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Preface

In this book, we aim to present the recent developments and applications of the perturba‐
tion theory for treating problems in applied mathematics, physics and engineering. The
eight chapters presented in this book are written by 22 authors from 8 countries: Japan, Chi‐
na, Algeria, France, Russia, Mexico, USA and Canada.

Each chapter is independent and self-contained, providing a contemporary overview of the
perturbation methods that are used in theoretical and applied sciences. The reference list at
the end of each chapter provides the reader a selected list of journal papers, books and con‐
ference proceedings. The chapters can be summarized as follows: In the first chapter, a com‐
putational technique is developed to predict the piezoelectric properties of materials using
the density functional perturbation theory (DFPT). In the next chapter, the development of a
sliding-mode perturbation observer-based control scheme for voltage source converter
based high voltage direct current systems is described. In the third chapter, a multiplication
operation is introduced and via this operation, it is allowed to give the Carleman operator
the form of a multiplication operator. In the same chapter, a formal perturbation theory of
Carleman operators is also established. The next chapter is devoted to optimal perturbation
techniques and various types of optimal perturbation techniques, namely optimal determin‐
istic perturbation theory, optimal stochastic perturbation and simultaneous stochastic per‐
turbation methods are introduced to demonstrate the efficiency of perturbation methods in
predictability of dynamical systems that arise in atmospheric and oceanographic sciences. In
the fifth chapter, a discussion of the nonlinear parametric systems is presented and the con‐
ditions of motions of existence in the resonance zones are put forward. In the sixth chapter,
mechanical perturbations strategy is applied at the working electrode during one-step elec‐
trodeposition process and the results are compared to the standard one-step electrodeposi‐
tion. In the next chapter, an approximate analytical solution is constructed for the wellbore
pressure via the method of matched asymptotic expansions applied to the one-dimensional
saturation convection-dispersion equation. The solutions to this type of nonlinear equations
is of great importance in fluid mechanics and especially in petroleum engineering. In the last
chapter, a new inhomogeneous scheme based on perturbation methods to solve the solar/
infrared radiative transfer (SRT/IRT) problem is developed. This chapter contains significant
and applicable information in meteorological sciences.

The book is intended to reach to researchers, scientists and postgraduate students in aca‐
demia as well as in industry and published as an open access book in order to significantly
increase the reach and impact of the information that is contained in the book.

Dr. İlkay Bakırtaş
Istanbul Technical University

Department of Mathematics
Istanbul, Turkey
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Abstract

Among the various computational methods in materials science, only first-principles cal-
culation based on the density functional theory has predictability for unknown material. 
Especially, density functional perturbation theory (DFPT) can effectively calculate the 
second derivative of the total energy with respect to the atomic displacement. By using 
DFPT method, we can predict piezoelectric constants, dielectric constants, elastic con-
stants, and phonon dispersion relationship of any given crystal structure. Recently, we 
established the computational technique to decompose piezoelectric constants into each 
atomic contribution, which enable us to gain deeper insights to understand the piezo-
electricity of material. Therefore, in this chapter, we will introduce the computational 
framework to predict piezoelectric properties of polar material by means of DFPT and 
details of decomposition technique of piezoelectric constants. Then, we will show some 
case studies to predict and discover new piezoelectric material.

Keywords: density functional perturbation theory, ferroelectricity, piezoelectricity, 
first-principles calculation

1. Introduction

In this chapter, we will introduce how recent computational techniques can successfully pre-
dict response properties, represented as piezoelectricity, by means of perturbation method.
Piezoelectricity is the polarization change in response to external mechanical force. Inversely,
if electrical field is applied to piezoelectric material, mechanical strain is induced (inverse
piezoelectric effect). Therefore, piezoelectric materials are widely used as vibrational censors,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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surface acoustic wave devices, and actuators. Only the material having no inversion symmetry 
shows piezoelectricity. For example, Figure 1 shows schematic illustration of the piezoelectric 
effect. Positions of positively charged ion (cation) and negatively charged ion (anion) are rep-
resented as plus and minus symbols. Figure 1a shows the paraelectric phase, where ions are 
orderly located with inversion symmetry. On the other hand, ions are slightly displaced by δ 
with respect to those in paraelectric phase, as shown in Figure 1b. Such small displacement 
induces microscopic polarization Ps along the ionic displaced direction.

Because ferroelectric phase is energetically more stable than paraelectric phase under low 
temperature, Ps is frequently referred as the spontaneous polarization. Above Curie tempera-
ture, ferroelectric properties are disappeared since paraelectric phase becomes more stable 
than ferroelectric one. Figure 1c shows the schematic illustration of the principal of piezo-
electricity, where external stress (red-colored arrows) increases the ionic displacement and 
resultant polarization. In this case, external stress increases the spontaneous polarization by 
ΔPs = Ps

’−Ps. Therefore, piezoelectric constant is defined as the derivative of the spontaneous 
polarization with respect to the external field. More detailed and comprehensive description 
of piezoelectricity is reviewed by Martin [1].

First-principles calculation based on density functional theory (DFT [2, 3]) has been widely 
utilized as the computational method to predict the electronic properties of material under the 
ground state. Ideally, required information to conduct the first-principles calculation is only 
the crystal structure, including atomic species and position of periodic/nonperiodic struc-
ture unit. The most significant advantage of first-principles calculation is its predictability.  
Since King-Smith and Vanderbilt showed the theoretical methodology to calculate change in 
polarization per unit volume ΔP [4], dielectric and piezoelectric properties of wide range of 
materials in which electronic correlations are not too strong [5–7] have been accurately pre-
dicted. The derivative of total energy determines various properties. For example, determined 
forces, stresses, dipole moment (first-order derivatives), dynamical matrix, elastic constants, 
dielectric and piezoelectric constants (second-order derivative), nonlinear dielectric suscep-
tibility, phonon–phonon interaction and Grüneisen parameters (third-order derivative), and 

Figure 1. Ionic configuration of (a) paraelectric phase and (b) ferroelectric phase. (c) Ionic displacement according to the 
external force.

Perturbation Methods with Applications in Science and Engineering2

so on. Thus, first-principles calculation has been made use of calculating the perturbed total 
energy of materials because of its accuracy. Although perturbations were made by hand up to 
the early 1980s, sophisticated methodology of density functional perturbation theory (DFPT) 
was proposed in 1987 by Baroni et al. [5]. They showed general formulation of total energy 
change with respect to atomic displacement and opened the way to efficiently compute the 
energy derivative with respect to the perturbation [5]. DFPT can compute response proper-
ties directly arising from the perturbations of strain, atomic displacement, and electric field 
by making use of linear response theory [8–11]. Numbers of ferroelectric materials are theo-
retically investigated on the origin of their ferroelectric properties (including piezoelectricity 
and dielectric properties) by using DFPT. Because of technological importance, such theo-
retical researches have been focused on Pb-based perovskite material (e.g., PbTiO3, PbZrO3, 
and their solid solution [12–15]) because they have excellent piezoelectric properties and are 
widely applied for actuators. However, due to the restriction of hazardous substance (RoHS) 
directive, researches on lead-free ferroelectric materials have gathered great attraction. By tak-
ing advantage of the predictability of DFPT, various lead-free ferroelectric oxide and nitride 
materials were theoretically investigated on their piezoelectric properties [16–25]. Moreover, 
DFPT calculations showed that piezoelectricity can be greatly enhanced by imposing isotro-
pic stress for PbTiO3 [26, 27], uniaxial stress for SrHfO3 [28], uniaxial and biaxial strain for 
AlN-GaN solid solution alloy [29], and two-dimensional epitaxial strain for doped ZnO [30]. 
As latterly explained, those enhancements of piezoelectric constant are thought to be closely 
related to the phase transition. In the next section, we will show the definition of piezoelectric 
constants within the framework of DFPT.

2. Formulation of piezoelectric constants

Formulation and calculation methodologies to obtain response properties of materials in 
the framework of DFPT have been developed in a step-by-step manner, because degrees of 
freedom by perturbations of atomic displacement, homogeneous electric fields, and strain 
are often strongly coupled. For example, piezoelectricity affects elastic and dielectric proper-
ties. Therefore, special care must be paid for the calculation of coupled properties. In 2005, 
Hamann et al. demonstrated that elastic and piezoelectric tensors can be efficiently calcu-
lated by treating homogeneous strain within the framework of DFPT [31]. At the same time, 
Wu et al. systematically formulated response properties with respect to displacement, strain, 
and electric fields [32]. In this section, we will briefly introduce how piezoelectric properties 
are formulated in the framework of DFPT. In each formulation, Einstein implied-sum nota-
tion is used. Cartesian directions {x, y, z} are represented as α and β. Subscription of j and 
k = 1, …, 6 is the standard Voigt notation (represents directions of xx, yy, zz, yz, zx, and xy). 
The subscripts m and n are the degrees of freedom in the cell. They range from 1 to 3i, where 
i is the number of irreducible atoms because each atom has three degree of freedom along x, 
y, and z directions.

Total energy of material under perturbation of atomic displacement u, electric field σ, and 
strain η, E(u,σ,η), is defined as follows:
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  E (u, σ, η)  =   1 ___  Ω  0  
   [ E   0  − Ωσ ∙ P]   (1)

where E0 is the total energy of material under the ground state, Ω0 is volume of the unit cell (small-
est repeat unit of crystal), Ω is deformed volume of the unit cell, and P is the electric polarization. 
Following response functional tensor can be obtained by second-order differential of Eq. (1):

  Force constant matrix :  K  mn   =    Ω  0     
 ∂   2  E ______ ∂  u  m   ∂  u  n  

  |   
σ,η

    (2)

  Clamped − ion term of electric susceptibility :   χ ̄    𝛼𝛼𝛼𝛼   = −      ∂   2  E ______ ∂  σ  α   ∂  σ  β  
  |   

u,η

    (3)

  Clamped − ion term of elastic tensor :   C ¯    jk   = −      ∂   2  E ______ ∂  η  j   ∂  η  k  
  |   

u,σ

    (4)

  Born effective charge tensor :  Z  m𝛼𝛼   =   −  Ω  0     
 ∂   2  E ______ ∂  u  m   ∂  σ  α  

  |   
η
    (5)

  Force − response internal − strain tensor :  Λ  mj   =   −  Ω  0     
 ∂   2  E ______ ∂  u  m   ∂  η  j  

  |   
σ

    (6)

  Clamped − ion piezoelectric tensor :   e ̄    𝛼𝛼j   =      ∂   2  E ______ ∂  σ  α   ∂  η  j  
  |   

u

    (7)

Clamped-ion term is a frozen quantity, which indicates that atomic coordinates are not 
allowed to relax as the homogeneous electric field or strain. Therefore, dynamical term should 
be added into the clamped-ion term in order to obtain proper response properties.

Simplest and physically well-understandable piezoelectric constant can be expressed as 
follows:

   e  𝛼𝛼j   =   
∂  P  α   ___ ∂  η  j  

    (8)

In this expression, it is easily understood that piezoelectric e constant eαj is a measure of the 
change in polarization induced by the external strain. As the atomic positions are changed 
according to the strain, change of the polarization includes both electronic contribution 
(clamped-ion term) and dynamical contribution (internal-strain term). The internal-strain 
term of piezoelectric constant is represented as follows:

    e ̂    𝛼𝛼j   =   1 ___  Ω  0  
    Z  m𝛼𝛼     ( K   −1 )   mn    Λ  nj    (9)
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Thus, proper piezoelectric constant can be obtained by Eqs. (7) and (9):
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Here, the first and second terms on the right-hand side in Eq. (10) are the clamped-ion term 
and internal-strain term, respectively. The former shows the electronic contribution ignoring 
the atomic relaxation effect, and the latter shows the ionic contribution including the response 
of the atomic displacement to the strain. The Born effective charge Zmα, force-constant matrix 
Kmn, and internal-strain tensor Λnj are the second derivatives of the energy with respect to the 
displacement and electric field, pairs of displacements, and displacement and strain, respec-
tively. The internal-strain term of the piezoelectric stress constants can be further decom-
posed into the individual atomic contributions when the above second-derivative tensors are 
fully obtained.

On the other hand, the internal-strain term of the piezoelectric stress constant eαj is frequently 
described by the following equation, using the Born effective charge Zαβ and displacement uβ 
of each atom in the calculation cell:

    e ̂    𝛼𝛼j   =  Z  𝛼𝛼𝛼𝛼     
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where  ∂  u  
β
   / ∂  η  

j
    shows the response of the first-order atomic displacement to the first-order 

strain. In this expression, the meaning of the piezoelectric stress constant, i.e., ej is a measure 
of the change in polarization induced by the external strain, is much more visible than in Eq. 
(9). In the DFPT formalism,  ∂  u  

β
   / ∂  η  

j
    is implicitly calculated as a displacement-response internal-

strain tensor Γ as follows [32]:

   Γ  nj   =  Λ  mj     ( K   −1 )   mn    (12)

Because the subscript n in Γnj indicates the degrees of freedom, Γnj can be decomposed into 
the individual atomic components, which also enables to calculate individual contribution of 
each atom for total piezoelectric constant.

Here, piezoelectric e constant defined as Eq. (9) is frequently referred as “piezoelectric strain 
constant.” On the other hand, it is much more natural and easy to control the stress (electric 
field) than to control the strain in any case. In this case, the piezoelectric strain constant dαj is 
usually measured. It can be obtained from piezoelectric strain constant eαj using the following 
relation:

   d  𝛼𝛼j   =  s  jk    e  𝛼𝛼k    (13)

where sjk is the elastic compliance, which is given by the inverse matrix of the elastic con-
stants Cjk.
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Those formulations are implemented in specific first-principles simulation packages such as 
ABINIT [33] and Vienna ab initio simulation package (VASP) [34], and piezoelectric constants 
can be calculated on a daily basis. From the next section, we will show how DFPT calculation 
precisely gives piezoelectric properties of ferroelectric materials.

3. Introduction of target material

In this chapter, we selected LiNbO3 as a target material to show the predictability of DFPT 
calculation. LiNbO3 is one of ferroelectric materials and widely used as surface acoustic wave 
(SAW) and optical waveguide elements. Crystal structure of LiNbO3, which belongs to the 
space group of R3c, is frequently referred as “strained perovskite structure.” Schematic illus-
trations of crystal structure of ABO3 perovskite and LiNbO3 are shown in Figure 2.

Crystal structures shown in the present chapter was visualized by using VESTA software [35]. 
Curie temperature of LiNbO3 is quite high and ranges from 1140 [36] to 1210°C dependent 
on the quality of sample (variation of Li/Nb relation can shift Curie temperature [37]). Below 
Curie temperature, ferroelectric phase with R3c symmetry (crystal structure can be classified 
into 230 types of space group according to the symmetry group) shown in Figure 2a is stable. 
Paraelectric phase with R   ̄  3  c symmetry, shown in Figure 2b, becomes stable above Curie tem-
perature. In the paraelectric phase, it can be seen that both Li and oxygen is positioned with 

Figure 2. Crystal structures of (a) ferroelectric phase with R3c symmetry and (b) paraelectric phase with R   ̄  3  c symmetry 
LiNbO3. Yellow green-, green-, and red-colored balls represent Li, Nb, and oxygen atoms, respectively. Bonding 
structures between Nb and surrounding oxygen atoms are represented as green-colored polyhedron. Two orthogonal 
crystallographic directions are shown as both a- and c-axes.
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the same height along c-axis, and the position of Nb is just the center between two oxygen 
layers along c-axis. On the other hand, both Li and Nb are shifted in ferroelectric R3c phase 
along downward direction of c-axis with respect to those in paraelectric R   ̄  3  c phase.

Due to the different bonding nature between Li-O and Nb-O, atomic positions of Li and Nb 
are off-centered within oxygen layers along c-axis. This structural characteristic is the fer-
roelectric nature of LiNbO3. One of the notable properties of LiNbO3 is its high-curie tem-
perature (~1400 K). However, piezoelectric properties of LiNbO3 are not so much superior as 
compared with Pb-based perovskites. Crystal structure of piezoelectric ABO3 perovskite is 
based on the cubic structure (of Pm3m symmetry), shown in Figure 3a.

Cubic lattice is symmetric and usually high-temperature phase, same as LiNbO3. The “strained 
perovskite structure” expression for LiNbO3 means that LiO6 and NbO6 polyhedron are 
largely rotated with respect to the cubic perovskite structure. However, because of the simple 
atomic configuration of cubic structure, atoms can be displaced along various directions and 
change crystalline symmetry as shown in Figure 3a. Crystalline lattice is vibrated (referred as 
phonon) under finite temperature. Some lattice vibrations along specific directions are unsta-
ble. This specific phonon is called as soft mode with imaginary frequency. In such case, atoms 
are displaced along unstable phonon mode to lower the total energy. For example, coop-
erative atomic displacement along [001] direction shown in Figure 3b (referred as Γ15 mode) 
changes symmetry from cubic to tetragonal (of P4mm symmetry), which leads polarization 
along [001] direction. Thus, polarization direction of perovskite is not restricted and allowed 
to be changed. This characteristic rotational polarization direction is favorable for piezoelec-
tricity because grains in polycrystalline material are oriented along various directions. Thus, 
careful controlling of crystal structure is essential to obtain superior piezoelectric properties.

The most convenient way to control and drastically change the crystal structure is imposing high 
pressure. Many compounds have found to be possible to form LiNbO3-type structure under the 
high-pressure synthesis [38], and some of them were quenchable phase. For example, LiNbO3-

Figure 3. (a) Crystal structure of cubic ABO3 perovskite and possible polarization directions. (b) Representative unstable 
vibrational mode of cubic ABO3 perovskite showing as arrows.
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roelectric nature of LiNbO3. One of the notable properties of LiNbO3 is its high-curie tem-
perature (~1400 K). However, piezoelectric properties of LiNbO3 are not so much superior as 
compared with Pb-based perovskites. Crystal structure of piezoelectric ABO3 perovskite is 
based on the cubic structure (of Pm3m symmetry), shown in Figure 3a.

Cubic lattice is symmetric and usually high-temperature phase, same as LiNbO3. The “strained 
perovskite structure” expression for LiNbO3 means that LiO6 and NbO6 polyhedron are 
largely rotated with respect to the cubic perovskite structure. However, because of the simple 
atomic configuration of cubic structure, atoms can be displaced along various directions and 
change crystalline symmetry as shown in Figure 3a. Crystalline lattice is vibrated (referred as 
phonon) under finite temperature. Some lattice vibrations along specific directions are unsta-
ble. This specific phonon is called as soft mode with imaginary frequency. In such case, atoms 
are displaced along unstable phonon mode to lower the total energy. For example, coop-
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type structured ZnSbO3 was successfully synthesized [39] under high pressure, and improve-
ment of the spontaneous polarization is suggested by enhancement of the covalency of Sn site 
from first-principles simulation [40]. Moreover, high-pressure synthesized research on LiNbO3-
type structure is now extended to more complex compounds such as oxynitrides [41, 42].

The crystal structure of ABO3 compound is generally determined by the balance between the 
ionic radius of A and B element, which is frequently referred as tolerance factor. Due to the 
small size of the Li ion with respect to the tolerance factor of LiNbO3, this compound cannot 
form stably the popular perovskite structure under the ambient condition. On the other hand, 
we predicted the crystal structures of high-pressure phase of LiNbO3 [43], which were not com-
pletely elucidated by experimental study [44]. Revealed structures are NaIO3-type structure 
(Pnma) as room temperature high-pressure phase and apatite-like structure (P63/m) as high-
temperature high-pressure phase. It should be noted that the NaIO3-type structure is closely 
related with the popular GdFeO3-type perovskite structure. The only difference between these 
structures is that A-site position and B-site position are inter-exchanged. Therefore, there 
seems to be a possible way to connect the perovskite structure and LiNbO3-type structure.

In our previous theoretical study on high-pressure phase, analysis was mainly concerned 
with phase transition mechanism only from the viewpoint of subgroup symmetry and energy 
barrier [43]. It will be instructive to deal with this phase transition phenomenon from the 
viewpoint of lattice instability as discussed in the field of the ferroelectric instability analysis. 
In the following section, we will show investigation on the potential piezoelectric properties 
of LiNbO3 with various hypothetical crystal structures by the method of DFPT, and possible 
phase transition mechanism will be discussed from the viewpoint of soft mode.

4. Computational methodology

First-principles calculation was performed by using VASP code [34]. Interactions between ion 
and electron were treated by projector augmented wave (PAW) method [45]. PBEsol functional 
[46] was used to approximate exchanges and correlate interactions of electrons, which can be 
used to reproduce the lattice constants of various materials [45]. Precise calculation on the lat-
tice constant is essential to predict piezoelectric properties because they depend on volume of 
unit cell Ω as shown in Eq. (1). The kinetic energy cutoff for plane waves was set at 500 eV, and 
the k-point mesh was set at ~0.03/Å intervals to obtain the converged total energy at less than 
0.1 meV/atom. Before calculating the piezoelectric constants, atomic positions and cell param-
eters were optimized until the forces on each atom and cell converged at below 5 × 10−4 eV/Å.

Since VASP does not directly calculate Eq. (12), we added routine to calculate displacement-
response internal-strain tensor Γnj and decompose piezoelectric constants into each atom. The 
sum of the decomposed piezoelectric constants was confirmed to accurately reproduce the 
total piezoelectric constants. Careful convergence tests with a higher energy cutoff and denser 
k-point mesh showed that the numerical accuracy of the calculated Γnj was less than 0.01. It 
was confirmed that this error does not influence our discussion and conclusion. Moreover, it 
was confirmed that the values of Γnj obtained by the DFPT method were consistent with those 
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calculated by the direct method, in which the strain-displacement relation of each ion was 
explicitly calculated.

On the basis of cubic Pm3m phase, lattice instability analysis was performed by phonon calcu-
lation utilizing phonopy code [47]. Force constant matrix shown in Eq. (2) was constructed by 
DFPT calculation implemented in VASP code combined with supercell approach. Supercell 
was constructed by using unit cell so that orthogonal three axes of the supercell exceed 10 Å. 
Note that although supercell is not required in DFPT approach, the present VASP code imple-
ments perturbation at the zone center.

5. Calculated piezoelectric properties of LiNbO3

Calculated piezoelectric properties of LiNbO3 in ferroelectric phase are summarized in Table 1.  
Some experimentally measured values are also shown in Table 1. All properties are confirmed 
to be well reproduced by calculation. In a technological importance, 33 components are the 
most important because C-axis of LiNbO3 is polarization direction. Calculated values of e33, 
C33, and ε33 are especially well reproduced. It should be mentioned here that chemical com-
position of LiNbO3 used for experiment is congruent and includes Li vacancy. On the other 
hand, calculation was performed by using stoichiometric LiNbO3.

Calculated value Experimental value

Piezoelectric stress constant (C/m2)

e15 3.73 3.655 ± 0.022 [48], 3.7 [49]

e22 2.51 2.407 ± 0.015 [48], 2.5 [49]

e31 0.21 0.328 ± 0.032 [48], 0.2 [49]

e33 1.69 1.894 ± 0.054 [48], 1.3 [49]

Elastic constant (GPa)

C11 190.7 198.86 ± 0.033 [48], 203 [49]

C12 58.3 54.67 ± 0.04 [48], 53 [49]

C13 62.4 67.99 ± 0.55 [48], 75 [49]

C14 13.5 7.83 ± 0.02 [48], 9 [49]

C33 220.0 234.18 ± 0.75 [48], 245 [49]

C44 49.2 59.85 ± 0.01 [48], 60 [49]

Dielectric constant

ε11 40.6 44.9 ± 0.4 [48], 44 [49]

ε33 24.1 26.7 ± 0.3 [48], 29 [49]

Table 1. Piezoelectric constant, elastic constant, and dielectric constant calculated by DFPT and experimentally measured 
values.

Density Functional Perturbation Theory to Predict Piezoelectric Properties
http://dx.doi.org/10.5772/intechopen.76827

9



type structured ZnSbO3 was successfully synthesized [39] under high pressure, and improve-
ment of the spontaneous polarization is suggested by enhancement of the covalency of Sn site 
from first-principles simulation [40]. Moreover, high-pressure synthesized research on LiNbO3-
type structure is now extended to more complex compounds such as oxynitrides [41, 42].

The crystal structure of ABO3 compound is generally determined by the balance between the 
ionic radius of A and B element, which is frequently referred as tolerance factor. Due to the 
small size of the Li ion with respect to the tolerance factor of LiNbO3, this compound cannot 
form stably the popular perovskite structure under the ambient condition. On the other hand, 
we predicted the crystal structures of high-pressure phase of LiNbO3 [43], which were not com-
pletely elucidated by experimental study [44]. Revealed structures are NaIO3-type structure 
(Pnma) as room temperature high-pressure phase and apatite-like structure (P63/m) as high-
temperature high-pressure phase. It should be noted that the NaIO3-type structure is closely 
related with the popular GdFeO3-type perovskite structure. The only difference between these 
structures is that A-site position and B-site position are inter-exchanged. Therefore, there 
seems to be a possible way to connect the perovskite structure and LiNbO3-type structure.

In our previous theoretical study on high-pressure phase, analysis was mainly concerned 
with phase transition mechanism only from the viewpoint of subgroup symmetry and energy 
barrier [43]. It will be instructive to deal with this phase transition phenomenon from the 
viewpoint of lattice instability as discussed in the field of the ferroelectric instability analysis. 
In the following section, we will show investigation on the potential piezoelectric properties 
of LiNbO3 with various hypothetical crystal structures by the method of DFPT, and possible 
phase transition mechanism will be discussed from the viewpoint of soft mode.

4. Computational methodology

First-principles calculation was performed by using VASP code [34]. Interactions between ion 
and electron were treated by projector augmented wave (PAW) method [45]. PBEsol functional 
[46] was used to approximate exchanges and correlate interactions of electrons, which can be 
used to reproduce the lattice constants of various materials [45]. Precise calculation on the lat-
tice constant is essential to predict piezoelectric properties because they depend on volume of 
unit cell Ω as shown in Eq. (1). The kinetic energy cutoff for plane waves was set at 500 eV, and 
the k-point mesh was set at ~0.03/Å intervals to obtain the converged total energy at less than 
0.1 meV/atom. Before calculating the piezoelectric constants, atomic positions and cell param-
eters were optimized until the forces on each atom and cell converged at below 5 × 10−4 eV/Å.

Since VASP does not directly calculate Eq. (12), we added routine to calculate displacement-
response internal-strain tensor Γnj and decompose piezoelectric constants into each atom. The 
sum of the decomposed piezoelectric constants was confirmed to accurately reproduce the 
total piezoelectric constants. Careful convergence tests with a higher energy cutoff and denser 
k-point mesh showed that the numerical accuracy of the calculated Γnj was less than 0.01. It 
was confirmed that this error does not influence our discussion and conclusion. Moreover, it 
was confirmed that the values of Γnj obtained by the DFPT method were consistent with those 

Perturbation Methods with Applications in Science and Engineering8

calculated by the direct method, in which the strain-displacement relation of each ion was 
explicitly calculated.

On the basis of cubic Pm3m phase, lattice instability analysis was performed by phonon calcu-
lation utilizing phonopy code [47]. Force constant matrix shown in Eq. (2) was constructed by 
DFPT calculation implemented in VASP code combined with supercell approach. Supercell 
was constructed by using unit cell so that orthogonal three axes of the supercell exceed 10 Å. 
Note that although supercell is not required in DFPT approach, the present VASP code imple-
ments perturbation at the zone center.

