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Preface

Structural health monitoring (SHM) has attracted more attention during the last few decades
in many engineering fields with the main aim of avoiding structural disastrous events. This
aim is achieved by using advanced sensing techniques and further data processing. SHM is a
multidisciplinary technique that has undergone decades of development. It has experienced
booming advancements during recent years due to the developments in sensing techniques
such as wireless sensing systems, embedded sensing systems, fiber optical sensing systems,
etc. The reliable operation in current sophisticated man-made structures, e.g. dams, bridges,
and wind turbines in civil engineering applications, and vehicles, trains, and aircraft in me‐
chanical and aerospace applications, drives the development of incipient reliable damage di‐
agnosis and assessment. This book aims to illustrate the background and applications of SHM
from both sensing and processing approaches. Its main objective is to summarize the advan‐
tages and disadvantages of SHM methodologies and their applications, which may provide a
new perspective in understanding SHM for readers from diverse engineering fields.

This book contains eight chapters that cover SHM methodologies and applications. The chap‐
ters concerned with methodologies include topics on aspects of reliability of piezoelectric ac‐
tuators and sensors, the acoustic emission technique for SHM, and selection of diagnostic
symptoms for condition assessment and prognosis. The chapters concerned with applica‐
tions include topics on applications and challenges of signal processing techniques for Lamb
wave structural integrity, the use of piezoelectric wafer active sensor technology in SHM for
space applications, application of SHM to wind turbine structures using univariate and mul‐
tivariate hypothesis testing, and application of SHM to bolted joints using guided waves.

The editors would like to express their thanks to the authors of the chapters presented in
this book for their invaluable contributions.

Professor Magd Abdel Wahab
Ghent University

Ghent, Belgium

Dr. Yun Lai Zhou
Department of Civil and Environmental Engineering

National University of Singapore, Singapore

Prof. Nuno Manuel Mendes Maia
University of Lisbon

Lisbon, Portugal
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Abstract

In the chain from sensing to information extraction, there are many traps where errors can
occur, which might lead to false alarms and therefore leave us with the impression of an
unreliable system. In this chapter, we deal with the important first element of the chain,
the sensor, which can undergo various faults and defects during its lifetime. Especially for
the use of acousto-ultrasonic (AU)-based methods or the electro-mechanical impedance
(EMI) method, piezoelectric transducers are frequently used. Subsequent steps within
the chain of SHM rely on the quality and reliability of these measurements. An overview
is given on the usage of piezoelectric transducers within SHM systems, their electro-
mechanical coupling and its modeling as well as frequent faults of these devices and
methods on how to inspect them and diagnose defects. The authors show the effects of
different transducer faults on the excited wave field, used for AU. It is shown how a
sensor fault can be detected before the SHM system indicates a (false) alarm. With the
help of application scenarios—including temperature variations—the advantages and
disadvantages of the introduced methods of transducer inspection are presented, enabling
an increased reliability of SHM systems.

Keywords: piezoelectric transducers, piezoelectric wafer active sensors, faults, defects,
electro-mechanical impedance, acousto-ultrasonics, guided waves, lamb waves, structural
health monitoring, system reliability

1. Introduction

Aspects of reliability play a major role for the development of structural health monitoring
(SHM) systems in working industrial applications. This reliability has to be ensured for all
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steps of the SHM process, which are, according to Farrar and Worden, (1) operational evalua-
tion, (2) data acquisition, (3) feature selection and (4) statistical modeling for feature discrimi-
nation [1]. Within this chapter, the second step “data acquisition” is focused. It is closely linked
to the third step, which aims at extracting the damage relevant information from the measured
data via data analysis. Within the toolbox of methods used for SHM, the two groups vibration-
based methods and wave-based methods have emerged. Vibration-based methods are based
on the fact that modal parameters like eigenfrequencies, mode shapes and modal damping are
functions of physical properties like the distribution of stiffness or of mass. In case of damage,
physical properties are changed, leading to a change of the modal parameters, which are
monitored by vibration-based SHM systems. Moreover, we can go to the higher frequency
range and evaluate the time data directly. For their monitoring, excitation is necessary, which is
often achieved by using ambient excitation, e.g., cars crossing a bridge to be monitored. Wave-
based SHM methods either use the fact that a damage, e.g., cracks or breaking fibers within a
composite component, will result in an emitted acoustic signal or use the fact that a wave will
interfere with a possible damage. For the first, the acoustic signal will travel through the
component and be detected by members within a net of listening sensors. Data evaluation will
identify these single events and might locate the crack’s position via triangulation. While this
method is a passive method, the wave-based acousto-ultrasonics method is characterized as an
active method. A well-defined excitation is used, creating a wave, which travels through the
structure, interferes with specific geometric features of the structure, like edges, thickness,
changes but also damages and is sensed after these interferences, e.g., at a different point of
the structure. When traveling through thin-walled plates or rods, waves often appear as
guided waves. They are reflected, can convert into different modes or the transmitted part is
changed by discontinuities, like damages. Therefore, a change of the evaluated signal is
interpreted as an indicator for damage.

For all SHM systems, it has been shown that the influence of environmental and operational
conditions cannot be neglected. If we ignore a change of temperature, it might be interpreted
as damage or a temperature change might decrease or even reverse the effect of damage.
Depending on the SHMmethod, different approaches to tackle especially temperature changes
have been proposed. For methods using acousto-ultrasonics, in [2] an overview of different
methods for the compensation of temperature changes is given and the use of the local
temporal coherence to cope with the changes of temperature and effects of surface wetting is
detailed. Similar to this approach, for methods based on the signature of the electro-
mechanical impedance (EMI) spectrum, in [3], a correlation coefficient-based method is used,
which compensates frequency and magnitude shifts, caused by temperature changes, while
changes of the shape, caused by damages within the structure, are identified. This method is
applicable if the effects of damage can be clearly separated from effects of temperature varia-
tion. This is not the case for all applications. Therefore, in [4, 5], a physics-based compensation
of the influences of temperature changes is used for EMI and acousto-ultrasonics (AU)-based
methods. The effort for this method is large, as the temperature dependence of all significant
parameters has to be included within the model. Other efforts to compensate for varying
environmental and operational conditions for signal-based techniques within wave- and
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vibration-based SHM systems use statistical damage classification [6, 7] including, e.g., fuzzy
classification [8], the use of neural networks [9] and self-organizing maps [10].

For vibration-based SHM systems, the used sensors are often based on well-approved measure-
ment sensors, which have been used in the past for different purposes, measuring strain, acceler-
ation or displacement. The special requirements of SHM systems regarding the continuous
monitoring on-site over long periods are achievable and the measurement systems might include
a self-check and transducer electronic data sheets (TEDS) to increase the reliability, e.g., ICP
compatible accelerometers. Wave-based methods often use a distributed sensor network and the
included sensors are just starting to entermore into commercial products, e.g., PICeramic P-876.SP1
and Acellent SMART Layer [11, 12]. This chapter focuses on the wave-based methods, which use
piezoelectric transducers for data acquisition, including actuation and sensing purposes.

Using guided waves, an SHM system identifies damages via comparing signals from different
states. While the current state which should be evaluated is always based on measurements,
the reference state, often taken from the pristine structure, can either be based on measurement
data or set up by physics-based models. Occasionally, the comparison is also based on assump-
tions like the linear material behavior of the system in pristine state. The different methods of
feature selection and feature discrimination are not within the focus of this chapter, as there are
a multitude of possibilities. Nevertheless, the consideration of reliability on these steps is
highly important and is a major research area to enable certification processes, necessary for
the use of SHM systems in industrial applications.

Focusing the inspection of sensors and its self-test, different approaches can be found. Simple
systems check, if the sensor signal is different from zero. More advanced data-driven methods
are based on hardware redundancy [13]. Typical faults are bias, complete failure, drifting and
precision degradation, see [14], as well as gain, noise and constant with noise [13]. For net-
works of wireless sensor nodes, these methods are used to find faulty nodes to be able to either
replace those nodes or simply remove them from the network, which is only possible with
sufficient redundancy, see e.g., [15]. The use of hardware redundancy, which tests if the sensor
signal fits the assumed signal, when only using all other sensors, has been used for SHM
systems, too. In [16], a modal filtering approach is used, and [17] uses a PCA-model to
represent the signal in a lower-dimensional space and compare it with the original signal. The
effect of temperature change and structural damage is considered in [18] using the mutual
information concept. All these methods use the measurement data for a mathematical proce-
dure not based on physical quantities. While it is an advantage that no additional measure-
ments are needed, this also leads to difficulties in distinguishing between structural damage
and sensor fault, especially for the case of small defects and in widespread sensor network.
Depending on the type of sensor, physics-based methods of self-diagnosis using additional
measurements can be found. Ref. [19] describes the use of electrical impedance spectroscopy
measurement to enable self-monitoring of semiconductor gas sensor systems. In [20], methods
to enable a validation of the sensor functions under operational conditions are suggested,
which include the use of a magnetostrictive coated fiber. For piezoelectric wafer active sensors
(PWAS), self-diagnosis capabilities exist, which are mainly based on the transducers physics.
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For these transducers, the typical classification into gain, drifting, and so on does not represent
the effects of faulty PWAS. The importance of reliable sensor data cannot be overestimated to
achieve a reliable output of an SHM system over long monitoring periods.

Within this chapter, a short overview on the usage of piezoelectric transducers within AU-
based SHM systems, their electro-mechanical structure and its modeling is given in Section 2.
The effects of different transducer faults on the generated wave field, used for AU, as well as
on the electro-mechanical impedance spectrum are described in Section 3. Section 4 shows a
variety of methods for transducer inspection including model-based and data-based methods
with different requirements on the available knowledge about the system and material param-
eters. Using application scenarios—also including temperature variations—the advantages
and disadvantages of the introduced methods of transducer inspection, enabling an increased
reliability of SHM systems, are presented in Section 5.

2. Tasks of piezoelectric transducers

In many applications, piezoelectric material is used purely for actuating or sensing purposes.
The use of PWAS for SHM purposes is mostly including both, the inverse and the direct
piezoelectric effect. In general, the piezoelectric effect is not linear. Nevertheless, the effect can
be modeled linearly in a certain strain range for most piezoelectric materials. Moreover, the
temperature needs to stay well below the Curie point. The actuation (inverse piezoelectric
effect) can be described by

Di ¼ diklTkl þ εTikEk (1)

Sij ¼ sEijklTkl þ dkijEk (2)

with stress T, strain S, elastic compliance s, dielectric constant ε, electric field E, dielectric
displacement D, defined by charge Q per unit area A at given stress T, and piezoelectric
constants d, linking dielectric displacement with stress as well as strain with electric field.

Although these equations already fully describe the direct and inverse piezoelectric effect, for
sensing purposes (direct piezoelectric effect) the most familiar description uses g as piezoelec-
tric voltage coefficient to connect stress with electric field.

Ei ¼ �giklTkl þ βTikDk (3)

Sij ¼ sDijklTkl þ gkijDk (4)

These equations can be simplified especially in their dimension, when using Voigt notation
and assuming multiple symmetry in the piezoelectric materials as well as in the strain and
stress tensors.
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A huge variety of piezoelectric materials exist—well known are barium titanate BaTiO3ð Þ and
lead zirconate titanate (Pb Zr;Tið ÞO3Þ, known as PZT, as well as more flexible materials like
polyvinylidene fluoride (PVDF). Most common are PWAS, made of PZT. They are separated
into hard and soft PZTs by their coercive field. Hard PZTs exhibit a large linear drive region,
showing small strain magnitudes and a relatively high Curie point (TC ≈ 250

�
C); soft PZTs

exhibit larger induced strain, while having a smaller linear region. Most soft PZTs have a Curie
point above 150

�
C, but below those of hard PZTs. Examples of soft PZTs are PIC255, PSI 5A4E

—Navy Type II, PIC151, PIC155, PZT5A-3195STD and PSI-5H4E Navy Type VI; examples for
hard PZTs are PIC 181 and PIC 300, depending on the manufacturers naming (e.g., PICeramic,
Piezo systems Inc.). In [21], a threshold of Ec ¼1 kV/mm to divide those two groups is
mentioned.

For AU-based SHM systems, the use of PZT discs has proven to be useful. Different types of
transducers exist. The simple form is a piezoceramic disc with a wrap-around electrode, which
enables the soldering of both contacts on the top surface of the transducer, see Figure 1a.
Alternatively, one might use PZT discs, which are already capsulated in embedding material.
Depending on the application, the connecting cables are also embedded as conducting paths
within a layer of embedding material. Examples are Acellent SMART layer© and DuraAct

Figure 1. Types of transducers, (a) single transducer with wrap-around electrode from PICeramic, (b) embedded trans-
ducer, Acellent SMART layer©.
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transducers exist. The simple form is a piezoceramic disc with a wrap-around electrode, which
enables the soldering of both contacts on the top surface of the transducer, see Figure 1a.
Alternatively, one might use PZT discs, which are already capsulated in embedding material.
Depending on the application, the connecting cables are also embedded as conducting paths
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from PICeramic (see Figure 1b). Within this chapter, the first type is named single transducer/
PWAS, while the second type is called embedded transducer/PWAS.

The generated wave field depends on the excitation frequency and the orientation of the
transducer itself. In [22] it is shown that the orientation of the wrap-around electrode has
significant influence on the generated wave field.

The use of PWAS for AUpurposes has been described in amultitude of publications. An excellent
overview is given in [21]. Herein, the interested reader will also find an extensive description of
the governing equations for AU and EMI. In this chapter, only main results are cited.

For free disc-shaped transducers, the model is based on axial symmetry, leading to uniform
radial and circumferential expansion. Using Eqs. (1) and (2) in cylindrical coordinates, the
derivation of the induced strain and displacement—used for AU—as well as the electrical
displacement, finally leading to the EMI spectrum, can be derived. As soon as the PWAS is
attached to the structure, stress-free boundary conditions have to be replaced by a force
equilibrium at the PWAS edges. Moreover, a shear layer coupling between PWAS and struc-
ture, achieved by the adhesive layer, needs to be considered. Based on [21, 23], in [4], a model
was developed, which includes these effects and focuses on the PWAS signature, including
resonances and antiresonances of the EMI spectrum Z ωð Þ.

Z ωð Þ ¼ iωC 1� k2p 1� 1þ νað ÞJ1 φa

� �

φaJ0 φa

� �� 1� νað ÞJ1 φa

� �þ χ ωð Þ 1þ νað ÞJ1 φa

� �
 ! ! !�1

(7)

It includes the Bessel functions of the first kind J, Poisson’s ratio of the PWAS's material νa, the
capacitance C, the coupling factor kp, the frequency dependent stiffness quotient χ ωð Þ and the
abbreviation φa which can be derived by

C ¼ ε33
πr2pwas
hpwas

(8)

k2p ¼
2d231

ε33sE11 1� νað Þ (9)

φa ¼
ω
c
rpwas (10)

χ ωð Þ ¼ kstr&adh

kpwas
(11)

When including the frequency dependent stiffness of the adhesive layer and a simple model
for the stiffness of PWAS and structure, this can be included into χ ωð Þ.

kpwas ¼
hpwas

rpwassE11 1� νað Þ (12)

kstr&adh ¼ 1
1
kstr

þ 1
kadh

(13)
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This includes the geometry parameters rPWAS,hPWAS,hstr, hadh, the material parameters elastic
modulus Estr,Poisson’s ratio νstr and the wave speed for axially symmetric radial motion in the
PWAS c.

It must also be kept in mind that many of the parameters used have complex values as
damping has to be taken into account, e.g., sE11 ¼ bsE11 1� iηð Þ.
The frequency dependency of the characteristic structural stiffness was neglected. This model
is therefore useful for analyzing the PWAS itself and its bonding condition, while it cannot be
used for the modeling of changes respecting damages within the structure.

From Eq. (7), the susceptance B as the imaginary part of the admittance which is the inversion
of the impedance can be calculated.

Y ωð Þ ¼ 1
Z ωð Þ (16)

B ωð Þ ¼ Im Y ωð Þf g (17)

If neglecting the factor multiplied with k2p, the simple model of a PWAS as a capacitor gets

visible. The capacitance C describes the slope, when plotting B over ω. This line is interrupted
by the effects of the PWAS eigenfrequencies and its coupling with the structure. As the model
does not include the frequency dependency of the structures stiffness, the peaks of eigenfre-
quencies of the stiffness are not visible. Other models include this frequency dependency of the
structures stiffness, see [21]. Due to the necessary simplicity of these models, the applicability
for SHM based on the EMI spectrum is limited, but they lead to a better understanding of its
characteristic features.

3. Classification of transducer faults

Different types of PWAS faults result from different causes. Due to the continuous or period-
ical monitoring with permanently installed sensors, PWAS used for SHM need to be tested
against degradation issues. Nevertheless, early faults within the PWAS service life have to be
taken into account. Production deficiencies can lead to an insufficient bonding quality between
structure and PWAS before the PWAS can be used for the first time. Depending on the type of
fault, the effects on the generated wave field as well as on the EMI spectrum differ.
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damping has to be taken into account, e.g., sE11 ¼ bsE11 1� iηð Þ.
The frequency dependency of the characteristic structural stiffness was neglected. This model
is therefore useful for analyzing the PWAS itself and its bonding condition, while it cannot be
used for the modeling of changes respecting damages within the structure.

From Eq. (7), the susceptance B as the imaginary part of the admittance which is the inversion
of the impedance can be calculated.

Y ωð Þ ¼ 1
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If neglecting the factor multiplied with k2p, the simple model of a PWAS as a capacitor gets

visible. The capacitance C describes the slope, when plotting B over ω. This line is interrupted
by the effects of the PWAS eigenfrequencies and its coupling with the structure. As the model
does not include the frequency dependency of the structures stiffness, the peaks of eigenfre-
quencies of the stiffness are not visible. Other models include this frequency dependency of the
structures stiffness, see [21]. Due to the necessary simplicity of these models, the applicability
for SHM based on the EMI spectrum is limited, but they lead to a better understanding of its
characteristic features.

3. Classification of transducer faults

Different types of PWAS faults result from different causes. Due to the continuous or period-
ical monitoring with permanently installed sensors, PWAS used for SHM need to be tested
against degradation issues. Nevertheless, early faults within the PWAS service life have to be
taken into account. Production deficiencies can lead to an insufficient bonding quality between
structure and PWAS before the PWAS can be used for the first time. Depending on the type of
fault, the effects on the generated wave field as well as on the EMI spectrum differ.
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3.1. Cracks

When describing the fault type crack within this chapter, this refers to macro-size cracks. Differ-
ent causes can lead to these cracks. During production or later use, falling objects, which hit the
transducer itself, cause cracks and spalling. Two examples of single transducers impacted twice
by falling mass (m = 53.5 g, h = 350 mm for (a), 450 mm for (b)) are shown in Figure 2.

Due to the nonsymmetric characteristic of the fault, the effects on the wave field are also
nonsymmetric. Figure 3 shows the signal, recorded by two neighboring transducers (PWAS 1
and PWAS 3), generated by a cracked PWAS (PWAS 2). The two signals differ significantly,
showing the nonsymmetric characteristic of the fault. Single transducers as well as embedded
transducers show decreased output when being cracked. The effect of spalling is not present
for embedded transducers, as the embedding material holds the separated parts together. If a
PWAS inspection system does not indicate these faults, the SHM system is based on corrupted
signals and will most likely give alarm, although not the structure but the PWAS is damaged.

The effects of this type of fault on the EMI spectrum differ significantly depending on the type
of transducer, see Figure 4. Due to the changed stiffness of the cracked PWAS, the resonance
frequency changes. These changes are larger for the single transducers, while the effect is

Figure 2. Micrographs of transducer fault type, (a) crack (b) crack and spalling.

Figure 3. Change of wave propagation depending on the orientation of damage, (a) PWAS2-PWAS1, (b) PWAS2-PWAS3.
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decreased for the embedded transducers, where the embedding material leads to remaining
stiffness between the cracked parts. A drop of capacitance, which will lead to a decreased
susceptance slope is visible for the case of spalling. As the capacitance is proportional to the
area, the reason for this drop is the missing piece of transducer, which is only the case for
single transducers.

3.2. Degradation

Degradation of the piezoelectric transducer and its bonding to the structure is a major trans-
ducer fault especially for long-term monitoring, favored in structural health monitoring. It can
be caused, e.g., by elevated temperatures. Depending on the selected adhesive (e.g., Hysol
EA9394 by Henkel, Z70 by HBM) and the chosen PWASmaterial (e.g., PIC 255, PIC 151), either
the adhesive or the piezoelectric material is prone to degrade. It has been shown in [24] that the
pure exposure to outdoor conditions can also lead to minor degradation, which is visible in the
generated wave field by a slightly decreased signal. Its level decreases uniformly. In Figure 5,
the degradation, caused by elevated temperature, is shown.

Figure 4. Change of EMI spectra depending on PWAS type and type of fault, (a) single transducer with crack, (b) single
transducer with crack and spalling, (c) embedded transducer with crack.

Figure 5. EMI spectra for 20 and 80�C, (a) baseline and (b) degraded state.
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It led to a slight decrease of the susceptance slope, which is not caused by a change of the
surface area but the degrading of the PWAS material and a change of its adhesive stiffness, see
Eq. (15). If the temperature is unknown, degradation might be interpreted as temperature
change.

3.3. Debonding

Debonding is a fault type, located at the adhesive zone between PWAS and structure. While a
contaminated surface of the structure during the bonding process will lead to deficiencies of
the bonding quality and debonding effects right from the beginning, fatigue of the bonding
layer, e.g., under bending moments, might also lead to a debonding of the PWAS from the
structure. The latter has a defined orientation of the fault, while a contamination might be local
or evenly distributed over the bonding area. Figure 6 shows the maxima of the out-of-plane
component of the velocity field of a perfectly bonded transducer compared to the fields,
generated by two PWAS, which were bonded on an aluminum plate, being contaminated with
wax before bonding.

The out-of-plane velocity has been measured on the structure, from the back-site of the plate
using a Laser Doppler Vibrometer CLV1000 with CLV700 head. The generated wave field of
the debonded transducers is far from being symmetric and the generated amplitudes are
smaller, compared to the perfectly attached transducer.

The debonding due to bending has been modeled by partial bonding of a PWAS to an
aluminum plate. Figure 7 shows the out-of-plane velocity, measured at the surface of the
PWAS itself and from the back-site. A vibration of the debonded section is visible in
Figure 7a. This energy is stored and transferred to the structure with a delay. The amplitude
on the back is decreased in the debonded area.

The partial debonding also changes the frequency characteristic of a bonded PWAS. It has been
shown that with some frequencies used as input frequency, the amplitudes, measured at a
distance of 20 mm to the PWAS center, are larger for the debonded case; see Figure 8.

The debonding also leads to a changed EMI spectrum, the effects depend on the severity of
debonding. Figure 9 shows the effect of a 20% debonded surface, with four different orienta-
tions of the debonded area, relative to the wrap-around electrode.

Figure 6. Maximum values of the out-of-plane velocity time signal, generated by the PWAS and transferred to the
structure, measured by a laser vibrometer at the back of the structure, (a) perfectly attached PWAS, (b), (c) two PWAS
attached on a plate with wax-contaminated surface.
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Figure 8. Maximum out-of-plane velocity at different angles for 30 kHz, 100 kHz and 170 kHz, measured at 20 mm
distance, (a) for the fully bonded PWAS, (b) for the partially debonded PWAS.

Figure 9. Effects of 20% debonded area on the susceptance spectrum. Four completely bonded PWAS are compared with
four partially debonded PWAS. The orientation of the bonding relative to the wrap-around electrode has been changed.

Figure 7. Out-of-plane velocity of a debonded PWAS, (a) measured at the top surface of the PWAS after the decay of the
input signal, the radius of the circular measurement area is 4 mm, (b) measured at the back of the plate, themaxima of out-of-
plane velocity are plotted, the dotted circle marks the PWAS location, the radius of the circular measurement area is 8 mm.
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4. Methods of transducer inspection

To achieve an increased reliability of SHM systems, a check of the systems’ piezoelectric trans-
ducers and a good knowledge about the component itself is necessary. Refs. [24–28] pay
attention to durability and long-term integrity as well as investigations on typical damage
patterns. These investigations include stereomicroscopy [26], monitoring a possible change of
the slope of electric charge over strain [26–28] and near-field scanning interferometry [24].
These methods are useful under laboratory conditions but cannot be transferred to the inspec-
tion of transducers during their employment and operation.

In [29], a method of transducer inspection based on a time reversal index, a symmetry index
and a Lamb wave energy ratio index is suggested. Herein, the capacitance is used as a first
indicator to finally separate structural damage, changes of environmental conditions and
PWAS faults. The systems are partially based on analytical and hardware redundancy.

Using a second, independent measurement quantity, the EMI spectrum was discussed as a side
issue in [30, 31] and later is focused in [32, 33]. They concentrate on the susceptance slope,
which is increased by debonding and decreased if the PWAS breaks. As it can be seen in
Figure 4, this is possible for some fault types and severe damages but does not detect, e.g.,
minor cracks and central debonding [34]. Further work in this regard can be found in [29, 35–39].
Using more information like the resonance behavior included in the EMI-spectrum enables the
detection of minor PWAS faults and is especially valuable for the inspection of embedded trans-
ducers [40–42]. This is possible with the use of a physical model [4] or by utilizing purely data-
driven approaches [43]. A simplified measurement of the EMI spectrum suggested in [44] and
implemented, e.g., in [45] enables a quick measurement of the EMI spectrum with the same
equipment as used for AU-based SHM systems. Based on the results of a PWAS inspection
system, in [46, 47], signal correction factors are suggested to enable the exploitation of the signals
in case of minor damage.

Within this section, the most used and elevated methods of transducer inspection based on the
EMI spectrum, resp. the susceptance spectrum, are described. They are categorized into data-
based and model-based methods. If a method allows to waive the explicit use of the tempera-
ture information for temperature compensation, this will be highlighted.

4.1. Model-based methods

For the inspection of PWAS with model-based methods, the analytical model, introduced in
Section 2 can be used. The idea is to adapt the model to the experimental data via fitting of the
parameters. The fitted parameter vector is used to separate the healthy state. Using principal
component analysis (PCA), they can be aggregated to a damage index DImodel. For details, the
reader is referred to [4, 42].

An advantage of this method is the nonnecessity to include temperature information for the
test in application, also if the influence of environmental conditions should be compensated.
Nevertheless, during training, temperature information is necessary.

Structural Health Monitoring from Sensing to Processing12

As already shown in Eqs. (7-17), the model itself includes a bunch of parameters. Although
most of them cannot be changed due to damage (e.g., nominal radius of the PWAS), these
parameters will have some variations resulting from different batches, different bonding pro-
cedures, and so on. Therefore, the model needs to be adapted to the experimental baseline first.
With this updated model, the model-based transducer inspection procedure can start.

The major disadvantage of this procedure is the high correlation of the different parameters on
the influence on the susceptance spectrum. The adaptation of the parameters is based on
optimization procedures, which do not necessarily result in physically meaningful parameters.
Moreover, the user needs to know a multitude of parameters about the applied PWAS before
being able to use this method.

4.2. Data-based methods

The avail of the EMI spectrum started from using the susceptance slope coefficient SC as the
damage indicator [33, 37, 39]. As the capacitance is a linear factor for the susceptance, it can be
seen as an advanced alternative to solely measure the PWAS capacitance. It is measured in a
frequency range up to a small share of the eigenfrequency, which interrupts the constant slope.
Although it has been shown that not all faults can be detected with this method, it is a simple
method, which can be applied easily, andwhich detects severe damages like fracture of the PWAS.

The employment of more information from the susceptance spectrum than only using the
slope is also possible with data-based methods. In [48], 12 parameters, which can be extracted
from the susceptance spectrum, have been listed. After extraction from the spectrum, they are
used for PCA. The first principal component (PC) can be taken as damage indicator for
degradation and breakage. While data-based models in general are less numerically expensive
than model-based methods, one difficulty of this method is to extract the parameters,
depending on the data quality.

The inclusion of more information of the spectrum is also possible by using the correlation
coefficient and subtracting its absolute value from 1 to achieve a damage index. This way, no
additional extraction of features is necessary.

DICC ¼ 1� CCj j with CC ¼ V12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V11V22

p , (18)

Vkl being the entries within the covariance matrix V. The correlation coefficient CC is 1 for two
susceptance spectra, which only differ by a proportional change This way, the slope is an
insensitive parameter for this method. Nevertheless, PWAS faults change the characteristic
shape of the spectrum at resonance also for small faults. This is focused, when using the
damage index based on the correlation coefficient DICC.

4.3. Transducer inspection in the context of the whole SHM system reliability

The quality of the inspection methods has to be assured not only by checking if specific
damaged can be found; Moreover, the combination of SHM system and transducer inspection

Failure Assessment of Piezoelectric Actuators and Sensors for Increased Reliability of SHM Systems
http://dx.doi.org/10.5772/intechopen.77298

13



4. Methods of transducer inspection

To achieve an increased reliability of SHM systems, a check of the systems’ piezoelectric trans-
ducers and a good knowledge about the component itself is necessary. Refs. [24–28] pay
attention to durability and long-term integrity as well as investigations on typical damage
patterns. These investigations include stereomicroscopy [26], monitoring a possible change of
the slope of electric charge over strain [26–28] and near-field scanning interferometry [24].
These methods are useful under laboratory conditions but cannot be transferred to the inspec-
tion of transducers during their employment and operation.

In [29], a method of transducer inspection based on a time reversal index, a symmetry index
and a Lamb wave energy ratio index is suggested. Herein, the capacitance is used as a first
indicator to finally separate structural damage, changes of environmental conditions and
PWAS faults. The systems are partially based on analytical and hardware redundancy.

Using a second, independent measurement quantity, the EMI spectrum was discussed as a side
issue in [30, 31] and later is focused in [32, 33]. They concentrate on the susceptance slope,
which is increased by debonding and decreased if the PWAS breaks. As it can be seen in
Figure 4, this is possible for some fault types and severe damages but does not detect, e.g.,
minor cracks and central debonding [34]. Further work in this regard can be found in [29, 35–39].
Using more information like the resonance behavior included in the EMI-spectrum enables the
detection of minor PWAS faults and is especially valuable for the inspection of embedded trans-
ducers [40–42]. This is possible with the use of a physical model [4] or by utilizing purely data-
driven approaches [43]. A simplified measurement of the EMI spectrum suggested in [44] and
implemented, e.g., in [45] enables a quick measurement of the EMI spectrum with the same
equipment as used for AU-based SHM systems. Based on the results of a PWAS inspection
system, in [46, 47], signal correction factors are suggested to enable the exploitation of the signals
in case of minor damage.

Within this section, the most used and elevated methods of transducer inspection based on the
EMI spectrum, resp. the susceptance spectrum, are described. They are categorized into data-
based and model-based methods. If a method allows to waive the explicit use of the tempera-
ture information for temperature compensation, this will be highlighted.

4.1. Model-based methods

For the inspection of PWAS with model-based methods, the analytical model, introduced in
Section 2 can be used. The idea is to adapt the model to the experimental data via fitting of the
parameters. The fitted parameter vector is used to separate the healthy state. Using principal
component analysis (PCA), they can be aggregated to a damage index DImodel. For details, the
reader is referred to [4, 42].

An advantage of this method is the nonnecessity to include temperature information for the
test in application, also if the influence of environmental conditions should be compensated.
Nevertheless, during training, temperature information is necessary.

Structural Health Monitoring from Sensing to Processing12

As already shown in Eqs. (7-17), the model itself includes a bunch of parameters. Although
most of them cannot be changed due to damage (e.g., nominal radius of the PWAS), these
parameters will have some variations resulting from different batches, different bonding pro-
cedures, and so on. Therefore, the model needs to be adapted to the experimental baseline first.
With this updated model, the model-based transducer inspection procedure can start.

The major disadvantage of this procedure is the high correlation of the different parameters on
the influence on the susceptance spectrum. The adaptation of the parameters is based on
optimization procedures, which do not necessarily result in physically meaningful parameters.
Moreover, the user needs to know a multitude of parameters about the applied PWAS before
being able to use this method.

4.2. Data-based methods

The avail of the EMI spectrum started from using the susceptance slope coefficient SC as the
damage indicator [33, 37, 39]. As the capacitance is a linear factor for the susceptance, it can be
seen as an advanced alternative to solely measure the PWAS capacitance. It is measured in a
frequency range up to a small share of the eigenfrequency, which interrupts the constant slope.
Although it has been shown that not all faults can be detected with this method, it is a simple
method, which can be applied easily, andwhich detects severe damages like fracture of the PWAS.

The employment of more information from the susceptance spectrum than only using the
slope is also possible with data-based methods. In [48], 12 parameters, which can be extracted
from the susceptance spectrum, have been listed. After extraction from the spectrum, they are
used for PCA. The first principal component (PC) can be taken as damage indicator for
degradation and breakage. While data-based models in general are less numerically expensive
than model-based methods, one difficulty of this method is to extract the parameters,
depending on the data quality.

The inclusion of more information of the spectrum is also possible by using the correlation
coefficient and subtracting its absolute value from 1 to achieve a damage index. This way, no
additional extraction of features is necessary.

DICC ¼ 1� CCj j with CC ¼ V12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V11V22

p , (18)

Vkl being the entries within the covariance matrix V. The correlation coefficient CC is 1 for two
susceptance spectra, which only differ by a proportional change This way, the slope is an
insensitive parameter for this method. Nevertheless, PWAS faults change the characteristic
shape of the spectrum at resonance also for small faults. This is focused, when using the
damage index based on the correlation coefficient DICC.

4.3. Transducer inspection in the context of the whole SHM system reliability

The quality of the inspection methods has to be assured not only by checking if specific
damaged can be found; Moreover, the combination of SHM system and transducer inspection

Failure Assessment of Piezoelectric Actuators and Sensors for Increased Reliability of SHM Systems
http://dx.doi.org/10.5772/intechopen.77298

13



needs to be checked. This is especially the case as most operators of SHM systems are not able to
define specific types of transducer defects and its sizes to assess the quality of performance of a
transducer inspection method. It therefore has to be ensured that the transducer inspection will
find a faulty PWAS, before the signal deterioration will lead to a changed output of the SHM
system. The authors emphasize that it is necessary to consider the algorithm of the SHM system
as well as the PWAS inspection method to assess its performance. This way it is also possible to
reconsider if data of a degraded transducer might still be used or has to be neglected.

A possible approach for this is described in [49, 42] and suggests using statistical methods,
based on the probability of detection (POD) approach: it enables increased knowledge of the
combination of transducer inspection and SHM system, including the value, which the struc-
tural damage detection indicator reaches, before a defective transducer can be detected with a
probability of 90% at a confidence level of 95% (SDI_90|95). A complete reliability analysis
needs to incorporate the interaction of SHM system and transducer inspection system.

5. Application scenarios

In this section, several application scenarios, including a comparison of different methods of
transducer inspection, as described in Sections 4.1 and 4.2, are presented. Moreover, the results
of these methods have to be evaluated taking into account the effects of the different defects of
the results of the SHM system, which is implemented, as discussed in Section 4.3.

5.1. Detection of cracks in and debonding of transducers

To detect cracks and debondings, two data-based methods are compared in the following appli-
cation scenarios. The most proposed method to inspect piezoelectric transducers is the monitor-
ing of the susceptance slope. This is compared with the correlation coefficient-based method.

Cracks in an embedded transducer, bonded in central position on a CFRP strip, have been
caused by four-point-bending of the strip (see Figure 10a) left down. First cracks started on
reaching a strain level of 0.5%.

The EMI spectrum was always measured at unloaded condition after deforming the specimen
at the following strain levels: 0.15, 0.3, 0.45, 0.5, 0.6, and 0.7%. Figure 10b shows that the
multiple cracks of the embedded transducer after 0.7% strain led to a slight decrease of the
susceptance slope, while the first two fault levels exhibit similar behavior like the undamaged
states. For the correlation coefficient-based method, all three stages of fault can be clearly
identified and separated from the undamaged state (see Figure 10c). For detailed information
about the experimental setup, see [43, 42].

The debonding scenario is achieved by preventing the contact between adhesive and PWAS at
approximately 20% of the surface area. This area was covered with Teflon tape during the
process of gluing. Four different orientations of the debonded area relative to the wrap-around
electrode have been tested (Figure 11).

Structural Health Monitoring from Sensing to Processing14

As this procedure makes it difficult to have a baseline measurement of each sensor, four fully
bonded transducers are used as a baseline. For all eight transducers, the EMI spectrum has
been recorded five times within an interval of 10 m. Figure 12 shows the resulting damage
indices.

Figure 10. (a) Experimental setup with a four-point-bending test and micrographs of the three different crack states of an
embedded DuraAct transducer caused by different strain levels (0.5, 0.6 and 0.7%), (b) slope coefficient SC of the
impedance spectrum, (c) correlation coefficient-based damage index DICC , evaluated for measurements of four uncracked
and three cracked states.

Figure 11. Debonding scenario and orientation of debonded area relative to the wrap-around electrode.

Figure 12. (a) Slope coefficient SC, (b) correlation coefficient-based damage indicator DICC for four fully bonded and four
partially debonded transducers.
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While the slope coefficient values are not normalized with a reference value, the reference for
the correlation coefficient-based method is the first measurement of the first transducer. Using
the slope coefficient, the difference between debonded and healthy state is small, especially for
the debonding beneath the wrap-around electrode. For the correlation coefficient-based
method, the debonding can be clearly separated from the fully bonded state. Moreover, the
variation between the measurements of the same state is higher for the slope coefficient.

An analysis of the resulting wave propagation for these debonded PWAS can be found in [50].
For detailed information about the experimental setup and other debonding levels, see [42].

5.2. Inspection of transducers after system setup

The difficulty of transducer inspection after system setup is the absence of a proper reference.
In many cases, this can be overcome with the help of a model-based approach. Nevertheless, in
this application, a whole batch of transducers as a reference within the batch is used. Building
the mean correlation coefficient for all combinations of all transducers, except a single one, and
subtracting the mean correlation coefficient of all transducers with the single one from this
value, this can be used as an indicator for the similarity of the single one with the whole batch.
Another procedure without using a reference is described in [37], the use of correlation blocks
is suggested in [14].

In this application, 16 transducers have been mounted on a plate structure. The plate has been
contaminated with wax at two positions so that PWAS 12 and 16 are insufficiently bonded.
Using the correlation coefficients of all combinations, the two contaminated PWAS could be
clearly identified, see Figure 13, showing significantly higher indicator values than the rest of
the sensors.

5.3. Inspection of transducers under changing temperature conditions

The influence of environmental and operational conditions is known to be nonnegligible for
the automated continuous monitoring of structures in general. The effect on the inspection of
piezoelectric transducers using the EMI spectrum therefore needs to be considered. In this

Figure 13. Damage indices, based on the comparison of correlation coefficients for all 16 PWAS after system setup. PWAS
12 and 16 are insufficiently bonded due to contamination with wax.
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application scenario, a model-based and a purely data-based method are used for the detection
of degradation faults within a temperature range of 20–85�C.

As defect, a degradation of the adhesive as well as of the piezoelectric material was introduced
to a PWAS by heat exposure for 32 h at 130�C. Fourteen measurements, equally distributed
over the whole temperature range, have been used as reference data for the data-based
approach to train the model for the model-based approach. Twenty-six measurements distrib-
uted over the whole temperature range are used as test data and 42 measurements over the
whole temperature range have been recorded after degradation took place.

Figure 14 shows the results for the model- and data-based methods in (b) and (c) as well as the
temperature present during the specific EMI measurement in (a).

Both methods clearly distinguish between the degraded and the healthy state. The results
show that the model fits best for medium temperatures, although the whole temperature range
was used for training. The model-based approach allows to waive the explicit use of the

Figure 14. (a) Temperature, (b) DImodel and (c) DICC for several measurements of a single transducer before and after
degradation of adhesive and piezoelectric material.
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temperature information after the training is completed. The data-based approach employing
the correlation coefficient needs the temperature information to select the correct baseline. For
more information on the experimental setup and the estimated model parameters, see [4], on
the data-based method, see [42].

6. Conclusion

Piezoelectric transducers are used within several SHM systems for a multitude of applications.
For the system reliability, the proper functionality of the permanently installed transducers
must be secured. This chapter proposes a system self-check, similar to other measurement
equipment. For its realization, a detailed analysis of possible fault types and their effects on
the generated wave field and the EMI spectrum is necessary. Moreover, it is tremendously
important to incorporate the effects of possible PWAS faults on the SHM system to know if a
faulty transducer will be identified before it will have an influence on the SHM system output
and a false alarm will be produced. To enable the reader to increase the reliability of SHM
systems, within this chapter several methods for transducer inspection have been presented.
Their usage was demonstrated for different applications, showing disadvantages and advan-
tages of the different methods. While model-based methods are linked to the necessity of an
expert knowledge about the transducer and its bonding conditions, data-based approaches,
using the correlation coefficient, need a temperature measurement to incorporate temperature
changes. Especially for small cracks without spalling, using more aspects of the EMI than just
the susceptance slope is advantageous.
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Abstract

Elastic wave, which is formed due to sudden rearrangement of stresses in a material, is 
called acoustic emission (AE). It is widely used in nondestructive testing (NDT) of materials 
and structures especially in health monitoring of structures for damage detection. When a 
body is subjected to an external force (in the form of changing pressure, load, or tempera-
ture), any micro fracture inside the body releases energy in the form of AE wave, which is 
received by sensor and later on is converted to electrical signal for inspection. In early stage, 
major importance was given on studying the AE characteristics during the deformation 
and fracture on various materials (by J. Kaiser in Germany in 1950 and B. H. Schofield in 
the USA in 1954). Nowadays, lots of research are conducting on formulating the theories 
behind AE formation, propagation, and inspection in various fields as an important health 
monitoring tool for NDT. In this chapter, I would like to elaborate a “feature outlook of AE” 
based on past, present, and future perspectives; “AE monitoring” procedure based on theo-
retical and experimental perspectives; and smart applications in structural health monitor-
ing based on industrial and biostructural perspectives with related figures and tables.

Keywords: structural health monitoring, nondestructive testing, acoustic emission 
technique, industrial applications, biomedical engineering application

1. Introduction

Structural health monitoring (SHM) refers to the theme of damage detection, evaluation, and 
characterization strategy of an engineering structure through time ranging feature extrac-
tion by sensors. Analytical and statistical representations, periodic forms in most cases, of 
damage-sensitive features of the structure focus on the monitoring system about the present 
status of structural health condition.
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1.1. Acoustic emission (AE) in SHM

Many conventional techniques are proposed by many engineers and scientists for health monitor-
ing of structures, and maximum of them is nondestructive testing (NDT) type methods. Again, in 
many NDT systems, testing loadings are applied before or after the testing and are widely used 
as an active method, where signals or energy is delivered from the outside to the testing body. 
Contrary to active NDT, acoustic emission is widely used as passive NDT method in structural 
health monitoring, where external energy is not needed to supply the testing structure. The stim-
ulated internal energy of the structure is received in this acoustic emission technique as health 
monitoring features. Due to this unique characteristic, acoustic emission technique has become 
very simple; however, accuracy or acquisition sensitivity is very high. Therefore, acoustic emis-
sion technique is becoming popular day by day in all types of structural monitoring fields [1–4].

A dominating attribute of acoustic emission technique is its application ability in its loading 
condition. Therefore, it provides instant damage information within a short period of time. 
Thus, acoustic emission monitoring tests are often performed in the operating conditions of the 
structure. As a result, adequate damage information even in minute state triggers the acoustic 
emission technique as a valuable health monitoring method. Dynamic characterization of any 
structural damage has become advantageous in this unique monitoring system. Furthermore, 
since acoustic emission technique is applied in dynamic feature, early stage of any damage 
can be characterized in this technique. Therefore, easy and adequate measures against any 
matured fracture or damage can be adopted in the presented fault detection technique [5–8].

Among many important features of acoustic emission technique, source location ability 
of involved damage inside the material attracts people in application of this technique as 
well. Following the traveling information of AE hits and applying to preferable algorithms, 
source location of AE event is performed. Based on the availability of sensors, dimension of  
source location is defined. For example, if two AE sensors are available, a single degree of source  
location is applicable; if three sensors are available, two-dimensional source location is appli-
cable; if four or more sensors are available, three-dimensional source location is applicable. 
Since signal velocity influences the source location very much, velocity modes greatly affect 
the source location technique as well [9–12].

Present acoustic emission technique can quantify qualitative measure of the defects of a 
structure. For getting quantitative information of the damage, it often prefers to get supports 
of ultrasonic testing method. However, ultrasonic technique is necessary to apply in static 
condition, which is contradictory to the basic principle of acoustic emission. Therefore, pre- or 
postquantitative diagnosis is suitable for getting damage sizing inside the structure [13].

In addition to many advantages of AE applications in nondestructive testing environment, 
entire structural damage evaluation can be obtained under whole loading conditions by sin-
gle or several sensors only. No replacement or cleaning of sensor placements is necessary for 
that purpose. Furthermore, a noisy environment except structural vibrations, and so on, does 
not influence to the data acquisition system too much. Therefore, acoustic emission technique 
in structural health monitoring system is widely applied as a preferable nondestructive tool 
in various fields of industrial to biomedical engineering fields.
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1.2. Onward features and prospective of present topic

According to the strategy of the present writing, acoustic emission technique will be elabo-
rated perspective to its historical criteria in structural health monitoring statistics. Following 
to its historical elongation, theoretical and experimental applications will be strategically 
approached. Afterward, some classical applications will be discussed before an elaborate dis-
cussion and conclusions of the technique to the structural health monitoring system.

2. Fundamentals of AE technique to SHM applications

2.1. History of AE

Historically, the application of AE to structural health monitoring is not so new; however, the 
challenges of this monitoring strategy are still facing and progressing on time. Technologically, 
AE was investigated in the middle of twentieth century. In early stage, AE phenomena were 
realized in Germany by Forester [14] in transforming mechanical vibration into electrical volt-
age by electrodynamic transmitter-receiver system. They measured tiny voltage change due 
to resistance variations caused by martensite transformations in metallurgical experiments. 
However, AE experiments were officially founded by Kaiser [15] through the publication of 
his historical irreversibility theory, known as the “Kaiser effect” in 1950. The terminology 
“AE” was first in history published by Kaiser’s pioneering work “Acoustic Emission” in 1961. 
Later on, Obert, Schofield, Drouillard, Yokomichi, Ikeda, Matsuoka, and Kishinoue did enor-
mous efforts to apply AE in various fields until the end of twentieth century [16–20]. Thus, the 
application of AE became familiar as a well-known nondestructive tool to different fields in 
structural health monitoring applications.

2.2. AE technique

Acquisition of transient elastic wave generated due to the sudden change of material stress for 
any external stimulus locally or globally to the material generates acoustic emission waves. 
The generated waves propagate through the surface of the material, and therefore, acquisition 
of these elastic waves and conversion of these waves to electrical signals for visualization and 
analysis refer to the fundamentals of AE testing. In AE testing, a piezoelectric transducer, 
generally called as AE sensor, is placed on the surface of the material to be tested. The trans-
ducer responds to the dynamic motion generated by the elastic wave as mechanical motion 
and converts it to an electrical voltage signal, which is often called as AE signal. AE sensor is 
selected based on the operating frequency. Therefore, different types of AE sensors are com-
mercially available based on their applicable frequencies and sensitivities [21–23].

