
High Performance Parallel
Computing

Edited by Satyadhyan Chickerur

Edited by Satyadhyan Chickerur

This edited book aims to present the state of the art in research and development
of the convergence of high-performance computing and parallel programming for

various engineering and scientific applications. The book has consolidated algorithms,
techniques, and methodologies to bridge the gap between the theoretical foundations

of academia and implementation for research, which might be used in business and
other real-time applications in the future.The book outlines techniques and tools used
for emergent areas and domains, which include acceleration of large-scale electronic

structure simulations with heterogeneous parallel computing, characterizing
power and energy efficiency of a data-centric high-performance computing

runtime and applications, security applications of GPUs, parallel implementation
of multiprocessors on MPI using FDTD, particle-based fused rendering, design and
implementation of particle systems for mesh-free methods with high performance,

and evolving topics on heterogeneous computing. In the coming days the need to
converge HPC, IoT, cloud-based applications will be felt and this volume tries to bridge

that gap.

Published in London, UK

© 2019 IntechOpen
© Vladimir_Timofeev / iStock

ISBN 978-1-78985-623-1

H
igh Perform

ance Parallel C
om

puting

High Performance Parallel
Computing

Edited by Satyadhyan Chickerur

Published in London, United Kingdom

Supporting open minds since 2005

High Performance Parallel Computing
http://dx.doi.org/10.5772/intechopen.73629
Edited by Satyadhyan Chickerur

Contributors
Hoon Ryu, Oh-Kyoung Kwon, Song Fu, Song Huang, Scott Pakin, Michael Lang, Koji Koyamada, Naohisa
Sakamoto, Giuseppe Bilotta, Vito Zago, Alexis Hérault, Giorgos Vasiliadis, Satyadhyan Chickerur

© The Editor(s) and the Author(s) 2019
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce the
material. More details and guidelines concerning content reuse and adaptation can be foundat http://
www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2019 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, The Shard, 25th floor, 32 London Bridge Street
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

High Performance Parallel Computing
Edited by Satyadhyan Chickerur
p. cm.
Print ISBN 978-1-78985-623-1
Online ISBN 978-1-78985-624-8
eBook (PDF) ISBN 978-1-83962-065-2

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,000+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

120M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editor

Satyadhyan Chickerur has a BE degree in Electronics and
Communications, MTech in CSE, and PhD in Computer and
Information Sciences. He has served as Faculty in various engi-
neering colleges in India. Presently, he is with the Department of
Computer Science and Engineering, KLE Technological Uni-
versity (formerly BV Bhoomaraddi College of Engineering and
Technology), Hubli, as a Professor and Head of the Centre for

High Performance Computing. He is one of the members of the NVIDIA Univer-
sity Coordination Committee and is an NVIDIA DLI certified instructor. He is a
member of ISTE, IEEE, and ACM. He was the Execom member of the IEEE Signal
Processing Society, Bangalore chapter (2007–2009). He was a member of the Intel–
IISC–VTU Multicore Curriculum Development Committee. Satyadhyan was one
of the judges and a problem setter for the ACM ICPC programming contest of the
Asia Regionals in 2007 and 2008. He has received various grants from industry and
other organizations for research. The majority of the course offerings since 2007
were designed and developed based on the concept of outcome-based education,
involving modified Bloom’s taxonomy, project-based learning, and practice-based
learning in collaboration/association with various industries. He has published his
research papers in various journals and conferences, and has also presented tutorials
and invited talks on various occasions. Additionally, he is a referee for various inter-
national journals and conferences. His research interests include image processing,
soft computing, parallel and multicore programming, and communication systems.
He received the BOLT award from Air India for 2008–2009. His biography has been
profiled in Marquis Who’s Who in Science and Engineering 2007 and in Who’s Who in
the World 2008, 2012, 2013, 2014, and 2016.

Preface III

Chapter 1 1
Introductory Chapter: High Performance Parallel Computing
by Satyadhyan Chickerur

Chapter 2 3
Acceleration of Large-Scale Electronic Structure Simulations with
Heterogeneous Parallel Computing
by Oh-Kyoung Kwon and Hoon Ryu

Chapter 3 17
Characterizing Power and Energy Efficiency of Legion Data-Centric
Runtime and Applications on Heterogeneous High-Performance
Computing Systems
by Song Huang, Song Fu, Scott Pakin and Michael Lang

Chapter 4 37
Security Applications of GPUs
by Giorgos Vasiliadis

Chapter 5 55
Particle-Based Fused Rendering
by Koji Koyamada and Naohisa Sakamoto

Chapter 6 71
Design and Implementation of Particle Systems for Meshfree Methods
with High Performance
by Giuseppe Bilotta, Vito Zago and Alexis Hérault

Contents

Preface XIII

Chapter 1 1
Introductory Chapter: High Performance Parallel Computing
by Satyadhyan Chickerur

Chapter 2 3
Acceleration of Large-Scale Electronic Structure Simulations with
Heterogeneous Parallel Computing
by Oh-Kyoung Kwon and Hoon Ryu

Chapter 3 17
Characterizing Power and Energy Efficiency of Legion Data-Centric
Runtime and Applications on Heterogeneous High-Performance
Computing Systems
by Song Huang, Song Fu, Scott Pakin and Michael Lang

Chapter 4 37
Security Applications of GPUs
by Giorgos Vasiliadis

Chapter 5 55
Particle-Based Fused Rendering
by Koji Koyamada and Naohisa Sakamoto

Chapter 6 71
Design and Implementation of Particle Systems for Meshfree Methods
with High Performance
by Giuseppe Bilotta, Vito Zago and Alexis Hérault

Contents

Preface

This edited book aims to present the state of the art in research and development
of the convergence of high-performance computing and parallel programming
for various applications. The book has consolidated algorithms and techniques
to bridge the gap between the theoretical foundations of academia and
implementation for research, which might be used in business applications in the
future.

The book outlines techniques and tools used for emergent areas and domains,
including acceleration of large-scale electronic structure simulations with
heterogeneous parallel computing, characterizing power and energy efficiency of a
data-centric HPC runtime and applications, security applications of GPUs, parallel
implementation of multiprocessors on MPI using FDTD, particle-based fused
rendering, design and implementation of particle systems for mesh-free methods
with high performance, and evolving topics on heterogeneous computing.

It is certainly not an ambition to cover everything on HPPC in this book; rather this
edited work features the latest methodologies, technical progress, and the direction
in which the research is going.

The intended audience of this book will mainly consist of researchers, research
students, and practitioners in the area of HPPC. I would like to convey my
appreciation to all the contributors, including the accepted chapters’ authors and
many others who submitted their chapters but couldn’t be included in the book due
to various limitations.

My thanks to the editorial team, especially Mrs. Marina Dusevic, for their kind
support and great efforts in publishing this book on time.

Satyadhyan Chickerur
KLE Technological University, Hubballi, India

Preface

This edited book aims to present the state of the art in research and development
of the convergence of high-performance computing and parallel programming
for various applications. The book has consolidated algorithms and techniques
to bridge the gap between the theoretical foundations of academia and
implementation for research, which might be used in business applications in the
future.

The book outlines techniques and tools used for emergent areas and domains,
including acceleration of large-scale electronic structure simulations with
heterogeneous parallel computing, characterizing power and energy efficiency of a
data-centric HPC runtime and applications, security applications of GPUs, parallel
implementation of multiprocessors on MPI using FDTD, particle-based fused
rendering, design and implementation of particle systems for mesh-free methods
with high performance, and evolving topics on heterogeneous computing.

It is certainly not an ambition to cover everything on HPPC in this book; rather this
edited work features the latest methodologies, technical progress, and the direction
in which the research is going.

The intended audience of this book will mainly consist of researchers, research
students, and practitioners in the area of HPPC. I would like to convey my
appreciation to all the contributors, including the accepted chapters’ authors and
many others who submitted their chapters but couldn’t be included in the book due
to various limitations.

My thanks to the editorial team, especially Mrs. Marina Dusevic, for their kind
support and great efforts in publishing this book on time.

Satyadhyan Chickerur
KLE Technological University, Hubballi, India

1

Chapter 1

Introductory Chapter: High
Performance Parallel Computing
Satyadhyan Chickerur

1. Introduction

High performance computing research had an interesting journey from the year
1972 to this day. In the initial years HPC was considered synonyms with super-
computing and was accessible to the scientists and researchers who worked in the
domain of aeronautics, automobiles, petrochemicals, pharmaceuticals, particle
physics, weather forecasting, etc. to name a few. Next came a phase where the term
supercomputing gradually was replaced by high performance computing and the
computing power gradually shifted to PCs in the form of multicore processors for
various reasons. This was the time when lot of researchers saw benefit in paral-
lelizing their applications achieving speedups, scale ups and robustness. This was
possible because of concepts like Message passing interface, OpenMP, etc. which
got evolved. Lot of research was carried out related to HPC systems architecture,
computational models, parallel algorithms, and performance optimization, as a
result of which renewed interest was created in parallel computing for HPC. This
interest was also sustained because of:

I. Real time applications needed parallel processing for improving speedup.

II. Growing interest in artificial intelligence and machine learning.

III. Huge amount of data collected because of the revolution in the mobile
industry.

The past decade has seen democratization of massively parallel computing with
the introduction of accelerators in various forms, GPUs, and technologies like cloud
computing, HPC, Big data, and web technologies converging. The extent to which
we can parallelize an application/program depends on the granularity required. A
program running on the system can be considered as a big task which can be split
into smaller tasks and if these smaller tasks can be executed in parallel, then the
parallel programming can be applied to achieve better performance. Because of
the various new parallel architectures available, the developers now are in a better
position to decide whether they want the application to be coarse grained or fine
grained. The next decade will see a rise in the applications related to computer
vision, image and video processing, machine and deep learning, web services,
natural language processing, medicine, drug discovery, autonomous driving, and
biotechnology.

The research/application development today aims to solve the real world prob-
lems in the area of healthcare, automobiles, weather, security, etc. The chapters in
this edited volume try to capture few of the recent research work in related areas.

1

Chapter 1

Introductory Chapter: High
Performance Parallel Computing
Satyadhyan Chickerur

1. Introduction

High performance computing research had an interesting journey from the year
1972 to this day. In the initial years HPC was considered synonyms with super-
computing and was accessible to the scientists and researchers who worked in the
domain of aeronautics, automobiles, petrochemicals, pharmaceuticals, particle
physics, weather forecasting, etc. to name a few. Next came a phase where the term
supercomputing gradually was replaced by high performance computing and the
computing power gradually shifted to PCs in the form of multicore processors for
various reasons. This was the time when lot of researchers saw benefit in paral-
lelizing their applications achieving speedups, scale ups and robustness. This was
possible because of concepts like Message passing interface, OpenMP, etc. which
got evolved. Lot of research was carried out related to HPC systems architecture,
computational models, parallel algorithms, and performance optimization, as a
result of which renewed interest was created in parallel computing for HPC. This
interest was also sustained because of:

I. Real time applications needed parallel processing for improving speedup.

II. Growing interest in artificial intelligence and machine learning.

III. Huge amount of data collected because of the revolution in the mobile
industry.

The past decade has seen democratization of massively parallel computing with
the introduction of accelerators in various forms, GPUs, and technologies like cloud
computing, HPC, Big data, and web technologies converging. The extent to which
we can parallelize an application/program depends on the granularity required. A
program running on the system can be considered as a big task which can be split
into smaller tasks and if these smaller tasks can be executed in parallel, then the
parallel programming can be applied to achieve better performance. Because of
the various new parallel architectures available, the developers now are in a better
position to decide whether they want the application to be coarse grained or fine
grained. The next decade will see a rise in the applications related to computer
vision, image and video processing, machine and deep learning, web services,
natural language processing, medicine, drug discovery, autonomous driving, and
biotechnology.

The research/application development today aims to solve the real world prob-
lems in the area of healthcare, automobiles, weather, security, etc. The chapters in
this edited volume try to capture few of the recent research work in related areas.

High Performance Parallel Computing

2

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Satyadhyan Chickerur
KLE Technological University, Hubballi, India

*Address all correspondence to: chickerursr@kletech.ac.in

2. Conclusions

The next decade will see the convergence of high performance computing and
massively parallel computing for various applications and will help the research-
ers and scientists to solve problems which few years back were thought to be
unsolvable.

Acknowledgements

The editor would like to acknowledge the support of the management of K LE
Technological University during the duration of the editing of this book. This edi-
tion would not have been released on time without the support of the editorial team
of IntechOpen, especially the Author Service Manager, Mrs. Marina Dusevic.

3

Chapter 2

Acceleration of Large-Scale
Electronic Structure Simulations
with Heterogeneous Parallel
Computing
Oh-Kyoung Kwon and Hoon Ryu

Abstract

Large-scale electronic structure simulations coupled to an empirical modeling
approach are critical as they present a robust way to predict various quantum phe-
nomena in realistically sized nanoscale structures that are hard to be handled with
density functional theory. For tight-binding (TB) simulations of electronic struc-
tures that normally involve multimillion atomic systems for a direct comparison to
experimentally realizable nanoscale materials and devices, we show that graphical
processing unit (GPU) devices help in saving computing costs in terms of time and
energy consumption. With a short introduction of the major numerical method
adopted for TB simulations of electronic structures, this work presents a detailed
description for the strategies to drive performance enhancement with GPU devices
against traditional clusters of multicore processors. While this work only uses TB
electronic structure simulations for benchmark tests, it can be also utilized as a
practical guideline to enhance performance of numerical operations that involve
large-scale sparse matrices.

Keywords: offload computing, GPU devices, large-scale electronic structure
simulations, tight-binding approach, nanoelectronics modeling

1. Introduction

As the dimension of functional semiconductor devices are scaled down to deca-
nanometer (nm) sizes, the underlying material can no longer be considered con-
tinuous. The number of atoms in the active device region becomes countable in the
range of ~50 K to a few millions, and their local arrangements in interfaces, alloys,
and strained systems give non-negligible effects on device characteristics [1–3].
Also, most experimentally realized structures are not infinitely periodic, but are
finite in sizes; such geometries call for a local orbital basis, rather than a plane wave
basis which implies infinite periodicity. As full ab-initio methods such as density
functional theory are in principle hard to simulate electronic structures of such a
huge and discrete atomic structures [4, 5], the necessity of atomistic approaches
based on an empirical modeling method is quite huge.

The spds* 10-band tight-binding (TB) approach, which employs a set of 10 local-
ized orbital bases to describe a single atom, has been extensively used to explain

High Performance Parallel Computing

2

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Author details

Satyadhyan Chickerur
KLE Technological University, Hubballi, India

*Address all correspondence to: chickerursr@kletech.ac.in

2. Conclusions

The next decade will see the convergence of high performance computing and
massively parallel computing for various applications and will help the research-
ers and scientists to solve problems which few years back were thought to be
unsolvable.

Acknowledgements

The editor would like to acknowledge the support of the management of K LE
Technological University during the duration of the editing of this book. This edi-
tion would not have been released on time without the support of the editorial team
of IntechOpen, especially the Author Service Manager, Mrs. Marina Dusevic.

3

Chapter 2

Acceleration of Large-Scale
Electronic Structure Simulations
with Heterogeneous Parallel
Computing
Oh-Kyoung Kwon and Hoon Ryu

Abstract

Large-scale electronic structure simulations coupled to an empirical modeling
approach are critical as they present a robust way to predict various quantum phe-
nomena in realistically sized nanoscale structures that are hard to be handled with
density functional theory. For tight-binding (TB) simulations of electronic struc-
tures that normally involve multimillion atomic systems for a direct comparison to
experimentally realizable nanoscale materials and devices, we show that graphical
processing unit (GPU) devices help in saving computing costs in terms of time and
energy consumption. With a short introduction of the major numerical method
adopted for TB simulations of electronic structures, this work presents a detailed
description for the strategies to drive performance enhancement with GPU devices
against traditional clusters of multicore processors. While this work only uses TB
electronic structure simulations for benchmark tests, it can be also utilized as a
practical guideline to enhance performance of numerical operations that involve
large-scale sparse matrices.

Keywords: offload computing, GPU devices, large-scale electronic structure
simulations, tight-binding approach, nanoelectronics modeling

1. Introduction

As the dimension of functional semiconductor devices are scaled down to deca-
nanometer (nm) sizes, the underlying material can no longer be considered con-
tinuous. The number of atoms in the active device region becomes countable in the
range of ~50 K to a few millions, and their local arrangements in interfaces, alloys,
and strained systems give non-negligible effects on device characteristics [1–3].
Also, most experimentally realized structures are not infinitely periodic, but are
finite in sizes; such geometries call for a local orbital basis, rather than a plane wave
basis which implies infinite periodicity. As full ab-initio methods such as density
functional theory are in principle hard to simulate electronic structures of such a
huge and discrete atomic structures [4, 5], the necessity of atomistic approaches
based on an empirical modeling method is quite huge.

The spds* 10-band tight-binding (TB) approach, which employs a set of 10 local-
ized orbital bases to describe a single atom, has been extensively used to explain

High Performance Parallel Computing

4

experimental behaviors of various quantum devices [2, 6–9] through large-scale
electronic structure simulations with the well-known nanoelectronics modeling
tool (NEMO) [10, 11]. As the NEMO only runs in traditional computing clusters of
multicore processors, we also have recently released a new software package for TB
simulations (Quantum simulation tool for Advanced Nanoscale Devices (Q-AND)),
which supports computation with Intel Xeon Phi PCI-E add-in devices and shows
enhanced performance compared to the result obtained with clusters of Intel Xeon
multicore processors [12].

The major purpose of this work is to explore the performance benefits that
can be obtained with NVIDIA general-purpose graphical processing unit (GPU)
devices, which are also PCI-E add-in devices and are popularly adopted by com-
munities to solve various computing-intensive problems. In particular, (1) we
present methodological details applied to enhance the performance of TB electronic
structure simulations with GPU devices. Then (2) we show the excellence of speed
and scalability for end-to-end simulations of realistically sized nanostructures and
(3) analyze the economic benefits of latest GPU devices for TB simulations against
computing resources of multicore processors (host CPUs). Extending our previous
work with Intel Knights Corner coprocessors [12] to the area of GPU computing,
this work delivers practical information for technical details that are employed to
accelerate empirical modeling of large-scale electronic structures and therefore can
serve as a guideline that is beneficial to researchers in the field of nanoelectronics
who consider a code migration to heterogeneous computing platforms involving
PCI-E communications, which takes a non-negligible portion of top 500 high-
performance computing systems in the world [13]. While latest NVIDIA GPU
devices also support NVLink communications, here we only consider the PCI-E one
for the performance analysis.

2. Methodology

Electronic structures of target nanostructures are described with a sp3d5s∗
TB model [6, 9, 10], which employs 10 orthogonal orbital bases to represent a
single atom assuming nearest-neighbor couplings. As shown in Figure 1 (top),
simulation domains are decomposed in a multidimensional manner with MPI and
OpenMP. Hamiltonian matrices, which are stored in compressed sparse row (CSR)
format [14], are then decomposed in a row-wise manner. The Schrödinger equation
solver, which computes normal eigenvalue problems in a numerical perspective, is
developed with the Lanczos method [15] whose computational bottleneck comes
from sparse matrix-vector multiplication (SpMV) [12, 15]. The basic idea for the
performance improvement would thus be to perform SpMV with a simultaneous
utilization of host CPUs and GPU devices, where Figure 1 (bottom) illustrates this
idea. Here, each GPU device has a block matrix belonging to an MPI process, which
sends/receives input (Vin)/output (Vout) vectors to/from the associated GPU
device. Each MPI process does not need to send the whole Vin since multiplication
in an MPI process can be done with only three block vectors of Vin (1 in itself, 2 in
its neighbor processes) as our TB model assumes nearest-neighbor couplings. Upon
the completion of multiplication, a GPU device just needs to send 1 block of Vout)
back to its associated MPI process. Host CPUs and GPU devices can thus perform
multiplication simultaneously with no heavy overhead of data transfer. In the next
subsections, we present further detailed methodologies for (1) the simultaneous
utilization of host CPUs and GPU devices and (2) the implementation of efficient
SpMV CUDA kernels.

5

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

2.1 Simultaneous utilization of both CPU and GPU

The following are two ways of how to efficiently utilize the resources of both
CPUs and GPUs. One takes the pageable memory when transferring data between
CPU and GPU, whereas the other uses the pinned memory. The memory can be
allocated in the pinned memory with the cudaMallocHost function of CUDA library,
which prevents the memory from being paged out and therefore improves the
speed of data transfer between host and GPU devices. The pageable (non-pinned)
memory can be used with the malloc function of standard C library. This subsession
will discuss in detail how SpMV can be done with the abovementioned two ways.

Computations of SpMV in host CPU and GPU devices are overlapped in default
since the GPU kernel function is called in a non-blocking manner such that its
execution can be done in parallel with the execution in CPU code. As shown in
Figure 2(a), however, data transfer between host and (GPU) device memory can-
not be overlapped with the CPU computation when the pageable memory is used.
As depicted in Figure 2(b), the pinned memory enables the CPU calculation to be
overlapped with data transfer [16]. Another merit that can be obtained with the
pinned memory is that the effective bandwidth of data transfer itself is increased
by ~3 times compared to the one obtained with the pageable memory, because the
bandwidth of the PCI-E bus to connect CPU and GPU is not fully exploited with the
pageable memory [16]. The pinned memory can be used with the cudaMallocHost
(CUDA library) instead of malloc function. As memory offload is much faster and

Figure 1.
(Top) scheme for domain decomposition. Hamiltonian matrices representing real-space simulation domains are
decomposed in a row-wise manner with a hybrid use of MPI and OpenMP. (bottom) conceptual illustration of
how to share the computing load of matrix-vector multiplication into both host CPUs and GPU devices.

High Performance Parallel Computing

4

experimental behaviors of various quantum devices [2, 6–9] through large-scale
electronic structure simulations with the well-known nanoelectronics modeling
tool (NEMO) [10, 11]. As the NEMO only runs in traditional computing clusters of
multicore processors, we also have recently released a new software package for TB
simulations (Quantum simulation tool for Advanced Nanoscale Devices (Q-AND)),
which supports computation with Intel Xeon Phi PCI-E add-in devices and shows
enhanced performance compared to the result obtained with clusters of Intel Xeon
multicore processors [12].

The major purpose of this work is to explore the performance benefits that
can be obtained with NVIDIA general-purpose graphical processing unit (GPU)
devices, which are also PCI-E add-in devices and are popularly adopted by com-
munities to solve various computing-intensive problems. In particular, (1) we
present methodological details applied to enhance the performance of TB electronic
structure simulations with GPU devices. Then (2) we show the excellence of speed
and scalability for end-to-end simulations of realistically sized nanostructures and
(3) analyze the economic benefits of latest GPU devices for TB simulations against
computing resources of multicore processors (host CPUs). Extending our previous
work with Intel Knights Corner coprocessors [12] to the area of GPU computing,
this work delivers practical information for technical details that are employed to
accelerate empirical modeling of large-scale electronic structures and therefore can
serve as a guideline that is beneficial to researchers in the field of nanoelectronics
who consider a code migration to heterogeneous computing platforms involving
PCI-E communications, which takes a non-negligible portion of top 500 high-
performance computing systems in the world [13]. While latest NVIDIA GPU
devices also support NVLink communications, here we only consider the PCI-E one
for the performance analysis.

2. Methodology

Electronic structures of target nanostructures are described with a sp3d5s∗
TB model [6, 9, 10], which employs 10 orthogonal orbital bases to represent a
single atom assuming nearest-neighbor couplings. As shown in Figure 1 (top),
simulation domains are decomposed in a multidimensional manner with MPI and
OpenMP. Hamiltonian matrices, which are stored in compressed sparse row (CSR)
format [14], are then decomposed in a row-wise manner. The Schrödinger equation
solver, which computes normal eigenvalue problems in a numerical perspective, is
developed with the Lanczos method [15] whose computational bottleneck comes
from sparse matrix-vector multiplication (SpMV) [12, 15]. The basic idea for the
performance improvement would thus be to perform SpMV with a simultaneous
utilization of host CPUs and GPU devices, where Figure 1 (bottom) illustrates this
idea. Here, each GPU device has a block matrix belonging to an MPI process, which
sends/receives input (Vin)/output (Vout) vectors to/from the associated GPU
device. Each MPI process does not need to send the whole Vin since multiplication
in an MPI process can be done with only three block vectors of Vin (1 in itself, 2 in
its neighbor processes) as our TB model assumes nearest-neighbor couplings. Upon
the completion of multiplication, a GPU device just needs to send 1 block of Vout)
back to its associated MPI process. Host CPUs and GPU devices can thus perform
multiplication simultaneously with no heavy overhead of data transfer. In the next
subsections, we present further detailed methodologies for (1) the simultaneous
utilization of host CPUs and GPU devices and (2) the implementation of efficient
SpMV CUDA kernels.

5

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

2.1 Simultaneous utilization of both CPU and GPU

The following are two ways of how to efficiently utilize the resources of both
CPUs and GPUs. One takes the pageable memory when transferring data between
CPU and GPU, whereas the other uses the pinned memory. The memory can be
allocated in the pinned memory with the cudaMallocHost function of CUDA library,
which prevents the memory from being paged out and therefore improves the
speed of data transfer between host and GPU devices. The pageable (non-pinned)
memory can be used with the malloc function of standard C library. This subsession
will discuss in detail how SpMV can be done with the abovementioned two ways.

Computations of SpMV in host CPU and GPU devices are overlapped in default
since the GPU kernel function is called in a non-blocking manner such that its
execution can be done in parallel with the execution in CPU code. As shown in
Figure 2(a), however, data transfer between host and (GPU) device memory can-
not be overlapped with the CPU computation when the pageable memory is used.
As depicted in Figure 2(b), the pinned memory enables the CPU calculation to be
overlapped with data transfer [16]. Another merit that can be obtained with the
pinned memory is that the effective bandwidth of data transfer itself is increased
by ~3 times compared to the one obtained with the pageable memory, because the
bandwidth of the PCI-E bus to connect CPU and GPU is not fully exploited with the
pageable memory [16]. The pinned memory can be used with the cudaMallocHost
(CUDA library) instead of malloc function. As memory offload is much faster and

Figure 1.
(Top) scheme for domain decomposition. Hamiltonian matrices representing real-space simulation domains are
decomposed in a row-wise manner with a hybrid use of MPI and OpenMP. (bottom) conceptual illustration of
how to share the computing load of matrix-vector multiplication into both host CPUs and GPU devices.

High Performance Parallel Computing

6

communication hiding is possible, the pinned memory would be superior to the
page memory for saving the wall time of SpMV calculations with GPU devices.

2.2 CUDA SpMV kernels

We have developed three different CUDA SpMV kernels as illustrated in Figure 3:
(i) a basic kernel that allocates a single CUDA thread per a row in the matrix (naïve),
(ii) a kernel that always allocates a single WARP to the SPMV operation for a single
row in the matrix (warp1) [17], and (iii) a kernel that dynamically allocates multiple
WARPs to the SPMV operation for a single row in the matrix (warp2) [18].

Firstly, the naive kernel is a straightforward approach to map a single CUDA
thread to a single row in the matrix. Because the Q-AND code uses the CSR format
to describe the Hamiltonian matrix, SpMV operations need an indirect addressing
step for every single scalar operation needed for multiplications. Consecutive threads
therefore have to access irregularly strided memory as illustrated in Figure 3(a). As
noted by Harris [19], such access patterns would degrade performance, because then
successive threads may not be able to access the global memory simultaneously to
read non-zero elements of the matrix (Figure 3(a)).

Secondly, the warp1 kernel uses the maximum number of CUDA threads of a
single WARP for multiplications of a single row in the matrix. A WARP is defined
as the group of threads and consists of contiguous threads (32 threads for Tesla K40
devices) [19, 20]. Since threads in a single WARP can access the global memory
simultaneously, we can reduce the number of transactions that are required to
access the global memory, and therefore we expect non-negligible performance
enhancement for SpMV operations against the naïve kernel (Figure 3(b)) [18].
However, this solution may not be the best one, since we always use a single WARP
for a single matrix row, and therefore we may have idle threads (or WARPs) if the
maximum number of WARPs supported by a single GPU device is larger than the
number of rows of a block matrix that are belonging to that GPU device.

Figure 2.
Comparison of two methodologies for simultaneous utilization of both CPU and GPU. (a) With pageable
memory, data transfer between CPUs and GPU devices cannot be hidden behind the SpMV computation.
(b) With pinned memory, data transfer can be overlapped with the SpMV computation and can be performed
with much higher bandwidth.

7

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

Thirdly, the warp2 kernel dynamically allocates WARPs to a single matrix row
as depicted in Figure 3(c). Here, the number of WARPs allocated to a single matrix
row is dynamically determined by counting the number of corresponding non-zero
elements, i.e., an integer value that is closest to “the number of non-zero elements
in one matrix row/the number of threads per a single WARP. “We note the warp2
kernel would be optimal for our problem since the TB Hamiltonian matrix normally
has non-zero elements that are larger than 32.

In addition, we can increase the performance by utilizing the texture memory
for the vector data retrieval, where texture memory, which is a read-only memory,
is cached on-chip and provides higher effective bandwidth by reducing memory
requests toward off-chip DRAM. Since the in/out vectors are irregularly accessed
by threads from the global memory of GPU devices, the performance improvement
could be driven by applying the texture memory. The following section reveals the
result of the evaluation.

Figure 3.
Conceptual scheme of three SpMV CUDA kernels. (a) A basic kernel that maps a single thread to a single
row in the matrix for SpMV (naive). Here, consecutive threads (t0, t1,…,tn − 1) access nonconsecutive words.
(b) A kernel that uses WARP statically (warp1). It always allocates a single WARP (32 threads in Tesla K40)
to a single row in the matrix. Consecutive threads (t0, t1,…,tn − 1) access consecutive words. (c) A kernel that
uses WARP dynamically (warp2). It dynamically allocates WARPs to a single row considering the sparsity of
matrix.

High Performance Parallel Computing

6

communication hiding is possible, the pinned memory would be superior to the
page memory for saving the wall time of SpMV calculations with GPU devices.

2.2 CUDA SpMV kernels

We have developed three different CUDA SpMV kernels as illustrated in Figure 3:
(i) a basic kernel that allocates a single CUDA thread per a row in the matrix (naïve),
(ii) a kernel that always allocates a single WARP to the SPMV operation for a single
row in the matrix (warp1) [17], and (iii) a kernel that dynamically allocates multiple
WARPs to the SPMV operation for a single row in the matrix (warp2) [18].

Firstly, the naive kernel is a straightforward approach to map a single CUDA
thread to a single row in the matrix. Because the Q-AND code uses the CSR format
to describe the Hamiltonian matrix, SpMV operations need an indirect addressing
step for every single scalar operation needed for multiplications. Consecutive threads
therefore have to access irregularly strided memory as illustrated in Figure 3(a). As
noted by Harris [19], such access patterns would degrade performance, because then
successive threads may not be able to access the global memory simultaneously to
read non-zero elements of the matrix (Figure 3(a)).

Secondly, the warp1 kernel uses the maximum number of CUDA threads of a
single WARP for multiplications of a single row in the matrix. A WARP is defined
as the group of threads and consists of contiguous threads (32 threads for Tesla K40
devices) [19, 20]. Since threads in a single WARP can access the global memory
simultaneously, we can reduce the number of transactions that are required to
access the global memory, and therefore we expect non-negligible performance
enhancement for SpMV operations against the naïve kernel (Figure 3(b)) [18].
However, this solution may not be the best one, since we always use a single WARP
for a single matrix row, and therefore we may have idle threads (or WARPs) if the
maximum number of WARPs supported by a single GPU device is larger than the
number of rows of a block matrix that are belonging to that GPU device.

Figure 2.
Comparison of two methodologies for simultaneous utilization of both CPU and GPU. (a) With pageable
memory, data transfer between CPUs and GPU devices cannot be hidden behind the SpMV computation.
(b) With pinned memory, data transfer can be overlapped with the SpMV computation and can be performed
with much higher bandwidth.

7

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

Thirdly, the warp2 kernel dynamically allocates WARPs to a single matrix row
as depicted in Figure 3(c). Here, the number of WARPs allocated to a single matrix
row is dynamically determined by counting the number of corresponding non-zero
elements, i.e., an integer value that is closest to “the number of non-zero elements
in one matrix row/the number of threads per a single WARP. “We note the warp2
kernel would be optimal for our problem since the TB Hamiltonian matrix normally
has non-zero elements that are larger than 32.

In addition, we can increase the performance by utilizing the texture memory
for the vector data retrieval, where texture memory, which is a read-only memory,
is cached on-chip and provides higher effective bandwidth by reducing memory
requests toward off-chip DRAM. Since the in/out vectors are irregularly accessed
by threads from the global memory of GPU devices, the performance improvement
could be driven by applying the texture memory. The following section reveals the
result of the evaluation.

Figure 3.
Conceptual scheme of three SpMV CUDA kernels. (a) A basic kernel that maps a single thread to a single
row in the matrix for SpMV (naive). Here, consecutive threads (t0, t1,…,tn − 1) access nonconsecutive words.
(b) A kernel that uses WARP statically (warp1). It always allocates a single WARP (32 threads in Tesla K40)
to a single row in the matrix. Consecutive threads (t0, t1,…,tn − 1) access consecutive words. (c) A kernel that
uses WARP dynamically (warp2). It dynamically allocates WARPs to a single row considering the sparsity of
matrix.

High Performance Parallel Computing

8

3. Results and discussions

This section discusses the performance evaluation of our solver from following
perspectives: (i) the strong/weak scalability of end-to-end simulations and the
optimal GPU load (i.e., the portion of SpMV calculation allocated to GPU devices
that shows the best speed), (ii) impact of the pinned memory on computing
performance, (iii) performances of the three different CUDA SpMV kernels, and
(iv) energy efficiency and economic benefit of GPU computing for electronic
structure simulations against the results obtained with CPU computing only.
All the benchmark tests are performed on the two test-bed machines: one is the
K40 test-bed including three computing nodes connected with an infinite-band
4 × FDR (56 Gbps) network, where each node has two Intel Xeon CPUs E5-2650
v3 [21], two NVIDIA Tesla K40 GPU cards [20], and one 128G DDR3 1867 MHz
memory, and another is a P100 test-bed including one node with same configu-
ration except two NVIDIA Tesla P100 cards [22]. The codes are compiled with
CUDA 8.0 library, Intel C++ compiler 16.0, and OpenMPI 1.10.2. Si:P quantum
dots (QDs), which are defined to be huge silicon (Si) layers encapsulating a
single phosphorus (P) atom and are studied with a 10-band TB model for designs
of Si-based quantum computers [8, 9, 23], are used as target devices for all the
benchmark tests.

3.1 Evaluation of utilization of both GPUs and CPUs

Using the pinned memory and the warp2 kernel with texture memory, simula-
tions are performed for Si:P QDs with a convergence criterion of 10−8 eV and are
completed when 104 Lanczos iterations are reached or 10 lowest energy levels in
conduction band are found. Every bar graph of Figure 4 has the following six
elements: MPI communication (Comm), data transfer from host to GPU device
(CopyIn), SpMV + data transfer from GPU device to host (SpMV + CopyOut), dot
product (VVDot), memory operations (MemOp), and other portions (Others). Note
that SpMV + CopyOut includes the time required for SpMV on GPU devices and
data transfer from GPU device to host memory, while SpMV on CPUs is performed
at the same time.

Figure 4(a) and (b) presents the strong and weak scalability of the end-to-end
simulation at the K40 and P100 test-beds, respectively. The Si:P QD tested for
the strong scalability has a cuboid Si layer that consists of a total of 30 × 80 × 80
[100] unit cells and has a dimension of ~16 nm × 43 nm × 43 nm (about 1.5 million
atoms). The problem size for the weak scalability test is 15n × 80 × 80 [100] unit
cells (n × 7.5 × 105 atoms), where n denotes the number of MPI ranks. As we use 10
bases to describe a single atom, the degrees of freedom (DOF) of corresponding
Hamiltonian matrices are ~15 million (for strong scalability) and ~7.5 million/rank
(for weak scalability), respectively. Here, we see that the strong scalability is gener-
ally quite good, where each MPI rank is mapped to 10 CPU cores and one GPU card.
The job using six MPI ranks is 2.34 times faster than the one executed with two
ranks for the 30 × 80 × 80 unitcells at the K40 test-bed. It shows nice scales accord-
ing to the number of cores, because a significant portion of the wall time is taken by
SpMV that would give a nice scalability as the matrix has a block-tridiagonal shape,
and therefore the burden of MPI communications would not become a serious
problem. The weak scalability also shows good since the wall time is not signifi-
cantly affected by MPI communications.

In addition, Figure 4(c) and (d) illustrates the performance comparison in
terms of the wall time according to the GPU load at the K40 and P100 test-beds,

9

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

respectively. The QD considered for the experiment here has 30 × 80 × 80 unit
cells. The elapsed time is described as a function of computing load for SpMV on
GPU devices (GPU load). As described in the previous section, SpMV is the most
time-consuming part such that it takes about 56% of the wall time when CPUs
perform all the multiplications (GPU load is zero) at the K40 test-bed. However, as
the GPU load increases, SpMV takes less time and shows the best speed when the
GPU load is ~70%. This optimal GPU load depends on the hardware performance
of GPU devices such that, at the P100 test-bed (with same host CPUs), it is ~90%.
The speedup becomes 1.44× and 1.7× for the target simulation at the K40 and P100
test-beds, respectively, against the case when GPU load is zero (only CPUs are used
for simulations).

Then let us discuss why this optimal GPU load becomes about 70 and 90%
at the K40 and P100 test-beds, respectively. Since the performance of SpMV
depends on various factors such as computing units, memory bandwidth and
latency, network speed, and PCI-E bandwidth between host and GPU device, it
is not easy to clearly extract the exact value of the optimal GPU load. However,
the “ideal value” of the GPU load could be approximately calculated using only
the theoretical peak performance of computing units, because the performance
of SpMV would be maximized when both CPUs and GPUs complete comput-
ing operations at the same time. If we denote the peak performance (in the
unit of floating point operations per second (FLOPS)) of host CPUs and PCI-E

Figure 4.
Performance of Q-AND code with GPUs computing using the pinned memory and the warp2 kernel with
texture memory. (a) Strong scalability of computing 30 × 80 × 80 unit cells at the K40 test-bed. (b) Weak
scalability of computing 15 × 80 × 80 unit cells per single MPI process at the K40 test-bed. (c) Performance
of computing 30 × 80 × 80 unit cells as a function of the GPU load at the K40 test-bed. (d) Performance
comparison of computing 30 × 80 × 80 unit cells as a function of the GPU load at the P100 test-bed.

High Performance Parallel Computing

8

3. Results and discussions

This section discusses the performance evaluation of our solver from following
perspectives: (i) the strong/weak scalability of end-to-end simulations and the
optimal GPU load (i.e., the portion of SpMV calculation allocated to GPU devices
that shows the best speed), (ii) impact of the pinned memory on computing
performance, (iii) performances of the three different CUDA SpMV kernels, and
(iv) energy efficiency and economic benefit of GPU computing for electronic
structure simulations against the results obtained with CPU computing only.
All the benchmark tests are performed on the two test-bed machines: one is the
K40 test-bed including three computing nodes connected with an infinite-band
4 × FDR (56 Gbps) network, where each node has two Intel Xeon CPUs E5-2650
v3 [21], two NVIDIA Tesla K40 GPU cards [20], and one 128G DDR3 1867 MHz
memory, and another is a P100 test-bed including one node with same configu-
ration except two NVIDIA Tesla P100 cards [22]. The codes are compiled with
CUDA 8.0 library, Intel C++ compiler 16.0, and OpenMPI 1.10.2. Si:P quantum
dots (QDs), which are defined to be huge silicon (Si) layers encapsulating a
single phosphorus (P) atom and are studied with a 10-band TB model for designs
of Si-based quantum computers [8, 9, 23], are used as target devices for all the
benchmark tests.

3.1 Evaluation of utilization of both GPUs and CPUs

Using the pinned memory and the warp2 kernel with texture memory, simula-
tions are performed for Si:P QDs with a convergence criterion of 10−8 eV and are
completed when 104 Lanczos iterations are reached or 10 lowest energy levels in
conduction band are found. Every bar graph of Figure 4 has the following six
elements: MPI communication (Comm), data transfer from host to GPU device
(CopyIn), SpMV + data transfer from GPU device to host (SpMV + CopyOut), dot
product (VVDot), memory operations (MemOp), and other portions (Others). Note
that SpMV + CopyOut includes the time required for SpMV on GPU devices and
data transfer from GPU device to host memory, while SpMV on CPUs is performed
at the same time.

Figure 4(a) and (b) presents the strong and weak scalability of the end-to-end
simulation at the K40 and P100 test-beds, respectively. The Si:P QD tested for
the strong scalability has a cuboid Si layer that consists of a total of 30 × 80 × 80
[100] unit cells and has a dimension of ~16 nm × 43 nm × 43 nm (about 1.5 million
atoms). The problem size for the weak scalability test is 15n × 80 × 80 [100] unit
cells (n × 7.5 × 105 atoms), where n denotes the number of MPI ranks. As we use 10
bases to describe a single atom, the degrees of freedom (DOF) of corresponding
Hamiltonian matrices are ~15 million (for strong scalability) and ~7.5 million/rank
(for weak scalability), respectively. Here, we see that the strong scalability is gener-
ally quite good, where each MPI rank is mapped to 10 CPU cores and one GPU card.
The job using six MPI ranks is 2.34 times faster than the one executed with two
ranks for the 30 × 80 × 80 unitcells at the K40 test-bed. It shows nice scales accord-
ing to the number of cores, because a significant portion of the wall time is taken by
SpMV that would give a nice scalability as the matrix has a block-tridiagonal shape,
and therefore the burden of MPI communications would not become a serious
problem. The weak scalability also shows good since the wall time is not signifi-
cantly affected by MPI communications.

In addition, Figure 4(c) and (d) illustrates the performance comparison in
terms of the wall time according to the GPU load at the K40 and P100 test-beds,

9

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

respectively. The QD considered for the experiment here has 30 × 80 × 80 unit
cells. The elapsed time is described as a function of computing load for SpMV on
GPU devices (GPU load). As described in the previous section, SpMV is the most
time-consuming part such that it takes about 56% of the wall time when CPUs
perform all the multiplications (GPU load is zero) at the K40 test-bed. However, as
the GPU load increases, SpMV takes less time and shows the best speed when the
GPU load is ~70%. This optimal GPU load depends on the hardware performance
of GPU devices such that, at the P100 test-bed (with same host CPUs), it is ~90%.
The speedup becomes 1.44× and 1.7× for the target simulation at the K40 and P100
test-beds, respectively, against the case when GPU load is zero (only CPUs are used
for simulations).

Then let us discuss why this optimal GPU load becomes about 70 and 90%
at the K40 and P100 test-beds, respectively. Since the performance of SpMV
depends on various factors such as computing units, memory bandwidth and
latency, network speed, and PCI-E bandwidth between host and GPU device, it
is not easy to clearly extract the exact value of the optimal GPU load. However,
the “ideal value” of the GPU load could be approximately calculated using only
the theoretical peak performance of computing units, because the performance
of SpMV would be maximized when both CPUs and GPUs complete comput-
ing operations at the same time. If we denote the peak performance (in the
unit of floating point operations per second (FLOPS)) of host CPUs and PCI-E

Figure 4.
Performance of Q-AND code with GPUs computing using the pinned memory and the warp2 kernel with
texture memory. (a) Strong scalability of computing 30 × 80 × 80 unit cells at the K40 test-bed. (b) Weak
scalability of computing 15 × 80 × 80 unit cells per single MPI process at the K40 test-bed. (c) Performance
of computing 30 × 80 × 80 unit cells as a function of the GPU load at the K40 test-bed. (d) Performance
comparison of computing 30 × 80 × 80 unit cells as a function of the GPU load at the P100 test-bed.

High Performance Parallel Computing

10

connected devices by PH and PD, respectively, the optimal GPU load (x) can be
calculated as the following equation (Eq. (1)):

 x = 100 × P D _______ P D + P H (1)

Since a single computing node of the K40 test-bed has a PH of about 0.736 × 1012
FLOPS for twenty CPU cores of Xeon E5-2650 v3 [21], and a PD of about
2.620 × 1012 FLOPS for two Tesla K40 devices [20], x is derived to about 78.1%,
which it is a little higher than the measured value (70%) due to the ignorance
of other factors (memory bandwidth, etc.). For the P100 test-bed (PD of about
10.600× 1012 FLOPS) [22], x is also evaluated to about 93.5%, while we find it at
~90%. Even though the derived values are not strictly accurate, we can still explain
why the optimal GPU load of the K40 and P100 test-beds turns out to be higher
than the one (~65%) measured with Xeon Phi Knights Corner coprocessors [12].

3.2 Effects of pinned memory on performance

As explained in the previous section, the pinned memory may make a non-negligible
impact on the overall performance of large-scale simulations. Figure 5(a) shows the
performance measured with the pinned and pageable memory at a 70% (K40) and 90%
(P100) GPU load, where a single computing node is used with the warp2 kernel and tex-
ture memory. The Si:P QD has 30 × 80 × 80 unit cells. Results indicate that the case with
pinned memory shows better performance than the one with pageable memory due to the
following two points: (1) The reduction of CopyIn time due to the increased bandwidth of
PCI-E bus with pinned memory and (2) SpMV + CopyOut time as communication hiding
behind the computation. We observed the effective bandwidth of PCI-E communication
is ~3.31 GB/s with the pageable memory on every test-bed, while it reaches ~10.40 GB/s
with the pinned memory, driving ~3.14 speedup in data transfer. The effective speed of
SpMV operations increases by a factor of 1.36 and 1.19 with pinned memory compared
to the speed with pageable memory at the K40 and P100 test-beds, respectively, since
utilization of the pinned can overlap computation and data transfer. The performance for
end-to-end simulations therefore becomes 1.27 and 1.21 times faster with pinned memory
against the performance obtained with pageable memory at 70% GPU load (K40) and
90% GPU load (P100), respectively.

Figure 5.
Performance measured in a single computing node for end-to-end simulations of 30 × 80 × 80 unit cells at the
optimal GPU load (70% for K40 and 90% for P100). (a) Performance measured with the pinned and pageable
memory when the warp2 kernel is used. (b) Performance of three different SpMV CUDA implementations.
SPMV calculations are slightly accelerated with utilization of the texture memory.

11

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

Though here we only focused on the performance of PCI-E communications, it
is possible to estimate the performance benefit that may be obtained with NVLink
communications. For this purpose, we investigate how the bandwidth of communi-
cations between CPU and GPU affects the overall performance, where we find that
the overall speedup is ~1.21× due to the ~3.1× enhancement of PCI-E bandwidth on
the effects of pinned memory in PCI-E add-in P100 devices. Because the bandwidth
improvement with NVLink connectivity between CPU and GPU is ~3× compared
to the PCI-E [24], we may roughly expect that there will be another ~1.06× speedup
for the end-to-end simulation with NVLink add-in P100 devices.

3.3 Performance analysis of SpMV CUDA kernels

Here we investigate the performance of three different SpMV CUDA kernels
and present a short discussion about the effects of the texture memory on the
performance. Figure 5(b) shows the performance of the three SpMV implemen-
tations at the single computing node of the K40 and P100 test-beds, where the
pinned memory is utilized with a 70% (K40) and 90% (P100) GPU load. The Si:P
QD for target simulations has 30 × 80 × 80 unit cells. The grid/block size is set to
21,000/256 and 672,000/256 of the naive and warp1 kernel, respectively. For the
warp2 kernel, the grid/block size is set to 30/1024 and 112/1024 at the K40 and P100
test-beds, respectively, since the number of streaming multiprocessors is 56 for
P100 devices, while it is 15 for K40 (the grid size is set to an integer multiple of the
number of available streaming multiprocessors).

Among the naive, warp1, and warp2 kernel, the warp2 outperforms as expected.
The speedup of the warp2 kernel is the 7.96/6.73 (K40/P100) and 1.12/1.24 com-
pared to the naive and the warp1 kernel, respectively. The huge performance
enhancement that is particularly achieved against the naive kernel reflects the
importance of coalescing global memory access as Liu et al. also reported that
the effective bandwidth is poor for large strided memory access [18]. The warp2
kernel also works faster than the warp1 kernel since less threads would be idle with
dynamic allocations as discussed in the “Methodology” section. While multiple
WARPs can be involved to process a single row in the matrix (and threads in a single
WARP can concurrently access the global memory), there is an inter-WARP time
lag (only a single WARP can process multiplications at a time). The performance
gain, however, is remarkable such that 15–20% of the wall time is reduced with a
dynamic allocation of WARPs.

All the three kernels show faster operations in P100 devices than in K40 devices,
and the speedup in P100 devices turns out to be ~2.77 on average. Although the peak
performance of P100 devices is 4.05× higher than that of K40 devices (in FLOPS for
double precision), the measured average performance gain (2.77) is much lower than
this value (4.05), since the performance of SpMV is mainly limited by the bandwidth
of global memory rather than the core clock of GPU devices [25]. Figure 5(b) also
shows the performance difference created by utilization of the texture memory for
retrieval of vector data retrieval. With the texture memory, the speed of the warp2
kernel improves by a factor of 1.06 (K40) and 1.19 (P100) against the case without
the texture memory, since the texture memory enables fast random accesses to vector
data and uses a cache to provide broad bandwidth.

3.4 Energy efficiency and economic benefits of GPU computing

Not only is the elapsed time an important metric, but also the energy efficiency
is a significant one to explore. The power usage of host and the two PCI-E con-
nected devices is evaluated as a function of elapsed time (Figure 6), where we

High Performance Parallel Computing

10

connected devices by PH and PD, respectively, the optimal GPU load (x) can be
calculated as the following equation (Eq. (1)):

 x = 100 × P D _______ P D + P H (1)

Since a single computing node of the K40 test-bed has a PH of about 0.736 × 1012
FLOPS for twenty CPU cores of Xeon E5-2650 v3 [21], and a PD of about
2.620 × 1012 FLOPS for two Tesla K40 devices [20], x is derived to about 78.1%,
which it is a little higher than the measured value (70%) due to the ignorance
of other factors (memory bandwidth, etc.). For the P100 test-bed (PD of about
10.600× 1012 FLOPS) [22], x is also evaluated to about 93.5%, while we find it at
~90%. Even though the derived values are not strictly accurate, we can still explain
why the optimal GPU load of the K40 and P100 test-beds turns out to be higher
than the one (~65%) measured with Xeon Phi Knights Corner coprocessors [12].

3.2 Effects of pinned memory on performance

As explained in the previous section, the pinned memory may make a non-negligible
impact on the overall performance of large-scale simulations. Figure 5(a) shows the
performance measured with the pinned and pageable memory at a 70% (K40) and 90%
(P100) GPU load, where a single computing node is used with the warp2 kernel and tex-
ture memory. The Si:P QD has 30 × 80 × 80 unit cells. Results indicate that the case with
pinned memory shows better performance than the one with pageable memory due to the
following two points: (1) The reduction of CopyIn time due to the increased bandwidth of
PCI-E bus with pinned memory and (2) SpMV + CopyOut time as communication hiding
behind the computation. We observed the effective bandwidth of PCI-E communication
is ~3.31 GB/s with the pageable memory on every test-bed, while it reaches ~10.40 GB/s
with the pinned memory, driving ~3.14 speedup in data transfer. The effective speed of
SpMV operations increases by a factor of 1.36 and 1.19 with pinned memory compared
to the speed with pageable memory at the K40 and P100 test-beds, respectively, since
utilization of the pinned can overlap computation and data transfer. The performance for
end-to-end simulations therefore becomes 1.27 and 1.21 times faster with pinned memory
against the performance obtained with pageable memory at 70% GPU load (K40) and
90% GPU load (P100), respectively.

Figure 5.
Performance measured in a single computing node for end-to-end simulations of 30 × 80 × 80 unit cells at the
optimal GPU load (70% for K40 and 90% for P100). (a) Performance measured with the pinned and pageable
memory when the warp2 kernel is used. (b) Performance of three different SpMV CUDA implementations.
SPMV calculations are slightly accelerated with utilization of the texture memory.

11

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

Though here we only focused on the performance of PCI-E communications, it
is possible to estimate the performance benefit that may be obtained with NVLink
communications. For this purpose, we investigate how the bandwidth of communi-
cations between CPU and GPU affects the overall performance, where we find that
the overall speedup is ~1.21× due to the ~3.1× enhancement of PCI-E bandwidth on
the effects of pinned memory in PCI-E add-in P100 devices. Because the bandwidth
improvement with NVLink connectivity between CPU and GPU is ~3× compared
to the PCI-E [24], we may roughly expect that there will be another ~1.06× speedup
for the end-to-end simulation with NVLink add-in P100 devices.

3.3 Performance analysis of SpMV CUDA kernels

Here we investigate the performance of three different SpMV CUDA kernels
and present a short discussion about the effects of the texture memory on the
performance. Figure 5(b) shows the performance of the three SpMV implemen-
tations at the single computing node of the K40 and P100 test-beds, where the
pinned memory is utilized with a 70% (K40) and 90% (P100) GPU load. The Si:P
QD for target simulations has 30 × 80 × 80 unit cells. The grid/block size is set to
21,000/256 and 672,000/256 of the naive and warp1 kernel, respectively. For the
warp2 kernel, the grid/block size is set to 30/1024 and 112/1024 at the K40 and P100
test-beds, respectively, since the number of streaming multiprocessors is 56 for
P100 devices, while it is 15 for K40 (the grid size is set to an integer multiple of the
number of available streaming multiprocessors).

Among the naive, warp1, and warp2 kernel, the warp2 outperforms as expected.
The speedup of the warp2 kernel is the 7.96/6.73 (K40/P100) and 1.12/1.24 com-
pared to the naive and the warp1 kernel, respectively. The huge performance
enhancement that is particularly achieved against the naive kernel reflects the
importance of coalescing global memory access as Liu et al. also reported that
the effective bandwidth is poor for large strided memory access [18]. The warp2
kernel also works faster than the warp1 kernel since less threads would be idle with
dynamic allocations as discussed in the “Methodology” section. While multiple
WARPs can be involved to process a single row in the matrix (and threads in a single
WARP can concurrently access the global memory), there is an inter-WARP time
lag (only a single WARP can process multiplications at a time). The performance
gain, however, is remarkable such that 15–20% of the wall time is reduced with a
dynamic allocation of WARPs.

All the three kernels show faster operations in P100 devices than in K40 devices,
and the speedup in P100 devices turns out to be ~2.77 on average. Although the peak
performance of P100 devices is 4.05× higher than that of K40 devices (in FLOPS for
double precision), the measured average performance gain (2.77) is much lower than
this value (4.05), since the performance of SpMV is mainly limited by the bandwidth
of global memory rather than the core clock of GPU devices [25]. Figure 5(b) also
shows the performance difference created by utilization of the texture memory for
retrieval of vector data retrieval. With the texture memory, the speed of the warp2
kernel improves by a factor of 1.06 (K40) and 1.19 (P100) against the case without
the texture memory, since the texture memory enables fast random accesses to vector
data and uses a cache to provide broad bandwidth.

3.4 Energy efficiency and economic benefits of GPU computing

Not only is the elapsed time an important metric, but also the energy efficiency
is a significant one to explore. The power usage of host and the two PCI-E con-
nected devices is evaluated as a function of elapsed time (Figure 6), where we

High Performance Parallel Computing

12

consider the power consumed by host (CPU packages with off-chip DRAMs) and
Tesla GPU devices. The power usage in host and GPU devices is measured with
Intel Running Average Power Limit (RAPL) library [26] and NVIDIA Management
Library (NVML) [27], respectively.

Figure 6(a), (b) and (c) shows the real-time power consumption of a single
computing node at a 0% GPU load (CPU only), 70% GPU load with K40, and 90%
GPU load with P100 GPU devices, respectively. A Si:P QD consisting of 30 × 80 ×
80 unit cells is simulated with the warp2 kernel where pinned memory and texture
memory are used. Here, all the results show similar patterns such that
(i) the power consumption starts to increase during the initial processes of
electronic structure simulations, i.e., matrix construction that requires memory
access to store non-zero elements, row/column indices. (ii) The power usage then
shows a rapid oscillation during the process of Lanczos iterations, and (iii) it
finally returns to the normal (standby) value when all the calculation is finished.
Figure 6(d) informs that the average instantaneous power consumption of a single
computing node with K40 and P100 devices is 157.58 and 117.55 Watt, whereas the
host of test-beds uses 279.76 and 270.05 Watt, respectively. Figure 6(e) shows the
total energy consumed by the end-to-end simulation, which can be calculated by
multiplying the time-averaged power usage by the wall time. During the execution
in a single computing node of the K40 test-bed, CPUs and GPUs consume about
542.32 and 305.40 KJ, respectively, while corresponding values with P100 devices
become 331.44 and 144.33 KJ, respectively. ~614.18KJ is consumed for the CPU-only
case. Compared to the results measured with K40 GPU devices, a single computing
node with P100 devices consumes ~1.34× less energy, while it finishes the target
simulation ~2.88× faster. Figure 6(f) shows the total energy consumed by the
three SpMV kernels in the single computing node of the K40 and P100 test-beds,
where the pinned memory is utilized with a 70% (K40) and 90% (P100) GPU load
for simulations of a Si:P QD consisting of 30 × 80 × 80 unit cells. Coalescence of
global memory access (Figure 3(c)) drives a significant performance improvement,
such that the warp2 kernel not only shows the smallest energy consumption but

Figure 6.
Power usage and energy consumption associated with the target simulation. The real-time power consumption
measured in a single computing node at (a) 0% GPU load (CPU only), (b) 70% GPU load with K40 devices,
and (c) 90% GPU load with P100 devices. (d) Time-averaged power usage and (e) total energy consumption
measured in a single computing node at the optimal GPU load (70% for K40 and 90% for P100). (f) Total
energy consumption of three different SpMV CUDA implementations in a single computing node at the
optimal GPU load.

13

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

has the best wall-time performance among the three kernels. Reduction in energy
consumption of the warp2 kernel turns out to be 2.99×/1.59× (K40/P100) and
1.12×/1.09× compared to the naive and the warp1 kernel, respectively.

Now let us talk about the energy efficiency of our code for electronic structure
simulations. Without losing generality, we roughly can define the energy efficiency
as the rate of SpMV operations performed for the unit power consumption (1 W).
The rate of SpMV operations can be estimated by the ratio of the total number of
floating point operations that a single simulation performs (NF) and the total wall
time taken until the simulation is completed. Therefore, the energy efficiency of
simulations (η) can be approximated with Eq. (2):

 η = NF ____ T total
 × 1 ___ W = NF ____ E total

 (2)

where Etotal and Ttotal represent the total energy consumption and wall time
required to complete a single simulation, respectively. From the derived equation,
the energy efficiency could be calculated for K40 and P100 devices and host CPUs.
Although it is not easy to exactly quantify NF, we can at least compare the energy
efficiency of different computing devices by assuming that NF would be linearly
proportional to the workload of SpMV allocated to specific computing platforms.
By setting the energy efficiency of CPU-only computing to 1, the energy efficiency
of K40 devices (70% GPU load) and P100 devices (90% GPU load) would be ~1.43
and 3.81, respectively. We conclude the energy efficiency of P100 devices is ~2.66×
and 3.81× better than that of K40 and CPU devices for the target simulation. Note
that these quantities are hard to be obtained just with officially known hardware
specifications [20–22].

Finally, let us close this section with a short discussion about the economic ben-
efits that can be delivered by GPU computing for TB simulations. Since GPU devices
are not cheap [28, 29], it would be interesting to compare the “time saving” achieved
by a single US dollar spent for additional GPU devices. As we already have shown in
Figure 4, the CPU-only simulation of 30 × 80 × 80 unit cells is finished in ~2476 s,
which is average of the results measured with K40 and P100 devices (Figure 5(c)
and (d)). While the simulation is finished in ~1701 s with K40 at the optimal GPU
load (70%), we must additionally pay ~4.6 K US dollars to buy two K40 GPU devices
[28]. With P100 devices, the simulation takes ~1472 s at the optimal GPU load (90%)
and requires ~14.7 K US dollars to buy two P100 GPU devices [29]. Thereby, we get
~0.17 and ~0.07 s/USD for K40 and P100 devices, respectively. While the perfor-
mance enhancement driven by GPU computing may be impressive in the perspective
of computing time, we claim more expensive devices may not always deliver better
economic benefits. Readers are therefore strongly encouraged to build a careful
budget plan whether they are thinking to buy new GPU devices.

4. Conclusion

The cost efficiency of general-purpose graphical processing unit (GPU) devices
for tight-binding (TB) simulations of extremely large-scale electronic structures has
been examined with a focus on the speed and the amount of energy consumption.
Technical strategies used to exploit the strength of GPU-coupled offload computing
have been elaborated in detail with a short but clear description of the main numer-
ical method employed to tackle large-scale Schrödinger equations. Benchmark
tests have been performed against realistically sized solid Si:P quantum dot devices
that contain several million atoms. Tesla K40 and latest P100 GPU devices are

High Performance Parallel Computing

12

consider the power consumed by host (CPU packages with off-chip DRAMs) and
Tesla GPU devices. The power usage in host and GPU devices is measured with
Intel Running Average Power Limit (RAPL) library [26] and NVIDIA Management
Library (NVML) [27], respectively.