5. Calculated piezoelectric properties of LiNbO3

Calculated piezoelectric properties of LiNbO3 in ferroelectric phase are summarized in Table 1.  
Some experimentally measured values are also shown in Table 1. All properties are confirmed 
to be well reproduced by calculation. In a technological importance, 33 components are the 
most important because C-axis of LiNbO3 is polarization direction. Calculated values of e33, 
C33, and ε33 are especially well reproduced. It should be mentioned here that chemical com-
position of LiNbO3 used for experiment is congruent and includes Li vacancy. On the other 
hand, calculation was performed by using stoichiometric LiNbO3.

Calculated value Experimental value

Piezoelectric stress constant (C/m2)

e15 3.73 3.655 ± 0.022 [48], 3.7 [49]

e22 2.51 2.407 ± 0.015 [48], 2.5 [49]

e31 0.21 0.328 ± 0.032 [48], 0.2 [49]

e33 1.69 1.894 ± 0.054 [48], 1.3 [49]

Elastic constant (GPa)

C11 190.7 198.86 ± 0.033 [48], 203 [49]

C12 58.3 54.67 ± 0.04 [48], 53 [49]

C13 62.4 67.99 ± 0.55 [48], 75 [49]

C14 13.5 7.83 ± 0.02 [48], 9 [49]

C33 220.0 234.18 ± 0.75 [48], 245 [49]

C44 49.2 59.85 ± 0.01 [48], 60 [49]

Dielectric constant

ε11 40.6 44.9 ± 0.4 [48], 44 [49]

ε33 24.1 26.7 ± 0.3 [48], 29 [49]

Table 1. Piezoelectric constant, elastic constant, and dielectric constant calculated by DFPT and experimentally measured 
values.
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Decomposed e33’ (C/m2) Born effective charge Z33 (e) Displacement-response internal-strain constant Γ33

Li Nb O Li Nb O Li Nb O

0.1 0.05 0.16 1.03 6.77 −2.6 0.67 −0.05 −0.21

Table 2. Decomposed piezoelectric constants of LiNbO3.

Thus, Li vacancy is considered to have negligible influence on the piezoelectric properties. 
Decomposed ionic contribution of piezoelectric strain constant e33 is summarized in Table 2. 
Although the Born effective charge of Nb is larger than its formal charge +5e, displacement-
response internal-strain constant of Nb is negative value. This indicates that piezoelectric-
ity of LiNbO3 is mainly dominated by displacement of Li. Born effective charge indicates a 
degree of polarization induced by atomic displacement and dominated by the change in the 
orbital hybridization. Although anomalously large Born effective charge is crucial for supe-
rior piezoelectric properties of perovskite ABO3 materials [50], the present study of decom-
position of piezoelectric constant shows that coupling degree between external strain and 
atomic displacement is also indispensable to understand the piezoelectric properties.

6. Piezoelectric properties of perovskite-LiNbO3

Next, we will show how piezoelectric properties are affected by crystal structure, while 
chemical composition is kept as LiNbO3. Various hypothetical crystal structures common for 
perovskite-type structure were constructed, and their energetic stabilities were examined by 
calculating enthalpy H = U + PV (U is total energy obtained by first-principles calculation, P 
is external pressure, and V is equilibrium volume under pressure P) as a function of external 
pressure. Imposing high pressure is most convenient method to modify crystal structure and 
find unexpected stable phase. The following eight types of phases were considered:

Cubic, Pm-3 m; tetragonal, P4mm; and rhombohedral, R-3 m.

LiNbO3-ferroelectric phase, R3c, and LiNbO3-paraelectric phase, R-3c.

Orthorhombic, Amm2 and Cmmm, and high-pressure phase, P63/m.

where names of space groups are used to distinguish each structure. Crystal structure of each 
phase is shown in Figure 4a. Polyhedra shown in Figure 4a correspond to Nb-centered bond-
ing structure of Nb-O bondings. Figure 4b shows the enthalpy difference of each phases as a 
function of external pressure. Here, external pressure is assumed to be isotropic. Standard of 
enthalpy was set to be the enthalpy of most stable R3c phase under ambient condition. At the 
positive (compressive) pressure region, P63/m phase becomes stable above 21 GPa, which is 
close to the experimental phase transition pressure of 25 GPa [43]. Details of the phase transi-
tion behavior under high pressure are theoretically investigated in our previous work [44]. 
Unfortunately, P63/m phase is highly symmetric and shows no piezoelectricity. At the nega-
tive (expansive) pressure region, enthalpy difference becomes smaller as there is an increase 
of negative pressure except for R   ̄  3  c and P63/m phases.
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Imposing negative pressure can be achieved by solid solution with parent phase of larger lat-
tice constant. At −6 GPa, P4mm phase becomes stable, while R3m and Amm2 phases become 
stable at −9 GPa. However, bond breaking occurs in Nb-O bonding above −6 GPa for P4mm 
phase. The same bond breaking occurs in Amm2 and R3m phases at −11GPa and −14 GPa, 
respectively. Thus, those phase transitions occur just before bond breaking.

Within the eight phases shown in Figure 4a, only P4mm, R3m, R3c, and Amm2 phases show 
piezoelectricity. Piezoelectric stress constant, elastic constant, and dielectric constant of P4mm, 
R3m, and Amm2 phases are compared with those of R3c phase in Table 3. Various piezoelec-
tric properties are observed by each phase. Especially for P4mm and Amm2 phases, high e33 
and relatively low C33 values are predicted, which are advantageous for large piezoelectric 
strain constant d33. On the other hand, R3m phase was found to be unstable because following 
mechanical stability conditions of rhombohedral symmetry:

    C  11   +  C  12   > 0,  C  33   > 0,   ( C  11   +  C  12  )    ∗   C  33   > 2  C  13  ,  C  11   −  C  12   > 0,  C  44   > 0,   ( C  11   −  C  12  )    ∗   C  44   > 2  C  14       (14)

are broken because of C44 < 0.

Figure 5a and b show piezoelectric properties of P4mm phase as a function of pressure and cor-
responding volume of unit cell. Dotted lines indicate zero pressure states. Piezoelectric stress 
constant e33 of P4mm phase shows parabolic behavior and maximum value at zero pressure 
state. On the other hand, elastic constant C33 of P4mm phase continuously decreases as volume 
increases, because orbital hybridization of Nb-O bonding along polarization direction decreases 
as bond length increases. At the pressure of −6 GPa, C33 of P4mm phase shows almost zero value. 
This indicates that Nb-O bonding is broken. Piezoelectric stress constant d33 shown in Figure 5b  
increases as volume, because of increase of elastic compliance. Especially at the pressure of 
−5 GPa just before bond breaking, d33 shows maximum value or approximately 1000 pC/N.

This giant piezoelectric constant is almost comparable to that of PZT material [51]. Giant 
piezoelectric constant is understood as a result of phase instability in morphotropic phase 
boundary [52]. The same as P4mm phase of LiNbO3, we revealed that ZnO also showed anom-
alously large piezoelectric constant just before phase transition [30].

Figure 4. (a) Schematic illustration of eight types of perovskite-structured LiNbO3 and their space groups. (b) Enthalpy 
differences of each phase measured from the enthalpy of R3c phase as a function of pressure.
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are broken because of C44 < 0.

Figure 5a and b show piezoelectric properties of P4mm phase as a function of pressure and cor-
responding volume of unit cell. Dotted lines indicate zero pressure states. Piezoelectric stress 
constant e33 of P4mm phase shows parabolic behavior and maximum value at zero pressure 
state. On the other hand, elastic constant C33 of P4mm phase continuously decreases as volume 
increases, because orbital hybridization of Nb-O bonding along polarization direction decreases 
as bond length increases. At the pressure of −6 GPa, C33 of P4mm phase shows almost zero value. 
This indicates that Nb-O bonding is broken. Piezoelectric stress constant d33 shown in Figure 5b  
increases as volume, because of increase of elastic compliance. Especially at the pressure of 
−5 GPa just before bond breaking, d33 shows maximum value or approximately 1000 pC/N.

This giant piezoelectric constant is almost comparable to that of PZT material [51]. Giant 
piezoelectric constant is understood as a result of phase instability in morphotropic phase 
boundary [52]. The same as P4mm phase of LiNbO3, we revealed that ZnO also showed anom-
alously large piezoelectric constant just before phase transition [30].
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differences of each phase measured from the enthalpy of R3c phase as a function of pressure.
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Figure 5. (a) Piezoelectric stress constant e33 and elastic constant C33 and (b) piezoelectric strain constant d33 of P4mm 
phase as a function of pressure and corresponding volume of unit cell.

Finally, we would like to show phase transition path between cubic perovskite structure and 
LiNbO3 structure. Figure 6a shows the energy change of Pm3m phase as a function of Li dis-
placement along <001>, <011>, and <111> directions. Pm3m phase is paraelectric phase. Because 
ferroelectricity and piezoelectricity of LiNbO3 are dominated by off-centering and displace-
ment of Li, respectively, phase transition from Pm3m phase is also expected to be occurred by 

R3c P4mm R3m Amm2

Piezoelectric stress constant (C/m2)

e15 3. 73 1.14 5.10 0.64

e22 2.51 — 1.19 —

e31 0.21 0.46 0.24 0.80

e33 1.69 3.28 1.92 2.99

Elastic constant (GPa)

C11 190.7 297.2 203.0 321.8

C12 58.3 48.9 169.0 91.6

C13 62.4 77.7 90.6 92.8

C14 13.5 — −42.1 —

C33 220.0 157.7 206.6 176.4

C44 49.2 39.5 −29.6 32.5

Dielectric constant

ε11 40.6 56.2 36.6 28.2

ε33 24.1 12.3 16.2 13.3

Table 3. Piezoelectric constant, elastic constant, and dielectric constant of R3c, P4mm, R3m, and Amm2 phases calculated 
by DFPT.
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Li displacement. Li displacement along <001>, <011>, and <111> directions induces tetragonal, 
orthorhombic, and rhombohedral phase transition from cubic phase. Figure 6a clearly shows 
that tetragonal phase transition from Pm3m phase to P4mm phase is the most energetically 
advantageous. Figure 6b shows the phonon dispersion curve of cubic Pm3m phase of LiNbO3. 
Horizontal axis corresponds to sampling path along high symmetric reciprocal point (q-point). 
Within the whole Brillouin zone of reciprocal space, unstable phonon modes with imaginary 
phonon frequencies are observed. Here, imaginary phonon frequency is represented as nega-
tive value for convenience. Therefore, cubic Pm3m phase of LiNbO3 is thermodynamically 
unstable and considered to show phase transition in accordance with specific phonon mode of 
imaginary frequency (referred as soft mode). Thus, modulated structures were constructed by 
imposing atomic displacement along normal modes at each symmetric q-points. Modulated 
structures were structurally relaxed, and their space group and energy change from cubic 
P4mm phase were investigated. Summary of such modulated structures are shown in Table 4.  
At Γ point, tetragonal phase transition along with Γ15 soft mode of cubic phase shown in 
Figure 3b shows energy gain of −0.422 eV/formula unit (f.u.). On the other hand, it was found 
that modulation at R point gives more stable energy gain of −0.682 eV/f.u. In this case, R25 soft 
mode induces phase transition from cubic Pm3m phase to R   ̄  3  c phase shown in Figure 2b.

Figure 6. (a) Energy change of Pm3m phase as a function of li displacement along <001>, <011>, and <111> directions. (b) 
Phonon dispersion curve of Pm3m phase.

q-point Frequency (THz) Structure Space group Energy gain (eV/f.u.)

Γ −7.22 Tetragonal P4mm −0.422

X −5.38 Orthorhombic Pmma −0.220

M −6.56 Orthorhombic Pmma −0.125

R −5.51 Rhombohedral R-3c −0.682

“Structure” indicates Bravais lattice of modulated structure from P4mm phase. Space group of the relaxed modulated 
structure and energy gain is also shown.

Table 4. Summary of imaginary phonon frequency at each symmetric q-point in P4mm phase of LiNbO3 and 
corresponding structural phase transition.
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Figure 7. Phase transition path between cubic perovskite structure (Pm3m) and LiNbO3-structure. Unit cell of LiNbO3 is 
enclosed with blue lines.

Figure 7 shows schematic illustration of phase transition mechanism from cubic perovskite 
structure to LiNbO3 structure. On the contrary to the result of Figure 6a, R25 soft mode is 
represented as rotation of NbO6 polyhedra. Then, Γ15 soft mode of R   ̄  3  c phase leads R3c phase, 
which is ground state of LiNbO3. Although the present study shows that perovskite-struc-
tured LiNbO3 is thermodynamically unstable while its piezoelectricity is excellent, it can be 
possible to control phase transition behavior by dopant substitution.

7. Summary and conclusion

In this chapter, we briefly introduced sophisticated method of density functional perturbation 
theory. DFPT can effectively calculate the second derivative of the total energy with respect 
to the atomic displacement within the framework of first-principles calculation. By using 
DFPT method, we can predict piezoelectric constants, dielectric constants, elastic constants, 
and phonon dispersion relationship of any given crystal structure. Moreover, we showed our 
established computational technique to decompose piezoelectric constants into each atomic 
contribution, which enable us to gain deeper insights to understand the piezoelectricity of 
material. By using LiNbO3 as a model material, we showed the predictability of DFPT for 
piezoelectric properties. In addition, we showed that superior piezoelectric properties are hid-
den in perovskite-structured LiNbO3. Structural relationship and possible phase transition 
path between LiNbO3 structure and perovskite structure were discussed and concluded that 
perovskite-structured LiNbO3 is thermodynamically unstable. Further studies are expected to 
control relative phase stability between perovskite and LiNbO3 structure by dopant substation 
and solid solution.

Author details

Kaoru Nakamura*, Sadao Higuchi and Toshiharu Ohnuma

*Address all correspondence to: n-kaoru@criepi.denken.or.jp

Central Research Institute of Electric Power Industry, Japan

Perturbation Methods with Applications in Science and Engineering14

References

[1] Martin Richard M. Piezoelectricity. Physical Review B. 1972;5:1607-1613. DOI: 10.1103/
PhysRevB.5.1607

[2] Hohenberg P, Kohn W. Inhomogeneous electron gas. Physics Review. 1964;136:B864-B871. 
DOI: 10.1103/PhysRev.136.B864

[3] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. 
Physical Review. 1965;140:A1133-A1138. DOI: 10.1103/PhysRev.140.A1133

[4] King-Smith RD, Vanderbilt D. Theory of polarization of crystalline solids. Physical 
Review B. 1993;47:1651-1654. DOI: 10.1103/PhysRevB.47.1651

[5] Baroni S, Giannozzi P, Testa A. Green’s-function approach to linear response in solids. 
Physical Review Letters. 1987;58:1861-1864. DOI: 10.1103/PhysRevLett.58.1861

[6] de Gironcoli S, Baroni S, Resta R. Piezoelectric properties of III-V semiconductors from 
first-principles linear-response theory. Physical Review Letters. 1989;62:2853-2856. DOI: 
10.1103/PhysRevLett.62.2853

[7] Giannozzi P, de GS, Pavone P, Baroni S. Ab initio calculation of phonon dispersions in 
semiconductors. Physical Review B. 1991;43:7231-7242. DOI: 10.1103/PhysRevB.43.7231

[8] Gonze X. Perturbation expansion of variational principles at arbitrary order. Physical 
Review A. 1995;52:1096-1095. DOI: 10.1103/PhysRevA.52.1086

[9] Gonze X. First-principles responses of solids to atomic displacements and homogeneous 
electric fields: Implementation of a conjugate-gradient algorithm. Physical Review B. 
1997;55:10337-10354. DOI: 10.1103/PhysRevB.55.10337

[10] Gonze X, Lee C. Dynamical matrices, born effective charges, dielectric permittivity 
tensors, and interatomic force constants from density-functional perturbation theory. 
Physical Review B. 1997;55:10355-10368. DOI: 10.1103/PhysRevB.55.10355

[11] Baroni S, de GS, Corso AD, Giannozzi P. Phonons and related crystal properties from 
density-functional perturbation theory. Reviews of Modern Physics. 2001;73:515-562. 
DOI: 10.1103/RevModPhys.73.515

[12] Sághi-Szabó G, Cohen RE. First-principles study of piezoelectricity in PbTiO3. Physical 
Review Letters. 1998;80:4321-4324. DOI: 10.1103/PhysRevLett.80.4321

[13] Sághi-Szabó G, Cohen RE, Krakauer H. First-principles study of piezoelectricity in tetra-
gonal PbTiO3 and PbZr1/2Ti1/2O3. Physical Review B. 1999;59:12771-12776. DOI: 10.1103/
PhysRevB.59.12771

[14] Ghosez P, Cockayne E, Waghmare UV, Rabe KM. Lattice dynamics of BaTiO3, PbTiO3, 
and PbZrO3: A comparative first-principles study. Physical Review B. 1999;60:836-843. 
DOI: 10.1103/PhysRevB.60.836

[15] Bellaiche L, Vanderbilt D. Intrinsic piezoelectric response in perovskite alloys: PMN-PT 
versus PZT. Physical Review Letters. 1999;83:1347-1350. DOI: 10.1103/PhysRevLett.83.1347

Density Functional Perturbation Theory to Predict Piezoelectric Properties
http://dx.doi.org/10.5772/intechopen.76827

15



Figure 7. Phase transition path between cubic perovskite structure (Pm3m) and LiNbO3-structure. Unit cell of LiNbO3 is 
enclosed with blue lines.
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tured LiNbO3 is thermodynamically unstable while its piezoelectricity is excellent, it can be 
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Abstract

This chapter develops a sliding-mode perturbation observer-based sliding-mode control
(POSMC) scheme for voltage source converter-based high voltage direct current (VSC-HVDC)
systems. The combinatorial effect of nonlinearities, parameter uncertainties, unmodeled
dynamics, and time-varying external disturbances is aggregated into a perturbation,
which is estimated online by a sliding-mode state and perturbation observer (SMSPO).
POSMC does not require an accurate VSC-HVDC system model and only the reactive
power and DC voltage at the rectifier side while reactive and active powers at the inverter
side need to be measured. Additionally, a considerable robustness can be provided
through the real-time compensation of the perturbation, in which the upper bound of
perturbation is replaced by the real-time estimation of the perturbation, such that the
over-conservativeness of conventional sliding-mode control (SMC) can be effectively
reduced. Four case studies are carried out on the VSC-HVDC system, such as active and
reactive power tracking, AC bus fault, system parameter uncertainties, and weak AC gird
connection. Simulation results verify its advantages over vector control and feedback
linearization sliding-mode control. Then, a dSPACE-based hardware-in-the-loop (HIL)
test is undertaken to validate the implementation feasibility of the proposed approach.

Keywords: sliding-mode control, sliding-mode perturbation observer, VSC-HVDC
systems, HIL test

1. Introduction

In the past decades, the ever-increasing penetration of renewable energy (wind, solar, wave,
hydro, and biomass) requires an extraordinarily reliable and effective transmission of electrical
power from these new sources to the main power grid [1], in which hydropower has already
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been fully exploited in many grids, such that a sustainable development can be achieved in
future [2]. The problems and perspectives of converting present energy systems (mainly thermal
and nuclear) into a 100% renewable energy system have been discussed with a conclusion that
such idea is possible, which, however, raises that advanced transmission technologies are needed
to realize this goal [3].

The need for more secure power grids and ever-increasing environmental concerns continue to
drive the worldwide deployment of high voltage direct current (HVDC) transmission technol-
ogy, which enables a more reliable and stable asynchronous interconnection of power net-
works that operate on different frequencies [4]. HVDC systems use power electronic devices to
convert alternative current (AC) into direct current (DC), they are an economical way of
transmitting bulk electrical power in DC over long distance overhead line or short submarine
cable, while advanced extruded DC cable technologies have been used to increase power
transmissions by at least 50%, which is also an important onshore solution. HVDC enables
secure and stable asynchronous interconnection of power networks that operate on different
frequencies. Different technologies have been used to design two-terminal HVDC systems for
the purpose of a point-to-point power transfer, such as line-commutated converter (LCC)-
based HVDC (LCC-HVDC) systems using grid-controlled mercury-arc valves or thyristors,
capacitor-commutated converter (CCC)-based HVDC (CCC-HVDC) systems, or controlled
series commutated converter (CSCC)-based HVDC (CSCC-HVDC) systems [5].

Voltage source converter-based high voltage direct current (VSC-HVDC) systems using insulated
gate bipolar transistor (IGBT) technology have attracted increasing attentions due to the intercon-
nection between the mainland and offshore wind farms, power flow regulation in alternating
current (AC) power systems, long distance transmission [6], and introduction of the supergrid,
which is a large-scale power grid interconnected between national power grids [7]. The main
feature of the VSC-HVDC system is that no external voltage source is needed for communication,
while active and reactive powers at each AC grid can be independently controlled [8, 9].

Traditionally, control of the VSC-HVDC system utilizes a nested-loop d-q vector control (VC)
approach based on linear proportional-integral (PI) methods [10], whose control performance
may be degraded with the change of operation conditions as its control parameters are tuned
from one-point linearization model [11]. As VSC-HVDC systems are highly nonlinear resulting
from converters and also operate in power systemswith modeling uncertainties, many advanced
control approaches are developed to provide a consistent control performance under various
operation conditions, such as feedback linearization control (FLC) [12], which fully compensated
the nonlinearities with the requirement of an accurate system model. Linear matrix inequality
(LMI)-based robust control was developed in [13] to maximize the size of the uncertainty region
within which closed-loop stability is maintained. In addition, adaptive backstepping control was
designed to estimate the uncertain parameters by [14]. In [8, 9], power-synchronization control
was employed to greatly increase the short-circuit capacity to the AC system. However, the
aforementioned methods may not be adequate to simultaneously handle perturbations such as
modeling uncertainties and time-varying external disturbances.

Based on the variable structure control strategy, sliding-mode control (SMC) is an effective and
high-frequency switching control for nonlinear systems with modeling uncertainties and time-
varying external disturbances. The main idea of SMC is to maintain the system sliding on a surface
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in the state space via an appropriate switching logic; it features the simple implementation,
disturbance rejection, fast response, and strong robustness [15]. While the malignant effect of
chattering phenomenon can be reduced by predictive variable structure [16] and self-tuning sliding
mode [17], SMC has been applied on electrical vehicles [18], power converters [19], induction
machines [20], wind turbines [21], etc. Moreover, a feedback linearization sliding-mode control
(FLSMC) has been developed for the VSC-HVDC system to offer invariant stability to modeling
uncertainties by [22]. Basically, SMC assumes perturbations to be bounded and the prior knowl-
edge of these upper bounds is required. However, it may be difficult or sometimes impossible to
obtain these upper bounds, thus the supreme upper bound is chosen to cover the whole range of
perturbations. As a consequence, SMC based on this knowledge becomes over-conservative which
may cause a poor tracking performance and undesirable control oscillations [23].

During the past decades, several elegant approaches based on observers have been proposed
to estimate perturbations, including the unknown input observer (UIO) [24], the disturbance
observer (DOB) [25], the equivalent input disturbance (EID)-based estimation [26], enhanced
decentralized PI control via advanced disturbance observer [27], the extended state observer
(ESO)-based active disturbance rejection control (ADRC) [28], and practical multivariable
control based on inverted decoupling and decentralized ADRC [29]. Among the above listed
approaches, ESO requires the least amount of system information, in fact, only the system
order needs to be known [30]. Due to such promising features, ESO-based control schemes
have become more and more popular. Recently, ESO-based SMC has been developed to
remedy the over-conservativeness of SMC via an online perturbation estimation. It observes
both system states and perturbations by defining an extended state to represent the lumped
perturbation, which can be then compensated online to improve the performance of system.
Related applications can be referred to mechanical systems [31], missile systems [32], spherical
robots [33], and DC-DC buck power converters [34].

This chapter uses an ESO called sliding-mode state and perturbation observer (SMSPO) [35,
36] to estimate the combinatorial effect of nonlinearities, parameter uncertainties, unmodeled
dynamics, and time-varying external disturbances existed in VSC-HVDC systems, which is
then compensated by the perturbation observer-based sliding-mode control (POSMC). The
motivation to use POSMC, in this chapter, rather than SMC and our previous work [35–37]
can be summarized as follows:

• The robustness of POSMC to the perturbation mostly depends on the perturbation com-
pensation, while the ground of the robustness in SMC [18–22] is the discrete switching
input. Furthermore, the upper bound of perturbation is replaced by the smaller bound of
its estimation error, thus an over-conservative control input is avoided and the tracking
accuracy is improved.

• POSMC can provide greater robustness than that of nonlinear adaptive control (NAC) [35,
36] and perturbation observer-based adaptive passive control (POAPC) [37] due to its
inherent property of disturbance rejection.

Compared to VC [11], POSMC can provide a consistent control performance under various
operation condition of the VSC-HVDC system and improve the power tracking by eliminating
the power overshoot. Compared to FLSMC [22], POSMC only requires the measurement of
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was employed to greatly increase the short-circuit capacity to the AC system. However, the
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chattering phenomenon can be reduced by predictive variable structure [16] and self-tuning sliding
mode [17], SMC has been applied on electrical vehicles [18], power converters [19], induction
machines [20], wind turbines [21], etc. Moreover, a feedback linearization sliding-mode control
(FLSMC) has been developed for the VSC-HVDC system to offer invariant stability to modeling
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edge of these upper bounds is required. However, it may be difficult or sometimes impossible to
obtain these upper bounds, thus the supreme upper bound is chosen to cover the whole range of
perturbations. As a consequence, SMC based on this knowledge becomes over-conservative which
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order needs to be known [30]. Due to such promising features, ESO-based control schemes
have become more and more popular. Recently, ESO-based SMC has been developed to
remedy the over-conservativeness of SMC via an online perturbation estimation. It observes
both system states and perturbations by defining an extended state to represent the lumped
perturbation, which can be then compensated online to improve the performance of system.
Related applications can be referred to mechanical systems [31], missile systems [32], spherical
robots [33], and DC-DC buck power converters [34].

This chapter uses an ESO called sliding-mode state and perturbation observer (SMSPO) [35,
36] to estimate the combinatorial effect of nonlinearities, parameter uncertainties, unmodeled
dynamics, and time-varying external disturbances existed in VSC-HVDC systems, which is
then compensated by the perturbation observer-based sliding-mode control (POSMC). The
motivation to use POSMC, in this chapter, rather than SMC and our previous work [35–37]
can be summarized as follows:

• The robustness of POSMC to the perturbation mostly depends on the perturbation com-
pensation, while the ground of the robustness in SMC [18–22] is the discrete switching
input. Furthermore, the upper bound of perturbation is replaced by the smaller bound of
its estimation error, thus an over-conservative control input is avoided and the tracking
accuracy is improved.

• POSMC can provide greater robustness than that of nonlinear adaptive control (NAC) [35,
36] and perturbation observer-based adaptive passive control (POAPC) [37] due to its
inherent property of disturbance rejection.

Compared to VC [11], POSMC can provide a consistent control performance under various
operation condition of the VSC-HVDC system and improve the power tracking by eliminating
the power overshoot. Compared to FLSMC [22], POSMC only requires the measurement of
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active and reactive power and DC voltage, which can provide a significant robustness and
avoid an over-conservative control input as the real perturbation is estimated and compen-
sated online. Four case studies are carried out to evaluate the control performance of POSMC
through simulation, such as active and reactive power tracking, AC bus fault, system param-
eter uncertainties, and weak AC gird connection. Compared to the author’s previous work on
SMSPO [35, 36], a dSPACE simulator-based hardware-in-the-loop (HIL) test is undertaken to
validate its implementation feasibility.