A fundamental AE testing system consists of a sensor (AE sensor), a preamplifier, main 
amplifier with appropriate filters, and data acquisition system along with display (oscillo-
scopes, personal computer with data acquisition software, and data transferring devices like 
AD conversion system). As AE signals are very small, it is boosted by preamplifier to gain at 
low signal-to-noise ratio. Later on, AE signals are amplified again and passed through band 
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1.1. Acoustic emission (AE) in SHM
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mercially available based on their applicable frequencies and sensitivities [21–23].

A fundamental AE testing system consists of a sensor (AE sensor), a preamplifier, main 
amplifier with appropriate filters, and data acquisition system along with display (oscillo-
scopes, personal computer with data acquisition software, and data transferring devices like 
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Figure 2. Common parametric features in an AE hit.

pass filters before storing to the mainframe of personal computer (PC) for analysis to any of 
desired features. The abovementioned AE technique is explained by the following schematic 
diagram as shown in Figure 1 [24–26].

2.3. Important AE parametric features

In AE testing, as shown in Figure 1, AE signals are received and visualized to the display of 
the acquisition device when AE sensor is attached to the material surface (object to be tested) 
by adhesives or tape and is excited by the generated stress wave at the material. AE waves are 
then saved to PC for further synthesis to characterize the damage inside the test object. Then, 
parametric features are widely used in analyzing or monitoring damage inside an object by 
AE NDT, as shown in Figure 2 [13, 27].

Figure 1. Fundamentals of AE technique.
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AE event: The time domain or frequency domain of acoustic emission signals represents para-
metric features due to the elastic wave generated inside the material. It is the total AE wave 
representation during the AE testing.

AE hit: It is represented as the AE signal from one channel and crosses the user-defined 
threshold. There can be multiple hits in an AE event or an AE test of multiple channels.

Maximum amplitude: Maximum amplitude (amplitude) is the greatest amplitude of an AE 
hit measured in voltage or in decibels (dB). AE signals with maximum amplitude below the 
user-defined threshold line are not recorded as AE signals.

Counts: Counts are referred to the numbers of pulses of an AE hit, which cross the user-
defined threshold value.

Rise time: Rise time is defined as the time span of an AE hit from its first threshold crossing 
amplitude to its maximum amplitude.

Duration: Duration is defined as the time span of an AE hit from its first threshold crossing 
amplitude to its last threshold crossing amplitude.

Energy: It is the area below the detection envelope within the duration of an AE hit.

Peak frequency: It is the frequency component (kHz) corresponding to the maximum ampli-
tude in an AE wave spectrum.

Average frequency: It is the average frequency in an AE hit. It is associated with duration and 
count and can be calculated from dividing “count” by “duration.” It can roughly represent 
the signal frequency (when AE waveform is not possible to record). It represents complete 
acoustic emission impact signal.

Center frequency: It is the frequency component (kHz) corresponding to the center of gravity 
in an AE wave spectrum.

Initial frequency: It indicates the initial condition of an AE spectrum. It is calculated from 
dividing “counts” until peak by “rise time.”

Reverberation frequency: It is calculated from the relation derived from total count to initial 
count divided by the relation derived from duration to rise time.

RA value: It is calculated from rise time divided by maximum amplitude (amplitude). It is the 
reciprocal of gradient in AE signal waveform and represents the type of cracks in the unit of ms/V.

2.4. AE sensors and data acquisition

In a practical AE experiment, generally piezoelectric sensor is widely used as AE sensor. It 
is normally a contact-type sensor consisted of piezoelectric element protected by hard metal 
housing and connected by an electric connector for transmitting the generated electric effects. 
The sensing system is based on the piezoelectric effect out of lead zirconate titanate (PZT). 
This type of sensor is relatively cheap and highly sensitive and converts the mechanical move-
ment to electrical voltage in AE experiments efficiently.
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Selection of an appropriate AE sensor depends on the demanded frequency in the experiment. As 
the propagation of elastic wave is heavily affected by the property of the propagation path and 
the propagation mechanism to the AE sensor, the frequency content of the propagating elastic 
wave plays a very important role in the selection of the suitable AE sensor in AE tests (Figure 3).

Appropriate sensors for AE testing to pressure vessels, storage tanks, heat exchangers, piping, 
reactors, aerial lift devices, nuclear power plants, and biomedical fields are well prepared based 
on their required frequency range. In general, based on the frequency range for AE tests, sen-
sors are classified accordingly as low-frequency range sensor (20–100 kHz), middle or standard 
range sensor (100–400 kHz), and high-frequency range sensor (~400 kHz). Different companies 
such as Physical Acoustic Corporation (PAC), Vallen Systeme Company, and so on produce 
their sensors regarding the type of commercial AE sensor with high sensitivity [25, 28–30].

3. AE source location

Source location plays a significant role in AE technique. It is an advantageous facility in AE 
technique when compared with many other NDTs. It makes the characterizing of damage 
propagation behavior and the overall damage monitoring system well understandable and 
well predictable.

It is already mentioned that many AE hits can be taken in one AE event by placing many AE 
sensors in AE testing. One channel (one AE sensor) can record one AE hit, and thus, multiple 
channels (multiple AE sensors) can record multiple AE hits. When AE sensors place at differ-
ent places at a suitable sensor to sensor distance (sometimes carefulness in signal wavelength 
is necessary) according to the desired inspection area, all AE hits are recorded by the system 
with different signal traveling times based on the different distances of sensors to the signal 
source. This traveling time is termed as “arrival time” in AE source location. Knowing the 
traveling time or arrival time of each hit from the signal acquisition system and multiplying 
it with the AE signal traveling velocity in that material, signal traveling distance from the 

Figure 3. A typical AE sensor with connecting cable.
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source to each AE sensor is calculated. For simplicity, wave velocity for a particular material 
is assumed constant in general AE source location technique. However, considering different 
geometric or traveling effects, like wave reflection due to material inhomogeneity, various 
wave modes (p-mode, s-mode, etc.) precise velocity calculation is necessary for improving 
the accuracy of AE source location technique. Based on the number of AE sensors connected 
to the acquisition system, several source location techniques have been developed already. 
Several AE source location techniques are discussed later.

3.1. Linear source location technique

A fundamental and very commonly used technique is the linear type of AE source location 
technique. At least two AE sensors (minimum required number of AE sensors in AE source 
location technique) are necessary in this technique. Linear type of structures such as bridge 
and pipe is used for measurements by this technique. This technique is very simple and easy 
to apply. It is also called as one degree AE source location technique [13].

In linear source location technique, two sensors are placed to an appropriate distance, and 
therefore, the time of arrivals from two sensors is collected. Based on the difference in signal 
arrival time, source location is defined. For example, if the source location is located at the 
middle point of two sensors, the difference between two arrival times is zero. Otherwise, 
the arrival time will be different. It is considered in this technique that shorter arrival time is  
the closer source to the receiving sensor. Thus, the source length is calculated by multiply-
ing the arrival time with wave traveling velocity. The schematic of a linear source location 
technique is shown in Figure 4, where AE source is mentioned by s. Similarly, s1, s2 and t1, t2 
indicate as the AE sensor 1, AE sensor 2 and time of arrival to sensor 1, time of arrival to sensor 
2, respectively. Furthermore, l, l2, and l1 indicate the distance between two sensors (s1, s2), axial 
distance of AE source to sensor 1, and axial distance between AE source and the midpoint (l/2) 
of two AE sensors, respectively.

The mathematical relations of the linear source location algorithm are explained as the fol-
lowing equations, where Δt indicates the time difference between two arrival times to sensor 
1 and sensor 2 and v indicates the AE wave velocity [31].

Figure 4. Schematic of linear source location technique.
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Selection of an appropriate AE sensor depends on the demanded frequency in the experiment. As 
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with different signal traveling times based on the different distances of sensors to the signal 
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source to each AE sensor is calculated. For simplicity, wave velocity for a particular material 
is assumed constant in general AE source location technique. However, considering different 
geometric or traveling effects, like wave reflection due to material inhomogeneity, various 
wave modes (p-mode, s-mode, etc.) precise velocity calculation is necessary for improving 
the accuracy of AE source location technique. Based on the number of AE sensors connected 
to the acquisition system, several source location techniques have been developed already. 
Several AE source location techniques are discussed later.

3.1. Linear source location technique

A fundamental and very commonly used technique is the linear type of AE source location 
technique. At least two AE sensors (minimum required number of AE sensors in AE source 
location technique) are necessary in this technique. Linear type of structures such as bridge 
and pipe is used for measurements by this technique. This technique is very simple and easy 
to apply. It is also called as one degree AE source location technique [13].

In linear source location technique, two sensors are placed to an appropriate distance, and 
therefore, the time of arrivals from two sensors is collected. Based on the difference in signal 
arrival time, source location is defined. For example, if the source location is located at the 
middle point of two sensors, the difference between two arrival times is zero. Otherwise, 
the arrival time will be different. It is considered in this technique that shorter arrival time is  
the closer source to the receiving sensor. Thus, the source length is calculated by multiply-
ing the arrival time with wave traveling velocity. The schematic of a linear source location 
technique is shown in Figure 4, where AE source is mentioned by s. Similarly, s1, s2 and t1, t2 
indicate as the AE sensor 1, AE sensor 2 and time of arrival to sensor 1, time of arrival to sensor 
2, respectively. Furthermore, l, l2, and l1 indicate the distance between two sensors (s1, s2), axial 
distance of AE source to sensor 1, and axial distance between AE source and the midpoint (l/2) 
of two AE sensors, respectively.

The mathematical relations of the linear source location algorithm are explained as the fol-
lowing equations, where Δt indicates the time difference between two arrival times to sensor 
1 and sensor 2 and v indicates the AE wave velocity [31].

Figure 4. Schematic of linear source location technique.
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   l  1   =   1 __ 2   ( t  1   −  t  2  )  . v =   1 __ 2   Δt . v  (1)

   l  2   =   1 __ 2   l −  l  1   =   1 __ 2   (l − Δt . v)   (2)

3.2. Two-dimensional source location technique

Planner or two-dimensional source location technique requires three or more AE sensors to be 
placed on a plane for identifying AE source. Three sensors generate three hyperbolae, which 
intersect each other on the monitoring plane at a common interceding point or cross-sectional 
point, and the point is termed as the AE source. Theoretically, three sensors are sufficient 
for identifying the source in two-dimensional technique; however, another extra sensor, 
which is called as reference sensor, improves the accuracy of the source location technique. 
Therefore, the placement of four sensors in a rectangular sensor array generates six sensor 
pairs. Calculating time of arrival from each sensor pair and correlating according to the fol-
lowing relations planner or two-dimensional AE source location are done.

The simple algorithm for calculating two-dimensional AE source location is based on the 
following relations [32].

   x  s   2  +  y  s   2  =  r  s   2   (3)

    (∆ x)   i   2  +   (∆ y)   i   2  =  r  i   2   (4)

    (∆ x)   j   2  +   (∆ y)   j   2  =  r  j   2   (5)

where  ∆ x =  x  
s
   –x  and  ∆ y =  y  

s
   –y , when x and y indicate the coordinates of sensor positions; how-

ever, for the source indication, the suffix s is used. However, s0 indicates the reference sensor. 
Furthermore, suffixes i and j indicate the general number of positioning and measuring sensors, 
respectively, for example, in Figure 5, si indicates for sensor 1, and sj indicates for sensor 2. 
Similarly, ri, rj, and rs indicate the distances from the corresponding sensors to source. Applying 
simple solutions of above Eqs. (3)–(5), the source distance, rs can be calculated as follows:

   r  s   =   1 __ 2   [  
 U  i   ______________   x  i   cos θ +  y  i   sin θ +  d  i  

  ]  =   1 __ 2   [  
 U  j   ______________   x  j   cos θ +  y  j   sin θ +  d  j  

  ]   (6)

In Eq. (6), Ui, Uj, di, and dj are defined as follow:

   U  i   =  x  i  2  +  y  i  2  −  d  i  2   (7)

    U  j   =  x  j  2  +  y  j  2  −  d  j  2   (8)

   d  i   =  r  i   −  r  s   = v ∙  ∆ t  io    (9)

   d  j   =  r  j   −  r  s   = v ∙  ∆ t  jo    (10)
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Similarly, the source angle ( θ ) can be calculated as follows:

  θ = ϕ + ψ  (11)

In Eq. (11), the parameters ϕ and ψ can be calculated by rearranging Eq. (6), and thus, the 
two-dimensional source location can be found.

Similarly, three-dimensional source location is also possible to calculate in AE source location 
technique by increasing the number of sensors. Many other modern source location tech-
niques are available [10, 13] and are still introducing to AE fields by AE researchers from all 
over the world.

4. Smart applications of AE technique

The application of acoustic emission for fault detection or condition monitoring in structural 
health monitoring (SHM) field is versatile. Since it is a noninvasive technique, it is widely 
applied in different fields of nondestructive testing (NDT), nondestructive evaluation (NDE), 
and nondestructive monitoring (NDM) for many engineering applications. Similar appli-
cation of AE in seismology is well known from its beginning of implementations. Further, 
recently, applications of AE in biomedical engineering field have attracted many scientists 
and engineers for its smart applications in condition monitoring as well. Several examples of 
AE applications are mentioned later.

4.1. Industrial applications in SHM

Out of many industrial applications of AE technique, several are mentioned as monitoring of 
pressure vessel, storage tank, structural materials, composites, concrete structure, steel structure, 
bridge, aircraft, gear, ceramics, ceramic components, and so on. In maximum cases of inspection, 

Figure 5. Geometrical representation of two-dimensional source location algorithm.
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3.2. Two-dimensional source location technique
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   x  s   2  +  y  s   2  =  r  s   2   (3)

    (∆ x)   i   2  +   (∆ y)   i   2  =  r  i   2   (4)

    (∆ x)   j   2  +   (∆ y)   j   2  =  r  j   2   (5)

where  ∆ x =  x  
s
   –x  and  ∆ y =  y  

s
   –y , when x and y indicate the coordinates of sensor positions; how-

ever, for the source indication, the suffix s is used. However, s0 indicates the reference sensor. 
Furthermore, suffixes i and j indicate the general number of positioning and measuring sensors, 
respectively, for example, in Figure 5, si indicates for sensor 1, and sj indicates for sensor 2. 
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   r  s   =   1 __ 2   [  
 U  i   ______________   x  i   cos θ +  y  i   sin θ +  d  i  

  ]  =   1 __ 2   [  
 U  j   ______________   x  j   cos θ +  y  j   sin θ +  d  j  

  ]   (6)

In Eq. (6), Ui, Uj, di, and dj are defined as follow:

   U  i   =  x  i  2  +  y  i  2  −  d  i  2   (7)

    U  j   =  x  j  2  +  y  j  2  −  d  j  2   (8)

   d  i   =  r  i   −  r  s   = v ∙  ∆ t  io    (9)

   d  j   =  r  j   −  r  s   = v ∙  ∆ t  jo    (10)
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Similarly, the source angle ( θ ) can be calculated as follows:

  θ = ϕ + ψ  (11)

In Eq. (11), the parameters ϕ and ψ can be calculated by rearranging Eq. (6), and thus, the 
two-dimensional source location can be found.

Similarly, three-dimensional source location is also possible to calculate in AE source location 
technique by increasing the number of sensors. Many other modern source location tech-
niques are available [10, 13] and are still introducing to AE fields by AE researchers from all 
over the world.

4. Smart applications of AE technique

The application of acoustic emission for fault detection or condition monitoring in structural 
health monitoring (SHM) field is versatile. Since it is a noninvasive technique, it is widely 
applied in different fields of nondestructive testing (NDT), nondestructive evaluation (NDE), 
and nondestructive monitoring (NDM) for many engineering applications. Similar appli-
cation of AE in seismology is well known from its beginning of implementations. Further, 
recently, applications of AE in biomedical engineering field have attracted many scientists 
and engineers for its smart applications in condition monitoring as well. Several examples of 
AE applications are mentioned later.

4.1. Industrial applications in SHM

Out of many industrial applications of AE technique, several are mentioned as monitoring of 
pressure vessel, storage tank, structural materials, composites, concrete structure, steel structure, 
bridge, aircraft, gear, ceramics, ceramic components, and so on. In maximum cases of inspection, 
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standard AE features are evaluated experimentally under satisfactory experimental environ-
ments to practical application and correlated with standard values. For example, pressure vessel 
or other high-pressure tanks are evaluated under cyclic loading pressure [8] up to lifetime num-
ber of loading. AE sensors are attached to the tank to be tested and connected to the data acquisi-
tion components such as preamplifier and filters, and finally, the digital acquisition system saves 
the data to the computer where the required AE parameters are evaluated for crack or damage 
evaluation. Multiple sensors are placed for evaluating the damage source as well. Pipe line or 
drill pipe fatigue damage is also evaluated frequently by AE technique. Although fatigue load-
ing is a complex mechanism in operation, however, it is defined by cycle number in all fatigue 
tests, and therefore, fatigue damage is normally evaluated based on crack propagation under 
certain range of applied cyclic loads. Based on application criteria, drill pipe is subjected to cyclic 
stress in tension, compression, torsion, and bending. Bending and rotation produce alternation 
between states of loading at a localized point, which is most concern to damage under fatigue 
loading. In drilling test rig monitoring, frequent fatigue failures are tested based on critical rotary 
speed, maximum tension load, notch fatigue load, etc. [33].

Most bridges are tested based on their welded joints and connections under the combinations 
of loading and loading environments. The general frequency of monitoring bridges is 2 years. 
Under visual inspection, the necessity of shutting down of its weight capacity is done when 
damage is found. However, in AE inspection, lane closer is not necessary as it monitors data 
continuously for real-time forecasting of any damage. Therefore, bridge monitoring by AE 
technique has increased as well [34].

Material testing by AE technique is also widely applicable. Structural materials, ductile mate-
rials, brittle materials, and many other materials including composite materials are tested to 
evaluate their cracking, breaking, and damaging characteristics for different industrial and 
biomedical applications. Furthermore, microstructural studies including metallurgical char-
acteristics of many materials are also tested by different smart AE tests.

Different aerospace structures are monitored by AE technique as well. Many sensors are pos-
sible to attach to different parts of aerospace structures easily, and therefore, damage monitor-
ing even in minute level and damage location in multidimensional features are performed 
by AE technique. In many smart AE techniques, real-time wireless monitoring is done by 
applying wireless AE sensing systems. For example, NASA installed AE sensor-based alert 
system on the inside of the space shuttle Discovery’s wing structure for avoiding the damage 
of its leading edge during the reentry to the Earth atmosphere [35].

4.1.1. AE parametric analysis

A material test result was conducted for showing the parametric analysis of AE technique 
[36]. The experiment was conducted for a cast iron specimen (ferrite) under tensile loading 
in an autograph tensile machine. Four AE sensors (R15α, Physical acoustics Ltd.), placed to 
the specimen for getting AE data due to crack damage, were connected to four preamplifiers 
and to a main amplifier with a gain of 40 dB. AE data were collected by a digital oscilloscope, 
and the collected data were analyzed for the characterization inside a personal computer. For 
avoiding noise, appropriate threshold values were used. All the recorded AE hits were saved, 
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and AE parametric features were calculated to represent the characteristics of crack propaga-
tion in a ferrite material under tensile loads. Applied tensile loads were simultaneously saved 
to the computer for evaluation as well. One experimental result showing AE parametric distri-
bution (amplitude distribution versus tensile loads compared to AE hits) is shown in Figure 6. 
In this experiment, according to the sensor positions, oscilloscope channels (CH in figure) were 
defined. Furthermore, sensors 2 and 3 were placed near to the crack initiation position; sensor 
1 was placed near to the loading chuck; sensor 4 was placed near to the specimen support-
ing chuck. Accordingly, sensor 2 (CH2) and sensor 3 (CH3) represented the maximum AE 
excited values in signal amplitude, whereas sensor 1 (CH1) showed the AE amplitude along 
with noise contamination from the loading chuck. Similarly, sensor 4 (CH4) represented the 
minimum value as it was the farthest from the cracking position and far from loading nose. 
Furthermore, amplitude excitation and distribution values of CH2 and CH3 showed that at the 
initiation of cracking, amplitude excitations were high due to the tensile cracking at its early 
stage of AE hits, and after that, as cracking took the shear loading, the amplitude values went 
down until it gained the maximum values at the fracture stage at their end stage of AE hits.

4.1.2. AE source location

An experiment of two-dimensional source location technique as explained in Section 3.2 was 
conducted on a steel plate with generated artificial AE source based on Hsu-Nielsen [31, 37] 
technique. The arrival time was calculated according to the first signal recognition in AE hit as 
shown in Figure 7. Three experiments were conducted with three sensor distances, where sensor-
to-sensor distance was kept constant among three sensors in each experiment. Accordingly, the 
source location represented by source distance (rs) and source angle (θ), as shown in Figure 4, 
was calculated. The results were compared with its actual measured data (known before for 
comparison) and found good agreement as well. The results are summarized in Table 1.

Figure 6. (a) Graphical representation of AE parametric distribution and (b) AE sensor positions in the specimen.
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4.2. AE applications in biomedical health monitoring

A successful history of AE technique in fault detection and condition monitoring encour-
ages research to apply it to biomedical engineering field as well. Since AE technique perfectly 
evaluates and monitors any discontinuity and internal damage of a structure, it is success-
fully applied in detecting the integrity condition of human bones and joints, particularly knee 
joints. As detailed functional assessment of knee joint includes to identify any irregularity 
among its internal anatomical structures, AE sensors are installed to the knee joint and inter-
nal damages are evaluated. A common knee disease, particularly of elderly people, is osteo-
arthritis. It causes due to the damage of internal cartilage of knee joint. This disease causes 
the disability of people, and therefore, its prevalence is predicted to increase as a result of 
aging people in an aging society. The damage of cartilage brings the raw bone-end in contact 
and causes several knee diseases. In the worst case of osteoarthritis, operation is needed to 
replace by artificial joint with mixed satisfaction of the patient. Application of AE technique 
in diagnosis of cartilage damage is interestingly applied as well.

Accordingly, experiments of AE technique for identifying the integrity of knee joint were 
conducted [38]. Four AE sensors were placed to the knee joint, and AE data (AE features) were 
collected as shown in Figure 8. AE parameters from the knee were collected under the dynamic 
loading condition of knee joint by several stand-sit-stand motions of participants. Both 

Figure 7. AE hit showing its initial recognition position of arrival signal.

Distance Actual, θ Experimental, θ′ Actual, rs Experimental, rs Error of rs (%) Error of θ (%)

200 90 89.42 0.1414 0.1424 0.69 0.64

250 90 89.67 0.1768 0.1775 0.41 0.37

300 90 89.68 0.2121 0.2130 0.41 0.36

Table 1. Results of AE two-dimensional source location.
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healthy participants and patients of knee osteoarthritic disease joined to the experiments. A  
sample result of AE amplitude distribution compared with AE hit is presented in Figure 7. 
Acquisition of AE data is perfectly specified in the figure. All channels received sufficient AE 
data for identifying the internal conditions of knee joint. Thus, experimental results showed 
that monitoring of knee condition is possible by applying the AE technique successfully to 
knee joint and to others.

5. Conclusions

A feature outlook of acoustic emission (AE) technique related to the structural health monitor-
ing has been presented in this chapter. A brief history and chronology of AE monitoring are 
discussed with adequate references. Basic understandings about AE technique, its experimen-
tal methodology, and applications are also summarized in this chapter. A list of frequently 
used AE parameters is also added here. Useful definitions of AE parameters are provided in 
this parametric list for understanding the theme of AE parametric analysis. Almost all of the 
structural health monitoring based on AE technique are conducted by the mentioned param-
eters. Three examples covering three important applications of AE technique are summarized 
at the end of the chapter. Two major wings of AE technique in structural health monitoring 
are AE parametric analysis and AE source location. Both of these applications are explained 
with appropriate examples along with experimental results in material damage and crack 
propagations. A smart application of AE technique in biomedical engineering field is also 
mentioned in this chapter as a promising scope of AE technique for the future versatile solu-
tions. Extension of this work can be found in the future publications as well. Thus, the chapter 
has made easier for wider and fruitful understanding of AE technique in structural health 
monitoring to all of its readers.

Figure 8. (a) Sample result of AE amplitude distribution for four sensors from the knee joint experiments and (b) schematic 
of knee joint from AE sensor data were collected.
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For complex objects, condition assessment is usually based on indirect symptoms related
to residual processes such as vibration, noise, heat generation, etc. The number of avail-
able symptoms is often large, and it is necessary to select those which are most represen-
tative (i.e., sensitive to condition parameters). Such selection may be based on singular
value decomposition (SVD). An alternative approach is proposed that employs informa-
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1. Introduction

Terms like condition assessment (which is basically equivalent to diagnosis) and prognosis are
commonly used in technical sciences and have been defined in several ways. For any given
class of diagnostic objects, there is a logical sequence of activities which may be summed up
including four consecutive stages [1, 2]:

• Measurement (acquisition of data that contain information on object condition)

• Qualitative diagnosis (or recognition-identification and localization of failures and
malfunctions)
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• Quantitative diagnosis (estimation of damage advancement)

• Prognosis (forecast for object operation in future)

In structural health monitoring and condition-based maintenance, the third and fourth steps
are of particular importance. Quantitative diagnosis is in fact an estimation of the current
object condition. Once this has been accomplished, a prognosis may follow, which basically
means remaining useful life (RUL) estimation on the basis of certain criteria. This is extremely
important for proper and safe operation and cost-effective maintenance of complex and critical
machinery.

Evolution of object condition may be described in terms of the hazard function [3, 4], which
typically takes the form of the bathtub curve (Figure 1). Initially hazard function decreases
with time; this may be interpreted as “running-in.” During normal operation period, hazard
function increase is so weak that it may be treated as constant. Finally, during the final stage of
the object service life, hazard function increases with time—in theory to infinity and in practice
until the highest acceptable value is attained. For a wide range of objects, reliability is well
described by three-parameter Weibull distribution. In such case, hazard function in its classic
form is given by [5, 6]

h θ;β;η;γ
� � ¼ β

η
θ� γ
η

� �β�1

, (1)

where θ denotes time and β, η, and γ are parameters; γ is the location parameter (set to zero if
θ = 0 corresponds to the beginning of object life—in such case, two-parameter distribution is
obtained); η denotes characteristic life; and β is the shape factor. Cases β < 1, β = 1, and β > 1
correspond to three consecutive periods shown in Figure 1.

Figure 1. Typical shape of the hazard function (bathtub curve).
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For many objects it is impracticable or inconvenient to describe condition evolution in terms of
the hazard function (or failure density). An alternative approach is based on the analysis of
energy transformation and dissipation mechanisms, which leads to the energy processor
model [1, 7]. This model implies that object condition is estimated in an indirect manner, from
measurable physical quantities referred to as diagnostic symptoms. Each symptom is related to
the power V(θ) of residual processes that accompany the principal process of energy transfor-
mation. In the simplest case, the ith symptom Si(θ) is given by

Si θð Þ ¼ Φ
V0

1� θ=θb

� �
(2)

where V0 = V(θ = 0) and Φ is the symptom operator and θb denotes time to breakdown.
Detailed description can be found in literature; several modifications have been proposed [1, 8],
but basic principles have remained unchanged. The Si(θ) given by Eq. (2) and referred to as
symptom life curve is a monotonically increasing function with a vertical asymptote at θ = θb. As
for the symptom operator, Weibull and Fréchet functions have been shown to give consistent
results; they yield Si(θ) in the forms of

Si θð Þ ¼ Si0 ln
1

1� θ=θb

� �1=γ

(3)

for the former and

Si θð Þ ¼ Si0 �lnθ=θbð Þ�1=γ (4)

for the latter; in both cases, Si0 = Si(θ = 0) and γ is the shape factor. For a given object, if sufficient
database is available, it is possible to estimate θb by relatively simple fitting procedure. This, in
turn, allows to estimate RUL. It has to be kept in mind that θb is obviously not equivalent to
RUL, unless the most primitive “run-to-breakdown” operational policy is employed.

Large and complex objects usually generate many diagnostic symptoms, and their number in
fact has no upper limit. It has to be kept in mind that values of these symptoms depend not
only on condition parameters. If all symptoms Si are expressed in the form of a vector S(θ),
then the following general relation holds [1, 9]:

S θð Þ ¼ F X θð Þ;R θð Þ;Z θð Þ½ �, (5)

where X, R, and Z denote vectors of condition parameters, control parameters, and interference,
respectively. Obviously individual symptoms differ in their sensitivity to the components of all
these vectors; it is thus necessary to select those which can be regarded “the best.” The problem
of selection was addressed at early stages of technical diagnostic development (see, e.g., [9]).
Initially, at the stage of qualitative diagnosis, the principal criterion was symptom sensitivity
to condition parameters. Quantitative diagnosis and prognosis imply a need to follow object
condition evolution with time; thus, the symptom which best represents this process should be
considered the most suitable one.
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This chapter is devoted mainly to symptom evaluation and selection methods based on the
analysis of information content measures. Some attention shall, however, also be paid to the
method employing the singular value decomposition, the first that has been used for this
purpose.

Suitability of symptom evaluation methods has been verified for a number of vibration-based
symptoms generated by steam turbines operated at utility power plants. Details on symptom
generation mechanisms may be found, e.g., in [1, 10, 11]. Absolute vibration velocity was
recorded in the form of 23% constant percentage bandwidth (CPB) spectra, at points located
at bearings and low-pressure turbine casings. Piezoelectric accelerometers were used with
magnetic mountings, which allows for a frequency range well above 10 kHz. This implies that
both “harmonic” (i.e., resulting directly from rotational motion) and “blade” (i.e., generated by
the fluid flow system) components are recorded. Vibration amplitudes in frequency bands
determined from turbine vibrodiagnostic models [1, 11] are the diagnostic symptoms to be
evaluated. It has to be stressed here that presented methods are valid for a broad class of
various diagnostic symptoms, irrespective of their physical origin.

2. Singular value decomposition

Singular value decomposition (SVD) is well known from linear algebra; concise description
can be found, e.g., in [12]. To the author’s best knowledge, the idea to employ this method in
technical diagnostics goes back to the late 1990s [13]. Application for vibration-based symp-
toms has shown this method to give consistent results [14].

The first step is to represent symptom value database in the form of an m � n matrix O, where
m denotes the number of symptoms and n is the number of symptom value readings. In
principle, symptoms of different physical origins are compared, so all are normalized with
respect to their values at θ = 0; moreover, 1 is subtracted from all normalized values, so they
start from zero and are dimensionless. In accordance with general SVD rules, matrix O can be
expressed as the following product:

O ¼ U∗Σ∗VT (6)

where U and V are orthogonal matrices (n � n and m � m, respectively) and Σ is a diagonal
m � n matrix, Σ = diag(σi). If σi components are arranged in the descending order, which is
conventionally accepted, the representation given by Eq. (6) is unique. Components σi corre-
spond to generalized faults, so that the sum given by

F θð Þ ¼
Xp

i¼1

σi θð Þ, (7)

where p = min(m, n) represents the total damage advancement or lifetime consumption degree.
Columns ofU andVmatrices are left-singular and right-singular vectors, denoted by ut and vt,
respectively, with 1 ≤ t ≤ n. Eq. (6) can thus be rewritten as
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O ¼
Xp

t¼1

σi∙ ut∗vtT
� �

(8)

According to [15] and following notation used herein, the tth fault can be described by two
discriminants, namely

SDt ¼ O∗vt ¼ σt∙ut (9)

ALt ¼ uT
t ∗O ¼ σt∙vTt (10)

This means that this fault can be expressed in terms of left-singular or right-singular vectors,
which are generally interpreted as “input” and “output” [13, 15]. In the case of system
condition evolution, “input” represents condition parameters and “output” represents symp-
toms. Obviously, the second discriminant, given by Eq. (10), is of practical use here, as condi-
tion parameters are typically nonmeasurable.

SVD analysis may be performed using one of available software packages. In practical appli-
cations the first step is to analyze individual singular values. For a comparatively new object,
the descent of consecutive singular values is rather slow; this means that dominant failure
mode has not yet appeared. On the other hand, with considerable lifetime consumption
degree, the first singular value dominates. Examples are shown in Figure 2. They refer to
vibration-based symptoms generated by steam turbine fluid flow systems. In both cases
illustrated in Figure 2, there are six such symptoms. For a turbine with a few dozen thousand
hours logged (Figure 2a), contributions of the first three singular values into generalized
damage are 36, 29, and 17%, respectively. For the second turbine (Figure 2b), which has logged
well over 200,000 hours, corresponding values are 48, 24.5, and 10%—the difference is clearly
seen. The second step is to calculate contributions of individual symptoms into several (e.g.,
three) first singular values. Corresponding graphs are shown in Figure 3. For the first turbine,

Figure 2. Contributions of singular values into generalized damage; (a) 260 MW unit, low-pressure turbine casing, rear
part left; (b) 200 MW unit, low-pressure turbine casing, front part right (see main text for details).
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dominant symptoms cannot be identified, although we may infer that symptom numbers 1
and 5 can be skipped. For the second turbine, however, dominance of symptom numbers 5 and
6 is clearly seen, and they may be judged most sensitive to the fluid flow system lifetime
consumption.

3. Information content measures

3.1. The idea

The abovementioned energy processor model is, by its very nature, deterministic. From Eq. (5),
however, it is clearly seen that symptom values depend not only on deterministic condition
parameters Xi(θ) but also on control parameters Ri(θ) and interferences Zi(θ), which are
random variables. Therefore, any symptom Si(θ) should in principle be treated as a random
variable with time-dependent parameters.

For a given object operated at a given location, it is reasonable to assume that Ri(θ) and Zi(θ)
are characterized by statistical distributions with time constant parameters. At the same time,
from Eq. (2) it is clearly seen that the influence of lifetime consumption θ/θb (or, more gener-
ally, of deterministic condition parameters) will increase as θ ! θb. This means that Si(θ) will
become more deterministic or, to put it in a different way, more predictable. As pointed out in
[16], this corresponds to information content decrease, in the sense of Shannon entropy [17].
Therefore, a symptom with the highest rate of an information content measure which
decreases with time is the one that is most sensitive to lifetime consumption mechanisms.

Investigations of information content and its measures were pioneered by Claude E. Shannon.
In his fundamental work [17], he introduced an information content measure H(p1, p2, …, pn),
later termed Shannon entropy, where pi is the probability of the ith event, and showed it to have
the following form:

Figure 3. Contributions of individual symptoms into the first three singular values: (a) as in Figure 2a and (b) as in
Figure 2b.
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H ¼ �K
Xn

i¼1

pilogbpi, (11)

where K is a constant depending on units used (irrelevant if only decrease rate is of interest).
Logarithm base b is typically set at 2, Euler constant, or 10, H being expressed in bits, nats, and
dits, respectively. Obviously

^
i

0 ≤ pi ≤ 1, (12)

Xn

i¼1

pi ¼ 1: (13)

Shannon entropy was originally introduced for verbal communication; hence, a discrete ran-
dom variable is involved. A diagnostic symptom in the sense of the energy processor model is
in general continuous, so a derivative of H known as continuous or differential entropy should be
used. It is given by (see, e.g., [18])

h ¼ �K
ð∞

�∞

p Sið Þlogbp Sið ÞdSi, (14)

where p(Si) is the probability density function. Despite formal similarity, Eq. (14) is not just a
limiting case of Eq. (11) for n ! ∞. Contrary to H, continuous entropy is not invariant under
change of variables [19]. Moreover, h can be negative, although a satisfactory physical expla-
nation of the negative information content is still lacking. From the practical point of view,
continuous entropy is very convenient, as for widely employed statistical distributions it is
given by relatively simple analytical expressions.

It may be added here that several other entropy types have been proposed, e.g., by Hartley
[20], Rényi [16], or Tsallis [21]. Their use, however, has been limited. Hartley entropy is a
specific case of the Shannon entropy, while Rényi entropy may be viewed by its generalization.
Both Rényi and Tsallis entropies involve certain adjustable parameters of rather unclear phys-
ical meanings, which are generally difficult to estimate.

For the purpose of condition symptom evaluation, the time window procedure may be
employed. A window containing sufficient number of Si(θ) readings is moved along the time
axis; for each position, statistical distribution parameters within it are determined, and in this
way the h(θ) curve is obtained. This in turn allows for estimation of the information content
measure (ICM) decrease rate. In practice this involves certain problems which shall be
discussed in the following section.

3.2. Shortcomings

3.2.1. Distribution type

Obviously, in order to employ the abovementioned procedure, symptom distribution type has
to be determined. In general, distributions of diagnostic symptom values are of the right-hand
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tailed type [1]. Weibull and gamma distributions are commonly used, with the probability
density functions given by

f W xð Þ ¼ k
λk x

k�1exp � xk

λk

� �
(15)

and

f G xð Þ ¼ xk�1exp � x
λ

� �

λkΓ kð Þ , (16)

respectively, where k is the shape factor, λ denotes the scale factor, and Γ is the gamma
function. It has been shown for a number of cases [1, 22, 23] that results obtained with these
two distributions are quantitatively similar. Moreover, although this might seem strange,
normal distribution given by

f N xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x� μ
� �2

2σ2

 !
(17)

(μ and σ denote mean value and standard deviation, respectively) yields very similar results;
this greatly simplifies calculations. Continuous entropy for these three distributions is given by
the following relations [24]:

hW xð Þ ¼ k� 1ð ÞγE

k
þ ln

λ
k
þ 1, (18)

hG xð Þ ¼ ln λΓ kð Þ þ 1� kð Þψ kð Þ þ k,ð (19)

hN xð Þ ¼ ln σ
ffiffiffiffiffiffiffiffi
2πe

p� �
, (20)

where γE is the Euler-Mascheroni constant and ψ(x) is the digamma function. An example of
comparison of results obtained with gamma, and Weibull and normal distributions is shown
in Figure 4.

3.2.2. Outliers

Diagnostic symptom time histories often exhibit a considerable number of outliers. According to
[25], “an outlying observation, or outlier, is one that appears to deviate markedly from other
members of the sample inwhich it occurs”; there is no generally accepted precise definition. From
the point of view of information theory, outliers are equivalent to noise. As with the definition,
there is no universal method for removing outliers. The “three-sigma rule,” which is often used
for this purpose, is not applicable to distributions with long right-hand tails [26]. Three-point
averaging [27] merely flattens outliers instead of removing them. The author has suggested a
procedure referred to as “peak trimming” [1], based on comparison of a data point with two
adjacent points. If for the Si(θk) symptom value reading one of the following criteria is met:
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Si θkð Þ
Si θk�1ð Þ > ch and

Si θkð Þ
Si θkþ1ð Þ > ch, (21)

Si θkð Þ
Si θk�1ð Þ < cl and

Si θkð Þ
Si θkþ1ð Þ < cl, (22)

then Si(θk) is considered as an outlier and replaced by the average of two adjacent readings.
Upper and lower thresholds, ch and cl, are adjusted experimentally and depend on the object.
In practice, situation described by Eq. (21) is much more frequent, mainly as a result of the
influence of control parameters and/or interference (cf. Eq. (5)). Very low symptom value
readings, as in Eq. (22), are usually caused by plain measurement errors. Effect of peak
trimming is illustrated in Figure 5.

3.2.3. Stationarity

Fitting continuous distributions to experimental symptom value histograms within the time
window limits require at least weak stationarity. This implies that for every symptom Si mean
value and autocovariance must not change with time. In view of the fact that Si(θ) has a
vertical asymptote at θb, this may be considered valid only for θ < < θb. As already mentioned,
it may be assumed that control and interference (Eq. (5)) are represented by stationary stochas-
tic processes. Therefore, Si(θ) may be viewed a trend stationary process, and, if the determin-
istic trend is removed, what is left is a stationary process [28]. In fact over a hundred years ago,
it was pointed out that, in time series analysis, a measure of deviation from trend and not from

Figure 4. Comparison of distribution fitting results (260 MW steam turbine, vibration component generated by high-
pressure fluid flow system—after [23], © JVE Journals).
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some “mean” or “average” should be taken into account [29]. In other words, trend normali-
zation should be performed prior to ICM analysis.

Trend may be determined by fitting a suitable function to experimental symptom time history.
Weibull and Fréchet functions may be used for this purpose; for low values of θ, exponential
function may be a good approximation. An obvious prerequisite is lack of abrupt (stepwise)
changes; this issue shall be discussed in detail in the following section. Once this is performed,
a procedure may be employed wherein each symptom value reading Si(θ) is replaced by trend-
normalized value given by [23]

S0i θð Þ ¼ Si θð Þ Sit 0ð Þ
Sit θð Þ , (23)

where subscript t denotes value determined from the estimated trend. An example of trend
normalization (Weibull function fitting) is shown in Figure 6.

Figure 5. Effect of peak trimming: raw (a) and peak-trimmed (b) symptom time histories. Data refer to the intermediate-
pressure turbine of a 260 MWunit.

Figure 6. An example of standard peak-trimmed (a) and trend-normalized (b) time histories; data refer to the high-
pressure turbine of a 230 MWunit.
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3.2.4. Abrupt changes

Complex and costly machines like, for example, power-generating units are usually designed
for long service life. During the period between commissioning and final withdrawal from use,
they are usually subject to various processes of maintenance, repair, and overhaul. Each of
them introduces changes of object properties, which influence both diagnostic symptom gen-
eration mechanisms and their propagation from origin to measurement points. So far, it has
been assumed (tacitly) that each Si(θ) function, or symptom life curve, is a superposition of a
monotonic and continuous trend Sit(θ) and random fluctuations. In general this is not the case.
Deterministic trend is in fact a sequence of symptom life curves, each being characterized by
some specific values of Si(0) and θb. Of course repair or overhaul is performed before the
breakdown, so of each curve is represented by a section of the length of θ0 < θb. This is shown
schematically in Figure 7.

Figure 7 clearly shows that, if fitting continuous function to experimental data is expected to
yield consistent results, abrupt changes should be eliminated. In principle this is relatively
simple. Each life cycle and hence each symptom life curve are characterized by the so-called
logistic vector [7], which describes its “quality.” This vector may be replaced by its scalar
measure L, which influences both Si(0) and θb. For a sequence such as shown in Figure 7, one
cycle is chosen as a reference; it may be convenient to use the one with the lowest initial value
for this purpose, but this is not mandatory. Its value for θ = 0 is taken as a reference Sr(0). Then,
for each other cycle, a normalizing factor Fi = Si(0)/Sr(0) is determined, and normalization is
obtained by simple multiplication of all symptom readings in this cycle by 1/Fi.

This idea may seem simple, but precise determination of the moment of transition from a
life cycle to the next one may be problematic. Sufficient operational documentation is not
always available, and transitions are often masked by random fluctuations. A method for their

Figure 7. Schematic representation of the symptom life curve sequence.

Evaluation of Diagnostic Symptoms for Object Condition Diagnosis and Prognosis
http://dx.doi.org/10.5772/intechopen.77264

49



some “mean” or “average” should be taken into account [29]. In other words, trend normali-
zation should be performed prior to ICM analysis.

Trend may be determined by fitting a suitable function to experimental symptom time history.
Weibull and Fréchet functions may be used for this purpose; for low values of θ, exponential
function may be a good approximation. An obvious prerequisite is lack of abrupt (stepwise)
changes; this issue shall be discussed in detail in the following section. Once this is performed,
a procedure may be employed wherein each symptom value reading Si(θ) is replaced by trend-
normalized value given by [23]

S0i θð Þ ¼ Si θð Þ Sit 0ð Þ
Sit θð Þ , (23)

where subscript t denotes value determined from the estimated trend. An example of trend
normalization (Weibull function fitting) is shown in Figure 6.

Figure 5. Effect of peak trimming: raw (a) and peak-trimmed (b) symptom time histories. Data refer to the intermediate-
pressure turbine of a 260 MWunit.

Figure 6. An example of standard peak-trimmed (a) and trend-normalized (b) time histories; data refer to the high-
pressure turbine of a 230 MWunit.

Structural Health Monitoring from Sensing to Processing48

3.2.4. Abrupt changes

Complex and costly machines like, for example, power-generating units are usually designed
for long service life. During the period between commissioning and final withdrawal from use,
they are usually subject to various processes of maintenance, repair, and overhaul. Each of
them introduces changes of object properties, which influence both diagnostic symptom gen-
eration mechanisms and their propagation from origin to measurement points. So far, it has
been assumed (tacitly) that each Si(θ) function, or symptom life curve, is a superposition of a
monotonic and continuous trend Sit(θ) and random fluctuations. In general this is not the case.
Deterministic trend is in fact a sequence of symptom life curves, each being characterized by
some specific values of Si(0) and θb. Of course repair or overhaul is performed before the
breakdown, so of each curve is represented by a section of the length of θ0 < θb. This is shown
schematically in Figure 7.

Figure 7 clearly shows that, if fitting continuous function to experimental data is expected to
yield consistent results, abrupt changes should be eliminated. In principle this is relatively
simple. Each life cycle and hence each symptom life curve are characterized by the so-called
logistic vector [7], which describes its “quality.” This vector may be replaced by its scalar
measure L, which influences both Si(0) and θb. For a sequence such as shown in Figure 7, one
cycle is chosen as a reference; it may be convenient to use the one with the lowest initial value
for this purpose, but this is not mandatory. Its value for θ = 0 is taken as a reference Sr(0). Then,
for each other cycle, a normalizing factor Fi = Si(0)/Sr(0) is determined, and normalization is
obtained by simple multiplication of all symptom readings in this cycle by 1/Fi.

This idea may seem simple, but precise determination of the moment of transition from a
life cycle to the next one may be problematic. Sufficient operational documentation is not
always available, and transitions are often masked by random fluctuations. A method for their

Figure 7. Schematic representation of the symptom life curve sequence.

Evaluation of Diagnostic Symptoms for Object Condition Diagnosis and Prognosis
http://dx.doi.org/10.5772/intechopen.77264

49



detection is thus necessary. Such method may be based on techniques originally developed for
statistical process control.

In the 1920s Walter A. Shewhart developed a tool for determining whether a process (e.g.,
manufacturing) is under control, known as the process control chart. If that was the case, no
modifications of process or control were needed; otherwise, an intervention was necessary, in
order to restore stable and controlled operation [30]. In 1954 E.S. Page proposed a more
sensitive process control chart, employing cumulative sum and consequently named CUSUM
[31]. His approach consisted in introducing a quantity originally referred to as a “quality
number,” developing an algorithm to estimate its changes and establishing a quantitative
criterion. In general this quality number is a statistical parameter. If this procedure is employed
for mean value, it can be used for detecting abrupt changes [32].

Let us assume that a variable x characterizes the process under consideration; its consecutive
readings are x1, x2, …, xN. Each sample 〈x1, …, xi〉 has a probability density function given by
pi(xi, φ); φ is a parameter which changes from φ0 to φ1 when an abrupt change occurs. The log-
likelihood ratio ci given by

ci ¼ ln
p xi; φ1

� �

p xi;φ0

� � (24)

defines the figure of merit. Cumulative sum Cm is then defined by

Cm ¼
Xm

i¼1

ci (25)

If φ is sample mean, then Cm time history can be used for abrupt change detection. If there is no
continuous trend, i.e., the process is stationary, Cm will fluctuate around zero and exhibit an
upward or downward drift when an abrupt increase or decrease, respectively, has occurred.
As already mentioned, in the case of a diagnostic symptom, there will always be such trend
which can be neglected only for θ < < θb. Thus, Cm does not fluctuate around zero, but exhibits
a continuous trend. An abrupt change, if sufficiently large, will then be indicated by a reversal
of the Cm(θ) trend. This method can be employed for detecting transitions between consecutive
life cycles. For normal distribution which, as noted earlier, is often a good approximation, Cm is
given by a simple expression:

Cm ¼
Xm

i¼1

xi � μ0

� �
, (26)

where μ0 denotes sample mean. It is easily understood by intuition that, in order to obtain a
reliable result, removal of outliers is mandatory [33]. Examples are shown in Figures 8 and 9.