Figure 6(a), (b) and (c) shows the real-time power consumption of a single
computing node at a 0% GPU load (CPU only), 70% GPU load with K40, and 90%
GPU load with P100 GPU devices, respectively. A Si:P QD consisting of 30 × 80 ×
80 unit cells is simulated with the warp2 kernel where pinned memory and texture
memory are used. Here, all the results show similar patterns such that
(i) the power consumption starts to increase during the initial processes of
electronic structure simulations, i.e., matrix construction that requires memory
access to store non-zero elements, row/column indices. (ii) The power usage then
shows a rapid oscillation during the process of Lanczos iterations, and (iii) it
finally returns to the normal (standby) value when all the calculation is finished.
Figure 6(d) informs that the average instantaneous power consumption of a single
computing node with K40 and P100 devices is 157.58 and 117.55 Watt, whereas the
host of test-beds uses 279.76 and 270.05 Watt, respectively. Figure 6(e) shows the
total energy consumed by the end-to-end simulation, which can be calculated by
multiplying the time-averaged power usage by the wall time. During the execution
in a single computing node of the K40 test-bed, CPUs and GPUs consume about
542.32 and 305.40 KJ, respectively, while corresponding values with P100 devices
become 331.44 and 144.33 KJ, respectively. ~614.18KJ is consumed for the CPU-only
case. Compared to the results measured with K40 GPU devices, a single computing
node with P100 devices consumes ~1.34× less energy, while it finishes the target
simulation ~2.88× faster. Figure 6(f) shows the total energy consumed by the
three SpMV kernels in the single computing node of the K40 and P100 test-beds,
where the pinned memory is utilized with a 70% (K40) and 90% (P100) GPU load
for simulations of a Si:P QD consisting of 30 × 80 × 80 unit cells. Coalescence of
global memory access (Figure 3(c)) drives a significant performance improvement,
such that the warp2 kernel not only shows the smallest energy consumption but

Figure 6.
Power usage and energy consumption associated with the target simulation. The real-time power consumption
measured in a single computing node at (a) 0% GPU load (CPU only), (b) 70% GPU load with K40 devices,
and (c) 90% GPU load with P100 devices. (d) Time-averaged power usage and (e) total energy consumption
measured in a single computing node at the optimal GPU load (70% for K40 and 90% for P100). (f) Total
energy consumption of three different SpMV CUDA implementations in a single computing node at the
optimal GPU load.

13

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

has the best wall-time performance among the three kernels. Reduction in energy
consumption of the warp2 kernel turns out to be 2.99×/1.59× (K40/P100) and
1.12×/1.09× compared to the naive and the warp1 kernel, respectively.

Now let us talk about the energy efficiency of our code for electronic structure
simulations. Without losing generality, we roughly can define the energy efficiency
as the rate of SpMV operations performed for the unit power consumption (1 W).
The rate of SpMV operations can be estimated by the ratio of the total number of
floating point operations that a single simulation performs (NF) and the total wall
time taken until the simulation is completed. Therefore, the energy efficiency of
simulations (η) can be approximated with Eq. (2):

 η = NF ____ T total
 × 1 ___ W = NF ____ E total

 (2)

where Etotal and Ttotal represent the total energy consumption and wall time
required to complete a single simulation, respectively. From the derived equation,
the energy efficiency could be calculated for K40 and P100 devices and host CPUs.
Although it is not easy to exactly quantify NF, we can at least compare the energy
efficiency of different computing devices by assuming that NF would be linearly
proportional to the workload of SpMV allocated to specific computing platforms.
By setting the energy efficiency of CPU-only computing to 1, the energy efficiency
of K40 devices (70% GPU load) and P100 devices (90% GPU load) would be ~1.43
and 3.81, respectively. We conclude the energy efficiency of P100 devices is ~2.66×
and 3.81× better than that of K40 and CPU devices for the target simulation. Note
that these quantities are hard to be obtained just with officially known hardware
specifications [20–22].

Finally, let us close this section with a short discussion about the economic ben-
efits that can be delivered by GPU computing for TB simulations. Since GPU devices
are not cheap [28, 29], it would be interesting to compare the “time saving” achieved
by a single US dollar spent for additional GPU devices. As we already have shown in
Figure 4, the CPU-only simulation of 30 × 80 × 80 unit cells is finished in ~2476 s,
which is average of the results measured with K40 and P100 devices (Figure 5(c)
and (d)). While the simulation is finished in ~1701 s with K40 at the optimal GPU
load (70%), we must additionally pay ~4.6 K US dollars to buy two K40 GPU devices
[28]. With P100 devices, the simulation takes ~1472 s at the optimal GPU load (90%)
and requires ~14.7 K US dollars to buy two P100 GPU devices [29]. Thereby, we get
~0.17 and ~0.07 s/USD for K40 and P100 devices, respectively. While the perfor-
mance enhancement driven by GPU computing may be impressive in the perspective
of computing time, we claim more expensive devices may not always deliver better
economic benefits. Readers are therefore strongly encouraged to build a careful
budget plan whether they are thinking to buy new GPU devices.

4. Conclusion

The cost efficiency of general-purpose graphical processing unit (GPU) devices
for tight-binding (TB) simulations of extremely large-scale electronic structures has
been examined with a focus on the speed and the amount of energy consumption.
Technical strategies used to exploit the strength of GPU-coupled offload computing
have been elaborated in detail with a short but clear description of the main numer-
ical method employed to tackle large-scale Schrödinger equations. Benchmark
tests have been performed against realistically sized solid Si:P quantum dot devices
that contain several million atoms. Tesla K40 and latest P100 GPU devices are

High Performance Parallel Computing

14

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

considered as the test platform. The technics we employed for the efficient offload
computing of large-scale TB simulations drive a non-negligible enhancement of
the computing speed. Compared to the performance tested with Intel Xeon V3 host
CPU only, K40 and P100 devices can achieve up to ~2× and ~6× speedup for sparse
matrix-vector multiplication (SpMV), which is the numerical operation needed to
solve electronic structures. In terms of the amount of total energy consumption,
however, K40 shows worse performance compared to the CPU-only case, while
P100 still holds the strength.

Acknowledgements

This work has been carried out as Intel Parallel Computing Centre (IPCC) proj-
ect under the financial support from Intel Corporation, USA. Authors acknowledge
the extensive use of KISTI Accelerator Test-bed (KAT) computing resources that
are supported by Korea Institute of Science and Technology Information.

Author details

Oh-Kyoung Kwon† and Hoon Ryu*†

Korea Institute of Science and Technology Information, Daejeon, Republic of Korea

*Address all correspondence to: elec1020@kisti.re.kr

† These authors contributed equally.

15

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

[1] Shinada T, Okamoto S, Kobayashi
T, Ohdomari I. Enhancing
semiconductor device performance
using ordered dopant arrays. Nature.
2005;437:1128-1131

[2] Usman M, Ryu H, Woo I, Ebert
DS, Klimeck G. Moving toward Nano-
TCAD through multimillion-atom
quantum-dot simulations matching
experimental data. IEEE Transactions
on Nanotechnology. 2009;8:330-344

[3] Lee S, Ryu H, Campbell H,
Hollenberg LCL, Simmons MY, Klimeck
G. Electronic structure of realistically
extended atomistically resolved
disordered Si:P δ-doped layers. Physical
Review B. 2011;84:205309

[4] Carter DJ, Warschkow O, Marks
NA, McKenzi DR. Electronic structure
models of phosphorus δ-doped silicon.
Physical Review B. 2009;79:033204

[5] Carter DJ, Marks NA, Warschkow
O, McKenzi DR. Phosphorus δ-doped
silicon: Mixed-atom pseudopotentials
and dopant disorder effects.
Nanotechnology. 2011;22:1-10

[6] Ryu H, Lee S, Weber B, Mahapatra
S, Hollenberg LCL, Simmons MY,
et al. Atomistic modeling of metallic
nanowires in silicon. Nanoscale.
2013;5:8666-8674

[7] Weber B, Mahapatra S, Ryu H, Lee
S, Fuhrer A, Reusch TCG, et al. Ohm’s
law survives to the atomic scale. Science.
2012;335:64-67

[8] Ryu H, Lee S, Fuechsle M, Miwa
JA, Mahapatra S, Hollenberg L, et al.
A tight-binding study of single-atom
transistors. Small. 2015;11:374-381

[9] Fuechsle M, Miwa JA, Mahapatra S,
Ryu H, Lee S, Warschkow O, et al.
A single-atom transistor. Nature
Nanotechnology. 2012;7:242-246

[10] Klimeck G, Shahid Ahmed S, Bae
H, Kharche N, Clark S, Haley B, et al.
Atomistic simulation of realistically
sized nanodevices using NEMO
3-D—Part I: Models and benchmarks.
IEEE Transactions on Electron Devices.
2007;54:2079-2089

[11] Lee S, Ryu H, Jiang Z, Klimeck
G. Million atom electronic structure
and device calculations on peta-
scale computers. In: Proceedings
of 13th International Workshop
on Computational Electronics
(IWCE). 2009. pp. 1-4. DOI: 10.1109/
IWCE.2009.5091117

[12] Ryu H, Jeong Y, Kang J-H, Cho
KN. Q-AND: Time-efficient modelling of
tight-binding electronic structures with
many-core computing. Computer Physics
Communications. 2016;209:79-87. DOI:
10.1016/j.cpc.2016.08.015

[13] Top 500 Supercomputer Sites.
Available from: https://www.top500.
org/ [Accessed: 03-04-2018]

[14] Buluç A, Fineman JT, Frigo M,
Gilbert JR, Leiserson CE. Parallel sparse
matrix-vector and matrix-transpose-
vector multiplication using compressed
sparse blocks. In: Proceedings of the
Annual Symposium on Parallelism
in Algorithms and Architectures
(SPAA). 2009. pp. 233-244. DOI:
10.1145/1583991.1584053

[15] Lanczos C. An iteration method
for the solution of the eigenvalue
problem of linear differential and
integral operators. Journal of Research
of the National Bureau of Standards.
1950;45:255-282

[16] Harris M. How to Optimize Data
Transfers in CUDA C/C++, NVIDIA
PARALLEL FORALL. 2012. Available
from: https://devblogs.nvidia.com/
parallelforall/how-optimize-data-
transfers-cuda-cc/ [Accessed: 02-03-2018]

References

High Performance Parallel Computing

14

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

considered as the test platform. The technics we employed for the efficient offload
computing of large-scale TB simulations drive a non-negligible enhancement of
the computing speed. Compared to the performance tested with Intel Xeon V3 host
CPU only, K40 and P100 devices can achieve up to ~2× and ~6× speedup for sparse
matrix-vector multiplication (SpMV), which is the numerical operation needed to
solve electronic structures. In terms of the amount of total energy consumption,
however, K40 shows worse performance compared to the CPU-only case, while
P100 still holds the strength.

Acknowledgements

This work has been carried out as Intel Parallel Computing Centre (IPCC) proj-
ect under the financial support from Intel Corporation, USA. Authors acknowledge
the extensive use of KISTI Accelerator Test-bed (KAT) computing resources that
are supported by Korea Institute of Science and Technology Information.

Author details

Oh-Kyoung Kwon† and Hoon Ryu*†

Korea Institute of Science and Technology Information, Daejeon, Republic of Korea

*Address all correspondence to: elec1020@kisti.re.kr

† These authors contributed equally.

15

Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel…
DOI: http://dx.doi.org/10.5772/intechopen.80997

[1] Shinada T, Okamoto S, Kobayashi
T, Ohdomari I. Enhancing
semiconductor device performance
using ordered dopant arrays. Nature.
2005;437:1128-1131

[2] Usman M, Ryu H, Woo I, Ebert
DS, Klimeck G. Moving toward Nano-
TCAD through multimillion-atom
quantum-dot simulations matching
experimental data. IEEE Transactions
on Nanotechnology. 2009;8:330-344

[3] Lee S, Ryu H, Campbell H,
Hollenberg LCL, Simmons MY, Klimeck
G. Electronic structure of realistically
extended atomistically resolved
disordered Si:P δ-doped layers. Physical
Review B. 2011;84:205309

[4] Carter DJ, Warschkow O, Marks
NA, McKenzi DR. Electronic structure
models of phosphorus δ-doped silicon.
Physical Review B. 2009;79:033204

[5] Carter DJ, Marks NA, Warschkow
O, McKenzi DR. Phosphorus δ-doped
silicon: Mixed-atom pseudopotentials
and dopant disorder effects.
Nanotechnology. 2011;22:1-10

[6] Ryu H, Lee S, Weber B, Mahapatra
S, Hollenberg LCL, Simmons MY,
et al. Atomistic modeling of metallic
nanowires in silicon. Nanoscale.
2013;5:8666-8674

[7] Weber B, Mahapatra S, Ryu H, Lee
S, Fuhrer A, Reusch TCG, et al. Ohm’s
law survives to the atomic scale. Science.
2012;335:64-67

[8] Ryu H, Lee S, Fuechsle M, Miwa
JA, Mahapatra S, Hollenberg L, et al.
A tight-binding study of single-atom
transistors. Small. 2015;11:374-381

[9] Fuechsle M, Miwa JA, Mahapatra S,
Ryu H, Lee S, Warschkow O, et al.
A single-atom transistor. Nature
Nanotechnology. 2012;7:242-246

[10] Klimeck G, Shahid Ahmed S, Bae
H, Kharche N, Clark S, Haley B, et al.
Atomistic simulation of realistically
sized nanodevices using NEMO
3-D—Part I: Models and benchmarks.
IEEE Transactions on Electron Devices.
2007;54:2079-2089

[11] Lee S, Ryu H, Jiang Z, Klimeck
G. Million atom electronic structure
and device calculations on peta-
scale computers. In: Proceedings
of 13th International Workshop
on Computational Electronics
(IWCE). 2009. pp. 1-4. DOI: 10.1109/
IWCE.2009.5091117

[12] Ryu H, Jeong Y, Kang J-H, Cho
KN. Q-AND: Time-efficient modelling of
tight-binding electronic structures with
many-core computing. Computer Physics
Communications. 2016;209:79-87. DOI:
10.1016/j.cpc.2016.08.015

[13] Top 500 Supercomputer Sites.
Available from: https://www.top500.
org/ [Accessed: 03-04-2018]

[14] Buluç A, Fineman JT, Frigo M,
Gilbert JR, Leiserson CE. Parallel sparse
matrix-vector and matrix-transpose-
vector multiplication using compressed
sparse blocks. In: Proceedings of the
Annual Symposium on Parallelism
in Algorithms and Architectures
(SPAA). 2009. pp. 233-244. DOI:
10.1145/1583991.1584053

[15] Lanczos C. An iteration method
for the solution of the eigenvalue
problem of linear differential and
integral operators. Journal of Research
of the National Bureau of Standards.
1950;45:255-282

[16] Harris M. How to Optimize Data
Transfers in CUDA C/C++, NVIDIA
PARALLEL FORALL. 2012. Available
from: https://devblogs.nvidia.com/
parallelforall/how-optimize-data-
transfers-cuda-cc/ [Accessed: 02-03-2018]

References

High Performance Parallel Computing

16

[17] Bell N, Garland M. Efficient Sparse
Matrix-Vector Multiplication on CUDA,
NVIDIA Technical Report NVR-2008-
004. 2008

[18] Liu Y, Schmidt B. LightSpMV:
Faster CSR-based sparse matrix-vector
multiplication on CUDA-enabled GPUs.
In: 26th IEEE International Conference
on Application-specific Systems,
Architectures and Processors (ASAP
2015). 2015. pp. 82-89

[19] Harris M. How to Access Global
Memory Efficiently in CUDA C/C++
Kernels, NVIDIA PARALLEL FORALL.
2013. Available from: https://devblogs.
nvidia.com/parallelforall/how-access-
global-memory-efficiently-cuda-c-
kernels/ [Accessed: 02-03-2018]

[20] NVIDIA Tesla K40 GPU Accelerator.
Available from: http://www.nvidia.com/
content/PDF/kepler/Tesla-K40-PCIe-
Passive-Board-Spec-BD-06902-001_
v05.pdf [Accessed: 02-03-2018]

[21] Intel Xeon Processor E5-2650 v3.
Available from: https://ark.intel.com/
products/81705/Intel-Xeon-Processor-
E5-2650-v3-25M-Cache-2_30-GHz.
[Accessed: 02-03-2018]

[22] Whitepaper of NVIDIA Tesla
P100 GPU Accelerator. Available from:
https://images.nvidia.com/content/pdf/
tesla/whitepaper/pascal-architecture-
whitepaper.pdf [Accessed: 02-03-2018]

[23] Weber B, Tan YHM, Mahapatra
S, Watson TF, Ryu H, Rahman R,
et al. Spin blockade and exchange
in coulomb-confined silicon double
quantum dots. Nature Nanotechnology.
2014;9:430-435

[24] Comparing NVLink vs PCI-E
with NVIDIA Tesla P100 GPUs on
OpenPOWER Servers. Available from:
https://www.microway.com/hpc-tech-
tips/comparing-nvlink-vs-pci-e-nvidia-
tesla-p100-gpus-openpower-servers/
[Accessed: 10-07-2018]

[25] Xu S, Xue W, Lin HX. Performance
modeling and optimization of sparse
matrix-vector multiplication on
NVIDIA CUDA platform. Journal of
Supercomputing. 2013;63:710-721. DOI:
10.1007/s11227-011-0626-0

[26] Rountree B, Ahn D, de Supinski B,
Lowenthal D, Schulz M. Beyond DVFS:
A first look at performance under a
hardware-enforced power bound. In:
Proceedings of IEEE international
parallel and distributed processing
symposium workshops & PHD forum
(IPDPSW). 2012. pp. 947-953. DOI:
10.1109/ IPDPSW.2012.116

[27] NVIDIA management Library
(NVML). Available from: https://
developer. nvidia.com/nvidia-
management-library-nvml [Accessed:
02-03-2018]

[28] Price of NVIDIA Tesla K40
Computing Processor GPU Cards.
Available from: https://www.amazon.
com/NVIDIA-Computing-Processor-
Graphic-900-22081-2250-000/dp/
B00KDRRTB8 [Accessed: 02-03-2018]

[29] Price of NVIDIA Tesla P100
Computing Processor GPU Cards.
Available from: https://www.microway.
com/hpc-tech-tips/nvidia-tesla-p100-
price-analysis/ [Accessed: 02-03-2018]

17

Chapter 3

Characterizing Power and Energy
Efficiency of Legion Data-Centric
Runtime and Applications on
Heterogeneous High-Performance
Computing Systems
Song Huang, Song Fu, Scott Pakin and Michael Lang

Abstract

The traditional parallel programming models require programmers to
explicitly specify parallelism and data movement of the underlying parallel
mechanisms. Different from the traditional computation-centric programming,
Legion provides a data-centric programming model for extracting parallelism
and data movement. In this chapter, we aim to characterize the power and energy
consumption of running HPC applications on Legion. We run benchmark appli-
cations on compute nodes equipped with both CPU and GPU, and measure the
execution time, power consumption and CPU/GPU utilization. Additionally, we
test the message passing interface (MPI) version of these applications and com-
pare the performance and power consumption of high-performance computing
(HPC) applications using the computation-centric and data-centric program-
ming models. Experimental results indicate Legion applications outperforms
MPI applications on both performance and energy efficiency, i.e., Legion appli-
cations can be 9.17 times as fast as MPI applications and use only 9.2% energy.
Legion effectively explores the heterogeneous architecture and runs applications
tasks on GPU. As far as we know, this is the first study to understand the power
and energy consumption of Legion programming and runtime infrastructure.
Our findings will enable HPC system designers and operators to develop and
tune the performance of data-centric HPC applications with constraints on
power and energy consumption.

Keywords: power consumption, Legion programming model, legion runtime,
high performance computing, energy efficiency

1. Introduction

The U.S. Department of Energy (DOE) announced to invest $258 million
to the exascale computing project in 2017. With funding from the six selected
companies, the total investment reaches over $430 million to achieve the goal of
delivering at least one exascale-capable supercomputer by 2021 [1]. Building an
exascale high performance computing (HPC) system has to overcome four major

High Performance Parallel Computing

16

[17] Bell N, Garland M. Efficient Sparse
Matrix-Vector Multiplication on CUDA,
NVIDIA Technical Report NVR-2008-
004. 2008

[18] Liu Y, Schmidt B. LightSpMV:
Faster CSR-based sparse matrix-vector
multiplication on CUDA-enabled GPUs.
In: 26th IEEE International Conference
on Application-specific Systems,
Architectures and Processors (ASAP
2015). 2015. pp. 82-89

[19] Harris M. How to Access Global
Memory Efficiently in CUDA C/C++
Kernels, NVIDIA PARALLEL FORALL.
2013. Available from: https://devblogs.
nvidia.com/parallelforall/how-access-
global-memory-efficiently-cuda-c-
kernels/ [Accessed: 02-03-2018]

[20] NVIDIA Tesla K40 GPU Accelerator.
Available from: http://www.nvidia.com/
content/PDF/kepler/Tesla-K40-PCIe-
Passive-Board-Spec-BD-06902-001_
v05.pdf [Accessed: 02-03-2018]

[21] Intel Xeon Processor E5-2650 v3.
Available from: https://ark.intel.com/
products/81705/Intel-Xeon-Processor-
E5-2650-v3-25M-Cache-2_30-GHz.
[Accessed: 02-03-2018]

[22] Whitepaper of NVIDIA Tesla
P100 GPU Accelerator. Available from:
https://images.nvidia.com/content/pdf/
tesla/whitepaper/pascal-architecture-
whitepaper.pdf [Accessed: 02-03-2018]

[23] Weber B, Tan YHM, Mahapatra
S, Watson TF, Ryu H, Rahman R,
et al. Spin blockade and exchange
in coulomb-confined silicon double
quantum dots. Nature Nanotechnology.
2014;9:430-435

[24] Comparing NVLink vs PCI-E
with NVIDIA Tesla P100 GPUs on
OpenPOWER Servers. Available from:
https://www.microway.com/hpc-tech-
tips/comparing-nvlink-vs-pci-e-nvidia-
tesla-p100-gpus-openpower-servers/
[Accessed: 10-07-2018]

[25] Xu S, Xue W, Lin HX. Performance
modeling and optimization of sparse
matrix-vector multiplication on
NVIDIA CUDA platform. Journal of
Supercomputing. 2013;63:710-721. DOI:
10.1007/s11227-011-0626-0

[26] Rountree B, Ahn D, de Supinski B,
Lowenthal D, Schulz M. Beyond DVFS:
A first look at performance under a
hardware-enforced power bound. In:
Proceedings of IEEE international
parallel and distributed processing
symposium workshops & PHD forum
(IPDPSW). 2012. pp. 947-953. DOI:
10.1109/ IPDPSW.2012.116

[27] NVIDIA management Library
(NVML). Available from: https://
developer. nvidia.com/nvidia-
management-library-nvml [Accessed:
02-03-2018]

[28] Price of NVIDIA Tesla K40
Computing Processor GPU Cards.
Available from: https://www.amazon.
com/NVIDIA-Computing-Processor-
Graphic-900-22081-2250-000/dp/
B00KDRRTB8 [Accessed: 02-03-2018]

[29] Price of NVIDIA Tesla P100
Computing Processor GPU Cards.
Available from: https://www.microway.
com/hpc-tech-tips/nvidia-tesla-p100-
price-analysis/ [Accessed: 02-03-2018]

17

Chapter 3

Characterizing Power and Energy
Efficiency of Legion Data-Centric
Runtime and Applications on
Heterogeneous High-Performance
Computing Systems
Song Huang, Song Fu, Scott Pakin and Michael Lang

Abstract

The traditional parallel programming models require programmers to
explicitly specify parallelism and data movement of the underlying parallel
mechanisms. Different from the traditional computation-centric programming,
Legion provides a data-centric programming model for extracting parallelism
and data movement. In this chapter, we aim to characterize the power and energy
consumption of running HPC applications on Legion. We run benchmark appli-
cations on compute nodes equipped with both CPU and GPU, and measure the
execution time, power consumption and CPU/GPU utilization. Additionally, we
test the message passing interface (MPI) version of these applications and com-
pare the performance and power consumption of high-performance computing
(HPC) applications using the computation-centric and data-centric program-
ming models. Experimental results indicate Legion applications outperforms
MPI applications on both performance and energy efficiency, i.e., Legion appli-
cations can be 9.17 times as fast as MPI applications and use only 9.2% energy.
Legion effectively explores the heterogeneous architecture and runs applications
tasks on GPU. As far as we know, this is the first study to understand the power
and energy consumption of Legion programming and runtime infrastructure.
Our findings will enable HPC system designers and operators to develop and
tune the performance of data-centric HPC applications with constraints on
power and energy consumption.

Keywords: power consumption, Legion programming model, legion runtime,
high performance computing, energy efficiency

1. Introduction

The U.S. Department of Energy (DOE) announced to invest $258 million
to the exascale computing project in 2017. With funding from the six selected
companies, the total investment reaches over $430 million to achieve the goal of
delivering at least one exascale-capable supercomputer by 2021 [1]. Building an
exascale high performance computing (HPC) system has to overcome four major

High Performance Parallel Computing

18

challenges: parallelism, memory and storage, reliability, and energy consumption.
An exascale system, if built using the existing technologies, will consume half
of a gigawatt of power, which highly exceeds the expected power limit specified
by DOE. Therefore, innovative technologies are needed to enhance the power
and energy efficiency and improve the system performance with a low power
consumption.

Compute nodes are a major power and energy consumer inside an HPC system.
Deng et al. [2] found that about 60% of system power is consumed by CPU, around
30% of power is allocated to memory, and other components account for 10%. This
situation becomes more obvious in HPC environments where compute intensive
and data intensive computation keeps a system always busy. Hence, reducing power
and energy consumption of computing units and memory is the major challenge for
efficiency of the whole system.

The message passing interface (MPI) is the de facto standard for writing
HPC applications. It is a computation-centric programming model, where MPI
processes are independent execution units that contain instructions and state
information, use their address spaces, and interact with each other via inter-
process communication mechanisms defined by MPI. Application programmers
focus on writing computation processes and dealing with their communication,
while data-related components, including data layout, data placement, and data
movement, are implicitly determined by computation. As the volume, variety,
and velocity of data dramatically increase, computation-centric programming
becomes inefficient. Data-centric programming is increasingly addressing these
problems, because focusing on the data makes the big-data problems much
simpler to express. It enables programmers to define data properties includ-
ing organization, partitioning, privileges, and coherence, also allows runtime
systems to control data movement, communication, task scheduling, and
execution.

Legion, which is jointly developed by Stanford University, Los Alamos
National laboratory, and Nvidia, is a data-centric parallel programming system
for writing portable high performance programs targeted at heterogeneous
architectures [3, 4]. Legion provides abstractions which allow programmers to
describe properties of program data, such as independence and locality [3]. By
making the Legion programming system aware of the structure of program data,
it can automate many of the tedious tasks programmers currently face, including
correctly extracting task- and data-level parallelism and moving data around
complex memory hierarchies.

Existing works mainly focus on improving the performance of Legion applica-
tions. Little is known about the energy efficiency of the Legion system and many
questions have not been answered, such as:

• Unlike the traditional HPC programming systems, what are the distinct charac-
teristics of power and energy consumption of Legion runtime and applications?

• Can Legion applications achieve better power and energy efficiency, at the same
time as accelerate the execution and increase the throughput?

• How well do Legion runtime and applications utilize computing and memory
resources on both homogeneous and heterogeneous systems?

In this chapter, we study these critical questions and analyze the energy effi-
ciency of Legion applications and runtime system. We test a number of benchmark

19

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

applications with varying configurations on a CPU-GPU heterogeneous platform.
We run both the MPI version and the Legion version applications. The heteroge-
neous system offers pure CPU and CPU-GPU execution environments. We use a
variety of power profiling tools such as PAPI [5], RAPL [6], PowerAPI [7], and
NVML [8] to measure runtime power consumption and characterize power con-
sumption, energy consumption, and resource utilization of applications run on
Legion. Important contributions include: (1) Legion Helper affects the performance
and power consumption of applications; (2) Legion-based GPU applications per-
form better with regards to energy efficiency and execution time for larger problem
size.

As far as we know, this is the first investigation of the performance and energy
properties of Legion applications and data-centric Legion runtime system. The
findings and results produced from this work will improve our understanding of
Legion and develop resource scheduling to maximize system performance while
operating under static/dynamic power caps.

The remainder of this chapter is structured as follows. Section 2 briefly presents
the data-centric programming model and Legion runtime. The test environment
(hardware, benchmarks, and profiling tools) is described in Section 3. Section 4
presents the results on performance and energy efficiency on servers with only
CPU. The results on heterogeneous servers with both CPU and GPU are presented
in Section 5. Key findings are highlighted in Section 6. Section 7 describes and
related research and Section 8 provides the conclusion.

2. Legion programming and runtime system

Legion [3, 4] is a data-centric programming model and it provides runtime
system to reduce expensive data movement in the complex memory hierarchy and
to write highly portable and data intensive programs for heterogeneous system.
Legion Runtime extracts independent tasks and allocates them to available com-
puter resources to speed up parallel execution.

Compared to current computation-centric programming models, such as MPI
and OpenMP, which require that programmers to explicitly specify the communica-
tion between compute nodes and data transfer for underlying parallel mechanisms,
Legion focus more on defining data properties and the relationship between
different data units [3]. Application developers can explicitly declare the properties
of program data, including data organization, independence, partition, and locality.
Therefore, Legion hides the operations of extracting parallelism and data move-
ment and provides auto mapping to avoid suffering data moving overhead. Also,
Legion allows programmers to customize optimal mapping for specific applications
or infrastructure.

A dynamic scheduling approach called SOOP (“out-of-order” processor) is
 provided by the Legion runtime to map the dependences of tasks, distribute the
tasks onto processor, map to physical instance for execution [4]. SOOP determines
the task dependency at the logical region level by comparing the privileges and
coherence modes to detect dependency between a newly registered task and a previ-
ous registered task. After the task dependency is satisfied, the task will be mapped
and placed into the mapping queue, and scheduled to processors. Then task execu-
tion is performed and resources are recovered after execution. This whole process is
automatic and hidden from Legion users. In our next discussion, we use the Legion
Helper to refer to the set of processes that detect the dependency, map and dispatch
of Legion tasks.

High Performance Parallel Computing

18

challenges: parallelism, memory and storage, reliability, and energy consumption.
An exascale system, if built using the existing technologies, will consume half
of a gigawatt of power, which highly exceeds the expected power limit specified
by DOE. Therefore, innovative technologies are needed to enhance the power
and energy efficiency and improve the system performance with a low power
consumption.

Compute nodes are a major power and energy consumer inside an HPC system.
Deng et al. [2] found that about 60% of system power is consumed by CPU, around
30% of power is allocated to memory, and other components account for 10%. This
situation becomes more obvious in HPC environments where compute intensive
and data intensive computation keeps a system always busy. Hence, reducing power
and energy consumption of computing units and memory is the major challenge for
efficiency of the whole system.

The message passing interface (MPI) is the de facto standard for writing
HPC applications. It is a computation-centric programming model, where MPI
processes are independent execution units that contain instructions and state
information, use their address spaces, and interact with each other via inter-
process communication mechanisms defined by MPI. Application programmers
focus on writing computation processes and dealing with their communication,
while data-related components, including data layout, data placement, and data
movement, are implicitly determined by computation. As the volume, variety,
and velocity of data dramatically increase, computation-centric programming
becomes inefficient. Data-centric programming is increasingly addressing these
problems, because focusing on the data makes the big-data problems much
simpler to express. It enables programmers to define data properties includ-
ing organization, partitioning, privileges, and coherence, also allows runtime
systems to control data movement, communication, task scheduling, and
execution.

Legion, which is jointly developed by Stanford University, Los Alamos
National laboratory, and Nvidia, is a data-centric parallel programming system
for writing portable high performance programs targeted at heterogeneous
architectures [3, 4]. Legion provides abstractions which allow programmers to
describe properties of program data, such as independence and locality [3]. By
making the Legion programming system aware of the structure of program data,
it can automate many of the tedious tasks programmers currently face, including
correctly extracting task- and data-level parallelism and moving data around
complex memory hierarchies.

Existing works mainly focus on improving the performance of Legion applica-
tions. Little is known about the energy efficiency of the Legion system and many
questions have not been answered, such as:

• Unlike the traditional HPC programming systems, what are the distinct charac-
teristics of power and energy consumption of Legion runtime and applications?

• Can Legion applications achieve better power and energy efficiency, at the same
time as accelerate the execution and increase the throughput?

• How well do Legion runtime and applications utilize computing and memory
resources on both homogeneous and heterogeneous systems?

In this chapter, we study these critical questions and analyze the energy effi-
ciency of Legion applications and runtime system. We test a number of benchmark

19

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

applications with varying configurations on a CPU-GPU heterogeneous platform.
We run both the MPI version and the Legion version applications. The heteroge-
neous system offers pure CPU and CPU-GPU execution environments. We use a
variety of power profiling tools such as PAPI [5], RAPL [6], PowerAPI [7], and
NVML [8] to measure runtime power consumption and characterize power con-
sumption, energy consumption, and resource utilization of applications run on
Legion. Important contributions include: (1) Legion Helper affects the performance
and power consumption of applications; (2) Legion-based GPU applications per-
form better with regards to energy efficiency and execution time for larger problem
size.

As far as we know, this is the first investigation of the performance and energy
properties of Legion applications and data-centric Legion runtime system. The
findings and results produced from this work will improve our understanding of
Legion and develop resource scheduling to maximize system performance while
operating under static/dynamic power caps.

The remainder of this chapter is structured as follows. Section 2 briefly presents
the data-centric programming model and Legion runtime. The test environment
(hardware, benchmarks, and profiling tools) is described in Section 3. Section 4
presents the results on performance and energy efficiency on servers with only
CPU. The results on heterogeneous servers with both CPU and GPU are presented
in Section 5. Key findings are highlighted in Section 6. Section 7 describes and
related research and Section 8 provides the conclusion.

2. Legion programming and runtime system

Legion [3, 4] is a data-centric programming model and it provides runtime
system to reduce expensive data movement in the complex memory hierarchy and
to write highly portable and data intensive programs for heterogeneous system.
Legion Runtime extracts independent tasks and allocates them to available com-
puter resources to speed up parallel execution.

Compared to current computation-centric programming models, such as MPI
and OpenMP, which require that programmers to explicitly specify the communica-
tion between compute nodes and data transfer for underlying parallel mechanisms,
Legion focus more on defining data properties and the relationship between
different data units [3]. Application developers can explicitly declare the properties
of program data, including data organization, independence, partition, and locality.
Therefore, Legion hides the operations of extracting parallelism and data move-
ment and provides auto mapping to avoid suffering data moving overhead. Also,
Legion allows programmers to customize optimal mapping for specific applications
or infrastructure.

A dynamic scheduling approach called SOOP (“out-of-order” processor) is
 provided by the Legion runtime to map the dependences of tasks, distribute the
tasks onto processor, map to physical instance for execution [4]. SOOP determines
the task dependency at the logical region level by comparing the privileges and
coherence modes to detect dependency between a newly registered task and a previ-
ous registered task. After the task dependency is satisfied, the task will be mapped
and placed into the mapping queue, and scheduled to processors. Then task execu-
tion is performed and resources are recovered after execution. This whole process is
automatic and hidden from Legion users. In our next discussion, we use the Legion
Helper to refer to the set of processes that detect the dependency, map and dispatch
of Legion tasks.

High Performance Parallel Computing

20

3. Evaluation environment

Before showing the experiment and discussing the results, we detail the plat-
forms in our experimental environment in this section, provide the specifications of
the homogeneous servers and heterogeneous servers, and describe the benchmark
applications and profiling tools.

3.1 Hardware configurations

In the experiments, we use a homogeneous HPC server that consists of
Enterprise version of Haswell processor, and a heterogeneous HPC server that has
both CPU processor and a GPU accelerator. They will be referred to as the CPU
server or GPU server in the following discussion.

3.1.1 CPU server

The CPU server is a Dell PowerEdge T630 computer that has two sockets with
Intel Xeon E5-2683 v3 processors, 128 GB RAM and 28 TB SSD. Table 1 contains the
specification.

3.1.2 GPU server

To understand the power and energy characteristics of Legion on a heteroge-
neous environment, we run applications on a HP server having both Intel Xeon
processor and NVIDIA Tesla K40c GPU accelerator, and another HP server with the
same CPU processor and NVIDIA Tesla P100 GPU accelerator. Table 2 shows their
specifications.

3.2 Benchmark applications

To demonstrate the characteristics of the power and energy consumption of
Legion runtime and application, we select two benchmark applications, which are
compute-intensive, to run on both servers using Legion and MPI programming
models.

3.2.1 MiniAero

MiniAero is a fluid dynamics mini-application [9, 10] designed to evaluate
the programming model and hardware. It is an explicit unstructured finite vol-
ume code, which use Runge-Kutta four-order method to solve the compressible

Compute server Dell PowerEdge T630

CPU Processor 2xIntel Xeon E5-2683 v3 (Haswell-EP)

 Number of cores per socket 14

 Number of threads per socket 28 28

 Base frequency 2 GHz

 Turbo frequency 3 GHz

 Thermal design power per Socket 120 W

Table 1.
Configuration of the CPU server.

21

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

Navier-Stokes equations. It has the usual calculation and communication patterns
on 3D unstructured mesh [11]. These meshes are generated on the CPU and then
move to the devices (e.g. the CPU itself, GPU accelerator, or Xeon Phi). The original
version of MiniAero uses multi-dimensional Kokkos arrays to store connectivity
and flow data. Because MiniAero has a small dependency on tasks, the Legion ver-
sion of MiniAero extracts concurrency from program data and maps it to physical
regions to speed up the execution.

3.2.2 Circuit

Circuit [3] is a sample application that simulates on any graph of integrated cir-
cuit components and wires [10]. An explicit iterative solver step through time and
calculates the updated voltages and currents on each node and wire. It computes
the current by examining the voltage differential across every wire, updates the
charge for each node with new current, and then re-calculate the voltage for every
node according to the charge. The Legion runtime controls the resource allocation,
performs task scheduling, and moves program data. These operations decompose
independent data and allocate it to different computational units for scalability.

3.3 Profiling tools and performance metrics

3.3.1 PAPI

The Performance API (PAPI) [5] provides a set of standard APIs to access the
hardware performance counter to capture real-time statistics from multiple hard-
ware devices. The counter exist as a small set of registers, which record the occur-
rence of signals and events, for instance, Machine Specific Register (MSR). PAPI
provides portability across different platforms via the ability to accept platform spe-
cific counter numbers. This enables the users to access a variety of devices for these
counters and enable performance monitoring and tuning of these components.

Compute server HP ProLiant heterogeneous server

GPU processor NVIDIA Tesla K40c

 Number of CUDA cores 2880

 DRAM 12 GB

 Thermal design power per Socket 235w

GPU processor NVIDIA Tesla P100

 Number of CUDA cores 3584

 DRAM 12 GB

 Thermal design power per Socket 250w

CPU processor Intel(R) Xeon(R) CPU X3460

 Number of cores per socket 4

 Number of threads per socket 8

 Base frequency 2.8 GHz

 Turbo frequency 3.46 GHz

 Thermal design power per Socket 95 W

Table 2.
Configuration of the GPU server.

High Performance Parallel Computing

20

3. Evaluation environment

Before showing the experiment and discussing the results, we detail the plat-
forms in our experimental environment in this section, provide the specifications of
the homogeneous servers and heterogeneous servers, and describe the benchmark
applications and profiling tools.

3.1 Hardware configurations

In the experiments, we use a homogeneous HPC server that consists of
Enterprise version of Haswell processor, and a heterogeneous HPC server that has
both CPU processor and a GPU accelerator. They will be referred to as the CPU
server or GPU server in the following discussion.

3.1.1 CPU server

The CPU server is a Dell PowerEdge T630 computer that has two sockets with
Intel Xeon E5-2683 v3 processors, 128 GB RAM and 28 TB SSD. Table 1 contains the
specification.

3.1.2 GPU server

To understand the power and energy characteristics of Legion on a heteroge-
neous environment, we run applications on a HP server having both Intel Xeon
processor and NVIDIA Tesla K40c GPU accelerator, and another HP server with the
same CPU processor and NVIDIA Tesla P100 GPU accelerator. Table 2 shows their
specifications.

3.2 Benchmark applications

To demonstrate the characteristics of the power and energy consumption of
Legion runtime and application, we select two benchmark applications, which are
compute-intensive, to run on both servers using Legion and MPI programming
models.

3.2.1 MiniAero

MiniAero is a fluid dynamics mini-application [9, 10] designed to evaluate
the programming model and hardware. It is an explicit unstructured finite vol-
ume code, which use Runge-Kutta four-order method to solve the compressible

Compute server Dell PowerEdge T630

CPU Processor 2xIntel Xeon E5-2683 v3 (Haswell-EP)

 Number of cores per socket 14

 Number of threads per socket 28 28

 Base frequency 2 GHz

 Turbo frequency 3 GHz

 Thermal design power per Socket 120 W

Table 1.
Configuration of the CPU server.

21

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

Navier-Stokes equations. It has the usual calculation and communication patterns
on 3D unstructured mesh [11]. These meshes are generated on the CPU and then
move to the devices (e.g. the CPU itself, GPU accelerator, or Xeon Phi). The original
version of MiniAero uses multi-dimensional Kokkos arrays to store connectivity
and flow data. Because MiniAero has a small dependency on tasks, the Legion ver-
sion of MiniAero extracts concurrency from program data and maps it to physical
regions to speed up the execution.

3.2.2 Circuit

Circuit [3] is a sample application that simulates on any graph of integrated cir-
cuit components and wires [10]. An explicit iterative solver step through time and
calculates the updated voltages and currents on each node and wire. It computes
the current by examining the voltage differential across every wire, updates the
charge for each node with new current, and then re-calculate the voltage for every
node according to the charge. The Legion runtime controls the resource allocation,
performs task scheduling, and moves program data. These operations decompose
independent data and allocate it to different computational units for scalability.

3.3 Profiling tools and performance metrics

3.3.1 PAPI

The Performance API (PAPI) [5] provides a set of standard APIs to access the
hardware performance counter to capture real-time statistics from multiple hard-
ware devices. The counter exist as a small set of registers, which record the occur-
rence of signals and events, for instance, Machine Specific Register (MSR). PAPI
provides portability across different platforms via the ability to accept platform spe-
cific counter numbers. This enables the users to access a variety of devices for these
counters and enable performance monitoring and tuning of these components.

Compute server HP ProLiant heterogeneous server

GPU processor NVIDIA Tesla K40c

 Number of CUDA cores 2880

 DRAM 12 GB

 Thermal design power per Socket 235w

GPU processor NVIDIA Tesla P100

 Number of CUDA cores 3584

 DRAM 12 GB

 Thermal design power per Socket 250w

CPU processor Intel(R) Xeon(R) CPU X3460

 Number of cores per socket 4

 Number of threads per socket 8

 Base frequency 2.8 GHz

 Turbo frequency 3.46 GHz

 Thermal design power per Socket 95 W

Table 2.
Configuration of the GPU server.

High Performance Parallel Computing

22

3.3.2 RAPL

The Running Average Power Limit (RAPL) [6], introduced by Intel Xeon
processors, which use a software power model to estimate the power and energy
consumption of hardware. It can be used for monitoring of heat and energy and
coverage of multiple domains such as PKG (Package Power), PP0 (Core), PP1
(uncore) and DRAM. The Haswell EP processor used in our experiments does not
support PP0 and PP1 domains. Meanwhile, the RAPL counters can help to tune the
performance of processors and balance the computing workloads on the nodes. In
our experiments, we use the RAPL module in PAPI to profile the power consump-
tion of the processor in the packet and DRAM domains.

3.3.3 PowerAPI

PowerAPI [7] provides a library for measuring power consumption at the
process level. PowerAPI is a pure software approach to estimate power consump-
tion of various hardware devices based on energy analytical models. Additional,
the library is actor-based framework that the users can choose modules to fit
for their requirements, which enables lowering computational cost and high
accuracy. Moreover, PowerAPI can provide performance statistics of a particular
process.

3.3.4 NVML

The NVIDIA Management Library (NVML) [8] monitors and manages NVIDIA
GPU devices. It provides interfaces for querying and controlling device states,
handling events, and reporting errors. Real-time query-able statistics such as ECC
error counting, active processes and utilization, temperature and energy con-
sumption can be captured via these interfaces. Also, some modifiable state can be
accessed (e.g. ECC mode, compute mode, Persistence mode). In our K40c GPU and
P100 GPU, we record the real-time board power draw by querying the performance
counters.

4. Legion power and energy consumption on CPU server

To better understand the power and energy consumption patterns of Legion
applications, we compare the performance of processors and power consumption
of both MPI versions and Legion versions of MiniAero and the circuit with different
problem sizes on different CPU cores.

To reduce noise and measurement errors, we perform each experiment 10
times and calculate the average of the measurements, and each run has the same
initial conditions. The two applications are computationally intensive. Package and
DRAM are the most important consumers of energy. To better characterize Legion
applications and runtime, we separately measure and analyze the power and power
consumption of Legion helper and computational processes.

4.1 Experimental results of MiniAero

For the MPI version of MiniAero, their processes have to be explicitly defined
and they only share a part of the problem. The Legion version of MiniAero has some
calculation processes and Legion helpers. We test the 3D-Sod with three problem

23

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

sizes, that is 128 × 128 × 4, 256 × 256 × 4 and 512 × 512 × 4, on one, two and four
CPU cores.

4.1.1 CPU utilization of MiniAero application

The CPU utilization, which is used to estimate the system performance, mea-
sures the percentage of CPU cycles used on a core. On a multi-core processor, a load
of more than 100% indicates that two or more cores are being used by applications.
Figure 1 shows CPU usage of MiniAero with different problem sizes running on
different number of CPU cores. The figures show that the CPU usage of the MPI
version is relatively stable and reaches about 100%. However, for the Legion ver-
sion, the CPU cycles are not fully utilized by the Legion helper when the number
of compute cores is less, but the usage keep increasing as the number of cores
increases. On the other hand, those CPU cycles used by computational processes are
reduced in our experiments. When the core number increases from 1 to 4, shown
in Figure 1a–f and g–i, the Legion helper CPU usage increases from about 48% to
more than 92%. In contrast, the average CPU utilization of the calculation processes
drops from 75–25%. This suggests that identifying dependencies, mapping, and
scheduling tasks on Legion can cause significant overhead that interferes with the
useful calculation. The problem size, however, does not affect the CPU usage very
much. In Figure 1a, d and g, the execution time and CPU utilization of the Legion
version are almost identical, while the execution time of the MPI version increases
exponentially. Other experimental results with same number of compute cores
show a similar trend. The Legion runtime system offers better scalability.

Figure 1.
CPU utilization of MPI and Legion versions of the MiniAero application (a) Workload:128*128*4, 1
core, (b) Workload: 128*128*4, 2 cores, (c) Workload: 128*128*4, 4 cores, (d) Workload: 256*256*4, 1
core, (e) Workload: 256*256*4, 2 cores, (f) Workload: 256*256*4, 4 cores, (g) Workload: 512*512*4, 1 core,
(h) Workload: 512*512*4, 2 cores, and (i) Workload: 512*512*4, 4 cores.

High Performance Parallel Computing

22

3.3.2 RAPL

The Running Average Power Limit (RAPL) [6], introduced by Intel Xeon
processors, which use a software power model to estimate the power and energy
consumption of hardware. It can be used for monitoring of heat and energy and
coverage of multiple domains such as PKG (Package Power), PP0 (Core), PP1
(uncore) and DRAM. The Haswell EP processor used in our experiments does not
support PP0 and PP1 domains. Meanwhile, the RAPL counters can help to tune the
performance of processors and balance the computing workloads on the nodes. In
our experiments, we use the RAPL module in PAPI to profile the power consump-
tion of the processor in the packet and DRAM domains.

3.3.3 PowerAPI

PowerAPI [7] provides a library for measuring power consumption at the
process level. PowerAPI is a pure software approach to estimate power consump-
tion of various hardware devices based on energy analytical models. Additional,
the library is actor-based framework that the users can choose modules to fit
for their requirements, which enables lowering computational cost and high
accuracy. Moreover, PowerAPI can provide performance statistics of a particular
process.

3.3.4 NVML

The NVIDIA Management Library (NVML) [8] monitors and manages NVIDIA
GPU devices. It provides interfaces for querying and controlling device states,
handling events, and reporting errors. Real-time query-able statistics such as ECC
error counting, active processes and utilization, temperature and energy con-
sumption can be captured via these interfaces. Also, some modifiable state can be
accessed (e.g. ECC mode, compute mode, Persistence mode). In our K40c GPU and
P100 GPU, we record the real-time board power draw by querying the performance
counters.

4. Legion power and energy consumption on CPU server

To better understand the power and energy consumption patterns of Legion
applications, we compare the performance of processors and power consumption
of both MPI versions and Legion versions of MiniAero and the circuit with different
problem sizes on different CPU cores.

To reduce noise and measurement errors, we perform each experiment 10
times and calculate the average of the measurements, and each run has the same
initial conditions. The two applications are computationally intensive. Package and
DRAM are the most important consumers of energy. To better characterize Legion
applications and runtime, we separately measure and analyze the power and power
consumption of Legion helper and computational processes.

4.1 Experimental results of MiniAero

For the MPI version of MiniAero, their processes have to be explicitly defined
and they only share a part of the problem. The Legion version of MiniAero has some
calculation processes and Legion helpers. We test the 3D-Sod with three problem

23

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

sizes, that is 128 × 128 × 4, 256 × 256 × 4 and 512 × 512 × 4, on one, two and four
CPU cores.

4.1.1 CPU utilization of MiniAero application

The CPU utilization, which is used to estimate the system performance, mea-
sures the percentage of CPU cycles used on a core. On a multi-core processor, a load
of more than 100% indicates that two or more cores are being used by applications.
Figure 1 shows CPU usage of MiniAero with different problem sizes running on
different number of CPU cores. The figures show that the CPU usage of the MPI
version is relatively stable and reaches about 100%. However, for the Legion ver-
sion, the CPU cycles are not fully utilized by the Legion helper when the number
of compute cores is less, but the usage keep increasing as the number of cores
increases. On the other hand, those CPU cycles used by computational processes are
reduced in our experiments. When the core number increases from 1 to 4, shown
in Figure 1a–f and g–i, the Legion helper CPU usage increases from about 48% to
more than 92%. In contrast, the average CPU utilization of the calculation processes
drops from 75–25%. This suggests that identifying dependencies, mapping, and
scheduling tasks on Legion can cause significant overhead that interferes with the
useful calculation. The problem size, however, does not affect the CPU usage very
much. In Figure 1a, d and g, the execution time and CPU utilization of the Legion
version are almost identical, while the execution time of the MPI version increases
exponentially. Other experimental results with same number of compute cores
show a similar trend. The Legion runtime system offers better scalability.

Figure 1.
CPU utilization of MPI and Legion versions of the MiniAero application (a) Workload:128*128*4, 1
core, (b) Workload: 128*128*4, 2 cores, (c) Workload: 128*128*4, 4 cores, (d) Workload: 256*256*4, 1
core, (e) Workload: 256*256*4, 2 cores, (f) Workload: 256*256*4, 4 cores, (g) Workload: 512*512*4, 1 core,
(h) Workload: 512*512*4, 2 cores, and (i) Workload: 512*512*4, 4 cores.

High Performance Parallel Computing

24

4.1.2 Power usage of MiniAero application

The power consumption of the package and DRAM of both processors is similar.
The biggest difference which is 12 W between packages is observed when MiniAero
runs on a core as shown in Figure 2a, d and g. With the Legion runtime, the threads
for arithmetic computational tasks are evenly pinned to cores of the two processors,
while the Legion helper threads hovers between the cores and migrate across the cores
some time. When the Legion helper floats to a processor running computational pro-
cesses, the power consumption of that processor increases. For example, Figure 2b
shows that the Legion helper is running on processor 0 and two computation pro-
cesses are running on processors 0 and 1. Therefore, Package 0 draws 5.1 W more
power when the processor is running at peak power. In Figure 2c, however, the
Legion Helper runs on processor 1, which leads to more power consumption through
this package. Despite this uncertainty, the total power consumption of both packages
does not vary much when using the same number of cores. For example, in
Figure 2c, f and i, the total power consumption of the package is 83.7–
85.2 W. Memory consumes a small amount of power, that is 3.1–4.5 W and the
 variation is small as well. Combined with the CPU utilization results discussed in
the previous subsection, we can observe that when the number of cores increases, the
Legion Helper uses more CPU cycles and power consumption are also increased.

The total power consumption when running the Legion version, including
both the computational tasks and the Legion helper, is 71.3–80.7% of that for the
MPI version. The two limits are reached when the workload is 128 × 128 × 4. The

Figure 2.
Package and DRAM power consumption of MPI and Legion versions of the MiniAero application (a)
Workload: 128*128*4 1 core, (b) Workload: 128*128*4, 2 cores, (c) Workload: 128*128*4, 4 cores, (d) Workload:
256*256*4 1core, (e) Workload: 256*256*4, 2 cores, (f) Workload: 256*256*4 4 cores, (g) Workload: 512*512*4,
1 core, (h) Workload: 512*512*4, 2 cores, and (i) Workload: 512*512*4, 4 cores.

25

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

power consumption of the Legion version on 1, 2 and 4 cores is 57.8, 72.6 and
81.7 W respectively, while the MPI counterpart consumes 81.1, 90 and 101.2 W.

In addition, we use PowerAPI to measure the power consumption of the MPI
version and Legion version of MiniAero at the process level. The power consump-
tion is depicted in Figure 3. Figure 3 compares the power consumption of proces-
sors measured by PowerAPI on varying problem sizes and settings (128 × 128 × 4,
256 × 256 × 4, 512 × 512 × 4 on 1,2,4 cores respectively). The power consumption mea-
sured by PowerAPI is close to the results provided by RAPL. Overall, the difference
between the two tools is within a range of [2.4w, 2.9w]. As both versions of MiniAero
consume a little amount of power from DRAM, we do not include it in the figure.

4.1.3 Execution time and energy consumption of MiniAero

The execution time as shown in Figure 4 and energy consumption as shown in
Figure 5 of Legion-version of MiniAero are relatively stable except the rise, when the
Legion helper sends tasks to more cores for parallelism. In contrast, the MPI version
follows the normal trend, where more cores accelerate execution and save energy.
The results indicate that while Legion provides more partitions for the application, it
distributes the workload equally among the cores and slows down tasks, which can
be caused by the Legion helper. As a result, the power consumption of each processor
does not change much while the execution time is prolonged, resulting in increased
power consumption. The MPI version, on the other hand, fully exploits the extra
cores, reducing execution time and power consumption.

Figure 3.
Power consumption of MPI version of MiniAero measured by Power API (a) Power consumption of MPI
version of MiniAero mea- sured by Power API, and (b) Power consumption of Legion version of MiniAero
measured by Power API.

Figure 4.
Execution time of the MiniAero application.

High Performance Parallel Computing

24

4.1.2 Power usage of MiniAero application

The power consumption of the package and DRAM of both processors is similar.
The biggest difference which is 12 W between packages is observed when MiniAero
runs on a core as shown in Figure 2a, d and g. With the Legion runtime, the threads
for arithmetic computational tasks are evenly pinned to cores of the two processors,
while the Legion helper threads hovers between the cores and migrate across the cores
some time. When the Legion helper floats to a processor running computational pro-
cesses, the power consumption of that processor increases. For example, Figure 2b
shows that the Legion helper is running on processor 0 and two computation pro-
cesses are running on processors 0 and 1. Therefore, Package 0 draws 5.1 W more
power when the processor is running at peak power. In Figure 2c, however, the
Legion Helper runs on processor 1, which leads to more power consumption through
this package. Despite this uncertainty, the total power consumption of both packages
does not vary much when using the same number of cores. For example, in
Figure 2c, f and i, the total power consumption of the package is 83.7–
85.2 W. Memory consumes a small amount of power, that is 3.1–4.5 W and the
 variation is small as well. Combined with the CPU utilization results discussed in
the previous subsection, we can observe that when the number of cores increases, the
Legion Helper uses more CPU cycles and power consumption are also increased.

The total power consumption when running the Legion version, including
both the computational tasks and the Legion helper, is 71.3–80.7% of that for the
MPI version. The two limits are reached when the workload is 128 × 128 × 4. The

Figure 2.
Package and DRAM power consumption of MPI and Legion versions of the MiniAero application (a)
Workload: 128*128*4 1 core, (b) Workload: 128*128*4, 2 cores, (c) Workload: 128*128*4, 4 cores, (d) Workload:
256*256*4 1core, (e) Workload: 256*256*4, 2 cores, (f) Workload: 256*256*4 4 cores, (g) Workload: 512*512*4,
1 core, (h) Workload: 512*512*4, 2 cores, and (i) Workload: 512*512*4, 4 cores.

25

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

power consumption of the Legion version on 1, 2 and 4 cores is 57.8, 72.6 and
81.7 W respectively, while the MPI counterpart consumes 81.1, 90 and 101.2 W.

In addition, we use PowerAPI to measure the power consumption of the MPI
version and Legion version of MiniAero at the process level. The power consump-
tion is depicted in Figure 3. Figure 3 compares the power consumption of proces-
sors measured by PowerAPI on varying problem sizes and settings (128 × 128 × 4,
256 × 256 × 4, 512 × 512 × 4 on 1,2,4 cores respectively). The power consumption mea-
sured by PowerAPI is close to the results provided by RAPL. Overall, the difference
between the two tools is within a range of [2.4w, 2.9w]. As both versions of MiniAero
consume a little amount of power from DRAM, we do not include it in the figure.

4.1.3 Execution time and energy consumption of MiniAero

The execution time as shown in Figure 4 and energy consumption as shown in
Figure 5 of Legion-version of MiniAero are relatively stable except the rise, when the
Legion helper sends tasks to more cores for parallelism. In contrast, the MPI version
follows the normal trend, where more cores accelerate execution and save energy.
The results indicate that while Legion provides more partitions for the application, it
distributes the workload equally among the cores and slows down tasks, which can
be caused by the Legion helper. As a result, the power consumption of each processor
does not change much while the execution time is prolonged, resulting in increased
power consumption. The MPI version, on the other hand, fully exploits the extra
cores, reducing execution time and power consumption.

Figure 3.
Power consumption of MPI version of MiniAero measured by Power API (a) Power consumption of MPI
version of MiniAero mea- sured by Power API, and (b) Power consumption of Legion version of MiniAero
measured by Power API.

Figure 4.
Execution time of the MiniAero application.

High Performance Parallel Computing

26

Figure 6.
CPU utilization and power consumption of the circuit application (a) CPU utilization, and (b) Power
consumption.

The highest reduction in Legion execution time and energy is achieved when
using a single core for a 512 × 512 × 4 problem size. The MPI version requires 36
times more execution time, and 45 times more energy than the Legion version
respectively. Although the Legion helper causes more overhead, it reduces 89.1% of
execution time and saves 90.8% energy compared to its MPI counterpart.

4.2 Experimental results of circuit

The Legion version of the circuit application is much more scalable than Legion
version of MiniAero. The CPU utilization of Legion Helper jump to 17% at the
beginning of the execution, and then the amount of utilization drops to 5% for the
rest of the execution, as shown in Figure 6a. On the other hand, the CPU cores that
perform computational tasks are fully used and the utilization is over 100% some-
time. All the execution of Circuit on different numbers of cores has similar pattern.

In Figure 6b display that more power is consumed by the packet domain when
more cores are used for computational tasks. From one core to two cores, power con-
sumption increases by 6.6 W and an additional 6.8 W is consumed by two cores into
four cores. In the meanwhile, the power draw of DRAM remains low and constant.

It is also shown in Figure 7 that with more cores for computational tasks, execu-
tion time and power consumption are reduced. For example, if you run on two cores
and four cores, 49.7 and 73.3% of execution time and 42.3 and 64.1% of energy,
respectively, is reduced as if only one core is running.

The power per watt of the Legion version of the circuit is 6.7 MFLOPS/W on
a core. It reaches 11.6 MFLOPS/W on two cores and 18.0 MFLOPS/W on 4 cores,

Figure 5.
Energy consumption of the MiniAero application.

27

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

which is 1.73 times and 1.55 times higher than one core and two cores. This obser-
vation indicates good scalability and energy efficiency of Legion runtime and
application.

5. Power and energy consumption with legion on CPU-GPU server

To discover the power and energy consumption of Legion runtime and appli-
cation on heterogeneous platform, we perform circuit tasks on GPU cores and
compare them to the results of the CPU server. The Legion helper of the circuit
identifies dependencies, maps logical areas, schedules tasks on CPU cores, and
performs tasks on GPU CUDA cores.

5.1 CPU utilization of circuit

Figure 8 shows the resource usage when connecting to the CPU server and the
heterogeneous server. During the initialization phase, the CPU utilization on both
platforms has a steep jump and reach beyond 100%, while the GPU utilization
remain 0. After that, the GPU starts with parallel circuit tasks. For the two problem
sizes (2 loops and 4 pieces, 4 loops and 8 pieces) shown in Figure 8, the circuit tasks
run at a high CPU utilization of nearly 100%. The Circuit takes advantage of 2880
CUDA cores in the Tesla K40c GPU, and the massive parallelism leads to a distinct
reduced execution time. In Figure 8a, the execution time of the circuit on the GPU
server is only about 1/3 of that on the CPU server, although the initialization phase
requires another 7.6 s. The larger problem size, as shown in Figure 8b, causes the
execution time on the CPU server to be increased 3.2-fold, while the increase on
the GPU is only 0.8-fold. This indicates that Legion scales are scaled very well in the
heterogeneous CPU-GPU environment.

