path 29 and Landsat 7 on July 22, 2002 for path 30.
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that had not been processed by METRIC due to the close coincidence of other clear 
images in time. An example is June 28, 2000 for path 39, which was not processed. 
Therefore, the list of images in Table 1 is not all inclusive. However, the absence 
of images should not impact the accuracy of the baseline estimation of time-
integrated ET because there are sufficient data points to afford a relatively accurate 
interpolation.

Table 2 lists the selection of Landsat images used to time-integrate ET in the 
Nebraska study area. As with the Idaho study area, year 2002 was selected for 
analysis because it was a year when both Landsat 5 and 7 satellites were in operation 
and fully functioning. Asterisks in Table 2 indicate dates that they were used in a 
particular integration run to estimate monthly and growing season ET.

Most of the imagery listed were clear images for the small study area and did not 
require mitigation for clouds. The exceptions were June 27, 2002 and August 6, 2002 
from path 30, with both images having significant cloud cover over the study area. 
Cloud-covered areas in the imagery were masked out by manually tracing around 
the cloud areas and filling those cloud areas with a value recognizable in the time-
integration models as invalid. The masked out areas were replaced with data from a 
previous or following image date during the spline function in the time-integration.

2.3. Calculation of seasonal ET

The splining of ETrF between image dates was done using an ERDAS 
Modelmaker code that implemented a standard cubic spline algorithm. The spline 
function produced a continuous curvilinear function for each pixel between each 
date that was continuous in both first and second derivatives. The function inter-
sected each pixel data point. Daily reference ET (ETr) for the splining was computed 
from daily weather data obtained from the Twin Falls, Idaho Agrimet automated 
weather station for year 2000 for the Idaho study. For Nebraska, daily ETr was 
computed using hourly weather data from the 23 weather stations obtained from the 
High Plains Regional Climate Center (HPRCC) Automated Weather Data Network 
(AWDN), where a daily ETr surface was computed using cubic spline interpolation. 
In all cases, ETr was calculated using the ASCE (2005) standardized Penman-
Monteith alfalfa reference ET equation [21–24], and that same equation had been 
originally used to calibrate the METRIC model during the production of ETrF.

Figure 4. 
Close-up view of the Nebraska study area extent. The white line is the Central Platte NRD boundary. Bright 
red areas are cultivated fields and the lighter areas are rangeland. The areas of high densities of fields are 
irrigated areas along the Platte River, which is visible along the southern boundary of the Central Platte 
NRD. Those fields utilize a combination of ground water and surface water. Areas of more sparse densities of 
irrigated fields are fields using primarily ground water a water source.

55

Influence of Landsat Revisit Frequency on Time-Integration of Evapotranspiration…
DOI: http://dx.doi.org/10.5772/intechopen.80946

Dates Sensor Run 1: Time 
integration 
using both 
paths and 
landsats

Run 2: Time 
integration 
using path 

39 and both 
landsats**

Run 3: Time 
integration 
using path 

40 and both 
landsats

Run 4: Time 
integration 

using path 40 
and landsat 

L5***

1 April 01, 
2000

L7 * *

2 April 08, 
2000

L7 * *

3 May 02, 
2000

L5 * * *

4 May 03, 
2000

L7 * *

5 June 03, 
2000

L5 * * *

6 June 04, 
2000

L7 * *

7 June 19, 
2000

L5 * * *

8 June 20, 
2000

L7 * *

9 July 05, 
2000

L5 * * *

10 July 21, 
2000

L5 * * *

11 July 22, 
2000

L7 * *

13 August 07, 
2000

L7 * *

14 August 14, 
2000

L7 * *

15 August 22, 
2000

L5 * * *

16 August 23, 
2000

L7 * *

17 September 
07, 2000

L5 * * *

18 September 
08, 2000

L7 * *

19 September 
15, 2008

L7 * *

20 September 
16, 2000

L7 * *

21 October 17, 
2000

L7 * *

Asterisks indicate the dates used in a particular integration run to estimate monthly and growing season ET.**In 
this run, two synthetic ETrF images were created using constant values and placed at dates November 01, 2000 
(ETrF = 0.25) and November 10, 2000 (ETrF = 0.1) to provide endpoints for the cubic spline.
***In this run, four synthetic images were created using constant values and placed at dates March 20, 2000 (ETrF = 0.1); 
March 31, 2000 (ETrF = 0.1); November 01, 2000 (ETrF = 0.25) and November 10, 2000 (ETrF = 0.1) to provide 
endpoints for the cubic spline.

Table 1. 
Selection of Landsat images used to time-integrate ET for the Idaho study area, showing collection path and 
platform.
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that had not been processed by METRIC due to the close coincidence of other clear 
images in time. An example is June 28, 2000 for path 39, which was not processed. 
Therefore, the list of images in Table 1 is not all inclusive. However, the absence 
of images should not impact the accuracy of the baseline estimation of time-
integrated ET because there are sufficient data points to afford a relatively accurate 
interpolation.

Table 2 lists the selection of Landsat images used to time-integrate ET in the 
Nebraska study area. As with the Idaho study area, year 2002 was selected for 
analysis because it was a year when both Landsat 5 and 7 satellites were in operation 
and fully functioning. Asterisks in Table 2 indicate dates that they were used in a 
particular integration run to estimate monthly and growing season ET.

Most of the imagery listed were clear images for the small study area and did not 
require mitigation for clouds. The exceptions were June 27, 2002 and August 6, 2002 
from path 30, with both images having significant cloud cover over the study area. 
Cloud-covered areas in the imagery were masked out by manually tracing around 
the cloud areas and filling those cloud areas with a value recognizable in the time-
integration models as invalid. The masked out areas were replaced with data from a 
previous or following image date during the spline function in the time-integration.

2.3. Calculation of seasonal ET

The splining of ETrF between image dates was done using an ERDAS 
Modelmaker code that implemented a standard cubic spline algorithm. The spline 
function produced a continuous curvilinear function for each pixel between each 
date that was continuous in both first and second derivatives. The function inter-
sected each pixel data point. Daily reference ET (ETr) for the splining was computed 
from daily weather data obtained from the Twin Falls, Idaho Agrimet automated 
weather station for year 2000 for the Idaho study. For Nebraska, daily ETr was 
computed using hourly weather data from the 23 weather stations obtained from the 
High Plains Regional Climate Center (HPRCC) Automated Weather Data Network 
(AWDN), where a daily ETr surface was computed using cubic spline interpolation. 
In all cases, ETr was calculated using the ASCE (2005) standardized Penman-
Monteith alfalfa reference ET equation [21–24], and that same equation had been 
originally used to calibrate the METRIC model during the production of ETrF.

Figure 4. 
Close-up view of the Nebraska study area extent. The white line is the Central Platte NRD boundary. Bright 
red areas are cultivated fields and the lighter areas are rangeland. The areas of high densities of fields are 
irrigated areas along the Platte River, which is visible along the southern boundary of the Central Platte 
NRD. Those fields utilize a combination of ground water and surface water. Areas of more sparse densities of 
irrigated fields are fields using primarily ground water a water source.
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Dates Sensor Run 1: Time 
integration 
using both 
paths and 
landsats

Run 2: Time 
integration 
using path 

39 and both 
landsats**

Run 3: Time 
integration 
using path 

40 and both 
landsats

Run 4: Time 
integration 

using path 40 
and landsat 

L5***

1 April 01, 
2000

L7 * *

2 April 08, 
2000

L7 * *

3 May 02, 
2000

L5 * * *

4 May 03, 
2000

L7 * *

5 June 03, 
2000

L5 * * *

6 June 04, 
2000

L7 * *

7 June 19, 
2000

L5 * * *

8 June 20, 
2000

L7 * *

9 July 05, 
2000

L5 * * *

10 July 21, 
2000

L5 * * *

11 July 22, 
2000

L7 * *

13 August 07, 
2000

L7 * *

14 August 14, 
2000

L7 * *

15 August 22, 
2000

L5 * * *

16 August 23, 
2000

L7 * *

17 September 
07, 2000

L5 * * *

18 September 
08, 2000

L7 * *

19 September 
15, 2008

L7 * *

20 September 
16, 2000

L7 * *

21 October 17, 
2000

L7 * *

Asterisks indicate the dates used in a particular integration run to estimate monthly and growing season ET.**In 
this run, two synthetic ETrF images were created using constant values and placed at dates November 01, 2000 
(ETrF = 0.25) and November 10, 2000 (ETrF = 0.1) to provide endpoints for the cubic spline.
***In this run, four synthetic images were created using constant values and placed at dates March 20, 2000 (ETrF = 0.1); 
March 31, 2000 (ETrF = 0.1); November 01, 2000 (ETrF = 0.25) and November 10, 2000 (ETrF = 0.1) to provide 
endpoints for the cubic spline.

Table 1. 
Selection of Landsat images used to time-integrate ET for the Idaho study area, showing collection path and 
platform.



Advanced Evapotranspiration Methods and Applications

56

Three to four integration runs were made for the study areas, as described in 
the next section. The integration runs utilized (1) both Landsat 5 and 7 imagery 
from both paths; (2) both Landsat 5 and 7 imagery from one path or the other; and 

Dates Sensor Run 1: 
Time 

integration 
using both 
paths and 
landsats

Run 2: 
Time 

integration 
using 

path 30 
and both 
landsats

Run 3: 
Time 

integration 
using 

path 29 
and both 
landsats

Run 4: 
Time 

integration 
using path 

29 and 
landsat L5

Run 5: Time 
integration 
using path 

29 and 
landsat L7

1 April 24, 
2002

L7 * *

2 May 02, 
2002

L5 * *

3 May 03, 
2002

L7 * * *

4 June 11, 
2002

L7 * *

5 June 27, 
2002

L7 * *

6 June 28, 
2002

L5 * * *

7 July 22, 
2002

L7 * * *

8 July 29, 
2002

L7 * *

9 July 30, 
2002

L5 * * *

10 August 6, 
2002

L5 * *

11 August 14, 
2002

L7 * *

13 August 15, 
2002

L7 * * *

14 August 23, 
2002

L7 * * *

15 August 31, 
2002

L5 * * *

16 September 
7, 2002

L5 * *

17 September 
8, 2002

L7 * * *

18 September 
15, 2002

L7 * *

19 September 
16, 2002

L5 * * *

20 September 
23, 2002

L5 * *

Asterisks indicate the dates used in a particular integration run to estimate monthly and growing season ET.

Table 2. 
Selection of Landsat images used to time-integrate ET for the Nebraska study area, showing collection path and 
platform.
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(3) imagery from only one Landsat 5 from one path only. The first integration run 
approximated a condition, where four images are collected each 16 days. This is a 
condition that would occur with four Landsat satellites in orbit with the current 
path width or with two Landsat satellites in orbit, each having a ‘double-wide’ path 
of approximately 300 km. The second and third integration runs approximated the 
condition where two currently formulated Landsats are in orbit at any one time, for 
the center of a WRS path. The last condition represents the condition, where only 
one Landsat satellite is in orbit.

In the Idaho study area, ET was integrated over the April 1–October 31 period 
to form monthly ET for April through October. The absence of clear images for 
the study area during late March and early April and during late October and early 
November for some of the time integration runs required the use of ‘synthetic’ 
images to represent ET conditions during these periods. The synthetic images were 
required to anchor the spline function prior to April and following October. The 
synthetic images were created for the Idaho study area by applying a daily soil water 
balance model for a bare soil condition [11] representing surface conditions during 
Idaho winters and late falls, where nearly all vegetation is dormant due to freezing. 
The daily soil water balance model used the FAO-56 evaporation model [11] and 
was applied to 18 weather stations in the region and an evaporation surface was cre-
ated using inverse distance interpolation. The average ETrF during the late March 
to early April and from late October to early November periods was determined 
by averaging the simulated evaporation rates over those periods. Those synthetic 
images were then used as beginning and ending points for the spline interpolation 
process.

No synthetic images were required for the full two-Landsat/two-path integra-
tion for the Idaho study area, as sufficient image dates during early April and late 
October were available. In the double satellite/single path integration, however, 
synthetic ETrF images were required at the end of the growing season to provide 
endpoints for the cubic spline, and were placed on dates November 01, 2000 (ETrF 
averaged 0.25) and November 10, 2000 (ETrF averaged 0.1). For the run using only 
Landsat 5 data and for path 40 only, synthetic images were required at both the 
beginning and end of the growing season. In this run, four synthetic images were 
placed on dates March 20, 2000 (ETrF averaged 0.1); March 31, 2000 (ETrF aver-
aged 0.1); November 01, 2000 (ETrF averaged 0.25); and November 10, 2000 (ETrF 
averaged 0.1) to provide endpoints for the cubic spline.

For the Nebraska study area, ET was integrated over the May–September period, 
representing the shorter growing season for the predominately corn and soybean 
crop rotation there, as opposed to the April–October growing period for Idaho 
crops. As with Idaho, ETrF for bare soil was also estimated for the Nebraska study 
area using the FAO-56 style evaporation model for the purpose of creating synthetic 
images for April 1, April 15, October 15, and November 15. These dates and syn-
thetic images were used in each of the time-integration analyses to approximate ET 
conditions during those general periods so that the spline function could be applied 
with spans covering May–September.

In both study areas, about 1500 data points were sampled. The points were 
selected from the interiors of irrigated fields, with one point per field. Pixels were 
located far from field edges to avoid contamination of thermal pixels from thermal 
information from outside the field. Nearly all of the Idaho sample locations were 
in agricultural fields, with about 15 sample points taken from desert rangeland. 
Irrigated agriculture was emphasized in this study due to its importance in water 
resources management. In the Nebraska data set, about 100 sample pixels were 
selected from rangeland and riparian areas each. The rest were from irrigated 
agriculture.
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Three to four integration runs were made for the study areas, as described in 
the next section. The integration runs utilized (1) both Landsat 5 and 7 imagery 
from both paths; (2) both Landsat 5 and 7 imagery from one path or the other; and 

Dates Sensor Run 1: 
Time 

integration 
using both 
paths and 
landsats

Run 2: 
Time 

integration 
using 

path 30 
and both 
landsats

Run 3: 
Time 

integration 
using 

path 29 
and both 
landsats

Run 4: 
Time 

integration 
using path 

29 and 
landsat L5

Run 5: Time 
integration 
using path 

29 and 
landsat L7

1 April 24, 
2002

L7 * *

2 May 02, 
2002

L5 * *

3 May 03, 
2002

L7 * * *

4 June 11, 
2002

L7 * *

5 June 27, 
2002

L7 * *

6 June 28, 
2002

L5 * * *

7 July 22, 
2002

L7 * * *

8 July 29, 
2002

L7 * *

9 July 30, 
2002

L5 * * *

10 August 6, 
2002

L5 * *

11 August 14, 
2002

L7 * *

13 August 15, 
2002

L7 * * *

14 August 23, 
2002

L7 * * *

15 August 31, 
2002

L5 * * *

16 September 
7, 2002

L5 * *

17 September 
8, 2002

L7 * * *

18 September 
15, 2002

L7 * *

19 September 
16, 2002

L5 * * *

20 September 
23, 2002

L5 * *

Asterisks indicate the dates used in a particular integration run to estimate monthly and growing season ET.

Table 2. 
Selection of Landsat images used to time-integrate ET for the Nebraska study area, showing collection path and 
platform.
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(3) imagery from only one Landsat 5 from one path only. The first integration run 
approximated a condition, where four images are collected each 16 days. This is a 
condition that would occur with four Landsat satellites in orbit with the current 
path width or with two Landsat satellites in orbit, each having a ‘double-wide’ path 
of approximately 300 km. The second and third integration runs approximated the 
condition where two currently formulated Landsats are in orbit at any one time, for 
the center of a WRS path. The last condition represents the condition, where only 
one Landsat satellite is in orbit.

In the Idaho study area, ET was integrated over the April 1–October 31 period 
to form monthly ET for April through October. The absence of clear images for 
the study area during late March and early April and during late October and early 
November for some of the time integration runs required the use of ‘synthetic’ 
images to represent ET conditions during these periods. The synthetic images were 
required to anchor the spline function prior to April and following October. The 
synthetic images were created for the Idaho study area by applying a daily soil water 
balance model for a bare soil condition [11] representing surface conditions during 
Idaho winters and late falls, where nearly all vegetation is dormant due to freezing. 
The daily soil water balance model used the FAO-56 evaporation model [11] and 
was applied to 18 weather stations in the region and an evaporation surface was cre-
ated using inverse distance interpolation. The average ETrF during the late March 
to early April and from late October to early November periods was determined 
by averaging the simulated evaporation rates over those periods. Those synthetic 
images were then used as beginning and ending points for the spline interpolation 
process.

No synthetic images were required for the full two-Landsat/two-path integra-
tion for the Idaho study area, as sufficient image dates during early April and late 
October were available. In the double satellite/single path integration, however, 
synthetic ETrF images were required at the end of the growing season to provide 
endpoints for the cubic spline, and were placed on dates November 01, 2000 (ETrF 
averaged 0.25) and November 10, 2000 (ETrF averaged 0.1). For the run using only 
Landsat 5 data and for path 40 only, synthetic images were required at both the 
beginning and end of the growing season. In this run, four synthetic images were 
placed on dates March 20, 2000 (ETrF averaged 0.1); March 31, 2000 (ETrF aver-
aged 0.1); November 01, 2000 (ETrF averaged 0.25); and November 10, 2000 (ETrF 
averaged 0.1) to provide endpoints for the cubic spline.

For the Nebraska study area, ET was integrated over the May–September period, 
representing the shorter growing season for the predominately corn and soybean 
crop rotation there, as opposed to the April–October growing period for Idaho 
crops. As with Idaho, ETrF for bare soil was also estimated for the Nebraska study 
area using the FAO-56 style evaporation model for the purpose of creating synthetic 
images for April 1, April 15, October 15, and November 15. These dates and syn-
thetic images were used in each of the time-integration analyses to approximate ET 
conditions during those general periods so that the spline function could be applied 
with spans covering May–September.

In both study areas, about 1500 data points were sampled. The points were 
selected from the interiors of irrigated fields, with one point per field. Pixels were 
located far from field edges to avoid contamination of thermal pixels from thermal 
information from outside the field. Nearly all of the Idaho sample locations were 
in agricultural fields, with about 15 sample points taken from desert rangeland. 
Irrigated agriculture was emphasized in this study due to its importance in water 
resources management. In the Nebraska data set, about 100 sample pixels were 
selected from rangeland and riparian areas each. The rest were from irrigated 
agriculture.
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2.4 Model runs

The first baseline model runs used all 21 ETrF images listed in Table 1 for Idaho 
and all 20 images listed in Table 2 for Nebraska. These runs, representing a condition 
with four traditional Landsat satellites in orbit or two ‘double-wide’ Landsats provid-
ing four images every 16 days, served as baselines for comparing against sparser image 
data sets. There were seven times in Idaho and six times in Nebraska when image 
dates were only 1 day apart, as shown in Tables 1 and 2, due to the scheduling of the 
two Landsat systems and geometry of the WRS path system. In cases where images 
were 1 day apart, we subtracted 2 days from the first image and added 2 days to the 
second image in the baseline spline model run 1. This was required to keep the spline 
function from creating large vertical components caused by a time difference of only 
1 day. In cases where images were 1 day apart, the additional information afforded 
by the second image was deemed to be of much less value than if it had been 4 days 
apart. Four days apart, larger changes would have occurred in ETrF due to vegetation 
development and wetting conditions in addition to larger differences in cloudiness. 
Images 1 day apart typically had similar cloud conditions and ETrF behavior.

Four other integration runs were carried out for the Idaho study area as indicated 
in Table 1. These runs represented conditions where fewer than four revisits per 
16-days were available. Runs 2 and 3 were made using Landsat 5 and Landsat 7 
images from only one path, either path 39 or path 40. These runs represent scenarios 
where two Landsat satellites are in orbit and the focus includes the center two-thirds 
of a path so that the revisit time is each 8 days. Runs 2 and 3 represent two replicates 
of the same scenario of 8 day revisit, which is possible in the path overlap area.

Run 4 for the Idaho study represents the scenario presented when only one 
Landsat is in orbit, collecting data every 16 days. This represents the actual scenario 
for the USA during the late 1980s and 1990s when only Landsat 5 was collecting 
data and again in 2012 when only Landsat 7 was collecting data. Run 4 was con-
structed by using imagery for path 40 and Landsat 5. Additional runs 5, 6, and 7, 
would have represented three additional replicates of a single satellite having 16-day 
revisit, via combinations of path 40 with Landsat 7 and path 39 with Landsat 5 and 
path 39 with Landsat 7. However, runs 5, 6, and 7 were not possible to implement 
because too few images were available during the April–October to apply the ETrF 
interpolation process without applying what was considered to be too much specu-
lation on the evolution and trends in ETrF over time.

Nebraska runs 2 and 3 were made using a combination Landsat 5 and Landsat 
7 images from only path 30 or from only path 29. These runs represent scenarios, 
where two Landsat satellites are in orbit so that the revisit time is each 8 days. Model 
runs 4 and 5 applied Landsat 5 and Landsat 7, respectively, to path 29, only. Each 
of these runs represented conditions where only a single Landsat is in orbit, with 
revisit of 16 days for the majority of a path area. This represents the actual scenario 
for the USA during the late 1980s and 1990s when only Landsat 5 was collecting 
data and again in 2012 when only Landsat 7 was operational. Model run 4 was setup 
to only process imagery from Landsat 5 for path 29 and model run 5 was setup to 
only process imagery from Landsat 7 for path 29.

3. Results

3.1 Splining results

Figures 5 and 6 are examples of daily ETrF curves for the April–October 
period in Idaho created by the spline interpolation process for 20 sample locations 
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representing 20 agricultural fields and crops. The ETrF curves represent the 
anticipated ETrF on any given day, given the ETrF information input to the splining 
process. Three of the integration runs are plotted in the figures: the full base run  
(run 1) containing 21 ETrF data points from 21 image dates, run 2 representing 
a two-Landsat system in the middle of a WRS path having an eight-day revisit 
schedule, and run 4 representing a one-Landsat system in the middle of a WRS path 
having a 16-day revisit schedule. Run 2 contained 9 ETrF data points from 9 image 
dates and run 4 contained only 7 ETrF data points from 7 image dates. The ETrF 
curves, which represent the ratio of actual ET to the ASCE Penman-Monteith-based 
reference ET, are characteristic of crops grown in southern Idaho, where ETrF is 
relatively low during spring prior to vegetation development, when most ET stems 
from evaporation from wet soil. ETrF increases during late spring and early summer 
toward 1.0, representing near maximum ET rates from vegetation that fully covers 
the ground, and then decreases during fall as crops mature and die or are harvested.

Some of the ETrF curves in Figures 5 and 6 exhibit impacts of evaporation from 
late summer irrigations following harvest of crops. This is a typical cultural practice 

Figure 5. 
About 10 representative ETrF curves for the southern Idaho analysis area during year 2000 created by cubic 
spline interpolation of ETrF for runs 1, 2, and 4.
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2.4 Model runs

The first baseline model runs used all 21 ETrF images listed in Table 1 for Idaho 
and all 20 images listed in Table 2 for Nebraska. These runs, representing a condition 
with four traditional Landsat satellites in orbit or two ‘double-wide’ Landsats provid-
ing four images every 16 days, served as baselines for comparing against sparser image 
data sets. There were seven times in Idaho and six times in Nebraska when image 
dates were only 1 day apart, as shown in Tables 1 and 2, due to the scheduling of the 
two Landsat systems and geometry of the WRS path system. In cases where images 
were 1 day apart, we subtracted 2 days from the first image and added 2 days to the 
second image in the baseline spline model run 1. This was required to keep the spline 
function from creating large vertical components caused by a time difference of only 
1 day. In cases where images were 1 day apart, the additional information afforded 
by the second image was deemed to be of much less value than if it had been 4 days 
apart. Four days apart, larger changes would have occurred in ETrF due to vegetation 
development and wetting conditions in addition to larger differences in cloudiness. 
Images 1 day apart typically had similar cloud conditions and ETrF behavior.