3.2.5. Representativeness factor

It may be said, in a descriptive manner, that ICM is a measure of the degree of process organiza-
tion around a monotonically increasing trend. However, the rate of this increase should also be
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Figure 8. Example of CUSUMmethod application: normalized symptom (1) and cumulative sum (2) plotted against time.
Data refer to vibration generated by high-pressure fluid flow system of a 200 MW steam turbine.

Figure 9. Cumulative sum time history obtained without (solid line) and with (dotted line) outlier removing (after [33], ©
British Institute of Non-Destructive Testing).
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taken into account in symptom evaluation. Organization may take place around a weakly
increasing curve; such symptom is only weakly sensitive to object condition evolution and
as such is of little use, despite marked ICM decrease. A measure is thus required that would
combine both sensitivity to condition parameters and a degree of process organization [23, 33].
Such measure, termed representativeness factor R, is proposed in the following manner. Linear
approximation is used for continuous entropy:and Weibull approximation for normalized
symptom:

h θð Þ ≈ h θ ¼ 0ð Þ � A∙θ A > 0ð Þ (27)

si θð Þ ≈ ln
1

1� θ=θb

� �1=γ
; (28)

representativeness factor is then defined as

R ¼ A
γ
: (29)

Obviously, R should be positive: the larger the R, the more representative is the symptom
under consideration. Alternative approach may be adopted for Fréchet approximation; the
choice of either of these approximations does not influence qualitative results of symptom
assessment.

4. Examples

Measurement data for the first example were obtained with the intermediate-pressure turbine
of a 260 MW power-generating unit; the first measurement was performed shortly after
commissioning, and available data cover the period of almost 10 years. Vibration velocity was
recorded at the front and rear bearings, in three mutually perpendicular directions. Compo-
nents generated by turbine fluid flow system are contained in four 23% CPB bands, which give
24 available symptoms. Of these, as many as 13 symptoms have revealed no increasing trend;
this may be attributed to comparatively short period of operation, as evolution of the fluid
flow system condition is usually rather slow. For the remaining 11 symptoms, measured
values were normalized, and peak trimming was performed (Eqs. (21) and (22), with ch = 1.5
and cl = 0.7). It was followed by CUSUM analysis, which revealed an abrupt change at about
2200 days (see Figure 10). Normalization was thus performed according to the procedure
outlined in Section 3.2.4. Trend normalization was based on the Weibull function assumption.
Data processed in this manner were used for ICM analysis, with time window length of 25
points and normal distribution assumption (cf. Section 3.2.1).

Continuous entropy time histories are in some cases rather irregular, but nonetheless six of them
exhibit a decreasing trend; an example is shown in Figure 11. For these six cases, representative-
ness factor was calculated in accordance with Eq. (29). Results are shown in Table 1. It is easily
seen that the values of R vary within broad limits. Without doubt symptoms numbered 1 and 2
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Figure 10. Cumulative sum time history: 260 MWunit, front intermediate-pressure turbine bearing, axial direction, 4 kHz
band.

Figure 11. Examples of continuous entropy time histories: for symptoms 1 and 16, entropy is decreasing, while for
symptom 9, there is an increasing trend accompanied by large irregularities.
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taken into account in symptom evaluation. Organization may take place around a weakly
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h θð Þ ≈ h θ ¼ 0ð Þ � A∙θ A > 0ð Þ (27)

si θð Þ ≈ ln
1

1� θ=θb

� �1=γ
; (28)

representativeness factor is then defined as

R ¼ A
γ
: (29)
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are the most representative ones. Symptoms 16, 18, and 24 are certainly inferior, while represen-
tativeness of symptom 5 is weak. In this manner, symptoms may be identified that are most
suitable for fluid flow system condition assessment.

Figure 12 shows contributions of all 11 symptoms that exhibit an increasing trend into the first
three singular values. It may be noted that results are basically consistent with those shown in
Table 1. The main differences are:

Symptom number Symptom description (kHz) Value of γ Entropy decrease rate Representativeness factor

1 FB-V 3.15 11.24 0.960 85.44 � 10�3

2 FB-V 4 10.64 0.905 85.07 � 10�3

5 FB-H 3.15 500.0 0.010 0.02 � 10�3

16 RB-V 6.3 52.63 0.775 14.73 � 10�3

18 RB-H 4 52.63 0.497 9.44 � 10�3

24 RB-A 6.3 55.56 0.637 11.47 � 10�3

FB and RB denote the front and rear bearings, respectively; V, H, and A correspond to measurement directions (vertical,
horizontal, and radial) (260 MW unit, intermediate-pressure turbine).

Table 1. Results of calculations for six symptoms; γ is dimensionless, and entropy decrease rate and representativeness
factor are given in arbitrary units.

Figure 12. Contributions of individual symptoms into the first three singular values (260 MWunit, intermediate-pressure
turbine (only symptoms that reveal an increasing trend have been included)).
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• Comparatively high contributions of symptom number 5, which has a low representative-
ness factor

• Better result for symptom number 18

• Comparatively high contributions of symptom number 9, which is absent in Table 1 (lack
of entropy decreasing trend)

Before commenting on these findings, a second example will follow, this time for a compara-
tively old 200 MW unit with over 200,000 hours logged; available database covers over
16 years. Fluid flow system of the high-pressure turbine generates vibration components that
are contained in ten 23% CPB frequency bands. Given two bearings and three directions, this
means that as many as 60 symptoms have to be analyzed. In order to simplify the picture, a
two-stage procedure was employed [33]. First, for every measurement point and direction, two
dominant symptoms were selected using the SVD approach. Twelve symptoms selected in this
manner were then analyzed with both SVD and ICM methods. Results are shown in Figure 13
and Table 2.

In Table 2, cases with R < 0 have been deliberately included, in order to demonstrate that
symptoms with comparatively good rating based on the SVD analysis—in this case, symptom
No. 2—sometimes have to be rejected. On the other hand, symptoms with rather high values of
R—e.g., numbers 5, 10, and 12—are poorly rated by the SVD method. In fact, only symptom
numbers 3 and 4 are chosen on the basis of both methods.

Figure 13. Contributions of individual symptoms into the first three singular values (200 MWunit, high-pressure turbine
(after [33], © JVE journals)).
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In order to comment on these two examples, it has first to be noted that neither SVD nor ICM
approach can be considered a reference one. It seems that discrepancies between the results
obtained with both may be attributed to at least two possible causes. First, preprocessing of
measurement data is based on relatively simple procedures, and their inherent deficiencies—
such as inadequate robustness—may influence the final result. Second, the SVD method does
not disqualify cases with entropy increase, which are rejected within the ICM approach. This
question requires further study. As pointed out in [33], it seems justified to state that symptoms
selected on the basis of both methods can be safely labeled as the most suitable ones for object
condition assessment and prognosis.

5. Conclusions

In this chapter, a relatively straightforward and simple method is presented for evaluation of
diagnostic symptoms from the point of view of their suitability for assessment and prognosis of
technical condition evolution. For this purpose, the proper choice of symptoms is of prime
importance. This is particularly important for complex objects that generate a large numbers of
various symptoms. In most cases it is very difficult, or even impossible, to make such choice in
a direct manner, even with extensive knowledge on object layout and operation. The proposed
method is based on an analysis of an information content measure as a function of time, and the
basic assumption is that the greater is general damage advancement, the more deterministic, and
hence predictable the symptom becomes. It turns out, however, that in order to obtain reliable
results certain preprocessing of measurement data is mandatory. Results of this method have been
compared with those obtained from singular value analysis, which had been earlier proposed

Symptom number Symptom description (KHz) Representativeness factor

1 FB-V 6.3 �0.63 � 10�3

2 FB-V 8 �15.30 � 10�3

3 FB-H 5 6.97 � 10�3

4 FB-H 6.3 5.57 � 10�3

5 FB-A 6.3 8.84 � 10�3

6 FB-A 8 3.77 � 10�3

7 RB-V 5 �1.93 � 10�3

8 RB-V 8 1.17 � 10�3

9 RB-H 6.3 0.20 � 10�3

10 RB-H 8 4.14 � 10�3

11 RB-A 2 �2.52 � 10�3

12 RB-A 8 5.69 � 10�3

Table 2. Representativeness factor values calculated for 12 symptoms from Figure 13 (after [33], © JVE Journals).

Structural Health Monitoring from Sensing to Processing56

and tested. This approach has been applied for vibration-based symptoms of steam turbines
operated by power plants and shown to give consistent results. In general it can be applied to
any symptom, irrespective of its physical origin, as well as for other machines or structures. In the
author’s view, possible further development should be concentrated on the preprocessing of
measurement data and improvement of the representativeness factor. Other information content
measures might also be worth considering; however, the best results have so far been obtained
with continuous entropy.
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Abstract

Lamb waves have been widely studied in structural integrity evaluation during the past
decades with their low-attenuation and multi-defects sensitive nature. The performance of
the evaluation has close relationship with the vibration property and the frequency of
Lamb waves signals. Influenced by the nature of Lamb waves and the environment, the
received signals may be difficult to interpret that limits the performance of the detection.
So pure Lamb waves mode emitting and high-resolution signals acquisition play impor-
tant roles in Lamb waves structural integrity evaluation. In this chapter, the basic theory of
Lamb waves nature and some environment factors that should be considered in structural
integrity evaluation are introduced. Three kinds of typical transduces used for specific
Lamb waves mode emitting and sensing are briefly introduced. Then the development of
techniques to improve the interpretability of signals are discussed, including the wave-
form modulation techniques, multi-scale analysis techniques and the temperature effect
compensation techniques are summarized.

Keywords: Lamb waves, plate, transducers, signal optimization techniques, structural
integrity evaluation

1. Introduction

Plate-like structures made with metallic and composite materials have been widely used in
various of engineering fields including aerospace and civil engineering. During the manufactur-
ing, processing and usage, various type of damage may be induced in these structures. For
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Abstract

Lamb waves have been widely studied in structural integrity evaluation during the past
decades with their low-attenuation and multi-defects sensitive nature. The performance of
the evaluation has close relationship with the vibration property and the frequency of
Lamb waves signals. Influenced by the nature of Lamb waves and the environment, the
received signals may be difficult to interpret that limits the performance of the detection.
So pure Lamb waves mode emitting and high-resolution signals acquisition play impor-
tant roles in Lamb waves structural integrity evaluation. In this chapter, the basic theory of
Lamb waves nature and some environment factors that should be considered in structural
integrity evaluation are introduced. Three kinds of typical transduces used for specific
Lamb waves mode emitting and sensing are briefly introduced. Then the development of
techniques to improve the interpretability of signals are discussed, including the wave-
form modulation techniques, multi-scale analysis techniques and the temperature effect
compensation techniques are summarized.

Keywords: Lamb waves, plate, transducers, signal optimization techniques, structural
integrity evaluation

1. Introduction

Plate-like structures made with metallic and composite materials have been widely used in
various of engineering fields including aerospace and civil engineering. During the manufactur-
ing, processing and usage, various type of damage may be induced in these structures. For
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example, corrosion and fatigue cracks are common defects in metal plates, while the main defects
in composite plates are delamination, debonding, etc. Thus, it is important to develop defects
detection and monitoring techniques to ensure the integrity of plate structures. Lamb waves have
multi-modes, full cross-section distribution and low-attenuation nature in plates and can be used
for multi-type defects detection in large scale. Combined with modern signal detection instru-
ments and signal processing techniques, there are a lot of research and application of Lamb waves
for off-line and on-line structure integrity evaluation [1–3].

Lamb waves are a type of elastic waves that remain the constraint between two parallel free
surfaces, such as the upper and lower surfaces of a plate or shell, which contribute both longitu-
dinal and shear partial wave components, as shown in Figure 1(a). According to the particle
vibration mode, mainly two kinds of Lamb waves modes are formed as the interaction of
longitudinal and shear partial waves, symmetric (S) modes and anti-symmetric (A) modes shown
in Figure 1(b). Lamb waves theory, which is fully documented in literatures [4–6], assumes the
derivation formula in a cylindrical coordinate of the three-dimensional (3D) waves as
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where ϕ and ψ are potential functions, c2l ¼ λþ 2μ
� �

=r and c2s ¼ μ=r are the longitudinal and
shear wave velocities, respectively, λ and μ are the Lamé constants and r is the mass density.

Under the stress-free boundary conditions at the upper and lower surfaces, Lamb waves
equation can be obtained with the separation variable solution method
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where d is the half thickness of plates, k is the wavenumber, k2 ¼ ω2=c2p, cp is the phase velocity,

α2 ¼ ω2=c2l � k2, β2 ¼ ω2=c2s � k2. The plus sign corresponds to symmetric vibration and the

minus to anti-symmetric vibration. A series of eigenvalues kSi and kAi corresponding various
Lamb waves mode shapes are obtained by solving Eq. (2). The S modes and A modes are
denoted with Si and Ai, respectively, where the subscript i indicates the order of the modes and
equals 0,1,2…. The relationship cp = ω/k yields the dispersive wave velocity which is a function
of the product between the frequency and the plate thickness. The wavelength is defined as
λ = cp/f. The group velocity, cg, can be derived from the phase velocity with
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Figure 1(c) and (d) shows dispersion curves of Lamb waves in an aluminum plate drawn with
DISPERSE. The mechanical property of the plate is defined as: the density is 2.7 g/cm3,
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Young’s module is 70.753 GPa and Poisson’s ratio is 0.33. It is easy to find that the particle
vibration show out anti-symmetric and symmetric forms for A modes and S modes, respec-
tively. As shown in Figure 1(c) and (d), there are at least four modes under the frequency-
thickness 8.0 MHz-mm including the fundamental modes (A0 and S0). The group velocities
and the wavenumbers change with frequency for these Lamb waves modes, termed the
dispersion nature of Lamb waves.

Defects in structures induce the scattering profiles and cause the change of the velocity and
attenuation in the magnitude of Lamb waves signals. Besides the defects, there are still many
other factors may induce the vibration, interpretability of the received Lamb waves signals in
structural integrity evaluation. These factors are the Lamb waves nature, the property of
transducers and plate structures, the environmental and operational conditions. Some of the
influence by these factors is expressed below.

1. Dispersion of Lamb waves complexes the received signals that induce the signals exten-
sion in both spatial and temporal domain; multi-modes of Lamb waves and echoes from
the multi-defects cause the waveform overlapping in received signals.

2. Property of the transducers influences the performance of Lamb waves signals and the
wavefield, such as the disk-wrapped electrode induces the non-axisymmetric wavefield
[7], signal amplitude variation with a different type of adhesive and PZT thickness effects

Figure 1. Characteristic of Lamb waves in an aluminum plate drawn with DISPERSE. (a) Oblique incidence method for
Lamb waves generation; (b) vibration property of Lamb waves; (c) group velocity dispersion curves; (d) wavenumber
dispersion curves.
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[8], Lamb waves signals emitted with the laser beam and PZT show non-stationary and
stationary property, respectively.

3. Material and structure of plates yield the wavefield, such as anisotropic property of
composite plates leading the inhomogeneity distribution of wavefield in spatial and tem-
poral dimensions [9, 10], echoes from the edges, stiffeners, bolts and rivets in the complex
structure reduce the interpretability of the received Lamb waves signals [11].

4. Environmental and operational condition change the material properties and further influ-
ence the emitting, propagation and the sensing of Lamb waves [12, 13], typically the
temperature and the local concentrated stress. The temperature changes (a) the plate
material stiffness affects the waves phase/group velocity [14, 15]; (b) the dielectric permit-
tivity and piezoelectric coefficient of piezoelectric transducers [16] and (c) the adhesive
stiffness and then modifies the transducer-plate bonding shear stress transmission and
minor thermal expansion/contraction occurring within the adhesive layer can yield to a
slight shift in the peak frequency response [17]. The variation of the loads during usage
changes resulting a slight anisotropy of the structure and further induces the velocity
directionality [18]. Meanwhile, it also induces the time shifts effect under loads conditions
that are of the same order as those caused by temperature change.

As illustrated in the above content, the factors influencing signals features, the environmental
and operation condition, Lamb waves, transducers, plate-like structures and the defects are
combined and form a close detection/monitoring ecosystem in which the transducers realize
the energy conversion between the systems and the structures. Meanwhile the properties of
transducers have influence on the detection/monitoring systems setting strategies and the
emitting and sensing of Lamb waves. All these have decided that transducers play a very
important role in structure integrity evaluation. Signal processing technologies are adopted to
optimize and analysis the acquired data and finally realize structure state evaluation. When
the received data have relatively high resolution and interpretability, defects imaging tech-
niques and the intelligent recognition techniques are directly applied for structure integrity
evaluation; otherwise, the signals should be pre-processed with signal optimization techniques
to improve their resolution and interpretability through modulating waveforms, multi-scale
analysis and temperature effect compensation. Considering the importance roles of trans-
ducers and the signal processing strategies used in Lamb waves based structure integrity
evaluation, the structure of this chapter is setting as: Section 2 introduces several kinds of
transducers used for Lamb waves emitting and sensing. Then some signal processing technol-
ogies for dispersion compensation, time-frequency analysis and overlapping waveform
decomposition, and illuminating the influence temperature effects are briefly reviewed in
Section 3. Finally, a short summary and conclusions are provided.

2. Transducers and specific Lamb wave mode emitting

There are mainly three kinds of transduction mechanism used for the design of the transducers
in structure integrity evaluation, including piezoelectric effect, electromagnetic ultrasonic cou-
pling mechanisms and laser thermodynamics. In this section, we will briefly review some
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typical transducers and their application for specific mode of Lamb waves emitting and
sensing.

2.1. Piezoelectric transducers

Piezoelectric materials have piezoelectric effect that can be used to achieve energy conversion
between mechanical energy and electrical energy. As shown in Figure 2(a), when the piezo-
electric material is loaded with an alternating voltage, it may produce an oscillatory mechan-
ical vibration, and form pressure at its surface or sound waves in the around air. Vice versa, an
oscillatory expansion and contraction of the material produce an alternating voltage at the
terminal. This phenomenon is named as the piezoelectric effect. The geometry size, polariza-
tion direction and the voltage frequency have influence on the vibration mode of the piezo-
electric materials. Many kinds of piezoelectric transducers have been designed in laboratories
and corporations.

Piezoelectric wafer active transducers (PWATs) have relative simple round or rectangle geo-
metrical shapes. Typically, these transducers have electrodes on the top and bottom surfaces as
plotted in Figure 2(b). With the piezoelectric effect, PWATs actuate and sense Lamb waves
signals in the structure directly through in-plane strain coupling. More differences between the
PWATs and conventional ultrasonic transducers are listed in Ref. [19]. Interdigital transducers
(IDTs) have electrodes shaped in a comb pattern that are designed with traditional piezoelec-
tric ceramics or the novel piezoelectric materials, such as macro-fiber composite (MFC) [20]
and poly vinylidene fluoride (PVDF) piezoelectric polymer film [21–23]. Figure 2(c) plots an
interdigital transducer. Through adjusting the space between adjacent interdigital electrodes,
IDTs are able to generate Lamb waves with a specific wavelength. Comparing with the
piezoelectric ceramics, the novel piezoelectric materials feature better flexibility, higher dimen-
sional stability and more stable piezoelectric coefficients over time. They can be of various
shape to cope with curved surfaces for signal sensing in low frequency range due to their weak
driving. The tunable IDTs have a series of density distributed discrete electrode stripes that are
connected in various configurations [24]. In the application, Lamb waves with different wave-
lengths can be emitted through adjusting the configuration of the interdigital electrodes. As
shown in Figure 2(d), air-coupled ultrasonic transducers [25] are often used for non-contact

Figure 2. Typical piezoelectric effect-based transducers. (a) Piezoelectric effect; (b) PWAT; (c) Interdigital transducer; (d)
air-coupled transducers.
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and non-contaminating ultrasonic scanning detection. The proportion of the ultrasonic energy
transmitted through an interface depends on the acoustic impedance match ratio of the two
materials. The higher match ratio, the more energy is transmitted into the plates. Thus, it is
important to minimize these losses to obtain an acceptable signal to noise ratio. With the
development of micro-electro-mechanical technology, micro-machined ultrasonic transducers
are researched [26] that have many advantages over conventional ultrasonic transducers,
including miniature size, low power consumption and the ability to create one-dimensional
(1D) and two-dimensional (2D) array structures.

The techniques for pure mode emitting and sensing have been studied with the piezoelectic
transducers. Theoretical models researches of PWATs [27] show that the displacements at the
plate surface is a function of an interelement distance for a specific Lamb waves mode. With
the theory, dual-element transducers are placed at a specific distance on the same surface of a
plate for pure A0 mode emitting, or two dual PZTs (concentric disc and ring) structure is
adopted to tune the excitated signal properly for specific mode emitting, or to decompose both
mode contributions in the received signals [28]. The IDTs can realize pure mode emitting by
adjusting the interspace between individual electronic elements of the piezoelectric array or
adding backing materials to the elements [29]. While the interaction between individual ele-
ments may have a significant influence on the performance of the IDTs, these effects cannot be
neglected even in the case of low frequency excitation. Researchers deposited symmetrical
transducers on both sides of the plate to generate pure Lamb waves mode [30], in which for
electric symmetrical connection to the two transducers, S0 mode is generated, vice versa, for
the anti-symmetrical electric connection, A0 mode is strong and S0 mode is suppressed.
Degertekin et al. [31] added hertzian contacts between the plates and the end of specially
designed quartz rods, which guide anti-symmetric modes generated by PZT-5H transducers
bonded at their other end. For an angle beam transducer, a low-attenuation Lamb waves mode
was generated by setting the incidence angle [32]. Other literatures studied theoretical model
of the PWAS-related Lamb waves to identify the single mode emitting frequency, then adopted
the post-process technique, such as time reversal, to enhance the mode purity [33, 34]. As the
symmetric modes have more energy components in the out-of-plane direction, air-coupled
ultrasonic transducer can be very suitable for pure A0 mode emitting and sensing [35]. The
high-order or high frequency-thickness Lamb waves have more complex wave structure and
shorter wavelength, while more sensitive to the characteristic change of plates. Higher Order
Mode Cluster (HOMC) is proposed by Jayaraman et al. [36], it used the nature that multiple
modes concentrate together to form a cluster. Khalili et al. [37] realized single Lamb waves
mode emitting at 20 MHz-mm with the HOMC method.

2.2. Electromagnetic acoustic transducer

Electromagnetic acoustic transducer (EMAT) consists of permanent magnets, coils and a metal
material in which the magnets introduce the static magnetic field. The principle of the electro-
magnetic ultrasonic coupling mechanisms is shown in Figure 3(a). When the current is loaded
on the coils, eddy currents will be generated in the conductive structure and form three kinds
of electromagnetic coupling mechanisms for ultrasonic waves emitting and sensing: Lorentz
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force, magnetostriction mechanism andmagnetizing force. In addition, Lorentz force mechanism
exists in all conductive materials, whereas the magnetostriction mechanism only exists in ferro-
magnetic materials. Compared with the other two mechanisms, the magnetizing force is very
weak and is often neglected in studies. Various types of EMAT can be designed by changing the
configuration of the permanent magnet and coil to realize easily the attenuation of pure Lamb
waves mode. Figure 3(b) shows the EMATwith solenoid sensing coils and a cylindrical magnet;
Figure 3(c) shows the Panametrics E110-SB EMATdeveloped by OLYMPUS.

By adjusting the spacing of meandered line coils equal to the half wavelength of Lamb waves,
EMAT can easily realize Lamb waves emitting and sensing at specific frequency. Meanwhile,
researchers have developed many kinds of EMATs through specific design of the geometry
and the position of the magnets and coils [38], including omnidirectional S0 mode EMAT [39],
omnidirectional A0 mode EMAT [40] and directional magnetostrictive patch transducer [41].
While the EMAT is difficult to generate a pure Lamb wave mode when dispersion curves of
several modes are close together; however, by narrowing the frequency bandwidth via a large
number of cycles in the excitation signal, pure mode generation via an EMAT is shown to be
possible even in areas of closely spaced modes [42]. Experimentally, the EMAT can scan along
the surface, while the loading voltage is often very high compared with that of piezoelectric
transducers. EMATs are also used for high-order Lamb waves emitting and sensing in a 6mm-
thick steel plate [43].

2.3. Laser ultrasonic systems

Laser ultrasonic systems (LUS) have three basic functional components: a generation laser, a
detection laser and a detector. The generation laser emits a laser beam that irritates on the
surface of plates to generate ultrasonic waves based on thermoelastic regime or ablation
regime. In the thermoplastic regime, the ultrasonic waves are generated from the thermoelastic

Figure 3. Electromagnetic ultrasonic coupling mechanisms transducers. (a) Principle of the electromagnetic ultrasonic
coupling mechanism; EMATwith four solenoid sensing coils and a cylindrical magnet [43]; Panametrics E110-SB EMAT.
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Figure 3(c) shows the Panametrics E110-SB EMATdeveloped by OLYMPUS.
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several modes are close together; however, by narrowing the frequency bandwidth via a large
number of cycles in the excitation signal, pure mode generation via an EMAT is shown to be
possible even in areas of closely spaced modes [42]. Experimentally, the EMAT can scan along
the surface, while the loading voltage is often very high compared with that of piezoelectric
transducers. EMATs are also used for high-order Lamb waves emitting and sensing in a 6mm-
thick steel plate [43].

2.3. Laser ultrasonic systems

Laser ultrasonic systems (LUS) have three basic functional components: a generation laser, a
detection laser and a detector. The generation laser emits a laser beam that irritates on the
surface of plates to generate ultrasonic waves based on thermoelastic regime or ablation
regime. In the thermoplastic regime, the ultrasonic waves are generated from the thermoelastic

Figure 3. Electromagnetic ultrasonic coupling mechanisms transducers. (a) Principle of the electromagnetic ultrasonic
coupling mechanism; EMATwith four solenoid sensing coils and a cylindrical magnet [43]; Panametrics E110-SB EMAT.
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expansions of materials. While, in the ablation regime, the ultrasonic waves are generated from
the material removal that will induce damage to the surface of plates. The laser ultrasonic
systems are carefully set to work in the thermoelastic regime in Lamb waves integrity evalua-
tion. Additionally, the laser-generated Lamb waves signal is a broad bandwidth signal in
which several Lamb wave modes can be acquired in a single measurement, providing more
opportunities to selectively generate the desired modes. Figure 4(a) plots the elastic waves
generated by laser beam under thermoelastic regime.

The detection laser and detector are used for ultrasonic waves detection based on various
principle including Doppler frequency shift, speckle interferogram and Fabry-Pérot detection
schemes. A laser vibrometer principle of operation allows for measuring velocity of a point along
the axis of laser beam incidence onto the surface based on the Doppler frequency shift principle.
In 1997, researchers started sensing the out-of-plane displacements of Lamb waves with an
optical fiber Michelson interferometer. The progress in the development of equipment related to
scanning laser Doppler vibrometry (SLDV) resulted in the availability of the full wavefield
measurements of Lamb waves propagating in metallic specimens. Shearography is an interfero-
metric technique for surface vibration measurement. In a digital shearography system, the
inspected object is illuminated by an expanded laser beam, forming a speckle pattern. The
speckle patterns are optically processed by a shearing device, and the resultant interferogram is
recorded by a charge-coupled device camera. Speckle interferogram, recorded before and after
object deformation, are correlated to yield correlation fringes. The phase of these fringes can
represent the displacement gradient of the specimen. More detail information about the system
is introduced in Ref. [44]. The elastic waves generate a change in the index of refraction of the
surface, incident laser beams will deflect slightly and thus change course. This detected change is
converted into an electrical signal. Figure 4(b) plots the laser ultrasonic principle.

As the laser beam is irritated on the normal direction of the out-of-plane that is the main
displacement components of anti-symmetric modes. In the detection process, people can
adjust the shape and the spatial distribution of the laser beams to reduce the energy loss and
further form a specific modes wave. Many types optical path adjusting elements are adopted
for specific Lamb waves mode emitting, including Fresnel lens, rectangular cylinder lens [45,
46], marks for creating predetermined spatial laser light distributions [47] and periodic spatial
array of laser sources [48]. The interference pattern of two high power laser beams on a sample
surface produces periodic heating and then generating anti-symmetric Lamb waves [49]. By

Figure 4. Principle and systems for laser ultrasonic inspection. (a) Elastic waves generated by laser beam under
thermoelastic regime; (b) laser ultrasonic principle.
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varying the interface fringe spacing, the acoustic frequency is easily and continuously tunable
from 2.5 to 23 MHz.

Other transducers used in structural integrity evaluation but not just piezoelectric ceramic
fibers, fiber optic transducers [50] and microelectronic transducers. Piezoelectric fibers having
a metal core can activate Lamb waves in composite plates transverse to the fibers with radial
displacement components originating from the d33 coupling coefficient. They can also generate
Lamb waves in the direction of the piezoelectric fibers using the d31 coupling coefficient. The
fiber optic transducers are used for Lamb wave sensing, through connecting a fiber Bragg
gratings (FBG) filter with a photodetector, the light intensity induced by the Lamb waves,
rather than strain itself, can be sensed at a high sampling rate. The FBG has strong directivity
in sensing Lamb wave signals.

3. Signal optimization techniques

The signal processing techniques for improving the resolution and the interpretability of Lamb
wave signals are termed as the signal optimization techniques in this section. There are
waveform modulation techniques such as multi-scale analysis techniques and temperature
effect compensation techniques. These techniques are adopted for Lamb waves dispersion
compensation, high-resolution signal emitting and sensing, overlapping waveforms decom-
pensation, time-frequency analysis and temperature effect compensation.

3.1. Waveform modulation techniques

When an excitation signal, f(t), is emitted into a plate at original position, the received signal, u
(x,t), at x position can be expressed as

u x; tð Þ ¼ 1
2π

ð∞
�∞

F ωð Þej ωt�kxð Þdω, (4)

where F(ω) is the Fourier transform of the excitation signal and k is the angular wavenumber. In
Eq. (4), there are several parameters that decide the signal resolution and interpretability, includ-
ing the amplitude, phase and frequency variation with the duration. The signal processing
techniques process through modulating these fundamental signal parameters for adjusting the
signal waveforms are termed waveform modulation techniques that are used for Lamb waves
dispersion compensation, high-resolution Lamb waves detection and defects information extrac-
tion in structural integrity evaluation.

Signal processing techniques for dispersion compensation are realized through modulating the
frequency or the wavenumbers of the received Lamb waves signals, because the dispersion
nature of Lamb waves is shown as the nonlinear characteristic of signal phase in mathematical
form. Time recompression technique [51] compensates the dispersion using spatial phase shift
arising at each signal frequency component from the propagation of the waves over a large
distance. The back-propagation function in the technique can only provide the first-order phase
shift. Time-distance mapping technique [52] compresses dispersive signals by converting the
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expansions of materials. While, in the ablation regime, the ultrasonic waves are generated from
the material removal that will induce damage to the surface of plates. The laser ultrasonic
systems are carefully set to work in the thermoelastic regime in Lamb waves integrity evalua-
tion. Additionally, the laser-generated Lamb waves signal is a broad bandwidth signal in
which several Lamb wave modes can be acquired in a single measurement, providing more
opportunities to selectively generate the desired modes. Figure 4(a) plots the elastic waves
generated by laser beam under thermoelastic regime.

The detection laser and detector are used for ultrasonic waves detection based on various
principle including Doppler frequency shift, speckle interferogram and Fabry-Pérot detection
schemes. A laser vibrometer principle of operation allows for measuring velocity of a point along
the axis of laser beam incidence onto the surface based on the Doppler frequency shift principle.
In 1997, researchers started sensing the out-of-plane displacements of Lamb waves with an
optical fiber Michelson interferometer. The progress in the development of equipment related to
scanning laser Doppler vibrometry (SLDV) resulted in the availability of the full wavefield
measurements of Lamb waves propagating in metallic specimens. Shearography is an interfero-
metric technique for surface vibration measurement. In a digital shearography system, the
inspected object is illuminated by an expanded laser beam, forming a speckle pattern. The
speckle patterns are optically processed by a shearing device, and the resultant interferogram is
recorded by a charge-coupled device camera. Speckle interferogram, recorded before and after
object deformation, are correlated to yield correlation fringes. The phase of these fringes can
represent the displacement gradient of the specimen. More detail information about the system
is introduced in Ref. [44]. The elastic waves generate a change in the index of refraction of the
surface, incident laser beams will deflect slightly and thus change course. This detected change is
converted into an electrical signal. Figure 4(b) plots the laser ultrasonic principle.

As the laser beam is irritated on the normal direction of the out-of-plane that is the main
displacement components of anti-symmetric modes. In the detection process, people can
adjust the shape and the spatial distribution of the laser beams to reduce the energy loss and
further form a specific modes wave. Many types optical path adjusting elements are adopted
for specific Lamb waves mode emitting, including Fresnel lens, rectangular cylinder lens [45,
46], marks for creating predetermined spatial laser light distributions [47] and periodic spatial
array of laser sources [48]. The interference pattern of two high power laser beams on a sample
surface produces periodic heating and then generating anti-symmetric Lamb waves [49]. By
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thermoelastic regime; (b) laser ultrasonic principle.
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varying the interface fringe spacing, the acoustic frequency is easily and continuously tunable
from 2.5 to 23 MHz.

Other transducers used in structural integrity evaluation but not just piezoelectric ceramic
fibers, fiber optic transducers [50] and microelectronic transducers. Piezoelectric fibers having
a metal core can activate Lamb waves in composite plates transverse to the fibers with radial
displacement components originating from the d33 coupling coefficient. They can also generate
Lamb waves in the direction of the piezoelectric fibers using the d31 coupling coefficient. The
fiber optic transducers are used for Lamb wave sensing, through connecting a fiber Bragg
gratings (FBG) filter with a photodetector, the light intensity induced by the Lamb waves,
rather than strain itself, can be sensed at a high sampling rate. The FBG has strong directivity
in sensing Lamb wave signals.

3. Signal optimization techniques

The signal processing techniques for improving the resolution and the interpretability of Lamb
wave signals are termed as the signal optimization techniques in this section. There are
waveform modulation techniques such as multi-scale analysis techniques and temperature
effect compensation techniques. These techniques are adopted for Lamb waves dispersion
compensation, high-resolution signal emitting and sensing, overlapping waveforms decom-
pensation, time-frequency analysis and temperature effect compensation.

3.1. Waveform modulation techniques

When an excitation signal, f(t), is emitted into a plate at original position, the received signal, u
(x,t), at x position can be expressed as

u x; tð Þ ¼ 1
2π

ð∞
�∞

F ωð Þej ωt�kxð Þdω, (4)

where F(ω) is the Fourier transform of the excitation signal and k is the angular wavenumber. In
Eq. (4), there are several parameters that decide the signal resolution and interpretability, includ-
ing the amplitude, phase and frequency variation with the duration. The signal processing
techniques process through modulating these fundamental signal parameters for adjusting the
signal waveforms are termed waveform modulation techniques that are used for Lamb waves
dispersion compensation, high-resolution Lamb waves detection and defects information extrac-
tion in structural integrity evaluation.

Signal processing techniques for dispersion compensation are realized through modulating the
frequency or the wavenumbers of the received Lamb waves signals, because the dispersion
nature of Lamb waves is shown as the nonlinear characteristic of signal phase in mathematical
form. Time recompression technique [51] compensates the dispersion using spatial phase shift
arising at each signal frequency component from the propagation of the waves over a large
distance. The back-propagation function in the technique can only provide the first-order phase
shift. Time-distance mapping technique [52] compresses dispersive signals by converting the
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signals in frequency domain to a specific propagation distance by back-propagating signals to
t = 0 using the known dispersion relation. Considering the relationship between the angle
frequency ω and the wavenumber, backward Lamb waves of Eq. (4) at x can be expressed as

ub �xð Þ ¼ 1
2π

ð∞
�∞

U ωð Þejkxdω ¼ 1
2π

ð∞
�∞

U ωð Þcg ωð Þejkxdk, (5)

where ω0 is the specific frequency and U(ω) is the Fourier transform of the original received
signal, u(x,t).

Beside interpolating G(ω) and cg(ω), the variables in spatial-wavenumber domains in time-
frequency domains are needed to ensure the calculation accuracy. Spectral warping technique
[53–55] was applied for the removal of dispersion from a signal in time-space domain using
frequency transformation. The rescaling is defined mathematically by a composition of the
signal spectrum with a function closely related to the dispersion relation that is independent of
propagation distances and can be applied to signals consisting of multiple arrivals with the
same dispersion characteristics. The wideband dispersion reversal technique [56], as expressed
in Eq. (6), makes use of a priori knowledge of the dispersion characteristics to synthesize the
corresponding dispersion reversal excitations, which is able to selectively excite the self-
compensation pure mode waveforms.

WDR u τ0 � tð Þ½ � ¼ 1
2π

ðþ∞

�∞
U �ωð Þe�jωτ0 �H0 ωð Þejωtdω

¼ 1
2π

ðþ∞

�∞
F �ωð Þ �H0 �ωð Þ �H0 ωð Þejω t�τ0ð Þdω

¼ 1
2π

ðþ∞

�∞
F �ωð Þejω t�τ0ð Þdω

¼ f τ0 � tð Þ,

(6)

The above-mentioned algorithms are limited in practical application as the propagation distance
may be unknown. Wavenumber curves linearization technique [57, 58] uses the first- or second-
order Taylor expansion to linearize the nonlinear wavenumber. It is independent on the propa-
gation distance and can be applied to the signals constructed with multiple arrivals with the
same wave mode or dispersion characteristics. It has less computation efforts than the time-
distance mapping technique. With the idea of nonlinear wavenumber linearization, Cai et al. [59]
extended the wavenumber linearization technique and developed the linearly dispersive signal
construction and non-dispersive signal construction method these are expressed as

ulin tð Þ ¼ 1
2π

ð∞
�∞

M ω� ωcð Þe�i k0þk1 ω�ωcð Þ½ �xþiωt

¼ eiωct�ik0x

2π

ðþ∞

�∞
M ωð Þe�iωk1xþiωtdω

¼ m t� k1xð Þeiωct�ik0x

¼ f t� k1xð Þei k1ωc�k0ð Þx,

(7)

where τ0 is a time delay constant, M(ω-ωc) = u(ω) is the Fourier transform result of the
amplitude modulation function with shift ωc, ωc is the center frequency of the excitation,
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k0 = ωc/cp(ωc), k1 ¼ dk0=dωjω¼ωc
¼ 1=cg ωcð Þ, H(�ω) = e�ik(�ω)x is the phase spectrum of the

dispersion function and K0(ω) is the wavenumber that determines the dispersion relation of
Lamb waves mode. The above-mentioned techniques are performed with the received Lamb
waves signals that can be named as the post-processing dispersion compensation techniques
and more detail process of them are introduced in Refs [51–53, 57–60].

The other signal processing strategy for high-resolution detection is realized throughmodulating
the waveform of excitation signals, termed the excitation modulation techniques, in which the
excitations are built based on the dispersion characteristics of Lamb waves, the propagation
distance and the travel time [61] or utilize the chirp technique to established effects on the
original excitation signal for a given compensation distance, and thus the response extraction
and the dispersion compensation can be made simultaneously [62]. For pulse compression (PuC)
techniques, a δ-like wave packet can be generated with a broader auto-correlation of a specific
waveform including linear chirp signal, nonlinear chirp signal, Barker code and Golay comple-
mentary code. The linear chirp has the smallest main lobe width, corresponding to the best
inspection resolution; the nonlinear chirp and Golay complementary code are with smaller
sidelobe level, corresponding to the better performance in terms of side lobe cancelation [63],
and the waveform comparisons are still effective with small errors in dispersion compensation.
Malo et al. [64] presented a 2D compressed analysis, which combines pulse compression and
dispersion compensation techniques in order to improve the SNR, temporal-spatial resolution
and extract accurate time of arrival of responses. Yücel et al. [65] utilizes maximal length
sequence (MLS) signals to produce a brute-force search-based dispersion compensation and
cross-correlation for defects location. Compared with a linear broadband chirp, the technique
using MLS combined with cross-correlation can improve SNR and facilitate the accurate extrac-
tion of time-of-flight (ToF), even in complex multimode situation. Marchi et al. [66] proposed a
code division strategy based on the warped frequency transform. In the first, the proposed
procedure encodes actuation pulses using Gold sequences. Then for each considered actuator,
the acquired signals are compensated from dispersion by cross-correlating the warped version of
the actuated and received signals. Compensated signals from the base for a final wavenumber
imaging meant at emphasizing defects and/or anomalies by removing incident wavefield and
edge reflections. Hua et al. [67] proposed pulse energy evolution method for high-resolution
Lamb wave inspection. Some conclusions were obtained as follows. Linear chirp signal com-
bined with pulse compression provides a δ-like excitation with a high signal-to-noise ratio. By
the application of dispersion compensation with systemically varied compensation distances, an
evolution of compensation degree curve can be obtained to estimate the actual propagation
distance of the interested wave packet.

Time reversal (TR) technique can focus the elastic waves to its original shape by time-domain
reversal of the received signal with the reciprocity principle. Figure 5 shows the principle
diagram of time reversal technique that consists of the forward propagation and backward
propagation. In the forward propagation, a signal, f(t), is emitted into the plate by the trans-
ducer A, and received by transducer B. Then received signal is reversed in time domain and
reemitted by the transducer A in the backward propagation process. The final TR processed
result is received signal at transducer B. To avoid the inconvenience in the process of classical
time reversal, a pure numerical signal process technique for TR technique is developed, termed
the virtual time reversal technique, and can be expressed as
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signals in frequency domain to a specific propagation distance by back-propagating signals to
t = 0 using the known dispersion relation. Considering the relationship between the angle
frequency ω and the wavenumber, backward Lamb waves of Eq. (4) at x can be expressed as

ub �xð Þ ¼ 1
2π

ð∞
�∞

U ωð Þejkxdω ¼ 1
2π

ð∞
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U ωð Þcg ωð Þejkxdk, (5)

where ω0 is the specific frequency and U(ω) is the Fourier transform of the original received
signal, u(x,t).

Beside interpolating G(ω) and cg(ω), the variables in spatial-wavenumber domains in time-
frequency domains are needed to ensure the calculation accuracy. Spectral warping technique
[53–55] was applied for the removal of dispersion from a signal in time-space domain using
frequency transformation. The rescaling is defined mathematically by a composition of the
signal spectrum with a function closely related to the dispersion relation that is independent of
propagation distances and can be applied to signals consisting of multiple arrivals with the
same dispersion characteristics. The wideband dispersion reversal technique [56], as expressed
in Eq. (6), makes use of a priori knowledge of the dispersion characteristics to synthesize the
corresponding dispersion reversal excitations, which is able to selectively excite the self-
compensation pure mode waveforms.
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The above-mentioned algorithms are limited in practical application as the propagation distance
may be unknown. Wavenumber curves linearization technique [57, 58] uses the first- or second-
order Taylor expansion to linearize the nonlinear wavenumber. It is independent on the propa-
gation distance and can be applied to the signals constructed with multiple arrivals with the
same wave mode or dispersion characteristics. It has less computation efforts than the time-
distance mapping technique. With the idea of nonlinear wavenumber linearization, Cai et al. [59]
extended the wavenumber linearization technique and developed the linearly dispersive signal
construction and non-dispersive signal construction method these are expressed as
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(7)

where τ0 is a time delay constant, M(ω-ωc) = u(ω) is the Fourier transform result of the
amplitude modulation function with shift ωc, ωc is the center frequency of the excitation,
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¼ 1=cg ωcð Þ, H(�ω) = e�ik(�ω)x is the phase spectrum of the

dispersion function and K0(ω) is the wavenumber that determines the dispersion relation of
Lamb waves mode. The above-mentioned techniques are performed with the received Lamb
waves signals that can be named as the post-processing dispersion compensation techniques
and more detail process of them are introduced in Refs [51–53, 57–60].

The other signal processing strategy for high-resolution detection is realized throughmodulating
the waveform of excitation signals, termed the excitation modulation techniques, in which the
excitations are built based on the dispersion characteristics of Lamb waves, the propagation
distance and the travel time [61] or utilize the chirp technique to established effects on the
original excitation signal for a given compensation distance, and thus the response extraction
and the dispersion compensation can be made simultaneously [62]. For pulse compression (PuC)
techniques, a δ-like wave packet can be generated with a broader auto-correlation of a specific
waveform including linear chirp signal, nonlinear chirp signal, Barker code and Golay comple-
mentary code. The linear chirp has the smallest main lobe width, corresponding to the best
inspection resolution; the nonlinear chirp and Golay complementary code are with smaller
sidelobe level, corresponding to the better performance in terms of side lobe cancelation [63],
and the waveform comparisons are still effective with small errors in dispersion compensation.
Malo et al. [64] presented a 2D compressed analysis, which combines pulse compression and
dispersion compensation techniques in order to improve the SNR, temporal-spatial resolution
and extract accurate time of arrival of responses. Yücel et al. [65] utilizes maximal length
sequence (MLS) signals to produce a brute-force search-based dispersion compensation and
cross-correlation for defects location. Compared with a linear broadband chirp, the technique
using MLS combined with cross-correlation can improve SNR and facilitate the accurate extrac-
tion of time-of-flight (ToF), even in complex multimode situation. Marchi et al. [66] proposed a
code division strategy based on the warped frequency transform. In the first, the proposed
procedure encodes actuation pulses using Gold sequences. Then for each considered actuator,
the acquired signals are compensated from dispersion by cross-correlating the warped version of
the actuated and received signals. Compensated signals from the base for a final wavenumber
imaging meant at emphasizing defects and/or anomalies by removing incident wavefield and
edge reflections. Hua et al. [67] proposed pulse energy evolution method for high-resolution
Lamb wave inspection. Some conclusions were obtained as follows. Linear chirp signal com-
bined with pulse compression provides a δ-like excitation with a high signal-to-noise ratio. By
the application of dispersion compensation with systemically varied compensation distances, an
evolution of compensation degree curve can be obtained to estimate the actual propagation
distance of the interested wave packet.

Time reversal (TR) technique can focus the elastic waves to its original shape by time-domain
reversal of the received signal with the reciprocity principle. Figure 5 shows the principle
diagram of time reversal technique that consists of the forward propagation and backward
propagation. In the forward propagation, a signal, f(t), is emitted into the plate by the trans-
ducer A, and received by transducer B. Then received signal is reversed in time domain and
reemitted by the transducer A in the backward propagation process. The final TR processed
result is received signal at transducer B. To avoid the inconvenience in the process of classical
time reversal, a pure numerical signal process technique for TR technique is developed, termed
the virtual time reversal technique, and can be expressed as
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f TR tð Þ ¼ ifft fft u �tð Þ½ � fft u tð Þ½ �
fft f tð Þ½ �

� �
, (8)

where f(t) is the excitation signal, u(t) is the original received Lamb waves signal, u(-t) is the
time reversal result of signal of u(t), fTR(t) is the time reversal result, fft and ifft are the fast
Fourier transform and its inverse transform.

It has been studied for dispersed compression [60, 68] and defects information extraction [69,
70]. Zeng et al. [70] carefully designed the amplitude of the input signal before the time
reversal process. Huang et al. [71] used a weight vector to modulated the signal in both the
forward and backward processes, the vector is obtained as the product of the reciprocal of
amplitude dispersion and a window function that varies with the excitation signal adaptively,
and its shape is also determined by a threshold. The advantages of single mode tuning in the
application of time reversal damage detection are highlighted in Refs. [33,71]. The adhesive,
host plate, transducer and excitation parameters are also influenced on the performance of
time reversibility of Lamb waves.