5.2 Power consumption of circuit on heterogeneous server

Figure 9 shows the power consumption of the circuit on the CPU server and
heterogeneous server with Tesla K40c. The power consumption of the CPU at the
process level, measured with PowerAPI [7], is 3.05 W and remains stable in both
cases. The power consumption of GPU, as measured by NVML [8], varies as the
problem size changes; which is 50.5 W for 2 loops and 4 pieces of components and
55.1 W for 4 loops and 8 pieces of components respectively. This is because GPU

Figure 7.
Execution time and energy consumption of the circuit application.

High Performance Parallel Computing

26

Figure 6.
CPU utilization and power consumption of the circuit application (a) CPU utilization, and (b) Power
consumption.

The highest reduction in Legion execution time and energy is achieved when
using a single core for a 512 × 512 × 4 problem size. The MPI version requires 36
times more execution time, and 45 times more energy than the Legion version
respectively. Although the Legion helper causes more overhead, it reduces 89.1% of
execution time and saves 90.8% energy compared to its MPI counterpart.

4.2 Experimental results of circuit

The Legion version of the circuit application is much more scalable than Legion
version of MiniAero. The CPU utilization of Legion Helper jump to 17% at the
beginning of the execution, and then the amount of utilization drops to 5% for the
rest of the execution, as shown in Figure 6a. On the other hand, the CPU cores that
perform computational tasks are fully used and the utilization is over 100% some-
time. All the execution of Circuit on different numbers of cores has similar pattern.

In Figure 6b display that more power is consumed by the packet domain when
more cores are used for computational tasks. From one core to two cores, power con-
sumption increases by 6.6 W and an additional 6.8 W is consumed by two cores into
four cores. In the meanwhile, the power draw of DRAM remains low and constant.

It is also shown in Figure 7 that with more cores for computational tasks, execu-
tion time and power consumption are reduced. For example, if you run on two cores
and four cores, 49.7 and 73.3% of execution time and 42.3 and 64.1% of energy,
respectively, is reduced as if only one core is running.

The power per watt of the Legion version of the circuit is 6.7 MFLOPS/W on
a core. It reaches 11.6 MFLOPS/W on two cores and 18.0 MFLOPS/W on 4 cores,

Figure 5.
Energy consumption of the MiniAero application.

27

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

which is 1.73 times and 1.55 times higher than one core and two cores. This obser-
vation indicates good scalability and energy efficiency of Legion runtime and
application.

5. Power and energy consumption with legion on CPU-GPU server

To discover the power and energy consumption of Legion runtime and appli-
cation on heterogeneous platform, we perform circuit tasks on GPU cores and
compare them to the results of the CPU server. The Legion helper of the circuit
identifies dependencies, maps logical areas, schedules tasks on CPU cores, and
performs tasks on GPU CUDA cores.

5.1 CPU utilization of circuit

Figure 8 shows the resource usage when connecting to the CPU server and the
heterogeneous server. During the initialization phase, the CPU utilization on both
platforms has a steep jump and reach beyond 100%, while the GPU utilization
remain 0. After that, the GPU starts with parallel circuit tasks. For the two problem
sizes (2 loops and 4 pieces, 4 loops and 8 pieces) shown in Figure 8, the circuit tasks
run at a high CPU utilization of nearly 100%. The Circuit takes advantage of 2880
CUDA cores in the Tesla K40c GPU, and the massive parallelism leads to a distinct
reduced execution time. In Figure 8a, the execution time of the circuit on the GPU
server is only about 1/3 of that on the CPU server, although the initialization phase
requires another 7.6 s. The larger problem size, as shown in Figure 8b, causes the
execution time on the CPU server to be increased 3.2-fold, while the increase on
the GPU is only 0.8-fold. This indicates that Legion scales are scaled very well in the
heterogeneous CPU-GPU environment.

5.2 Power consumption of circuit on heterogeneous server

Figure 9 shows the power consumption of the circuit on the CPU server and
heterogeneous server with Tesla K40c. The power consumption of the CPU at the
process level, measured with PowerAPI [7], is 3.05 W and remains stable in both
cases. The power consumption of GPU, as measured by NVML [8], varies as the
problem size changes; which is 50.5 W for 2 loops and 4 pieces of components and
55.1 W for 4 loops and 8 pieces of components respectively. This is because GPU

Figure 7.
Execution time and energy consumption of the circuit application.

High Performance Parallel Computing

28

has more capacity to handle more independent tasks and gain more throughput but
consume more power.

5.3 Execution time and energy consumption of Circuit

Figure 10 depicts the execution time and energy consumption of the Circuit. Not
surprisingly, the GPU version of Circuit runs on heterogeneous platform shorten
the execution time but at the cost of consuming more power. For the problem size
of 2 Loops and 4 Pieces, it takes 65.3 s for CPU version and 26.7 s for GPU version to
execute, and consumes 389.6 J and 2164.1 J energy respectively. That means CPU ver-
sion takes 1.45 times more execution time and saves 72.0% of the power compared to
the GPU execution. In another situation for the problem size of 4 Loops and 8 Pieces,
it takes 240.4 s and 1469.9 J for CPU version, and 53.9 s and 4782.6 J for GPU version
to execute. That means CPU version of the circuit takes 3.46 times more execution
time and saves 69.3% of the energy. This result indicates that Legion applications
with large problem sizes should be delivered onto heterogeneous platform to reduce
their execution time, which can lead to a slight increase in energy consumption.

Figure 8.
The circuit application run on CPU-GPU heterogeneous server (a) CPU utilization of circuit (loops = 2 and
pieces= 4), and (b) CPU utilization of circuit (loops = 4 and pieces= 8).

Figure 9.
Power consumption of circuit on the heterogeneous server. The CPU power usage is measured by PowerAPI,
and the GPU power usage is measured by NVML (a) Power consumption of circuit (loops = 2 and pieces = 4),
and (b) Power consumption of circuit (loops = 4 and pieces = 8).

29

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

5.4 Influence of GPU frequency scaling

Dynamic voltage and frequency scaling (DVFS) is often used to find the best
configuration for optimal energy and energy savings. Figure 12 compares the
performance of circuit running on GPU accelerator with different frequencies scal-
ing, where Figure 11 shows the power consumption of circuit running on different
frequencies, Figure 12a compares the execution time. Figure 12b and c describe the
energy consumption and the “FLOPS” which indicate the energy efficiency of the
circuit application. From the figure we can see that the standard frequency which is
745 MHz of the Tesla K40c GPU is not the best setting for the Legion circuit. With
the lowest frequency at 324 MHz, the circuit takes 2.21 times more execution time

Figure 10.
Execution time and energy consumption of circuit on two platforms (a) Execution time of circuit, and (b)
Energy consumption of circuit.

Figure 11.
Power consumption with GPU frequency scaling.

High Performance Parallel Computing

28

has more capacity to handle more independent tasks and gain more throughput but
consume more power.

5.3 Execution time and energy consumption of Circuit

Figure 10 depicts the execution time and energy consumption of the Circuit. Not
surprisingly, the GPU version of Circuit runs on heterogeneous platform shorten
the execution time but at the cost of consuming more power. For the problem size
of 2 Loops and 4 Pieces, it takes 65.3 s for CPU version and 26.7 s for GPU version to
execute, and consumes 389.6 J and 2164.1 J energy respectively. That means CPU ver-
sion takes 1.45 times more execution time and saves 72.0% of the power compared to
the GPU execution. In another situation for the problem size of 4 Loops and 8 Pieces,
it takes 240.4 s and 1469.9 J for CPU version, and 53.9 s and 4782.6 J for GPU version
to execute. That means CPU version of the circuit takes 3.46 times more execution
time and saves 69.3% of the energy. This result indicates that Legion applications
with large problem sizes should be delivered onto heterogeneous platform to reduce
their execution time, which can lead to a slight increase in energy consumption.

Figure 8.
The circuit application run on CPU-GPU heterogeneous server (a) CPU utilization of circuit (loops = 2 and
pieces= 4), and (b) CPU utilization of circuit (loops = 4 and pieces= 8).

Figure 9.
Power consumption of circuit on the heterogeneous server. The CPU power usage is measured by PowerAPI,
and the GPU power usage is measured by NVML (a) Power consumption of circuit (loops = 2 and pieces = 4),
and (b) Power consumption of circuit (loops = 4 and pieces = 8).

29

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

5.4 Influence of GPU frequency scaling

Dynamic voltage and frequency scaling (DVFS) is often used to find the best
configuration for optimal energy and energy savings. Figure 12 compares the
performance of circuit running on GPU accelerator with different frequencies scal-
ing, where Figure 11 shows the power consumption of circuit running on different
frequencies, Figure 12a compares the execution time. Figure 12b and c describe the
energy consumption and the “FLOPS” which indicate the energy efficiency of the
circuit application. From the figure we can see that the standard frequency which is
745 MHz of the Tesla K40c GPU is not the best setting for the Legion circuit. With
the lowest frequency at 324 MHz, the circuit takes 2.21 times more execution time

Figure 10.
Execution time and energy consumption of circuit on two platforms (a) Execution time of circuit, and (b)
Energy consumption of circuit.

Figure 11.
Power consumption with GPU frequency scaling.

High Performance Parallel Computing

30

while saving 35% of power. Execution time is reduced by 18.8 with 3.4% energy
savings when operating the circuit with the highest GPU frequency. In both cases
the power consumption is lower than at the standard frequency. Both frequency
settings provide good energy efficiency. The frequency selection depends on the
power requirements.

To follow the advance of hardware technology, we not only test Legion
applications on our Nvidia K40 GPU, but also run the Legion version of circuit on
a new GPU, that is P100 GPU Accelerator(12 GB Card). We scale the frequency
of P100 to its base frequency at 1126 MHz and its max frequency at 1303 MHz
to evaluate the performance of circuit. Figure 13 shows the performance of
the Legion version of circuit with a workload of loops = 4 and pieces = 8. From
Figure 13a, we can see if the frequency of P100 is set to 1303 MHz, the power
consumption exceeds 100 W, while the power consumption is around 88 W, if
the frequency is set to 1126 MHz. Figure 13b–d depict the execution time, energy
consumption, and the processing power of P100 for Legion circuit respectively.
Compared to Tesla K40c, there is a big improvement on performance, while the
energy consumption has a significant drop. This is due to the reduced execution

Figure 13.
Performance of circuit run at different GPU frequencies (loops = 4 and pieces = 8) (a) Power consumption of
different GPU frequency scaling, (b) Execution time, (c) Energy, and (d) GFLOPS.

Figure 12.
Performance of circuit run at different GPU frequencies (loops = 4 and pieces = 8) (a) Execution time of
different GPU frequency scaling, (b) Energy Consumption of different frequency GPU scaling, and (c) FLOPS
of different frequency GPU scaling.

31

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

time. Hence, we expect that the Legion version of circuit will have a better
performance on the latest GPUs.

6. Findings and discussion

The Legion -based MiniAero is a good example to highlight the Legion Helper’s
scalability problem. If the Legion helper is unable to isolate independent tasks
quickly enough with the increased number of associated compute resources (such
as CPU cores), this becomes a performance bottleneck. The resource utilization
of Legion helper processes continues to increase and the throughput of com-
pute tasks decreases. This leads to a longer execution time and reduced energy
efficiency.

In cases where the Legion system and legacy applications have good scal-
ability, energy and energy savings become more effective as more computational
resources are used. The execution time of an application is significantly reduced,
while the power consumption does not increase much, resulting in better energy
efficiency.

Legion offers significant benefits through GPU computing. As GPU-mapped
and scheduled tasks can be performed in parallel, performance enhancement and
energy efficiency can be further improved.

7. Related works

Some new Legion program model features, model components, and how these
components work were presented in [4]. A combination of static and dynamic
checks to improve the solidity of the Legion system and a compositional parallel
semantics are described in [12]. An event-based runtime system [13] is embedded
in Legion asynchronously for heterogeneous and distributed storage architectures.
Structure slicing [14] breaks the specification of data usage, identifies data paral-
lelism, and reduces data movement. A highly productive programming language,
Regent [10], which can be translated into Legion implementation, runs sequentially
without explicit synchronization.

Power profiling in production computer systems provides valuable data and
knowledge for the development of power simulators and resource scheduling
policies. Fine-grained power profiling techniques measure the power consump-
tion of individual hardware components such as CPU [15], memory [16], hard
disk [17] and other devices [18]. In contrast, coarse-grained performance profil-
ing aims to characterize system-wide performance dynamics, such as the macro
stream framework [19]. Moreover, a power meter for virtualized environments
was presented in [20]. CPU event counters and the Performance Programming
Interface Library were used to estimate the power usage on a per-thread basis.
Kamil et al. profiled HPC applications on multiple test platforms and projected the
performance profiling results from a single node to a complete system [21]. Ge et al.
investigated the influence of software and hardware configurations on system-wide
power consumption [22]. They found that properties of HPC applications affect the
power consumption of a system. Hackenberg et al. conducted a detailed analysis
of Haswell’s P-state and C-state transition latencies and the impact of Haswell’s
new power management mechanisms on memory bandwidth and performance
reproducibility [23]. Our work differs from these previous efforts by measuring
and analyzing the impact of new Haswell power management capabilities on the
performance and performance of HPC codes.

High Performance Parallel Computing

30

while saving 35% of power. Execution time is reduced by 18.8 with 3.4% energy
savings when operating the circuit with the highest GPU frequency. In both cases
the power consumption is lower than at the standard frequency. Both frequency
settings provide good energy efficiency. The frequency selection depends on the
power requirements.

To follow the advance of hardware technology, we not only test Legion
applications on our Nvidia K40 GPU, but also run the Legion version of circuit on
a new GPU, that is P100 GPU Accelerator(12 GB Card). We scale the frequency
of P100 to its base frequency at 1126 MHz and its max frequency at 1303 MHz
to evaluate the performance of circuit. Figure 13 shows the performance of
the Legion version of circuit with a workload of loops = 4 and pieces = 8. From
Figure 13a, we can see if the frequency of P100 is set to 1303 MHz, the power
consumption exceeds 100 W, while the power consumption is around 88 W, if
the frequency is set to 1126 MHz. Figure 13b–d depict the execution time, energy
consumption, and the processing power of P100 for Legion circuit respectively.
Compared to Tesla K40c, there is a big improvement on performance, while the
energy consumption has a significant drop. This is due to the reduced execution

Figure 13.
Performance of circuit run at different GPU frequencies (loops = 4 and pieces = 8) (a) Power consumption of
different GPU frequency scaling, (b) Execution time, (c) Energy, and (d) GFLOPS.

Figure 12.
Performance of circuit run at different GPU frequencies (loops = 4 and pieces = 8) (a) Execution time of
different GPU frequency scaling, (b) Energy Consumption of different frequency GPU scaling, and (c) FLOPS
of different frequency GPU scaling.

31

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

time. Hence, we expect that the Legion version of circuit will have a better
performance on the latest GPUs.

6. Findings and discussion

The Legion -based MiniAero is a good example to highlight the Legion Helper’s
scalability problem. If the Legion helper is unable to isolate independent tasks
quickly enough with the increased number of associated compute resources (such
as CPU cores), this becomes a performance bottleneck. The resource utilization
of Legion helper processes continues to increase and the throughput of com-
pute tasks decreases. This leads to a longer execution time and reduced energy
efficiency.

In cases where the Legion system and legacy applications have good scal-
ability, energy and energy savings become more effective as more computational
resources are used. The execution time of an application is significantly reduced,
while the power consumption does not increase much, resulting in better energy
efficiency.

Legion offers significant benefits through GPU computing. As GPU-mapped
and scheduled tasks can be performed in parallel, performance enhancement and
energy efficiency can be further improved.

7. Related works

Some new Legion program model features, model components, and how these
components work were presented in [4]. A combination of static and dynamic
checks to improve the solidity of the Legion system and a compositional parallel
semantics are described in [12]. An event-based runtime system [13] is embedded
in Legion asynchronously for heterogeneous and distributed storage architectures.
Structure slicing [14] breaks the specification of data usage, identifies data paral-
lelism, and reduces data movement. A highly productive programming language,
Regent [10], which can be translated into Legion implementation, runs sequentially
without explicit synchronization.

Power profiling in production computer systems provides valuable data and
knowledge for the development of power simulators and resource scheduling
policies. Fine-grained power profiling techniques measure the power consump-
tion of individual hardware components such as CPU [15], memory [16], hard
disk [17] and other devices [18]. In contrast, coarse-grained performance profil-
ing aims to characterize system-wide performance dynamics, such as the macro
stream framework [19]. Moreover, a power meter for virtualized environments
was presented in [20]. CPU event counters and the Performance Programming
Interface Library were used to estimate the power usage on a per-thread basis.
Kamil et al. profiled HPC applications on multiple test platforms and projected the
performance profiling results from a single node to a complete system [21]. Ge et al.
investigated the influence of software and hardware configurations on system-wide
power consumption [22]. They found that properties of HPC applications affect the
power consumption of a system. Hackenberg et al. conducted a detailed analysis
of Haswell’s P-state and C-state transition latencies and the impact of Haswell’s
new power management mechanisms on memory bandwidth and performance
reproducibility [23]. Our work differs from these previous efforts by measuring
and analyzing the impact of new Haswell power management capabilities on the
performance and performance of HPC codes.

High Performance Parallel Computing

32

Some researchers analyzed the power and energy efficiency of different types
of applications run on HPC systems. Bari et al. investigated OpenMP’s runtime
configurations on power constrained systems at different power levels [24]. They
found that a suitable selection of OpenMP’s runtime parameters could improve
the execution time and reduce the energy consumption of a parallel program by
up to 67 and 72%, respectively. Qasem et al. [25] evaluated the impact of data
layout and placement on the energy efficiency of heterogeneous applications by
means of memory divergence, data access patterns, arithmetic intensities and data
placement. They found that data layout and placement had a significant impact on
the energy efficiency. Additionally, analytical models were developed to analyze
energy efficiency in [26]. The models were able to support a priori selection of
the operating frequency that leaded to a near optimal energy consumption for the
execution of multi-threading applications. Meanwhile, Heinrich et al. aimed to
predict the energy consumption of MPI applications by developing a computa-
tion model, a communication model, and an energy model which were integrated
into the SimGrid simulation toolkit [27]. To improve the system performance by
utilizing the available power budget more efficiently on multiple-node platforms, a
hierarchical multi-dimensional power aware allocation framework was developed
in [28] for power bounded parallel computing. The power allocation was performed
using memory power-level settings, thread concurrency throttling, and core-thread
affinity, and the scheduler outperformed other methods by 20% on average.

To control the power consumption of HPC systems, power limitation [29] is a
promising and effective approach. System operators can balance the performance
and power consumption of clusters by adjusting the maximum amount of power
(also called the power budget) that clusters can consume. Pelly et al. presented a
dynamic current sourcing and coverage method at the [30] Power Distribution
Unit (PDU). They proposed using a heuristic policy to shift the capacity weak-
ness to servers with increasing power requirements. Zhang et al. proposed a
hybrid software/hardware power capping system and proved that their power cap
outperforms the hardware power capping system provided by Intel and has the
same reaction time [31]. For HPC jobs, many factors affect power consumption,
including hardware configurations and resource usage. Femal et al. developed a
hierarchical management policy to distribute the power budget to clusters [32]. Kim
et al. investigated the relationship between CPU voltages and system performance
and energy efficiency [33]. Utilizing Dynamic Voltage Scaling (DVS) technologies,
a Task Planning Policy has been proposed that aims to minimize energy consump-
tion while meeting specified performance requirements. Rountree et al. proposed
guidelines for overprovisioning hardware with hardware-enforced performance
limitations and system-wide performance reallocation in an application-indepen-
dent manner [34, 35]. We have developed a complete system simulator, TracSim
[36], which estimates the capacity of trapped energy under various power-limiting
and job-planning guidelines.

8. Conclusion

In this chapter, we describe the power consumption, energy efficiency, perfor-
mance, and resource usage of Legion runtime environment and applications. Our
experimental results show that Legion offers favorable energy efficiency, although
in some cases its scalability can be influenced by Legion Helpers. The Legion
programming model is consistent with the massively parallel nature of the GPU
design and shows good performance and energy efficiency for large problem-size
applications.

33

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

Acknowledgements

This work is supported by the U.S. Department of Energy contract DE-AC52-
06NA25396. This chapter has been assigned the LANL identifier LA-UR-16-25965.

Conflict of interest

The authors declare no conflict of interest.

Author details

Song Huang1, Song Fu1*, Scott Pakin2 and Michael Lang2

1 University of North Texas, Denton, Texas, USA

2 Los Alamos National Laboratory, Los Alamos, New Mexico, USA

*Address all correspondence to: song.fu@unt.edu

High Performance Parallel Computing

32

Some researchers analyzed the power and energy efficiency of different types
of applications run on HPC systems. Bari et al. investigated OpenMP’s runtime
configurations on power constrained systems at different power levels [24]. They
found that a suitable selection of OpenMP’s runtime parameters could improve
the execution time and reduce the energy consumption of a parallel program by
up to 67 and 72%, respectively. Qasem et al. [25] evaluated the impact of data
layout and placement on the energy efficiency of heterogeneous applications by
means of memory divergence, data access patterns, arithmetic intensities and data
placement. They found that data layout and placement had a significant impact on
the energy efficiency. Additionally, analytical models were developed to analyze
energy efficiency in [26]. The models were able to support a priori selection of
the operating frequency that leaded to a near optimal energy consumption for the
execution of multi-threading applications. Meanwhile, Heinrich et al. aimed to
predict the energy consumption of MPI applications by developing a computa-
tion model, a communication model, and an energy model which were integrated
into the SimGrid simulation toolkit [27]. To improve the system performance by
utilizing the available power budget more efficiently on multiple-node platforms, a
hierarchical multi-dimensional power aware allocation framework was developed
in [28] for power bounded parallel computing. The power allocation was performed
using memory power-level settings, thread concurrency throttling, and core-thread
affinity, and the scheduler outperformed other methods by 20% on average.

To control the power consumption of HPC systems, power limitation [29] is a
promising and effective approach. System operators can balance the performance
and power consumption of clusters by adjusting the maximum amount of power
(also called the power budget) that clusters can consume. Pelly et al. presented a
dynamic current sourcing and coverage method at the [30] Power Distribution
Unit (PDU). They proposed using a heuristic policy to shift the capacity weak-
ness to servers with increasing power requirements. Zhang et al. proposed a
hybrid software/hardware power capping system and proved that their power cap
outperforms the hardware power capping system provided by Intel and has the
same reaction time [31]. For HPC jobs, many factors affect power consumption,
including hardware configurations and resource usage. Femal et al. developed a
hierarchical management policy to distribute the power budget to clusters [32]. Kim
et al. investigated the relationship between CPU voltages and system performance
and energy efficiency [33]. Utilizing Dynamic Voltage Scaling (DVS) technologies,
a Task Planning Policy has been proposed that aims to minimize energy consump-
tion while meeting specified performance requirements. Rountree et al. proposed
guidelines for overprovisioning hardware with hardware-enforced performance
limitations and system-wide performance reallocation in an application-indepen-
dent manner [34, 35]. We have developed a complete system simulator, TracSim
[36], which estimates the capacity of trapped energy under various power-limiting
and job-planning guidelines.

8. Conclusion

In this chapter, we describe the power consumption, energy efficiency, perfor-
mance, and resource usage of Legion runtime environment and applications. Our
experimental results show that Legion offers favorable energy efficiency, although
in some cases its scalability can be influenced by Legion Helpers. The Legion
programming model is consistent with the massively parallel nature of the GPU
design and shows good performance and energy efficiency for large problem-size
applications.

33

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

Acknowledgements

This work is supported by the U.S. Department of Energy contract DE-AC52-
06NA25396. This chapter has been assigned the LANL identifier LA-UR-16-25965.

Conflict of interest

The authors declare no conflict of interest.

Author details

Song Huang1, Song Fu1*, Scott Pakin2 and Michael Lang2

1 University of North Texas, Denton, Texas, USA

2 Los Alamos National Laboratory, Los Alamos, New Mexico, USA

*Address all correspondence to: song.fu@unt.edu

34

High Performance Parallel Computing

[1] D. of Energy. Department of
Energy Awards Six Research Contracts
Totaling $258 million to Accelerate
U.S. Supercomputing Technology; 2017

[2] Deng Q, Meisner D, Bhattacharjee
A, Wenisch TF, Bianchini R. Coscale:
Coordinating cpu and memory
system dvfs in server systems. In:
Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer
Society; 2012. pp. 143-154

[3] Legion Project. http://legion.
stanford.edu/. 2016

[4] Bauer M, Treichler S, Slaughter E,
Aiken A. Legion: Expressing locality
and independence with logical regions.
In: High Performance Computing,
Networking, Storage and Analysis (SC),
2012 International Conference for.
IEEE; 2012. pp. 1-11

[5] Mucci PJ, Browne S, Deane C,
Ho G. Papi: A portable interface to
hardware performance counters.
In: Proceedings of the Department
of Defense HPCMP users Group
Conference. Vol. 710. 1999

[6] David H, Gorbatov E, Hanebutte UR,
Khanna R, Le C. Rapl: Memory power
estimation and capping. In: Proceedings
of the 16th ACM/IEEE International
Symposium on Low Power Electronics
and Design. ACM; 2010. pp. 189-194

[7] Bourdon A, Noureddine A, Rouvoy
R, Seinturier L. PowerAPI: A software
library to monitor the energy consumed
at the process-level. ERCIM News.
2013;92:2013

[8] NVIDIA. Nvidia management library
(nvml), 2016

[9] Mantevo Project. https://mantevo.
org/packages/. 2016

[10] Slaughter E, Lee W, Treichler S,
Bauer M, Aiken A. Regent: A high-
productivity programming language for
hpc with logical regions. In: Proceedings
of the International Conference for High
Performance Computing, Networking,
Storage and Analysis. ACM; 2015. p. 81

[11] Hollman DS, Hollman DS, et al.
Lessons Learned from Porting the
Miniaero Application to Charm++.
Technical report. Sandia National
Laboratories; 2015

[12] Treichler S, Bauer M, Aiken
A. Language support for dynamic,
hierarchical data partitioning. In: ACM
SIGPLAN Notices. Vol. 48. ACM; 2013.
pp. 495-514

[13] Aiken A, Bauer M, Treichler
S. Realm: An event-based low-level
runtime for distributed memory
architectures. In: Parallel Architecture
and Compilation Techniques (PACT),
2014 23rd International Conference on.
IEEE; 2014. pp. 263-275

[14] Bauer M, Treichler S, Slaughter
E, Aiken A. Structure slicing:
Extending logical regions with fields.
In: Proceedings of the International
Conference for High Performance
Computing, Networking, Storage and
Analysis. IEEE Press; 2014. pp. 845-856

[15] Magklis G, Scott ML, Semeraro
G, Albonesi DH, Dropsho S. Profile-
based dynamic voltage and frequency
scaling for a multiple clock domain
microprocessor. ACM SIGARCH
Computer Architecture News.
2003;31(2):14-27

[16] Ye W, Vijaykrishnan N, Kandemir
M, Irwin MJ. The design and use of
simplepower: A cycle-accurate energy
estimation tool. In: Proceedings of
the 37th Annual Design Automation
Conference. ACM; 2000. pp. 340-345

References

35

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

[17] Zedlewski J, Sobti S, Garg N,
Zheng F, Krishnamurthy A, Wang
RY, et al. Modeling hard-disk power
consumption. In: FAST. Vol. 3. 2003.
pp. 217-230

[18] Ye TT, Benini L, De Micheli
G. Analysis of power consumption
on switch fabrics in network routers.
In: Design Automation Conference,
2002. Proceedings. 39th. IEEE; 2002.
pp. 524-529

[19] Zhang Z, Fu S. Macropower: A
coarse-grain power profiling framework
for energy-efficient cloud computing.
In: Performance Computing and
Communications Conference (IPCCC),
2011 IEEE 30th International. IEEE;
2011. pp. 1-8

[20] Phung J, Lee YC, Zomaya
AY. Application-agnostic power
monitoring in virtualized environments.
In: Cluster, Cloud and Grid Computing
(CCGRID), 2017 17th IEEE/ACM
International Symposium on. IEEE;
2017. pp. 335-344

[21] Kamil S, Shalf J, Strohmaier
E. Power efficiency in high performance
computing. In: Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE
International Symposium on. IEEE;
2008. pp. 1-8

[22] Ge R, Feng X, Song S, Chang
H-C, Li D, Cameron KW. Powerpack:
Energy profiling and analysis of
high-performance systems and
applications. IEEE Transactions on
Parallel and Distributed Systems.
2010;21(5):658-671

[23] Hackenberg D, Schöne R, Ilsche
T, Molka D, Schuchart J, Geyer R. An
energy efficiency feature survey of the
intel Haswell processor. In: Parallel and
Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE
International. IEEE; 2015.
pp. 896-904

[24] Bari MAS, Malik AM, Qawasmeh
A, Chapman B. A detailed analysis
of OpenMP runtime configurations
for power constrained systems. In:
2017 Eighth International Green and
Sustainable Computing Conference
(IGSC). IEEE; 2017. pp. 1-8

[25] Qasem A, Teich S. Evaluating the
impact of data layout and placement on
the energy efficiency of heterogeneous
applications. In: Green and Sustainable
Computing Conference (IGSC), 2017
Eighth International. IEEE; 2017. pp. 1-8

[26] Rauber T, Runger G, Stachowski
M. Model-based optimization of
the energy efficiency of multi-
threaded applications. In: 2017 Eighth
International Green and Sustainable
Computing Conference (IGSC). IEEE;
2017. pp. 1-6

[27] Heinrich FC, Cornebize T,
Degomme A, Legrand A, Carpen-
Amarie A, Hunold S, et al. Predicting
the energy-consumption of mpi
applications at scale using only a
single node. In: Cluster Computing
(CLUSTER), 2017 IEEE International
Conference on. IEEE; 2017. pp. 92-102

[28] Zou P, Allen T, Davis CH IV, Feng
X, Ge R. Clip: Cluster-level intelligent
power coordination for power-bounded
systems. In: Cluster Computing
(CLUSTER), 2017 IEEE International
Conference on. IEEE; 2017. pp. 541-551

[29] Choi J, Govindan S, Urgaonkar
B, Sivasubramaniam A. Profiling,
prediction, and capping of power
consumption in consolidated
environments. In: Modeling, Analysis
and Simulation of Computers and
Telecommunication Systems, 2008.
MASCOTS 2008. IEEE International
Symposium on. IEEE; 2008. pp. 1-10

[30] Pelley S, Meisner D, Zandevakili
P, Wenisch TF, Underwood J. Power
routing: Dynamic power provisioning

34

High Performance Parallel Computing

[1] D. of Energy. Department of
Energy Awards Six Research Contracts
Totaling $258 million to Accelerate
U.S. Supercomputing Technology; 2017

[2] Deng Q, Meisner D, Bhattacharjee
A, Wenisch TF, Bianchini R. Coscale:
Coordinating cpu and memory
system dvfs in server systems. In:
Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer
Society; 2012. pp. 143-154

[3] Legion Project. http://legion.
stanford.edu/. 2016

[4] Bauer M, Treichler S, Slaughter E,
Aiken A. Legion: Expressing locality
and independence with logical regions.
In: High Performance Computing,
Networking, Storage and Analysis (SC),
2012 International Conference for.
IEEE; 2012. pp. 1-11

[5] Mucci PJ, Browne S, Deane C,
Ho G. Papi: A portable interface to
hardware performance counters.
In: Proceedings of the Department
of Defense HPCMP users Group
Conference. Vol. 710. 1999

[6] David H, Gorbatov E, Hanebutte UR,
Khanna R, Le C. Rapl: Memory power
estimation and capping. In: Proceedings
of the 16th ACM/IEEE International
Symposium on Low Power Electronics
and Design. ACM; 2010. pp. 189-194

[7] Bourdon A, Noureddine A, Rouvoy
R, Seinturier L. PowerAPI: A software
library to monitor the energy consumed
at the process-level. ERCIM News.
2013;92:2013

[8] NVIDIA. Nvidia management library
(nvml), 2016

[9] Mantevo Project. https://mantevo.
org/packages/. 2016

[10] Slaughter E, Lee W, Treichler S,
Bauer M, Aiken A. Regent: A high-
productivity programming language for
hpc with logical regions. In: Proceedings
of the International Conference for High
Performance Computing, Networking,
Storage and Analysis. ACM; 2015. p. 81

[11] Hollman DS, Hollman DS, et al.
Lessons Learned from Porting the
Miniaero Application to Charm++.
Technical report. Sandia National
Laboratories; 2015

[12] Treichler S, Bauer M, Aiken
A. Language support for dynamic,
hierarchical data partitioning. In: ACM
SIGPLAN Notices. Vol. 48. ACM; 2013.
pp. 495-514

[13] Aiken A, Bauer M, Treichler
S. Realm: An event-based low-level
runtime for distributed memory
architectures. In: Parallel Architecture
and Compilation Techniques (PACT),
2014 23rd International Conference on.
IEEE; 2014. pp. 263-275

[14] Bauer M, Treichler S, Slaughter
E, Aiken A. Structure slicing:
Extending logical regions with fields.
In: Proceedings of the International
Conference for High Performance
Computing, Networking, Storage and
Analysis. IEEE Press; 2014. pp. 845-856

[15] Magklis G, Scott ML, Semeraro
G, Albonesi DH, Dropsho S. Profile-
based dynamic voltage and frequency
scaling for a multiple clock domain
microprocessor. ACM SIGARCH
Computer Architecture News.
2003;31(2):14-27

[16] Ye W, Vijaykrishnan N, Kandemir
M, Irwin MJ. The design and use of
simplepower: A cycle-accurate energy
estimation tool. In: Proceedings of
the 37th Annual Design Automation
Conference. ACM; 2000. pp. 340-345

References

35

Characterizing Power and Energy Efficiency of Legion Data-Centric…
DOI: http://dx.doi.org/10.5772/intechopen.81124

[17] Zedlewski J, Sobti S, Garg N,
Zheng F, Krishnamurthy A, Wang
RY, et al. Modeling hard-disk power
consumption. In: FAST. Vol. 3. 2003.
pp. 217-230

[18] Ye TT, Benini L, De Micheli
G. Analysis of power consumption
on switch fabrics in network routers.
In: Design Automation Conference,
2002. Proceedings. 39th. IEEE; 2002.
pp. 524-529

[19] Zhang Z, Fu S. Macropower: A
coarse-grain power profiling framework
for energy-efficient cloud computing.
In: Performance Computing and
Communications Conference (IPCCC),
2011 IEEE 30th International. IEEE;
2011. pp. 1-8

[20] Phung J, Lee YC, Zomaya
AY. Application-agnostic power
monitoring in virtualized environments.
In: Cluster, Cloud and Grid Computing
(CCGRID), 2017 17th IEEE/ACM
International Symposium on. IEEE;
2017. pp. 335-344

[21] Kamil S, Shalf J, Strohmaier
E. Power efficiency in high performance
computing. In: Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE
International Symposium on. IEEE;
2008. pp. 1-8

[22] Ge R, Feng X, Song S, Chang
H-C, Li D, Cameron KW. Powerpack:
Energy profiling and analysis of
high-performance systems and
applications. IEEE Transactions on
Parallel and Distributed Systems.
2010;21(5):658-671

[23] Hackenberg D, Schöne R, Ilsche
T, Molka D, Schuchart J, Geyer R. An
energy efficiency feature survey of the
intel Haswell processor. In: Parallel and
Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE
International. IEEE; 2015.
pp. 896-904

[24] Bari MAS, Malik AM, Qawasmeh
A, Chapman B. A detailed analysis
of OpenMP runtime configurations
for power constrained systems. In:
2017 Eighth International Green and
Sustainable Computing Conference
(IGSC). IEEE; 2017. pp. 1-8

[25] Qasem A, Teich S. Evaluating the
impact of data layout and placement on
the energy efficiency of heterogeneous
applications. In: Green and Sustainable
Computing Conference (IGSC), 2017
Eighth International. IEEE; 2017. pp. 1-8

[26] Rauber T, Runger G, Stachowski
M. Model-based optimization of
the energy efficiency of multi-
threaded applications. In: 2017 Eighth
International Green and Sustainable
Computing Conference (IGSC). IEEE;
2017. pp. 1-6

[27] Heinrich FC, Cornebize T,
Degomme A, Legrand A, Carpen-
Amarie A, Hunold S, et al. Predicting
the energy-consumption of mpi
applications at scale using only a
single node. In: Cluster Computing
(CLUSTER), 2017 IEEE International
Conference on. IEEE; 2017. pp. 92-102

[28] Zou P, Allen T, Davis CH IV, Feng
X, Ge R. Clip: Cluster-level intelligent
power coordination for power-bounded
systems. In: Cluster Computing
(CLUSTER), 2017 IEEE International
Conference on. IEEE; 2017. pp. 541-551

[29] Choi J, Govindan S, Urgaonkar
B, Sivasubramaniam A. Profiling,
prediction, and capping of power
consumption in consolidated
environments. In: Modeling, Analysis
and Simulation of Computers and
Telecommunication Systems, 2008.
MASCOTS 2008. IEEE International
Symposium on. IEEE; 2008. pp. 1-10

[30] Pelley S, Meisner D, Zandevakili
P, Wenisch TF, Underwood J. Power
routing: Dynamic power provisioning

High Performance Parallel Computing

36

in the data center. In: ACM Sigplan
Notices. Vol. 45. 2010. pp. 231-242

[31] Zhang H, Hoffmann H. Maximizing
performance under a power cap: A
comparison of hardware, software, and
hybrid techniques. ACM SIGARCH
Computer Architecture News.
2016;44(2):545-559

[32] Femal ME, Freeh VW. Boosting
data center performance through
non-uniform power allocation. In:
Autonomic Computing, 2005. ICAC
2005. Proceedings. Second International
Conference on. IEEE; 2005. pp. 250-261

[33] Kim KH, Buyya R, Kim J. Power
aware scheduling of bag-of-tasks
applications with deadline constraints
on Dvs-enabled clusters. In: CCGrid;
2007

[34] Ellsworth DA, Malony AD,
Rountree B, Schulz M. POW: System-
wide dynamic reallocation of limited
power in HPC. In: Proc. of HPDC. 2015

[35] Patki T, Lowenthal DK, Rountree B,
Schulz M, De Supinski BR. Exploring
hardware overprovisioning in power-
constrained, high performance
computing. In: Proceedings of the
27th international ACM conference
on International conference on
supercomputing. ACM; 2013.
pp. 173-182

[36] Zhang Z, Lang M, Pakin S, Fu S.
Trapped capacity: Scheduling under a
power cap to maximize machine-room
throughput. In: Proceedings of the 2nd
International Workshop on Energy
Efficient Supercomputing. IEEE Press;
2014. pp. 41-50

37

Chapter 4

Security Applications of GPUs
Giorgos Vasiliadis

Abstract

Despite the recent advances in software security hardening techniques, vulner-
abilities can always be exploited if the attackers are really determined. Regardless
the protection enabled, successful exploitation can always be achieved, even
though admittedly, today, it is much harder than it was in the past. Since securing
software is still under ongoing research, the community investigates detection
methods in order to protect software. Three of the most promising such methods
are monitoring the (i) network, (ii) the filesystem, and (iii) the host memory, for
possible exploitation. Whenever a malicious operation is detected then the moni-
tor should be able to terminate it and/or alert the administrator. In this chapter,
we explore how to utilize the highly parallel capabilities of modern commodity
graphics processing units (GPUs) in order to improve the performance of different
security tools operating at the network, storage, and memory level, and how they
can offload the CPU whenever possible. Our results show that modern GPUs can be
very efficient and highly effective at accelerating the pattern matching operations
of network intrusion detection systems and antivirus tools, as well as for monitor-
ing the integrity of the base computing systems.

Keywords: security, network security, host security, intrusion detection, antivirus,
kernel integrity monitoring

1. Introduction

The ever-increasing amount of malicious software (malware) constitutes an
enormous challenge to network operators, IT administrators, as well as ordinary
home users. To protect against such an evolving threat landscape, it is necessary
to provide detection of malicious activities at different levels: (i) by inspected
exchanged data at central network traffic ingress points, (ii) by scanning of
unwanted software at the storage level, and (iii) by providing program memory
integrity at the host level. Three of the most widely used tools that perform such
kind of operations are intrusion detection systems, antivirus software, and host
integrity tools. Unfortunately, the constant increase in link speeds, storage capac-
ity, number of end-devices and the sheer number of malware, poses significant
challenges to all these tools, which end up requiring high scanning throughput
and low latency.

Typically, the detection of malicious activities spends the majority of its time
matching data streams against a large set of known signatures or checksums,
using string searching, regular expression matching and hashing algorithms.
Signature matching algorithms analyze the data stream and compare it against
a database of fixed strings or regular expressions to detect known malware. The
signature patterns can be quite complex, composed of wild-card characters,

High Performance Parallel Computing

36

in the data center. In: ACM Sigplan
Notices. Vol. 45. 2010. pp. 231-242

[31] Zhang H, Hoffmann H. Maximizing
performance under a power cap: A
comparison of hardware, software, and
hybrid techniques. ACM SIGARCH
Computer Architecture News.
2016;44(2):545-559

[32] Femal ME, Freeh VW. Boosting
data center performance through
non-uniform power allocation. In:
Autonomic Computing, 2005. ICAC
2005. Proceedings. Second International
Conference on. IEEE; 2005. pp. 250-261

[33] Kim KH, Buyya R, Kim J. Power
aware scheduling of bag-of-tasks
applications with deadline constraints
on Dvs-enabled clusters. In: CCGrid;
2007

[34] Ellsworth DA, Malony AD,
Rountree B, Schulz M. POW: System-
wide dynamic reallocation of limited
power in HPC. In: Proc. of HPDC. 2015

[35] Patki T, Lowenthal DK, Rountree B,
Schulz M, De Supinski BR. Exploring
hardware overprovisioning in power-
constrained, high performance
computing. In: Proceedings of the
27th international ACM conference
on International conference on
supercomputing. ACM; 2013.
pp. 173-182

[36] Zhang Z, Lang M, Pakin S, Fu S.
Trapped capacity: Scheduling under a
power cap to maximize machine-room
throughput. In: Proceedings of the 2nd
International Workshop on Energy
Efficient Supercomputing. IEEE Press;
2014. pp. 41-50

37

Chapter 4

Security Applications of GPUs
Giorgos Vasiliadis

Abstract

Despite the recent advances in software security hardening techniques, vulner-
abilities can always be exploited if the attackers are really determined. Regardless
the protection enabled, successful exploitation can always be achieved, even
though admittedly, today, it is much harder than it was in the past. Since securing
software is still under ongoing research, the community investigates detection
methods in order to protect software. Three of the most promising such methods
are monitoring the (i) network, (ii) the filesystem, and (iii) the host memory, for
possible exploitation. Whenever a malicious operation is detected then the moni-
tor should be able to terminate it and/or alert the administrator. In this chapter,
we explore how to utilize the highly parallel capabilities of modern commodity
graphics processing units (GPUs) in order to improve the performance of different
security tools operating at the network, storage, and memory level, and how they
can offload the CPU whenever possible. Our results show that modern GPUs can be
very efficient and highly effective at accelerating the pattern matching operations
of network intrusion detection systems and antivirus tools, as well as for monitor-
ing the integrity of the base computing systems.

Keywords: security, network security, host security, intrusion detection, antivirus,
kernel integrity monitoring

1. Introduction

The ever-increasing amount of malicious software (malware) constitutes an
enormous challenge to network operators, IT administrators, as well as ordinary
home users. To protect against such an evolving threat landscape, it is necessary
to provide detection of malicious activities at different levels: (i) by inspected
exchanged data at central network traffic ingress points, (ii) by scanning of
unwanted software at the storage level, and (iii) by providing program memory
integrity at the host level. Three of the most widely used tools that perform such
kind of operations are intrusion detection systems, antivirus software, and host
integrity tools. Unfortunately, the constant increase in link speeds, storage capac-
ity, number of end-devices and the sheer number of malware, poses significant
challenges to all these tools, which end up requiring high scanning throughput
and low latency.

Typically, the detection of malicious activities spends the majority of its time
matching data streams against a large set of known signatures or checksums,
using string searching, regular expression matching and hashing algorithms.
Signature matching algorithms analyze the data stream and compare it against
a database of fixed strings or regular expressions to detect known malware. The
signature patterns can be quite complex, composed of wild-card characters,

High Performance Parallel Computing

38

range constraints, different-size strings, and sometimes recursive forms. To make
matters worse, the number of signatures is increasing proportional every year,
as the amount of malware grows, exposing scaling problems of anti-malware
products.

Modern GPUs have been proven to be highly effective and very efficient at
accelerating computational- and memory-intensive workloads. The ever-growing
video game industry is a driving factor for becoming ever more powerful and flex-
ible stream processors, specialized for highly parallel operations. Comparing with
commodity CPUs, the massive number of transistors is devoted to data processing,
rather than data caching and flow control, making them ideal to perform data paral-
lel computations that up till now were handled by the CPU.

In this chapter, we present new models for malware detection tools that operate
at the network, storage, and memory level. These models combine the commodity,
general-purpose GPU paradigms, tailored for high-performance and low-latency
analysis. Our systems take advantage of the parallelism offered by the GPUs to
improve scalability and runtime performance and are able to offload the CPU
whenever possible. Our results show that modern GPUs can be highly effective
and very efficient at accelerating a highly diverse set of operations that are core
functions of modern security tools, including string searching, regular expression
matching and checksum computations.

2. Network intrusion detection and prevention systems

First, we show how to exploit the parallelism of the graphics processing unit
(GPU) to offload specific intensive tasks of a network intrusion detection system
(NIDS). Particularly, we present the design, implementation, and evaluation of
string searching and regular expression algorithms engines running on GPUs. We
have integrated these implementations in the popular Snort intrusion detection
system [1] to offload both string and regular expression matching computation, as
shown in Figure 1.

The data parallel capabilities of modern GPUs can allow the concurrent match-
ing of multiple input data streams at the same time against a large set of fixed
string patterns and regular expressions. Mainly, the architecture can be separated
in several different tasks: packet capturing, decoding, preprocesing, the transfer of
the network packets to the GPU, the string-matching on the GPU, and the transfer
of the matching results back to the CPU, where all the remaining conditions of
the detection rules are checked. Whenever a packet needs to be scanned against a
regular expression, it is subsequently transferred back to the GPU where the actual
matching takes place.

2.1 Architecture

The overall design of our GPU-assisted network intrusion detection archi-
tecture, has two key factors for achieving good performance: (i) load balancing
between processing units, and (ii) linear performance scalability with the addi-
tion of more processing units. In particular, the monitored traffic is distributed
at the flow-level to different CPU cores, by applying a symmetric hash function
on the 5-tuple fields of each packet header (i.e., source IP address, destination IP
address, source port, destination port, protocol). Eventually, all packets of the
same flow (i.e., same connection) will always be placed in the same ring buffer,
and will be processed by the same CPU-core. This inherently leads us to a multi-
core architecture, in which each core processes an evenly distributed portion of

39

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

the network traffic, without requiring any intra-node communication for process-
ing operations that are limited in scope to a single flow. Each CPU core is respon-
sible for network flow tracking, protocol parsing, TCP stream reassembly, and
content normalization. The reassembled and normalized packets of each network
flow are then transferred to the graphics card in large batches, in order to be
processed in parallel. This enables an “intra-flow” parallelism, in which network
packets from the same flow can be processed in parallel, while also maintaining
flow-state dependencies. We note that this buffering scheme, as well as the extra
data transfer operations that need to be performed between the memory address
spaces of each device obviously, adds some latency to the processing path. Even
though the computational gains offered by the GPU tolerates these extra data
transfers and pay off in terms of increased throughput, we further mitigate these
overheads by implementing pipelining schemes that allow the CPU and GPU
execution to overlap, thus offering an additional level of parallelism to the overall
execution path (see Section 2.1.3). Overall, by parallelizing both packet pre-
processing and content inspection across multiple CPUs and GPUs, our proposed
architecture can operate in multi-Gigabit networks using solely commodity
components.

As shown in Figure 2, we utilize the different processing units available (i.e.,
CPUs and GPUs) in order to map the different functionalities that are performed
across the incoming network flows, using both task and data parallelism. More
specifically, the network interface distributes the incoming network packets to
the CPU-cores, by applying a symmetric hash function on the 5-tuple fields of
each packet header (i.e., source IP address, destination IP address, source port,
destination port, protocol). This ensures that all packets of the same flow (i.e., same
connection) will always be placed in the same ring buffer, and will be processed by
the same CPU-core. Each CPU-core reassembles and normalizes the captured traffic
before offloading it to the GPU for pattern matching [2]. Any matching results are
logged by the corresponding CPU-core using the specified logging mechanism,
such as a file or database.

This design has many advantages: First, no synchronization or lock mecha-
nisms is needed, since different network flows will be processed by different
CPU-cores independently. Second, each CPU-core maintains smaller data

Figure 1.
Overview of the single-threaded GPU-based network intrusion detection architecture.

High Performance Parallel Computing

38

range constraints, different-size strings, and sometimes recursive forms. To make
matters worse, the number of signatures is increasing proportional every year,
as the amount of malware grows, exposing scaling problems of anti-malware
products.

Modern GPUs have been proven to be highly effective and very efficient at
accelerating computational- and memory-intensive workloads. The ever-growing
video game industry is a driving factor for becoming ever more powerful and flex-
ible stream processors, specialized for highly parallel operations. Comparing with
commodity CPUs, the massive number of transistors is devoted to data processing,
rather than data caching and flow control, making them ideal to perform data paral-
lel computations that up till now were handled by the CPU.

In this chapter, we present new models for malware detection tools that operate
at the network, storage, and memory level. These models combine the commodity,
general-purpose GPU paradigms, tailored for high-performance and low-latency
analysis. Our systems take advantage of the parallelism offered by the GPUs to
improve scalability and runtime performance and are able to offload the CPU
whenever possible. Our results show that modern GPUs can be highly effective
and very efficient at accelerating a highly diverse set of operations that are core
functions of modern security tools, including string searching, regular expression
matching and checksum computations.

2. Network intrusion detection and prevention systems

First, we show how to exploit the parallelism of the graphics processing unit
(GPU) to offload specific intensive tasks of a network intrusion detection system
(NIDS). Particularly, we present the design, implementation, and evaluation of
string searching and regular expression algorithms engines running on GPUs. We
have integrated these implementations in the popular Snort intrusion detection
system [1] to offload both string and regular expression matching computation, as
shown in Figure 1.

The data parallel capabilities of modern GPUs can allow the concurrent match-
ing of multiple input data streams at the same time against a large set of fixed
string patterns and regular expressions. Mainly, the architecture can be separated
in several different tasks: packet capturing, decoding, preprocesing, the transfer of
the network packets to the GPU, the string-matching on the GPU, and the transfer
of the matching results back to the CPU, where all the remaining conditions of
the detection rules are checked. Whenever a packet needs to be scanned against a
regular expression, it is subsequently transferred back to the GPU where the actual
matching takes place.

2.1 Architecture

The overall design of our GPU-assisted network intrusion detection archi-
tecture, has two key factors for achieving good performance: (i) load balancing
between processing units, and (ii) linear performance scalability with the addi-
tion of more processing units. In particular, the monitored traffic is distributed
at the flow-level to different CPU cores, by applying a symmetric hash function
on the 5-tuple fields of each packet header (i.e., source IP address, destination IP
address, source port, destination port, protocol). Eventually, all packets of the
same flow (i.e., same connection) will always be placed in the same ring buffer,
and will be processed by the same CPU-core. This inherently leads us to a multi-
core architecture, in which each core processes an evenly distributed portion of

39

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

the network traffic, without requiring any intra-node communication for process-
ing operations that are limited in scope to a single flow. Each CPU core is respon-
sible for network flow tracking, protocol parsing, TCP stream reassembly, and
content normalization. The reassembled and normalized packets of each network
flow are then transferred to the graphics card in large batches, in order to be
processed in parallel. This enables an “intra-flow” parallelism, in which network
packets from the same flow can be processed in parallel, while also maintaining
flow-state dependencies. We note that this buffering scheme, as well as the extra
data transfer operations that need to be performed between the memory address
spaces of each device obviously, adds some latency to the processing path. Even
though the computational gains offered by the GPU tolerates these extra data
transfers and pay off in terms of increased throughput, we further mitigate these
overheads by implementing pipelining schemes that allow the CPU and GPU
execution to overlap, thus offering an additional level of parallelism to the overall
execution path (see Section 2.1.3). Overall, by parallelizing both packet pre-
processing and content inspection across multiple CPUs and GPUs, our proposed
architecture can operate in multi-Gigabit networks using solely commodity
components.

As shown in Figure 2, we utilize the different processing units available (i.e.,
CPUs and GPUs) in order to map the different functionalities that are performed
across the incoming network flows, using both task and data parallelism. More
specifically, the network interface distributes the incoming network packets to
the CPU-cores, by applying a symmetric hash function on the 5-tuple fields of
each packet header (i.e., source IP address, destination IP address, source port,
destination port, protocol). This ensures that all packets of the same flow (i.e., same
connection) will always be placed in the same ring buffer, and will be processed by
the same CPU-core. Each CPU-core reassembles and normalizes the captured traffic
before offloading it to the GPU for pattern matching [2]. Any matching results are
logged by the corresponding CPU-core using the specified logging mechanism,
such as a file or database.

This design has many advantages: First, no synchronization or lock mecha-
nisms is needed, since different network flows will be processed by different
CPU-cores independently. Second, each CPU-core maintains smaller data

Figure 1.
Overview of the single-threaded GPU-based network intrusion detection architecture.

High Performance Parallel Computing

40

structures (e.g., the flow management table, the TCP reassembly tables, etc.)
instead of sharing a few large ones, which reduces both the number of tables look-
ups, as well as the size of the working set in each cache, increasing overall cache
efficiency.

2.1.1 Parallel multi-pattern engine

A major design criterion for scanning large network data flows against many
different fixed string patterns, is the choice of an efficient matching algorithm. The
majority of network intrusion detection systems utilize a flavor of the Aho-Corasick
algorithm [3] for string searching. Internally, the algorithm uses a transition function
that computes the next state T [state, c] for a given state and a character c. A pattern
is matched every time the algorithm transits to a final state. The performance and
memory requirements of Aho-Corasick depend on how the transition function is
implemented. In the full implementation, hereinafter AC-Full, each transition is rep-
resented with 256 elements, one for each 8-bit character. Each element contains the
next state to move to, as a result the next state can be found in O(1) steps for every
input character; this ensures a linear complexity over the input data, independently
on the number of patterns, which is very efficient in terms of performance.

However, a disadvantage of the full state representation is the large memory
requirements, even for small signature sets. For Snort, the compiled state table can
reach up to several hundred Megabytes of memory. To make matters worse, CPU
processes cannot share memory on the GPU device, as such a different memory
space has to be allocated in the GPU. This can result to significant memory alloca-
tions, as shown in Table 1. Given that the GeForce GTX780 that we used for our
evaluation comes with 2GB of memory, only two Snort instances can fully utilize
the GPU at a time.

To preserve scalability with respect to the number of concurrently running
Snort instances, it is important to optimize the memory requirements needed.
As such, instead of using the full state table representation, we use a compacted
version, similar to [4], in which the states are represented in a banded-row format.
In particular, we store only the elements from the first non-zero value to the last

Figure 2.
The architecture of the GPU-enabled network intrusion detection system.

41

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

non-zero value of the table; the number of the stored elements is known as the
bandwidth of the sparse table. Obviously, in the compacted implementation,
namely AC-Compact, the next state cannot be accessed directly while matching
input bytes. Instead, it has to be computed, as shown in Figure 3; this computation
obviously adds a small overhead at the scanning phase, which is amortized though
by the significantly lower memory consumption.

Moreover, it is common that some patterns may share the same final state in
the state table or be case-insensitive. Instead of adding every different combina-
tion of capital and lower letters for every case-insensitive pattern, we simply mark
that pattern as case-insensitive and add only one combination (i.e., all characters
are converted to capitals). In case the pattern is matched in a packet, an extra
case-insensitive search should be made at the index where the pattern was found.
Similarly, if two patterns share the same final state, they need to be verified in case
of a match.

Each GPU thread processes a different reassembled network packet. We use an
array to store the network packets; every time the array fills up, it is transferred to
the GPU and processed at once. Figure 4 shows the sustained throughput when
matching full-size packets (i.e., of 1500-bytes length) on a single GTX770, for a
varied number of packets that are processed at once. The traffic is generated from a
separate machine over four 10 Gbit/s network cards. As can be shown, the AC-Full
achieves a peak performance of 21.1 Gbit/s, while the AC-Compact about 16.4
Gbit/s. In both cases, all data transferring costs to and from the GPU are included.
The corresponding CPU implementation achieves a performance of 0.6 Gbit/s
for the AC-Full implementation, and thus a single GPU instance corresponds
to 36.2 and 28.1 CPU-cores for the AC-Full and AC-Compact implementations,
respectively.

As expected, AC-Full outperforms AC-Compact in all cases. The added over-
head of the extra computation that AC-Compact performs in every transition
decreases its performance about 30%. The main advantage of AC-Compact is that
it has significantly lower memory consumption than AC-Full. The corresponding
memory requirements for storing the detection engines of a single Snort instance
are shown in Table 1. As shown, AC-Compact utilizes up to 36 times less memory,
which makes it a better fit for a multi-CPU environment, due to CUDA’s limitation
of allocating a separate memory context for each host thread. Using AC-Compact,
a single GTX770 card can store the detection engines of about 80 Snort instances
(80 × 24.18 MB ≈ 1.9 GB). The remaining memory can be used for storing the actual
contents of the incoming network packets. If AC-Full is used, only two instances
can fit in device memory.

2.1.2 Compiling PCRE regular expressions to DFA state tables

The majority of tools that use regular expressions typically convert them into
DFAs [5]. To do that, the most common approach is to first compile them into NFAs,
and then convert them into DFAs. We also follow the same approach, and, using the
Thompson algorithm [6], we first convert each regular expression into an NFA. The
generated NFA is then converted incrementally to an equivalent DFA, using the Subset

#Rules #Patterns #States AC-Full AC-Compact

8192 193,167 1,703,023 890.46 MB 24.18 MB

Table 1.
Memory requirements of AC-Full and AC-Compact for the default Snort rule set.

High Performance Parallel Computing

40

structures (e.g., the flow management table, the TCP reassembly tables, etc.)
instead of sharing a few large ones, which reduces both the number of tables look-
ups, as well as the size of the working set in each cache, increasing overall cache
efficiency.

2.1.1 Parallel multi-pattern engine

A major design criterion for scanning large network data flows against many
different fixed string patterns, is the choice of an efficient matching algorithm. The
majority of network intrusion detection systems utilize a flavor of the Aho-Corasick
algorithm [3] for string searching. Internally, the algorithm uses a transition function
that computes the next state T [state, c] for a given state and a character c. A pattern
is matched every time the algorithm transits to a final state. The performance and
memory requirements of Aho-Corasick depend on how the transition function is
implemented. In the full implementation, hereinafter AC-Full, each transition is rep-
resented with 256 elements, one for each 8-bit character. Each element contains the
next state to move to, as a result the next state can be found in O(1) steps for every
input character; this ensures a linear complexity over the input data, independently
on the number of patterns, which is very efficient in terms of performance.

However, a disadvantage of the full state representation is the large memory
requirements, even for small signature sets. For Snort, the compiled state table can
reach up to several hundred Megabytes of memory. To make matters worse, CPU
processes cannot share memory on the GPU device, as such a different memory
space has to be allocated in the GPU. This can result to significant memory alloca-
tions, as shown in Table 1. Given that the GeForce GTX780 that we used for our
evaluation comes with 2GB of memory, only two Snort instances can fully utilize
the GPU at a time.

To preserve scalability with respect to the number of concurrently running
Snort instances, it is important to optimize the memory requirements needed.
As such, instead of using the full state table representation, we use a compacted
version, similar to [4], in which the states are represented in a banded-row format.
In particular, we store only the elements from the first non-zero value to the last

Figure 2.
The architecture of the GPU-enabled network intrusion detection system.

41

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

non-zero value of the table; the number of the stored elements is known as the
bandwidth of the sparse table. Obviously, in the compacted implementation,
namely AC-Compact, the next state cannot be accessed directly while matching
input bytes. Instead, it has to be computed, as shown in Figure 3; this computation
obviously adds a small overhead at the scanning phase, which is amortized though
by the significantly lower memory consumption.

Moreover, it is common that some patterns may share the same final state in
the state table or be case-insensitive. Instead of adding every different combina-
tion of capital and lower letters for every case-insensitive pattern, we simply mark
that pattern as case-insensitive and add only one combination (i.e., all characters
are converted to capitals). In case the pattern is matched in a packet, an extra
case-insensitive search should be made at the index where the pattern was found.
Similarly, if two patterns share the same final state, they need to be verified in case
of a match.