The rest of the chapter is organized as follows. In Section 2, the model of the two-terminal
VSC-HVDC system is presented. In Section 3, POSMC design for the VSC-HVDC system is
developed and discussed. Sections 4 and 5 present the simulation and HIL results, respectively.
Finally, conclusions are drawn in Section 6.

2. VSC-HVDC system modeling

There are two VSCs in the VSC-HVDC system shown in Figure 1, in which the rectifier regulates
the DC voltage and reactive power, while the inverter regulates the active and reactive power.
Only the balanced condition is considered, e.g., the three phases have identical parameters and
their voltages and currents have the same amplitude while each phase shifts 120 ∘ between
themselves. The rectifier dynamics can be written at the angular frequency ω as [14].

did1
dt

¼ �R1

L1
id1 þ ωiq1 þ ud1

diq1
dt

¼ �R1

L1
iq1 � ωid1 þ uq1

dVdc1

dt
¼ 3usq1iq1

2C1Vdc1
� iL
C1

8>>>>>>><
>>>>>>>:

(1)

where the rectifier is connected with the AC grid via the equivalent resistance and inductance
R1 and L1, respectively. C1 is the DC bus capacitor, ud1 ¼ usd1�urd

L1
and uq1 ¼ usq1�urq

L1
.

The inverter dynamics is written as

did2
dt

¼ �R2

L2
id2 þ ωiq2 þ ud2

diq2
dt

¼ �R2

L2
iq2 � ωid2 þ uq2

dVdc2

dt
¼ 3usq2iq2

2C2Vdc2
þ iL
C2

8>>>>>>><
>>>>>>>:

(2)

where the inverter is connected with the AC grid via the equivalent resistance and inductance
R2 and L2, respectively. C2 is the DC bus capacitor, ud2 ¼ usd2�uid

L2
and uq2 ¼ usq2�uiq

L2
.

The interconnection between the rectifier and inverter through DC cable is given as
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Vdc1iL ¼ Vdc2iL þ 2R0i2L (3)

where R0 represents the equivalent DC cable resistance.

The phase-locked loop (PLL) [38] is used during the transformation of the abc frame to the dq
frame. In the synchronous frame, usd1, usd2, usq1, and usq2 are the d, q axes components of the
respective AC grid voltages; id1, id2, iq1, and iq2 are that of the line currents; urd, uid, urq, and uiq
are that of the converter input voltages. P1, P2, Q1, and Q2 are the active and reactive powers
transmitted from the AC grid to the VSC; Vdc1 and Vdc2 are the DC voltages; and iL is the DC
cable current.

At the rectifier side, the q-axis is set to be in phase with the AC grid voltage us1. Correspond-
ingly, the q-axis is set to be in phase of the AC grid voltage us2 at the inverter side. Hence, usd1
and usd2 are equal to 0, while usq1 and usq2 are equal to the magnitude of us1 and us2. Note that
this chapter adopts such framework from [12, 14, 22] to provide a consistent control design
procedure and an easy control performance comparison, other framework can also be used as
shown in [8, 9, 11]. The only difference of these two alternatives is the derived system equa-
tions, while the control design is totally the same. In addition, it is assumed that the VSC-
HVDC system is connected to sufficiently strong AC grids, such that the AC grid voltage
remains as an ideal constant. The power flows from the AC grid can be given as

P1 ¼ 3
2

usq1iq1 þ usd1id1
� � ¼ 3

2
usq1iq1

Q1 ¼
3
2

usq1id1 � usd1iq1
� � ¼ 3

2
usq1id1

P2 ¼ 3
2

usq2iq2 þ usd2id2
� � ¼ 3

2
usq2iq2

Q2 ¼
3
2

usq2id2 � usd2iq2
� � ¼ 3

2
usq2id2

8>>>>>>>>>><
>>>>>>>>>>:

(4)

3. POSMC design for the VSC-HVDC system

3.1. Perturbation observer-based sliding-mode control

Consider an uncertain nonlinear system which has the following canonical form:

Figure 1. A standard two-terminal VSC-HVDC system.
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active and reactive power and DC voltage, which can provide a significant robustness and
avoid an over-conservative control input as the real perturbation is estimated and compen-
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validate its implementation feasibility.
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developed and discussed. Sections 4 and 5 present the simulation and HIL results, respectively.
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Only the balanced condition is considered, e.g., the three phases have identical parameters and
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themselves. The rectifier dynamics can be written at the angular frequency ω as [14].

did1
dt

¼ �R1

L1
id1 þ ωiq1 þ ud1

diq1
dt

¼ �R1

L1
iq1 � ωid1 þ uq1

dVdc1

dt
¼ 3usq1iq1

2C1Vdc1
� iL
C1

8>>>>>>><
>>>>>>>:

(1)

where the rectifier is connected with the AC grid via the equivalent resistance and inductance
R1 and L1, respectively. C1 is the DC bus capacitor, ud1 ¼ usd1�urd

L1
and uq1 ¼ usq1�urq

L1
.

The inverter dynamics is written as

did2
dt

¼ �R2

L2
id2 þ ωiq2 þ ud2

diq2
dt

¼ �R2

L2
iq2 � ωid2 þ uq2

dVdc2

dt
¼ 3usq2iq2

2C2Vdc2
þ iL
C2

8>>>>>>><
>>>>>>>:

(2)

where the inverter is connected with the AC grid via the equivalent resistance and inductance
R2 and L2, respectively. C2 is the DC bus capacitor, ud2 ¼ usd2�uid

L2
and uq2 ¼ usq2�uiq

L2
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The interconnection between the rectifier and inverter through DC cable is given as
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Vdc1iL ¼ Vdc2iL þ 2R0i2L (3)

where R0 represents the equivalent DC cable resistance.
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are that of the converter input voltages. P1, P2, Q1, and Q2 are the active and reactive powers
transmitted from the AC grid to the VSC; Vdc1 and Vdc2 are the DC voltages; and iL is the DC
cable current.

At the rectifier side, the q-axis is set to be in phase with the AC grid voltage us1. Correspond-
ingly, the q-axis is set to be in phase of the AC grid voltage us2 at the inverter side. Hence, usd1
and usd2 are equal to 0, while usq1 and usq2 are equal to the magnitude of us1 and us2. Note that
this chapter adopts such framework from [12, 14, 22] to provide a consistent control design
procedure and an easy control performance comparison, other framework can also be used as
shown in [8, 9, 11]. The only difference of these two alternatives is the derived system equa-
tions, while the control design is totally the same. In addition, it is assumed that the VSC-
HVDC system is connected to sufficiently strong AC grids, such that the AC grid voltage
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_x ¼ Axþ B a xð Þ þ b xð Þuþ d tð Þð Þ
y ¼ x1

�
(5)

where x ¼ x1; x2;⋯; xn½ �T ∈Rn is the state variable vector, u∈R and y∈R are the control input
and system output, respectively. a xð Þ: Rn ↦R and b xð Þ: Rn ↦R are unknown smooth functions,
and d tð Þ: Rþ ↦R represents the time-varying external disturbance. The n� n matrix A and the
n� 1 matrix B are of the canonical form as follows:

A ¼

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮
0 0 0 ⋯ 1
0 0 0 ⋯ 0

2
6666664

3
7777775
n�n

, B ¼

0
0
⋮
0
1

2
6666664

3
7777775
n�1

(6)

The perturbation of system (5) is defined as [35–37]

Ψ x; u; tð Þ ¼ a xð Þ þ b xð Þ � b0ð Þuþ d tð Þ (7)

From the original system (5), the last state xn can be rewritten in the presence of perturbation
(6) as follows:

_xn ¼ a xð Þ þ b xð Þ � b0ð Þuþ d tð Þ þ b0u ¼ Ψ x; u; tð Þ þ b0u (8)

Define a fictitious state xnþ1 ¼ Ψ x; u; tð Þ. Then, system (5) can be extended as

y ¼ x1
_x1 ¼ x2
⋮
_xn ¼ xnþ1 þ b0u
_xnþ1 ¼ _Ψ �ð Þ

8>>>>>><
>>>>>>:

(9)

The new state vector becomes xe ¼ x1; x2;⋯; xn; xnþ1½ �T, and following assumptions are made
[35]:

• A.1 b0 is chosen to satisfy: ∣b xð Þ=b0 � 1∣ ≤θ < 1, where θ is a positive constant.

• A.2 The functions Ψ x; u; tð Þ : Rn � R� Rþ ↦R and _Ψ x; u; tð Þ : Rn � R� Rþ ↦R are
bounded over the domain of interest: ∣Ψ x; u; tð Þ∣ ≤γ1, ∣ _Ψ x; u; tð Þ∣ ≤γ2 with Ψ 0; 0; 0ð Þ ¼ 0

and _Ψ 0; 0; 0ð Þ ¼ 0, where γ1 and γ2 are positive constants.

• A.3 The desired trajectory yd and its up to nth-order derivative are continuous and
bounded.

The above three assumptions ensure the effectiveness of such perturbation estimation-
based approach. In particular, assumptions A.1 and A.2 guarantee the closed-loop system
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stability with perturbation estimation, while assumption A.3 ensures POSMC can drive the

system state x to track a desired state xd ¼ yd; y
1ð Þ
d ;⋯; y n�1ð Þ

d

h iT
[39]. In the consideration of

the worst case, e.g., y ¼ x1 is the only measurable state, an (n+1)th-order SMSPO [35, 36] for
the extended system (8) is designed to estimate the system states and perturbation, shown
as follows:

_bx1 ¼ bx2 þ α1~x1 þ k1sat ~x1ð Þ
⋮

_bxn ¼ bΨ �ð Þ þ αn~x1 þ knsat ~x1ð Þ þ b0u
_bΨ �ð Þ ¼ αnþ1~x1 þ knþ1sat ~x1ð Þ

8>>>><
>>>>:

(10)

where ~x1 ¼ x1 � bx1, ki and αi, i ¼ 1, 2,⋯, nþ 1, are positive coefficients, function sat ~x1ð Þ is
defined as sat ~x1ð Þ ¼ ~x1=∣~x1∣ when ∣~x1∣ > e and sat ~x1ð Þ ¼ ~x1=e when ∣~x1∣ ≤ e. The effect and
setting of the SMSPO parameters are provided as follows:

• The Luenberger observer constants αi, which are chosen to place the observer poles at
the desired locations in the open left-half complex plane. In other words, αi are chosen

such that the root of snþ1 þ α1sn þ α2sn�1 þ⋯þ αnþ1 ¼ sþ λαð Þnþ1 ¼ 0 is in the open left-
half complex plane. A larger value of αi not only will accelerate the estimation rate of
SMSPO, but also will result in a more significant effect of peaking phenomenon. Thus, a
trade-off between the estimation rate and effect of peaking phenomenon must be made
through trial-and-error. Normally, they are set to be much larger than the root of the
closed-loop system to ensure a fast online estimation [37].

• The sliding surface constants ki. k1 ≥ ~x2j jmax must be chosen to guarantee the estimation
error of SMSPO (9) will enter into the sliding surface Sspo ~xð Þ ¼ ~x1 ¼ 0 at t > ts and
thereafter remain Sspo ¼ 0, t ≥ ts [35, 39]. While the poles of the sliding surface λk are
determined by choosing the ratio ki=k1 i ¼ 2; 3;⋯; nþ 1ð Þ to put the root of
pn þ k2=k1ð Þpn�1 þ⋯þ kn=k1ð Þpþ knþ1=k1ð Þ ¼ pþ λkð Þn ¼ 0 to be in the open left-half
complex plane. Under Assumption A.2, SMSPO converges to a neighborhood of the
origin if gains ki are properly selected, which has been proved in [35, 40]. For a given k1,
a larger ki not only will accelerate the estimation rate of SMSPO, but also will result in a
degraded observer stability. Thus, a trade-off between the estimation rate and observer
stability must be made through trial-and-error [39].

• The layer thickness constant of saturation function e, which is a positive small scaler to
replace the sign function by the saturation function, such that the chattering effect can be
reduced. A larger e will result in a smoother chattering, but a larger steady-state estima-
tion error. Consequently, a trade-off between the chattering effect and steady-state estima-
tion error must be made through trial-and-error. In practice, a value closes to 0 is
recommended.

Moreover, the reduced estimation error dynamics on the sliding mode can be written as [35]
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_x ¼ Axþ B a xð Þ þ b xð Þuþ d tð Þð Þ
y ¼ x1

�
(5)

where x ¼ x1; x2;⋯; xn½ �T ∈Rn is the state variable vector, u∈R and y∈R are the control input
and system output, respectively. a xð Þ: Rn ↦R and b xð Þ: Rn ↦R are unknown smooth functions,
and d tð Þ: Rþ ↦R represents the time-varying external disturbance. The n� n matrix A and the
n� 1 matrix B are of the canonical form as follows:

A ¼

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮
0 0 0 ⋯ 1
0 0 0 ⋯ 0

2
6666664

3
7777775
n�n

, B ¼

0
0
⋮
0
1

2
6666664

3
7777775
n�1

(6)

The perturbation of system (5) is defined as [35–37]

Ψ x; u; tð Þ ¼ a xð Þ þ b xð Þ � b0ð Þuþ d tð Þ (7)

From the original system (5), the last state xn can be rewritten in the presence of perturbation
(6) as follows:

_xn ¼ a xð Þ þ b xð Þ � b0ð Þuþ d tð Þ þ b0u ¼ Ψ x; u; tð Þ þ b0u (8)

Define a fictitious state xnþ1 ¼ Ψ x; u; tð Þ. Then, system (5) can be extended as

y ¼ x1
_x1 ¼ x2
⋮
_xn ¼ xnþ1 þ b0u
_xnþ1 ¼ _Ψ �ð Þ

8>>>>>><
>>>>>>:

(9)

The new state vector becomes xe ¼ x1; x2;⋯; xn; xnþ1½ �T, and following assumptions are made
[35]:

• A.1 b0 is chosen to satisfy: ∣b xð Þ=b0 � 1∣ ≤θ < 1, where θ is a positive constant.

• A.2 The functions Ψ x; u; tð Þ : Rn � R� Rþ ↦R and _Ψ x; u; tð Þ : Rn � R� Rþ ↦R are
bounded over the domain of interest: ∣Ψ x; u; tð Þ∣ ≤γ1, ∣ _Ψ x; u; tð Þ∣ ≤γ2 with Ψ 0; 0; 0ð Þ ¼ 0

and _Ψ 0; 0; 0ð Þ ¼ 0, where γ1 and γ2 are positive constants.

• A.3 The desired trajectory yd and its up to nth-order derivative are continuous and
bounded.

The above three assumptions ensure the effectiveness of such perturbation estimation-
based approach. In particular, assumptions A.1 and A.2 guarantee the closed-loop system
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stability with perturbation estimation, while assumption A.3 ensures POSMC can drive the

system state x to track a desired state xd ¼ yd; y
1ð Þ
d ;⋯; y n�1ð Þ

d

h iT
[39]. In the consideration of

the worst case, e.g., y ¼ x1 is the only measurable state, an (n+1)th-order SMSPO [35, 36] for
the extended system (8) is designed to estimate the system states and perturbation, shown
as follows:

_bx1 ¼ bx2 þ α1~x1 þ k1sat ~x1ð Þ
⋮

_bxn ¼ bΨ �ð Þ þ αn~x1 þ knsat ~x1ð Þ þ b0u
_bΨ �ð Þ ¼ αnþ1~x1 þ knþ1sat ~x1ð Þ

8>>>><
>>>>:

(10)

where ~x1 ¼ x1 � bx1, ki and αi, i ¼ 1, 2,⋯, nþ 1, are positive coefficients, function sat ~x1ð Þ is
defined as sat ~x1ð Þ ¼ ~x1=∣~x1∣ when ∣~x1∣ > e and sat ~x1ð Þ ¼ ~x1=e when ∣~x1∣ ≤ e. The effect and
setting of the SMSPO parameters are provided as follows:

• The Luenberger observer constants αi, which are chosen to place the observer poles at
the desired locations in the open left-half complex plane. In other words, αi are chosen

such that the root of snþ1 þ α1sn þ α2sn�1 þ⋯þ αnþ1 ¼ sþ λαð Þnþ1 ¼ 0 is in the open left-
half complex plane. A larger value of αi not only will accelerate the estimation rate of
SMSPO, but also will result in a more significant effect of peaking phenomenon. Thus, a
trade-off between the estimation rate and effect of peaking phenomenon must be made
through trial-and-error. Normally, they are set to be much larger than the root of the
closed-loop system to ensure a fast online estimation [37].

• The sliding surface constants ki. k1 ≥ ~x2j jmax must be chosen to guarantee the estimation
error of SMSPO (9) will enter into the sliding surface Sspo ~xð Þ ¼ ~x1 ¼ 0 at t > ts and
thereafter remain Sspo ¼ 0, t ≥ ts [35, 39]. While the poles of the sliding surface λk are
determined by choosing the ratio ki=k1 i ¼ 2; 3;⋯; nþ 1ð Þ to put the root of
pn þ k2=k1ð Þpn�1 þ⋯þ kn=k1ð Þpþ knþ1=k1ð Þ ¼ pþ λkð Þn ¼ 0 to be in the open left-half
complex plane. Under Assumption A.2, SMSPO converges to a neighborhood of the
origin if gains ki are properly selected, which has been proved in [35, 40]. For a given k1,
a larger ki not only will accelerate the estimation rate of SMSPO, but also will result in a
degraded observer stability. Thus, a trade-off between the estimation rate and observer
stability must be made through trial-and-error [39].

• The layer thickness constant of saturation function e, which is a positive small scaler to
replace the sign function by the saturation function, such that the chattering effect can be
reduced. A larger e will result in a smoother chattering, but a larger steady-state estima-
tion error. Consequently, a trade-off between the chattering effect and steady-state estima-
tion error must be made through trial-and-error. In practice, a value closes to 0 is
recommended.

Moreover, the reduced estimation error dynamics on the sliding mode can be written as [35]
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_~x2 ¼ � k2
k1

~x2 þ ~x3

_~x3 ¼ � k3
k1

~x2 þ ~x4

⋮
_~xn ¼ � kn

k1
~x2 þ ~Ψ �ð Þ

_~Ψ �ð Þ ¼ � knþ1

k1
~x2 þ _Ψ �ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(11)

Lemma 1 [39]. Consider extended system (8), design an SMSPO (9). If assumption A.2 holds
for some value γ2, then given any constant δ, the gains ki can be chosen such that, from an
initial estimation error ~xe 0ð Þ, the estimation error ~xe converges exponentially into the neigh-
borhood

∥~xe∥ ≤ δ (12)

In particular,

∣~xi∣ ≤
δ

λnþ1�i
k

, i ¼ 2,⋯, nþ 1, ∀t > t1: (13)

where t1 is the time constant which definition can be found in [39].

Remark 1. When SMSPO is used to estimate the perturbation, the upper bound of the deriva-
tive of perturbation γ2 is required to guarantee the estimation accuracy, and such upper bound
will result in a conservative observer gain. However, the conservative gain is only included in
the observer loop, not in the controller loop.

Define an estimated sliding surface as

bS x; tð Þ ¼
Xn

i¼1

ri bxi � y i�1ð Þ
d

� �
(14)

where the estimated sliding surface gains ri ¼ Ci�1
n�1λ

n�i
c , i ¼ 1,⋯, n, place all poles of the

estimated sliding surface at �λc, where λc > 0.

Besides, the actual sliding surface is written by

S ¼
Xn

i¼1

ri xi � y i�1ð Þ
d

� �
(15)

Hence, the estimation error of the sliding surface can be directly calculated as

~S ¼ S� bS ¼
Xn

i¼1

ri~xi (16)
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Construct a Lyapunov function as follows:

V ¼ 1
2
bS2

(17)

The attractiveness of sliding surface is achieved if _V < 0 for all ~x⊈bS, that is, the control u needs

to be designed to enforce bS _bS < 0 outside a prescribed manifold ∣bS∣ < εc.

The POSMC for system (5) is designed as

u ¼ 1
b0

y nð Þ
d �

Xn�1

i¼1

ri bxiþ1 � y ið Þ
d

� �
� ζbS � φsat bS

� �
� bΨ �ð Þ

" #
(18)

where ζ and φ are control gains which are chosen to fulfill the attractiveness of the estimated

sliding surface bS.
Differentiate estimated sliding surface (13) along SMSPO (9), use the reduced estimation error
dynamics (10), it yields

_bS ¼ bΨ �ð Þ þ b0uþ kn
k1

~x2 � y nð Þ
d þ

Xn�1

i¼1

ri bxiþ1 � y ið Þ
d þ ki

k1
~x2

� �
(19)

Substitute control (17) into the above Eq. (18), leads to

_bS ¼
Xn

i¼1

ri
ki
k1

~x2 � ζbS � φsat bS; εc
� �

(20)

Consequently, the attractiveness of sliding surface can be derived as

ζ∣bS∣þ φ >
Xn

i¼1

ri
ki
k1

∣~x2∣ (21)

which will be fulfilled with the relationship of k1 if

ζ∣bS∣þ φ > k1
Xn

i¼1

ri
ki
k1

(22)

The above condition can be immediately satisfied if control gain φ is chosen as

φ > k1
Xn

i¼1

ri
ki
k1

(23)

which, using gains ki, yields

φ > k1
Xn

i¼1

riC
i�1
n λi�1

k (24)
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_~x2 ¼ � k2
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_~x3 ¼ � k3
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⋮
_~xn ¼ � kn

k1
~x2 þ ~Ψ �ð Þ

_~Ψ �ð Þ ¼ � knþ1

k1
~x2 þ _Ψ �ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(11)

Lemma 1 [39]. Consider extended system (8), design an SMSPO (9). If assumption A.2 holds
for some value γ2, then given any constant δ, the gains ki can be chosen such that, from an
initial estimation error ~xe 0ð Þ, the estimation error ~xe converges exponentially into the neigh-
borhood

∥~xe∥ ≤ δ (12)

In particular,

∣~xi∣ ≤
δ

λnþ1�i
k

, i ¼ 2,⋯, nþ 1, ∀t > t1: (13)

where t1 is the time constant which definition can be found in [39].

Remark 1. When SMSPO is used to estimate the perturbation, the upper bound of the deriva-
tive of perturbation γ2 is required to guarantee the estimation accuracy, and such upper bound
will result in a conservative observer gain. However, the conservative gain is only included in
the observer loop, not in the controller loop.

Define an estimated sliding surface as

bS x; tð Þ ¼
Xn

i¼1

ri bxi � y i�1ð Þ
d

� �
(14)

where the estimated sliding surface gains ri ¼ Ci�1
n�1λ

n�i
c , i ¼ 1,⋯, n, place all poles of the

estimated sliding surface at �λc, where λc > 0.

Besides, the actual sliding surface is written by

S ¼
Xn

i¼1

ri xi � y i�1ð Þ
d

� �
(15)

Hence, the estimation error of the sliding surface can be directly calculated as

~S ¼ S� bS ¼
Xn

i¼1

ri~xi (16)
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Construct a Lyapunov function as follows:

V ¼ 1
2
bS2

(17)

The attractiveness of sliding surface is achieved if _V < 0 for all ~x⊈bS, that is, the control u needs

to be designed to enforce bS _bS < 0 outside a prescribed manifold ∣bS∣ < εc.

The POSMC for system (5) is designed as

u ¼ 1
b0

y nð Þ
d �

Xn�1

i¼1

ri bxiþ1 � y ið Þ
d

� �
� ζbS � φsat bS

� �
� bΨ �ð Þ

" #
(18)

where ζ and φ are control gains which are chosen to fulfill the attractiveness of the estimated

sliding surface bS.
Differentiate estimated sliding surface (13) along SMSPO (9), use the reduced estimation error
dynamics (10), it yields

_bS ¼ bΨ �ð Þ þ b0uþ kn
k1

~x2 � y nð Þ
d þ

Xn�1

i¼1

ri bxiþ1 � y ið Þ
d þ ki

k1
~x2

� �
(19)

Substitute control (17) into the above Eq. (18), leads to

_bS ¼
Xn

i¼1

ri
ki
k1

~x2 � ζbS � φsat bS; εc
� �

(20)

Consequently, the attractiveness of sliding surface can be derived as

ζ∣bS∣þ φ >
Xn

i¼1

ri
ki
k1

∣~x2∣ (21)

which will be fulfilled with the relationship of k1 if

ζ∣bS∣þ φ > k1
Xn

i¼1

ri
ki
k1

(22)

The above condition can be immediately satisfied if control gain φ is chosen as

φ > k1
Xn

i¼1

ri
ki
k1

(23)

which, using gains ki, yields

φ > k1
Xn

i¼1

riC
i�1
n λi�1

k (24)
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This condition ensures the existence of a sliding mode on the boundary layer ∣bS∣ ≤ εc. From
system (15) one can easily calculate

_~S ¼
Xn�1

i¼1

ri~xiþ1 �
Xn

i¼1

ri
ki
k1

~x2 þ ~Ψ �ð Þ (25)

As bS ¼ S� ~S, the actual S-dynamics of sliding surface can be obtained with dynamics (19) as

_S þ ζþ φ
εc

� �
S ¼ ζþ φ

εc

� �Xn

i¼1

ri~xi þ
Xn�1

i¼1

ri~xiþ1 þ ~Ψ �ð Þ (26)

It is definite that the driving term of S-dynamics is the sum of the estimation errors of states
and the perturbation. The bounds of the sliding surface can be calculated by

∣bS ∣ ≤ εc ) ∣S� ~S∣ ≤ εc ) ∣S∣ ≤ ∣~S∣þ εc ) ∣S∣ ≤ ∣
Xn

i¼1

ri~xi∣þ εc ≤
δ

λnþ1
k

Xn

i¼2

riλ
i
k þ εc, ∀t > t1:

(27)

Based on bounds (26), together with the polynomial gains ri, the states tracking error satisfies
the following relationship [41]

∣x ið Þ tð Þ � x ið Þ
d tð Þ∣ ≤ 2λcð Þi εc

λn
c
þ δ

λnþ1
k

Xn

j¼2

λk

λc

� �j

Cj
n�1, i ¼ 0, 1,⋯, n� 1: (28)

Note that POSMC does not require an accurate systemmodel, and only one state measurement
y ¼ x1 is needed. As the upper bound of perturbation Ψ �ð Þ is replaced by the smaller bound of

its estimation error ~Ψ �ð Þ, a smaller control gain is needed such that the over-conservativeness
of SMC can be avoided [35].

Remark 2. The motivation to use SMSPO is due to the fact that the sliding-mode observer
potentially offers advantages similar to those of sliding-mode controllers, in particular, inher-
ent robustness to parameter uncertainty and external disturbances [42]. It is a high-
performance state estimator with a simple structure and is well suited for uncertain nonlinear
systems [31]. Moreover, it has the merits of simple structure and easy analysis of the closed-
loop system stability compared to that of ADRC which uses a nonlinear observer [28], while
they can provide almost the same performance of perturbation estimation.