3.2. Multi-scale analysis techniques

Multi-scale analysis techniques map a 1D signal into a high dimensional space with transform
based on a kernel function, including short-time Fourier transform (STFT), Wavelet transform
(the continue wavelet transform (CWT), the discrete wavelet transform (DWT) and wave packet
transform), Gabor transform [72], Chirplet transform [73] and asymmetric Gaussian Chirplet
transform [74, 75]. When the mapping data space express the changing frequency of the signal
parameters, the algorithm can be used for time-frequency analysis [76]. In other case, the map-
ping data space indicates the inner product between the signal and a kernel function, the
algorithm can be used for Lamb waves mode identification and overlapping waveforms decom-
position. The formula of STFT and CWT can be expressed as Eq. (9) and Eq. (10), respectively.

y ω; τð Þ ¼
ðþ∞

�∞
u tð Þw t� τð Þe�jωtdt, (9)

y s; τð Þ ¼ 1ffiffi
s

p
ðþ∞

�∞
u tð Þψ∗ t� τ

s

� �
dt, (10)

where w(t) is the window function, commonly a rectangle window, Hanning window or
Gaussian window; u(t) is the sensing Lamb waves signal, ψ is the mother wavelet, τ is the shift
step in time-axis, s is the scale and * indicates the complex conjugate operation.

Figure 5. Principle diagram of time reversal technique.
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STFT divides a signal into blocks with fixed window width that controls the trade-off of bias
and variance. Shorter window leads to poor frequency resolution, while longer window
improves the frequency resolution but compromises the stationary assumption within the
window. Thus researchers adopted variable window width instead of constant-width [77,
78] into the STFT to deal with the local resolution requirement. CWT projects a signal into a
class of kernel function, termed mother wavelet, that usage of scale factor that is inversely
proportional to the frequency of the given signal. Limited by the Heisenberg uncertainty
principle that can be briefly described as the time-frequency windows have constant area, its
results have higher frequency resolution and lower time resolution for lower frequency
components, while have lower frequency resolution and higher time resolution for higher
frequency components. Meanwhile the frequency resolution at the same scale level cannot be
adaptively adjusted. The time-frequency representation concentration cannot be signifi-
cantly improved for non-stationary signal with rapidly time-varying frequency component
with the STFT and CWT. Reassignment method is a post-processing technique putting
forwards to improve the readability of time-frequency representation. Through assigning
the average of energy in a domain to the gravity center of these energy contributions, the
reassignment technology reduces energy spread of time-frequency representation at the cost
of greater computational complexity. However, it is sensitive to the noise, and inevitably
introduces interference terms since the computed gravity center unnecessarily represents the
real energy distribution of the interested signal. Wigner-Ville distribution (WVD) is a repre-
sentative of bilinear time-frequency analysis in which the process is based on the Fourier
transform of instantaneous auto-correlation function of the signal. WVD could generate
time-frequency representation with the high concentration, while it also introduces plenty
of cross-terms. Hilbert-Huang transform uses empirical mode decomposition (EMD) to
decompose a signal into several intrinsic mode functions (IMF) along with a trend and
obtain instantaneous frequency [79]. EMD is a data-driven signal decomposition technique
that sequentially extracts zero-mean regular/distorted harmonics from a signal, starting from
high- to low- frequency components, and it is a dyadic filter equivalent to an adaptive
wavelet. While the end effects influence the performance of the signal decomposition and
distort the results. For this case, researchers proposed various signal extension technique to
solve the problem of end effects, including feature-based extension, mirror images, predic-
tion methods and pattern comparison [80].

The general formula of Gabor transform, Chirplet transform and asymmetric Gaussian
Chirplet transform can be expressed as Eqs. (11) and (12). Their results are the inner product
between the signal u(t) and the complex conjugate of kernel function gτ,ω,Θ.

y τ;ω;Θð Þ ¼
ðþ∞

�∞
u tð Þg∗τ,ω,Θ tð Þdt, (11)

g tð Þ ¼
e�π t�τ

sð Þ2 cos ω t� τð Þ þ ϕ
� �

, Gabor
ffiffiffiffiffiffi
2π

p
s

� ��1=2
e�π t�τ

sð Þ2 cos ω t� τð Þ þ ζ t� τð Þ2 þ ϕ
h i

, Gaussian Chirplet

ae�α 1�rtanh κ t�τð Þð Þð Þ t�τð Þ2 cos ω t� τð Þ þ ζ t� τð Þ2 þ ϕ
h i

, asymmetric Gaussian Chirplet,
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f TR tð Þ ¼ ifft fft u �tð Þ½ � fft u tð Þ½ �
fft f tð Þ½ �

� �
, (8)

where f(t) is the excitation signal, u(t) is the original received Lamb waves signal, u(-t) is the
time reversal result of signal of u(t), fTR(t) is the time reversal result, fft and ifft are the fast
Fourier transform and its inverse transform.

It has been studied for dispersed compression [60, 68] and defects information extraction [69,
70]. Zeng et al. [70] carefully designed the amplitude of the input signal before the time
reversal process. Huang et al. [71] used a weight vector to modulated the signal in both the
forward and backward processes, the vector is obtained as the product of the reciprocal of
amplitude dispersion and a window function that varies with the excitation signal adaptively,
and its shape is also determined by a threshold. The advantages of single mode tuning in the
application of time reversal damage detection are highlighted in Refs. [33,71]. The adhesive,
host plate, transducer and excitation parameters are also influenced on the performance of
time reversibility of Lamb waves.

3.2. Multi-scale analysis techniques

Multi-scale analysis techniques map a 1D signal into a high dimensional space with transform
based on a kernel function, including short-time Fourier transform (STFT), Wavelet transform
(the continue wavelet transform (CWT), the discrete wavelet transform (DWT) and wave packet
transform), Gabor transform [72], Chirplet transform [73] and asymmetric Gaussian Chirplet
transform [74, 75]. When the mapping data space express the changing frequency of the signal
parameters, the algorithm can be used for time-frequency analysis [76]. In other case, the map-
ping data space indicates the inner product between the signal and a kernel function, the
algorithm can be used for Lamb waves mode identification and overlapping waveforms decom-
position. The formula of STFT and CWT can be expressed as Eq. (9) and Eq. (10), respectively.

y ω; τð Þ ¼
ðþ∞

�∞
u tð Þw t� τð Þe�jωtdt, (9)

y s; τð Þ ¼ 1ffiffi
s

p
ðþ∞

�∞
u tð Þψ∗ t� τ

s

� �
dt, (10)

where w(t) is the window function, commonly a rectangle window, Hanning window or
Gaussian window; u(t) is the sensing Lamb waves signal, ψ is the mother wavelet, τ is the shift
step in time-axis, s is the scale and * indicates the complex conjugate operation.

Figure 5. Principle diagram of time reversal technique.
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STFT divides a signal into blocks with fixed window width that controls the trade-off of bias
and variance. Shorter window leads to poor frequency resolution, while longer window
improves the frequency resolution but compromises the stationary assumption within the
window. Thus researchers adopted variable window width instead of constant-width [77,
78] into the STFT to deal with the local resolution requirement. CWT projects a signal into a
class of kernel function, termed mother wavelet, that usage of scale factor that is inversely
proportional to the frequency of the given signal. Limited by the Heisenberg uncertainty
principle that can be briefly described as the time-frequency windows have constant area, its
results have higher frequency resolution and lower time resolution for lower frequency
components, while have lower frequency resolution and higher time resolution for higher
frequency components. Meanwhile the frequency resolution at the same scale level cannot be
adaptively adjusted. The time-frequency representation concentration cannot be signifi-
cantly improved for non-stationary signal with rapidly time-varying frequency component
with the STFT and CWT. Reassignment method is a post-processing technique putting
forwards to improve the readability of time-frequency representation. Through assigning
the average of energy in a domain to the gravity center of these energy contributions, the
reassignment technology reduces energy spread of time-frequency representation at the cost
of greater computational complexity. However, it is sensitive to the noise, and inevitably
introduces interference terms since the computed gravity center unnecessarily represents the
real energy distribution of the interested signal. Wigner-Ville distribution (WVD) is a repre-
sentative of bilinear time-frequency analysis in which the process is based on the Fourier
transform of instantaneous auto-correlation function of the signal. WVD could generate
time-frequency representation with the high concentration, while it also introduces plenty
of cross-terms. Hilbert-Huang transform uses empirical mode decomposition (EMD) to
decompose a signal into several intrinsic mode functions (IMF) along with a trend and
obtain instantaneous frequency [79]. EMD is a data-driven signal decomposition technique
that sequentially extracts zero-mean regular/distorted harmonics from a signal, starting from
high- to low- frequency components, and it is a dyadic filter equivalent to an adaptive
wavelet. While the end effects influence the performance of the signal decomposition and
distort the results. For this case, researchers proposed various signal extension technique to
solve the problem of end effects, including feature-based extension, mirror images, predic-
tion methods and pattern comparison [80].

The general formula of Gabor transform, Chirplet transform and asymmetric Gaussian
Chirplet transform can be expressed as Eqs. (11) and (12). Their results are the inner product
between the signal u(t) and the complex conjugate of kernel function gτ,ω,Θ.

y τ;ω;Θð Þ ¼
ðþ∞

�∞
u tð Þg∗τ,ω,Θ tð Þdt, (11)

g tð Þ ¼
e�π t�τ

sð Þ2 cos ω t� τð Þ þ ϕ
� �

, Gabor
ffiffiffiffiffiffi
2π

p
s

� ��1=2
e�π t�τ

sð Þ2 cos ω t� τð Þ þ ζ t� τð Þ2 þ ϕ
h i

, Gaussian Chirplet

ae�α 1�rtanh κ t�τð Þð Þð Þ t�τð Þ2 cos ω t� τð Þ þ ζ t� τð Þ2 þ ϕ
h i

, asymmetric Gaussian Chirplet,
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where ζ is the linear chirp rate, ϕ is the phase, a is the amplitude, α is the decay rate controlling
the signal bandwidth, r is the asymmetry factor controlling the skewness of the window and
tanh(κt) is hyperbolic tangent function of order κ, a positive constant integer. The detail
description of Eq. (11) is given in Refs [81, 82]. Gabor transform and the Chirplet transform
projects a signal energy distribution in a time-frequency plane, which does not induce inter-
ference terms [83]. An important advantage of such analysis is to provide highly concentrated
time-frequency representation with signal-dependent resolution. Especially for the latter one,
there are many parameters adaptively adjusted for an accuracy mapping the signal features,
including the center frequency, arrival time, duration and frequency-varying characteristics.
These two algorithms can also be used for decomposition of the overlapping waveforms.

The signal decomposition is based on a reasonable assumption that a signal can be expressed
as a sum of several wave packets, as shown in Eq. (14).

u tð Þ ¼
XN�1

n¼0

Rnu; gγn
D E

gγn þ RNu, (13)

where u(x,t) is the signal received at x that contains the first arrival waves, the echoes from the
edges of plates and the defects; RNu is the residual term; N is the number of iterations; gγn is the
matching atoms that fit to the residual term Rnu, which is the residual left after subtracting results
of previous iterations; gγi is the atoms in a pre-built over-complete dictionary or a sub-type of a
kernel function. The derivation processes of parameters Rnu and gγn can be expressed as

R0u ¼ u tð Þ
Rnþ1u ¼ RNu� Rnu; gγn

D E
gγn

gγn ¼ arg max
gγi ∈D

Rnu; gγi
D E���

���
:

8>>>><
>>>>:

(14)

In the process of the wave packets decomposition, the atoms can be selected from a pre-built
dictionary or sub-type of a kernel function. The dictionary can be built based on the pre-analysis
of the excitation [84], the interaction between Lamb waves and defects [85], etc. Mallat et al. [86]
introduced the matching pursuit with time-frequency dictionaries. The decomposition based the
Gabor transform and the Gaussian Chirplet transform are suitable for the signals with symmetric
envelops, while the sensing signals often have asymmetric envelops induced by the dispersion
nature of Lamb waves. Thus, the asymmetric Gaussian Chirplet is designed for decomposition
the dispersive Lamb waves signal benefiting from its specific designed windows.

Matching pursuit algorithm is a highly adaptive signal decomposition and approximation
method for de-noising, wave parameter estimation and feature extraction [86, 87], while it
does not provide the best approximation to signal by a linear combination of atoms from a
dictionary or a sub-type of kernel function. Actually, many parameters need to be estimated in
each iteration step to get a best approximant, it is an NP-hard problem. Therefore, a suitable
parameter evaluation algorithm is very important for signal decomposition algorithms. The
successive parameters estimation algorithm [88] and the fast ridge pursuit algorithm [82] are
most used algorithms for estimation of the atom parameter. In each iteration of the pursuit, the
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best atom is first selected, and then, its scale and the chirp rate are locally optimized so as to get
a ‘good’ chirp atom. While the successive parameter estimation is a suboptimal method. The
error in one parameter estimate due to noise will induce errors in estimation of other param-
eters. Zeng et al. [89] combined the adaptive Chirplet transform and the time-varying band-
pass filtering provides a methodology for extracting interest waveforms from the overall Lamb
wave signals.

3.3. Temperature effect compensation techniques

The signals received under a vibration of temperature condition can be expressed as [90, 91].

u t;T0 þ δTð Þ ¼
XN

j¼1

ajsj t� tjβ δTð Þ� �
, (15)

where aj, sj and tj are the amplitude, the waveform and the arrival time of the jth wave packet
respectively, β(δT) is the shift in arrival times of wave packets in each time-trace with respect to
their values at an arbitrary fixed temperature, β ¼ 1� δT � cgkp=c2p, kp is the change in phase

velocity with temperature.

The optimal baseline selection (OBS) and the baseline signal stretch (BSS) are widely studied
[92] for elimination the temperature effect in Lamb waves based structure integrity evaluation.
In OBS technique, a pre-built database under different temperatures is built. The process for
OBS includes (1) recording a set of baseline waveforms from the intact specimen at tempera-
tures spanning the expected operating range; (2) selecting a waveform from the baseline set,
which the temperature is the closest to the measured signal; (3) adjusting the baseline wave-
form to best match the signal, then calculating an error parameter between the signal and the
adjusting waveform and (4) comparing these parameters with a threshold to determine the
structural status. A large number of baselines data are needed even for small temperature
steps to ensure the accuracy of the extracted defects waveforms that increase computational
and memory costs. Meanwhile the damage manifests itself and the noise will rise the OBS
error [93]. Wang et al. [94] combined the OBS and the adaptive filter to compensate the
temperature variations. The simplistic representation of the signal and the choice of activation
function are the main limitations of this technology. BSS modified a single baseline time-trace
to match the field time-trace to compensate the temperature effect. In BSS, the time-axis of the
baseline time-trace is stretched by a stretch factor to yield a new time-trace, while the BBS is
strongly dependent on the mode purity and structural complexity. The OBS and the BBS can be
combined to form a robust temperature compensation strategy [90, 95]. The reduction in the
number of baselines in the database is limited by the maximum temperature gap between
baselines, which can be compensated for by the optimal stretch without loss of sensitivity; this
is a function of mode purity, signal complexity and the maximum propagation distance to
cover the whole structure expressed in wavelengths [96]. Their formula are

um t;Tmð Þ ¼
XN

j¼1

amj s
m
j t� tmj β δTmð Þ
h i

, OBSð Þ (16)
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where ζ is the linear chirp rate, ϕ is the phase, a is the amplitude, α is the decay rate controlling
the signal bandwidth, r is the asymmetry factor controlling the skewness of the window and
tanh(κt) is hyperbolic tangent function of order κ, a positive constant integer. The detail
description of Eq. (11) is given in Refs [81, 82]. Gabor transform and the Chirplet transform
projects a signal energy distribution in a time-frequency plane, which does not induce inter-
ference terms [83]. An important advantage of such analysis is to provide highly concentrated
time-frequency representation with signal-dependent resolution. Especially for the latter one,
there are many parameters adaptively adjusted for an accuracy mapping the signal features,
including the center frequency, arrival time, duration and frequency-varying characteristics.
These two algorithms can also be used for decomposition of the overlapping waveforms.

The signal decomposition is based on a reasonable assumption that a signal can be expressed
as a sum of several wave packets, as shown in Eq. (14).

u tð Þ ¼
XN�1

n¼0

Rnu; gγn
D E

gγn þ RNu, (13)

where u(x,t) is the signal received at x that contains the first arrival waves, the echoes from the
edges of plates and the defects; RNu is the residual term; N is the number of iterations; gγn is the
matching atoms that fit to the residual term Rnu, which is the residual left after subtracting results
of previous iterations; gγi is the atoms in a pre-built over-complete dictionary or a sub-type of a
kernel function. The derivation processes of parameters Rnu and gγn can be expressed as

R0u ¼ u tð Þ
Rnþ1u ¼ RNu� Rnu; gγn

D E
gγn

gγn ¼ arg max
gγi ∈D

Rnu; gγi
D E���

���
:

8>>>><
>>>>:

(14)

In the process of the wave packets decomposition, the atoms can be selected from a pre-built
dictionary or sub-type of a kernel function. The dictionary can be built based on the pre-analysis
of the excitation [84], the interaction between Lamb waves and defects [85], etc. Mallat et al. [86]
introduced the matching pursuit with time-frequency dictionaries. The decomposition based the
Gabor transform and the Gaussian Chirplet transform are suitable for the signals with symmetric
envelops, while the sensing signals often have asymmetric envelops induced by the dispersion
nature of Lamb waves. Thus, the asymmetric Gaussian Chirplet is designed for decomposition
the dispersive Lamb waves signal benefiting from its specific designed windows.

Matching pursuit algorithm is a highly adaptive signal decomposition and approximation
method for de-noising, wave parameter estimation and feature extraction [86, 87], while it
does not provide the best approximation to signal by a linear combination of atoms from a
dictionary or a sub-type of kernel function. Actually, many parameters need to be estimated in
each iteration step to get a best approximant, it is an NP-hard problem. Therefore, a suitable
parameter evaluation algorithm is very important for signal decomposition algorithms. The
successive parameters estimation algorithm [88] and the fast ridge pursuit algorithm [82] are
most used algorithms for estimation of the atom parameter. In each iteration of the pursuit, the
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best atom is first selected, and then, its scale and the chirp rate are locally optimized so as to get
a ‘good’ chirp atom. While the successive parameter estimation is a suboptimal method. The
error in one parameter estimate due to noise will induce errors in estimation of other param-
eters. Zeng et al. [89] combined the adaptive Chirplet transform and the time-varying band-
pass filtering provides a methodology for extracting interest waveforms from the overall Lamb
wave signals.

3.3. Temperature effect compensation techniques

The signals received under a vibration of temperature condition can be expressed as [90, 91].

u t;T0 þ δTð Þ ¼
XN

j¼1

ajsj t� tjβ δTð Þ� �
, (15)

where aj, sj and tj are the amplitude, the waveform and the arrival time of the jth wave packet
respectively, β(δT) is the shift in arrival times of wave packets in each time-trace with respect to
their values at an arbitrary fixed temperature, β ¼ 1� δT � cgkp=c2p, kp is the change in phase

velocity with temperature.

The optimal baseline selection (OBS) and the baseline signal stretch (BSS) are widely studied
[92] for elimination the temperature effect in Lamb waves based structure integrity evaluation.
In OBS technique, a pre-built database under different temperatures is built. The process for
OBS includes (1) recording a set of baseline waveforms from the intact specimen at tempera-
tures spanning the expected operating range; (2) selecting a waveform from the baseline set,
which the temperature is the closest to the measured signal; (3) adjusting the baseline wave-
form to best match the signal, then calculating an error parameter between the signal and the
adjusting waveform and (4) comparing these parameters with a threshold to determine the
structural status. A large number of baselines data are needed even for small temperature
steps to ensure the accuracy of the extracted defects waveforms that increase computational
and memory costs. Meanwhile the damage manifests itself and the noise will rise the OBS
error [93]. Wang et al. [94] combined the OBS and the adaptive filter to compensate the
temperature variations. The simplistic representation of the signal and the choice of activation
function are the main limitations of this technology. BSS modified a single baseline time-trace
to match the field time-trace to compensate the temperature effect. In BSS, the time-axis of the
baseline time-trace is stretched by a stretch factor to yield a new time-trace, while the BBS is
strongly dependent on the mode purity and structural complexity. The OBS and the BBS can be
combined to form a robust temperature compensation strategy [90, 95]. The reduction in the
number of baselines in the database is limited by the maximum temperature gap between
baselines, which can be compensated for by the optimal stretch without loss of sensitivity; this
is a function of mode purity, signal complexity and the maximum propagation distance to
cover the whole structure expressed in wavelengths [96]. Their formula are

um t;Tmð Þ ¼
XN

j¼1

amj s
m
j t� tmj β δTmð Þ
h i

, OBSð Þ (16)
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bu t;T0;bβ
� �

¼ u t=bβ;T0

� �
¼
XN

j¼1

ajsj t=bβ � tj
� �

, BSSð Þ (17)

where um is the mth time-trace from the baseline dataset, Tm= T0+δTm refers to as the baseline
dataset and β(δTm) is the fractional shift in arrival times of wave packets in each time-trace

with respect to their values at an arbitrary fixed temperature. bβ is a stretch factor to yield a new

time-trace bu t;T0;bβ
� �

.

Other techniques have been proposed for compensation the temperature effect. Physics-based
approach builds the compensation data through analyzing the temperature effect on the
structures and transducers [97]. This approach needs to train with prior data, which are always
unavailable. Fendzi et al. [98] presented a data-driven temperature compensation approach,
which considers a representation of the piezo-sensor signal through its Hilbert transform that
allows one to extract the amplitude factor and the phase shift in signals, while its compensa-
tion accuracy depends on the length of the time window that should be considered in the
temperature compensation parameters estimation. Liu et al. [99] proposed a baseline signal
reconstruction technique in which the Hilbert transform is used to compensate the phase of
baseline signals and the orthogonal matching pursuit is used to compensate the amplitude of
baseline signal. Dao et al. [100] combined the cointegration technique and fractal signal
processing to effective removal of undesired multiple temperature trends in Lamb waves
signals. The former technique relies on the analysis of non-stationary behavior, whereas the
latter brings the concept of multi-resolution wavelet decomposition of time series. While the
self-similar pattern of cointegration residuals will be broken when damage is present.

4. Summary and conclusions

Lamb waves are a type of elastic waves propagating in plate-like structures that have been
widely studied for defects location, sizing and recognition during the past decades. The
detection or monitoring system settings, the transducers, the nature of Lamb waves, the
environment and operational condition are three key factors influence Lamb waves emitting
and sensing, and further decide the design and the performance of signal processing tech-
niques. Considering the important roles of transducers and the signal processing techniques in
Lamb waves based structure integrity evaluation, various transducers and signal processing
technologies are proposed and developed, and that are briefly reviewed in this chapter.

1. The transducers for Lamb waves emitting and sensing in structure integrity evaluation are
mainly based on three types of transduce mechanisms, including piezoelectric effect,
electromagnetic acoustic transducer mechanism and laser ultrasonic technique. Piezoelec-
tric transducers, EMAT and laser ultrasonic systems are mostly used for Lamb waves
emitting and sensing in structure integrity evaluation. The PWAT, IDTs, the air-coupled
transducers are designed with the piezoelectric materials that has high energy conversion
efficiency. EMATs are working under electromagnetic acoustic transducer mechanism,
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including Lorentz force, magnetostriction mechanism and magnetizing force. Through
adjusting the configuration of the permanent magnets, coils, EMATs can used for rela-
tively pure Lamb waves modes emitting and sensing at specific frequency, including the A
modes, S modes. Laser ultrasonic systems commonly consist of a laser transmitter, a laser
receiver and a laser demodulator and are very complex systems that designed with the
shearography and the laser vibrometer techniques. In the structure integrity evaluation,
the system works under the thermoelastic regime, not the ablation regime, for emitting
Lamb waves without the hurt of structure. Through scanning the surface of the plates, the
full wavefield Lamb waves can be acquired with the laser ultrasonic system.

2. The waveform modulation techniques, multi-scale analysis techniques and temperature
effect compensation techniques are developed to optimize the resolution and interpretabil-
ity of received Lamb waves signals. Among them, the waveform modulation techniques
are used to acquire signals that have more regular waveforms through modulating the
phase parameters or the excitation waveforms based on the Lamb waves dispersion
principle and the δ-like waveform response of specific waves. After the process, the ToF
and the scatterers echoes can be analyzed easily. During the process of the time
recompression technique, the time-distance mapping technique, the spectral warping tech-
nique and the wideband dispersion reversal technique, the propagation should be known
that limits their application potentials. The nonlinear wavenumber linearization technique
can realize dispersion compensation without the propagation distance parameter. Pulse
compression technique also attracts many attentions for generating that high improve the
resolution of the received signals, but it still exists many challenges for field application.
TR technique is built with the acoustic reciprocity principle for dispersion compensation
and damage feature extraction and is easily realized in applications, while it often cannot
get ideal dispersion compensation results. It is more suitable for defects feature extraction
in Lamb waves defects detection.

3. Multi-scale analysis techniques are performed through mapping a signal into a multi-
parameters data space with a function transform or matching pursuit operation. The
transforms based on a kernel function include STFT, CWT, DWT, Gabor transform,
Chirplet transform and asymmetric Gaussian Chirplet transform that have been used for
time-frequency analysis and overlapping wave packets decomposition. Among them, the
wavelet transforms and the Chirplet-based transforms are more attractive as their flexible
and more parameter adjusting probability in signal processing. Particularly for the asym-
metric Gaussian Chirplet transform has the ability for accuracy decompose the signals
with the dispersion characteristics. The dictionary based on overlapping waveforms
decomposition techniques is also very attractive. The OBS, the BBS and physics-based
approaches are proposed for compensating the temperature effect. OBS is performed with
a pre-built database under different temperatures where large number of baseline data are
acquired under various temperature conditions. In BSS, the time-axis of the baseline time-
trace is stretched by a stretch factor to yield a new time-trace, but it is sensitive to the
resolution and the interpretability of Lamb wave signals. The combination of the OBS and
BSS can effectively eliminate the shortage in both of the algorithms and have a robust
performance in temperature effect compensation. Physics-based approach realizes the
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bu t;T0;bβ
� �

¼ u t=bβ;T0

� �
¼
XN

j¼1

ajsj t=bβ � tj
� �

, BSSð Þ (17)

where um is the mth time-trace from the baseline dataset, Tm= T0+δTm refers to as the baseline
dataset and β(δTm) is the fractional shift in arrival times of wave packets in each time-trace

with respect to their values at an arbitrary fixed temperature. bβ is a stretch factor to yield a new

time-trace bu t;T0;bβ
� �

.

Other techniques have been proposed for compensation the temperature effect. Physics-based
approach builds the compensation data through analyzing the temperature effect on the
structures and transducers [97]. This approach needs to train with prior data, which are always
unavailable. Fendzi et al. [98] presented a data-driven temperature compensation approach,
which considers a representation of the piezo-sensor signal through its Hilbert transform that
allows one to extract the amplitude factor and the phase shift in signals, while its compensa-
tion accuracy depends on the length of the time window that should be considered in the
temperature compensation parameters estimation. Liu et al. [99] proposed a baseline signal
reconstruction technique in which the Hilbert transform is used to compensate the phase of
baseline signals and the orthogonal matching pursuit is used to compensate the amplitude of
baseline signal. Dao et al. [100] combined the cointegration technique and fractal signal
processing to effective removal of undesired multiple temperature trends in Lamb waves
signals. The former technique relies on the analysis of non-stationary behavior, whereas the
latter brings the concept of multi-resolution wavelet decomposition of time series. While the
self-similar pattern of cointegration residuals will be broken when damage is present.

4. Summary and conclusions

Lamb waves are a type of elastic waves propagating in plate-like structures that have been
widely studied for defects location, sizing and recognition during the past decades. The
detection or monitoring system settings, the transducers, the nature of Lamb waves, the
environment and operational condition are three key factors influence Lamb waves emitting
and sensing, and further decide the design and the performance of signal processing tech-
niques. Considering the important roles of transducers and the signal processing techniques in
Lamb waves based structure integrity evaluation, various transducers and signal processing
technologies are proposed and developed, and that are briefly reviewed in this chapter.

1. The transducers for Lamb waves emitting and sensing in structure integrity evaluation are
mainly based on three types of transduce mechanisms, including piezoelectric effect,
electromagnetic acoustic transducer mechanism and laser ultrasonic technique. Piezoelec-
tric transducers, EMAT and laser ultrasonic systems are mostly used for Lamb waves
emitting and sensing in structure integrity evaluation. The PWAT, IDTs, the air-coupled
transducers are designed with the piezoelectric materials that has high energy conversion
efficiency. EMATs are working under electromagnetic acoustic transducer mechanism,
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including Lorentz force, magnetostriction mechanism and magnetizing force. Through
adjusting the configuration of the permanent magnets, coils, EMATs can used for rela-
tively pure Lamb waves modes emitting and sensing at specific frequency, including the A
modes, S modes. Laser ultrasonic systems commonly consist of a laser transmitter, a laser
receiver and a laser demodulator and are very complex systems that designed with the
shearography and the laser vibrometer techniques. In the structure integrity evaluation,
the system works under the thermoelastic regime, not the ablation regime, for emitting
Lamb waves without the hurt of structure. Through scanning the surface of the plates, the
full wavefield Lamb waves can be acquired with the laser ultrasonic system.

2. The waveform modulation techniques, multi-scale analysis techniques and temperature
effect compensation techniques are developed to optimize the resolution and interpretabil-
ity of received Lamb waves signals. Among them, the waveform modulation techniques
are used to acquire signals that have more regular waveforms through modulating the
phase parameters or the excitation waveforms based on the Lamb waves dispersion
principle and the δ-like waveform response of specific waves. After the process, the ToF
and the scatterers echoes can be analyzed easily. During the process of the time
recompression technique, the time-distance mapping technique, the spectral warping tech-
nique and the wideband dispersion reversal technique, the propagation should be known
that limits their application potentials. The nonlinear wavenumber linearization technique
can realize dispersion compensation without the propagation distance parameter. Pulse
compression technique also attracts many attentions for generating that high improve the
resolution of the received signals, but it still exists many challenges for field application.
TR technique is built with the acoustic reciprocity principle for dispersion compensation
and damage feature extraction and is easily realized in applications, while it often cannot
get ideal dispersion compensation results. It is more suitable for defects feature extraction
in Lamb waves defects detection.

3. Multi-scale analysis techniques are performed through mapping a signal into a multi-
parameters data space with a function transform or matching pursuit operation. The
transforms based on a kernel function include STFT, CWT, DWT, Gabor transform,
Chirplet transform and asymmetric Gaussian Chirplet transform that have been used for
time-frequency analysis and overlapping wave packets decomposition. Among them, the
wavelet transforms and the Chirplet-based transforms are more attractive as their flexible
and more parameter adjusting probability in signal processing. Particularly for the asym-
metric Gaussian Chirplet transform has the ability for accuracy decompose the signals
with the dispersion characteristics. The dictionary based on overlapping waveforms
decomposition techniques is also very attractive. The OBS, the BBS and physics-based
approaches are proposed for compensating the temperature effect. OBS is performed with
a pre-built database under different temperatures where large number of baseline data are
acquired under various temperature conditions. In BSS, the time-axis of the baseline time-
trace is stretched by a stretch factor to yield a new time-trace, but it is sensitive to the
resolution and the interpretability of Lamb wave signals. The combination of the OBS and
BSS can effectively eliminate the shortage in both of the algorithms and have a robust
performance in temperature effect compensation. Physics-based approach realizes the
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compensation through analysis the temperature effect on the structures and the trans-
ducers that is time consuming for field application.
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compensation through analysis the temperature effect on the structures and the trans-
ducers that is time consuming for field application.
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Abstract

The wavefield of Lamb waves is yielded by the feature of plate-like structures. And many
defects imaging techniques and intelligent recognition algorithms have been developed
for defects location, sizing and recognition through analyzing the parameters of received
Lamb waves signals including the arrival time, attenuation, amplitude and phase, etc. In
this chapter, we give a briefly review about the defects imaging techniques and the
intelligent recognition algorithms. Considering the available parameters of Lamb waves
signals and the setting of detection/monitoring systems, we roughly divide the defect
location and sizing techniques into four categories, including the sparse array imaging
techniques, the tomography techniques, the compact array techniques, and full wavefield
imaging techniques. The principle of them is introduced. Meanwhile, the intelligent rec-
ognition techniques based on various of intelligent recognition algorithms that have been
widely used to analyze Lamb waves signals in the research of defect recognition are
reviewed, including the support vector machine, Bayesian methodology, and the neural
networks.

Keywords: Lamb waves, plate, defect imaging techniques, intelligent detection algorithm,
structural integrity evaluation

1. Introduction

The propagation characteristic of Lamb waves is yielded by the state of plate-like structures.
Defect scattering waveforms are generated as the interaction between Lamb waves and
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defects, and that may be contained in received Lamb waves signals during the Lamb waves
structural integrity evaluation. To clearly show out the state of the structures, many kinds of
defect imaging and recognition techniques are proposed for analyzing the change of the signal
parameters based on the settings of detection/monitoring systems during the past decades. In
laboratory and practical field applications of Lamb waves based structure integrity evaluation,
the detection/monitoring systems have two basic setting strategies. Firstly, Lamb waves signals
are emitted and sensed at relatively small number of spatially distributed position by trans-
ducers that have the same or different transduction mechanisms. These positions are maybe
distributed in sparse (adjacent transducer spacing is larger than the largest wavelength of
signals) or compact (adjacent transducer spacing is shorter than the shortest wavelength of
signals) array forms. Collaborative with different signal excitation and detection strategies,
signal processing techniques are developed for integrity detection/monitoring in the whole
structure. The other strategy is a full-scale scanning of the surface of structures with laser
ultrasonic systems, air-coupled scanning systems, to obtain the full wavefield of Lamb waves.
On the basis of the above detection/monitoring system setting strategies, Lamb waves signals
used for damage detection/monitoring are obtained. Then, signal processing techniques are
adopted to analyze the change of signal parameters to extract the damage information such as
the amplitudes, velocity, phase, frequency, etc. Finally, defect influence maps and intelligent
recognition models that indicating defect information are achieved with imaging and recogni-
tion techniques.

In this chapter, the defect imaging techniques and intelligent recognition techniques are briefly
reviewed. Considering the settings of detection/monitoring system, we roughly divide the
defect imaging algorithms into four categories: spare array imaging techniques, tomography
techniques, compact array imaging techniques, and full wavefield imaging techniques. The
basic principle of them is introduced in Section 2. In Section 3, the intelligent recognition
techniques used to process Lamb waves signals and defect feature recognition are introduced.
Finally, a short summary and conclusion are provided.

2. Defect imaging techniques

When a set of Lamb waves signals are received at spatially distributed positions, the tech-
niques map the received time-domain signals that have or have not been processed with the
signal optimization techniques into a 2D or 3D space-domain based on the ToF or beam
directivity for defect location (sizing are termed the defect imaging techniques). Considering
the distribution of the signal received position, we roughly divide these techniques into four
categories: sparse array imaging techniques, tomography techniques, compact array imaging
techniques, and full wavefield imaging techniques.

2.1. Sparse array imaging techniques

In a sparse array, the adjacent transducers are far separated from each other that provide
higher coverage with fewer transducers at the cost of imaging resolution. Discrete ellipse
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imaging technique [1, 2] and the hyperbola imaging technique [3] are ToF imaging algorithms
and map the amplitude information of scattering signals to elliptical trajectory and hyperbola
trajectory, respectively. Their calculation formulas are expressed as

tij ¼
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In the process, the previously recorded baseline data are subtracted from the field-sensing
signals. Then, the pixel intensity is determined by calculating the amplitude information
contained in the combined backward signals. Both of the algorithms have full summation form
and full multiplication form and can be expressed as

I x; yð Þ ¼
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where N is the number of transducers, sij is the amplitude information of scattering signals, tij
is the arrival time of scattering signals. The quality of image produced improves rapidly with
the increase of the transducer number.

The window-modulated ellipse imaging algorithm is proposed in Ref. [4]. Many auxiliary
signal processing techniques are developed for enhancing the imaging performance, such as
the scattering signal normalization to eliminate the different path sensitivity to damage and
extract damage information with the complex Morlet wavelet coefficient [5], the temperature
effect compensation technique to ensure the detection quality [6], consideration of the velocity
directionality [2], and damage information extraction with statistical method [7, 8].

2.2. Tomography techniques

Tomography technique works with specific designed transducer array to reconstruct a physi-
cal quantity in a cross-sectional area by analyzing Lamb waves attenuation, velocity, and mode
conversion from the projection of the quantity in all directions. There are three classical
transducer configuration existed in tomographic detection, parallel tomography, fan beam
tomography, and crosshole tomography [9]. Figure 1 plots the typical spatial distributions of
transducers working with different tomography mechanisms in which the parallel array work-
ing with a parallel tomography at 0�, circular array working with fan beam tomography at 0�,
and square array working with crosshole tomography are shown in Figure 1(a), (b) and (c),
respectively. In the parallel array, the transducers are scanned along parallel lines. Once the
pitch-catch measurements for each ray in an individual orientation have been taken, the
sample is rotated by a fixed amount and the measurement is repeated. The ray density is

Application and Challenges of Signal Processing Techniques for Lamb Waves Structural Integrity Evaluation…
http://dx.doi.org/10.5772/intechopen.79475

89



defects, and that may be contained in received Lamb waves signals during the Lamb waves
structural integrity evaluation. To clearly show out the state of the structures, many kinds of
defect imaging and recognition techniques are proposed for analyzing the change of the signal
parameters based on the settings of detection/monitoring systems during the past decades. In
laboratory and practical field applications of Lamb waves based structure integrity evaluation,
the detection/monitoring systems have two basic setting strategies. Firstly, Lamb waves signals
are emitted and sensed at relatively small number of spatially distributed position by trans-
ducers that have the same or different transduction mechanisms. These positions are maybe
distributed in sparse (adjacent transducer spacing is larger than the largest wavelength of
signals) or compact (adjacent transducer spacing is shorter than the shortest wavelength of
signals) array forms. Collaborative with different signal excitation and detection strategies,
signal processing techniques are developed for integrity detection/monitoring in the whole
structure. The other strategy is a full-scale scanning of the surface of structures with laser
ultrasonic systems, air-coupled scanning systems, to obtain the full wavefield of Lamb waves.
On the basis of the above detection/monitoring system setting strategies, Lamb waves signals
used for damage detection/monitoring are obtained. Then, signal processing techniques are
adopted to analyze the change of signal parameters to extract the damage information such as
the amplitudes, velocity, phase, frequency, etc. Finally, defect influence maps and intelligent
recognition models that indicating defect information are achieved with imaging and recogni-
tion techniques.

In this chapter, the defect imaging techniques and intelligent recognition techniques are briefly
reviewed. Considering the settings of detection/monitoring system, we roughly divide the
defect imaging algorithms into four categories: spare array imaging techniques, tomography
techniques, compact array imaging techniques, and full wavefield imaging techniques. The
basic principle of them is introduced in Section 2. In Section 3, the intelligent recognition
techniques used to process Lamb waves signals and defect feature recognition are introduced.
Finally, a short summary and conclusion are provided.

2. Defect imaging techniques

When a set of Lamb waves signals are received at spatially distributed positions, the tech-
niques map the received time-domain signals that have or have not been processed with the
signal optimization techniques into a 2D or 3D space-domain based on the ToF or beam
directivity for defect location (sizing are termed the defect imaging techniques). Considering
the distribution of the signal received position, we roughly divide these techniques into four
categories: sparse array imaging techniques, tomography techniques, compact array imaging
techniques, and full wavefield imaging techniques.

2.1. Sparse array imaging techniques

In a sparse array, the adjacent transducers are far separated from each other that provide
higher coverage with fewer transducers at the cost of imaging resolution. Discrete ellipse
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imaging technique [1, 2] and the hyperbola imaging technique [3] are ToF imaging algorithms
and map the amplitude information of scattering signals to elliptical trajectory and hyperbola
trajectory, respectively. Their calculation formulas are expressed as
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In the process, the previously recorded baseline data are subtracted from the field-sensing
signals. Then, the pixel intensity is determined by calculating the amplitude information
contained in the combined backward signals. Both of the algorithms have full summation form
and full multiplication form and can be expressed as
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where N is the number of transducers, sij is the amplitude information of scattering signals, tij
is the arrival time of scattering signals. The quality of image produced improves rapidly with
the increase of the transducer number.

The window-modulated ellipse imaging algorithm is proposed in Ref. [4]. Many auxiliary
signal processing techniques are developed for enhancing the imaging performance, such as
the scattering signal normalization to eliminate the different path sensitivity to damage and
extract damage information with the complex Morlet wavelet coefficient [5], the temperature
effect compensation technique to ensure the detection quality [6], consideration of the velocity
directionality [2], and damage information extraction with statistical method [7, 8].

2.2. Tomography techniques

Tomography technique works with specific designed transducer array to reconstruct a physi-
cal quantity in a cross-sectional area by analyzing Lamb waves attenuation, velocity, and mode
conversion from the projection of the quantity in all directions. There are three classical
transducer configuration existed in tomographic detection, parallel tomography, fan beam
tomography, and crosshole tomography [9]. Figure 1 plots the typical spatial distributions of
transducers working with different tomography mechanisms in which the parallel array work-
ing with a parallel tomography at 0�, circular array working with fan beam tomography at 0�,
and square array working with crosshole tomography are shown in Figure 1(a), (b) and (c),
respectively. In the parallel array, the transducers are scanned along parallel lines. Once the
pitch-catch measurements for each ray in an individual orientation have been taken, the
sample is rotated by a fixed amount and the measurement is repeated. The ray density is
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uniform for parallel projection tomography within the scanning region that is critical to the
quality of the reconstruction. Crosshole configuration is a fast and practical alternative to the
parallel-projection scheme in which transducers surround the detection zone to improve the
ray density. The classical tomographic image reconstruction algorithms have the probabilistic
reconstruction algorithms, transform methods, and iteration-based algorithms.

The probabilistic reconstruction algorithms (PRAs) are processed with the probabilistic statistical
techniques to analyze the difference among the parameters for all the rays, including the ToF,
waveforms, and energy [10]. The PRA has the flexibility in array geometry selection that can
realize good reconstruction quality in fast speed. In the analysis, the ray theory needs to satisfy
two validity criteria: the geometry size of the defect must be larger than the wavelength and
larger than the width of the Fresnel zone. The waveform overlapping caused by reflection echoes
of multidefects may make the TOF calculation inaccurate and fail the ray theory. The probabilis-
tic inspection of damage (RAPID) [11, 12] method is a typical PRA that has been studied in Lamb
waves based structure integrity evaluation in which variable shape factor is used for irregular
shape defect imaging [13]. Keulen et al. [14] introduced the damage progression history into
RAPID for composite structure detection. Sheen et al. [15] modified the shape factor, β, of RAPID
algorithm to quantify a defect area. The expressions of the RAPID algorithm are

IRAPID x; yð Þ ¼
XN
n¼1

1� rijn x; yð Þ� �
Wn Rij

n x; yð Þ� �
, (3)
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� �2r � 1, (5)

where IRAPID x; yð Þ is the pixel value in the imaging zone, r is the zero-lag cross correlation
between the baseline data and the received signals, Wn is the weighted distribution function, n

Figure 1. Typical spatial distributions of transducers working with different tomography mechanisms. (a) Parallel array
working with a parallel tomography at 0�, (b) circular array working with fan beam tomography at 0�, and (c) square
array working with crosshole tomography.
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is the path number of the pitch-catch transducers numbered as i and j, respectively, Rij
n x; yð Þ is

related to both the distance from point (x, y) to the two transducers for excitation (xi, yi) and
sensing (xj, yj) and the distance between the two transducers, β controls the size of the ellipse
and β > 1. If β is too small, then artifacts will be introduced. If it is too large, the resolution will
be lost. Usually, β is setting around 1.05 [16]. The technique for relative relationship calculation
algorithms can be used to acquire the value of r, such as correlation coefficient method, time
reversal method, baseline subtraction method, etc. More damage index calculation methods
are reviewed in [17].

Filtered back-projection (FBP) combines the back-projection and the filter based on the Radon
transform and Fourier slice theorem. Only with a circular sensor array, FBP method has
efficiency of reconstruction and incomplete datasets, and unfortunately is sensitive to noise. It
is essential to form a complete set of projections from many directions. Its formulas can be
expressed as

IFBP x; yð Þ ¼
ð2π
0

ðþ∞

-∞
F ω;θð Þei2πω xcosθþysinθð Þωdωdθ ¼

ðπ
0
Qθ tð Þdθ, (6)

Qθ tð Þ ¼
ðþ∞

�∞
F ω;θð Þei2πωt ωj jdω, (7)

where IFBP(x,y) is the pixel value in the imaging zone, F(ω,θ) is the spatial Fourier transform of
a line integral of the attenuation f(x,y) in a polar coordinate system o-θ, Qθ(t) is called a filtered
projection because it represents a spatial frequency filtering operation, in which the filter
response is |ω|. Every point (x,y) in the image plane is contributed by a value Qθ(t) from all
direction θ. For a given direction θ, the function Qθ(t) is a constant on the line AB, where t is
fixed as shown in Figure 2(a). This is equivalent to saying that the filtered projection function
Qθ(t), which is obtained from angle θ and position t, is back-projected along the initial projec-
tion direction over the image plane.

Figure 2. Principle of fan beam projection and algebraic reconstruction technique. (a) Principle of the filtered back-
projection method and (b) situation of the ith path crossing the specimen.
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uniform for parallel projection tomography within the scanning region that is critical to the
quality of the reconstruction. Crosshole configuration is a fast and practical alternative to the
parallel-projection scheme in which transducers surround the detection zone to improve the
ray density. The classical tomographic image reconstruction algorithms have the probabilistic
reconstruction algorithms, transform methods, and iteration-based algorithms.

The probabilistic reconstruction algorithms (PRAs) are processed with the probabilistic statistical
techniques to analyze the difference among the parameters for all the rays, including the ToF,
waveforms, and energy [10]. The PRA has the flexibility in array geometry selection that can
realize good reconstruction quality in fast speed. In the analysis, the ray theory needs to satisfy
two validity criteria: the geometry size of the defect must be larger than the wavelength and
larger than the width of the Fresnel zone. The waveform overlapping caused by reflection echoes
of multidefects may make the TOF calculation inaccurate and fail the ray theory. The probabilis-
tic inspection of damage (RAPID) [11, 12] method is a typical PRA that has been studied in Lamb
waves based structure integrity evaluation in which variable shape factor is used for irregular
shape defect imaging [13]. Keulen et al. [14] introduced the damage progression history into
RAPID for composite structure detection. Sheen et al. [15] modified the shape factor, β, of RAPID
algorithm to quantify a defect area. The expressions of the RAPID algorithm are
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where IRAPID x; yð Þ is the pixel value in the imaging zone, r is the zero-lag cross correlation
between the baseline data and the received signals, Wn is the weighted distribution function, n

Figure 1. Typical spatial distributions of transducers working with different tomography mechanisms. (a) Parallel array
working with a parallel tomography at 0�, (b) circular array working with fan beam tomography at 0�, and (c) square
array working with crosshole tomography.
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is the path number of the pitch-catch transducers numbered as i and j, respectively, Rij
n x; yð Þ is

related to both the distance from point (x, y) to the two transducers for excitation (xi, yi) and
sensing (xj, yj) and the distance between the two transducers, β controls the size of the ellipse
and β > 1. If β is too small, then artifacts will be introduced. If it is too large, the resolution will
be lost. Usually, β is setting around 1.05 [16]. The technique for relative relationship calculation
algorithms can be used to acquire the value of r, such as correlation coefficient method, time
reversal method, baseline subtraction method, etc. More damage index calculation methods
are reviewed in [17].