Each GPU thread processes a different reassembled network packet. We use an
array to store the network packets; every time the array fills up, it is transferred to
the GPU and processed at once. Figure 4 shows the sustained throughput when
matching full-size packets (i.e., of 1500-bytes length) on a single GTX770, for a
varied number of packets that are processed at once. The traffic is generated from a
separate machine over four 10 Gbit/s network cards. As can be shown, the AC-Full
achieves a peak performance of 21.1 Gbit/s, while the AC-Compact about 16.4
Gbit/s. In both cases, all data transferring costs to and from the GPU are included.
The corresponding CPU implementation achieves a performance of 0.6 Gbit/s
for the AC-Full implementation, and thus a single GPU instance corresponds
to 36.2 and 28.1 CPU-cores for the AC-Full and AC-Compact implementations,
respectively.

As expected, AC-Full outperforms AC-Compact in all cases. The added over-
head of the extra computation that AC-Compact performs in every transition
decreases its performance about 30%. The main advantage of AC-Compact is that
it has significantly lower memory consumption than AC-Full. The corresponding
memory requirements for storing the detection engines of a single Snort instance
are shown in Table 1. As shown, AC-Compact utilizes up to 36 times less memory,
which makes it a better fit for a multi-CPU environment, due to CUDA’s limitation
of allocating a separate memory context for each host thread. Using AC-Compact,
a single GTX770 card can store the detection engines of about 80 Snort instances
(80 × 24.18 MB ≈ 1.9 GB). The remaining memory can be used for storing the actual
contents of the incoming network packets. If AC-Full is used, only two instances
can fit in device memory.

2.1.2 Compiling PCRE regular expressions to DFA state tables

The majority of tools that use regular expressions typically convert them into
DFAs [5]. To do that, the most common approach is to first compile them into NFAs,
and then convert them into DFAs. We also follow the same approach, and, using the
Thompson algorithm [6], we first convert each regular expression into an NFA. The
generated NFA is then converted incrementally to an equivalent DFA, using the Subset

#Rules #Patterns #States AC-Full AC-Compact

8192 193,167 1,703,023 890.46 MB 24.18 MB

Table 1.
Memory requirements of AC-Full and AC-Compact for the default Snort rule set.

High Performance Parallel Computing

42

Construction algorithm. The basic concept of subset construction is to define a DFA
in which each state is a set of states of the corresponding NFA. Each state in the DFA
represents a set of active states in which the corresponding NFA can be in after some
transition. During the matching phase, the resulting DFA achieves O(1) computational
cost for each incoming character.

However, a major concern when converting regular expressions into DFAs is
the state-space explosion that may occur during compilation [7]. To distinguish
among the states, a different DFA state may be required for all possible NFA states.
Obviously, this can result to exponential growth of memory utilization, primarily
due to the usage of wildcards, e.g. (.*), and repetition expressions, e.g. (a (x,y)). As a
result, certain regular expressions may end-up consuming large amounts of memory
when compiled to DFAs. A theoretical worst-case study shows that a single regular
expression of length n can be expressed as a DFA of up to O (Σn) states, where Σ is
the size of the alphabet, i.e. 28 symbols for the extended ASCII character set [8].

To prevent the greedy memory consumption that can be occurred by some
regular expressions, we follow a hybrid approach, in which we convert only the
regular expressions that do not exceed a certain threshold of states; the remain-
ing regular expressions will be matched on the CPU using NFAs. The total
number of states is traced during the incremental conversion from the NFA to

Figure 3.
State tables of AC-Full vs. AC-Compact.

Figure 4.
GPU throughput for AC-Full and AC-Compact.

43

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

the DFA and the conversion stops if a certain threshold is reached. As we have
experimentally found, more than 97% of the total regular expressions used by
Snort can be converted to DFAs, when using an upper bound of 5000 states per
expression. The remaining expressions can be processed by the CPU using an
NFA implementation, similar to the vanilla Snort.

Each DFA is represented as a two-dimensional array that is mapped linearly on
the memory space of the GPU. The dimensions of the array are equal to the number
of states and the size of the alphabet (256 in our case), respectively. Each cell con-
tains the next state to move to, as well as an indication of whether the state is a final
state or not. The final states are represented as negative numbers, due to the fact
that transition numbers can be positive integers only. Whenever the state machine
reaches into a state that is represented by a negative number, it considers it as a final
state and reports a match at the current input offset.

2.1.3 Multi-GPU support

Our system is able to utilize several GPUs simultaneously, by dividing the incom-
ing flows equally and performing the signature matching concurrently across all
devices. In the CUDA runtime system, each device is bound to a single process. As
such, several host processes must be spawned (at least one process per device) in
order to enable multi-GPU support. The load balancing scheme shown in Figure 2
ensures that each process receives a uniform amount of flows; as a result, flows are
equally distributed to the different GPUs. By default, our system utilizes all the GPUs
that are available in the system, still this can be easily configured by defining the
number of GPUs it should try to use.

3. Host-based virus scanning

Antivirus software is one of the most popular tools for detecting and stop-
ping malicious or unwanted software. ClamAV [9] is a popular open-source virus
scanner, which contains more than 60 thousand signatures, formed by both fixed
strings, as well as regular expressions. It can be used both at the server-side for
protecting mail and file servers, as well as for client personal computers. The data-
base includes signatures for polymorphic viruses in regular expression format and
for non-polymorphic viruses in simple string format. To detect non-polymorphic
viruses, the current version of ClamAV uses an optimized version of the Boyer-
Moore algorithm [10] for matching simple fixed string signatures. For polymorphic
viruses, ClamAV uses a variant of the classical Aho-Corasick algorithm [3].

The main design principle of our GPU-assisted antivirus is to utilize the GPU
in order to quickly filter out the data segments that do not contain any viruses. To
achieve this, we have modified ClamAV, such that the input data stream is initially
scanned by the GPU. The GPU uses a prefix of each virus signature to quickly
filter-out clean data. The motivation behind this is that the majority of the data do
not contain any viruses, as such the GPU filtering is quite efficient, as shown in
Figure 5.

Figure 6 presents the overall architecture of our GPU-assisted antivirus tool.
The contents of each file are read from disk and stored into a file buffer. The file
buffer is used to store the contents of many files, and is transferred to the GPU in
a single transaction. This results in a reduction of I/O transactions over the PCI
Express bus. Moreover, the file buffer is page-locked (i.e., it does not get swapped),
hence it can be transferred asynchronously, via DMA (Direct Memory Access), to
the memory space of the GPU.

High Performance Parallel Computing

42

Construction algorithm. The basic concept of subset construction is to define a DFA
in which each state is a set of states of the corresponding NFA. Each state in the DFA
represents a set of active states in which the corresponding NFA can be in after some
transition. During the matching phase, the resulting DFA achieves O(1) computational
cost for each incoming character.

However, a major concern when converting regular expressions into DFAs is
the state-space explosion that may occur during compilation [7]. To distinguish
among the states, a different DFA state may be required for all possible NFA states.
Obviously, this can result to exponential growth of memory utilization, primarily
due to the usage of wildcards, e.g. (.*), and repetition expressions, e.g. (a (x,y)). As a
result, certain regular expressions may end-up consuming large amounts of memory
when compiled to DFAs. A theoretical worst-case study shows that a single regular
expression of length n can be expressed as a DFA of up to O (Σn) states, where Σ is
the size of the alphabet, i.e. 28 symbols for the extended ASCII character set [8].

To prevent the greedy memory consumption that can be occurred by some
regular expressions, we follow a hybrid approach, in which we convert only the
regular expressions that do not exceed a certain threshold of states; the remain-
ing regular expressions will be matched on the CPU using NFAs. The total
number of states is traced during the incremental conversion from the NFA to

Figure 3.
State tables of AC-Full vs. AC-Compact.

Figure 4.
GPU throughput for AC-Full and AC-Compact.

43

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

the DFA and the conversion stops if a certain threshold is reached. As we have
experimentally found, more than 97% of the total regular expressions used by
Snort can be converted to DFAs, when using an upper bound of 5000 states per
expression. The remaining expressions can be processed by the CPU using an
NFA implementation, similar to the vanilla Snort.

Each DFA is represented as a two-dimensional array that is mapped linearly on
the memory space of the GPU. The dimensions of the array are equal to the number
of states and the size of the alphabet (256 in our case), respectively. Each cell con-
tains the next state to move to, as well as an indication of whether the state is a final
state or not. The final states are represented as negative numbers, due to the fact
that transition numbers can be positive integers only. Whenever the state machine
reaches into a state that is represented by a negative number, it considers it as a final
state and reports a match at the current input offset.

2.1.3 Multi-GPU support

Our system is able to utilize several GPUs simultaneously, by dividing the incom-
ing flows equally and performing the signature matching concurrently across all
devices. In the CUDA runtime system, each device is bound to a single process. As
such, several host processes must be spawned (at least one process per device) in
order to enable multi-GPU support. The load balancing scheme shown in Figure 2
ensures that each process receives a uniform amount of flows; as a result, flows are
equally distributed to the different GPUs. By default, our system utilizes all the GPUs
that are available in the system, still this can be easily configured by defining the
number of GPUs it should try to use.

3. Host-based virus scanning

Antivirus software is one of the most popular tools for detecting and stop-
ping malicious or unwanted software. ClamAV [9] is a popular open-source virus
scanner, which contains more than 60 thousand signatures, formed by both fixed
strings, as well as regular expressions. It can be used both at the server-side for
protecting mail and file servers, as well as for client personal computers. The data-
base includes signatures for polymorphic viruses in regular expression format and
for non-polymorphic viruses in simple string format. To detect non-polymorphic
viruses, the current version of ClamAV uses an optimized version of the Boyer-
Moore algorithm [10] for matching simple fixed string signatures. For polymorphic
viruses, ClamAV uses a variant of the classical Aho-Corasick algorithm [3].

The main design principle of our GPU-assisted antivirus is to utilize the GPU
in order to quickly filter out the data segments that do not contain any viruses. To
achieve this, we have modified ClamAV, such that the input data stream is initially
scanned by the GPU. The GPU uses a prefix of each virus signature to quickly
filter-out clean data. The motivation behind this is that the majority of the data do
not contain any viruses, as such the GPU filtering is quite efficient, as shown in
Figure 5.

Figure 6 presents the overall architecture of our GPU-assisted antivirus tool.
The contents of each file are read from disk and stored into a file buffer. The file
buffer is used to store the contents of many files, and is transferred to the GPU in
a single transaction. This results in a reduction of I/O transactions over the PCI
Express bus. Moreover, the file buffer is page-locked (i.e., it does not get swapped),
hence it can be transferred asynchronously, via DMA (Direct Memory Access), to
the memory space of the GPU.

High Performance Parallel Computing

44

Every time the GPU detects a suspicious virus, i.e., there is a prefix match,
the file is further investigated by the verification module. Otherwise, no further
computation takes place. The data parallel operation of the GPU is ideal for creat-
ing multiple search engine instances that will scan for virus signatures on different

Figure 5.
Number of matches.

Figure 6.
The architecture of the GPU-assisted antivirus. Files are mapped onto pinned memory that can be copied
onto the graphics card via DMA. A first-pass filtering is performed on the GPU and return any potential true
positives for further checking onto the CPU.

45

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

data in a massively parallel fashion. Overall, the GPU is employed as a high-speed
first-pass filter, before completing any further potential signature-matching work
on the CPU.

3.1 Basic mechanisms

Initially, the entire signature set of ClamAV is preprocessed, in order to con-
struct a deterministic finite automaton (DFA). As we have explained before, the
DFA state machine provides linear complexity over the input text stream, which is
very efficient. Unfortunately, it is not feasible to construct the full DFA, due to the
big number and large size of the virus signatures contained in the ClamAV.

To overcome this, we use a portion from each virus signature for constructing
the DFA, and specifically only the first n symbols, similar to [11]. By doing so, the
height of the resulting DFA machine is limited, as shown in Figure 7. Any patterns
that share the same prefix are stored under the same final node, called leaf. In case
the length of the signature pattern is smaller than the prefix length, the entire
pattern is added. A prefix may also contain special characters, such as the wild-
characters * and ?, that are used in ClamAV signatures to describe a known virus.

At the scanning phase, the input file data will be first scanned by the DFA
running on the GPU. It is clear that the DFA may not be able to match an exact virus
signature inside a data stream, as in most cases the length of the signature is longer
than the length of the prefix we used to create the automaton. This will be the first-
level filtering though, which purpose is to use the high parallelism of the GPU to
quickly filter-out the majority number of true negatives, and drastically eliminate a
significant portion of the input data that need to be scanned by the CPU. Obviously,
the longer the prefix, the fewer the number of false positives at this initial scan-
ning phase. As shown in Figure 5, using a value of 8 for n, can result to less than
0.0001% of false positives in a realistic corpus of binary files.

3.2 Parallelizing DFA matching on the GPU

During scan time, the algorithm iterates over the input data stream one byte at a
time and moves the current state appropriately. The pattern matching is performed
byte-wise, meaning that we have an input width of 8 bits and an alphabet size of
28 = 256. Thus, each state will contain 256 transitions to other states, as shown in
Figure 7. If the scanning algorithm reaches a final-state, then a potential signature

Figure 7.
A fragment of the DFA structure with n levels. All the patterns that begin with the same prefix are listed under
the same leaf (final node).

High Performance Parallel Computing

44

Every time the GPU detects a suspicious virus, i.e., there is a prefix match,
the file is further investigated by the verification module. Otherwise, no further
computation takes place. The data parallel operation of the GPU is ideal for creat-
ing multiple search engine instances that will scan for virus signatures on different

Figure 5.
Number of matches.

Figure 6.
The architecture of the GPU-assisted antivirus. Files are mapped onto pinned memory that can be copied
onto the graphics card via DMA. A first-pass filtering is performed on the GPU and return any potential true
positives for further checking onto the CPU.

45

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

data in a massively parallel fashion. Overall, the GPU is employed as a high-speed
first-pass filter, before completing any further potential signature-matching work
on the CPU.

3.1 Basic mechanisms

Initially, the entire signature set of ClamAV is preprocessed, in order to con-
struct a deterministic finite automaton (DFA). As we have explained before, the
DFA state machine provides linear complexity over the input text stream, which is
very efficient. Unfortunately, it is not feasible to construct the full DFA, due to the
big number and large size of the virus signatures contained in the ClamAV.

To overcome this, we use a portion from each virus signature for constructing
the DFA, and specifically only the first n symbols, similar to [11]. By doing so, the
height of the resulting DFA machine is limited, as shown in Figure 7. Any patterns
that share the same prefix are stored under the same final node, called leaf. In case
the length of the signature pattern is smaller than the prefix length, the entire
pattern is added. A prefix may also contain special characters, such as the wild-
characters * and ?, that are used in ClamAV signatures to describe a known virus.

At the scanning phase, the input file data will be first scanned by the DFA
running on the GPU. It is clear that the DFA may not be able to match an exact virus
signature inside a data stream, as in most cases the length of the signature is longer
than the length of the prefix we used to create the automaton. This will be the first-
level filtering though, which purpose is to use the high parallelism of the GPU to
quickly filter-out the majority number of true negatives, and drastically eliminate a
significant portion of the input data that need to be scanned by the CPU. Obviously,
the longer the prefix, the fewer the number of false positives at this initial scan-
ning phase. As shown in Figure 5, using a value of 8 for n, can result to less than
0.0001% of false positives in a realistic corpus of binary files.

3.2 Parallelizing DFA matching on the GPU

During scan time, the algorithm iterates over the input data stream one byte at a
time and moves the current state appropriately. The pattern matching is performed
byte-wise, meaning that we have an input width of 8 bits and an alphabet size of
28 = 256. Thus, each state will contain 256 transitions to other states, as shown in
Figure 7. If the scanning algorithm reaches a final-state, then a potential signature

Figure 7.
A fragment of the DFA structure with n levels. All the patterns that begin with the same prefix are listed under
the same leaf (final node).

High Performance Parallel Computing

46

match has been found, and the corresponding offset is marked. All marked offsets
will be verified later by the CPU.

To utilize all streaming processors of the GPU, we exploit its data parallel capa-
bilities by creating multiple threads. An important design decision is the partition-
ing of the input data to each thread. The simplest approach would be to use multiple
data input streams, one for each thread, in separate memory areas. However, this
will result in asymmetrical processing effort for each processor and will not scale
well. For example, if the sizes of the input streams vary, the amount of work per
thread will not be the same. This means that threads will have to wait, until all have
finished searching the data stream that was assigned to them. To overcome this, we
use a single input data stream and each thread searches a different portion of it. In
particular, our strategy splits the input stream in distinct chunks, and each chunk
is processed by a different thread. Figure 8 shows how each GPU thread scans its
assigned chunk, using the underlying DFA state table. Although they access the
same automaton, each thread maintains its own state, eliminating any need for
communication between them.

The two operations of DFA matching, is determining the address of the next
state in the state table and fetching the next state from the device memory.
These memory transfers can take up to several hundreds of nanoseconds,
depending on the memory congestion. To obtain the highest level of perfor-
mance and hide memory latencies, we run many threads in parallel. Multiple
threads can overlap data transfer with computation, hence improving the
memory bandwidth.

Moreover, we have explored storing the DFA state table both in the global mem-
ory space, as well as in the texture memory space of the GPU. The texture memory
can be accessed in a random fashion for reading, in contrast to global memory, where
the access patterns must be coalesced. This feature can be very useful for algorithms
like DFA matching, which exhibit irregular access patterns across large data sets. As
described in Section 2.1.2, the usage of texture memory can boost the computational
throughput up to a factor of two.

A case that requires special consideration though, is when patterns span across
two or more different chunks. The simplest approach for fixed string patterns, is to
continue the scanning to the next chunk (s), up to n bytes, where n is the maximum
pattern length in the dictionary. However, the patterns used for virus scanning are
typically very large, especially compared with other signature-based tools, such
as Snort. Besides that, a virus signature may contain wild card characters (i.e., *),
as such the length of the patterns may not be determined. To overcome this, the
following heuristic is used: each thread carries on the search to the consecutive
bytes of the following chunk, up till a fail or final-state is reached. While match-
ing a pattern that spans chunk boundaries, the state machine will perform regular
transitions. However, if the state machine reaches a fail or final-state, then it is clear
that there is no need to continue the searching, since any consecutive patterns will
be found by the thread that was assigned to search the current chunk. This enables
us to avoid any communication between the threads concerning boundaries in the
input data buffer. Every time a match is found, it is stored to a bit array. The size of
the bit array is equal to the size of the data that is processed at once, and each bit
represents whether a match was found in the corresponding offset.

Figure 9 shows the throughput achieved for different prefix lengths. As input
data stream, we use the files under /usr/bin/ of a typical Linux installation, which
contains 1516 binary files of about 132 MB. To eliminate disk latencies, all files are
cached in memory by the operating system. Even though the files do not contain
any viruses, they exercise most code branches of our tool. As we can see, the overall

47

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

throughput increases rapidly at a maximum of 20 Gbits/s. Moreover, the overall
application throughput increases proportionally to the prefix length, due to the
fact that the number of potential matches decreases, resulting to lower CPU post-
processing. A plateau is reached for a prefix length of around 10 (Figure 7).

Figure 9.
Performance of GPU-assisted ClamAV and vanilla ClamAV. The performance number for ClamAV running
on eight cores is also included. The CPU-only performance is still an order of magnitude less than the
GPU-assisted.

Figure 8.
Virus matching on the GPU.

Figure 10.
Execution time breakdown.

High Performance Parallel Computing

46

match has been found, and the corresponding offset is marked. All marked offsets
will be verified later by the CPU.

To utilize all streaming processors of the GPU, we exploit its data parallel capa-
bilities by creating multiple threads. An important design decision is the partition-
ing of the input data to each thread. The simplest approach would be to use multiple
data input streams, one for each thread, in separate memory areas. However, this
will result in asymmetrical processing effort for each processor and will not scale
well. For example, if the sizes of the input streams vary, the amount of work per
thread will not be the same. This means that threads will have to wait, until all have
finished searching the data stream that was assigned to them. To overcome this, we
use a single input data stream and each thread searches a different portion of it. In
particular, our strategy splits the input stream in distinct chunks, and each chunk
is processed by a different thread. Figure 8 shows how each GPU thread scans its
assigned chunk, using the underlying DFA state table. Although they access the
same automaton, each thread maintains its own state, eliminating any need for
communication between them.

The two operations of DFA matching, is determining the address of the next
state in the state table and fetching the next state from the device memory.
These memory transfers can take up to several hundreds of nanoseconds,
depending on the memory congestion. To obtain the highest level of perfor-
mance and hide memory latencies, we run many threads in parallel. Multiple
threads can overlap data transfer with computation, hence improving the
memory bandwidth.

Moreover, we have explored storing the DFA state table both in the global mem-
ory space, as well as in the texture memory space of the GPU. The texture memory
can be accessed in a random fashion for reading, in contrast to global memory, where
the access patterns must be coalesced. This feature can be very useful for algorithms
like DFA matching, which exhibit irregular access patterns across large data sets. As
described in Section 2.1.2, the usage of texture memory can boost the computational
throughput up to a factor of two.

A case that requires special consideration though, is when patterns span across
two or more different chunks. The simplest approach for fixed string patterns, is to
continue the scanning to the next chunk (s), up to n bytes, where n is the maximum
pattern length in the dictionary. However, the patterns used for virus scanning are
typically very large, especially compared with other signature-based tools, such
as Snort. Besides that, a virus signature may contain wild card characters (i.e., *),
as such the length of the patterns may not be determined. To overcome this, the
following heuristic is used: each thread carries on the search to the consecutive
bytes of the following chunk, up till a fail or final-state is reached. While match-
ing a pattern that spans chunk boundaries, the state machine will perform regular
transitions. However, if the state machine reaches a fail or final-state, then it is clear
that there is no need to continue the searching, since any consecutive patterns will
be found by the thread that was assigned to search the current chunk. This enables
us to avoid any communication between the threads concerning boundaries in the
input data buffer. Every time a match is found, it is stored to a bit array. The size of
the bit array is equal to the size of the data that is processed at once, and each bit
represents whether a match was found in the corresponding offset.

Figure 9 shows the throughput achieved for different prefix lengths. As input
data stream, we use the files under /usr/bin/ of a typical Linux installation, which
contains 1516 binary files of about 132 MB. To eliminate disk latencies, all files are
cached in memory by the operating system. Even though the files do not contain
any viruses, they exercise most code branches of our tool. As we can see, the overall

47

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

throughput increases rapidly at a maximum of 20 Gbits/s. Moreover, the overall
application throughput increases proportionally to the prefix length, due to the
fact that the number of potential matches decreases, resulting to lower CPU post-
processing. A plateau is reached for a prefix length of around 10 (Figure 7).

Figure 9.
Performance of GPU-assisted ClamAV and vanilla ClamAV. The performance number for ClamAV running
on eight cores is also included. The CPU-only performance is still an order of magnitude less than the
GPU-assisted.

Figure 8.
Virus matching on the GPU.

Figure 10.
Execution time breakdown.

High Performance Parallel Computing

48

4. Kernel integrity monitoring

In this section, we describe how to leverage modern GPUs as a memory monitor-
ing mechanism. In particular, we show the design of an external, snapshot-based,
GPU-based kernel integrity tool that can be deployed in commodity servers and
personal computers. Typically, a host memory integrity monitor should meet at
least the following set of requirements [12, 13]: (i) Independence: the monitor
needs to use a dedicated GPU that is completely isolated from the host. Our integ-
rity monitor should operate continuously and detect any malicious action, notwith-
standing the running state of the host machine. The GPU must be used exclusively
for memory monitoring. Obviously, other usages can be served by any extra GPUs,
if necessary, without affecting the proper usage of the kernel monitor. (ii) Host-
memory access: the physical memory of the host must be accessed directly, in order
to periodically check its integrity and detect any suspicious or malicious actions.
(iii) Sufficient computational and memory resources: the system must be able to
perform any requested computational operations and be capable to process large
amounts of data efficiently. In addition, it must have sufficient on-chip memory
that can be used for private calculations and ensure that secret data would not be
leaked or held by an adversary that has compromised the host system. (iv) Out-of-
band reporting: the system must be able to report the state of the host system over
a secure channel. This can be achieved by establishing a secure connection that can
be used to exchange valid reports, even in the case the host system has been fully
compromised.

In order to meet the above requirements, several characteristics of the GPU’s
execution model require careful consideration. For instance, the typical GPU
model in which a GPU kernel run for a while, perform some computations and then
terminate cannot be considered secure. Instead, the coprocessor needs to execute in
isolation, without being influenced by the host it protects. It is clear that leveraging
GPUs for designing an independent environment with unrestricted memory access
that will monitor the host’s memory securely, is rather challenging. Many GPU
characteristics must be considered carefully and in a particular way (Figure 10).

Figure 11 shows the overall architecture. In essence, the GPU continuously
investigates, in terms of security, the specified kernel memory regions via DMA,
over the PCI Express bus, and reports any suspicious or unwanted activity to an
externally-connected admin station on the local network. From a high-level per-
spective, our system has two main parts that run in parallel: the device program
(GPU code) and the host program (user process). The device program is respon-
sible for continuously checking the integrity of requested memory regions and
report any alerts. The host program periodically reads the status area and reports to
the admin station, in the form of keep-alive messages. The only trusted component
is hosted on the GPU; the user process cannot be trusted, so there is an end-to-end
encryption scheme between the GPU and the admin station to protect against
attacks.

4.1 Autonomous GPU execution

Given that the host system may be vulnerable and could be compromised, it
is important that the integrity monitoring of the operating system be completely
isolated from the host, and guarantee that an adversary cannot tamper any code
or data used by our system. Modern GPU chips follow a non-preemptive, coopera-
tively scheduled, execution style, which means that only a single kernel can run on
the device at any point in time. As such, a bootstrapping method is employed that

49

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

forbids any external interaction with our system. Any attempt to kill, pause, or sus-
pend the GPU component of our system results in system shutdown, and the sys-
tem can only resume its operation by repeating the bootstrap process. Even though
many recent NVIDIA models conditionally support concurrent kernel execution,
these conditions can be easily adjusted, by occupying occupy all resources. By doing
so, no other, possibly malicious, code can run in parallel.

Even though these procedures ensure that our system can be initialized and
run safely, current GPGPU frameworks (i.e., CUDA and OpenCL) do not sup-
port isolated and/or independent execution. To make matters worse, some drivers
would even suspend a context in case the GPU kernel appears to be unresponsive.
To overcome these issues, we configure the driver to ignore these types of checks.
In addition, we create a second stream dedicated to the GPU kernel of our system,
since by default, only one queue, or stream in CUDA terminology, is active and the
host cannot issue any data transfers before the previous kernel execution is finished.
Therefore, all data communications with the host and the admin station are issued
over a separate stream.

4.2 Host memory access

An important requirement for our GPU-assisted kernel integrity monitor is
to implement a mechanism to access the requested memory pages that need to be
monitored. Current GPGPU frameworks, such as CUDA and OpenCL, use a virtual
address layer that is located within the host process virtual memory. Given that our
system needs to access the kernel’s memory, the kernel memory regions that are
monitored should be mapped to the user process.

Typically, the access of memory regions that have not been assigned to a process
is prohibited in the majority of modern OSes, including Linux and Windows. Every
time a process accesses a page outside of its virtual address space, a segmentation
violation will be thrown. To overcome such restrictions and be able to access the
memory regions where the OS kernel text and data reside, we first need to map
them to the user-space of the host process that has spawned the GPU kernel. To
overcome the protection added by the OS, a separate loadable kernel module is
used, which is able to map a requested memory region to the user-space. These
memory regions can subsequently be registered to the GPU address space, using

Figure 11.
The GPU-assisted integrity monitor architecture. The GPU continuously checks the integrity of host memory
regions by accessing the corresponding device virtual addresses. To defend against man-in-the-middle and
replay attacks on the reporting channel, a user program periodically sends an encrypted sequence number
together with a status code to a separate admin station.

High Performance Parallel Computing

48

4. Kernel integrity monitoring

In this section, we describe how to leverage modern GPUs as a memory monitor-
ing mechanism. In particular, we show the design of an external, snapshot-based,
GPU-based kernel integrity tool that can be deployed in commodity servers and
personal computers. Typically, a host memory integrity monitor should meet at
least the following set of requirements [12, 13]: (i) Independence: the monitor
needs to use a dedicated GPU that is completely isolated from the host. Our integ-
rity monitor should operate continuously and detect any malicious action, notwith-
standing the running state of the host machine. The GPU must be used exclusively
for memory monitoring. Obviously, other usages can be served by any extra GPUs,
if necessary, without affecting the proper usage of the kernel monitor. (ii) Host-
memory access: the physical memory of the host must be accessed directly, in order
to periodically check its integrity and detect any suspicious or malicious actions.
(iii) Sufficient computational and memory resources: the system must be able to
perform any requested computational operations and be capable to process large
amounts of data efficiently. In addition, it must have sufficient on-chip memory
that can be used for private calculations and ensure that secret data would not be
leaked or held by an adversary that has compromised the host system. (iv) Out-of-
band reporting: the system must be able to report the state of the host system over
a secure channel. This can be achieved by establishing a secure connection that can
be used to exchange valid reports, even in the case the host system has been fully
compromised.

In order to meet the above requirements, several characteristics of the GPU’s
execution model require careful consideration. For instance, the typical GPU
model in which a GPU kernel run for a while, perform some computations and then
terminate cannot be considered secure. Instead, the coprocessor needs to execute in
isolation, without being influenced by the host it protects. It is clear that leveraging
GPUs for designing an independent environment with unrestricted memory access
that will monitor the host’s memory securely, is rather challenging. Many GPU
characteristics must be considered carefully and in a particular way (Figure 10).

Figure 11 shows the overall architecture. In essence, the GPU continuously
investigates, in terms of security, the specified kernel memory regions via DMA,
over the PCI Express bus, and reports any suspicious or unwanted activity to an
externally-connected admin station on the local network. From a high-level per-
spective, our system has two main parts that run in parallel: the device program
(GPU code) and the host program (user process). The device program is respon-
sible for continuously checking the integrity of requested memory regions and
report any alerts. The host program periodically reads the status area and reports to
the admin station, in the form of keep-alive messages. The only trusted component
is hosted on the GPU; the user process cannot be trusted, so there is an end-to-end
encryption scheme between the GPU and the admin station to protect against
attacks.

4.1 Autonomous GPU execution

Given that the host system may be vulnerable and could be compromised, it
is important that the integrity monitoring of the operating system be completely
isolated from the host, and guarantee that an adversary cannot tamper any code
or data used by our system. Modern GPU chips follow a non-preemptive, coopera-
tively scheduled, execution style, which means that only a single kernel can run on
the device at any point in time. As such, a bootstrapping method is employed that

49

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

forbids any external interaction with our system. Any attempt to kill, pause, or sus-
pend the GPU component of our system results in system shutdown, and the sys-
tem can only resume its operation by repeating the bootstrap process. Even though
many recent NVIDIA models conditionally support concurrent kernel execution,
these conditions can be easily adjusted, by occupying occupy all resources. By doing
so, no other, possibly malicious, code can run in parallel.

Even though these procedures ensure that our system can be initialized and
run safely, current GPGPU frameworks (i.e., CUDA and OpenCL) do not sup-
port isolated and/or independent execution. To make matters worse, some drivers
would even suspend a context in case the GPU kernel appears to be unresponsive.
To overcome these issues, we configure the driver to ignore these types of checks.
In addition, we create a second stream dedicated to the GPU kernel of our system,
since by default, only one queue, or stream in CUDA terminology, is active and the
host cannot issue any data transfers before the previous kernel execution is finished.
Therefore, all data communications with the host and the admin station are issued
over a separate stream.

4.2 Host memory access

An important requirement for our GPU-assisted kernel integrity monitor is
to implement a mechanism to access the requested memory pages that need to be
monitored. Current GPGPU frameworks, such as CUDA and OpenCL, use a virtual
address layer that is located within the host process virtual memory. Given that our
system needs to access the kernel’s memory, the kernel memory regions that are
monitored should be mapped to the user process.

Typically, the access of memory regions that have not been assigned to a process
is prohibited in the majority of modern OSes, including Linux and Windows. Every
time a process accesses a page outside of its virtual address space, a segmentation
violation will be thrown. To overcome such restrictions and be able to access the
memory regions where the OS kernel text and data reside, we first need to map
them to the user-space of the host process that has spawned the GPU kernel. To
overcome the protection added by the OS, a separate loadable kernel module is
used, which is able to map a requested memory region to the user-space. These
memory regions can subsequently be registered to the GPU address space, using

Figure 11.
The GPU-assisted integrity monitor architecture. The GPU continuously checks the integrity of host memory
regions by accessing the corresponding device virtual addresses. To defend against man-in-the-middle and
replay attacks on the reporting channel, a user program periodically sends an encrypted sequence number
together with a status code to a separate admin station.

High Performance Parallel Computing

50

the CUDA API. Afterwards, the GPU is able to access the requested kernel memory
regions directly, through the physical address space, due to the fact that the GPU
is a peripheral PCIe device (i.e., it only uses physical addressing to access the host
memory). This feature enables us to un-map the user-space mappings of the kernel
memory regions during the bootstrap phase, that would otherwise pose significant
security risks.

4.2.1 Mapping kernel memory to GPU

During bootstrapping, our GPU-assisted integrity monitor acquires the kernel
memory regions that need to be monitored. Given that these regions are located in
the kernel virtual address space, the first step is to map them to the virtual address
space of the user process, which spawns the execution of the kernel integrity
monitoring GPU kernel.

In most modern operating systems, a peripheral device is able to bypass the
virtual address layer and access physical addresses directly. The device driver creates
a device-specific mapping of the device’s address space that points to the correspond-
ing host’s physical pages. In order to map the corresponding kernel physical memory
mappings to the GPU, we use a separate loadable kernel module that is responsible
to provide the required page table mapping functionality. Figure 12 shows the steps
for mapping the OS kernel memory to the GPU. In step 1, the loadable kernel module
resolves the physical mapping for a given kernel virtual address. In step 2, the kernel
module allocates one page in the user context and saves its physical mapping; then
it makes the allocated page point to the same page as the kernel virtual address by
duplicating the PTE in the user-page table. Afterwards, in step 3, the kernel module
maps this user page to the GPU (cudaHostRegister() with the cudaHostRegister-
Mapped flag) and gets its device pointer via the cudaHostGetDevicePointer(). Last,
the original physical mapping of the allocation is restored-and-freed by the kernel
module (step 4). By doing so, any OS kernel memory page can be effectively mapped
to the GPU address space. Furthermore, by un-mapping the user-allocated page
right after the successful execution of the bootstrapping process, all intermediate
mappings are destroyed. The same procedure is performed for all kernel virtual
memory ranges that need to be monitored by our tool. The GPU driver populates a
device-resident page table for the device in order to resolve its virtual addresses and
spawn DMA transactions.

Finally, we compile Linux with the CONFIG_KALLSYMS_ALL = y and
CONFIG_KALLSYMS = y flags, in order to have full access to the /proc./kallsyms
interface. Even though this is not an inherent constraint for our design, it makes

Figure 12.
Mapping OS kernel memory to the GPU. First, we have a kernel virtual address pointing to a physical
address (step 1). In step 2 this mapping is duplicated to user space using a specialized kernel module capable
to manipulate page tables. The user virtual address is then passed to a CUDA API call that pins the page into
memory and creates the GPU-side page table entries (step 3). Finally, the intermediate user space mappings are
destroyed (step 4), while the GPU continues to access the physical page.

51

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

the development and debugging much easier because it alleviates the need of
custom memory scanners to search for the kernel page table address that need to
be monitored. In case the access of the kernel symbol lookup table is not acceptable
(i.e., in certain environments), we could locate the corresponding memory regions
either using memory pattern scanners for dynamic loadable parts or via an external
symbol table.

4.3 Memory integrity monitoring

The user can specify which host memory regions will be monitored; these
regions can include, among others, pages that contain kernel text, kernel modules
(LKM), and arrays or structures that contain function pointers (e.g., jump tables).
Even though the hashing of static kernel text parts or loaded LKMs is straight-
forward, still many parts of the OS kernel are quite dynamic. For instance, the
data structures of the VFS layer change every time a new filesystem is mounted
or unmounted. In addition, function pointers can be added dynamically by every
loaded LKM.

As modern GPUs offer general purpose programmability, it is feasible to imple-
ment multi-step checks on different memory regions. These checks can be quite
complex, such as for example in cases where several memory pointers need to be
dereferenced in order to acquire a proper kernel memory address. Such type of
checks can be supported by walking the kernel page table and resolving their virtual
addresses dynamically from the GPU. Given that we can already access the parts of
the page table needed to follow a specific virtual address down to a leaf page table
entry (PTE), we end up with a physical page number.

Finally, we note that dynamic page table resolutions are not currently supported;
instead, we need to provide a static list of kernel memory regions. Still, this is not an
inherent limitation of a PCIe device, such as the GPU. The development of open-
source frameworks (e.g., Gdev [14]) and drivers (e.g. Nouveau [15], PSCNV [16],
etc.) will make the mapping of any physical page in the GPU address space feasible.

4.4 Sufficient resources

Modern GPUs are usually equipped with hundreds of cores and adequate
amount of memory. This gives the ability to keep a sufficient number of memory
snapshots and much state to detect complex, multi-step, attacks. It is clear though
that these types of checks can become quite sophisticated, principally due to the
lack of a generic framework that will give the opportunity to define detection
modules on top of our architecture. Even though the support of such complicated
memory checks is not supported currently by our GPU-assisted integrity tool, still
we have tested the operation of aggressively reading and hashing memory, and as
we demonstrate below, the GPU prevails the computational and memory resources
to support them.

In particular, we measure the detection rate of a self-hiding LKM that is loaded,
repeatedly, 100 times, using a different snapshot frequency. The self-hiding LKM
acts similar to the operation of a rootkit, however it does not perform any malicious
operations; instead, an actual rootkit will be exposed to the monitor for a longer
time period, once loaded, in order to perform its malicious actions. The detection
rate achieved is shown in Figure 13. We utilize a GTX770 under each configuration
and use the CRC-32 for checksums (as defined by ISO 3309), due to its simplicity,
speed, and its wide adoption. As can be shown, we can reliably detect (i.e., 100%
detection rate) that a new kernel module has been loaded before hiding itself with a
snapshot frequency of 9 KHz or more.

High Performance Parallel Computing

50

the CUDA API. Afterwards, the GPU is able to access the requested kernel memory
regions directly, through the physical address space, due to the fact that the GPU
is a peripheral PCIe device (i.e., it only uses physical addressing to access the host
memory). This feature enables us to un-map the user-space mappings of the kernel
memory regions during the bootstrap phase, that would otherwise pose significant
security risks.

4.2.1 Mapping kernel memory to GPU

During bootstrapping, our GPU-assisted integrity monitor acquires the kernel
memory regions that need to be monitored. Given that these regions are located in
the kernel virtual address space, the first step is to map them to the virtual address
space of the user process, which spawns the execution of the kernel integrity
monitoring GPU kernel.

In most modern operating systems, a peripheral device is able to bypass the
virtual address layer and access physical addresses directly. The device driver creates
a device-specific mapping of the device’s address space that points to the correspond-
ing host’s physical pages. In order to map the corresponding kernel physical memory
mappings to the GPU, we use a separate loadable kernel module that is responsible
to provide the required page table mapping functionality. Figure 12 shows the steps
for mapping the OS kernel memory to the GPU. In step 1, the loadable kernel module
resolves the physical mapping for a given kernel virtual address. In step 2, the kernel
module allocates one page in the user context and saves its physical mapping; then
it makes the allocated page point to the same page as the kernel virtual address by
duplicating the PTE in the user-page table. Afterwards, in step 3, the kernel module
maps this user page to the GPU (cudaHostRegister() with the cudaHostRegister-
Mapped flag) and gets its device pointer via the cudaHostGetDevicePointer(). Last,
the original physical mapping of the allocation is restored-and-freed by the kernel
module (step 4). By doing so, any OS kernel memory page can be effectively mapped
to the GPU address space. Furthermore, by un-mapping the user-allocated page
right after the successful execution of the bootstrapping process, all intermediate
mappings are destroyed. The same procedure is performed for all kernel virtual
memory ranges that need to be monitored by our tool. The GPU driver populates a
device-resident page table for the device in order to resolve its virtual addresses and
spawn DMA transactions.

Finally, we compile Linux with the CONFIG_KALLSYMS_ALL = y and
CONFIG_KALLSYMS = y flags, in order to have full access to the /proc./kallsyms
interface. Even though this is not an inherent constraint for our design, it makes

Figure 12.
Mapping OS kernel memory to the GPU. First, we have a kernel virtual address pointing to a physical
address (step 1). In step 2 this mapping is duplicated to user space using a specialized kernel module capable
to manipulate page tables. The user virtual address is then passed to a CUDA API call that pins the page into
memory and creates the GPU-side page table entries (step 3). Finally, the intermediate user space mappings are
destroyed (step 4), while the GPU continues to access the physical page.

51

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

the development and debugging much easier because it alleviates the need of
custom memory scanners to search for the kernel page table address that need to
be monitored. In case the access of the kernel symbol lookup table is not acceptable
(i.e., in certain environments), we could locate the corresponding memory regions
either using memory pattern scanners for dynamic loadable parts or via an external
symbol table.

4.3 Memory integrity monitoring

The user can specify which host memory regions will be monitored; these
regions can include, among others, pages that contain kernel text, kernel modules
(LKM), and arrays or structures that contain function pointers (e.g., jump tables).
Even though the hashing of static kernel text parts or loaded LKMs is straight-
forward, still many parts of the OS kernel are quite dynamic. For instance, the
data structures of the VFS layer change every time a new filesystem is mounted
or unmounted. In addition, function pointers can be added dynamically by every
loaded LKM.

As modern GPUs offer general purpose programmability, it is feasible to imple-
ment multi-step checks on different memory regions. These checks can be quite
complex, such as for example in cases where several memory pointers need to be
dereferenced in order to acquire a proper kernel memory address. Such type of
checks can be supported by walking the kernel page table and resolving their virtual
addresses dynamically from the GPU. Given that we can already access the parts of
the page table needed to follow a specific virtual address down to a leaf page table
entry (PTE), we end up with a physical page number.

Finally, we note that dynamic page table resolutions are not currently supported;
instead, we need to provide a static list of kernel memory regions. Still, this is not an
inherent limitation of a PCIe device, such as the GPU. The development of open-
source frameworks (e.g., Gdev [14]) and drivers (e.g. Nouveau [15], PSCNV [16],
etc.) will make the mapping of any physical page in the GPU address space feasible.

4.4 Sufficient resources

Modern GPUs are usually equipped with hundreds of cores and adequate
amount of memory. This gives the ability to keep a sufficient number of memory
snapshots and much state to detect complex, multi-step, attacks. It is clear though
that these types of checks can become quite sophisticated, principally due to the
lack of a generic framework that will give the opportunity to define detection
modules on top of our architecture. Even though the support of such complicated
memory checks is not supported currently by our GPU-assisted integrity tool, still
we have tested the operation of aggressively reading and hashing memory, and as
we demonstrate below, the GPU prevails the computational and memory resources
to support them.

In particular, we measure the detection rate of a self-hiding LKM that is loaded,
repeatedly, 100 times, using a different snapshot frequency. The self-hiding LKM
acts similar to the operation of a rootkit, however it does not perform any malicious
operations; instead, an actual rootkit will be exposed to the monitor for a longer
time period, once loaded, in order to perform its malicious actions. The detection
rate achieved is shown in Figure 13. We utilize a GTX770 under each configuration
and use the CRC-32 for checksums (as defined by ISO 3309), due to its simplicity,
speed, and its wide adoption. As can be shown, we can reliably detect (i.e., 100%
detection rate) that a new kernel module has been loaded before hiding itself with a
snapshot frequency of 9 KHz or more.

High Performance Parallel Computing

52

Next, we study the implications of requiring a snapshot frequency of at least 9
KHz for accurate detection, with respect to the amount of memory we can cover.
The snapshot frequency is a function of the number and size of the monitored
memory regions. We notice that the memory alignment is major factor that sig-
nificantly affects the performance of memory reads of the GPU; the most efficient
memory reads are achieved with 16-byte aligned reads (or one uint4 in CUDA’s
device native data types). Unfortunately, since we cannot control how the kernel
data structures will be placed in memory, we assume that many of our monitored
regions will require one or two extra fetches.

In our final experiment, we focus on monitoring single memory pointer (8-bytes
each). As shown in Figure 14, we can monitor at most 8 K pointers simultaneously
without any loss in accuracy, due to the fact that we need to stay above the 9 KHz
snapshot frequency. Obviously, this limits the amount of memory that we can
monitor using our system, albeit 8 K addresses that are spread out in memory could
potentially safeguard many important kernel data structures.

Figure 14.
Maximum achieved frequency according to the number of pointers being monitored. As the number of (8-byte)
memory regions increases, the snapshot frequency decreases. A threshold of 9 KHz is required to accurately
detect a self-hiding LKM loading, which is achieved with monitoring 8 K pointers.

Figure 13.
Self-hiding LKM loading detection with different snapshot frequencies. For each case, a module is loaded that
deletes itself from the kernel modules list 100 times, while monitoring the head of the list. A 100% detection rate
with a snapshot frequency of 9 KHz or more is achieved.

53

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

4.5 Out-of-band execution

The coprocessor nature of GPUs offers limited defenses against itself. For
instance, an attacker that has gained access on the host system can easily reset or
disable the GPU device, and as a result, block its operation as integrity monitor.
To solve this, an admin station needs to be deployed, completely isolated from
the monitored system, that is responsible for keeping track of its proper state.
Specifically, the user program that has spawned the GPU kernel that performs the
integrity monitor, periodically sends keep-alive messages to the admin station via a
virtual private connection. It is clear that simply sending messages to raise an alert
is unsafe, due to the difficulty of the admin station to distinguish normal operation
from a network partition or other failure. As such, we use keep-alive messages that
encapsulate a GPU-generated status. In order to prevent attackers to send spoofed
messages or replay old ones, we further encrypt the keep-alive messages together
with a sequence number. Eventually, the secure channel between the admin station
and the host is established at the bootstrapping phase. On the admin station, the
reports are logged and is responsible that for the responsiveness of the monitor.
Every time an alert is received or on the admin station, it takes the appropriate
action. Moreover, the admin station takes care for any error case, such as missed
reports (initiated by a time-out) or invalid messages.

Acknowledgements

The author would like to thank Sotiris Ioannidis, Michalis Polychronakis, Elias
Athanasopoulos, and Lazaros Koromilas for their invaluable support and contribu-
tions during the development of several parts of this work. I gratefully acknowledge
the support of NVIDIA Corporation with the donation of the Titan Xp GPU used
for this research.

Author details

Giorgos Vasiliadis
Foundation for Research and Technology—Hellas, Heraklion, Crete, Greece

*Address all correspondence to: gvasil@ics.forth.gr

High Performance Parallel Computing

52

Next, we study the implications of requiring a snapshot frequency of at least 9
KHz for accurate detection, with respect to the amount of memory we can cover.
The snapshot frequency is a function of the number and size of the monitored
memory regions. We notice that the memory alignment is major factor that sig-
nificantly affects the performance of memory reads of the GPU; the most efficient
memory reads are achieved with 16-byte aligned reads (or one uint4 in CUDA’s
device native data types). Unfortunately, since we cannot control how the kernel
data structures will be placed in memory, we assume that many of our monitored
regions will require one or two extra fetches.

In our final experiment, we focus on monitoring single memory pointer (8-bytes
each). As shown in Figure 14, we can monitor at most 8 K pointers simultaneously
without any loss in accuracy, due to the fact that we need to stay above the 9 KHz
snapshot frequency. Obviously, this limits the amount of memory that we can
monitor using our system, albeit 8 K addresses that are spread out in memory could
potentially safeguard many important kernel data structures.

Figure 14.
Maximum achieved frequency according to the number of pointers being monitored. As the number of (8-byte)
memory regions increases, the snapshot frequency decreases. A threshold of 9 KHz is required to accurately
detect a self-hiding LKM loading, which is achieved with monitoring 8 K pointers.

Figure 13.
Self-hiding LKM loading detection with different snapshot frequencies. For each case, a module is loaded that
deletes itself from the kernel modules list 100 times, while monitoring the head of the list. A 100% detection rate
with a snapshot frequency of 9 KHz or more is achieved.

53

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Security Applications of GPUs
DOI: http://dx.doi.org/10.5772/intechopen.81885

4.5 Out-of-band execution

The coprocessor nature of GPUs offers limited defenses against itself. For
instance, an attacker that has gained access on the host system can easily reset or
disable the GPU device, and as a result, block its operation as integrity monitor.
To solve this, an admin station needs to be deployed, completely isolated from
the monitored system, that is responsible for keeping track of its proper state.
Specifically, the user program that has spawned the GPU kernel that performs the
integrity monitor, periodically sends keep-alive messages to the admin station via a
virtual private connection. It is clear that simply sending messages to raise an alert
is unsafe, due to the difficulty of the admin station to distinguish normal operation
from a network partition or other failure. As such, we use keep-alive messages that
encapsulate a GPU-generated status. In order to prevent attackers to send spoofed
messages or replay old ones, we further encrypt the keep-alive messages together
with a sequence number. Eventually, the secure channel between the admin station
and the host is established at the bootstrapping phase. On the admin station, the
reports are logged and is responsible that for the responsiveness of the monitor.
Every time an alert is received or on the admin station, it takes the appropriate
action. Moreover, the admin station takes care for any error case, such as missed
reports (initiated by a time-out) or invalid messages.

Acknowledgements

The author would like to thank Sotiris Ioannidis, Michalis Polychronakis, Elias
Athanasopoulos, and Lazaros Koromilas for their invaluable support and contribu-
tions during the development of several parts of this work. I gratefully acknowledge
the support of NVIDIA Corporation with the donation of the Titan Xp GPU used
for this research.

Author details

Giorgos Vasiliadis
Foundation for Research and Technology—Hellas, Heraklion, Crete, Greece

*Address all correspondence to: gvasil@ics.forth.gr

54

High Performance Parallel Computing

References

[1] Snort—Network Intrusion Detection
& Prevention System. Available from:
https://www.snort.org/

[2] Paxson V, Asanovic ́ K,
Dharmapurikar S, Lockwood J, Pang R,
Sommer R, et al. Rethinking hardware
support for network analysis and
intrusion prevention. In: Proceedings
of the 1st USENIX Workshop on Hot
Topics in Security (HotSec). 2006

[3] Aho AV, Corasick MJ. Efficient string
matching: An aid to bibliographic
search. Communications of the ACM.
1975;18(6):333-340

[4] Norton M. Optimizing Pattern
Matching for Intrusion Detection.
Whitepaper. 2004. Available from:
https://www.snort.org/documents/
optimization-of-pattern-matches-for-ids

[5] PCRE: Perl Compatible Regular
Expressions. Available from: http://
www.pcre.org

[6] Thompson K. Programming
techniques: Regular expression search
algorithm. Communications of the
ACM. 1968;11(6):419-422

[7] Berry G, Sethi R. From regular
expressions to deterministic automata.
Theoretical Computer Science.
1986;48(1):117-126

[8] Hopcroft JE, Ullman JD. Introduction
to Automata Theory, Languages, and
Computation. Boston, MA, USA:
Addison-Wesley Longman Publishing
Co., Inc.; 1990

[9] ClamAV Open-source Antivirus.
Available from: http://www.clamav.net/

[10] Boyer RS, Moore JS. A fast string
searching algorithm. Communications
of the Association for Computing
Machinery. 1977;20(10):762-772

[11] Miretskiy Y, Das A, Wright CP,
Zadok E. Avfs: An on-access anti-virus
file system. In: Proceedings of the 13th
USENIX Security Symposium. 2004

[12] Petroni NL Jr, Fraser T, Molina J,
Arbaugh WA. Copilot: A coprocessor-
based kernel runtime integrity monitor.
In: USENIX Security Symposium. 2004

[13] Lee H, Moon H, Jang D, Kim K, Lee
J, Paek Y, et al. KI-mon: A hardware-
assisted event-triggered monitoring
platform for mutable kernel object. In:
USENIX Security Symposium. 2013

[14] shinpei0208/gdev. Available from:
https://github.com/shinpei0208/gdev

[15] Nouveau driver for nVidia cards.
Available from: http://nouveau.
freedesktop.org/

[16] PathScale NVIDIA graphics driver.
Available from: https://github.com/
pathscale/pscnv

Chapter 5

Particle-Based Fused Rendering
Koji Koyamada and Naohisa Sakamoto

Abstract

In this chapter, we propose a fused rendering technique that can integrally
handle multiple irregular volumes. Although there is a strong requirement for
understanding large-scale datasets generated from coupled simulation techniques
such as computational structure mechanics (CSM) and computational fluid
dynamics (CFD), there is no fused rendering technique to the best of our knowl-
edge. For this purpose, we can employ the particle-based volume rendering (PBVR)
technique for each irregular volume dataset. Since the current PBVR technique
regards an irregular cell as a planar footprint during depth evaluation, the straight-
forward employment causes some artifacts especially at the cell boundaries. To
solve the problem, we calculate the depth value based on the assumption that the
opacity describes the cumulative distribution function (CDF) of a probability vari-
able, w, which shows a length from the entry point in the fragment interval in the
cell. In our experiments, we applied our method to numerical simulation results in
which two different irregular grid cells are defined in the same space and confirmed
its effectiveness with respect to the image quality.

Keywords: volume rendering, irregular volume, unstructured grid

1. Introduction

Coupled analysis is important to solve complex phenomena. Several computa-
tional schemes such as computational fluid dynamics (CFD), computational struc-
ture mechanics (CSM), and computational electronic magnetics (CEM) are applied
to the same geometrical domain, and high-performance computing (HPC) facility
has been used for the computation. Since, in general, the requirement for the
computational grid is different at each scheme, and the space is composed of
multiple irregular volumes. Thus, a volume rendering technique which can handle
multiple irregular volumes is expected.

Volume rendering can provide useful information because with this technique,
it is possible to grasp the spatial distribution of the related physical quantities. It is a
powerful technique for displaying volume datasets, especially three-dimensional
scalar data fields, which are composed of scalar data values defined in three-
dimensional space. In a CSM, CFD or CEM simulation, the three-dimensional space
is composed of computational cells, the shapes of which are, for example, tetrahe-
dra, prisms, and hexahedra. In a large-scale simulation model for complex physical
phenomena, the number of computational cells may be more than one million.

Current volume rendering techniques require discrete sampling in which the
composition is executed in the visibility order. In the volume rendering calculation,
accumulating the optical depth is time consuming. The optical depth is accumulated
so that we can efficiently calculate the occlusion of the scattered light from various

55

54

High Performance Parallel Computing

References

[1] Snort—Network Intrusion Detection
& Prevention System. Available from:
https://www.snort.org/

[2] Paxson V, Asanovic ́ K,
Dharmapurikar S, Lockwood J, Pang R,
Sommer R, et al. Rethinking hardware
support for network analysis and
intrusion prevention. In: Proceedings
of the 1st USENIX Workshop on Hot
Topics in Security (HotSec). 2006

[3] Aho AV, Corasick MJ. Efficient string
matching: An aid to bibliographic
search. Communications of the ACM.
1975;18(6):333-340

[4] Norton M. Optimizing Pattern
Matching for Intrusion Detection.
Whitepaper. 2004. Available from:
https://www.snort.org/documents/
optimization-of-pattern-matches-for-ids

[5] PCRE: Perl Compatible Regular
Expressions. Available from: http://
www.pcre.org

[6] Thompson K. Programming
techniques: Regular expression search
algorithm. Communications of the
ACM. 1968;11(6):419-422

[7] Berry G, Sethi R. From regular
expressions to deterministic automata.
Theoretical Computer Science.
1986;48(1):117-126

[8] Hopcroft JE, Ullman JD. Introduction
to Automata Theory, Languages, and
Computation. Boston, MA, USA:
Addison-Wesley Longman Publishing
Co., Inc.; 1990

[9] ClamAV Open-source Antivirus.
Available from: http://www.clamav.net/

[10] Boyer RS, Moore JS. A fast string
searching algorithm. Communications
of the Association for Computing
Machinery. 1977;20(10):762-772

[11] Miretskiy Y, Das A, Wright CP,
Zadok E. Avfs: An on-access anti-virus
file system. In: Proceedings of the 13th
USENIX Security Symposium. 2004

[12] Petroni NL Jr, Fraser T, Molina J,
Arbaugh WA. Copilot: A coprocessor-
based kernel runtime integrity monitor.
In: USENIX Security Symposium. 2004

[13] Lee H, Moon H, Jang D, Kim K, Lee
J, Paek Y, et al. KI-mon: A hardware-
assisted event-triggered monitoring
platform for mutable kernel object. In:
USENIX Security Symposium. 2013

[14] shinpei0208/gdev. Available from:
https://github.com/shinpei0208/gdev

[15] Nouveau driver for nVidia cards.
Available from: http://nouveau.
freedesktop.org/

[16] PathScale NVIDIA graphics driver.
Available from: https://github.com/
pathscale/pscnv

Chapter 5

Particle-Based Fused Rendering
Koji Koyamada and Naohisa Sakamoto

Abstract

In this chapter, we propose a fused rendering technique that can integrally
handle multiple irregular volumes. Although there is a strong requirement for
understanding large-scale datasets generated from coupled simulation techniques
such as computational structure mechanics (CSM) and computational fluid
dynamics (CFD), there is no fused rendering technique to the best of our knowl-
edge. For this purpose, we can employ the particle-based volume rendering (PBVR)
technique for each irregular volume dataset. Since the current PBVR technique
regards an irregular cell as a planar footprint during depth evaluation, the straight-
forward employment causes some artifacts especially at the cell boundaries. To
solve the problem, we calculate the depth value based on the assumption that the
opacity describes the cumulative distribution function (CDF) of a probability vari-
able, w, which shows a length from the entry point in the fragment interval in the
cell. In our experiments, we applied our method to numerical simulation results in
which two different irregular grid cells are defined in the same space and confirmed
its effectiveness with respect to the image quality.

Keywords: volume rendering, irregular volume, unstructured grid

1. Introduction

Coupled analysis is important to solve complex phenomena. Several computa-
tional schemes such as computational fluid dynamics (CFD), computational struc-
ture mechanics (CSM), and computational electronic magnetics (CEM) are applied
to the same geometrical domain, and high-performance computing (HPC) facility
has been used for the computation. Since, in general, the requirement for the
computational grid is different at each scheme, and the space is composed of
multiple irregular volumes. Thus, a volume rendering technique which can handle
multiple irregular volumes is expected.

Volume rendering can provide useful information because with this technique,
it is possible to grasp the spatial distribution of the related physical quantities. It is a
powerful technique for displaying volume datasets, especially three-dimensional
scalar data fields, which are composed of scalar data values defined in three-
dimensional space. In a CSM, CFD or CEM simulation, the three-dimensional space
is composed of computational cells, the shapes of which are, for example, tetrahe-
dra, prisms, and hexahedra. In a large-scale simulation model for complex physical
phenomena, the number of computational cells may be more than one million.

Current volume rendering techniques require discrete sampling in which the
composition is executed in the visibility order. In the volume rendering calculation,
accumulating the optical depth is time consuming. The optical depth is accumulated
so that we can efficiently calculate the occlusion of the scattered light from various

55

lighting positions. Most volume rendering techniques accumulate the optical depth
in order from front to back or from back to front along a viewing ray.

Although this sorted sampling is straightforward in structured grid data, it
becomes more complicated if the computation is conducted in a distributed com-
puting environment. In such an environment, the sub-volume dataset is stored in
each distributed node. In this case, it is difficult for a sub-volume to be sorted along
the viewing ray since the shape of the sub-volume may be concave. On the other
hand, the shape of a computational cell is convex. The whole volume is subdivided
into multiple sub-volumes so that the total data transmission cost is minimized.

To handle the problem, a particle-based rendering technique, which does not
need visibility sorting, has been proposed [1]. In this technique, opaque emissive
particles are employed for realizing sorting-free rendering. There are two
approaches for the implementation, that is, an object-space approach and an image-
space approach (see Figure 1). In the former approach, which we call object-space
particle-based volume rendering (O-PBVR), a particle density function is estimated
from a user-specified transfer function, and a set of opaque particles are generated
at each computational cell. The generated particles are projected onto an image
plane, and the projection is repeated to improve the image quality. Although
O-PBVR shows good scalability for handling large-scale irregular volume [2], the
current drawback of the technique is the generation of low-quality images in which
particles are visible on the boundary surface polygons when viewed closely. More-
over, with O-PBVR, it is necessary to generate a large number of particles to obtain
a high-resolution image.

In the latter approach, we proposed a sorting-free technique by regarding the
brightness equation as the expected value of the luminosity of a sampling point
along a viewing ray [3]. We applied the technique to a projected tetrahedral tech-
nique with pre-integration. We called this image-space particle-based volume ren-
dering (I-PBVR). We conducted a thorough experimental analysis to construct the
performance model [3]. The model suggests that I-PBVR is preferable to O-PBVR

Figure 1.
Overview of PBVR processes that employ the ensemble average.

56

High Performance Parallel Computing

when a volume dataset is rendered in a high resolution. In addition, I-PBVR
becomes a feasible choice for rendering irregular volume data when particle gener-
ation becomes frequent.