Four other integration runs were carried out for the Idaho study area as indicated 
in Table 1. These runs represented conditions where fewer than four revisits per 
16-days were available. Runs 2 and 3 were made using Landsat 5 and Landsat 7 
images from only one path, either path 39 or path 40. These runs represent scenarios 
where two Landsat satellites are in orbit and the focus includes the center two-thirds 
of a path so that the revisit time is each 8 days. Runs 2 and 3 represent two replicates 
of the same scenario of 8 day revisit, which is possible in the path overlap area.

Run 4 for the Idaho study represents the scenario presented when only one 
Landsat is in orbit, collecting data every 16 days. This represents the actual scenario 
for the USA during the late 1980s and 1990s when only Landsat 5 was collecting 
data and again in 2012 when only Landsat 7 was collecting data. Run 4 was con-
structed by using imagery for path 40 and Landsat 5. Additional runs 5, 6, and 7, 
would have represented three additional replicates of a single satellite having 16-day 
revisit, via combinations of path 40 with Landsat 7 and path 39 with Landsat 5 and 
path 39 with Landsat 7. However, runs 5, 6, and 7 were not possible to implement 
because too few images were available during the April–October to apply the ETrF 
interpolation process without applying what was considered to be too much specu-
lation on the evolution and trends in ETrF over time.

Nebraska runs 2 and 3 were made using a combination Landsat 5 and Landsat 
7 images from only path 30 or from only path 29. These runs represent scenarios, 
where two Landsat satellites are in orbit so that the revisit time is each 8 days. Model 
runs 4 and 5 applied Landsat 5 and Landsat 7, respectively, to path 29, only. Each 
of these runs represented conditions where only a single Landsat is in orbit, with 
revisit of 16 days for the majority of a path area. This represents the actual scenario 
for the USA during the late 1980s and 1990s when only Landsat 5 was collecting 
data and again in 2012 when only Landsat 7 was operational. Model run 4 was setup 
to only process imagery from Landsat 5 for path 29 and model run 5 was setup to 
only process imagery from Landsat 7 for path 29.

3. Results

3.1 Splining results

Figures 5 and 6 are examples of daily ETrF curves for the April–October 
period in Idaho created by the spline interpolation process for 20 sample locations 
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representing 20 agricultural fields and crops. The ETrF curves represent the 
anticipated ETrF on any given day, given the ETrF information input to the splining 
process. Three of the integration runs are plotted in the figures: the full base run  
(run 1) containing 21 ETrF data points from 21 image dates, run 2 representing 
a two-Landsat system in the middle of a WRS path having an eight-day revisit 
schedule, and run 4 representing a one-Landsat system in the middle of a WRS path 
having a 16-day revisit schedule. Run 2 contained 9 ETrF data points from 9 image 
dates and run 4 contained only 7 ETrF data points from 7 image dates. The ETrF 
curves, which represent the ratio of actual ET to the ASCE Penman-Monteith-based 
reference ET, are characteristic of crops grown in southern Idaho, where ETrF is 
relatively low during spring prior to vegetation development, when most ET stems 
from evaporation from wet soil. ETrF increases during late spring and early summer 
toward 1.0, representing near maximum ET rates from vegetation that fully covers 
the ground, and then decreases during fall as crops mature and die or are harvested.

Some of the ETrF curves in Figures 5 and 6 exhibit impacts of evaporation from 
late summer irrigations following harvest of crops. This is a typical cultural practice 

Figure 5. 
About 10 representative ETrF curves for the southern Idaho analysis area during year 2000 created by cubic 
spline interpolation of ETrF for runs 1, 2, and 4.
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in Idaho. Other curves reflect behavior for alfalfa crops that are harvested three 
to five times per growing season so that the ETrF curves fluctuate up and down 
over time. The higher frequency imagery in run 1 was able to capture more of the 
impacts of harvest and regrowth of alfalfa on the ETrF values. Both runs 2 and 4 
missed some of the alfalfa regrowth cycles, for example in the top right graph in 
Figure 6. Run 4 with only 7 image dates generated smoother ETrF curves due to the 
more sparse data points. The smoother curves tended to average out variation in 
ETrF caused by variation in water availability or variation in evaporation from soil 
following irrigation or precipitation wetting events.

3.2 Monthly comparisons

Idaho: Example plots of ET integrated over months of April and July are shown 
in Figure 7 for the Idaho study area, where ET from runs 2 and 3 is plotted against 
ET from run 1. Data for 1500 fields are shown. Limiting the image collection to 
one path for two satellites reduced the number of images available to the spline and 
impacted the monthly integrations.

Figure 6. 
About 10 additional representative ETrF curves for the southern Idaho analysis area during year 2000 created 
by the cubic spline interpolation of ETrF for runs 1, 2, and 4.

61

Influence of Landsat Revisit Frequency on Time-Integration of Evapotranspiration…
DOI: http://dx.doi.org/10.5772/intechopen.80946

Run 3 used images from path 40 and agreed closest with the two-path integra-
tion due to the stronger influence of path 40 in the two-path product. Images from 
path 39 exhibited more dryness for fields having relatively low amounts of vegeta-
tion cover in the July time frame, due to fewer rain events prior to those images. 
This manifested as lower ETrF for run 2 that was based on path 39 images versus the 
baseline run 1 for July for fields having low ETrF.

Monthly ET averaged over the 1500 sample points is plotted in Figure 8 and 
monthly ETrF is plotted in Figure 9. In general, although ET and ETrF for some 
fields deviated relatively widely between runs, as shown in Figure 7, and which 
would be a concern for those individual water rights holders, ET and ETrF averaged 
over a large number of fields yielded relatively similar and consistent values.

Nebraska: Example plots of ET integrated over months of May, June, July, 
and August are shown in Figures 9–12 for the Nebraska study area, where ET 
from runs 2, 3, 4, and 5 are plotted against ET from baseline run 1. Data for 1500 
fields are shown. As with the Idaho analyses, limiting the image collection to 
one path for two satellites reduced the number of images available to the spline 
and substantially impacted the monthly integrations. For the month of May, ET 
estimated using only imagery from one path estimated as much as 40% higher 

Figure 7. 
Monthly ETrF produced by time-integration from run 2 (left column) and run 3 (right column) versus ETrF 
produced from the baseline run 1 for the southern Idaho analysis area during year 2000.
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in Idaho. Other curves reflect behavior for alfalfa crops that are harvested three 
to five times per growing season so that the ETrF curves fluctuate up and down 
over time. The higher frequency imagery in run 1 was able to capture more of the 
impacts of harvest and regrowth of alfalfa on the ETrF values. Both runs 2 and 4 
missed some of the alfalfa regrowth cycles, for example in the top right graph in 
Figure 6. Run 4 with only 7 image dates generated smoother ETrF curves due to the 
more sparse data points. The smoother curves tended to average out variation in 
ETrF caused by variation in water availability or variation in evaporation from soil 
following irrigation or precipitation wetting events.

3.2 Monthly comparisons

Idaho: Example plots of ET integrated over months of April and July are shown 
in Figure 7 for the Idaho study area, where ET from runs 2 and 3 is plotted against 
ET from run 1. Data for 1500 fields are shown. Limiting the image collection to 
one path for two satellites reduced the number of images available to the spline and 
impacted the monthly integrations.

Figure 6. 
About 10 additional representative ETrF curves for the southern Idaho analysis area during year 2000 created 
by the cubic spline interpolation of ETrF for runs 1, 2, and 4.
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Run 3 used images from path 40 and agreed closest with the two-path integra-
tion due to the stronger influence of path 40 in the two-path product. Images from 
path 39 exhibited more dryness for fields having relatively low amounts of vegeta-
tion cover in the July time frame, due to fewer rain events prior to those images. 
This manifested as lower ETrF for run 2 that was based on path 39 images versus the 
baseline run 1 for July for fields having low ETrF.

Monthly ET averaged over the 1500 sample points is plotted in Figure 8 and 
monthly ETrF is plotted in Figure 9. In general, although ET and ETrF for some 
fields deviated relatively widely between runs, as shown in Figure 7, and which 
would be a concern for those individual water rights holders, ET and ETrF averaged 
over a large number of fields yielded relatively similar and consistent values.

Nebraska: Example plots of ET integrated over months of May, June, July, 
and August are shown in Figures 9–12 for the Nebraska study area, where ET 
from runs 2, 3, 4, and 5 are plotted against ET from baseline run 1. Data for 1500 
fields are shown. As with the Idaho analyses, limiting the image collection to 
one path for two satellites reduced the number of images available to the spline 
and substantially impacted the monthly integrations. For the month of May, ET 
estimated using only imagery from one path estimated as much as 40% higher 

Figure 7. 
Monthly ETrF produced by time-integration from run 2 (left column) and run 3 (right column) versus ETrF 
produced from the baseline run 1 for the southern Idaho analysis area during year 2000.
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than the baseline ET. The cause of the differences was differential wetness of 
images due to rainfall for the collections on the two paths as well as longer spans 
between images in the spline integration and reliance on image information 
further away in time.

For example, large differences in ETrF existed between the May 2, 2002, path 
30 image and the May 3, 2002, path 29 image due to rapid drying of soil between 
the two date and probable differences in calibration of the METRIC model for the 
two dates for low vegetation conditions (Figure 5). Comparison of golf courses 
and agricultural fields with full cover between the images yielded similar values, 
indicating similar calibration for those conditions. The Ord AWDN station, approx-
imately 50 km north of the study area, recorded 22 mm of precipitation on May 27, 
2002 and 5 mm on May 1, 2002. The Halsey AWDN station, approximately 100 km 
from the study area, recorded 19 mm on April 27, 2002 and 12 mm on May 1, 2002. 
The higher ETrF for the path 30 image caused time-integrated ET for the month of 
May to be higher than for path 29 when each path was processed alone.

The large difference in ETrF between the 5/2 and 5/3 image dates also may have 
affected the accuracy of the spline function when applied to the baseline run 1. The 
large differences in ETrF and the closeness in time between the images may have 
caused the spline function to produce overly high or low ETrF values for periods 
between image dates. This may have occurred even though all images that were 
only 1 day apart had their dates spaced 5 days apart during the splining process 
in an attempt to avoid the large slopes in the spline. The plot of ETrF for path 29 
using only Landsat 5 had greatest deviation from the baseline run due to the lack of 
cloud-free imagery for Landsat 5 on path 29 in May. Therefore, the splining process 
relied on ETrF data from the synthetic images spaced in April and ETrF data from 
the month of June.

Comparisons of ETrF improved for June for the Nebraska study area, as shown 
in Figure 12, where the same runs as for Figure 10 are shown. Poorest agreement 
in monthly ETrF values for June occurred for path 29 only using Landsat 7 only 
due to no available clear images in June, and therefore the need to interpolate 
across a large time span. Although comparisons approved between the various 
runs and the baseline runs for June, large differences still occurred, which is of 
concern for water accounting or ET sampling processes that require knowledge 

Figure 8. 
Monthly ET averaged over the 1500 sampled locations for the Idaho study area for the four time-integration runs 
that used all available images in both paths, images from path 39 only, images from path 40 only, and images 
from path 40 and Landsat 5, only.
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of ET rates from individual fields. Statistical summaries are presented in a later 
section.

Agreement between runs 2–5 and baseline run 1 were even more improved for 
the month of July (Figure 13) for the Nebraska study area. July is the month where 
most crops have attained full ground cover and ETrF rates are near their maximum 

Figure 9. 
Monthly ETrF averaged over the 1500 sampled locations for the Idaho study area for the four time-integration 
runs that used all available images in both paths, images from path 39 only, images from path 40 only, and 
images from path 40 and Landsat 5, only.

Figure 10. 
Plots of average integrated ETrF for May from model run 2 (two Landsats on path 29), run 3 (two satellites on 
path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.
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of ET rates from individual fields. Statistical summaries are presented in a later 
section.

Agreement between runs 2–5 and baseline run 1 were even more improved for 
the month of July (Figure 13) for the Nebraska study area. July is the month where 
most crops have attained full ground cover and ETrF rates are near their maximum 

Figure 9. 
Monthly ETrF averaged over the 1500 sampled locations for the Idaho study area for the four time-integration 
runs that used all available images in both paths, images from path 39 only, images from path 40 only, and 
images from path 40 and Landsat 5, only.

Figure 10. 
Plots of average integrated ETrF for May from model run 2 (two Landsats on path 29), run 3 (two satellites on 
path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.
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values. July is also the month having the highest total ET amounts, as summarized 
later in the statistics section. For July, only run 3 had substantial disagreement, 
where images from both Landsats for path 30 only were utilized in the time inte-
gration. That disagreement may have stemmed from differences in evaporation 
amounts from fields having low vegetation cover due to differences in antecedent 
rainfall.

Figure 11. 
ETrF for May 2, 2002 path 30 (Left) and ETrF for May 3, 2002 path 29 (Right).

Figure 12. 
Plots of average integrated ETrF for June from model run 2 (two Landsats on path 29), run 3 (two satellites on 
path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.
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Relatively, good agreement between runs 2–5 and baseline run 1 occurred for 
the month of August (Figure 14) for the Nebraska study area. As for July, August is 
a month where most crops have full ground cover and monthly ETrF rates are near 
their maximum values. The relatively good agreement between time-integrated ET 
using fewer available images and the baseline condition most likely stems from the 
relatively ‘flat’ nature of the ETrF curve during the July–early September period, 
where change in ETrF is gradual. Therefore, the spline function tended to produce 
similar spline shapes among the various collections of ETrF images and image dates.

Total monthly ET averaged over the 1500 sample points is plotted in Figure 15 
and monthly ETrF is plotted in Figure 16 for months of May through September 
for the Nebraska study area. Except for May and model run 5 (path 29 with only 
Landsat 7), values of ET and ETrF, when averaged over a large number of fields, 
produced relatively similar and consistent results. Differences in ET for the month 
of May have been previously discussed. The relatively good agreement in ET when 
averaged over a large area is of interest for ET data uses such as ground water deple-
tion studies and river depletion studies, where ET integrated over areas larger than a 
single field is of value.

3.3 Growing season ET

Growing season (April–October) ET produced by the time-integration is plotted 
in Figure 17 for the Idaho study area for runs 2, 3, and 4 versus run 1. Agreement 
was strongest between run 1 and runs 3 and 4. Growing season ET produced from 
path 39 images, only, tended to underestimate ET according to the run 1 basis by 
about 8% on average. Statistics are summarized later in Table 3.

Figure 13. 
Plots of average integrated ETrF for July from model run 2 (two Landsats on path 29), run 3 (two satellites on 
path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.
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values. July is also the month having the highest total ET amounts, as summarized 
later in the statistics section. For July, only run 3 had substantial disagreement, 
where images from both Landsats for path 30 only were utilized in the time inte-
gration. That disagreement may have stemmed from differences in evaporation 
amounts from fields having low vegetation cover due to differences in antecedent 
rainfall.

Figure 11. 
ETrF for May 2, 2002 path 30 (Left) and ETrF for May 3, 2002 path 29 (Right).

Figure 12. 
Plots of average integrated ETrF for June from model run 2 (two Landsats on path 29), run 3 (two satellites on 
path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.
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Relatively, good agreement between runs 2–5 and baseline run 1 occurred for 
the month of August (Figure 14) for the Nebraska study area. As for July, August is 
a month where most crops have full ground cover and monthly ETrF rates are near 
their maximum values. The relatively good agreement between time-integrated ET 
using fewer available images and the baseline condition most likely stems from the 
relatively ‘flat’ nature of the ETrF curve during the July–early September period, 
where change in ETrF is gradual. Therefore, the spline function tended to produce 
similar spline shapes among the various collections of ETrF images and image dates.

Total monthly ET averaged over the 1500 sample points is plotted in Figure 15 
and monthly ETrF is plotted in Figure 16 for months of May through September 
for the Nebraska study area. Except for May and model run 5 (path 29 with only 
Landsat 7), values of ET and ETrF, when averaged over a large number of fields, 
produced relatively similar and consistent results. Differences in ET for the month 
of May have been previously discussed. The relatively good agreement in ET when 
averaged over a large area is of interest for ET data uses such as ground water deple-
tion studies and river depletion studies, where ET integrated over areas larger than a 
single field is of value.

3.3 Growing season ET

Growing season (April–October) ET produced by the time-integration is plotted 
in Figure 17 for the Idaho study area for runs 2, 3, and 4 versus run 1. Agreement 
was strongest between run 1 and runs 3 and 4. Growing season ET produced from 
path 39 images, only, tended to underestimate ET according to the run 1 basis by 
about 8% on average. Statistics are summarized later in Table 3.

Figure 13. 
Plots of average integrated ETrF for July from model run 2 (two Landsats on path 29), run 3 (two satellites on 
path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.
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Growing season (March–September) ET produced by the time-integration is 
plotted in Figure 18 for the Nebraska study area for runs 3, 2, and 5 versus run 1. 
Agreement was strongest between baseline run 1 and run 2 that used images from 
both Landsats from path 29 only. Growing season ET produced from path 29 using 
only Landsat 7 images only had the worse correlation with r2 = 0.64. Growing 
season ET produced from path 29 images, tended to overestimate ET according to 
the baseline run 1 by about 19% on average.

Figure 14. 
Plots of average integrated ETrF for August from model run 2 (two Landsats on path 29), run 3 (two satellites 
on path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.

Figure 15. 
Monthly ET averaged from the 1500 sample pixels for the Nebraska study area for the five time-integration 
runs.
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3.4 Statistical summaries

Table 3 summarizes monthly average ET for the four time-integration runs for 
the Idaho study area and root mean square error (RMSE) for the 1500 sampled 
fields. RMSE was relatively high for run 2 (both satellites for path 39 only), 

Figure 16. 
Monthly ETrF averaged over the 1500 sample pixels for the Nebraska study area for the five time-integration 
runs.

Figure 17. 
ET for April–October growing season for 1500 sampled locations for the Idaho study area for the time-
integration runs 2, 3, and 4 versus run 1 and (lower right) averages over all 1500 sampled fields. Also shown in 
the lower right is reference ET summed over the April–October period.
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Growing season (March–September) ET produced by the time-integration is 
plotted in Figure 18 for the Nebraska study area for runs 3, 2, and 5 versus run 1. 
Agreement was strongest between baseline run 1 and run 2 that used images from 
both Landsats from path 29 only. Growing season ET produced from path 29 using 
only Landsat 7 images only had the worse correlation with r2 = 0.64. Growing 
season ET produced from path 29 images, tended to overestimate ET according to 
the baseline run 1 by about 19% on average.

Figure 14. 
Plots of average integrated ETrF for August from model run 2 (two Landsats on path 29), run 3 (two satellites 
on path 30), run 4 (Landsat 5, only on path 29), and run 5 (Landsat 7, only on path 29) versus ETrF produced 
from the baseline model run 1 for the central Nebraska analysis area for year 2002.

Figure 15. 
Monthly ET averaged from the 1500 sample pixels for the Nebraska study area for the five time-integration 
runs.

67

Influence of Landsat Revisit Frequency on Time-Integration of Evapotranspiration…
DOI: http://dx.doi.org/10.5772/intechopen.80946

3.4 Statistical summaries

Table 3 summarizes monthly average ET for the four time-integration runs for 
the Idaho study area and root mean square error (RMSE) for the 1500 sampled 
fields. RMSE was relatively high for run 2 (both satellites for path 39 only), 

Figure 16. 
Monthly ETrF averaged over the 1500 sample pixels for the Nebraska study area for the five time-integration 
runs.

Figure 17. 
ET for April–October growing season for 1500 sampled locations for the Idaho study area for the time-
integration runs 2, 3, and 4 versus run 1 and (lower right) averages over all 1500 sampled fields. Also shown in 
the lower right is reference ET summed over the April–October period.
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Figure 18. 
Total ET for May–September growing season of 2002 for 1500 sampled locations for the Nebraska study area 
for time-integration model runs 3, 2, and 5 versus model run 1. Also shown in the lower right is total growing 
season ET averaged over all samples and reference ET from two AWDN stations (right two columns).

Average ET, RMSE, and Total ETr are in mm—Year 2000

April May June July August Sept Oct

Average Both paths 40 99 173 225 159 99 54

Path 39 35 79 165 204 153 98 43

Path 40 33 94 187 233 165 80 46

Path 40_L5 
only

37 93 187 233 167 84 33

RMSE Both paths 0 0 0 0 0 0 0

Path 39 34 48 18 76 51 19 23

Path 40 19 41 23 55 41 35 12

Path 40_L5 
only

25 40 23 54 43 37 27

% error* Both paths 0 0 0 0 0 0 0

Path 39 20 24 7 29 23 11 21

Path 40 11 21 9 21 18 21 11

Path 40_L5 
only

14 20 9 21 19 22 24

ETr 174 200 274 265 227 171 111
*% error is RMSE error relative to ETr.

Table 3. 
Average monthly ET over the 1500 sampled fields in the Idaho study area for the four runs and RMSE, 
percentage error and reference ET.
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exceeding 20% of reference ET for 5 of 7 months. RMSE for runs 3 and 4 had less 
error than run 2 for 2 months, even though run 4 utilized only seven image dates 
(from Landsat 5 and path 40) in the integration. This indicates the importance of 
timing of images to identify key inflection points in the ETrF curves and to capture 
special events such as wetting events from irrigation and rain or from water stress or 
cuttings, as in the case of alfalfa hay. Table 4 summarizes growing season com-
parisons for ET among the four runs. The runs that used images from path 40 only 
compared to within 2%, when averaged over all 1500 fields, to the baseline run. 
This outcome is likely due to the timing of path 40 images relative to the combined 
run as compared to path 39. This shows the high value of a high density of image 
dates so that important inflection points in ETrF curves can be obtained.

Table 5 provides monthly average ET, RMSE, percentage error (RMSE error in 
relation to ETr), and total monthly reference ET for the 1500 pixel sample locations 
in the Nebraska study area. RMSE was high for all model runs for May and June, 
exceeding 19%, with a maximum RMSE of 104% for model run 2 for May. Model 
run 2 (both Landsats from path 30 only) had lower error for June compared to May 

ET (mm) % Diff ETrF

Both paths 849 0.00 0.60

Path 39 778 8.30 0.50

Path 40 838 1.25 0.53

Path 40_L5 834 1.74 0.53

ETr 1422

Table 4. 
Growing season ET (April–October 2000) averaged over 1500 sampled fields in the Idaho study area for the four 
runs and percent differences from the base run 1.

Average ET, RMSE, and Total ETr are in mm—Year 2002

May June July August Sept

Average Both paths 34 159 194 156 123

Path 30 130 169 210 152 123

Path 29 90 178 199 153 120

Path 29_L5 only 59 164 197 151 123

Path 29_L7 only 94 197 205 164 93

RMSE Both paths 0 0 0 0 0

Path 30 104 19 31 10 6

Path 29 61 45 8 6 7

Path 29_L5 only 52 45 14 8 8

Path 29_L7 only 64 63 19 14 32

% error* Both paths 0 0 0 0 0

Path 30 56 7 13 6 4

Path 29 33 17 3 3 4

Path 29_L5 only 28 17 6 5 5

Path 29_L7 only 35 24 8 8 29

ETr (mm) 184 259 232 173 158
*Percentage error is RMSE error relative to ETr.