The overall design procedure of POSMC for system (5) can be summarized as follows:

Step 1. Define perturbation (6) for the original nth-order system (5);

Step 2. Define a fictitious state xnþ1 ¼ Ψ �ð Þ to represent perturbation (6);

Step 3. Extend the original nth-order system (5) into the extended nþ 1ð Þth-order system (8);
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Step 4. Design the nþ 1ð Þth-order SMSPO (9) for the extended nþ 1ð Þth-order system (8) to

obtain the state estimate bx and the perturbation estimate bΨ �ð Þ by the only measurement of x1;

Step 5. Design controller (17) for the original nth-order system (5), in which the estimated

sliding surface bS is calculated by (13).

3.2. Rectifier controller design

Choose the system output yr ¼ yr1; yr2
� �T ¼ Q1;Vdc1½ �T, let Q∗

1 and V∗
dc1 be the given references

of the reactive power and DC voltage, respectively. Define the tracking error

er ¼ er1; er2½ �T ¼ Q1 �Q∗
1;Vdc1 � V∗

dc1

� �T, differentiate er for rectifier (1) until the control input
appears explicitly, yields

_er1
€er2

� �
¼ f r1 � _Q∗

1

f r2 � €V ∗
dc1

" #
þ Br

ud1
uq1

" #
(29)

where

f r1 ¼ 3usq1
2

�R1

L1
id1 þ ωiq1

� �

f r2 ¼ 3usq1
2C1Vdc1

�ωid1 � R1

L1
iq1 �

iq1
Vdc1

3usq1iq1
2C1Vdc1

� iL
C1

� �� �

� 1
2R0C1

3usq1iq1
2C1Vdc1

� iL
C1

� 3usq2iq2
2C2Vdc2

� iL
C2

� �

8>>>>>>><
>>>>>>>:

(30)

and

Br ¼
3usq1
2L1

0

0
3usq1

2C1L1Vdc1

2
664

3
775 (31)

The determinant of matrix Br is obtained as ∣Br∣ ¼ 9u2sq1= 4C1L21Vdc1
� �

, which is nonzero within

the operation range of the rectifier, thus system (28) is linearizable.

Assume all the nonlinearities are unknown, define the perturbations Ψr1 �ð Þ and Ψr2 �ð Þ as

Ψr1 �ð Þ
Ψr2 �ð Þ

� �
¼ f r1

f r2

� �
þ Br � Br0ð Þ ud1

uq1

" #
(32)

where the constant control gain Br0 is given by

Br0 ¼
br10 0
0 br20

� �
(33)
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This condition ensures the existence of a sliding mode on the boundary layer ∣bS∣ ≤ εc. From
system (15) one can easily calculate

_~S ¼
Xn�1

i¼1

ri~xiþ1 �
Xn

i¼1

ri
ki
k1

~x2 þ ~Ψ �ð Þ (25)

As bS ¼ S� ~S, the actual S-dynamics of sliding surface can be obtained with dynamics (19) as

_S þ ζþ φ
εc

� �
S ¼ ζþ φ

εc

� �Xn

i¼1

ri~xi þ
Xn�1

i¼1

ri~xiþ1 þ ~Ψ �ð Þ (26)

It is definite that the driving term of S-dynamics is the sum of the estimation errors of states
and the perturbation. The bounds of the sliding surface can be calculated by

∣bS ∣ ≤ εc ) ∣S� ~S∣ ≤ εc ) ∣S∣ ≤ ∣~S∣þ εc ) ∣S∣ ≤ ∣
Xn

i¼1

ri~xi∣þ εc ≤
δ

λnþ1
k

Xn

i¼2

riλ
i
k þ εc, ∀t > t1:

(27)

Based on bounds (26), together with the polynomial gains ri, the states tracking error satisfies
the following relationship [41]

∣x ið Þ tð Þ � x ið Þ
d tð Þ∣ ≤ 2λcð Þi εc

λn
c
þ δ

λnþ1
k

Xn

j¼2

λk

λc

� �j

Cj
n�1, i ¼ 0, 1,⋯, n� 1: (28)

Note that POSMC does not require an accurate systemmodel, and only one state measurement
y ¼ x1 is needed. As the upper bound of perturbation Ψ �ð Þ is replaced by the smaller bound of

its estimation error ~Ψ �ð Þ, a smaller control gain is needed such that the over-conservativeness
of SMC can be avoided [35].

Remark 2. The motivation to use SMSPO is due to the fact that the sliding-mode observer
potentially offers advantages similar to those of sliding-mode controllers, in particular, inher-
ent robustness to parameter uncertainty and external disturbances [42]. It is a high-
performance state estimator with a simple structure and is well suited for uncertain nonlinear
systems [31]. Moreover, it has the merits of simple structure and easy analysis of the closed-
loop system stability compared to that of ADRC which uses a nonlinear observer [28], while
they can provide almost the same performance of perturbation estimation.

The overall design procedure of POSMC for system (5) can be summarized as follows:

Step 1. Define perturbation (6) for the original nth-order system (5);

Step 2. Define a fictitious state xnþ1 ¼ Ψ �ð Þ to represent perturbation (6);

Step 3. Extend the original nth-order system (5) into the extended nþ 1ð Þth-order system (8);
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Step 4. Design the nþ 1ð Þth-order SMSPO (9) for the extended nþ 1ð Þth-order system (8) to

obtain the state estimate bx and the perturbation estimate bΨ �ð Þ by the only measurement of x1;

Step 5. Design controller (17) for the original nth-order system (5), in which the estimated

sliding surface bS is calculated by (13).

3.2. Rectifier controller design

Choose the system output yr ¼ yr1; yr2
� �T ¼ Q1;Vdc1½ �T, let Q∗

1 and V∗
dc1 be the given references

of the reactive power and DC voltage, respectively. Define the tracking error

er ¼ er1; er2½ �T ¼ Q1 �Q∗
1;Vdc1 � V∗

dc1

� �T, differentiate er for rectifier (1) until the control input
appears explicitly, yields

_er1
€er2

� �
¼ f r1 � _Q∗

1

f r2 � €V ∗
dc1

" #
þ Br

ud1
uq1

" #
(29)

where

f r1 ¼ 3usq1
2

�R1

L1
id1 þ ωiq1

� �

f r2 ¼ 3usq1
2C1Vdc1

�ωid1 � R1

L1
iq1 �

iq1
Vdc1

3usq1iq1
2C1Vdc1

� iL
C1

� �� �

� 1
2R0C1

3usq1iq1
2C1Vdc1

� iL
C1

� 3usq2iq2
2C2Vdc2

� iL
C2

� �

8>>>>>>><
>>>>>>>:

(30)

and

Br ¼
3usq1
2L1

0

0
3usq1

2C1L1Vdc1

2
664

3
775 (31)

The determinant of matrix Br is obtained as ∣Br∣ ¼ 9u2sq1= 4C1L21Vdc1
� �

, which is nonzero within

the operation range of the rectifier, thus system (28) is linearizable.

Assume all the nonlinearities are unknown, define the perturbations Ψr1 �ð Þ and Ψr2 �ð Þ as

Ψr1 �ð Þ
Ψr2 �ð Þ

� �
¼ f r1

f r2

� �
þ Br � Br0ð Þ ud1

uq1

" #
(32)

where the constant control gain Br0 is given by

Br0 ¼
br10 0
0 br20

� �
(33)
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Then system (28) can be rewritten as

_er1
€er2

� �
¼ Ψr1 �ð Þ

Ψr2 �ð Þ
� �

þ Br0
ud1
uq1

" #
�

_Q∗
1

€V ∗
dc1

" #
(34)

Define z011 ¼ Q1, a second-order sliding-mode perturbation observer (SMPO) is used to esti-
mate Ψr1 �ð Þ as

_bz011 ¼ bΨr1 �ð Þ þ α0
r1
~Q1 þ k0r1sat ~Q1

� �þ br10ud1
_bΨr1 �ð Þ ¼ α0

r2
~Q1 þ k0r2sat ~Q1

� �

8<
: (35)

where observer gains k0r1, k
0
r2, α

0
r1, and α0

r2 are all positive constants.

Define z11 ¼ Vdc1 and z12 ¼ _z11, a third-order SMSPO is used to estimate Ψr2 �ð Þ as
_bz11 ¼ bz12 þ αr1 ~V dc1 þ kr1sat ~V dc1

� �
_bz12 ¼ bΨr2 �ð Þ þ αr2 ~Vdc1 þ kr2sat ~V dc1

� �þ br20uq1
_bΨr2 �ð Þ ¼ αr3 ~V dc1 þ kr3sat ~V dc1

� �

8>><
>>:

(36)

where observer gains kr1, kr2, kr3, αr1, αr2, and αr3 are all positive constants.

The above observers (31) and (32) only need the measurement of reactive power Q1 and DC
voltage Vdc1 at the rectifier side, which can be directly obtained in practice.

The estimated sliding surface of system (28) is defined as

bSr1

bSr2

" #
¼

bz011 �Q∗
1

r1 bz11 � V∗
dc1

� �þ r2 bz12 � _V ∗
dc1

� �
" #

(37)

where r1 and r2 are the positive sliding surface gains. The attractiveness of the estimated
sliding surface (33) ensures reactive powerQ1 and DC voltage Vdc1 can track to their reference.

The POSMC of system (28) is designed as

ud1
uq1

" #
¼ B�1

r0

�bΨr1 �ð Þ þ _Q
∗
1 � ζ0rbSr1 � φ0

rsat bSr1

� �

�bΨr2 �ð Þ þ €V
∗
dc1 � r1ðbz12 � _V

∗

dc1 � ζrbSr2 � φrsat bSr2

� �

2
64

3
75 (38)

where positive control gains ζr, ζ
0
r, φr, r1, and φ0

r are chosen to ensure the attractiveness of
estimated sliding surface (33).

During the most severe disturbance, both the reactive power and DC voltage reduce from their
initial value to around zero within a short period of time Δ. Thus, the boundary values of the

system state and perturbation estimates can be obtained as ∣bz011∣ ≤ ∣Q∗
1∣, ∣bΨr1 �ð Þ∣ ≤ ∣Q∗

1∣=Δ,
∣bz11∣ ≤ ∣V∗

dc1∣, ∣bz12∣ ≤ ∣V∗
dc1∣=Δ, and ∣bΨr2 �ð Þ∣ ≤ ∣V∗

dc1∣=Δ
2, respectively.
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3.3. Inverter controller design

Choose the system output yi ¼ yi1; yi2
� �T ¼ Q2;P2½ �T, let Q∗

2 and P∗
2 be the given references of

the reactive and active power, respectively. Define the tracking error ei ¼ ei1; ei2½ �T ¼ Q2�½
Q∗

2;P2 � P∗
2�T, differentiate ei for inverter (2) until the control input appears explicitly, yields

_ei1
_ei2

� �
¼ f i1 � _Q∗

2

f i2 � _P∗
2

" #
þ Bi

ud2
uq2

" #
(39)

where

f i1 ¼ 3usq2
2

�R2

L2
id2 þ ωiq2

� �

f i2 ¼ 3usq2
2

�R2

L2
iq2 � ωid2

� �

8>>><
>>>:

(40)

and

Bi ¼
3usq2
2L2

0

0
3usq2
2L2

2
664

3
775 (41)

The determinant of matrix Bi is obtained as ∣Bi∣ ¼ 9u2s2= 4L22
� �

, which is nonzero within the
operation range of the inverter, thus system (35) is linearizable.

Assume all the nonlinearities are unknown, define the perturbations Ψi1 �ð Þ and Ψi2 �ð Þ as

Ψi1 �ð Þ
Ψi2 �ð Þ

� �
¼ f i1

f i2

� �
þ Bi � Bi0ð Þ ud2

uq2

" #
(42)

where the constant control gain Bi0 is given by

Bi0 ¼
bi10 0
0 bi20

� �
(43)

Then system (35) can be rewritten as

_ei1
_ei2

� �
¼ Ψi1 �ð Þ

Ψi2 �ð Þ
� �

þ Bi0
ud2
uq2

" #
�

_Q∗
2

_P∗
2

" #
(44)

Similarly, define z021 ¼ Q2 and z21 ¼ P2, two second-order SMPOs are used to estimate Ψi1 �ð Þ
and Ψi2 �ð Þ, respectively, as
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Then system (28) can be rewritten as

_er1
€er2

� �
¼ Ψr1 �ð Þ

Ψr2 �ð Þ
� �
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" #
�
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€V ∗
dc1

" #
(34)

Define z011 ¼ Q1, a second-order sliding-mode perturbation observer (SMPO) is used to esti-
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r2
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� �

8<
: (35)

where observer gains k0r1, k
0
r2, α

0
r1, and α0

r2 are all positive constants.
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where observer gains kr1, kr2, kr3, αr1, αr2, and αr3 are all positive constants.

The above observers (31) and (32) only need the measurement of reactive power Q1 and DC
voltage Vdc1 at the rectifier side, which can be directly obtained in practice.
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sliding surface (33) ensures reactive powerQ1 and DC voltage Vdc1 can track to their reference.

The POSMC of system (28) is designed as
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where positive control gains ζr, ζ
0
r, φr, r1, and φ0

r are chosen to ensure the attractiveness of
estimated sliding surface (33).
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The determinant of matrix Bi is obtained as ∣Bi∣ ¼ 9u2s2= 4L22
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, which is nonzero within the
operation range of the inverter, thus system (35) is linearizable.

Assume all the nonlinearities are unknown, define the perturbations Ψi1 �ð Þ and Ψi2 �ð Þ as
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where the constant control gain Bi0 is given by
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Similarly, define z021 ¼ Q2 and z21 ¼ P2, two second-order SMPOs are used to estimate Ψi1 �ð Þ
and Ψi2 �ð Þ, respectively, as
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_bz021 ¼ bΨi1 �ð Þ þ α0
i1
~Q2 þ k0i1sat ~Q2

� �þ bi10ud2
_bΨ i1 �ð Þ ¼ α0

i2
~Q2 þ k0i2sat ~Q2

� �

8<
: (45)

where observer gains k0i1, k
0
i2, α

0
i1, and α0

i2 are all positive constants.

_bz21 ¼ bΨi2 �ð Þ þ αi1~P2 þ ki1sat ~P2
� �þ bi20uq2

_bΨi2 �ð Þ ¼ αi2~P2 þ ki2sat ~P2
� �

8<
: (46)

where observer gains ki1, ki2, αi1, and αi2 are all positive constants.

The above observers (38) and (39) only need the measurement of reactive power Q2 and active
power P2 at the inverter side, which can be directly obtained in practice.

The estimated sliding surface of system (35) is defined as

bS i1

bS i2

" #
¼ bz021 �Q∗

2

bz21 � P∗
2

" #
(47)

Similarly, the attractiveness of the estimated sliding surface (40) ensures the reactive power Q2

and active power P2 can track to their reference.

The POSMC of system (35) is designed as

ud2
uq2

" #
¼ B�1

i0

�bΨi1 �ð Þ þ _Q
∗
2 � ζ0ibSi1 � φ0

isat bSi1

� �

�bΨi2 �ð Þ þ _P
∗
2 � ζibSi2 � φisat bSi2

� �

2
64

3
75 (48)

where positive control gains ζi, ζi, φi, and φ0
i are chosen to ensure the attractiveness of

estimated sliding surface (40).

Similarly, the boundary values of the system state and perturbation estimates can be obtained

as ∣bz021∣ ≤ ∣Q∗
2∣, ∣bΨ i1 �ð Þ∣ ≤ ∣Q∗

2∣=Δ, ∣bz21∣ ≤ ∣P∗
2∣, and ∣bΨ i2 �ð Þ∣ ≤ ∣P∗

2∣=Δ, respectively.

Note that control outputs (34) and (41) are modulated by the sinusoidal pulse width modula-
tion (SPWM) technique [6] in this chapter. The overall controller structure of the VSC-HVDC
system is illustrated by Figure 2, in which only reactive powerQ1 and DC voltage Vdc1 need to
be measured for rectifier controller (34), while active power P2 and reactive power Q2 for
inverter controller (41).

Remark 3 The conventional linear PI/PID control scheme employs an inner current loop to
regulate the current [11], which could employ a synchronous reference frame (SRF)-based
current controller [43] to avoid overcurrent. In contrast, the proposed POSMC (34) and (41)
actually contains no current in its control law, while it cannot handle the overcurrent. Hence,
the overcurrent protection devices [44] will be activated to prevent the overcurrent to grow,
which can be seen in Figure 2.
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4. Simulation results

POSMC is applied on the VSC-HVDC system illustrated in Figure 1. The AC grid frequency is
50 Hz and VSC-HVDC system parameters are given inTable 1. POSMC parameters are provided
in Table 2, in which the observer poles are allocated as λαr ¼ 100 and λα0

r
¼ λαi ¼ λα0

i
¼ 20,

Figure 2. The overall controller structure of the VSC-HVDC system.

AC system-based voltage VAC base
132 kV

DC cable base voltage VDC base
150 kV

System base power S base 100 MVA

AC system resistance (25 km) R1, R2 0.05 Ω/km

AC system inductance (25 km) L1, L2 0.026 mH/km

DC cable resistance (50 km) R0 0.21 Ω/km

DC bus capacitance C1, C2 11.94 μF

Table 1. The VSC-HVDC system parameters.
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current controller [43] to avoid overcurrent. In contrast, the proposed POSMC (34) and (41)
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Rectifier controller gains

br10 ¼ 100 br20 ¼ 7000 r1 ¼ 800 r2 ¼ 1

ζr ¼ 20 ζ0r ¼ 10 φr ¼ 20 φ0
r ¼ 20

Rectifier observer gains

αr1 ¼ 300 α0
r1 ¼ 40 αr2 ¼ 3� 104 α0

r2 ¼ 400

αr3 ¼ 106 Δ ¼ 0:01 e ¼ 0:1 kr1 ¼ 100

k0r1 ¼ 75 kr2 ¼ 105 k0r2 ¼ 3:75� 104 kr3 ¼ 2:5� 107

Inverter controller gains

bi10 ¼ 50 bi20 ¼ 50 ζi ¼ 10 ζ0i ¼ 10

φi ¼ 10 φ0
i ¼ 10

Inverter observer gains

αi1 ¼ 40 α0
i1 ¼ 40 αi2 ¼ 400 α0

i2 ¼ 400

ki1 ¼ 75 k0i1 ¼ 75 ki2 ¼ 3:75� 104 k0i2 ¼ 3:75� 104

Table 2. POSMC parameters for the VSC-HVDC system.

Figure 3. System responses obtained under the active and reactive power tracking.
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while control inputs are bounded as ∣uqi∣ ≤ 80 kVand ∣udi∣ ≤ 60 kV, where i ¼ 1, 2. The switching
frequency is 1620 Hz for both rectifier and inverter, which is taken from [22]. The control
performance of POSMC is compared to that of VC [11] and FLSMC [22] by the following four
cases. In addition, two identical three-level neutral-point-clamped VSCs model for each rectifier
and inverter from Matlab/Simulink SimPowerSystems are employed, which structure and
parameters are taken directly from [11]. The simulation is executed on Matlab/Simulink 7.10
using a personal computer with an IntelR CoreTMi7 CPU at 2.2 GHz and 8 GB of RAM.

(1) Case 1: Active and reactive power tracking: The references of active and reactive power are set
to be a series of step change occurs at t ¼ 0:2 s, t ¼ 0:4 s and restores to the original value at
t ¼ 0:6 s, while DC voltage is regulated at the rated value V∗

dc1 ¼ 150 kV. The system responses
are illustrated by Figure 3. One can find that POSMC has the fastest tracking rate and main-
tains a consistent control performance under different operation conditions.

(2) Case 2: 5-cycle line-line-line-ground (LLLG) fault at AC bus 1: A five-cycle LLLG fault occurs at
AC bus 1 when t ¼ 0:1 s. Due to the fault, AC voltage at the corresponding bus is decreased to
a critical level. Figure 4 shows that POSMC can effectively restore the system with the smallest
active power oscillations. Response of perturbation estimation is demonstrated in Figure 5,
which shows that SMSPO and SMPO can estimate the perturbations with a fast tracking rate.

Figure 4. System responses obtained under the five-cycle LLLG fault at AC bus 1.
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while control inputs are bounded as ∣uqi∣ ≤ 80 kVand ∣udi∣ ≤ 60 kV, where i ¼ 1, 2. The switching
frequency is 1620 Hz for both rectifier and inverter, which is taken from [22]. The control
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and inverter from Matlab/Simulink SimPowerSystems are employed, which structure and
parameters are taken directly from [11]. The simulation is executed on Matlab/Simulink 7.10
using a personal computer with an IntelR CoreTMi7 CPU at 2.2 GHz and 8 GB of RAM.

(1) Case 1: Active and reactive power tracking: The references of active and reactive power are set
to be a series of step change occurs at t ¼ 0:2 s, t ¼ 0:4 s and restores to the original value at
t ¼ 0:6 s, while DC voltage is regulated at the rated value V∗

dc1 ¼ 150 kV. The system responses
are illustrated by Figure 3. One can find that POSMC has the fastest tracking rate and main-
tains a consistent control performance under different operation conditions.

(2) Case 2: 5-cycle line-line-line-ground (LLLG) fault at AC bus 1: A five-cycle LLLG fault occurs at
AC bus 1 when t ¼ 0:1 s. Due to the fault, AC voltage at the corresponding bus is decreased to
a critical level. Figure 4 shows that POSMC can effectively restore the system with the smallest
active power oscillations. Response of perturbation estimation is demonstrated in Figure 5,
which shows that SMSPO and SMPO can estimate the perturbations with a fast tracking rate.
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(3) Case 3: Weak AC grid connection: The AC grids are assumed to be sufficiently strong such
that AC bus voltages are ideal constants. It is worth considering a weak AC grid connected to
the rectifier, e.g., offshore wind farms, which voltage us1 is no longer a constant but a time-
varying function. A voltage fluctuation that occurs from 0.15 to 1.05 s caused by the wind
speed variation is applied, which corresponds to us1 ¼ 1þ 0:15 sin 0:2πtð Þ. System responses
are presented in Figure 6, it illustrates that both DC voltage and reactive power are oscillatory,

Figure 5. Estimation errors of the perturbations obtained under the five-cycle LLLG fault at AC bus 1.

Figure 6. System responses obtained with the weak AC grid connection.
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while POSMC can effectively suppress such oscillation with the smallest fluctuation of DC
voltage and reactive power.

(4) Case 4: System parameter uncertainties: When there is a fault in the transmission or distribu-
tion grid, the resistance and inductance values of the grid may change significantly. Several
tests are performed for plant-model mismatches of R2 and L2 with �20% uncertainties. All
tests are undertaken under the nominal grid voltage and a corresponding �120 A in the DC
cable current iL at 0.1 s. The peak active power ∣P2∣ is recorded, which uses per unit (p.u.) value
for a clear illustration of system robustness. It can be found from Figure 7 that the peak active
power ∣P2∣ controlled by POSMC is almost not affected, while FLSMC has a relatively large
range of variation, i.e., around 3% to R2 and 8% to L2, respectively. Responses to mismatch of
R2 and L2 changing at the same time are demonstrated in Figure 8. The magnitude of changes
is around 10% under FLSMC and almost does not change under POSMC. This is because
POSMC estimates all uncertainties and does not need an accurate system model, thus it has
better robustness than that of FLSMC which requires accurate system parameters.

The integral of absolute error (IAE) indices of each approach calculated in different cases are

tabulated in Table 3. Here, IAEQ1
¼ Ð T0 ∣Q1 �Q∗

1∣dt, IAEVdc1 ¼
Ð T
0 ∣Vdc1 � V∗

dc1∣dt, IAEQ2
¼Ð T

0 ∣Q2 �Q∗
2∣dt, and IAEP2 ¼

Ð T
0 ∣P2 � P∗

2∣dt. The simulation time T = 3 s. Note that POSMC has

Figure 7. The peak active power ∣P2∣ (in p.u.) to a �120 A in the DC cable current iL obtained at nominal grid voltage for
plant-model mismatches in the range of 20% (one parameter changes and others keep constant).
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while POSMC can effectively suppress such oscillation with the smallest fluctuation of DC
voltage and reactive power.

(4) Case 4: System parameter uncertainties: When there is a fault in the transmission or distribu-
tion grid, the resistance and inductance values of the grid may change significantly. Several
tests are performed for plant-model mismatches of R2 and L2 with �20% uncertainties. All
tests are undertaken under the nominal grid voltage and a corresponding �120 A in the DC
cable current iL at 0.1 s. The peak active power ∣P2∣ is recorded, which uses per unit (p.u.) value
for a clear illustration of system robustness. It can be found from Figure 7 that the peak active
power ∣P2∣ controlled by POSMC is almost not affected, while FLSMC has a relatively large
range of variation, i.e., around 3% to R2 and 8% to L2, respectively. Responses to mismatch of
R2 and L2 changing at the same time are demonstrated in Figure 8. The magnitude of changes
is around 10% under FLSMC and almost does not change under POSMC. This is because
POSMC estimates all uncertainties and does not need an accurate system model, thus it has
better robustness than that of FLSMC which requires accurate system parameters.

The integral of absolute error (IAE) indices of each approach calculated in different cases are

tabulated in Table 3. Here, IAEQ1
¼ Ð T0 ∣Q1 �Q∗

1∣dt, IAEVdc1 ¼
Ð T
0 ∣Vdc1 � V∗

dc1∣dt, IAEQ2
¼Ð T

0 ∣Q2 �Q∗
2∣dt, and IAEP2 ¼

Ð T
0 ∣P2 � P∗

2∣dt. The simulation time T = 3 s. Note that POSMC has

Figure 7. The peak active power ∣P2∣ (in p.u.) to a �120 A in the DC cable current iL obtained at nominal grid voltage for
plant-model mismatches in the range of 20% (one parameter changes and others keep constant).
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Figure 8. The peak active power ∣P2∣ (in p.u.) to a �120 A in the DC cable current iL obtained at nominal grid voltage for
plant-model mismatches in the range of 20% (different parameters may change at the same time).

Method Power tracking

Case

IAEQ1 IAEVdc1 IAEQ2 IAEP2

VC 3:83E-02 4:44E-03 2:13E-02 2:71E-02

FLSMC 2:19E-02 1:73E-03 2:23E-02 2:18E-02

POSMC 2:33E-02 2:00E-03 2:42E-02 2:33E-02

Method Five-cycle LLLG fault Weak AC grid connection

Case

IAEQ1 IAEVdc1 IAEQ1 IAEVdc1

VC 2:62E-02 2:15E-03 4:53E-03 4:13E-03

FLSMC 1:13E-02 4:13E-03 4:08E-03 3:33E-03

POSMC 5:64E-03 1:38E-03 3:88E-04 6:78E-04

Table 3. IAE indices (in p.u.) of different control schemes calculated in different cases.

Figure 9. Overall control costs IAEu (in p.u.) obtained in different cases.
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a little bit higher IAE than that of FLSMC in the power tracking due to the estimation error,
while it can provide much better robustness in the case of 5-cycle LLLG fault and weak AC
grid connection. In particular, its IAEQ1

and IAEVdc1 are only 8:57 and 9:51% of those of VC,
16:42 and 20:36% of those of FLSMC with the weak AC grid connection. The overall control

costs are illustrated in Figure 9, with IAEu ¼ Ð T0 jud1j þ juq1j þ jud2j þ juq2j
� �

dt. It is obvious
that POSMC has the lowest control costs in all cases, which is resulted from the merits that the
upper bound of perturbation is replaced by the smaller bound of its estimation error, thus an
over-conservative control input can be avoided.