To understand the relationships between variables in the irregular volume data,
it is necessary to integrate multiple volumes, into a single volume rendering. In this
chapter, we improve the I-PBVR technique in terms of its extensibility to multiple
volumes and propose a new technique for semi-transparent rendering which can
integrally handle multiple volumes without visibility sorting. I-PBVR regards a
tetrahedral cell as a triangle footprint on the image plane. When a single volume is
rendered, each footprint does not intersect with the other one since the volume is
composed of cells that are not overlapped with others. When multiple volumes are
rendered, the footprints may intersect with others. This intersection causes a prob-
lem in which the cell boundaries are visible when dealing with multiple volumes.
Thus, in this chapter, our research question is “How can we realize a fused volume
rendering technique which is free from artifact?” The hypothesis to the question is
“If we employ an adequate probability process to sample particles along a viewing
in a grid cell, the artifact is not noticeable.” In the early age of volume rendering,
Blinn assumed that the number of particles is distributed in a volume space
according to the Poisson distribution. If we take an interval that is a part of the
viewing ray cut by cell faces, the distance between particles is distributed according
to the exponent distribution.

In the remaining part, we first describe related work and the basic theory of
PBVR and then propose a fused rendering technique using PBVR. Finally, we make
a comparative work to confirm the effectiveness of the proposed technique. To test
the hypothesis, we design the following experiments for the sampling along the
interval:

1. The sampling is made at the entry, exit or middle points along an interval in
the grid cell.

2. The sampling is made at a random position along an interval in the grid cell.

3. The sampling is made according to a probability process, which is determined
based on an opacity along the interval.

2. Related work

In the particle-based modeling of Saturn’s ring, Blinn assumed that the number
of particles follows the Poisson distribution although he did not describe it in detail
[4]. The assumption led to a definition of opacity which was an important keyword
for the volume rendering. Then, volume rendering has been the focus of intensive
study for nearly three decades [5–7]. The volume rendering of unstructured volume
data has received much attention, and several approaches have been proposed.
Extensive literature and surveys on volume rendering are available that address
unstructured volume data [8, 9]. A concern has often been visibility sorting, which
causes a severe bottleneck in the interactive exploration.

To solve the problem recognized by many volume rendering researchers, we
returned to a density emitter model and presented the basic concept for this
approach. The proposed PBVR technique represents the 3D scalar fields as a set of
particles and considers both emission and absorption effects [1, 2]. The particle
density is derived from a user-specified transfer function and is used to estimate the
number of particles to be generated in a given volume dataset. Because the particles

57

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

lighting positions. Most volume rendering techniques accumulate the optical depth
in order from front to back or from back to front along a viewing ray.

Although this sorted sampling is straightforward in structured grid data, it
becomes more complicated if the computation is conducted in a distributed com-
puting environment. In such an environment, the sub-volume dataset is stored in
each distributed node. In this case, it is difficult for a sub-volume to be sorted along
the viewing ray since the shape of the sub-volume may be concave. On the other
hand, the shape of a computational cell is convex. The whole volume is subdivided
into multiple sub-volumes so that the total data transmission cost is minimized.

To handle the problem, a particle-based rendering technique, which does not
need visibility sorting, has been proposed [1]. In this technique, opaque emissive
particles are employed for realizing sorting-free rendering. There are two
approaches for the implementation, that is, an object-space approach and an image-
space approach (see Figure 1). In the former approach, which we call object-space
particle-based volume rendering (O-PBVR), a particle density function is estimated
from a user-specified transfer function, and a set of opaque particles are generated
at each computational cell. The generated particles are projected onto an image
plane, and the projection is repeated to improve the image quality. Although
O-PBVR shows good scalability for handling large-scale irregular volume [2], the
current drawback of the technique is the generation of low-quality images in which
particles are visible on the boundary surface polygons when viewed closely. More-
over, with O-PBVR, it is necessary to generate a large number of particles to obtain
a high-resolution image.

In the latter approach, we proposed a sorting-free technique by regarding the
brightness equation as the expected value of the luminosity of a sampling point
along a viewing ray [3]. We applied the technique to a projected tetrahedral tech-
nique with pre-integration. We called this image-space particle-based volume ren-
dering (I-PBVR). We conducted a thorough experimental analysis to construct the
performance model [3]. The model suggests that I-PBVR is preferable to O-PBVR

Figure 1.
Overview of PBVR processes that employ the ensemble average.

56

High Performance Parallel Computing

when a volume dataset is rendered in a high resolution. In addition, I-PBVR
becomes a feasible choice for rendering irregular volume data when particle gener-
ation becomes frequent.

To understand the relationships between variables in the irregular volume data,
it is necessary to integrate multiple volumes, into a single volume rendering. In this
chapter, we improve the I-PBVR technique in terms of its extensibility to multiple
volumes and propose a new technique for semi-transparent rendering which can
integrally handle multiple volumes without visibility sorting. I-PBVR regards a
tetrahedral cell as a triangle footprint on the image plane. When a single volume is
rendered, each footprint does not intersect with the other one since the volume is
composed of cells that are not overlapped with others. When multiple volumes are
rendered, the footprints may intersect with others. This intersection causes a prob-
lem in which the cell boundaries are visible when dealing with multiple volumes.
Thus, in this chapter, our research question is “How can we realize a fused volume
rendering technique which is free from artifact?” The hypothesis to the question is
“If we employ an adequate probability process to sample particles along a viewing
in a grid cell, the artifact is not noticeable.” In the early age of volume rendering,
Blinn assumed that the number of particles is distributed in a volume space
according to the Poisson distribution. If we take an interval that is a part of the
viewing ray cut by cell faces, the distance between particles is distributed according
to the exponent distribution.

In the remaining part, we first describe related work and the basic theory of
PBVR and then propose a fused rendering technique using PBVR. Finally, we make
a comparative work to confirm the effectiveness of the proposed technique. To test
the hypothesis, we design the following experiments for the sampling along the
interval:

1. The sampling is made at the entry, exit or middle points along an interval in
the grid cell.

2. The sampling is made at a random position along an interval in the grid cell.

3. The sampling is made according to a probability process, which is determined
based on an opacity along the interval.

2. Related work

In the particle-based modeling of Saturn’s ring, Blinn assumed that the number
of particles follows the Poisson distribution although he did not describe it in detail
[4]. The assumption led to a definition of opacity which was an important keyword
for the volume rendering. Then, volume rendering has been the focus of intensive
study for nearly three decades [5–7]. The volume rendering of unstructured volume
data has received much attention, and several approaches have been proposed.
Extensive literature and surveys on volume rendering are available that address
unstructured volume data [8, 9]. A concern has often been visibility sorting, which
causes a severe bottleneck in the interactive exploration.

To solve the problem recognized by many volume rendering researchers, we
returned to a density emitter model and presented the basic concept for this
approach. The proposed PBVR technique represents the 3D scalar fields as a set of
particles and considers both emission and absorption effects [1, 2]. The particle
density is derived from a user-specified transfer function and is used to estimate the
number of particles to be generated in a given volume dataset. Because the particles

57

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

can be considered fully opaque, no visibility sorting processing is required during
the rendering process, which is advantageous from a distributed processing
perspective.

The development of a fused rendering technique began in the seismic or medical
imaging field. Lu Cai et al. developed a fused volume rendering technique for
multiple seismic attribute volume data by the way of planar slices or horizon slices
and revealed a variety of geological phenomena more effectively and clearly in
order to provide a true three-dimensional perspective view. Their method can
address only regular volume datasets [10].

3. Particle-based volume rendering

3.1 Definition of opacity

In image generation in volume rendering, it is thought that giving a viewing ray
(viewpoint and direction), when there is no other emissive particle between the
particle and the viewpoint, the energy from the particle reaches the viewpoint. Let
us consider a certain section on the viewing ray, where τ particles are distributed on
average. Furthermore, suppose that this section is divided into M equal parts, M
small sections are formed, and particles are present in k small sections. Here, it is
assumed that there is at most one particle in each small section and k is a natural
number in addition to 0. At this time, the probability p that there is a particle in the
small section is as follows:

p ¼ τ

M
(1)

Such a distribution follows a binomial distribution, and its probability is given as
follows:

P X ¼ kð Þ ¼ MCkpk 1� pð ÞM�k (2)

Here, the number of particles X is set as a random variable. When M is brought
close to infinity while keeping τ = Mp constant, its distribution becomes the Poisson
distribution of the average τ. The probability that there are k particles in the section
is expressed by the following equation:

P N ¼ kð Þ ¼ τke�τ

k!
(3)

Here, e is the Napier’s constant (e = 2.71828 …), and k! is the factorial of k. Thus,
the probability is a positive real number. The Poisson distribution is often employed
in the context of the number of occurrences of events within the interval defined in
the time domain, but in volume rendering, it is considered not in the time domain
but in the space domain. Eq. 3 represents the probability that k particles exist when
the average number of particles is τ. When k = 0, it represents the situation in which
no particle exists in the section on the viewing ray.

P N ¼ 0ð Þ ¼ e�τ (4)

If there are many particles, the rate at which energy reaches the viewpoint
becomes small, and it is easier to define the passing distance of light by the number
of particles rather than the actual distance. Therefore, the average particle number τ

58

High Performance Parallel Computing

is also called the optical thickness. Additionally, a negative sign is given to this
optical thickness, and an index is taken, that is, Eq. 4 is called transparency (t), and
it shows the ease of light transmission. The opacity α is obtained by subtracting this
transparency from 1 and represents the probability that one or more particles exist
in the section.

3.2 Volume rendering

In traditional computer graphics, it is assumed that all light is radiated from the
outside, the particles constituting the object are treated as reflectors, and the light
scattering and absorption are repeated inside the object. On the other hand, in the
volume rendering technique proposed by Sabella in 1988, the internal structure of
the volume data can be known by treating the particle as a radiator in addition to a
reflector (particle emission model) for the purpose of visualizing the scalar volume.

In Blinn’s model and Kajiya’s model, the radiant energy is only reflected from the
light source and energy emission (luminescence) by the particles themselves has not
been considered. However, in the model of Sabella, from the standpoint of visual-
izing the volume data, we assume that the particles themselves emit light.

To accurately simulate the light scattering phenomenon inside the object, com-
plicated analysis using radiation theory becomes necessary, and it is necessary to
solve the scattering equation derived from that theory. In the particle emission
model, focusing only on the viewing ray direction, we use a simple equation
describing the transmission of optical energy with volume data. This equation can
be formulated as follows by considering the difference in radiant intensity (lumi-
nance value) B in a cylindrical tube of minute length.

dB tð ÞA ¼ �absorbedþ emitted

¼ �B tð Þ þ c tð Þð Þ � πr2ρ tð ÞAdt
dB tð Þ
dt

¼ �B tð Þ þ c tð Þð Þ � πr2ρ tð Þ
(5)

Here, ρ tð Þ is the particle density (the number of particles per unit volume), r is
the particle radius, and c (t) is the light emission amount per unit area.

B0 ¼ B t0ð Þ ¼
ðt0

tn

c tð Þ � πr2ρ tð Þ � exp �
ðt0

t

πr2ρ λð Þdλ
0
@

1
Adt (6)

Eq. 6 is integrated in the interval in which the parameters t0and tn represent the
nearest and the farthest points, respectively, from the viewpoint among the inter-
section points of the volume data and the viewing ray.

This is called the brightness equation. Generally, the brightness value B and the
light emission amount c (t) are composed of three components of red, green, and
blue. Eq. 6 shows that energy emitted from a point on the viewing ray reaches the
viewpoint by receiving attenuation represented by an exponential term. Note that
the exponent term represents the optical thickness τ, so it is equal to the transpar-
ency calculated by assuming a Poisson distribution.

In the particle emission model in volume rendering, from the viewpoint of
visualization of scalar data, scalar values interpolated in particle positions are
converted into color data (composed of three components of red, green, and blue).
This conversion table is called a transfer function together with a conversion table
to opacity described below.

59

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

can be considered fully opaque, no visibility sorting processing is required during
the rendering process, which is advantageous from a distributed processing
perspective.

The development of a fused rendering technique began in the seismic or medical
imaging field. Lu Cai et al. developed a fused volume rendering technique for
multiple seismic attribute volume data by the way of planar slices or horizon slices
and revealed a variety of geological phenomena more effectively and clearly in
order to provide a true three-dimensional perspective view. Their method can
address only regular volume datasets [10].

3. Particle-based volume rendering

3.1 Definition of opacity

In image generation in volume rendering, it is thought that giving a viewing ray
(viewpoint and direction), when there is no other emissive particle between the
particle and the viewpoint, the energy from the particle reaches the viewpoint. Let
us consider a certain section on the viewing ray, where τ particles are distributed on
average. Furthermore, suppose that this section is divided into M equal parts, M
small sections are formed, and particles are present in k small sections. Here, it is
assumed that there is at most one particle in each small section and k is a natural
number in addition to 0. At this time, the probability p that there is a particle in the
small section is as follows:

p ¼ τ

M
(1)

Such a distribution follows a binomial distribution, and its probability is given as
follows:

P X ¼ kð Þ ¼ MCkpk 1� pð ÞM�k (2)

Here, the number of particles X is set as a random variable. When M is brought
close to infinity while keeping τ = Mp constant, its distribution becomes the Poisson
distribution of the average τ. The probability that there are k particles in the section
is expressed by the following equation:

P N ¼ kð Þ ¼ τke�τ

k!
(3)

Here, e is the Napier’s constant (e = 2.71828 …), and k! is the factorial of k. Thus,
the probability is a positive real number. The Poisson distribution is often employed
in the context of the number of occurrences of events within the interval defined in
the time domain, but in volume rendering, it is considered not in the time domain
but in the space domain. Eq. 3 represents the probability that k particles exist when
the average number of particles is τ. When k = 0, it represents the situation in which
no particle exists in the section on the viewing ray.

P N ¼ 0ð Þ ¼ e�τ (4)

If there are many particles, the rate at which energy reaches the viewpoint
becomes small, and it is easier to define the passing distance of light by the number
of particles rather than the actual distance. Therefore, the average particle number τ

58

High Performance Parallel Computing

is also called the optical thickness. Additionally, a negative sign is given to this
optical thickness, and an index is taken, that is, Eq. 4 is called transparency (t), and
it shows the ease of light transmission. The opacity α is obtained by subtracting this
transparency from 1 and represents the probability that one or more particles exist
in the section.

3.2 Volume rendering

In traditional computer graphics, it is assumed that all light is radiated from the
outside, the particles constituting the object are treated as reflectors, and the light
scattering and absorption are repeated inside the object. On the other hand, in the
volume rendering technique proposed by Sabella in 1988, the internal structure of
the volume data can be known by treating the particle as a radiator in addition to a
reflector (particle emission model) for the purpose of visualizing the scalar volume.

In Blinn’s model and Kajiya’s model, the radiant energy is only reflected from the
light source and energy emission (luminescence) by the particles themselves has not
been considered. However, in the model of Sabella, from the standpoint of visual-
izing the volume data, we assume that the particles themselves emit light.

To accurately simulate the light scattering phenomenon inside the object, com-
plicated analysis using radiation theory becomes necessary, and it is necessary to
solve the scattering equation derived from that theory. In the particle emission
model, focusing only on the viewing ray direction, we use a simple equation
describing the transmission of optical energy with volume data. This equation can
be formulated as follows by considering the difference in radiant intensity (lumi-
nance value) B in a cylindrical tube of minute length.

dB tð ÞA ¼ �absorbedþ emitted

¼ �B tð Þ þ c tð Þð Þ � πr2ρ tð ÞAdt
dB tð Þ
dt

¼ �B tð Þ þ c tð Þð Þ � πr2ρ tð Þ
(5)

Here, ρ tð Þ is the particle density (the number of particles per unit volume), r is
the particle radius, and c (t) is the light emission amount per unit area.

B0 ¼ B t0ð Þ ¼
ðt0

tn

c tð Þ � πr2ρ tð Þ � exp �
ðt0

t

πr2ρ λð Þdλ
0
@

1
Adt (6)

Eq. 6 is integrated in the interval in which the parameters t0and tn represent the
nearest and the farthest points, respectively, from the viewpoint among the inter-
section points of the volume data and the viewing ray.

This is called the brightness equation. Generally, the brightness value B and the
light emission amount c (t) are composed of three components of red, green, and
blue. Eq. 6 shows that energy emitted from a point on the viewing ray reaches the
viewpoint by receiving attenuation represented by an exponential term. Note that
the exponent term represents the optical thickness τ, so it is equal to the transpar-
ency calculated by assuming a Poisson distribution.

In the particle emission model in volume rendering, from the viewpoint of
visualization of scalar data, scalar values interpolated in particle positions are
converted into color data (composed of three components of red, green, and blue).
This conversion table is called a transfer function together with a conversion table
to opacity described below.

59

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

In volume rendering, by performing shading processing, it is possible to effec-
tively express shading on the isosurface inherent in the scalar volume. Particularly
in the case of three-dimensional medical images, it is necessary to visualize compli-
cated structures such as bones, muscles, blood vessels, etc. as isosurfaces, and
shading processing becomes important. In shading processing targeting the scalar
volume data, luminance value calculation using the gradient vector obtained by
interpolation calculation inside the grid cell is performed.

To numerically calculate the brightness equation represented by Eq. 6, an inte-
gration area defined on the viewing ray is divided by a step width in which particle
emission can be regarded as constant.

At this time, the k-th light emission amount c (t) is regarded as a constant and is
set as ck. In the calculation of integration, the integral of the exponent part is
divided into the integral section and others. For those that are divided outside the
integration interval, sections corresponding to the division sections are divided and
expressed with product signs. Each element of the product symbol is an index
obtained by attaching a minus sign to the optical thickness and represents the
transparency described above.

As a result, it can be seen that a term of the same form as the exponent term of
the divided section outside the integral section and the transparency are included.
Transparency takes values from 0 to 1 by definition. The value obtained by
subtracting this transparency from 1 is called opacity, as mentioned above, and may
be a target of transfer function, and opacity is used in volume rendering in many
cases. That is, in the k-th integral interval, the opacity αk is defined as follows.

αk ¼ 1� exp �
ðtk�1

tk

πr2ρ λð Þdλ

0
B@

1
CA ¼ 1� exp �πr2ρkΔt

� �
(7)

where Δt is the length of the integration interval, and ρk is the average particle
density in the integral interval k. By introducing this opacity, Eq. 6 is as follows:

Bk ¼ ckαk
Yk�2

j¼0

1� αjþ1
� � ¼ ckαk

Yk�1

j¼1

1� αj
� �

(8)

By adding all the terms described by Eq. 8, the brightness is as follows:

B ¼ ∑
n

k¼1
ck � αk

Yk�1

j¼1

1� αj
� �

" #
(9)

Normally, this opacity is converted from the scalar value S in the transfer
function specified by the user. That is, the opacity is a function of the scalar value S.

α ¼ α S x; y; zð Þð Þ (10)

If the length of the integration interval is a value Δt‘ different from the
predetermined Δt, it is necessary to make the following correction.

αk ¼ 1� exp �πr2ρkΔtð Þ
α0k ¼ 1� exp �πr2ρkΔt0ð Þ

∴ α0k ¼ 1� 1� αkð ÞΔt
0

Δt

(11)

60

High Performance Parallel Computing

In volume rendering, the user should have a large opacity (maximum value is
1.0) for the scalar value to be emphasized and a small opacity (minimum value of
0.0 for the less important scalar value) to set the transfer function. By doing so, the
relationship between the scalar value and the opacity can be defined, and according
to Eq. 11, the following particle density is defined in the three-dimensional region in
which the volume data are defined.

ρk ¼
log 1� αkð Þ

πr2Δt
(12)

Eq. 12 defines the opacity when a transfer function is set in the three-
dimensional region, and the particle density is determined when the particle diam-
eter is determined; thus, particles can be generated using an appropriate method. By
allocating colors to particles and projecting them on the image plane, volume ren-
dering can be realized.

During the exploration phase, the opacity is often modified in order to change an
emphasized region. If we keep the particle radius as defined in the first place, we
need to re-generate particles which requires a significant computational time. To
avoid the additional particle generation process, we need to change the particle
radius on the condition that the particle density stays the same. If we change the
opacity from αk to α0k, the new radius r0 becomes as follows:

r0 ¼ r

ffi
log 1� αkð Þ
log 1� α0k
� �

s
(13)

3.3 O-PBVR

O-PBVR is comprised of three processes: particle generation, particle projection,
and the ensemble average [1]. The first process constructs a density field and
generates particles consistent with the density function. The density is derived from
a user-specified transfer function that converts a scalar to an opacity data value, and
it describes the probability that a particle is present at a given point in space. The
second process projects particles onto an image plane, and the corresponding parti-
cle buffer stores the particles. Each pixel on the image plane contains sub-pixels
(i.e., divided pixels), and the number of division is called the sub-pixel level. This
sub-pixel processing is equivalent to an ensemble average which repeats the first
and second processes in sequence, N times, and calculates the resulting brightness
values by averaging the accumulating color values.

3.3.1 Particle generation

The particle model considers three particle attributes: shape, size, and density.
The particle shape is assumed to be spherical, as in the density emitter model. The
size of the sphere is characterized by its diameter, which is the same as a side length
of a sub-pixel. The particle density ρ can be estimated from the user-specified
transfer function. To generate a rendering image equivalent in quality to the volume
ray-casting result, the above relation must estimate the particle density function.
The number of particles N in a volume cell is calculated as

N ¼
ð
Cell

ρdv (14)

61

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

In volume rendering, by performing shading processing, it is possible to effec-
tively express shading on the isosurface inherent in the scalar volume. Particularly
in the case of three-dimensional medical images, it is necessary to visualize compli-
cated structures such as bones, muscles, blood vessels, etc. as isosurfaces, and
shading processing becomes important. In shading processing targeting the scalar
volume data, luminance value calculation using the gradient vector obtained by
interpolation calculation inside the grid cell is performed.

To numerically calculate the brightness equation represented by Eq. 6, an inte-
gration area defined on the viewing ray is divided by a step width in which particle
emission can be regarded as constant.

At this time, the k-th light emission amount c (t) is regarded as a constant and is
set as ck. In the calculation of integration, the integral of the exponent part is
divided into the integral section and others. For those that are divided outside the
integration interval, sections corresponding to the division sections are divided and
expressed with product signs. Each element of the product symbol is an index
obtained by attaching a minus sign to the optical thickness and represents the
transparency described above.

As a result, it can be seen that a term of the same form as the exponent term of
the divided section outside the integral section and the transparency are included.
Transparency takes values from 0 to 1 by definition. The value obtained by
subtracting this transparency from 1 is called opacity, as mentioned above, and may
be a target of transfer function, and opacity is used in volume rendering in many
cases. That is, in the k-th integral interval, the opacity αk is defined as follows.

αk ¼ 1� exp �
ðtk�1

tk

πr2ρ λð Þdλ

0
B@

1
CA ¼ 1� exp �πr2ρkΔt

� �
(7)

where Δt is the length of the integration interval, and ρk is the average particle
density in the integral interval k. By introducing this opacity, Eq. 6 is as follows:

Bk ¼ ckαk
Yk�2

j¼0

1� αjþ1
� � ¼ ckαk

Yk�1

j¼1

1� αj
� �

(8)

By adding all the terms described by Eq. 8, the brightness is as follows:

B ¼ ∑
n

k¼1
ck � αk

Yk�1

j¼1

1� αj
� �

" #
(9)

Normally, this opacity is converted from the scalar value S in the transfer
function specified by the user. That is, the opacity is a function of the scalar value S.

α ¼ α S x; y; zð Þð Þ (10)

If the length of the integration interval is a value Δt‘ different from the
predetermined Δt, it is necessary to make the following correction.

αk ¼ 1� exp �πr2ρkΔtð Þ
α0k ¼ 1� exp �πr2ρkΔt0ð Þ

∴ α0k ¼ 1� 1� αkð ÞΔt
0

Δt

(11)

60

High Performance Parallel Computing

In volume rendering, the user should have a large opacity (maximum value is
1.0) for the scalar value to be emphasized and a small opacity (minimum value of
0.0 for the less important scalar value) to set the transfer function. By doing so, the
relationship between the scalar value and the opacity can be defined, and according
to Eq. 11, the following particle density is defined in the three-dimensional region in
which the volume data are defined.

ρk ¼
log 1� αkð Þ

πr2Δt
(12)

Eq. 12 defines the opacity when a transfer function is set in the three-
dimensional region, and the particle density is determined when the particle diam-
eter is determined; thus, particles can be generated using an appropriate method. By
allocating colors to particles and projecting them on the image plane, volume ren-
dering can be realized.

During the exploration phase, the opacity is often modified in order to change an
emphasized region. If we keep the particle radius as defined in the first place, we
need to re-generate particles which requires a significant computational time. To
avoid the additional particle generation process, we need to change the particle
radius on the condition that the particle density stays the same. If we change the
opacity from αk to α0k, the new radius r0 becomes as follows:

r0 ¼ r

ffi
log 1� αkð Þ
log 1� α0k
� �

s
(13)

3.3 O-PBVR

O-PBVR is comprised of three processes: particle generation, particle projection,
and the ensemble average [1]. The first process constructs a density field and
generates particles consistent with the density function. The density is derived from
a user-specified transfer function that converts a scalar to an opacity data value, and
it describes the probability that a particle is present at a given point in space. The
second process projects particles onto an image plane, and the corresponding parti-
cle buffer stores the particles. Each pixel on the image plane contains sub-pixels
(i.e., divided pixels), and the number of division is called the sub-pixel level. This
sub-pixel processing is equivalent to an ensemble average which repeats the first
and second processes in sequence, N times, and calculates the resulting brightness
values by averaging the accumulating color values.

3.3.1 Particle generation

The particle model considers three particle attributes: shape, size, and density.
The particle shape is assumed to be spherical, as in the density emitter model. The
size of the sphere is characterized by its diameter, which is the same as a side length
of a sub-pixel. The particle density ρ can be estimated from the user-specified
transfer function. To generate a rendering image equivalent in quality to the volume
ray-casting result, the above relation must estimate the particle density function.
The number of particles N in a volume cell is calculated as

N ¼
ð
Cell

ρdv (14)

61

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

The particles are generated cell-by-cell. In each cell, particle locations are calcu-
lated stochastically in the local coordinate system, which may be one of a variety of
types (e.g., barycentric coordinate). Because this technique generates particles with
uniform sampling in each cell, blocky noise occurs in the rendering result. To solve
this problem, Metropolis sampling for O-PBVR is presented [1]. Metropolis sam-
pling, which uses a ratio of density at the current position to that at the candidate
position, is widely used as an efficient Monte Carlo technique in chemistry and
physics.

3.3.2 Particle projection

Using the aforementioned particle generation method, we can generate particles
in a volume space according to the density function ρ xð Þ. By projecting these
particles onto the image plane, we calculate the brightness values of the
corresponding pixels. We also perform particle occlusion with the Z-buffer algo-
rithm during this projection stage. This incorporates the effects of particle collision,
which prevents some particles from reaching the image plane.

In the present method, we assume that the particles are completely opaque.
Thus, neither alpha blending nor visibility ordering is required. However, when the
number of projected particles is small, for instance one per pixel, it becomes diffi-
cult to produce a semi-transparent appearance. This problem can be solved by an
ensemble average, that is, by accumulating a pixel value for particles generated
multiple times and averaging their brightness values within the pixel.

3.4 I-PBVR

I-PBVR is comprised of three processes: cell projection, stochastic rasterization,
and ensemble average. The first process decomposes a cell into several tetrahedral
cells and splits each of the tetrahedral cells into a set of triangles on the projection
plane. The second process renders the fragments of the triangles with a probability
equal to the opacity value at each ray segment along a viewing ray. It projects
particles onto the image plane, and the corresponding particle buffer stores the
particles’ colors and depths. The third process repeats the first and second processes
in sequence, N times, and calculates the resulting brightness values by averaging the
accumulating color values.

3.4.1 Cell projection

Projected tetrahedra (PT) is a technique for rendering a tetrahedral volume
dataset using polygonal approximation, which regards a tetrahedral cell as triangles.
In this technique, first the tetrahedral cells are sorted in the order of distance from a
viewing point. Second, each tetrahedral cell is projected onto an image plane and
subdivided into three or four PT triangles. In the original PT technique, the color
and opacity are evaluated at the vertices and rasterizing of the PT triangle generates
the fragments on the image plane. Finally, the colors are accumulated to calculate
the pixel value using the back-to-front algorithm. In I-PBVR, although the particle
radius is not explicitly specified, it actually becomes a pixel scale on the image
plane.

To improve the accuracy of the pixel value, a pre-integration technique, pro-
posed by Engel [11], is often employed in the rendering stage. The technique
calculates the color and opacity in the ray segment in a more precise way than the
conventional technique which just samples a scalar value at the middle point of the
ray segment. If the color or the opacity changes drastically in the ray segment, this

62

High Performance Parallel Computing

sampling may miss the important feature. The pre-integration assumes that the scalar
is linearly distributed in the ray segment. In this assumption, the integrand can be
transformed from a function of the distance to that of the scalar. The pre-integration
computes the lookup tables mapping three integration parameters (scalar value at the
front triangle face sf, back one sb, and length of the segment l in Eq. 18) to the pre-
integrated color C and opacity α. By considering many combinations of scalar and
distance values, the pre-integration table is stored as 3D texture in GPU.

3.4.2 Stochastic rasterization

From Eq. 9, we can regard a brightness calculation model as an expected value
calculation in which there are n ray segments along a viewing ray, and the k-th
particle occurs at the probability of αk. Thus, the brightness can be regarded as the
expected value of the luminosity from the ray segment:

B ¼ ∑
n

k¼1
Pkck (15)

where the possibility that the k-th luminosity ck is equal to the brightness value
can be described as follows by using the opacity value αk:

Pk ¼ αk
Yk�1

j¼1

1� αj
� �

(16)

This represents an event in which there is no particle from the first to the (k-1)-th
ray segment, and there is more than one particle in the k-th ray segment. In this case,
the brightness B becomes ck since opaque and emissive particles are used. Please note
that the brightness is not contributed to by the ray segments from the k-th to the last
segments since the (k-1)-th particle completely occludes these segments.

3.5 Ensemble average

In both O-PBVR and I-PBVR, a stochastic approach is employed to generate
particles that are projected onto an image plane. The generation is repeated to make
the average of the pixel values, which can be viewed as an ensemble average. An
ensemble is an imaginary collection of notionally identical experiments. In the
ensemble average, the total brightness is calculated by averaging the pixel values in
all of the repetitions. We confirmed the fluctuation of the total brightness follows a
large number and evaluated the minimum repetition, 65,536, that makes the total
variance become within half of the minimum discretized brightness in the worst
case [12]. This result suggests that little improvement can be expected in the
brightness value when the repetition number exceeds 65,536 in most cases. When
we interact the volume rendering image with some transformation such as transla-
tion, rotation, or scaling, we think much of the interaction by reducing the repeti-
tion number at the cost of the image quality. When we intend to improve the image
quality, we stay still without any interaction.

4. Particle-based fused rendering

In I-PBVR, we generate a particle in an interval of a tetrahedral cell by regarding
the opacity as a cumulative distribution function as shown in Figure 2. The opacity

63

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

The particles are generated cell-by-cell. In each cell, particle locations are calcu-
lated stochastically in the local coordinate system, which may be one of a variety of
types (e.g., barycentric coordinate). Because this technique generates particles with
uniform sampling in each cell, blocky noise occurs in the rendering result. To solve
this problem, Metropolis sampling for O-PBVR is presented [1]. Metropolis sam-
pling, which uses a ratio of density at the current position to that at the candidate
position, is widely used as an efficient Monte Carlo technique in chemistry and
physics.

3.3.2 Particle projection

Using the aforementioned particle generation method, we can generate particles
in a volume space according to the density function ρ xð Þ. By projecting these
particles onto the image plane, we calculate the brightness values of the
corresponding pixels. We also perform particle occlusion with the Z-buffer algo-
rithm during this projection stage. This incorporates the effects of particle collision,
which prevents some particles from reaching the image plane.

In the present method, we assume that the particles are completely opaque.
Thus, neither alpha blending nor visibility ordering is required. However, when the
number of projected particles is small, for instance one per pixel, it becomes diffi-
cult to produce a semi-transparent appearance. This problem can be solved by an
ensemble average, that is, by accumulating a pixel value for particles generated
multiple times and averaging their brightness values within the pixel.

3.4 I-PBVR

I-PBVR is comprised of three processes: cell projection, stochastic rasterization,
and ensemble average. The first process decomposes a cell into several tetrahedral
cells and splits each of the tetrahedral cells into a set of triangles on the projection
plane. The second process renders the fragments of the triangles with a probability
equal to the opacity value at each ray segment along a viewing ray. It projects
particles onto the image plane, and the corresponding particle buffer stores the
particles’ colors and depths. The third process repeats the first and second processes
in sequence, N times, and calculates the resulting brightness values by averaging the
accumulating color values.

3.4.1 Cell projection

Projected tetrahedra (PT) is a technique for rendering a tetrahedral volume
dataset using polygonal approximation, which regards a tetrahedral cell as triangles.
In this technique, first the tetrahedral cells are sorted in the order of distance from a
viewing point. Second, each tetrahedral cell is projected onto an image plane and
subdivided into three or four PT triangles. In the original PT technique, the color
and opacity are evaluated at the vertices and rasterizing of the PT triangle generates
the fragments on the image plane. Finally, the colors are accumulated to calculate
the pixel value using the back-to-front algorithm. In I-PBVR, although the particle
radius is not explicitly specified, it actually becomes a pixel scale on the image
plane.

To improve the accuracy of the pixel value, a pre-integration technique, pro-
posed by Engel [11], is often employed in the rendering stage. The technique
calculates the color and opacity in the ray segment in a more precise way than the
conventional technique which just samples a scalar value at the middle point of the
ray segment. If the color or the opacity changes drastically in the ray segment, this

62

High Performance Parallel Computing

sampling may miss the important feature. The pre-integration assumes that the scalar
is linearly distributed in the ray segment. In this assumption, the integrand can be
transformed from a function of the distance to that of the scalar. The pre-integration
computes the lookup tables mapping three integration parameters (scalar value at the
front triangle face sf, back one sb, and length of the segment l in Eq. 18) to the pre-
integrated color C and opacity α. By considering many combinations of scalar and
distance values, the pre-integration table is stored as 3D texture in GPU.

3.4.2 Stochastic rasterization

From Eq. 9, we can regard a brightness calculation model as an expected value
calculation in which there are n ray segments along a viewing ray, and the k-th
particle occurs at the probability of αk. Thus, the brightness can be regarded as the
expected value of the luminosity from the ray segment:

B ¼ ∑
n

k¼1
Pkck (15)

where the possibility that the k-th luminosity ck is equal to the brightness value
can be described as follows by using the opacity value αk:

Pk ¼ αk
Yk�1

j¼1

1� αj
� �

(16)

This represents an event in which there is no particle from the first to the (k-1)-th
ray segment, and there is more than one particle in the k-th ray segment. In this case,
the brightness B becomes ck since opaque and emissive particles are used. Please note
that the brightness is not contributed to by the ray segments from the k-th to the last
segments since the (k-1)-th particle completely occludes these segments.

3.5 Ensemble average

In both O-PBVR and I-PBVR, a stochastic approach is employed to generate
particles that are projected onto an image plane. The generation is repeated to make
the average of the pixel values, which can be viewed as an ensemble average. An
ensemble is an imaginary collection of notionally identical experiments. In the
ensemble average, the total brightness is calculated by averaging the pixel values in
all of the repetitions. We confirmed the fluctuation of the total brightness follows a
large number and evaluated the minimum repetition, 65,536, that makes the total
variance become within half of the minimum discretized brightness in the worst
case [12]. This result suggests that little improvement can be expected in the
brightness value when the repetition number exceeds 65,536 in most cases. When
we interact the volume rendering image with some transformation such as transla-
tion, rotation, or scaling, we think much of the interaction by reducing the repeti-
tion number at the cost of the image quality. When we intend to improve the image
quality, we stay still without any interaction.

4. Particle-based fused rendering

In I-PBVR, we generate a particle in an interval of a tetrahedral cell by regarding
the opacity as a cumulative distribution function as shown in Figure 2. The opacity

63

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

can be represented as a function of a length from the entry point in the interval.
Thus, the depth, which is the length from the entry point, can be regarded as a
probability variable which follows a probability density function that is a derivative
of the cumulative distribution function (CDF).

When we consider the definition of the opacity, we find that it describes the
CDF of a probability variable, w, which shows a length from the entry point in the
fragment interval. The probability density function, that is, its derivative, describes
an exponential distribution, which matches the theorem that the number of parti-
cles follows the Poisson distribution since the exponential distribution describes the
distance between particles in a Poisson process.

The opacity in Eq. 7 can be used to express the CDF α (w) of the random variable
w as follows:

α wð Þ ¼ 1� exp �
ðtk�1

tk�1�wl
τ λð Þdλ

� �
(17)

Let l be the width of the section where the viewing ray is cut by the cell. This
equation represents the opacity calculated between the entry point and the position
where the particles are located in the entry. This interval can be expressed as wl
using the random variable w (see Figure 2). Furthermore, the theorem that the
probability density function is represented by an exponential function is consistent
with theorem that “when the number of particles in a certain section follows the
Poisson distribution, the particle spacing follows the exponential distribution.”

In the pre-integration method, the opacity in the section is described as follows.

α sf ; sb; l
� � ¼ 1� exp � l

sb � sf
T sbð Þ � T sf

� �� � !
(18)

Here, sf and sb are scalar data values interpolated and computed at the entry and
exit points of the section, respectively, and l represents the width of the section as
described above. T(s) represents an integral expression for calculating the number
of particles generated in the interval.

Figure 2.
Cumulative distribution function defined as the opacity between the entry point and the particle in the section
where the viewing ray is cut into a tetrahedral cell.

64

High Performance Parallel Computing

T sð Þ ¼
ðs
0
τ λð Þdλ (19)

In the proposed method, it is assumed that the scalar data value is linearly
interpolated in the interval, and it is expressed as s (w) at the point expressed using
the random variable w. This assumption arises from the linear distribution of scalar
data in line segments defined in tetrahedrons when interpolation calculations using
scalar data and volume coordinates defined at each vertex are performed in the
tetrahedrons.

s wð Þ ¼ 1� wð Þsf þ wsb (20)

Therefore, in the case of sf 6¼ sb, the opacity function α (w) expressed by Eq. 17 is
expressed as follows.

α wð Þ ¼ α sf ; s wð Þ;wl� �

¼ 1� exp � l
sb � sf

T s wð Þð Þ � T sf
� �� � !

(21)

In the case of sf ¼ sb, the opacity function α (w) expressed by Eq. 17 is expressed
as follows:

α wð Þ ¼ 1� exp �τ sf
� � �wl� �

(22)

Here, reference is made to the following derivation process.

α sf ; sb; l
� � ¼ lim

sf!sb
α sf ; sb; l
� �

¼ lim
sf!sb

1� exp � l
sb � sf

T sbð Þ � T sf
� �� � ! !

¼ 1� exp �T0 sf
� � � l� �

¼ 1� exp �τ sf
� � � l� �

(23)

4.1 Calculation of depth value by inverse function method

In this method, particles are placed at a position wl away from the start point of
the section. At this time, assuming that the random variable w follows the proba-
bility density function such that the cumulative distribution function is the opacity
α(w), this variable w can be generated using the inverse function method. In the
inverse function method, when the random number R exists in the range of the
interval [0, α sf ; sb; l

� �
], the variable w is calculated using Eqs. 24 or 25. Eqs. 24 and

25 are derived from Eqs. 21 and 22 when sf 6¼ sb and sf ¼ sb, respectively.

w ¼ α�1 Rð Þ
¼ 1

sb � sf
T�1 � sb � sf

l
log 1� Rð Þ þ T sf

� �� �
� sf

� � (24)

w ¼ α�1 Rð Þ
¼ � log 1� Rð Þ

τ sf
� � � l

(25)

65

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

can be represented as a function of a length from the entry point in the interval.
Thus, the depth, which is the length from the entry point, can be regarded as a
probability variable which follows a probability density function that is a derivative
of the cumulative distribution function (CDF).

When we consider the definition of the opacity, we find that it describes the
CDF of a probability variable, w, which shows a length from the entry point in the
fragment interval. The probability density function, that is, its derivative, describes
an exponential distribution, which matches the theorem that the number of parti-
cles follows the Poisson distribution since the exponential distribution describes the
distance between particles in a Poisson process.

The opacity in Eq. 7 can be used to express the CDF α (w) of the random variable
w as follows:

α wð Þ ¼ 1� exp �
ðtk�1

tk�1�wl
τ λð Þdλ

� �
(17)

Let l be the width of the section where the viewing ray is cut by the cell. This
equation represents the opacity calculated between the entry point and the position
where the particles are located in the entry. This interval can be expressed as wl
using the random variable w (see Figure 2). Furthermore, the theorem that the
probability density function is represented by an exponential function is consistent
with theorem that “when the number of particles in a certain section follows the
Poisson distribution, the particle spacing follows the exponential distribution.”

In the pre-integration method, the opacity in the section is described as follows.

α sf ; sb; l
� � ¼ 1� exp � l

sb � sf
T sbð Þ � T sf

� �� � !
(18)

Here, sf and sb are scalar data values interpolated and computed at the entry and
exit points of the section, respectively, and l represents the width of the section as
described above. T(s) represents an integral expression for calculating the number
of particles generated in the interval.

Figure 2.
Cumulative distribution function defined as the opacity between the entry point and the particle in the section
where the viewing ray is cut into a tetrahedral cell.

64

High Performance Parallel Computing

T sð Þ ¼
ðs
0
τ λð Þdλ (19)

In the proposed method, it is assumed that the scalar data value is linearly
interpolated in the interval, and it is expressed as s (w) at the point expressed using
the random variable w. This assumption arises from the linear distribution of scalar
data in line segments defined in tetrahedrons when interpolation calculations using
scalar data and volume coordinates defined at each vertex are performed in the
tetrahedrons.

s wð Þ ¼ 1� wð Þsf þ wsb (20)

Therefore, in the case of sf 6¼ sb, the opacity function α (w) expressed by Eq. 17 is
expressed as follows.

α wð Þ ¼ α sf ; s wð Þ;wl� �

¼ 1� exp � l
sb � sf

T s wð Þð Þ � T sf
� �� � !

(21)

In the case of sf ¼ sb, the opacity function α (w) expressed by Eq. 17 is expressed
as follows:

α wð Þ ¼ 1� exp �τ sf
� � �wl� �

(22)

Here, reference is made to the following derivation process.

α sf ; sb; l
� � ¼ lim

sf!sb
α sf ; sb; l
� �

¼ lim
sf!sb

1� exp � l
sb � sf

T sbð Þ � T sf
� �� � ! !

¼ 1� exp �T0 sf
� � � l� �

¼ 1� exp �τ sf
� � � l� �

(23)

4.1 Calculation of depth value by inverse function method

In this method, particles are placed at a position wl away from the start point of
the section. At this time, assuming that the random variable w follows the proba-
bility density function such that the cumulative distribution function is the opacity
α(w), this variable w can be generated using the inverse function method. In the
inverse function method, when the random number R exists in the range of the
interval [0, α sf ; sb; l

� �
], the variable w is calculated using Eqs. 24 or 25. Eqs. 24 and

25 are derived from Eqs. 21 and 22 when sf 6¼ sb and sf ¼ sb, respectively.

w ¼ α�1 Rð Þ
¼ 1

sb � sf
T�1 � sb � sf

l
log 1� Rð Þ þ T sf

� �� �
� sf

� � (24)

w ¼ α�1 Rð Þ
¼ � log 1� Rð Þ

τ sf
� � � l

(25)

65

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

Using Eqs. 24 and 25, we can calculate the depth value of the particle.

D wð Þ ¼ 1� wð Þ �Df þw �Db (26)

Here, Df and Db represent the depth values at the start and end points of the
section. Similarly, scalar data values at particle positions can be interpolated and
color values can be calculated using the transfer function.

This method was implemented using OpenGL and the GPU shader described in
GLSL. For the implementation of pre-integration, we used two-dimensional pre-
integration to perform error correction [13] with perspective transformation, so we
implemented the function T described in Eq. 19 as a two-dimensional texture in the
GPU [14]. To determine the random variable w described in Eq. 20, an inverse
function of T is required, but in order to realize efficient computation, the function
value was calculated in advance and this was also implemented in the GPU as a two-
dimensional texture.

5. Result and discussion

Experiments were conducted to evaluate the effectiveness of this method. The
experiment used CPU: Intel Core i7 3.3GHz, MEM: 16GB, and GPU: Intel Iris
Graphics 550.

To confirm the appropriateness of the depth value in this method, experiments
were conducted on two irregular volume data consisting of a single tetrahedral cell.
Figure 3 visualizes each irregular volume data using a red/blue monochrome color
map that increases the color value according to the data value.

As a comparative experiment, as in the conventional method, the depth value in
the tetrahedral cell is visualized by fixing the relative position in the section like the
entry point, the middle point, and the exit point. It turns out that the proposed
method realizes satisfactory visualization at the intersection of the two tetrahedral
lattices. According to the result of the conventional method, a change in unnatural
color value can be visually confirmed.

Figure 3.
Application example of proposed method for intersecting tetrahedral cell (red and blue color maps were used for
each tetrahedral cell).

66

High Performance Parallel Computing

Experiments were conducted using two irregular volume data of appropriate
size. These are obtained as a result of computational fluid dynamics calculation and
are called “Tank.” This calculation relates to a physical phenomenon when a pipe-
like valve installed in a gas tank filled with a high-pressure state is instantly opened.
Therefore, the important variables are pressure data and velocity absolute value
data (both are scalar data). Pressure data and velocity absolute data were calculated
using 9827 and 516 tetrahedral cells, respectively. Figure 5 shows the volume
rendering display of the fused mixed irregular volume data with different cells. In
this experiment, red color is assigned to pressure data, and blue color is assigned to
velocity absolute value data (Figure 4).

In Figure 5, we compare the proposed method (a), the previous methods (b),
(c), and (d) in which the relative position in the section is fixed as the entry point,
the middle point, and the exit point for the depth values in the tetrahedral cells and
a method in which a random position is located between the entry and exit points
(e). In the five figures, in addition to presenting the overall visualization result (grid
line presence/absence) and the local visualization result (grid line presence/

Figure 5.
Comparison of application example to “Tank” data by the proposed method and conventional methods.

Figure 4.
Example of application to “Tank” data. (a) Velocity data defined by 516 cells, (b) pressure data defined by
9827 cells, (c) (a)+(b) fused visualization.

67

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

Using Eqs. 24 and 25, we can calculate the depth value of the particle.

D wð Þ ¼ 1� wð Þ �Df þw �Db (26)

Here, Df and Db represent the depth values at the start and end points of the
section. Similarly, scalar data values at particle positions can be interpolated and
color values can be calculated using the transfer function.

This method was implemented using OpenGL and the GPU shader described in
GLSL. For the implementation of pre-integration, we used two-dimensional pre-
integration to perform error correction [13] with perspective transformation, so we
implemented the function T described in Eq. 19 as a two-dimensional texture in the
GPU [14]. To determine the random variable w described in Eq. 20, an inverse
function of T is required, but in order to realize efficient computation, the function
value was calculated in advance and this was also implemented in the GPU as a two-
dimensional texture.

5. Result and discussion

Experiments were conducted to evaluate the effectiveness of this method. The
experiment used CPU: Intel Core i7 3.3GHz, MEM: 16GB, and GPU: Intel Iris
Graphics 550.

To confirm the appropriateness of the depth value in this method, experiments
were conducted on two irregular volume data consisting of a single tetrahedral cell.
Figure 3 visualizes each irregular volume data using a red/blue monochrome color
map that increases the color value according to the data value.

As a comparative experiment, as in the conventional method, the depth value in
the tetrahedral cell is visualized by fixing the relative position in the section like the
entry point, the middle point, and the exit point. It turns out that the proposed
method realizes satisfactory visualization at the intersection of the two tetrahedral
lattices. According to the result of the conventional method, a change in unnatural
color value can be visually confirmed.

Figure 3.
Application example of proposed method for intersecting tetrahedral cell (red and blue color maps were used for
each tetrahedral cell).

66

High Performance Parallel Computing

Experiments were conducted using two irregular volume data of appropriate
size. These are obtained as a result of computational fluid dynamics calculation and
are called “Tank.” This calculation relates to a physical phenomenon when a pipe-
like valve installed in a gas tank filled with a high-pressure state is instantly opened.
Therefore, the important variables are pressure data and velocity absolute value
data (both are scalar data). Pressure data and velocity absolute data were calculated
using 9827 and 516 tetrahedral cells, respectively. Figure 5 shows the volume
rendering display of the fused mixed irregular volume data with different cells. In
this experiment, red color is assigned to pressure data, and blue color is assigned to
velocity absolute value data (Figure 4).

In Figure 5, we compare the proposed method (a), the previous methods (b),
(c), and (d) in which the relative position in the section is fixed as the entry point,
the middle point, and the exit point for the depth values in the tetrahedral cells and
a method in which a random position is located between the entry and exit points
(e). In the five figures, in addition to presenting the overall visualization result (grid
line presence/absence) and the local visualization result (grid line presence/

Figure 5.
Comparison of application example to “Tank” data by the proposed method and conventional methods.

Figure 4.
Example of application to “Tank” data. (a) Velocity data defined by 516 cells, (b) pressure data defined by
9827 cells, (c) (a)+(b) fused visualization.

67

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

absence), the time required for the visualization result is described. Obviously, with
the conventional method, it can be understood that artifacts due to improper setting
of the depth value are visible in the visualization results. In particular, the trend is
noticeable in the visualization results (b–d) where the depth value is set at the fixed
point of the section. Even with the random position, it is more noticeable than that
of the proposed method (e). Additionally, it can be seen that there is almost no
difference in the calculation time required for the visualization.

6. Conclusion

In this chapter, we proposed a volume rendering algorithm method for multiple
irregular volume data. In this method, the tetrahedral grid constituting the volume
data is projected on the image plane, and the opacity is used to control the presence/
absence of drawing at pixel expansion. To efficiently perform volume rendering of
multiple irregular volume data, we developed a method for stochastically arranging
particles in the section where the viewing ray is cut off by tetrahedrons. In this
arrangement method, the particle position is calculated by inverse function method,
considering the particle position as a random variable and the cumulative distribu-
tion function as opacity.

In the experiments for confirming the effectiveness of this method, we prepared
two types of irregular volume data with different cells and confirmed the effective-
ness of the proposed method in terms of the presence/absence of artifacts and
calculation time at the intersection of the cells.

Although this time we concerned the proposal of the visualization method itself,
we would like to use this method to elucidate the causal relationship between vari-
ables in important physical phenomena. For example, in order to clarify the influ-
ence of coherent vortices on heat transport in thermal fluid phenomena, it is
necessary to combine scalar data representing a second invariant representing a
vortex region and scalar data representing a heat flux absolute value related to heat
transport. By using this method for the visualization of two kinds of time series
irregular volume data, we would like to figure out a visual correlation between the
multiple variables.

Author details

Koji Koyamada1* and Naohisa Sakamoto2

1 Kyoto University, Kyoto, Japan

2 Kobe University, Kobe, Japan

*Address all correspondence to: koyamada.koji.3w@kyoto-u.ac.jp

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

68

High Performance Parallel Computing

References

[1] Sakamoto N, Nonaka J, Koyamada K,
Tanaka S. Particle-based volume
rendering. In: Proceedings of Asia-
Pacific Symposium on Visualization
(APVIS 2007); 2007. pp. 129-132

[2] Sakamoto N, Kawamura T,
Koyamada K. Improvement of particle-
based volume rendering for visualizing
irregular volume data sets. Computers
& Graphics. 2010;34(1):34-42

[3] Sakamoto N, Kawamura T, Kuwano
H, Koyamada K. Sorting-free pre-
intergrated projected tetrahedra. In:
Proceedings of the 2009 Workshop on
Ultrascale Visualization 2009; 2009.
pp. 11-18

[4] Blinn J. Light reflection function for
simulation of clouds and dusty surfaces.
Computers and Graphics. 1982;16(3):
21-29

[5] Sabella P. A rendering algorithm for
visualizing 3D scalar field. Computers
and Graphics. 1988;22(4):51-58

[6] Drebin RA, Carpenter L, Hanrahan
P. Volume rendering. Computers and
Graphics. 1988;22(4):65-74

[7] Levoy M. Display of surfaces from
volume data. IEEE Computer Graphics
and Applications. 1988;8(3):29-37

[8] Hansen C, Johnson C. The
Visualization Handbook. Elsevier; 2005

[9] Silva C, Comba J, Callahan S,
Bernardon F. A survey of GPU-based
volume rendering on unstructured
grids. Brazillian Journal of Theoretic and
Applied Computing. 2005;12(2):9-29

[10] Lu Cai, Yuan Mingkai, Wang Qi,
Kang Kun. Application of multi-
attributes fused volume rendering
techniques in 3D seismic interpretation.
2014:1609–1613

[11] Engel K, Kraus M, Ertl T. High-
quality pre-integrated volume rendering
using hardware-accelerated pixel
shading. In: Proc. of Eurographics/
SIGGRAPH Workshop on Graphics
Hardware; 2001. pp. 9-16

[12] Sakamoto N, Koyamada K.
Stoachastic approach for integrated
rendering of volumes and semi-
transparent surfaces. In: Proceedings of
the 2012 Workshop on Ultrascale
Visualization 2012; 2012

[13] Meredith J, Ma KL. Multiresolution
view-dependent splat-based volume
rendering of large irregular data. In:
Proc. IEEE 2001 Symp. on Parallel and
Large-Data Visualization and Graphics;
2001. pp. 93-155

[14] Westover L. Footprint evaluation
for volume rendering. Computers and
Graphics. 1990;24(4):367-376

69

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

absence), the time required for the visualization result is described. Obviously, with
the conventional method, it can be understood that artifacts due to improper setting
of the depth value are visible in the visualization results. In particular, the trend is
noticeable in the visualization results (b–d) where the depth value is set at the fixed
point of the section. Even with the random position, it is more noticeable than that
of the proposed method (e). Additionally, it can be seen that there is almost no
difference in the calculation time required for the visualization.

6. Conclusion

In this chapter, we proposed a volume rendering algorithm method for multiple
irregular volume data. In this method, the tetrahedral grid constituting the volume
data is projected on the image plane, and the opacity is used to control the presence/
absence of drawing at pixel expansion. To efficiently perform volume rendering of
multiple irregular volume data, we developed a method for stochastically arranging
particles in the section where the viewing ray is cut off by tetrahedrons. In this
arrangement method, the particle position is calculated by inverse function method,
considering the particle position as a random variable and the cumulative distribu-
tion function as opacity.

In the experiments for confirming the effectiveness of this method, we prepared
two types of irregular volume data with different cells and confirmed the effective-
ness of the proposed method in terms of the presence/absence of artifacts and
calculation time at the intersection of the cells.

Although this time we concerned the proposal of the visualization method itself,
we would like to use this method to elucidate the causal relationship between vari-
ables in important physical phenomena. For example, in order to clarify the influ-
ence of coherent vortices on heat transport in thermal fluid phenomena, it is
necessary to combine scalar data representing a second invariant representing a
vortex region and scalar data representing a heat flux absolute value related to heat
transport. By using this method for the visualization of two kinds of time series
irregular volume data, we would like to figure out a visual correlation between the
multiple variables.

Author details

Koji Koyamada1* and Naohisa Sakamoto2

1 Kyoto University, Kyoto, Japan

2 Kobe University, Kobe, Japan

*Address all correspondence to: koyamada.koji.3w@kyoto-u.ac.jp

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

68

High Performance Parallel Computing

References

[1] Sakamoto N, Nonaka J, Koyamada K,
Tanaka S. Particle-based volume
rendering. In: Proceedings of Asia-
Pacific Symposium on Visualization
(APVIS 2007); 2007. pp. 129-132

[2] Sakamoto N, Kawamura T,
Koyamada K. Improvement of particle-
based volume rendering for visualizing
irregular volume data sets. Computers
& Graphics. 2010;34(1):34-42

[3] Sakamoto N, Kawamura T, Kuwano
H, Koyamada K. Sorting-free pre-
intergrated projected tetrahedra. In:
Proceedings of the 2009 Workshop on
Ultrascale Visualization 2009; 2009.
pp. 11-18

[4] Blinn J. Light reflection function for
simulation of clouds and dusty surfaces.
Computers and Graphics. 1982;16(3):
21-29

[5] Sabella P. A rendering algorithm for
visualizing 3D scalar field. Computers
and Graphics. 1988;22(4):51-58

[6] Drebin RA, Carpenter L, Hanrahan
P. Volume rendering. Computers and
Graphics. 1988;22(4):65-74

[7] Levoy M. Display of surfaces from
volume data. IEEE Computer Graphics
and Applications. 1988;8(3):29-37

[8] Hansen C, Johnson C. The
Visualization Handbook. Elsevier; 2005

[9] Silva C, Comba J, Callahan S,
Bernardon F. A survey of GPU-based
volume rendering on unstructured
grids. Brazillian Journal of Theoretic and
Applied Computing. 2005;12(2):9-29

[10] Lu Cai, Yuan Mingkai, Wang Qi,
Kang Kun. Application of multi-
attributes fused volume rendering
techniques in 3D seismic interpretation.
2014:1609–1613

[11] Engel K, Kraus M, Ertl T. High-
quality pre-integrated volume rendering
using hardware-accelerated pixel
shading. In: Proc. of Eurographics/
SIGGRAPH Workshop on Graphics
Hardware; 2001. pp. 9-16

[12] Sakamoto N, Koyamada K.
Stoachastic approach for integrated
rendering of volumes and semi-
transparent surfaces. In: Proceedings of
the 2012 Workshop on Ultrascale
Visualization 2012; 2012

[13] Meredith J, Ma KL. Multiresolution
view-dependent splat-based volume
rendering of large irregular data. In:
Proc. IEEE 2001 Symp. on Parallel and
Large-Data Visualization and Graphics;
2001. pp. 93-155

[14] Westover L. Footprint evaluation
for volume rendering. Computers and
Graphics. 1990;24(4):367-376

69

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191

Chapter 6

Design and Implementation of
Particle Systems for Meshfree
Methods with High Performance
Giuseppe Bilotta, Vito Zago and Alexis Hérault

Abstract

Particle systems, commonly associated with computer graphics, animation, and
video games, are an essential component in the implementation of numerical
methods ranging from the meshfree methods for computational fluid dynamics and
related applications (e.g., smoothed particle hydrodynamics, SPH) to minimization
methods for arbitrary problems (e.g., particle swarm optimization, PSO). These
methods are frequently embarrassingly parallel in nature, making them a natural fit
for implementation on massively parallel computational hardware such as modern
graphics processing units (GPUs). However, naive implementations fail to fully
exploit the capabilities of this hardware. We present practical solutions to the
challenges faced in the efficient parallel implementation of these particle systems,
with a focus on performance, robustness, and flexibility. The techniques are illus-
trated through GPUSPH, the first implementation of SPH to run completely on
GPU, and currently supporting multi-GPU clusters, uniform precision independent
of domain size, and multiple SPH formulations.

Keywords: software design, particle systems, SPH, GPGPU, high-performance
computing, numerical stability, best practices

1. Introduction

Particle systems were first formally introduced in computer science by Reeves
[1], as the technique used by Lucasfilm Ltd. for the realization of some of the special
effects present in the film Star Trek II: The Wrath of Khan [2]. Since then, particle
systems have been used in computer graphics for the simulation of visually realistic
fire, moving water, clouds, dust, lava, and snow. A particle system consists of a
collection of distinct elements (particles) that are generated according to specific
rules, evolve and move in the simulation space, and die out at the end of their life
cycle. The position and characteristics of the particles in the system over simulated
time are then used to render larger bodies (flames, rivers, etc.) with appropriate
techniques [3].

While originally developed purely for visual effects, and associated with evolu-
tion laws focused on the final appearance rather than the physical correctness of the
behavior, particle systems also form the digital infrastructure for the implementa-
tion of a class of numerical methods (known as meshless, meshfree, or particle
methods) that have started emerging since the late 1970s as alternatives to the

71

Chapter 6

Design and Implementation of
Particle Systems for Meshfree
Methods with High Performance
Giuseppe Bilotta, Vito Zago and Alexis Hérault

Abstract

Particle systems, commonly associated with computer graphics, animation, and
video games, are an essential component in the implementation of numerical
methods ranging from the meshfree methods for computational fluid dynamics and
related applications (e.g., smoothed particle hydrodynamics, SPH) to minimization
methods for arbitrary problems (e.g., particle swarm optimization, PSO). These
methods are frequently embarrassingly parallel in nature, making them a natural fit
for implementation on massively parallel computational hardware such as modern
graphics processing units (GPUs). However, naive implementations fail to fully
exploit the capabilities of this hardware. We present practical solutions to the
challenges faced in the efficient parallel implementation of these particle systems,
with a focus on performance, robustness, and flexibility. The techniques are illus-
trated through GPUSPH, the first implementation of SPH to run completely on
GPU, and currently supporting multi-GPU clusters, uniform precision independent
of domain size, and multiple SPH formulations.

Keywords: software design, particle systems, SPH, GPGPU, high-performance
computing, numerical stability, best practices

1. Introduction

Particle systems were first formally introduced in computer science by Reeves
[1], as the technique used by Lucasfilm Ltd. for the realization of some of the special
effects present in the film Star Trek II: The Wrath of Khan [2]. Since then, particle
systems have been used in computer graphics for the simulation of visually realistic
fire, moving water, clouds, dust, lava, and snow. A particle system consists of a
collection of distinct elements (particles) that are generated according to specific
rules, evolve and move in the simulation space, and die out at the end of their life
cycle. The position and characteristics of the particles in the system over simulated
time are then used to render larger bodies (flames, rivers, etc.) with appropriate
techniques [3].