Table 5. 
Average monthly ET, RMSE, percentage error, and total monthly reference ET for the 1500 pixel sample 
locations for the Nebraska study area.
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Figure 18. 
Total ET for May–September growing season of 2002 for 1500 sampled locations for the Nebraska study area 
for time-integration model runs 3, 2, and 5 versus model run 1. Also shown in the lower right is total growing 
season ET averaged over all samples and reference ET from two AWDN stations (right two columns).
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Table 3. 
Average monthly ET over the 1500 sampled fields in the Idaho study area for the four runs and RMSE, 
percentage error and reference ET.
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exceeding 20% of reference ET for 5 of 7 months. RMSE for runs 3 and 4 had less 
error than run 2 for 2 months, even though run 4 utilized only seven image dates 
(from Landsat 5 and path 40) in the integration. This indicates the importance of 
timing of images to identify key inflection points in the ETrF curves and to capture 
special events such as wetting events from irrigation and rain or from water stress or 
cuttings, as in the case of alfalfa hay. Table 4 summarizes growing season com-
parisons for ET among the four runs. The runs that used images from path 40 only 
compared to within 2%, when averaged over all 1500 fields, to the baseline run. 
This outcome is likely due to the timing of path 40 images relative to the combined 
run as compared to path 39. This shows the high value of a high density of image 
dates so that important inflection points in ETrF curves can be obtained.

Table 5 provides monthly average ET, RMSE, percentage error (RMSE error in 
relation to ETr), and total monthly reference ET for the 1500 pixel sample locations 
in the Nebraska study area. RMSE was high for all model runs for May and June, 
exceeding 19%, with a maximum RMSE of 104% for model run 2 for May. Model 
run 2 (both Landsats from path 30 only) had lower error for June compared to May 

ET (mm) % Diff ETrF

Both paths 849 0.00 0.60

Path 39 778 8.30 0.50

Path 40 838 1.25 0.53

Path 40_L5 834 1.74 0.53

ETr 1422

Table 4. 
Growing season ET (April–October 2000) averaged over 1500 sampled fields in the Idaho study area for the four 
runs and percent differences from the base run 1.

Average ET, RMSE, and Total ETr are in mm—Year 2002

May June July August Sept

Average Both paths 34 159 194 156 123

Path 30 130 169 210 152 123

Path 29 90 178 199 153 120

Path 29_L5 only 59 164 197 151 123

Path 29_L7 only 94 197 205 164 93

RMSE Both paths 0 0 0 0 0

Path 30 104 19 31 10 6

Path 29 61 45 8 6 7

Path 29_L5 only 52 45 14 8 8

Path 29_L7 only 64 63 19 14 32

% error* Both paths 0 0 0 0 0

Path 30 56 7 13 6 4

Path 29 33 17 3 3 4

Path 29_L5 only 28 17 6 5 5

Path 29_L7 only 35 24 8 8 29
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*Percentage error is RMSE error relative to ETr.

Table 5. 
Average monthly ET, RMSE, percentage error, and total monthly reference ET for the 1500 pixel sample 
locations for the Nebraska study area.
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or July, which emphasizes the impact of the timing of the images used. For path 30, 
image date June 28, 2002 had large areas of clouds masked out, which were filled in 
using the next available image date in time in the spline function. This underscores 
the importance of timing of images to identify key inflection points in the ETrF 
curves and to capture special events such as wetting events from irrigation and rain 
or from water stress or cuttings, as in the case of alfalfa hay.

4. Conclusions

In this study, monthly and growing season ET maps were derived by interpolat-
ing ETrF produced by METRIC for processed images and then multiplying, on a 
daily basis, by a reference ETr for each day to account for day-to-day variation in 
ET caused by weather fluctuations. The objective of the study was to explore the 
change in estimates for ET over complete growing seasons and for monthly periods 
when more frequent or less frequent Landsat imagery was available. The study 
was implemented by conducting a series of METRIC applications for a Landsat 
WRS path overlap area in southern Idaho (paths 39 and 40) during year 2000 and 
for a WRS path overlap area in central Nebraska (paths 29 and 30) during year 
2002 when two fully functioning satellites, Landsat 5 and Landsat 7, were in orbit. 
During those years, Landsat 5 (L5) and Landsat 7 (L7) passed over the overlap areas 
twice, each, per 16 day period, providing four imaging opportunities every 16 days. 
The frequency of imagery was sparsened by removing imagery from one path or 
the other and by removing imagery from one satellite or the other. Monthly and 
seasonal ET were recomputed with the sparsened image series and compared with 
the baseline data. Idaho is a relatively ‘clear’ area, so that this analysis represents 
a somewhat ‘optimistic’ scenario, and Nebraska represents the more cloud-prone 
parts of the USA including the Midwestern states.

The higher frequency imagery used in baseline run 1 was more able to capture 
the impacts of harvest and regrowth of alfalfa on the ETrF rate in the Idaho study 
area. Sparsened runs missed some of the alfalfa regrowth cycles. Run 4 that used 
only 7 image dates generated smoother ETrF curves due to the more sparse data 
points. The smoother curve tended to average out variation in ETrF caused by varia-
tion in water availability or variation in evaporation from soil following irrigation 
or precipitation wetting events. Time-integration runs 5, 6, and 7, which would have 
represented three additional replicates of a single satellite having 16-day revisit, via 
combinations of path 40 with Landsat 7 and path 39 with Landsat 5 and path 39 
with Landsat 7, were not possible to implement in the Idaho study area due to too 
few images per combination to apply the ETrF interpolation process. This severe 
limitation on application of those scenarios emphasizes the need to maintain two 
Landsat satellites in orbit and ideally to have four-day revisit times.

Similar results occurred for the Nebraska study area, where very large differences 
between runs occurred for the month of May. May is a period of very low-to-low 
vegetation amounts for many fields and is therefore more prone to varying wetness of 
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Chapter 4

An Advanced Evapotranspiration 
Method and Application
Homin Kim and Jagath J. Kaluarachchi

Abstract

Estimating evapotranspiration is an important component in the monitor-
ing of agricultural and environmental systems. This chapter will focus on the 
developing evapotranspiration method using general meteorological data and 
Normalized Difference Vegetation Index (NDVI). The proposed model in this 
chapter will be refined by using both the complemen tary relationship and the 
Budyko framework. The relative evaporation parameter in the complementary 
relationship will be derived by using precipitation, potential evapotranspiration, 
and NDVI based on that the Budyko framework can support the complementary 
relationship. It is also important to determine whether the proposed model can 
compete and deliver accuracy similar to remote sending method in the aspect of 
application. The results in the first phase showed the proposed model could be a 
powerful methodology to estimate ET among the ground-based method. In the 
second phase, a nonlinear correction function was proposed to better describe 
the complementary relationship. We will also demonstrate that the use of ET is 
a better approach for drought estimations than considering reference ET. More 
importantly, the advantage of the proposed model is that it can comprehensively 
consider both effects of precipitation and vegetation information. Taken together, 
this chapter has extended our knowledge of ET to support water resource 
management.

Keywords: evapotranspiration, complementary relationship, Budyko framework, 
Normalized Difference Vegetation Index (NDVI), drought monitoring

1. Introduction

Land surface evapotranspiration (ET) is an essential part of agricultural 
water management, and there are many classical methods including the Penman 
[1]. In the recent years, the Food and Agriculture Organization (FAO) version 
of Penman-Monteith Equation [2] is widely used to estimate ET. However, this 
method is limited for hydrologic purpose. For example, meteorological data 
need to be measured at 2-m elevation, and the FAO method is mainly used 
to estimate crop ET from agricultural lands using crop coefficients which are 
derived from unlimited water conditions and specific times of the growing 
cycle. As an alternative, the complementary relationship (CR) developed by 
Bouchet [3] can be used to estimate ET using general meteorological data. 
This approach proposed the first complementary function of potential evapo-
transpiration (ETP) and wet environment evapotranspiration (ETW) for a 
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wide range of available energy to estimate ET. Bouchet [3] postulated that the 
decrease in ET is matched by an equivalent increase in ETP as a surface dries. 
Later, Granger and Gray [4] model named as the GG model is one of the widely 
known models using the CR because it requires only meteorological data. 
Recently, Ref. [5] modified the GG model with meteorological data from 34 
global eddy covariance sites. While the results were very good as compared other 
published ET methods, they mentioned that further refinements can improve 
performance under dry conditions. A probable reason is that the original GG 
model was empirically derived from wet biased environments in Canada. Taking 
this limitation into account, the model development was designed to extend 
the latest CR model using both meteorological data and NDVI. We then will 
validate the proposed model with other ET methods including a remote sensing 
model. Finally, we will address the possibility of using ET as a proxy for drought 
monitoring through a new drought index.

2.  Development of complementary relationship model for estimating 
evapotranspiration

2.1 Introduction

ET is an important component in the climate system, and development of 
ET method has been studied by many researchers. As a result, there are many 
classical methods available for ET estimation based on data availability and 
required accuracy. One approach to estimate ET directly is the complementary 
relationship (CR) developed by [3]. Ref. [3] postulated that the decrease in 
evapotranspiration is matched by an equivalent increase in potential evapo-
transpiration (ETP) which is evaporation from a saturated surface, while energy 
and atmospheric conditions do not change. This idea has been widely tested in 
conjunction with the models of Priestley and Taylor [6] and Penman [1]. Among 
examples of widely known models, this study has focused on Granger and Gray 
[4] model because their model can directly estimate ET without the surface 
parameters or prior estimates of ETP. Furthermore, Ref. [5] extended the 
Granger and Gray [4] model to propose refinements to better predict regional 
ET especially under dry conditions and different land cover conditions. While 
the results of Anayah and Kaluarachchi [5] were very good, the authors also 
showed that further refinements can improve performance under dry condi-
tions. In addressing the limitation of Anayah and Kaluarachchi [5] model which 
is named as the modified GG hereafter, this chapter is therefore to extend the 
modified GG model using a remote sending data, and this study is still commit-
ted to use minimal data such as meteorological data and other readily accessible 
information with no local calibration.

2.2 Methodology

In the CR developed by [3], ET is usually calculated by Eq. (1):

  ET + ETP = 2ETW  (1) 

where ETP is evaporation from a saturated surface and ETW is the value of 
potential evaporation when ET is equal to the potential rate. Based on the idea 
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of [3], Anayah and Kaluarachchi [5] developed their model using a three-step 
approach. First, they evaluated the original complementary methods under a 
variety of physical and climate conditions and developed 39 different model com-
binations. Second, three model variations were identified based on performance 
compared to observed data from a set of global sites. Third, a statistical analysis 
was conducted to contrast and compare the three models to identify the best (see 
detail in reference). Most importantly, the performance of the modified GG model 
increased by using the Priestley and Taylor [6] equation as shown in Eq. (2) to 
calculate EWT instead of the Penman [1] equation:

  ETW = α    Δ ____ γ + Δ   ( R  n   −  G  soil  )   (2)

where ETW is in mm/d,  α  is a coefficient equal to 1.28,   R  n    is net radiation in 
mm/d,  γ  is the psychrometric constant in kPa/°C,  Δ  is the rate of change of satura-
tion vapor pressure with temperature kPa/°C, and   G  soil    is soil heat flux density in 
mm/d.

Also, there are two parameters: relative drying power (D) and relative evapora-
tion (G). D and G are described in Eqs. (3) and (5), respectively:

  D =    E  a   ___________   E  a   +  (Rn −  G  soil  )     (3)

where   E  a    is drying power of air in mm/d given in Eq. (4)

   E  a   = 0.35 (1 + 0.54U)  ( e  s   −  e  a  )   (4)

where U is wind speed at 2 m above ground level that needs adjustments and 
conducted using the procedure described by [2],   e  s    is saturation vapor pressure in 
mmHg, and   e  a    is vapor pressure of air in mmHg:

  G =   ET ____ ETP   =   1 _______ 
 c  1   +  c  2    e    c  3  D 

    (5) 

where   c  1    is 1.0,   c  2    is 0.028, and   c  3    is 8.045. The effect of   G  soil    is negligible com-
pared to   R  n    when calculated at monthly or higher time scale [7].

Solving Eq. (5) for ETP and substituting in Eq. (1), the modified GG model is 
given in Eq. (6):

  ET =   2G ____ G + 1   ETW  (6)

Therefore, the modified GG model of Anayah and Kaluarachchi [5] can estimate 
ET directly without calculating ETP.

In the modified GG model, the ratio of ET to ETP is defined as relative evapora-
tion, G, as shown in Eq. (5), and parameter G was empirically derived using limited 
data from wet environments in Western Canada [4]. This bias towards wet region 
data may be the reason for relatively poor estimations with the modified GG model 
under dry conditions. In order to improve the ET predictions of the modified GG 
model, parameter G needs improvement. For this purpose, we use the theoretical 
framework of Budyko [8] on the basis of that the CR is consistent with the Budyko 
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wide range of available energy to estimate ET. Bouchet [3] postulated that the 
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tions. In addressing the limitation of Anayah and Kaluarachchi [5] model which 
is named as the modified GG hereafter, this chapter is therefore to extend the 
modified GG model using a remote sending data, and this study is still commit-
ted to use minimal data such as meteorological data and other readily accessible 
information with no local calibration.
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potential evaporation when ET is equal to the potential rate. Based on the idea 
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of [3], Anayah and Kaluarachchi [5] developed their model using a three-step 
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where U is wind speed at 2 m above ground level that needs adjustments and 
conducted using the procedure described by [2],   e  s    is saturation vapor pressure in 
mmHg, and   e  a    is vapor pressure of air in mmHg:
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where   c  1    is 1.0,   c  2    is 0.028, and   c  3    is 8.045. The effect of   G  soil    is negligible com-
pared to   R  n    when calculated at monthly or higher time scale [7].

Solving Eq. (5) for ETP and substituting in Eq. (1), the modified GG model is 
given in Eq. (6):

  ET =   2G ____ G + 1   ETW  (6)

Therefore, the modified GG model of Anayah and Kaluarachchi [5] can estimate 
ET directly without calculating ETP.

In the modified GG model, the ratio of ET to ETP is defined as relative evapora-
tion, G, as shown in Eq. (5), and parameter G was empirically derived using limited 
data from wet environments in Western Canada [4]. This bias towards wet region 
data may be the reason for relatively poor estimations with the modified GG model 
under dry conditions. In order to improve the ET predictions of the modified GG 
model, parameter G needs improvement. For this purpose, we use the theoretical 
framework of Budyko [8] on the basis of that the CR is consistent with the Budyko 
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hypothesis through the Fu equation [9, 10]. The analytical solution of the Budyko 
framework is given in Eq. (7):

    ET ____ ETP   = 1 +   P ____ ETP   −   [1 +   (  P ____ ETP  )    
ω
 ]    

1/ω

   (7)

where P is precipitation in mm and ETP is estimated using the Priestly and 
Taylor equation [6]. Parameter  ω  is constant and represents the land surface 
conditions, especially the vegetation cover [11]. Parameter  ω  is linearly correlated 
with the long-term average annual vegetation cover, and a model using NDVI can 
improve the estimation of ET (see details in [5]). Thus, Eq. (8) shows the Fu equa-
tion where parameter G is now defined as   G  new   :

   G  new   =   ET ____ ETP   = 1 +   P ____ ETP   −   [1 +   (  P ____ ETP  )    
ω
 ]    

1/ω

   (8)

Note   G  new    in Eq. (8) is required and can be estimated using the Penman [1] given 
in Eq. (9):

  ETP =   Δ ____ Δ + γ   ( R  n   −  G  soil  )  +   γ ____ γ + Δ    E  a    (9)

Having found   G  new    from Eq. (8) and estimating ETW from Eq. (2), we can 
estimate ET from Eq. (10):

  ET =   2  G  new   ______  G  new   + 1   ETW  (10)

Hereafter, this proposed model will be referred as the GG-NDVI model. This 
chapter used two phases to evaluate the performance of the proposed model. In 
phase 1, the GG-NDVI model compared with two CR models: the complemen-
tary relationship areal evapotranspiration (CRAE) model of [12] and the modi-
fied GG model of [5]. Moreover, comparisons are made between a commonly 
used remote sensing model and GG-NDVI model. In phase 2, a comparison 
of estimated ET from GG-NDVI with observed data from phase 1 will be per-
formed to identify the weaknesses of the CR model, and appropriate corrections 
will be proposed.

2.3 Data

ET estimation from GG-NDVI was generated using meteorological data and 
NDVI. Meteorological data required are temperature, wind speed, precipitation, 
net radiation, and elevation (pressure). Among these, net radiation (  R  n   ) was 
calculated using the equations by [2]. This chapter proposes to use data from 
AmeriFlux eddy covariance sites in the United States because the US sites have 
wide variety of climate and physical conditions and land cover especially in dry 
regions. In phase 1, although we selected 75 sites of Level 2 data of AmeriFlux 
with fewer than 50% missing data and these data were obtained from the Oak 
Ridge National Laboratory’s website (http://ameriflux.ornl.gov/), we used only 
59 sites since only these sites have incident global radiation data required by the 
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CRAE model. After we validated GG-NDVI with ground-based ET models, we 
also compared with a remote sensing model. Air temperature, elevation, and 
precipitation data were obtained from the Parameter-elevation Regressions on 
Independent Slopes Model (PRISM, http://www.prism.oregonstate.edu). As 
part of the input data for the GG-NDVI model, we used the 16-day NDVI data 
from MODIS (http://daac.ornl.gov/MODIS/modis.shtml). We also collected the 
lever 4 meteorological data including latent heat flux (LE) from 76 AmeriFlux 
stations, and then we excluded those stations with actual vegetation type differ-
ent from the MODIS global land cover product (MOD12) at any of surrounding 
500 m by 500 m spatial resolution. Also, we further excluded those stations 
with fewer than half a year of measurements during 2000–2007. As a result, 60 
AmeriFlux stations were used in the comparison of the remote sending model as 
shown in Figure 1.

We defined the climate class of each site using the aridity index of the United 
Nations Environment Programme (UNEP) proposed by [13]. The aridity index 
divided climate conditions to six classes: hyper-arid, arid, semiarid, dry subhumid, 
wet subhumid, and humid. However, this work simplified the climate class defini-
tion to two classes, dry and wet.

2.4 Results

2.4.1 Phase 1: validation

The CRAE model is considered as a simple, practical, and reliable model to 
estimate monthly ET [7]. The modified GG model had been validated by [5] that it 
showed better performance compared to the recently published works. Therefore, 
the phase 1 provides the opportunity to test both models compared to the proposed 
GG-NDVI model. The results of the comparison are given in Table 1 and Figure 2.  
The GG-NDVI model showed the lowest mean RMSE across all models about 
15 mm/month in dry sites and about 12 mm/month in wet sites. The results in gen-
eral indicate that GG-NDVI can perform well in the dry conditions and even better 

Figure 1. 
Locations of 60 AmeriFlux sites used in phase 2 with number.
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hypothesis through the Fu equation [9, 10]. The analytical solution of the Budyko 
framework is given in Eq. (7):

    ET ____ ETP   = 1 +   P ____ ETP   −   [1 +   (  P ____ ETP  )    
ω
 ]    

1/ω

   (7)

where P is precipitation in mm and ETP is estimated using the Priestly and 
Taylor equation [6]. Parameter  ω  is constant and represents the land surface 
conditions, especially the vegetation cover [11]. Parameter  ω  is linearly correlated 
with the long-term average annual vegetation cover, and a model using NDVI can 
improve the estimation of ET (see details in [5]). Thus, Eq. (8) shows the Fu equa-
tion where parameter G is now defined as   G  new   :

   G  new   =   ET ____ ETP   = 1 +   P ____ ETP   −   [1 +   (  P ____ ETP  )    
ω
 ]    

1/ω

   (8)

Note   G  new    in Eq. (8) is required and can be estimated using the Penman [1] given 
in Eq. (9):

  ETP =   Δ ____ Δ + γ   ( R  n   −  G  soil  )  +   γ ____ γ + Δ    E  a    (9)

Having found   G  new    from Eq. (8) and estimating ETW from Eq. (2), we can 
estimate ET from Eq. (10):

  ET =   2  G  new   ______  G  new   + 1   ETW  (10)

Hereafter, this proposed model will be referred as the GG-NDVI model. This 
chapter used two phases to evaluate the performance of the proposed model. In 
phase 1, the GG-NDVI model compared with two CR models: the complemen-
tary relationship areal evapotranspiration (CRAE) model of [12] and the modi-
fied GG model of [5]. Moreover, comparisons are made between a commonly 
used remote sensing model and GG-NDVI model. In phase 2, a comparison 
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calculated using the equations by [2]. This chapter proposes to use data from 
AmeriFlux eddy covariance sites in the United States because the US sites have 
wide variety of climate and physical conditions and land cover especially in dry 
regions. In phase 1, although we selected 75 sites of Level 2 data of AmeriFlux 
with fewer than 50% missing data and these data were obtained from the Oak 
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CRAE model. After we validated GG-NDVI with ground-based ET models, we 
also compared with a remote sensing model. Air temperature, elevation, and 
precipitation data were obtained from the Parameter-elevation Regressions on 
Independent Slopes Model (PRISM, http://www.prism.oregonstate.edu). As 
part of the input data for the GG-NDVI model, we used the 16-day NDVI data 
from MODIS (http://daac.ornl.gov/MODIS/modis.shtml). We also collected the 
lever 4 meteorological data including latent heat flux (LE) from 76 AmeriFlux 
stations, and then we excluded those stations with actual vegetation type differ-
ent from the MODIS global land cover product (MOD12) at any of surrounding 
500 m by 500 m spatial resolution. Also, we further excluded those stations 
with fewer than half a year of measurements during 2000–2007. As a result, 60 
AmeriFlux stations were used in the comparison of the remote sending model as 
shown in Figure 1.

We defined the climate class of each site using the aridity index of the United 
Nations Environment Programme (UNEP) proposed by [13]. The aridity index 
divided climate conditions to six classes: hyper-arid, arid, semiarid, dry subhumid, 
wet subhumid, and humid. However, this work simplified the climate class defini-
tion to two classes, dry and wet.

2.4 Results

2.4.1 Phase 1: validation

The CRAE model is considered as a simple, practical, and reliable model to 
estimate monthly ET [7]. The modified GG model had been validated by [5] that it 
showed better performance compared to the recently published works. Therefore, 
the phase 1 provides the opportunity to test both models compared to the proposed 
GG-NDVI model. The results of the comparison are given in Table 1 and Figure 2.  
The GG-NDVI model showed the lowest mean RMSE across all models about 
15 mm/month in dry sites and about 12 mm/month in wet sites. The results in gen-
eral indicate that GG-NDVI can perform well in the dry conditions and even better 

Figure 1. 
Locations of 60 AmeriFlux sites used in phase 2 with number.
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in the wet conditions. These results also confirm that the estimation capability of 
ET reduces with increased aridity [5, 7, 14].

Overall, these results indicate that, among the ground-based methods, the 
GG-NDVI model can be used as a powerful methodology to estimate ET (see [15]).

While these findings are good within the realm of CR methods, some of 
the more commonly used ET estimation model now use remote sensing data. 
Therefore, we selected the operational Simplified Surface Energy Balance 
(SSEBop), which is one of the widely used remote sensing model developed 
by [16], and SSEBop can be easily retrieved from the USGS Geo Data Portal 
(http://cida.usgs.gov/gdp/). Table 2 presents the yearly comparison of results 
between the SSEBop and GG-NDVI estimates. Compared with measured ET, 
the results indicate that the accuracy of SSEBop and GG-NDVI estimates 
show satisfactory R-square and RMSE values. R-square values for SSEBop and 
GG-NDVI are 0.65 and 0.61, respectively. The results demonstrate that the ET 
estimates from GG-NDVI ET at an annual time scale are reasonable.