5. Hardware-in-the-loop test results

HIL test is an important and powerful technique used in the development and test of complex
real-time embedded systems, which provides an effective platform by adding the complexity
of the plant under control to the test platform. The complexity of the plant under control is
included in test and development by adding a mathematical representation of all related
dynamic systems.

A dSPACE simulator-based HIL test is used to validate the implementation feasibility of
POSMC, which configuration and experiment platform are given by Figures 10 and 11, respec-
tively. The rectifier controller (34) and inverter controller (41) are implemented on one dSPACE
platform (DS1104 board) with a sampling frequency f c ¼ 1 kHz, and the VSC-HVDC system is
simulated on another dSPACE platform (DS1006 board) with the limit sampling frequency

Figure 10. The configuration of the HIL test.
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f s ¼ 50 kHz to make HIL simulator as close to the real plant as possible. The measurements of
the reactive power Q1, DC voltage Vdc1, active power P2, and reactive power Q2 are obtained
from the real-time simulation of the VSC-HVDC system on the DS1006 board, which are sent
to two controllers implemented on the DS1104 board for the control inputs calculation.

It follows from [37] that an unexpected high-frequency oscillation in control inputs may
emerge as the large observer poles would result in high gains, which lead to highly sensitive
observer dynamics to the measurement disturbances in the HIL test. Note that this phenome-
non does not exist in the simulation. One effective way to alleviate such malignant effect is to
reduce the observer poles. Through trial-and-error, an observer pole in the range of
λαr ∈ 15; 25½ � and λα0

r
¼ λαi ¼ λα0

i
∈ 3; 10½ � can avoid such oscillation but with almost similar

transient responses, thus the reduced poles λαr ¼ 20 and λα0
r
¼ λαi ¼ λα0

i
¼ 5, with br10 ¼ 50,

br20 ¼ 5000, bi10 ¼ 20, and bi20 ¼ 20, are chosen in the HIL test. Furthermore, a time delay τ ¼ 3
ms has been assumed in the corresponding simulation to consider the effect of the computa-
tional delay of the real-time controller.

(1) Case 1: Active and reactive power tracking: The reference of active and reactive power changes
at t ¼ 0:4 s, t ¼ 0:9 s and restores to the original value at t ¼ 1:4 s, while DC voltage is
regulated at the rated value V∗

dc1 ¼ 150 kV. The system responses obtained under the HIL test
and simulation are compared by Figure 12, which shows that the HIL test has almost the same
results as that of the simulation.

Figure 11. The experiment platform of the HIL test.
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(2) Case 2: 5-cycle line-line-line-ground (LLLG) fault at AC bus 1. A 5-cycle LLLG fault occurs at
AC bus 1 when t ¼ 0:1 s. Figure 13 demonstrates that the system can be rapidly restored and
the system responses obtained by the HIL test is similar to that of simulation.

Figure 12. HIL test results of system responses obtained under the active and reactive power tracking.
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(3) Case 3: Weak AC grid connection: The same voltage variation us1 ¼ 1þ 0:15 sin 0:2πtð Þ is
applied between 0.87 and 2.45 s. It can be readily seen from Figure 14 that the results of the
HIL test and simulation match very well.

Figure 13. HIL test results of system responses obtained under the five-cycle LLLG fault at AC bus 1.

Perturbation Methods with Applications in Science and Engineering42

The difference of the obtained results between the HIL test and simulation is possibly due to
the following two reasons:

• There exist measurement disturbances in the HIL test, which are, however, not taken into
account in the simulation, a filter could be used to remove the measurement disturbances,
thus the control performance can be improved.

Figure 14. HIL test results of system responses obtained with the weak AC grid connection.
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• The sampling frequency of VSC-HVDC model and POSMC is the same in simulation
(f s ¼ f c ¼ 1 kHz) as they are implemented in Matlab of the same computer. In contrast,
the sampling frequency of VSC-HVDC model (f s ¼ 50 kHz) is significantly increased in
the HIL test to make VSC-HVDC model as close to the real plant as possible. Note the
sampling frequency of POSMC remains the same (f c ¼ 1 kHz) due to the sampling limit of
the practical controller.

6. Conclusion

A POSMC scheme has been developed for the VSC-HVDC system to rapidly compensate the
combinatorial effect of nonlinearities, parameter uncertainties, unmodeled dynamics, and
time-varying external disturbances. As the upper bound of perturbation is replaced by the
smaller bound of its estimation error, an over-conservative control input is avoided such that
the tracking accuracy can be improved.

Four case studies have been undertaken to evaluate the control performance of the pro-
posed approach, which verify that POSMC can maintain a consistent control performance
with less power overshoot during the power reversal, restore the system rapidly after the
AC fault, suppress the oscillation effectively when connected to a weak AC grid, and
provide significant robustness in the presence of system parameter uncertainties. At last, a
dSPACE-based HIL test has been carried out which validates the implementation feasibility
of POSMC.
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In this chapter, we introduce a multiplication operation that allows us to give to the
Carleman integral operator of second class the form of a multiplication operator. Also we
establish the formal theory of perturbation of such operators.
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1. Introduction

In this chapter, we shall assume that the reader is familiar with the fundamental results and
the standard notation of the integral operators theory [1–3, 5, 6, 8–12]. Let X be an arbitrary set,
μ be a σ� finite measure on X (μ is defined on a σ� algebra of subsets of X; we do not indicate
this σ� algebra), and L2 X;μ

� �
the Hilbert space of square integrable functions with respect to

μ. Instead of writing “μ� measurable,” “μ� almost everywhere,” and “(dμ xð Þ),” we write
“measurable,” “a e,” and “dx.”

A linear operator A: D Að Þ ���! L2 X;μ
� �

, where the domain D Að Þ is a dense linear manifold in

L2 X;μ
� �

, is said to be integral if there exist a measurable function K on X� X, a kernel, such
that, for every f ∈D Að Þ,

Af xð Þ ¼
ð
X
K x; yð Þf yð Þdy a:e:: (1)

A kernel K on X� X is said to be Carleman, if K x; yð Þ∈ L2 X;μ
� �

for almost every fixed x, that
is to say
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ð

X
K x; yð Þj j2dy < ∞ a:e:: (2)

An integral operator A (1) with a kernel K is called Carleman operator, if K is a Carleman
kernel (2). Every Carleman kernel K defines a Carleman function k from X to L2 X;μ

� �
by k xð Þ ¼

K x; :ð Þ for all x in X for which K x; :ð Þ∈ L2 X;μ
� �

:.

Now we consider the Carleman integral operator (1) of second class [3, 8] generated by the
following symmetric kernel:

K x; yð Þ ¼
X∞
p¼0

apψp xð Þψp yð Þ, (3)

where the overbar in (3) denotes the complex conjugation and ψp xð Þ
n o∞

p¼0
is an orthonormal

sequence in L2 X;μ
� �

such that
X∞
p¼0

ψp xð Þ
���

���
2
< ∞ a:e:, (4)

and ap
� �∞

p¼0 is a real number sequence verifying

X∞
p¼0

a2p ψp xð Þ
���

���
2
< ∞a:e:: (5)

We call ψp xð Þ
n o∞

p¼0
a Carleman sequence.

Moreover, we assume that there exist a numeric sequence γp

n o∞

p¼0
such that

X∞
p¼0

γpψp xð Þ ¼ 0 a:e:, (6)

and
X∞
p¼0

γp

ap � λ

����
����
2

< ∞: (7)

With the conditions (6) and (7), the symmetric operator A ¼ A∗ð Þ∗ admits the defect indices
1; 1ð Þ (see [3]), and its adjoint operator is given by

A∗f xð Þ ¼
X∞
p¼0

ap f ;ψp

� �
ψp xð Þ, (8)

D A∗ð Þ ¼ f ∈L2 X;μ
� �

:
X∞
p¼0

ap f ;ψp

� �
ψp xð Þ∈L2 X;μ

� �
8<
:

9=
;: (9)
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Moreover, we have

φλ xð Þ ¼
X∞
p¼0

γp

ap � λ
ψp xð Þ∈Nλ, λ∈C, λ 6¼ ak, k ¼ 1, 2,…

φak xð Þ ¼ ψk xð Þ,

8><
>:

(10)

Nλ being the defect space associated with λ (see [3, 4]):.

2. Position operator

Let ψ ¼ ψn

� �∞
n¼0 be a fixed Carleman sequence in L2 X;μ

� �
. It is clear from the foregoing that ψ

is not a complete sequence in L2 X;μ
� �

. We denote by Lψ the closure of the linear span of the

sequence ψp xð Þ
n o∞

p¼0
:

Lψ ¼ span ψn; n∈N
� �

: (11)

We start this section by defining some formal spaces.

2.1. Formal elements

Definition 1. (see [7]) We call formal element any expression of the form

f ¼
X
n∈N

anψn, (12)

where the coefficients an n∈Nð Þ are scalars.
The sequence anð Þn is said to generate the formal element f .

Definition 2. We say that f is the zero formal element, and we note f ¼ 0 if an ¼ 0 for all n∈N:

We say that two formal elements f ¼Pn∈N anψn and g ¼Pn∈N bnψn are equal if an ¼ bn for all
n∈N.

If φ is a scalar function defined for each an, we set

φ
X
n

anψn

 !
¼
X
n

φ anð Þψn, (13)

or in another form,

φ a1; a2;…; an;…ð Þ ¼ φ a1ð Þ;φ a2ð Þ;…;φ anð Þ;…ð Þ: (14)

For example, let
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φ xð Þ ¼ 1
x
, x 6¼ 0ð Þ: (15)

If an 6¼ 0 for all n∈N, then the formal element

φ
X
n

anψn

 !
¼
X
n

1
an

ψn (16)

is called inverse of the formal element f ¼Pn anψn.

Furthermore, we define the conjugate of a formal element f by

f ¼
X
n

anψn: (17)

Denote by Fψ the set of all formal elements (12).

On Fψ, we define the following algebraic operations:

the sum

þ : Fψ � Fψ ! Fψ

X
n

anψn

 !
þ

X
n

bnψn

 !
¼

X
n

an þ bnð Þψn
(18)

and the product

� : C� Fψ ! Fψ

λ �
X
n

anψn

 !
¼

X
n

λ:anð Þψn:
(19)

Hence, we obtain a complex vector space structure for Fψ.

2.2. Bounded formal elements

Definition 3. A formal element f ¼P
n∈N

anψn is bounded if its sequence anð Þn is bounded.

We denote by Bψ the set of all bounded formal elements.

It is clear that Bψ is a subspace of Fψ.

We claim that:

1. Lψ is a subspace of Bψ:

2. Furthermore we have the strict inclusions:

Lψ ⊂Bψ ⊂Fψ: (20)

Perturbation Methods with Applications in Science and Engineering52

We define a linear form :; :h i on Fψ by setting:

X
n

anψn;
X
n

bnψn

* +
¼
X
n

anbn (21)

with the series converging on the right side of (21).

Proposition 4. The form (21) verifies the properties of scalar product.

Proof. Indeed, let

f ¼
X
n

anψn, g ¼
X
n

bnψn, f 1 ¼
X
n

a1nψnand f 2 ¼
X
n

a2nψn

in Fψ.

We have then:

1. f ; gh i ¼Pn anbn ¼Pn anbn ¼ f ; gh i:

2.

λf ; gh i ¼ λ
X
n

anψn

 !
;
X
n

anψn

* +
¼

X
n

λanð Þψn;
X
n

bnψn

* +

¼
X
n

λanð Þbn ¼ λ
X
n

anψn;
X
n

bnψn

* +
¼ λ f ; gh i:

3.
f 1 þ f 2; g
� � ¼

X
n

a1n þ a2n
� �

ψn;
X
n

bnψn

* +

¼
X
n

a1n þ a2n
� �

bn ¼
X
n

a1nbn þ
X
n

a2nbn ¼ f 1; g
� �þ f 2; g

� �
:

4. f ; fh i ¼Pn anj j2 ≥ 0and f ; fh i > 0 if f 6¼ 0:

■

Remark 5. On Lψ, the scalar product :; :h i coincides with the scalar product :; :ð Þ of L2 X;μ
� �

.

2.3. The multiplication operation

Here, we introduce the crucial tool of our work.

Definition 6. We call multiplication with respect to the Carleman sequence ψn

� �
n, the operation

denoted “ ∘ ” and defined by:

f ∘ g ¼
X
n

f ;ψn

� �
g;ψn

� � ¼
X
n

anbnψn, ∀ f ; gð Þ∈F 2
ψ: (22)

Definition 7. We call position operator in Lψ any unitary self-adjoint (see [1]) operator satisfying
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U f ∘ gð Þ ¼ Uf ∘Ugð Þ, for all f , g∈Lψ: (23)

The term “position operator” comes from the fact (as it will be shown in the following
theorem) that for the elements of the sequence ψ ¼ ψn

� �
n, the operator U acts as operator of

change of position of these elements.

2.4. Main results

Theorem 8. A linear operator defined on Lψ is a position operator if and only if there exist an

involution j (i.e., j2 ¼ Id) of the set N such that for all n∈N

Uψn ¼ ψj nð Þ: (24)

Proof.

1. It is easy to see that if (24) holds, then U is a position operator.

2. Let U be a position operator. According to 1, we can write

Uψn ¼
X
k

αn, k ψk with
X
k

αn, kj j2 ¼ 1 (25)

since Uψn ∈Lψ:.

On the other hand, we have
X
k

αn, k ψk ¼
X
k

α2
n,k ψk (26)

as

Uψn ¼ U ψn ∘ψn

� � ¼ Uψn ∘Uψn:

The equalities (26) lead to the resolution of the system:
X
n

α2
n, k ¼ 1,

α2
n,k ¼ αn, k, k∈N:

8<
: (27)

We get then

∀n∈Nð Þ ∃!kn ∈Nð Þ : αn, kn ¼ 1,
αn, k ¼ 0 ∀k 6¼ kn:

�

Let us now consider the following application:

j : N ! N,
n ↦ j nð Þ ¼ kn:
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It’s clear that j is injective.

Now let m∈N: Since U2 ¼ I, then

U Uψm

� � ¼ Uψj mð Þ ¼ ψj j mð Þð Þ ¼ ψm:

Hence,

j j mð Þð Þ ¼ m:

Finally j is well defined as involution.

■

Notation In the sequel, j nð Þ will be noted by nv. We write

Uψn ¼ ψj nð Þ ¼ ψn
v (28)

and

Uf ¼ U
X
n

an ψn

 !
¼
X
n

an ψn
v ¼ f

v:
(29)

Remark 9. The position operator U can be extended over Fψ as follows:

If f ¼Pn an ψn ∈Fψ, then

Uf ¼ f
v
¼
X
n

an ψn
v : (30)

3. Carleman operator in Fψ

3.1. Case of defect indices 1; 1ð Þ

Let α ¼Pp αpψp ∈Fψ; we introduce the operator A ∘ α defined in Lψ by

A
∘
αf ¼ α ∘ f ¼

X
n

α;ψn

� �
f ;ψn

� �
ψn: (31)

It is clear that A
∘
α is a Carleman operator induced by the kernel

k x; yð Þ ¼
X

αnψn xð Þψn yð Þ, (32)

with domain

D A
∘
α

� �
¼ f ∈Lψ :

X
n

αn f ;ψn

� ��� ��2 < ∞

( )
: (33)
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U f ∘ gð Þ ¼ Uf ∘Ugð Þ, for all f , g∈Lψ: (23)
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� �
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X
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X
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�
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Moreover, if α ¼ α, A
∘
α is self-adjoint.

Now let Θ ¼Pp γpψp ∈Fψ and Θ∉Lψ i:e:;
P

p γp

���
���
2
¼ ∞

� �
. We introduce the following set

HΘ ¼ f þ μΘ : f ∈Lψ;μ∈C
� �

(34)

which verifies the following properties.

Proposition 10. 1. HΘ is a subset of Fψ.

2. Hθ ¼ Lψ ⊕Cθ, i.e., direct sum of Lψ with Cθ ¼ μθ : μ∈C
� �

:

Proof. The first property is easy to establish. We show the uniqueness for the second.

Let g1 ¼ f 1 þ μ1θ and g2 ¼ f 2 þ μ2θ , two formal elements in Hθ: Then

g1 ¼ g2 ⇔ f 1 � f 2 ¼ μ2 � μ1

� �
θ:

This last equality is verified only if μ2 ¼ μ1: Therefore, f 1 ¼ f 2. ■

Denote by Q the projector of HΘ on Lψ, that is to say: if g∈HΘ,

g ¼ f þ μΘ with f ∈Lψ and μ∈C

then

Qg ¼ f :

We define the operator Bα by:

Bαf ¼ Q α ∘ fð Þ, f ∈Lψ: (35)

It is clear that

D Bαð Þ ¼ f ∈Lψ : α ∘ fð Þ∈HΘ
� �

: (36)

Theorem 11 Bα is a densely defined and closed operator.

Proof.

1. Since

span ψn; n∈N
� �

⊂D Bαð Þ

and that ψn

� �
n is complete in Lψ, then

D Bαð Þ ¼ Lψ:
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2. Let f n
� �

n be a sequence of elements in D Bαð Þ: Checking:

f n ! f
Bα f n ! g

convergence in the L2 sense
� �

:

�

We have then

Bα f n ¼ Q α ∘ f n
� �

,

with

α ∘ f n ¼ gn þ μΘ, gn ∈Lψ:

Then

gn ¼ α ∘ f n � μnΘ∈Lψ,

This implies that

gn;ψm

� � ¼ αm f n;ψm

� �� μnγmψm ∀m∈N:

Or, when n tends to ∞, we have

gn ! g and f n ! f :

Therefore, there exist μ∈C such that

lim
n!∞

μn ¼ μ:

And as Q is a closed operator, then we can write

α ∘ fð Þ∈HΘ and g ¼ Q α ∘ fð Þ:

Finally f ∈D Bαð Þ and g ¼ Bα f .

■

It follows from this theorem that the adjoint operator B∗
α exists and B∗∗

α ¼ Bα:

Let us denote by Aα the operator adjoint of Bα,

Aα ¼ B∗
α: (37)

In the case α ¼ α, the operator Aα is symmetric and we have the following results:

Theorem 12. Aα admits defect indices 1; 1ð Þ if and only if

φλ ¼ α� λð Þ�1 ∘Θ∈Lψ: (38)
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■
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In this case φλ ∈Nλ (defect space associated with λ, [3]).

Proof. We know (see [3]) that Aα has the defect indices 1; 1ð Þ if and only if its defect subspaces
Nλ and N λ are unidimensional.

We have

N λ ¼ ker A∗
α � λI

� � ¼ ker Bα � λIð Þ:

So it suffices to solve the system:

Bαφλ ¼ λφλ

φλ ∈Lψ

�

that is,

Q α ∘φλ

� � ¼ λφλ

φλ ∈Lψ
⇔

α ∘φλ

� � ¼ λφλ þ μΘ,μ∈C
φλ ∈Lψ

((

⇔
α� λð Þ ∘φλ ¼ Θ

φλ ∈Lψ

�

⇔
φλ ¼ α� λð Þ�1 ∘Θ
φλ ∈Lψ

:

(

■

3.2. Case of defect indices m;mð Þ

In this section, we give the generalization for the case of defect indices m;mð Þ, m > 1:

Let Θ1,Θ2,…,Θm,m be formal elements not belonging to Lψ, and let

HΘ ¼ f þ
Xm

k¼1

μkΘk; f ∈Lψ;μk ∈C; k ¼ 1;…;m

( )
: (39)

We consider the operator Bα defined by

Bαf ¼ Q α ∘ fð Þ f ∈D Bαð Þ,
D Bαð Þ ¼ f ∈Lψ : α ∘ f ∈HΘ

� � (40)

We assume that α ¼ α and we set

Aα ¼ B∗
α: (41)

By analogy to the case of defect indices 1; 1ð Þ, we also have the following:
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Theorem 13. The operator Bα is densely defined and closed.

Theorem 14. The operator Aα admits defect indices m;mð Þ if and only if

φ kð Þ
λ ¼ α� λð Þ ∘Θk ∈Lψ, k ¼ 1,…, m: (42)

In this case, the functions φ kð Þ
λ k ¼ 1;…;mð Þ are linearly independent and generate the defect

space Nλ.

4. Conclusion

We have seen the interest of multiplication operators in reducing Carleman integral operators
and how they simplify the spectral study of these operators with some perturbation. In the same
way, we can easily generalize this perturbation theory to the case of the non-densely defined
Carleman operators:

H x; yð Þ ¼ K x; yð Þ þ
Xm

j¼1

bjψj xð Þφj yð Þ,

φj ∈ L2 X;μ
� �

;ψj∉L
2 X;μ
� �

; j ¼ 1, m
� �

,

(43)

with K x; yð Þ a Carleman kernel.

It should be noted that this study allows the estimation of random variables.
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This chapter is devoted to different types of optimal perturbations (OP), deterministic,
stochastic, OP in an invariant subspace, and simultaneous stochastic perturbations (SSP).
The definitions of OPs are given. It will be shown how the OPs are important for the study
on the predictability of behavior of system dynamics, generating ensemble forecasts as
well as in the design of a stable filter. A variety of algorithm-based SSP methodology for
estimation and decomposition of very high-dimensional (Hd) matrices are presented.
Numerical experiments will be presented to illustrate the efficiency and benefice of the
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optimal data assimilation algorithms (like Kalman filter (KF) [2], for example) for operational
forecasting systems (OFS).

This chapter is devoted to the role of perturbations as an efficient tool for predictability of
dynamical system, ensemble forecasting and for overcoming the difficulties in the design of
data assimilation algorithms, in particular, of the optimal adaptive filtering for extremely HdS.
In [3, 4], Lorenz has studied the problem of predictability of the atmosphere. It is found that
the atmosphere is a chaotic system and a predictability limit to numerical forecast is of about
2 weeks. The barrier of predictability has to be overcome in order to increase the time period of
a forecast further. The fact that estimates of the current state are inaccurate and that numerical
models have inadequacies leads to forecast errors that grow with increasing forecast lead time.
Ensemble forecasting aims at quantifying this flow-dependent forecast uncertainty. Today, a
medium-range forecast has become a standard product. In the 1990s, the ensemble forecasting
(EnF) technique was introduced in operational centers such as the European Centre for
Medium-range Weather Forecast (ECMWF) (see Palmer et al. [5]), the NCEP (US National
Center for Environmental Prediction) (Toth and Kalnay [6]). It is found that a single forecast
can depart rapidly from the real atmosphere. The idea of the ensemble forecasting is to add the
perturbations around the control forecast to produce a collection of forecasts that try to better
simulate the possible uncertainties in a numerical forecast. The ensemble mean can then act as
a nonlinear filter such that its skill is higher than that of individual members in a statistical
sense (Toth and Kalnay [6]).

The chapter is organized as follows. Section 2 outlines first the optimal perturbation (OP)
theory, on how the OP plays the important role for seeking the most growing direction of
prediction error (PE). The predictability theory of the dynamical system as well as a stability
of the filtering algorithm all are developed on the basis of OP. The definition of the optimal
deterministic perturbation (ODP) and some theoretical results on the ODP are introduced.
It is found that the ODP is associated with the right singular vector (SV) of the system
dynamics. In Section 3, the two other classes of ODPs are presented: the leading eigenvector
(EV) and real Schur vector (SchV) of the system dynamics. Mention that the first EV is the
ODS in the eigen invariant subspace (EI-InS) of the system dynamics. As to the leading
SchV, it is ODS in the Schur invariant subspace (Sch-InS) which is closely related to the EI-
InS in the sense that the subspace of the leading SchVs, generated by the sampling proce-
dure (Sampling-P, Section 3), converges to the EI-InS. In Section 4, we present the other type
of OP called as optimal stochastic perturbation (OSP). Mention that the OSP is a natural
extension of the ODP which gives insight into understanding of what represents the most
growing PE and how one can produce it by stochastically perturbing the initial state. One
important class of perturbations (known as simultaneous stochastic perturbation—SSP) is
presented in Section 5. It will be shown that the SSP is very efficient for solving optimization
problems in high-dimensional (Hd) setting. The different algorithms for estimating,
decomposing … Hd matrices are also presented here. Numerical examples are presented
in Section 6 for illustrating the theoretical results and efficiency of the OPs in solving data
assimilation problems. The experiment on data assimilation in the Hd ocean model MICOM
by the filters constructed on the basis of the Schur ODSs and SSPs is presented in Section 7.
The concluding remarks are presented in Section 8.
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2. Optimal perturbations: predictability and filter stability

2.1. Stability of filter

The behavior of atmosphere or ocean is recognized as highly sensitive to initial conditions. It
means that a small change in an initial condition can alter strongly the trajectory of the system.
It is therefore important to be able to know about the directions of rapid growth of the system
state. The research on OP is namely aimed at finding the methods to better capture these
rapidly growing directions of the system dynamics, to optimize the predictability of the
physical process under consideration.

To explain this phenomenon more clearly, consider a standard linear filtering problem

x kþ 1ð Þ ¼ Φx kð Þ þ w kþ 1ð Þ, z kþ 1ð Þ ¼ Hx kþ 1ð Þ þ v kþ 1ð Þ: (1)

where Φ∈Rn�n is the state transition matrix, H∈Rp�n is an observation matrix. Under stan-
dard conditions related to the model and observation noises wk, vk, the minimum mean
squared (MMS) estimate bxk can be obtained by the well-known KF [2].

bx kþ 1ð Þ ¼ bx kþ 1=kð Þ þ Kζ kþ 1ð Þ,bx kþ 1=kð Þ ¼ Φbx kð Þ (2)

where ζ kþ 1ð Þ ¼ z kþ 1ð Þ �Hbx kþ 1=kð Þ is the innovation vector, bx kþ 1ð Þ is the filtered (or
analysis) estimate, bx kþ 1=kð Þ is the one-step ahead prediction for x kþ 1ð Þ. The KF gain K is
given by

K ¼ MHT HMHT þ R
� ��1

(3)

From Eq. (2), it can be shown that the transition matrix for the filtered estimate equation is
expressed by L ¼ I � KH½ �Φ.
For HdS, the KF gain (3) is impossible to compute. In a study by Hoang et al. [7], it is suggested
to find the gain with the structure

K ¼ PrKe (4)

with Pr ∈Rn�ne—an operator projecting a vector from the reduced space Rne to the full
system space Rn, Ke ∈Rne�p is the gain for the reduced filter. One of very important ques-
tions arising here is how one can choose a subspace of projection and structure of Ke to
make L to be stable? It is found in the work done by Hoang et al. [8] that detectability of the
input-output system (1) is sufficient for the existence of a stabilizing gain K and this gain
can be constructed with Pr consisting from all unstable EVs (or unstable SVs, SchVs. See
Section 3) of the system dynamics.

