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Preface

Alkaloids are a vast group of naturally occurring organic compounds. They are 
mainly produced by certain plant species rather than by animals and are secondary 
metabolites. For thousands of years, they have been indispensable in the human diet 
in the form of food and drinks and were also especially useful as medicines. Alkaloids 
are very active compounds and induce specific reactions in the human body. They are 
antimitotic, anti-inflammatory, anticancer, antibacterial, analgesic, local anesthetic 
and pain relief, neuropharmacological, antimicrobial, antifungal, anticorrosive, 
antiplasmodic, antiparasitic, antioxidative, antibacterial, anti-HIV, and insecticidal 
agents. Nowadays, scientists are trying to discover new semisynthetic and synthetic 
derivatives of naturally occurring alkaloids that will be effective medicines and also 
could possess new applications.

This book contains chapters that describe various alkaloid applications. The chapters 
are written by scientists who are specialized in this field.

I wish to thank Martina Josavac and Danijela Sakic, Author Service Managers at 
IntechOpen, for all email correspondence, which made this book possible.

Joanna Kurek
Chemistry Department,

Adam Mickiewicz University in Poznań,
Poland
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Chapter 1

Introductory Chapter:  
Alkaloids - Their Importance in 
Nature and for Human Life
Joanna Kurek

1. Introduction

In nature there are many natural compounds. From among many classes of 
naturally occurring organic compounds such as carbohydrates, lipids, proteins, 
amino acids, anthocyanins, flavonoids, and steroids, the one that seems to be 
quite special is alkaloids. What makes them special? They derived from amino 
acids and can be synthetized as secondary metabolites by plants and some ani-
mals. These compounds play an important role in living organisms. Alkaloids 
occurred to be extremely important for human beings for ages, besides they are 
secondary metabolites, what could suggest that they are useless. Alkaloids showed 
strong biological effects on animal and human organisms in very small doses. 
Alkaloids are present not only in human daily life in food and drinks but also as 
stimulant drugs. They showed anti-inflammatory, anticancer, analgesics, local 
anesthetic and pain relief, neuropharmacologic, antimicrobial, antifungal, and 
many other activities. Alkaloids are useful as diet ingredients, supplements, and 
pharmaceuticals, in medicine and in other applications in human life. Alkaloids 
are also important compounds in organic synthesis for searching new semisyn-
thetic and synthetic compounds with possibly better biological activity than 
parent compounds.

2. About alkaloids

Alkaloids are a huge group of naturally occurring organic compounds which 
contain nitrogen atom or atoms (amino or amido in some cases) in their structures. 
These nitrogen atoms cause alkalinity of these compounds. These nitrogen atoms 
are usually situated in some ring (cyclic) system. For example, indole alkaloids are 
those that contain nitrogen atom in indole ring system. Generally based on struc-
tures, alkaloids can be divided into classes like indoles, quinolines, isoquinolines, 
pyrrolidines, pyridines, pyrrolizidines, tropanes, and terpenoids and steroids. 
Other classification system is connected with a family of plant species that they 
occur. One of the examples is the opium alkaloids that occur in the opium poppy 
(Papaver somniferum) [1]. These two different classification systems cause confu-
sion between their biological distribution and the chemical types of alkaloids, 
because there is not unmistakable correlation.

Alkaloids (whose name originally comes from “alkali-like”) can react with acids 
and then form salts, just like inorganic alkalis. These nitrogen atoms can behave like 
a base in acid-base reactions. In general alkaloids, which are treated as amines, the 
same as amines in their names, have suffix -ine. Alkaloids in pure form are usually 
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colorless, odorless crystalline solids, but sometimes they can be yellowish liquids. 
Quite often, they have bitter taste. Now more than 3000 of alkaloids are known in 
over different 4000 plant species.

These compounds are produced generally by many plant species, mainly by 
flowering plants and also by some animals. Plants produce and store many organic 
compounds like amino acids, proteins, carbohydrates, fats, and alkaloids, which are 
usually treated as secondary metabolites. They are stored in each part of the plant—
leaves, stem, root, and fruits of plants—but in different amounts. It was suggested 
that they are plants’ waste product, but now evidence suggests that they play some 
important biological function in plants.

Some groups of structurally related alkaloids are present in plants from few to 
even 30. These alkaloids belong to the same class but have some differences in their 
structure and one of them usually occurs in majority. Some plant families are very 
rich in alkaloids. For example, in plants like opium poppy (Papaver somniferum) and 
the ergot fungus (Claviceps), there are about 30 different alkaloid types. In plants, 
their function is still mostly unknown. Alkaloids because of their bitter taste are 
natural compound to deter herbivorous organisms. In some plants they are used 
as natural pesticides. It was suggested that alkaloids in plants have a function to 
protect them from destructive activity of some insect species. Alkaloids are also 
present in some animal species like frogs (poison dart frogs (Phyllobates)), New 
World beaver (Castor canadensis), and lizards, and they are produced by fungi 
species and ergot.

Besides having the same general name—alkaloids—they have an extreme 
variety of chemical structures. Some of these compounds seem to have people 
known for ages because of their wide range of activity on human organisms and 
also other animals. For thousand years, extracts from plants containing alkaloids 
had medicinal use as drugs, and they owe their powerful effects thanks to the 
presence of alkaloids. Morphine was the first alkaloid which was isolated about 
1804 from opium poppy in crystalline form. Alkaloids are an interesting group of 
compounds with a wide range of activities, undesirable and desirable, on animal 
and human organisms. Alkaloids have diverse physiological effects: antibacterial, 
antimitotic, anti-inflammatory, analgesic, local anesthetic, hypnotic, psychotro-
pic, and antitumor activity and many others. Nowadays, alkaloids usually from 
plants rather than from animals are still of great interest to organic chemists, 
biologists, biochemists, pharmacologists, and pharmacists. Well-known alka-
loids include morphine, strychnine, quinine, atropine, caffeine, ephedrine, and 
nicotine [1].

3. Methods of isolation

Extracts of plants containing alkaloids were known and used because of their 
diverse activity by people from ages. But ages ago people did not know direct 
methods to isolate pure compounds from specified plant species. Alkaloids in 
plants usually exist as aqueous solution in tissues. To isolate them the method 
called extraction is usually used. For commercially useful alkaloids, special extrac-
tion methods were developed. In general mixture containing alkaloid should be 
dissolved with some solvent with reagents. Extraction method allows recovery of 
alkaloids from solution. Then, each alkaloid can be separated from mixture and 
be obtained in pure form. To obtain crystalline form of alkaloids, certain solvents 
should be used. Another method is chromatography. It uses differences in degrees 
of adsorption of different alkaloids in some solvent system on solid materials such 
as silica or alumina.
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4. Pharmaceutical and medicinal use of alkaloids

Alkaloids showed quite diverse medicinal properties. Many of them possess 
local anesthetic properties, but their practical use is limited for clinical purpose. 
Morphine (Figure 1a) is one of the most known alkaloids which had been used and 
still is for medical purposes. This alkaloid is a powerful narcotic which is used for 
the relief of pain, but its usefulness is limited because of addictive properties [1].

Methyl ether derivative of morphine—codeine—naturally occurring next 
to morphine in the opium poppy, possesses an excellent analgesic activity and is 
shown to be relatively nonaddictive. These alkaloids act as respiratory or cardiac 
stimulants. Next, the alkaloid which is used as medication in many clinical applica-
tions is atropine (Figure 1b). For example, injection with atropine is given to treat 
bradycardia (low heart rate).

Tubocurarine (Figure 2) is an alkaloid, is an ingredient of poison curare, and is 
used in surgery as muscle relaxant. Alkaloids vincristine and vinblastine are used as 
chemotherapeutic agent in the treatment of many cancer types. Cocaine an alkaloid 
present in Erythroxylum coca is a potent local anesthetic. Ergonovine, an alkaloid 
from the fungus Claviceps purpurea, and the second alkaloid ephedrine isolated 
from Ephedra species both act as blood vessel constrictors. Also ephedrine is used 
in bronchial asthma and to relieve discomfort of hay fever, sinusitis, and common 
colds.

Figure 1. 
Structures of alkaloids: (a) morphine and (b) atropine.

Figure 2. 
Structure of tubocurarine.
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Quinine (Figure 3) is a powerful antimalarial agent and more often is replaced 
by synthetic drugs, which are more effective and less toxic. Another alkaloid from 
Cinchona species is quinidine which has medical application as treatment of irregu-
lar rhythms of the heartbeat or arrhythmias.

Colchicine (Figure 4) is another alkaloid, present in plants of Liliaceae fam-
ily, known for ages to treat acute gout attacks. Another clinically used alkaloid is 
lobeline isolated from Lobelia inflata, which has multiple mechanisms of action.

5. Alkaloids in human food and drinks

Many alkaloids are elements of human diet, both in food and drinks. The plants 
in the human diet in which alkaloids are present are not only coffee seeds (caffeine, 
Figure 5), cacao seeds (theobromine and caffeine), and tea leaves (theophylline, 

Figure 4. 
Structure of colchicine.

Figure 5. 
Plant source of caffeine and its structure and powdered caffeine (pure form) (author’s own photos).

Figure 3. 
Structure of quinine from Cinchona species.
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caffeine) but also tomatoes (tomatine) and potatoes (solanine). The most common 
alkaloid is caffeine which has also application as an ingredient of soft drinks like 
Coca-Cola to improve their taste and in drinks for active people who do sport.

Other known alkaloid with bitter taste used as an ingredient of tonics is quinine 
(Figure 3) isolated from Cinchona species.

6. Alkaloids as stimulants

Alkaloids stimulate human organisms, for example, central nervous system, or 
directly work on the human brain. Nicotine (Figure 6) is an alkaloid obtained from the 
tobacco plant (Nicotiana tabacum) and is a potent stimulant and the main ingredient in 
tobacco smoked in pipes, cigars, and cigarettes. This alkaloid is highly addictive [1].

Cocaine is a narcotic drug, which activity is not suitable for medical purposes. 
This alkaloid has an opposite effect than morphine. This compound produces in the 
human body a euphoric hyperarousal state, but high doses of it may lead to fibrilla-
tion and death.

7. Dark nature of alkaloids

Some alkaloids are illicit drugs and poisons. Poisonous activities of some alkaloids 
are known for ages. One of these is strychnine (from Strychnos species, Figure 7). 
One of the well-known poison curare (obtained from Chondrodendron tomentosum) 
used in the South Africa as narrow poison contains alkaloid tubocurarine.

Coniine is an alkaloid isolated from Conium maculatum, which is an active 
ingredient of poison hemlock. Mescaline isolated from Anhalonium species has 
hallucinogenic activity. Psilocybin is a naturally occurring drug isolated from fungi 
species Psilocybe mexicana and possesses psychedelic activity. During the past 

Figure 6. 
Structure of nicotine.

Figure 7. 
Structure of strychnine.
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decades, many semisynthetic derivatives of naturally occurring alkaloids with var-
ious activities have been synthesized. Synthetic derivative of morphine is heroin, 
and, from lysergic acid naturally present in C. purpurea, LSD was produced.

8. Other practical use of alkaloids

Besides activities mentioned above, alkaloids from many different plant species 
have many other useful applications such as antiparasitic [2], antiplasmodial [3], 
anticorrosive [4], antioxidative [5], antibacterial [6], anti-HIV [7], and insecticidal 
activities [8].

9. Conclusion

Alkaloids are very important compounds for human beings. For ages their 
extracts were used as a cure to rescue people from pain like morphine and some 
illnesses like quinine in malaria and colchicine in gout. Thanks to alkaloids during 
ages, people can cure the diseases and improve their life.

Scientists still keep trying to design and synthetize more and more semisyn-
thetic and synthetic alkaloids derived from natural sources of alkaloids. These 
alkaloids possibly can possess interesting activities for medical, pharmaceutical, 
synthetic, and many other useful properties.
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Abstract

Catharanthus roseus is a plant of the Apocynaceae family. It produces over 120
alkaloids, 70 of which are pharmacologically active. C. roseus produces vinblastine,
utilized in treating Hodgkin’s disease; testicular tumors, breast carcinoma, chorio-
carcinoma, Kaposi sarcoma and Letterer-Siwe disorder. Vincristine is used to treat
acute lymphocytic leukemia, lymphosarcoma, lympho-granulomatosis and in solid
infant tumors. The preparation process of 1 kg of vincristine has a cost of US$ 3.5
million, while vinblastine has a cost of US$1 million. Therefore, 530 kg of dry leaves
are necessary to produce 1 kg of vincristine and half a ton for getting 1 g of
vinblastine. The high cost is due to the low concentrations in the aerial portion. Due
to the high market value and its effectiveness in different medical treatments, this
chapter deals with the pharmacological application of the C. roseus alkaloids.

Keywords: antileukemic, indole-monoterpene alkaloids, Letterer-Siwe disorder,
vinblastine, vincristine

1. Introduction

Catharanthus roseus (L.) G. Don is a medicinal plant of the Apocynaceae family,
originally from Madagascar. In the present, it has been naturalized in all tropical
regions of the world. C. roseus produces 120 alkaloids, 70 of which have pharmaco-
logical activity, for example, vindosine, hörhammericine, lochnericine, vindolicine,
anhydrovinblastine, vincristine, tabersonine, catharanthine, vindoline, yohimbine,
vinblastine, ajmalicine. Terpenoid indole alkaloids (TIA) are specially cultivated in
an industrial scale to obtain anticancer alkaloids for the pharmaceutical industry
[1]. The market of its leaves is monopolized by the United States and countries of
Eastern Europe, like Hungary. In addition, attempts to obtain these alkaloids by
in vitro tissue culture (cells in suspension) have not been very promising, since
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there are many yet unknown enzymes involved in their biosynthesis. C. roseus
alkaloids isolated from leaf, root, and flower can be analyzed through chemical,
chromatographic, and spectroscopic analytical methods. It has been estimated that
active alkaloid content in leaves is very low—2 tons of leaves are needed to isolate
and purify 1 g of vincristine, the amount needed for the treatment of an infant
during 6 weeks. Vinblastine and vincristine alkaloids are potent chemotherapeutics
with anticancer activity [2–5], and they also have tumor inhibition properties for
the treatment of leukemia [6], lymphosarcoma (cancer in the lymphogenous sys-
tem), lymphogranulomatosis (cancer in cervical lymphatic ganglia) and other
malign tumors. Vinblastine is used in the treatment of Hodgkin’s disease (it has a
ganglion onset and it extends initially through the lymphatic system and later
through the blood) the diagnosis must be made when typical Reed-Sternberg cells
are found [7–9]. Letterer-Siwe disease (the average age for this disease is 2 years; it
is a generally acute and disseminated dermatosis, which is characterized by lesions
simulating seborrhoeic dermatitis distributed in hairy skin, neck, and trunk. The
presence of purple papules, pustules, vesicles, and petechiae, and also systemic
signs that include fever, anemia, lymphadenopathies, osteolytic lesions, and
hepatosplenomegaly, has been described) [10]. It is effective in the treatment of
advance testicular tumors, breast carcinoma, choriocarcinoma (malign neoplasy
originated form the gestational trophoblast, of great aggressivity when not treated
at the right time [11]. Kaposi’s sarcoma (mesenchymatous tumor with the involve-
ment of blood and lymphatic vessels, originated by the human herpesvirus 8, also
known as Kaposi’s sarcoma-associated herpesvirus [12], while drugs with
hypotensor effect are prepared with ajmalicine and reserpine [13, 14]. These alka-
loids are produced and accumulated exclusively in C. roseus plants, and only in trace
amounts, around 0.0005% of the dry weight, which makes their extraction hard
and costly. According to Loyola-Vargas and colleagues, the process for extracting
1 kg of vinblastine costs 1 million dollars, while 3.5 million are needed to produce
the same amount of vincristine [15]. The high cost of these substances is due to
them being found in very low concentrations in the aerial part of the plant (around
0.0005% of dry weight); which is why half a ton of dry leaves of C. roseus are
needed for the obtention of 1 g of vinblastine [16] while to produce 1 kg of vincris-
tine 530 kg are used [17]. Besides, their extraction is very complicated since it is
carried out in the presence of 200 molecules with similar chemical and physical
properties. The low production of vinblastine and vincristine, the high value in the
market, and their effectiveness in different medical treatments have fostered
research to determine their biosynthesis and to develop alternate production
methods [18]. The production of vinblastine and vincristine has recently been
induced and studied in in vitro cultures of plant tissues through hormone combina-
tions of auxins and cytokinins [1]. Plant tissue in vitro culture biotechnology is a
successful tool for the productive generation of calli and cells that produce second-
ary metabolites of pharmaceutical and medical importance, such as the alkaloids
vincristine and vinblastine from Catharanthus roseus [18]. The objectives of this
chapter emphasize and point out the main pharmacological applications of the
species Catharanthus roseus. Its phenotype, biological action mechanism, biosynthe-
sis of terpenoid indole alkaloids, and alkaloid extraction, analysis and production in
in vitro cultures of C. roseus are described.

2. Phenotypic characteristics of Catharanthus roseus

C. roseus is an annual herb, woody in its base and ramified, it measures 80 cm in
height. It has well developed roots and it flowers all year long, which is why it is
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used as an ornamental plant. Its leaves are opposite, oblong, with round apex,
simple, whole, dark green color, shiny in the upper side, and of short petioles. Its
branches can be erect or decumbent, and its relatively big flowers are axillary,
solitary, of short peduncle and with five petals. Its fruit is a dehiscent follicle that
contains numerous seeds (more than 20) of color black [19, 20]. There are several
forms differentiated by flower coloration, probably due to genotypic variations,
prevailing those of white color, white with red centre, red centre, dark rose (almost
purple), white with disperse centre to violet rose or with dark centre bordered with
red. This species of wild plant can tolerate many types of biotic and abiotic stress.

3. Mechanism of biological action

Vincristine and vinblastine are potent mitotic inhibitors used in leukemia che-
motherapy; they are structures hard to synthesize chemically, like other cancer-
fighting drugs such as taxol [21] thus biotechnological approaches represent the
best route for its obtention. Vincristine binds to the tubulin β-subunit, the precursor
protein of microtubules responsible of mitosis and other essential cellular
functions like substrate transport, cellular mobility, and structural integrity, and
it inhibits microtubule formation—this disruption causes cellular death and mitosis
arrest [22].

4. Biosynthesis of terpenoid indole alkaloids of Catharanthus roseus

It has been shown that the biosynthesis of terpenoid indole alkaloids (TIA) in
C. roseus is subject to strict control at the level of cells, tissues, and organs—in
addition, it depends to a great extent on the own developmental stages of the plant
and the surrounding environment. Several studies have dealt with the regulation
of some of the genes coding for the enzymes involved in the synthesis of TIA and
recently some of the molecular mechanisms controlling gene expression in cell
suspension cultures of C. roseus have been elucidated [23]. The first step in TIA
biosynthesis is the formation of tryptamine [24] from the L-tryptophane amino acid
in a reaction catalyzed by the TDC enzyme. This cytosolic enzyme binds the pri-
mary metabolism with the secondary metabolism and its activity is considered as a
limiting step, although not the only one, in the control of TIA biosynthesis [25].
Another limiting step in the biosynthesis is the tryptamine that binds to the
secologanin monoterpene, the final product of the biosynthetic route of iridoids, in
a reaction catalyzed by the STR1 enzyme. Tryptamine condensation with iridoid
glucoside secologanin under the catalysis of the strictosidine synthase (STR) results
in the formation of strictosidine, the central intermediary in the biosynthesis of all
types of indole alkaloids [26]. Subsequently, strictosidine is metabolized through
different enzymatic steps, including those catalyzed by D4H and DAT enzymes that
lead to the formation of vindoline and catharanthine, the monoterpene alkaloids
precursors to vinblastine and vincristine [27]. The main alkaloids obtained from C.
roseus are shown in Figure 1: (1) vindolicine; (2) anhydrovinblastine; (3) vincris-
tine; (4) ajmalicine; (5) tabersonine; (6) catharanthine; (7) vindoline; (8) vinblas-
tine; and (9) ajmalicine.

4.1 Vindoline formation

Strictosidine β-D-glucosidase (SGD) is the enzyme that performs an important
role in guiding monoterpenoid indole alkaloids biosynthesis in a specific direction.
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The elimination of the rest of the glucose of strictosidine by SGD leads to an
unstable, highly reactive aglucone, that is believed to convert into 4,21
dehydrogeissoschizine. It is believed that the latter is converted into cathenamine
by the cathenamine synthase. Cathenamine is then converted into tabersonine
through several steps, transforming into vindoline by a six-step sequence [28].