Filtered back-projection (FBP) combines the back-projection and the filter based on the Radon
transform and Fourier slice theorem. Only with a circular sensor array, FBP method has
efficiency of reconstruction and incomplete datasets, and unfortunately is sensitive to noise. It
is essential to form a complete set of projections from many directions. Its formulas can be
expressed as

IFBP x; yð Þ ¼
ð2π
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where IFBP(x,y) is the pixel value in the imaging zone, F(ω,θ) is the spatial Fourier transform of
a line integral of the attenuation f(x,y) in a polar coordinate system o-θ, Qθ(t) is called a filtered
projection because it represents a spatial frequency filtering operation, in which the filter
response is |ω|. Every point (x,y) in the image plane is contributed by a value Qθ(t) from all
direction θ. For a given direction θ, the function Qθ(t) is a constant on the line AB, where t is
fixed as shown in Figure 2(a). This is equivalent to saying that the filtered projection function
Qθ(t), which is obtained from angle θ and position t, is back-projected along the initial projec-
tion direction over the image plane.

Figure 2. Principle of fan beam projection and algebraic reconstruction technique. (a) Principle of the filtered back-
projection method and (b) situation of the ith path crossing the specimen.
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The key to FBP tomographic image is the Fourier slice theorem that relates the measured
projection data to the 2D Fourier transform of the object cross section. Wright et al. [18] used
the FBP technique to image defects in isotropic and anisotropic plates of different materials
using air-coupled Lamb wave tomography. Mokhtari et al. [19] proposed a polygon recon-
struction technique for polygonal damage shape reconstruction. First, the projections (Radon
transform) of the damaged region are generated from a small number of angles with the aid of
beamforming method. Then, the damaged region is modeled by a polygon, which its optimal
number of vertices is estimated using the minimum description length principle. Finally, using
the polygon reconstruction technique, the coordinates of the vertices are determined. While in
practice, it is not possible to measure a large number of projections in FBP that may induce the
aliasing distortions by insufficiency of the input data, necessary for the transform-based tech-
niques to produce highly accurate results. Researchers developed the interpolated FBP in
which interpolations with respect to sample angle and projection angle based on limit mea-
surements are used to generate the required projection data for the number of sampled grid
values necessary for displaying a well-balanced reconstructed image. Meanwhile, it should
constrain the projection data at a source point to zero when using the interpolation, rather than
using extrapolation to generate projection data. Figure 2(a) plots the principle of the filtered
back-projection method [20]. The formula, Ifan_FBP x; yð Þ, of the fan beam-based FBP can be
expressed as

Ifan_FBP x; yð Þ ¼ 2π
M

XM

i¼1

Qβi γð Þ
L2 x; y; βi
� � , (8)

where Qβi(nα) is the filtered projection along the fan, M is the number of projections, and L is
the distance from the transmitter to the point (x,y). βi is the ith projection angle and γ is the
angle of the fan beam ray passing through the point (x,y).

The algebraic reconstruction technique (ART) starts from an initial guess for the reconstructed
object and then performs a sequence of iterative grid projections and correction back-
projections until the reconstruction has converged. Its formulae are expressed in Eqs. (9)–(11).

Ai�j � xj�1 ¼ bi�1 (9)
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where Ai�j represents the weight of ith path in jth grid, x represents the image results for each
cell, and bi � 1 represents the change of signal feature (correlation) for each path. X(i,j) is the
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attenuation coefficient for ith path in jth grid, and the Lij represents the real length for ith projected
to jth grid. Here, m represents the number of paths and n represents the number of grids.

In the ART, a weight matrix is constructed as a rectangular array whose size is equal to the
number of paths multiplied by the number of grids. From the projections (measured data) and
the weight matrix (created from sensor locations and ray geometry), the field value that maps
the state of the inspection zone (correlation coefficient) is obtained using the ARTmethod. The
iterative solution to the reconstruction problem in ART is constructed by Ladas and Deveaney
[21]. The iteration operation of Eq. (9) is expressed as Eq. (12) [23] in which one equation is
used in each step, and an iteration consists of m steps.

xk,0 ¼ xk

xk, i ¼ xk, i�1 þ λk
bi � aixk, i�1

aik k22
, i ¼ 1, 2,⋯, m

xkþ1 ¼ xk,m

(12)

Though compared with the FBP technique, ART has many advantages including better noise
tolerance and better handling of the insufficiently distributed projection datasets that are
induced by the spare and nonuniformly distributed projection data, it has slow speed due to
iteration process. Wang et al. [22] used the ART to locate and quantify the corrosion damage at
the edge of holes. In order to make the tomographic image describe the real condition of the
damage, a homogenization method was designed to make the image smoother. Improved
tomograms as a result of ART consider the anisotropic and attenuation characteristics of
composite plates [23]. The technique based on the similarity theory is the simultaneous itera-
tive reconstruction technique (SIRT). Malyarenko et al. [24] described the basic principle of
SIRT for Lamb waves tomography that working with travel time data. In the research, the
bend ray routines of a moderately scattered wavefiled was transformed into straight routines
with a ray bending correction technique. The output image from the present straight ray
algorithm serves as an input background for the ray tracing routine. The curved-ray ART then
reconstructs the updated image and feed the next iteration until the desired quality or asymp-
totic behavior is observed. Miller et al. [25] used SIRT to process the multiple-mode Lamb
wave signals for feature extraction of corrosion thinning for autonomous classification of flaw
severity. This technique also termed diffraction tomography (DT) technique incorporates scat-
tering effect into tomographic algorithms in order to improve the image quality and resolution.
Mode conversion frequency occurs on defect boundaries, and dispersion makes all quantities
frequency dependent.

Figure 3 plots the stages of accuracy thickness mapping tomography algorithms. Inhomoge-
neity objects are as small as 5% of the background; multiple scattering can introduce severe
distortions in multicomponent objects [26]. The hybrid algorithm for robust breast ultrasound
tomography (HARBUT) uses the low-resolution bent-ray tomography algorithm as the back-
ground for DT [27] in which bent-ray tomography can be applied initially to obtain a low-
resolution estimate of the velocity field; this then forms the background for the DT method
using the technique outlined above. Meanwhile, the subtraction is not necessary to obtain a
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The key to FBP tomographic image is the Fourier slice theorem that relates the measured
projection data to the 2D Fourier transform of the object cross section. Wright et al. [18] used
the FBP technique to image defects in isotropic and anisotropic plates of different materials
using air-coupled Lamb wave tomography. Mokhtari et al. [19] proposed a polygon recon-
struction technique for polygonal damage shape reconstruction. First, the projections (Radon
transform) of the damaged region are generated from a small number of angles with the aid of
beamforming method. Then, the damaged region is modeled by a polygon, which its optimal
number of vertices is estimated using the minimum description length principle. Finally, using
the polygon reconstruction technique, the coordinates of the vertices are determined. While in
practice, it is not possible to measure a large number of projections in FBP that may induce the
aliasing distortions by insufficiency of the input data, necessary for the transform-based tech-
niques to produce highly accurate results. Researchers developed the interpolated FBP in
which interpolations with respect to sample angle and projection angle based on limit mea-
surements are used to generate the required projection data for the number of sampled grid
values necessary for displaying a well-balanced reconstructed image. Meanwhile, it should
constrain the projection data at a source point to zero when using the interpolation, rather than
using extrapolation to generate projection data. Figure 2(a) plots the principle of the filtered
back-projection method [20]. The formula, Ifan_FBP x; yð Þ, of the fan beam-based FBP can be
expressed as
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where Qβi(nα) is the filtered projection along the fan, M is the number of projections, and L is
the distance from the transmitter to the point (x,y). βi is the ith projection angle and γ is the
angle of the fan beam ray passing through the point (x,y).

The algebraic reconstruction technique (ART) starts from an initial guess for the reconstructed
object and then performs a sequence of iterative grid projections and correction back-
projections until the reconstruction has converged. Its formulae are expressed in Eqs. (9)–(11).

Ai�j � xj�1 ¼ bi�1 (9)

bi�1 ¼
ð

j
X i; jð Þdlij (10)

b1
⋮
bi
⋮
bm

0
BBBBBB@

1
CCCCCCA

¼ k

L11 ⋯ L1j ⋯ L1n
⋮ ⋮ ⋮
Li1 ⋯ Lij Lmj

⋮ ⋮ ⋮
Lm1 ⋯ Lmj ⋯ Lmn

0
BBBBBB@

1
CCCCCCA

x1
⋮
xi
⋮
xm

0
BBBBBB@

1
CCCCCCA

(11)

where Ai�j represents the weight of ith path in jth grid, x represents the image results for each
cell, and bi � 1 represents the change of signal feature (correlation) for each path. X(i,j) is the
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attenuation coefficient for ith path in jth grid, and the Lij represents the real length for ith projected
to jth grid. Here, m represents the number of paths and n represents the number of grids.

In the ART, a weight matrix is constructed as a rectangular array whose size is equal to the
number of paths multiplied by the number of grids. From the projections (measured data) and
the weight matrix (created from sensor locations and ray geometry), the field value that maps
the state of the inspection zone (correlation coefficient) is obtained using the ARTmethod. The
iterative solution to the reconstruction problem in ART is constructed by Ladas and Deveaney
[21]. The iteration operation of Eq. (9) is expressed as Eq. (12) [23] in which one equation is
used in each step, and an iteration consists of m steps.

xk,0 ¼ xk

xk, i ¼ xk, i�1 þ λk
bi � aixk, i�1

aik k22
, i ¼ 1, 2,⋯, m

xkþ1 ¼ xk,m

(12)

Though compared with the FBP technique, ART has many advantages including better noise
tolerance and better handling of the insufficiently distributed projection datasets that are
induced by the spare and nonuniformly distributed projection data, it has slow speed due to
iteration process. Wang et al. [22] used the ART to locate and quantify the corrosion damage at
the edge of holes. In order to make the tomographic image describe the real condition of the
damage, a homogenization method was designed to make the image smoother. Improved
tomograms as a result of ART consider the anisotropic and attenuation characteristics of
composite plates [23]. The technique based on the similarity theory is the simultaneous itera-
tive reconstruction technique (SIRT). Malyarenko et al. [24] described the basic principle of
SIRT for Lamb waves tomography that working with travel time data. In the research, the
bend ray routines of a moderately scattered wavefiled was transformed into straight routines
with a ray bending correction technique. The output image from the present straight ray
algorithm serves as an input background for the ray tracing routine. The curved-ray ART then
reconstructs the updated image and feed the next iteration until the desired quality or asymp-
totic behavior is observed. Miller et al. [25] used SIRT to process the multiple-mode Lamb
wave signals for feature extraction of corrosion thinning for autonomous classification of flaw
severity. This technique also termed diffraction tomography (DT) technique incorporates scat-
tering effect into tomographic algorithms in order to improve the image quality and resolution.
Mode conversion frequency occurs on defect boundaries, and dispersion makes all quantities
frequency dependent.

Figure 3 plots the stages of accuracy thickness mapping tomography algorithms. Inhomoge-
neity objects are as small as 5% of the background; multiple scattering can introduce severe
distortions in multicomponent objects [26]. The hybrid algorithm for robust breast ultrasound
tomography (HARBUT) uses the low-resolution bent-ray tomography algorithm as the back-
ground for DT [27] in which bent-ray tomography can be applied initially to obtain a low-
resolution estimate of the velocity field; this then forms the background for the DT method
using the technique outlined above. Meanwhile, the subtraction is not necessary to obtain a
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good reconstruction, simplifying the process and avoiding these errors. The object function in
HARBUT is divided into two components, the known background component Ob and the
perturbation component Oδ. Since there is no need to run forward models, the speed of the
algorithm is also improved. While the traditional HARBUT relies on having a sufficiently
accurate background reconstruction that should satisfy the Born approximation assumption,
iterating HARBUT uses an existing HARBUT reconstruction as the background for another
HARBUT stage in place of bent-ray tomography, as illustrated in Figure 3(a). At each step, Ob

becomes more accurate, minimizing Oδ and allowing HARBUT to produce more accurate
velocity maps. Through iteration operation of the HARBUT, small and high contrast defects
are successfully imaged. A Gaussian filter is used to smooth the background before the next
iteration, which is a form of regularization. This filter aims to remove as many of the artifacts
from each iteration as possible, while maintaining the true reconstruction values. Full wave-
form inversion (FWI) technique is first developed in geophysics for seismic wave imaging in
which the process also based on a serious of iteration operation. Rao et al. [28] introduced the
FWI in Lamb waves tomography for corrosion mapping. The stages for FWI algorithm is
plotted in Figure 3(b) in which a numerical forward model is used to predict the scattering of

Figure 3. Stages of accuracy thickness mapping tomography algorithms. (a) HARBUT. (b) FWI algorithm.
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Lamb waves through corrosion defects and an iterative inverse model to reconstruct the
corrosion profile. The aim of the tomography is to reconstruct the object function, which is a
mathematical representation of the defect and is formulated in terms of velocity. The FWI
algorithm proceeds from a starting velocity model to refine the velocity model in order to
reduce the residual wavefield between the predicted data by the current model and the
observed data from FE simulations or experiments. The predicted data are obtained by using
frequency-domain finite difference method. It overcomes the limitation imposed by ignoring
crucial low-frequency effects in travel time tomography. The FWI can obtain a resolution of
around 0.7 wavelengths for defects with smooth depth variations from the acoustic modeling
data, and about 1.5�2.0 wavelengths from the elastic modeling data. The defect abrupt change
in the wall thickness has been shown to decrease the reconstruction error of small defects
compared to the smoothly varying thickness, for larger defects with sharper change in thick-
ness, they are more likely to lead to overestimation in depth [29]. FWI allows higher order
diffraction and scattering to be considered in its numerical solver, thus it has the potential to
achieve more accurate inversion results, especially when multiple defects exist.

2.3. Compact array imaging techniques

Phase array (PA) technique and the synthetic aperture (SA) technique are widely performed
based on the compact arrays in which the spacing between the adjacent transducers is shorter
than the wavelength. Figure 4 plots the typical compact arrays used for Lamb waves based
structure integrity evaluation, such as the linear-phased arrays, circular, square, spiral, and
star-shaped arrays [30]. During detection or monitoring, when one of the transducers used as
actuator, Lamb waves signals are captured by all the rest transducers, then next transducer is
chosen and used as actuator and capture the signal data until all the transducers have been

Figure 4. Typical compact arrays used for Lamb waves based structure integrity evaluation. (a) Linear, (b) cross-shaped,
(c) rectangular, (d) star-shaped, (e) circular, and (f) spiral.
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used for Lamb waves emitting. Through analysis of the amplitudes and phase parameters of
the received Lamb waves signals, the imaging is performed in a polar coordinate systemwhere
each pixel can be defined with its angular position and the distance from the center.

Total focusing method (TFM), also named as delay-and-sum algorithm, is processed with the
amplitude information of signals. Using steered and possibly focused beam improves angular
resolution in ultrasonic image but it requires scanning of the full structure. It is sensitive to the
wavefield profile, signal-to-noise ratio (SNR), and the dispersion nature of Lamb waves [31].
Meanwhile, TFM suffers from large side lobes that result from overlapping echoes that result
in the back-propagation. Adaptive imaging methods [32], where the weights are adjusted for
each pixel, can offer a significant improvement to the side lobe behavior of TFM. Vector total
focusing method, phase coherence factor (PCF), and the sign coherence factor (SCF) use signal
phase information to perform the correction action and defect location. Besides achieving the
main goal, these methods obtain improvements in lateral resolution and SNR. Implementation
of the SCF technique is quite straight forward, operating in real-time, and can be added to any
virtually existing beam former to improve the resolution [33]. Compared with amplitude-
based imaging techniques, such as the TFM, the phase information-based techniques are no
sensitive to Lamb waves dispersion. For enhancing the defect imaging performance, many
imaging combination strategies are proposed, including the combination of the TFM and
various polarity images or SCF for enhancing damage detection [34–36], the combination of
the TFM, and the multiapodization polarity (MAP) technique [36, 37]. The formulas of the
TFM and the SCF algorithms are expressed in Eqs. (13) and (14), respectively.

ITFM x; yð Þ ¼ 1
N2

XN

i¼1

XN
J¼1

aijuij τij x; yð Þ� �
, (13)

where N is the number of a linear array, aij corresponds to an apodization applied to individual
elements to control some characteristics of the acoustic beam, such as main lobe width and side
lobe levels, uij(t) is the amplitude time domain data from all transmitter and receiver j; τij(x, y)
is the ToF from the transmitter i to the receiver j and passes the point (x, y).

ISCF x; zð Þ ¼ 1� σ, σ2 ¼ 1� 1
N2

XN
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XN
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bij τij x; zð Þ� �
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, bij tð Þ ¼
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�
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where σ is the standard deviation of the polarity bij(t) of the aperture data; bij(t) is the polarity
or algebraic sign of the aperture data.

Minimum variance distortionless response (MVDR), also known as Capon’s method, divides
the signals into several subspaces. It can minimize the mean output power of the noise and
interference. Their weights are determined by finding the vector to suppress undesired modes
and incident angles [38]. One challenge associated with MVDR imaging is sensitive to the
assumed look direction, which depends upon possibly unknown scattering characteristics [33].

Through adding a diagonal loading term, αI, to S
_

ωð Þ, to obtain a non-singular S
_

ωð Þ, in which α
is proportional to the power of the received signals [39]. The incident angle and wavenumber of
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the signals are acquired through searching an array steering vectors that is orthogonal to the
noise subspace. The MUSIC algorithm can provide the location or the direction-of-arrival of the
active sources in the field with its high spatial resolution capability. Han et al. [40] used the time-
frequency MUSIC [41] beamforming procedure to eliminate the effects of the direct excitation
signals and the boundary-reflected wave signals. It is better than TFM for adjacent defect
imaging when the signal-to-noise ratio is lower than 20dB [42]. Figure 5 plots the comparison of
the flow chart of the MVDR and the MUSIC algorithm.

Decomposition of the time-reversal operator (DORT) refocuses the wave energy back on
multiple scatters, even for those that are neither small nor perfectly resolved. The whole DORT
process is described in detail in Ref. [43]. DORT algorithm has the capability of individually
imaging these scatters by back-propagating the eigenvectors obtained from eigenvalue decom-
position of the time-reversal operator, providing separate information about each scatterer.
When the scatterers are relatively large compared to the excitation wavelength, a single
scatterer may generate multiple significant eigenvalues. In this case, the back-propagation of
the eigenvectors can provide a certain amount of information about the relatively large scat-
terers. Time-reversal multiple signal classification algorithm was originally proposed by
Schmidt [44]. Lehman and Devaney [45] developed a combined DORT and MUSIC algorithm,
termed DORT-MUSIC, to image multiple buried cylinders in the seismo-acoustic application.
He et al. [46] adopted the DORT-MUSIC in space-frequency domain for separating imaging
from both the actuator-to-damage and the sensor-to-damage. The dispersion, multimode, and
multireflection nature of Lamb waves have serious influence on the imaging performance of
DORT, MUSIC, and DORT-MUSIC.

Figure 5. Comparison of the flow chart of the MVDR and the MUSIC algorithm.
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used for Lamb waves emitting. Through analysis of the amplitudes and phase parameters of
the received Lamb waves signals, the imaging is performed in a polar coordinate systemwhere
each pixel can be defined with its angular position and the distance from the center.

Total focusing method (TFM), also named as delay-and-sum algorithm, is processed with the
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of the SCF technique is quite straight forward, operating in real-time, and can be added to any
virtually existing beam former to improve the resolution [33]. Compared with amplitude-
based imaging techniques, such as the TFM, the phase information-based techniques are no
sensitive to Lamb waves dispersion. For enhancing the defect imaging performance, many
imaging combination strategies are proposed, including the combination of the TFM and
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where σ is the standard deviation of the polarity bij(t) of the aperture data; bij(t) is the polarity
or algebraic sign of the aperture data.

Minimum variance distortionless response (MVDR), also known as Capon’s method, divides
the signals into several subspaces. It can minimize the mean output power of the noise and
interference. Their weights are determined by finding the vector to suppress undesired modes
and incident angles [38]. One challenge associated with MVDR imaging is sensitive to the
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active sources in the field with its high spatial resolution capability. Han et al. [40] used the time-
frequency MUSIC [41] beamforming procedure to eliminate the effects of the direct excitation
signals and the boundary-reflected wave signals. It is better than TFM for adjacent defect
imaging when the signal-to-noise ratio is lower than 20dB [42]. Figure 5 plots the comparison of
the flow chart of the MVDR and the MUSIC algorithm.
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Synthetic aperture focusing technique (SAFT) focuses the acoustic field along the 1D linear
array toward the location of scatterer based on the angular and the distance information. It is
first proposed for body waves defect detection. Sicard et al. [47] presented an F-SAFT algo-
rithm for Lamb waves imaging in which the dispersion nature of Lamb waves is considered.
Furthermore, multidefects detection in an isotropic plate was realized. Other algorithms for
far-field defect imaging based on the wavenumber analysis have the spatial-wavenumber filter
(SWF) [48–50] and wavenumber filtering algorithm [51]. Ren and Qiu [49, 52] proposed a
scanning spatial-wavenumber filter-based diagnostic imaging method for online characteriza-
tion of multi-impact event. The procession does not rely on any modeled or measured
wavenumber response. The formulae of SCFT and the SWF are expressed as Eqs. (15)–(18),
respectively.

ISCFT x; dð Þ ¼ ifft
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f ∈Ω

s kx; d; fð Þ
0
@
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A trð Þ ¼ u trð Þeiωtr e�ikala , (17)

ϕ xð Þ ¼ eikax1cosθ; eikax2cosθ;…; eikaxmcosθ;…; eikaxMcosθ� �
, (18)

where ISCFT is the imaging result of SAFT, u(x,t) is the spatial response acquired by the linear
array, d is the propagation distance, kx is the wavenumber in x direction; ISWF is the imaging
result of the SWF, u(x,tr) is the response acquired at time tr, ⊗ indicates the convolution opera-
tion, ϕ(x) is the original spatial-wavenumber filter, a is the number of the transducer, θa, la are the
angle and the distance of the damage respectively, ka is the wavenumber at direction θa.

2.4. Full wavefield imaging techniques

With the aid of the laser ultrasonic system, the strategy used for capturing the full propagation
wavefield relies on experiment settings in which one transducer at a fixed position and the
second transducer as a movable point, actuator-sensor synchronization and signal registration
at one point, in a repetitive manner at various locations. The time delay is introduced between
consecutive wave excitations in order to wait until the wave fully attenuates. Researchers
adopted the compressive sensing algorithm [53, 54] or combined binary search and com-
pressed sensing [55] to improve the efficiency of full wavefield data acquisition. Once time-
space wavefield data are acquired, data analysis can be implemented in time-space domain
and frequency-wavenumber domain. The original signal process techniques are used for
studying the amplitude information to observe the wave reflection with the root mean square
and cumulative kinetic energy methods. Moreover, advanced signal processing techniques
with 2D Fourier transform [44], such as wavenumber filtering, frequency-wavenumber analysis,
space-frequency-wavenumber analysis, local wavenumber domain analysis, give the possibility
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of damage size estimation [56, 57]. Mode separation can be performed similarly for reflection
separation [58].

The imaging techniques based on time-domain signal process have the integral mean value
(IMV), the root mean square (RMS), and the weighted root mean square (WRMS) [59] that can
be expressed as Eqs. (19)–(22), respectively.
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wk ¼ w tkð Þ ¼ km,m ≥ 0 (22)

where u(t) is the received signals at n points. For a discrete signal ur=u(tr) sampled at n points
with time intervals Δt, following relation can be written as uk=u(tk), tk=t1+(k-1)Δt, Δt=(t2-t1)/
(n-1), k=1,2,…,n. w(t) is a weighting factor, which decreases the importance of the time samples
closer to the beginning of the sampling process and increases the importance of the samples
closer to its end. t1 and t2 denote the beginning and the end of the sampling process, respec-
tively. The weighting factor wk=k (m=1), the importance (weight) of particular time samples,
increases linearly with time t; this importance (weight) increases as a square function of time t
when the weighting factor is wk=k

2 (m=2).

The effectiveness of the applied algorithms is strongly dependent on the calculation parame-
ters (weighting factor and time window), excitation frequency, and damage types. The exten-
sion of the time window leads to the increase in differences in the WRMS values between the
damaged and undamaged areas. The constant weighting factors do not provide efficient
results due to the high influence of the incident wave at excitation point. The statistical analysis
of the calculated WRMS values was adopted to successfully supplement the visual assessment
of the defect imaging [60].

The multidimensional Fourier transform maps the time-space domain signals into the
frequency-wavenumber domain and realizes defect imaging; the formula of the transform can
be expressed as

I ω; kx; ky
� � ¼

ð∞
�∞

ð∞
�∞

ð∞
�∞

u x; y; tð ÞW x� a; y� bð Þe�i ωtþkxxþkyyð Þdydxdt, (23)

where u(x,y,t) is the full wavefield data; a and b are the coordinates of the window function in x
and y dimension; W is the window with various of types, including rectangle window, Gauss
window, and Hanning window. For a Hanning window with a diameter of Dr, W can be
expressed as
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angle and the distance of the damage respectively, ka is the wavenumber at direction θa.

2.4. Full wavefield imaging techniques

With the aid of the laser ultrasonic system, the strategy used for capturing the full propagation
wavefield relies on experiment settings in which one transducer at a fixed position and the
second transducer as a movable point, actuator-sensor synchronization and signal registration
at one point, in a repetitive manner at various locations. The time delay is introduced between
consecutive wave excitations in order to wait until the wave fully attenuates. Researchers
adopted the compressive sensing algorithm [53, 54] or combined binary search and com-
pressed sensing [55] to improve the efficiency of full wavefield data acquisition. Once time-
space wavefield data are acquired, data analysis can be implemented in time-space domain
and frequency-wavenumber domain. The original signal process techniques are used for
studying the amplitude information to observe the wave reflection with the root mean square
and cumulative kinetic energy methods. Moreover, advanced signal processing techniques
with 2D Fourier transform [44], such as wavenumber filtering, frequency-wavenumber analysis,
space-frequency-wavenumber analysis, local wavenumber domain analysis, give the possibility
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of damage size estimation [56, 57]. Mode separation can be performed similarly for reflection
separation [58].

The imaging techniques based on time-domain signal process have the integral mean value
(IMV), the root mean square (RMS), and the weighted root mean square (WRMS) [59] that can
be expressed as Eqs. (19)–(22), respectively.

IMV u tð Þð Þ ¼ 1
t2 � t1

ðt2
t1
u tð Þdt ≈ 1

n

Xn

k¼1

uk, (19)

RMS u tð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
t2 � t1

ðt2
t1

u tð Þ2
h i

dt

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k¼1

u2k
� �

s
, (20)
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wk ¼ w tkð Þ ¼ km,m ≥ 0 (22)

where u(t) is the received signals at n points. For a discrete signal ur=u(tr) sampled at n points
with time intervals Δt, following relation can be written as uk=u(tk), tk=t1+(k-1)Δt, Δt=(t2-t1)/
(n-1), k=1,2,…,n. w(t) is a weighting factor, which decreases the importance of the time samples
closer to the beginning of the sampling process and increases the importance of the samples
closer to its end. t1 and t2 denote the beginning and the end of the sampling process, respec-
tively. The weighting factor wk=k (m=1), the importance (weight) of particular time samples,
increases linearly with time t; this importance (weight) increases as a square function of time t
when the weighting factor is wk=k

2 (m=2).

The effectiveness of the applied algorithms is strongly dependent on the calculation parame-
ters (weighting factor and time window), excitation frequency, and damage types. The exten-
sion of the time window leads to the increase in differences in the WRMS values between the
damaged and undamaged areas. The constant weighting factors do not provide efficient
results due to the high influence of the incident wave at excitation point. The statistical analysis
of the calculated WRMS values was adopted to successfully supplement the visual assessment
of the defect imaging [60].

The multidimensional Fourier transform maps the time-space domain signals into the
frequency-wavenumber domain and realizes defect imaging; the formula of the transform can
be expressed as

I ω; kx; ky
� � ¼

ð∞
�∞

ð∞
�∞

ð∞
�∞

u x; y; tð ÞW x� a; y� bð Þe�i ωtþkxxþkyyð Þdydxdt, (23)

where u(x,y,t) is the full wavefield data; a and b are the coordinates of the window function in x
and y dimension; W is the window with various of types, including rectangle window, Gauss
window, and Hanning window. For a Hanning window with a diameter of Dr, W can be
expressed as
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The wavenumber adaptive image filtering is introduced in reference [61] and further expanded
in reference [62] in which the data are transformed from Cartesian coordinates to polar
coordinates. In the frequency-wavenumber domain, the filtering is applied to separate the
different modes or forward and backward waves, as shown in Eq. (25).

~S ω; kr;θið Þ ¼ I ω; kr;θið ÞW kr;ωð Þ, (25)

where ~S ω; kr;θlð Þ is the separating waves in frequency-wavenumber domain, I(ω,kr;θi) is the
frequency-wavenumber result of the u(t,r;θ) in polar coordinates; θi is the specific angle index;
W(kr,ω) is a 2D window function operating as a filter in frequency-wavenumber domain.

Finally, the filtered data are successively transformed back to the time domain in polar coordi-
nates and Cartesian coordinates.

Harley et al. [63] presented a baseline-free, model-driven, statistical damage detection, and
imaging framework for guided waves measured from partial wavefield scans in which the
sparse wavenumber analysis, sparse wavenumber synthesis, and data-fitting optimization to
accurately model damage-free wavefield data. Kudela et al. [64] combined the time-distance
mapping technique and novel Lamb waves focusing technique to realize crack detection.
Meanwhile, the temperature effect is compensated by using the temperature-dependent dis-
persion curve. Pai et al. [65] presented a dynamics-based methodology for accurate damage
inspection of thin-walled structures by combining a boundary effect evaluation method for
space-wavenumber analysis of measured operational deflection shapes and a conjugate-pair
decomposition method for time-frequency analysis of time traces of measured points. Li et al.
[66] proposed a correlation filtering-based matching pursuit signal processing approach to
realize precise value of time of flight and locating and sizing the delamination in composite
beams. Through analysis, the reflection intensity of Lamb waves from an elliptical damage
realized defect sizing [67]. Perelli et al. [68] combined the wavelet packet transform and
frequency warping to generate a sparse decomposition of the acquired dispersive signal.
Tofeldt et al. [69] presented a 2D array and wide-frequency bandwidth technique for Lamb
waves phase velocity imaging. Through a discrete Fourier transform, a spectral estimate is
obtained for the 2D array in the frequency-phase velocity domain. The variation of the phase
velocity is then mapped using a stepwise movement of the 2D array within the complete
measurement domain.

3. Intelligent recognition techniques

There are mainly two steps for defect recognition in structure integrity evaluation, i.e.,
feature extraction and classifier design. Time-frequency and time-scale analysis techniques
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are adopted for feature extraction, including dynamic wavelet fingerprinting, wavelet trans-
form (CWT, DWT, and wavelet packet decomposition), and statistical features [70]. While
the processing of the feature extraction with these techniques may be very time consuming
[71] and cannot ensure the feature data are optimally suitable for mapping the state of
structures. Additionally, overtrain may be induced with the available dataset for these
methods. So, many techniques have been developed to optimize the feature extraction
process. The principal component analysis (PCA) is one of the most widely used linear
mapping techniques for feature reduction [72, 73]. Nonlinear mapping techniques reduce
dimensionality following the criterion which minimizes the difference between interpoint
distances of the initial and detection/monitoring feature space, including Sammon mapping,
self-organizing maps, and the generative topographic maps [74]. In the following part of this
section, we focus on the introduction of the pattern recognition model that attracted rela-
tively more attention in structure integrity evaluation, such as support vector machine,
Bayesian methodology, and neural networks.

3.1. Support vector machine

Support vector machine (SVM) is a supervised learning classifier that uses a kernel function
to form a hypothesis space in a high-dimensional feature space for linear and nonlinear
classification. The principle schematic diagram of support vector machine is plotted in
Figure 6. The kernel function may be a linear, polynomial, sigmoid, or custom kernels. Given
a set of training examples that are belonging to two categories, an SVM training algorithm
builds a model that assigns the examples to one category or the other. In this case, the SVM is
a nonprobabilistic binary linear classifier that is not common in practical application. For
nonlinear classification and regression problems, the input data are mapped to another
linearly separable space using a nonlinear kernel function ϕ and the normal linear SVM.
The least squares support vector machine (LS-SVM) is an improved variant of SVM. It can
increase the convergence rate for complex problems [75]. The general formula of the LS-SVM
can be expressed as

Figure 6. Principle schematic diagram of support vector machine. (a) Linearly separable space with linear function and
(b) linearly separable space with nonlinear function.
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The wavenumber adaptive image filtering is introduced in reference [61] and further expanded
in reference [62] in which the data are transformed from Cartesian coordinates to polar
coordinates. In the frequency-wavenumber domain, the filtering is applied to separate the
different modes or forward and backward waves, as shown in Eq. (25).

~S ω; kr;θið Þ ¼ I ω; kr;θið ÞW kr;ωð Þ, (25)

where ~S ω; kr;θlð Þ is the separating waves in frequency-wavenumber domain, I(ω,kr;θi) is the
frequency-wavenumber result of the u(t,r;θ) in polar coordinates; θi is the specific angle index;
W(kr,ω) is a 2D window function operating as a filter in frequency-wavenumber domain.

Finally, the filtered data are successively transformed back to the time domain in polar coordi-
nates and Cartesian coordinates.

Harley et al. [63] presented a baseline-free, model-driven, statistical damage detection, and
imaging framework for guided waves measured from partial wavefield scans in which the
sparse wavenumber analysis, sparse wavenumber synthesis, and data-fitting optimization to
accurately model damage-free wavefield data. Kudela et al. [64] combined the time-distance
mapping technique and novel Lamb waves focusing technique to realize crack detection.
Meanwhile, the temperature effect is compensated by using the temperature-dependent dis-
persion curve. Pai et al. [65] presented a dynamics-based methodology for accurate damage
inspection of thin-walled structures by combining a boundary effect evaluation method for
space-wavenumber analysis of measured operational deflection shapes and a conjugate-pair
decomposition method for time-frequency analysis of time traces of measured points. Li et al.
[66] proposed a correlation filtering-based matching pursuit signal processing approach to
realize precise value of time of flight and locating and sizing the delamination in composite
beams. Through analysis, the reflection intensity of Lamb waves from an elliptical damage
realized defect sizing [67]. Perelli et al. [68] combined the wavelet packet transform and
frequency warping to generate a sparse decomposition of the acquired dispersive signal.
Tofeldt et al. [69] presented a 2D array and wide-frequency bandwidth technique for Lamb
waves phase velocity imaging. Through a discrete Fourier transform, a spectral estimate is
obtained for the 2D array in the frequency-phase velocity domain. The variation of the phase
velocity is then mapped using a stepwise movement of the 2D array within the complete
measurement domain.

3. Intelligent recognition techniques

There are mainly two steps for defect recognition in structure integrity evaluation, i.e.,
feature extraction and classifier design. Time-frequency and time-scale analysis techniques
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are adopted for feature extraction, including dynamic wavelet fingerprinting, wavelet trans-
form (CWT, DWT, and wavelet packet decomposition), and statistical features [70]. While
the processing of the feature extraction with these techniques may be very time consuming
[71] and cannot ensure the feature data are optimally suitable for mapping the state of
structures. Additionally, overtrain may be induced with the available dataset for these
methods. So, many techniques have been developed to optimize the feature extraction
process. The principal component analysis (PCA) is one of the most widely used linear
mapping techniques for feature reduction [72, 73]. Nonlinear mapping techniques reduce
dimensionality following the criterion which minimizes the difference between interpoint
distances of the initial and detection/monitoring feature space, including Sammon mapping,
self-organizing maps, and the generative topographic maps [74]. In the following part of this
section, we focus on the introduction of the pattern recognition model that attracted rela-
tively more attention in structure integrity evaluation, such as support vector machine,
Bayesian methodology, and neural networks.

3.1. Support vector machine

Support vector machine (SVM) is a supervised learning classifier that uses a kernel function
to form a hypothesis space in a high-dimensional feature space for linear and nonlinear
classification. The principle schematic diagram of support vector machine is plotted in
Figure 6. The kernel function may be a linear, polynomial, sigmoid, or custom kernels. Given
a set of training examples that are belonging to two categories, an SVM training algorithm
builds a model that assigns the examples to one category or the other. In this case, the SVM is
a nonprobabilistic binary linear classifier that is not common in practical application. For
nonlinear classification and regression problems, the input data are mapped to another
linearly separable space using a nonlinear kernel function ϕ and the normal linear SVM.
The least squares support vector machine (LS-SVM) is an improved variant of SVM. It can
increase the convergence rate for complex problems [75]. The general formula of the LS-SVM
can be expressed as

Figure 6. Principle schematic diagram of support vector machine. (a) Linearly separable space with linear function and
(b) linearly separable space with nonlinear function.
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y xð Þ ¼ wTϕ xð Þ þ b, (26)

where the term ϕ(�) is a nonlinear mapping function, w∈Rn and b∈R are the mode parame-
ters.

SVM is a robust classifier in the existence of noise and more computational efficient than
artificial neural network (ANN) [76]. Das et al. [77] developed an one-class SVM algorithm to
characterize and classify different damage states in composite laminates by measuring the
change in the signature of the Lamb waves that propagates through the anisotropic media
under forced excitations. Park et al. [78] used SVM to enhance the damage identification with
the extracted damage features. In the study, multifeatures were extracted for mapping the state
of structures, including TOF, the root mean square deviations (RMSD) of the impedances, and
wavelet coefficients (WC) of Lamb waves. Then, in Ref. [79], the same authors proposed a two-
step support vector machine (SVM) classifier for railroad track damage identification that
forms optimal separable hyperplanes. In the study, a two-dimensional damage feature space
was built with the root mean square deviations (RMSD) of impedance signatures and the sum
of square of wavelet coefficients for maximum energy mode of guided waves. In the process,
the damage detection was accomplished by the first step-SVM, and damage classification was
carried out by the second step-SVM. Sun et al. [80] adopted genetic algorithm to optimize the
LS-SVM parameters in which normalized amplitude, phase change, and correlation coefficient
were proposed to build the damage features.

3.2. Bayesian methodology

The Bayes’ theorem combines a prior belief and the observation regarding the related param-
eters through the likelihood function to update the distribution of the interested parameters in
which the model parameters u can be updated using the observation data θ, as expressed as

q uð Þ∝ p uð Þp θjuð Þ, (27)

where p(u) is the prior distribution of the model parameters u that can be a vector for multiple
parameters. p(θ|u) is the likelihood function. q(u) is the posterior distribution of updated
parameter u.
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where M(θ) is a parameterized model describing the relationship between the signal features
and damage information. σε is the standard deviation of the error term. The posterior distri-
bution of each parameter is estimated by the samples generated with the Markov-Chain
Monte-Carlo method.

Bayesian methodology is a probabilistic detection technique that has the ability to consider the
uncertainties such as measurement uncertainty, and model parameter uncertainty in damage
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detection/monitoring. A multivariate regression model is proposed to correlate damage features,
the phase change, and normalized amplitude, to the actual crack size [81]. It is a baseline crack
size quantification model can also use for more general and complex structures. Prior distribu-
tions of model parameters are obtained using the coupon test data. The posterior distribution of
the parameters and the posterior distribution of θ in a multivariate regression model are
expressed as Eq. (28). A multilevel Bayesian framework is proposed for identifying the position
and the effective mechanical properties of the damaged layers in composite laminates [82] in
which the framework is initially applied to a set of synthetic signals with increasing levels of
noise and complexity. He et al. [83] employed the Bayesian model to determine the crack
number, and then, the Bayesian statistical framework was used to identify the crack parameters
and the associated uncertainties in beam-like structures. The proposed method is able to accu-
rately identify the number, locations, and sizes of the cracks, and is robust under measurement
noise.

Bayesian imaging method (BIM) is used to build the likelihood function using the differences
between the model predictions and the field observations. The structure is discretized into
many small cells, and each cell is assigned an associated probability of damage, such as the
location and size. Next, the overall posterior distribution of the parameters can be obtained by
combining the prior information about the parameters. The marginal posterior distribution of
each parameter is estimated by the samples generated using the Markov-Chain Monte-Carlo
method. Given the parameter samples, the probability of damage in each cell is computed
using the ratio of the number of samples falling into each cell to the total number of samples.
Following the damage probability distribution can be used to construct an image that directly
represents the damage location and size. Peng et al. [84] presented a Bayesian imaging tech-
nique to simultaneously estimate damage location and size, as well as the corresponding
uncertainty bounds. Neerukatti et al. [85] used a sequential Bayesian technique to combine a
physics-based damage prognosis model with a data-driven probabilistic damage localization
approach for effective damage localization and prognosis in complex metallic structures. Sohn
et al. [86] proposed an instantaneous damage diagnosis based on the concepts of time reversal
acoustics and consecutive outlier analysis to minimize damage misclassification without rely-
ing on past baseline data.

Gaussian mixture model (GMM) is a probability static method for characterizing uncertainties
based on unsupervised learning. This method organizes itself according to the nature of the
input data with probability distributions without any prior knowledge. The GMM has the
advantages of better robustness of uncertainties and high efficiency with lower computational
complexity with a relatively small number of model parameters. PCA is used to reduce the
dimensions of the extracted multistatistical characteristic parameters of the excited Lamb
waves, then training the damage identification system using the GMM [73]. Several statistical
characteristic parameters, including the root mean square (RMS), variance, skewness, kurtosis,
peak-to-peak (PPK), and K-factor, are extracted as the input for the GMM-processed Lamb
wave-based identification model. Qiu et al. [72] proposed an online updating Gaussian mix-
ture model (GMM), for aircraft wings par damage evaluation under time-varying boundary
conditions in which the formulas are expressed as Eqs. (29) and (30).
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where the term ϕ(�) is a nonlinear mapping function, w∈Rn and b∈R are the mode parame-
ters.

SVM is a robust classifier in the existence of noise and more computational efficient than
artificial neural network (ANN) [76]. Das et al. [77] developed an one-class SVM algorithm to
characterize and classify different damage states in composite laminates by measuring the
change in the signature of the Lamb waves that propagates through the anisotropic media
under forced excitations. Park et al. [78] used SVM to enhance the damage identification with
the extracted damage features. In the study, multifeatures were extracted for mapping the state
of structures, including TOF, the root mean square deviations (RMSD) of the impedances, and
wavelet coefficients (WC) of Lamb waves. Then, in Ref. [79], the same authors proposed a two-
step support vector machine (SVM) classifier for railroad track damage identification that
forms optimal separable hyperplanes. In the study, a two-dimensional damage feature space
was built with the root mean square deviations (RMSD) of impedance signatures and the sum
of square of wavelet coefficients for maximum energy mode of guided waves. In the process,
the damage detection was accomplished by the first step-SVM, and damage classification was
carried out by the second step-SVM. Sun et al. [80] adopted genetic algorithm to optimize the
LS-SVM parameters in which normalized amplitude, phase change, and correlation coefficient
were proposed to build the damage features.

3.2. Bayesian methodology

The Bayes’ theorem combines a prior belief and the observation regarding the related param-
eters through the likelihood function to update the distribution of the interested parameters in
which the model parameters u can be updated using the observation data θ, as expressed as

q uð Þ∝ p uð Þp θjuð Þ, (27)

where p(u) is the prior distribution of the model parameters u that can be a vector for multiple
parameters. p(θ|u) is the likelihood function. q(u) is the posterior distribution of updated
parameter u.
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where M(θ) is a parameterized model describing the relationship between the signal features
and damage information. σε is the standard deviation of the error term. The posterior distri-
bution of each parameter is estimated by the samples generated with the Markov-Chain
Monte-Carlo method.

Bayesian methodology is a probabilistic detection technique that has the ability to consider the
uncertainties such as measurement uncertainty, and model parameter uncertainty in damage
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detection/monitoring. A multivariate regression model is proposed to correlate damage features,
the phase change, and normalized amplitude, to the actual crack size [81]. It is a baseline crack
size quantification model can also use for more general and complex structures. Prior distribu-
tions of model parameters are obtained using the coupon test data. The posterior distribution of
the parameters and the posterior distribution of θ in a multivariate regression model are
expressed as Eq. (28). A multilevel Bayesian framework is proposed for identifying the position
and the effective mechanical properties of the damaged layers in composite laminates [82] in
which the framework is initially applied to a set of synthetic signals with increasing levels of
noise and complexity. He et al. [83] employed the Bayesian model to determine the crack
number, and then, the Bayesian statistical framework was used to identify the crack parameters
and the associated uncertainties in beam-like structures. The proposed method is able to accu-
rately identify the number, locations, and sizes of the cracks, and is robust under measurement
noise.

Bayesian imaging method (BIM) is used to build the likelihood function using the differences
between the model predictions and the field observations. The structure is discretized into
many small cells, and each cell is assigned an associated probability of damage, such as the
location and size. Next, the overall posterior distribution of the parameters can be obtained by
combining the prior information about the parameters. The marginal posterior distribution of
each parameter is estimated by the samples generated using the Markov-Chain Monte-Carlo
method. Given the parameter samples, the probability of damage in each cell is computed
using the ratio of the number of samples falling into each cell to the total number of samples.
Following the damage probability distribution can be used to construct an image that directly
represents the damage location and size. Peng et al. [84] presented a Bayesian imaging tech-
nique to simultaneously estimate damage location and size, as well as the corresponding
uncertainty bounds. Neerukatti et al. [85] used a sequential Bayesian technique to combine a
physics-based damage prognosis model with a data-driven probabilistic damage localization
approach for effective damage localization and prognosis in complex metallic structures. Sohn
et al. [86] proposed an instantaneous damage diagnosis based on the concepts of time reversal
acoustics and consecutive outlier analysis to minimize damage misclassification without rely-
ing on past baseline data.

Gaussian mixture model (GMM) is a probability static method for characterizing uncertainties
based on unsupervised learning. This method organizes itself according to the nature of the
input data with probability distributions without any prior knowledge. The GMM has the
advantages of better robustness of uncertainties and high efficiency with lower computational
complexity with a relatively small number of model parameters. PCA is used to reduce the
dimensions of the extracted multistatistical characteristic parameters of the excited Lamb
waves, then training the damage identification system using the GMM [73]. Several statistical
characteristic parameters, including the root mean square (RMS), variance, skewness, kurtosis,
peak-to-peak (PPK), and K-factor, are extracted as the input for the GMM-processed Lamb
wave-based identification model. Qiu et al. [72] proposed an online updating Gaussian mix-
ture model (GMM), for aircraft wings par damage evaluation under time-varying boundary
conditions in which the formulas are expressed as Eqs. (29) and (30).
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where f={f1,f2,…,fk} is a random sample set composed by k independent random samples. fr
denotes a d-dimensional sample in the sample set, where fr={f1,f2,…,fd}

T and r=1,2,….,k, μi, Σi

and wi are the mean, the covariance matrix and the mixture weight of the ith Gaussian
component, respectively, and i=1,2, …C, C is the number of Gaussian components, ϕi(fr|μi, Σi)
is the probability density of each Gaussian component is a d-dimensional Gaussian function.