According to Table 2 and Figure 3, the mean RMSE of GG-NDVI ranged 
between 15 and 20, and GG-NDVI showed lower RMSE than SSEBop every year 
from 2000 to 2007. Although the magnitude of agreement (overestimation or under-
estimation) seems to vary from site to site and from season to season, Figure 3  
confirms that the occurrence of an RMSE less than 20 mm/month with GG-NDVI is 
more frequent than with SSEBop in both dry and wet sites. The mean RMSE across 
24 dry sites for GG-NDVI and SSEBop is 19 and 22 mm/month, respectively.

Based on these results, we could conclude that GG-NDVI is a reliable approach 
for estimating ET showing a reasonable match with measured ET of AmeriFlux 
sites. However, GG-NDVI may not predict ET accurately when the vegetation cover 

29 dry sites 30 wet sites

Min Mean Max Min Mean Max

Modified GG 1.7 21.4 42.7 0.6 12.9 36.0

GG-NDVI 0.4 14.7 56.6 0.3 11.6 28.5

CRAE 0.5 18.9 53.9 0.8 22.3 62.3

Table 1. 
Comparison of RMSE (mm/month) between different complementary relationship models.

Figure 2. 
Comparison of RMSE (mm/month) between different complementary relationship models for 29 dry and 30 
wet sites in the United States [15].
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changes significantly or is dense. A possible reason is that the relationship between 
NDVI and vegetation can be based where a Leaf Area Index (LAI) is less than 3. 
According to [7], a Soil-Adjusted Vegetation Index (SAVI) is recommended instead 
of NDVI when the LAI is less than 3. Thus, the limitations of NDVI to represent 
vegetation under specific conditions may be the reason for the decreased perfor-
mance of GG-NDVI.

Year AmeriFlux mean 
[mm/month]

R-square RMSE [mm/month]

SSEBop GG-NDVI SSEBop GG-NDVI

2000 43 0.82 0.79 16 15

2001 44 0.54 0.58 23 20

2002 41 0.73 0.67 19 16

2003 42 0.68 0.65 21 17

2004 42 0.68 0.60 18 18

2005 42 0.37 0.57 28 18

2006 41 0.61 0.55 20 18

2007 34 0.40 0.40 18 17

All years 44 0.65 0.61 19 18

Table 2. 
Comparison of monthly ET estimates between SSEBop and GG-NDVI using AmeriFlux data from 2000 to 
2007.

Figure 3. 
Histogram of RMSE (mm/month) of SSEBop and GG-NDVI for (a) 24 dry and (b) 36 wet sites.



Advanced Evapotranspiration Methods and Applications

82
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changes significantly or is dense. A possible reason is that the relationship between 
NDVI and vegetation can be based where a Leaf Area Index (LAI) is less than 3. 
According to [7], a Soil-Adjusted Vegetation Index (SAVI) is recommended instead 
of NDVI when the LAI is less than 3. Thus, the limitations of NDVI to represent 
vegetation under specific conditions may be the reason for the decreased perfor-
mance of GG-NDVI.
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2.4.2 Phase 2: enhancement of GG-NDVI

GG-NDVI increases the predictive power with increasing humidity similar 
to other CR models. One interesting finding is the RMSE of GG-NDVI increases 
slightly with the relative evaporation, parameter G, as shown in Figure 4. 
Considering this observation, phase 2 focused on the relationship between the 
performance of GG-NDVI and parameter G. Within the complementary rela-
tionship, increasing G means that climate is becoming wetter and ET is closer to 
ETW. When ET equals to ETW, surface has access to unlimited water as shown in 
Figure 5. However, natural surfaces in even the wettest regions may not approach 
complete saturation. Consequently, the magnitude of difference between ET and 
ETW is important in estimating ET. A possible explanation could be that the CR 
between ET and ETP is not symmetric. GG-NDVI has improved the performance 
of the Granger and Gray [4], but Eq. (10) still contains the value of two meaning of 
a symmetric complementary relationship as first developed by [3]. Furthermore, 
other studies question the use of the symmetric relationship [15, 17, 18]. Taking 
this into account, a correction function as a function of G is proposed as shown in 
Figure 5 and Eq. (11):

    ET =   2Gnew _______ Gnew + 1   × f (G)  × ETW    (11)

We expect the correction function to be nonlinear, similar to an exponential 
function, since the magnitude of the difference between ET and ETP decreases 
exponentially. The correction function can be calculated by Eq. (12), and we fitted 
2772 data points to compute the values of  α  and  β  coefficients:

  f (G)  = α  exp   β⋅G   (12)

Regression analysis found  α  is 0.7895 and  β  is 0.9655. Hereafter, the GG model 
with the correction function given as Eq. (11) is called the Adjusted GG-NDVI 
model.

To evaluate the performance of Adjusted GG-NDVI, we compared the monthly 
ET estimations with SSEBop across 60 sites. Figure 6 presents a histogram of RMSE 
from three models and shows a significant improvement attributed to the Adjusted 
GG-NDVI model. With the correction function, 38 sites have less than 15 mm/
month of RMSE, compared to 26 sites with GG-NDVI and 20 sites with SSEBop. 
The results demonstrate that the use of the correction function can significantly 
improve accuracy in estimation ET. In addition, Eq. (11) can be updated with the 
new definition of G as

  ET + ETP = 2f (G) ETW  (13)

The new formulation of the Adjusted GG-NDVI model described in Eq. (13) 
clearly shows that the relationship between ET and ETP is not symmetric with 
respect to ETW, further confirming the earlier conclusions that the idea of [3] 
needs to be extended and applied with appropriate corrections.

With an advanced ET model, we address the possibility of using ET as a proxy 
for drought monitoring through a new and reliable drought index than using 
potential evaporation in the next chapter.
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3. Application of the evapotranspiration model in drought monitoring

3.1 Introduction

Many operational drought indices focus on the effects of precipitation and 
temperature for drought monitoring, and the state-of-the-art drought monitor-
ing indices were developed to address vegetation condition with advanced remote 
sensing technology. However, only a few are focused on the use of actual ET when 
a drought index is defined. The Standardized Evapotranspiration Deficit Index 

Figure 5. 
A schematic representation of the complementary relationship between ET, ETP, and ETW with the proposed 
correction function,  f (G)  .

Figure 4. 
RMSE of GG-NDVI versus the relative evaporation, parameter G (ET/ETP).

Figure 6. 
Comparison of RMSE between different ET models.
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We expect the correction function to be nonlinear, similar to an exponential 
function, since the magnitude of the difference between ET and ETP decreases 
exponentially. The correction function can be calculated by Eq. (12), and we fitted 
2772 data points to compute the values of  α  and  β  coefficients:

  f (G)  = α  exp   β⋅G   (12)

Regression analysis found  α  is 0.7895 and  β  is 0.9655. Hereafter, the GG model 
with the correction function given as Eq. (11) is called the Adjusted GG-NDVI 
model.

To evaluate the performance of Adjusted GG-NDVI, we compared the monthly 
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3. Application of the evapotranspiration model in drought monitoring

3.1 Introduction

Many operational drought indices focus on the effects of precipitation and 
temperature for drought monitoring, and the state-of-the-art drought monitor-
ing indices were developed to address vegetation condition with advanced remote 
sensing technology. However, only a few are focused on the use of actual ET when 
a drought index is defined. The Standardized Evapotranspiration Deficit Index 

Figure 5. 
A schematic representation of the complementary relationship between ET, ETP, and ETW with the proposed 
correction function,  f (G)  .

Figure 4. 
RMSE of GG-NDVI versus the relative evaporation, parameter G (ET/ETP).

Figure 6. 
Comparison of RMSE between different ET models.
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(SEDI, [19]) was developed by using actual ET based on [3] and a structure of the 
SPI. They estimated ET using the modified GG model of Anayah and Kaluarachchi 
[5] and ETW minus ET to measure drought conditions. As a result, the spatial pat-
terns of the SEDI were consistent with the PDSI and SPI over the contiguous United 
States (CONUS), and this index could roughly identify vegetative droughts such as 
a Vegetation Health Index (VHI). Although the results of SEDI demonstrated that 
the use of actual ET can provide a reliable measure for drought monitor, it would 
have been much more useful if the authors addressed the precipitation and used the 
accurate ET model. Taking these limitations into account, this chapter has focused 
on developing a drought index with an advanced ET model including precipitation 
and remote sending vegetation information. The specific object is to evaluate the 
applicability of the proposed drought index over the CONUS by comparing it with 
US Drought Monitor (USDM) which is most widely used tool in the United States.

3.2 Methodology

We propose to develop a simple drought index called the evapotranspiration 
Water Deficit Drought Index (EWDI), which is derived from precipitation, meteo-
rological data, and vegetation information. EWDI uses the structure of SPI with the 
monthly difference between ETW and ET. This value represents water deficit using 
the complementary relationship. The complementary relationship to estimate ET 
was addressed in the previous sections and a nonparametric approach to calculating 
the probability-based drought index will be addressed in this sector.

3.2.1 EWDI formulation

With a known ET value, the difference between ETW and ET for the month  i  is 
calculating using Eq. (14):

   D  i   =  ETW  i   −  ET  i    (14)

Given the monthly time series of   D  i   , EWDI uses a nonparametric approach in 
which empirically derived probabilities are obtained through an inverse normal 
approximation [20] because this probabilities approach allows a consistent com-
parison between EWDI against other standardized indices [21, 22].

The probability distribution function of the   D  i   , according to the Tukey distribu-
tion, is given by Eq. (15):

  P ( D  i  )  =   i − 0.33 ______ n + 0.33    (15)  

where  P ( D  i  )   is the empirical probability of   D  i    which is aggregated across the period 
of interest. In this study, we used 12-month duration for accumulating   D  i    because 
9- to 12-month time scale is the most useful in estimating the extreme drought condi-
tions [23]. For example, to calculate a 12-month EWDI in December,   D  i    is summed 
over the period from January to December.  i  is the rank of the aggregated   D  i    in the 
historical time series ( i = 1  is the maximum   D  i   ), and  n  is the number of observations 
in the series being ranked. EWDI then can be easily derived following the classical 
approximation of [20] as shown in Eq. (16):

  EWDI = W −    C  0   +  C  1   W +  C  2    W   2   ________________  
1 +  d  1  W +  d  2   W   2  +  d  3   W   3 

    (16)
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where

  W =  √ 
__________

 − 2 ln P ( D  i  )    for P ( D  i  )  ≤ 0.5  (17)

If  P ( D  i  )  >0.5 , replace  P ( D  i  )   with   [1 − P ( D  i  ) ]   and the sign of EWDI is reversed. The 
constants are   C  0   = 2.515517,   C  1   = 0.802853,   C  2   = 0.010328,   d  1   = 1.432788,   d  2   = 0.189269,  and  
  d  3   = 0.001308 . The average value of EWDI is 0, and the standard deviation is 1. A zero 
EWDI means that   D  i    accumulated over the aggregation period in the year of interest is 
equal to the median value, positive value indicates drought, and negative is wet condition.

Hereafter, drought index EWDI estimated from the modified GG [5] is called 
EWDI-MOD. Similarly, drought index EWDI estimated from GG-NDVI [24] is 
called EWDI-NDVI.

3.3 Data

Required meteorological data to calculate both ET values (modified GG or 
GG-NDVI) are air temperature, precipitation, elevation (pressure), net radiation, 
wind speed, and NDVI. Net radiation was estimated using the equations suggested 
by [25]. Air temperature and precipitation data are from the PRISM (Parameter-
elevation Regressions on Independent Slopes Model) climate group (available at 
http://prism.oregonstate.edu/) at 4-km resolution for the period 2000–2015 cover-
ing the CONUS. Wind speed was collected from the Climate Monitoring at NOAA’s 
National Centers for Environmental Information (available at https://www.ncdc.
noaa.gov/societal-impacts/wind/). Monthly NDVI data required for the GG-NDVI 
method are from the NASA Earth Observations (NEO, available at http://neo.sci.
gsfc.nasa.gov/).

To assess the capability of EWDI, we used USDM to compare the differences 
between the two indices during the evolution of drought through time and space. 
USDM is derived from measurements of climatic, hydrologic, soil conditions, and 
regional expert comments [26]. USDM is not a forecast instead it assesses the cur-
rent drought conditions. USDM divides drought severity into five classes: abnor-
mally dry (D0), moderate drought (D1), severe drought (D2), extreme drought 
(D3), and exceptional drought (D4). All drought indices used in this study were 
converted to USDM classes as presented in Table 3. Additionally, we compared 
EWDI against PDSI and SPI which were retrieved from the WestWide Drought 
Tracker (WWDT, available at http://www.wrcc.dri.edu/wwdt/about.html). 
USDM data from 2000 to 2015 were collected from the USDM website (http://

Drought condition USDM PSDI SPI EWDI

Abnormally dry D0 −1.0 −0.5 −0.5

Moderate drought D1 −2.0 −0.8 −0.8

Severe drought D2 −3.0 −1.3 −1.3

Extreme drought D3 −4.0 −1.6 −1.6

Exceptional drought D4 −5.0 > −2.0 > −2.0 >

All indices data from 2001 to 2015 were collected.

Table 3. 
Drought classes of USDM and corresponding threshold value for classifying drought with PDSI, SPI, and 
EWDI.



Advanced Evapotranspiration Methods and Applications

86

(SEDI, [19]) was developed by using actual ET based on [3] and a structure of the 
SPI. They estimated ET using the modified GG model of Anayah and Kaluarachchi 
[5] and ETW minus ET to measure drought conditions. As a result, the spatial pat-
terns of the SEDI were consistent with the PDSI and SPI over the contiguous United 
States (CONUS), and this index could roughly identify vegetative droughts such as 
a Vegetation Health Index (VHI). Although the results of SEDI demonstrated that 
the use of actual ET can provide a reliable measure for drought monitor, it would 
have been much more useful if the authors addressed the precipitation and used the 
accurate ET model. Taking these limitations into account, this chapter has focused 
on developing a drought index with an advanced ET model including precipitation 
and remote sending vegetation information. The specific object is to evaluate the 
applicability of the proposed drought index over the CONUS by comparing it with 
US Drought Monitor (USDM) which is most widely used tool in the United States.

3.2 Methodology

We propose to develop a simple drought index called the evapotranspiration 
Water Deficit Drought Index (EWDI), which is derived from precipitation, meteo-
rological data, and vegetation information. EWDI uses the structure of SPI with the 
monthly difference between ETW and ET. This value represents water deficit using 
the complementary relationship. The complementary relationship to estimate ET 
was addressed in the previous sections and a nonparametric approach to calculating 
the probability-based drought index will be addressed in this sector.

3.2.1 EWDI formulation

With a known ET value, the difference between ETW and ET for the month  i  is 
calculating using Eq. (14):

   D  i   =  ETW  i   −  ET  i    (14)

Given the monthly time series of   D  i   , EWDI uses a nonparametric approach in 
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where
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If  P ( D  i  )  >0.5 , replace  P ( D  i  )   with   [1 − P ( D  i  ) ]   and the sign of EWDI is reversed. The 
constants are   C  0   = 2.515517,   C  1   = 0.802853,   C  2   = 0.010328,   d  1   = 1.432788,   d  2   = 0.189269,  and  
  d  3   = 0.001308 . The average value of EWDI is 0, and the standard deviation is 1. A zero 
EWDI means that   D  i    accumulated over the aggregation period in the year of interest is 
equal to the median value, positive value indicates drought, and negative is wet condition.

Hereafter, drought index EWDI estimated from the modified GG [5] is called 
EWDI-MOD. Similarly, drought index EWDI estimated from GG-NDVI [24] is 
called EWDI-NDVI.

3.3 Data

Required meteorological data to calculate both ET values (modified GG or 
GG-NDVI) are air temperature, precipitation, elevation (pressure), net radiation, 
wind speed, and NDVI. Net radiation was estimated using the equations suggested 
by [25]. Air temperature and precipitation data are from the PRISM (Parameter-
elevation Regressions on Independent Slopes Model) climate group (available at 
http://prism.oregonstate.edu/) at 4-km resolution for the period 2000–2015 cover-
ing the CONUS. Wind speed was collected from the Climate Monitoring at NOAA’s 
National Centers for Environmental Information (available at https://www.ncdc.
noaa.gov/societal-impacts/wind/). Monthly NDVI data required for the GG-NDVI 
method are from the NASA Earth Observations (NEO, available at http://neo.sci.
gsfc.nasa.gov/).

To assess the capability of EWDI, we used USDM to compare the differences 
between the two indices during the evolution of drought through time and space. 
USDM is derived from measurements of climatic, hydrologic, soil conditions, and 
regional expert comments [26]. USDM is not a forecast instead it assesses the cur-
rent drought conditions. USDM divides drought severity into five classes: abnor-
mally dry (D0), moderate drought (D1), severe drought (D2), extreme drought 
(D3), and exceptional drought (D4). All drought indices used in this study were 
converted to USDM classes as presented in Table 3. Additionally, we compared 
EWDI against PDSI and SPI which were retrieved from the WestWide Drought 
Tracker (WWDT, available at http://www.wrcc.dri.edu/wwdt/about.html). 
USDM data from 2000 to 2015 were collected from the USDM website (http://

Drought condition USDM PSDI SPI EWDI

Abnormally dry D0 −1.0 −0.5 −0.5

Moderate drought D1 −2.0 −0.8 −0.8

Severe drought D2 −3.0 −1.3 −1.3

Extreme drought D3 −4.0 −1.6 −1.6

Exceptional drought D4 −5.0 > −2.0 > −2.0 >

All indices data from 2001 to 2015 were collected.

Table 3. 
Drought classes of USDM and corresponding threshold value for classifying drought with PDSI, SPI, and 
EWDI.
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Figure 7. 
Correlation coefficient between two EWDIs and USDM. EWDI-MOD (left) represents EWDI using the 
modified GG [5], and EWDI-NDVI (right) represents EWDI using GG-NDVI [15]. The area-averaged 
correlation coefficient over all pixels for EWDI-MOD and EWDI-NDVI is 0.58 and 0.72, respectively.

droughtmonitor.unl.edu/Home.aspx), and four indices are resampled to match the 
4-km resolution of EWDI using bilinear interpolation in the ArcMap software.

We also used EC flux tower data (in mm/month) from FLUXNET stations to 
perform a comparison of modified GG and GG-NDVI ET products. The latent 
heat flux data were collected from the Oak Ridge National Laboratory’s AmeriFlux 
website (http://ameriflux.ornl.gov/, last accessed on November 23, 2016). The 
tower-measured monthly latent heat flux data were calculated using the equation 
as  ET = LE / λ , where LE is the latent heat flux (W/m2) and λ is the latent heat of 
vaporization (2.45 MJ/kg).

3.4 Results

The Pearson correlation coefficient was used to determine which ET method 
is the best estimating drought. Like SPI and other drought indices, EWDI can be 
estimated at different time scales from which specific time aggregated versions are 
selected. Figure 7 provides the results obtained from the correlation coefficient 
between two EWDI results and USDM for years 2001–2015. EWDI using the 
GG-NDVI ET model generally shows a stronger relationship with UDSM across 
CONUS. The area-averaged correlation coefficient over all pixels for EWDI-MOD 
is 0.58, whereas EWDI-NDVI produced 0.72. Also, correlations between EWDI-
NDVI and USDM are strongest over much of the southern and northern rockies and 
plains of the US climate regions and highest in Texas (r > 0.8). This observation is 
consistent with the regions where soil moisture on land surfaces makes the largest 
contributions to ET, referred as “hot spot” of land-atmosphere coupling by [27]. 
It can be clearly seen from Figure 7 that a significant improvement is attributed to 
the GG-NDVI model in northwest, upper midwest, and northeast climate regions 
of the United States. Moreover, the improved performance of EWDI-NDVI over 
the CONUS can be seen from Figure 8. The drought conditions of EWDI-NDVI 
are similar to that estimated by USDM as shown in Figure 8(a). Also, EWDI-NDVI 
produced extreme drought conditions much better than EWDI-MOD as shown in 
Figure 8(b). It is very much plausible that these improved results are due to the use 
of an accurate ET model.

To further study these results, the San Bernardino County in California was 
selected as shown in Figure 9. The area-averaged correlation coefficient over all 
pixels in California is 0.55 for EWDI-MOD and 0.70 for EWDI-NDVI. The EWDI-
MOD showed lower correlation (0.4–0.6) for most of San Bernardino County, 
and even the northern county values (r < 0.2) were much lower than the county 
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area-averaged correlation coefficient of 0.51. However, the correlation coefficients 
of EWDI-NDVI were between 0.6 and 0.8 for most of California, and the county 
area-averaged values increased by 40% compared to EWDI-MOD.

To compare the temporal drought patterns of EWDI-MOD and EWDI-NDVI, 
Figure 10 presents percent area of San Bernardino County covered by D0 from 2012 
to 2015. This time period was selected because observed ET data are only available 
from 2012 to 2015. As shown in Figure 10(a), both produced similar drought condi-
tions until the middle of 2012. Thereafter, EWDI-MOD overestimated drought until 
May 2013 and underestimated compared to USDM in 2014 and 2015. It is therefore 

Figure 8. 
Percent area of CONUS (a) covered by D0 (abnormally dry) and (b) covered by D4 (exceptional drought) 
from 2001 to 2015.

Figure 9. 
Correlation coefficient for EWDI-MOD (left) and EWDI-NDVI (right) for California and San Bernardino 
County (black line).
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It can be clearly seen from Figure 7 that a significant improvement is attributed to 
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of the United States. Moreover, the improved performance of EWDI-NDVI over 
the CONUS can be seen from Figure 8. The drought conditions of EWDI-NDVI 
are similar to that estimated by USDM as shown in Figure 8(a). Also, EWDI-NDVI 
produced extreme drought conditions much better than EWDI-MOD as shown in 
Figure 8(b). It is very much plausible that these improved results are due to the use 
of an accurate ET model.

To further study these results, the San Bernardino County in California was 
selected as shown in Figure 9. The area-averaged correlation coefficient over all 
pixels in California is 0.55 for EWDI-MOD and 0.70 for EWDI-NDVI. The EWDI-
MOD showed lower correlation (0.4–0.6) for most of San Bernardino County, 
and even the northern county values (r < 0.2) were much lower than the county 
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area-averaged correlation coefficient of 0.51. However, the correlation coefficients 
of EWDI-NDVI were between 0.6 and 0.8 for most of California, and the county 
area-averaged values increased by 40% compared to EWDI-MOD.

To compare the temporal drought patterns of EWDI-MOD and EWDI-NDVI, 
Figure 10 presents percent area of San Bernardino County covered by D0 from 2012 
to 2015. This time period was selected because observed ET data are only available 
from 2012 to 2015. As shown in Figure 10(a), both produced similar drought condi-
tions until the middle of 2012. Thereafter, EWDI-MOD overestimated drought until 
May 2013 and underestimated compared to USDM in 2014 and 2015. It is therefore 

Figure 8. 
Percent area of CONUS (a) covered by D0 (abnormally dry) and (b) covered by D4 (exceptional drought) 
from 2001 to 2015.

Figure 9. 
Correlation coefficient for EWDI-MOD (left) and EWDI-NDVI (right) for California and San Bernardino 
County (black line).
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Figure 10. 
(a) Percent area of San Bernardino County covered by D0 and (b) monthly estimated ET values from the 
modified GG and GG-NDVI models and mean monthly observed ET from 2012 to 2015.

possible to state that EWDI-NDVI estimated the drought condition better than 
EWDI-MOD. These results may be explained by comparing ET values shown in 
Figure 10(b). The plot shows GG-NDVI ET against observed ET and the same with 
the modified GG estimates from 2012 to 2015. The results show that the pattern of 
ET from modified GG is much higher than observed ET, whereas GG-NDVI shows 
similar patterns with observed ET. The mean RMSE is 37 mm/month for modified 

Figure 11. 
Spatial distributions of USDM, EWDI, SPI, and PDSI results for major drought months in the CONUS. The 
quantity of r shown in figure means the correlation coefficient with USDM from 2001 to 2015.
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GG and 7 mm/month for GG-NDVI. The overestimated ET from modified GG, which 
brings a small water deficit, results in a corresponding drought that is underestimated 
compared to USDM. Taken together, these results indicate that the water deficit 
derived from the complementary relationship can be used as a drought index and the 
use of an accurate ET method can improve the performance of EWDI (Figure 11).