4.2 Regulation of tdc, str-1, d4h, and dat genes in Catharanthus roseus

Gene and enzyme regulation participating in TIA biosynthesis in C. roseus depends
on the biological system employed, i.e., it differs from cell cultures to plants andwithin
these it depends on the tissue and developmental stages analyzed. In addition, it has
been found that the molecular mechanisms of regulation respond differentially to the
presence of elicitors or to conditions of light and hormone stress, among others [29].

4.3 tdc and str1 genes

In C. roseus plants, high levels of mRNA for tdc and str1 have been observed in
roots and leaves, the latter induced by UV light. The tdc and str1 transcripts and
their respective proteins show high cellular and tissue specificity, for example, they
have been detected exclusively in the superior and inferior epidermis of leaves, in
stem epidermis, and flower buds [30].

In cell cultures of C. roseus, tdc and str1 are highly regulated at the transcrip-
tional level. The expression of these two genes is inhibited by the presence of
auxins, although they are induced by elicitation with fungi, yeast extraction, methyl
jasmonate (MeJa), salicylic acid, and chitosan. These results suggest that the
expression of str1 and tdc in cell cultures of C. roseus is regulated in a coordinated
way by similar molecular mechanisms. The presence of some elements responding
to elicitation in the promoter of the tdc gene has been determined. The architectural
analysis of this promoter using tdc-gusA fusions in transgenic tobacco showed that

Figure 1.
Alkaloids produced by Catharanthus roseus (1) vindolicine (C51H64N4O12, 925.08 g/mol);
(2) anhydrovinblastine (C46H56N4O8, 792.97 g/mol); (3) vincristine (C46H56N4O10, 824.95 g/mol);
(4) ajmalicine (C21H24N2O3, 352.43 g/mol); (5) tabersonine (C21H24N2O2, 336.44 g/mol); (6)
catharanthine (C21H24N2O2, 336.42); (7) vindoline (C25H32N2O6, 456.53 g/mol); (8) vinblastine
(C46H58N4O9, 810.97 g/mol); and (9) ajmalicine (C21H24N2O3, 352.43 g/mol).
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the region between the positions �538 and �112 is determinant to control expres-
sion levels in different plant organs [31]. In addition, three functional regions of this
promoter were identified starting from the position �160. A region between posi-
tions �160 and �99 increased transcription, and two regions, one between �99
and �87, and the other one between �87 and �37, responded differently to elicita-
tion. To determine the regulatory mechanisms of str1, progressive deletions in the
50 region of str1 promoter were joined to the reporter gene 3-glucuroni-dase (gusA)
and their studied activity in transgenic tobacco. The analysis of the promoter of the
str1 gene of C. roseus showed that the activator sequences are located between the
positions �339 and �145. In other experiments, [32] showed that the biosynthetic
route of jasmonate (octadecanoic acid pathway) was an integral part of the signal
transduction pathway leading to the expression of tdc and str1 genes in cells in
suspension of C. roseus.

The expression of the promoter of the gene str1 in transgenic cellular cultures of
C. roseus, transformed with a construction containing the fusion str1/gusA, showed
that a fraction of str1 promoter located in the position �369 is sufficient to induce
the expression of the gusA gene in response to MeJa. In a subsequent report, [33]
identified an element of 42 base pairs (pb) within the 396 pb fragment—the
Jasmonate and Elicitor Responsive Element (JERE). The JERE region showed a GCC
sequence in the str1 promoter that was necessary and sufficient for gene expression
in the treatment with elicitors and jasmonate. Using the hybridization system of
double hybrids and the JERE region as “bait”, two cDNA coding for ORCA proteins
(Octadecanoic derivative Responsive Catharanthus AP2-domain) were isolated.
The AP2 domain is found exclusively in plant transcription factors and is involved
in the regulation of several stress responses. In cell suspension cultures of C. roseus,
str1 expression due to the jasmonate effect is mediated by the ORCA2 protein. Also,
expression of the ORCA2 transcript was induced by elicitors, including yeast extract
and MeJa. Recently, a new transcription factor (ORCA3) was discovered in cell
suspension cultures of C. roseus. ORCA3 coordinately regulates multiple genes,
including dxs, tdc, str1, sgd, cpr, and d4h, which code for pathway routes both of
primary and secondary metabolism related to TIA formation [23].

4.4 d4h and dat genes

In C. roseus plantlings, d4h is induced by the presence of light and their tran-
scription levels are increased after treatment with MeJa [34]. In situ hybridization
and immunolocalization studies have showed that d4h and its protein are located in
specialized cells (laticifers and idioblasts) shown in young leaves, stems and flower
buds of C. roseus [30]. Both the transcripts of dat gene and its protein are co-located
with d4h and D4H in laticifers and idioblasts [30]. In addition, studies with intact
plants and with plantlings have shown that the induction of the mRNA of dat, and
DAT activity and accumulation occur preferentially in leaves and cotyledons of
etiolated plants treated with light, but they are not present in roots nor in cell
suspension cultures, which explains the impossibility of producing vinblastine and
vincristine in cell systems.

5. Pharmacological application of Catharanthus roseus alkaloids

5.1 Clinical pharmacology

Vinblastine is a drug used in the elective regime for the metastatic treatment
of testicular cancer. The estimates of half-life after vinblastine administration

13

Alkaloids of Pharmacological Importance in Catharanthus roseus
DOI: http://dx.doi.org/10.5772/intechopen.82006
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been found that the molecular mechanisms of regulation respond differentially to the
presence of elicitors or to conditions of light and hormone stress, among others [29].

4.3 tdc and str1 genes

In C. roseus plants, high levels of mRNA for tdc and str1 have been observed in
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Figure 1.
Alkaloids produced by Catharanthus roseus (1) vindolicine (C51H64N4O12, 925.08 g/mol);
(2) anhydrovinblastine (C46H56N4O8, 792.97 g/mol); (3) vincristine (C46H56N4O10, 824.95 g/mol);
(4) ajmalicine (C21H24N2O3, 352.43 g/mol); (5) tabersonine (C21H24N2O2, 336.44 g/mol); (6)
catharanthine (C21H24N2O2, 336.42); (7) vindoline (C25H32N2O6, 456.53 g/mol); (8) vinblastine
(C46H58N4O9, 810.97 g/mol); and (9) ajmalicine (C21H24N2O3, 352.43 g/mol).
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to patients were 4 min, 1.6 h, and 25 h, which indicates a faster drug distribu-
tion in most tissues and a subsequent slower terminal elimination process.
Distribution and initial cleaning phase for vincristine are kinetically comparable
to the ones observed for vinblastine; half-lives for those phases have been
reported at 4 min and 2.3 h in studies with vincristine. The terminal
elimination phase for vincristine is reported to be three to four times longer
than the one estimated for vinblastine, and the slow elimination of vincristine
from the neuronal susceptible tissue suggest that it plays a role in neurotoxicity
commonly seen in clinical adjustments with vincristine but not with vinblas-
tine [35]. Hepatic metabolism and bile excretion play major roles in the elimi-
nation of both vinblastine and vincristine in humans [36]; small quantities of
vincristine and vinblastine, in the order of 10% of the administered dose, are
excreted with no alterations through urine. The renal clearance of vinblastine is
reported as being less than 10% of the total elimination of the serum [37]. It has
been reported that vinblastine inhibits a polymorphic cytochrome P-450 in
human hepatic microsomes, but the necessary concentrations were higher than
those observed in clinical adjustments [38]. It is recommended that vinblastine
and vincristine doses must be reduced in patients with liver disease. Vincristine
is conventionally administered intravenously, in adults, with a dose of
1.4 mg/m2, the total dose must not exceed 2 mg in each administration. Sulkes
and Collins have commented on the adjustments that can be provided for
conventional doses of vincristine and other drugs [39]. Of particular importance
is the possibility that some patients can show a good clinical response and
relatively low toxicity in dose regimes involving the cautious use of large
quantities of vincristine. The initial dose of vinblastine for adults is 3.7 mg/m2,
with a range of the typical growing dose of 5.5–7.4 mg/m2, administered
weekly [37, 38].

5.2 Antidiabetic activity

Considering the traditional use against diabetes, C. roseus was included in a
research program in Canada, with the objective of finding insulin substitutes.
Nevertheless, although no extract derived from the plant showed sensitivity in
that regard, an occasional observation in blood indicated that some leaf-derived
extracts accumulated alkaloids, sensibly decreasing the number of white glob-
ules, granulocytes in particular. This finding motivated scientists to carry out
in vitro studies with leukemia cells, which lead to the isolation of vinblastine
and vincristine in the 60s, among the more than 70 alkaloids of indolic nature
that this plant produces. Later, Svodoba in Lilly successfully performed assays
in rats with P-1534 leukemia, finding that the tumor was sensitive to these
extracts. Catharanthus roseus (L.) G. Don is a plant traditionally used by
populations in India, South Africa, China, and Malaysia to treat diabetes. Most
of the reports on the antidiabetic activity of this plant have been made using
crude extracts [39–42].

Soon et al. [43] found that the dichloromethane leaf extract of Catharanthus
roseus (L.) G. Don showed antidiabetic activity, with an increase in glucose uptake
in pancreas (β-TC6) and myoblastic cells (C2C12). Four alkaloids—vindoline I,
vindolidine II, vindolicine III and vindolinine IV—were isolated and identified from
the dichloromethane leaf extract of this plant. The dichloromethane extract and the
compounds I–III were not cytotoxic in the pancreatic β-TC6 cells under the highest
dose (25.0 μg/mL). The four alkaloids induced a relatively high glucose uptake in
pancreatic β-TC6 cells or myoblast C2C12, being III the one that showed the highest
activity [43, 46, 66].
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5.3 Antileukemic activity

Vincristine is employed to treat lymphocytic acute leukemia (the most frequent
malign hemopathy in childhood), of which several chromosomic alterations with
prognostic importance are known. Among them there are the translocation (4;11)
and the translocation (9;22), which are indicators of a bad prognosis, while
hyperdiploidy is associated with a good prognosis [44] and it attacks lymphomas
including solid tumors in children.

5.4 Antioxidant enzymatic activity

An experiment with different concentrations of sodium chloride in two varieties
of Catharanthus (var. alba and rosea) was carried out. It was found that the enzy-
matic activity of the superoxide dismutase increased at levels of 50 mM of sodium
chloride, which helps to raise the levels of this enzyme with antioxidant value [45].

5.5 Antiviral activity

Ozcelik et al. [46] showed the antiviral effect of Catharanthus in the simplex
herpes virus (type I) with a cytopathogenicity effect at 0.8 μg/mL. Catharoseumine,
a monoterpenoid indole alkaloid, has a unique peroxy bridge, which was identified
as a potential inhibitor against falcipain-2 protozoa parasites (causes of malaria),
showing an IC50 value of 4.06 μM. Vinblastine and vincristine showed an
antiparasitic effect against Trypanosoma, that causes trypanosomiasis in humans,
inhibiting its mitosis and affecting its cellular shape in a dose-dependent manner.
The use of 15 μM of vinblastine and 50 μM of vincristine inhibited cellular division
and cytokinesis, and affected cellular morphology, while the effect of 3 μM of
vinblastine and 10 μM of vincristine inhibited cytokinesis without affecting cell
cycle progression [46].

5.6 Hypoglycemic activity

It was shown in several animal studies, that ethanolic leaf and flowers extracts
decreased the levels of glucose in blood. Hypoglycemic effects are a result of
increasing the use of glucose in liver [47]. The aqueous extract decreased glucose in
blood in approximately 20% of diabetic rats, compared to methane and
dichloromethane extracts in which glucose in blood decreased 49–58% [48]. In the
present there are new alkaloids that have been studied in the Catharanthus plant, for
example, vindogentianine, an hypoglycemic metabolite extracted from leaves,
showed hypoglycemic activity in β-TC6 and C2C12 cells by induction of a higher
glucose consumption and a significant in vitro inhibition, suggesting that the hypo-
glycemic activity of vindogentianine is due to the increase in glucose consumption
and PTP-1B-type inhibition, which can be a potential therapeutical agent against
typ. 2 diabetes [49].

5.7 Antidiarrhoeic in vivo activity

The antidiarrhoeic in vivo activity of ethanolic leaf extracts was tested in Wistar
rats with beaver oil as an experimental diarrhea inductor agent. Loperamide and
atropine were used as standard drugs. The antidiarrhoeic effect of the ethanolic
extract showed a dose-dependent inhibition of the beaver oil, inducing diarrhea at
doses of 200 and 500 mg/kg [50].
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5.8 Antimicrobial activity

The antimicrobial activity of leaf extracts was tested against microorganisms
such as Pseudomonas, Salmonella, Staphylococcus and thus, these extracts show
promissory effects as prophylactic agents in the treatment of many diseases. Ramya
et al. [53] evaluated the in vitro antibacterial activity through the use of crude
extracts of Catharanthus [51].

The results indicated that leaf extracts showed a higher antibacterial activity
than the extracts prepared from other parts of the Catharanthus plant. Thus, the
aqueous extracts of leaves, stems, roots and flowers showed low microorganism
growth [52] tested leaf extracts of Catharanthus var. rosea, which showed an excel-
lent activity against Aspergillus. Stem extracts of var. alba showed a maximum
inhibitory activity against Bacillus while the flowers of Catharanthus var. rosea
showed a higher activity against Bacillus in the methanolic extract. The MIC
(Minimal Inhibitory Concentration) against the tested microorganisms was in the
range of 100–20 mg/mL. In a different study, foliar acetonic, ethanolic, and
chloroformic extracts were tested against pathogenic microorganisms to determine
its antimicrobial potential. The ethanolic extract showed the maximum antibacterial
activity when compared to the acetonic and chloroformic extracts, in such a way
that Staphylococcus was the most susceptible bacteria, followed by Escherichia,
Pseudomonas and Streptococcus [53].

5.9 Antineoplastic effect

Catharanthus plants contain a series of dimeric indole alkaloids with significant
antitumor activities. It has been found that these alkaloids have an in vitro and
in vivo apoptosis-inductive activity against tumor cells, mediated by the nuclear
factor kappa potentiator of B activated cells, and by the c-Jun N-terminal kinase
pathways, in which DNA damage and mitochondrial dysfunction play important
roles. The nuclear factor kappa B was discovered approximately 20 years ago, as a
protein that binds to the enhancer of the κ light chain of immunoglobulins in B cells.
It belongs to the family of NF-κB transcription factors, which is ubiquitous and
participates in the immune and inflammatory response, during tumor development,
formation, progression, and apoptosis [54]. The c-Jun N-terminal kinases, originally
identified as kinases that bind to and phosphorylate c-Jun protein in the Ser63 and
Ser73 residues in their transcriptional activation domain are mitogen-activated
kinases responding to stress stimuli, such as cytokinases, UV radiation, thermal
shock, and osmotic shock, and are involved both in T lymphocyte differentiation
processes, and in apoptosis processes. Different percentages of the crude
methanolic extracts have been found to show significant anticancer activity against
several cell types under in vitro conditions and with a high activity against
multidrug-resistant tumor types. On the other hand, Ruskin and Aruna showed that
the ethanolic extract of Catharanthus has in vivo antitumor activity in the Ehrlich
carcinoma tumor model, while the in vitro study of the ethanolic extract showed
significant antitumor activity [55].

6. Extraction and analysis of alkaloids of Catharanthus roseus

The extraction method of terpenoid indole alkaloids in C. roseus has been opti-
mized by different authors. Most of the methods are time-consuming extractions
with several steps and a high use of organic solvents. Despite the high aggregated
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value of the product, these multi-step processes generate a great amount of organic
and acid residues, and as a consequence they rise production cost [56].

Some effective alkaloid extraction methods have been identified from pilose
roots of C. roseus. For example, Tikhomiroff and Jolicoeur use methanol, lyophilize,
dry the roots, and extract during 1 h in a sonication bath [57] use methanol,
lyophilize, mash the roots, extract with 45 mL for 5 h in a sonication bath, and
evaporate the mobile phase, use methanol and ethyl acetate, extract methanol
during 20 min in a sonication bath at 50°C, evaporate methanol, resuspend with
20 mL 0.1 N of HCl, extract with 20 mL of ethyl acetate, adjust pH to 10, evaporate
and resuspend in methanol extract with methanol and lyophilize [58]. Extraction
can be made from dry material in water with sulfuric acid and four purification
stages: fractioning by partition with benzene, two chromatographic columns and
finally, crystallization in ethanol and sulfuric acid. Vinblastine and vincristine have
been isolated in pure form to be detected through the use of several chromato-
graphic techniques such as: Vacuum Liquid Chromatography with a silica gel col-
umn; aluminum oxide (1:1) mixed with Vacuum Liquid Chromatography (VLC);
carbon column and purification by accelerated radial chromatography by centrifu-
gation (chromatotron). Semi-quantitative methods have been established by the use
of Thin Layer Chromatography (TLC) methods. TLC has a higher sensitivity for
alkaloid detection; ajmalicine is detected at a 0.0007% in a volume of 10 μL. Vin-
cristine is detected at 0.055% in a volume of 10 μL, while vinblastine and vindoline
are not sensitive to this method since they are both in concentrations of 0.05% in a
volume of 10 μL. The chromogenic reactive that is chromatographically used in
alkaloid detection is the Cerium Ammonium Sulfate (CAS), which is known for
reacting with analyte to produce visible colors in the TLC plate [59].

7. Generalities of the in vitro culture

The general process of the in vitro culture consists in inoculation on a gelified
culture media (generally with agar Gelrite or Phytagel®) with a fragment of plant
tissue or an organ, called explant, previously treated to eliminate all the organisms
found in its surface (disinfestation). The culture is incubated under controlled
environmental conditions of light, temperature, and humidity, that together with
the physiochemical and nutritional conditions lead to the development of the
explant towards the formation of an amorphous cell mass called callus, or towards
the differentiation in an organized tissue that will produce organs or embryos.
Organ cultures can be re-differentiated into complete plants (micropropagation)
that can be later transferred to a greenhouse, a phase known as acclimation. Culture
temperature generally is controlled between 25 and 28°C, the pH between 5.2 and
6.5, and the light from 0 to 12,000 lux. Several studies have researched the effects of
pH on cell growth and metabolite production in cell suspension cultures [60].

In addition, several studies modify the pH of the culture media to increase the
release of secondary metabolites, and few studies have been carried out to examine
the effects of buffers in plant culture growth or in secondary metabolism
biosynthesis pathways. Several authors have studied the effect of buffers in in vitro
cultures of Catharanthus roots, to quantify the content of serpentine, ajmalicine,
tabersonine, lochnericine, and horhammericine. The main alkaloids serpentine,
lochnericine, and horhammericine from C. roseus are shown in Figure 2.

Light is a very important factor in the in vitro production of secondary metabo-
lites of Catharanthus. In that regard, other authors showed that temperature has an
important influence on cell suspension culture growth and ajmalicine production.
The optimal temperature for both biomass growth and secondary metabolite
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5.9 Antineoplastic effect

Catharanthus plants contain a series of dimeric indole alkaloids with significant
antitumor activities. It has been found that these alkaloids have an in vitro and
in vivo apoptosis-inductive activity against tumor cells, mediated by the nuclear
factor kappa potentiator of B activated cells, and by the c-Jun N-terminal kinase
pathways, in which DNA damage and mitochondrial dysfunction play important
roles. The nuclear factor kappa B was discovered approximately 20 years ago, as a
protein that binds to the enhancer of the κ light chain of immunoglobulins in B cells.
It belongs to the family of NF-κB transcription factors, which is ubiquitous and
participates in the immune and inflammatory response, during tumor development,
formation, progression, and apoptosis [54]. The c-Jun N-terminal kinases, originally
identified as kinases that bind to and phosphorylate c-Jun protein in the Ser63 and
Ser73 residues in their transcriptional activation domain are mitogen-activated
kinases responding to stress stimuli, such as cytokinases, UV radiation, thermal
shock, and osmotic shock, and are involved both in T lymphocyte differentiation
processes, and in apoptosis processes. Different percentages of the crude
methanolic extracts have been found to show significant anticancer activity against
several cell types under in vitro conditions and with a high activity against
multidrug-resistant tumor types. On the other hand, Ruskin and Aruna showed that
the ethanolic extract of Catharanthus has in vivo antitumor activity in the Ehrlich
carcinoma tumor model, while the in vitro study of the ethanolic extract showed
significant antitumor activity [55].

6. Extraction and analysis of alkaloids of Catharanthus roseus

The extraction method of terpenoid indole alkaloids in C. roseus has been opti-
mized by different authors. Most of the methods are time-consuming extractions
with several steps and a high use of organic solvents. Despite the high aggregated
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value of the product, these multi-step processes generate a great amount of organic
and acid residues, and as a consequence they rise production cost [56].