2.2. Singular value decomposition and optimal perturbations

Consider the singular value decomposition (SVD) of Φ [9],
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growing PE and how one can produce it by stochastically perturbing the initial state. One
important class of perturbations (known as simultaneous stochastic perturbation—SSP) is
presented in Section 5. It will be shown that the SSP is very efficient for solving optimization
problems in high-dimensional (Hd) setting. The different algorithms for estimating,
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in Section 6 for illustrating the theoretical results and efficiency of the OPs in solving data
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For HdS, the KF gain (3) is impossible to compute. In a study by Hoang et al. [7], it is suggested
to find the gain with the structure
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with Pr ∈Rn�ne—an operator projecting a vector from the reduced space Rne to the full
system space Rn, Ke ∈Rne�p is the gain for the reduced filter. One of very important ques-
tions arising here is how one can choose a subspace of projection and structure of Ke to
make L to be stable? It is found in the work done by Hoang et al. [8] that detectability of the
input-output system (1) is sufficient for the existence of a stabilizing gain K and this gain
can be constructed with Pr consisting from all unstable EVs (or unstable SVs, SchVs. See
Section 3) of the system dynamics.
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Consider the singular value decomposition (SVD) of Φ [9],
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Φ ¼ UDVT,D ¼ diag σ1; σ2;…; σn½ �, σ1 ≥σ2… ≥ σn,
U ¼ U1;U2½ �, D ¼ block diag D1;D2½ �, V ¼ V1;V2½ � (5)

where U1, V1 ∈R�n1 , Dn1 ∈Rn1�n1 , n1 is the number of all unstable and neutral SVs of Φ. In the
future, for simplicity, unless otherwise stated, we say on the set of all unstable SVs as that
including all unstable and neutral SVs.

Suppose the system is s-detectable (detectability of all the columns of U1 or V1). From the
research by Hoang et al. [10], there exists a stabilizing gain Ks (sufficient but not necessary
condition) with Pr ¼ U1 (see Eq. (4)) such that the transition matrix L ¼ I � KsHð ÞΦ is stable. It
signifies that the filter is stable and the estimation error is bounded. The columns ofU1, i.e., the
left unstable SVs of Φ, serve as a basis for seeking appropriate correction in the filtering
algorithm.

On the other hand, in practice, for extreme HdS, one cannot compute all elements of U1 but
only some of its subset U0

1 ∈U1. Using U0
1 instead of U1 cannot guarantee a filter stability. The

ensemble forecasting has been proposed as an approach to prevent a possible large error in the
forecast and requires a knowledge on the rapidly growing directions of the PE. In this context,
the OPs appear to be important which allow to search the rapid growing directions of the PE
by model integration of OPs. They (i.e., OPs) are infact the unstable right SVs (RSV).

2.3. Optimal perturbation

Let δx be a given perturbation, representing an error (uncertainty, deterministic, or stochastic)
around the true system state x∗, i.e., bxf ¼ x∗ þ δx, (at some instant k). The prediction of the
system state bxp can be obtained by forwarding the numerical model (1) on the basis of bxf—
filtered estimate, i.e., bxp ¼ Φbxf . We have then

bxp ¼ Φbxf ¼ Φ x∗ þ δx½ � ¼ Φx∗ þ Φδx, (6)

One sees the perturbation δx in the initial system state “grows” into Φδx which represents
uncertainty in the forecast.

In general, the perturbation δxmay be any element in the n-dimensional space,Rn, i.e., δx∈Rn. For

e lð Þ
f ≔ δx lð Þ

f —a sample of the filtered error (FE) ef , integrating themodel by ef results in e
lð Þ
p ≔ Φδx lð Þ

f —

a sample for the PE ep. By generating the ensemble of perturbations Ef Lð Þ≔ e lð Þ
f ; l ¼ 1;…; L

n o

according to the distribution of ef , one can produce the ensemble of PE samples Ep Lð Þ≔
e lð Þ
p ; l ¼ 1;…; L

n o
and use them to estimate the distribution of the PE ep. This serves as a basis for

the particle filtering [11].

The ensemble-based filtering (EnBF) algorithm is simplified for the standard linear filtering
problems with ef being of zero mean and the error covariance matrix (ECM) P. This technique
is aimed to approximate the ECM without solving the matrix Ricatti equation (Ensemble KF—
EnKF, [12]. Mention that at the present, one can generate only about O(100) samples at each
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assimilation instant. This ensemble size is too small compared to the system dimension. That is
why it is important to have a good strategy for selecting the “optimal” samples (perturbations)
to better approximate the ECM in the filtering algorithm.

2.3.1. Optimal deterministic perturbation

Introduce

S δxð Þ : δx; δxk k2 ¼< δx; δx >¼ 1
� �

(7)

where :k k2 denotes the Euclidean vector norm (here < :, : > denotes the dot product). Let Φ
have the SVD (5).

Definition 2.1. The ODP δxo is the solution of the extremal problem

J δxð Þ ¼ Φδxk k2 ! maxδx (8)

under the constraint (7). One can prove

Lemma 2.1. The optimal perturbation in the sense (8) and (7) is

δxo ¼ þ=�ð Þv1

where v1 is the first right SV of Φ.

2.3.2. Subspaces of ODPs

Introduce

Φ1 ≔Φ� σ1u1vT1

Consider the optimization problem

J1 δxð Þ ¼ Φ1δxk k2 ! maxδx (9)

under the constraint (7). Similar to the proof of Lemma 2.1, one can prove

Lemma 2.2. The optimal perturbation in the sense (9) and (7) is

δxo ¼ þ=�ð Þv2

where v2 is the second right SV of Φ.

By iteration, for

Φi ≔Φi�1 � σiuivTi , i ¼ 1,…, n� 1;Φ0 ¼ Φ: (10)

applying Lemma 2.2 with slight modifications, one finds that the OPs for Φi, i ¼ 0, 1,…, n� 1
are þ=�ð Þvi, i ¼ 1, 2,…n:.
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δxo ¼ þ=�ð Þv2

where v2 is the second right SV of Φ.

By iteration, for

Φi ≔Φi�1 � σiuivTi , i ¼ 1,…, n� 1;Φ0 ¼ Φ: (10)

applying Lemma 2.2 with slight modifications, one finds that the OPs for Φi, i ¼ 0, 1,…, n� 1
are þ=�ð Þvi, i ¼ 1, 2,…n:.

On Optimal and Simultaneous Stochastic Perturbations with Application to Estimation of High-Dimensional…
http://dx.doi.org/10.5772/intechopen.77273

65



Theorem 2.1. The optimal perturbation for the matrix Φi�1, i ¼ 1,…, n is þ=�ð Þvi where vi is
the ith leading right SV of Φi�1, i ¼ 1,…, n.

The OP for Φi�1 will be called the ith OP for Φ (or the ith SOP—singular OP).

Comment 2.2. The OPs, presented above, are optimal in the sense of the Euclidean norm :k k2. In
practice, there is a need to normalize the state vector (using the inverse of the covariance

matrix M). The normalization is done by changing δx0 ¼ M�1=2δx, and all the results presented
above remain valid s.t. the new δx0,

δx0k k2 ¼< M�1=2δx,M�1=2δx >¼< δx,M�1δx > ≔ δxk kM�1

The weighted norm δxk kM�1 is known as the Mahanalobis norm.

As to the PE, a normalization is also applied in order to have a possibility to compare different
variables like density, temperature, velocity … In this situation, the norm for y ¼ Φδx may be
seminorm [5].

2.4. Ensemble forecasting

The idea of ensemble forecasting is that instead of performing “deterministic” forecasts, sto-
chastic forecasts should be made: several model forecasts are performed by introducing per-
turbations in the filtered estimate or in the models.

Since 1994, NCEP (National Centers for Environmental Prediction, USA) has been running
17 global forecasts per day, with the perturbations obtained using the method of breeding
growing perturbations. This ensures that the perturbations contain growing dynamical
perturbations. The length of the forecasts allows the generation of outlook for the second
week. At the ECMWF, the perturbation method is based on the use of SVs, which grow even
faster than the bred or Lyapunov vector perturbations. The ECMWF ensemble contains 50
members [13].

3. Perturbations based on leading EVs and SchVs

3.1. Adaptive filter (AF)

The idea underlying the AF is to construct a filter which uses feedback in the form of the PE
signal (innovation) to adjust the free parameters in the gain to optimize the filter performance.
If in the KF, the optimality is defined as a minimum mean squared error (MMS), in the AF,
optimality is understood in the sense of MMS for the prediction output error (innovation). This
definition allows to define the optimality of the filter in the realization space, but not in the
probability space as done in the KF.

The optimal gain thus can be determined from solving the optimization problem by adjusting
all elements of the filter gain. There are two major difficulties:
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i. Instability: As the filter gain is estimated stochastically during the optimization process,
the filter may become unstable due to the stochastic character of the filter gain.

ii. Reduction of tuning parameters: For extreme HdS, the number of elements in the filter
gain is still very high. Reduction of the number of tunning gain elements is necessary.

3.2. Leading EVs and SchVs as optimal perturbations

Interest on stability of the AF arises soon after the AF has been introduced. The study on the
filter stability shows that it is possible to provide a filter stability when the system is
detectable [8]. For the different parameterized stabilizing gain structures based on a subspace
of unstable and neutral EVs, see [8]. As the EVs may be complex and their computation is
unstable (Lanczos [14]), in [8], it is proved that one can also ensure a stability of the filter if
the space of projection is constructed from a set of unstable and neutral SchVs of the system
dynamics. The unstable and neutral real SchVs are referred to as SchVs associated with the
unstable and neutral eigenvalues of the system dynamics. The advantage of the real SchVs is
that they are real, orthonormal, and their computation is stable. Moreover, the algorithm for
estimating dominant SchVs is simple which is based on the power iteration procedure
(Sampling-P, see [15]). As to the unstable SVs, although they are real and orthonormal, their
computation requires an adjoint operator (the transpose matrix ΦT). Construction of adjoint
code (AC) is a time-consuming and tedious process. Approximating leading SVs without
(AC) can be done on the basis of Algorithms 5.2.

3.3. EVs as optimal perturbations in the invariant subspace

Let Φ be diagonalizable. Introduce the set

EV1 x;λð Þ : x∈Cn; xk k2 ¼ 1;λ∈C1 : Φx ¼ λx
� �

: (11)

The subspace of x∈Cn satisfying Φx ¼ λx for some λ∈C1 is known as an invariant subspace
of Φ: the matrix Φx acts on to stretch the vector x but conserves the direction of x. Consider the
optimization problem

J δxð Þ ¼ Φδxk k2 ! maxδx,
δx;λð Þ∈EV1 δx;λð Þ, (12)

It is seen that the optimal solution is the first EV xei 1ð Þ of Φwith the largest magnitude equal to
∣λ1∣. We will call λ1 a first optimal EV perturbation (denoted as EI-OP).

For a symmetric matrix, the EI-OP coincides with the SOP. The EI-OP is not unique.

By solving the optimization problem (8) s.t.

EV2 x;λð Þ : x∈Cn; xk k2 ¼ 1 : Φx ¼ λx;λ∈C1; jλj < jλ1j
� �

: (13)

one finds the second EI-OP xei 2ð Þ. In a similar way, by defining
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3.2. Leading EVs and SchVs as optimal perturbations

Interest on stability of the AF arises soon after the AF has been introduced. The study on the
filter stability shows that it is possible to provide a filter stability when the system is
detectable [8]. For the different parameterized stabilizing gain structures based on a subspace
of unstable and neutral EVs, see [8]. As the EVs may be complex and their computation is
unstable (Lanczos [14]), in [8], it is proved that one can also ensure a stability of the filter if
the space of projection is constructed from a set of unstable and neutral SchVs of the system
dynamics. The unstable and neutral real SchVs are referred to as SchVs associated with the
unstable and neutral eigenvalues of the system dynamics. The advantage of the real SchVs is
that they are real, orthonormal, and their computation is stable. Moreover, the algorithm for
estimating dominant SchVs is simple which is based on the power iteration procedure
(Sampling-P, see [15]). As to the unstable SVs, although they are real and orthonormal, their
computation requires an adjoint operator (the transpose matrix ΦT). Construction of adjoint
code (AC) is a time-consuming and tedious process. Approximating leading SVs without
(AC) can be done on the basis of Algorithms 5.2.

3.3. EVs as optimal perturbations in the invariant subspace

Let Φ be diagonalizable. Introduce the set

EV1 x;λð Þ : x∈Cn; xk k2 ¼ 1;λ∈C1 : Φx ¼ λx
� �

: (11)

The subspace of x∈Cn satisfying Φx ¼ λx for some λ∈C1 is known as an invariant subspace
of Φ: the matrix Φx acts on to stretch the vector x but conserves the direction of x. Consider the
optimization problem

J δxð Þ ¼ Φδxk k2 ! maxδx,
δx;λð Þ∈EV1 δx;λð Þ, (12)

It is seen that the optimal solution is the first EV xei 1ð Þ of Φwith the largest magnitude equal to
∣λ1∣. We will call λ1 a first optimal EV perturbation (denoted as EI-OP).

For a symmetric matrix, the EI-OP coincides with the SOP. The EI-OP is not unique.

By solving the optimization problem (8) s.t.

EV2 x;λð Þ : x∈Cn; xk k2 ¼ 1 : Φx ¼ λx;λ∈C1; jλj < jλ1j
� �

: (13)

one finds the second EI-OP xei 2ð Þ. In a similar way, by defining
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EVi x;λð Þ : x∈Cn; xk k2 ¼ 1 : Φx ¼ λx;λ∈C1; jλj < jλi�1j
� �

: (14)

for i ¼ 1, 2, ::, n� 1, we obtain a sequence of EI-OPs xei ið Þ, i ¼ 1, 2, ::, n. The first ne EI-OPs are
unstable SVs.

In general, for a defective case (not diagonalizable), Φ does not have n linearly independent
EVs and the independent generalized EVs can serve as “optimal” perturbations to construct a
subspace of projection in the AF.

To summarize, let the EV decomposition be

XeiJX�1
ei ¼ Φ (15)

where J is a matrix of Jordan canonical form, X�1
ei is the matrix inverse of Xei (see Golub and

Van Loan [9]). The columns of Xei are the EVs of Φ, J is a block diagonal with the diagonal

blocks of 1 or 2 dimensions. The rank k decomposition is Xei,1J1 ~Xei,1 where

EVk ≔Xei,1J1 ~Xei,1,
Xei ¼ Xei,1;Xei,2½ �, J ¼ block diag J1; J2½ �,
~Xei ≔X�1

ei ¼ ~X
T
ei,1;

~XT
ei,2

h i
,

(16)

with Xei,1 ∈Rn�k, Xei,2 ∈Rn� n�kð Þ. Multiplying the right of EVk by Xei,1 yields Xei,1J1, i.e., we
obtain the k largest (in modulus) perturbations in the eigen (invariant) space of Φ. The pertur-
bations being the column vectors of Xei,1 (i.e., the k first EVs of Φ) are the first k OPs of Φ in the
eigen-invariant subspace (EI-InS).

3.4. Dominant SchVs as OPs in the Schur invariant subspace

The study of Hoang et al. [8] shows that the subspace of projection of the stable filter can be
constructed on the basis of all unstable EVs or SchVs of Φ.

Compared to the EVs, the approach based on real Schur decomposition is of preference in
practice since the SchVs are real and orthonormal. Moreover, there exists a simple, power
iterative algorithm for approaching the set of real leading SchVs. According to Theorem 7.3.1
in Golub and Van Loan [9], the subspace R Xs,1½ � spanned by the nu leading SchVs converges to
the unique invariant subspace Dnu Φð Þ (called a dominant invariant subspace) associated with
the eigenvalues λ1,…,λnu if ∣λnu ∣ > ∣λnuþ1∣. In this sense, we consider the leading SchVs as OPs
(denoted as Sch-OP) in the Schur invariant subspace (Sch-InS).

4. Optimal stochastic perturbation (OSP)

In Section 2, the perturbation δx is deterministic (see Definition 2.1). In practice, it happens that
δx is of stochastic nature. For example, the priori information on the FE is an zero mean
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random vector (RV) with the ECM P. The question arising here is how one determine the OP in
such situation and how to find it.

We will consider now δx as an element of the Hilbert space H of RVs. This space H is a
complete normed linear vector space equipped with the inner product

< x, y>H ¼ E < x, y > (17)

where E :ð Þ denotes the mathematical expectation. The norm in H is defined as

xk kH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E < x, x >

p
(18)

All elements of H are of finite variance and for simplicity, we assume they all have zero mean
value.

Introduce the set of RVS

Ss δxð Þ≔ δx : δxk kH ¼ 1
� �

(19)

Definition 4.1. The optimal stochastic perturbation (OSP) δxo is the solution of the extremal
problem

J δxð Þ ¼ Φδxk kH ! maxδx, (20)

under the constraint (19). One can prove

Lemma 4.1. For δx∈ Ss δxð Þ, there exists δy ¼ δy1;…; δyn
� �T ∈ Ss δxð Þ such that δx ¼Pn

k¼1 vkδyk.

Lemma 4.2. The optimal perturbation in the sense (20) and (19) is

δxo ¼ ψv1

where ψ is a RV with zero mean and unit variance, v1 is the first right SV of Φ.

Comment 4.1. Comparing the ODP with OSP shows that if the ODS is the first right SV (defined
up to the sign), the OSP is an ensemble of vectors lying in the subspace of the first right SV with
the lengths being the samples of the RV of zero mean and unit variance.

Introduce

Φ1 ≔Φ� σ1u1vT1

and consider the objective function

J δxð Þ ¼ Φ1δxk kH ! maxδx, (21)

Lemma 4.3. The optimal perturbation in the sense (21) and (19) is δxo ¼ ψv2, where ψ is an RV
with zero mean and unit variance, v2 is the first right SV of Φ.
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h i
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(16)

with Xei,1 ∈Rn�k, Xei,2 ∈Rn� n�kð Þ. Multiplying the right of EVk by Xei,1 yields Xei,1J1, i.e., we
obtain the k largest (in modulus) perturbations in the eigen (invariant) space of Φ. The pertur-
bations being the column vectors of Xei,1 (i.e., the k first EVs of Φ) are the first k OPs of Φ in the
eigen-invariant subspace (EI-InS).

3.4. Dominant SchVs as OPs in the Schur invariant subspace
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the eigenvalues λ1,…,λnu if ∣λnu ∣ > ∣λnuþ1∣. In this sense, we consider the leading SchVs as OPs
(denoted as Sch-OP) in the Schur invariant subspace (Sch-InS).

4. Optimal stochastic perturbation (OSP)

In Section 2, the perturbation δx is deterministic (see Definition 2.1). In practice, it happens that
δx is of stochastic nature. For example, the priori information on the FE is an zero mean
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random vector (RV) with the ECM P. The question arising here is how one determine the OP in
such situation and how to find it.

We will consider now δx as an element of the Hilbert space H of RVs. This space H is a
complete normed linear vector space equipped with the inner product

< x, y>H ¼ E < x, y > (17)

where E :ð Þ denotes the mathematical expectation. The norm in H is defined as

xk kH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E < x, x >

p
(18)

All elements of H are of finite variance and for simplicity, we assume they all have zero mean
value.

Introduce the set of RVS

Ss δxð Þ≔ δx : δxk kH ¼ 1
� �

(19)

Definition 4.1. The optimal stochastic perturbation (OSP) δxo is the solution of the extremal
problem

J δxð Þ ¼ Φδxk kH ! maxδx, (20)

under the constraint (19). One can prove

Lemma 4.1. For δx∈ Ss δxð Þ, there exists δy ¼ δy1;…; δyn
� �T ∈ Ss δxð Þ such that δx ¼Pn

k¼1 vkδyk.

Lemma 4.2. The optimal perturbation in the sense (20) and (19) is

δxo ¼ ψv1

where ψ is a RV with zero mean and unit variance, v1 is the first right SV of Φ.

Comment 4.1. Comparing the ODP with OSP shows that if the ODS is the first right SV (defined
up to the sign), the OSP is an ensemble of vectors lying in the subspace of the first right SV with
the lengths being the samples of the RV of zero mean and unit variance.

Introduce

Φ1 ≔Φ� σ1u1vT1

and consider the objective function

J δxð Þ ¼ Φ1δxk kH ! maxδx, (21)

Lemma 4.3. The optimal perturbation in the sense (21) and (19) is δxo ¼ ψv2, where ψ is an RV
with zero mean and unit variance, v2 is the first right SV of Φ.
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By iteration, for

Φi ≔Φi�1 � σiuivTi , i ¼ 1,…, n� 1;Φ0 ¼ Φ: (22)

applying Lemma 4.3 with slight modifications, one finds that the OSP for Φk, k ¼ 0, 1,…, n� 1

are ψvk, k ¼ 1, 2,…n:, where ψ is an RV with zero mean and unit variance, vk is the kth right SV
of Φ.

Theorem 4.1. The optimal perturbation for the matrix Φi�1, i ¼ 1,…, n is ψvi, where ψ is an RV

with zero mean and unit variance, vk is the kth right SV of Φ.

5. Simultaneous stochastic perturbations (SSP)

In [16], Spall proposes a simultaneous perturbation stochastic approximation (SPSA) algo-
rithm for finding optimal unknown parameters by minimizing some objective function. The
main feature of the simultaneous perturbation gradient approximation (SPGA) resides in the
way to approximate the gradient vector (in average): a sample gradient vector is estimated by
perturbing simultaneously all components of the unknown vector in a stochastic way. This
method requires only two or three measurements of the objective function, regardless of the
dimension of the vector of unknown parameters. In a study by Hoang and Baraille [17], the
idea of the SPGA is described in detail, with a wide variety of applications in engineering
domains. The application to estimation of ECM in the filtering problem is given in the work
done by Hoang and Baraille [18]. In the research by Hoang and Baraille [19], a simple algo-
rithm for estimating the elements of an unknown matrix as well as the way to decompose the
estimated matrix into a product of two matrices, under the condition that only the matrix-
vector product is accessible, has been proposed.

5.1. Theoretical background of SPGA: gradient approximation

The component-wise perturbation is a method for numerical computation of the cost function
with respect to the vector of unknown parameters. It is based on the idea to perturb separately
each component of the vector of parameters. For very HdS, this technique is impossible to
implement. An alternative to the component-wise perturbation is the SSP approach.

Let

DJ θ0ð Þ ¼ ∂J θ0ð Þ
∂θ1

;…;
∂J θ0ð Þ
∂θnθ

� �T

denote the gradient of J θð Þ computed at θ ¼ θ0. Suppose Δj, j ¼ 1,…, n are RVs independent
identically distributed (i.i.d) according to the Bernoulli law which assumes two values +1 or�1
with equal probabilities 1/2. It implies that
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E Δj
� � ¼ 0, E Δj

� �2 ¼ 1, E Δ�1
j

� �
¼ 0, E Δ�1

j

� �2
¼ 1, j ¼ 1, 2,…, n (23)

Suppose J θð Þ is infinitely differentiable at θ ¼ θ0. Using a Taylor series expansion,

ΔJ≔ J θ0 þ δθ
� �� J θ0ð Þ ¼ δθTDJ θ0ð Þ þ 1=2ð ÞδθTD2J θ0ð Þδθþ… (24)

where D2J θ0ð Þ is the Hessian matrix computed at θ≔θ0. For the choice

δθ≔ δθ1;…; δθnθð ÞT ¼ cΔ,Δ ¼ Δ1;Δ2;…;Δnθð ÞT, (25)

c is a small positive value, from Eq. (24)

ΔJ θ0ð Þ ¼ cΔ
T
DJ θ0ð Þ þ c2=2

� �
Δ
T
D2J θ0ð ÞΔþ…

Dividing both sides of the last equality by δθk ¼ cΔk implies

ΔJ θ0ð Þ=δθk ¼ DJ θ0ð ÞTΔk þ c=2ð ÞΔk,T
D2J θ0ð ÞΔþ…

Δ
k ≔ Δ1Δ

�1
k ;…; 1;…;ΔnΔ

�1
k

� �T (26)

Taking the mathematical expectation for both sides of the last equation yields

E ΔJ θ0ð Þδθ�1
k

� � ¼
DJ θ0ð ÞTE Δ

k
� �

þ c=2ð ÞE Δ
T
D2J θ0ð ÞΔk

h i
þ…

(27)

One sees that from the assumptions on Δ, E Δ
k

� �
¼ 0;…; 1;…; 0ð ÞT it follows DJ u0ð ÞTE Δ

k
� �

¼
∂J θ0ð Þ=∂θk. Moreover, as all the moments of the Bernoulli variables Δi and Δ�1

i are finite,

E Δ
T
D2J θ0ð ÞΔk

h i
¼ 0 since there exists a finite D2J θ0ð Þ, one concludes that

E ΔJ θ0ð Þδθ�1
k

� � ¼ ∂J θ0ð Þ=∂θk þO c2
� �

(28)

The result expressed by Eq. (28) constitutes a basis for approximating the gradient vector by
simultaneous perturbation. The left of Eq. (28) can be easily approximated by noticing that for

an ensemble of L i.i.d samples Δ
1ð Þ
;…; ;Δ

Lð Þh i
, we can generate the corresponding ensemble of

L i.i.d sample estimates for the gradient vector at θ ¼ θ0,

DJ lð Þ θ0ð Þ ¼ ΔJ lð Þ θ0ð Þ
cΔ lð Þ

1

;…;
ΔJ lð Þ θ0ð Þ
cΔ lð Þ

n

" #T
, l ¼ 1, 2,…, L (29)

where Δ lð Þ
k is the kth component of the lth sample Δ

lð Þ
. The left of Eq. (28) is then well approxi-

mated by averaging L sample gradients in Eq. (29),
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By iteration, for
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with respect to the vector of unknown parameters. It is based on the idea to perturb separately
each component of the vector of parameters. For very HdS, this technique is impossible to
implement. An alternative to the component-wise perturbation is the SSP approach.

Let
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;…;
∂J θ0ð Þ
∂θnθ

� �T
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an ensemble of L i.i.d samples Δ
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, we can generate the corresponding ensemble of

L i.i.d sample estimates for the gradient vector at θ ¼ θ0,
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1
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n

" #T
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mated by averaging L sample gradients in Eq. (29),
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E ΔJ θ0ð Þ=δθk½ � ≈ 1=Lð Þ
XL

l¼1

η lð Þ
k , η lð Þ

k ≔
ΔJ lð Þ θ0ð Þ
cΔ lð Þ

k

, (30)

Introduce the notations

mk ≔E ΔJ θ0ð Þ=δθk½ �, mk Lð Þ≔ 1=Lð Þ
XL

l¼1

η lð Þ
k , ek ≔mk Lð Þ �mk: (31)

Theorem 1 (Hoang and Baraille [19]) states that the estimate m Lð Þ≔ m1 Lð Þ;…;mnθ Lð Þð ÞT con-
verges to the gradient vector DJ θ0ð Þ as L ! ∞ and c ! 0 with the order O 1=Lð Þ where

m Lð Þ≔ 1=Lð Þ
XL

l¼1
η lð Þ:

5.2. Algorithm for estimation of an unknown matrix

Let Δ≔ Δ1;…;Δnð ÞT , Δi, i ¼ 1,…, n be Bernoulli independent and identically distributed (i.i.d.)

variables assuming two values �1 with equal probability 1/2. Introduce Δ
� ��1 ≔ 1=Δ1,…,ð

1=ΔnÞT , Δc ≔ cΔ, c > 0 is a small positive value.

Algorithm 5.1. Suppose it is possible to compute the product Φx ¼ b xð Þ for a given x. At the
beginning let l ¼ 1. Let the value u be assigned to the vector x, i.e., x≔u, L be a (large) fixed
integer number.

Step 1. Generate Δ
lð Þ
whose components are lth samples of the Bernoulli i.i.d. variables assum-

ing two values +/� 1 with equal probabilities 1/2;

Step 2. Compute δb lð Þ ¼ Φ uþ Δ
lð Þ
c

� �
� Φu, Δ

lð Þ
c ¼ cΔ

lð Þ
.

Step 3. Compute g lð Þ
i ¼ δb lð Þ

i Δ
lð Þ
c

h i�1
, δbi is the ith component of δb, g lð Þ

i is the column vector

consisting of derivative of bi uð Þ w.r.t. u, i ¼ 1,…, m.