4. Summary and conclusions

This study proposed an improved version of the Granger and Gray [4] using 
both the complementary relationship and the Budyko framework in Chapter 2. 
Then, existing limitation of the complementary relationship was identified by 
comparing remote sensing ET product. Lastly, the applicability of using accurate ET 
model as a drought index was addressed in Chapter 3.

In Chapter 2, the modified GG model developed by [5] was refined by using 
the Budyko framework based on [11]. The relative evaporation parameter in the 
original GG model was derived from limited sites under wet conditions in Canada 
[4]. To overcome this limitation, the Fu equation [11] was used instead of the 
relative evaporation parameter on the basis that the Fu equation can support the 
complementary relationship [9, 10]. This chapter used AmeriFlux eddy covariance 
tower sites in the United States to retrieve required meteorological data including 
precipitation. Also, NDVI were from the MODIS land subsets. Sites were divided 
into dry and wet climate conditions based on an aridity index from UNEP [13]. 
The proposed model, denoted as GG-NDVI, showed much lower RMSE in both 
dry and wet sites compared to the modified GG model (see details in [5]). More 
importantly, the validation in Chapter 2 provided an inherent limitation of the 
complementary relationship and validation through a direct comparison with the 
SSEBop (Operational Simplified Surface Energy Balance, [16]). The SSEBop ET 
data set retrieved from the USGS Geo Data Portal for the period 2000–2007 cover-
ing the United States and 60 AmeriFlux stations were used for validation of ET 
results from SSEBop and GG-NDVI. The results showed that GG-NDVI can produce 
similar or better accuracy than SSEBop. Based on the results, this study observed 
that the assumption of symmetric complementary relationship was a deficiency in 
GG-NDVI that produced poor results under certain condition. Under the symmetric 
complementary relationship, ET is close to ETW with increasing humidity, but 
natural surfaces even in the wettest regions will not approach saturation. Therefore, 
this study proposed a nonlinear correction function to the GG-NDVI to better 
describe the complementary relationship. This correction function improved the 
GG-NDVI model significantly especially, under conditions of high humidity and 
dense vegetation.

In Chapter 3, ET calculated from the latest version of GG-NDVI, denoted as 
Adjusted GG-NDVI, used to estimate drought conditions across the United States 
for the period of 2001–2015. The proposed drought index, EWDI, was calculated by 
using the difference between ETW and ET with the probability distribution func-
tion of [20] because this probabilistic approach allowed a consistent comparison 
between EWDI and other standardized indices. Also, the drought severity of EWDI 
was divided into five classes that are the same classes with the US Drought Monitor 
(USDM). Required meteorological data were from the PRISM at 4-km resolution 
covering the CONUS, and monthly NDVI data were retrieved from the NASA Earth 
Observations. The results of this chapter supported that the EWDI could capture 
drought conditions and using an accurate ET model can help to improve drought 
monitoring performance. One unanticipated finding was that within the comple-
mentary relationship when energy-limited conditions are present, ET and ETW 
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Figure 10. 
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modified GG and GG-NDVI models and mean monthly observed ET from 2012 to 2015.
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Figure 10(b). The plot shows GG-NDVI ET against observed ET and the same with 
the modified GG estimates from 2012 to 2015. The results show that the pattern of 
ET from modified GG is much higher than observed ET, whereas GG-NDVI shows 
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GG and 7 mm/month for GG-NDVI. The overestimated ET from modified GG, which 
brings a small water deficit, results in a corresponding drought that is underestimated 
compared to USDM. Taken together, these results indicate that the water deficit 
derived from the complementary relationship can be used as a drought index and the 
use of an accurate ET method can improve the performance of EWDI (Figure 11).

4. Summary and conclusions

This study proposed an improved version of the Granger and Gray [4] using 
both the complementary relationship and the Budyko framework in Chapter 2. 
Then, existing limitation of the complementary relationship was identified by 
comparing remote sensing ET product. Lastly, the applicability of using accurate ET 
model as a drought index was addressed in Chapter 3.

In Chapter 2, the modified GG model developed by [5] was refined by using 
the Budyko framework based on [11]. The relative evaporation parameter in the 
original GG model was derived from limited sites under wet conditions in Canada 
[4]. To overcome this limitation, the Fu equation [11] was used instead of the 
relative evaporation parameter on the basis that the Fu equation can support the 
complementary relationship [9, 10]. This chapter used AmeriFlux eddy covariance 
tower sites in the United States to retrieve required meteorological data including 
precipitation. Also, NDVI were from the MODIS land subsets. Sites were divided 
into dry and wet climate conditions based on an aridity index from UNEP [13]. 
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describe the complementary relationship. This correction function improved the 
GG-NDVI model significantly especially, under conditions of high humidity and 
dense vegetation.

In Chapter 3, ET calculated from the latest version of GG-NDVI, denoted as 
Adjusted GG-NDVI, used to estimate drought conditions across the United States 
for the period of 2001–2015. The proposed drought index, EWDI, was calculated by 
using the difference between ETW and ET with the probability distribution func-
tion of [20] because this probabilistic approach allowed a consistent comparison 
between EWDI and other standardized indices. Also, the drought severity of EWDI 
was divided into five classes that are the same classes with the US Drought Monitor 
(USDM). Required meteorological data were from the PRISM at 4-km resolution 
covering the CONUS, and monthly NDVI data were retrieved from the NASA Earth 
Observations. The results of this chapter supported that the EWDI could capture 
drought conditions and using an accurate ET model can help to improve drought 
monitoring performance. One unanticipated finding was that within the comple-
mentary relationship when energy-limited conditions are present, ET and ETW 
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varied in a parallel trend and ET is closer to ETW, resulting in decreasing EWDI 
performances such as Minnesota (not shown in this study). Despite this limitation, 
EWDI could identify droughts over CONUS consistent with USDM from the major 
drought incidents of August 2007, November 2009, and July 2011.
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Abstract

The chapter provides an inclusive information related to the adverse effect of 
climate change on sustainable crop production through understanding evaporation, 
transpiration as well as evapotranspiration. It is anticipated that water availability 
in arid and semi-arid regions across the world will decrease, due to lack of rainfall 
and increase the temperature which leads to increase in the dry areas. Since climate 
change will impact on soil water balance that leads to change in evaporation and 
plant transpiration. While, with the increasing temperature, lack of precipitation 
and soils water unavailability, crop production will likely to decrease through short-
ening the crop growth cycle. While soils with high water holding capacity and crop 
cultivars which are tolerant to adverse effect as well as the application of improved 
management strategies will be better to reduce the impact of drought. Similarly, if 
the irrigated areas will be expanded, the total crop production will be increased that 
ultimately lead to increase the food security of increasing population.

Keywords: evapotranspiration, changing climate, crop production, food security, 
increasing population

1. Introduction

Climate change has emerged as the most prominent of the global environmental 
issues and there is a need to evaluate its impact on the agriculture as the temperature 
is projected to increase in near future [1]. Furthermore, climate change provides 
more energy that causes to change liquid to gaseous form as well as occurs more 
evaporation (E) to which reduces the share of transpiration. Evaporation is the 
unproductive loss of water and is mainly responsible for the lower land as well as 
water productivity [2], while transpiration (T) is the desired component as greater 
the transpiration (T) greater will be nutrient inflow along with the water, resulted 
in higher grain yields. For occurring E, three things are required, viz. sufficient soil 
moisture, vapor pressure gradient and energy, to cause the phase change and lack 
of anyone, E will not be happened [3]. Among different soil water balance compo-
nents, evapotranspiration (ET) is an important one which further decides the water 
use efficiency. Furthermore, ET shares in total remain the almost similar [4].

Therefore, without appropriate technologies, farmers will find it extremely 
difficulties to operate climate-smart agricultural to meet the food demand of 
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1. Introduction

Climate change has emerged as the most prominent of the global environmental
issues and there is a need to evaluate its impact on the agriculture as the temperature 
is projected to increase in near future [1]. Furthermore, climate change provides 
more energy that causes to change liquid to gaseous form as well as occurs more 
evaporation (E) to which reduces the share of transpiration. Evaporation is the 
unproductive loss of water and is mainly responsible for the lower land as well as 
water productivity [2], while transpiration (T) is the desired component as greater 
the transpiration (T) greater will be nutrient inflow along with the water, resulted 
in higher grain yields. For occurring E, three things are required, viz. sufficient soil 
moisture, vapor pressure gradient and energy, to cause the phase change and lack 
of anyone, E will not be happened [3]. Among different soil water balance compo-
nents, evapotranspiration (ET) is an important one which further decides the water 
use efficiency. Furthermore, ET shares in total remain the almost similar [4].

Therefore, without appropriate technologies, farmers will find it extremely 
difficulties to operate climate-smart agricultural to meet the food demand of 
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increasing population. In the meantime, scientists across the world to regions work-
ing on it and tried to invent improved technologies which could partition greater 
share of the total ET water to T by diverting share of E. The surface water in the 
region continue to be delivered through old traditional canal and on-farm convey-
ance networks those have earthen bunds and are unlined resulting in very low water 
use efficiency (30–50%). Generally, irrigators usually cut off the supply when the 
advance is complete without considering the additional irrigation water infiltrates 
at the entrance especially when the soil is opened up with pre-seeding tillage. Thus 
large non-uniformities in water application in addition to over-irrigation. In our 
situation, generally plot size of 250 m2 in coarse texture and 500 m2 in medium to 
fine texture is recommended for wheat [5] for improving the water use efficiency. 
For cotton furrow irrigation could save 100–150 mm of irrigation water [6] as it cuts 
down the share of E. Even the broad beds spaced at 1.35 m and planting cotton in 
furrows in paired rows improved its yield by 44% and saved 40% irrigation water 
as compared with row spacing of 0.75 m in flatbed system [7]. Micro-irrigation 
especially drip, mini-sprinklers and sub-irrigation systems designed to apply small 
and frequent irrigations, are now emerging as ideal technologies which cut off E 
share and partition greater share of the ET to the T component. As the water is 
being applied to the root zone rather than entire field and both unproductive losses, 
viz. evaporation (E) and deep drainage (D) is considerably reduced, irrigation 
efficiencies as high as 95 and 80% are achieved with drip and sprinklers systems, 
respectively. The overall water savings with drip systems ranged between 50 and 
65% in vegetables [8] along with higher fertilizer use efficiency and better quality 
of the product. The government has introduced subsidies to the extent of 75%, still, 
the drip system does not seem to be adopted at the desired levels.

For upland crops, viz. wheat, maize, potato, etc., effects of E demand and 
rainfall concept for timing irrigation to crops was put forward in 1970s [9, 10]. It is 
a deficit-irrigation approach that induces deeper rooting for promoting utilization 
of profile stored water especially the sub-soil water. Heavy pre-sowing irrigation 
followed by irrigations at IW/PAN-E ratio of 0.75 [11] and last irrigation during 
mid-March by charging soil profile to 80–100% of water depletion [9, 10] further 
improves water productivity.

Thus, efforts have also been made to compute crop sensitivity to water stress by 
relating yield with ET or T. Water deficits mainly damage the crops during meiosis 
of pollen mother cells or around anthesis. Therefore, sensitive stages in different 
crops need to be identified to mitigate the adverse effects of limited irrigation. 
Generally, at present scientists advocate different technologies, viz. mulching, crop 
diversification, correct T time of rice, bed planting, zero tillage, short duration crop 
cultivars to partition greater share of the ET water share to the T by depressing E in 
one or other way. These technologies have a substantial scope in improving irriga-
tion efficiency and reducing energy for groundwater withdrawal. In the present 
chapter, we tried to understand the concept and consequences of evapotranspi-
ration for sustainable crop production in the era of climate change. A detailed 
description of evaporation, transpiration and evapotranspiration and their impor-
tance for sustainable agriculture are highlighted by the following sub-heading.

2.  Concept of evaporation, transpiration, and evapotranspiration  
and its relation to crop productivity

Evaporation is the physical process through which liquid water is converted to water 
vapor. The rate of E depends on the saturated vapor pressure of the liquid and increases 
with increase in temperature until the atmospheric pressure at the boiling point [12].
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Transpiration is the process by which moisture is carried through plants from 
roots to small pores on the underside of leaves, where it changes to vapor and is 
released to the atmosphere. Transpiration is principally E of water to the atmo-
sphere from plants roots to small pores on the underside of leaves. Another type of 
water loss from the uninjured leaf or stem of the plant, mainly by stomata is called 
guttation [13]. Nearly 10% of the moisture available in the atmosphere is from the T 
process [14]. The remaining 90% is mainly from the E process from different water 
bodies [15, 16]. reported that the T is attained by the movement of water, at the 
vapor phase through the conductor system from the roots to the leaves of the plant, 
as a function of a water potential gradient from the soil (ψsoil) to the air (ψair) as 
shown in Figure 1.

In general, ET is the sum of E and T. It is the simultaneous process of water 
transfer to the atmosphere both by soil water E and plants T. The study found that 
during a growing season, a leaf will transpire many times more water than its own 
weight. An acre of corn gives off about 11,400–15,100 l of water each day, and a 
large oak tree can transpire about 1,51,000 l per year [13] (USGS, 2016).

Depending on the vegetation conditions, size of the vegetated area, and soil 
water supply, different conceptions are to be defined, such as potential, actual, 
oasis, and crop ET [16]. Such particular terms are described as follows.

2.1 Potential evapotranspiration (ETp)

Potential ET represents the combined loss of water through the plant’s process 
of T and E of water from the Earth’s surface. Both the processes are influenced by 
temperature, humidity, sunlight, and wind as well as Earth vegetation. ETp values 
indicate the amount of water that has been lost, and thus needs to be replaced, 
through irrigation and/or rainfall [16, 17].

2.2 Actual or real evapotranspiration (ETa)

Actual ET is the amount of water actually utilized by an extensive surface vege-
tated with grass, at an active growth stage, covering completely the soil surface. ETa 
is the quantity of water that is actually removed from a surface due to the processes 

Figure 1. 
Schematic representation of the water motion in the soil-plant-atmosphere system under optimal development 
conditions (adapted from [15, 16]).
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increasing population. In the meantime, scientists across the world to regions work-
ing on it and tried to invent improved technologies which could partition greater 
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description of evaporation, transpiration and evapotranspiration and their impor-
tance for sustainable agriculture are highlighted by the following sub-heading.

2.  Concept of evaporation, transpiration, and evapotranspiration  
and its relation to crop productivity

Evaporation is the physical process through which liquid water is converted to water 
vapor. The rate of E depends on the saturated vapor pressure of the liquid and increases 
with increase in temperature until the atmospheric pressure at the boiling point [12].
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Transpiration is the process by which moisture is carried through plants from 
roots to small pores on the underside of leaves, where it changes to vapor and is 
released to the atmosphere. Transpiration is principally E of water to the atmo-
sphere from plants roots to small pores on the underside of leaves. Another type of 
water loss from the uninjured leaf or stem of the plant, mainly by stomata is called 
guttation [13]. Nearly 10% of the moisture available in the atmosphere is from the T 
process [14]. The remaining 90% is mainly from the E process from different water 
bodies [15, 16]. reported that the T is attained by the movement of water, at the 
vapor phase through the conductor system from the roots to the leaves of the plant, 
as a function of a water potential gradient from the soil (ψsoil) to the air (ψair) as 
shown in Figure 1.

In general, ET is the sum of E and T. It is the simultaneous process of water 
transfer to the atmosphere both by soil water E and plants T. The study found that 
during a growing season, a leaf will transpire many times more water than its own 
weight. An acre of corn gives off about 11,400–15,100 l of water each day, and a 
large oak tree can transpire about 1,51,000 l per year [13] (USGS, 2016).

Depending on the vegetation conditions, size of the vegetated area, and soil 
water supply, different conceptions are to be defined, such as potential, actual, 
oasis, and crop ET [16]. Such particular terms are described as follows.

2.1 Potential evapotranspiration (ETp)

Potential ET represents the combined loss of water through the plant’s process 
of T and E of water from the Earth’s surface. Both the processes are influenced by 
temperature, humidity, sunlight, and wind as well as Earth vegetation. ETp values 
indicate the amount of water that has been lost, and thus needs to be replaced, 
through irrigation and/or rainfall [16, 17].

2.2 Actual or real evapotranspiration (ETa)

Actual ET is the amount of water actually utilized by an extensive surface vege-
tated with grass, at an active growth stage, covering completely the soil surface. ETa 
is the quantity of water that is actually removed from a surface due to the processes 

Figure 1. 
Schematic representation of the water motion in the soil-plant-atmosphere system under optimal development 
conditions (adapted from [15, 16]).
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of E and T [17]. There is a relation between potential ET and actual ET. Crop water 
need can be estimated by the following equation: Crop water needs = potential 
evapotranspiration − actual evapotranspiration.

2.3 Oasis evapotranspiration (ETo)

Oasis ET is the amount of water consumed by a small irrigated vegetation which 
is encircled by a widespread dry-area, at which dynamism of water to vapor is come 
from high temperature in combination with drought [16, 18]. Figure 2 shows the 
border area necessary for minimizing the lateral transport of energy from the dry to 
the wet area (irrigated). At such an area, the ET that will take place is the oasis ET.

2.4 Evapotranspiration (ETc)

Evapotranspiration is the process by which an amount of water is used by any 
growth stage of a crop from sowing to harvest, at whatever time there is no water 
constraint in the soil [13, 16]. ETc is a function of leaf area (transpiring surface), 
because the bigger the leaf area (LAI), the higher ETc will be for the same atmo-
spheric demand [17].

3. Factors affecting evapotranspiration (ET)

Weather parameters, crop characteristics, management and environmental 
aspects are factors affecting E, T, and ET. Details of these factors are as follows:

3.1 Climatic factors that affecting ET

3.1.1 Radiation

Radiation is the main source of energy for the ET process. It depends on the 
global solar radiation flux density and vegetation albedo. A darker vegetation 

Figure 2. 
Schematic representation of the ETo and ETp (adapted from [16, 18]).
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absorbs more incident solar radiation and evapotranspires more [13, 16]. A thor-
ough understanding of the factors controlling the energy balance of a cropped 
soil enables making accurate estimates or predictions of ET and irrigation water 
requirements. It also facilitates more effective irrigation water management [19, 20].

3.1.2 Temperature

Over the course of a day, an increase of the air temperature causes an increase on 
the saturation deficit triggering a higher evaporative demand in the air, and leading 
to high ET rates [13, 16].

3.1.3 Relative humidity (%RH)

Air relative humidity acts in conjunction with temperature. The higher relative 
humidity, the lesser the evaporative demand and, therefore, the lower ET [13, 16].

3.1.4 Wind

Advection represents the horizontal transport of energy from a drier area to 
another more humid, and such additional energy is utilized in the ET process. Wind 
also helps remove water vapor near the plants to other regions [13, 16].

3.2 Crop factors that affecting ET

Crop factors such as crop species, radiation reflection coefficient, leaf area index 
(LAI) in different growth stages of the plant, plant height and root depth (depth of 
the radicular system) are influenced on the crop ET, which are described details as 
follows:

3.2.1 Crop species

This factor is related to the foliar architecture (spatial distribution of the leaves), 
internal resistance of the plant to water transport, and other morphological aspects 
(number, size, and distribution of stomata, etc.), which exert a direct influence on 
ET [13, 16].

3.2.2 Radiation reflection coefficient

Radiation reflection influences directly net radiation availability for the ET pro-
cess. The darker the vegetation, the lower the reflection coefficient and the higher 
net radiation [13, 16].

3.2.3 Leaf area index (LAI) in different growth stages of plant

LAI in different growth stages of a plant is directly related to the size of the 
transpiring foliar surface, for the larger leaf area the larger the transpiring surface, 
and the higher the potential for water use [13, 16].

3.2.4 Plant height

Plant height also influences the ET. Taller and rougher plants interact more 
efficiently with the atmosphere in motion, extracting more energy from the air and, 
therefore, increasing ET [13, 16].
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another more humid, and such additional energy is utilized in the ET process. Wind 
also helps remove water vapor near the plants to other regions [13, 16].

3.2 Crop factors that affecting ET

Crop factors such as crop species, radiation reflection coefficient, leaf area index 
(LAI) in different growth stages of the plant, plant height and root depth (depth of 
the radicular system) are influenced on the crop ET, which are described details as 
follows:

3.2.1 Crop species

This factor is related to the foliar architecture (spatial distribution of the leaves), 
internal resistance of the plant to water transport, and other morphological aspects 
(number, size, and distribution of stomata, etc.), which exert a direct influence on 
ET [13, 16].

3.2.2 Radiation reflection coefficient

Radiation reflection influences directly net radiation availability for the ET pro-
cess. The darker the vegetation, the lower the reflection coefficient and the higher 
net radiation [13, 16].

3.2.3 Leaf area index (LAI) in different growth stages of plant

LAI in different growth stages of a plant is directly related to the size of the 
transpiring foliar surface, for the larger leaf area the larger the transpiring surface, 
and the higher the potential for water use [13, 16].

3.2.4 Plant height

Plant height also influences the ET. Taller and rougher plants interact more 
efficiently with the atmosphere in motion, extracting more energy from the air and, 
therefore, increasing ET [13, 16].



Advanced Evapotranspiration Methods and Applications

100

3.2.5 Rooting depth of plant (depth of the radicular system)

Rooting depth of plant is directly related to the volume of soil explored by the 
roots, aiming at meeting the atmospheric hydric demand. A superficial radicular 
system, for exploring a smaller soil volume, keeps the crop more susceptible to 
drying periods [13, 16].

3.3 Crop management and growing environmental conditions also  
influence the ET

The following crop management and growing environmental conditions are 
influenced the crop ET:

3.3.1 Row to row or plant to plant spacing

Usually, intraspecific competition is found between plants/crops of the same 
species/types for their essential growth elements. A limited spacing between the 
plant to plant or row to row of the same species or different species of plants/crops, 
consequences in an intense competition for water, light, nutrient, etc., causing as a 
consequence an increase on ET [13, 16].

3.3.2 Crop orientation

Crops oriented perpendicularly to predominant winds tend to extract more 
energy from the air than those oriented in parallel. For regions with constant winds, 
a solution to prevent the stomata-closing would be the use of windbreaks. A wind-
break reduces wind velocities and decreases the ET rate of the field directly beyond 
the barrier [13, 16].

3.3.3 Soil properties (structure and texture)

Soil texture and soil structure are both unique properties of the soil that will 
have a profound effect on the behavior of soils. Both the properties influence the 
crop ET through influencing the water holding capacity of the soils. Clay soils have 
higher water holding capacity than sandy soils and are proficient of preserving a 
more persistent crop ET rate for longer [13, 16].

3.3.4 Chemical/physical impediments

Inhibitions system limit the growth of the radicular system of a plant, affecting 
the root system of plants to explore a wider volume of soil both in dry and rainy 
seasons. In the rainy season, soil with any physical obstructions gets soaking wet 
suffocating the roots. While in the dry season, the volume of available water is 
reduced from the roots of a plant; as a results root system of a plant is deepening 
into the soil for searching available water [13, 16].

3.4 Interrelationship atmospheric demand: soil water supply

The soil is a dynamic reservoir for available water for growth and development 
of plants. It is controlling the rate of water use by the plants and continuously in 
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coincidence with the atmospheric demand. Since the atmospheric demand for 
water is directing by solar radiation, air humidity, and wind speed (Figure 3). 
Under situation C, in which ECA (by the evaporation from a Class A pan 
(ECA)) > 7.5 mm day−1 (high demand); the plants do not manage to extract water at 
a rate compatible to its needs even under the available soil water, as a result, to avoid 
drying of the leaves plants temporary close the stomata. Such a condition usually 
takes place at the hottest hours of the day [13, 16].