Some effective alkaloid extraction methods have been identified from pilose
roots of C. roseus. For example, Tikhomiroff and Jolicoeur use methanol, lyophilize,
dry the roots, and extract during 1 h in a sonication bath [57] use methanol,
lyophilize, mash the roots, extract with 45 mL for 5 h in a sonication bath, and
evaporate the mobile phase, use methanol and ethyl acetate, extract methanol
during 20 min in a sonication bath at 50°C, evaporate methanol, resuspend with
20 mL 0.1 N of HCl, extract with 20 mL of ethyl acetate, adjust pH to 10, evaporate
and resuspend in methanol extract with methanol and lyophilize [58]. Extraction
can be made from dry material in water with sulfuric acid and four purification
stages: fractioning by partition with benzene, two chromatographic columns and
finally, crystallization in ethanol and sulfuric acid. Vinblastine and vincristine have
been isolated in pure form to be detected through the use of several chromato-
graphic techniques such as: Vacuum Liquid Chromatography with a silica gel col-
umn; aluminum oxide (1:1) mixed with Vacuum Liquid Chromatography (VLC);
carbon column and purification by accelerated radial chromatography by centrifu-
gation (chromatotron). Semi-quantitative methods have been established by the use
of Thin Layer Chromatography (TLC) methods. TLC has a higher sensitivity for
alkaloid detection; ajmalicine is detected at a 0.0007% in a volume of 10 μL. Vin-
cristine is detected at 0.055% in a volume of 10 μL, while vinblastine and vindoline
are not sensitive to this method since they are both in concentrations of 0.05% in a
volume of 10 μL. The chromogenic reactive that is chromatographically used in
alkaloid detection is the Cerium Ammonium Sulfate (CAS), which is known for
reacting with analyte to produce visible colors in the TLC plate [59].

7. Generalities of the in vitro culture

The general process of the in vitro culture consists in inoculation on a gelified
culture media (generally with agar Gelrite or Phytagel®) with a fragment of plant
tissue or an organ, called explant, previously treated to eliminate all the organisms
found in its surface (disinfestation). The culture is incubated under controlled
environmental conditions of light, temperature, and humidity, that together with
the physiochemical and nutritional conditions lead to the development of the
explant towards the formation of an amorphous cell mass called callus, or towards
the differentiation in an organized tissue that will produce organs or embryos.
Organ cultures can be re-differentiated into complete plants (micropropagation)
that can be later transferred to a greenhouse, a phase known as acclimation. Culture
temperature generally is controlled between 25 and 28°C, the pH between 5.2 and
6.5, and the light from 0 to 12,000 lux. Several studies have researched the effects of
pH on cell growth and metabolite production in cell suspension cultures [60].

In addition, several studies modify the pH of the culture media to increase the
release of secondary metabolites, and few studies have been carried out to examine
the effects of buffers in plant culture growth or in secondary metabolism
biosynthesis pathways. Several authors have studied the effect of buffers in in vitro
cultures of Catharanthus roots, to quantify the content of serpentine, ajmalicine,
tabersonine, lochnericine, and horhammericine. The main alkaloids serpentine,
lochnericine, and horhammericine from C. roseus are shown in Figure 2.

Light is a very important factor in the in vitro production of secondary metabo-
lites of Catharanthus. In that regard, other authors showed that temperature has an
important influence on cell suspension culture growth and ajmalicine production.
The optimal temperature for both biomass growth and secondary metabolite
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production is 27.5°C. Young or developing plants with meristematic tissues and
vigorous vegetal growth are the best source of explants. Although both juvenile and
adult growth can be found in the same plant, the former is characterized by its
activity and by the absence of reproductive structures, while the adult growth is
slower and presents sexual structures for plant reproduction. The disinfestation of
the tissue to be used as a source of explants is made with disinfestant agents like
sodium or calcium hypochlorite. The penetration of the disinfestant agent in rugged
or hairy surfaces of the plant tissue can increase with the addition of tensioactive
agents such as Tween 20. Activated carbon or citric acid are used as antioxidants
[61]. In addition, the in vitro cultures allow us to know the production of secondary
metabolites. In this respect, the sources from which the different Catharanthus
alkaloids have been isolated in vitro are diverse; for example, the alkaloid ajmalicine
has been extracted through the analysis from calli, cell suspensions, sprouts, and
pilose roots; alstonine from in vitro calli; antirhine in cell suspensions; cathindine in
suspensions; serpentine in calli, suspensions, sprouts, and pilose roots; acuamicine
in calli, suspensions, and sprouts; lochnericine in calli, suspensions, and pilose roots;
horhammericine in suspensions and sprouts; tabersonine in calli and suspensions;
vindoline in suspensions and sprouts; catharanthine in suspensions, sprouts, and
roots; 3,4 anhydrovinblastine in sprouts; catharine in sprouts; vinblastine in calli,
sprouts, and somatic embryos; and vincristine in sprouts and embryos, among
others [61].

7.1 In vitro culture of alkaloid production of Catharanthus roseus

It stands out that among the major advantages of plant cell and tissue cultures in
basic research, of micropropagation and production of compounds with biologic
activity such as secondary metabolites, proteins, and transgenic products, they
allow studies in a shorter time and under more controlled conditions than the ones
used in traditional methods. A callus is defined as a groups of dedifferentiated
friable cells growing in a solid medium and it is the initial material for the estab-
lishment and growth of suspension cells. The obtained calli can be subcultured for
its maintenance and propagation or induced into differentiation to form organs
(organogenesis), embryos (embryogenesis) or to be transferred into a liquid culture
medium to obtain cells and small aggregates in suspension. The in vitro culture of
plant cells in a liquid medium for cell suspensions is a potential source of substance
of interest for the pharmaceutical industry, showing all the advantages inherent to
biotechnological processes. The advantages offered by cell culture, specifically cell
suspension culture, is that it allows a similar handling to the one performed with
microorganisms, a fast cell multiplication (duplication time), and it is possible to
carry out an scaling into new techniques such as bioreactors and temporal immer-
sion systems. However, not all compounds are produced in undifferentiated cells in

Figure 2.
Alkaloids produced by C. roseus (1) serpentine (C21H21N2O3, 349.4 g/mol); (2) lochnericine (C21H24N2O3,
352.43 g/mol) and (3) horhammericine (C21H24N2O4, 368.42 g/mol).
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the same quantity and quality than the ones obtained from mother cells. This is due
to many metabolites being synthesized integrally to differentiation events. Several
authors have pointed out the identification of cell lines that can produce metabolites
in the same amount, or higher, than in natural conditions. New substances have also
been detected, which are not synthesized by the plants in their natural environ-
ment, which is why it is asserted that cell lines culture constitutes a highly relevant
biotechnology for the obtention of new secondary metabolites. In vitro cell suspen-
sion cultures are kept under the same physical and physicochemical conditions used
for calli induction.

There are different in vitro culture techniques of the medicinal C. roseus plant,
which provides a range of important secondary metabolites of pharmacological
application, such as the antileukemic alkaloids vinblastine and vincristine, useful in
leukemia treatment [62]. Specifically, in cell suspension cultures of Catharanthus,
all the terpenoid indole alkaloids derivate from an intermediary like strictosidine,
including serpentine, catharanthine, ajmalicine, tabersonine, vincristine, and vin-
blastine [63]. Once the cell culture has been established, a continuous process of
epigenetic or genetic changes is observed, which causes the population to be het-
erogeneous. This creates the necessity of selecting clones with a high growth rate
and with a high production of metabolites of interest. Cell lines are obtained
through the selection of several strategies, including microscopic (cell viability, for
example, with fluorescein diacetate), macroscopic, and enzymatic tests. The aspects
associated to secondary metabolites accumulation are the presence of certain cell
types, organelles, biosynthetic, or catabolic gene expression and regulation. Thus,
organ culture represents an interesting alternative to the production of plant sec-
ondary metabolites. Two types of organs are considered to be of greater importance:
sprouts and roots, which can be cultivated at a large scale. Organ culture can
produce substances of interest that have been obtained through undifferentiated
cultures. However, sprout cultures cannot produce all the compounds that are
obtained in plant leaves under natural conditions. If the compound of interest is
synthesized in roots, then it will not appear in sprouts cultures. On the other hand,
it is necessary to take into account that, even though the compound is synthesized
in leaves, it is possible that its patterns and concentration are different to the ones
obtained from intact plants. As a major advantage, it is pointed out that organ
cultures is more genetically stable compared with cell suspension and calli
cultures [64].

Several in vitro culture techniques such as adventitious meristems or organ
propagation, cell and tissue cultures, provide a large amount of Catharanthus mate-
rial for the isolation of mono and dimeric indole type alkaloids with multi-
therapeutic properties. Several studies have shown that Catharanthus is regenerated
generally through somatic organogenesis by the induction of friable calli. In addi-
tion, in vitro cultures of multiple sprouts can be directly induced. Vindoline is an
important alkaloid in in vitro cultures of Catharanthus sprouts. Some authors
obtained 2 mg g�1 of dry weight after 27 days of culture [65]. Roots synthesize,
accumulate, and secrete a large variety of secondary metabolites, in addition to
providing mechanical support and allowing water and soil nutrients uptake. It is
known that biosynthetic activity in roots is also maintained in in vitro cultures.
In vitro cultures of Catharanthus with fast growth have been established in
Murashige & Skoog (MS) medium. Several studies mention that in vitro cultures are
able to synthesize metabolites through root production. These cultures could be a
biotechnological alternative of alkaloid production for future research.

Mekky et al. [66] cultured leaves of C. roseus in Murashige & Skoog medium
supplemented with 1.5 mg/L of BAP and 1.5 mg/L of 2,4-D. The callus obtained was
subcultured in 15 different combinations of growth hormones during 28 days.
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the same quantity and quality than the ones obtained from mother cells. This is due
to many metabolites being synthesized integrally to differentiation events. Several
authors have pointed out the identification of cell lines that can produce metabolites
in the same amount, or higher, than in natural conditions. New substances have also
been detected, which are not synthesized by the plants in their natural environ-
ment, which is why it is asserted that cell lines culture constitutes a highly relevant
biotechnology for the obtention of new secondary metabolites. In vitro cell suspen-
sion cultures are kept under the same physical and physicochemical conditions used
for calli induction.

There are different in vitro culture techniques of the medicinal C. roseus plant,
which provides a range of important secondary metabolites of pharmacological
application, such as the antileukemic alkaloids vinblastine and vincristine, useful in
leukemia treatment [62]. Specifically, in cell suspension cultures of Catharanthus,
all the terpenoid indole alkaloids derivate from an intermediary like strictosidine,
including serpentine, catharanthine, ajmalicine, tabersonine, vincristine, and vin-
blastine [63]. Once the cell culture has been established, a continuous process of
epigenetic or genetic changes is observed, which causes the population to be het-
erogeneous. This creates the necessity of selecting clones with a high growth rate
and with a high production of metabolites of interest. Cell lines are obtained
through the selection of several strategies, including microscopic (cell viability, for
example, with fluorescein diacetate), macroscopic, and enzymatic tests. The aspects
associated to secondary metabolites accumulation are the presence of certain cell
types, organelles, biosynthetic, or catabolic gene expression and regulation. Thus,
organ culture represents an interesting alternative to the production of plant sec-
ondary metabolites. Two types of organs are considered to be of greater importance:
sprouts and roots, which can be cultivated at a large scale. Organ culture can
produce substances of interest that have been obtained through undifferentiated
cultures. However, sprout cultures cannot produce all the compounds that are
obtained in plant leaves under natural conditions. If the compound of interest is
synthesized in roots, then it will not appear in sprouts cultures. On the other hand,
it is necessary to take into account that, even though the compound is synthesized
in leaves, it is possible that its patterns and concentration are different to the ones
obtained from intact plants. As a major advantage, it is pointed out that organ
cultures is more genetically stable compared with cell suspension and calli
cultures [64].

Several in vitro culture techniques such as adventitious meristems or organ
propagation, cell and tissue cultures, provide a large amount of Catharanthus mate-
rial for the isolation of mono and dimeric indole type alkaloids with multi-
therapeutic properties. Several studies have shown that Catharanthus is regenerated
generally through somatic organogenesis by the induction of friable calli. In addi-
tion, in vitro cultures of multiple sprouts can be directly induced. Vindoline is an
important alkaloid in in vitro cultures of Catharanthus sprouts. Some authors
obtained 2 mg g�1 of dry weight after 27 days of culture [65]. Roots synthesize,
accumulate, and secrete a large variety of secondary metabolites, in addition to
providing mechanical support and allowing water and soil nutrients uptake. It is
known that biosynthetic activity in roots is also maintained in in vitro cultures.
In vitro cultures of Catharanthus with fast growth have been established in
Murashige & Skoog (MS) medium. Several studies mention that in vitro cultures are
able to synthesize metabolites through root production. These cultures could be a
biotechnological alternative of alkaloid production for future research.

Mekky et al. [66] cultured leaves of C. roseus in Murashige & Skoog medium
supplemented with 1.5 mg/L of BAP and 1.5 mg/L of 2,4-D. The callus obtained was
subcultured in 15 different combinations of growth hormones during 28 days.
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Alkaloids were extracted from the calli and different treatments were analyzed with
HPLC in regard to the capacity of vincristine and vinblastine production compared
to the wild plant. Biomass was maximized with combinations of the growth hor-
mone 2,4-D/NAA and IAA/NAA but alkaloid biosynthesis was reduced to the min-
imum. Vincristine production was potentiated in almost all growth hormone
combinations with Kin/IAA, and they produced the highest concentration.
However, vinblastine was potentiated in the combinations of growth hormones
Kin/IAA, IAA/Gb, BAP/Gb and NAA/Gb only; with Kin/IAA being the one that
showed the highest concentration of vinblastine. The main motivating result was
the biosynthesis of dimeric anticancer alkaloid essence, vincristine was barely
detected in the wild plant and vinblastine, that showed an increase of 3.39-fold
compared with the wild plant. In addition, there is a growing demand for these
two alkaloids [66].

8. Conclusions

C. roseus is an important medicinal plant with several applications in pharma-
ceutical and industrial products. In the present, vinblastine and vincristine are two
alkaloids for the treatment of childhood leukemia and Hodgkin lymphoma. Pro-
duction rate of vinblastine and vincristine in C. roseus is very low, its extraction
costly, and too inefficient to be industrialized. The semisynthesis also faces many
obstacles because of the necessary presence of precursors and intermediaries. The
great pharmacological importance of the terpenoid indole alkaloids vincristine and
vinblastine, associated to its low content in plants (approximately 0.0005% of dry
weight), in vitro tissue and cell cultures, will permit the stimulation of intense
research regarding the biosynthesis pathways of terpenoid indole alkaloids yet
unknown through in vitro culture studies under biotic or abiotic elicitation strate-
gies with the objective of increasing the production of C. roseus alkaloids.
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Synthesis of Tropane Derivatives
Abdulmajeed Salih Hamad Alsamarrai

Abstract

This chapter refers to tropane alkaloid compounds best known for their occur-
rence, biosynthesis, and pharmacological properties in a subsection of the plant
family Solanaceae including the Atropa, Duboisia, Hyoscyamus, and Scopolia species,
together with their semisynthetic derivatives. Tropane alkaloids are useful as
parasympatholytics that competitively antagonize acetylcholine. The bicyclic ring
of tropane moiety forms the base of these alkaloids, and the largest number of
tropane alkaloids is substituted on the atom C-3 of the tropane ring in the form
of ester derivatives. Also, this chapter provides routes to previous methods for
synthesizing tropane-2-yl derivatives as well as new routes to synthesize
2-(p-toluenesulphonyl) tropane-2-ene (anhydroecgonine). The new strategy for
synthesizing anhydroecgonine might be helpful to adopt the best method of
synthesizing tropane-2-yl derivatives.

Keywords: alkaloids, tropane, ecgonine, cocaine, tropinone, tropidine

1. Introduction

1.1 Tropane alkaloids occurrence

Tropane alkaloids (Figure 1) are among the oldest medicines known to men.
A secondary metabolites containing the tropane nucleus constitute one of the
largest and most important group of naturally occurring compounds [1]. Secondary
metabolites of Solanaceae plant, sharing tropane skeleton (1) as a common struc-
tural feature can be divided into two classes: tropine (2) and ecgonine (3) deriva-
tives [2]. The first group is represented by atropine from Atropa belladonna (4) and
scopolamine (5) (Scopola carniolica) which are considered to be anticholinergic
drugs. The second includes one of the strong stimulants and mostly used as a
recreational drug, cocaine (6).

Over 600 naturally occurring alkaloids of tropane can be found in plants such as
Datura stramonium [3]. Cocaine (6) was first isolated from Erythroxylon coca in
1860 [4–7] and is still a prolific field of research. Although alkaloids with the
tropane moiety are the oldest medicines known to man, they are still a subject
of continual review in the chemical literature, and only recently they have been
isolated, purified, and studied [8, 9].

1.2 Biosynthesis of tropane alkaloids

Alkaloids possess quite complex structures, and the study of biosynthesis of
these alkaloids has a long history. It is generally thought that the tropane moiety
arises from complex enzymatic processes involving phytochemical precursors.
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Incorporation of radioactive labeled precursors has eased monitoring pathway on
which the tropane derivatives are formed [10]. Recent studies making use of labeled
ornithine (7), N-methylornithine (8), and 1,4-butanediamine (9) prepared biosyn-
thetically, have firmly established these precursors and representative examples of
complex tropane alkaloids found in Solanaceae plant [11]. After the establishment
of the origins of these precursors, attention has been directed mainly toward those
alkaloids which, in addition to the tropane residue, contain a 9- or 10-carbon atom
unit such as 3α-senecioyloxy-6β-tropane (see Figure 2). These units exist in many
variant forms, but certain recurrent features led to the belief that many variants
have a common phytochemical precursors, for instance, L-ornithine (7) is believed
to be converted to diamine (9) by specific enzyme such as hyoscyamine-6β-
hydroxylase (H6H) and the former (9) is considered the precursor in biosynthesis
of the bicyclic [3.2.1] skeleton of tropane alkaloids which is outlined in Figure 3.

It has been found that oxidation of tropane ring can be achieved by molecular
oxygen in the presence of ferrous ions. Also, it has been found that these keto forms
of tropane can be catalyzed by an enzyme called reductase [12]. For instance, the
biosynthesis pathway to tropane alkaloids, tropinone (10), is reduced by reductase
to tropine (2), as it can be seen in Figure 4.

Structural assignments of tropane molecules have exhibited difficult problems,
and, as a result, progress in their endeavors has been closely associated with

Figure 1.
Some tropane alkaloids.

Figure 2.
3Alpha-senecioyloxy-6beta-hydroxytropane.

28

Alkaloids - Their Importance in Nature and Human Life

Figure 3.
Amino acids precursors in the biosynthesis of tropane skeeton.

Figure 4.
Bio-synthesis of tropane alkaloids-Alcheetron.com-760 � 570.
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development of modern analytical techniques of spectroscopy, of which mass spec-
troscopy deserves particular mention such as ESI MS, GC-MS, HPLC-MS, and
MALDI MS.

1.3 Pharmacological properties of tropane alkaloids

Concerning the pharmacological effects, these compounds are so important
because of their pharmacological properties [13]. Alkaloids such as atropine (4),
scopolamine (5), and cocaine (6) and their derivatives are best recognized to have
pharmacological actions related in the body to the function of neurotransmitter
acetylcholine [14]. Some tropane alkaloids can act as anticholinergic effects or
stimulants [15]. Pharmaceuticals of tropane derivatives are economically important.
Over 20 active pharmaceutical ingredients containing tropane moiety in their
structures are manufactured and used as antispasmodics, anesthetic, and mydriatics
(see Figure 5) [16].

Figure 5.
Some pharmaceutical ingredients containing tropane moiety.
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Tropane does not occur naturally in free forms. The favored forms of tropane in
plant species are the esters forms. These esters are generally secondary metabolites
of the plant species. Tropane esters were isolated from different plant families like
Proteaceae, Rhizophoraceae, Euphorbiaceae, and Convolvulaceae, and they are well
known to occur in Solanaceae. Most tropane alkaloids in the Solanaceae family
arises from the esterification of acids, such as acetic acid, propanoic acid, isobutyric
acid, isovaleric acid, 2-methylbutyric acid, tifilic acid (+)-α-hydroxyl-β-
phenylpropionic acid, tropic acid, and atropic acid with various hydroxytropanes
(α-tropane-diol or α-tropane-triol) [5]. Almost all of the tropane-based pharmaceu-
ticals are natural or semisynthetic esters [5, 17, 18]. There are also alkylated or
arylated tropane compounds known as phenyltropane (Figure 6).