Step 4. Go to Step 1 if l < L. Otherwise, go to Step 5.

Step 5. Compute

bgi ¼ 1
L

PL
l¼1 g

lð Þ
i , i ¼ 1,…, m, bΦ Lð Þ≔Dxb ¼ bg1;…;bgm

� �T .

5.3. Operations with Φ and its transpose

Algorithm 5.1 allows to store bΦ Lð Þ as composed from the two ensembles of vectors elements:

EnL δxð Þ≔ δx 1ð Þ;…; δx Lð Þ� �
, δx lð Þ ¼ cΔ

lð Þ
,

EnL δbð Þ≔ δb 1ð Þ;…; δb Lð Þ
h i

, δb lð Þ ¼ δb lð Þ
1 ;…; δb lð Þ

m

� �T
, l ¼ 1,…, L:

(32)
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The product z ¼ bΦ Lð Þy, y∈Rn, can be performed as zi ¼
Pn

k¼1
bϕ ikyk =

Pn
k¼1

1
L

PL
l¼1

δb lð Þ
i

δx lð Þ
k

� �
yk, or in

a more compact form

z ¼ 1
L

XL

l¼1

αlδb lð Þ,αl ≔
Xn

k¼1

yk
δx lð Þ

k

: (33)

Eq. (33) allows to perform z ¼ bΦ Lð Þy with L mþ 2nð Þ þ 1 elementary operations.

Similarly, computation of zi of z ¼ bΦT
Lð Þy, y∈Rm is performed as

zi ¼ 1
L

XL

l¼1

1

δx lð Þ
i

Xm

k¼1

δb lð Þ
k yk, i ¼ 1,…, n (34)

5.4. Estimation of decomposition of Φ

Let Φ be a matrix of dimensions m� nð Þ. For definiteness, let m ≤n with rank Φð Þ ¼ m. We
want to find the best approximation for Φ among members of the class of matrices

Φe ¼ ABT,A∈Rm�r, B∈Rn�r: (35)

under the constraint

Condition (C) A, B are matrices of dimension m� r, r� n, r ≤m, rank ABT� � ¼ r.

Under the condition (C), the optimization problem is formulated as

J A;Bð Þ ¼ Φ� Φek k2F ¼ Φ� ABT�� ��2
F ! min A;Bð Þ, (36)

where :k kF denotes the Frobenius matrix norm. Consider Φ and let UΣVT be SVD of Φ (5). Let
~Φ ¼ Φþ ΔΦ, ~Φ ¼ ~U ~Σ ~VT and ~σ1 ≥ ~σ2… ≥ ~σm, ~σk be the kth singular value of ~Φ. Then, we have

J Ao;Boð Þ ¼
Xm

k¼rþ1

σ2k (37)

where AoBT
o is a solution to the problem (36) s.t Condition (C) (Theorem 3.1 of Hoang and

Baraille [19]).

Theorem 3.1. Hoang and Baraille [19] implies that Φo
e ≔AoBT

o is equal to the matrix formed by
truncating the SVD of Φ to its first r SVs and singular values. It allows to avoid storing

elements of the estimate bΦ Lð Þ of Φ (their number is of order O 10m�nð ÞÞ.

5.4.1. Decomposition algorithms

Let the elements of Φ (or bΦ) be available (may be in algorithmic form). By perturbing stochas-
tically simultaneously all the elements of A and B, one can write out the iterative algorithm for
estimating the elements of A and B. For more detail, see Hoang and Baraille [19].
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XL

l¼1

η lð Þ
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ΔJ lð Þ θ0ð Þ
cΔ lð Þ

k

, (30)
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XL
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(32)
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� �
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5.4.2. Iterative decomposition algorithm

Another way to decompose the matrix Φ is to solve iteratively the following optimization
problems

Algorithm 5.2

At the beginning let i ¼ 1.

Step 1. For i ¼ 1, solve the minimization problem

J1 ¼ Φ1 � abT
�� ��2

F ! mina,b, a∈Rm, b∈Rn:

Φ1 ≔Φ, rank abT
� � ¼ 1

Its solution is denoted as ba ið Þ,bb ið Þ.
Step 2. For i < r, put i≔ iþ 1 and solve the problem

Jiþ1 ¼ Φi � abT
�� ��2

F ! mina,b, a∈Rm, b∈Rn. Φi ≔Φ�Pi�1
k¼1ba kð ÞbbT kð Þ,

rank abT
� � ¼ 1

Step 3. If i ¼ r, compute

bΦ ¼ bA rð ÞbBT
rð Þ, bA rð Þ ¼ ba 1ð Þ;…;ba rð Þ½ �, bB rð Þ ¼ bb 1ð Þ;…;bb rð Þ

h i
.

and stop. Otherwise, go to Step 2.

From Theorem 3.2 of Hoang and Baraille [19], the couple bA rð Þ, bB rð Þ is a solution for the
problem (36)(C).

6. Numerical example

Consider the matrix Φ∈R2�2

ϕ11 ¼ 5,ϕ12 ¼ 7,ϕ21 ¼ �2,ϕ22 ¼ �4:

The singular values and the right SVs for Φ are displayed in Table 1 which are obtained by
solving the classical equations for eigenvalues of ΦTΦ.

First, we apply Algorithm 5.1 to estimate the matrix Φ. Figure 1 shows the estimates produced
by Algorithm 5.1. It is seen that the estimates are converging quickly to the true elements of Φ.

Next Algorithm 5.2 (Iterative Decomposition Algorithm) has been applied to estimate the

decomposition of the matrix Φ. After each ith iteration, the algorithm yieds bb ið Þ
,bc ið Þ.

The different OPs are shown in Table 2 where xrsv ið Þ, xei ið Þ, and xsch ið Þ are the theoretical SV-
POs, EI-POs, Sch-POs. The vectors bxsch ið Þ are the components of Xt computed by Algorithm 3.1
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Element ϕij bϕ ij
bϕ ij 1ð Þ bϕ ij 2ð Þ

(1,1) 5.00 4.677 4.914 �0.237

(1,2) 7.00 7.07 7.662 �0.592

(2,1) �2.00 �2.041 �1.08 �0.962

(2,2) �4.00 �4.081 �1.683 �2.398

Table 1. Estimates of Φ obtained by Algorithm 5.2.

Figure 1. Estimates of elements of the matrix Φ.

Perturbations Vector Predictor Amplification

xrsv 1ð Þ 0:554; 0:833ð ÞT 8:597;�4:438ð ÞT 9.676

xrsv 2ð Þ 0:833;�0:554ð ÞT 0:284; 0:551ð ÞT 0.62

xei 1ð Þ 0:962;�0:275ð ÞT 2:885;�0:824ð ÞT 3

xei 2ð Þ 0:707;�0:707ð ÞT �1:414; 1:414ð ÞT 2

xsch 1ð Þ 0:707; 0:707ð ÞT 8:485;�4:243ð ÞT 9.487

xsch 2ð Þ 0:707;�0:707ð ÞT �1:414; 1:414ð ÞT 2

bxsch 1ð Þ 0:962;�0:275ð ÞT �8:1; 4:4ð ÞT 9.22

bxsch 2ð Þ �0:275;�0:962ð ÞT 2:885;�0:824ð ÞT 3

bc 1ð Þ
n 0:54; 0:842ð ÞT 8:592;�4:447ð ÞT 9.674

bc 2ð Þ
n 0:372; 0:928ð ÞT 8:358;�4:457ð ÞT 9.472

Table 2. Different OPs.
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(Sampling-P). As to bc ið Þ
n , they are the results of normalization (with the unit Euclidean norm)

of bc ið Þ.

Looking at the first OPs, one sees that xrsv 1ð Þ, xsch 1ð Þ, bxsch 1ð Þ, and bc 1ð Þ
n produce almost the same

amplification. The first xei 1ð Þ has the amplification three times less than those of xrsv 1ð Þ, xsch 1ð Þ.
The second xsch 2ð Þ is much less opimal than xrsv 2ð Þ and bc 2ð Þ

n . By comparing xrsv ið Þ with bc ið Þ
n for

i ¼ 1, 2, one concludes that the obtained results justify the correctness of Theorem 3.1 of Hoang

and Baraille [19]. Mention that only bxsch ið Þ and bc ið Þ
n can be calculated for HdS.

In Table 1, we show the results obtained by Algorithm 5.2 after two consecutive iterations

(matrix estimation in R1 subspace). The elements of the true Φ ¼ ϕij

h i
are displayed in the

second column, whereas their estimates—in the third column,

bΦ ¼ bΦ 1ð Þ þ bΦ 2ð Þ ¼
X2

i¼1
bb ið Þbc ið Þ,T bΦ ið Þ

≔ bϕ ið Þ
ij

h i
¼ bb ið Þbc ið Þ,T

The estimates, resulting from the first iteration, are the elements of bΦ 1ð Þ
(Table 1, column 4).

After the first iteration, Φ 2ð Þ ≔Φ� bΦ 1ð Þ ¼ b 2ð Þc 2ð Þ,T and the optimization yields the estimates
bϕ 2ð Þ
ij displayed in the column 5. From the columns 4–5, one sees that the first iteration allows to

well estimate the two biggest elements Φ11 ¼ 5, Φ12 ¼ 7. In the similar way, the second itera-

tion captures the two biggest elements of Φ 2ð Þ.

7. Assimilation in high-dimensional ocean model MICOM

7.1. Ocean model MICOM

To see the impact of optimal SchVs in the design of filtering algorithm for HdS, in this section,
we present the results of the experiment on the Hd ocean model MICOM (Miami Isopycnal
Ocean Model). This numerical experiment is identical to that described in Hoang and Baraille
[15]. The model configuration is a domain situated in the North Atlantic from 30�N to 60�N
and 80�W to 44�W; for the exact model domain and some main features of the ocean current
produced by the model, see and Baraille [15]. The system state x ¼ h; u; vð Þ where h ¼ h i; j; kð Þ
is a layer thickness and u ¼ u i; j; kð Þ, v ¼ v i; j; kð Þ are two velocity components. Mention that
after discretization, the dimension of the system state is n ¼ 302400. The observations available
at each assimilation instant are the sea surface height (SSH) with dimension p ¼ 221.

7.1.1. Data matrix based on dominant Sch-Ops

The filter is a reduced-order filter (ROF) with the variable h as a reduced state and u, v are
calculated on the basis of the geostrophy hypothesis. To obtain the gain in the ROF, first the
Algorithm 3.1 has been implemented to generate an ensemble of dominant SchVs (totally 72
SchVs, denoted as En SCHð Þ). The sample ECM Md SCHð Þ is computed on the basis of the
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En SCHð Þ. Due to rank deficiency, the sampleMd SCHð Þ is considered only as a data matrix. The
optimization procedure is applied to minimize the distance between the data matrix Md SCHð Þ
and the structured parametrized ECM M SCHð Þ ¼ Mv ⊗Mh which is written in the form of the
Schur product of two matrices M SCHð Þ ¼ Mv θð Þ⊗Mh θð Þ. Here, Mv is the vertical ECM, Mh is
the horizontal ECM [18]), θð Þ is a vector of unknown parameters. Mention that the hypothesis
on separability of the vertical and horizontal variables in the ECM is not new in the meteorol-
ogy [20]. The gain is computed according to Eq. (3) with R ¼ αI, α > 0 is a small positive value.
The ROF is denoted as PEF (SSP).

7.1.2. Data matrix based on SSP approach

The second data matrix Md SSPð Þ is obtained by perturbing the system state according to the
SSP method. The SSP samples are simulated in the way similar to that described above for

generating En SCHð Þ, with the difference that the perturbation components δh lð Þ i; j; kð Þ are the i.
i.d. random Bernoulli variables assuming two values �1 with the equal probability 1/2. The
same optimization procedure has been applied to estimate M SSPð Þ. The obtained ROF is
denoted as PEF (SSP).

Figure 2 shows the evolution of estimates for the gain coefficients k 1ð Þ computed from the
estimated coefficients of bckl of Md SCHð Þ and Md SSPð Þ on the basis of En SCHð Þ (curve” schur”)
and En SSPð Þ (curve “random”), during model integration. It is seen that two coefficients are
evolved in nearly the same manner, of nearly the same magnitude as that of k 1ð Þ in the CHF
(Cooper-Haines filter, Cooper and Haines [21]). Mention that the CHF is a filter widely used in
the oceanic data assimilation, which projects the PE of the surface height data by lifting or
lowering of water columns.

Figure 2. Evolution of estimates for the gain coefficients k 1ð Þ computed from bckl on the basis of En SCHð Þ (curve “Schur”)
and En SSPð Þ (curve “random”), during model integration. It is seen that two coefficients are evolved in nearly the same
manner, of nearly the same magnitude as that of k 1ð Þ in the CHF. The same picture is obtained for other ck, k ¼ 2; 3; 4.
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manner, of nearly the same magnitude as that of k 1ð Þ in the CHF. The same picture is obtained for other ck, k ¼ 2; 3; 4.
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The same pictures are obtained for the estimates bck, k ¼ 2; 3; 4. Mention that in the CHF,
c2 ¼ c3 ¼ 0.

7.2. Performance of different filters

In Table 3, the performances of the three filters are displayed. The errors are the averaged
(spatially and temporally) rms of PE for the SSH and for the two velocity components u and v.

The results in Table 3 show that two filters PEF (SCH) and PEF (SSP) are practically of the
same performance, and their estimates are much better compared to those of the CHF, with a
slightly better performance for the PEF (SSP). We note that as the PEF (SCH) is constructed on
the basis of an ensemble of samples tending to the first dominant SchV, its performance must
be theoretically better than that of the PEF (SSP). The slightly better performance of PEF (SSP)
(compared to that of PEF (SCH)) may be explained by the fact that the best theoretical
performance of PEF (SCH) can be obtained only if the model is linear, stationary, and the
number of PE samples in En SCHð Þ at each iteration must be large enough. The ensemble size
of En SCHð Þ in the present experiment is too small compared with the dimension of the
MICOM model.

rms CHF (cm) PEF (SCH) (cm=s) PEF (RAN) (cm=s)

ssh(fcst) 7.39 5.09 4.95

u(fcst) 7.59 5.36 5.29

v(fcst) 7.72 5.73 5.64

Table 3. rms of PE for ssh, and u, v velocity components.

Figure 3. Variance of PE resulting from three filters PEF (SCH), PEF (SSP), and AF. It is seen that the AF yields much
better performance compared to the two other nonadaptive filters PEF (SCH) and PEF (SSP).
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To illustrate the efficiency of adaptation, in Figure 3, we show the cost functions (variances of
innovation) resulting from the three filters PEF (SCH), PEF (SSP), and AF (i.e., APEF based on
PEF (SCH); the same performance is observed for the AF based on PEF (SSP)). Undoubtedly,
the adaptation allows to improve considerably the performances of nonadaptive filters.

8. Conclusion remarks

We have presented in this chapter the different types of OPs—deterministic, stochastic, or
optimal, the invariant subspaces of the system dynamics. The ODPs and OSPs play an impor-
tant role in the study on the predictability of the system dynamics as well as in construction of
optimal OFS for environmental geophysical systems.

One other class of perturbation known as SSP is found to be a very efficient tool for solving
optimization and estimation problems, especially with Hd matrices and in computing the
optimal perturbations.

The numerical experiments presented in this chapter confirm the important role of the differ-
ent types of OPs in the numerical study of Hd assimilation systems.
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Abstract

We are not going to present the classical results on linear parametric systems, since they
are widely discussed in literature. Instead, we shall consider nonlinear parametric systems
and discuss the conditions of new motion existence in the resonance zones: the regular
ones (on an invariant torus) and the irregular ones (on a quasi-attractor). On the basis of
the self-oscillatory shortened system which determines the topology of resonance zones,
we study the transition from a resonance to a non-resonance case under a change of the
detuning. We then apply our results to some concrete examples. It is interesting to study
the behavior of a parametric system when the ring-like resonance zone is contracted into a
point, i.e., to describe the bifurcations which occur in the course of transition from the
plain nonlinear resonance to the parametric one. We are based on article, and we follow a
material from the book.

Keywords: resonances, quasi-attractor, periodic solves, parametric perturbations

1. Introduction

Consider the following system:

dx
dt

¼ ∂H x; yð Þ
∂y

þ εg x; y; νtð Þ,
dy
dt

¼ � ∂H x; yð Þ
∂x

þ εf x; y; νtð Þ,
(1)

where ε > 0 is a small parameter, ν is perturbation frequency, and g, f are continuous periodic
functions of period 2π with respect to φ ¼ νt. The Hamiltonian H as well as f and g will be

assumed to be sufficiently smooth in a domain G⊂R2 � S1 (or G⊂R1 � S1 � S1 ¼ R1 � T2).
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Also, we shall assume that the unperturbed (ε ¼ 0) Hamiltonian system is nonlinear and has at
least one cell D filled with closed phase curves.

We especially emphasize the following condition.

Condition A. ∂g∂x þ ∂f
∂y =� 0.

This implies that system (1) is nonconservative.

Along with (1), we shall consider the autonomous system:

dx
dt

¼ ∂H x; yð Þ
∂y

þ εg0 x; yð Þ
dy
dt

¼ � ∂H x; yð Þ
∂x

þ εf 0 x; yð Þ,
(2)

where g0 ¼< g>φ and f 0 ¼< f>φ.

We also assume the following condition.

Condition B. System (2) has a finite set of rough limit cycles (LCs) in cell D.

Changing the variables x, y to the action I and angle θ, we obtain the system in the form

_I ¼ εF1 I;θ;φð Þ
_θ ¼ ω Ið Þ þ εF2 I;θ;φð Þ
_φ ¼ ν,

(3)

where

F1 � f x0θ � gy0θ, F2 � �f x0I þ gy0I (4)

are periodic of period 2π with respect to θ and φ. System (3) is defined on the direct product

Δ� S1 � S1 ¼ Δ� T2, where T2 is two-dimensional torus, Δ ¼ I�; Iþ
� �

, I� ¼ I h�
� �

.

The definition of resonance. We say that in system (3) a resonance takes place if

ω Ipq
� � ¼ q=pð Þν, (5)

where p, q are relatively prime integer numbers.

The energy level I ¼ Ipq (H x; yð Þ ¼ hpq) of the unperturbed system is called the resonance.

The behavior of solutions in the neighborhoods

Uμ ¼ I;θð Þ : Ipq � Cμ < I < Ipq þ Cμ; 0 ≤θ ≤ 2π;C ¼ const
� �

, μ ¼ ffiffiffi
ε

p

of individual resonance levels I ¼ Ipq H x; yð Þ ¼ hpq
� �

can be derived, up to the terms O μ2
� �

,
from the pendulum-type equation [1, 2]
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d2v
dτ2

� bA0 v; Ipq
� � ¼ μσ v; Ipq

� � dv
dτ

, (6)

b ¼ dω Ipq
� �

=dI, τ ¼ μt, A0 v; Ipq
� � ¼ 1

2πp

ð2πp
0

F Ipq; vþ qφ=p;φ
� �

dφ,

σ v; Ipq
� � ¼ 1

2πp

ð2π
0

∂g x; y;φð Þ
∂x

þ ∂f x; y;φð Þ
∂y

� �
dφ,

(7)

where X ¼ X Ipq; vþ qφ=p
� �

, Y ¼ Y Ipq; vþ qφ=p
� �

is the unperturbed solution on the level
I ¼ Ipq. For nondegenerate resonance zones we consider here, it holds that b 6¼ 0. Functions

A0 v; Ipq
� �

, σ v; Ipq
� �

are periodic of period 2π=p with respect to v.

From Eq. (7) follows.

Theorem 1

If the divergence of the vector field of Eq. (6) depends on v, then the divergence of the vector field of the
original system (1) contains terms which depend on both the time t and the spatial coordinates.

In many cases the converse is also true. For example, it holds for the system

dx=dt ¼ y, dy=dt ¼ �x� x3 þ P1 þ P2x2 þ P3xsin νtð Þ� �
yþ P4sin νtð Þ: (8)

The terms mentioned in Theorem 1 are called nonlinear parametric terms. Our goal is to study
systems of the form (1) with such terms. The existence of those leads to new motions in
resonance zones [1–3]. We shall demonstrate these motions on examples.

2. Investigation of Eq. (6)

The following representations hold:

A0 v; Ipq
� � ¼ A∗ v; Ipq

� �þ B Ipq
� �

, B ¼< A0>v,
σ v; Ipq
� � ¼ σ∗ v; Ipq

� �þ B1 Ipq
� �

, B1 ¼< σ>v,
(9)

where B Ið Þ is the generating function of the autonomous system (2) and B1 Ið Þ is the derivative
of B Ið Þ. We shall focus on the case when σ is sign-alternating. In this case, from Eq. (9) follows
the inequality:

∣B1 Ipq
� �

∣ < maxv∣σ∗ v; Ipq
� �

∣: (10)

When studying the pendulum Eq. (6), we shall distinguish two cases: (I) B Ipq
� � 6¼ 0 and (II)

B Ipq
� � ¼ 0.

In case II system (2) has a rough limit cycle (LC) in a neighborhood of the level H x; yð Þ ¼ hpq.
There is no such cycle in case I.
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Case I. Neglecting terms of order μ in Eq. (6), we arrive at the integrable equation

d2v=dτ2 � bA0 v; Ipq
� � ¼ 0 (11)

If ∣B Ipq
� �

∣ > maxv∣A∗ v; Ipq
� �

∣, then Eq. (11) has no equilibrium states. The resonance level I ¼ Ipq
is then referred to as passable. Note that the term “passable” has its origin in the topology of
the resonance zone, as opposed to the same term used in physics, where “passing” stands for a
change in perturbation frequency ν. In the case under consideration, there are no periodic
solutions in the vicinity of the resonance level. The most interesting case is when Eq. (11) has
equilibrium states, i.e., when the condition

∣B Ipq
� �

∣ < maxv∣A∗ v; Ipq
� �

∣ (12)

is satisfied. The resonance level I ¼ Ipq is then said to be partly passable.

Under condition (10), Eq. (6) may have limit cycles. In order to find them, one must construct
the Poincaré-Pontryagin generating function.

Figure 1(a) shows the phase portrait of Eq. (6) under conditions (10) and (12), and p ¼ 3. On
the period 2π=3, there is a single limit cycle (note that on the period 2π (which is the period of
the unperturbed solution) there are three limit cycles). If the cycle lies outside the neighbor-
hood of the separatrix loop of Eq. (11), then there is a corresponding two-dimensional invari-
ant torus in the original system. Since the period of the limit cycle of Eq. (11) is of orderO 1=μ

� �
,

we then have a long-periodic beating regime in the original system (6) (the generatrices of the
torus are of different order).

However, if the limit cycle lies in the neighborhood of the separatrix loop, then the two-
dimensional invariant torus in the original system (1) is destroyed. The bifurcation scene in
which the cycle is caught into the separatrix loop is shown in Figure 1(b). Taking into account
the nonautonomous terms, which were discarded in deriving Eq. (6), leads to the homoclinic
structure. Such a structure is shown in Figure 1(c) for the Poincaré map with p ¼ 3. Because of

Figure 1. (a) Phase portrait of Eq. (6), (b) bifurcational case, and (c) Poincaré map for the initial system in case (b).
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the presence of non-compact separatrices, in this case we merely have an irregular transition
process.

Case II. Now, Eq. (6) always possesses equilibrium states, and we have the third kind of
resonance zone, namely, an impassable zone. In order to better understand the structure of
such a zone, we introduce in Eq. (6) the detuning γ between the level I ¼ Ipq and the level
I ¼ I0, near which the autonomous system (2) has a limit cycle:

B Ipq
� � ¼ dB I0ð Þ=dIð Þ Ipq � I0

� �þO Ipq � I0
� �2� �

≃γμ (13)

Then, Eq. (6) can be rewritten as

du=dτ ¼ A∗ v; Ipq
� �þ μ σ v; Ipq

� �
uþ γ

� �
,

dv=dτ ¼ bu:
(14)

In Eq. (14) we change the variables from u; vð Þ to the action J and the angle L (in both the
oscillatory and the rotational zones) and average the resulting system over the “fast” angular
variable L. As a result, we arrive at the equation

dJ
dτ

¼ μbΦ Jð Þ=2π,

where Φ Jð Þ is the Poincaré-Pontryagin generating function [2] and it is discontinuous at J ¼ Jc
when γ 6¼ 0. Here, Jc corresponds to the contour in the “unperturbed” system

du=dτ ¼ A∗ v; Ipq
� �

,
dv=dτ ¼ bu:

(15)

formed by the saddle and two separatrix loops embracing the phase cylinder.

We shall therefore use Melnikov’s formula [4] to determine the relative position of the
separatrices which in the shortened system (15) constitute the contour formed by the outer
separatrix loops:

Δ ¼ μΔ∓
1 þO μ2

� �

Δ∓
1 ¼ b

Ð∞
�∞ σ∗ v0; Ipq

� �þ B1 Ipq
� �� �

u20dτ∓ 2πγ:

Here, v0, u0 is the solution of Eq. (15) on the contour consisting of the saddle and the outer
separatrix loops. Setting d ¼ maxv∣σ∗ v; Ipq

� �
∣ ¼ ∥σ∗∥, a ¼ ∣B1 Ipq

� �
∣=d we find from the formula

for Δ�
1 that Δ�

1 ¼ d αþ βa
� �� 2πγ, where

α ¼ b
ð∞
0
σ v0; Ipqð Þu20dτ, β ¼ b

ð∞
0
u20dτ, σ ¼ σ∗

∥σ∗∥
:

From the condition Δ�
1 ¼ 0, we get

Periodic Perturbations: Parametric Systems
http://dx.doi.org/10.5772/intechopen.79513

85



Case I. Neglecting terms of order μ in Eq. (6), we arrive at the integrable equation

d2v=dτ2 � bA0 v; Ipq
� � ¼ 0 (11)

If ∣B Ipq
� �

∣ > maxv∣A∗ v; Ipq
� �

∣, then Eq. (11) has no equilibrium states. The resonance level I ¼ Ipq
is then referred to as passable. Note that the term “passable” has its origin in the topology of
the resonance zone, as opposed to the same term used in physics, where “passing” stands for a
change in perturbation frequency ν. In the case under consideration, there are no periodic
solutions in the vicinity of the resonance level. The most interesting case is when Eq. (11) has
equilibrium states, i.e., when the condition

∣B Ipq
� �

∣ < maxv∣A∗ v; Ipq
� �

∣ (12)

is satisfied. The resonance level I ¼ Ipq is then said to be partly passable.

Under condition (10), Eq. (6) may have limit cycles. In order to find them, one must construct
the Poincaré-Pontryagin generating function.

Figure 1(a) shows the phase portrait of Eq. (6) under conditions (10) and (12), and p ¼ 3. On
the period 2π=3, there is a single limit cycle (note that on the period 2π (which is the period of
the unperturbed solution) there are three limit cycles). If the cycle lies outside the neighbor-
hood of the separatrix loop of Eq. (11), then there is a corresponding two-dimensional invari-
ant torus in the original system. Since the period of the limit cycle of Eq. (11) is of orderO 1=μ

� �
,

we then have a long-periodic beating regime in the original system (6) (the generatrices of the
torus are of different order).