While originally developed purely for visual effects, and associated with evolu-
tion laws focused on the final appearance rather than the physical correctness of the
behavior, particle systems also form the digital infrastructure for the implementa-
tion of a class of numerical methods (known as meshless, meshfree, or particle
methods) that have started emerging since the late 1970s as alternatives to the

71

traditional grid-based numerical methods (finite differences, finite volumes, finite
elements). These methods—smoothed particle hydrodynamics (SPH) [4],
reproducing kernel particle method (RKPM) [5], finite pointset method (FPM) [6],
discrete element method (DEM) [7], etc.—provide rigorous methods to discretize
the physical laws governing the continuum and thus provide physics-based evolu-
tion law for the properties of the particles that act both as interpolation nodes in the
mathematical sense and as virtual volumes of infinitesimal size carrying the prop-
erties of the macroscopic mass they represent.

More recently, the same computer techniques have been used to solve more
abstract problems. For example, particle swarm optimization (PSO) [8] is a meth-
odology to find approximate minima for functions whose derivatives cannot be
computed (at all or in reasonable times), in spaces of arbitrary dimensions. Outside
of the particle systems in the proper sense, simulation methods such as molecular
dynamics (MD) [9] and many large-scale agent-based models present significant
similarities with particle systems [10, 11] and share much of the infrastructural
work with it.

Particle systems are computationally intensive. Realistic visual effects, accurate
physical simulations, fast minimization, and large-scale agent-based models all
require thousands if not millions (or more) of particles. On the upside, the behavior
of most particle systems can be described in an embarrassingly parallel way, where
each particle evolves either independently from the rest of the system or with at
most local knowledge of the state of the system. This property makes particle
systems a perfect fit for implementation on massively parallel computational hard-
ware following the stream processing programming model, and in particular mod-
ern graphics processing units (GPUs), that have grown in the last decade from fast,
programmable 3D rendering hardware to more general-purpose computing
accelerators [12].

While the parallel computational power of GPUs is a natural fit for the parallel
nature of particle systems, naive implementations will miss many opportunities to
fully exploit GPUs, even when achieving performance orders of magnitude higher
than an unoptimized, serial CPU implementation. Our objective is to discuss the
optimal implementation of particle systems on GPU, so that anyone setting forth to
implement a particle system can draw from our experience to avoid common
pitfalls and be aware of the implications of many design choices. Optimality will be
viewed in terms of performance (achieving the highest number of iterations per
second in the evolution of the system), robustness (numerical stability), and flexi-
bility (allowing the implementation of a wide range of variants for the particle
system, e.g., to allow the simulation of different phenomena).

We will show that while these objectives are sometimes in conflict—so that the
developer will have to choose to, e.g., sacrifice performance for better numerical
stability—there are also cases where they complement each other, e.g., with some
numerically more robust approaches also being more computationally efficient or
with certain design choices for the host code structure being also more favorable to
future extensions to multi-GPU support.

We will make extensive reference to our experience from the implementation of
GPUSPH [13–17], the first implementation of SPH to run completely on GPU using
CUDA and currently supporting multi-GPU and multi-node distribution of the
computation. However, all the themes that we discuss and solutions we present are
of interest to all particle systems and related methods, regardless of the specific
theoretical background underlying them. To show this, simpler examples to illus-
trate the benefits of individual topics discussed will also be presented through a
reduced implementation of PSO. Some of the most advanced techniques described
can be seen in action in GPUSPH itself, which is freely available under the GNU
General Public License, version 3 or higher [18].

72

High Performance Parallel Computing

While our focus will be on GPU implementation, many of the approaches we
discuss can bring significant benefits even on CPU implementations, allowing bet-
ter exploitation of the vector hardware and multiple cores of current hardware. The
intention is thus to provide material that is of practical use regardless of the specific
application and hardware.

2. Terminology and notation

Throughout the paper, we will rely on the terminology used by the cross-
platform OpenCL standard [19]. All the concepts we discuss will be equally valid in
different programming contexts, such as the proprietary CUDA developed by
NVIDIA specifically for their GPU and HPC solutions [20]. This choice stems from
the authors’ opinion that the OpenCL terminology is more neutral and less suscep-
tible to the kind of confusion that some vendors have leveraged as a marketing
tactic in promoting their solutions.

In our examples, we will also frequently refer to “small vector” data types. These
are types in the form typeNwhere type is a primitive type (such as char, int, float,
double) and N is one of 1, 2, 3, 4, 8, and 16. For example, a float4 would be a
structure that in C or C++ could be defined as struct float4 {float x, y, z, w;}.
Following OpenCL, the components of the small vector types will be named x, y, z, w
for types with up to 4 components, and s0, … s9, sa, … sf for types with up to 16
components. In some examples we also make use of the OpenCL “swizzle notation,”
such that, for example, given float2 v=(0.0f, 1.0f);, then v.xxyy is a float4 with
components (0.0f, 0.0f, 1.0f, 1.0f).

We will assume that each small vector type is “naturally aligned,” when N is a
power of two: a typeN will begin at a memory address which is a multiple of
N*sizeof(type); for N=3, we will assume that type3 begins at a memory address
which is a multiple of sizeof(type). This is in contrast to OpenCL, whose cl_type3
types are assumed to be aligned like the corresponding cl_type4 types, and special
vload3 instructions are needed to load packed 3-vectors. We will also show
momentarily that such 3-component types should in general be avoided as they lead
to lower performance, since most if not all modern hardware are designed around
power-of-two types (which is the reason why the OpenCL type is aligned to four
components).

Finally, we will assume that the standard operations (component-by-component
addition, subtraction, and multiplication, multiplication by a scalar, dot product) on
the small vector types have been defined, in the usual manner. (OpenCL C defines
these as part of the language, for CUDA appropriate overloads for the common
operators must be defined by the user.)

3. The GPU programming model

3.1 Stream processing

Modern GPUs are designed around the stream processing paradigm, a simplified
model for shared-memory parallel programming that sacrifices inter-unit commu-
nication in favor of higher efficiency and scalability.

At an abstract level, stream processing is defined by a sequence of instructions
(a computational kernel) to be executed on each element of an input data stream to
produce an output data stream, under the assumption that each input element can
be processed independently from the others (and thus in parallel). A computational
kernel is similar to a standard function in classic imperative programming

73

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

traditional grid-based numerical methods (finite differences, finite volumes, finite
elements). These methods—smoothed particle hydrodynamics (SPH) [4],
reproducing kernel particle method (RKPM) [5], finite pointset method (FPM) [6],
discrete element method (DEM) [7], etc.—provide rigorous methods to discretize
the physical laws governing the continuum and thus provide physics-based evolu-
tion law for the properties of the particles that act both as interpolation nodes in the
mathematical sense and as virtual volumes of infinitesimal size carrying the prop-
erties of the macroscopic mass they represent.

More recently, the same computer techniques have been used to solve more
abstract problems. For example, particle swarm optimization (PSO) [8] is a meth-
odology to find approximate minima for functions whose derivatives cannot be
computed (at all or in reasonable times), in spaces of arbitrary dimensions. Outside
of the particle systems in the proper sense, simulation methods such as molecular
dynamics (MD) [9] and many large-scale agent-based models present significant
similarities with particle systems [10, 11] and share much of the infrastructural
work with it.

Particle systems are computationally intensive. Realistic visual effects, accurate
physical simulations, fast minimization, and large-scale agent-based models all
require thousands if not millions (or more) of particles. On the upside, the behavior
of most particle systems can be described in an embarrassingly parallel way, where
each particle evolves either independently from the rest of the system or with at
most local knowledge of the state of the system. This property makes particle
systems a perfect fit for implementation on massively parallel computational hard-
ware following the stream processing programming model, and in particular mod-
ern graphics processing units (GPUs), that have grown in the last decade from fast,
programmable 3D rendering hardware to more general-purpose computing
accelerators [12].

While the parallel computational power of GPUs is a natural fit for the parallel
nature of particle systems, naive implementations will miss many opportunities to
fully exploit GPUs, even when achieving performance orders of magnitude higher
than an unoptimized, serial CPU implementation. Our objective is to discuss the
optimal implementation of particle systems on GPU, so that anyone setting forth to
implement a particle system can draw from our experience to avoid common
pitfalls and be aware of the implications of many design choices. Optimality will be
viewed in terms of performance (achieving the highest number of iterations per
second in the evolution of the system), robustness (numerical stability), and flexi-
bility (allowing the implementation of a wide range of variants for the particle
system, e.g., to allow the simulation of different phenomena).

We will show that while these objectives are sometimes in conflict—so that the
developer will have to choose to, e.g., sacrifice performance for better numerical
stability—there are also cases where they complement each other, e.g., with some
numerically more robust approaches also being more computationally efficient or
with certain design choices for the host code structure being also more favorable to
future extensions to multi-GPU support.

We will make extensive reference to our experience from the implementation of
GPUSPH [13–17], the first implementation of SPH to run completely on GPU using
CUDA and currently supporting multi-GPU and multi-node distribution of the
computation. However, all the themes that we discuss and solutions we present are
of interest to all particle systems and related methods, regardless of the specific
theoretical background underlying them. To show this, simpler examples to illus-
trate the benefits of individual topics discussed will also be presented through a
reduced implementation of PSO. Some of the most advanced techniques described
can be seen in action in GPUSPH itself, which is freely available under the GNU
General Public License, version 3 or higher [18].

72

High Performance Parallel Computing

While our focus will be on GPU implementation, many of the approaches we
discuss can bring significant benefits even on CPU implementations, allowing bet-
ter exploitation of the vector hardware and multiple cores of current hardware. The
intention is thus to provide material that is of practical use regardless of the specific
application and hardware.

2. Terminology and notation

Throughout the paper, we will rely on the terminology used by the cross-
platform OpenCL standard [19]. All the concepts we discuss will be equally valid in
different programming contexts, such as the proprietary CUDA developed by
NVIDIA specifically for their GPU and HPC solutions [20]. This choice stems from
the authors’ opinion that the OpenCL terminology is more neutral and less suscep-
tible to the kind of confusion that some vendors have leveraged as a marketing
tactic in promoting their solutions.

In our examples, we will also frequently refer to “small vector” data types. These
are types in the form typeNwhere type is a primitive type (such as char, int, float,
double) and N is one of 1, 2, 3, 4, 8, and 16. For example, a float4 would be a
structure that in C or C++ could be defined as struct float4 {float x, y, z, w;}.
Following OpenCL, the components of the small vector types will be named x, y, z, w
for types with up to 4 components, and s0, … s9, sa, … sf for types with up to 16
components. In some examples we also make use of the OpenCL “swizzle notation,”
such that, for example, given float2 v=(0.0f, 1.0f);, then v.xxyy is a float4 with
components (0.0f, 0.0f, 1.0f, 1.0f).

We will assume that each small vector type is “naturally aligned,” when N is a
power of two: a typeN will begin at a memory address which is a multiple of
N*sizeof(type); for N=3, we will assume that type3 begins at a memory address
which is a multiple of sizeof(type). This is in contrast to OpenCL, whose cl_type3
types are assumed to be aligned like the corresponding cl_type4 types, and special
vload3 instructions are needed to load packed 3-vectors. We will also show
momentarily that such 3-component types should in general be avoided as they lead
to lower performance, since most if not all modern hardware are designed around
power-of-two types (which is the reason why the OpenCL type is aligned to four
components).

Finally, we will assume that the standard operations (component-by-component
addition, subtraction, and multiplication, multiplication by a scalar, dot product) on
the small vector types have been defined, in the usual manner. (OpenCL C defines
these as part of the language, for CUDA appropriate overloads for the common
operators must be defined by the user.)

3. The GPU programming model

3.1 Stream processing

Modern GPUs are designed around the stream processing paradigm, a simplified
model for shared-memory parallel programming that sacrifices inter-unit commu-
nication in favor of higher efficiency and scalability.

At an abstract level, stream processing is defined by a sequence of instructions
(a computational kernel) to be executed on each element of an input data stream to
produce an output data stream, under the assumption that each input element can
be processed independently from the others (and thus in parallel). A computational
kernel is similar to a standard function in classic imperative programming

73

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

languages; at runtime, as many instances of the function will be executed as neces-
sary to cover the whole input data stream. Such instances (work-items) may be
dispatched in concurrent batches, running in parallel as far as the hardware allows,
and the programmer is generally given very little control, if any, on the dispatch
itself, other than being able to specify how many instances are needed in total. This
choice allows the same kernel to be executed on the same data stream, adapting
naturally to the characteristics of the underlying hardware, and is one of the main
characteristics of stream processing.

For example, if the hardware can run 1000 concurrent work-items, but the
input stream consists of 2000,000 total elements, the hardware may batch 1000
work-items for execution at once and then dispatch another 1000 when the first
batch completes execution. This continues until the entire input stream has been
processed, executing 2000 total batches. For the same workloads, more powerful
hardware able to run 100,000 concurrent work-items may be able to complete
sooner by issuing 20 total batches, in a manner completely transparent to the
programmer.

This programming model fits very well the simpler workload needed in many
steps of the rendering process for which GPUs are designed: in such a case, the
input and output streams may consist of the data and attributes for the vertices in
the geometries describing the scene, for example, or for the fragments produced by
the rasterization of such geometries. However, the more sophisticated requirements
of general-purpose programming have led to the extension of the stream processing
paradigm to provide programmers with finer control on the work-item dispatch as
well as the possibility for efficient data sharing between work-items under appro-
priate conditions.

A modern stream processing device (typically a GPU, but may also be a multicore
CPU with vector units, a dedicated accelerator like Intel’s Xeon Phi, or a special-
design FPGA) is composed of one or more compute units (each being a CPU core, a
GPU multiprocessor, etc.) equipped with one or more processing elements (a SIMD
lane on CPU, a single stream processor on GPU, etc.), which are the hardware
components that process the individual work-items during a kernel execution. The
programming model of these devices, as presented, e.g., by standards such as
OpenCL [19] and by proprietary solutions such as NVIDIA CUDA [20], exposes the
underlying hardware structure by allowing the programmer to specify the granu-
larity at which work-items should be dispatched: each workgroup is a collection of
work-items that are guaranteed to run on a single compute unit; work-items within
the same workgroup can share data efficiently through dedicated (often on-chip)
memory and can synchronize with each other, ensuring correct instruction order-
ing. Tuning workgroup size and the way work-items in the same workgroup access
data can have a significant impact on performance.

The GPU multiprocessors are further characterized by an additional level of
work-item grouping at the hardware level, as the work-items running on a single
multiprocessor are not independent from each other: instead, a single instruction
pointer is shared by a fixed-width group of work-items, known as the warp on
NVIDIA GPUs, or wavefront on AMD GPUs, corresponding in a very general sense
to the vector width of SIMD instructions on modern CPUs. We will use the
hardware-independent term subgroup (as introduced, e.g., in OpenCL 2.0) to
denote this hardware grouping. The subgroup structure of kernel execution influ-
ences performance in a number of ways. The most obvious way is that the size of a
workgroup should always be a multiple of the subgroup size: a partial subgroup
would be fully dispatched anyway, but masked, leading to lower hardware usage.
Additional aspects where the subgroup partitioning can influence performance are
branch divergence and coalesced memory access.

74

High Performance Parallel Computing

Branch divergence occurs when work-items belonging to the same subgroup
need to take different execution paths at a given conditional. Since the subgroup
proceeds in lockstep for all intents and purposes, in such a situation the hardware
must mask the work-items not satisfying either branch, execute one side of the
branch, invert the mask, and execute the other side of the branch: the total runtime
cost is then the sum of the runtimes of each branch. If the work-items taking
different execution paths belong to separate subgroups, this cost is not incurred,
because separate subgroups can execute concurrently on different code paths, lead-
ing to an overall runtime cost equal to that of the longer branch.

Coalescence in memory access is achieved when the controller of a GPU can
provide data for the entire subgroup with a single memory transaction. Ensuring
that this happens is one of the primary aspects of efficient GPU implementations
and will be the basis for many of the performance hints discussed later on.

3.2 Stream processing and particle systems

Stream processing is a natural fit for the implementation of particle systems,
since the vast majority of algorithms that rely on particle systems are embarrass-
ingly parallel in nature, with the behavior of each particle determined indepen-
dently, thus providing a natural map between particles and work-items for most
kernels. This allows naive implementations of particle systems to be developed very
quickly, often with massive performance gains over trivial serial implementations
running on single-core CPUs.

Such implementations will however generally fail at leveraging the full compu-
tational power of GPUs, except in the simplest of cases. Any moderately sophisti-
cated algorithm will frequently require a violation of the natural mapping of
particles to stream elements (and thus work-items), either in terms of data struc-
ture and access or in terms of implementation logic, to be able to achieve the
optimal performance on any given hardware.

3.3 Limitations in the use of GPUs

Programmable GPUs have brought forth a revolution in computing, making
(certain forms of) large-scale parallel computing accessible to the masses. Many
applications have seen significant benefit from a transition to the GPU as
supporting hardware, and in response vendors have improved GPU architectures,
making it easier to achieve better performance with less implementation effort.

When choosing the GPU as preferential target platform, however, developers
must take into consideration the fact that not all users may have high-end profes-
sional GPUs, and while the stream computing paradigm is largely sufficient in
compensating for the difference in computational power, there are at least two
significant aspects that must be explicitly handled.

Memory amount is one of these issues: consumer GPUs typically only have a
fraction of the total amount of RAM offered in professional or compute-dedicated
devices: while the latter may feature up to 16GB of RAM, low-end devices may have
1/4th or even 1/8th of that. Moreover, even the amount of memory available on
high-end devices may be insufficient to handle larger problems. Software should
therefore be designed to allow distribution of computation across multiple devices.

The second issue is that, being designed for computer graphics, GPUs typically
focus on single-precision (32-bit) floating-point operations, and double precision
(64-bit) may be either not supported at all or supported at a much lower execution
rate (as low as 1:32) than single precision, which may remove the computational
advantage of using GPUs in the first place (this can be true even on high-end GPUs,

75

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

languages; at runtime, as many instances of the function will be executed as neces-
sary to cover the whole input data stream. Such instances (work-items) may be
dispatched in concurrent batches, running in parallel as far as the hardware allows,
and the programmer is generally given very little control, if any, on the dispatch
itself, other than being able to specify how many instances are needed in total. This
choice allows the same kernel to be executed on the same data stream, adapting
naturally to the characteristics of the underlying hardware, and is one of the main
characteristics of stream processing.

For example, if the hardware can run 1000 concurrent work-items, but the
input stream consists of 2000,000 total elements, the hardware may batch 1000
work-items for execution at once and then dispatch another 1000 when the first
batch completes execution. This continues until the entire input stream has been
processed, executing 2000 total batches. For the same workloads, more powerful
hardware able to run 100,000 concurrent work-items may be able to complete
sooner by issuing 20 total batches, in a manner completely transparent to the
programmer.

This programming model fits very well the simpler workload needed in many
steps of the rendering process for which GPUs are designed: in such a case, the
input and output streams may consist of the data and attributes for the vertices in
the geometries describing the scene, for example, or for the fragments produced by
the rasterization of such geometries. However, the more sophisticated requirements
of general-purpose programming have led to the extension of the stream processing
paradigm to provide programmers with finer control on the work-item dispatch as
well as the possibility for efficient data sharing between work-items under appro-
priate conditions.

A modern stream processing device (typically a GPU, but may also be a multicore
CPU with vector units, a dedicated accelerator like Intel’s Xeon Phi, or a special-
design FPGA) is composed of one or more compute units (each being a CPU core, a
GPU multiprocessor, etc.) equipped with one or more processing elements (a SIMD
lane on CPU, a single stream processor on GPU, etc.), which are the hardware
components that process the individual work-items during a kernel execution. The
programming model of these devices, as presented, e.g., by standards such as
OpenCL [19] and by proprietary solutions such as NVIDIA CUDA [20], exposes the
underlying hardware structure by allowing the programmer to specify the granu-
larity at which work-items should be dispatched: each workgroup is a collection of
work-items that are guaranteed to run on a single compute unit; work-items within
the same workgroup can share data efficiently through dedicated (often on-chip)
memory and can synchronize with each other, ensuring correct instruction order-
ing. Tuning workgroup size and the way work-items in the same workgroup access
data can have a significant impact on performance.

The GPU multiprocessors are further characterized by an additional level of
work-item grouping at the hardware level, as the work-items running on a single
multiprocessor are not independent from each other: instead, a single instruction
pointer is shared by a fixed-width group of work-items, known as the warp on
NVIDIA GPUs, or wavefront on AMD GPUs, corresponding in a very general sense
to the vector width of SIMD instructions on modern CPUs. We will use the
hardware-independent term subgroup (as introduced, e.g., in OpenCL 2.0) to
denote this hardware grouping. The subgroup structure of kernel execution influ-
ences performance in a number of ways. The most obvious way is that the size of a
workgroup should always be a multiple of the subgroup size: a partial subgroup
would be fully dispatched anyway, but masked, leading to lower hardware usage.
Additional aspects where the subgroup partitioning can influence performance are
branch divergence and coalesced memory access.

74

High Performance Parallel Computing

Branch divergence occurs when work-items belonging to the same subgroup
need to take different execution paths at a given conditional. Since the subgroup
proceeds in lockstep for all intents and purposes, in such a situation the hardware
must mask the work-items not satisfying either branch, execute one side of the
branch, invert the mask, and execute the other side of the branch: the total runtime
cost is then the sum of the runtimes of each branch. If the work-items taking
different execution paths belong to separate subgroups, this cost is not incurred,
because separate subgroups can execute concurrently on different code paths, lead-
ing to an overall runtime cost equal to that of the longer branch.

Coalescence in memory access is achieved when the controller of a GPU can
provide data for the entire subgroup with a single memory transaction. Ensuring
that this happens is one of the primary aspects of efficient GPU implementations
and will be the basis for many of the performance hints discussed later on.

3.2 Stream processing and particle systems

Stream processing is a natural fit for the implementation of particle systems,
since the vast majority of algorithms that rely on particle systems are embarrass-
ingly parallel in nature, with the behavior of each particle determined indepen-
dently, thus providing a natural map between particles and work-items for most
kernels. This allows naive implementations of particle systems to be developed very
quickly, often with massive performance gains over trivial serial implementations
running on single-core CPUs.

Such implementations will however generally fail at leveraging the full compu-
tational power of GPUs, except in the simplest of cases. Any moderately sophisti-
cated algorithm will frequently require a violation of the natural mapping of
particles to stream elements (and thus work-items), either in terms of data struc-
ture and access or in terms of implementation logic, to be able to achieve the
optimal performance on any given hardware.

3.3 Limitations in the use of GPUs

Programmable GPUs have brought forth a revolution in computing, making
(certain forms of) large-scale parallel computing accessible to the masses. Many
applications have seen significant benefit from a transition to the GPU as
supporting hardware, and in response vendors have improved GPU architectures,
making it easier to achieve better performance with less implementation effort.

When choosing the GPU as preferential target platform, however, developers
must take into consideration the fact that not all users may have high-end profes-
sional GPUs, and while the stream computing paradigm is largely sufficient in
compensating for the difference in computational power, there are at least two
significant aspects that must be explicitly handled.

Memory amount is one of these issues: consumer GPUs typically only have a
fraction of the total amount of RAM offered in professional or compute-dedicated
devices: while the latter may feature up to 16GB of RAM, low-end devices may have
1/4th or even 1/8th of that. Moreover, even the amount of memory available on
high-end devices may be insufficient to handle larger problems. Software should
therefore be designed to allow distribution of computation across multiple devices.

The second issue is that, being designed for computer graphics, GPUs typically
focus on single-precision (32-bit) floating-point operations, and double precision
(64-bit) may be either not supported at all or supported at a much lower execution
rate (as low as 1:32) than single precision, which may remove the computational
advantage of using GPUs in the first place (this can be true even on high-end GPUs,

75

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

as was infamously the case for the Maxwell-class Tesla GPUs from NVIDIA).
Designing the software around the use of single precision can therefore allow
supporting higher performance across a wider class of devices, but it may require
particular care in the handling of essential state variables in particle systems. This
will be discussed in Section 5.

4. Performance

While GPUs provide impressive computational power compared to CPUs, this is
offset by a much higher sensitivity to data layout and access patterns: even a very
computationally intensive kernel may result memory bound if the appropriate care
is not given to these aspects.

The main GPU memory (global memory) is characterized by having high band-
width, but also very high latency: access to global memory may consume hundreds
of cycles, and work-items waiting for data will not proceed until the data is available
to all of them, at least at the subgroup granularity.

Under appropriate conditions (called memory coalescing or fast-path), the GPU
can provide data for a whole subgroup with a single memory transaction. Optimal
access patterns in this regard are achieved when the work-items in a subgroup
request data which is consecutive in memory, properly aligned (i.e., with the
lowest-index element starting at an address which is a multiple of the data size
times the subgroup size), and with specific size constraints—typically power-of-
two sizes, up to 128 bits per work-item: essentially, the equivalent of a float,
float2, or float4, but not float3.

When fast-path requirements are not satisfied, the impact on kernel run times
can be dramatic, especially on older architectures: designing data structures and
algorithms around these requirements is therefore one of the main topics we will
address. But even when coalesced access is achieved, each subgroup will have to
wait for at least one memory transaction before proceeding to the instruction that
makes use of the data. To hide this latency, GPU multiprocessors are designed to
keep multiple workgroups alive concurrently and will automatically switch to
another active workgroup (or subgroup within the same workgroup), while one is
stalled waiting for data; to make efficient use of this capability, it is necessary to
overcommit the device, i.e., issue kernels with more workgroups than would theo-
retically be able to run concurrently on the given hardware.

For example, on a GPU with 16 multiprocessors, each equipped with 128
streaming processors, it will not be sufficient to issue kernels with 2048 work-items
to fully exploit the hardware: to fully hide operation latency, the developer should
aim for global work sizes which are at least an order of magnitude more than the
bare minimum.

A GPU that is fully under load is said to be saturated. On most modern architec-
tures, tens of thousands of work-items are generally necessary to saturate mid- and
high-end devices. This condition is usually satisfied for any moderate or large
particle system, in which case the data layout and access patterns become the
bottleneck for memory bandwidth utilization.

4.1 Array of structures versus structure of array

The first step in improving GPU bandwidth usage is to avoid high-level struc-
tured data layouts and store information about the particle system in a “transposed”
format.

76

High Performance Parallel Computing

Let us consider, for example, a simple particle system in three dimensions,
where each particle is described by its position (3 floats) and velocity (3 floats). In a
CPU implementation, data would be stored in a format based on a Particle struc-
ture, and the particle system would be an array of Particles. Integrating the
particles’ position over a time-step dt would be achieved in a simple loop like the
one illustrated in Listing 1.

This approach is called array of structures (AoS), and assuming a stream
processing perspective, preserving the same layout would lead to a compute kernel
in the form presented on the left in Listing 2. However, since each particle is more
than 128 bit wide, the GPU would not be able to satisfy each subgroup access to the
particle_system (marked by the comments) in a single transaction, resulting in a
potential slowdown of an order of magnitude or more. A better solution on GPU
would be to split the particle structure in each primary component and thus have, in
this case, an array of positions and an array of velocities, as shown on the right in
Listing 2.

Part of the advantage of this approach (structure of arrays, SoA) is the natural
higher access granularity, which limits read and write access to what is strictly
necessary. With the AoS approach, it is also possible to limit writes to the specific
parts, e.g., particle_system[i].pos+= particle_system[i].vel*dt, but we will see
that this only partially recovers the performance gap against SoA. Moreover, the
access granularity of SoA also reflects in the function signatures, improving devel-
oper discipline. The downside is the growing number of buffers, and strategies to
manage this will be discussed in Section 6.2.1.

Listing 2.
Particle system with stream processing: array of structure (left) versus structure of array (right).

kernel void
integrate_pos(Particle *particle_system,

size_t N, float dt)
{

size_t i=get_global_id(0);
if (i>= N) return;
/* read the old particle state */
Particle p=particle_system[i];
p.pos+= p.vel*dt;
/* write the new particle state */
particle_system[i]=p;

}

kernel void
integrate_pos(float3 *posArray,

const float3 *velArray,
size_t N, float dt)

{
size_t i=get_global_id(0);
if (i>= N) return;
float3 pos=posArray[i];
const float3 vel=velArray[i];
pos+= vel*dt;
posArray[i]=pos;

}

Listing 1.
Simple host code to integrate the position of a particle system.

struct Particle {
float3 pos;
float3 vel;

};

void
integrate_pos(Particle *particle_system,

size_t N, float dt)
{

for (size_t i=0; i<num_particles; ++i) {
Particle& p=particle_system[i];
p.pos+= p.vel*dt;

}
}

77

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

as was infamously the case for the Maxwell-class Tesla GPUs from NVIDIA).
Designing the software around the use of single precision can therefore allow
supporting higher performance across a wider class of devices, but it may require
particular care in the handling of essential state variables in particle systems. This
will be discussed in Section 5.

4. Performance

While GPUs provide impressive computational power compared to CPUs, this is
offset by a much higher sensitivity to data layout and access patterns: even a very
computationally intensive kernel may result memory bound if the appropriate care
is not given to these aspects.

The main GPU memory (global memory) is characterized by having high band-
width, but also very high latency: access to global memory may consume hundreds
of cycles, and work-items waiting for data will not proceed until the data is available
to all of them, at least at the subgroup granularity.

Under appropriate conditions (called memory coalescing or fast-path), the GPU
can provide data for a whole subgroup with a single memory transaction. Optimal
access patterns in this regard are achieved when the work-items in a subgroup
request data which is consecutive in memory, properly aligned (i.e., with the
lowest-index element starting at an address which is a multiple of the data size
times the subgroup size), and with specific size constraints—typically power-of-
two sizes, up to 128 bits per work-item: essentially, the equivalent of a float,
float2, or float4, but not float3.

When fast-path requirements are not satisfied, the impact on kernel run times
can be dramatic, especially on older architectures: designing data structures and
algorithms around these requirements is therefore one of the main topics we will
address. But even when coalesced access is achieved, each subgroup will have to
wait for at least one memory transaction before proceeding to the instruction that
makes use of the data. To hide this latency, GPU multiprocessors are designed to
keep multiple workgroups alive concurrently and will automatically switch to
another active workgroup (or subgroup within the same workgroup), while one is
stalled waiting for data; to make efficient use of this capability, it is necessary to
overcommit the device, i.e., issue kernels with more workgroups than would theo-
retically be able to run concurrently on the given hardware.

For example, on a GPU with 16 multiprocessors, each equipped with 128
streaming processors, it will not be sufficient to issue kernels with 2048 work-items
to fully exploit the hardware: to fully hide operation latency, the developer should
aim for global work sizes which are at least an order of magnitude more than the
bare minimum.

A GPU that is fully under load is said to be saturated. On most modern architec-
tures, tens of thousands of work-items are generally necessary to saturate mid- and
high-end devices. This condition is usually satisfied for any moderate or large
particle system, in which case the data layout and access patterns become the
bottleneck for memory bandwidth utilization.

4.1 Array of structures versus structure of array

The first step in improving GPU bandwidth usage is to avoid high-level struc-
tured data layouts and store information about the particle system in a “transposed”
format.

76

High Performance Parallel Computing

Let us consider, for example, a simple particle system in three dimensions,
where each particle is described by its position (3 floats) and velocity (3 floats). In a
CPU implementation, data would be stored in a format based on a Particle struc-
ture, and the particle system would be an array of Particles. Integrating the
particles’ position over a time-step dt would be achieved in a simple loop like the
one illustrated in Listing 1.

This approach is called array of structures (AoS), and assuming a stream
processing perspective, preserving the same layout would lead to a compute kernel
in the form presented on the left in Listing 2. However, since each particle is more
than 128 bit wide, the GPU would not be able to satisfy each subgroup access to the
particle_system (marked by the comments) in a single transaction, resulting in a
potential slowdown of an order of magnitude or more. A better solution on GPU
would be to split the particle structure in each primary component and thus have, in
this case, an array of positions and an array of velocities, as shown on the right in
Listing 2.

Part of the advantage of this approach (structure of arrays, SoA) is the natural
higher access granularity, which limits read and write access to what is strictly
necessary. With the AoS approach, it is also possible to limit writes to the specific
parts, e.g., particle_system[i].pos+= particle_system[i].vel*dt, but we will see
that this only partially recovers the performance gap against SoA. Moreover, the
access granularity of SoA also reflects in the function signatures, improving devel-
oper discipline. The downside is the growing number of buffers, and strategies to
manage this will be discussed in Section 6.2.1.

Listing 2.
Particle system with stream processing: array of structure (left) versus structure of array (right).

kernel void
integrate_pos(Particle *particle_system,

size_t N, float dt)
{

size_t i=get_global_id(0);
if (i>= N) return;
/* read the old particle state */
Particle p=particle_system[i];
p.pos+= p.vel*dt;
/* write the new particle state */
particle_system[i]=p;

}

kernel void
integrate_pos(float3 *posArray,

const float3 *velArray,
size_t N, float dt)

{
size_t i=get_global_id(0);
if (i>= N) return;
float3 pos=posArray[i];
const float3 vel=velArray[i];
pos+= vel*dt;
posArray[i]=pos;

}

Listing 1.
Simple host code to integrate the position of a particle system.

struct Particle {
float3 pos;
float3 vel;

};

void
integrate_pos(Particle *particle_system,

size_t N, float dt)
{

for (size_t i=0; i<num_particles; ++i) {
Particle& p=particle_system[i];
p.pos+= p.vel*dt;

}
}

77

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Further optimizations, particularly important on older architectures, can be
achieved with the sacrifice of some memory, to provide the position and velocity
with a fourth (unused) component, as illustrated in Listing 3 (left), resulting in
better bandwidth usage and thus faster execution; moreover, additional frequently
used data may be stored in the fourth component, if needed (e.g., in GPUSPH we
store the mass in pos.w and the density in vel.w).

The benefits of the discussed strategies are exemplified in Table 1 for a simple
three-dimensional implementation of PSO. The specific values will obviously gen-
erally depend on the specific compute kernel as well as on the specific hardware.

Some additional (usually minor) benefits can be achieved by explicitly telling
the compiler that the position and velocity array never intersect; this is achieved
using the restrict specification for the pointer (Listing 3, right) which, for more
complex kernels, may allow the compiler to produce faster code by assuming no
dependencies between writes on one array and reads on the other. On some hard-
ware, const * restrict arrays are also made accessible through a dedicated cache,
further improving performance.

4.2 Wide arrays

The SoA approach can provide a significant boost in performance on GPU, as
long as the individual parts of the structure (position, velocity, etc.) fit within the
size requirements for coalesced memory access. When even individual structure
members are wider than the optimal 128-bit width, however, alternative
approaches are necessary. An example of this occurrence is the storage of a list of

Listing 3.
Using efficient data types on GPU (left) and leveraging the power of restricted pointers (right).

kernel void
integrate_pos(float4 *posArray,

const float4 *velArray,
size_t N, float dt)

{
size_t i=get_global_id(0);
if (i>= N) return;
float4 pos=posArray[i];
const float4 vel=velArray[i];
pos.xyz+= vel.xyz*dt; /* OpenCL swizzle */
posArray[i]=pos;

}

kernel void
integrate_pos(float4 * restrict posArray,

const float4 * restrict velArray,
size_t N, float dt)

{
size_t i=get_global_id(0);
if (i>= N) return;
float4 pos=posArray[i];
const float4 vel=velArray[i];
pos.xyz+= vel.xyz*dt; /* OpenCL swizzle */
posArray[i]=pos;

}

AoS Selective AoS SoA Padded SoA

Runtime (ms) 98 73 25 13

Speedup (prev) — 1.3 2.9 1.9

Speedup (total) — 1.3 3.9 7.5

2^24 particles running on an NVIDIA GeForce GT 750M.

Table 1.
Runtime comparison for a simple three-dimensional particle swarm optimization implementation, using the
discussed paradigms: array of structures, array of structures with selective writing, structure of arrays, structure
of arrays with padded members (i.e., using four instead of three components).

78

High Performance Parallel Computing

neighbors; frequently, the number of neighbors for a particle will range in the tens
or hundreds, sometimes even more, requiring storage of as many integers per
particle. Another example is given by particle systems with high dimensionality
(higher than 4), which could arise, for example, for a particle swarm optimization
approach to the minimization of the cost function of a deep neural network. The
position (and velocities) of particles in such a system might require hundreds,
thousands, or even more, components.

The optimal storage solution for the array holding the data in such cases is
transposed compared to the natural order: whereas for most CPU code it is natural
to first store the data belonging to the first particle, then the data belonging to the
second particle, etc., the optimal GPU storage for these wide arrays is to first store
the first component for each particle, followed by the second component for each
particle, etc. Using the standard C array notation, the i-th component of the p-th
particle in the classic format would be found at location data[p*num_components+i],
whereas the optimal GPU location would use the addressing data
[i*num_particles+p]. Similarly, neighbors would be stored interleaved: the first
neighbor of each particle, followed by the second neighbor for each particle, etc.
This ensures that when particles iterate over their neighbors, they fetch the neigh-
bor index in coalescence. The concept is illustrated in Figure 1 (top and middle
graphs).

The data transposition can rely on different chunk sizes; the single components
approach discussed so far has the benefit of being simpler and the natural choice
when each component needs to be treated independently (e.g., neighbors list tra-
versal); if possible, however, wider chunks (e.g., using arrays of float2 or float4
elements instead of float) should be used (Figure 1, bottom), to achieve better
utilization of the memory bandwidth.

In general, the balance between transposition and chunk width should be cali-
brated based on the hardware capability: current GPUs achieve optimal perfor-
mance with float4s, while on a CPU or a Xeon Phi, the wide vector width offered
by AVX and AVX-512 could be better exploited using float8 or float16 chunks, as
illustrated in Table 2.

4.3 Particle sorting and neighbor search

In many particle systems, the behavior of the individual particles depends on the
state of the particles in a neighborhood of the particle itself. The neighborhood may

Figure 1.
Possible memory layouts for wide arrays. Top, standard (particle-major) layout; middle, transposed
(component-major) layout; bottom, transpose-chunked layout. Memory locations are colored by data
component access: locations with the same color are accessed concurrently in parallel by all work-items. In the
chunked case, more than one location may be accessed concurrently, depending on the chunk size and hardware
capability.

79

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Further optimizations, particularly important on older architectures, can be
achieved with the sacrifice of some memory, to provide the position and velocity
with a fourth (unused) component, as illustrated in Listing 3 (left), resulting in
better bandwidth usage and thus faster execution; moreover, additional frequently
used data may be stored in the fourth component, if needed (e.g., in GPUSPH we
store the mass in pos.w and the density in vel.w).

The benefits of the discussed strategies are exemplified in Table 1 for a simple
three-dimensional implementation of PSO. The specific values will obviously gen-
erally depend on the specific compute kernel as well as on the specific hardware.

Some additional (usually minor) benefits can be achieved by explicitly telling
the compiler that the position and velocity array never intersect; this is achieved
using the restrict specification for the pointer (Listing 3, right) which, for more
complex kernels, may allow the compiler to produce faster code by assuming no
dependencies between writes on one array and reads on the other. On some hard-
ware, const * restrict arrays are also made accessible through a dedicated cache,
further improving performance.

4.2 Wide arrays

The SoA approach can provide a significant boost in performance on GPU, as
long as the individual parts of the structure (position, velocity, etc.) fit within the
size requirements for coalesced memory access. When even individual structure
members are wider than the optimal 128-bit width, however, alternative
approaches are necessary. An example of this occurrence is the storage of a list of

Listing 3.
Using efficient data types on GPU (left) and leveraging the power of restricted pointers (right).

kernel void
integrate_pos(float4 *posArray,

const float4 *velArray,
size_t N, float dt)

{
size_t i=get_global_id(0);
if (i>= N) return;
float4 pos=posArray[i];
const float4 vel=velArray[i];
pos.xyz+= vel.xyz*dt; /* OpenCL swizzle */
posArray[i]=pos;

}

kernel void
integrate_pos(float4 * restrict posArray,

const float4 * restrict velArray,
size_t N, float dt)

{
size_t i=get_global_id(0);
if (i>= N) return;
float4 pos=posArray[i];
const float4 vel=velArray[i];
pos.xyz+= vel.xyz*dt; /* OpenCL swizzle */
posArray[i]=pos;

}

AoS Selective AoS SoA Padded SoA

Runtime (ms) 98 73 25 13

Speedup (prev) — 1.3 2.9 1.9

Speedup (total) — 1.3 3.9 7.5

2^24 particles running on an NVIDIA GeForce GT 750M.

Table 1.
Runtime comparison for a simple three-dimensional particle swarm optimization implementation, using the
discussed paradigms: array of structures, array of structures with selective writing, structure of arrays, structure
of arrays with padded members (i.e., using four instead of three components).

78

High Performance Parallel Computing

neighbors; frequently, the number of neighbors for a particle will range in the tens
or hundreds, sometimes even more, requiring storage of as many integers per
particle. Another example is given by particle systems with high dimensionality
(higher than 4), which could arise, for example, for a particle swarm optimization
approach to the minimization of the cost function of a deep neural network. The
position (and velocities) of particles in such a system might require hundreds,
thousands, or even more, components.

The optimal storage solution for the array holding the data in such cases is
transposed compared to the natural order: whereas for most CPU code it is natural
to first store the data belonging to the first particle, then the data belonging to the
second particle, etc., the optimal GPU storage for these wide arrays is to first store
the first component for each particle, followed by the second component for each
particle, etc. Using the standard C array notation, the i-th component of the p-th
particle in the classic format would be found at location data[p*num_components+i],
whereas the optimal GPU location would use the addressing data
[i*num_particles+p]. Similarly, neighbors would be stored interleaved: the first
neighbor of each particle, followed by the second neighbor for each particle, etc.
This ensures that when particles iterate over their neighbors, they fetch the neigh-
bor index in coalescence. The concept is illustrated in Figure 1 (top and middle
graphs).

The data transposition can rely on different chunk sizes; the single components
approach discussed so far has the benefit of being simpler and the natural choice
when each component needs to be treated independently (e.g., neighbors list tra-
versal); if possible, however, wider chunks (e.g., using arrays of float2 or float4
elements instead of float) should be used (Figure 1, bottom), to achieve better
utilization of the memory bandwidth.

In general, the balance between transposition and chunk width should be cali-
brated based on the hardware capability: current GPUs achieve optimal perfor-
mance with float4s, while on a CPU or a Xeon Phi, the wide vector width offered
by AVX and AVX-512 could be better exploited using float8 or float16 chunks, as
illustrated in Table 2.

4.3 Particle sorting and neighbor search

In many particle systems, the behavior of the individual particles depends on the
state of the particles in a neighborhood of the particle itself. The neighborhood may

Figure 1.
Possible memory layouts for wide arrays. Top, standard (particle-major) layout; middle, transposed
(component-major) layout; bottom, transpose-chunked layout. Memory locations are colored by data
component access: locations with the same color are accessed concurrently in parallel by all work-items. In the
chunked case, more than one location may be accessed concurrently, depending on the chunk size and hardware
capability.

79

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

be defined in terms of some fixed influence radius or may be determined dynami-
cally, either based on a changing influence radius or based on a pure neighbors
count (e.g., “the 10 closest neighbors”). Performance of particle systems on GPU
can be improved by reordering particle data in memory so that the data for particles
that are close to each other in the domain metric (e.g., distance) are also close in
device memory, providing more opportunities for coalesced memory access and
(when available) better cache utilization [21].

Sorting is generally achieved using key/value pairs, with the particle hash
key computed from the particle position in space: the key array is then sorted,
and all data arrays are reordered based on the new key array positions. Common
ways to compute the particle sort key are based on either n-trees [22] or regular
grids [23]. The main advantage of using an n-tree (and thus in particular
quadtrees in 2D and octrees in 3D) is the adaptive nature of the structure, which
is denser where particles are concentrated and sparser in the domain regions
where particles are more spread out. By contrast, regular grids result in cells
which are uniformly spaced and thus in unbalanced particle distributions among
the cells.

The adaptive nature of n-trees can result in performance gains in a number of
use cases, such as nearest-neighbor searches, collision detection, clump finding, and
rendering. At the same time, traversing the tree structure itself efficiently on a
stream processing architecture is nontrivial and often results in sub-optimal mem-
ory bandwidth utilization [24]. Regular grids, on the other hand, have a much
simpler and computationally less expensive implementation, they lead to efficient
neighbor search with fixed radius (as we will discuss momentarily), and the
resulting data structures can also be used to support domain decomposition in the
multi-GPU case, as we will discuss in Section 4.5.3, and also to improve the numer-
ical robustness of the particle system, as we will discuss in Section 5.4.

4.3.1 Regular grids for neighbor search

Given a neighbor search radius r, we can subdivide the domain with a regular
grid where the stepping in each direction is no less than r. This guarantees that the
neighbors for any particle in any given cell can only be found at most in the adjacent
cells in each of the cardinal and diagonal directions (Moore neighborhood of radius 1),
as depicted in Figure 2.

We can then sort particles (i.e., their data) by, e.g., the linear index or the
Morton code [25] of the cell they belong to (computed from the particle global
position), so that data for all particles belonging to one cell ends up in a consecutive
memory region. Furthermore, we can store in a separate array the offset (common

Hardware Naïve Transposed Chunk 2 Chunk 4 Chunk 8 Chunk 16

NVIDIA 476 41 39 38 48 71

Intel GPU 237 75 63 58 59 91

Intel CPU 120 568 294 422 53 41

The NVIDIA GPU is a GeForce GT 750M; the Intel GPU is an Intel HD Graphics Haswell GT2 Mobile, using the
Beignet OpenCL implementation from Intel; the Intel CPU is an Intel Core i7-4712HQ , using the Intel OpenCL SDK
6.4.0.25. Bold italic values show the best performance. The CPU exhibits worse performance for the transposed layout
than the naive due to the auto-vectorization introduced by the OpenCL implementation.

Table 2.
Median runtimes (in ms) of the position update kernel for a 128-dimensional particle swarm optimization
using the described memory layouts, on different hardware.

80

High Performance Parallel Computing

to all data arrays) to the beginning of the data for the particles in each cell
(Figure 3).

A single particle can then search for neighbors by only looking at the
corresponding subsets of the particle system, starting from the cell start index for
each adjacent cell. Since all particles belonging in the same cell will need to traverse
the same subset of the particle list, further improvements can be obtained by
loading the data about the potential neighbors into a shared-memory array.

4.3.2 Just-in-time neighbor search versus neighbor list storage

The results of the neighbor search may be used immediately (e.g., by computing
the particle-particle interaction as each neighbor is found) or deferred: in the latter
case, the neighbor search itself constitutes its own step in the system evolution,
and the results of the search are stored in a list which is then used in subsequent
kernels when particle-particle interactions must be computed.

The “just-in-time” approach (which can be equivalently seen as searching for
neighbors whenever needed) has the advantage of lower memory requirements
(since the list of neighbors needs not be stored), but the disadvantage that the cost
of the search itself must be paid whenever interactions must be computed. There-
fore, it is the preferred approach when the results of each search are only needed
once. Conversely, when the results of the neighbor search are to be used multiple
times, it is better, performance-wise, to store the results, and then reuse them in the

Figure 2.
Support grid for neighbor search: if the cell side is no less than the influence radius, the neighbors for any particle
in any given cell (dark blue square in the picture) can be found in at most the Moore neighborhood of the cell
itself (light blue squares in the picture).

Figure 3.
Memory layout for the support grid. Data arrays are sorted so that the data belonging to particles in any given
cell is consecutive in memory, and a separate array holds the offset to the beginning of the data of the particles in
each cell. In the picture, each primary color denotes a cell, and the color gradient refers to different particle data
within each cell. The first cell has two particles, the second has four particles, and the third has three.

81

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

be defined in terms of some fixed influence radius or may be determined dynami-
cally, either based on a changing influence radius or based on a pure neighbors
count (e.g., “the 10 closest neighbors”). Performance of particle systems on GPU
can be improved by reordering particle data in memory so that the data for particles
that are close to each other in the domain metric (e.g., distance) are also close in
device memory, providing more opportunities for coalesced memory access and
(when available) better cache utilization [21].

Sorting is generally achieved using key/value pairs, with the particle hash
key computed from the particle position in space: the key array is then sorted,
and all data arrays are reordered based on the new key array positions. Common
ways to compute the particle sort key are based on either n-trees [22] or regular
grids [23]. The main advantage of using an n-tree (and thus in particular
quadtrees in 2D and octrees in 3D) is the adaptive nature of the structure, which
is denser where particles are concentrated and sparser in the domain regions
where particles are more spread out. By contrast, regular grids result in cells
which are uniformly spaced and thus in unbalanced particle distributions among
the cells.

The adaptive nature of n-trees can result in performance gains in a number of
use cases, such as nearest-neighbor searches, collision detection, clump finding, and
rendering. At the same time, traversing the tree structure itself efficiently on a
stream processing architecture is nontrivial and often results in sub-optimal mem-
ory bandwidth utilization [24]. Regular grids, on the other hand, have a much
simpler and computationally less expensive implementation, they lead to efficient
neighbor search with fixed radius (as we will discuss momentarily), and the
resulting data structures can also be used to support domain decomposition in the
multi-GPU case, as we will discuss in Section 4.5.3, and also to improve the numer-
ical robustness of the particle system, as we will discuss in Section 5.4.

4.3.1 Regular grids for neighbor search

Given a neighbor search radius r, we can subdivide the domain with a regular
grid where the stepping in each direction is no less than r. This guarantees that the
neighbors for any particle in any given cell can only be found at most in the adjacent
cells in each of the cardinal and diagonal directions (Moore neighborhood of radius 1),
as depicted in Figure 2.

We can then sort particles (i.e., their data) by, e.g., the linear index or the
Morton code [25] of the cell they belong to (computed from the particle global
position), so that data for all particles belonging to one cell ends up in a consecutive
memory region. Furthermore, we can store in a separate array the offset (common

Hardware Naïve Transposed Chunk 2 Chunk 4 Chunk 8 Chunk 16

NVIDIA 476 41 39 38 48 71

Intel GPU 237 75 63 58 59 91

Intel CPU 120 568 294 422 53 41

The NVIDIA GPU is a GeForce GT 750M; the Intel GPU is an Intel HD Graphics Haswell GT2 Mobile, using the
Beignet OpenCL implementation from Intel; the Intel CPU is an Intel Core i7-4712HQ , using the Intel OpenCL SDK
6.4.0.25. Bold italic values show the best performance. The CPU exhibits worse performance for the transposed layout
than the naive due to the auto-vectorization introduced by the OpenCL implementation.

Table 2.
Median runtimes (in ms) of the position update kernel for a 128-dimensional particle swarm optimization
using the described memory layouts, on different hardware.

80

High Performance Parallel Computing

to all data arrays) to the beginning of the data for the particles in each cell
(Figure 3).

A single particle can then search for neighbors by only looking at the
corresponding subsets of the particle system, starting from the cell start index for
each adjacent cell. Since all particles belonging in the same cell will need to traverse
the same subset of the particle list, further improvements can be obtained by
loading the data about the potential neighbors into a shared-memory array.

4.3.2 Just-in-time neighbor search versus neighbor list storage

The results of the neighbor search may be used immediately (e.g., by computing
the particle-particle interaction as each neighbor is found) or deferred: in the latter
case, the neighbor search itself constitutes its own step in the system evolution,
and the results of the search are stored in a list which is then used in subsequent
kernels when particle-particle interactions must be computed.

The “just-in-time” approach (which can be equivalently seen as searching for
neighbors whenever needed) has the advantage of lower memory requirements
(since the list of neighbors needs not be stored), but the disadvantage that the cost
of the search itself must be paid whenever interactions must be computed. There-
fore, it is the preferred approach when the results of each search are only needed
once. Conversely, when the results of the neighbor search are to be used multiple
times, it is better, performance-wise, to store the results, and then reuse them in the

Figure 2.
Support grid for neighbor search: if the cell side is no less than the influence radius, the neighbors for any particle
in any given cell (dark blue square in the picture) can be found in at most the Moore neighborhood of the cell
itself (light blue squares in the picture).

Figure 3.
Memory layout for the support grid. Data arrays are sorted so that the data belonging to particles in any given
cell is consecutive in memory, and a separate array holds the offset to the beginning of the data of the particles in
each cell. In the picture, each primary color denotes a cell, and the color gradient refers to different particle data
within each cell. The first cell has two particles, the second has four particles, and the third has three.

81

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

following steps, in order to amortize the cost of the search. The downside in this
case is much higher memory requirements.

For example, in GPUSPH the cost of the particle sorting and neighbor list
construction can take as much as 30% of the runtime of a single step; most of this
(25% of the step runtime) is spent in the neighbor search phase of the neighbor list
construction; the list itself is then used for all subsequent kernels that require
particle-particle interaction (boundary conditions, density smoothing, forces com-
putation, surface detection, etc., most of which are executed twice due to the
predictor/corrector integration scheme used).

Working without a neighbor list, the runtime cost of the search would have to be
paid for each execution of a kernel with particle-particle interaction, increasing the
runtime of a single operation by over 50%. The neighbor list is therefore a better
choice for performance.

On the other hand, on a typical simulation in GPUSPH, the neighbor list is also
responsible for the highest memory allocation, even including the double buffering
required for most data arrays: indeed, all of the particle properties combined take
between 100 and 300 bytes per particle (depending on the formulation being used),
whereas for the neighbor list, we need to store, in the simplest cases, 128 neighbors,
leading to an occupation of 512 bytes per particle. Some formulations may require
two or three times as many neighbors per particle.

We remark that even when not all particles have the exact same number of
neighbors, the neighbor list should be statically allocated at the beginning of the
simulation, with the capacity to hold the maximum (expected) number of neigh-
bors for any particle and with the layout discussed in Section 4.2, to maximize the
performance of its traversal. This leads to some potential memory waste for the
benefit of performance. However, even a more conservative and less wasteful
neighbor list would still occupy significant memory (e.g., a median of 80
neighbors per particle still needs to be tracked on a typical GPUSPH simulation,
which only lowers the memory occupation for the neighbor list to 320 bytes per
particle). The net result is that the large allocations required by the neighbor list
will limit the maximum size of a particle system that can be simulated on a
single GPU.

Additionally, even with the stored neighbor list, nearly one-third of a simulation
step is still taken by its construction. A solution to this issue is to only update the list
every n iterations, with n large enough to reduce the performance impact and small
enough to not affect the results in a significant way.With the default choice of n ¼ 10
in GPUSPH, the cost of particle sorting and neighbor search drops to around 5% of
the total runtime in the worst cases. To improve the reliability of the simulations
when neighbor list updates are less frequent, a good strategy is to increase the search
radius: with this approach, given an influence radius r (maximum distance for inter-
action), the neighbors are actually added to the list of neighbors if their distance from
the central particle is less than αr, with α>1; neighbors whose distance from the
central particle is larger than r are then skipped in the kernels. The larger search
radius takes into account the fact that particles may move before the next neighbor
list update, thus bringing them closer. In this sense, the expansion factor for the
neighbor search should be computed based on nvMΔt, where vM is the maximum
expected (relative) particle velocity and Δt the maximum expected time step.

4.4 Heterogeneous particle systems

While simple particle systems are often homogeneous (in that all particles
behave the same way), many applications require heterogeneous particle systems,

82

High Performance Parallel Computing

where particles behave differently depending on some intrinsic characteristic. For
example, SPH for fluid dynamics typically needs at least two different particle
types: fluid particles that track the fluid itself and boundary particles that define
solid walls, moving objects, etc.; the way particles interact with each other (or even
whether or not they interact at all) in this case depends on both the central and
neighboring particle type.

Heterogeneity in the behavior of the particles and their interactions can have a
significant impact on the performance of the system, particularly when it is stored
together, without any specific attention to the distribution of the particles and their
types. Indeed, the natural way to process a particle system is to issue, for most
kernels, a work-item per particle. However, when particles with different types or
behavior are processed by work-items in the same subgroup, this leads to diver-
gence, slowing down execution. Similarly, when particles iterate over neighbors,
they may have neighbors of different types at corresponding indices (e.g., the third
neighbor of the first particle may be a fluid neighbor, while the third neighbor of
the second particle might be a boundary neighbor); in this case, again, kernel
execution will incur divergences, even if the central particles are of the same type.
Moreover, since the distinction between particle types and interaction form must be
done at kernel runtime, the kernel code itself grows more complex, reducing opti-
mization opportunities for the compiler and leading to sub-optimal usage of private
variables, frequently resulting in register spills, where a reserved area of global
memory gets used for temporary storage of private work-item variables, with a
severe impact on performance.

When the heterogeneous behavior is due to some static property (e.g., a fixed
particle type property), the most obvious choice is to split the particle system itself
(e.g., have a particle system for fluid particles and a separate particle system for
boundary particles). This has several advantages: it is possible to run a kernel on
particles of a specific type more efficiently while still making it possible to run a
kernel on all particles; it is also possible to do selective allocations, for example, if a
given property (e.g., object number) is only needed for a specific type. The down-
side is that the management code becomes more complex, and kernels where
particles of one type need to interact with particles of the other type must be given
access to both sets of arrays, which can increase the complexity of the kernel
signatures.

A simpler approach that does not completely solve the divergence issue but can
greatly reduce the occurrences of divergence is to introduce additional sorting
criteria. For example, one can sort particles by cell, and within cell then sort
particles by type, so that for any cell one finds first all the fluid particles (in that
cell), followed by all the boundary particles (in the same cell). This “specialized
sorting” approach reduces the occurrences of subgroups spanning multiple types to
those crossing the boundary between types or between cells. In GPUSPH, the
introduction of the per-type sorting within cells has improved the performance of
the particle-particle interaction by around 2%. A significant advantage of this
approach compared to the split system mentioned before is that it can be used also
when the criteria for the behavioral difference are dynamic.

4.4.1 Split neighbor list

Divergence during the neighbor list traversals can be avoided by using a split
neighbor list that separately stores neighbors of each type. This comes naturally
when using separate particle systems and is efficient also with the specialized
sorting approach, since potential neighbors of the same type will be enumerated

83

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

following steps, in order to amortize the cost of the search. The downside in this
case is much higher memory requirements.

For example, in GPUSPH the cost of the particle sorting and neighbor list
construction can take as much as 30% of the runtime of a single step; most of this
(25% of the step runtime) is spent in the neighbor search phase of the neighbor list
construction; the list itself is then used for all subsequent kernels that require
particle-particle interaction (boundary conditions, density smoothing, forces com-
putation, surface detection, etc., most of which are executed twice due to the
predictor/corrector integration scheme used).

Working without a neighbor list, the runtime cost of the search would have to be
paid for each execution of a kernel with particle-particle interaction, increasing the
runtime of a single operation by over 50%. The neighbor list is therefore a better
choice for performance.

On the other hand, on a typical simulation in GPUSPH, the neighbor list is also
responsible for the highest memory allocation, even including the double buffering
required for most data arrays: indeed, all of the particle properties combined take
between 100 and 300 bytes per particle (depending on the formulation being used),
whereas for the neighbor list, we need to store, in the simplest cases, 128 neighbors,
leading to an occupation of 512 bytes per particle. Some formulations may require
two or three times as many neighbors per particle.

We remark that even when not all particles have the exact same number of
neighbors, the neighbor list should be statically allocated at the beginning of the
simulation, with the capacity to hold the maximum (expected) number of neigh-
bors for any particle and with the layout discussed in Section 4.2, to maximize the
performance of its traversal. This leads to some potential memory waste for the
benefit of performance. However, even a more conservative and less wasteful
neighbor list would still occupy significant memory (e.g., a median of 80
neighbors per particle still needs to be tracked on a typical GPUSPH simulation,
which only lowers the memory occupation for the neighbor list to 320 bytes per
particle). The net result is that the large allocations required by the neighbor list
will limit the maximum size of a particle system that can be simulated on a
single GPU.

Additionally, even with the stored neighbor list, nearly one-third of a simulation
step is still taken by its construction. A solution to this issue is to only update the list
every n iterations, with n large enough to reduce the performance impact and small
enough to not affect the results in a significant way.With the default choice of n ¼ 10
in GPUSPH, the cost of particle sorting and neighbor search drops to around 5% of
the total runtime in the worst cases. To improve the reliability of the simulations
when neighbor list updates are less frequent, a good strategy is to increase the search
radius: with this approach, given an influence radius r (maximum distance for inter-
action), the neighbors are actually added to the list of neighbors if their distance from
the central particle is less than αr, with α>1; neighbors whose distance from the
central particle is larger than r are then skipped in the kernels. The larger search
radius takes into account the fact that particles may move before the next neighbor
list update, thus bringing them closer. In this sense, the expansion factor for the
neighbor search should be computed based on nvMΔt, where vM is the maximum
expected (relative) particle velocity and Δt the maximum expected time step.

4.4 Heterogeneous particle systems

While simple particle systems are often homogeneous (in that all particles
behave the same way), many applications require heterogeneous particle systems,

82

High Performance Parallel Computing

where particles behave differently depending on some intrinsic characteristic. For
example, SPH for fluid dynamics typically needs at least two different particle
types: fluid particles that track the fluid itself and boundary particles that define
solid walls, moving objects, etc.; the way particles interact with each other (or even
whether or not they interact at all) in this case depends on both the central and
neighboring particle type.