4.  Interrelation between the intervening period of rice-wheat cropping 
sequence and ET

“Intervening period” is perhaps the most ignored period in the any crop rotation 
as scientists are trying to analyze the effects of applied treatments on the land and 
water productivity, which could be exploited for cultivating the intervening crops, 
viz. moong and other fodder crops [22–25]. Several investigations were carried out 
during intervening periods of wheat 2012–2013 and rice 2013; rice 2013 and wheat 
2013–2014; wheat 2013–2014 and rice 2014 and rice 2014 and wheat 2014–2015 
using time domain reflectometer, electronic tensiometer, soil thermometers (up to 
0–10 cm) and mini-lysimeters to delineate soil moisture dynamics as affected by 
different establishment methods of rice and wheat sequence. Zero tilled wheat plots 
(ZTW) evaporates 7.6 and 12.8% more, retained 10.3 and 9.4% lower volumetric 
moisture content at 7.5 cm soil depths and reported to had 28, 18 and 18% and 
21, 16 and 17% higher soil tension values at 10, 20 and 30 cm soil depths because 
of reported 2.2 and 2.1% higher soil temperature than the conventionally tilled 
(CT) wheat plots during intervening periods after wheat 2012–2013 and wheat 
2013–2014. However, after rice 2013, ZT plots reported to conserve 4.0% higher 
moisture content because of reported 2.3% lesser soil temperature which evaporates 
27.6% lesser after rice 2013. On an average, conventional tilled both wheat and 
direct seeded rice (CTW-DSRCT) plots had 14, 29 and 45% lower SWT values than 
the zero till wheat and zero till direct seeded rice (ZTW-DSRZT) plots after rice 
2013. They also found that after rice in 2014, CTW-DSRZT plots conserved more 
soil moisture than ZTW-DSRZT, although an exception was found in CTW-DSRCT 
plots, but were nearly equally and effective for conserving the soil moisture CTW-
DSRZT cropping system.

Figure 3. 
Relationship between corn relative evapotranspiration (ETa/ETc) and soil available water and atmospheric 
demand expressed by ECA (adapted from [16, 21]).
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5.  Consequences of evapotranspiration for sustainable crop 
production in the era of climate change

Water moved from the Earth’s surface into the atmosphere by evaporation and 
T the two distinct mechanisms. Evaporation occurs directly from the water bodies 
where liquid water is transformed into a gaseous state. Recondition for evapora-
tion to occur is when atmospheric humidity is less than the evaporating surface (at 
100% relative humidity there is no more evaporation). The evaporation process 
requires large amounts of energy, viz. 600 calories of heat energy for 1 g of water. 
Transpiration is the process of water loss from plants through stomata—a small 
opening found on the underside of leaves that are connected to vascular plant 
tissues. In most plants, T is a passive process largely controlled by the humidity of 
the atmosphere and the moisture content of the soil. Around 1% of total transpired 
water being used in the growth process as it transports nutrients from the soil into 
the roots and carries them to the various cells of the plant and is used to keep tissues 
from becoming overheated. Certain plants of dried environment do have the ability 
to open and close their stomata which is to limit the loss of water from plant tissues; 
otherwise, they will not survive.

Generally, differentiate between evaporation and T is difficult. Hence a compos-
ite term “ET” is used whose rate at any instant from the Earth’s surface is controlled 
by four factors: (1) Vapor pressure gradient. (2) Energy availability as about 600 
calories of heat energy to change 1 g of liquid water into a water vapor. (3) The wind 
speed directly above the surface which moves the vapor from the place of evapora-
tion and in clam days when above ground layer got saturated, ET almost stops. (4) 
Water availability which is a must parameter as at the global scale, most of the ET 
of water on the Earth’s surface occurs in the subtropical oceans where high quanti-
ties of solar radiation convert liquid water into a gas. Further, it is reported that 
average ET for the northern hemisphere is around 944 mm year−1. Together with 
the southern hemisphere, with an average ET of 1064 mm year−1, this results in a 
global ET of 1004 mm year−1. In the Western Pacific and the Indian Ocean values 
up to 2 m year−1 have been observed. Thus it varied a lot depending on the special 
variations.

Evapotranspiration (ET) is an important soil water balance component and is 
playing a major role in determining the potential yields in the agricultural sector. 
Being affected by a number of factors, viz. soil temperature, soil moisture and 
vapor pressure gradients, ET remains almost remains similar for a particular soil 
textural class and agro-climatic conditions. Regarding estimation of ET, in field 
conditions, evaporation is generally judged by installing the lysimeters in the field 
which actually represent the true conditions of the field. Mini-lysimeters were quite 
effective in understanding the fluctuating behavior of evaporation under different 
treatments [26, 27]. Mini-lysimeters prepared by using PVC pipes of 8-inch length 
and with 2.5 inches diameter. Mini-lysimeters were filled from a particular treat-
ment with the help of chain pulley arrangement, an end cap fixed on one side and 
then finally filled and capped mini-lysimeter was placed inside the outer pipe of 
the bigger diameter which was already fixed in the sampled plot (Figure 4). Daily 
mini-lysimeters were weighted at field using the digital balance to have an idea of 
evaporation [29]. After calculating the evaporation T is calculated from the soil 
water equation where the right-hand side has irrigation and rainfall while left-hand 
side constituted by seepage, drainage, profile soil moisture and ET.

With this technology, E reduction trends could be very easily monitored 
because of practiced different resource conservation technologies and thereby 
for a region the most effective one could also be identified which further be 
advocated the farmers for improving their livelihoods [30]. Some earlier studies 
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had shown the promising results of some of the technologies, viz. straw mulching 
caused 70–300 mm of irrigation savings in different crops and benefits of mulch-
ing depend upon seasonal rainfall, irrigation regimes and soil texture [31]. These 
irrigation savings are due to a reduction in soil water evaporation component of 
ET. However, among the various technologies, zero tillage is emerging as the viable 
option for planting wheat while retaining surface residues. Earlier there were 
problems with the direct drilling of wheat seed into combine harvested paddy 
fields as loose straw accumulates in seed drill furrow openers, seed metering and 
its placement were non-uniform which is now solved with the Lucky drill directly 
drilled wheat seeds into anchored and loose rice residues. Major advantages of this 
technology include about 5–10% increase in yield, 60–70% less weed growth, 30% 
water saving particularly pre-sowing irrigation and 45 mm reduction in evapora-
tion losses. In spite of these advantages, it solved the problem of straw burning and 
the leftover paddy straw on the long run improved the soil health and its fertility 
levels. In the agricultural sector, irrigation efficiency generally is tried to improve by 
depressing the evaporation share and enhancing the T which further directly linked 
with the land as well as water productivity.

6. Conclusion

From the above discussion of the chapter, it may be concluded that climate 
change will adversely affect the sustainable crop production in future that ulti-
mately lead to decrease the food production of increasing population. Different 
international organizations already projected that water availability in arid and 
semi-arid regions across the world will decrease, due to lack of rainfall and increase 
the temperature which leads to increase in the dry areas. Since climate change will 
impact on soil water balance that leads to change in evaporation and plant transpi-
ration. While, with the increasing temperature, lack of precipitation and soils water 
unavailability, crop production will likely to decrease through shortening the crop 
growth cycle. Therefore, it is important to understand evaporation, transpiration 
as well as evapotranspiration to mitigate their adverse effect under future changing 
climate. Researchers already revealed that soils with high water holding capacity 
and crop cultivars which are tolerant to adverse effect as well as the application 
of improved management strategies will be better to face the impact of drought. 
Where, if we could increase the irrigated areas, the total crop production could be 
increased to the food security of increasing population.

Figure 4. 
Demonstrating filling of lysimeters (a); pulling out filled lysimeters with specially designed chain-pulley 
arrangement (b); and weighting of filled and capped lysimeter (c) [28].
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up to 2 m year−1 have been observed. Thus it varied a lot depending on the special 
variations.

Evapotranspiration (ET) is an important soil water balance component and is 
playing a major role in determining the potential yields in the agricultural sector. 
Being affected by a number of factors, viz. soil temperature, soil moisture and 
vapor pressure gradients, ET remains almost remains similar for a particular soil 
textural class and agro-climatic conditions. Regarding estimation of ET, in field 
conditions, evaporation is generally judged by installing the lysimeters in the field 
which actually represent the true conditions of the field. Mini-lysimeters were quite 
effective in understanding the fluctuating behavior of evaporation under different 
treatments [26, 27]. Mini-lysimeters prepared by using PVC pipes of 8-inch length 
and with 2.5 inches diameter. Mini-lysimeters were filled from a particular treat-
ment with the help of chain pulley arrangement, an end cap fixed on one side and 
then finally filled and capped mini-lysimeter was placed inside the outer pipe of 
the bigger diameter which was already fixed in the sampled plot (Figure 4). Daily 
mini-lysimeters were weighted at field using the digital balance to have an idea of 
evaporation [29]. After calculating the evaporation T is calculated from the soil 
water equation where the right-hand side has irrigation and rainfall while left-hand 
side constituted by seepage, drainage, profile soil moisture and ET.

With this technology, E reduction trends could be very easily monitored 
because of practiced different resource conservation technologies and thereby 
for a region the most effective one could also be identified which further be 
advocated the farmers for improving their livelihoods [30]. Some earlier studies 
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had shown the promising results of some of the technologies, viz. straw mulching 
caused 70–300 mm of irrigation savings in different crops and benefits of mulch-
ing depend upon seasonal rainfall, irrigation regimes and soil texture [31]. These 
irrigation savings are due to a reduction in soil water evaporation component of 
ET. However, among the various technologies, zero tillage is emerging as the viable 
option for planting wheat while retaining surface residues. Earlier there were 
problems with the direct drilling of wheat seed into combine harvested paddy 
fields as loose straw accumulates in seed drill furrow openers, seed metering and 
its placement were non-uniform which is now solved with the Lucky drill directly 
drilled wheat seeds into anchored and loose rice residues. Major advantages of this 
technology include about 5–10% increase in yield, 60–70% less weed growth, 30% 
water saving particularly pre-sowing irrigation and 45 mm reduction in evapora-
tion losses. In spite of these advantages, it solved the problem of straw burning and 
the leftover paddy straw on the long run improved the soil health and its fertility 
levels. In the agricultural sector, irrigation efficiency generally is tried to improve by 
depressing the evaporation share and enhancing the T which further directly linked 
with the land as well as water productivity.

6. Conclusion

From the above discussion of the chapter, it may be concluded that climate 
change will adversely affect the sustainable crop production in future that ulti-
mately lead to decrease the food production of increasing population. Different 
international organizations already projected that water availability in arid and 
semi-arid regions across the world will decrease, due to lack of rainfall and increase 
the temperature which leads to increase in the dry areas. Since climate change will 
impact on soil water balance that leads to change in evaporation and plant transpi-
ration. While, with the increasing temperature, lack of precipitation and soils water 
unavailability, crop production will likely to decrease through shortening the crop 
growth cycle. Therefore, it is important to understand evaporation, transpiration 
as well as evapotranspiration to mitigate their adverse effect under future changing 
climate. Researchers already revealed that soils with high water holding capacity 
and crop cultivars which are tolerant to adverse effect as well as the application 
of improved management strategies will be better to face the impact of drought. 
Where, if we could increase the irrigated areas, the total crop production could be 
increased to the food security of increasing population.

Figure 4. 
Demonstrating filling of lysimeters (a); pulling out filled lysimeters with specially designed chain-pulley 
arrangement (b); and weighting of filled and capped lysimeter (c) [28].
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Chapter 6

Evapotranspiration from 
Green Infrastructure: Benefit, 
Measurement, and Simulation
Youcan Feng

Abstract

Green infrastructure (GI) is a common solution for stormwater management 
in an urban environment, with attached environmental benefits like flood control, 
urban heat island relief, adaptations to climate change, biodiversity protection, 
air pollution reduction, and food production. Evapotranspiration (ET) controls 
the GI’s hydrologic performance and affects all related benefits. Essentially, ET 
constrains the turnover of moisture storage and determines the demand for supple-
mental irrigation and then the cost-effectiveness of a GI project. Considering the 
spatial heterogeneousness of an urban space and the GI’s multi-layer designs, the 
classic ET equations have challenges in representing the ET variations from GI 
units. The underperformance of the existing ET models is partly due to the lack of 
corresponding high-quality field observations for each GI type in various urban 
settings. This chapter, therefore, summarizes the current research progress and 
existing challenges regarding the benefit, measurement, and simulation of ET 
process from GI.

Keywords: green infrastructure, evapotranspiration, stormwater, drainage,  
urban heat island, ecosystem service, bioretention, green roof, permeable pavement

1. Introduction

During the past decade, green infrastructure (GI) gradually becomes a 
favorable concept to be associated with sustainable solutions to manage firstly 
water then later energy and food nexus in the urban environment. Traditional 
drainage infrastructure (often referred to as gray infrastructure) makes use 
of pipelines to rapidly export stormwater out of urban domain and then 
mitigate the rising flood risk induced by the expansion of impervious surface 
through urbanization. This water deficit then has to be resolved by importing 
high-quality potable water back into cities for irrigation and other uses [1]. In 
contrast to gray infrastructures with dull appearance and often hidden under 
covers, the visible components and lively forms make GI a more persuasive 
concept that is easily accepted and appreciated by the public. As a bridge 
connecting the water and energy cycles, evapotranspiration (ET) affects the 
overall performance of GI and will only receive more attention in the near 
future when more sub-disciplines can be taken into consideration.

The term green infrastructure emerged in the United States in the 1990s 
representing a network of green space stitching together the fragmented urban 
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areas [2]. Its function in the field of stormwater management was widely 
realized only until the last decade, but the scope of GI quickly expands to 
involve other urban drainage terms such as Low Impact Development (LID), 
Best Management Practice (BMP), Stormwater Control Measure (SCM), Water 
Sensitive Urban Design (WSUD), Sustainable Urban Drainage Systems (SUDS), 
and Alternative Technique (AT) or Technique Alternative (TA) [3]. Besides the 
vegetated formats like green roof, bioretention, and vertical greenery systems 
[4, 5], GI also evolves to include other nonvegetation-based devices such as 
permeable/porous pavement and rainwater harvesting system designed for 
places, where vegetated GI is impractical to use due to heavily polluted runoff or 
the competing drinkable water demand [1]. More broadly, conventional urban 
green space, e.g. urban lawns, forests, farmlands, parks, and public gardens, 
has been used as a type of GI [6–9], owing to their capacity to promote reten-
tion and ET, as so-called natural water retention measures [10]. Recently, lakes 
and surface waters (so-called blue space) have futher been regarded as GI for 
improve local groundwater recharge, cooling, water purification, dust control, 
and a esthetics in an urban environment [11–13].

Evaporation happens directly from the water surface and porous media like 
soil, gravel, or permeable pavement. Transpiration occurs through the stomata on 
leaves as a subprocess of plant respiration. As two quantities are difficult to separate 
during measurement and modeling, they are often counted and treated as a total 
as referred to ET. As a stormwater management strategy, GI harvests and retains 
stormwater in the urban landscape [14], and then reuses and drains the captured 
water partly by ET. Evapotranspiration process also draws heat from surface when 
converting liquid moisture into vapor. It, therefore, provides a mechanism to 
mitigate the urban heat island effect [1]. The proportion of ET within urban water 
and energy budgets usually rises with vegetation coverage [8]. But only taking a 
small fraction of the urban surface, GI can provide an order of magnitude larger 
ET compared to the evaporation contribution from impervious surface [15]. Being 
spatially distributed within the street canyons, GI imports evapotranspiring “cool 
spots” into the urban ecosystem.

Previous research has given extensive reviews of the overall benefits of GI 
and listed ET as a process that requires more studies [16–18]. A critical review 
centering on ET process in GI, however, is lacking for GI community up to date. 
Therefore, this work endeavors to summarize the current research progress of 
ET with regards to GI and the knowledge gaps that restrict the development 
of the disciplines. Based on a survey of 100+ relevant peer-reviewed journal 
articles and book chapters in the previous decade, three current research areas 
are identified, which include the ecosystem service, measurement, and simula-
tion of ET process from GI.

2. Ecosystem benefits of evapotranspiration from green infrastructure

Green infrastructure provides a wide spectrum of ecosystem services far beyond 
stormwater management as it is being accepted by more disciplines. Ecosystem 
services are the conditions and processes through which natural ecosystems, and 
the species that make them up, sustain and fulfill human life [8]. The ecosystem 
services of GI can be classified into four types: provisioning, regulating, cultural, 
and habitat [19]. Most current studies focused on its regulating service, since GI 
can regulate temperature [20] and air quality [21] as well as remedy stream-related 
water quantity and quality issues (so-called urban stream syndrome) such as 
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alternations in flow regimes, morphology, water and sediment quality, and associ-
ated biological composition [22–24]. From the cultural perspective, GI creates 
more green space accessible by the public and adds amenity values to municipal 
infrastructures [25, 26]. Green infrastructure also can be used as arable space to 
promote urban agriculture and to supplement the local food chain [27–31]. A study 
in Bologna, Italy, found that 82 ha green roofs could provide more than 12,000 tons 
year−1 vegetables that satisfy 77% of the city’s yearly demand [28]. Lastly, vegetated 
GI provides habitats to protect biogeographic representativity, ecological coher-
ence, and landscape connectivity [28, 32–34].

Evapotranspiration is relevant to most of those ecosystem services such as 
improving urban air quality, carbon sinks, and biodiversity and enhancing the local 
rain-driven water cycle [35]. But most of the current publications mainly associate 
ET with three ecosystem services of GI including urban heat island relief, baseflow 
regulation, and water budget reestablishment. These three perspectives are dis-
cussed in detail.

2.1 Urban heat island relief

Since dark paint and material of impervious surfaces tend to trap heat, urban 
environments usually have higher air temperature compared to surrounding subur-
ban areas. This is referred to as the urban heat island (UHI) effect. In urban areas, 
material heating  and anthropogenic heat release warm the near-ground air, main-
taining the UHI effect and increasing building’s energy consumption [36]. During 
drought periods, cities may have to restrict irrigation use, which further facilitates 
the development of uncomfortable urban climates with intensified heating and 
drying [1]. Introducing green and blue space in cities is often seen as a cost-effective 
strategy for mitigating UHI effect, since ET process is able to convert a large portion 
of incoming solar radiation into latent heat leaving from the urban surface [37–39]. 
Such active cooling can be realized by common GI which contains a vegetation layer 
and a moisture storage. Active cooling can also come from nonvegetated GI such as 
pervious pavement and water bodies where soil or open water evaporates [11–13]. 
Though the cooling effect of water bodies is not widely agreed [40]. Furthermore, 
GI takes advantage of the space (e.g. rooftop, external wall, and subsurface) that 
is rarely used otherwise. Therefore, although a single GI only takes a limited space, 
the network of GI can overall increase the ET strength of a city and contribute to 
mitigating the UHI effect.

A green roof is a GI type that is commonly adopted and studied to mitigate UHI 
effect and reduce building energy cost, because it does not take ground area in a 
dense city. The rooftop usually represents the top elevation of an urban valley and 
receives the intensive sunshine without much shade, so planting rooftops tends to 
provide effective cooling benefit. A study based on EnergyPlus simulations found 
that green roofs could reduce the annual building energy consumption by 3.7% [41]. 
The cooling effect depends on the green roof coverage and climate zones. An obser-
vation has shown that green roof reduced the temperature of the urban boundary 
layer (from the rooftop level up to a few kilometers in elevation) by 0.3 and 0.2°C 
per 10% increase of green roof coverage at daytime and nighttime, respectively [42]. 
The same study also shows that the cooling effect of green roof can be even stronger 
than the reflective (cool) roof with the same roof coverage. The reduction in highest 
electricity peak because of green roof implementation ranges from 5.2% in hot-dry 
climate to 0.3% in temperate climate [43].

The cooling effect of the green roof highly depends on its roof coverage and 
the substrate moisture content. Irrigation can improve the cooling performance of 
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areas [2]. Its function in the field of stormwater management was widely 
realized only until the last decade, but the scope of GI quickly expands to 
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permeable/porous pavement and rainwater harvesting system designed for 
places, where vegetated GI is impractical to use due to heavily polluted runoff or 
the competing drinkable water demand [1]. More broadly, conventional urban 
green space, e.g. urban lawns, forests, farmlands, parks, and public gardens, 
has been used as a type of GI [6–9], owing to their capacity to promote reten-
tion and ET, as so-called natural water retention measures [10]. Recently, lakes 
and surface waters (so-called blue space) have futher been regarded as GI for 
improve local groundwater recharge, cooling, water purification, dust control, 
and a esthetics in an urban environment [11–13].

Evaporation happens directly from the water surface and porous media like 
soil, gravel, or permeable pavement. Transpiration occurs through the stomata on 
leaves as a subprocess of plant respiration. As two quantities are difficult to separate 
during measurement and modeling, they are often counted and treated as a total 
as referred to ET. As a stormwater management strategy, GI harvests and retains 
stormwater in the urban landscape [14], and then reuses and drains the captured 
water partly by ET. Evapotranspiration process also draws heat from surface when 
converting liquid moisture into vapor. It, therefore, provides a mechanism to 
mitigate the urban heat island effect [1]. The proportion of ET within urban water 
and energy budgets usually rises with vegetation coverage [8]. But only taking a 
small fraction of the urban surface, GI can provide an order of magnitude larger 
ET compared to the evaporation contribution from impervious surface [15]. Being 
spatially distributed within the street canyons, GI imports evapotranspiring “cool 
spots” into the urban ecosystem.

Previous research has given extensive reviews of the overall benefits of GI 
and listed ET as a process that requires more studies [16–18]. A critical review 
centering on ET process in GI, however, is lacking for GI community up to date. 
Therefore, this work endeavors to summarize the current research progress of 
ET with regards to GI and the knowledge gaps that restrict the development 
of the disciplines. Based on a survey of 100+ relevant peer-reviewed journal 
articles and book chapters in the previous decade, three current research areas 
are identified, which include the ecosystem service, measurement, and simula-
tion of ET process from GI.

2. Ecosystem benefits of evapotranspiration from green infrastructure

Green infrastructure provides a wide spectrum of ecosystem services far beyond 
stormwater management as it is being accepted by more disciplines. Ecosystem 
services are the conditions and processes through which natural ecosystems, and 
the species that make them up, sustain and fulfill human life [8]. The ecosystem 
services of GI can be classified into four types: provisioning, regulating, cultural, 
and habitat [19]. Most current studies focused on its regulating service, since GI 
can regulate temperature [20] and air quality [21] as well as remedy stream-related 
water quantity and quality issues (so-called urban stream syndrome) such as 
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alternations in flow regimes, morphology, water and sediment quality, and associ-
ated biological composition [22–24]. From the cultural perspective, GI creates 
more green space accessible by the public and adds amenity values to municipal 
infrastructures [25, 26]. Green infrastructure also can be used as arable space to 
promote urban agriculture and to supplement the local food chain [27–31]. A study 
in Bologna, Italy, found that 82 ha green roofs could provide more than 12,000 tons 
year−1 vegetables that satisfy 77% of the city’s yearly demand [28]. Lastly, vegetated 
GI provides habitats to protect biogeographic representativity, ecological coher-
ence, and landscape connectivity [28, 32–34].

Evapotranspiration is relevant to most of those ecosystem services such as 
improving urban air quality, carbon sinks, and biodiversity and enhancing the local 
rain-driven water cycle [35]. But most of the current publications mainly associate 
ET with three ecosystem services of GI including urban heat island relief, baseflow 
regulation, and water budget reestablishment. These three perspectives are dis-
cussed in detail.