2. Chemistry of tropane alkaloid synthesis routes

Although there are many synthetic routes, Robinsons one-pot synthesis of
tropane and its derivatives designed in 1917 [19] is still the best choice for the
synthesis of such compounds. The parameters have been changed from time to time
in order to increase yield to synthesize a specific derivative (Figure 7).

Figure 6.
Some phenyl tropane compounds.

Figure 7.
Robinson’s one pot synthesis of tropinone (10).
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2.1 Synthesis of tropan-2-yl derivatives

The naturally occurring alkaloid, cocaine (6), possesses a functional group at C-2
in the tropane ring system, which has been modified to give various 2-
aminotropanes. Willstatter [20], in his work devoted to the elucidation of the
structure of ecgonine (3), obtained the amide (11) which it degraded by Hofmann
reaction to 2α-aminotropane (12) (the α-configurations retained throughout this
sequence can be assigned for later work) (Figure 8) [21].

Willstatter also obtained (12) by Curtius reaction of the ester (13), and this
reaction has been used earlier by Fodor [22] to obtain the amino alcohols (14) and
(15), although, again, the configurations at C-2 and C-3 were not known when the
work was carried out (Figure 9).

Apart from these isolated examples, the most consistent interest in 2-substituted
tropanes was shown in connection with the alkaloid dioscorine (16), which was for
some time thought to have structure (17) and therefore to be related to tropan-2-
one (18). This ketone is an optically active form, which was first prepared by Bell
and Archer from ecgonine (3) (Figure 10) [23].

The action of phosphoryl chloride on ecgonine (3) was shown by Einborn to give
the acid chloride of anhydroecgonine (19) [24]. Bell and Archer converted the
crude acid chloride directly to the corresponding amide (20), from which L-(+)-
tropan-2-one (18) was obtained in fair yield by Hofmann reaction (Figure 11).

When this material was compared with the ketone obtained by degradation of
dioscorine (16), the two could not be distinguished [25], and it was left to Pinder
and his co-workers to prove that dioscorine was not in fact a tropane derivative
[26]. Pinder found that tropidine (21) reacts with the more usual peracid oxidizing

Figure 8.
Hoffmann of the amide (11) to the (12).

Figure 9.
Curtius reduction of ecgonine to amino alcohols (14) and (15).

Figure 10.
Some 2-substituted tropane alkaloids.
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agents to give the N-oxide (22), and in acid solution no reaction took place [27].
However, the action of trifluoroperacetic acid on tropidine trifluoroacetate salt (23)
gave the 2β,3β-epoxide (24). Reduction of the epoxide with lithium aluminum
hydride yielded tropan-3-β-o1 (25), but it was found impossible to oxidize this
amino alcohol to tropan-2-one (18) (Figure 12).

A synthesis of the desired ketone was eventually achieved by a larger route.
Treatment of 2-ethoxycarbonyl-pyrrole (26) with phosphoryl chloride and
dimethylformide yielded the two isomeric aldehydes, (27) and (28), which were
separated fairly easily by fractional distillation in vacuum. Thereafter the crucial
stage, a Dieckmann cyclization, led to the β-ketoester (29), which hydrolyzed and
was decarboxylated to tropan-2-one (18), outlined in Figure 13 [26].

Pinder resolved the racemic product into its optically active components and
discovered that (+)-tropan-2-one (18) was quite different from the ketone derived
from the alkaloid dioscorine (16). With this demonstration that dioscorine (16) was
not a tropane derivative, the interest in 2-substituted tropanes diminished, and few
papers concerned with these compounds have appeared since 1962.

Tropane-2-one (18) is a convenient source of both tropan-2-αβ-ols. Reduction of
the ketone with lithium aluminum hydride yields tropan-2α-ol (25), which is the
expected, equatorial product [23, 26]. Reduction of a cyclic ketone with sodium
alcohol mixtures also usually gives the thermodynamically more stable, equatorial
alcohol [28], but with sodium in propan-2-ol, pentan-3-ol, tropan-2-one gave mix-
tures of tropan-2β-ol (30) and tropan-2α-ol (25) [23] (Figures 13 and 14). Moreover,
when the ratio of alcohol to alkoxide ion at the end of the reaction was increased, the
product was found to contain increasing amounts up to 90% of tropan-2β-ol (30).
These facts suggested that the axial alcohol (25) is more stable thermodynamically,
and this was confirmed by subjecting the pure equatorial isomer (25) to equilibration
by means of sodium 2-pentoxide in pentan-3-ol containing 10% fluorenone: the
equilibrium mixture contained 85% of the axial isomer (25) [23].

Figure 11.
Synthesis of tropane-2-one.

Figure 12.
Synthesis of tropane-beta-ol (25).
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This reversal of the usual axial equatorial stability relationship may be attributed
to the presence of strong, intramolecular hydrogen bonding between the axial
hydroxyl group and the nitrogen bridge (31). When the possibility of hydrogen
bond formation is removed, as in the anions (32) and (33), the equatorial configu-
ration becomes more stable. When the ratio of free alcohol to alkoxide ion at the
end of the sodium alcohol reduction is large, the equilibrium will be mainly between
the two alcohols (25) and (30); in these conditions, the product will contain a high
proportion of the more stable, axial alcohol. Conversely, when the final proportion
of alkoxide ion in the reaction mixture is high, a significant equilibrium between
anions (32) and (33) will exist, and the product will contain a higher proportion of
the equatorial alcohol (30), arising from the more stable anion (32) (Figure 15).
These stability relationships enable a useful control of the product ratio to be
exercised.

Two further preparations, of 2-halotropanes, are worthy of note. Nickon found
that the addition of 1 molar equivalent of bromine to a methanolic solution of
tropinone (10) yielded a granular complex, which rearranged to 2β-
bromotropinone (34), by spontaneous transition under ether or by acid catalysis
[29]. Earlier, Hobson and Riddell obtained 2β-chlorotropane (36) by decomposition
of the N-chloramine (35) in the presence of silver ion (Figure 16) [30, 31]. The
identical chlorotropane was also obtained by chlorination of the mine hydrochlo-
ride, followed by cyclization of the dichloride (37).

Figure 13.
Synthesis of tropane-2-one (18).

Figure 14.
Synthesis of tropane-2-ol (30).
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Although tropan-2-one (18) appeared to be a very convenient synthetic precur-
sor of both tropan-2α-ol (30) and tropan-2β-ol (25), the ketone itself was not easy to
prepare. The ketone may be obtained in good yield from ecgonine (3) or cocaine
(6), but these alkaloids are expensive. The alternative starting material used by
Pinder and co-workers, 2-ethoxycarbonyl-pyrrole (26), is also expensive, and the
subsequent synthesis was too long for it to be useful for the preparation of large
amount of tropan-2-one.

2.2 Synthesis of tropan-2β-ol (21) from tropinone (10)

Tropinone (10) was available in reasonable quantities and was chosen as a
convenient source of tropane derivatives. Reduction of this ketone with borohy-
dride gave a mixture of the epimeric tropan-3-ols (38), which were dehydrated to
tropidine (21) by Landenburg’s method [31] as it can be seen in Figure 17.

An allylic oxidation of tropidine (21) with selenium dioxide [32] to yield a
β-unsaturated ketone (39) was an attractive prospect, but this could not be realized:
there was no apparent reaction in aqueous dioxin after 50 hours on a boiling water
bath. Other allylic reagents, such as N-bromosuccinimide or lead tetraacetate,

Figure 15.
The stability relationship of the products (25) and (30).

Figure 16.
Synthesis of 2-bromo-3-tropinone (34) and the 2-chlorotropane (36).
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would also be ineffectual in the presence of the N-methyl group, so that the most
convenient method of protecting the nitrogen atom is provided by the reaction of
tropane derivative with phenyl chloroformate [33]; thus, treatment of tropidine
(21) with phenyl chloroformate in dichloromethane gave N-phenoxycarbonyl-nor-
tropidine (40) a good yield (Figure 18). The nitrogen of the urethane group is non-
basic, and, furthermore, the N-methyl group can be regenerated by reduction of the
urethane with lithium aluminum hydride.

Goering and Mayer [34] have reported that optically pure bicyclo[3.2.1]oct-2-
ene (41) reacts with tert-butyl perbenzoate, in the presence of cuprous ion, to give
racemic of (42) presumably via a symmetrical allyl radical (Figure 19).

Epoxidation of unreactive olefins with trifluoroperacetic acid is usually carried
out in dichloromethane with phosphate present to buffer the trifluoroacetic acid
that is a product of the reaction [35]. The epoxidation of N-phenoxycarbonyl-nor-
tropidine (40) by means of trifluoroperacetic acid was inconvenient for two rea-
sons. Firstly, it gave a mixture of products, including a large proportion of
unchanged olefin, which necessitated careful column chromatography of the mix-
ture in order to obtain the required 2β,3β-epoxide (43a, b) (Figure 20). Secondly,
the peracid itself is inconvenient to prepare and is an unpleasant reagent. It has been
reported that there is a simplified procedure for epoxidation, using a nitrile as a

Figure 17.
Synthesis of tropidine (21) from Tropane-3-one.

Figure 18.
Synthesis of the compound (40).

Figure 19.
Synthesis of the racemic mixture of (42).
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reactant with hydrogen peroxide [36, 37]. The reaction occurs in weekly basic
solution and is thought to involve a peroxycarboximidic acid [RC(〓NH)OOH],
which is too reactive to be isolated. In the absence of a suitable reducing agent, [RC
(〓NH)OOH] will oxidize hydrogen peroxide, the Radziszewski reaction [38]
outlined in Figure 21. But in the presence of an olefin, the Radziszewski reaction
may be eliminated and epoxidation effected [36].

For example, the epoxidations of (44) and (45) proceeded smoothlywith
benzonitrile andhydrogenperoxide to (46) and (47), respectively (Figure 22),whereas
(44)was found to undergo Baeyer-Villiger cleavagewith peracetic acid [41]. The

Figure 20.
Synthesis of the epoxides of (40).

Figure 21.
Synthesis of peroxycarboximidic acid.

Figure 22.
Oxidation of some unreactive olefines.
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reaction ofN-phenoxycarbonyl-nor-tropidine (40)with benzonitrile and hydrogen
peroxide inweakly basic solution gave the expected 2β,3β-epoxide (48). By the use of a
large excess of reagents, a yield of 38%was achieved but could not be increased [39].

2.3 Synthesis of 2-(p-toluenesulphonyl) tropane-2-ene: anhydroecgonine
analog

As mentioned earlier, molecules that contained tropane structure, for example,
tropane (1), ecgonine (2), tropinone (3), and cocaine (4) or one of its fragments, show
central stimulating effects [40–45], using them as anticholinergic agents [46, 47].

Much of the modification designs involved isomeric studies [48]. Most of the
modifications came to the tropane moiety, the bridge nitrogen (N8) [49], or modi-
fication at the C2 position [50]. Many processes for synthesizing anhydroecgonine
derivatives without using cocaine as a starting material have been reported in
literature. For example, it was shown by Grundmann and Ottman [51] as well as
Okano and Osamu [52] that the reaction of ethyl cycloheptatriene-7-carboxylate
(49) with methylamine gave anhydroecgonine ethyl ester (50) (Figure 23).
Conversion of the corresponding carboxylic acid to tropane-2-one has been accom-
plished by Bell and Archer [53] in a four-step sequence involving conversion to the
carboxamide and Hofmann degradation with sodium hypochlorite.

Because (49) was not readily available, Hobson et al. [54] as well as Okano and
Itoh [55] developed a relatively inexpensive route starting with corresponding
cyano-derivatives which is readily accessible by reaction of tropylium fluoroborate
(51) with sodium cyanide to give (52). The nitrile (52) was reacted with methyl-
amine in t-butanol to give the 2-cyano tropidine (53) in high yield (see Figure 24).

In our work on the 1,3,5-cycloheptatriene-2-ylphosphorus derivatives (54) and
(55) (Figure 25), little success was achieved in obtaining isolable products from
reactions with nitrogen nucleophiles, except in those cases, for example, pyrrole2-
aldehyde, where the presence of aldehyde group enabled the intermediate ylide to
be trapped [56].

Investigation of the behavior of the 2-(p-toluenesulphonyl) analog in this type of
reaction turned out to be more fruitful and provided a useful entry to 2-substituted
tropanes, and in particular the rather difficultly accessible ketone, tropan-2-one. 7-(p-
Toluenesulphonyl)-1,3,5-cycloheptatriene (56) was found to react smoothly with
primary amines in dry acetonitrile under reflux to give adducts of general structure
(57) in good yields, thus greatly improving the accessibility of compounds of this type
[57]. When (56) was isomerized to (56a) in acetnitrile using 1,4-diazabicyclo[2.2.2]
octane (DABCO) as a catalyst, and the latter was treated with methylamine in
refluxing ethanolic solution, 2-(p-toluenesulphonyl)-8-methyl-8-azabicyclo[3.2.1]
oct-2-ene (57a) was obtained as a pale yellow oil in a yield of 80% (Figure 26).

Its mass spectrum showed a molecular ion peak at m/e 277, and the IR spectrum
showed a band at 1600 cm�1 characterizing the double bond. Identification of this
compound was confirmed by the 1H-NMR spectrum, which showed signals at δ 3.15

Figure 23.
Synthesis of anhydroecgonine ethyl ester (50).
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Figure 24.
Synthesis of the acetonitrile (52) and it’s conversion to (18).

Figure 25.
7-phosphonium and phosphine oxide of cycloheptatriene.

Figure 26.
Synthesis of 2-(p-toluenesulphonyl)-8-methyl-8-azabicyclo[3.2.1]oct-2-ene (57a).
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and 3.45 due to the bridgehead protons, H1 and H5; a 1-H multiplet at 6.82 as well as
upfield protons between 1.2 and 2.8 ppm (see Structure 57, a = Me).

Similarly the sulfone (56a) was refluxed with an excess of n-butylamine in
acetonitrile; TLC examination showed the formation of only one product. Isolation
and recrystallization from hexane afforded white crystals of 2-(p-toluenesulphonyl)-
8-n-butyl-8-azabicyclo[3.2.1]oct-2-ene (57b), mp, 119–121°C (85%.). Mass (m/z 319)
and IR and NMR spectra confirmed that the compound was (57b). Another example
of this reaction involving addition of sec-butylamine to the sulfone (56b) also
proved successful under similar conditions. 2-(p-tolylsulphonyl)-8-sec-butyl-8-
azabicyclo[3.2.1]oct-2-ene (57c) was obtained in 41% yield as a colorless oil which
partially crystalized on standing. TLC analysis of this product showed two insepa-
rable spots for the diastereoisomers of (58) and (59) (Figure 27). The NMR spectral
data included a multiplet at δ 0.6–2.20 as expected for upfield protons of (57c)
accompanied by signals at 3.35, 3.60, and 6.85 ppm due to two bridgehead protons
and one olefinic proton, respectively. The elemental analysis and mass spectrum
(molecular ion at m/z 319) confirmed the structure. Also, the reaction of the sulfone
(56a) with excess of cyclohexylamine in refluxing acetonitrile also gave a solid
product in 75% yield 2-(p-toluenesulphonyl)-8-cyclohexyl-8-azabicyclo[3.2.1]oct-
2-ene (57d). Its IR and NMR spectra were similar with those structures of (57a–c),
and the structure was confirmed by the mass spectrum, which showed a molecular
ion peak at m/z 345.

In the case of the reaction of (56a) with benzylamine, a slightly different result
was obtained. The product was obtained as needles, mp 172°C, and elemental
analysis, mass spectroscopy, and spectral data confirmed the structure (60)
(Figure 28).

Figure 27.
The diastereomers (58) and (59).
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The mechanism for the formation of compounds (57a–d) and (60) presumably
involves in the first step of the Michael addition of the amine to C1 of the sulfone
(56a) to give intermediate compound (61). Further base-catalyzed isomerization
gives the compound (62), followed by intramolecular Michael addition which
would lead to the compounds (63a–d) and (60) (Figure 29). In the case of the
compound (63a–d), further isomerization to the conjugated sulfone took place
which was presumably facilitated by the presence of the strong bases, methylamine
(pKa 10.659), n-butylamine (pKa 10.77), s-butylamine (pKa 10.83), and cyclohex-
ylamine (pKa 10.66). The formation of the kinetically controlled product (60) in
the case of the benzylamine reaction was presumably due to the weaker basicity of
benzylamine (pKa 9.35) which does not promote further isomerization. The same
product was also obtained using acetonitrile as a solvent for the reaction. Cyclohep-
tatriene was also obtained in the reaction mixture, presumably formed by slow
decomposition of the sulfone (56a).

The total absence of 2-(p-toluenesulphonyl)-8-t-butyl-8-azabicyclo[3.2.1]oct-2-
ene (65) in the products indicated that there was no nucleophilic attack on C1 of
the sulfone (56a) presumably because of steric bulk of the t-butyl substituent
(Figure 30).

Attempts to react the sulfone (56a) with ammonia were unsuccessful; a solution
of the sulfone (58a) in dry acetonitrile was refluxed and ammonia bubbled
through for 24 hours. The only product to be isolated was a small quantity of what
appeared to be, from its spectral properties, a pure toluene-p-sulphonamide.

Figure 28.
Synthesis of compound (60).

Figure 29.
Synthesis of 2-(p-toluenesulphonyl)-8-azabicyclo[3.2.1]oct-2-ene (57a–d).
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Figure 29.
Synthesis of 2-(p-toluenesulphonyl)-8-azabicyclo[3.2.1]oct-2-ene (57a–d).
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3. Conclusions

The tropane alkaloids made a great contribution to the history of medicine.
Intensive research on chemistry and pharmacology of tropane alkaloids led to a fast
development of pharmaceutical industries, particularly drugs that have anticholin-
ergic effects. Since the first one-pot synthesis of tropane-3-one by Robinsons in
1917, several routes for synthesizing semisynthetic and synthetic tropane deriva-
tives were published in literature. Chemical synthetic routes from different disci-
plines and field of research combined in this chapter, in an attempt to illustrate
how through continual research, facilitate and develop synthetic chemistry of
tropane derivatives. However, the synthesis of the famous tropane derivative,
anhydroecgonine from 7-(p-toluenesulfonyl)-1,3,5-cycloheptatriene and amines,
would provide alternative chemical procedure to people working in this field. This
procedure has been shown to be simple, inexpensive research, and provide inspira-
tion in the search for more tropane derivatives.
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3. Conclusions

The tropane alkaloids made a great contribution to the history of medicine.
Intensive research on chemistry and pharmacology of tropane alkaloids led to a fast
development of pharmaceutical industries, particularly drugs that have anticholin-
ergic effects. Since the first one-pot synthesis of tropane-3-one by Robinsons in
1917, several routes for synthesizing semisynthetic and synthetic tropane deriva-
tives were published in literature. Chemical synthetic routes from different disci-
plines and field of research combined in this chapter, in an attempt to illustrate
how through continual research, facilitate and develop synthetic chemistry of
tropane derivatives. However, the synthesis of the famous tropane derivative,
anhydroecgonine from 7-(p-toluenesulfonyl)-1,3,5-cycloheptatriene and amines,
would provide alternative chemical procedure to people working in this field. This
procedure has been shown to be simple, inexpensive research, and provide inspira-
tion in the search for more tropane derivatives.
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Chapter 4

Food Glycoalkaloids: Distribution, 
Structure, Cytotoxicity, 
Extraction, and Biological Activity
Md Abu Bakar Siddique and Nigel Brunton

Abstract

Glycoalkaloids (GA), generally occur as plant steroidal glycosides, are second-
ary metabolites produced in the leaves, flowers, roots, and edible parts including 
sprouts and skin of the plants of Solanaceae family. Many of the plants in this family 
have been stable parts of human diets for centuries, and thus, the occurrence of 
these compounds has been extensively studied mainly due to concerns regard-
ing their toxicity. GAs are produced by plants as a resistance to challenges such as 
insects and pests but may also produce concentration-dependent toxic effects in 
humans. Postharvest conditions such as light, temperature, humidity, and process-
ing conditions may also affect GA content in edible plants producing them. Since 
these compounds also possess biological properties such as anti-inflammatory, 
antimicrobial, and anticarcinogenic activities, it could be a useful strategy to 
use novel extraction techniques to maintaining bioactivities after extraction and 
simultaneously to reduce toxicity in the source plants. This chapter aims to describe 
alkaloids especially GAs commonly occurring in foods, their structure and toxicity, 
and postharvesting practices which influence alkaloid content and utilization of 
conventional and novel technologies to extract food alkaloids.