3.3. Neural networks

Neutral network is comprised of layouts that are built with artificial neurons, termed nodes.
These nodes in the adjacent layers are connected to each other with various of strengths (weights).
The high weights value indicates a strong connection; vice versa, it is a weak connection. Figure 7
shows the principle diagram of a three-layer neutral network in which the three-layer neural

Figure 7. Principle diagram of a three-layer neural network. (a) Three-layer neural network, (b) forward, and (c) back-
ward.
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network, the forward and the backward principles are plotted in Figure 7(a), (b) and (c), respec-
tively. There exists three types of nodes including input nodes, hidden nodes, and output nodes.
Except the input layer out, there is a transfer function in each node to transfer input data to the
connected nodes in the adjacent layout. The typical transfer function used in a neural network
classifier has the unit step (threshold), sigmoid, piecewise linear, and Gaussian. The training of
neutral networks consists of the forward propagation and the backward propagation. In the
forward propagation process, the input nodes take the feature date into the model. The informa-
tion is presented as activation values, where each node is given a value, the higher value, the
greater activation. Based on the weights, inhibition or excitation, and transfer functions, the
activation value is passed from node to node. The activation values at each node are summed.
Then, the value is modified based on its transfer function. The activation flows through the
network, through hidden layers, until it reaches the output nodes. Then, the difference between
the output value and actual value (error) modified with the backward propagation process with
gradient descent algorithm until satisfy a stop threshold. The diagnostic efficiency and precision
are highly dependent on the network architecture [87]. The traditional artificial neural networks
(ANNs) have been adopted in defect recognition such as welding defects [88], delamination in
composite structures [89], and composite plates structural health monitoring [90]. De Fenza et al.
[91] combined the ANN and the probability ellipse method to determine the location and degree
of defects in aluminum and composite plates.

Benefiting from the flexible configuration of neural networks, researcher developed many
kinds of neural networks used in structure integrity evaluation. Probabilistic neural network
(PNN) combines the Bayes decision strategy with the Parzen nonparametric estimator of the
probability density functions in which the interpretation of the neural network is in the form of
a probability density function. An accepted norm for decision strategies used to classify
patterns is that they minimize the “expected risk.” Park et al. [92] adopted the PNN and SVM
to online monitoring the state of jointed plates in which the extracted damage feature that
constructed with the ToF and the wavelet coefficient obtained from wavelet transforms of
Lamb wave signals. Kohonen neural network (KNN) has two layers, input layer and output
layer, and is used for honeycomb sandwich and carbon fiber composite structures studied in
which the amount of neuron in input layer is determined by input vector dimensions [93]. The
neurons of output layer layout form a 2D plane. In regression neural networks for pattern
recognition, a trained network produces large errors when some parts of the test pattern are
not found in the training pattern. The weight-range selection (WRS) method has a supervised
multilayer perceptron operating with one hidden layer of neurons and trained using a back-
propagation algorithm to eliminate the large errors induced by the case a test pattern not
found in the training set [94]. Anaya et al. [95] adopted an artificial immune system (AIS) and
the notion of affinity was used for the sake of damage detection and used a fuzzy c-means
algorithm is used for damage classification of an aircraft skin panel. Compared with standard
Lamb waves based methods, there is no need to directly analyze the complex time-domain
traces containing overlapping, multimodal, and dispersive wave propagation. Other kinds of
neural networks that have been studied in nondestructive testing have the recurrent neural
network (RNN) [96], deep learning network (DLN), and convolutional neural network (CNN).
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Figure 7. Principle diagram of a three-layer neural network. (a) Three-layer neural network, (b) forward, and (c) back-
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constructed with the ToF and the wavelet coefficient obtained from wavelet transforms of
Lamb wave signals. Kohonen neural network (KNN) has two layers, input layer and output
layer, and is used for honeycomb sandwich and carbon fiber composite structures studied in
which the amount of neuron in input layer is determined by input vector dimensions [93]. The
neurons of output layer layout form a 2D plane. In regression neural networks for pattern
recognition, a trained network produces large errors when some parts of the test pattern are
not found in the training pattern. The weight-range selection (WRS) method has a supervised
multilayer perceptron operating with one hidden layer of neurons and trained using a back-
propagation algorithm to eliminate the large errors induced by the case a test pattern not
found in the training set [94]. Anaya et al. [95] adopted an artificial immune system (AIS) and
the notion of affinity was used for the sake of damage detection and used a fuzzy c-means
algorithm is used for damage classification of an aircraft skin panel. Compared with standard
Lamb waves based methods, there is no need to directly analyze the complex time-domain
traces containing overlapping, multimodal, and dispersive wave propagation. Other kinds of
neural networks that have been studied in nondestructive testing have the recurrent neural
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4. Summary and conclusions

In this chapter, we divided the defects imaging techniques into four categories based on the
setting of detection/monitoring system, and the basic principle of them is introduced. Three
kinds of intelligent recognition techniques that have been widely studied in Lamb waves
structural integrity evaluation are also reviewed.

1. The discrete ellipse imaging algorithm, the hyperbola imaging technique, and the tomog-
raphy imagine algorithms are processed in the detection/monitoring based on sparse
arrays in which the spacing between the adjacent transducers is larger than the wave-
length. Discrete ellipse imaging, the hyperbola imaging algorithm, and their optimal type
are processed with the defect scattering signals. The pixel intensity is drawn in an elliptical
trajectory and the hyperbola trajectory, respectively. Both of the algorithms are imaging
with the amplitude information and sensitive to the dispersion and the SNR of signals. The
imaging performance is closely related with transducer numbers and the signal resolu-
tions. In the tomography technique, the distribution of sensing points has relative regular
forms such as the parallel, square, or circular. The imaging algorithms used in the tomog-
raphy have PRA algorithms, FBP-based algorithm, the ART-based algorithms, and the
novel algorithms such as the HARBUT and FWI. With the dense ray in the detection, defect
sizing can be realized with the tomography techniques, particularly for the HARBUT, and
FWI has attractive performance in accuracy corrosion defect imaging.

2. Compact array in which the spacing of the adjacent transducers is shorter than the wave-
length that with various of shapes have been developed in Lamb waves based defects
imaging, including 1D linear array, 2D rectangular, circular, and spiral arrays. The defect
imaging algorithms based on compact arrays have PA, SA, and the full wavefield tech-
niques. The TFM, SCF, MVDR, MUSIC, SAFT-based imaging algorithms, and the SWF can
be used for full-scale scanning of the plate and realizing defect location. The TFM is an
imaging algorithm with the amplitude information that is sensitive to the dispersion
nature of Lamb waves. The phase information-based algorithms, PCF, SCF, have relatively
more robust imaging performance than TFM. Besides these algorithms, MVDR, MUSIC,
SAFT, and SWF have the potential used for baseline-free detection. The full wavefield
techniques have the ability for defect accuracy imaging by analyzing the received full
wavefield data. Among them, the IMV, RMS, and WRMS are adopted to time-domain
analysis for defect location and sizing. With the 2D Fourier transform, the received time-
space data are mapped into frequency-wavenumber domain, and defect sizing and thin-
ning quantification are realized through analysis of the spatial wavenumber information.
Meanwhile, many optimization techniques with the added windows are adopted to sepa-
rate the scattering waves in frequency-wavenumber domain for reflection waves separa-
tion, defect imaging can be enhanced.

3. SVM, Bayesian methodology, and the neural networks are three kinds of typical classifiers
used in Lamb waves based structure integrity evaluation. SVM maps the input data that
indicates the state of the structures into a hypothesis space with a kernel function that may
be a linear, polynomial, or custom kernel. The classifiers based on SVM have the one-class
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SVM, LS-SVM, two-step SVM. Bayesian methodology realizes the observation of data esti-
mation with the prior received data. For the Bayesian methodology, the state of structures is
predicated with the prior distributions of model parameters obtained using the coupon test
data. The related techniques have the multilevel Bayesian model, Bayesian imaging method,
and the GMM. Among them, the GMM is a probability static method with unsupervised
learning property. It has the advantages of better robustness of uncertainties and high
efficiency with lower computational complexity with a relatively small number of model
parameters. Neural networks are a supervise classifier based on the back-propagation algo-
rithm to optimize the model parameters. Benefiting from the flexible configuration of neural
networks, researchers developed many kinds of neural networks for structure integrity
evaluation. During the past decade, ANN, PNN, KNN, CNN, etc., have been applied for
on- or offline structure integrity evaluation with the extracted Lamb waves defect informa-
tion. These neural networks can realize accurate defect recognition in the case they are
trained with enough dataset. Meanwhile, they have low noise tolerance in field applications.
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In this chapter, we divided the defects imaging techniques into four categories based on the
setting of detection/monitoring system, and the basic principle of them is introduced. Three
kinds of intelligent recognition techniques that have been widely studied in Lamb waves
structural integrity evaluation are also reviewed.

1. The discrete ellipse imaging algorithm, the hyperbola imaging technique, and the tomog-
raphy imagine algorithms are processed in the detection/monitoring based on sparse
arrays in which the spacing between the adjacent transducers is larger than the wave-
length. Discrete ellipse imaging, the hyperbola imaging algorithm, and their optimal type
are processed with the defect scattering signals. The pixel intensity is drawn in an elliptical
trajectory and the hyperbola trajectory, respectively. Both of the algorithms are imaging
with the amplitude information and sensitive to the dispersion and the SNR of signals. The
imaging performance is closely related with transducer numbers and the signal resolu-
tions. In the tomography technique, the distribution of sensing points has relative regular
forms such as the parallel, square, or circular. The imaging algorithms used in the tomog-
raphy have PRA algorithms, FBP-based algorithm, the ART-based algorithms, and the
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sizing can be realized with the tomography techniques, particularly for the HARBUT, and
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length that with various of shapes have been developed in Lamb waves based defects
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imaging algorithms based on compact arrays have PA, SA, and the full wavefield tech-
niques. The TFM, SCF, MVDR, MUSIC, SAFT-based imaging algorithms, and the SWF can
be used for full-scale scanning of the plate and realizing defect location. The TFM is an
imaging algorithm with the amplitude information that is sensitive to the dispersion
nature of Lamb waves. The phase information-based algorithms, PCF, SCF, have relatively
more robust imaging performance than TFM. Besides these algorithms, MVDR, MUSIC,
SAFT, and SWF have the potential used for baseline-free detection. The full wavefield
techniques have the ability for defect accuracy imaging by analyzing the received full
wavefield data. Among them, the IMV, RMS, and WRMS are adopted to time-domain
analysis for defect location and sizing. With the 2D Fourier transform, the received time-
space data are mapped into frequency-wavenumber domain, and defect sizing and thin-
ning quantification are realized through analysis of the spatial wavenumber information.
Meanwhile, many optimization techniques with the added windows are adopted to sepa-
rate the scattering waves in frequency-wavenumber domain for reflection waves separa-
tion, defect imaging can be enhanced.

3. SVM, Bayesian methodology, and the neural networks are three kinds of typical classifiers
used in Lamb waves based structure integrity evaluation. SVM maps the input data that
indicates the state of the structures into a hypothesis space with a kernel function that may
be a linear, polynomial, or custom kernel. The classifiers based on SVM have the one-class

Structural Health Monitoring from Sensing to Processing106

SVM, LS-SVM, two-step SVM. Bayesian methodology realizes the observation of data esti-
mation with the prior received data. For the Bayesian methodology, the state of structures is
predicated with the prior distributions of model parameters obtained using the coupon test
data. The related techniques have the multilevel Bayesian model, Bayesian imaging method,
and the GMM. Among them, the GMM is a probability static method with unsupervised
learning property. It has the advantages of better robustness of uncertainties and high
efficiency with lower computational complexity with a relatively small number of model
parameters. Neural networks are a supervise classifier based on the back-propagation algo-
rithm to optimize the model parameters. Benefiting from the flexible configuration of neural
networks, researchers developed many kinds of neural networks for structure integrity
evaluation. During the past decade, ANN, PNN, KNN, CNN, etc., have been applied for
on- or offline structure integrity evaluation with the extracted Lamb waves defect informa-
tion. These neural networks can realize accurate defect recognition in the case they are
trained with enough dataset. Meanwhile, they have low noise tolerance in field applications.
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Abstract

The chapter refers to the results obtained in the framework of a national research project
whose novelty was that concomitant outer space constraints, namely extreme temperature
variations, radiations and vacuum, were applied to structures specimens to study their
effect on the structural health monitoring (SHM) technology based on piezoelectric wafer
active sensors (PWAS) and electromechanical impedance spectroscopy (EMIS) method of
damages detection and identification. The results, in short, concern (a) the survivability
and sustainability of EMIS technique, in fact the PWAS transducers survival, in these
harsh conditions and (b) the developing of a methodology to distinguish between the
damages of mechanical origin, and the false ones, caused by environmental conditions,
which are, basically, harmless. This has resulted by observing that the splitting phenome-
non of resonance peaks on EMIS signature can be associated with the occurrence of
mechanical damage, making so possible the clear dissociation of the changes determined
by the harsh environmental conditions.

Keywords: lab tests, electromechanical impedance spectroscopy (EMIS), piezoelectric
wafer active sensor (PWAS), outer space harsh environmental conditions, entropy, real
damage versus false damage

1. Introduction

In the beginning, we prefer to appeal to the well-known definitions. In this book chapter, “the
process of implementing a damage identification strategy for aerospace, civil and mechanical
engineering infrastructure is referred to as structural health monitoring (SHM). […] The dam-
age is defined as changes to the material and/or geometric properties of these systems, includ-
ing changes to the boundary conditions and system connectivity, which adversely affect the

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.78034

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 6

Qualification of PWAS-Based SHM Technology for
Space Applications

Ioan Ursu, Mihai Tudose and Daniela Enciu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78034

Provisional chapter

Qualification of PWAS-Based SHM Technology for
Space Applications

Ioan Ursu, Mihai Tudose and Daniela Enciu

Additional information is available at the end of the chapter

Abstract

The chapter refers to the results obtained in the framework of a national research project
whose novelty was that concomitant outer space constraints, namely extreme temperature
variations, radiations and vacuum, were applied to structures specimens to study their
effect on the structural health monitoring (SHM) technology based on piezoelectric wafer
active sensors (PWAS) and electromechanical impedance spectroscopy (EMIS) method of
damages detection and identification. The results, in short, concern (a) the survivability
and sustainability of EMIS technique, in fact the PWAS transducers survival, in these
harsh conditions and (b) the developing of a methodology to distinguish between the
damages of mechanical origin, and the false ones, caused by environmental conditions,
which are, basically, harmless. This has resulted by observing that the splitting phenome-
non of resonance peaks on EMIS signature can be associated with the occurrence of
mechanical damage, making so possible the clear dissociation of the changes determined
by the harsh environmental conditions.

Keywords: lab tests, electromechanical impedance spectroscopy (EMIS), piezoelectric
wafer active sensor (PWAS), outer space harsh environmental conditions, entropy, real
damage versus false damage

1. Introduction

In the beginning, we prefer to appeal to the well-known definitions. In this book chapter, “the
process of implementing a damage identification strategy for aerospace, civil and mechanical
engineering infrastructure is referred to as structural health monitoring (SHM). […] The dam-
age is defined as changes to the material and/or geometric properties of these systems, includ-
ing changes to the boundary conditions and system connectivity, which adversely affect the

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.78034

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



current or future performance of these systems” [1]. SHM is, properly, an on-line measurement
process supposing a sensor system distributed over the monitored structure. This process is
complemented by off-line analysis of damage-sensitive features from these measurements, or
by an on-line analysis of damages occurrence, as shown in this contribution. SHM technology
enjoys special attention over the past two to three decades. The sensors used to damage
detection belong to a wide range, such as optical fiber sensors [2, 3], acoustic active and passive
sensors [4–6], microelectromechanical systems (MEMS) [7], and wireless sensor systems [8].
The basic SHM methods are the method based on a modal modification of structure dynamic
vibrations in a relatively low-frequency register [9] and the electromechanical method of
impedance spectroscopy (EMIS) in the high-frequency register, using the active piezo sensors
[10–14]. It should be added that SHM methodology has been strongly related during its
development to predictive maintenance [15] and fault detection [16] techniques due to safety
demands in all areas of activity, especially in aerospace applications, chemical industry,
nuclear power plants, and so on. SHM methodology has its obvious relevance to the air and
space industry but has become imperious for many other industries due to the increase of the
productivity and quality demands (zero-defects manufacturing), cost savings together with
enhanced safety, and increased availability. Of course, not all existing damages compromise
the good functioning of the structure. Based on a long-time SHM process, one obtains infor-
mation on the ability of the structure to perform in spite of the inevitable aging and degrada-
tion resulting from operational environments [1], with the benefit to managing the structures
life prognosis and reducing life-cycle costs. SHM will be one of the major contributions for
future smart structures, including space ones [17].

2. PWAS-based SHM technology—EMIS method

The active SHM sensing techniques are based on two different approaches: transient guided
waves and standing waves [12]. In such SHM processes, a piezoelectric wafer active sensor
(PWAS) is required to generate elastic waves. These travel along the mechanical structure, are
reflected by different structural abnormalities, or boundary edges, and they are recaptured by
the same sensor in a pulse-echo configuration or by other sensors of same or different type,
even passive sensors, and in pitch-catch configuration. If the structural damage or boundary
edges are in the close vicinity of the active sensor, their reflections overlap the incident
transient wave, and making impossible the interpretation [14]. One of the active SHM sensing
techniques is based on standing waves, in the so-called EMIS method; by sweeping the
frequency of the input signals to PWAS, some changes appear in the impedance measured by
an impedance analyzer connected to the PWAS terminals. By monitoring the changes in the
real part of the impedance function, which is most sensitive to structural changes [10], one can
evaluate the integrity of the host structure.

The EMIS method uses PWAS high-frequency active sensors and bonded to the structure.
The presence of damage in a neighboring zone of the sensor is signaled as its EMIS “signa-
ture,” respectively, as a modification of the electromagnetic impedance spectrum Z (ω),
recorded and online processed, and in principle [10–14]. The pioneering work on using EMIS
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in SHM technology is considered [10] (see [11]). The electromechanical impedance spectrum
is defined as the ratios between the applied excitation voltage V tð Þ≔V0sin ωtð Þ [V] and the
current I tð Þ≔ Isin ωtð Þ [A] generated by the piezoelectric effect. Where appropriate, imped-
ance results are obtained based on an analytical relationship, or by dedicated equipment
such as the HP 4194A impedance analyzer. Experimentally it has been proven that the real
part, Re (Z (ω)), of the EMIS PWAS attached to the structure can be taken as an indication of
the presence of damage or defects, due to the fact that this value closely follows the reso-
nance behavior of the structure vibrating under the PWAS excitation [11]. In other words,
this measured value is very sensitive to the smallest variations in the high-frequency struc-
tural dynamics at local scales (on the order of microns), which are associated with the
presence of incipient damage. Of course, these changes cannot be detected by classical modal
analysis sensors operating at lower frequencies.

3. Theoretical and experimental framework of qualification PWAS based
SHM technology for space applications

Although SHM will be soon, we think, a key technology in the field of space vehicles, it is
surprising how few papers can be reported for the time being in this field [4, 5, 18–22].
However, it is becoming clearer that new space programs can no longer ignore the implemen-
tation of SHM technologies to monitor and test the health and performance of space structures.
The safety of the crew on board and the safety of the spacecraft, especially in critical moments
of launch and re-entry into the earth’s atmosphere, depend on the onboard existence of a SHM
system. Spatial vehicles, but also the satellites, are subject to harsh environmental conditions:
strong vibrations at launching and landing, cosmic radiation (with energy up to 1.6 � 10�11 J
(1 GeV) [23], extreme temperatures (+120�C for exposed surfaces to the Sun and �230�C for
unexposed surfaces [22]), and advanced vacuum.

The premise of a tests program for qualification PWAS-based SHM technology for space
applications is that the changes in the EMIS signature will reflect the complex conditions in
which the structures are found: overexposure to natural damage, that is, mechanical fatigue
and aging, and special operating conditions in an environment defined by outer space
(extreme temperatures, radiation, and vacuum). Both kinds of constraints, that is, mechanical
and environmental, are to be simulated. The specific problem of the tests relates to the ability
of the PWAS transducer to measure the modal behavior of the structure on which it is attached
in the simulated harsh environmental conditions and with simulated mechanical damages.
Consequently, a considerable amount of testing stages, EMIS records, data processing, and
analytical assessments on damage identification were performed [5, 6, 24–28]. The following
types of specimens were subjected to the tests: (a) PWAS STEMINC SMD07T02S412WL trans-
ducers, (b) M-bond 610 Vishay epoxy adhesive, and (c) STEMINC PWAS transducers [26]
(Figure 1). The material and geometry data of the disc specimens (DS) were: A2024 aluminum
alloy, with a diameter of 100 mm and a thickness of 0.8 mm. To simulate damages, in discs
were processed, with laser technology, slits with 10 mm in length and 0.15 mm width, of
various geometries, and locations.
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nuclear power plants, and so on. SHM methodology has its obvious relevance to the air and
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the good functioning of the structure. Based on a long-time SHM process, one obtains infor-
mation on the ability of the structure to perform in spite of the inevitable aging and degrada-
tion resulting from operational environments [1], with the benefit to managing the structures
life prognosis and reducing life-cycle costs. SHM will be one of the major contributions for
future smart structures, including space ones [17].

2. PWAS-based SHM technology—EMIS method

The active SHM sensing techniques are based on two different approaches: transient guided
waves and standing waves [12]. In such SHM processes, a piezoelectric wafer active sensor
(PWAS) is required to generate elastic waves. These travel along the mechanical structure, are
reflected by different structural abnormalities, or boundary edges, and they are recaptured by
the same sensor in a pulse-echo configuration or by other sensors of same or different type,
even passive sensors, and in pitch-catch configuration. If the structural damage or boundary
edges are in the close vicinity of the active sensor, their reflections overlap the incident
transient wave, and making impossible the interpretation [14]. One of the active SHM sensing
techniques is based on standing waves, in the so-called EMIS method; by sweeping the
frequency of the input signals to PWAS, some changes appear in the impedance measured by
an impedance analyzer connected to the PWAS terminals. By monitoring the changes in the
real part of the impedance function, which is most sensitive to structural changes [10], one can
evaluate the integrity of the host structure.

The EMIS method uses PWAS high-frequency active sensors and bonded to the structure.
The presence of damage in a neighboring zone of the sensor is signaled as its EMIS “signa-
ture,” respectively, as a modification of the electromagnetic impedance spectrum Z (ω),
recorded and online processed, and in principle [10–14]. The pioneering work on using EMIS
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ance results are obtained based on an analytical relationship, or by dedicated equipment
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part, Re (Z (ω)), of the EMIS PWAS attached to the structure can be taken as an indication of
the presence of damage or defects, due to the fact that this value closely follows the reso-
nance behavior of the structure vibrating under the PWAS excitation [11]. In other words,
this measured value is very sensitive to the smallest variations in the high-frequency struc-
tural dynamics at local scales (on the order of microns), which are associated with the
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analysis sensors operating at lower frequencies.
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Although SHM will be soon, we think, a key technology in the field of space vehicles, it is
surprising how few papers can be reported for the time being in this field [4, 5, 18–22].
However, it is becoming clearer that new space programs can no longer ignore the implemen-
tation of SHM technologies to monitor and test the health and performance of space structures.
The safety of the crew on board and the safety of the spacecraft, especially in critical moments
of launch and re-entry into the earth’s atmosphere, depend on the onboard existence of a SHM
system. Spatial vehicles, but also the satellites, are subject to harsh environmental conditions:
strong vibrations at launching and landing, cosmic radiation (with energy up to 1.6 � 10�11 J
(1 GeV) [23], extreme temperatures (+120�C for exposed surfaces to the Sun and �230�C for
unexposed surfaces [22]), and advanced vacuum.

The premise of a tests program for qualification PWAS-based SHM technology for space
applications is that the changes in the EMIS signature will reflect the complex conditions in
which the structures are found: overexposure to natural damage, that is, mechanical fatigue
and aging, and special operating conditions in an environment defined by outer space
(extreme temperatures, radiation, and vacuum). Both kinds of constraints, that is, mechanical
and environmental, are to be simulated. The specific problem of the tests relates to the ability
of the PWAS transducer to measure the modal behavior of the structure on which it is attached
in the simulated harsh environmental conditions and with simulated mechanical damages.
Consequently, a considerable amount of testing stages, EMIS records, data processing, and
analytical assessments on damage identification were performed [5, 6, 24–28]. The following
types of specimens were subjected to the tests: (a) PWAS STEMINC SMD07T02S412WL trans-
ducers, (b) M-bond 610 Vishay epoxy adhesive, and (c) STEMINC PWAS transducers [26]
(Figure 1). The material and geometry data of the disc specimens (DS) were: A2024 aluminum
alloy, with a diameter of 100 mm and a thickness of 0.8 mm. To simulate damages, in discs
were processed, with laser technology, slits with 10 mm in length and 0.15 mm width, of
various geometries, and locations.
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Disc type PWASs with a diameter of 8 mm was bonded in the center of the aluminum disc
specimen with epoxy adhesive. The thickness of the adhesive layer was measured with a
comparator, and was found to be between 20 and 100 μm. Figure 2 shows a disc with an arc-
type simulated crack damage at 7 mm from the PWAS. The geometry of the simulated cracks
(0.15 mm wide and 10 mm long) is the following: crack 1 (curvature):R = 45 mm, θ = 13�; crack
2:R= 25 mm, θ = 23�; crack 3: R = 15 mm, θ=38�; and crack 4: R = 7 mm, θ = 82�. The set of
records refer to either PWASs or specimens with bonded PWAS, without and with simulated
damages. In Figure 2c, the experimental set-up for EMIS recording using the HP 4194A
impedance analyzer is presented.

The SHM test protocol involved a lot of operations: records and processing for EMIS, extreme
temperature irradiation under high-vacuum, irradiation at room temperature (RT) and atmo-
spheric pressure, optical and acoustic microscopy, scanning laser Doppler vibrometry (SLDV).
From the processing of impedance spectrum will result in the characterization of damages.
This is done by scalar sizes suitable to capture the differences between the spectra caused by
this damage/crack. Ideally, these values should capture only those spectral features that are
directly altered by the damage, while the variations caused by normal operating conditions to
be neglected.

Figure 1. Disc specimens (DS), geometry of damage simulation.

Figure 2. (a) PWAS STEMiNC type SMD 07T02R412WL; (b) DS with simulated damage at 7 mm from the PWAS; and
(c) experimental set-up for EMIS recording at RT using the HP 4194A impedance analyzer.
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The saying “there is nothing more practical than a good theory” is widely known. In a complex
tests program with the primary focus of the experiment, it was important to know well the
theoretical tools. Indeed, the experiments were based on the concept of EMIS signature, so it
was also important to master the theoretical basis of the EMIS method. The graphs summa-
rized in this chapter, to which can be added the numerical analysis in [13, 14] and [29], as well
as data, are given in Table 1; show that this goal has been met. Detailed analytical solutions are
presented in [11–13]. Numerical calculations and experimental validation are widely described
in [13, 6, 25, 29]. We cannot fail to notice the excellent monographs [30, 12] that guided the
studies and experiments presented in this chapter. As a theoretical foundation, we retain the
following equations that provide frequencies of flexural (f-indexed) and, respectively, axial
(a-indexed) modes of a circular pristine disc:

λ2J0 λð Þ þ 1� vð ÞλJ00 λð Þ
λ2I0 λð Þ � 1� vð ÞλI00 λð Þ ¼

J00 λð Þ
I00 λð Þ , ωj, f ≔λ2

j, f

ffiffiffiffiffiffiffiffiffi
D

rha4

s
, D≔

Eh3

12 1� v2ð Þ
zJ0 zð Þ � 1� νð ÞJ1 zð Þ ¼ 0, z≔γa, ωj ≔ cL zð Þj, a=a, c2L ≔E= r 1� v2

� �� � (1)

The characteristic Eqs. (1) are obtained as solutions of the equation of motion for the transverse
displacement w of a plate [30]:

D∇4wþ rh
∂2w
∂t2

¼ 0, D≔
Eh3

12 1� v2ð Þ (2)

∇4 ¼ ∇2∇2, where ∇2 is the Laplace operator. The Eqs. (1) give natural frequencies ωj associ-
ated with solutions (eigenvalues) λj or z γ is wavenumber, γ ¼ ω=cL. J0 λð Þ is the Bessel
function of first kind and order zero, whereas I0 λð Þ is the modified Bessel function of first kind
and order zero. D is the transverse (flexural) rigidity, E is Young’s modulus, h is the plate
thickness, a is the plate radius, v is Poisson’s ratio, and r is mass density per unit area of the
plate. As already mentioned, the DS were fabricated from A2024 aluminum alloy with a
diameter of 2a=100 mm and a thickness of h ¼0.8 mm. The properties of the A2024 aluminum
plates were: E= 73.146 MPa, r = 2780 kg/m3, and ν = 0.3312. The frequencies values obtained by
the experimental method are closer to the theoretical ones. The axial frequencies were noted
with an italic font.

Hence, finally electromechanical impedance Z(ω) of a PWAS transducer bonded to disc spec-
imen is:

νth (kHz) 12.57 19.69 28.38 35.67 38.63 50.51 63.95 78.97 93.95 95.57

νexp1 (kHz) 12.48 19.46 28.23 35.89 38.51 50.01 62.90 77.02 92.04 93.85

νexp2 (kHz) 12.65 19.91 28.27 28.63 35.42 37.35 38.07 38.87 49.32 50.53 63.62 77.93 90.63 93.73

Table 1. Theoretical (νth) and measured frequencies on pristine specimen (noted with νexp1) and on the arc at 15 mm
damaged specimen (νexp2).
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Figure 1. Disc specimens (DS), geometry of damage simulation.

Figure 2. (a) PWAS STEMiNC type SMD 07T02R412WL; (b) DS with simulated damage at 7 mm from the PWAS; and
(c) experimental set-up for EMIS recording at RT using the HP 4194A impedance analyzer.
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The saying “there is nothing more practical than a good theory” is widely known. In a complex
tests program with the primary focus of the experiment, it was important to know well the
theoretical tools. Indeed, the experiments were based on the concept of EMIS signature, so it
was also important to master the theoretical basis of the EMIS method. The graphs summa-
rized in this chapter, to which can be added the numerical analysis in [13, 14] and [29], as well
as data, are given in Table 1; show that this goal has been met. Detailed analytical solutions are
presented in [11–13]. Numerical calculations and experimental validation are widely described
in [13, 6, 25, 29]. We cannot fail to notice the excellent monographs [30, 12] that guided the
studies and experiments presented in this chapter. As a theoretical foundation, we retain the
following equations that provide frequencies of flexural (f-indexed) and, respectively, axial
(a-indexed) modes of a circular pristine disc:
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The characteristic Eqs. (1) are obtained as solutions of the equation of motion for the transverse
displacement w of a plate [30]:

D∇4wþ rh
∂2w
∂t2

¼ 0, D≔
Eh3

12 1� v2ð Þ (2)

∇4 ¼ ∇2∇2, where ∇2 is the Laplace operator. The Eqs. (1) give natural frequencies ωj associ-
ated with solutions (eigenvalues) λj or z γ is wavenumber, γ ¼ ω=cL. J0 λð Þ is the Bessel
function of first kind and order zero, whereas I0 λð Þ is the modified Bessel function of first kind
and order zero. D is the transverse (flexural) rigidity, E is Young’s modulus, h is the plate
thickness, a is the plate radius, v is Poisson’s ratio, and r is mass density per unit area of the
plate. As already mentioned, the DS were fabricated from A2024 aluminum alloy with a
diameter of 2a=100 mm and a thickness of h ¼0.8 mm. The properties of the A2024 aluminum
plates were: E= 73.146 MPa, r = 2780 kg/m3, and ν = 0.3312. The frequencies values obtained by
the experimental method are closer to the theoretical ones. The axial frequencies were noted
with an italic font.

Hence, finally electromechanical impedance Z(ω) of a PWAS transducer bonded to disc spec-
imen is:

νth (kHz) 12.57 19.69 28.38 35.67 38.63 50.51 63.95 78.97 93.95 95.57

νexp1 (kHz) 12.48 19.46 28.23 35.89 38.51 50.01 62.90 77.02 92.04 93.85

νexp2 (kHz) 12.65 19.91 28.27 28.63 35.42 37.35 38.07 38.87 49.32 50.53 63.62 77.93 90.63 93.73

Table 1. Theoretical (νth) and measured frequencies on pristine specimen (noted with νexp1) and on the arc at 15 mm
damaged specimen (νexp2).
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kstr ωð Þ is the dynamic stiffness of PWAS bonded on disc specimen; kPWAS ¼ ta= rasE11 1� νað Þ� �
is

the PWAS stiffness; kP is the planar coupling factor; cP is the sound speed in PWAS disc; cLis
the longitudinal wave speed in disc specimen; va, ra, and ha are corresponding parameters of
PWAS. Finally, sE11, ε

E
33, and d31 are recognized as PWAS compliance coefficient, dielectric

permittivity and, respectively, strain constant.

The issues raised above are primarily qualitative, but at the same time, together with the
results of numerical integration and with the measurements made on specimens, will show
the capability and resources of the PWAS EMIS SHM technique. For example, spectrum
splitting around resonance nominal frequencies of the pristine structure can be considered as
an indication of the occurrence of mechanical damage in the monitored structure (Figure 3).

The numerical model used in tests program is based on the finite element method (FEM). FEM
analysis allowed the study of damaged DSs [13, 14]. There was a good correlation between the
analytical method and the experimental method.

The EMIS signature is calculated analytically (for regular geometric shapes, such as discs) and
numerically. Table 1 shows the theoretical natural frequencies described by the analytical
model (1), the measured ones corresponding to the pristine DS (noted with νexp1) and to the
“arc at 45 mm from PWAS” damaged DS (νexp2).

Figure 3. Measurement records for pristine specimen versus damaged one. Changes in RT EMIS signatures for different
crack locations.
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Relationship (3) is an analytical one. The analytical results are compared with the experimental
ones. The statistics of the analytical determinations and the measurements are based on an
indicator. In statistics framework, the most available definitions of damages “metrics” could
be: “root mean square deviation“ (RMSD), mean absolute percentage deviation (MAPD), and
“correlation coefficient deviation” (CCD). Expressions of such sizes given in terms of the real
part of the impedance, Re (Z), are the following:
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The symbols Z and Z0 means averages in time and σZ and σZ0 represents the standard
deviation. Herein, we are interested to “assess a RMS type damage metrics,” both for the real
fault embodied through cracks or cuts simulated on disk specimens, or to statistical evaluation
of EMI changes caused by temperature or irradiation constraints on single PWAS, or DS,
constraints generating so-called “virtual (or false) defects”.

4. Checks before complex harsh environments tests

The test program started with the establishment of a reference database, with RT EMIS records
and processing for each PWAS and DS. It is important to note that the recorded data has been
analyzed even from the beginning taking into account the impact that a PWAS improperly
glued on DS has on the EMIS graphs. Figure 4 shows how an inappropriate bonding resulted
in the specimen discredit.

Since the EMIS signature does not always clarify the origin of the damages – mechanical or
electronic, generated by fatigue and the aging of the structure or by deficiencies of sensors bonding

Figure 4. EMI signature for (a) a “good” bonding and (b) a “bad” bonding.
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on the specimen and so on, special investigative means were added. This preliminary analysis is
correlated with the experimental observation that there can be slight variation of EMIS for nomi-
nally identical specimens. Itwas considered that possible causes of EMIS signature changeswere (a)
fatigue and aging of the mechanical structure due to vibration, (b) unfulfillment of an adequate
bonding of PWAS to the specimen, and (c) damage of PWAS itself.

Figure 5 top shows images obtained with SAM 300, at investigating the DS 122, particularly
chosen wrong, for study. One can see: cracks in PWAS (red circles) caused by unequal forces
applied during the bonding process; a piece of PWAS is broken (green rectangle); areas
without glue (yellow rhombs). Another device used was the digital microscope VHX 5000. The
VHX is an all-in-one microscope that incorporates observation, image capture, and measure-
ment capabilities. Figure 5 bottom shows two images of the DS 106 obtained with this device.
The picture on the right is an enlarged image of the left side; a crack is shown in PWAS.

Figure 5. Top: Investigating the DS 122 with 300 scanning acoustic microscope (SAM); middle: Images obtained with
digital microscope VHX 5000, DS106; and bottom: Areas of interest PWAS health monitoring.
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5. Describing tests protocol and results

5.1. The effects of the harsh environment on PWAS and DS EMIS signature

Two specimens exposed to harsh environmental conditions in the laboratory simulations are free
PWAS sensors and circular plates with central bonded PWAS. EMIS was recorded both during
exposure to harsh conditions, and in the intervals between these exposures, at RT, see Table 2.
The technical details of the factors involved in one cycle of harsh environment exposure are
presented in Table 3. The first stage of the complex test protocol stipulated five cycles of
concomitant outer-space condition: high-temperature variation, radiation, and vacuum.

In the test program has been used special harsh environment simulation equipment, starting
with the Dewar cryogenic vessel, and the convection oven with the Memmert UFE 400 digital
temperature controller. Also, some of the experiments at negative temperatures were performed
at INCAS in the environmental chamber INSTRON 5982, and the high temperatures in the
thermostatic chamber FD 115 Binder.

The test program also developed experiments at the Horia Hulubei national institute for R and D
in physics and nuclear engineering-IFIN-HH, in the gamma irradiation chamber 5000 with 60-Co
circular distributed sources. The details are presented in the paper [26]. The measured radiation
flow was 4.7 kGy/h. Five consecutive test cycles (Table 3) were programmed to provide a full
irradiation dose of 23.5 kGy. The premise of the calculations was as follows: (a) the estimated

Tested specimen Activity Amount Working time [h]

PWAS EMI measuring at RT 30 20

testing in harsh, space type, conditions 30 200

EMI measurement after returning to RT 30 20

EMI changes analysis 30 100

Disc with PWAS EMI measuring at room temperature 34 20

testing in harsh, space type, conditions 34 200

EMI measurement after returning to RT 34 20

EMI changes analysis 34 100

Table 2. Complex testing protocol for simulation of harsh space type conditions - first stage of complex tests.

Duration Temperature (�C) Vacuum (Pa) Dose per step (kGy) Dose per cycle (kGy)

Initial EMIS reading – RT

0.5 h �196 1–10�2 2.35 4.7

1.0 h RT — —

0.5 h +100 1–10�2 2.35

EMIS reading after each cycle – RT

Table 3. Overview of one test cycle of cumulative environmental factors: Radiation, temperature, and vacuum tests.
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complete dose for a mission onMars is 110 mGy/year, which means a dose of about 15 μGy/h; (b)
the highest absorbed doses determined by the Pioneer probes 10 and 11 were 15 kGy, and 4.3 kGy,
respectively. Consequently, the dose rate determined by the gamma 5000 irradiation chamber has
been considered as acceptable. The absorbed dose of 23.5 kGy corresponded to 5 h exposure at the
measured dose of 4.7 kGy/h. The usual vacuum in the outer space is 10�14 Pa. Vacuum pressures
below 10�1 Pa were obtained by using a tritium manifold, a high-vacuum plant containing a
vacuum pump type TSH-171E Pfeiffer, and pressure vacuum controllers type TPG 262 Pfeiffer.

A reference database is created at the beginning of the tests; for example, see Figure 6. The
strategy of the program was that, in the first stage of tests, the PWASs and DSs were tested
using simultaneous environmental factors that are specific to outer space, see Figure 7, the case
of disc specimen 127 [25]. Then, to characterize the influence of each factor on the EMIS
signature, in the second phase the tests were developed with harsh environmental factors
acting successively instead of simultaneously [28], see Table 4.

Figure 6. The experimental reference RT for the EMIS method: The signature of the health status of the structure.

Figure 7. Summary of EMI measurements on S127 disc specimen, without simulated crack.
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The effects of harsh environment on PWAS. After performing the tests according to the
protocols in Tables 2 and 3, it is noted that the resonance frequencies on the EMIS PWAS
graphs are constantly moving from left to right when temperatures drop from high (+150�C) to
cryogenic values (�70�C), as shown in Figure 8a. After completion of the tests at extreme
temperatures, measurements were again made at RT.

A compensation technique [26, 28], in fact, a horizontal displacement of graphs, was used to
obtain graphs in Figure 8b. As far as irradiations are concerned, they cause insignificant
changes to EMIS signatures (Figure 8c). Thus, we can conclude that EMIS signature changes
caused by environmental factors are reversible and consequently do not characterize real
damage. The real damages are those of mechanical origin, which produce irreversible changes
to the EMIS signature.

The effects on pristine DS. The EMIS behavior at extreme temperatures was analyzed on a set
of 4 DS. Initially, the EMIS graph at RT (+25�C) was recorded. Next, tests at low temperatures,

Figure 8. EMIS PWAS signatures: (a) synoptic graph of temperature cycling; (b) initial and after temperature cycling,
both at RT, compensated values; and (c) initial and after irradiation tests, both at RT.

# Piezoelectric wafer active sensors (PWAS) Disc specimens (DS)

1 Initial RT EMIS recording of 38 PWAS (26 of
them was bonded on the aluminum disc)

Initial RT EMIS recording of 26 DS; 10 of them was eliminated

2 Tests and EMIS recording at high temperatures
for 5 PWAS: +50/+200�C, step: +25�C

Fabrication of arc type mechanical damages (MD): arc at 45 mm
(2 DS), 25 mm (3 DS), 15 mm (3 DS), and 7 mm (2 DS)

3 RT EMIS recording after high temperatures RT EMIS recording after MD fabrication

4 Tests and EMIS recording at low temperatures
for 5 PWAS: �25, �50, �70�C

Tests and EMIS recording at low temperatures for 4 DS: 0,�25,�50,
�70�C

5 RT EMI recording after low temperatures RT EMI recording after low temperatures

6 Tests and EMIS recording at high temperatures
for 5 PWAS: +50/+150�C, step: +25�C

Tests and EMIS recording at high temperatures for 4 DS: +50, +75,
+100, +125, and +150�C

7 RT EMIS recording after high temperatures RT EMIS recording after high temperatures

8 Irradiation tests and EMIS recording for 2 PWAS
at 3.71 Gy/h

Irradiation tests and EMIS recording for 2 DS at 3.71 Gy/h

9 RT EMIS recording after irradiation RT EMIS recording after irradiation

Table 4. Tests summary – Second stage of complex tests.
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0, �25, �50, and �70�C were performed. When returning at the RT, T1, (+22.4�C), it is noticed
that the EMIS chart overlaps the initial one. After that, experiments at high temperatures up to
+150�C, with a chosen step of 25�C, followed. When DS is brought to RT, T2 (+23.6�C), it can be
seen that EMIS returns to its original form, see Figure 9a.

Results similar to those of the PWAS case were also obtained in the case of 2 DS. The measure-
ments were performed according to protocols before irradiation, during irradiation and after
irradiation at RT, with the conclusion that the radiation does not produce splittings of the
resonance peaks, but only negligible displacements of the peaks (Figure 9b), of the order of
dozens of ohms.

5.2. The effects of the mechanical damages on PWAS and DS EMIS signature

Mechanical damages affect the EMIS signature in a well-defined way, namely causing the reso-
nance peaks to split. This phenomenon intensifies in direct proportion to the decrease in distance
from the PWAS center. Harsh environmental factors produce only displacements of resonance
peaks and variations of amplitude on the EMIS signature, all practically reversible. (Figure 3).

The EMIS graphs in Figure 10a show, by comparison with the graph in Figure 10b, and the
impact of the damages on the spectrogram. Of course, this impact is more pronounced when
the damage is closer to the PWAS center and is manifested mainly as splittings of resonance
peaks in new peaks. This observation generated the idea of developing a method of identifying
mechanical damage as well as of dissociating the mechanical damage from the so-called false
damage, that induced by environmental factors [31].

Therefore, based on experimental observations, the splitting of resonance peaks on the EMIS
signature will be associatedwith the occurrence of a mechanical deterioration. Instead, the effects
of harsh environmental conditions are limited only to reversible movements of resonance peaks
with amplitude changes; if the temperatures do not exceed certain limits, the amplitudes are
practically reversible, and returning to EMIS signatures in the case of RT. More insignificant are
the modifications made on the EMIS graphs by irradiation specific to outer space.
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A major tests result to propose a new, simple and effective approach to identifying mechanical
damage. This approach allows the algorithmic distinction between real, mechanical damage
and false damage, and caused by the harsh environmental factors.

5.3. Entropy method for damage detection and prediction

Figure 11 shows one of the multiple recordings done in the time domain with SLDV. The DS
138, without damage and with arc type defect at 15 mm, is scanned at a frequency of 78.4 Hz,
see a 2D and a 3D representation. The position of the laser-cut slit is marked as a red peak.
The displacement is given in nanometers depending on time [ms] (vibration measured in the
z-direction, perpendicular to the disc, takes also negative values). The graph refers to a
vibration of a specific point on the surface of the disk otherwise indicated in the picture. It
can be seen that the concentric circles are uniformly distributed on the surface of the plate
when there is no damage to disturb the wave propagation. In the case with the laser made
damage, the amplitudes of the waves in the vicinity of the fabricated crack are much higher
than all the other points of the disk producing distinct peak in the EMIS signature. Figure 12
shows the use of SLDV for records in the frequency domain. For the same DS 138, a 3D
image of the vibration at a frequency of 49.56 kHz is shown.

Figure 10. (a) Changes in EMIS signature, without damage versus damage (at 7 and 25 mm); (b) EMIS signature remains
unchanged for different DS without damage.

Figure 11. Recordings in time domain done with SLDVon DS 138: (a)disc without damage 2D representation; (b) DS with
arc type defect at 15 mm—2D; (c) disc without damage 3D; and (d) DS with arc type defect at 15 mm—3D.
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The pattern of vibration in the presence and in the vicinity of the crack shows clear disorder.
From here and from the paper [31] came the idea of exploiting the entropy concept in identi-
fying the damage. Thus, an entropy method for damage detection and the prediction was
proposed [28, 32]. Since the possible use of SLDV is very costly, we propose a simple method
that uses the EMIS global signature. The proposed method can successfully substitute a
possible but very expensive use of SLDV that should provide mode shapes for obtaining the
global EMIS signature.