Heterogeneity in the behavior of the particles and their interactions can have a
significant impact on the performance of the system, particularly when it is stored
together, without any specific attention to the distribution of the particles and their
types. Indeed, the natural way to process a particle system is to issue, for most
kernels, a work-item per particle. However, when particles with different types or
behavior are processed by work-items in the same subgroup, this leads to diver-
gence, slowing down execution. Similarly, when particles iterate over neighbors,
they may have neighbors of different types at corresponding indices (e.g., the third
neighbor of the first particle may be a fluid neighbor, while the third neighbor of
the second particle might be a boundary neighbor); in this case, again, kernel
execution will incur divergences, even if the central particles are of the same type.
Moreover, since the distinction between particle types and interaction form must be
done at kernel runtime, the kernel code itself grows more complex, reducing opti-
mization opportunities for the compiler and leading to sub-optimal usage of private
variables, frequently resulting in register spills, where a reserved area of global
memory gets used for temporary storage of private work-item variables, with a
severe impact on performance.

When the heterogeneous behavior is due to some static property (e.g., a fixed
particle type property), the most obvious choice is to split the particle system itself
(e.g., have a particle system for fluid particles and a separate particle system for
boundary particles). This has several advantages: it is possible to run a kernel on
particles of a specific type more efficiently while still making it possible to run a
kernel on all particles; it is also possible to do selective allocations, for example, if a
given property (e.g., object number) is only needed for a specific type. The down-
side is that the management code becomes more complex, and kernels where
particles of one type need to interact with particles of the other type must be given
access to both sets of arrays, which can increase the complexity of the kernel
signatures.

A simpler approach that does not completely solve the divergence issue but can
greatly reduce the occurrences of divergence is to introduce additional sorting
criteria. For example, one can sort particles by cell, and within cell then sort
particles by type, so that for any cell one finds first all the fluid particles (in that
cell), followed by all the boundary particles (in the same cell). This “specialized
sorting” approach reduces the occurrences of subgroups spanning multiple types to
those crossing the boundary between types or between cells. In GPUSPH, the
introduction of the per-type sorting within cells has improved the performance of
the particle-particle interaction by around 2%. A significant advantage of this
approach compared to the split system mentioned before is that it can be used also
when the criteria for the behavioral difference are dynamic.

4.4.1 Split neighbor list

Divergence during the neighbor list traversals can be avoided by using a split
neighbor list that separately stores neighbors of each type. This comes naturally
when using separate particle systems and is efficient also with the specialized
sorting approach, since potential neighbors of the same type will be enumerated

83

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

consecutively in each cell. The split neighbor list can be implemented in such
a way that it is possible to iterate efficiently on neighbors of only one given type
(or otherwise satisfying one given splitting criterion) while still preserving
the possibility to iterate over all neighbors when necessary and minimizing
allocation.

A naive split neighbor list can be implemented with separate allocations (e.g.,
a separate neighbor list per type), but this can quickly lead to an explosion of the
already significant memory usage due to the existence of the neighbor list itself:
without additional information on the neighbor distribution by type, for example, it
may be necessary to allocate a full-sized neighbor list for each type. A more compact
solution without loss of traversal efficiency can be achieved by storing the split
neighbor list in a single allocation but filling the per-type section of the list from
different ends.

As an example, consider the case of two particle types (fluid and boundary), and
assume that the neighbor list can hold M neighbors per particle (M is the maximum
number of neighbors any particle can have). For each particle, we store the fluid
neighbors starting from position 0 (using the 0-based indexing common in the C
language family), moving forward, and the boundary neighbors starting from posi-
tion M-1, backward, where the indices refer to the particle-specific section of the
full neighbor list, and taking interleaving into account as described in Section 4.2;
iterating over all fluid neighbors is then achieved in the usual way, whereas iterating
over all boundary neighbors would be achieved by traversing the array in reverse, as
illustrated in Listing 4.

To prevent one section of the neighbor list from bleeding into the other, it is now
necessary to put a marker (i.e., an index with a special value, such as �1, defined as
NEIBS_END in the example in Listing 4) at the end of each of the sides of the list,
which implies that the effective maximum number of neighbors is reduced by 1
(with the end-of-list marker shared between the two sides when the neighbors list is
otherwise full).

If there are more than two types of particle, the same strategy can still be
applied, by sectioning the neighbor list. For example, with four types A, B, C, and D,
we need to set a value M1 (the total number of neighbors of type A and B combined)
and M2 (the total number of neighbors of type C and D combined); the neighbor list
is allocated to hold M1+M2 neighbors per particle, where neighbors of type A are
stored from position 0 onward, neighbors of type B are stored from position M1–1
backward, neighbors of type C are stored from position M1 onward, and neighbors of
type D are stored from position M1+M2–1 backward. Type pairs should be chosen,
when possible, based on the uniformity of the cumulative number of neighbors (e.g.,
if it is more likely that the sum of A and C neighbors is constant, it is better to pair A
with C than with B).

Listing 4.
Traversing the split neighbors list: first type (fluid particles in this example) on the left, second type (boundary
particle in this example) on the right.

int p=get_global_id(0); /* particle index */
for (int i=0; i<M; ++i) {

/* index of the next fluid neighbor */
int neib_index=neibsList[i*N+p];
if (neib_index == NEIBS_END) break;
/* do stuff with neib_index */

}

int p=get_global_id(0); /* particle index */
for (int i=M-1; i>=0; –i) {

/* index of the next boundary neighbor */
int neib_index=neibsList[i*N+p];
if (neib_index == NEIBS_END) break;
/* do stuff with neib_index */

}

84

High Performance Parallel Computing

4.4.2 Split kernels

Once traversal of individual particle types (for the system itself or even just for
the neighbors) has been made efficient, the more complex kernels that need to
provide significantly different behavior based should be split as well. For example,
in GPUSPH we have recently refactored the main computational kernel (dedicated
to the computation of the forces acting on each particle) into separate versions to
compute fluid/fluid, fluid/boundary, boundary/fluid, etc. interactions. While this
generally requires some additional memory access (because, e.g., the particle accel-
erations now need to be stored and retrieved between one incarnation of the kernel
and the next), there has been an overall performance benefit; for the most complex
formulations, on first-generation Kepler hardware, we have seen a 50% increase in
the number of iterations per second. On the more recent and capable Maxwell
architecture, the benefit has been less significant (30% more iterations per second),
due to the smaller number of register spills: the more modern hardware supports
more registers per work-item and is therefore less affected by the computational
issues associated with particle system heterogeneity.

4.5 Multi-GPU

Very large particle systems can benefit from distribution across multiple GPUs.
This may in fact be necessary simply due to the limited resources available on a single
GPU: high-end GPUs currently have at most 16GB of RAM, which may limit the
particle system size to a few tens of millions, depending on the complexity of the
system. Even for smaller systems, however, distribution over multiple GPUs can
provide a performance boost, provided each of the devices is saturated (otherwise,
the overhead involved in distributing the particle system will be higher than the
benefits offered by the higher computational capacity).

Distributing a particle system across multiple GPUs requires a significant change
of vision: GPU coding is facilitated by its shared-memory architecture, where all
compute units have read/write access to the entire device global memory. Multi-
GPU introduces a distributed parallel computing layer, shifting the focus to effi-
cient work distribution and data exchange between the devices.

For particle systems, the preferential way to distribute work across devices is
based on domain decomposition rather than task decomposition, since the former
allows both to minimize data exchange and to cover the associated latency more
easily. Domain decomposition is achieved by distributing separate sections of the
particle system to different devices (e.g., half of the particles and the associated data
go on a GPU; the second half goes on a second GPU). When the particles can be
processed independently (i.e., no neighborhood information is required), the parti-
tion is trivial, and the only objective is load balancing (i.e., ensuring that the
fraction of particle system assigned to each GPU is proportional to its computational
power). In these cases, the only data exchange needed between GPUs is the tracking
of some global quantities, such as the particle system optimal position in PSO.

The decomposition becomes more challenging when the particles’ behavior
depends on a local neighborhood. In this case, each device must track the state not
only of the particles that have been assigned to it but also their neighbors, some of
which may have been assigned to other devices. Each device therefore has a view of
the particle system as divided in four sections:

• (Strictly) inner particles: particles assigned to the device and that no other
device is interested in; no information exchange is involved in their processing.

85

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

consecutively in each cell. The split neighbor list can be implemented in such
a way that it is possible to iterate efficiently on neighbors of only one given type
(or otherwise satisfying one given splitting criterion) while still preserving
the possibility to iterate over all neighbors when necessary and minimizing
allocation.

A naive split neighbor list can be implemented with separate allocations (e.g.,
a separate neighbor list per type), but this can quickly lead to an explosion of the
already significant memory usage due to the existence of the neighbor list itself:
without additional information on the neighbor distribution by type, for example, it
may be necessary to allocate a full-sized neighbor list for each type. A more compact
solution without loss of traversal efficiency can be achieved by storing the split
neighbor list in a single allocation but filling the per-type section of the list from
different ends.

As an example, consider the case of two particle types (fluid and boundary), and
assume that the neighbor list can hold M neighbors per particle (M is the maximum
number of neighbors any particle can have). For each particle, we store the fluid
neighbors starting from position 0 (using the 0-based indexing common in the C
language family), moving forward, and the boundary neighbors starting from posi-
tion M-1, backward, where the indices refer to the particle-specific section of the
full neighbor list, and taking interleaving into account as described in Section 4.2;
iterating over all fluid neighbors is then achieved in the usual way, whereas iterating
over all boundary neighbors would be achieved by traversing the array in reverse, as
illustrated in Listing 4.

To prevent one section of the neighbor list from bleeding into the other, it is now
necessary to put a marker (i.e., an index with a special value, such as �1, defined as
NEIBS_END in the example in Listing 4) at the end of each of the sides of the list,
which implies that the effective maximum number of neighbors is reduced by 1
(with the end-of-list marker shared between the two sides when the neighbors list is
otherwise full).

If there are more than two types of particle, the same strategy can still be
applied, by sectioning the neighbor list. For example, with four types A, B, C, and D,
we need to set a value M1 (the total number of neighbors of type A and B combined)
and M2 (the total number of neighbors of type C and D combined); the neighbor list
is allocated to hold M1+M2 neighbors per particle, where neighbors of type A are
stored from position 0 onward, neighbors of type B are stored from position M1–1
backward, neighbors of type C are stored from position M1 onward, and neighbors of
type D are stored from position M1+M2–1 backward. Type pairs should be chosen,
when possible, based on the uniformity of the cumulative number of neighbors (e.g.,
if it is more likely that the sum of A and C neighbors is constant, it is better to pair A
with C than with B).

Listing 4.
Traversing the split neighbors list: first type (fluid particles in this example) on the left, second type (boundary
particle in this example) on the right.

int p=get_global_id(0); /* particle index */
for (int i=0; i<M; ++i) {

/* index of the next fluid neighbor */
int neib_index=neibsList[i*N+p];
if (neib_index == NEIBS_END) break;
/* do stuff with neib_index */

}

int p=get_global_id(0); /* particle index */
for (int i=M-1; i>=0; –i) {

/* index of the next boundary neighbor */
int neib_index=neibsList[i*N+p];
if (neib_index == NEIBS_END) break;
/* do stuff with neib_index */

}

84

High Performance Parallel Computing

4.4.2 Split kernels

Once traversal of individual particle types (for the system itself or even just for
the neighbors) has been made efficient, the more complex kernels that need to
provide significantly different behavior based should be split as well. For example,
in GPUSPH we have recently refactored the main computational kernel (dedicated
to the computation of the forces acting on each particle) into separate versions to
compute fluid/fluid, fluid/boundary, boundary/fluid, etc. interactions. While this
generally requires some additional memory access (because, e.g., the particle accel-
erations now need to be stored and retrieved between one incarnation of the kernel
and the next), there has been an overall performance benefit; for the most complex
formulations, on first-generation Kepler hardware, we have seen a 50% increase in
the number of iterations per second. On the more recent and capable Maxwell
architecture, the benefit has been less significant (30% more iterations per second),
due to the smaller number of register spills: the more modern hardware supports
more registers per work-item and is therefore less affected by the computational
issues associated with particle system heterogeneity.

4.5 Multi-GPU

Very large particle systems can benefit from distribution across multiple GPUs.
This may in fact be necessary simply due to the limited resources available on a single
GPU: high-end GPUs currently have at most 16GB of RAM, which may limit the
particle system size to a few tens of millions, depending on the complexity of the
system. Even for smaller systems, however, distribution over multiple GPUs can
provide a performance boost, provided each of the devices is saturated (otherwise,
the overhead involved in distributing the particle system will be higher than the
benefits offered by the higher computational capacity).

Distributing a particle system across multiple GPUs requires a significant change
of vision: GPU coding is facilitated by its shared-memory architecture, where all
compute units have read/write access to the entire device global memory. Multi-
GPU introduces a distributed parallel computing layer, shifting the focus to effi-
cient work distribution and data exchange between the devices.

For particle systems, the preferential way to distribute work across devices is
based on domain decomposition rather than task decomposition, since the former
allows both to minimize data exchange and to cover the associated latency more
easily. Domain decomposition is achieved by distributing separate sections of the
particle system to different devices (e.g., half of the particles and the associated data
go on a GPU; the second half goes on a second GPU). When the particles can be
processed independently (i.e., no neighborhood information is required), the parti-
tion is trivial, and the only objective is load balancing (i.e., ensuring that the
fraction of particle system assigned to each GPU is proportional to its computational
power). In these cases, the only data exchange needed between GPUs is the tracking
of some global quantities, such as the particle system optimal position in PSO.

The decomposition becomes more challenging when the particles’ behavior
depends on a local neighborhood. In this case, each device must track the state not
only of the particles that have been assigned to it but also their neighbors, some of
which may have been assigned to other devices. Each device therefore has a view of
the particle system as divided in four sections:

• (Strictly) inner particles: particles assigned to the device and that no other
device is interested in; no information exchange is involved in their processing.

85

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

• Inner edge particles: particles assigned to the device that are neighbors of
particles assigned to different devices; information about the evolution of these
particles must be sent to other devices.

• Outer edge particles: particles assigned to other devices that are neighbors of
particles assigned to this device; information about the evolution of these
particles must be received from other devices.

• (Strictly) outer particles: particles assigned to other devices and that this device
does not care about; no information exchange is involved in their processing.

The inner/outer relation is symmetrical, in the sense that a (strictly) inner
particle for a device is (strictly) outer for all other devices and an inner edge particle
for a device is an outer edge particle for at least one other device (Figure 4). We
will say that two devices are adjacent if they share an inner/outer edge relation (i.e.,
if they need to exchange data about neighboring particles). Note that, depending on
how the particle system is distributed, information about an inner edge particle may
need to be sent to multiple adjacent devices.

4.5.1 Computing versus data exchange

The key to an efficient multi-GPU implementation is the ability to minimize the
impact of data exchange. The most obvious approach in this sense is to minimize
the data transfers themselves, for example, by ensuring that the domain is
partitioned in such a way that the number of edge particles is minimized.

As a general rule, during the simulation each device will hold all the data
relevant to both its inner (and inner edge) particles and the data relevant to its outer
edge particles, i.e., the inner edge particles of adjacent devices. However, it will only
run computational kernels on its own particles (using, read-only, the information
from the outer edge particles) and then receive updates about the outer edge
particles from the adjacent devices. On the other hand, there are cases when it may
be convenient for each device to compute the updates for the outer edge particles by

Figure 4.
Inner/outer/edge relationship between devices, with domain decomposition based on a reference grid:
inner/outer/edge particles are then defined based on the cell they belong to rather than on a purely geometrical
relationship to the particles assigned to other devices.

86

High Performance Parallel Computing

itself. This can be done under the condition that the update does not require
information from the neighbors (since the device does not hold information about
all the neighbors of outer edge particles) and becomes convenient when the amount
of data to transfer before the update is less than the amount of data to transfer after
the update.

As an example, consider a simple particle system where the forces acting on each
particle are computed from the interaction with the neighbors (forces kernel), but
the new position and velocity are computed only from the previously computed
forces (euler kernel), without any (further) interaction with the neighbors.
Assume that there are two devices, D1 and D2, and that all the involved arrays
(forces, positions, and velocities) are the same size (e.g., a float4 per particle).
Then it is more convenient for D1 to get the information about the forces acting on
its outer edge particles from D2 (and conversely), and then run euler on the outer
edge particles, than it is for D1 to get the information about the positions and
velocities after euler has been run on both devices: this is because exchanging
forces results in a data transfer of a single float4 per (outer edge) particle, while
exchanging positions and velocities would require exchanging twice as much data.

4.5.2 Computing during data exchange

Assuming data transfers have been minimized as discussed in the previous
paragraph, the next step in an efficient multi-GPU implementation is to cover the
data transfer latency by running computational kernels concurrently with the data
transfer itself. This can be achieved as long as it is possible to efficiently launch
computational kernels on a subset of the particle system (specifically, on the inner
edge particles). It is then possible to first compute the new data on the inner edge
particles, and then launch the kernel on the remaining (strictly inner) particles,
while the inner edge data is sent to adjacent devices (and conversely the outer edge
data is received from adjacent devices). This strategy allows optimal latency hiding,
especially for the most computationally intensive kernels, provided all involved
device are saturated. In GPUSPH, this is how we achieve nearly linear speedups in
the number of devices [26], even when network transfers are involved in multi-
node simulations [23].

4.5.3 Reference grid for domain decomposition

In our experience, multi-GPU also benefits from the use of the auxiliary grid that
can be used for sorting (as described in Section 4.3) and for improved numerical
accuracy (as will be described in Section 5.4): indeed, to improve the efficiency of
data transfers, it is important that the sections of the arrays that need to be sent to
adjacent devices are as consecutive as possible, since multiple small bursts are
generally less efficient (both over the PCI Express bus and over the network) than
larger data transfers.

With the auxiliary reference grid, this can be obtained by always splitting the
domain at the cell level and computing the cell index by taking the inner/edge/outer
relation into consideration (Figure 4). In GPUSPH this is achieved by reserving the
two most significant bits of the cell index to indicate strictly inner cells (00), inner
edge cells (01), outer edge cells (10), and strictly outer cells (11)—with the latter
never actually used except in an optional global cell map. With this strategy, all
strictly inner particles will be sorted first, followed by all inner edge particles, and
finally by outer edge particles. Since outer edge particles will be sorted consecu-
tively in memory, receiving data about them will be more efficient; similarly,
sending inner edge data over will be made more efficient by the coalesced layout.

87

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

• Inner edge particles: particles assigned to the device that are neighbors of
particles assigned to different devices; information about the evolution of these
particles must be sent to other devices.

• Outer edge particles: particles assigned to other devices that are neighbors of
particles assigned to this device; information about the evolution of these
particles must be received from other devices.

• (Strictly) outer particles: particles assigned to other devices and that this device
does not care about; no information exchange is involved in their processing.

The inner/outer relation is symmetrical, in the sense that a (strictly) inner
particle for a device is (strictly) outer for all other devices and an inner edge particle
for a device is an outer edge particle for at least one other device (Figure 4). We
will say that two devices are adjacent if they share an inner/outer edge relation (i.e.,
if they need to exchange data about neighboring particles). Note that, depending on
how the particle system is distributed, information about an inner edge particle may
need to be sent to multiple adjacent devices.

4.5.1 Computing versus data exchange

The key to an efficient multi-GPU implementation is the ability to minimize the
impact of data exchange. The most obvious approach in this sense is to minimize
the data transfers themselves, for example, by ensuring that the domain is
partitioned in such a way that the number of edge particles is minimized.

As a general rule, during the simulation each device will hold all the data
relevant to both its inner (and inner edge) particles and the data relevant to its outer
edge particles, i.e., the inner edge particles of adjacent devices. However, it will only
run computational kernels on its own particles (using, read-only, the information
from the outer edge particles) and then receive updates about the outer edge
particles from the adjacent devices. On the other hand, there are cases when it may
be convenient for each device to compute the updates for the outer edge particles by

Figure 4.
Inner/outer/edge relationship between devices, with domain decomposition based on a reference grid:
inner/outer/edge particles are then defined based on the cell they belong to rather than on a purely geometrical
relationship to the particles assigned to other devices.

86

High Performance Parallel Computing

itself. This can be done under the condition that the update does not require
information from the neighbors (since the device does not hold information about
all the neighbors of outer edge particles) and becomes convenient when the amount
of data to transfer before the update is less than the amount of data to transfer after
the update.

As an example, consider a simple particle system where the forces acting on each
particle are computed from the interaction with the neighbors (forces kernel), but
the new position and velocity are computed only from the previously computed
forces (euler kernel), without any (further) interaction with the neighbors.
Assume that there are two devices, D1 and D2, and that all the involved arrays
(forces, positions, and velocities) are the same size (e.g., a float4 per particle).
Then it is more convenient for D1 to get the information about the forces acting on
its outer edge particles from D2 (and conversely), and then run euler on the outer
edge particles, than it is for D1 to get the information about the positions and
velocities after euler has been run on both devices: this is because exchanging
forces results in a data transfer of a single float4 per (outer edge) particle, while
exchanging positions and velocities would require exchanging twice as much data.

4.5.2 Computing during data exchange

Assuming data transfers have been minimized as discussed in the previous
paragraph, the next step in an efficient multi-GPU implementation is to cover the
data transfer latency by running computational kernels concurrently with the data
transfer itself. This can be achieved as long as it is possible to efficiently launch
computational kernels on a subset of the particle system (specifically, on the inner
edge particles). It is then possible to first compute the new data on the inner edge
particles, and then launch the kernel on the remaining (strictly inner) particles,
while the inner edge data is sent to adjacent devices (and conversely the outer edge
data is received from adjacent devices). This strategy allows optimal latency hiding,
especially for the most computationally intensive kernels, provided all involved
device are saturated. In GPUSPH, this is how we achieve nearly linear speedups in
the number of devices [26], even when network transfers are involved in multi-
node simulations [23].

4.5.3 Reference grid for domain decomposition

In our experience, multi-GPU also benefits from the use of the auxiliary grid that
can be used for sorting (as described in Section 4.3) and for improved numerical
accuracy (as will be described in Section 5.4): indeed, to improve the efficiency of
data transfers, it is important that the sections of the arrays that need to be sent to
adjacent devices are as consecutive as possible, since multiple small bursts are
generally less efficient (both over the PCI Express bus and over the network) than
larger data transfers.

With the auxiliary reference grid, this can be obtained by always splitting the
domain at the cell level and computing the cell index by taking the inner/edge/outer
relation into consideration (Figure 4). In GPUSPH this is achieved by reserving the
two most significant bits of the cell index to indicate strictly inner cells (00), inner
edge cells (01), outer edge cells (10), and strictly outer cells (11)—with the latter
never actually used except in an optional global cell map. With this strategy, all
strictly inner particles will be sorted first, followed by all inner edge particles, and
finally by outer edge particles. Since outer edge particles will be sorted consecu-
tively in memory, receiving data about them will be more efficient; similarly,
sending inner edge data over will be made more efficient by the coalesced layout.

87

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Note that this cell sorting strategy does not completely eliminate the need for
multiple transfers; it does however help to reduce it significantly, especially when
combined with linear cell indexing and the appropriate choice of order of dimen-
sions for linearization. For this reason, GPUSPH offers a (compile-time) option to
allow customization of this choice that in our experience can have performance
benefits of up to 30%.

5. Numerical robustness

When the intent of GPGPU is to leverage the low-cost, high-performance ratio
offered by consumer GPUs, a significant bottleneck in scientific applications is
given by the limited (when not completely absent) support for double precision:
since consumer GPUs are designed for video games and similar applications, where
the highest rendering accuracy is not a requirement, the hardware is optimized for
single-precision computation. Applications that need higher accuracy can thus fol-
low one of the following strategies: use double-precision anyway, use soft extended
precision (double-float, etc.), and rely on alternative algorithms that ensure a better
utilization of the available precision.

Due to the high-performance cost (ratios as low as 1:32 compared to single
precision, nearly completely defeating the benefits of the high performance of
GPUs over CPUs), the use of double precision should be avoided whenever possi-
ble. If absolutely necessary, it should be restricted to parts of the code where it is
essential. In all other cases, faster alternatives should be sought out. A possible
solution is offered by double-float arithmetic, in which two single-precision values
are used to provide higher accuracy [27, 28]: most operations will require between
two and four hardware operation to complete, and the overall accuracy will gener-
ally be slightly lower than using actual double precision, but this can still be a good
compromise between performance and accuracy when 64-bit floating-point has low
or no support in hardware.

In many cases, it will be possible to avoid relying on extended precision by
taking some care in the choice of algorithm used. In fact, the methods and algo-
rithms that we will discuss momentarily can help improve the accuracy of an
implementation regardless of the precision used: we would recommend their use
even with double precision, since they always lead to more accurate results and in
some cases (such as Horner’s method) even higher performance.

5.1 Horner’s method

Polynomial evaluation should always be done using Horner’s method [29]. Any
polynomial anxn þ an�1xn�1 þ :::þ a1xþ a0 can be written in the equivalent form

::: anxþ an�1ð Þxþ an�2ð Þxþ :::ð Þxþ a1ð Þxþ a0:

When this second form is evaluated from the innermost to the outermost
expression, better accuracy and performance can be achieved. Indeed, Horner’s
method is known to be optimal in that it requires the minimal number of additions
and multiplications for the evaluation of the polynomial [30, 31], and given the
widespread availability of fused multiply-add operations on modern hardware,
every term can be computed with a higher accuracy and in a single cycle, making
this evaluation method the fastest and most accurate for general polynomials.

88

High Performance Parallel Computing

5.2 Compensated and balanced summation

In many particle systems, the behavior of a particle is dictated by the influence
of a local neighborhood: the total action on the central particle is then achieved by
adding up the contributions from each neighboring particle. The number of contri-
butions is frequently in the order of tens or hundreds and in some applications even
more. The naive approach, which could be described algorithmically as

total_action=0;;
for (i=0; i<num_neighbors; ++i);

total_action +=contribution_from_neighbor(i);

suffers from low accuracy: since each contribution adds a relative error in the
order of the machine epsilon ε, the total relative error is in the order of the total
number of contributions, O εnð Þ in the worst case (in practice, the error is typically
Oðε√nÞ with the default round-to-nearest rounding mode).

This can be significantly improved by using a compensated summation algo-
rithm, which can bring down the total relative error to order O 1ð Þ (constant). The
idea behind this class of algorithms is to keep track of the quantity that gets “lost”
during a summation due to the finite precision. This is achieved by keeping two
accumulators, the sum itself and a correction. The simplest form of compensated
summation was popularized by Kahan [32], where the contribution from each new
term is computed as shown in Listing 5.

The approach relies on the compiler not trying to do an algebraic simplification
of the expressions for the temporary sum t and the correction, which may require
disabling “fast-math” and the contraction of floating-point expressions.

The Kahan compensated summation algorithm works best when all terms in the
summation are of similar or decreasing orders of magnitude but fail to take into
account that the new term may be (significantly) larger in magnitude than the
current running sum. To this end, Neumaier presented a variant [33], usually
known as KBN (Kahan-Babuška-Neumaier), that takes into account the relative
magnitude of the new term and the running sum when computing the correction
(Listing 6). In contrast to Kahan’s algorithm, the final sum is obtained by adding
sum and correction. More details about balancing and compensated summation
algorithms can be found in [34].

The main downside of KBN is the branching condition to compute the
correction, which may reduce performance on GPU. The algorithm can be
rewritten to be vector-friendly, as illustrated on the right in Listing 6, which
makes use of the select(a, b, c) function and the component-by-component
extension to the ternary operator c ? b : a defined, e.g., in OpenCL C. This form
of KBN should only be chosen when profiling shows the branching to be a
performance bottleneck, since the extra operations otherwise introduce higher
latency in the summation.

Listing 5.
Kahan summation algorithm.

y=term - correction;
t=sum + y;
correction=(t - sum) - y;
sum=t;

/* take into account what got lost previously */
/* temporary sum: add the new term y */
/* estimate what got lost adding the new term */
/* actual new value of the summation */

89

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Note that this cell sorting strategy does not completely eliminate the need for
multiple transfers; it does however help to reduce it significantly, especially when
combined with linear cell indexing and the appropriate choice of order of dimen-
sions for linearization. For this reason, GPUSPH offers a (compile-time) option to
allow customization of this choice that in our experience can have performance
benefits of up to 30%.

5. Numerical robustness

When the intent of GPGPU is to leverage the low-cost, high-performance ratio
offered by consumer GPUs, a significant bottleneck in scientific applications is
given by the limited (when not completely absent) support for double precision:
since consumer GPUs are designed for video games and similar applications, where
the highest rendering accuracy is not a requirement, the hardware is optimized for
single-precision computation. Applications that need higher accuracy can thus fol-
low one of the following strategies: use double-precision anyway, use soft extended
precision (double-float, etc.), and rely on alternative algorithms that ensure a better
utilization of the available precision.

Due to the high-performance cost (ratios as low as 1:32 compared to single
precision, nearly completely defeating the benefits of the high performance of
GPUs over CPUs), the use of double precision should be avoided whenever possi-
ble. If absolutely necessary, it should be restricted to parts of the code where it is
essential. In all other cases, faster alternatives should be sought out. A possible
solution is offered by double-float arithmetic, in which two single-precision values
are used to provide higher accuracy [27, 28]: most operations will require between
two and four hardware operation to complete, and the overall accuracy will gener-
ally be slightly lower than using actual double precision, but this can still be a good
compromise between performance and accuracy when 64-bit floating-point has low
or no support in hardware.

In many cases, it will be possible to avoid relying on extended precision by
taking some care in the choice of algorithm used. In fact, the methods and algo-
rithms that we will discuss momentarily can help improve the accuracy of an
implementation regardless of the precision used: we would recommend their use
even with double precision, since they always lead to more accurate results and in
some cases (such as Horner’s method) even higher performance.

5.1 Horner’s method

Polynomial evaluation should always be done using Horner’s method [29]. Any
polynomial anxn þ an�1xn�1 þ :::þ a1xþ a0 can be written in the equivalent form

::: anxþ an�1ð Þxþ an�2ð Þxþ :::ð Þxþ a1ð Þxþ a0:

When this second form is evaluated from the innermost to the outermost
expression, better accuracy and performance can be achieved. Indeed, Horner’s
method is known to be optimal in that it requires the minimal number of additions
and multiplications for the evaluation of the polynomial [30, 31], and given the
widespread availability of fused multiply-add operations on modern hardware,
every term can be computed with a higher accuracy and in a single cycle, making
this evaluation method the fastest and most accurate for general polynomials.

88

High Performance Parallel Computing

5.2 Compensated and balanced summation

In many particle systems, the behavior of a particle is dictated by the influence
of a local neighborhood: the total action on the central particle is then achieved by
adding up the contributions from each neighboring particle. The number of contri-
butions is frequently in the order of tens or hundreds and in some applications even
more. The naive approach, which could be described algorithmically as

total_action=0;;
for (i=0; i<num_neighbors; ++i);

total_action +=contribution_from_neighbor(i);

suffers from low accuracy: since each contribution adds a relative error in the
order of the machine epsilon ε, the total relative error is in the order of the total
number of contributions, O εnð Þ in the worst case (in practice, the error is typically
Oðε√nÞ with the default round-to-nearest rounding mode).

This can be significantly improved by using a compensated summation algo-
rithm, which can bring down the total relative error to order O 1ð Þ (constant). The
idea behind this class of algorithms is to keep track of the quantity that gets “lost”
during a summation due to the finite precision. This is achieved by keeping two
accumulators, the sum itself and a correction. The simplest form of compensated
summation was popularized by Kahan [32], where the contribution from each new
term is computed as shown in Listing 5.

The approach relies on the compiler not trying to do an algebraic simplification
of the expressions for the temporary sum t and the correction, which may require
disabling “fast-math” and the contraction of floating-point expressions.

The Kahan compensated summation algorithm works best when all terms in the
summation are of similar or decreasing orders of magnitude but fail to take into
account that the new term may be (significantly) larger in magnitude than the
current running sum. To this end, Neumaier presented a variant [33], usually
known as KBN (Kahan-Babuška-Neumaier), that takes into account the relative
magnitude of the new term and the running sum when computing the correction
(Listing 6). In contrast to Kahan’s algorithm, the final sum is obtained by adding
sum and correction. More details about balancing and compensated summation
algorithms can be found in [34].

The main downside of KBN is the branching condition to compute the
correction, which may reduce performance on GPU. The algorithm can be
rewritten to be vector-friendly, as illustrated on the right in Listing 6, which
makes use of the select(a, b, c) function and the component-by-component
extension to the ternary operator c ? b : a defined, e.g., in OpenCL C. This form
of KBN should only be chosen when profiling shows the branching to be a
performance bottleneck, since the extra operations otherwise introduce higher
latency in the summation.

Listing 5.
Kahan summation algorithm.

y=term - correction;
t=sum + y;
correction=(t - sum) - y;
sum=t;

/* take into account what got lost previously */
/* temporary sum: add the new term y */
/* estimate what got lost adding the new term */
/* actual new value of the summation */

89

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

The downsides of compensated summation algorithms are higher storage
requirements (the additional accumulator) and higher computational cost (Kahan,
e.g., requires four times more operations compared to the standard summation).
Compared to the use of double precision, the storage requirements are unchanged;
the computational cost, however, is two (or more) times higher than the cost of
double-precision on hardware that supports it at full frequency; on most consumer
GPUs, however, the use of compensated summation can be up to eight times faster
than the use of double precision.

Compensated summation algorithms can be used both locally, at the single
kernel level, to improve the computation of the contributions for the next time step,
and globally, across kernel launches, providing better accuracy for long-running
simulations.

5.3 Vector norms and the hypot function

Computing the norm of a vector is a very frequent operation. In Euclidean
metric, the norm is computed as the square root of the sum of the square of the
components and thus requires d multiplications, d-1 additions, and a square root.
With the exception of very high dimensions, the final square root is frequently the
most expensive operation as well as the least accurate.

The first step to improve both performance and accuracy is therefore to avoid
taking the square root if possible. For example, when the vector is a distance and the
objective is to compare distances, it is much faster (and accurate) to compare the
squared distances (sum of the squares of the differences of the components) rather
than the distances themselves. When the distance has to be compared against a
reference length, it is cheaper to square the reference length than it is to take the
square root in the distance computations.

A typical circumstance where one cannot avoid taking the square root is nor-
malization of a vector, in which each component needs to be divided by the length
of the vector; in some applications this is such a frequent (and slow) operation that
fast, but less accurate implementations are used, such as the fast inverse square root
[35] popularized by its use in id Software Quake III: Arena video game [36].

While games can afford to sacrifice accuracy for performance, this is not the
case in scientific applications, for which a significant issue in vector normalization
(and similar operations) is numerical stability: when the vector has components
which are very close to zero, a naive computation of the norm may lead to
underflow, potentially resulting in a final division by zero during normalization;
conversely, very large components can lead to overflow of the inner summation
before the root extraction.

Listing 6.
KBN (Kahan-Babuška-Neumaier) summation algorithm. Standard form (left) and possible vectorization
(right).

t=sum + term;
if (abs(sum)>= abs(term)) {

correction +=(sum - t)+term;
} else {

correction +=(term - t)+sum;
}
sum=t;

t=sum + term;
cond=(abs(sum)>= abs(term));
sum_or_term=select(term, sum, cond);
term_or_sum=select(sum, term, cond);
correction +=(sum_or_term - t)+term_or_sum;
sum=t;

90

High Performance Parallel Computing

The solution is to compute the norm using the hypot operator. The idea is to

rewrite
ffi
a20 þ a21 þ :::þ a2n

p
as a0j j

ffi
1þ q21 þ :::þ q2n

q
where qi ¼ ai=a0. In exact

arithmetic the two expressions are equivalent, but with finite precision, the second
expression is more accurate, assuming the values are sorted by magnitude (largest
to smallest). The higher accuracy of hypot however comes at a significant compu-
tational cost, due to the additional division per component: even highly optimized
implementations of hypot (such as the two-argument function available in the
standard C library, in OpenCL C and in CUDA) can easily be as much as two orders
of magnitude slower than the naive approach.

5.4 Local versus global position

A major difference between numerical methods such as finite differences and
meshless methods such as smoothed particle hydrodynamics is that in the former
case, there is no need to track the global position of each computational node, as this
is defined algorithmically based on the (possibly adaptive) mesh size, and the
internode distance is fixed and known in advance. Meshless methods, on the other
hand, need to track the global position of each particle; due to the nonuniform
distribution of floating-point values, the inter-particle distance (computed as the
difference between the global position of the particles) will then have a higher
precision near the origin of the domain and a lower precision the further away from
the origin the particles are. When the ratio of the inter-particle distance to the
domain size gets close to machine epsilon, this nonuniform accuracy may lead to
artificial clustering of particles, an effect that is quite noticeable when using single
precision to simulate very large domains with a very fine resolution (Figure 5).

While extending the precision for the global position is a possible solution [37],
this only delays the problem and, as mentioned previously, may have a nontrivial
computational cost. An alternative approach is to use a support, fixed grid with
regular spacing and only track the position of each particle with respect to the
center of the grid cell it belongs to [38]; distances to the other particles are obtained
by correcting the distance between the grid cell centers and the local position
difference (Listing 7). Absolute (global) positions are only reconstructed when
necessary (e.g., when writing the results to disk).

Figure 5.
Simulation of an 8-pool fish pass with GPUSPH before the introduction of uniform position precision. At high
resolutions, spurious explosion due to insufficient precision near the domain edge can be observed.

91

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

The downsides of compensated summation algorithms are higher storage
requirements (the additional accumulator) and higher computational cost (Kahan,
e.g., requires four times more operations compared to the standard summation).
Compared to the use of double precision, the storage requirements are unchanged;
the computational cost, however, is two (or more) times higher than the cost of
double-precision on hardware that supports it at full frequency; on most consumer
GPUs, however, the use of compensated summation can be up to eight times faster
than the use of double precision.

Compensated summation algorithms can be used both locally, at the single
kernel level, to improve the computation of the contributions for the next time step,
and globally, across kernel launches, providing better accuracy for long-running
simulations.

5.3 Vector norms and the hypot function

Computing the norm of a vector is a very frequent operation. In Euclidean
metric, the norm is computed as the square root of the sum of the square of the
components and thus requires d multiplications, d-1 additions, and a square root.
With the exception of very high dimensions, the final square root is frequently the
most expensive operation as well as the least accurate.

The first step to improve both performance and accuracy is therefore to avoid
taking the square root if possible. For example, when the vector is a distance and the
objective is to compare distances, it is much faster (and accurate) to compare the
squared distances (sum of the squares of the differences of the components) rather
than the distances themselves. When the distance has to be compared against a
reference length, it is cheaper to square the reference length than it is to take the
square root in the distance computations.

A typical circumstance where one cannot avoid taking the square root is nor-
malization of a vector, in which each component needs to be divided by the length
of the vector; in some applications this is such a frequent (and slow) operation that
fast, but less accurate implementations are used, such as the fast inverse square root
[35] popularized by its use in id Software Quake III: Arena video game [36].

While games can afford to sacrifice accuracy for performance, this is not the
case in scientific applications, for which a significant issue in vector normalization
(and similar operations) is numerical stability: when the vector has components
which are very close to zero, a naive computation of the norm may lead to
underflow, potentially resulting in a final division by zero during normalization;
conversely, very large components can lead to overflow of the inner summation
before the root extraction.

Listing 6.
KBN (Kahan-Babuška-Neumaier) summation algorithm. Standard form (left) and possible vectorization
(right).

t=sum + term;
if (abs(sum)>= abs(term)) {

correction +=(sum - t)+term;
} else {

correction +=(term - t)+sum;
}
sum=t;

t=sum + term;
cond=(abs(sum)>= abs(term));
sum_or_term=select(term, sum, cond);
term_or_sum=select(sum, term, cond);
correction +=(sum_or_term - t)+term_or_sum;
sum=t;

90

High Performance Parallel Computing

The solution is to compute the norm using the hypot operator. The idea is to

rewrite
ffi
a20 þ a21 þ :::þ a2n

p
as a0j j

ffi
1þ q21 þ :::þ q2n

q
where qi ¼ ai=a0. In exact

arithmetic the two expressions are equivalent, but with finite precision, the second
expression is more accurate, assuming the values are sorted by magnitude (largest
to smallest). The higher accuracy of hypot however comes at a significant compu-
tational cost, due to the additional division per component: even highly optimized
implementations of hypot (such as the two-argument function available in the
standard C library, in OpenCL C and in CUDA) can easily be as much as two orders
of magnitude slower than the naive approach.

5.4 Local versus global position

A major difference between numerical methods such as finite differences and
meshless methods such as smoothed particle hydrodynamics is that in the former
case, there is no need to track the global position of each computational node, as this
is defined algorithmically based on the (possibly adaptive) mesh size, and the
internode distance is fixed and known in advance. Meshless methods, on the other
hand, need to track the global position of each particle; due to the nonuniform
distribution of floating-point values, the inter-particle distance (computed as the
difference between the global position of the particles) will then have a higher
precision near the origin of the domain and a lower precision the further away from
the origin the particles are. When the ratio of the inter-particle distance to the
domain size gets close to machine epsilon, this nonuniform accuracy may lead to
artificial clustering of particles, an effect that is quite noticeable when using single
precision to simulate very large domains with a very fine resolution (Figure 5).

While extending the precision for the global position is a possible solution [37],
this only delays the problem and, as mentioned previously, may have a nontrivial
computational cost. An alternative approach is to use a support, fixed grid with
regular spacing and only track the position of each particle with respect to the
center of the grid cell it belongs to [38]; distances to the other particles are obtained
by correcting the distance between the grid cell centers and the local position
difference (Listing 7). Absolute (global) positions are only reconstructed when
necessary (e.g., when writing the results to disk).

Figure 5.
Simulation of an 8-pool fish pass with GPUSPH before the introduction of uniform position precision. At high
resolutions, spurious explosion due to insufficient precision near the domain edge can be observed.

91

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

This approach doubles the storage requirement (e.g., in three dimensions, an
additional int3 is needed to describe the cell index, in addition to the local position
stored in a float3), matching the requirement of the higher-precision type (e.g.,
storing global positions but using a double3 per particle), with the additional benefit
of uniform accuracy throughout the domain, and the possibility to support much
larger domains, even larger than would be allowed with higher precision. If the overall
number of cells is relatively low, storage requirements can be reduced by encoding
the cell coordinates in less memory: for example, if the overall number of cells is less
than 232, it is possible to store a linearized cell index in a single unsigned int. The
support grid solution is particularly advantageous when the same grid (and linearized
cell index) can also be used for neighbor search, as described in Section 4.3, and to
improve the performance of multi-GPU simulations, as discussed in Section 4.5.

5.5 Relative and nondimensional quantities

A general rule to improve the numerical stability of most methods is to work in
nondimensional form, i.e., to scale all quantities (length, time, mass, etc.) by some
problem-specific scale factor related to the problem’s characteristic numbers (e.g.,
the Reynold number in case of viscous flows), and rewrite the underlying equations
in terms of the nondimensional quantities instead of using standard units.

Working with nondimensional quantities can lead to better accuracy by allowing
fuller utilization of the range of the floating-point values, but additional steps can
be taken to gain further accuracy. An example of this is the local coordinate system
proposed in the previous paragraph that alone is sufficient to improve the energy
conservation of GPUSPH by as much as four orders of magnitude [38], but the same
principle can be extended to most quantities. The benefits are particularly high
when the range of variation of the quantity itself is small.

For example, in the weakly compressible SPH formulation, the density ρ of the
particles in a fluid is assumed to differ from the reference (at-rest) value ρo by at
most a few percent. In nondimensional terms, the recommended approach would
be to work with the relative density RD ¼ ρ=ρ0, but the numerical accuracy can be
further improved by working with the centered relative density eρ ¼ ρ=ρo � 1, which
allows us to gain three or more digits of accuracy and to bring the absolute error in
the computation of the neighbor contribution to the pressure part of the momen-
tum equation from 10�7 down to 10�11 [38].

6. Flexibility

When setting forth to implement a new particle engine, important decisions
have to be made concerning the general design of the system, particularly in refer-
ence to the scope and objectives. This is particularly important for particle system,

Listing 7.
Computing particle distance with uniform precision using cell indices and local positions.

const float3 cell_size;
int3 our_cell, neib_cell;
float3 our_lpos, neib_lpos;
float3 dist_vec =

(neib_cell – our_cell)*cell_size +
(neib_lpos – our_lpos);

/* global constant: cell size */
/* (integer) coordinates of the cells */
/* particle position wrt their cell center */
/* particle distance, computed from the local

position difference and the cell center
distance */

92

High Performance Parallel Computing

due to the possible temptation to produce a “universal particle system engine” that
could be extended to support any kind of particle system: a worthy objective, but in
direct contrast with the need to have something useful and functional “right now.”
As a general rule, our recommendation is to start with a well-focused objective (e.g.,
a very specific formulation of a numerical method) and only extend/expand the
objective for specific use cases.

The focus of the initial implementation of a particle system (as for any general
application) should always be correctness over performance. This is true also when
specifically targeting high-performance computing (e.g., when designing for a GPU
implementation). There are however some important design aspects that can be
kept in mind, with low implementation cost and high return of investment at later
development stages, both in terms of code cleanliness and extensibility. We will
present them in this section, showing how the complexity that comes with flexibil-
ity can be isolated to provide a cleaner interface and without sacrificing (runtime)
performance.

6.1 Separation of roles

Implementations of particle systems can be characterized by three main roles:
management (setup, teardown, data exchange, e.g., saving/visualization), evolution
(abstract sequence of steps that describe a single iteration of the lifetime of the
system), and execution (concrete functions and kernels for each individual step).
Keeping these roles distinct from the beginning can provide a solid base for the
growth of the implementation; for example, while at first the developer may focus
on single GPU, a subsequent extension to multi-GPU can be achieved more easily at
a later stage if the management and execution roles are delegated to separate classes,
running on separate threads: typically, management is handled by the main thread,
while the execution role will be delegated to a worker thread (which become
multiple worker threads in the multi-GPU case).

Two approaches are then possible: assign the evolution role (i.e., the decisions
about which steps to run next) to the manager thread or to the workers. The latter
choice (“smart workers”) has the advantage that the worker threads know what to
do for every step, and this can be leveraged to reduce synchronization points; the
downside is that unification tasks (such as global reductions and data exchange in
the multi-node case) must be taken over by a specific worker, which creates an
imbalance (since not all workers are created equal). Conversely, with “dumb
workers,” most commands become a synchronization point (which can become a
performance bottleneck), but the manager thread can more easily subsume the
unification tasks. Hybrid solutions are also possible, at the expense of a growing
complexity in logic. Factoring out the (abstract description of the) evolution into its
own class (in the object-oriented programming sense) can make it easier to transi-
tion from one implementation to the other.

6.1.1 Workers for hardware abstraction

Refactoring the execution role into a separate Worker class has several advan-
tages. The most important, as mentioned above, is that having a separate Worker
class provides a solid ground to expand the code to support multiple GPUs (with
each Worker taking control of a separate device).

Additionally, with the correct design, wider hardware support can be
implemented by making the Worker class itself an abstract class, implementing only
the common code, such as the evolution logic in the case of smart workers, or the
command dispatch table in the case of dumb workers. Derived classes would then

93

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

This approach doubles the storage requirement (e.g., in three dimensions, an
additional int3 is needed to describe the cell index, in addition to the local position
stored in a float3), matching the requirement of the higher-precision type (e.g.,
storing global positions but using a double3 per particle), with the additional benefit
of uniform accuracy throughout the domain, and the possibility to support much
larger domains, even larger than would be allowed with higher precision. If the overall
number of cells is relatively low, storage requirements can be reduced by encoding
the cell coordinates in less memory: for example, if the overall number of cells is less
than 232, it is possible to store a linearized cell index in a single unsigned int. The
support grid solution is particularly advantageous when the same grid (and linearized
cell index) can also be used for neighbor search, as described in Section 4.3, and to
improve the performance of multi-GPU simulations, as discussed in Section 4.5.

5.5 Relative and nondimensional quantities

A general rule to improve the numerical stability of most methods is to work in
nondimensional form, i.e., to scale all quantities (length, time, mass, etc.) by some
problem-specific scale factor related to the problem’s characteristic numbers (e.g.,
the Reynold number in case of viscous flows), and rewrite the underlying equations
in terms of the nondimensional quantities instead of using standard units.

Working with nondimensional quantities can lead to better accuracy by allowing
fuller utilization of the range of the floating-point values, but additional steps can
be taken to gain further accuracy. An example of this is the local coordinate system
proposed in the previous paragraph that alone is sufficient to improve the energy
conservation of GPUSPH by as much as four orders of magnitude [38], but the same
principle can be extended to most quantities. The benefits are particularly high
when the range of variation of the quantity itself is small.

For example, in the weakly compressible SPH formulation, the density ρ of the
particles in a fluid is assumed to differ from the reference (at-rest) value ρo by at
most a few percent. In nondimensional terms, the recommended approach would
be to work with the relative density RD ¼ ρ=ρ0, but the numerical accuracy can be
further improved by working with the centered relative density eρ ¼ ρ=ρo � 1, which
allows us to gain three or more digits of accuracy and to bring the absolute error in
the computation of the neighbor contribution to the pressure part of the momen-
tum equation from 10�7 down to 10�11 [38].

6. Flexibility

When setting forth to implement a new particle engine, important decisions
have to be made concerning the general design of the system, particularly in refer-
ence to the scope and objectives. This is particularly important for particle system,

Listing 7.
Computing particle distance with uniform precision using cell indices and local positions.

const float3 cell_size;
int3 our_cell, neib_cell;
float3 our_lpos, neib_lpos;
float3 dist_vec =

(neib_cell – our_cell)*cell_size +
(neib_lpos – our_lpos);

/* global constant: cell size */
/* (integer) coordinates of the cells */
/* particle position wrt their cell center */
/* particle distance, computed from the local

position difference and the cell center
distance */

92

High Performance Parallel Computing

due to the possible temptation to produce a “universal particle system engine” that
could be extended to support any kind of particle system: a worthy objective, but in
direct contrast with the need to have something useful and functional “right now.”
As a general rule, our recommendation is to start with a well-focused objective (e.g.,
a very specific formulation of a numerical method) and only extend/expand the
objective for specific use cases.

The focus of the initial implementation of a particle system (as for any general
application) should always be correctness over performance. This is true also when
specifically targeting high-performance computing (e.g., when designing for a GPU
implementation). There are however some important design aspects that can be
kept in mind, with low implementation cost and high return of investment at later
development stages, both in terms of code cleanliness and extensibility. We will
present them in this section, showing how the complexity that comes with flexibil-
ity can be isolated to provide a cleaner interface and without sacrificing (runtime)
performance.

6.1 Separation of roles

Implementations of particle systems can be characterized by three main roles:
management (setup, teardown, data exchange, e.g., saving/visualization), evolution
(abstract sequence of steps that describe a single iteration of the lifetime of the
system), and execution (concrete functions and kernels for each individual step).
Keeping these roles distinct from the beginning can provide a solid base for the
growth of the implementation; for example, while at first the developer may focus
on single GPU, a subsequent extension to multi-GPU can be achieved more easily at
a later stage if the management and execution roles are delegated to separate classes,
running on separate threads: typically, management is handled by the main thread,
while the execution role will be delegated to a worker thread (which become
multiple worker threads in the multi-GPU case).

Two approaches are then possible: assign the evolution role (i.e., the decisions
about which steps to run next) to the manager thread or to the workers. The latter
choice (“smart workers”) has the advantage that the worker threads know what to
do for every step, and this can be leveraged to reduce synchronization points; the
downside is that unification tasks (such as global reductions and data exchange in
the multi-node case) must be taken over by a specific worker, which creates an
imbalance (since not all workers are created equal). Conversely, with “dumb
workers,” most commands become a synchronization point (which can become a
performance bottleneck), but the manager thread can more easily subsume the
unification tasks. Hybrid solutions are also possible, at the expense of a growing
complexity in logic. Factoring out the (abstract description of the) evolution into its
own class (in the object-oriented programming sense) can make it easier to transi-
tion from one implementation to the other.

6.1.1 Workers for hardware abstraction

Refactoring the execution role into a separate Worker class has several advan-
tages. The most important, as mentioned above, is that having a separate Worker
class provides a solid ground to expand the code to support multiple GPUs (with
each Worker taking control of a separate device).

Additionally, with the correct design, wider hardware support can be
implemented by making the Worker class itself an abstract class, implementing only
the common code, such as the evolution logic in the case of smart workers, or the
command dispatch table in the case of dumb workers. Derived classes would then

93

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

implement the hardware-specific details such as the actual kernel execution or the
host/device memory transfers. For example, one could have a GPUWorker for exe-
cution on GPU and a CPUWorker for execution on CPU [26]; the GPUWorker class
itself could be further specialized in a CUDAWorker and an OpenCLWorker, when
support for both APIs is desired.

6.2 The cost of variation

The complexity of the implementation of each individual step of the evolution
loop in the particle system is directly related to the number of features offered; for
example, some sections of the code may only be relevant when the fluid needs to
interact with moving objects; or some particle types or particle data may only be
present if specific options (e.g., an SPH formulation) are enabled; or it may be
possible to choose between a faster but less accurate approach and a computation-
ally more expensive, more accurate solution.

There are two main costs that come with providing multiple features (or varia-
tions thereof): an implementation cost (larger, more complex code to write) and a
runtime cost. Both costs can be reduced with appropriate care in the design of the
software. An optimal implementation should be designed in such a way that the
runtime cost of a disabled feature matches the runtime cost had it not been
implemented in the first place. For example, if the user runs an SPH simulation
without any moving objects, then the runtime should be the same in an SPH
implementation that does not support moving objects, and in an implementation
that does support them, but that can detect (or can be told) that support for them is
not needed. Likewise, the implementation of any additional feature should be as
unobtrusive as possible, factored out into its own sets of functions. Luckily these
two goals are not in conflict.

6.2.1 Managing buffers

One of the key aspects in supporting multiple variants for particle systems is
correct buffer management. The objective is to support allocating all and only the
(copies of the) buffers that are needed, correctly sized, in a unified manner (i.e.,
with the same interface on host and device). Moreover, we want to be able to pass
around sets of buffers (e.g., the collection of all allocated buffers or a specific subset
of them) to other parts of the code, in a way that minimizes both the actual copying
of data and the detailed specification of which buffers belong to a set.

The approach we use in GPUSPH to solve this issue relies on two aspects:
bitmask-based buffer naming and a set of classes that abstract buffer management,
isolating the details of the individual buffer while still allowing the retrieval of all
the necessary information, such as the data type, the number of elements, the kind
of buffer (e.g., host or device), etc.

Bitmask-based buffer naming relies on using an appropriate set of values
(defined with either #defines or an enum) to refer to the buffers, on the condition
that each (symbolic) buffer name corresponds to an individual bit. These symbolic
buffer names are used to refer to buffers in most of the host code, with the excep-
tions of the classes and functions that require access to the actual corresponding
data pointers (i.e., the lowest level of implementation of the GPUWorker). An
example of this is shown in Listing 8, which needs to be paired with an appropriate
BufferList class such that, given BufferList buffers, we can get the array of
positions as buffers.getData<BUFFER_POS>().

With each symbolic name associated to a separate buffer, it is possible to com-
bine them into an expression to refer to multiple buffers at once. For example,

94

High Performance Parallel Computing

BUFFER_POS | BUFFER_VEL would indicate a collection of buffers holding both the
positions and the velocity. This is particularly useful in conjunction with the “dumb
worker” approach, because it allows most commands given by the Manager thread
to the Workers to have a syntax such as

doCommand(COMMAND_NAME, BUFFER_R1 | BUFFER_R2 | ...,
BUFFER_W1 | BUFFER_W2 | …);

where the list of input and output buffers for the command are given as single
parameters by doing a binary OR of the symbolic buffer names.

In languages such as C++, the use of symbolic names (with or without the
bitmask property) also allows static knowledge about the buffer properties to be
encoded into “traits” structure that can be used to evince information about the
buffers at compile time, as exemplified in Listing 9. This allows developers to
programmatically determine the element type of a buffer as BufferTraits
<symbolic_name>::element_type, which can be used in our BufferList class to
make sure that when requesting a specific array, we get a pointer of the correct type
and BufferTraits<symbolic_name>::num_buffers to determine how many com-
ponents the buffer has (e.g., in this example we model a symmetric 3�3 tensor,
which has six components, as a collection of three float2 buffers).

The management of the actual data is handled with different layers of abstrac-
tion. We use an AbstractBuffer class to describe the interface shared by all buffers,
regardless of content or type; the interface presents (pure virtual) methods for
operations such as allocations and deallocation of data, as well as a way to return a
“generic” pointer to the data itself (as a void*, since no type information is available
in AbstractBuffer).

The next layer can be implemented as a GenericBuffer class template that
depends on the data type and number of components of the buffer, so that
GenericBuffer<float2, 3>would be able to handle storage and typed access to per-
particle symmetric tensor data (encoded in three float2 per particle).

Listing 8.
Buffer as member variables (left) versus buffer symbolic names (right).

float4 *bufferPos;
int *bufferNeibs;
float2 *bufferTau[3]; /* stress tensor */

#define BUFFER_POS (1U<<0)
#define BUFFER_NEIBS (1U<<1)
#define BUFFER_TAU (1U<<2)

Listing 9.
Example declaration of a BufferTraits structure and its specializations for some named buffers, declaring their
data type and multiplicity.

template<int Buffer> struct BufferTraits;

template<> struct BufferTraits<BUFFER_POS>
{

typedef float4 element_type;
enum {num_buffers=1};

};

template<> struct BufferTraits<BUFFER_NEIBS>
{

typedef int element_type;
enum {num_buffers=1};

};
template<> struct BufferTraits<BUFFER_TAU>
{

typedef float2 element_type;
enum {num_buffers=3};

};

95

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

implement the hardware-specific details such as the actual kernel execution or the
host/device memory transfers. For example, one could have a GPUWorker for exe-
cution on GPU and a CPUWorker for execution on CPU [26]; the GPUWorker class
itself could be further specialized in a CUDAWorker and an OpenCLWorker, when
support for both APIs is desired.

6.2 The cost of variation

The complexity of the implementation of each individual step of the evolution
loop in the particle system is directly related to the number of features offered; for
example, some sections of the code may only be relevant when the fluid needs to
interact with moving objects; or some particle types or particle data may only be
present if specific options (e.g., an SPH formulation) are enabled; or it may be
possible to choose between a faster but less accurate approach and a computation-
ally more expensive, more accurate solution.

There are two main costs that come with providing multiple features (or varia-
tions thereof): an implementation cost (larger, more complex code to write) and a
runtime cost. Both costs can be reduced with appropriate care in the design of the
software. An optimal implementation should be designed in such a way that the
runtime cost of a disabled feature matches the runtime cost had it not been
implemented in the first place. For example, if the user runs an SPH simulation
without any moving objects, then the runtime should be the same in an SPH
implementation that does not support moving objects, and in an implementation
that does support them, but that can detect (or can be told) that support for them is
not needed. Likewise, the implementation of any additional feature should be as
unobtrusive as possible, factored out into its own sets of functions. Luckily these
two goals are not in conflict.

6.2.1 Managing buffers

One of the key aspects in supporting multiple variants for particle systems is
correct buffer management. The objective is to support allocating all and only the
(copies of the) buffers that are needed, correctly sized, in a unified manner (i.e.,
with the same interface on host and device). Moreover, we want to be able to pass
around sets of buffers (e.g., the collection of all allocated buffers or a specific subset
of them) to other parts of the code, in a way that minimizes both the actual copying
of data and the detailed specification of which buffers belong to a set.

The approach we use in GPUSPH to solve this issue relies on two aspects:
bitmask-based buffer naming and a set of classes that abstract buffer management,
isolating the details of the individual buffer while still allowing the retrieval of all
the necessary information, such as the data type, the number of elements, the kind
of buffer (e.g., host or device), etc.

Bitmask-based buffer naming relies on using an appropriate set of values
(defined with either #defines or an enum) to refer to the buffers, on the condition
that each (symbolic) buffer name corresponds to an individual bit. These symbolic
buffer names are used to refer to buffers in most of the host code, with the excep-
tions of the classes and functions that require access to the actual corresponding
data pointers (i.e., the lowest level of implementation of the GPUWorker). An
example of this is shown in Listing 8, which needs to be paired with an appropriate
BufferList class such that, given BufferList buffers, we can get the array of
positions as buffers.getData<BUFFER_POS>().

With each symbolic name associated to a separate buffer, it is possible to com-
bine them into an expression to refer to multiple buffers at once. For example,

94

High Performance Parallel Computing

BUFFER_POS | BUFFER_VEL would indicate a collection of buffers holding both the
positions and the velocity. This is particularly useful in conjunction with the “dumb
worker” approach, because it allows most commands given by the Manager thread
to the Workers to have a syntax such as

doCommand(COMMAND_NAME, BUFFER_R1 | BUFFER_R2 | ...,
BUFFER_W1 | BUFFER_W2 | …);

where the list of input and output buffers for the command are given as single
parameters by doing a binary OR of the symbolic buffer names.

In languages such as C++, the use of symbolic names (with or without the
bitmask property) also allows static knowledge about the buffer properties to be
encoded into “traits” structure that can be used to evince information about the
buffers at compile time, as exemplified in Listing 9. This allows developers to
programmatically determine the element type of a buffer as BufferTraits
<symbolic_name>::element_type, which can be used in our BufferList class to
make sure that when requesting a specific array, we get a pointer of the correct type
and BufferTraits<symbolic_name>::num_buffers to determine how many com-
ponents the buffer has (e.g., in this example we model a symmetric 3�3 tensor,
which has six components, as a collection of three float2 buffers).