2.1 Urban heat island relief

Since dark paint and material of impervious surfaces tend to trap heat, urban 
environments usually have higher air temperature compared to surrounding subur-
ban areas. This is referred to as the urban heat island (UHI) effect. In urban areas, 
material heating  and anthropogenic heat release warm the near-ground air, main-
taining the UHI effect and increasing building’s energy consumption [36]. During 
drought periods, cities may have to restrict irrigation use, which further facilitates 
the development of uncomfortable urban climates with intensified heating and 
drying [1]. Introducing green and blue space in cities is often seen as a cost-effective 
strategy for mitigating UHI effect, since ET process is able to convert a large portion 
of incoming solar radiation into latent heat leaving from the urban surface [37–39]. 
Such active cooling can be realized by common GI which contains a vegetation layer 
and a moisture storage. Active cooling can also come from nonvegetated GI such as 
pervious pavement and water bodies where soil or open water evaporates [11–13]. 
Though the cooling effect of water bodies is not widely agreed [40]. Furthermore, 
GI takes advantage of the space (e.g. rooftop, external wall, and subsurface) that 
is rarely used otherwise. Therefore, although a single GI only takes a limited space, 
the network of GI can overall increase the ET strength of a city and contribute to 
mitigating the UHI effect.

A green roof is a GI type that is commonly adopted and studied to mitigate UHI 
effect and reduce building energy cost, because it does not take ground area in a 
dense city. The rooftop usually represents the top elevation of an urban valley and 
receives the intensive sunshine without much shade, so planting rooftops tends to 
provide effective cooling benefit. A study based on EnergyPlus simulations found 
that green roofs could reduce the annual building energy consumption by 3.7% [41]. 
The cooling effect depends on the green roof coverage and climate zones. An obser-
vation has shown that green roof reduced the temperature of the urban boundary 
layer (from the rooftop level up to a few kilometers in elevation) by 0.3 and 0.2°C 
per 10% increase of green roof coverage at daytime and nighttime, respectively [42]. 
The same study also shows that the cooling effect of green roof can be even stronger 
than the reflective (cool) roof with the same roof coverage. The reduction in highest 
electricity peak because of green roof implementation ranges from 5.2% in hot-dry 
climate to 0.3% in temperate climate [43].

The cooling effect of the green roof highly depends on its roof coverage and 
the substrate moisture content. Irrigation can improve the cooling performance of 
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green roofs by enhancing ET [39]. Under well-watered conditions, the nighttime 
air above green roof can be even colder than the cool roof, though the reverse may 
be found during the daytime [42, 44]. With unrestricted irrigation, green roof 
has a comparable cooling potential as the white roof, but green roof becomes less 
effective when only sustainable irrigation (harvested roof runoff) or no irrigation 
is available [45]. During dry summer, mean daytime Bowen ratio (sensible heat 
flux/latent heat flux) above a green roof could reach 3, as a typical value for the 
urban environment; while during wet periods, mean daytime Bowen ratio can be 
as low as 0.3 [46]. The substrate volumetric water content is recommended to be 
at least 0.11 m3 m−3 to maintain a favorable green roof energy partitioning (Bowen 
ratio < 1) [46]. In a study in Australia, the daytime Bowen ratio on top of a green 
roof reduced from above four during dry conditions to less than one after irriga-
tion; however, the sensible heat flux on the green roof was still larger than that on 
the cool roof [47]. A downside of applying irrigation is that the increased mois-
ture content may build a notable heat sink, which partly offsets the cooling effect; 
therefore, finer soil mix with fewer mesopores and minimized moisture storage 
was recommended to reduce the heat-sink effect [36]. Apart from supporting 
active cooling, irrigation is necessary for establishment, survival, and success of 
green roof plants in semi-arid and arid climates [48]. Deficit watering strategy 
(adapting to the vegetation requirement) and alternative sources (gray water, 
harvested rainwater, or condensed water from air conditioning) can be tested for 
controlling irrigation demand [48, 49]. So far, the role of irrigated GI for cooling 
urban areas is still not fully examined yet, while less is known regarding how the 
optimum type, amount, and arrangement of GI units influence the overall cooling 
effect [50].

The choice of plant species also affects the cooling effect of a green roof. Sedum, 
though proposed as the default green roof species, often comes with incomplete 
plant cover, sluggish transpiration, and limited substrate moisture storage, which 
altogether result in a weak ET cooling effect or even a downward heat transmis-
sion toward indoor space that raises the cooling load [36]. Sedum provided no 
significant cooling potential over a soil substrate roof alone, so adding a thin cover 
of white gravel or stones on top of the green roof is recommended to increase the 
albedo [47]. Furthermore, sedum is also difficult to maintain and subject to the 
widespread decline caused by high temperature and humidity [36, 49]. Plants with 
higher transpiration rates and denser foliage have better cooling effect and create 
a blanket on top of substrate and roof to block heat transmission [36]. A promis-
ing option is woodland vegetation, which, with a 1-m substrate, can filter 90% of 
incoming short-wave radiation during daytime [51]. Although a deeper substrate 
(>10 cm) was often preferred because of the larger moisture storage [48], shallow-
rooted plants like sedum may not able to take this advantage [49].

Urban greening in the street canyon level includes mesic lawns and shade trees. 
Their cooling effect, limited by the vegetation abundance and moisture content as 
well, tends to be more effective over desert/xeric than over mesic/oasis landscapes 
[42]. At a city scale, increasing the ground vegetation has a stronger impact than 
implementing green roofs on reducing street temperature; whereas green roofs 
are more cost-effective to reduce a building’s energy consumption [52]. Turfgrass 
was observed to represent the largest contribution to annual ET in recreational and 
residential land types (87 and 64%, respectively), followed by trees (10 and 31%, 
respectively) [53]. Urban ET amount overall relates to the urban forest coverage. 
Following the increasing ET gradient (464.43–1000.47 mm) through the conter-
minous United States, urban forest cover and forest volume correspondingly had a 
doubled and a threefold increase, respectively [7]. Under the shade of tree canopies, 
the cooling effect of the added lawn will be significantly restrained [42]. Of all 
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types of green and blue space, tree-dominated greenspace offers the greatest heat 
stress relief [54]. Therefore, xeriscaping trees with drip irrigation system, present 
a promising UHI mitigation strategy compared to traditional water-demanding 
urban lawns especially in an arid or semi-arid environment [42]. Stormwater 
captured from cool roofs can be additional irrigation sources for ground-level GI to 
promote evaporative cooling [15, 47].

2.2 Baseflow regulation

Another major ecosystem service provided by evapotranspiration from green 
infrastructure is to regulate the regime of urban baseflow in terms of its peak 
discharge, lag time, recession coefficient, and water yield [46, 55]. Runoff and infil-
tration determine the upper limit in the volume of surface and subsurface return 
flows to streams, respectively; while ET, as a sink/loss term in the water balance, 
determines the lower limit in the volume of the return flow.

The goal of regulating baseflow is ambiguous to define and dependent on each 
case. Urbanization tends to elevate imperviousness percentage and leads to excessive 
surface runoff in the postdevelopment condition, which raises flooding risk and 
causes the urban stream syndrome at the downstream [22]. Reducing the volume of 
surface runoff is often set as a common goal of all GI applications [6, 10], since GI 
creates the extra sink near the source of rainfall and effectively reduces the volume 
of surface runoff traveling downstream [6, 56, 57]. In this case, the ET-focused GI 
(green roof, lined bioretention) would be recommended, which would transform 
portions of recharge and baseflow into ET [35, 58–60].

On the other hand, regulating baseflow can also mean to strengthen the percola-
tion, when the aquifer is heavily tapped by the urban basin [61, 62]. In such case, the 
percolation-focused GI would be recommended such as drywell, unlined bioreten-
tion (sometimes referred as bioinfiltration), retention pond, and permeable pave-
ment, which would transform portions of ET into recharge and eventually baseflow 
[63]. However, the influence of percolated water on ET is not clearly understood. 
Conventionally, percolation is assumed to recharge groundwater and contribute 
to baseflow through subsurface hidden paths [60]. Yet, lateral seepage from the 
bioretention is not negligible, and it can be comparable to ET amount [64] or even 
a much more dominant term than both ET and vertical percolation [65]. The fate of 
the lateral seepage has not been extensively studied yet, which could end up being 
intercepted by downstream rooting systems and eventually released into the air by 
ET again, instead of reaching the channels as baseflow. Further, water from shal-
low water table (<2.5 m deep) can move upwards to the root zone as capillary flow; 
for example, 1-m capillary upward groundwater can supply 41% of ET [66]. The 
knowledge gaps regarding the fate of percolation water as well as occasional capillary 
flow prevents the accurate appraisal of the GI influence on the local or broader scale 
water balance. The contributing areas to the baseflow of an urban watershed should 
be identified, and building GI at such locations would be cost-effective.

Connection to storm drainage network is another factor affecting the ratio of rainfall 
redistribution. Employment of an underdrain underneath bioretention can bypass most 
infiltration through the drainage network and lead to minimal ET and percolation [67, 
68]. From the volume reduction perspective, underdrains make GI more resemble a 
conventional storm pipeline. Without connecting to a drainage network, GI can manage 
infiltrated water more through ET or percolation.

Choosing the percolation-focused GI in the urban areas with limited aquifer 
extraction and ecosystem water demand (humid climates) may overcompensate the 
groundwater and increase the volume of return flow to the downstream channels 
due to the increased baseflow. Further, the percolation-focused GI, only designed 
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green roofs by enhancing ET [39]. Under well-watered conditions, the nighttime 
air above green roof can be even colder than the cool roof, though the reverse may 
be found during the daytime [42, 44]. With unrestricted irrigation, green roof 
has a comparable cooling potential as the white roof, but green roof becomes less 
effective when only sustainable irrigation (harvested roof runoff) or no irrigation 
is available [45]. During dry summer, mean daytime Bowen ratio (sensible heat 
flux/latent heat flux) above a green roof could reach 3, as a typical value for the 
urban environment; while during wet periods, mean daytime Bowen ratio can be 
as low as 0.3 [46]. The substrate volumetric water content is recommended to be 
at least 0.11 m3 m−3 to maintain a favorable green roof energy partitioning (Bowen 
ratio < 1) [46]. In a study in Australia, the daytime Bowen ratio on top of a green 
roof reduced from above four during dry conditions to less than one after irriga-
tion; however, the sensible heat flux on the green roof was still larger than that on 
the cool roof [47]. A downside of applying irrigation is that the increased mois-
ture content may build a notable heat sink, which partly offsets the cooling effect; 
therefore, finer soil mix with fewer mesopores and minimized moisture storage 
was recommended to reduce the heat-sink effect [36]. Apart from supporting 
active cooling, irrigation is necessary for establishment, survival, and success of 
green roof plants in semi-arid and arid climates [48]. Deficit watering strategy 
(adapting to the vegetation requirement) and alternative sources (gray water, 
harvested rainwater, or condensed water from air conditioning) can be tested for 
controlling irrigation demand [48, 49]. So far, the role of irrigated GI for cooling 
urban areas is still not fully examined yet, while less is known regarding how the 
optimum type, amount, and arrangement of GI units influence the overall cooling 
effect [50].

The choice of plant species also affects the cooling effect of a green roof. Sedum, 
though proposed as the default green roof species, often comes with incomplete 
plant cover, sluggish transpiration, and limited substrate moisture storage, which 
altogether result in a weak ET cooling effect or even a downward heat transmis-
sion toward indoor space that raises the cooling load [36]. Sedum provided no 
significant cooling potential over a soil substrate roof alone, so adding a thin cover 
of white gravel or stones on top of the green roof is recommended to increase the 
albedo [47]. Furthermore, sedum is also difficult to maintain and subject to the 
widespread decline caused by high temperature and humidity [36, 49]. Plants with 
higher transpiration rates and denser foliage have better cooling effect and create 
a blanket on top of substrate and roof to block heat transmission [36]. A promis-
ing option is woodland vegetation, which, with a 1-m substrate, can filter 90% of 
incoming short-wave radiation during daytime [51]. Although a deeper substrate 
(>10 cm) was often preferred because of the larger moisture storage [48], shallow-
rooted plants like sedum may not able to take this advantage [49].

Urban greening in the street canyon level includes mesic lawns and shade trees. 
Their cooling effect, limited by the vegetation abundance and moisture content as 
well, tends to be more effective over desert/xeric than over mesic/oasis landscapes 
[42]. At a city scale, increasing the ground vegetation has a stronger impact than 
implementing green roofs on reducing street temperature; whereas green roofs 
are more cost-effective to reduce a building’s energy consumption [52]. Turfgrass 
was observed to represent the largest contribution to annual ET in recreational and 
residential land types (87 and 64%, respectively), followed by trees (10 and 31%, 
respectively) [53]. Urban ET amount overall relates to the urban forest coverage. 
Following the increasing ET gradient (464.43–1000.47 mm) through the conter-
minous United States, urban forest cover and forest volume correspondingly had a 
doubled and a threefold increase, respectively [7]. Under the shade of tree canopies, 
the cooling effect of the added lawn will be significantly restrained [42]. Of all 
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types of green and blue space, tree-dominated greenspace offers the greatest heat 
stress relief [54]. Therefore, xeriscaping trees with drip irrigation system, present 
a promising UHI mitigation strategy compared to traditional water-demanding 
urban lawns especially in an arid or semi-arid environment [42]. Stormwater 
captured from cool roofs can be additional irrigation sources for ground-level GI to 
promote evaporative cooling [15, 47].

2.2 Baseflow regulation

Another major ecosystem service provided by evapotranspiration from green 
infrastructure is to regulate the regime of urban baseflow in terms of its peak 
discharge, lag time, recession coefficient, and water yield [46, 55]. Runoff and infil-
tration determine the upper limit in the volume of surface and subsurface return 
flows to streams, respectively; while ET, as a sink/loss term in the water balance, 
determines the lower limit in the volume of the return flow.

The goal of regulating baseflow is ambiguous to define and dependent on each 
case. Urbanization tends to elevate imperviousness percentage and leads to excessive 
surface runoff in the postdevelopment condition, which raises flooding risk and 
causes the urban stream syndrome at the downstream [22]. Reducing the volume of 
surface runoff is often set as a common goal of all GI applications [6, 10], since GI 
creates the extra sink near the source of rainfall and effectively reduces the volume 
of surface runoff traveling downstream [6, 56, 57]. In this case, the ET-focused GI 
(green roof, lined bioretention) would be recommended, which would transform 
portions of recharge and baseflow into ET [35, 58–60].

On the other hand, regulating baseflow can also mean to strengthen the percola-
tion, when the aquifer is heavily tapped by the urban basin [61, 62]. In such case, the 
percolation-focused GI would be recommended such as drywell, unlined bioreten-
tion (sometimes referred as bioinfiltration), retention pond, and permeable pave-
ment, which would transform portions of ET into recharge and eventually baseflow 
[63]. However, the influence of percolated water on ET is not clearly understood. 
Conventionally, percolation is assumed to recharge groundwater and contribute 
to baseflow through subsurface hidden paths [60]. Yet, lateral seepage from the 
bioretention is not negligible, and it can be comparable to ET amount [64] or even 
a much more dominant term than both ET and vertical percolation [65]. The fate of 
the lateral seepage has not been extensively studied yet, which could end up being 
intercepted by downstream rooting systems and eventually released into the air by 
ET again, instead of reaching the channels as baseflow. Further, water from shal-
low water table (<2.5 m deep) can move upwards to the root zone as capillary flow; 
for example, 1-m capillary upward groundwater can supply 41% of ET [66]. The 
knowledge gaps regarding the fate of percolation water as well as occasional capillary 
flow prevents the accurate appraisal of the GI influence on the local or broader scale 
water balance. The contributing areas to the baseflow of an urban watershed should 
be identified, and building GI at such locations would be cost-effective.

Connection to storm drainage network is another factor affecting the ratio of rainfall 
redistribution. Employment of an underdrain underneath bioretention can bypass most 
infiltration through the drainage network and lead to minimal ET and percolation [67, 
68]. From the volume reduction perspective, underdrains make GI more resemble a 
conventional storm pipeline. Without connecting to a drainage network, GI can manage 
infiltrated water more through ET or percolation.

Choosing the percolation-focused GI in the urban areas with limited aquifer 
extraction and ecosystem water demand (humid climates) may overcompensate the 
groundwater and increase the volume of return flow to the downstream channels 
due to the increased baseflow. Further, the percolation-focused GI, only designed 
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for managing impervious surfaces, may also drain extra stormwater from pervious 
surfaces and then unintendedly result in a larger baseflow than the predevelopment 
condition [60]. Overcompensating groundwater recharge can lead to deleterious 
effects on downstream waters and ecosystem like in arid regions with intermit-
tent and ephemeral streams [24]. Moreover, excessive recharge from GI may cause 
groundwater mounds, which, taking a long time to dissipate [69], endanger the foun-
dations of other infrastructures and compromise drought resilience by promoting 
shallow-rooted plant systems that do not extract water from deep soil [70]. Therefore, 
determining the appropriate ET amount for an urban watershed is complicated and 
requires an overview of the complete water budget. This discussion goes beyond the 
viewpoint of baseflow restoration and gives rise to the emerging trend of using GI to 
reestablish the urban water budget.

2.3 Water budget reestablishment

Type and configuration of GI can not only regulate the baseflow but also affect 
the rest of the water budget for a single site [71, 72]. Designing a GI unit, therefore, 
needs to be reviewed in a broader sense. The configuration of each GI unit, though 
possibly having already accomplished the local-scale objectives, can be further 
tweaked to target the optimum goal of a greater scale such as of an urban watershed 
or an urban ecosystem. Then, the baseflow regulation by GI implementations even-
tually turns into the redesign of the water budget, such as the proposals for restoring 
the near-natural water budget [24, 35, 73].

Targeting water budget, however, may not be so straightforward to develop due 
to considerations for the integrated ecosystem management for each specific cli-
mate. From the ecological perspective, aquifer recharge might be beneficial ecologi-
cally only when the recharge amount matches the predevelopment condition [60]. 
So, the excessive rainwater should be harvested near the rain source [24]. However, 
in dry environments, ET can be dominant component of the predevelopment 
water budget before urbanization occurred [35]. Recovering the predevelopment 
ET ratio will be prohibitive in such urban settings [24]. Therefore, reestablishing a 
new water budget somewhere between the predevelopment and postdevelopment 
conditions is most feasible and beneficial for human and ecosystem water demands 
together. Regional water budget should be determined by the weights assigned 
between human water demand and ecosystem water demand.

The new equilibrium will need to integrate multiobjectives from different per-
spectives. For example, for the interests in urban heat island relief, GI is designed to 
enhance ET process, which requires the ET-focused GI with adequate storage capacity 
[1, 74]. For the interests in stormwater management in wet and cold regions with 
excessive return flows, the ET-focused GI is recommended to maximize the runoff 
reduction. In semi-arid environments with intermittent but intense rain events, high 
ET rates also guarantee the rapid update of storage capacity between storms, though 
irrigation supplement may be needed [75]. For regions with low recharge rate and 
high groundwater exploitation rate, the percolation-focused GI with highly perme-
able mediums might be a better option [76, 77]. In any case when increasing irrigation 
demand is most concerned, GI with low ET potential or drought-resistant plant 
species would be preferred [78].

3. Measurement of evapotranspiration from green infrastructure

Depending on the configuration, inflow and irrigation, climate, and the microscale 
hydraulic, thermal, and aerodynamic contexts, observed evapotranspiration from the 
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same type of green infrastructure can vary case by case. Based on the existing observa-
tions (excluding modeling results), ET of a bioretention unit generally varies within 
the range of 2–9 mm day−1 [79, 80], ET of a green roof unit generally falls within the 
range of 0.003–11.38 mm day−1 [49, 81–84], and the evaporation of a permeable pave-
ment unit after rainfall is generally 0.5–1.5 mm day−1 [85–87]. From the water budget 
perspective, ET was observed to be able to remove 0.4–70% of inflows from a bioreten-
tion unit [67, 68, 80, 88], 58–72% of inflows from a green roof unit [82, 84, 89], and 
2.4–30% from a permeable pavement unit [85, 86].

Similar to observation tasks for other landscapes, the ET measurement methods 
for GI can be divided into mass-balance tracking, meteorological observation, and 
biological diagnostic. Among them, mass-balance tracking is most often adopted 
due to its simplicity and cost-effectiveness. Mass balance can be tracked indirectly 
by interpreting the variations in moisture content or ponding water such as in 
permeable pavement [85], green roof [90], and bioretention cases [65] or, more 
often, directly monitored by the weight change via a lysimeter. These methods 
generally focus on a small piece of GI and by various degrees block moisture, 
momentum, and energy exchanges between the monitored piece and the unmoni-
tored environment.

Weighing lysimeter has been widely used to measure ET for major GI types, e.g. 
bioretentions [80, 83], green roofs [75, 78, 83, 84], and permeable pavement [86, 87].  
It uses a load cell to monitor the total mass change of the container holding the GI 
sample. Because only the mass readings are recorded, this technique requires extra 
observations to distinguish the weight changes caused by ET from the changes 
caused by the wetting events (rainfall, irrigation) or other possible loss terms 
(drainage, percolation). Drainage and percolation are often difficult to measure 
with the matching accuracy and temporal resolution as the load cell readings. 
Traditional tipping bucket is designed for rainfall measurement. Its funnel collec-
tor and tipping container can be easily overwhelmed by the massive flows from 
the lysimeter’s underdrain. So although a tipping bucket can record the occurrence 
and possibly the timing of the outflow events, its volumetric readings are usually 
unreliable. A pressure transducer can be useful for measuring still water with 
enough depth and open water surface but is not helpful for detecting the shallow 
drainage water usually collected in a container that needs to be released after each 
event. For each container with a different shape, the water depth sensor would need 
a re-calibration. Considering the difficulty of tracking drainage and percolation, 
the common workaround is only analyzing the lysimeter time series during the dry 
spells when the water balance only has ET and the change term remaining (without 
other inflow and loss terms).

Besides the state change, vapor fluxes through a part of a plant, a closed cham-
ber, a building’s footprint, and a neighborhood can be directly monitored and used 
to estimate ET from GI by the means of sap/leaf flux sensor [17], gas-exchange 
chamber [47, 78, 81, 89], eddy covariance technique [82], and airborne remote 
sensing [91], respectively. Both sap/leaf flux sensors and closed chambers provide a 
decisive way to examine the fundamental theories behind ET models. But they can 
only examine the flux exchange within a very limited space; the former can only 
measure a piece of a plant, while the latter can hold a volume up to 0.12 m3 [47, 78, 
81, 89]. The observed ET rates by these two methods are also (if not more) hardly 
to upscale compared to the mass balance methods due to the variations in environ-
mental factors.

Eddy covariance technique quantifies the surface-atmosphere flux exchanges 
from a certain surface area at the upwind side of the measurement sensor (flux 
footprint), which should not include a large fraction of unwanted land covers. This 
requirement poses practical challenges for using it to monitor ET from a single 
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for managing impervious surfaces, may also drain extra stormwater from pervious 
surfaces and then unintendedly result in a larger baseflow than the predevelopment 
condition [60]. Overcompensating groundwater recharge can lead to deleterious 
effects on downstream waters and ecosystem like in arid regions with intermit-
tent and ephemeral streams [24]. Moreover, excessive recharge from GI may cause 
groundwater mounds, which, taking a long time to dissipate [69], endanger the foun-
dations of other infrastructures and compromise drought resilience by promoting 
shallow-rooted plant systems that do not extract water from deep soil [70]. Therefore, 
determining the appropriate ET amount for an urban watershed is complicated and 
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So, the excessive rainwater should be harvested near the rain source [24]. However, 
in dry environments, ET can be dominant component of the predevelopment 
water budget before urbanization occurred [35]. Recovering the predevelopment 
ET ratio will be prohibitive in such urban settings [24]. Therefore, reestablishing a 
new water budget somewhere between the predevelopment and postdevelopment 
conditions is most feasible and beneficial for human and ecosystem water demands 
together. Regional water budget should be determined by the weights assigned 
between human water demand and ecosystem water demand.