Consider the discretized system Re Z ωið Þð Þ∶ ¼ Ri, ωi ∈ ωa;ωb½ �, Ri ≥ 0,i ¼ 1,…, n described by
the probabilities P ¼ p1; p2;…; pn

� �
. The complex information contained in EMIS signature

measurements, respectively, in Re Z ωð Þð Þ data, is firstly processed in sizes assimilable as prob-
abilities, pi ≥ 0, i ¼ 1,…, n and

Pn
i¼1 pi ¼ 1

pi∶ ¼ Re Z ωið Þð ÞPn
i¼1 Re Z ωið Þð Þ ∶ ¼ Ri

C
(5)

The normalized entropy of the set P is measured as:

H Pð Þ ¼ �
Pn

i¼1 pilog2pi
log2n

(6)

The disorder produced in EMIS signature by the mechanical damage will be analyzed based
on the investigative capacity of PWAS. This can be deducted from graphs recorded in Figure 3,
where we find the EMIS signatures of undamaged DS, noted “u,” of the DS in which the
damage is located at the distance d1 = 45 mm, noted “d1”, and so on, for the DS “d2”, “d3”,

“d4”. This calculation is carried out on frequency intervals ωaj ;ωbj

h i
, where certain resonance

frequencies are present. Define

H P; uuð Þ ¼ �
Pn

i¼1 pilog2pi
log2n

¼ �
Pn

i¼1
2Ru

i

2Cu log2
2Ru

i

2Cu

log2n

H P; uuð Þ ¼ � 1
log2n

Ru
1

Cu log2R
u
1 � log2C

u� �� Ru
2

Cu log2R
u
2 � log2C

u� ��…� Ru
n

Cu log2R
u
n � log2C

u� �� �

H P; uuð Þ ¼ � 1
Culog2n

Xn

i¼1

Ru
i log2R

u
i � Culog2C

u

 !
(7)

Figure 12. Recordings in frequency domain done with SLDV on DS 138 with mechanical damage; next is given the EMI
signature of the disk.
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The relationship (7) gives the entropy, or complexity, or the disorder modifications on the EMIS
signatures, of the undamaged u DS in relation with himself, in short uu. We continue with the
increased entropy ud1 of damaged DS having the damage at a distance 45 mm, d1, versus
undamaged u DS, and so on up to ud4 (Table 5).

From exploring the results in Table 5, it is noticeable that the PWAS active sensor senses the
disorder caused by damage with satisfactory efficiency if this damage is located at a distance
close to the sensor center, in this case at distances of 15–7 mm. This conclusion is useful for the

Frequency (kHz) n for summation uu ud1 ud2 ud3 ud4 Averaged entropy ud3 + ud4 increasing vs. uu

26–32 601 0.826 0.850 0.851 0.904 0.905 0.079

36–42.5 651 0.771 0.821 0.805 0.882 0.876 0.108

47–53 601 0.821 0.819 0.830 0.880 0.904 0.071

58–68 1001 0.774 0.811 0.798 0.855 0.882 0.095

78–81.5 551 0.762 0.804 0.811 0.884 0.830 0.095

92.5–98.5 601 0.714 0.799 0.790 0.829 0.833 0.117

Table 5. Entropy values for disc specimens DS: u vs. u (uu), u vs. d1 (ud1), …, u vs. d4 (ud4) [28].

Frequency (kHz) n for summation Before irradiation During irradiation Entropy increasing

28–31 121 0.7601 0.7602 0.0001

38–41 121 0.7571 0.7576 0.0005

50–53 121 0.6721 0.6783 0.0062

63–67 121 0.7275 0.7295 0.0020

78–81.5 121 0.7437 0.7450 0.0013

93–97 121 0.7173 0.7183 0.0010

Table 6. Influence of radiations on EMIS signature, type “u” DS [28].
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Figure 12. Recordings in frequency domain done with SLDV on DS 138 with mechanical damage; next is given the EMI
signature of the disk.
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implementation of a SHM system, which should ensure an optimized distribution of monitor-
ing sensors on the surface of the structure.

The fact that irradiation taken separately produces an insignificant change in the EMIS signa-
ture is attested in Table 6. If a compensation technique is considered and applied as in [26], the
same conclusion applies to extreme temperature tests, see Table 7.

6. Conclusions

A first conclusion of descriptions and analysis made in this book chapter is that the cumulative
impact of severe conditions of temperature and radiation has not generated decommissioning
of PWAS sensors, thus confirming the survivability and sustainability of EMIS PWAS based
SHM technology, as the first step towards de space vehicles transfer.

A second conclusion is that the splitting phenomenon of resonance peaks on EMIS signature
can be associated with the occurrence of mechanical damage, making possible the clear disso-
ciation of the changes determined by the harsh environmental conditions (temperatures and
radiations). They are reduced mainly to reversible displacements of the resonance frequencies,
with resonance amplitudes modifications, but if the temperatures do not cross certain limits,
the amplitudes and frequencies return to those of RT case. Regarding radiations, they do not
affect the EMIS graph.
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Abstract

This chapter presents a fault detection method through uni- and multivariate hypothesis
testing for wind turbine (WT) faults. A data-driven approach is used based on supervisory
control and data acquisition (SCADA) data. First, using a healthy WT data set, a model is
constructed through multiway principal component analysis (MPCA). Afterward, given a
WT to be diagnosed, its data are projected into the MPCA model space. Since the turbu-
lent wind is a random process, the dynamic response of the WT can be considered as a
stochastic process, and thus, the acquired SCADA measurements are treated as a random
process. The objective is to determine whether the distribution of the multivariate random
samples that are obtained from the WT to be diagnosed (healthy or not) is related to the
distribution of the baseline. To this end, a test for the equality of population means is
performed in both the univariate and the multivariate cases. Ultimately, the test results
establish whether the WT is healthy or faulty. The performance of the proposed method
is validated using an advanced benchmark that comprehends a 5-MW WT subject to
various actuators and sensor faults of different types.

Keywords: condition monitoring, wind turbines, principal component analysis,
hypothesis testing

1. Introduction

The wind energy cost depends strongly on the performance of the condition monitoring
system. Advance in this area would decrease downtime periods, extend the WT lifetime, and
ultimately reduce the operation and maintenance (O&M) costs, which is one of the main
challenges in wind energy as stated in “20% Wind Energy by 2030” [1].
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Usually, condition monitoring comprises different systems (vibration analysis, oil monitoring,
etc. [2]) for different parts and different types of faults and makes use of expensive specific
sensors that must be installed in the WT. Therefore, the advance in fault detection systems that
only make use of already available data from the turbine SCADA system and comprehend
different parts and different types of faults is promising (since no additional sensors or data
acquisition devices are needed). The SCADA signals provide rich information on the WT perfor-
mance; thus, with appropriate algorithms, they can be used effectively for condition monitoring,
prognostics, and remaining useful life prediction of WTs [3]. There are some success stories
about using SCADA data for condition monitoring. For example, Ruiz et al. presented a machine
learning approach [4], Zaher and McArthur proposed to use the combination of abnormal
detection and data-trending techniques encapsulated in a multiagent framework [5], Pozo and
Vidal proposed a fault detection system based on principal component analysis [6].

In this work, following the enhanced benchmark challenge for wind turbine fault detection
proposed in [7], a set of eight realistic fault scenarios are considered to develop a WT condition
monitoring strategy that combines a SCADA data-driven baseline model—reference pattern
obtained from the healthy wind turbine—based on MPCA in combination with uni- and
multivariate hypothesis testing. Previous works using MPCA and hypothesis testing to detect
structural damage [8] work under the hypothesis of guided waves. That is, the vibration
(guided wave) induced to the structure is known and always the same. However, in this work,
the vibration is induced by the changeful wind. The used benchmark comprehends different
types of faults of a 5-MWWT given by the FAST simulator [9], which has been accepted by the
scientific community and is widely used for WT-related research, e.g., [10–12].

The chapter is organized as follows. Section 2 briefly recalls theWTbenchmarkmodel. In Section 3,
the condition monitoring strategy is stated. Simulation results are discussed in Section 4. Finally,
conclusions are drawn in Section 5.

2. Wind turbine benchmark model

The used benchmark model is proposed in [7]. It covers a 5-MW three-bladed, variable speed
WT modeled with the FAST simulator, detailed actuator and sensor models, as well as the
different fault descriptions. For a complete description of the benchmark, please see reference
[7]. Here, a short review is given to introduce the used notation.

The specifications of the 5-MW reference WT is documented in [13]. This model has been used
as a reference by research teams throughout the world to standardize baseline on- and off-
shore wind turbine specifications. The wind turbine typical features are given in Table 1, and
the assumed available SCADA data are given in Table 2. This work copes with the so-called
full load region of operation. In order to run the simulations, turbulent wind data sets that
cover this region have been generated with TurbSim [14], see Figure 1.

The generator-converter system can be approximated by a first-order ordinary differential
equation, see [7], which is given by:

Structural Health Monitoring from Sensing to Processing138

_τr tð Þ þ αgcτr tð Þ ¼ αgcτc tð Þ (1)

where τr and τc are the real generator torque and its reference (given by the controller),
respectively. In the numerical simulations, αgc ¼ 50, see [13]. Moreover, the power produced
by the generator, Pe tð Þ, is given by (see [7]):

Pe tð Þ ¼ ηgωg tð Þτr tð Þ (2)

where ηg is the efficiency of the generator and ωg is the generator speed. In the numerical

experiments, ηg ¼ 0:98 is used, see [7].

Reference wind turbine Magnitude

Rated power 5 MW

Number of blades 3

Rotor/hub diameter 126, 3 m

Hub height 90 m

Cut-in, rated, and cut-out wind speed 3, 11:4, and 25 m/s

Rated generator speed (ωng) 1173:7 rpm

Gearbox ratio 97

Table 1. WT properties.

Number Sensor type Symbol Units

1 Generated electrical power Pe,m kW

2 Rotor speed ωr,m rad/s

3 Generator speed ωg,m rad/s

4 Generator torque τc,m Nm

5 First pitch angle β1,m
�

6 Second pitch angle β2,m
�

7 Third pitch angle β3,m
�

8 Fore-aft acceleration at tower bottom abfa,m m/s2

9 Side-to-side acceleration at tower bottom abss,m m/s2

10 Fore-aft acceleration at mid-tower amfa,m m/s2

11 Side-to-side acceleration at mid-tower amss,m m/s2

12 Fore-aft acceleration at tower top atfa,m m/s2

13 Side-to-side acceleration at tower top atss,m m/s2

These sensors are representative of the types of sensors that are available on an MW-scale commercial wind turbine.

Table 2. Assumed available measurements.
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Each of the three pitch actuators is modeled as a closed loop transfer function between the
pitch angle, β sð Þ, and its reference βr sð Þ:

β sð Þ
βr sð Þ ¼

ω2
n

s2 þ 2ξωnsþ ω2
n

(3)

where ξ is the damping ratio and ωn the natural frequency that takes the fault-free values
ξ ¼ 0:6 and ωn ¼ 11:11 rad/s, see [7].

The fault detection benchmark considers different types of faults at different components
(sensors and actuators), as described in Table 3.

Figure 1. Wind speed signal with turbulence intensity set to 10%.

Fault Type Description

F1 Pitch actuator Change in dynamics: high air content in oil

F2 Pitch actuator Change in dynamics: pump wear

F3 Pitch actuator Change in dynamics: hydraulic leakage

F4 Torque actuator Offset (offset value equal to 2000 Nm)

F5 Generator speed sensor Scaling (gain factor equal to 1:2)

F6 Pitch angle sensor Stuck (fixed value equal to 5�)

F7 Pitch angle sensor Stuck (fixed value equal to 10�)

F8 Pitch angle sensor Scaling (gain factor equal to 1:2)

Table 3. Fault scenarios.
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3. Condition monitoring (CM) strategy

The overall CM strategy is based on a three-tier framework:

i. a multiway PCA (MPCA) model is built with the data that are collected from a healthy
WT,

ii. when a new WT has to be diagnosed, the SCADA data are projected using the MPCA
model created in (i), and

iii. the final decision is based on both univariate and multivariate HT.

3.1. The wind as a source for the excitation: the need for a new paradigm

In general, vibration-based structural health monitoring (SHM) is based on the fact that an
alteration or difference in physical properties due to damage or structural change will motivate
changes in dynamical responses that may be detected. Figure 2 represents this paradigm in the
sense that a healthy structure is excited according to a prescribed signal to build a pattern.
Afterward, the structure that has to be diagnosed is affected by exactly the same signal, where
the response is measured, processed, and finally compared with the previous pattern. The
strategy presented in Figure 2 is known as “guided waves in structures for SHM” [15].

In the present chapter, the field of application is wind turbines and a realistic scenario is to
consider that the excitation comes from the wind turbulence. The wind turbulence cannot be
controlled and it is always different. Therefore, the paradigm of guided waves in WT for SHM
as in Figure 2 cannot be considered. In this case, when the source of the excitation cannot be
previously prescribed, a new paradigm is needed, as represented in Figure 3. The foundation
of the new paradigm is that, even with a constantly different excitation, the CM strategy based
on MPCA and univariate and multivariate HT will be able to disclose some hidden damage,
misbehavior, or fault. To sum up, the fundamental idea behind the CM strategy is the hypoth-
esis that a variation in the overall behavior of the WT, even with an unprescribed excitation,
should be detected.

Figure 2. Vibration-based SHM is based on the fact that an alteration or difference in physical properties due to damage
or structural change will motivate changes in dynamical responses that may be detected.
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However, in our application, the only available excitation of the wind turbines is the wind
turbulence. Therefore, guided waves in wind turbines for SHM as in Figure 2 cannot be
considered as a realistic scenario. In spite of that, the new paradigm described in Figure 3 is
based on the fact that, even with different wind turbulence, the fault detection strategy based
on PCA and statistical multivariate hypothesis testing will be able to detect some damage,
fault, or misbehavior. More precisely, the key idea behind the detection strategy is the assump-
tion that a change in the behavior of the overall system, even with a different excitation, has to
be detected. Section 4 includes the simulation results of the proposed CM strategy that vali-
dates this hypothesis.

3.2. Data-driven baseline modeling based on MPCA

Multiway principal component analysis (MPCA) is a natural extension of classical principal
component analysis (PCA) to manage data in multidimensional arrays [16, 17]. A conventional
two-dimensional data matrix can be treated as a two-way array, where experiments and vari-
ables (or discretization instant times) form the two different ways. Frequently, this arrange-
ment has to be extended to multiway arrays, particularly if several sensors—in different
experimental trials—are gathering data at different time instants. Consequently, MPCA is
equivalent to the application of standard PCA to an unfolded version of the initial multiway
array.

Westerhuis et al. [18] propose six different ways of unfolding a three-way data matrix. Besides,
in [18], a critical analysis of several aspects of the treatment of multiway data is provided,
including how the matrix is unfolded, but also mean-centering and scaling with respect to the
effects on the analysis of batch data. Ruiz et al. [19] assign one of the first six letters of the
alphabet to each one of the six different ways of unfolding. In this chapter, as well as in [6, 8,
20, 21], we have considered the so-called type E. However, we will present the collected
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sensor are a real vector

Figure 3. The key idea behind the new paradigm of the detection strategy is the assumption that a change in the behavior
of the overall system, even with a different excitation, has to be detected.

Structural Health Monitoring from Sensing to Processing142

x11 x12 ⋯ x1L x21 x22 ⋯ x2L ⋯ xn1 xn2 ⋯ xnLð Þ∈RnL (4)

where the real number xij, i ¼ 1,…, n, j ¼ 1,…, L corresponds to the measure of the sensor at
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where ℳn�L Rð Þ is the vector space of n� L matrices over R. It is worth noting that n is the
number of rows of the matrix in Eq. (5) and L is the number of columns of the same matrix. The
effect on the overall performance of the condition monitoring strategy on the choice of n and L
is thoroughly analyzed on [21].

Let us assume that the SCADA data are now collected from N∈ℕ sensors also during the
same period of time. In this case, the collected data, for each sensor, can be organized in a
matrix as in Eq. (5). Subsequently, all the collected data coming from the whole set of sensors
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jvLþ1∣⋯∣v2L|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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¼ X1 X2 ⋯ XN
� �

∈ℳn� N�Lð Þ Rð Þ

(6)

where the superindex k ¼ 1,…, N of each element xkij in the matrix represents the number of

sensor. Matrix X∈ℳn� N�Lð Þ Rð Þ—where ℳn� N�Lð Þ Rð Þ is the vector space of n� N � Lð Þ matrices
over R—contains the measures from N sensors at nL discretization instants. Consequently,
each row vector xTi ¼ X i; :ð Þ∈RN�L, i ¼ 1,…, n represents the measurements from all the sen-
sors at time instants i� 1ð ÞLþ j� 1ð Þð ÞΔ seconds, j ¼ 1,…, L. Equivalently, each column vector

vj ¼ X :; jð Þ∈Rn, j ¼ 1,…, N � L represents measurements from sensor number j
L

l m
at time

instants i� 1ð ÞLþ j� 1ð Þð ÞΔ seconds, 1 ¼ 1,…, n, where �d e is the ceiling function.

The objective of the subsequent analysis is to build the MPCA model, that is, the square
orthogonal matrix P∈ℳ N�Lð Þ� N�Lð Þ Rð Þ that has to be used to transform or project the original
data matrix X according to the following matrix-to-matrix product:
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tion that a change in the behavior of the overall system, even with a different excitation, has to
be detected. Section 4 includes the simulation results of the proposed CM strategy that vali-
dates this hypothesis.

3.2. Data-driven baseline modeling based on MPCA

Multiway principal component analysis (MPCA) is a natural extension of classical principal
component analysis (PCA) to manage data in multidimensional arrays [16, 17]. A conventional
two-dimensional data matrix can be treated as a two-way array, where experiments and vari-
ables (or discretization instant times) form the two different ways. Frequently, this arrange-
ment has to be extended to multiway arrays, particularly if several sensors—in different
experimental trials—are gathering data at different time instants. Consequently, MPCA is
equivalent to the application of standard PCA to an unfolded version of the initial multiway
array.

Westerhuis et al. [18] propose six different ways of unfolding a three-way data matrix. Besides,
in [18], a critical analysis of several aspects of the treatment of multiway data is provided,
including how the matrix is unfolded, but also mean-centering and scaling with respect to the
effects on the analysis of batch data. Ruiz et al. [19] assign one of the first six letters of the
alphabet to each one of the six different ways of unfolding. In this chapter, as well as in [6, 8,
20, 21], we have considered the so-called type E. However, we will present the collected
SCADA data arranged in an already unfolded matrix.

The MPCA modeling starts by measuring, from a healthy wind turbine, a sensor during
nL� 1ð ÞΔ seconds, where Δ is the sampling time and n, L∈ℕ. The discretized measures of the
sensor are a real vector

Figure 3. The key idea behind the new paradigm of the detection strategy is the assumption that a change in the behavior
of the overall system, even with a different excitation, has to be detected.

Structural Health Monitoring from Sensing to Processing142

x11 x12 ⋯ x1L x21 x22 ⋯ x2L ⋯ xn1 xn2 ⋯ xnLð Þ∈RnL (4)

where the real number xij, i ¼ 1,…, n, j ¼ 1,…, L corresponds to the measure of the sensor at
time i� 1ð ÞLþ j� 1ð Þð ÞΔ seconds. These collected data can be arranged inmatrix form as follows:

x11 x12 ⋯ x1L
⋮ ⋮ ⋱ ⋮
xi1 xi2 ⋯ xiL
⋮ ⋮ ⋱ ⋮
xn1 xn2 ⋯ xnL

0
BBBBBB@

1
CCCCCCA

∈ℳn�L Rð Þ (5)

where ℳn�L Rð Þ is the vector space of n� L matrices over R. It is worth noting that n is the
number of rows of the matrix in Eq. (5) and L is the number of columns of the same matrix. The
effect on the overall performance of the condition monitoring strategy on the choice of n and L
is thoroughly analyzed on [21].

Let us assume that the SCADA data are now collected from N∈ℕ sensors also during the
same period of time. In this case, the collected data, for each sensor, can be organized in a
matrix as in Eq. (5). Subsequently, all the collected data coming from the whole set of sensors
are concatenated and disposed in a matrix X∈ℳn� N�Lð Þ as follows:

X ¼

x111 x112 ⋯ x11L x211 ⋯ x21L ⋯ xN11 ⋯ xN1L

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

x1i1 x1i2 ⋯ x1iL x2i1 ⋯ x2iL ⋯ xNi1 ⋯ xNiL
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

x1n1 x1n2 ⋯ x1nL x2n1 ⋯ x2nL ⋯ xNn1 ⋯ xNnL

0
BBBBBBBB@

1
CCCCCCCCA

¼ v1∣v2∣⋯∣vL|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X1

jvLþ1∣⋯∣v2L|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X2

j⋯jv N�1ð ÞLþ1∣⋯∣vN�L|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
XN

0
B@

1
CA

¼ X1 X2 ⋯ XN
� �

∈ℳn� N�Lð Þ Rð Þ

(6)

where the superindex k ¼ 1,…, N of each element xkij in the matrix represents the number of

sensor. Matrix X∈ℳn� N�Lð Þ Rð Þ—where ℳn� N�Lð Þ Rð Þ is the vector space of n� N � Lð Þ matrices
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The objective of the subsequent analysis is to build the MPCA model, that is, the square
orthogonal matrix P∈ℳ N�Lð Þ� N�Lð Þ Rð Þ that has to be used to transform or project the original
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T ¼ XP∈ℳn� N�Lð Þ Rð Þ, (7)

where the shape of the variance-covariance matrix of matrix T in Eq. (7) is diagonal.

In the proposed approach in this chapter, the model defined in matrix P in Eq. (7) is based
only on measures that come from a healthy wind turbine. Posteriorly, data from the current
WT to diagnose will be projected using the matrix-to-matrix multiplication also defined in
Eq. (7). However, a different procedure can be considered, particularly, when the goal is not
just to detect a damage or a fault but to classify it. In the latter case, matrix X in Eq. (6)
should contain measures from a WT in its healthy state but also in all the possible fault
scenarios. This way, the generated model in matrix P in Eq. (7) contains all the possible states
of the structure.

3.2.1. Centering and scaling: group scaling (GS) vs. mean-centered group scaling (MCGS)

Considering that the data stored in matrix X are affected by a changing wind turbulence, come
from different sensors, and could have different magnitudes and scales, some kind of pre-
processing step is required to rescale the data [22, 23]. According to Westerhuis et al. [18], the
way this preprocessing step is carried out may affect the overall performance of the CM
strategy. In the present chapter, we present two possible choices that have some common core.
These two alternatives are as follows:

i. group scaling (GS) and

ii. mean-centered group scaling (MCGS).

In the former case (GS), both the arithmetic mean and the variance of all measurements of the
sensor are used. More precisely, for k ¼ 1, 2,…, N, we define

μk ¼ 1
nL

Xn

i¼1

XL

j¼1

xkij, (8)

σ2k ¼
1
nL

Xn

i¼1

XL

j¼1

xkij � μk
� �2

(9)

where μk and σ2k are the arithmetic mean and the variance of the whole set of elements in

matrix Xk, respectively. In this case, matrix X ¼ xkij
� �

is centered and scaled—using GS—to

define a modified matrix �X ¼ XGS ¼ �xkij
� �

as

�xkij ≔
xkij � μk

ffiffiffiffiffi
σ2k

q , i ¼ 1,…, n, j ¼ 1,…, L, k ¼ 1,…, N: (10)

In the latter case (MCGS), the arithmetic of all measurements of the sensor at the same column
is considered in the normalization. More precisely, for k ¼ 1, 2,…, N, we define
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μk
j ¼

1
n

Xn

i¼1

xkij, j ¼ 1,…, L, (11)

where μk
j is the arithmetic mean of the measures placed at the same column. In this case, then,

matrix X ¼ xkij
� �

is centered and scaled—using MCGS—to define a modified matrix �X ¼
XMCGS ¼ �xkij

� �
as

�xkij ≔
xkij � μk

jffiffiffiffiffi
σ2k

q , i ¼ 1,…, n, j ¼ 1,…, L, k ¼ 1,…, N: (12)

where σ2k is defined as in Eq. (9) using μk as in Eq. (8). It is worth noting that the only difference

between the expressions in Eqs. (10) and (12) is how the elements inmatrix X ¼ xkij
� �

are centered.

When matrix X ¼ xkij
� �

is scaled and centered according to the MCGS strategy described in

Eq. (12), the average value of each column vector in the scaled matrix �X can be calculated as

1
n

Xn

i¼1

�xkij ¼
1
n

Xn

i¼1

xkij � μk
j

σk
¼ 1

nσk
Xn

i¼1

xkij � μk
j

� �
(13)

¼ 1
nσk

Xn

i¼1

xkij

 !
� nμk

j

" #
(14)

¼ 1
nσk

nμk
j � nμk

j

� �
¼ 0 (15)

Taking advantage of the fact that the scaled matrix �X is a mean-centered matrix, the variance-

covariance matrix can be straightforwardly computed as a matrix-to-matrix product of �X and its
transpose, divided by n� 1, where n is the number of rows of matrix X in Eq. (6). More precisely,

C�X ¼ 1
n� 1

�XT �X ∈ℳ N�Lð Þ� N�Lð Þ Rð Þ (16)

Clearly, GS and MCGS are not the only ways to center and scale data. For instance, feature
scaling, also known as unity-based normalization, can also be considered. In this case, data are
centeredwith respect to theminimumvalue and scaledwith respect to the range of the set, that is,

~xkij ≔
xkij �min xkij

n o

max xkij
n o

�min xkij
n o , i ¼ 1,…, n, j ¼ 1,…, L, k ¼ 1,…, N: (17)

However, to easily compute the variance-covariance matrix in the CM strategy that we present
in this chapter, the mean-centered group scaling (MCGS) is the method that we have selected
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T ¼ XP∈ℳn� N�Lð Þ Rð Þ, (7)

where the shape of the variance-covariance matrix of matrix T in Eq. (7) is diagonal.
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Taking advantage of the fact that the scaled matrix �X is a mean-centered matrix, the variance-

covariance matrix can be straightforwardly computed as a matrix-to-matrix product of �X and its
transpose, divided by n� 1, where n is the number of rows of matrix X in Eq. (6). More precisely,

C�X ¼ 1
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Clearly, GS and MCGS are not the only ways to center and scale data. For instance, feature
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for the centering and scaling. In order to not to use the baroque notation �X throughout the rest
of this chapter, this centered and scaled matrix is redesignated as X, without the breve sign.

The MPCA model is described by the latent vectors

pj, j ¼ 1,…, N � L, (18)

also known as eigenvector or proper vectors, and the latent roots

λj, j ¼ 1,…, N � L, (19)

also known as eigenvalues or proper values, of the variance-covariance matrix CX as follows:

CXP ¼ PΛ (20)

where

P ¼ p1jp2j⋯jpN�L
� �

∈ℳN�L�N�L Rð Þ (21)

Λ ¼ Λij
� �

∈ℳN�L�N�L Rð Þ (22)

and

Λjj ¼ λj, j ¼ 1,…, N � L (23)

Λij ¼ 0, i, j ¼ 1,…, N � L, i 6¼ j (24)

The latent vectors and latent roots in Eqs. (21) and (23) are arranged in descending order with
respect to the absolute values of the latent roots, that is,

∣λi∣ ≥ ∣λiþ1∣, i ¼ 1,…, N � L� 1 (25)

The latent vector p1—corresponding to the largest latent root λ1 (in absolute value)—is called
the first principal component (PC). Likewise, the latent vector p2—corresponding to the second
largest latent root λ2 (in absolute value)—is called the second principal component. Equiva-
lently, the latent vector pj, j ¼ 1,⋯, N � L—corresponding to the latent root λj—is called the

j�th principal component.

Matrix T in Eq. (7) represents the transformed or projected matrix onto the principal compo-
nent space and it is also known as score matrix.

When, for the sake of dimensionality reduction, a decreased number of principal components
are considered:

ℓ < N � L, (26)

a reduced multiway PCA model is then assembled:

P ¼ p1jp2j⋯jp
ℓ

� �
∈ℳN�L�ℓ Rð Þ: (27)
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3.3. HT-based condition monitoring

As said in Section 3.2, the MPCA model is based only on measures that come from a healthy
wind turbine. Posteriorly, data from the current WT to diagnose—and subjected to a different
wind turbulence—are gathered from as many sensors as in the modeling phase described in
Section 3.2 and during a period of time, νL� 1ð ÞΔ seconds, which is not necessarily equal.
These new data are arranged in a new matrix Y in a similar way as in Eq. (6):

Y ¼

y111 y112⋯y11Ly
2
11⋯y21L⋯yN11⋯yN1L

⋮ ⋮⋱⋮⋮⋱⋮⋱⋮⋱⋮

y1i1 y1i2⋯y1iLy
2
i1⋯y2iL⋯yNi1⋯yNiL

⋮ ⋮⋱⋮⋮⋱⋮⋱⋮⋱⋮

y1ν1 y1ν2⋯y1νLy
2
ν1⋯y2νL⋯yNν1⋯yNνL

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

∈ℳν� N�Lð Þ Rð Þ

¼ w1∣w2∣⋯∣wL|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Y1

jwLþ1∣⋯∣w2L|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Y2

j⋯jw N�1ð ÞLþ1∣⋯∣wN�L|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
YN

0
B@

1
CA

¼ Y1 Y2⋯YN
� �

∈ℳn� N�Lð Þ Rð Þ

(28)

It should be noted that ν∈ℕ (the number of rows of matrix Y) does not necessarily need to
match the natural number n, which represents the number of rows of matrix X in Eq. (6).
However, the number of columns, represented by the natural number N � L, must agree.

The collected data in matrix Y in Eq. (28) are first centered and scaled to form a matrix
�Y ¼ �ykij

� �
similar to the one in Eq. (12):

�ykij ≔
ykij � μk

jffiffiffiffiffi
σ2k

q , i ¼ 1,…, ν, j ¼ 1,…, L, k ¼ 1,…, N, (29)

where σ2k and μk
j are the values of the variance and the arithmetic mean that have been

previously calculated in Eqs. (9) and (11), respectively, with respect to X in Eq. (6). After the
preprocessing step, that is, centering and scaling the raw data collected from the current
structure to diagnose, the scores related to each row vector

ri ¼ �Y i; :ð Þ∈RN�L, i ¼ 1,…, ν (30)

are computed using a vector-to-matrix product:

ti ¼ ri � P̂ ∈Rℓ, i ¼ 1,…, ν (31)

where matrix P̂ is the reduced MPCA model in Eq. (27).

Condition Monitoring of Wind Turbine Structures through Univariate and Multivariate Hypothesis Testing
http://dx.doi.org/10.5772/intechopen.78727

147



for the centering and scaling. In order to not to use the baroque notation �X throughout the rest
of this chapter, this centered and scaled matrix is redesignated as X, without the breve sign.
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pj, j ¼ 1,…, N � L, (18)

also known as eigenvector or proper vectors, and the latent roots
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also known as eigenvalues or proper values, of the variance-covariance matrix CX as follows:
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and

Λjj ¼ λj, j ¼ 1,…, N � L (23)

Λij ¼ 0, i, j ¼ 1,…, N � L, i 6¼ j (24)

The latent vectors and latent roots in Eqs. (21) and (23) are arranged in descending order with
respect to the absolute values of the latent roots, that is,

∣λi∣ ≥ ∣λiþ1∣, i ¼ 1,…, N � L� 1 (25)

The latent vector p1—corresponding to the largest latent root λ1 (in absolute value)—is called
the first principal component (PC). Likewise, the latent vector p2—corresponding to the second
largest latent root λ2 (in absolute value)—is called the second principal component. Equiva-
lently, the latent vector pj, j ¼ 1,⋯, N � L—corresponding to the latent root λj—is called the

j�th principal component.

Matrix T in Eq. (7) represents the transformed or projected matrix onto the principal compo-
nent space and it is also known as score matrix.

When, for the sake of dimensionality reduction, a decreased number of principal components
are considered:

ℓ < N � L, (26)

a reduced multiway PCA model is then assembled:

P ¼ p1jp2j⋯jp
ℓ

� �
∈ℳN�L�ℓ Rð Þ: (27)
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3.3. HT-based condition monitoring

As said in Section 3.2, the MPCA model is based only on measures that come from a healthy
wind turbine. Posteriorly, data from the current WT to diagnose—and subjected to a different
wind turbulence—are gathered from as many sensors as in the modeling phase described in
Section 3.2 and during a period of time, νL� 1ð ÞΔ seconds, which is not necessarily equal.
These new data are arranged in a new matrix Y in a similar way as in Eq. (6):

Y ¼

y111 y112⋯y11Ly
2
11⋯y21L⋯yN11⋯yN1L

⋮ ⋮⋱⋮⋮⋱⋮⋱⋮⋱⋮

y1i1 y1i2⋯y1iLy
2
i1⋯y2iL⋯yNi1⋯yNiL

⋮ ⋮⋱⋮⋮⋱⋮⋱⋮⋱⋮

y1ν1 y1ν2⋯y1νLy
2
ν1⋯y2νL⋯yNν1⋯yNνL

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

∈ℳν� N�Lð Þ Rð Þ

¼ w1∣w2∣⋯∣wL|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Y1

jwLþ1∣⋯∣w2L|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Y2

j⋯jw N�1ð ÞLþ1∣⋯∣wN�L|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
YN

0
B@

1
CA

¼ Y1 Y2⋯YN
� �

∈ℳn� N�Lð Þ Rð Þ

(28)

It should be noted that ν∈ℕ (the number of rows of matrix Y) does not necessarily need to
match the natural number n, which represents the number of rows of matrix X in Eq. (6).
However, the number of columns, represented by the natural number N � L, must agree.

The collected data in matrix Y in Eq. (28) are first centered and scaled to form a matrix
�Y ¼ �ykij

� �
similar to the one in Eq. (12):

�ykij ≔
ykij � μk

jffiffiffiffiffi
σ2k

q , i ¼ 1,…, ν, j ¼ 1,…, L, k ¼ 1,…, N, (29)

where σ2k and μk
j are the values of the variance and the arithmetic mean that have been

previously calculated in Eqs. (9) and (11), respectively, with respect to X in Eq. (6). After the
preprocessing step, that is, centering and scaling the raw data collected from the current
structure to diagnose, the scores related to each row vector

ri ¼ �Y i; :ð Þ∈RN�L, i ¼ 1,…, ν (30)

are computed using a vector-to-matrix product:

ti ¼ ri � P̂ ∈Rℓ, i ¼ 1,…, ν (31)

where matrix P̂ is the reduced MPCA model in Eq. (27).
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Let us consider the canonical basis

e1; e2;…; eℓf g⊂Rℓ (32)

of the ℓ�dimensional real vector space Rℓ.

Given a row vector ri as in Eq. (30), the real number

ti1 ¼ ti � e1 ∈R (33)

is called the first score. Likewise, the scalar

ti2 ¼ ti � e2 ∈R (34)

is called the second score. In general, the scalar

tij ¼ ti � ej ∈R (35)

is called the score associated with the principal component pj, j ¼ 1,…, ℓ or, simply, score j.

In addition, an s�dimensional vector as can be built if more than one score is considered at the
same time. Indeed,

tis ¼ ti1 ti2 ⋯ tis
� �T ∈Rs, s ≤ ℓ: (36)

3.3.1. Scores as a random sample

As said in Section 3.1, the excitation of the WT comes from a changing turbulent wind.
Somehow, this turbulent wind can be viewed as a random signal. Therefore, the response of
the WT can be also viewed as a random process and so the measurements in the row vector ri

in Eq. (30). As a consequence, the vector ti receives this random nature and it can be observed
as an ℓ-dimensional random vector to construct the statistical approach in this chapter. As a
motivating example, in Figure 4, two three-dimensional samples are represented: one is the

Figure 4. Baseline sample (left) and sample from the wind turbine to be diagnosed (right).
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three-dimensional baseline sample (left) and the other is referred to faults 1, 4, and 7 (right). In
a classic application of the PCA strategy in the field of SHM, the scores allow a separation,
clustering, or visual grouping [24]. However, in this case, it can be clearly monitored in
Figure 4 (right) that a clustering, visual grouping, or separation cannot be performed. There-
fore, more powerful and reliable tools are needed to be able to detect a fault in the WT.

In structural health monitoring or condition monitoring applications, the final decision on
whether the structure, the actuator and/or the sensor is healthy or not should not depend on
graphical approaches. One of the most common approaches to reliable indicators of damage or
faults is the use of the powerful machinery of statistical hypothesis testing. The differences in
this kind of strategies rely on what is the subject of the test and, of course, how the raw data
collected by the sensors are arranged and preprocessed. For instance, in Zugasti et al. [25] the
damage detection is based on testing for significant changes in the parameter vector of an
AutoRegressive model. A comprehensive three-tier modular structural health monitoring
framework is proposed by Hackell et al. [26] where the hypothesis testing is used to declare
decision boundaries, control charts, and ROC curves with the ultimate goal of distinguishing
between healthy and potentially damaged data on an operational wind turbine. A somehow
different approach is presented by Ng et al. [27] that includes a vehicle health monitoring
system where several univariate hypothesis tests are considered in parallel. Again in the field
of structural health monitoring or condition monitoring of wind turbines, a recent work by
Tsiapoki et al. [28] where damage and ice detection is based on data normalization, feature
extraction and hypothesis testing (HT).

The use of univariate hypothesis testing as a key element for structural health monitoring or
condition monitoring has been increasing in the last years as a reliable method. Variations of
these univariate HT for multiple indicators include the use of univariate HT in parallel, that is,
testing for each component of a parameter vector rather than testing for the whole multi-
dimensional parameter vector. The first approach for the detection of structural changes using
a multivariate hypothesis testing has been proposed by Pozo et al. [8]. One of the key results in
the work [8] is that multivariate HTs allow to get better results in damage or fault detection
that just univariate test. One interesting example presented in the work by Pozo et al. [8] shows
that, for a given level of significance α, five independent univariate hypothesis

H0 : μc, i ¼ μh, i

H1 : μc, i 6¼ μh, i
(37)

where i ¼ 1, 2,…, 5 lead to a wrong decision while the single multivariate HT

H0 : μc ¼ μh

H1 : μc 6¼ μh
(38)

where

μT
c ¼ μc,1 μc,2 ⋯ μc,5

� �

μT
h ¼ μh,1 μh,2 ⋯ μh,5

� � (39)
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three-dimensional baseline sample (left) and the other is referred to faults 1, 4, and 7 (right). In
a classic application of the PCA strategy in the field of SHM, the scores allow a separation,
clustering, or visual grouping [24]. However, in this case, it can be clearly monitored in
Figure 4 (right) that a clustering, visual grouping, or separation cannot be performed. There-
fore, more powerful and reliable tools are needed to be able to detect a fault in the WT.

In structural health monitoring or condition monitoring applications, the final decision on
whether the structure, the actuator and/or the sensor is healthy or not should not depend on
graphical approaches. One of the most common approaches to reliable indicators of damage or
faults is the use of the powerful machinery of statistical hypothesis testing. The differences in
this kind of strategies rely on what is the subject of the test and, of course, how the raw data
collected by the sensors are arranged and preprocessed. For instance, in Zugasti et al. [25] the
damage detection is based on testing for significant changes in the parameter vector of an
AutoRegressive model. A comprehensive three-tier modular structural health monitoring
framework is proposed by Hackell et al. [26] where the hypothesis testing is used to declare
decision boundaries, control charts, and ROC curves with the ultimate goal of distinguishing
between healthy and potentially damaged data on an operational wind turbine. A somehow
different approach is presented by Ng et al. [27] that includes a vehicle health monitoring
system where several univariate hypothesis tests are considered in parallel. Again in the field
of structural health monitoring or condition monitoring of wind turbines, a recent work by
Tsiapoki et al. [28] where damage and ice detection is based on data normalization, feature
extraction and hypothesis testing (HT).

The use of univariate hypothesis testing as a key element for structural health monitoring or
condition monitoring has been increasing in the last years as a reliable method. Variations of
these univariate HT for multiple indicators include the use of univariate HT in parallel, that is,
testing for each component of a parameter vector rather than testing for the whole multi-
dimensional parameter vector. The first approach for the detection of structural changes using
a multivariate hypothesis testing has been proposed by Pozo et al. [8]. One of the key results in
the work [8] is that multivariate HTs allow to get better results in damage or fault detection
that just univariate test. One interesting example presented in the work by Pozo et al. [8] shows
that, for a given level of significance α, five independent univariate hypothesis

H0 : μc, i ¼ μh, i

H1 : μc, i 6¼ μh, i
(37)

where i ¼ 1, 2,…, 5 lead to a wrong decision while the single multivariate HT

H0 : μc ¼ μh

H1 : μc 6¼ μh
(38)

where

μT
c ¼ μc,1 μc,2 ⋯ μc,5

� �

μT
h ¼ μh,1 μh,2 ⋯ μh,5

� � (39)
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is able to correctly classify the structure. This example shows that multivariate HT is even
more reliable than univariate HT. However, these benefits come at a price, in the sense that in
order to apply the multivariate HT, the statistical distribution of the data must be multinormal.
Of course, it may happen that five sets of 50 samples

xi1; x
i
2;…; xi50

� �
↣N μi; σi

� �
, i ¼ 1, 2,…, 5 (40)

are normally distributed, while the sample vector

x1; x2;…; x50f g=↣N μ;Σ
� �

, (41)

where

xj ¼ x1j x2j ⋯ x5j
h iT

, j ¼ 1,…, 50 (42)

and Σ is the variance-covariance matrix, is not multinormally distributed.

3.3.2. Univariate case: testing for the equality of means

In this section, we present how a fault is detected in the WT using univariate HT. To this end,
first we have to define what we consider our baseline. Given a principal component j ¼ 1,…, ℓ,

the baseline sample is the set of real numbers τij
n o

i¼1,…,n
defined by

τij ≔ X i; :ð Þ � bP
� �

jð Þ ¼ X i; :ð Þ � bP � ej, i ¼ 1,…, n, (43)

where ej is the j-th vector of the canonical basis in Eq. (32), P is the MPCA model defined in
Eq. (27), and X is the centered and scaled matrix of the collected data from a healthy WT as in
Eq. (6). Similarly, and given a principal component j ¼ 1,…, ℓ, the sample of the current WT to
diagnose is defined as the set of ν real numbers

tij
n o

i¼1,…,ν
(44)

as defined in Eq. (35).

Before the univariate HT is applied, the following assumptions must be made:

i. the baseline sample τij
n o

i¼1,…,n
is a random sample of a random variable (RV) normally

distributed with unknown mean μX and unknown variance σ2X and

ii. the random sample tij
n o

i¼1,…,ν
in Eq. (44) of the current WT to diagnose follows a normal

distribution with unknown mean μY and unknown variance σ2Y .

It is worth mentioning that the variances of these two samples are not supposed to be neces-
sary equal.
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Let us define

δμ ¼ μX � μY (45)

as the difference between these two mean values. Since we want to know if the distribution of
these two samples is related, this leads to a test of the hypothesis

H0 : δμ ¼ 0 versus (46)

H1 : δμ 6¼ 0 (47)

where the null hypothesis H0 is “the sample of the WT to be diagnosed is distributed as the
baseline sample” and the alternative hypothesisH1 is “the sample of the WT to be diagnosed is
not distributed as the baseline sample.” In other words, if the result of the test is that H0 is
accepted, the current WT is categorized as healthy. Otherwise, if H0 is rejected in favor of H1,
this would indicate the presence of some faults in the WT.

Given the assumptions of normality and considering that the two variances are not necessarily
equal, the test for the equality of mean is based on the so-called Welch-Satterthwaite method
[29], which is outlined below for the sake of completeness. If two random samples of size n and
ν, respectively, are taken from two normal distributions N μX; σX

� �
and N μY; σY

� �
and the

population variances are unknown and not necessarily equal, the random variable

WS ¼ X� Y
� �þ μX � μY

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2X
n þ S2Y

ν

� �r (48)

can be approximated with a t-distribution with r degrees of freedom (DOF), that is

WS↣tr (49)

where

r ¼
s2X
n þ s2Y

ν

� �2

s2X=nð Þ2
n�1 þ s2Y=νð Þ2

ν�1

66664

77775, (50)

S2 is the sample variance as a random variable, s2 is the variance of a sample, X,Y are the
sample mean as a random variable, and �b c is the standard floor function.

The magnitude of the test statistic using Welch-Satterthwaite method is defined as

tobs ¼ x� yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2X
n þ s2Y

ν

� �r (51)

where x, y is the mean of a particular sample. The quantity tobs is the fault indicator. We can
then construct the following test:
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tobsj j ≤ t⋆ ) Accept H0 (52)

tobsj j > t⋆ ) Accept H1 (53)

where t⋆ is such that

P tr ≥ t⋆
� � ¼ α

2
, (54)

where α is the level of significance for the test. To sum up,

i. H0 is rejected if tobsj j > t⋆ (the WT is classified as not healthy) and

ii. H0 is accepted if tobsj j ≤ t⋆ (the WT is classified as healthy).

3.3.3. Multivariate case: testing a multivariate mean vector

In Section 3.3.2, for each principal component j ¼ 1,…, ℓ, a test for the equality of means is
performed. This means that for a single sample of the current structure to diagnose, we obtain
ℓ decisions on whether the structure is healthy or not. In the present section, more than one
principal component will be considered jointly thus defining a vector. Therefore, a test for the
plausibility of a value for a normal population mean vector will be performed.

As in Section 3.3.2, the objective of this work is to determine whether the distribution of the
multivariate random samples that are obtained from theWT to be diagnosed (healthy or not) is
connected to the distribution of the baseline.

Let us define s∈ℕ as the number of PCs that are considered at the same time. Before the
multivariate HT is applied, the following assumptions must be made:

i. the baseline projection is a multivariate random sample (MRS) of a multivariate random
variable (MRV) following a multivariate normal distribution (MVND) with known pop-
ulation mean vector μh ∈Rs and known variance-covariance matrix

P
∈ℳs�s Rð Þ and

ii. the multivariate random sample of the WT to be diagnosed also follows an MVND with
unknown multivariate mean vector μc ∈Rs and known variance-covariance matrixP

∈ℳs�s Rð Þ.
In this case, opposite to what we have assumed in Section 3.3.2, both multivariate random
variables have the same known variance-covariance matrix.

Similarly as in Section 3.3.2, the question that arises here is whether a given s-dimensional
vector μc is a reasonable value for the mean of an MVND Ns μh;

P� �
. This leads to the

following test of the hypothesis

H0 : μc ¼ μh versus
H1 : μc 6¼ μh,

(55)

where H0 is “the MRS of the WT to be diagnosed is distributed as the baseline projection” and
H1 is “the MRS of the WT to be diagnosed is not distributed as the baseline projection.” In
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other words, if the result of the test is that H0 is accepted, the current WT is categorized as
healthy. Otherwise, if H0 is rejected in favor of H1, this would indicate the presence of some
faults in the WT.

In this case, the multivariate test is based on Hotelling’s T2 statistic and it is outlined below.
When an MRS of size υ∈ℕ is taken from an MVND Ns μh;

P� �
, the RV

T2 ¼ υ X� μh

� �T
S�1 X� μh

� �
(56)

is distributed as

T2↣
υ� 1ð Þs
υ� s

Fs,υ�s, (57)

where Fs,υ�s denotes an RV with an F-distribution with s and υ� s DOF, X is the sample vector
mean as a MRV, and 1

nS∈ℳs�s Rð Þ is the estimated variance-covariance matrix of X.

The value of the test statistic is defined as

t2obs ¼ υ x� μh
� �TS�1 x� μh

� �
, (58)

and is the fault indicator. We can then construct the following test:

t2obs ≤
υ� 1ð Þs
υ� s

Fs,υ�s αð Þ ) Accept H0, (59)

t2obs >
υ� 1ð Þs
υ� s

Fs,υ�s αð Þ ) Accept H1, (60)

where Fs,υ�s αð Þ is the upper 100αð Þth percentile of the Fs,υ�s distribution, that is,

ℙ Fs,υ�s > Fs,υ�s αð Þð Þ ¼ α, (61)

where ℙ is a probability measure and α is the level of significance for the test. To sum up,

i. H0 is rejected if t2obs >
υ�1ð Þs
υ�s Fs,υ�s αð Þ (the WT is classified as not healthy) and

ii. H0 is accepted if t2obs ≤
υ�1ð Þs
υ�s Fs,υ�s αð Þ (the WT is classified as healthy).