The management of the actual data is handled with different layers of abstrac-
tion. We use an AbstractBuffer class to describe the interface shared by all buffers,
regardless of content or type; the interface presents (pure virtual) methods for
operations such as allocations and deallocation of data, as well as a way to return a
“generic” pointer to the data itself (as a void*, since no type information is available
in AbstractBuffer).

The next layer can be implemented as a GenericBuffer class template that
depends on the data type and number of components of the buffer, so that
GenericBuffer<float2, 3>would be able to handle storage and typed access to per-
particle symmetric tensor data (encoded in three float2 per particle).

Listing 8.
Buffer as member variables (left) versus buffer symbolic names (right).

float4 *bufferPos;
int *bufferNeibs;
float2 *bufferTau[3]; /* stress tensor */

#define BUFFER_POS (1U<<0)
#define BUFFER_NEIBS (1U<<1)
#define BUFFER_TAU (1U<<2)

Listing 9.
Example declaration of a BufferTraits structure and its specializations for some named buffers, declaring their
data type and multiplicity.

template<int Buffer> struct BufferTraits;

template<> struct BufferTraits<BUFFER_POS>
{

typedef float4 element_type;
enum {num_buffers=1};

};

template<> struct BufferTraits<BUFFER_NEIBS>
{

typedef int element_type;
enum {num_buffers=1};

};
template<> struct BufferTraits<BUFFER_TAU>
{

typedef float2 element_type;
enum {num_buffers=3};

};

95

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Since we can derive element types and number of components from the buffer
traits, our Buffer class template can simply derive from the appropriate
GenericBuffer:

template<flag_t Key>
class Buffer : public GenericBuffer<

BufferTraits<Key>::element_type,
BufferTraits<Key>::num_buffers>

{ /* other specializations, as necessary */ };

Note that the Buffer class template still does not have any actual allocation logic:
its only purpose is to provide the correct base class for the named properties of each
particle (e.g., position, velocity, etc.). The allocation logic is delegated to derived
classes such as HostBuffer (that would use malloc/free or new/delete),
CUDABuffer (using cudaMalloc/cudaFree), and CLBuffer (using clCreateBuffer/
clReleaseMemObject).

Finally, a collection of buffers is managed by a BufferList that maps symbolic
names to the concrete class implementing the buffer with the specific symbolic
name.

Since different variants of a particle system will instance different subsets of all
possible buffers, the mapping will in general be sparse, and it is therefore better to
use a dictionary type such as std::map (or language equivalent) to implement it.
This is particularly true for the bitmask choice of symbolic names. Moreover, since
each symbolic name maps to a buffer with a different data type, the mapping will
generally be between symbolic names and AbstractBuffers. Downcasting to the
correct Buffer<symbolic_name> type can be done in specific template methods,
where the symbolic name is known as compile type. Our BufferList class, for
example, exposes a template getData method that returns a pointer of the correct
type for the given symbolic name, again using the buffer traits to deduce it; some
example of its usage are illustrated further on.

In general, a single instance of a running particle system will have multiple
BufferLists: it may have one to hold the data on host (e.g., for saving or visualiza-
tion) and one on device to hold the data for the running simulation; on device, it
might have more than one, separating read/write copies of each buffer, or to hold
the data for different parts of the particle system (e.g., a BufferList for fluid
particle data, a BufferList for boundary particle data); it may also have one (or
more) BufferLists to hold all of the available data for the particle system and
separate smaller BufferLists with a selection of the data when passing it to indi-
vidual kernels, depending on the approach used.

6.2.2 Handling options combinatorial growth

As the number of options offered to the end user of a particle system grows,
there is a consequent explosion in the number of possible valid combinations that
need to be supported, which results in competing needs between the opportunity
(for performance reasons) for their compile-time implementation, and the associ-
ated resource consumption at compile time when runtime selection of the specific
option is offered.

(At some point of time, compiling all of the combinations of simulation param-
eters offered by GPUSPH took several hours, occupying several gigabytes of mem-
ory and producing a binary with around 3000 variants of the main computational
kernels overall.)

96

High Performance Parallel Computing

There are two possible solutions to this issue. The simplest solution, which is
currently used in GPUSPH, is to push down the compile-time selection to the user:
the setup of the user simulation is done via a source file where all the compile-time
parameters must be selected. When the user simulation setup is compiled, only the
specific combination of parameters will be enabled and compiled for. An alternative
solution is to rely on the specific possibility offered with GPU programming, to
compile the device code at runtime. This feature has always been available with
OpenCL (in fact, OpenCL requires runtime compilation of the device code), and it
has been recently made available in CUDA via the NVRTC library.

The main downside of the compile-time selection is that the software must
always be distributed in source form, with several implications in terms of user-
friendliness and maintenance. Downsides for runtime compilation include the lim-
ited support for older version of CUDA, when relying on this proprietary solution,
and the potential time loss at the beginning of each execution (which may or may
not be offset by any caching the runtime compilation engine might do).

On the other hand, runtime compilation of the device code allows an even wider
range of aspects to be implemented at compile time (on the device side), which may
allow even stronger compiler optimizations. For example, global simulation param-
eters that are constant throughout a simulation are often stored in the device
constant memory at the beginning of the simulation; even though access to constant
memory is quite efficient, inlining the constants can be even more efficient, and this
can be achieved exploiting runtime compilation, by replacing the upload of the
constants to the device with appropriate #define in the runtime-compiled device
code.

6.2.3 C++ SFINAE versus C preprocessors for compile-time specialization

Implementing multiple variations of a kernel (or function used by a kernel) is
generally nontrivial, as the functions may have different sets of parameters and
different private variables and may operate differently even on data that is present
in all or most of them. The objective is therefore to isolate the variant-specific parts
from the common parts, avoiding code repetition.

When using runtime compilation for the device code and a C-based language
such as OpenCL C, the only way to achieve this is to fence nonrelevant parts of the
code with appropriate preprocessor directives, as illustrated in Listing 10 (left).
Code fencing can be factored out, and sometimes reduced, by collecting data into
conditional structures and refactoring computations into conditional functions; the
resulting code is slightly more verbose (Listing 10, right), but the optional features
are better isolated, improving the maintainability of the code.

Note that the conditional structure in this example cannot be extended to the
kernel parameters and private variables itself, due to the impossibility for global
array addresses to be member of structures shared between host and device, which
further limits the possibility to initialize the conditional parts of the private variable
structure with appropriate conditional functions. (This is a limitation of OpenCL C;
alternative solutions are possible using the Shared Virtual Memory feature intro-
duced in OpenCL 2.0 and supported by some implementations as an extension on
older versions of the standard.)

When the device code can be written in C++ and global arrays pointers are made
available in the same form to both the host and device (e.g., with CUDA), the
language itself provides powerful meta-programming techniques that can be lever-
aged to eliminate the need for a preprocessor, allowing multiple specialized
implementations to coexist.

97

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Since we can derive element types and number of components from the buffer
traits, our Buffer class template can simply derive from the appropriate
GenericBuffer:

template<flag_t Key>
class Buffer : public GenericBuffer<

BufferTraits<Key>::element_type,
BufferTraits<Key>::num_buffers>

{ /* other specializations, as necessary */ };

Note that the Buffer class template still does not have any actual allocation logic:
its only purpose is to provide the correct base class for the named properties of each
particle (e.g., position, velocity, etc.). The allocation logic is delegated to derived
classes such as HostBuffer (that would use malloc/free or new/delete),
CUDABuffer (using cudaMalloc/cudaFree), and CLBuffer (using clCreateBuffer/
clReleaseMemObject).

Finally, a collection of buffers is managed by a BufferList that maps symbolic
names to the concrete class implementing the buffer with the specific symbolic
name.

Since different variants of a particle system will instance different subsets of all
possible buffers, the mapping will in general be sparse, and it is therefore better to
use a dictionary type such as std::map (or language equivalent) to implement it.
This is particularly true for the bitmask choice of symbolic names. Moreover, since
each symbolic name maps to a buffer with a different data type, the mapping will
generally be between symbolic names and AbstractBuffers. Downcasting to the
correct Buffer<symbolic_name> type can be done in specific template methods,
where the symbolic name is known as compile type. Our BufferList class, for
example, exposes a template getData method that returns a pointer of the correct
type for the given symbolic name, again using the buffer traits to deduce it; some
example of its usage are illustrated further on.

In general, a single instance of a running particle system will have multiple
BufferLists: it may have one to hold the data on host (e.g., for saving or visualiza-
tion) and one on device to hold the data for the running simulation; on device, it
might have more than one, separating read/write copies of each buffer, or to hold
the data for different parts of the particle system (e.g., a BufferList for fluid
particle data, a BufferList for boundary particle data); it may also have one (or
more) BufferLists to hold all of the available data for the particle system and
separate smaller BufferLists with a selection of the data when passing it to indi-
vidual kernels, depending on the approach used.

6.2.2 Handling options combinatorial growth

As the number of options offered to the end user of a particle system grows,
there is a consequent explosion in the number of possible valid combinations that
need to be supported, which results in competing needs between the opportunity
(for performance reasons) for their compile-time implementation, and the associ-
ated resource consumption at compile time when runtime selection of the specific
option is offered.

(At some point of time, compiling all of the combinations of simulation param-
eters offered by GPUSPH took several hours, occupying several gigabytes of mem-
ory and producing a binary with around 3000 variants of the main computational
kernels overall.)

96

High Performance Parallel Computing

There are two possible solutions to this issue. The simplest solution, which is
currently used in GPUSPH, is to push down the compile-time selection to the user:
the setup of the user simulation is done via a source file where all the compile-time
parameters must be selected. When the user simulation setup is compiled, only the
specific combination of parameters will be enabled and compiled for. An alternative
solution is to rely on the specific possibility offered with GPU programming, to
compile the device code at runtime. This feature has always been available with
OpenCL (in fact, OpenCL requires runtime compilation of the device code), and it
has been recently made available in CUDA via the NVRTC library.

The main downside of the compile-time selection is that the software must
always be distributed in source form, with several implications in terms of user-
friendliness and maintenance. Downsides for runtime compilation include the lim-
ited support for older version of CUDA, when relying on this proprietary solution,
and the potential time loss at the beginning of each execution (which may or may
not be offset by any caching the runtime compilation engine might do).

On the other hand, runtime compilation of the device code allows an even wider
range of aspects to be implemented at compile time (on the device side), which may
allow even stronger compiler optimizations. For example, global simulation param-
eters that are constant throughout a simulation are often stored in the device
constant memory at the beginning of the simulation; even though access to constant
memory is quite efficient, inlining the constants can be even more efficient, and this
can be achieved exploiting runtime compilation, by replacing the upload of the
constants to the device with appropriate #define in the runtime-compiled device
code.

6.2.3 C++ SFINAE versus C preprocessors for compile-time specialization

Implementing multiple variations of a kernel (or function used by a kernel) is
generally nontrivial, as the functions may have different sets of parameters and
different private variables and may operate differently even on data that is present
in all or most of them. The objective is therefore to isolate the variant-specific parts
from the common parts, avoiding code repetition.

When using runtime compilation for the device code and a C-based language
such as OpenCL C, the only way to achieve this is to fence nonrelevant parts of the
code with appropriate preprocessor directives, as illustrated in Listing 10 (left).
Code fencing can be factored out, and sometimes reduced, by collecting data into
conditional structures and refactoring computations into conditional functions; the
resulting code is slightly more verbose (Listing 10, right), but the optional features
are better isolated, improving the maintainability of the code.

Note that the conditional structure in this example cannot be extended to the
kernel parameters and private variables itself, due to the impossibility for global
array addresses to be member of structures shared between host and device, which
further limits the possibility to initialize the conditional parts of the private variable
structure with appropriate conditional functions. (This is a limitation of OpenCL C;
alternative solutions are possible using the Shared Virtual Memory feature intro-
duced in OpenCL 2.0 and supported by some implementations as an extension on
older versions of the standard.)

When the device code can be written in C++ and global arrays pointers are made
available in the same form to both the host and device (e.g., with CUDA), the
language itself provides powerful meta-programming techniques that can be lever-
aged to eliminate the need for a preprocessor, allowing multiple specialized
implementations to coexist.

97

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Conditional structures and functions in C++ can be implemented by using tem-
plates and the meta-programming feature of the language known as SFINAE (sub-
stitution failure is not an error) to select function specializations based on any
combination of (compile-time) properties of their parameters. The approach we
show requires two building blocks that are available in the standard library since
C++11 (and can even be implemented in older C++ versions) and a special empty
structure template.

Listing 10.
Code fencing for optional components in the case of runtime device code compilation: inline approach (left) and
refactored approach with code isolation (right).

kernel void some_kernel(
global const float4 * restrict posArray,
global const float4 * restrict velArray,

#ifdef HAS_XSPH
global float4 * restrict xsphArray

#endif
#ifdef HAS_STRESS_TENSOR

global float4 * restrict stressTensor4,
global float4 * restrict stressTensor2,

#endif
global float4 * restrict forces)

{
/* common private variables go here */

#ifdef HAS_XSPH
/* XSPH private variables go here */

#endif
#ifdef HAS_STRESS_TENSOR

/* stress tensor private variables go here */
#endif

/* common computations go here */
#ifdef HAS_XSPH

/* XSPH computations go here */
#endif
#ifdef HAS_STRESS_TENSOR

/* stress tensor computations go here */
#endif
}

struct private_vars {
/* common private variables */

#ifdef HAS_XSPH
/* XSPH private variables */

#endif
#ifdef HAS_STRESS_TENSOR

/* stress tensor private variables */
#endif
};
void process_common(struct private_vars *priv)
{/* common computations here */}
void process_xsph(struct private_vars * priv)
#ifdef HAS_XSPH
{/* XSPH computations go here */}
#else
{} /* intentionally left blank */
#endif
void process_stress_tensor(

struct private_vars * priv)
#ifdef HAS_STRESS_TENSOR
{/* stress tensor computations go here */}
#else
{} /* intentionally left blank */
#endif
kernel void some_kernel(

global const float4 * restrict posArray,
global const float4 * restrict velArray,

#ifdef HAS_XSPH
global float4 * restrict xsphArray

#endif
#ifdef HAS_STRESS_TENSOR

global float4 * restrict stressTensor4,
global float4 * restrict stressTensor2,

#endif
global float4 * restrict forces)

{
struct private_vars priv;
/* initialize common part of priv */

#ifdef HAS_XSPH
/* initialize XSPH part of priv */

#endif
#ifdef HAS_STRESS_TENSOR

/* initialize stress tensor part of priv */
#endif

process_common(&priv);
process_xsph(&priv);
process_stress_tensor(&priv);

}

98

High Performance Parallel Computing

The first building block is a structure template.

template<bool B, typename T, typename F>struct conditional;

such that conditional<somecondition, SomeType, SomeOtherType>::type
corresponds to SomeType when somecondition is true and to SomeOtherType
when the condition is false. This is part of C++11 and can be also defined in previous
versions of the standard [39].

The purpose of the empty structure template is to “absorb” any type, construct
from anything, and otherwise be empty. Using C++11 variadic templates for the
constructor, it can be implemented as.

template<typename T>struct empty {
template<typename U…>empty(U… args) {}
};

In older versions of C++, the single variadic template constructor must to be
replaced with multiple constructor templates, each taking a separate number of
arguments.

With these building blocks, we can define our conditional structure support
type, relying on the C++11 using template directive:

template<bool B, typename T>
using cond_struct=typename

conditional< B, T, empty<T> >::type;

When forced to use older C++ versions, something similar but less robust can be
implemented with a macro such as.

#define COND_STRUCT(cond, ...) \
typename conditional<cond, __VA_ARGS__, \

empty<__VA_ARGS> >::type

A structure with optional members can then be defined by defining multiple
structures grouping each set of optional members and then defining the main
structure as derived from all substructures, each wrapped in their own
cond_struct<>, as illustrated in Listing 11. We see how the individual groups of
members for the final structure are refactored into simpler structures, carrying their
own initialization information. We also see why the empty structure needs to be a
template: if this was not the case, and both XSPH and the stress tensor computation
were disabled, the kernel parameters structure would have empty as a base class
twice, which is not allowed by the standard; with our template approach, the two
empty base classes are now formally distinct types: empty<xsph_kernel_params>
and empty<stress_kernel_params>. The sample code also shows the advantage
of the BufferList class described previously and its typed buffer access methods.
On the device side, we can use the same approach for the private variables of the
kernel (Listing 12).

Finally, we need to define the individual process functions. For this, we need
separate overloads depending on whether the priv structure has the specific
members or not. One way to achieve this is to make all functions depend on the
same template parameters as the structure, but when there are many
parameters, this becomes quite complex and hard to maintain and extend, since
every additional parameter will require a change in all the functions that access

99

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Conditional structures and functions in C++ can be implemented by using tem-
plates and the meta-programming feature of the language known as SFINAE (sub-
stitution failure is not an error) to select function specializations based on any
combination of (compile-time) properties of their parameters. The approach we
show requires two building blocks that are available in the standard library since
C++11 (and can even be implemented in older C++ versions) and a special empty
structure template.

Listing 10.
Code fencing for optional components in the case of runtime device code compilation: inline approach (left) and
refactored approach with code isolation (right).

kernel void some_kernel(
global const float4 * restrict posArray,
global const float4 * restrict velArray,

#ifdef HAS_XSPH
global float4 * restrict xsphArray

#endif
#ifdef HAS_STRESS_TENSOR

global float4 * restrict stressTensor4,
global float4 * restrict stressTensor2,

#endif
global float4 * restrict forces)

{
/* common private variables go here */

#ifdef HAS_XSPH
/* XSPH private variables go here */

#endif
#ifdef HAS_STRESS_TENSOR

/* stress tensor private variables go here */
#endif

/* common computations go here */
#ifdef HAS_XSPH

/* XSPH computations go here */
#endif
#ifdef HAS_STRESS_TENSOR

/* stress tensor computations go here */
#endif
}

struct private_vars {
/* common private variables */

#ifdef HAS_XSPH
/* XSPH private variables */

#endif
#ifdef HAS_STRESS_TENSOR

/* stress tensor private variables */
#endif
};
void process_common(struct private_vars *priv)
{/* common computations here */}
void process_xsph(struct private_vars * priv)
#ifdef HAS_XSPH
{/* XSPH computations go here */}
#else
{} /* intentionally left blank */
#endif
void process_stress_tensor(

struct private_vars * priv)
#ifdef HAS_STRESS_TENSOR
{/* stress tensor computations go here */}
#else
{} /* intentionally left blank */
#endif
kernel void some_kernel(

global const float4 * restrict posArray,
global const float4 * restrict velArray,

#ifdef HAS_XSPH
global float4 * restrict xsphArray

#endif
#ifdef HAS_STRESS_TENSOR

global float4 * restrict stressTensor4,
global float4 * restrict stressTensor2,

#endif
global float4 * restrict forces)

{
struct private_vars priv;
/* initialize common part of priv */

#ifdef HAS_XSPH
/* initialize XSPH part of priv */

#endif
#ifdef HAS_STRESS_TENSOR

/* initialize stress tensor part of priv */
#endif

process_common(&priv);
process_xsph(&priv);
process_stress_tensor(&priv);

}

98

High Performance Parallel Computing

The first building block is a structure template.

template<bool B, typename T, typename F>struct conditional;

such that conditional<somecondition, SomeType, SomeOtherType>::type
corresponds to SomeType when somecondition is true and to SomeOtherType
when the condition is false. This is part of C++11 and can be also defined in previous
versions of the standard [39].

The purpose of the empty structure template is to “absorb” any type, construct
from anything, and otherwise be empty. Using C++11 variadic templates for the
constructor, it can be implemented as.

template<typename T>struct empty {
template<typename U…>empty(U… args) {}
};

In older versions of C++, the single variadic template constructor must to be
replaced with multiple constructor templates, each taking a separate number of
arguments.

With these building blocks, we can define our conditional structure support
type, relying on the C++11 using template directive:

template<bool B, typename T>
using cond_struct=typename

conditional< B, T, empty<T> >::type;

When forced to use older C++ versions, something similar but less robust can be
implemented with a macro such as.

#define COND_STRUCT(cond, ...) \
typename conditional<cond, __VA_ARGS__, \

empty<__VA_ARGS> >::type

A structure with optional members can then be defined by defining multiple
structures grouping each set of optional members and then defining the main
structure as derived from all substructures, each wrapped in their own
cond_struct<>, as illustrated in Listing 11. We see how the individual groups of
members for the final structure are refactored into simpler structures, carrying their
own initialization information. We also see why the empty structure needs to be a
template: if this was not the case, and both XSPH and the stress tensor computation
were disabled, the kernel parameters structure would have empty as a base class
twice, which is not allowed by the standard; with our template approach, the two
empty base classes are now formally distinct types: empty<xsph_kernel_params>
and empty<stress_kernel_params>. The sample code also shows the advantage
of the BufferList class described previously and its typed buffer access methods.
On the device side, we can use the same approach for the private variables of the
kernel (Listing 12).

Finally, we need to define the individual process functions. For this, we need
separate overloads depending on whether the priv structure has the specific
members or not. One way to achieve this is to make all functions depend on the
same template parameters as the structure, but when there are many
parameters, this becomes quite complex and hard to maintain and extend, since
every additional parameter will require a change in all the functions that access

99

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

the structure, regardless of whether the additional parameter actually has an
impact.

A simple way is to make the functions into templates depending on a single
parameter (the arbitrary type of the structure passed), and then make overloads
based on specific properties of the actual structure that gets passed. This can be
achieved by means of enable_if, a structure template declared as.

template<bool B, typename T=void> enable_if;

which is such that enable_if<condition, SomeType>::type is SomeType when
the condition is true and an error otherwise. Due to the SFINAE principle, when
the compiler is looking for the overload of a function to use, it will discard (without
errors) the overloads which result in an error and automatically select the one which
does not result in an error. Additionally, if SomeType is omitted, void is implied,
which can simply the syntax. Again, this template is provided by the standard
library in C++11 and can be implemented in older version of C++ [40].

To further simplify the syntax, we assume that C++11 is available and we can define:

template<bool B, typename T=void>
using enable_if_t=typename enable_if<B, T>::type;
(which is pre-defined in C++14).

Listing 11.
Conditional structures with C++ applied to kernel parameters: definition of the optional members (left) and
definition of the conditional structure template including them (right).

struct common_kernel_params {
const float4 * restrict posArray;
const float4 * restrict velArray;
float4 * restrict forcesArray;

common_kernel_params(BufferList& buffers)
: posArray(buffers.getData<BUFFER_POS>())
, velArray(buffers.getData<BUFFER_VEL>())
, forcesArray(buffers.getData<BUFFER_FORCES>())

{}
};

struct xsph_kernel_params {
float4 * restrict xsphArray;

xsph_kernel_params(BufferList& buffers)
: xsphArray(buffers.getData<BUFFER_XSPH>())

{}
};

struct stress_kernel_params {
float4 * restrict stressTensor4,
float4 * restrict stressTensor2,
stress_kernel_params(BufferList& buffers)

: stressTensor4(buffers.getData<BUFFER_TAU4>())
, stressTensor2(buffers.getData<BUFFER_TAU2>())

{}
};

template<
/* actual template parameters */

bool needs_xsph, bool needs_stress_tensor,
/* pseudo-template parameters,

used to give simpler names to
conditional structure members */
typename optional_xsph=

cond_struct<needs_xsph, xsph_kernel_params>,
typename optional_stress =

cond_struct<needs_stress_tensor,
stress_kernel_params>

>
struct kernel_params

: common_kernel_params
, optional_xsph
, optional_stress

{
/* These static variables allow compile-time

knowledge about the parameters used
for the specific instantiation
of the template */

static const bool has_xsph=needs_xsph;
static const bool has_stress=

needs_stress_tensor;

kernel_params(BufferList& buffers)
: common_kernel_params(buffers)
, optional_xsph(buffers)
, optional_stress(buffers)

{}
};

100

High Performance Parallel Computing

The processing functions can then be defined as in Listing 13, with separate
overloads made available based on compile-time properties of the argument. The
kernel structure becomes very simple (Listing 14): all of the complexity has been
delegated to specific (sub)structures and functions, and we have a guarantee that
each specialized version of the kernel will only contain the code and variables that
are pertinent to its functionality.

Listing 12.
Conditional structures with C++ applied to private function variables: definitions of the optional members
(left) and definition of the conditional structure template including them (right).

struct common_kernel_priv {
/* common variables become members

of this structure */
common_kernel_priv(

common_kernel_params const& params)
{/* initialize the variables

from the parameters */}
};

struct xsph_kernel_priv {
/* XSPH-specific variables become members
of this structure */

xsph_kernel_priv(x
sph_kernel_params const& params)

{/* typically, feature-specific variables
will be initialized from
feature-specific kernel parameters */}

};

struct stress_kernel_priv {
/* Stress-tensor specific variables
become members of this structure */

stress_kernel_priv(
stress_kernel_params const& params)

{/* typically, feature-specific variables
will be initialized from
feature-specific kernel parameters */}

};

template<
bool needs_xsph, bool needs_stress_tensor,
typename optional_xsph =

cond_struct<needs_xsph, xsph_kernel_priv>,
typename optional_stress =

cond_struct<needs_stress_tensor,
stress_kernel_priv>

>
struct kernel_priv
: common_kernel_priv
, optional_xsph
, optional_stress
{

/* These static variables allow compile-time
knowledge about the parameters used for
the specific instantiation of
the template */

static const bool has_xsph=needs_xsph;
static const bool has_stress=

needs_stress_tensor;

kernel_priv(kernel_params<needs_xsph,
needs_stress_tensor> const& params)

: common_kernel_priv(params)
, optional_xsph(params)
, optional_stress(params)

{}
};

Listing 13.
Function specialization with overloads based on argument properties with enable-if in CUDA.

/* process_xsph is defined differently,
depending on whether XSPH is enabled or not;
we check for this based on the static const
has_xsph member of the priv structure:
this will always be present, and it will be
true or false depending on whether
XSPH was enabled */

template<typename Priv>
__device__ enable_if_t<Priv::has_xsph>
void process_xsph(Priv& priv)
{/* XSPH computations here */}

template<typename Priv>
__device__ enable_if_t<not Priv::has_xsph>
void process_xsph(Priv& priv)
{} /* intentionally left blank */

/* Similarly for the stress tensor,
using has_stress */
template<typename Priv>
__device__ enable_if_t<Priv::has_stress>
void process_stress_tensor(Priv& priv)
{/* stress tensor computations here */}

template<typename Priv>
__device__ enable_if_t<not Priv::has_stress>
void process_stress_tensor(Priv& priv)
{} /* intentionally left blank */

/* The common code needs no special treatment */
__device__ void
process_common(common_priv& priv)
{/* common computations here */}

101

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

the structure, regardless of whether the additional parameter actually has an
impact.

A simple way is to make the functions into templates depending on a single
parameter (the arbitrary type of the structure passed), and then make overloads
based on specific properties of the actual structure that gets passed. This can be
achieved by means of enable_if, a structure template declared as.

template<bool B, typename T=void> enable_if;

which is such that enable_if<condition, SomeType>::type is SomeType when
the condition is true and an error otherwise. Due to the SFINAE principle, when
the compiler is looking for the overload of a function to use, it will discard (without
errors) the overloads which result in an error and automatically select the one which
does not result in an error. Additionally, if SomeType is omitted, void is implied,
which can simply the syntax. Again, this template is provided by the standard
library in C++11 and can be implemented in older version of C++ [40].

To further simplify the syntax, we assume that C++11 is available and we can define:

template<bool B, typename T=void>
using enable_if_t=typename enable_if<B, T>::type;
(which is pre-defined in C++14).

Listing 11.
Conditional structures with C++ applied to kernel parameters: definition of the optional members (left) and
definition of the conditional structure template including them (right).

struct common_kernel_params {
const float4 * restrict posArray;
const float4 * restrict velArray;
float4 * restrict forcesArray;

common_kernel_params(BufferList& buffers)
: posArray(buffers.getData<BUFFER_POS>())
, velArray(buffers.getData<BUFFER_VEL>())
, forcesArray(buffers.getData<BUFFER_FORCES>())

{}
};

struct xsph_kernel_params {
float4 * restrict xsphArray;

xsph_kernel_params(BufferList& buffers)
: xsphArray(buffers.getData<BUFFER_XSPH>())

{}
};

struct stress_kernel_params {
float4 * restrict stressTensor4,
float4 * restrict stressTensor2,
stress_kernel_params(BufferList& buffers)

: stressTensor4(buffers.getData<BUFFER_TAU4>())
, stressTensor2(buffers.getData<BUFFER_TAU2>())

{}
};

template<
/* actual template parameters */

bool needs_xsph, bool needs_stress_tensor,
/* pseudo-template parameters,

used to give simpler names to
conditional structure members */
typename optional_xsph=

cond_struct<needs_xsph, xsph_kernel_params>,
typename optional_stress =

cond_struct<needs_stress_tensor,
stress_kernel_params>

>
struct kernel_params

: common_kernel_params
, optional_xsph
, optional_stress

{
/* These static variables allow compile-time

knowledge about the parameters used
for the specific instantiation
of the template */

static const bool has_xsph=needs_xsph;
static const bool has_stress=

needs_stress_tensor;

kernel_params(BufferList& buffers)
: common_kernel_params(buffers)
, optional_xsph(buffers)
, optional_stress(buffers)

{}
};

100

High Performance Parallel Computing

The processing functions can then be defined as in Listing 13, with separate
overloads made available based on compile-time properties of the argument. The
kernel structure becomes very simple (Listing 14): all of the complexity has been
delegated to specific (sub)structures and functions, and we have a guarantee that
each specialized version of the kernel will only contain the code and variables that
are pertinent to its functionality.

Listing 12.
Conditional structures with C++ applied to private function variables: definitions of the optional members
(left) and definition of the conditional structure template including them (right).

struct common_kernel_priv {
/* common variables become members

of this structure */
common_kernel_priv(

common_kernel_params const& params)
{/* initialize the variables

from the parameters */}
};

struct xsph_kernel_priv {
/* XSPH-specific variables become members
of this structure */

xsph_kernel_priv(x
sph_kernel_params const& params)

{/* typically, feature-specific variables
will be initialized from
feature-specific kernel parameters */}

};

struct stress_kernel_priv {
/* Stress-tensor specific variables
become members of this structure */

stress_kernel_priv(
stress_kernel_params const& params)

{/* typically, feature-specific variables
will be initialized from
feature-specific kernel parameters */}

};

template<
bool needs_xsph, bool needs_stress_tensor,
typename optional_xsph =

cond_struct<needs_xsph, xsph_kernel_priv>,
typename optional_stress =

cond_struct<needs_stress_tensor,
stress_kernel_priv>

>
struct kernel_priv
: common_kernel_priv
, optional_xsph
, optional_stress
{

/* These static variables allow compile-time
knowledge about the parameters used for
the specific instantiation of
the template */

static const bool has_xsph=needs_xsph;
static const bool has_stress=

needs_stress_tensor;

kernel_priv(kernel_params<needs_xsph,
needs_stress_tensor> const& params)

: common_kernel_priv(params)
, optional_xsph(params)
, optional_stress(params)

{}
};

Listing 13.
Function specialization with overloads based on argument properties with enable-if in CUDA.

/* process_xsph is defined differently,
depending on whether XSPH is enabled or not;
we check for this based on the static const
has_xsph member of the priv structure:
this will always be present, and it will be
true or false depending on whether
XSPH was enabled */

template<typename Priv>
__device__ enable_if_t<Priv::has_xsph>
void process_xsph(Priv& priv)
{/* XSPH computations here */}

template<typename Priv>
__device__ enable_if_t<not Priv::has_xsph>
void process_xsph(Priv& priv)
{} /* intentionally left blank */

/* Similarly for the stress tensor,
using has_stress */
template<typename Priv>
__device__ enable_if_t<Priv::has_stress>
void process_stress_tensor(Priv& priv)
{/* stress tensor computations here */}

template<typename Priv>
__device__ enable_if_t<not Priv::has_stress>
void process_stress_tensor(Priv& priv)
{} /* intentionally left blank */

/* The common code needs no special treatment */
__device__ void
process_common(common_priv& priv)
{/* common computations here */}

101

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Runtime selection of the variant of the kernel to be used can be achieved with
simple conditionals (Listing 15). However, when the number of conditionals is
large, this can be rather bothersome to write; more compact and efficient solutions
to the runtime switch are possible, using the meta-programming techniques
presented in [41].

When using C macros, the multiple specialized variants of the kernel and related
structures and functions cannot coexist in the same compilation unit (since C does
not support overloading or templates), making runtime selection of the compile-
time variant impossible: a single specific instance must be selected when the device
code is compiled; on the upside, one would generally use C when using OpenCL C,
for which the device code is compiled at application runtime, as discussed in the
previous section.

In terms of syntax, the only significant downside of the SFINAE approach is that
the signature needs to be repeated for every specialization, in contrast to the C
macro approach, for which we only need one signature, and each implementation is
fenced by #if/#elif/#else/#endif. This could be avoided using the C++17 feature
if constexpr, but support for it in device code is still missing.

7. Conclusions

Particle systems are a fundamental aspect of many applications and numerical
methods. By their own nature, they benefit from the massively parallel stream
processing architecture of modern GPUs, but naive implementations can easily
encounter pitfalls that can limit the full exploitation of the hardware.

Listing 14.
Kernel structure after isolation of the optional components.

template<
bool needs_xsph, bool needs_stress,
typename Params =

kernel_params<needs_xsph, needs_stress_tensor>,
typename Priv =

kernel_priv<needs_xsph, needs_stress_tensor>
>
__global__ void some_kernel(Params params)
{

/* initialize both common and optional private
variables here */
Priv priv(params);
/* run common and optional parts of the code */
process_common(priv);
process_xsph(priv);
process_stress_tensor(priv);

}

/* template parameters for the kernel */
/* shorthand for the kernel parameters struct */

/* shorthand for the kernel private variables */

/* kernel signature */

Listing 15.
Runtime switch to call the appropriate compile-time kernel specialization.

if (opt_xsph && opt_stress) some_kernel<<<…>>>(kernel_params<true, true>(buffers));
else if (opt_xsph&& !opt_stress) some_kernel<<<…>>>(kernel_params<true, false>(buffers));
else if (!opt_xsph&& opt_stress) some_kernel<<<…>>>(kernel_params<false, true>(buffers));
else if (!opt_xsph&& !opt_stress) some_kernel<<<…>>>(kernel_params<false, false>(buffers));

102

High Performance Parallel Computing

While hardware vendors go to great lengths to support more liberal coding, the
software can—and should—be designed to leverage the natural programming
model of the hardware, and we have provided several insights on how the particle
systems can be designed to fit better with the requirements of optimal GPU usage.
We also presented a few simple ideas that, when taken into consideration during an
initial implementation, can make future extensions much easier. Many of the sug-
gestions we provide can also be of general interest beyond the implementation of
particle systems.

We have stressed the importance of the choice to the correct approach in dealing
with the potentially severe limitations in the numerical robustness of the imple-
mentation, due to the restricted accuracy and precision of the single-precision
floating-point format which GPUs are optimized for. While many of the techniques
we have presented are not new (some going as far back as the nineteenth century),
in our experience they have surprisingly limited adoption; we hope that our discus-
sion of their usefulness in this context will lead to higher awareness of the possibil-
ities they offer. We dislike the adoption of higher-precision data types as a solution
to the issue, not only because of the performance implications on consumer hard-
ware, but as a philosophical objection to waste: why use the wrong numerical
approach, wasting the additional precision granted by double precision, when the
correct approach can make single precision sufficient? We do understand the need
for the extended precision requirements in many applications, and we are sure that
our reminiscence of classical solutions to better accuracy can benefit them as well,
particularly since support for even higher-precision data types is nearly nonexistent
in hardware (with the possible exception of the IBM POWER9 support for IEEE-
754-compliant 128-bit floating-point formats) and especially on GPUs.

Author details

Giuseppe Bilotta1*, Vito Zago1 and Alexis Hérault2

1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Italy

2 Conservatoire National des Arts et Métiers, Laboratoire Modélisation
mathématique et numérique, Paris, France

*Address all correspondence to: giuseppe.bilotta@ingv.it

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

103

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

Runtime selection of the variant of the kernel to be used can be achieved with
simple conditionals (Listing 15). However, when the number of conditionals is
large, this can be rather bothersome to write; more compact and efficient solutions
to the runtime switch are possible, using the meta-programming techniques
presented in [41].

When using C macros, the multiple specialized variants of the kernel and related
structures and functions cannot coexist in the same compilation unit (since C does
not support overloading or templates), making runtime selection of the compile-
time variant impossible: a single specific instance must be selected when the device
code is compiled; on the upside, one would generally use C when using OpenCL C,
for which the device code is compiled at application runtime, as discussed in the
previous section.

In terms of syntax, the only significant downside of the SFINAE approach is that
the signature needs to be repeated for every specialization, in contrast to the C
macro approach, for which we only need one signature, and each implementation is
fenced by #if/#elif/#else/#endif. This could be avoided using the C++17 feature
if constexpr, but support for it in device code is still missing.

7. Conclusions

Particle systems are a fundamental aspect of many applications and numerical
methods. By their own nature, they benefit from the massively parallel stream
processing architecture of modern GPUs, but naive implementations can easily
encounter pitfalls that can limit the full exploitation of the hardware.

Listing 14.
Kernel structure after isolation of the optional components.

template<
bool needs_xsph, bool needs_stress,
typename Params =

kernel_params<needs_xsph, needs_stress_tensor>,
typename Priv =

kernel_priv<needs_xsph, needs_stress_tensor>
>
__global__ void some_kernel(Params params)
{

/* initialize both common and optional private
variables here */
Priv priv(params);
/* run common and optional parts of the code */
process_common(priv);
process_xsph(priv);
process_stress_tensor(priv);

}

/* template parameters for the kernel */
/* shorthand for the kernel parameters struct */

/* shorthand for the kernel private variables */

/* kernel signature */

Listing 15.
Runtime switch to call the appropriate compile-time kernel specialization.

if (opt_xsph && opt_stress) some_kernel<<<…>>>(kernel_params<true, true>(buffers));
else if (opt_xsph&& !opt_stress) some_kernel<<<…>>>(kernel_params<true, false>(buffers));
else if (!opt_xsph&& opt_stress) some_kernel<<<…>>>(kernel_params<false, true>(buffers));
else if (!opt_xsph&& !opt_stress) some_kernel<<<…>>>(kernel_params<false, false>(buffers));

102

High Performance Parallel Computing

While hardware vendors go to great lengths to support more liberal coding, the
software can—and should—be designed to leverage the natural programming
model of the hardware, and we have provided several insights on how the particle
systems can be designed to fit better with the requirements of optimal GPU usage.
We also presented a few simple ideas that, when taken into consideration during an
initial implementation, can make future extensions much easier. Many of the sug-
gestions we provide can also be of general interest beyond the implementation of
particle systems.

We have stressed the importance of the choice to the correct approach in dealing
with the potentially severe limitations in the numerical robustness of the imple-
mentation, due to the restricted accuracy and precision of the single-precision
floating-point format which GPUs are optimized for. While many of the techniques
we have presented are not new (some going as far back as the nineteenth century),
in our experience they have surprisingly limited adoption; we hope that our discus-
sion of their usefulness in this context will lead to higher awareness of the possibil-
ities they offer. We dislike the adoption of higher-precision data types as a solution
to the issue, not only because of the performance implications on consumer hard-
ware, but as a philosophical objection to waste: why use the wrong numerical
approach, wasting the additional precision granted by double precision, when the
correct approach can make single precision sufficient? We do understand the need
for the extended precision requirements in many applications, and we are sure that
our reminiscence of classical solutions to better accuracy can benefit them as well,
particularly since support for even higher-precision data types is nearly nonexistent
in hardware (with the possible exception of the IBM POWER9 support for IEEE-
754-compliant 128-bit floating-point formats) and especially on GPUs.

Author details

Giuseppe Bilotta1*, Vito Zago1 and Alexis Hérault2

1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Italy

2 Conservatoire National des Arts et Métiers, Laboratoire Modélisation
mathématique et numérique, Paris, France

*Address all correspondence to: giuseppe.bilotta@ingv.it

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

103

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

References

[1] Reeves WT. Particle systems—A
technique for modeling a class of fuzzy
objects. ACM Transactions on Graphics.
1983;2(2):91-108. DOI: 10.1145/
357318.357320

[2] Paramount. Star Trek II: The Wrath
of Khan [film]. 1982

[3] Unity Technologies. Particle Systems.
In: Unity User Manual v2018.2
[Internet]. 2018. Available from: https://
docs.unity3d.com/Manual/index.html
[Accessed: July 18, 2018]

[4] Monaghan JJ. Smoothed particle
hydrodynamics and its diverse
applications. Annual Review of Fluid
Mechanics. 2012;44:323-346. DOI:
10.1146/annurev-fluid-120710-101220

[5] Chen JS, Liu WK, Hillman MC, Chi
SW, Lian Y, Bessa MA. Reproducing
kernel particle method for solving
partial differential equations. In: Stein E,
Borst R, Hughes TK, editors.
Encyclopedia of Computational
Mechanics. 2nd ed. Chichester, UK:
Wiley; 2017. DOI: 10.1002/
9781119176817.ecm2104

[6] Tiwari S, Kuhnert J. Finite pointset
method based on the projection method
for simulations of the incompressible
Navier-Stokes equations. In: Griebel M,
Schweitzer MA, editors. Meshfree
Methods for Partial Differential
Equations. Lecture Notes in
Computational Science and
Engineering. Vol. 26. Berlin, Heidelberg:
Springer; 2003

[7] Bićanić N. Discrete element methods.
In: Stein E, Borst R, Hughes TK, editors.
Encyclopedia of Computational
Mechanics. Chichester, UK:Wiley; 2017.
DOI: 10.1002/0470091355.ecm006.pub2

[8] Kennedy J, Eberhart RC. Particle
swarm optimization. In: Proceedings of
ICNN'95—International Conference on

Neural Networks; November
27– December 1, 1995; 2002.
pp. 1942-1948. DOI: 10.1109/
ICNN.1995.488968

[9] Stone JE, Phillips JC, Freddolino PL,
Hardy DJ, Trabuco LG, Schulten K.
Accelerating molecular modeling
applications with graphics processors.
Journal of Computational Chemistry.
2007;28:2618-2640. DOI: 10.1002/
jcc.20829

[10] Richmond P. Template driven agent
based modelling and simulation with
CUDA. In: Hwu WM, editor. GPU
Computing Gems Emerald Edition.
Boston, USA: Morgan Kaufmann; 2011

[11] Richmond P, Walker D, Coakley S,
Romano D. High performance cellular
level agent-based simulation with
FLAME for the GPU. Briefings in
Bioinformatics. 2013;11(3):334-347.
DOI: 10.1093/bib/bbp073

[12] Vuduc R, Choi J. A brief history and
introduction to GPGPU. In: Shi X,
Kindratenko V, Yang C, editors. Modern
Accelerator Technologies for
Geographic Information Science.
Boston, MA: Springer; 2013. DOI:
10.1007/978-1-4614-8745-6_2

[13] Hérault A, Bilotta G, Dalrymple RA.
SPH on GPU with CUDA. Journal of
Hydraulic Research. 2010;48(Extra
Issue):74-79. DOI: 10.1080/
00221686.2010.9641247

[14] Bilotta G. GPU Implementation and
Validation of Fully Three-Dimensional
Multi-Fluid SPH Models. Rapporto
Tecnico. 2014:292 INGV. Available
from: http://istituto.ingv.it/images/colla
ne-editoriali/rapporti%20tecnici/ra
pporti-tecnici-2014/rapporto292.pdf
[Accessed: September 05, 2018]

[15] Bilotta G, Hérault A, Cappello A,
Ganci G, Del Negro C. GPUSPH: a

104

High Performance Parallel Computing

smoothed particle hydrodynamics
model for the thermal and rheological
evolution of lava flows. In: Harris AJL,
De Groeve T, Garel F, Carn SA, editors.
Detecting, Modelling and Responding to
Effusive Eruptions. Geological Society,
London. 2016;426. DOI: 10.1144/
SP426.24. Special Publications

[16] Zago V, Bilotta G, Hérault A,
Dalrymple RA, Fortuna L, Cappello A,
et al. Semi-implicit 3D SPH on GPU for
lava flows. Journal of Computational
Physics. 2018;375:854-870

[17] Zago V, Bilotta G, Cappello A,
Dalrymple RA, Fortuna L, Ganci G,
et al. Preliminary validation of lava
benchmark tests on the GPUSPH
particle engine. Annals of Geophysics.
2018;61. In Press

[18] GPUSPH v4.1 [Internet]. Available
from: http://www.gpusph.org/
[Accessed: September 05, 2018]

[19] Khronos OpenCL Working Group.
The OpenCL™ Specification [Internet].
2018. Available from: https://www.kh
ronos.org/registry/OpenCL/ [Accessed:
September 05, 2018]

[20] NVIDIA. CUDA C Programming
Guide [Internet]. 2018. Available from:
https://docs.nvidia.com/cuda/
[Accessed: September 05, 2018]

[21] Green S. Particle Simulation Using
CUDA. NVIDIA Corporation
Whitepaper. 2010. Available from: h
ttp://developer.download.nvidia.com/a
ssets/cuda/files/particles.pdf [Accessed:
September 05, 2018]

[22] Bédorf J, Gaburov E, Portegies
Zwart P. A sparse octree gravitational
N-body code that runs entirely on the
GPU processor. Journal of
Computational Physics. 2012;231(7):
2825-2839. DOI: 10.1016/j.
jcp.2011.12.024

[23] Rustico E, Jankowski JA, Hérault A,
Bilotta G, Del Negro C. Multi-GPU,
multi-node SPH implementation with
arbitrary domain decomposition. In:
Proceedings of the 9th SPHERIC
Workshop; March 2014; Paris; 2014.
pp. 127-133

[24] Burtscher M, Pingali K. Chapter 6:
An efficient CUDA implementation of
the tree-based Barnes Hut N-body. In:
GPU Computing Gems Emerald Edition.
Boston, USA: Morgan Kaufmann; 2011.
pp. 75-92. DOI: 10.1016/B978-0-
12-384988-5.00006-1

[25] Morton GM. A computer oriented
geodetic data base; and a new technique
in file sequencing. IBM Technical
Report; 1966

[26] Rustico E, Bilotta G, Hérault A, Del
Negro C, Gallo G. Advances in multi-
GPU smoothed particle hydrodynamics
simulations. IEEE Transactions on
Parallel and Distributed Systems. 2012;
25(1):43-52. DOI: 10.1109/TPDS.
2012.340

[27] Li XS, Demmel JW, Bailey DH,
Henry G, Hida Y, Iskandar J, et al.
Design, implementation and testing of
extended and mixed precision BLAS.
ACM Transactions on Mathematical
Software. 2002;28(2):152-205. DOI:
10.1145/567806.567808

[28] Colberg PH, Höfling F. Highly
accelerated simulations of glassy
dynamics using GPUs: Caveats on
limited floating-point precision.
Computer Physics Communications.
2011;182:1120-1129. DOI: 10.1016/j.
cpc.2011.01.009

[29] Horner WG. A new method of
solving numerical equations of all
orders, by continuous approximation.
Philosophical Transactions of the Royal
Society of London. 1819;109:308-335.
JSTOR: http://www.jstor.org/stable/
107508

105

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

References

[1] Reeves WT. Particle systems—A
technique for modeling a class of fuzzy
objects. ACM Transactions on Graphics.
1983;2(2):91-108. DOI: 10.1145/
357318.357320

[2] Paramount. Star Trek II: The Wrath
of Khan [film]. 1982

[3] Unity Technologies. Particle Systems.
In: Unity User Manual v2018.2
[Internet]. 2018. Available from: https://
docs.unity3d.com/Manual/index.html
[Accessed: July 18, 2018]

[4] Monaghan JJ. Smoothed particle
hydrodynamics and its diverse
applications. Annual Review of Fluid
Mechanics. 2012;44:323-346. DOI:
10.1146/annurev-fluid-120710-101220

[5] Chen JS, Liu WK, Hillman MC, Chi
SW, Lian Y, Bessa MA. Reproducing
kernel particle method for solving
partial differential equations. In: Stein E,
Borst R, Hughes TK, editors.
Encyclopedia of Computational
Mechanics. 2nd ed. Chichester, UK:
Wiley; 2017. DOI: 10.1002/
9781119176817.ecm2104

[6] Tiwari S, Kuhnert J. Finite pointset
method based on the projection method
for simulations of the incompressible
Navier-Stokes equations. In: Griebel M,
Schweitzer MA, editors. Meshfree
Methods for Partial Differential
Equations. Lecture Notes in
Computational Science and
Engineering. Vol. 26. Berlin, Heidelberg:
Springer; 2003

[7] Bićanić N. Discrete element methods.
In: Stein E, Borst R, Hughes TK, editors.
Encyclopedia of Computational
Mechanics. Chichester, UK:Wiley; 2017.
DOI: 10.1002/0470091355.ecm006.pub2

[8] Kennedy J, Eberhart RC. Particle
swarm optimization. In: Proceedings of
ICNN'95—International Conference on

Neural Networks; November
27– December 1, 1995; 2002.
pp. 1942-1948. DOI: 10.1109/
ICNN.1995.488968

[9] Stone JE, Phillips JC, Freddolino PL,
Hardy DJ, Trabuco LG, Schulten K.
Accelerating molecular modeling
applications with graphics processors.
Journal of Computational Chemistry.
2007;28:2618-2640. DOI: 10.1002/
jcc.20829

[10] Richmond P. Template driven agent
based modelling and simulation with
CUDA. In: Hwu WM, editor. GPU
Computing Gems Emerald Edition.
Boston, USA: Morgan Kaufmann; 2011

[11] Richmond P, Walker D, Coakley S,
Romano D. High performance cellular
level agent-based simulation with
FLAME for the GPU. Briefings in
Bioinformatics. 2013;11(3):334-347.
DOI: 10.1093/bib/bbp073

[12] Vuduc R, Choi J. A brief history and
introduction to GPGPU. In: Shi X,
Kindratenko V, Yang C, editors. Modern
Accelerator Technologies for
Geographic Information Science.
Boston, MA: Springer; 2013. DOI:
10.1007/978-1-4614-8745-6_2

[13] Hérault A, Bilotta G, Dalrymple RA.
SPH on GPU with CUDA. Journal of
Hydraulic Research. 2010;48(Extra
Issue):74-79. DOI: 10.1080/
00221686.2010.9641247

[14] Bilotta G. GPU Implementation and
Validation of Fully Three-Dimensional
Multi-Fluid SPH Models. Rapporto
Tecnico. 2014:292 INGV. Available
from: http://istituto.ingv.it/images/colla
ne-editoriali/rapporti%20tecnici/ra
pporti-tecnici-2014/rapporto292.pdf
[Accessed: September 05, 2018]

[15] Bilotta G, Hérault A, Cappello A,
Ganci G, Del Negro C. GPUSPH: a

104

High Performance Parallel Computing

smoothed particle hydrodynamics
model for the thermal and rheological
evolution of lava flows. In: Harris AJL,
De Groeve T, Garel F, Carn SA, editors.
Detecting, Modelling and Responding to
Effusive Eruptions. Geological Society,
London. 2016;426. DOI: 10.1144/
SP426.24. Special Publications

[16] Zago V, Bilotta G, Hérault A,
Dalrymple RA, Fortuna L, Cappello A,
et al. Semi-implicit 3D SPH on GPU for
lava flows. Journal of Computational
Physics. 2018;375:854-870

[17] Zago V, Bilotta G, Cappello A,
Dalrymple RA, Fortuna L, Ganci G,
et al. Preliminary validation of lava
benchmark tests on the GPUSPH
particle engine. Annals of Geophysics.
2018;61. In Press

[18] GPUSPH v4.1 [Internet]. Available
from: http://www.gpusph.org/
[Accessed: September 05, 2018]

[19] Khronos OpenCL Working Group.
The OpenCL™ Specification [Internet].
2018. Available from: https://www.kh
ronos.org/registry/OpenCL/ [Accessed:
September 05, 2018]

[20] NVIDIA. CUDA C Programming
Guide [Internet]. 2018. Available from:
https://docs.nvidia.com/cuda/
[Accessed: September 05, 2018]

[21] Green S. Particle Simulation Using
CUDA. NVIDIA Corporation
Whitepaper. 2010. Available from: h
ttp://developer.download.nvidia.com/a
ssets/cuda/files/particles.pdf [Accessed:
September 05, 2018]

[22] Bédorf J, Gaburov E, Portegies
Zwart P. A sparse octree gravitational
N-body code that runs entirely on the
GPU processor. Journal of
Computational Physics. 2012;231(7):
2825-2839. DOI: 10.1016/j.
jcp.2011.12.024

[23] Rustico E, Jankowski JA, Hérault A,
Bilotta G, Del Negro C. Multi-GPU,
multi-node SPH implementation with
arbitrary domain decomposition. In:
Proceedings of the 9th SPHERIC
Workshop; March 2014; Paris; 2014.
pp. 127-133

[24] Burtscher M, Pingali K. Chapter 6:
An efficient CUDA implementation of
the tree-based Barnes Hut N-body. In:
GPU Computing Gems Emerald Edition.
Boston, USA: Morgan Kaufmann; 2011.
pp. 75-92. DOI: 10.1016/B978-0-
12-384988-5.00006-1

[25] Morton GM. A computer oriented
geodetic data base; and a new technique
in file sequencing. IBM Technical
Report; 1966

[26] Rustico E, Bilotta G, Hérault A, Del
Negro C, Gallo G. Advances in multi-
GPU smoothed particle hydrodynamics
simulations. IEEE Transactions on
Parallel and Distributed Systems. 2012;
25(1):43-52. DOI: 10.1109/TPDS.
2012.340

[27] Li XS, Demmel JW, Bailey DH,
Henry G, Hida Y, Iskandar J, et al.
Design, implementation and testing of
extended and mixed precision BLAS.
ACM Transactions on Mathematical
Software. 2002;28(2):152-205. DOI:
10.1145/567806.567808

[28] Colberg PH, Höfling F. Highly
accelerated simulations of glassy
dynamics using GPUs: Caveats on
limited floating-point precision.
Computer Physics Communications.
2011;182:1120-1129. DOI: 10.1016/j.
cpc.2011.01.009

[29] Horner WG. A new method of
solving numerical equations of all
orders, by continuous approximation.
Philosophical Transactions of the Royal
Society of London. 1819;109:308-335.
JSTOR: http://www.jstor.org/stable/
107508

105

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755

[30] Ostrowski AM. On two problems in
abstract algebra connected with
Horner's rule. In: von Mises R, editor.
Studies in Mathematics and Mechanics.
New York, USA: Academic Press; 2013.
pp. 40-48. DOI: 10.1016/B978-1-
4832-3272-0.50010-7

[31] Pan VY. Methods of computing
values of polynomials. Russian
Mathematical Surveys. 1966;21(1):
105-136. DOI: 10.1070/
RM1966v021n01ABEH004147

[32] Kahan WM. Further remarks on
reducing truncation errors.
Communications of the ACM. 1964;
8(1):40. DOI: 10.1145/363707.363723

[33] Neumaier A.
Rundungsfehleranalyse einiger
Verfahren zur Summation endlicher
Summen. Zeitschrift für Angewandte
Mathematik und Mechanik. 1974;54:
39-51. DOI: 10.1002/
zamm.19740540106

[34] Klein A. A generalized Kahan-
Babuška-Summation-algorithm.
Computing. 2006;76(3–4):279-293.
DOI: 10.1007/s00607-005-0139-x

[35] Blinn JF. Floating-point tricks. IEEE
Computer Graphics and Applications.
1997;17(4):80-84. DOI: 10.1109/
38.595279

[36] id Software. Quake III: Arena
[Video Game]; 1999

[37] Domínguez JM, Crespo AJC,
Barreiro A, Rogers BD, Gómez-Gesteira
M. Efficient implementation of double
precision in GPU computing to simulate
realistic cases with high resolution. In:
Proceedings of the 9th SPHERIC
Workshop; March 2014; Paris; 2014.
pp. 140-145

[38] Hérault A, Bilotta G, Dalrymple RA.
Achieving the best accuracy in an SPH
implementation. In: Proceedings of the

9th SPHERIC Workshop; March 2014;
Paris; 2014. pp. 134-139

[39] cppreference. std::conditional
[Internet]. 2018. Available from: https://
en.cppreference.com/w/cpp/types/cond
itional [Accessed: September 05, 2018]

[40] cppreference. std::enable_if
[Internet]. 2018. Available from: https://
en.cppreference.com/w/cpp/types/enab
le_if [Accessed: September 05, 2018]

[41] Langr D, Tvrdík P, Dytrych T,
Draayer JP. Fake run-time selection of
template arguments in C++. In: Furia
CA, Nanz S, editors. Objects, Models,
Components, Patterns. TOOLS 2012.
Lecture Notes in Computer Science. Vol.
7304. Berlin, Heidelberg: Springer; 2012.
DOI: 10.1007/978-3-642-30561-0_11

106

High Performance Parallel Computing

[30] Ostrowski AM. On two problems in
abstract algebra connected with
Horner's rule. In: von Mises R, editor.
Studies in Mathematics and Mechanics.
New York, USA: Academic Press; 2013.
pp. 40-48. DOI: 10.1016/B978-1-
4832-3272-0.50010-7

[31] Pan VY. Methods of computing
values of polynomials. Russian
Mathematical Surveys. 1966;21(1):
105-136. DOI: 10.1070/
RM1966v021n01ABEH004147

[32] Kahan WM. Further remarks on
reducing truncation errors.
Communications of the ACM. 1964;
8(1):40. DOI: 10.1145/363707.363723

[33] Neumaier A.
Rundungsfehleranalyse einiger
Verfahren zur Summation endlicher
Summen. Zeitschrift für Angewandte
Mathematik und Mechanik. 1974;54:
39-51. DOI: 10.1002/
zamm.19740540106

[34] Klein A. A generalized Kahan-
Babuška-Summation-algorithm.
Computing. 2006;76(3–4):279-293.
DOI: 10.1007/s00607-005-0139-x

[35] Blinn JF. Floating-point tricks. IEEE
Computer Graphics and Applications.
1997;17(4):80-84. DOI: 10.1109/
38.595279

[36] id Software. Quake III: Arena
[Video Game]; 1999

[37] Domínguez JM, Crespo AJC,
Barreiro A, Rogers BD, Gómez-Gesteira
M. Efficient implementation of double
precision in GPU computing to simulate
realistic cases with high resolution. In:
Proceedings of the 9th SPHERIC
Workshop; March 2014; Paris; 2014.
pp. 140-145

[38] Hérault A, Bilotta G, Dalrymple RA.
Achieving the best accuracy in an SPH
implementation. In: Proceedings of the

9th SPHERIC Workshop; March 2014;
Paris; 2014. pp. 134-139

[39] cppreference. std::conditional
[Internet]. 2018. Available from: https://
en.cppreference.com/w/cpp/types/cond
itional [Accessed: September 05, 2018]

[40] cppreference. std::enable_if
[Internet]. 2018. Available from: https://
en.cppreference.com/w/cpp/types/enab
le_if [Accessed: September 05, 2018]

[41] Langr D, Tvrdík P, Dytrych T,
Draayer JP. Fake run-time selection of
template arguments in C++. In: Furia
CA, Nanz S, editors. Objects, Models,
Components, Patterns. TOOLS 2012.
Lecture Notes in Computer Science. Vol.
7304. Berlin, Heidelberg: Springer; 2012.
DOI: 10.1007/978-3-642-30561-0_11

106

High Performance Parallel Computing

High Performance Parallel
Computing

Edited by Satyadhyan Chickerur

Edited by Satyadhyan Chickerur

This edited book aims to present the state of the art in research and development
of the convergence of high-performance computing and parallel programming for

various engineering and scientific applications. The book has consolidated algorithms,
techniques, and methodologies to bridge the gap between the theoretical foundations

of academia and implementation for research, which might be used in business and
other real-time applications in the future.The book outlines techniques and tools used
for emergent areas and domains, which include acceleration of large-scale electronic

structure simulations with heterogeneous parallel computing, characterizing
power and energy efficiency of a data-centric high-performance computing

runtime and applications, security applications of GPUs, parallel implementation
of multiprocessors on MPI using FDTD, particle-based fused rendering, design and
implementation of particle systems for mesh-free methods with high performance,

and evolving topics on heterogeneous computing. In the coming days the need to
converge HPC, IoT, cloud-based applications will be felt and this volume tries to bridge

that gap.

Published in London, UK

© 2019 IntechOpen
© Vladimir_Timofeev / iStock

ISBN 978-1-78985-623-1

H
igh Perform

ance Parallel C
om

puting

ISBN 978-1-83962-065-2

	High Performance Parallel Computing
	Contents
	Preface
	Chapter1
Introductory Chapter: High Performance Parallel Computing
	Chapter2
Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel Computing
	Chapter3
Characterizing Power and Energy Efficiency of Legion Data-Centric Runtime and Applications on Heterogeneous High-Performance Computing Systems
	Chapter4
Security Applications of GPUs
	Chapter5
Particle-Based Fused Rendering
	Chapter6
Design and Implementation of Particle Systems for Meshfree Methods with High Performance