Keywords: food glycoalkaloids, aglycones, α-solamargine, α-solasonine, solasodine, 
α-chaconine, α-solanine, solanidine, α-tomatine, tomatidine, cytotoxicity, 
food safety, anticancer, novel technologies

1. Introduction

Plant uses complex biochemical pathways to produce secondary metabolites 
to tackle adverse environmental stimuli such as damages from herbivores, patho-
gens, or deprivation of nutrients. These secondary metabolites can be species- or 
genera-specific and generally do not serve any role in the growth and develop-
ment of the plants but improve plant viability by increasing their overall ability 
to cope with the local environmental challenges [1]. Apart from protecting the 
plant from bacteria, fungi, and viruses, some of the secondary metabolites func-
tion as radical-scavenging, UV light-absorbing, and antiproliferative agents [2]. 
Plants produce a large number of secondary metabolites which, based on their 
biosynthetic origins, are divided into three major groups: terpenoids, phenolic 
compounds, and alkaloids [3].
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1. Introduction

Plant uses complex biochemical pathways to produce secondary metabolites 
to tackle adverse environmental stimuli such as damages from herbivores, patho-
gens, or deprivation of nutrients. These secondary metabolites can be species- or 
genera-specific and generally do not serve any role in the growth and develop-
ment of the plants but improve plant viability by increasing their overall ability 
to cope with the local environmental challenges [1]. Apart from protecting the 
plant from bacteria, fungi, and viruses, some of the secondary metabolites func-
tion as radical-scavenging, UV light-absorbing, and antiproliferative agents [2]. 
Plants produce a large number of secondary metabolites which, based on their 
biosynthetic origins, are divided into three major groups: terpenoids, phenolic 
compounds, and alkaloids [3].
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Figure 2. 
Schematic representation of proposed steroidal GA biosynthesis. Triple arrowheads represent several enzymatic 
steps (taken from [11]).

Among plant secondary metabolites, GAs are interesting not only for chemical 
and biological reasons, but also because they have exerted an important influ-
ence on various aspects of human activity and behavior [4]. GAs are steroidal 
alkaloids that usually possess a sterol skeleton in six heterocyclic rings with a 
nitrogen. These GAs work as a part of the defense system in many plants including 
widely consumed agricultural plants of Solanaceae family such as potato (Solanum 
tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena). 
Solanine was considered the only compound of this type present in potatoes until 
chaconine was discovered in 1854. Tomatine, which was in fact the mixture of 

Figure 1. 
Structures of solanidane and spirosolane glycoalkaloids (taken from [4]).

49

Food Glycoalkaloids: Distribution, Structure, Cytotoxicity, Extraction, and Biological Activity
DOI: http://dx.doi.org/10.5772/intechopen.82780

tomatine and dehydrotomatine, was discovered in tomato in 1948. The major GAs 
of aubergine, solasonine, and solamargine were discovered later and found in 100 
other species [5].

Plants often contain alkaloids in glycosidic form as GAs. GAs consist of two 
structural components: an aglycone structure which is based on C27 cholestane 
skeleton with an additional nitrogen-containing rings that impart the basicity and 
oligosaccharide moiety making GAs amphiphatic in nature. The aglycones are 
divided into five different categories depending on their structure: solanidanes 
(with fused indolizidine rings), spirosolanes (with an oxa-azaspirodecane alkaloid 
portion) [6, 7], epiminocholestanes, α-epiminocyclohemiketals, and 3-aminospi-
rostanes [8]. Based on the skeletal type of the aglycone, plant steroidal GAs vary as 
spirosolan types, similar to spirostan, but with nitrogen in place of the oxygen in 
ring F and another is the solanidane type, where nitrogen connects spirostan rings 
E and F (Figure 1) [9]. At least, 90 structurally unique steroidal alkaloids have been 
identified in over 350 Solanum species. Nitrogen can be attached as a primary NH2 
group in position 3 or 20 (free or methylated), forming simple steroidal bases (e.g., 
conessine), ring-closed to skeletal or side-chain carbon (as a secondary NH), or 
annelated in two rings as a tertiary N (e.g., solanidine). This often influences the 
chemical character of the compound [10]. In addition, a significant portion of the 
biological activity of GAs derives from the oligosaccharide moieties [4].

Relatively, little is known about the biosynthetic pathway of steroidal glycoalka-
loids and the factors that regulate GA levels in plants. However, the aglycone of the 
steroidal GAs is assumed to be synthesized via the mevalonate/isoprenoid pathway 
(Figure 2). The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase 
(HMGR) catalyzes the first step specific to isoprenoid biosynthesis. Downstream, 
squalene synthase (PSS1), and vetispiradiene (sesquiterpene) cyclase (PVS1) 
catalyze the first steps in the branches leading to sterols, steroidal GAs, and sesqui-
terpenoid phytoalexins, respectively [11].

2. Distribution of GAs in different plants

2.1 Potato plants

Historically, solanine was the first alkaloid to be isolated from the potatoes [12] 
and recognized as a glycoside. However, lately, it has been shown that solanine actu-
ally was a mixture of two components namely α-solanine and α-chaconine [13]. The 
two major GAs present in potato (Solanum tuberosum), α-solanine and α-chaconine, 
share the same aglycone, solanidine, but differ with respect to the composition of the 
sugar side chain (Figure 3). α-Chaconine is composed of a branched β-chacotriose 
(bis-α-L-rhamnopyranosyl-β-D-gluco-pyranose) carbohydrate side chain attached 
to the 3-OH group of the aglycone, whereas α-solanine has a branched β-solatriose 

Figure 3. 
Structure of two major GAs from potato (adapted from [5]).
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loids and the factors that regulate GA levels in plants. However, the aglycone of the 
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(Figure 2). The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase 
(HMGR) catalyzes the first step specific to isoprenoid biosynthesis. Downstream, 
squalene synthase (PSS1), and vetispiradiene (sesquiterpene) cyclase (PVS1) 
catalyze the first steps in the branches leading to sterols, steroidal GAs, and sesqui-
terpenoid phytoalexins, respectively [11].

2. Distribution of GAs in different plants

2.1 Potato plants

Historically, solanine was the first alkaloid to be isolated from the potatoes [12] 
and recognized as a glycoside. However, lately, it has been shown that solanine actu-
ally was a mixture of two components namely α-solanine and α-chaconine [13]. The 
two major GAs present in potato (Solanum tuberosum), α-solanine and α-chaconine, 
share the same aglycone, solanidine, but differ with respect to the composition of the 
sugar side chain (Figure 3). α-Chaconine is composed of a branched β-chacotriose 
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(α-L-rhamnopyranosyl-β-D-glucopyranosyl-β-galactopyranose) side chain also 
attached to the 3-OH group of the same aglycone. Potatoes may contain small 
amounts of the hydrolysis products, (β- and γ-chaconines, β- and γ-solanines) 
solanidine [14].

Apart from commercial varieties α-solanine and α-chaconine, other GAs may 
also be present in wild species. For example, the leaves and stems of S. chacoense 
contain leptines and leptidines, steroidal alkaloids in addition to the α-solanine 
and α-chaconine [15]. High levels of GAs are found in potato tissues which undergo 
intensive metabolic processes, that is, fruits, leaves, stems, tubers eyes, jacket, 
sprouts, and damaged tissues [16, 17]. While, the GA level associated with the 
potato sprouts is generally conceded to be higher than that of the rest of the tuber 
[18]. However, environmental conditions including infection from fungal patho-
gens and other factors such as climate, soil type, soil moisture, etc., can lead to an 
increase in the amount of TGA present in any tissue [19]. It has been reported that 
potato tubers normally contain 1–15 mg/100 g fresh weight of the GAs α-solanine 
and α-chaconine. Elevated levels of GAs are normally found in potato peels 
although it should be noted that the peel comprises less than 20% of the total tuber 
weight [20]. Dao and Friedman [21] used an HPLC assay to determine the amount 
of α-solanine and α-chaconine in fresh potato leaves at various levels of maturation 
(from 1 to 9 weeks) in two different potato varieties and found that α-chaconine 
increased from 20.2 (3 weeks) to 111.4 mg/100 g fresh weight (9 weeks) and 
α-solanine increased from 9.6 to 50.1 mg/100 g fresh weight over the same period. 
In another study, Brown et al. [22] showed that the GA content increased with the 
leaf maturity and then declined with further age when analysis was performed with 
leaf samples on the same day. Although the amount of GA in potatoes depends on 
many different factors, Table 1 gives a good approximation of the ranges that have 
been reported.

2.2 Tomato plants

About 100 steroidal alkaloids have been found in different tissues and develop-
ment stages of the tomato plant [24–26]. Tomato plants (S. lycopersicum) contain 
the spirosolane-type GAs α-tomatine and dehydrotomatine (Figure 4). The pres-
ence of a double bond in the steroidal ring B in structure of dehydrotomatine is the 
distinguishable feature between α-tomatine and dehydrotomatine. Both of the GAs 

Potato part Total GAs (mg/kg fresh weight)

Tuber with skin 75

Tuber with skin (bitter taste) 250–800

Peel (skin) 150–600

Peel (skin) from bitter tuber 1500–2200

Tuber without skin 12–50

Sprouts 2000–4000

Flower 3000–5000

Stems 30

Leaves 400–1000

Taken from [23].

Table 1. 
Distribution of GA in potatoes.
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have same tetrasaccharide side chain (lycotetraose), but they differ in the aglycone 
structure. α-Tomatine has lycotetraose attached to the aglycone tomatidine, whereas 
dehydrotomatine has lycotetraose attached to the aglycone tomatidenol [27].

All parts of the tomato plant including leaves, stems, and tomato fruits contain 
tomatine and dehydrotomatine. Immature green tomatoes contain up to 500 mg 
α-tomatine/kg of fruit weight. However, tomatine is largely degraded as the fruit 
ripens, to a level of only 5 mg/kg of fresh fruit weight in red tomatoes [29]. While 
unripe green tomatoes contain tomatine and dehydrotomatine, isolation of another 
major spirosolane-type glycoside esculeoside from mature cherry tomato has 
also been reported by Fujiwara et al. [30]. However, these authors concluded that 
esculeosides A and B might be produced from the tomatine in the immature tomato 
as tomato matures. Again, a wide range of levels of GAs have been reported in the 
different parts of the tomato plant; however, Table 2 presents a good approxima-
tion of the levels reported.

2.3 Eggplants

Solasonine and solamargine are two major steroidal alkaloids found in eggplant 
(Solanum melongena) (Figure 5). These two GAs have the same aglycone (solaso-
dine), but differ in the nature of the trisaccharide side chain. The trisaccharide side 
chain of solasonine is solatriose, whereas chacotriose is the trisaccharide attached to 

Figure 4. 
Structure of α-tomatine and dehydrotomatine (taken from [28]).

Tomato plant part Dehydrotomatine (mg/kg fresh 
weight)

α-Tomatine (mg/kg fresh 
weight)

Large immature green fruit 14 144

Small immature green fruit 54 465

Roots 33 118

Calyxes 62 795

Leaves 71 975

Small stems 138 896

Large stems 142 465

Flowers 190 1100

Senescent leaves 330 4900

Adapted from [5].

Table 2. 
Distribution of GA in tomato fruits and plants.
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the solasodine aglycone of solamargine [31]. Eggplant GAs differ from those found 
in major potato alkaloids (α-chaconine and α-solanine) only in the structure of the 
steroidal part of the molecules, while having identical carbohydrate side chains 
attached to the aglycone structure. Generally, the GAs solamargine and solasonine 
are found in the fruits of eggplant. A study of 10 eggplant lines and the 3 allied 
species (S. aethiopicum, S. integrifolium, and S. sodomaeum) confirmed that the 
allied species had higher GA content than the widely consumed eggplants and that 
the GA content generally increased during fruit development and ripening [32]. A 
calorimetric study of 21 different varieties of S. melongena as carried out by Bajaj 
et al. showed GA content ranged from 6.25 to 20.5 mg/100 g fresh weight (mean 
value 11.3 mg/100) [33].

3. Human and animal toxicity

None of the Solanaceous crops consumed as vegetables are toxic if standard 
cultivation/production practices are adhered to. However, factors associated with 
the growth, harvest, and postharvest practices, high temperatures, and wounding 
may elevate GAs to toxic levels [35]. Several other environmental stresses as well as 
maturity level and the use of fertilizer can also influence the amount of GA [18]. For 
example, a significant increase in GA concentration has been reported in potatoes 
cultivated in drought stress conditions where average concentration increases of 
43 and 50% were reported in the improved and control cultivars, respectively [36]. 
Unusually, cold and wet conditions during potato tuber development and growth 
have often been assumed as a cause of high glycoalkaloid levels [37]. However, hot 
and dry conditions during plant growth have also been suggested to be responsible 
for increasing glycoalkaloid concentrations [38, 39]. It is important for human 
safety to keep steroidal GA levels as low as possible in edible organs of these 
crops [16]. Some of the toxic effects of GAs are attributed to direct inhibition of 
cholinesterase activity and more general cell membrane disruption mediated via 
interactions between membrane sterols and the steroidal moiety of the steroidal 
GAs [40–42]. Furthermore, interactions between membrane budding and increased 
permeability may result in a loss of ion conductivity of the cells [43, 44]. Excessive 
consumption induces gastroenteritis, gastrointestinal discomfort, diarrhea, vomit-
ing, fever, low blood pressure, fast pulse rate along with neurological and occasional 
death in human and farm animals [45].

The toxicity of solanine depends on the species and route of administra-
tion. Parenteral administration is much more toxic than oral administration. 
Gastrointestinal effects may occur at relatively low levels of exposure such as lower 
than 2 mg total GA/kg body weight. The biological half-life of α-solanine is about 

Figure 5. 
Chemical structure of solasonine and solamargine (taken from [34]).
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21 h; it disrupts the membrane of red blood cells and other cellular membranes and 
exhibits poor absorption in the gastrointestinal tract, its highest distribution is in 
spleen, but levels in blood become greatest after about 5 h [46, 47]. Therefore, accu-
mulation of GAs in the body may occur which eventually can lead to adverse health 
effects [47]. Patil et al. reported that i.p. administration of α-solanine to mice induced 
irritation for about 1 min and the animals were quiet and appeared to be sleepy and 
apathetic, exhibiting more rapid breathing, hind leg paralysis, and dyspnea [48]. 
While α-chaconine is considered more toxic than α-solanine, a combination of both 
of these GAs can induce a synergistic toxic effect. α-Chaconine has a half-life of about 
44 h, longer than that of α-solanine [47]. In mice, the i.p. LD50 was reported to be 
27.5 mg/kg, and in rabbits, the lowest lethal dose was 50 mg/kg i.p. [49].

Although tomatine also alters cell membranes [50], its oral toxicity is low when 
compared to other GAs, presumably because its cholesterol complex is not absorbed 
from the gut [51]. The amount of α-tomatine in the tubers of somatic hybrids in 
tomato and potato has been reported to be 5- to 10-fold higher than those in their 
parents [52], and these levels could pose a health threat if consumed by humans. 
Unripe green tomatoes are routinely consumed as fried vegetables or as pickles, 
and fruits “turning” from green to red are preferred raw by some consumers. 
Overconsumption of such fruit poses a potential health risk due to α-tomatine 
toxicity [16]. According to Roddick, lethality occurred within 0.5–2 min in mice, to 
which α-tomatine was administrated intravenously at a level of 18 mg/kg of body 
weight. The most common responses to intravenous α-tomatine administration 
are a large decrease in blood pressure and fluctuations in respiratory rate. Where 
the dose of α-tomatine was lethal, death was thought to be due to a drop in blood 
pressure, but with sublethal doses, the initial drop was followed by an equally rapid 
recovery [53].

Only a few studies concerning the toxicity of solamargine have been published. 
However, a study conducted by Zheng et al. reported that the biotransformation of 
solamargine is relatively quick. Eight hours after an intravenous administration of 
4 mg/kg to rats, only a trace amount of solamargine could be detected [54].

4. Postharvest technologies that influence the amount of GAs

A number of factors influence the formation of GA’s preharvest, during harvest, 
and postharvest. These factors can be summarized as follows:

1. potato cultivars and environmental and growing conditions;

2. maturity during harvesting time, temperature during growth, and extent of 
sprouting;

3. any mechanical damage such as bruising, cutting, wounding, and slicing that 
has occurred during handling;

4. postharvest storage conditions in particular wavelength, duration, and inten-
sity of light during storage;

5. other environmental conditions during packaging, transportation, and 
marketing [55–57].

Considerable research has been performed on potato storage conditions such 
as temperature, time, and light, and it has been found that these conditions have a 
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spleen, but levels in blood become greatest after about 5 h [46, 47]. Therefore, accu-
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effects [47]. Patil et al. reported that i.p. administration of α-solanine to mice induced 
irritation for about 1 min and the animals were quiet and appeared to be sleepy and 
apathetic, exhibiting more rapid breathing, hind leg paralysis, and dyspnea [48]. 
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weight. The most common responses to intravenous α-tomatine administration 
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4. Postharvest technologies that influence the amount of GAs

A number of factors influence the formation of GA’s preharvest, during harvest, 
and postharvest. These factors can be summarized as follows:

1. potato cultivars and environmental and growing conditions;

2. maturity during harvesting time, temperature during growth, and extent of 
sprouting;

3. any mechanical damage such as bruising, cutting, wounding, and slicing that 
has occurred during handling;

4. postharvest storage conditions in particular wavelength, duration, and inten-
sity of light during storage;

5. other environmental conditions during packaging, transportation, and 
marketing [55–57].

Considerable research has been performed on potato storage conditions such 
as temperature, time, and light, and it has been found that these conditions have a 
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profound impact on the GA level of potatoes. Scientific reports on the effect of tem-
perature on potato GAs are however somewhat conflicting. For example, one study 
reported a twofold higher level of GA in potato tubers after 6 weeks storage at 4–6°C 
compared to those stored at 12–15°C [58]. The amount of GA has also been reported 
to increase at 10°C, while further decreasing the temperature to 4.4°C resulted in 
only a minor change [59]. A rise in the solanine content in tubers stored at high tem-
peratures was also reported by Salunkhe et al., who found small increase in potato 
stored at 0 and 8°C and much greater increase in those stored at 15 and 24°C. These 
authors concluded that the increase may be related to a stress response [60].

The amount of GAs can also vary as a result of exposure to varying light sources 
such as daylight, UV, fluorescent, and incandescent light during harvesting, stor-
age, and transportation [61]. For example, Machado et al. investigated the effect 
of different light sources and temperature on the level of GAs in potato tubers. 
Their investigation involved exposing potato tubers (cv Monaliza) to a range of 
conditions such as indirect sunlight, fluorescent light, storage in darkness under 
refrigeration, and storage in darkness at room temperature for 14 days. Potato 
tubers exposed to fluorescent light had the highest GA levels. Increases in GA levels 
in lower size potato tubers stored under indirect sunlight and fluorescent light were 
approximately 4–6 times greater than that of potato tubers stored in darkness at 
room temperature [58]. Similarly, Salunkhe et al. reported that exposure to sunlight 
or artificial light can increase GA synthesis in potatoes by factors of 3 or 4 compared 
to those of potatoes stored in the dark [60]. Other authors have reported that the 
blue spectral portion (<500 nm, especially UV light <300 nm) and infrared light 
(1300 nm) are active elicitors of GAs synthesis; while light of 570–700 nm enhances 
chlorophyll but not GA synthesis [62]. For storing potatoes for a longer period, it is 
necessary to choose unwounded and ungreened potatoes, and to store in the dark at 
5–8°C to prevent sprouting and a corresponding increase in GA content.

It has been reported that domestic cooking and processing such as boiling, bak-
ing, and frying does not reduce the amount of GAs in potatoes. The cooking of pota-
toes has variable effects since GAs are very heat stable, with solanine decomposing 
at temperatures between 260 and 270°C [63]. While boiling of potatoes does not 
affect the level of GAs, there are some reports that microwaving could reduce this 
amount. For example, in a study conducted by Takagi et al., a reduction of alkaloid 
content by 15% was reported following microwaving, whereas boiling lowered the 
α-chaconine and α- solanine content by 3.5 and 1.2%, respectively [64]. However, 
since GAs are localized near the skin (usually no deeper than 3 mm), peeling 
deep enough to remove any green layer will remove most of the GAs [65]. In most 
potatoes, the peel contains 60–80% of GAs [66], while for bitter-tasting potatoes, 
this amount was found to be 30–35% [67]. Generally, chips and fries are considered 
to be nonhazardous as processing involves the removal of the peel of the potatoes. 
Potatoes are a versatile commodity and this is reflected in the range of products for 
which GA levels have been measured by other authors as presented in Table 3.