4. Simulation results

The results of the CM strategies presented in Sections 3.3.2 and 3.3.3 are organized into three
subsections. The absolute value of samples that are correctly identified and the absolute
number of false alarms and missing faults are included in Section 4.1. Sections 4.2 and 4.3
show the results, not as absolute values but as a percentage. More precisely, the sensitivity and
the specificity are both comprised in Section 4.2, including the false-negative (FNR) and the
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unknown multivariate mean vector μc ∈Rs and known variance-covariance matrixP

∈ℳs�s Rð Þ.
In this case, opposite to what we have assumed in Section 3.3.2, both multivariate random
variables have the same known variance-covariance matrix.

Similarly as in Section 3.3.2, the question that arises here is whether a given s-dimensional
vector μc is a reasonable value for the mean of an MVND Ns μh;

P� �
. This leads to the

following test of the hypothesis

H0 : μc ¼ μh versus
H1 : μc 6¼ μh,

(55)

where H0 is “the MRS of the WT to be diagnosed is distributed as the baseline projection” and
H1 is “the MRS of the WT to be diagnosed is not distributed as the baseline projection.” In
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other words, if the result of the test is that H0 is accepted, the current WT is categorized as
healthy. Otherwise, if H0 is rejected in favor of H1, this would indicate the presence of some
faults in the WT.

In this case, the multivariate test is based on Hotelling’s T2 statistic and it is outlined below.
When an MRS of size υ∈ℕ is taken from an MVND Ns μh;

P� �
, the RV

T2 ¼ υ X� μh

� �T
S�1 X� μh

� �
(56)

is distributed as

T2↣
υ� 1ð Þs
υ� s

Fs,υ�s, (57)

where Fs,υ�s denotes an RV with an F-distribution with s and υ� s DOF, X is the sample vector
mean as a MRV, and 1

nS∈ℳs�s Rð Þ is the estimated variance-covariance matrix of X.

The value of the test statistic is defined as

t2obs ¼ υ x� μh
� �TS�1 x� μh

� �
, (58)

and is the fault indicator. We can then construct the following test:

t2obs ≤
υ� 1ð Þs
υ� s

Fs,υ�s αð Þ ) Accept H0, (59)

t2obs >
υ� 1ð Þs
υ� s

Fs,υ�s αð Þ ) Accept H1, (60)

where Fs,υ�s αð Þ is the upper 100αð Þth percentile of the Fs,υ�s distribution, that is,

ℙ Fs,υ�s > Fs,υ�s αð Þð Þ ¼ α, (61)

where ℙ is a probability measure and α is the level of significance for the test. To sum up,

i. H0 is rejected if t2obs >
υ�1ð Þs
υ�s Fs,υ�s αð Þ (the WT is classified as not healthy) and

ii. H0 is accepted if t2obs ≤
υ�1ð Þs
υ�s Fs,υ�s αð Þ (the WT is classified as healthy).

4. Simulation results

The results of the CM strategies presented in Sections 3.3.2 and 3.3.3 are organized into three
subsections. The absolute value of samples that are correctly identified and the absolute
number of false alarms and missing faults are included in Section 4.1. Sections 4.2 and 4.3
show the results, not as absolute values but as a percentage. More precisely, the sensitivity and
the specificity are both comprised in Section 4.2, including the false-negative (FNR) and the
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false-positive rates (FPR). Besides, the true rate of both false negatives and false positives are
contained in Section 4.3.

For the validation of the CM strategies presented in Sections 3.3.2 and 3.3.3, 24 samples of
ν ¼ 50 elements each have been examined, in accordance with the following organization:

• 8 samples of a faulty WT (one sample for each one of the different fault scenarios described
in Table 3) and

• 16 samples of a healthy WT.

All samples are acquired with changing wind data sets with turbulence intensity established to
10% and computed with TurbSim [14]. These wind data have the subsequent features:

i. Kaimal turbulence model,

ii. logarithmic profile wind type,

iii. mean speed of 18:2 m/s simulated at hub height, and

iv. a roughness factor of 0:01 m.

Each sample of ν ¼ 50 elements comes from the measures collected during ν � L� 1ð ÞΔ ¼
312:4875 seconds. The values for these parameters are listed in Table 4.

We present, in Sections 4.1, 4.2, and 4.3, the results when the collected data are projected into:

i. the first principal component,

ii. the second principal component,

iii. the third principal component,

iv. the first and the second principal components, jointly,

v. the first seven principal components, jointly, and

vi. the first twelve principal components, jointly.

In the three univariate cases, (i)–(iii), we use the test for the equality of means, while in the
three multivariate cases, (iv)–(vi), we use the test for the plausibility of a value for a normal
population. In both cases, the chosen level of significance is α ¼ 10%.

Parameter Symbol Magnitude

Number of rows ν 50

Number of columns L 500

Sampling time Δ 0:0125

Number of sensors N 13

Table 4. The collected measures are arranged in a ν� N � Lð Þ matrix Y as in Eq. (28)
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4.1. Types I and II errors

In this section, each of the 24 samples is classified as follows:

i. number of samples from the healthy WT (healthy sample), which were classified by the
hypothesis test as “healthy” (accept H0) [right decision],

ii. faulty sample classified by the test as “faulty” (accept H1) [right decision],

iii. samples from the faulty WT (faulty sample) classified as “healthy” [wrong decision/
missing fault/type II error], and

iv. healthy sample classified as “faulty” [wrong decision/false alarm/type I error].

The results displayed in Table 6 are disposed according to the scheme in Table 5.

4.2. Sensitivity and specificity

As in [20, 30], twomore statistical indicators are analyzed to assess the efficiency of the test. On
the one hand, the specificity of the test is defined as the fraction of samples from the healthy
structure, which are correctly classified. On the other hand, the sensitivity—or the power of the
test—is defined as the fraction of samples from the faulty wind turbine that are correctly
classified as such.

Healthy sample (H0) Faulty sample (H1)

Accept H0 Correct decision Type II error (missing fault)

Accept H1 Type I error (false alarm) Correct decision

Table 5. Scheme for the presentation of the results in Table 6

H0 H1 H0 H1

Score 1 Scores 1–2

Accept H0 16 1 Accept H0 12 0

Accept H1 0 7 Accept H1 4 8

Score 2 Scores 1–7

Accept H0 13 7 Accept H0 13 0

Accept H1 3 1 Accept H1 3 8

Score 3 Scores 1–12

Accept H0 16 8 Accept H0 16 0

Accept H1 0 0 Accept H1 0 8

Table 6. Categorization of the samples with respect to the presence or absence of a fault and the result of the test
considering the first score, the second score, and the third score (left) and scores 1–2 (jointly), scores 1–7 (jointly), and
scores 1–12 (jointly) (right), when the size of the samples to diagnose is ν ¼ 50 and the level of significance is α ¼ 10%
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The sensitivity and specificity of both the univariate HT and the multivariate case with respect
to the 24 samples displayed in Table 8 are disposed according to the scheme in Table 7.

4.3. Reliability of the results

Finally, the true rate of false negatives and the true rate of false positives can be used to assess
the performance of the proposed CM strategy. These two measures—closely related to Bayes’
theorem [31]—are described in Table 9. On the one hand, the true rate of false negatives is the
fraction of samples from the faulty WT that have been wrongly identified as healthy. On the
other hand, the true rate of false positives is the fraction of sample from the healthy WT that
have been wrongly identified as faulty.

The true rate of false negatives and the true rate of false positives of both the univariate HTand
the multivariate case displayed in Table 10 are disposed according to the scheme in Table 9.

Healthy sample (H0) Faulty sample (H1)

Accept H0 Specificity (1� α) False-negative rate (γ)

Accept H1 False-positive rate (α) Sensitivity (1� γ)

Table 7. Relationship between specificity and sensitivity.

H0 H1 H0 H1

Score 1 Scores 1–2

Accept H0 1.00 0.12 Accept H0 0.75 0.00

Accept H1 0.00 0.88 Accept H1 0.25 1.00

Score 2 Scores 1–7

Accept H0 0.81 0.88 Accept H0 0.81 0.00

Accept H1 0.19 0.12 Accept H1 0.19 1.00

Score 3 Scores 1–12

Accept H0 1.00 1.00 Accept H0 1.00 0.00

Accept H1 0.00 0.00 Accept H1 0.00 1.00

Table 8. Sensitivity and specificity of the test considering the first score, the second score, and the third score (left) and
scores 1–2 (jointly), scores 1–7 (jointly), and scores 1–12 (jointly) (right), when the size of the samples to diagnose is ν ¼ 50
and the level of significance is α ¼ 10%

Healthy sample (H0) Faulty sample (H1)

Accept H0 ℙ H0jaccept H0
� �

True rate of false negatives ℙ H1jaccept H0
� �

Accept H1 True rate of false positives ℙ H0jaccept H1
� �

ℙ H1jacceptH1
� �

Table 9. Relationship between the proportion of false negatives and false positives.
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5. Concluding remarks

A multifault detection method based on MPCA through uni- and multivariate hypothesis
testing has been presented in this chapter. It is noteworthy to mention the obtained perfor-
mance through the study of eight realistic different faults in different components of the WT,
taking into account that the proposed strategy does not need extra sensors but only uses
already available data from the WT SCADA system.

The three main conclusions, which show the benefits of the multivariate statistical hypothesis
testing in comparison with the univariate case, for WT condition monitoring, are the following:

1. Given a level of significance α ¼ 10%, when the first 12 scores are considered jointly, an
accuracy of 100% is obtained, while in all the other studied cases, misclassifications are
present.

2. Multivariate analysis leads to average values of 100% for the sensitivity and 85:33% for the
specificity, while for the univariate case, the average values are 33:33 and 93:67%, respec-
tively.

3. Multivariate analysis leads to average value of the true rate of false negatives of 0% and the
average value of the true rate of false positives of 20%, while for the univariate case, the
average values are 24:67 and 25%, respectively.
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CM condition monitoring
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FD fault detection

FNR false-negative rate

FPR false-positive rate

GS group scaling
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MCGS mean-centered group scaling

MPCA multiway principal component analysis

MRS multivariate random sample

MRV multivariate random variable

MVND multivariate normal distribution

O&M operation and maintenance

PCA principal component analysis

RV random variable

SCADA supervisory control and data acquisition

SHM structural health monitoring

WT wind turbine
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Abstract

Bolted joints are widely applied in engineering structures. Significant advantages of 
bolted joints are that they can be easily disassembled and the possibility to design for bear-
ing large working load. However, in practical applications, preload loss in pre-tensioned  
bolts is inevitable. Reliable detection of bolt loosening is significant to ensure structural 
reliability and safety. In the past decades, the guided wave-based structural health moni-
toring (SHM) methods have been developed for the detection of bolt loosening, and con-
siderable advancements have been made in this area. This chapter presents a review of 
the existing studies on bolt preload monitoring method based on guided wave. The basic 
principle and characteristics of the typical methods are discussed, which involve wave 
energy dissipation, time reversal guided wave, contact acoustic nonlinearity, and active 
chaotic ultrasonic excitation-based methods. In addition, this chapter presents an experi-
mental comparison of the detection sensitivity of wave energy dissipation and time rever-
sal method. The results show that the TR method is more sensitive to bolt loosening.

Keywords: bolted joints, bolt-loosening monitoring, structural health monitoring, 
guided waves, time reversal method

1. Introduction

Bolted joints are widely used in engineering structures such as aerospace and civil structures. 
Significant advantages of bolted joints are that they can be easily assembled and disassembled 
and the possibility of bearing large load. In practical applications, bolted joints are subjected 
to a variety of failure modes including self-loosening, slippage, shaking apart, fatigue cracks, 
and breaking [1]. Self-loosening is the most common issue among them due to inappropriate 
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preloads during installation, time varying external loads during service, or other environ-
ment factors. Bolts loosening may lead to the failure of the entire structure. Therefore, it is 
critical to monitor bolt preload to ensure the safety and reliability of structures.

Structural health monitoring (SHM) is generally referred to the process of acquiring and ana-
lyzing data from on-board sensors to determine the health of a structure [2]. Several SHM 
approaches have been reported for the detection of bolt loosening in different structural sys-
tems, such as vibration, electromechanical impedance, and guided wave-based techniques. 
In vibration-based techniques, global dynamic properties, like resonant frequencies, modal 
shapes, and frequency response functions are utilized for the detection of bolt loosening [3]. 
However, since an assembled structure usually comprises many bolts and joint interfaces which 
are known as local structural elements, global structural dynamic properties do not change sig-
nificantly due to bolt preload loosening at a local position [4]. Consequently, vibration-based 
SHM techniques are relatively insensitive to changes in bolt preloads and thus lead to poor 
prognostic capability. Impedance-based techniques monitor variations in mechanical imped-
ance due to damage, which is coupled with electrical impedance of piezoelectric transducers 
(PZTs) [5]. Previous studies have shown the feasibility of using impedance-based approaches 
for the detection of bolt loosening [6–8]. A piezoelectric transducer (PZT) is attached to a target 
bolt-jointed structure, and bolt preload can be identified by monitoring the change of the mea-
sured electrical impedance [7]. Although this technique is sensitive to minor changes in the bolt 
preload, its detection area is limited to the near field of the piezoelectric active sensor [9] and an 
expensive high-precision impedance analyzer with a high-sampling frequency is required [10].

Guided wave-based damage detection techniques have been intensively developed over the last 
two decades [11, 12]. Due to their sensitivity to small structural damages and large sensing range 
[13], guided wave techniques have been increasingly used for structural health monitoring. In 
recent years, bolt preload detection methods using guided wave have received much interest. In 
this chapter, bolt preload monitoring methods based on guided waves and the relevant theories 
are reviewed. The objective is to understand the current technology gaps, future research direc-
tions, and areas requiring attention of the researchers. This chapter is organized as follows. Section 
2 presents the theoretical backgrounds and numerical modeling approach of guided wave-based 
SHM methods. Then, linear feature-based detection methods are reviewed and compared in 
Section 3, which include wave energy dissipation methods and time reversal methods. Section 4 
displays nonlinear feature-based methods including contact acoustic nonlinearity (CAN), phase 
shift, and chaotic ultrasonic excitation methods. Finally, conclusions are summarized in Section 5.

2. Theoretical basis and numerical modeling

2.1. Theoretical backgrounds

A typical bolted joint is illustrated in Figure 1. It can be seen that a bolted joint usually consists 
of one bolt, one nut, and two contact parts. From the view of a micro-scale, the joint interface can 
be considered to be covered with a large amount of asperities. The real contact area is the sum-
mation of the contact area of each asperity. As the bolt preload increases, the contact pressure at 
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the interface increases. Correspondingly, the real contact area increases as well. When a wave 
travels through a lap joint, only a part of the incident wave energy can be transmitted, and the 
other part is reflected and dissipated. Based on Hertz contact theory and the sinusoidal wavy 
surface model, Yang and Chang [3] establish the relationship between real contact area and 
contact pressure at a joint interface. Their results show that the energy of transmitted guided 
wave is proportional to the real contact area of joint interface which increases with bolt preload. 
Although the topographies of rough contact surfaces are not strictly sinusoidal and the plastic 
deformation of contact asperities are not considered, Yang’s theoretical analysis agrees well with 
experimental observation. After that, the transmitted wave energy is widely used as the tight-
ness index for bolt-loosening detection. However, based on the theory of rough contact mechan-
ics, the real contact area at an interface reaches a saturation value when the applied contact 
pressure reaches a certain value [14]. Accordingly, the transmitted energy also saturates when 
the externally applied load reaches a certain value. In this case, the sensitivity of the transmitted 
wave energy-based damage detection strategy is reduced considerably.

Nonlinear features of acoustic waves can also be extracted and linked to bolt loosening. 
Among approaches based on nonlinear features, contact acoustic nonlinearity (CAN) is draw-
ing increasing attention. When the bolt is loosening and the joint is stimulated by acoustic 
waves or vibration under certain amplitude, joint interface undergoes a certain extent of ten-
sion and compression and it opens and closes periodically. This induces asymmetry in the 
contact restoration forces. Consequently, those forces cause a parametric change of stiffness 
and lead to structural dynamic nonlinearity, known as contact acoustic nonlinearity [15, 16]. 
Since the guided wave amplitude excited by a piezoelectric element is generally small, it is 
difficult to stimulate the nonlinearity of the structure itself. Therefore, impact modulation 
(IM) and vibro-acoustic modulation (VAM) are two major implementations of CAN-based 
modulation [17]. The major difference between them is that IM adopts an impact force to 
excite the natural vibration modes of the inspected structure, while VAM applies a stable 
vibration to the structure using a harmonic force. The essence of the modulation methods 
resides on the interaction of the jointed interface with a mixed excitation, like a vibration 
and a wave. When all the bolts in a jointed structure are fully fastened, the acquired signal 
spectrum exhibits two peaks at the vibration and wave frequencies, respectively. When bolts 

Figure 1. Guided wave transmitted across a bolted joint.
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the interface increases. Correspondingly, the real contact area increases as well. When a wave 
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are loosening, there would be additional frequency components around the wave frequency 
in the spectrum, termed as left and right sidebands. The magnitudes of the sidebands, which 
are determined by the intensity of CAN, can be linked quantitatively to the bolt preload [18].

In order to quantitatively describe the relation between sidebands of signal spectral features 
and the residual bolt preload, Zhang et al. [18] established a theoretical modeling of CAN in a 
joint, as shown in Figure 2a. The analysis based on the model demonstrates that the magnitude 
of the sideband is proportional linearly to the nonlinear contact stiffness K2 which is dependent 
on the contact pressure at the jointed interface. The above model is a simplified model with sin-
gle degree of freedom (DOF). Subsequently, Zhang et al. [19] presented a two-DOF nonlinear 
model to analyze the physical phenomenon of subharmonics and their generation conditions, 
as shown in Figure 2b. On this basis, analytical prediction was carried out to verify the validity 
of the loosening detection method for bolted joint structures using the subharmonic resonance.

2.2. Numerical modeling

To understand how guided waves interact with bolted lap joints exactly, theoretical models 
are essential to describe the propagation behavior of guided wave. Apparently, the above sim-
plified single or two DOF models are not enough. Since the bolted structure is inhomogeneous 
in the direction of wave propagation, it cannot be modeled by analytical or semi-analytical  
methods. Finite element method (FEM) can be applied to a variety of complex geometries 
and has become the most common wave propagation analysis method. Therefore, Clayton 
et al. [20] established a three-dimensional finite element model of guided wave propagation in 
bolted joints, but interface contact was not considered in order to reduce computational cost. 
Then, Doyle et al. [21], and Bao and Giurgiutiu [22] used the same method to establish finite 
element analysis models. However, they found that these models could not reflect the varia-
tion of the guided wave under different bolt preloads. Therefore, in order to consider contact 

Figure 2. Theoretical modeling of CAN in a joint: (a) single degree of freedom [18] and (b) two degrees of freedom [19].
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behaviors, Bao et al. [23] added contact elements to the finite element model. The improved 
model can effectively reflect the variation of the guided wave under different preloads, but 
the wave variations and the measurement results were quite different. The main reason might 
be that the contact surfaces in the above models are smooth, while the real contact surfaces 
are rough. In 2016, Parvasi et al. [10] tried to consider rough contact surfaces in finite element 
model by randomly adjusting node position at the contact surfaces, as shown in Figure 3. 
The simulation results are closer to the experimental measurement results, but the mesh size 
(1.8 mm) of the contact area is much larger than the size of micro-asperities on rough surfaces.

The above FEM models are mainly used to analyze the relationship between bolt preload 
and transmitted guided wave energy. Shen et al. [24] built anther 3D multiphysics transient 

Figure 3. Multi-physics FEM model of bolted lap joint considering rough contact surfaces [10].

Figure 4. Transient dynamic finite element model and frequency spectrum of simulation signal [24].
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dynamic finite element model to analyze the relationship between CAN and bolt load, as 
shown in Figure 4a. The nonlinear higher harmonics (second-order harmonic and third-order 
harmonic) can be observed clearly in the simulation signal, as shown in Figure 4b. The simu-
lation results also displayed that as the bolt preload increases, the ratio of the spectral ampli-
tude at the second harmonic to that at the excitation frequency decreases.

3. Linear feature-based techniques

3.1. Wave energy dissipation

Because ultrasonic wave energy through the bolt joint is strongly tied to the contact status of 
bolted interface, the transmitted guided wave energy is widely used as tightness index. This type 
of method is also known as wave energy dissipation (WED) method. In order to detect fastener 
integrity in thermal protection panels in space vehicles, Yang and Chang [3, 25] used the energy 
and attenuation speed of guided wave transmitted across jointed interface to assess preload lev-
els and locations of loosening bolt. Subsequently, Wang et al. [26] used only the transmitted 
guided wave energy to monitor bolt preload. The schematic of the bolt joint monitoring system 
is displayed in Figure 5. The experimental results show that the transmitted energy is basically 
proportional to torque level. However, the energy does not change with bolt torque when the 
applied torque reaches a certain value and this is referred to as saturation phenomenon, as shown 
in Figure 6a. Similarly, Amerini and Meo [27] calculated the energy of the transmitted guided 
wave in frequency domain to assess the tightening state of a bolt lap joint, as shown in Figure 6b. 
Yang et al. [28] extended the WED method to composite bolted joints. With a scanning laser ultra-
sound system, Haynes et al. [29] acquired the full-field wave data and calculated the wave energy 
before and after the lap joint to monitor bolt torque levels. Unfortunately, saturation phenomena 
are also observed in all the above experimental studies. On the other hand, due to multi-mode, 
dispersion, and boundary reflection of guided waves, the response signal at a joint structure is 
quite complex [27]. Hence, Kędra et al. [30] investigated the effects of excitation frequency, the 
time range of received signal, and the position of sensor on the preload detection accuracy of the 
WED method. They pointed out that these parameters have to be carefully selected.

The above bolt preload detection methods are limited to a flat lap joint with a single bolt. 
However, in real structures, bolted joints with complex geometry or multiple bolts are more 
common. In this case, complex signal-processing methods are always needed. In order to 

Figure 5. Schematic of the bolt joint monitoring system [26].
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monitor the preload of L-shaped bolt joints, Jalalpour et al. [31] proposed a preload moni-
toring method using fast Fourier transform, cross-correlation, and fuzzy pattern recogni-
tion to process transmitted wave. Nevertheless, the fuzzy sets of torque level were limited. 
Montoya et al. [32] assessed the rigidity of L-shaped bolt joint using transmitted wave 
energy. Subsequently, Montoya et al. [33] further extended the method to bolt loosening and 
preload monitoring of satellite panels jointed by a right angle bracket. Their experimental 
results display that some measurement parameters, such as the time window of the received 
signal, have a significant effect on the sensitivity and repeatability of the measurement [33]. 
With respect to bolt-loosening monitoring in multi-bolt-jointed structures, Mita et al. [34] 
proposed to use support vector machine to recognize different loosening patterns. Their 
results show that the proposed method could identify the location and the level of preload 
of loosened bolts. Moreover, Liang and Yuan [35] developed a decision fusion system for 
multi-bolt structure, as shown in Figure 7. This system consists of individual classification, 
classifier selection, and decision fusion. The results demonstrate that the proposed method 
can accurately and rapidly identify the bolt loosening by analyzing the acquired wave signal.

Figure 6. Results of WED methods with saturation phenomenon: (a) result from reference [26] and (b) result from 
reference [27].

Figure 7. Sensor layout and joint failure position on the specimen [35].
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common. In this case, complex signal-processing methods are always needed. In order to 
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monitor the preload of L-shaped bolt joints, Jalalpour et al. [31] proposed a preload moni-
toring method using fast Fourier transform, cross-correlation, and fuzzy pattern recogni-
tion to process transmitted wave. Nevertheless, the fuzzy sets of torque level were limited. 
Montoya et al. [32] assessed the rigidity of L-shaped bolt joint using transmitted wave 
energy. Subsequently, Montoya et al. [33] further extended the method to bolt loosening and 
preload monitoring of satellite panels jointed by a right angle bracket. Their experimental 
results display that some measurement parameters, such as the time window of the received 
signal, have a significant effect on the sensitivity and repeatability of the measurement [33]. 
With respect to bolt-loosening monitoring in multi-bolt-jointed structures, Mita et al. [34] 
proposed to use support vector machine to recognize different loosening patterns. Their 
results show that the proposed method could identify the location and the level of preload 
of loosened bolts. Moreover, Liang and Yuan [35] developed a decision fusion system for 
multi-bolt structure, as shown in Figure 7. This system consists of individual classification, 
classifier selection, and decision fusion. The results demonstrate that the proposed method 
can accurately and rapidly identify the bolt loosening by analyzing the acquired wave signal.

Figure 6. Results of WED methods with saturation phenomenon: (a) result from reference [26] and (b) result from 
reference [27].

Figure 7. Sensor layout and joint failure position on the specimen [35].
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Figure 8. Illustration of the time reversal method in a lap jointed beam.

3.2. Time reversal method

Since guided wave signals are always very complex because of multi-mode, dispersion, 
and scattering at any discontinuity, Fink et al. [36] extended time reversal concept (TR) to a 
guided wave monitoring technique. In time reversal approach, a received signal is reversed 
and reemitted as an excitation signal, and then a reconstruction of the input signal can be 
obtained at the source position. Hence, the time reversal method can effectively reduce the 
influences of dispersion and multi-modal of the guided wave. In recent years, time reversal-
based guided wave monitoring methods have been widely applied to damage detection in 
various structures, such as metallic plates [37], composite plates [38–40], and rebar-reinforced 
concrete beams [41]. Recently, Parvasi et al. [10] proposed to use time reversal method to 
focus guided wave energy transmitted through bolted joint, and then the refocused ampli-
tude peak was selected as the tightness index for preload detection. The experimental results 
show that the proposed tightness index increases with bolt torque. The TR method for bolt 
preload monitoring can be divided into four steps, which is shown in Figure 8. Step 1, a tone 
burst input e(t) is applied to transducer A, which activates wave propagation in the plate. 
Step 2, a wave response signal u(t) is captured by transducer B. Step 3, the recorded signal 
u(t) is reversed in time domain and is restimulated using transducer B. Step 4, a guided wave 
signal is captured by transducer A again, and the original signal is reconstructed. Finally, the 
reconstructed signal peak is used as the tightness index for preload detection [10]. One of the 
main advantages of TR method is that there is no need to take efforts to select time window 
of received signal as the WED method.

Actually, the refocused amplitude peak is strongly related to the transmitted wave energy. 
Hence, when bolt preload is relatively high and the real contact area does not increase with 
preload, the focused signal peak amplitude changes very slowly. Therefore, Tao et al. [42] 
experimentally investigated the saturation phenomenon of TR method for bolted preload 
detection. The results demonstrate that with the increase of the surface roughness of bolted 
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interface, the saturation phenomenon becomes insignificant. Huo et al. [43] studied guided 
wave propagation across contact interface based on fractal contact theory and finite element 
method. They concluded that the saturation phenomenon is linked to the plastic deformation 
of interacting asperities under a heavy axial load.

3.3. Comparison of TR and WED methods

Until now, the difference in monitoring sensitivities of WED and TR methods is not clear. 
Hence, the monitoring sensitivities of the two methods are compared in this section. The 
experimental setup and specimens are displayed in Figure 9. The metallic bolted lap joint 
consists of two flat aluminum 2024-T3 beams, one M6 bolt, one nut, and two washers. The 
length of each beam is 400 mm, the width is 50 mm, and the thickness 2 mm. The normal 
torque is selected to be 10 Nm. A torque wrench with a resolution of 0.2 Nm is used to apply 
bolt preload. A data acquisition (DAQ) system NI USB-6366 with a sampling frequency of 
2 MHz is used to generate wave excitation and record responses. A program is built in the 
LabVIEW environment to control the process of data acquisition. A high voltage amplifier 
PINTEK HA-400 is used to amplify the excitation signal and provides voltage to PZT actua-
tors. In addition, the specimen is mounted on a foam support to simulate a free-free boundary 
condition. Two PZT patches are bonded on the specimen. The patch on the left beam, 100 mm, 
away from the bolt is numbered as PZT 1  PZT . Another one on the right beam, 100 mm, from 
the jointed bolt is numbered as PZT 2.

The bolt preload is evaluated by both WED and TR methods at the same time. Figure 10 pres-
ents the results of tightness indexes TIΩ(WED) and TIΩ(TR) obtained by   TI  

Ω
   (WED)  , the WED 

and TR methods, respectively.   TI  
Ω

   (TR)   It can be seen that TIΩ(WED) increases with bolt pre-
load when the preload is smaller than 6 Nm. However, an obvious saturation trend can be 
seen, and only the lowest 0.1-Nm torque case can be clearly identified. By contrast, TIΩ(TR) 
increases with bolt preload in the entire preload range, and the 0.1-, 2-, and 4-Nm cases can be 
clearly identified. On the other hand, TIΩ(TR) cannot be used to identify torque cases larger 
than 6 Nm. It can be concluded that the detection sensitivity of TR   TI  

p
   (MTR)   method is better 

than that of   TI  
Ω

   (WED)   WED method   TI  
Ω

   (TR)   especially at the early stage of bolt loosening. The 

Figure 9. Experimental setup and specimens.
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obtained at the source position. Hence, the time reversal method can effectively reduce the 
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show that the proposed tightness index increases with bolt torque. The TR method for bolt 
preload monitoring can be divided into four steps, which is shown in Figure 8. Step 1, a tone 
burst input e(t) is applied to transducer A, which activates wave propagation in the plate. 
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u(t) is reversed in time domain and is restimulated using transducer B. Step 4, a guided wave 
signal is captured by transducer A again, and the original signal is reconstructed. Finally, the 
reconstructed signal peak is used as the tightness index for preload detection [10]. One of the 
main advantages of TR method is that there is no need to take efforts to select time window 
of received signal as the WED method.

Actually, the refocused amplitude peak is strongly related to the transmitted wave energy. 
Hence, when bolt preload is relatively high and the real contact area does not increase with 
preload, the focused signal peak amplitude changes very slowly. Therefore, Tao et al. [42] 
experimentally investigated the saturation phenomenon of TR method for bolted preload 
detection. The results demonstrate that with the increase of the surface roughness of bolted 
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interface, the saturation phenomenon becomes insignificant. Huo et al. [43] studied guided 
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method. They concluded that the saturation phenomenon is linked to the plastic deformation 
of interacting asperities under a heavy axial load.

3.3. Comparison of TR and WED methods

Until now, the difference in monitoring sensitivities of WED and TR methods is not clear. 
Hence, the monitoring sensitivities of the two methods are compared in this section. The 
experimental setup and specimens are displayed in Figure 9. The metallic bolted lap joint 
consists of two flat aluminum 2024-T3 beams, one M6 bolt, one nut, and two washers. The 
length of each beam is 400 mm, the width is 50 mm, and the thickness 2 mm. The normal 
torque is selected to be 10 Nm. A torque wrench with a resolution of 0.2 Nm is used to apply 
bolt preload. A data acquisition (DAQ) system NI USB-6366 with a sampling frequency of 
2 MHz is used to generate wave excitation and record responses. A program is built in the 
LabVIEW environment to control the process of data acquisition. A high voltage amplifier 
PINTEK HA-400 is used to amplify the excitation signal and provides voltage to PZT actua-
tors. In addition, the specimen is mounted on a foam support to simulate a free-free boundary 
condition. Two PZT patches are bonded on the specimen. The patch on the left beam, 100 mm, 
away from the bolt is numbered as PZT 1  PZT . Another one on the right beam, 100 mm, from 
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main reason is that guided waves traveled twice (from PZT1 to PZT2, and then PZT2 to PZT1) 
through the jointed interface in the TR technique. The interface affects the waves twice and 
thus makes the TIΩ(TR) more sensitive to the bolt preload [10].

4. Nonlinear feature-based techniques

4.1. Contact acoustic nonlinearity

Contact acoustic nonlinearity (CAN) is shown to increase with the decrease in contact load, so 
the second-order harmonics, subharmonic, and spectral sidebands caused by CAN have also 
been used for bolt preload detection. Usually, the second-order harmonic and subharmonic 
can be generated by a single frequency excitation, and spectral sidebands are generated by 
both low- and high-frequency excitations. For the second-order harmonic-based method, the 
ratio between the second harmonic amplitude and the carrier frequency signal amplitude 
provided a reliable index for bolt load assessment. Under multi-frequency excitation, the 
loosening/tightening index proposed is the difference in dB between the carrier frequency 
amplitude and a mean of the two sideband amplitudes [27]. Zhang M et al. [19] presented a 
subharmonic resonance method for the detection of bolt looseness, and the bolted joint was 
excited by a single frequency-guided wave. CAN features are more likely to be excited by 
adding vibration excitation. Thereby, Zhang Z et al. [17, 18] proposed a vibro-acoustic modu-
lation (VAM)-based method and developed a sideband index for metal and composite bolted 
joints. The experimental setup and the corresponding detection results for composite bolted 
joints are shown in Figure 11.

In Figure 11, the label β is the sideband index in VAM method, and the label energy is the trans-
mitted energy of Lamb waves in WED method. Zhang Z et al. [17] compared the proposed VAM 
method with WED-based linear method, and the results show that the proposed sideband index 
β effectively enhanced measurement sensitivity. In addition, Amerini and Meo [27] developed 

Figure 10. Preload detection results of the WED and TR methods.
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both second-order harmonics index and sideband index to assess the tightening state of a bolted 
structure, and the assessment results of the two methods are similar. On the other hand, Zhang 
Z et al. [16] also compared the high-order harmonics and sideband methods and demonstrated 
that the stability of spectral sideband-based method is better. Spectral sideband can also be gen-
erated by impact modulation. Meyer and Adams [44] proposed an impact modulation-based 
method to detect bolt loosening in an aluminum joint. However, the sideband amplitudes are 
sensitive to test parameters including impact amplitude and location, probing force amplitude 
and frequency, and sensor location. One common disadvantage of these above spectral side-
band methods is that it needs two different actuators and one sensor for each joint monitored 
[27]. Meanwhile, the saturation phenomena have not been completely removed, and the detec-
tion sensitivity still needs to be improved at the early stage of bolt loosening.

4.2. Phase shift

Apart from transmitted wave energy and CAN, the phase shift of guided wave has also been 
used for quantifying bolt torques. Zagrai et al. [45] estimated bolt torques by measuring 
delays of guided wave transmitted across bolt joint. Their experimental results demonstrated 
that bolt torque is proportional to phase shift of the guided waves, as shown in Figure 12.

In addition, Zagrai et al. [45] tried to explain the experiment results by acousto-elastic theory 
and presented a simplified theoretical approach to calculate phase shift of the propagating elas-
tic wave. However, their approach gives approximately an order of magnitude underestima-
tion for pulse delays. Subsequently, Doyle et al. [46, 47] further studied phase shift of guided 
wave propagating in a complex structure analogous to a typical satellite panel containing 49 
bolt joints using an array of piezoelectric sensors sparsely distributed. The results show that 
the time at which this shift occurs is related to the distance between the location of loosening 
bolt and the primary wave propagation path. Thereby, using only two or three possible paths, 
it is possible to obtain a realistic estimate of the location of damage in the form of single bolt 
loosening [47]. On this basis, Zagrai et al. [48] tried to develop a baseline-free method utilizing 

Figure 11. Preload monitoring of bolted composite joint using VAM method [17]: (a) experimental setup for VAM 
method and (b) comparison of VAM and WED methods.
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main reason is that guided waves traveled twice (from PZT1 to PZT2, and then PZT2 to PZT1) 
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both low- and high-frequency excitations. For the second-order harmonic-based method, the 
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amplitude and a mean of the two sideband amplitudes [27]. Zhang M et al. [19] presented a 
subharmonic resonance method for the detection of bolt looseness, and the bolted joint was 
excited by a single frequency-guided wave. CAN features are more likely to be excited by 
adding vibration excitation. Thereby, Zhang Z et al. [17, 18] proposed a vibro-acoustic modu-
lation (VAM)-based method and developed a sideband index for metal and composite bolted 
joints. The experimental setup and the corresponding detection results for composite bolted 
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In Figure 11, the label β is the sideband index in VAM method, and the label energy is the trans-
mitted energy of Lamb waves in WED method. Zhang Z et al. [17] compared the proposed VAM 
method with WED-based linear method, and the results show that the proposed sideband index 
β effectively enhanced measurement sensitivity. In addition, Amerini and Meo [27] developed 
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both second-order harmonics index and sideband index to assess the tightening state of a bolted 
structure, and the assessment results of the two methods are similar. On the other hand, Zhang 
Z et al. [16] also compared the high-order harmonics and sideband methods and demonstrated 
that the stability of spectral sideband-based method is better. Spectral sideband can also be gen-
erated by impact modulation. Meyer and Adams [44] proposed an impact modulation-based 
method to detect bolt loosening in an aluminum joint. However, the sideband amplitudes are 
sensitive to test parameters including impact amplitude and location, probing force amplitude 
and frequency, and sensor location. One common disadvantage of these above spectral side-
band methods is that it needs two different actuators and one sensor for each joint monitored 
[27]. Meanwhile, the saturation phenomena have not been completely removed, and the detec-
tion sensitivity still needs to be improved at the early stage of bolt loosening.

4.2. Phase shift

Apart from transmitted wave energy and CAN, the phase shift of guided wave has also been 
used for quantifying bolt torques. Zagrai et al. [45] estimated bolt torques by measuring 
delays of guided wave transmitted across bolt joint. Their experimental results demonstrated 
that bolt torque is proportional to phase shift of the guided waves, as shown in Figure 12.

In addition, Zagrai et al. [45] tried to explain the experiment results by acousto-elastic theory 
and presented a simplified theoretical approach to calculate phase shift of the propagating elas-
tic wave. However, their approach gives approximately an order of magnitude underestima-
tion for pulse delays. Subsequently, Doyle et al. [46, 47] further studied phase shift of guided 
wave propagating in a complex structure analogous to a typical satellite panel containing 49 
bolt joints using an array of piezoelectric sensors sparsely distributed. The results show that 
the time at which this shift occurs is related to the distance between the location of loosening 
bolt and the primary wave propagation path. Thereby, using only two or three possible paths, 
it is possible to obtain a realistic estimate of the location of damage in the form of single bolt 
loosening [47]. On this basis, Zagrai et al. [48] tried to develop a baseline-free method utilizing 

Figure 11. Preload monitoring of bolted composite joint using VAM method [17]: (a) experimental setup for VAM 
method and (b) comparison of VAM and WED methods.
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signals of different initial phases to assess bolt loosening. Unfortunately, it does not work in 
structures with complicated geometries and large number of bolts. Furthermore, changes of 
the phase shift induced by a bolted joint are rather small and require sensitive equipment with 
advanced signal-processing capabilities [46]. In addition, because received guided waves are 
very complex, it is difficult to select the correct time window and the corresponding wave speed 
to calculate phase shift and the distance between wave path and damage.

4.3. Chaotic ultrasonic excitation

In addition to stimulate the nonlinear characteristics of the jointed structure, another research 
idea is to directly use nonlinear ultrasonic excitation. At this time, artificially introducing a 
nonlinear component in the ultrasonic excitation signal can be used to sensitively estimate 
the change of structural parameters caused by loosened bolts. Chaotic signal is a well-
known nonlinear signal, but chaotic signals generated by most well-known chaotic systems 
are unsuitable for guided wave monitoring which is more sensitive to small-scale damage. 

Figure 13. Looseness indexes versus bolt preload [51]: (a) Lyapunov dimension and (b) ALAVR.

Figure 12. Guided wave signals recorded at different bolt torques: (a) full records and (b) zoomed-in segments [45].
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Clayton et al. [20] proposed a bolt preload monitoring approach combining a chaotic excita-
tion method with ultrasonic guided waves. In this method, the chaotic signal is upconverting 
to an ultrasonic frequency band, and the ultrasound signal with chaotic characteristics is gen-
erated to stimulate the bolted structure. The response signal is reconstructed to analyze the 
phase space, and the nonlinear characteristic quantitatively representing the bolt looseness 
is extracted. Fasel et al. [49, 50] used similar methods to identify bolt preload in simulations 
and experiments on single and multi-bolt structures. Recently, based on the chaotic ultrasonic 
excitation method, Wu and Xu [51] take both Lyapunov dimension and the ratio of averaged 
local attractor variance (ALAVR) as looseness indexes, which can be used to characterize an 
attractor’s whole features and local features. Experimental results show that ALAVR is better 
for bolt preload monitoring, as displayed in Figure 13.

5. Conclusions

Ultrasonic guided wave is an effective technique to monitor the preload of bolts. The research 
status of this field is reviewed in this chapter. At present, considerable advancements have 
been made in this area in the past two decades. Both linear and nonlinear features of guided 
waves introduced by bolted joints have been used for bolt preload monitoring. In particular, 
the transmitted wave energy as a linear feature is the most extensively used for preload moni-
toring in single bolt and multi-bolt structures. For this reason, the wave energy dissipation 
method (WED) based on the above features is experimentally compared with time rever-
sal method (TR). The results show that the detection sensitivity of WED method is not very 
good, especially at the early stage of bolt loosening, and the TR method is more sensitive to 
bolt loosening. Meanwhile, this chapter also reviews a variety of monitoring methods based 
on nonlinear features, including contact acoustic nonlinearity (CAN), phase shift caused by 
acoustic-elastic, and chaotic ultrasound. The above methods can improve the detection sen-
sitivity, but there are also several disadvantages. For example, both acoustic and vibrational 
excitations are always required for CAN-based methods, and high-frequency sampling fre-
quencies are required for phase shift-based method. The open areas of research, which might 
need attention, are outlined as follows:

1. Accurate and efficient numerical models should be further developed to simulate wave 
propagation in bolted joints. For example, acoustic-elastic are currently believed to cause the 
phase shift of transmitted guided-wave signal. However, the current simplified model based 
on acoustic-elastic cannot effectively explain the phase shift phenomenon. In the meantime, 
it is very difficult to consider the micro-topography of contact surfaces in FEM models now. 
Therefore, the establishment of a more accurate and efficient numerical model is expected to 
fully study the interaction between jointed interface and guided wave theoretically.

2. Improving bolt preload monitoring method is still required. Although bolt preload moni-
toring methods such as TR and VAM methods can effectively improve the preload de-
tection sensitivity, the detection sensitivity of these methods is not still very good at the 
early stage of bolt loosening. Moreover, almost all the methods currently require baseline 
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signals of different initial phases to assess bolt loosening. Unfortunately, it does not work in 
structures with complicated geometries and large number of bolts. Furthermore, changes of 
the phase shift induced by a bolted joint are rather small and require sensitive equipment with 
advanced signal-processing capabilities [46]. In addition, because received guided waves are 
very complex, it is difficult to select the correct time window and the corresponding wave speed 
to calculate phase shift and the distance between wave path and damage.

4.3. Chaotic ultrasonic excitation

In addition to stimulate the nonlinear characteristics of the jointed structure, another research 
idea is to directly use nonlinear ultrasonic excitation. At this time, artificially introducing a 
nonlinear component in the ultrasonic excitation signal can be used to sensitively estimate 
the change of structural parameters caused by loosened bolts. Chaotic signal is a well-
known nonlinear signal, but chaotic signals generated by most well-known chaotic systems 
are unsuitable for guided wave monitoring which is more sensitive to small-scale damage. 

Figure 13. Looseness indexes versus bolt preload [51]: (a) Lyapunov dimension and (b) ALAVR.

Figure 12. Guided wave signals recorded at different bolt torques: (a) full records and (b) zoomed-in segments [45].
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Clayton et al. [20] proposed a bolt preload monitoring approach combining a chaotic excita-
tion method with ultrasonic guided waves. In this method, the chaotic signal is upconverting 
to an ultrasonic frequency band, and the ultrasound signal with chaotic characteristics is gen-
erated to stimulate the bolted structure. The response signal is reconstructed to analyze the 
phase space, and the nonlinear characteristic quantitatively representing the bolt looseness 
is extracted. Fasel et al. [49, 50] used similar methods to identify bolt preload in simulations 
and experiments on single and multi-bolt structures. Recently, based on the chaotic ultrasonic 
excitation method, Wu and Xu [51] take both Lyapunov dimension and the ratio of averaged 
local attractor variance (ALAVR) as looseness indexes, which can be used to characterize an 
attractor’s whole features and local features. Experimental results show that ALAVR is better 
for bolt preload monitoring, as displayed in Figure 13.

5. Conclusions

Ultrasonic guided wave is an effective technique to monitor the preload of bolts. The research 
status of this field is reviewed in this chapter. At present, considerable advancements have 
been made in this area in the past two decades. Both linear and nonlinear features of guided 
waves introduced by bolted joints have been used for bolt preload monitoring. In particular, 
the transmitted wave energy as a linear feature is the most extensively used for preload moni-
toring in single bolt and multi-bolt structures. For this reason, the wave energy dissipation 
method (WED) based on the above features is experimentally compared with time rever-
sal method (TR). The results show that the detection sensitivity of WED method is not very 
good, especially at the early stage of bolt loosening, and the TR method is more sensitive to 
bolt loosening. Meanwhile, this chapter also reviews a variety of monitoring methods based 
on nonlinear features, including contact acoustic nonlinearity (CAN), phase shift caused by 
acoustic-elastic, and chaotic ultrasound. The above methods can improve the detection sen-
sitivity, but there are also several disadvantages. For example, both acoustic and vibrational 
excitations are always required for CAN-based methods, and high-frequency sampling fre-
quencies are required for phase shift-based method. The open areas of research, which might 
need attention, are outlined as follows:

1. Accurate and efficient numerical models should be further developed to simulate wave 
propagation in bolted joints. For example, acoustic-elastic are currently believed to cause the 
phase shift of transmitted guided-wave signal. However, the current simplified model based 
on acoustic-elastic cannot effectively explain the phase shift phenomenon. In the meantime, 
it is very difficult to consider the micro-topography of contact surfaces in FEM models now. 
Therefore, the establishment of a more accurate and efficient numerical model is expected to 
fully study the interaction between jointed interface and guided wave theoretically.

2. Improving bolt preload monitoring method is still required. Although bolt preload moni-
toring methods such as TR and VAM methods can effectively improve the preload de-
tection sensitivity, the detection sensitivity of these methods is not still very good at the 
early stage of bolt loosening. Moreover, almost all the methods currently require baseline 
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signals from healthy structures. Therefore, the establishment of a baseline free monitoring 
method with a high detection sensitivity is an important step for moving toward the goal 
of real-life in-service implementation.

3. Bolt-loosening detection methods considering environmental factors for multi-bolt struc-
tures should be further developed. Current research limited to a flat lap joint with a single 
bolt. However, bolted joints with complex structure and multiple bolts are more common 
in real structures. Meanwhile, little attention has been paid to preload monitoring con-
sidering environmental factors which have significant effect on guided wave monitoring. 
Hence, loosening detection method considering environmental factors for multi-bolt struc-
tures is also very important for realizing the application of bolt preload monitoring in real 
engineering structures.
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method with a high detection sensitivity is an important step for moving toward the goal 
of real-life in-service implementation.

3. Bolt-loosening detection methods considering environmental factors for multi-bolt struc-
tures should be further developed. Current research limited to a flat lap joint with a single 
bolt. However, bolted joints with complex structure and multiple bolts are more common 
in real structures. Meanwhile, little attention has been paid to preload monitoring con-
sidering environmental factors which have significant effect on guided wave monitoring. 
Hence, loosening detection method considering environmental factors for multi-bolt struc-
tures is also very important for realizing the application of bolt preload monitoring in real 
engineering structures.
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is to summarize the advantages and disadvantages of SHM methodologies and their 

applications, which may provide a new perspective in understanding SHM for readers 
from diverse engineering fields.
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