The new equilibrium will need to integrate multiobjectives from different per-
spectives. For example, for the interests in urban heat island relief, GI is designed to 
enhance ET process, which requires the ET-focused GI with adequate storage capacity 
[1, 74]. For the interests in stormwater management in wet and cold regions with 
excessive return flows, the ET-focused GI is recommended to maximize the runoff 
reduction. In semi-arid environments with intermittent but intense rain events, high 
ET rates also guarantee the rapid update of storage capacity between storms, though 
irrigation supplement may be needed [75]. For regions with low recharge rate and 
high groundwater exploitation rate, the percolation-focused GI with highly perme-
able mediums might be a better option [76, 77]. In any case when increasing irrigation 
demand is most concerned, GI with low ET potential or drought-resistant plant 
species would be preferred [78].

3. Measurement of evapotranspiration from green infrastructure

Depending on the configuration, inflow and irrigation, climate, and the microscale 
hydraulic, thermal, and aerodynamic contexts, observed evapotranspiration from the 
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same type of green infrastructure can vary case by case. Based on the existing observa-
tions (excluding modeling results), ET of a bioretention unit generally varies within 
the range of 2–9 mm day−1 [79, 80], ET of a green roof unit generally falls within the 
range of 0.003–11.38 mm day−1 [49, 81–84], and the evaporation of a permeable pave-
ment unit after rainfall is generally 0.5–1.5 mm day−1 [85–87]. From the water budget 
perspective, ET was observed to be able to remove 0.4–70% of inflows from a bioreten-
tion unit [67, 68, 80, 88], 58–72% of inflows from a green roof unit [82, 84, 89], and 
2.4–30% from a permeable pavement unit [85, 86].

Similar to observation tasks for other landscapes, the ET measurement methods 
for GI can be divided into mass-balance tracking, meteorological observation, and 
biological diagnostic. Among them, mass-balance tracking is most often adopted 
due to its simplicity and cost-effectiveness. Mass balance can be tracked indirectly 
by interpreting the variations in moisture content or ponding water such as in 
permeable pavement [85], green roof [90], and bioretention cases [65] or, more 
often, directly monitored by the weight change via a lysimeter. These methods 
generally focus on a small piece of GI and by various degrees block moisture, 
momentum, and energy exchanges between the monitored piece and the unmoni-
tored environment.

Weighing lysimeter has been widely used to measure ET for major GI types, e.g. 
bioretentions [80, 83], green roofs [75, 78, 83, 84], and permeable pavement [86, 87].  
It uses a load cell to monitor the total mass change of the container holding the GI 
sample. Because only the mass readings are recorded, this technique requires extra 
observations to distinguish the weight changes caused by ET from the changes 
caused by the wetting events (rainfall, irrigation) or other possible loss terms 
(drainage, percolation). Drainage and percolation are often difficult to measure 
with the matching accuracy and temporal resolution as the load cell readings. 
Traditional tipping bucket is designed for rainfall measurement. Its funnel collec-
tor and tipping container can be easily overwhelmed by the massive flows from 
the lysimeter’s underdrain. So although a tipping bucket can record the occurrence 
and possibly the timing of the outflow events, its volumetric readings are usually 
unreliable. A pressure transducer can be useful for measuring still water with 
enough depth and open water surface but is not helpful for detecting the shallow 
drainage water usually collected in a container that needs to be released after each 
event. For each container with a different shape, the water depth sensor would need 
a re-calibration. Considering the difficulty of tracking drainage and percolation, 
the common workaround is only analyzing the lysimeter time series during the dry 
spells when the water balance only has ET and the change term remaining (without 
other inflow and loss terms).

Besides the state change, vapor fluxes through a part of a plant, a closed cham-
ber, a building’s footprint, and a neighborhood can be directly monitored and used 
to estimate ET from GI by the means of sap/leaf flux sensor [17], gas-exchange 
chamber [47, 78, 81, 89], eddy covariance technique [82], and airborne remote 
sensing [91], respectively. Both sap/leaf flux sensors and closed chambers provide a 
decisive way to examine the fundamental theories behind ET models. But they can 
only examine the flux exchange within a very limited space; the former can only 
measure a piece of a plant, while the latter can hold a volume up to 0.12 m3 [47, 78, 
81, 89]. The observed ET rates by these two methods are also (if not more) hardly 
to upscale compared to the mass balance methods due to the variations in environ-
mental factors.

Eddy covariance technique quantifies the surface-atmosphere flux exchanges 
from a certain surface area at the upwind side of the measurement sensor (flux 
footprint), which should not include a large fraction of unwanted land covers. This 
requirement poses practical challenges for using it to monitor ET from a single 
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GI unit, which usually only takes a small fraction of a flux footprint and is mixed 
with other urban land covers with distinct thermal and hydraulic properties. The 
eddy covariance method can be feasible for a large GI unit that covers the majority 
of a flux footprint, irrespective of the unsolved energy balance closure issue. A 
case study using eddy covariance on an 8600 m2 green roof found that an average 
70% daytime flux footprint matched the green roof surface [82]. A flux tower may 
become more useful to measure the total change in ET for a neighborhood scale 
before and after implementing GI, which will provide a critical dataset that is often 
lacked for calibrating stormwater and urban atmospheric models.

The challenges of measuring ET from GI were partly caused by the limitations in the 
current sensoring technology. To help build a database useful for future research and 
a wider community, field experimenters should start to record a more complete back-
ground information for a GI site, such as detailed species information [78], the surround-
ing impervious and pervious landscapes, and a broader field of temperature, wind, 
and humidity conditions that can account for advection and roughness. Meanwhile, the 
uncertainty information including the accuracy of measurement sensors and the selec-
tive ranges of parameters is recommended to be provided [49, 92], especially when the 
purpose of the observation is to improve the simulation of ET from a GI.

4. Simulation of evapotranspiration from green infrastructure

Simulation of evapotranspiration from green infrastructure is usually a neces-
sary subtask of modeling a larger system such as the building’s energy and water 
budgets, a catchment’s drainage network, or a city’s land-surface process. Most 
current efforts regarding ET simulation for GI centered on establishing a well-
calibrated ET model for a single GI unit/type at one site. Such microscale-calibrated 
models, however, are very difficult to be reused at a different site due to the dif-
ferences in the configuration of GI, micrometeorological conditions, and data 
availability. Therefore, most hydrologic and atmospheric models seldom use such 
locally-calibrated ET modules but directly use more generic equations.

Evapotranspiration simulation usually can be divided into two steps. Potential 
evapotranspiration (PET) is calculated firstly, which represents the maximum 
ET amount allowed by the instantaneous meteorological conditions forced by air 
temperature, solar radiation, wind, air pressure, and humidity [93–95]. Actual 
evapotranspiration (ETa) is then achieved by adjusting PET by further limiting 
factors such as moisture availability and properties of evapotranspiring media (e.g. 
physiological characteristics of plant species and hydraulic features of a soil type). 
Since PET and ETa are usually quantified separately, these two terms are discussed 
separately.

4.1 Potential evapotranspiration models

Penman-Monteith (P-M) equation, taking a full account of energy balance, 
convection, and canopy resistance while well documented by previous agricultural 
studies, is widely applied to estimate ET from almost all types of GI such as green 
roof [6, 57, 74, 83, 93, 96–99], bioretention [64, 80, 100], and permeable pavement 
[101]. Simpler models, such as Priest-Taylor equation without considering convec-
tion [102], or solely temperature-based Thornthwaite Equation [59, 85, 103] and 
Hargreaves Equation [96, 104], have also applied for GI when fewer inputs and less 
calibration effort required. Although a simpler method may achieve a better estimate 
for a unique site, the P-M equation has been framed into the classical protocol [105] 
to compute reference evapotranspiration (ETo), which represents ET from a standard 
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land cover with fixed vegetation characteristics (resistance, height, etc.). The 
concept of ETo has been widely accepted and integrated with the adjustments by lists 
of crop coefficient (Kc) and water stress coefficient (Ks) [105]. Potential evapotrans-
piration of a plant can be achieved by multiplying ETo by Kc.

Although the P-M equation is physically sound, it is problematic to apply it in 
the urban environment. Originally, the P-M equation was developed to estimate ET 
from a uniform surface with a homogenous footprint (like open water or well-
watered farmland). Urban environment, however, is composed of heterogeneous 
surfaces with distinct regimes of reflecting, absorbing, and releasing the incoming 
radiation, which result in intensive turbulence exchanges within a short period 
of time. Directly applying the P-M equation in the urban environment essentially 
breaks its underlying assumption of a homogeneous surface. The P-M equation 
would need adjustments for such cases after capturing the 3D field of weather vari-
ables, especially temperature, wind, and humidity fields. For example, the current 
practices of implementing the P-M equation only calculate aerodynamic resistance 
for the neutral stability condition by assuming a logarithmic profile of wind, 
temperature, and humidity [105, 106]. This assumption is only valid for inertial 
sublayer well above the building tops but will not hold in the roughness sublayer 
and urban canopy layer where GI exists [107]. This violation, mostly due to a high 
degree of vertical mixing (convection) and horizontal transport of air mass (advec-
tion), is seldom and hardly addressed during ET estimation for GI. Fundamentally, 
the P-M equation assumes an equivalent aerodynamic resistance for both sensible 
heat and momentum transfer under the neutral stability condition and ignores the 
contribution of advection to the energy supply commonly occurred in an urban 
environment. Stability correction [108] is cumbersome and may not be influential 
close to the canopy [109]. The advection tends to be negligible where relatively 
small differences in surface temperatures exist (like cropland), which is seldom the 
case in the urban domain [109].

A pioneering study proposed two crop coefficients to separately calibrate 
radiation and convection terms to improve ET estimation for green roofs [84]. 
This method implicitly assumes that the nightly convection would have the same 
magnitude as the daytime convection and also removes the moisture restriction on 
the convection term because of the weak correlation between convection and sub-
strate moisture at nighttime. The two-round correction was able to improve RMSE 
by 37% for water-limited conditions when ET is generally low but still suffered by 
underestimating large ET values during wet conditions [84]. This method still does 
not resolve the inherited problem of the neglect of horizontal advection in P-M 
equation, which seems to explain why the ratio of observed ET versus ETo was much 
higher during nighttime when no solar radiation exists.

Another implicit barrier in using the P-M equation for GI application lies in 
the complexity of the concept of surface resistance. Stomatal conductance, as the 
backbone of surface resistance, is highly variable and can be a function of instan-
taneous levels of temperature, vapor pressure deficit, leaf water potential, and 
ambient carbon dioxide concentration [110]. Stomatal resistance (the reciprocal 
of conductance) of green roof species could vary from 13 to 2500 s m−1 [49, 78]. 
However, in practice, the surface resistance is usually fixed at a constant value 
in [105, 106]. Therefore, the P-M equation and other common methods tend 
to struggle to capture both the high and low ET extremes for GI; e.g. for green 
roofs, the P-M methods often underestimate ET peaks, when moisture supply is 
adequate to support large ET values (close to PET level) [49, 81, 84, 89, 90]. The 
average surface resistance adopted by most studies keeps the simulated results 
approaching the average ET level but missing the higher and lower extremes. 
Adding a constant crop coefficient will still not improve this situation.
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GI unit, which usually only takes a small fraction of a flux footprint and is mixed 
with other urban land covers with distinct thermal and hydraulic properties. The 
eddy covariance method can be feasible for a large GI unit that covers the majority 
of a flux footprint, irrespective of the unsolved energy balance closure issue. A 
case study using eddy covariance on an 8600 m2 green roof found that an average 
70% daytime flux footprint matched the green roof surface [82]. A flux tower may 
become more useful to measure the total change in ET for a neighborhood scale 
before and after implementing GI, which will provide a critical dataset that is often 
lacked for calibrating stormwater and urban atmospheric models.

The challenges of measuring ET from GI were partly caused by the limitations in the 
current sensoring technology. To help build a database useful for future research and 
a wider community, field experimenters should start to record a more complete back-
ground information for a GI site, such as detailed species information [78], the surround-
ing impervious and pervious landscapes, and a broader field of temperature, wind, 
and humidity conditions that can account for advection and roughness. Meanwhile, the 
uncertainty information including the accuracy of measurement sensors and the selec-
tive ranges of parameters is recommended to be provided [49, 92], especially when the 
purpose of the observation is to improve the simulation of ET from a GI.

4. Simulation of evapotranspiration from green infrastructure

Simulation of evapotranspiration from green infrastructure is usually a neces-
sary subtask of modeling a larger system such as the building’s energy and water 
budgets, a catchment’s drainage network, or a city’s land-surface process. Most 
current efforts regarding ET simulation for GI centered on establishing a well-
calibrated ET model for a single GI unit/type at one site. Such microscale-calibrated 
models, however, are very difficult to be reused at a different site due to the dif-
ferences in the configuration of GI, micrometeorological conditions, and data 
availability. Therefore, most hydrologic and atmospheric models seldom use such 
locally-calibrated ET modules but directly use more generic equations.

Evapotranspiration simulation usually can be divided into two steps. Potential 
evapotranspiration (PET) is calculated firstly, which represents the maximum 
ET amount allowed by the instantaneous meteorological conditions forced by air 
temperature, solar radiation, wind, air pressure, and humidity [93–95]. Actual 
evapotranspiration (ETa) is then achieved by adjusting PET by further limiting 
factors such as moisture availability and properties of evapotranspiring media (e.g. 
physiological characteristics of plant species and hydraulic features of a soil type). 
Since PET and ETa are usually quantified separately, these two terms are discussed 
separately.

4.1 Potential evapotranspiration models

Penman-Monteith (P-M) equation, taking a full account of energy balance, 
convection, and canopy resistance while well documented by previous agricultural 
studies, is widely applied to estimate ET from almost all types of GI such as green 
roof [6, 57, 74, 83, 93, 96–99], bioretention [64, 80, 100], and permeable pavement 
[101]. Simpler models, such as Priest-Taylor equation without considering convec-
tion [102], or solely temperature-based Thornthwaite Equation [59, 85, 103] and 
Hargreaves Equation [96, 104], have also applied for GI when fewer inputs and less 
calibration effort required. Although a simpler method may achieve a better estimate 
for a unique site, the P-M equation has been framed into the classical protocol [105] 
to compute reference evapotranspiration (ETo), which represents ET from a standard 

117

Evapotranspiration from Green Infrastructure: Benefit, Measurement, and Simulation
DOI: http://dx.doi.org/10.5772/intechopen.80910

land cover with fixed vegetation characteristics (resistance, height, etc.). The 
concept of ETo has been widely accepted and integrated with the adjustments by lists 
of crop coefficient (Kc) and water stress coefficient (Ks) [105]. Potential evapotrans-
piration of a plant can be achieved by multiplying ETo by Kc.

Although the P-M equation is physically sound, it is problematic to apply it in 
the urban environment. Originally, the P-M equation was developed to estimate ET 
from a uniform surface with a homogenous footprint (like open water or well-
watered farmland). Urban environment, however, is composed of heterogeneous 
surfaces with distinct regimes of reflecting, absorbing, and releasing the incoming 
radiation, which result in intensive turbulence exchanges within a short period 
of time. Directly applying the P-M equation in the urban environment essentially 
breaks its underlying assumption of a homogeneous surface. The P-M equation 
would need adjustments for such cases after capturing the 3D field of weather vari-
ables, especially temperature, wind, and humidity fields. For example, the current 
practices of implementing the P-M equation only calculate aerodynamic resistance 
for the neutral stability condition by assuming a logarithmic profile of wind, 
temperature, and humidity [105, 106]. This assumption is only valid for inertial 
sublayer well above the building tops but will not hold in the roughness sublayer 
and urban canopy layer where GI exists [107]. This violation, mostly due to a high 
degree of vertical mixing (convection) and horizontal transport of air mass (advec-
tion), is seldom and hardly addressed during ET estimation for GI. Fundamentally, 
the P-M equation assumes an equivalent aerodynamic resistance for both sensible 
heat and momentum transfer under the neutral stability condition and ignores the 
contribution of advection to the energy supply commonly occurred in an urban 
environment. Stability correction [108] is cumbersome and may not be influential 
close to the canopy [109]. The advection tends to be negligible where relatively 
small differences in surface temperatures exist (like cropland), which is seldom the 
case in the urban domain [109].

A pioneering study proposed two crop coefficients to separately calibrate 
radiation and convection terms to improve ET estimation for green roofs [84]. 
This method implicitly assumes that the nightly convection would have the same 
magnitude as the daytime convection and also removes the moisture restriction on 
the convection term because of the weak correlation between convection and sub-
strate moisture at nighttime. The two-round correction was able to improve RMSE 
by 37% for water-limited conditions when ET is generally low but still suffered by 
underestimating large ET values during wet conditions [84]. This method still does 
not resolve the inherited problem of the neglect of horizontal advection in P-M 
equation, which seems to explain why the ratio of observed ET versus ETo was much 
higher during nighttime when no solar radiation exists.

Another implicit barrier in using the P-M equation for GI application lies in 
the complexity of the concept of surface resistance. Stomatal conductance, as the 
backbone of surface resistance, is highly variable and can be a function of instan-
taneous levels of temperature, vapor pressure deficit, leaf water potential, and 
ambient carbon dioxide concentration [110]. Stomatal resistance (the reciprocal 
of conductance) of green roof species could vary from 13 to 2500 s m−1 [49, 78]. 
However, in practice, the surface resistance is usually fixed at a constant value 
in [105, 106]. Therefore, the P-M equation and other common methods tend 
to struggle to capture both the high and low ET extremes for GI; e.g. for green 
roofs, the P-M methods often underestimate ET peaks, when moisture supply is 
adequate to support large ET values (close to PET level) [49, 81, 84, 89, 90]. The 
average surface resistance adopted by most studies keeps the simulated results 
approaching the average ET level but missing the higher and lower extremes. 
Adding a constant crop coefficient will still not improve this situation.
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The dilemma is that neither proposing a new framework nor improving the 
existing one is conceivably easy. Proposing a new PET equation with better rep-
resentation of convection, advection, and surface resistance will change the ETo 
standard, and then the existing references of crop coefficient and water stress coef-
ficient will need to be recalibrated. On the other hand, existing references of the 
current practices of using the P-M equation to estimate PET will require additional 
correction procedures to take account of those misrepresented terms and perhaps 
other unrepresented background terms.

Advection-Aridity model [111] can be a different method to estimate ETo for GI 
ignoring the restrictions in substrate moisture content and plant responses such as 
stomatal conductance [102]. Essentially, it merges the Penman equation that cap-
tures energy balance and vertical convection with the ‘advection-free’ Priest-Taylor 
equation; however, neither of them takes account of horizontal advection, which 
can be prevalent due to oasis effect in urban canyons. Artificial neural network 
provides an alternative workaround that establishes a best ET model for a specific 
GI unit at the microscale [112]. In the new era of big data, it can be envisioned that 
machine learning can also have a bright future given regional or global training 
datasets to be established and shared.

4.2 Actual evapotranspiration models

Potential evapotranspiration represents the ET rate limited only by energy supply 
instead of water supply. In current practices such as stormwater management, it is 
common to use PET or pan evaporation to represent ETa [100, 104, 113–116] and 
calculate other unknowns in the water balance [62]. However, without the adjust-
ment for the substrate moisture content, ETa will be overestimated for unsaturated 
conditions [89, 117]. Therefore, the water stress coefficient [105] is used to take 
account of moisture dynamics, and has been used as the benchmark for assessing 
other predictive ETa models in lieu of physically monitored data [90, 97]. Actual 
evapotranspiration can be achieved by multiplying ETo by Ks. Simpler equations 
have been applied to green roof, such as the Thornthwaite-Mather version neglecting 
the rooting depth and moisture stress [83], or the soil moisture extraction function 
(SMEF) that further removes the restriction of wilting point [59, 74, 93, 97]. All 
these methods tend to exaggerate the magnitude of ET reduction during dry periods, 
since they do not account for processes that could increase the moisture availability 
such as depression storage, interception, vegetation storage, and ponding water, or 
factors that alter ET fluxes like the subsurface moisture movement and non-ideal 
environmental conditions [81]. A fundamental assumption behind these water stress 
models is that ET from plant and medium should follow a linear response curve 
with the moisture content. The linear assumption, however, may not well reflect the 
plant’s real response, since plant’s stomatal activity also depends on other factors as 
discussed above. This linear trend and becomes much more problematic when repre-
senting special species such as succulent plants with distinct metabolism mechanism 
[49, 78].

5. Summary

A critical review was made to summarize the current research progress with 
regard to evapotranspiration from green infrastructure in term of the ecosystem 
services, measurement, and simulation. The related research gaps have been recog-
nized as follows. The optimum combinations of GI units in terms of types, amounts, 
and configurations for urban cooling are not identified at various scales. The fate 
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of percolation water is unknown, and this knowledge gap prevents the accurate 
appraisal of the influence of GI on the local or broader scale water balance. The 
contributing areas to the baseflow of an urban watershed should be recognized, so 
building GI at such locations would be most cost-effective. Baseflow should not be 
determined only by the local water budget but should be in line with the goals of 
regional or watershed strategic planning. Reestablishing a new water budget some-
where between the predevelopment and postdevelopment conditions is most feasible 
and beneficial for both human and ecosystem water demands in the future. Regional 
water budget planning should be made according to the weights assigned between 
human water demand and ecosystem water demand. To help build a ET database 
that can also be useful for future research and a wider community, field experiment-
ers should start to record a more complete background information for a GI site, 
such as detailed species information, the surrounding impervious and permeable 
landscapes, and broader fields of temperature, wind, and humidity. Meanwhile, the 
uncertainty information regarding sensors and parameters is recommended to be 
provided, especially when the purpose of the observation is to improve the simula-
tion of ET from a GI. The P-M equation assumes an equivalent aerodynamic resis-
tance for sensible heat and momentum transfer under the neutral stability condition 
and ignores the contribution of advection to the energy supply in urban environ-
ment. A fundamental assumption behind the water stress models is that ET from 
plant and medium should follow a linear response curve with the medium moisture 
content. The linear trend, however, is hardly to follow in practice.
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[49, 78].
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of percolation water is unknown, and this knowledge gap prevents the accurate 
appraisal of the influence of GI on the local or broader scale water balance. The 
contributing areas to the baseflow of an urban watershed should be recognized, so 
building GI at such locations would be most cost-effective. Baseflow should not be 
determined only by the local water budget but should be in line with the goals of 
regional or watershed strategic planning. Reestablishing a new water budget some-
where between the predevelopment and postdevelopment conditions is most feasible 
and beneficial for both human and ecosystem water demands in the future. Regional 
water budget planning should be made according to the weights assigned between 
human water demand and ecosystem water demand. To help build a ET database 
that can also be useful for future research and a wider community, field experiment-
ers should start to record a more complete background information for a GI site, 
such as detailed species information, the surrounding impervious and permeable 
landscapes, and broader fields of temperature, wind, and humidity. Meanwhile, the 
uncertainty information regarding sensors and parameters is recommended to be 
provided, especially when the purpose of the observation is to improve the simula-
tion of ET from a GI. The P-M equation assumes an equivalent aerodynamic resis-
tance for sensible heat and momentum transfer under the neutral stability condition 
and ignores the contribution of advection to the energy supply in urban environ-
ment. A fundamental assumption behind the water stress models is that ET from 
plant and medium should follow a linear response curve with the medium moisture 
content. The linear trend, however, is hardly to follow in practice.
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