Generally, tomatine is quite stable in food; studies, however, have shown that 
some products based on unripe green tomatoes lost a considerable amount of 
tomatine during prolonged storage [69, 70]. Cooking for a shorter time (5 min) had 
a marginal effect, while considerable losses of tomatine (90–95%) were observed 
during storage of freeze-dried products at room temperature for 4 weeks, the loss 
being greater for whole tomatoes than for pulp [69]. Storing green tomato fruits, 
containing 90 mg tomatine/kg of fresh weight (1040 mg/kg dry weight), for up 
to 170 days at −20°C as a freeze-dried product, after pulping and sterilization at 
121°C for 30 min, and preserved with benzoic acid resulted in an increase in the 
content of tomatine for all products during the first week of storage and a decrease 
thereafter. After 50 and 170 days storing, the content of tomatine was reduced to 
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around 60 and 20 mg/kg dry weight in all products [70]. In a review, Friedman and 
Levine mentioned the average amount of α-tomatine present in a half-cup (125 g) 
of condensed tomato soup, one table spoon of ketchup (15 g), and 6 fl oz. (183 g) 
of juice as 0.2, 0.13, and 0.5 (mg)/serving, respectively. Other tomato products, 
such as half fruit of green pickled (40 g), contain 2.9 mg, while 133 g of fried green 
tomato contains 1.5 mg of tomatine/serving size [71].

5. Anticancer activity

The ability of SGAs to disrupt cellular structure has been examined by some 
researchers as a possible application of these compounds for treating cancer cells. 
Extracts obtained from Solanum spp. have been used to treat cancer for centuries 
and there are some indications that they possess cytotoxic activity. For example, 
α-solanine was found to have a proliferation-inhibiting and an apoptosis-promoting 
effect on multiple cancer cells, such as clone, liver, melanoma cancer cells [72]. 
Friedman et al. [73] examined the impact of GAs extracted from one potato variety 

Product of preparation GA concentration (mg/kg product)

Boiled peeled potatoa 27–42

Baked jacket potatoa 99–113

Chips (US: French fries) 0.4–8

Chips (UK) 19–58

Oven chips (UK) 27–86

Fried skins 567–1450

Frozen mashed potato 2–5

Frozen baked potato 80–123

Frozen chips 2–29

Part cooked frozen chips 23–55

Precooked frozen chips 19–35

Frozen skins 65–121

Frozen fried potato 4–31

Canned peeled potato 1–2

Canned whole new potato (tubers) 24–34

Canned whole new potato (liquor) 15–17

Canned potato (UK) 29–99

Crisps (US: potato chips) 23–180

Crisps (UK: potato chips) 32–184

Crisps (Norwich) 59–70

Crisps (with skin) 95–720

Dehydrated potato flour 65–75

Potato powder 39–135

Dehydrated potato flakes 15–23

Taken from [68].
aNoncommercial preparation.

Table 3. 
Levels of GA in various commercial potato products and preparations.
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profound impact on the GA level of potatoes. Scientific reports on the effect of tem-
perature on potato GAs are however somewhat conflicting. For example, one study 
reported a twofold higher level of GA in potato tubers after 6 weeks storage at 4–6°C 
compared to those stored at 12–15°C [58]. The amount of GA has also been reported 
to increase at 10°C, while further decreasing the temperature to 4.4°C resulted in 
only a minor change [59]. A rise in the solanine content in tubers stored at high tem-
peratures was also reported by Salunkhe et al., who found small increase in potato 
stored at 0 and 8°C and much greater increase in those stored at 15 and 24°C. These 
authors concluded that the increase may be related to a stress response [60].

The amount of GAs can also vary as a result of exposure to varying light sources 
such as daylight, UV, fluorescent, and incandescent light during harvesting, stor-
age, and transportation [61]. For example, Machado et al. investigated the effect 
of different light sources and temperature on the level of GAs in potato tubers. 
Their investigation involved exposing potato tubers (cv Monaliza) to a range of 
conditions such as indirect sunlight, fluorescent light, storage in darkness under 
refrigeration, and storage in darkness at room temperature for 14 days. Potato 
tubers exposed to fluorescent light had the highest GA levels. Increases in GA levels 
in lower size potato tubers stored under indirect sunlight and fluorescent light were 
approximately 4–6 times greater than that of potato tubers stored in darkness at 
room temperature [58]. Similarly, Salunkhe et al. reported that exposure to sunlight 
or artificial light can increase GA synthesis in potatoes by factors of 3 or 4 compared 
to those of potatoes stored in the dark [60]. Other authors have reported that the 
blue spectral portion (<500 nm, especially UV light <300 nm) and infrared light 
(1300 nm) are active elicitors of GAs synthesis; while light of 570–700 nm enhances 
chlorophyll but not GA synthesis [62]. For storing potatoes for a longer period, it is 
necessary to choose unwounded and ungreened potatoes, and to store in the dark at 
5–8°C to prevent sprouting and a corresponding increase in GA content.

It has been reported that domestic cooking and processing such as boiling, bak-
ing, and frying does not reduce the amount of GAs in potatoes. The cooking of pota-
toes has variable effects since GAs are very heat stable, with solanine decomposing 
at temperatures between 260 and 270°C [63]. While boiling of potatoes does not 
affect the level of GAs, there are some reports that microwaving could reduce this 
amount. For example, in a study conducted by Takagi et al., a reduction of alkaloid 
content by 15% was reported following microwaving, whereas boiling lowered the 
α-chaconine and α- solanine content by 3.5 and 1.2%, respectively [64]. However, 
since GAs are localized near the skin (usually no deeper than 3 mm), peeling 
deep enough to remove any green layer will remove most of the GAs [65]. In most 
potatoes, the peel contains 60–80% of GAs [66], while for bitter-tasting potatoes, 
this amount was found to be 30–35% [67]. Generally, chips and fries are considered 
to be nonhazardous as processing involves the removal of the peel of the potatoes. 
Potatoes are a versatile commodity and this is reflected in the range of products for 
which GA levels have been measured by other authors as presented in Table 3.

Generally, tomatine is quite stable in food; studies, however, have shown that 
some products based on unripe green tomatoes lost a considerable amount of 
tomatine during prolonged storage [69, 70]. Cooking for a shorter time (5 min) had 
a marginal effect, while considerable losses of tomatine (90–95%) were observed 
during storage of freeze-dried products at room temperature for 4 weeks, the loss 
being greater for whole tomatoes than for pulp [69]. Storing green tomato fruits, 
containing 90 mg tomatine/kg of fresh weight (1040 mg/kg dry weight), for up 
to 170 days at −20°C as a freeze-dried product, after pulping and sterilization at 
121°C for 30 min, and preserved with benzoic acid resulted in an increase in the 
content of tomatine for all products during the first week of storage and a decrease 
thereafter. After 50 and 170 days storing, the content of tomatine was reduced to 
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around 60 and 20 mg/kg dry weight in all products [70]. In a review, Friedman and 
Levine mentioned the average amount of α-tomatine present in a half-cup (125 g) 
of condensed tomato soup, one table spoon of ketchup (15 g), and 6 fl oz. (183 g) 
of juice as 0.2, 0.13, and 0.5 (mg)/serving, respectively. Other tomato products, 
such as half fruit of green pickled (40 g), contain 2.9 mg, while 133 g of fried green 
tomato contains 1.5 mg of tomatine/serving size [71].

5. Anticancer activity

The ability of SGAs to disrupt cellular structure has been examined by some 
researchers as a possible application of these compounds for treating cancer cells. 
Extracts obtained from Solanum spp. have been used to treat cancer for centuries 
and there are some indications that they possess cytotoxic activity. For example, 
α-solanine was found to have a proliferation-inhibiting and an apoptosis-promoting 
effect on multiple cancer cells, such as clone, liver, melanoma cancer cells [72]. 
Friedman et al. [73] examined the impact of GAs extracted from one potato variety 

Product of preparation GA concentration (mg/kg product)

Boiled peeled potatoa 27–42

Baked jacket potatoa 99–113

Chips (US: French fries) 0.4–8

Chips (UK) 19–58

Oven chips (UK) 27–86

Fried skins 567–1450

Frozen mashed potato 2–5

Frozen baked potato 80–123

Frozen chips 2–29

Part cooked frozen chips 23–55

Precooked frozen chips 19–35

Frozen skins 65–121

Frozen fried potato 4–31

Canned peeled potato 1–2

Canned whole new potato (tubers) 24–34

Canned whole new potato (liquor) 15–17

Canned potato (UK) 29–99

Crisps (US: potato chips) 23–180
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Crisps (with skin) 95–720
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Levels of GA in various commercial potato products and preparations.
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and mixtures of GAs extracted from five different widely consumed commercial 
potato varieties in Korea and Japan on a number of cancer cell lines. They reported a 
reduction in the numbers of the following cell lines: cervical (HeLa), liver (HepG2), 
lymphoma (U937), stomach (AGS and KATO III) cancer cells, and normal liver cells 
and that this effect was concentration dependent (0.1–10 μg/ml) with α-chaconine 
being more effective than α-solanine. Ji et al. observed induction of apoptosis in 
the HepG2 cell line from the digestive tracts using the MTT assay and screening the 
sensitive cells and then measuring the morphological changes of the tumor cells. 
These authors observed that sub-G0 apoptosis peaks at different doses of solanine 
and that a decrease in the content of antiapoptotic protein was dose dependent. In 
pancreatic cancer cells, a nontoxic quantity of solanine (3, 6, and 9 μg/μl) inhibited 
metastasis (in vitro), such as invasion, migration, and angiogenesis, which dem-
onstrated that the inhibitory effect of solanine on metastasis was via its cytotoxic 
activity. In these cancer cells, α-solanine stimulated p53 and Bax but also suppressed 
Bcl-2, which led to a release of cytochrome c within the mitochondrial pathway 
of apoptosis. The decrease in Bcl-2 and increase in Bax were also demonstrated in 
cancer tissue [74]. An increase in proapoptotic Bax protein in breast cancer tissue in 
mice treated with α-solanine was shown by Mohsenikia et al. [75].

However, several other studies have shown that α-solanine can lead to cancer 
development and metastasis suppression through inhibition of vascular endothelial 
growth factor (VEGF) and matrix metalloproteinases (MMPs) [76]. MMPs are 
believed to participate in tumor cell migration, tissue invasion, and metastasis [77]. 
In another study, Pan et al. noted α-solanine-induced prostate cancer cell inhibition 
through the suppression of cell cyclin proteins and through the induction of reac-
tive oxygen species and activation of P38 MAPK pathway [78]. Another effect of 
α-solanine in cancer cells is the inhibition of cell migration and invasion caused by 
inhibition of the phosphorylation of JNK, PI3 K, and Akt and, thus, the inhibition 
of MMP-2 and -9 expressions. In addition, a downregulation of the nuclear content 
of NF-κB was demonstrated in α-solanine-treated cells [79]. Furthermore, Lee 
et al. investigated the role of potato GAs such as α-chaconine and solanine and their 
hydrolysis products at four concentrations (0.1, 1, 10, and 100 μg/mL) on the human 
colon (HT-29) and liver (Hep G2) cell lines. Results showed that α-chaconine was 
more effective on both of the cell lines, the inhibition of both cell lines increased with 
the concentration but did not appear to be in a linear function of the concentration 
and the inhibition of the liver cells was greater than that of colon cells. The hydrolysis 
product of α-chaconine, that is, γ-chaconine exhibited low activity against the colon 
cells in contrast to the high activity against the liver cells. The activity of γ-chaconine 
against the liver cells was greater than those mentioned for β1- and β2-chaconine and 
approached that of α-chaconine. In the case of α-solanine, the inhibitory activity at 
the 100 μg/mL level was similar for both cell lines and the inhibition at a reduced 
concentration was lower than that of α-chaconine. These results suggest that the 
nature and presence of the carbohydrate moiety can affect cytotoxicity [80].

Recently, the anticancer effect of α-tomatine and its mechanism of action have 
been studied. It has been proposed that tomatine can kill cells by binding to cell 
membranes followed by leakage of cell components [81]. Binding of tomatine 
to cholesterol may be relevant to the mechanism of inhibition of carcinogenesis. 
Despite the ability to disrupt cell membranes in vitro, orally consumed tomatine is 
not toxic, presumably because it forms an insoluble complex with cholesterol in the 
digestive tract, which is then eliminated in the faces [82]. In addition, Sucha et al. 
observed an inhibition in MCF-7 human breast adenocarcinoma cell line prolifera-
tion and viability at α-tomatine concentrations from 6 to 9 μM and postulated 
that the cytotoxic mechanism could be due the fact that cholesterol in biological 
membranes serves as a target for the α-tomatine [83]. It has also been reported 
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that α-tomatine suppresses cell adhesion, morphology/actin cytoskeleton arrange-
ment, invasion and migration in human nonsmall cell lung cancer NCI-H460 cells. 
The authors compared of 0 μM, after 24 and 48 h treatment with tomatine at a 
concentration between 0 and 1.5 μM and reported no significant alteration of cell 
viability, indicating that the compound is not toxic to NCI-H460 at these dosages. 
However, cell viability was significantly decreased when the applied concentra-
tion of tomatine was increased to 2–4 μM for 24 and 48 h [84]. Furthermore, 
α-tomatine induced a significant cytotoxic effect on the human leukemia cancer 
cell line HL60 and K562. Experiments using the MTT assay revealed that tomatine 
has strong cytotoxic effect that could inhibit cell survival of HL60 and K562 in a 
concentration-dependent manner with an IC50 of 1.92 and 1.51 μM, respectively. 
According to Chao et al., cancer cells exposed to tomatine led to a loss of the 
mitochondrial membrane potential and triggered the release of the apoptosis-
inducing factor (AIF) from the mitochondria into the nucleus and downregulated 
surviving expression [85]. In addition, Rudolf and Rudolf [86] also noted the 
cytotoxic effect of tomatine on human colon cancer cells was related to lysosomal 
membrane permeabilization including mitochondrial perturbation with subsequent 
mitochondrial release of apoptosis-inducing factor (AIF) that contributed to the 
execution of diverse death phenotypes, possibly via enhanced activity of JNK but 
in the absence of significant oxidative stress. In another recent study, the effect of 
tomatine separately and in combination with curcumin on the growth and apopto-
sis of human prostate cancer PC-3 cell was investigated [87]. In this study, authors 
reported that a low concentration of both anticancer agents did not have any impact 
separately, while the combination of these anticancer agents (1 μM tomatine and 
5 μM curcumin) synergistically inhibited the growth of cultured prostate cancer 
cells, mainly associated with inhibition of NF-κB activation and decreased levels of 
Bcl-2, phospho-Akt, and phospho-ERK1/2. The hydrolysates such as β1 tomatine, 
γ-tomatine, δ-tomatine, and their common aglycone are reported to have lower 
activity on the cancer cells than α-tomatine [80, 88].

Like other steroidal GAs, solamargine has been reported to inhibit the growth 
of human cancer cells, for example, colon (HT-29 and HCT-15), prostate (LNCaP 
and PC-3), breast (T47D and MDA-MB-231), human hepatoma (PLC/PRF/5), and 
JTC-26 cells [89, 90]. However, the molecular mechanisms underlying the effect 
of solamargine to inhibit the growth and induce apoptosis of various cancer cells 
are poorly understood. Solamargine inhibits proliferation and induces apoptosis in 
lung cancer cells through p38 MAPK-mediated suppression of phosphorylation and 
protein expression of Stat3, followed by inducing Stat3 downstream effector p21 
[90]. Another study showed that solamargine inhibits the growth of human lung 
cancer cells through reduction of EP4 protein expression, followed by increasing 
ERK1/2 phosphorylation [91]. Shiu et al. demonstrated solamargine had a greater 
cytotoxic effect than cisplatin, methotrexate, 5-fluorouracil, epirubicin, and 
cyclophosphamide against human breast cancer cell lines. In this study, the authors 
demonstrated that solamargine upregulated the expressions of external death 
receptors, such as tumor necrosis factor receptor I (TNFR-I), Fas receptor (Fas), 
TNFR-I-associated death domain (TRADD), and Fas-associated death domain 
(FADD). Solamargine also enhanced the intrinsic ratio of Bax to Bcl-2 by upregulat-
ing Bax and downregulating Bcl-2 and Bcl-xL expressions. Ultimately, the effects, 
induced by solamargine, released mitochondrial cytochrome c and activation of 
caspase-8, -9, and -3 in the cells, indicating that solamargine triggered extrinsic 
and intrinsic apoptotic pathways to breast cancer cells [92]. Furthermore, no cell 
cycle arrest was observed in the human myelogenous leukemia K562 cell line, but 
cytotoxicity to different human cancer cell lines was reported. Solamargine caused 
membrane disruption and blebbing independent of calcium, and a decrease in ATP 
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and mixtures of GAs extracted from five different widely consumed commercial 
potato varieties in Korea and Japan on a number of cancer cell lines. They reported a 
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lymphoma (U937), stomach (AGS and KATO III) cancer cells, and normal liver cells 
and that this effect was concentration dependent (0.1–10 μg/ml) with α-chaconine 
being more effective than α-solanine. Ji et al. observed induction of apoptosis in 
the HepG2 cell line from the digestive tracts using the MTT assay and screening the 
sensitive cells and then measuring the morphological changes of the tumor cells. 
These authors observed that sub-G0 apoptosis peaks at different doses of solanine 
and that a decrease in the content of antiapoptotic protein was dose dependent. In 
pancreatic cancer cells, a nontoxic quantity of solanine (3, 6, and 9 μg/μl) inhibited 
metastasis (in vitro), such as invasion, migration, and angiogenesis, which dem-
onstrated that the inhibitory effect of solanine on metastasis was via its cytotoxic 
activity. In these cancer cells, α-solanine stimulated p53 and Bax but also suppressed 
Bcl-2, which led to a release of cytochrome c within the mitochondrial pathway 
of apoptosis. The decrease in Bcl-2 and increase in Bax were also demonstrated in 
cancer tissue [74]. An increase in proapoptotic Bax protein in breast cancer tissue in 
mice treated with α-solanine was shown by Mohsenikia et al. [75].

However, several other studies have shown that α-solanine can lead to cancer 
development and metastasis suppression through inhibition of vascular endothelial 
growth factor (VEGF) and matrix metalloproteinases (MMPs) [76]. MMPs are 
believed to participate in tumor cell migration, tissue invasion, and metastasis [77]. 
In another study, Pan et al. noted α-solanine-induced prostate cancer cell inhibition 
through the suppression of cell cyclin proteins and through the induction of reac-
tive oxygen species and activation of P38 MAPK pathway [78]. Another effect of 
α-solanine in cancer cells is the inhibition of cell migration and invasion caused by 
inhibition of the phosphorylation of JNK, PI3 K, and Akt and, thus, the inhibition 
of MMP-2 and -9 expressions. In addition, a downregulation of the nuclear content 
of NF-κB was demonstrated in α-solanine-treated cells [79]. Furthermore, Lee 
et al. investigated the role of potato GAs such as α-chaconine and solanine and their 
hydrolysis products at four concentrations (0.1, 1, 10, and 100 μg/mL) on the human 
colon (HT-29) and liver (Hep G2) cell lines. Results showed that α-chaconine was 
more effective on both of the cell lines, the inhibition of both cell lines increased with 
the concentration but did not appear to be in a linear function of the concentration 
and the inhibition of the liver cells was greater than that of colon cells. The hydrolysis 
product of α-chaconine, that is, γ-chaconine exhibited low activity against the colon 
cells in contrast to the high activity against the liver cells. The activity of γ-chaconine 
against the liver cells was greater than those mentioned for β1- and β2-chaconine and 
approached that of α-chaconine. In the case of α-solanine, the inhibitory activity at 
the 100 μg/mL level was similar for both cell lines and the inhibition at a reduced 
concentration was lower than that of α-chaconine. These results suggest that the 
nature and presence of the carbohydrate moiety can affect cytotoxicity [80].

Recently, the anticancer effect of α-tomatine and its mechanism of action have 
been studied. It has been proposed that tomatine can kill cells by binding to cell 
membranes followed by leakage of cell components [81]. Binding of tomatine 
to cholesterol may be relevant to the mechanism of inhibition of carcinogenesis. 
Despite the ability to disrupt cell membranes in vitro, orally consumed tomatine is 
not toxic, presumably because it forms an insoluble complex with cholesterol in the 
digestive tract, which is then eliminated in the faces [82]. In addition, Sucha et al. 
observed an inhibition in MCF-7 human breast adenocarcinoma cell line prolifera-
tion and viability at α-tomatine concentrations from 6 to 9 μM and postulated 
that the cytotoxic mechanism could be due the fact that cholesterol in biological 
membranes serves as a target for the α-tomatine [83]. It has also been reported 
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that α-tomatine suppresses cell adhesion, morphology/actin cytoskeleton arrange-
ment, invasion and migration in human nonsmall cell lung cancer NCI-H460 cells. 
The authors compared of 0 μM, after 24 and 48 h treatment with tomatine at a 
concentration between 0 and 1.5 μM and reported no significant alteration of cell 
viability, indicating that the compound is not toxic to NCI-H460 at these dosages. 
However, cell viability was significantly decreased when the applied concentra-
tion of tomatine was increased to 2–4 μM for 24 and 48 h [84]. Furthermore, 
α-tomatine induced a significant cytotoxic effect on the human leukemia cancer 
cell line HL60 and K562. Experiments using the MTT assay revealed that tomatine 
has strong cytotoxic effect that could inhibit cell survival of HL60 and K562 in a 
concentration-dependent manner with an IC50 of 1.92 and 1.51 μM, respectively. 
According to Chao et al., cancer cells exposed to tomatine led to a loss of the 
mitochondrial membrane potential and triggered the release of the apoptosis-
inducing factor (AIF) from the mitochondria into the nucleus and downregulated 
surviving expression [85]. In addition, Rudolf and Rudolf [86] also noted the 
cytotoxic effect of tomatine on human colon cancer cells was related to lysosomal 
membrane permeabilization including mitochondrial perturbation with subsequent 
mitochondrial release of apoptosis-inducing factor (AIF) that contributed to the 
execution of diverse death phenotypes, possibly via enhanced activity of JNK but 
in the absence of significant oxidative stress. In another recent study, the effect of 
tomatine separately and in combination with curcumin on the growth and apopto-
sis of human prostate cancer PC-3 cell was investigated [87]. In this study, authors 
reported that a low concentration of both anticancer agents did not have any impact 
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levels. These changes are typical in oncosis, the process leading to necrotic cell death 
[93–95]. The carbohydrate moiety of solamargine significantly affects its anticancer 
activity. Considering the difference of the -L-rhamnopyranosyl-(12) between 
solamargine and khasianine (Figure 6), Chang et al. found that the cell death by 
apoptosis between these two was significantly different. The IC50 (dose that inhibits 
cell growth by 50%) of solamargine, solasodine, and khasianine were 3.0, 2.7, and 
greater than 20 g/ml, respectively [96].

Furthermore, anticancer properties of solasodine in a mice model were inves-
tigated in vivo and it was shown that solasodine glycoside treatments exerted 
significant inhibition of murine sarcoma 180 cell lines (S180) [97]. Based on further 
molecular investigation, the probable role of rhamnose in solasodine glycosides 
binding on tumor cells and its specificity was proposed. About 0.005% mixture of 
solasodine glycosides (Zycure) was demonstrated to be an effective dose on human 
beings. About 0.005% exhibited 66 and 78% curability at 56 days and 1 year follow-
up, respectively [98]. The possibility of using these GAs from the same and/or dif-
ferent food sources and with other therapeutic agents additively or synergistically 
has also been taken under consideration. According to Roddick and Rijnenberg, 
synergism between solanine and chaconine in relation to their membrane-lytic 
action appeared to be a real and potentially important phenomenon. The two major 
potato GAs had a significantly greater effect on phosphatidylcholine/cholesterol 
liposomes at pH 7.2 when used in combination as compared to separately. The latter 
imparted little or no effect at concentrations up to 1 mM but the former caused 
greater membrane disruption and leakage of entrapped content at about 100 μM or 
less [99]. The maximum synergistic effect on C6 rat glioma cells was observed at a 
ratio 1:1 between α-solanine and α-chaconine at micromolar concentrations [100]. 
Friedman et al. demonstrated inhibition of liver and stomach cancer cell growth 
after treatment with α-solanine or α-chaconine alone or in combination. The 
combination of these two compounds exerted a synergistic, additive, or antago-
nistic effect on the investigated cell lines [73]. On the other hand, evidence showed 
that solamargine can be used in combination with some cancer drugs including 
methotrexate, 5-florouracil, cisplatin, and epirubicin to improve effectiveness on 
several cancer cell lines and may have potential in breast and lung cancer therapies 
[92, 101–103]. Furthermore, studies suggest that the combinations of lycopene 
and α-tomatine, both in pure form and in red and in green tomatoes and tomato 
products, can have health-improving benefits at lower concentrations than of each 
bioactive compound alone. Studies suggest that both lycopene and α-tomatine 
might contribute to the prevention and therapy for human cancers and possibly also 
cardiovascular diseases [27].

Figure 6. 
Structure of solasodine and khasianine (taken from [96]).

59

Food Glycoalkaloids: Distribution, Structure, Cytotoxicity, Extraction, and Biological Activity
DOI: http://dx.doi.org/10.5772/intechopen.82780

6. Antifungal, antimicrobial, and insecticidal activity

In plants, GAs have antimicrobial, insecticidal, and fungicidal properties which 
account for their protective activity against several insect, pests, and herbivores. 
α-Chaconine and α-solanine and various Solanum sp. extracts have been shown to be 
toxic to leaf-eating insects, pests of stored products (e.g., seed and flour), mosquitos 
that feed on animal tissues, termites and cockroaches that feed on feces and garbage, 
and predatory species [104]. In a recent study, Friedman et al. reported that the GAs 
α-chaconine and α-solanine were highly active against three pathogenic strains of 
trichomonads. These authors also reported that the activity of α-solanine was several 
times higher than α-chaconine; which is contrary to the several previous results 
where the influence of α-chaconine was reported higher than that of α-solanine 
[105]. Several other research works regarding the impact of potato glycoalkaloids 
on the membrane of frog embryos [106–108] and on fungi such as A. crenulatus, 
A. brassicicola, P. medicaginis, and R. solani [109, 110] showed that α-chaconine was 
more active than α-solanine. Therefore, it appears that the configuration and/or 
content of the sugar moieties of the molecules influence activity. It has also been 
reported that the synergism of the two major GAs significantly delivers greater 
membrane-disruptive activity than either alone. As for example, Fewell and Roddick 
observed that administration of solanine alone resulted in a minor inhibition in A. 
brassicicola and P. medicaginis spore germination; however, significant enhance-
ment in inhibition was observed upon coadministration with α-chaconine [111]. 
On the other hand, Dahlin et al. showed that α-solanine and α-chaconine exert no 
significant direct inhibition of mycelial growth of P. infestans, while the nonglycosyl-
ated unit solanidine has a strong inhibitory effect [112]. It has been reported that 
the impact of glycoalkaloids on fungi depends not only on the GA structure but 
also on the species, culture conditions, and development stages of the fungus [111]. 
Some published reports have indicated the possible use of crude potato extract as 
an insecticidal source. For instance, Nenaah reported that both potato extract and 
GAs exhibited considerable acute and residual toxicity against adults of the red 
flour beetle Tribolium castaneum Herbst and the rice weevil Sitophilus oryzae L. in 
a dose-depending manner, but potato extract was more toxic than pure GAs [113]. 
Moreover, the bactericidal effect of freeze-dried potato peel extract was investi-
gated for mutagenic activity using in vitro Salmonella typhimurium-Escherichia coli 
microsome assay by Stillo et al. These authors, however, proposed that the impact 
was only significant when used at a higher concentration (100,000 g/ml) [114]. 
The antibacterial properties of potato peel extract also vary with the species of 
microorganism examined. For example, Amanpour et al. reported that an ethanol 
extract from the peel of Solanum tuberosum had an antibacterial effect on a spectrum 
of Gram-positive bacteria, particularly on S. aureus but was only effective on one 
Gram-negative bacteria namely P. aeruginosa [115].

Tomato GAs also protect plants against insects and fungal plant pathogens and 
act by disrupting cell membranes by lysing liposomes [71]. Previously, Roddick 
[53] reported that a tomatine concentration of 10–30 mg/kg was high enough to 
be toxic to several fungal species. α-Tomatine has been shown to kill a broad range 
of fungi and functions as a resistant substance against phytopathogens in the 
tomato plant [116]. Sandrock and VanEtten examined the impact of α-tomatine 
on 23 fungal strains and found that both saprophytes and all five pathogens which 
are nontoxic to tomato were highly sensitive, while all but two tomato pathogens 
(Stemphylium solani and Verticillium dahliae) were tolerant to this toxic compound 
(50% effective dose >300 μM). These authors also tested the sensitivity of the 
fungal isolates to the hydrolysis products of α-tomatine (β2 tomatine and toma-
tidine) and found them to be less toxic to most pathogens but inhibitory to some 
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toxic to leaf-eating insects, pests of stored products (e.g., seed and flour), mosquitos 
that feed on animal tissues, termites and cockroaches that feed on feces and garbage, 
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of the saprophytes and nonpathogens of tomato [116]. According to several other 
published results, the hydrolysis products of tomatines possess reduced antifungal 
activity [43, 117]. In fact, it has been previously reported that fungal tomato pests 
such as Septoria lycopersici and Fusarium oxysporum have been found to produce 
extracellular enzymes that hydrolyze glycosidic bonds within the saccharide chain 
of α-tomatine, which not only exhibit reduced antifungal activity but also cause 
suppression of induced plant defense mechanisms such as hypersensitive responses 
and oxidative burst [117, 118]. Furthermore, a preliminary screening showed that 
tomatine at a concentration of 100 μM completely inhibited the growth of the 
Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas 
foetus strain C1, while much less inhibition was found in the case of tomatidine 
[119]. However, in contrast, Simons et al. found that the aglycone tomatidine has 
far more antifungal activity toward yeast and a more distinct mode of action than 
α-tomatine [120]. The membrane lytic effect of α-tomatine is pH dependent, and 
it has also mentioned that some fungi are able to colonize α-tomatine-containing 
tomato tissue by lowering the pH of the infection site [121].

Like other steroidal GAs, there is also some evidence that solasonine and sola-
margine possess antifungal, insecticidal, and molluscicidal activities. Both glycoal-
kaloids are reported to inhibit growth of the spiny bollworm, lettuce seedlings, and 
molluscs, while solasonine is weakly antiviral [122–126]. The antifungal activity has 
also been reported for solamargine and to a lesser extent for its aglycone solasodine 
[127, 128]. Furthermore, inhibition of red flour beetle larvae, tobacco hornworms, 
and Trypanosoma cruzi by solamargine has been reported [128, 129].

7. Other biological activities

In addition to the activities reported above, some GAs have been reported 
to possess antibiotic, antiallergenic, antipyretic, anti-inflammatory, and anti-
hyperglycemic activities at certain doses and conditions. Choi and Koo studied 
the analgesic and anti-inflammatory effect of a potato extract. They reported 
that an ethanolic extract of potato resulted in a significant effect in three types 
of pain induction suggesting that its analgesic effect may in part be related to its 
anti-inflammatory neurogenic and narcotic properties [130]. The antinociceptive 
effect of the potato extract may be related to the reduction in Ca2+ influx at the 
axon terminal of the afferent nerve inducing a decrease in adenylyl cyclase activity, 
which results in decreased levels of cyclic AMP and efflux of K+ ions. The latter 
lead to hyperpolarization of the nerve and finally an apparent antinociceptive 
effect [131]. A recent study highlighted a significant reduction in the production of 
both proinflammatory cytokines (interleukin-2 and interleukin-8) with sublethal 
concentrations of α-chaconine (~22% reduction in production of both cytokines) 
and solanidine (~35% reduction in production of both cytokines) [132]. Shin et al. 
reported that α-solanine had potential therapeutic value for treatment of inflam-
matory diseases. The anti-inflammatory effect of solanine was reported to be medi-
ated via the regulation of proinflammatory cytokines in an LPS-induced systemic 
inflammation mouse model and in RAW 264.7 macrophages [133]. Similarly, 
tomatine imparted an anti-inflammatory effect to the rats [134]. Although the anti-
inflammatory mechanism of α-tomatine is not well understood, results showed that 
α-tomatine significantly suppressed the production of proinflammatory cytokines 
in lipopolysaccharide-induced macrophages. Moreover, lipopolysaccharide-
mediated nuclear translocation of the nuclear factor-kappa B (NF-κB)-p65 and 
phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 were attenuated 
after α-tomatine treatment [135]. In addition, tomatidine exhibited more active 
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anti-inflammatory activity and less toxicity than solasodine. The anti-inflamma-
tory activity of tomatidine is proposed to be due to blocking NF-kB and JNK signal-
ing [136]. The antimalarial activity of chaconine has been reported by Chen et al. 
Chaconine showed a dose-dependent suppression of malaria infection; at a dose 
of 7.50 mg/kg, the parasitemia suppressions of chaconine, tomatine, solamargine, 
solasonine, and solanine were 71.38, 65.25, 64.89, 57.47, and 41.30%, respectively 
[137]. Furthermore, solanine injected to normal rats increased the blood sugar 
level, while decreasing of sugar level was observed in case of adrenalectomized 
rats [138]. Hyperglycemia appears to be due to stimulation of the adrenal gland by 
solanine. The latter was accompanied by a decrease in glycogen levels in the livers 
[14]. Another study reported that feeding unripe tomato to the rats significantly 
reduced blood glucose level compared to the ripe tomatoes, probably due to the 
presence of large of amount of glycoalkaloids such as tomatine, dehydrotomatine, 
and tomatidine [139]. On the other hand, it has been reported that a green tomato-
rich diet can contribute to cholesterol reduction due to the formation of a complex 
between α-tomatine and cholesterol [51].

8. Conclusion

In this chapter, information on the distribution of steroidal GAs in the plants 
of Solanaceous family, their harmful effects as well as the beneficial aspects have 
been reviewed and discussed. GAs are naturally occurring agents which serve a 
plant protective role in many important commonly consumed plants. Due to their 
dose-dependent toxicity, excessive accumulation during growth, harvesting, and 
postharvest practices could lead to the human health problems. On the other hand, 
if extracted from source, these GAs could be beneficially utilized as insecticide, 
antimicrobial, and antifungal agents. In recent years, anticancer activity of these 
compounds has been studied intensively. However, to establish these GAs in cancer 
treatment, more research works are needed to understand its mechanism and the 
harmful effects on the normal living cells. In addition, better strategies for recov-
ery of these agents from their natural sources which take account of the need for 
sustainability need to be further developed. A better understanding of the role of 
GAs in the plant is also essential to exploit their benefits more effectively by clearly 
understanding their biological properties which recognizes not only the complexity 
of living cells, but also the capacity for unique interrelationships between some or 
all the component compounds.
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Chapter 5

Anti-Corrosive Properties of
Alkaloids on Metals
Hui-Jing Li, Weiwei Zhang and Yan-Chao Wu

Abstract

Numerous organic inhibitors have been reported to be used for the corrosion
inhibition of various metals, especially, the heterogeneous ring compounds bearing
larger electronegativity atoms (i.e., N, O, S, and P), polar functional groups, and
conjugated double bonds are the most effective inhibitors. Based on the concept of
green chemistry, in recent years, the research of corrosion inhibitor has gradually
extracted new environment-friendly corrosion inhibitor from natural animals and
plants, because of its advantages in wide source, low cost, low toxicity and subse-
quent treatment. Alkaloids such as papaverine, strychnine, quinine, nicotine, etc.,
have been studied as inhibitors for metals corrosion in corrosive media. This chap-
ter aims to review the application of alkaloids for the corrosion inhibition of metals
in corrosive media, and the development trend in this field is prospected.

Keywords: iron, steel, copper, aluminum, inhibitor, alkaloids
corrosion inhibition

1. Introduction

Metals corrosion is a process in which a metal material loses its basic properties
due to the action of the surrounding medium. Despite significant advances in the field
of corrosion science and technology, corrosion is still a major obstacle to industry in
all countries of the world. Steel, copper, zinc, aluminum as well as their alloys, has
been extensively applied in construction and other industrial fields owing to its low
price and good material properties [1–4]. However, one of the great challenges that
metals face in industrial applications is that they are particularly susceptible to corro-
sion under acidic or alkaline conditions, which could lead to huge economic losses
and potential environmental problems. A practical and cost-effective method to
address such problems is the usage of corrosion inhibitors due to their easy synthesis,
remarkable inhibition effect and economic advantages. The reported corrosion
inhibitors against metals corrosion in acidic or alkaline medium are usually polar
organic heterocyclic compounds bearing electronegativity atoms (i.e., nitrogen, oxy-
gen, sulfur, and phosphorus), polar functional groups, and conjugated double bonds
[5–7]. For example, azoles [8], Schiff bases [9], quinolones [10], thioureas [11] and
pyrimidines [12] have been reported as effective corrosion inhibitors for metals in
corrosive medium. The polar units of these corrosion inhibitors are regarded as the
reaction centers to promote their adsorption on the metals surface, forming a protec-
tive layer to prevent the metals from undertaking corrosion attacks. Nevertheless,
corrosion scientists are not very satisfied with chemical inhibitors as they are
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Chapter 5

Anti-Corrosive Properties of
Alkaloids on Metals
Hui-Jing Li, Weiwei Zhang and Yan-Chao Wu

Abstract

Numerous organic inhibitors have been reported to be used for the corrosion
inhibition of various metals, especially, the heterogeneous ring compounds bearing
larger electronegativity atoms (i.e., N, O, S, and P), polar functional groups, and
conjugated double bonds are the most effective inhibitors. Based on the concept of
green chemistry, in recent years, the research of corrosion inhibitor has gradually
extracted new environment-friendly corrosion inhibitor from natural animals and
plants, because of its advantages in wide source, low cost, low toxicity and subse-
quent treatment. Alkaloids such as papaverine, strychnine, quinine, nicotine, etc.,
have been studied as inhibitors for metals corrosion in corrosive media. This chap-
ter aims to review the application of alkaloids for the corrosion inhibition of metals
in corrosive media, and the development trend in this field is prospected.

Keywords: iron, steel, copper, aluminum, inhibitor, alkaloids
corrosion inhibition

1. Introduction

Metals corrosion is a process in which a metal material loses its basic properties
due to the action of the surrounding medium. Despite significant advances in the field
of corrosion science and technology, corrosion is still a major obstacle to industry in
all countries of the world. Steel, copper, zinc, aluminum as well as their alloys, has
been extensively applied in construction and other industrial fields owing to its low
price and good material properties [1–4]. However, one of the great challenges that
metals face in industrial applications is that they are particularly susceptible to corro-
sion under acidic or alkaline conditions, which could lead to huge economic losses
and potential environmental problems. A practical and cost-effective method to
address such problems is the usage of corrosion inhibitors due to their easy synthesis,
remarkable inhibition effect and economic advantages. The reported corrosion
inhibitors against metals corrosion in acidic or alkaline medium are usually polar
organic heterocyclic compounds bearing electronegativity atoms (i.e., nitrogen, oxy-
gen, sulfur, and phosphorus), polar functional groups, and conjugated double bonds
[5–7]. For example, azoles [8], Schiff bases [9], quinolones [10], thioureas [11] and
pyrimidines [12] have been reported as effective corrosion inhibitors for metals in
corrosive medium. The polar units of these corrosion inhibitors are regarded as the
reaction centers to promote their adsorption on the metals surface, forming a protec-
tive layer to prevent the metals from undertaking corrosion attacks. Nevertheless,
corrosion scientists are not very satisfied with chemical inhibitors as they are
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generally not readily available, expensive, water-insoluble, and pollute the environ-
ment in their synthesis and applications processes.With the deterioration of pollution
problems, the development and utilization of green, low-toxic organic molecular
corrosion inhibitors has received attention. It is highly desirable that the novel metal
inhibitors are non-toxic and environmentally friendly.

Recently, the use of natural products as corrosion inhibitors in different media
has been widely reported as they are nontoxic, biodegradable and readily available
in plenty. Among these natural products, alkaloids (nitrogen as one of their main
constituent atoms) such as papaverine, strychnine, quinine, piperine, liriodenine,
oxoanalobine and nicotine have been studied as inhibitors for metals corrosion in
different media. Moreover, many plants can produce various types of alkaloids
which makes this very interesting due to the presence of heteroatoms. These het-
eroatoms, nitrogen and the oxygen commonly associated with double bonds pro-
mote the adsorption between metals and inhibitors [4, 8]. That’s why alkaloid plant
extracts can reveal the fascinating features about inhibit corrosion, and alkaloids
were found to prevent metal corrosion by adsorption of their molecules on metals
surface to form a protective layer. Generally, there are two types of interactions of
these inhibitors adsorption on metal surface. One is physical adsorption involving
the electrostatic force between the ionic charge of the adsorbed species and the
charge on the metal surface. The other is chemisorption, which involves charge
sharing or transfer from the inhibitor molecules to the metals surface, forming
coordination bonds or feedback bonds [9, 13]. Various natural organic inhibitors
platforms are needed to develop new cleaning chemicals for green environment,
which make the exploitation of late-model alkaloids class of corrosion inhibitors for
metal protection a high priority. In this chapter, the corrosion inhibition effects of
alkaloids (Table 1) as corrosion inhibitors on steel, copper, aluminum and other
metal surfaces in different corrosive media such as hydrochloric acid, sulfuric acid,
sodium chloride, etc., is reviewed.

2. Alkaloids as corrosion inhibitors

2.1 Iron and steel inhibitor

Iron/steel is a strong metal that is widely used in multitudinous industrial fields,
such as machinery manufacturing, petrochemical engineering, constructing and
national defensing, etc. The combination of iron and other elements provides many
acceptable material properties for application. However, iron materials are highly
susceptible to corrosion in acid pickling, acid cleaning, acid descaling and oil well
acidification, which will induce potential problems in industrial equipment, conse-
quently leading to huge economic losses and serious environmental pollution. Gen-
erally, it is cost-effective to use natural organic inhibitors in acidic media to reduce
corrosion of iron and/or steel. It has been reported that the adsorption depends
mainly on the electronic and structural properties of the organic inhibitor molecule
such as larger electronegativity atoms (i.e., N, O, S, and P), polar functional groups,
conjugated double bonds, steric factors, and aromaticity.

Acidic solutions are widely used in various industrial processes, the corrosion
and inhibition of iron/steel in this environment constitutes a complex process
problem. The use of natural organic inhibitors to reduce the corrosion of iron/steel
in acidic media is highly cost-effective, as they are renewable, cheap, easily
available and non-toxic. In recent decades, a large number of reports on the inhibi-
tion of iron/steel in acid solutions by different types of natural alkaloids inhibitors at
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Core moiety ─R Metal Medium References

Berberine

— Mild steel 1 M H2SO4 [17]

Copper 0.5 M HCl [46]

7075 Al alloy 3.5% NaCl [57]

Al alloy 3.5% NaCl [58]

A: piperine
B: piperanine
C: pipernonatine

A

Mild steel 1 M HCl [18]

C38 steel 1 M HCl [34]

Copper 1 M HCl [47]

B

Copper 1 M HCl [47]

C

Atheroline

— Mild steel 1 M HCl [19]
[20]

Brucine

— Mild steel 1 M HCl [21]

Caulerpin

— Mild steel 1 M HCl [23]

Alstogustine

— Mild steel 1 M HCl [24]

Isoreserpiline

— Mild steel 1 M HCl [25]
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Core moiety ─R Metal Medium References

Isodihydrocadambine

— Mild steel 1 M HCl [26]

A: anibine
B: 1-(pyridine-2-yl)propan-2-
one
C: nicotine

A: R1: H and

R2:

C38 steel 1 M HCl [27]

B: R1: and

R2: H

Mild steel 8% H2SO4 [41]

C: R1: H and

R2:

Carbon steel 3% NaCl +
CO2

[44]

A: isoquinoline
B: nornuciferine

A: R1: ─CH3 and
R2: ─OCH3

Carbon steel 0.1 M HCl [30]

B: R1: ─CH3 and
R2: ─H

Methylmoschatoline

— Carbon steel 0.1 M HCl [30]

1-Methyl-pyrido[3,4]indole

— Carbon steel 0.1 M HCl [30]

Quinine

— Carbon steel 1 M HCl [29]

Carbon steel 1.5 M HCl [31]

Dehydrocytisine

— Carbon steel 1 M HCl [32]
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Core moiety ─R Metal Medium References

A: cytisine
B: methylcytisine
C: hydroxylcytisine

A: ─H Carbon steel 1 M HCl [32]

B: ─CH3

C: ─OH

A: liriodenine
B: oxoanalobine

A: ─H C38 steel 1 M HCl [33]

B: ─OH

Geissospermine

— C38 steel 1 M HCl [36]

A: tryptamine
B: indole

A: ─(CH2)2NH2 Iron 0.5 M
H2SO4

[37]

B: ─H Mild steel 1 M HCl
1 M H2SO

[43]

Brucine

— Mild steel 1 M H2SO4 [39]

A: vasicine
B: vasicinone

A: ─H Mild steel 0.5 M
H2SO4

[40]

B: ═O

A: sparteine
B: lupanine

A: ─H Steel 2 M HCl
01 M H2SO4

[42]

7055-T6 Al
alloy

0.5 M NaCl [59]

B: ═O Steel 2 M HCl
01 M H2SO4

[42]

7055-T6 Al
alloy

0.5 M NaCl [59]

Multiflorine

— Steel 2 M HCl
01 M H2SO4

[42]

7055-T6 Al
alloy

0.5 M NaCl [59]
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domestic and foreign scholars. As early as the 1970s, the researchers carried out a
large number of preliminary exploratory studies on alkaloids corrosion inhibitors,
and made some progress. The research of alkaloid corrosion inhibitors is mainly
carried out in hydrochloric acid and sulfuric acid medium. In 1986, Ramakrishniah
reported an excellent papaverine pickling inhibitor [14], further introducing the
research status of alkaloid corrosion inhibitors. It is pointed out that the organic
corrosion inhibitor molecule is usually composed of a polar agent centered on N, O
atoms and a nonpolar group composed of C, H atoms, which can be bonded with
the metal surface in the form of a bond and produce physical or chemical adsorp-
tion. Alkaloids namely pyrrolidine [15] as an inhibitor for iron in 1 M HCl; pome-
granate [16], berberine [17], piperine [18], atheroline [19, 20], brucine [21],
tropane, pyrrolizidine [22], caulerpin [23], indole [24], isoreserpiline [25], 3β-
isodihydrocadambine [26], anibine [27], strychnine and quinine [28] as inhibitors
for mild steel in 1 M HCl; quinine [29], O-methylisopiline, (�)-nornuciferine, O-
methylmoschatoline [30], quinine sulfate (60-methoxycinchonan-9-ol-sulfate

Core moiety ─R Metal Medium References

Caffeine

— Carbon steel 3% NaCl +
CO2

[44]

Piperidones

R1: H, R2: H
and R3: H

Copper 0.1 M
H2SO4

[51]

R1: H, R2: ─Me
and R3: ─Me

R1: ─Cl, R2: H
and R3: H

2,2-Dimethyl-6-
phenylpiperidin-4-one

— Copper 0.1 M
H2SO4

[51]

Emetine

— Copper 1 M HNO3 [53]

Cephaeline

—

Table 1.
List of alkaloids for corrosion inhibition properties of various metals.
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dehydrate) [31] and cytisine [32] as an inhibitor for carbon steel in 1 M HCl;
liriodenine, oxoanalobine [33], piperine [34], oxoaporphinoid [35] and
geissospermine [36] as inhibitors for C38 steel in 1 M HCl; tryptamine [37] as an
inhibitor for iron in 0.5 M H2SO4; piperine [38], brucine [39], vasicine, vasicinone
[40] and isopelletierine [41] as inhibitors for mild steel in 0.5 M H2SO4; sparteine,
lupanine, multiflorine [42] and indole [43] as inhibitors for mild steel in 1 M HCl
and 0.5 M H2SO4 have been investigated against the corrosion of iron/steel by
weight loss measurements, potentiodynamic polarization and electrochemical
impedance spectroscopy (EIS) techniques. The experimental results revealed that
these alkaloids were excellent green inhibitors, and their inhibition efficiency
increased with the increase of inhibitor concentration and decreased with increase
of temperature. Polarization curve results demonstrate that most of the alkaloids
compounds have been classified as mixed inhibitors under the studied acidic con-
ditions. Only the indole alkaloids act as an anodic type inhibitor in HCl and as a
mixed type in H2SO4 [43]. The Nyquist plots revealed that the charge transfer
resistance increased and the double layer capacitance decreased as the concentra-
tion of the inhibitor increased. In addition, the inhibition efficiency obtained by
weight loss method and electrochemical tests were consistent in all studies. The
adsorption of most alkaloids corrosion inhibitors on the steel surface belongs to
Langmuir isothermal type. Howbeit, the adsorption of a small amount of alkaloids
inhibitors, namely piperine, caulerpin, brucine and quinine on the metal surface
was found to obey Temkin’s adsorption isotherm in acid medium. But berberine
[17] and tryptamine [37] follow the Flory-Huggins adsorption isotherm and
Bockris-Swinkels adsorption isotherm on the metal surface, respectively. These
adsorption isotherms were calculated from Eqs (1) to (4):

c
θ
¼ 1

Kads
þ c Langmuir isothermal (1)

exp �2aθð Þ ¼ Kadsc Temkin’s adsorption (2)

log
θ

c

� �
¼ log xKads þ x log 1� θð Þ Flory�Huggins adsorption (3)

θ

1� θð Þx
θ þ x 1� θð Þ½ � x�1ð Þ

xx
¼ Kadsc Bockris� Swinkels adsorption (4)

where c is inhibitor concentration, θ represents surface coverage, xmeans the
number of adsorbed water molecules replaced by one inhibitor molecule. The forma-
tion and properties of the adsorbed films on the steel surface have been investigated
using scanning electron microscope (SEM) [17, 19, 20, 22, 24–26, 36, 38, 39, 43],
X-ray photoelectron spectroscopy (XPS) [27, 32], FTIR spectroscopy
[19–26, 39, 41, 43] and atomic force microscopy (AFM) [23]. The effect of temper-
ature on inhibitive performances were studied to provide more detailed insights into
the kinetics and thermodynamics of metal corrosion in acid solutions. Quantum
chemical calculations were employed to provide insightful quantitative information
to conclude the correlation between molecular structures and inhibition performance.

Metal corrosion also occurs in industrial processes under neutral conditions.
Therefore, inhibiting metal corrosion under neutral conditions is also an important
research direction. Numerous studies revealed that caffeine and nicotine can act as
effective corrosion inhibitors for iron/steel in neutral environment. Corrosion inhi-
bition of carbon steel by caffeine (1,3,7-trimethyl-purine-2,6-dione) and nicotine
(3-(1-methylpyrrolidin-2-yl)pyridine) [44] in 3% NaCl solution with CO2 was
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to conclude the correlation between molecular structures and inhibition performance.

Metal corrosion also occurs in industrial processes under neutral conditions.
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investigated using various techniques. Potentiodynamic polarization curve results
showed that these compounds belonged to mixed-type inhibitors which primarily
inhibited the cathodic reaction, and this effect still exists at low inhibitor concen-
tration, indicating that these compounds are good inhibitors in 3% NaCl + CO2

conditions (η > 90% for caffeine and > 80% for nicotine). The thermodynamic
analysis of Langmuir model shows that the adsorption of these alkaloids is physical
adsorption. Surface analysis (SEM-EDS) confirmed that the inhibition effect was
due to the adsorption of caffeine or nicotine molecules on the surface of carbon steel
solution. The effect of temperature for caffeine and nicotine was also studied by
electrochemical impedance spectroscopy (EIS), demonstrating that the best inhibi-
tor was caffeine, as its structure has more active sites in the oxygen and nitrogen
heteroatoms, and more easily adsorbed on the steel surface. In addition, caffeine
(1,3,7-trimethylamine) and nicotine (1-methyl-2-pyrrolidinyl) pyridine) [45] as
corrosion inhibitors for cast iron in 0.1 M Na2SO4 solution was evaluated by elec-
trochemical techniques. The results showed that the two compounds added as
corrosion inhibitors showed considerable corrosion resistance. The formation of
bimolecular layer by additives can effectively inhibit oxidation and improve the
protection performance of WD-40 oil.

2.2 Copper inhibitor

Copper and its alloys have a wide range of applications in the industrial field due
to their high electrical and thermal conductivity. Nevertheless, copper is extremely
sensitive to corrosion in acid and alkaline solutions, and thus result in huge eco-
nomic losses and potential environmental problems. A practical and effective solu-
tion to this problem is to use organic corrosion inhibitors. At present, the copper
corrosion inhibitors used in industry mainly include: azole type, amine type and
pyridine type corrosion inhibitors mainly containing N compounds. However, such
compounds are highly toxic and pose a great hazard to operators and the environ-
ment. Therefore, the research and development of high efficiency, low toxicity,
environment-friendly corrosion inhibitor is one of the main directions of corrosion
inhibitor development. In recent years, researchers have applied natural alkaloids as
copper corrosion inhibitors, which are non-toxic, environmentally friendly, simple
preparation process and low cost. These organic compounds customarily contain
polar functional groups with N, S or O atoms, and have triple or conjugated double
bonds in their molecular structure, which are the main adsorption centers.

The research on the inhibition effect of alkaloids on copper is mainly carried out
in hydrochloric acid, sulfuric acid and nitric acid. Corrosion inhibition of copper by
berberine (5,6-dihydro-9,10-dimethoxybenzo[g]-1,3-benzodioxolo[5,6-a]
quinoliziniu-m) [46] in 0.5 M HCl and piperine, piperanine, pipernonatine, N-11-
(3,4-methyl-enedioxyphenylhmdecatrienoyl)-piperidine [47] in 1 M HCl; caffeine
[48], quinine, strychnine [49, 50], piperidine, piperidones (2,6-diphcnylpiperidin-
4-on, 3-methyl-2,6-diphenylpiperidin-4-on, 2,2-dimethyl-6-phenylpiperidin-4-
one, N-chloro-2-6-diphenylpiperidin-4-on) [51] in 0.1 M H2SO4; hyoscine, atro-
pine, hyoscyamine [52], emetine, cephaeline [53] in 1 M HNO3 was investigated by
gravimetric, electrochemical, surface, and quantum chemical calculations methods.
These compounds were found to exhibit good inhibition performance and the
corrosion inhibition efficiency increased with increasing concentration. Polarization
curves showed that all of those alkaloids are determined as mixed-type inhibitors in
the studied solutions, and the results were consistent with those obtained by weight
loss. The adsorption of a majority of alkaloids on copper surface obeys the Langmuir
isotherm model, whereas quinine and strychnine were found to follow Bockris-
Swinkels adsorption isotherm in 0.1 M H2SO4 solution. The surface morphologies of
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copper specimens after immersion in test solution without and with studied alka-
loids inhibitors were observed by SEM and AFM. These experimental results were
also supported by quantum chemical calculations, which provided insightful quan-
titative information to conclude the correlation between molecular structures and
inhibition performance.

Besides, copper can be severely corroded in sea water and chloride environ-
ments due to the presence of large amounts of chloride ions, and the anodic disso-
lution of copper is affected by the concentration of chloride ions. When the chloride
ion concentration is below 1 M, the anode dissolves to form CuCl, followed by the
formation of CuCl2 when excess chloride ions are present [54]. The inhibition effect
of some alkaloids on copper has been evaluated by various techniques. For example,
see [14] papaverine, brucine, strychnine, ephedrine and cinchonidine was investi-
gated using weight loss in 100 ppm sodium chloride solutions. It’s interesting to
note that brucine, strychnine and cinchonidine can inhibit the corrosion of copper,
while papaverine and ephedrine accelerate the corrosion of copper. The results also
showed that cinchonidine had the best inhibition performance with an efficiency of
94%. In addition, the corrosion inhibitive action of copper corrosion in 1.5% sodium
chloride solution was studied by various forms of the piperidine moiety [55].
Results indicated that both piperidine and piperidine dithiocarbamate were excel-
lent copper corrosion inhibitors, and the properties of two compounds are classified
as mixed-type inhibitors. At the optimum concentration, the maximum inhibition
efficiency of the two compounds differs significantly, which is mainly determined
by the properties of the substituents in the molecule. These studies have shown that
the adsorption of corrosion inhibitor on the copper surface to form a protective film
is the main reason for inhibiting copper corrosion. The adsorbed alkaloid forms a
complex with Cu+, thereby preventing the formation of copper chloride complexes.

2.3 Aluminum and their alloys inhibitor

Aluminum and its alloys are widely used in aviation, construction and automo-
tive industries due to their light, good electrical and thermal conductivity, high
reflectivity, high strength-to-density ratio and oxidation resistance. The oxidation
layer of aluminum has a natural corrosion protection, but if exposed to an erosive
environment, the metal is highly susceptible to corrosion, especially in the presence
of chloride ions (Cl�), such as in seawater and sodium chloride solution, the oxide is
broken down. Therefore, it is still a great challenge to improve the corrosion resis-
tance of aluminum and its alloys. Corrosion inhibitors are widely used in the indus-
try to reduce the corrosion rate of metals and alloys in contact with corrosive
environments.

Some literature studies have shown that various alkaloid corrosion inhibitors are
widely used to prevent the dissolution of aluminum and its alloys in alkaline and
chloride solution. The corrosion inhibition of pyridine for aluminum in 1 M NaOH
solution [56], berberine namely 5,6-dihydro-9,10-dimethoxybenzo[g]-1,3-
benzodioxolo[5,6-a]quinolizinium for 7075 aluminum alloy in 3.5% NaCl solution
[57, 58], sparteine, lupanine and multiflorine for 7075-T6 aluminum alloy in 0.5 M
NaCl solution [59] has been evaluated by weight loss, potentiodynamic polarization
and EIS techniques. It is found that they are mixed type inhibitors in the studied
conditions. In addition to the Temkin’s adsorption of 5,6-dihydro-9,10-
dimethoxybenzo[g]-1,3-benzodioxolo[5,6-a]quinolizinium, the adsorption of other
alkaloids inhibitor on the copper surface follows Langmuir adsorption isothermal
type. The thermodynamic parameters such as free energy, adsorption enthalpy,
entropy and activation parameters were calculated to study the adsorption mecha-
nism. In some alkaloid studies, SEM, SECM, UV were implemented to investigate
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the correlation between the surface properties of metals and electrochemical corro-
sion behavior, and the adsorption behaviors of molecules on the aluminum and its
alloys surface was discussed by electrochemical test and surface analysis.

3. Development prospect

With the progress and development of industry and science and technology, the
corrosion inhibitor science and technology has been developed and improved, and
the researchers have done a lot of work on the research direction of inhibitors. Among
them, environment-friendly corrosion inhibitors, especially alkaloids, have aroused
wide attention of researchers and become one of the main directions of the develop-
ment of corrosion inhibitors in the future. Despite the progress and achievements in
the study of alkaloids corrosion inhibitors, there are still many problems that need to
be solved. There are many varieties of alkaloids corrosion inhibitors developed by
researchers, but not many industrialized production, which is mainly due to the large
amount of alkaloid inhibitors and high cost compared with the corrosion inhibitors
currently used in industry. Therefore, in the future, we should focus on the study of
extracting effective constituents from natural plants, marine flora and fauna, and
strengthening the study of low toxicity or non-toxic organic molecule corrosion
inhibitor synthesized by synthetic multifunctional base, and making the corrosion
inhibitor by compounding or modifying to realize the optimum utilization of
resources. In addition, the theory is imperfect, the molecular design lacks the theory
instruction. Molecular design has been widely used in the development of fine
chemicals, but in the development of environmentally friendly corrosion inhibitor
new products due to the lack of systematic theoretical guidance, there is still contro-
versy over the mechanism of corrosion inhibition of many corrosion inhibitors. This
requires the use of advanced chemical technologies such as quantum chemistry
theory and molecular design to synthesize efficient, multifunctional and environ-
mentally friendly organic corrosion inhibitors. At the same time, using modern
advanced analytical instruments and computers to study the adsorption behavior and
mechanism of inhibitor molecules on metal surface from the molecular and atomic
levels to guide the research and development of corrosion inhibitors.

4. Conclusions

The corrosion inhibition effects of alkaloids on different metals in various cor-
rosion media at room and higher temperature was reviewed. Weight loss, electro-
chemical studies, surface morphology and quantum chemical studies have been
reviewed. The inhibition behavior of alkaloid inhibitors on metals was reviewed by
weight loss method, electrochemical measurements, surface analysis and quantum
chemical calculations. The studies showed that all these alkaloids are good corrosion
inhibitors and the majority alkaloids acted as mixed-type inhibitor. Various adsorp-
tion isotherms were analyzed, the majority alkaloids were found to follow the
Langmuir adsorption isotherm, and a few followed Bockris-Swinkels and Temkin’s
adsorption. This review will be useful for corrosion inhibitor research and provide
new possible considerations in the design of practical alkaloids-type corrosion
inhibitors for metals in corrosive solution.
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