However, if the limit cycle lies in the neighborhood of the separatrix loop, then the two-
dimensional invariant torus in the original system (1) is destroyed. The bifurcation scene in
which the cycle is caught into the separatrix loop is shown in Figure 1(b). Taking into account
the nonautonomous terms, which were discarded in deriving Eq. (6), leads to the homoclinic
structure. Such a structure is shown in Figure 1(c) for the Poincaré map with p ¼ 3. Because of

Figure 1. (a) Phase portrait of Eq. (6), (b) bifurcational case, and (c) Poincaré map for the initial system in case (b).

Perturbation Methods with Applications in Science and Engineering84
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γ ¼ γ� ¼ ∓ d αþ βa
� �

=2π: (16)

In system (14) the upper contour exists when γ ¼ γþ, and the lower contour when γ ¼ γ�.
Eq. (16) defines two straight lines in the a;γð Þ plane. They intersect each other at a∗; 0ð Þ, where
a∗ ¼ �α=β. When ∣a∣ > 1 the function σ v; Ipq

� �
is sign-preserving, and when ∣a∣ < 1 it is sign-

alternating.

In virtue of Eq. (10), the second case is the most interesting. The case ∣a∣ < 1 is somewhat
special since system (14) may then have limit cycles in both the oscillatory and rotational
domains, which have no generating counterparts in system (2). Limit cycles in Eq. (14) can
result from the following phenomena [5]: (a) from a degenerate focus, (b) from a separatrix
loop (contour), and (c) from a condensation of trajectories. However, if the number of limit
cycles does not matter, it suffices to consider the case when there is no more than one limit
cycle in the oscillatory domain. Then, we can make a general conclusion on the change of
qualitative dynamics of Eq. (14) under variation of the detuning. However, beforehand, we
should study the problem for the case when f and g are trigonometric polynomials of degreeN
in φ. Then, A∗ and σ∗ are also trigonometric polynomials of degree N1 ≤N:

�bA∗ v; Ipq
� � ¼

XN1

i¼1

aicos ipvð Þ þ bisin ipvð Þð Þ

σ∗ v; Ipq
� � ¼

XN1

i¼1

dicos ipvð Þ þ cisin ipvð Þð Þ:
(17)

From the definition of functions A∗ vð Þ and σ vð Þ (see Eq. (7)), it follows that, in general, different
harmonics in the perturbation contribute to A∗ and σ. This means that different harmonics can
dominate in Eq. (17). We count only these main harmonics in Eq. (17) (for A∗ ) 1 and σ∗ ) n).
We then derive from Eq. (6) the equation

z
00 þ sin zð Þ ¼ μ cos nzð Þ þ að Þz0 þ γ

h i
, (18)

where z ¼ pvþ ψ, ψ ¼ arctan b1=a1ð Þ.
The generating function Φ Jð Þ for Eq. (18) can be presented as [3]

Φ J rð Þð Þ ¼ Φ sð Þ rð Þ ¼ aF sð Þ
n rð Þ þ F sð Þ

0 rð Þ � δ2s2πγ

F 1ð Þ
0 rð Þ ¼ 16 r � 1ð ÞKþ E½ �, F 1ð Þ

1 rð Þ ¼ 16 1� rð ÞKþ 2r � 1ð ÞE½ �=3,
F 2ð Þ
0 rð Þ ¼ 8E=

ffiffiffi
r

p
, F 2ð Þ

1 rð Þ ¼ 8 2 r � 1ð ÞKþ 2� rð ÞE½ �=3r3=2
(19)

where s ¼ 1 corresponds to the oscillatory domain and s ¼ 2 to the rotational domain. K,E are

the complete elliptic integrals with modulus k (r ¼ k2). Note that r ¼ ð1þ ~hÞ=2 in the oscillatory

domain and r ¼ 2=ð1þ ~hÞ in the rotational domain, and ~h ¼ ~h J rð Þð Þ is the value of the energy

integral of the equation z
00 þ sin zð Þ ¼ 0. Function F sð Þ

j rð Þ is the generating function defined by the
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perturbation term z
0
cos jzð Þ. The plus in Eq. (19) corresponds to the upper half of the cylinder,

the minus to the lower half, and δ is the Kronecker delta. This enables us to find all the
bifurcation sets (except the one corresponding to a contractable separatrix loop) explicitly [6].

We shall first consider the case when γ ¼ 0. In this case Eq. (18) is identical to the standard
equation [2], and Φ rð Þ is continuous at r ¼ 1. Thus, it determines the limit cycles up to the
separatrix. This case was considered in Figure 2(a–e) that the rough topological structures are
shown for n ¼ 1. Note that the limit cycles can “disappear at infinity” only when B1 ¼ 0. This is
impossible when Condition B is satisfied. Figure 2(e) shows the bifurcation when the limit
cycle “clings” to the separatrix contour (Φ rð Þ has the simple root r ¼ 1). Figure 2(f) shows the
corresponding behavior of the invariant curves (separatrices) of the Poincaré map for the
original system with p ¼ 3. The neighborhood of the homoclinic contour is attracting. More-
over, a complicated structure exists in the neighborhood [7], and, consequently, we have a
quasi-attractor, i.e., a nontrivial hyperbolic set, and stable points can exist in it.

Figure 2. Phase portraits of Eq. (18) (a–e) and the Poincare map (f) for the case (e) and p ¼ 3.
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When γ 6¼ 0 the generating function Φ rð Þ is discontinuous at r ¼ 1. The bifurcation of the cycle
clinging to the separatrix must, therefore, be considered separately.

Using Melnikov’s formula, we compute Δ�
1 , which measures the split of the unperturbed

separatrix for Eq. (18). One can see that equation Δ�
1 ¼ 0 is equivalent to Φ 2ð Þ 1ð Þ ¼ 0. Then,

using Eq. (19) and assuming (for concreteness) n ¼ 1, we find the bifurcational values
γ� ¼ ∓ 4 aþ 1=3ð Þ=π. When γ ¼ γþ þO μ

� �
, we have a non-contractable separatrix loop lying

in the domain z0 ≥ 0, and when γ ¼ γ� þO μ
� �

, we have a loop in the domain z0 ≤ 0. From

Eq. (19) we obtain the asymptotic formula, Φ 2ð Þ rð Þ≃π 8a=
ffiffiffi
r

p þ ffiffiffi
r

p � 4γ
� �

=2, as r ! 0. This
implies that the straight line a ¼ 0 in the plane a;γð Þ is singular. Furthermore, from Eq. (19) we
find in the parametric form the line of the double cycles:

a ¼ a0 rð Þ ¼ � F 2ð Þ
� �0

= F 2ð Þ
� �0

, γ ¼ γ0 rð Þ ¼ ∓ F 2ð Þ F 2ð Þ
n

� �0
� F 2ð Þ
� �0

F 2ð Þ
� �

=2π � F 2ð Þ
� �0

,

r∈ 0; 1½ �, or γ ¼ γ�
0 að Þ:

It is observed that the transformation of the phase portrait of Eq. (18) for r ffi 1 involves the
creation of a contractable separatrix loop. By Condition B, we have a 6¼ 0, which implies that
the saddle number is nonzero. The separatrix loop can, therefore, give rise to one limit cycle
only [5]. The corresponding bifurcational set γ�

1 að Þ in the parameter plane can be found
numerically.

We thus obtain a partition of the parameter plane a;γð Þ into domains corresponding to differ-
ent topological structures for Eq. (18), as well as the structures themselves (they are shown in
Figure 3) for n ¼ 1. The structures corresponding to cases 8–12 are not shown in Figure 3, since
they can be obtained from structures 5, 6, 3, 2, and 14, respectively, by the directions of the
coordinate axes.

Note that, along with a non-contractable separatrix loop, Eq. (18) has either a stable limit cycle,
or a stable equilibrium state, or the stable “point at infinity.” This means that no quasi-attractor
can exist in the original nonautonomous system when γ 6¼ 0. Remark that the homoclinic
structure exists for a small range of γ values jγ� γ�j≃ exp �1=μ

� �� �
.

Those limit cycles of Eq. (18) which do not lie in the neighborhood of the unperturbed
separatrix contour correspond to the two-dimensional invariant tori in the original system
(like in the case B 6¼ 0). Unlike when B 6¼ 0, two kinds of such tori may exist in Eq. (18)
corresponding to the limit cycles in the oscillatory and rotational domains. The tori
corresponding to the cycles in the rotational domain (with one exception) have no generating
“Kolmogorov torus” in the perturbed Hamiltonian system, while the (asymptotically stable)
tori corresponding to the limit cycles in the oscillatory domain are images of the tori occupying
the next level in the hierarchy of resonances.

Remark The cases of odd and even n should be considered separately. When n is even, an
unstable cycle clings to the separatrix loop. For odd n the same thing happens to a stable cycle.
Only the case of odd n is therefore interesting when one studies the problem of existence of a
quasi-attractor.
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According to the bifurcation diagram (Figure 3), it is convenient to break the case ∣a∣ < 1 into
three sub-cases: (a) �1 < a < a∗, (b) a∗ < a < 0, and (c) 0 < a < 1, a∗ ¼ 1= 1� 4n2

� �
. Let n be

odd. Then considering the solutions on the original cylinder v mod2πð Þ; uf g, we derive the
following theorem.

Theorem 2

There are μ∗, γ
� að Þ, γ�

0 að Þ, γ�
1 að Þ, and a∗ such that, if ∣μ∣ < μ∗ and n are odd, the following three

intervals of a (in Eq. (18)) can be chosen: 1 ∘ : a∈ �1; a∗ð Þ; 2 ∘ : a∈ a∗; 0ð Þ; and 3 ∘ : a∈ 0; 1ð Þ.

1. Let a∈ �1; a∗ð Þ. Then, (1) when γ > γþ
1 > 0, Eq. (14) has exactly one stable limit cycle (LC) in the

rotational domain and no more than p n� 1ð Þ LCs in the oscillatory domain (OD); (2) when
γþ
1 < γ < γþ, there are p additional LCs in the OD, which are born from the separatrix loops at

γ ¼ γþ
1 ; (3) when γ ¼ γþ, the stable LC in the rotational domain clings to the separatrix contour

Γþ
p consisting of p saddles and their outer separatrices going from one saddle to another, while the

“free” unstable separatrices approach an LC in the OD; (4) when γ� < γ < γþ, there are no LCs in
the rotational domain and no more than pn LCs in the OD; (5) when γ ¼ γ�, there appears a
separatrix contour Γ�

p which consists of p saddles and their outer separatrices but has orientation

and location different from those of Γþ
p ; (6) when γ�

1 < γ < γ�, there are no more than pn LCs in

Figure 3. Bifurcation diagram and the corresponding rough phase portraits of Eq. (18).
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� �� �
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According to the bifurcation diagram (Figure 3), it is convenient to break the case ∣a∣ < 1 into
three sub-cases: (a) �1 < a < a∗, (b) a∗ < a < 0, and (c) 0 < a < 1, a∗ ¼ 1= 1� 4n2

� �
. Let n be

odd. Then considering the solutions on the original cylinder v mod2πð Þ; uf g, we derive the
following theorem.

Theorem 2

There are μ∗, γ
� að Þ, γ�

0 að Þ, γ�
1 að Þ, and a∗ such that, if ∣μ∣ < μ∗ and n are odd, the following three

intervals of a (in Eq. (18)) can be chosen: 1 ∘ : a∈ �1; a∗ð Þ; 2 ∘ : a∈ a∗; 0ð Þ; and 3 ∘ : a∈ 0; 1ð Þ.

1. Let a∈ �1; a∗ð Þ. Then, (1) when γ > γþ
1 > 0, Eq. (14) has exactly one stable limit cycle (LC) in the

rotational domain and no more than p n� 1ð Þ LCs in the oscillatory domain (OD); (2) when
γþ
1 < γ < γþ, there are p additional LCs in the OD, which are born from the separatrix loops at

γ ¼ γþ
1 ; (3) when γ ¼ γþ, the stable LC in the rotational domain clings to the separatrix contour

Γþ
p consisting of p saddles and their outer separatrices going from one saddle to another, while the

“free” unstable separatrices approach an LC in the OD; (4) when γ� < γ < γþ, there are no LCs in
the rotational domain and no more than pn LCs in the OD; (5) when γ ¼ γ�, there appears a
separatrix contour Γ�

p which consists of p saddles and their outer separatrices but has orientation

and location different from those of Γþ
p ; (6) when γ�

1 < γ < γ�, there are no more than pn LCs in

Figure 3. Bifurcation diagram and the corresponding rough phase portraits of Eq. (18).
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the OD and one stable non-contractible LC; and (7) when γ < γ�
1 , Eq. (14) has one stable non-

contractible LC which lies in the lower half-cylinder u < 0 and no more than p n� 1ð Þ in the OD.

2. Let a∈ a∗; 0ð Þ. Then, in the OD there are p n� 1ð Þ LCs, and in the rotational domain, (1) when
γ > γ�, Eq. (14) has one stable LC for u > 0; (2) when γ ¼ γ�, a contour Γ�p appears; (3) when

γþ < γ < γ�, one stable LC exists on the upper half-cylinder u > 0ð Þ and one stable LC on the
lower half-cylinder u < 0ð Þ; (4) when γ ¼ γþ, a contour Γþ

p appears; and (5) when γ < γþ, one

stable LC exists for u < 0.

3. Let a∈ 0; 1ð Þ. Then, there are at most p n� 1ð Þ LCs in the OD, and in the rotational domain, (1)
when γ > γ� and u < 0, Eq. (14) has one stable LC; (2) when γ ¼ γ�, a contour Γ�p appears; (3)

when γ�
0 < γ < γ� and u < 0, there is a stable LC born from Γ�p and an unstable LC; (4) when

γ ¼ γ�
0 , the stable and unstable LCs merge together; (5) when γþ

0 < γ < γ�
0 , no LCs exist; (6)

when γ ¼ γþ
0 , a semi-stable LC is formed for u > 0; (7) when γþ < γ < γþ

0 , one stable and one
unstable LCs exist for u > 0; (8) when γ ¼ γþ, a contour Γþ

p is formed; and (9) when γ < γþ, one

unstable LC exists for u > 0.

3. Example 1

Consider system (8) which is equivalent to the equation [3]

€x þ xþ x3 ¼ P1 þ P2x2 þ P3xsin νtð Þ� �
_x þ P4sin νtð Þ, (20)

where Pi, i ¼ 1; 2; 3; 4ð Þ are parameters. Here, we focus only on the effects which are due to the
nonlinear parametric term x _xsin νtð Þ. Let us assume ν ¼ 4. Then, for small Pi i ¼ 1; 2; 3; 4ð Þ
system (20) can have only two “splittable” resonance levels: H x; yð Þ ¼ h11, H x; yð Þ ¼ h31 and
h31 < h11. The corresponding autonomous system (P3 ¼ P4 ¼ 0) has at most one LC. The
passage of this LC through the resonances under a change of parameter P2 was considered in
[2]. If this LC lies outside the neighborhoods of resonance levels H x; yð Þ ¼ h11, H x; yð Þ ¼ h31,
then in the original nonautonomous system (20), there is a two-dimensional invariant torus T2

corresponding to the cycle. There is a generating “Kolmogorov torus” in the Hamiltonian
system P1 ¼ P2 ¼ P3 ¼ 0ð Þ.
A computer program was developed by the author for a simulation of Eq. (20). The results
of such simulation are presented in Figures 4–6. In the numerical integration, the Runge-Kutta-
type formulae are used with an error of order O h6

� �
per integration step h. In Figure 4(a) we

present the Poincaré map for P1 ¼ 0:0472, P2 ¼ �0:008, and P3 ¼ 0:018, which determines
the structure of the main resonance zone p ¼ 1; q ¼ 1ð Þ. Along with the separatrices of the
saddle fixed point S, a closed invariant curve encircling the unstable fixed point O is shown,
which corresponds to a stable LC in the oscillatory domain of Eq. (6). This closed invariant
curve appears for P3 ≈ 0:014 when the fixed point O loses its stability. As P3 increases, so does
the size of the closed invariant curve, and for P3 ≈ 0:0487 the curve clings to the separatrix of
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the saddle point S, forming a contour (see Figure 4(b)). As P3 increases further, two closed
invariant curves appear, shown in Figure 5 for P3 ¼ 0:15. The structural changes of the reso-
nance zone observed in the experiment are in good agreement with the theoretical results for
γ ¼ 0. The observations for γ 6¼ 0 are consistent with the theory, too.

Figure 4. Poincaré map for Eq. (20) with P1 ¼ 0:0472, P2 ¼ �0:008, P4 ¼ 2, and ν ¼ 4 and (a) P3 ¼ 0:018 and (b)
P3 ¼ 0:0489755.

Figure 5. Poincaré map for Eq. (20) with P1 ¼ 0:0472, P2 ¼ �0:008, P3 ¼ 0:15, P4 ¼ 2, and ν ¼ 4.
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then in the original nonautonomous system (20), there is a two-dimensional invariant torus T2

corresponding to the cycle. There is a generating “Kolmogorov torus” in the Hamiltonian
system P1 ¼ P2 ¼ P3 ¼ 0ð Þ.
A computer program was developed by the author for a simulation of Eq. (20). The results
of such simulation are presented in Figures 4–6. In the numerical integration, the Runge-Kutta-
type formulae are used with an error of order O h6

� �
per integration step h. In Figure 4(a) we

present the Poincaré map for P1 ¼ 0:0472, P2 ¼ �0:008, and P3 ¼ 0:018, which determines
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the saddle point S, forming a contour (see Figure 4(b)). As P3 increases further, two closed
invariant curves appear, shown in Figure 5 for P3 ¼ 0:15. The structural changes of the reso-
nance zone observed in the experiment are in good agreement with the theoretical results for
γ ¼ 0. The observations for γ 6¼ 0 are consistent with the theory, too.
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In the case presented in Figure 6, the transversal intersection of the separatrices of S cannot be
detected visually. We, therefore, increased P4 to obtain a better picture of the homoclinic
structure. When P4 ¼ 8, the structure can be seen clearly (Figure 6(a)). The corresponding
quasi-attractor is the only attracting set (Figure 6(b)). Stable periodic points with long periods
can exist inside the quasi-attractor itself. However, they are extremely difficult to detect
numerically.

4. Example 2

As opposed to Example 1, this one pursues a different goal, namely, to study the transition
from the classical parametric resonance to the nonlinear resonance. One of the problems for
which this can be done is that of the pendulum with a vibrating suspension.

The pendulum with vibrating suspension is a classical example of a problem in which a
parametric resonance can be observed. A large number of publications (see, e.g., [8, 9]) are
devoted to this problem. Other problems of this sort include the bending oscillations of
straight rod under a periodic longitudinal force [10], the motion of a charged particle (electron)
in the field of two running waves [11], etc. The parametric resonance in this kind of systems
appears when a fixed point of the corresponding Poincaré map loses its stability and is,
therefore, usually described by the linearization near this point.

It is interesting to study the behavior of a parametric system when the ring-like resonance zone
is contracted into a point, i.e., to describe the bifurcations which occur in the course of
transition from the plain nonlinear resonance to the parametric one. This paragraph is devoted
to the solution of this problem in the case of a nonconservative pendulum with a vertically
oscillating suspension.

Figure 6. Poincaré map for Eq. (20) with P1 ¼ 0:0472, P2 ¼ �0:008, P3 ¼ 0:0487, P4 ¼ 8, and ν ¼ 4 (a) and quasi-attractor (b).
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The motion of the pendulum with vertically oscillating suspension (under some simplifying
assumptions) is described by the equation [13]

€x þ sinxþ p1cosβtsinxþ p2 _x ¼ 0, (21)

where p1, p2, β are parameters.

Let us now complicate the model even more and consider the equation

€x þ sinxþ p1cosβtsinxþ p2 þ p3cosx
� �

_x ¼ 0, (22)

with the phase space R1 � S1 � S1. The term p3 _xcosx appears, for example, in the case of the
pendulum in which the force of resistance is created by a vertical plate perpendicular to the
plane of oscillations. Consider Eq. (22) when it is close to integrable, i.e., for small values of
parameters pi i ¼ 1; 2; 3ð Þ. Denote pi ¼ εCi, where ε is a small parameter. Then, the original
Eq. (22) takes the form

€x þ sinx ¼ ε C1cosβtsinxþ C2 þ C3cosxð Þ _x� �
, (23)

Eq. (23) in the conservative case, when C2 ¼ C3 ¼ 0, is considered in many publications. For
instance, for small angles of the deviation x, the case β ffi 2 is studied in [8]. The criterion of
resonance overlap is applied in [11] to estimating the width of the “ergodic layer.” The
existence of homoclinic solutions is discussed in [12] without the assumption on smallness of
parameter ε.

Phase curves of the unperturbed mathematical pendulum equation are determined by the
integral H x; _xð Þ � _x2 � cosx ¼ h, where h∈ �1; 1ð Þ in the oscillatory domain and h > 1 in the
rotational domain. The peculiarity lies in the way period τ depends on h in the oscillatory
domain.

We have

τ hð Þ ¼ 2π=ω ¼ 4K kð Þ, k2 ¼ 1þ hð Þ=2, � 1 < h < 1,
τ hð Þ ¼ 2kK, k2 ¼ 1= 1þ hð Þ, h > 1:

(24)

Here, K ¼ K kð Þ is the complete elliptic integral of the first kind, k being its modulus. From
Eq. (24) it follows that the period τ changes noticeably only for h close to 1, i.e., in the
neighborhood of the separatrix. Therefore, small intervals of period τ, which determines the
width of resonance zones, correspond to fairly large intervals of variable x.

4.1. Structure of resonant zones

In the investigation of the perturbed equation, we first focus on the structure of resonance
zones in domains G1 ¼ x; _xð Þ : �1 < h� ≤H x; yð Þ ≤ hþ < 1f g and G2 ¼ x; _xð Þ :f H x; yð Þ ≥ h∗ > 1g.
The resonance condition τ hpq

� � ¼ p=qð Þ 2π=β
� �

, where p, q are relatively prime integers, deter-
mines the resonance levels of energy H x; yð Þ ¼ hpq.
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The structure of individual resonance zones Uμ is described (up to the terms O ε3=2
� �

) by the
pendulum-type Eq. (6). Since functions A0 and σ have different forms in the oscillatory and

rotational domains, we introduce the notations A sð Þ
0 v; hpq
� �

and σ sð Þ v; hpq
� �

, where s ¼ 1 corre-
sponds to the oscillatory domain and s ¼ 2 to the rotational one.

In our case the divergence of the vector field of Eq. (23) contains no terms explicitly depending
on t; hence, σ does not depend on v, i.e., σ ¼ const.

The functions A sð Þ
0 and σ sð Þ in an explicit form were obtained in [13]. It is also found that the

width of the resonance zone decreases rapidly with the increase of p when q ¼ 1.

A computer-generated picture of invariant curves of the Poincaré map for Eq. (22), with
β ¼ 1:6, is shown in Figure 7. In Eq. 21(a) a case of synchronization of oscillations in the
subharmonic with p ¼ 2, q ¼ 1 (p1 ¼ 0, 1, p2 ¼ 0, 07, p3 ¼ �0, 1Þ is shown, and in Figure 7(b),
a partly passable resonance with p ¼ 2, q ¼ 1 p1 ¼ 0, 1

�
, p2 ¼ 1=30, p3 ¼ �0, 1Þ is shown. In the

domain G2 the synchronization of oscillations on the main resonance (p ¼ q ¼ 1) takes place.

4.2. Neighborhood of the origin

Denote Un ¼ x; yð Þ : 0 ≤H x; yð Þ ≤Cε2=n� �
and substitute in Eq. (23):

x ¼ ε1=nξ, y ¼ _x ¼ ε1=nη

As a result, we arrive at the system

_ξ ¼ η, _η ¼ �ξþ ε C1ξcos βt
� �þ C2 þ C3ð Þη� �þ ε2=nξ3=6�

�ε1þ2=n C1ξ3cos βt
� �

=6þ ξ2η
� �þ…

(25)

Figure 7. Invariant curves (separatrices) of Poincaré map for Eq. (22) with p1 ¼ �0, 1, p3 ¼ 0, 1, β ¼ 1:6, and p2 ¼ �0, 07
(a) with p2 ≃ � 1=30 (b).
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System (25) is defined in D� S1 where D is a certain domain in R2. In the neighborhood
U1 n ¼ 1ð Þ, system (25) assumes the form

_ξ ¼ η, _η ¼ �ξþ ε C1 � ξ � cos βt
� �þ C2 þ C3ð Þη� �þO ε2

� �
: (26)

By discarding in Eq. (26) the terms O ε2
� �

, we arrive at the Mathieu equation with the extra
term resulting from the viscous friction. It is clear that in the framework of a linear equation
one cannot observe the (nonlinear) effects which accompany the transition from the nonlinear
resonance to the parametric one. So, let us consider a wider neighborhood U2 n ¼ 2ð Þ of the
origin. In Eq. (25) we discard the terms O ε2

� �
and, for the resulting system, consider the

resonance cases when ω ¼ 1 ¼ qβ=p (p and q being relatively prime integers). We then study
the bifurcations pertaining to the transition from the parametric resonance to the ordinary one.
We once again introduce the detuning 1� qβ=p ¼ γ1ε. As a result, the system in question will
be rewritten as

_ξ ¼ qβ=p
� �

ηþ γ1ε

_η ¼ � qβ=p
� �

ξþ ε C1ξcosβtþ C2 þ C3ð Þη� γ1ξþ ξ3=6
� �

:
(27)

Now, we introduce the action (I) – angle (ϑ) variables. Since the unperturbed system is linear,
the substitution has the simple form ξ ¼ ffiffiffiffiffi

2I
p

sinϑ and η ¼ ffiffiffiffiffi
2I

p
cosϑ. In terms of this variables,

system (27) will be written as

_I ¼ εF I;ϑ;φð Þ, _ϑ ¼ qβ=p� εR I;ϑ;φð Þ, _φ ¼ β, (28)

where F ¼ 2IGcosϑ� γ1

ffiffiffiffiffi
2I

p
sinϑ, R ¼ Gsinϑþ γ1cosϑ=

ffiffiffiffiffi
2I

p

G ¼ C1sinϑcosφþ C2 þ C3ð Þcosϑ� γ1sinϑþ I=3ð Þsin3ϑ:

Let us introduce in Eq. (28) the “resonance phase” ψ ¼ ϑ� qφ=p and average the resulting
system over the “fast” variable φ. As a result, we arrive at the two-dimensional autonomous
system

_u ¼ ε C1=2½ Þusin2vþ C2 þ C3ð Þu�
_v ¼ ε C1=4ð Þcos2v� u=8� γ1=2

� � (29)

when p ¼ 2 and q ¼ 1 and to the system

_u ¼ ε C2 þ C3ð Þ
_v ¼ ε �u=8� γ1=2

� � (30)

when p 6¼ 2 and/or q > 1. As we know, u ¼ I þO εð Þ, v ¼ ψþO ε2
� �

. From Eq. (29) and (30),
it follows that (in our approximation) only one resonance with p ¼ 2, q ¼ 1 appears in the
neighborhood U2.
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0 and σ sð Þ in an explicit form were obtained in [13]. It is also found that the

width of the resonance zone decreases rapidly with the increase of p when q ¼ 1.

A computer-generated picture of invariant curves of the Poincaré map for Eq. (22), with
β ¼ 1:6, is shown in Figure 7. In Eq. 21(a) a case of synchronization of oscillations in the
subharmonic with p ¼ 2, q ¼ 1 (p1 ¼ 0, 1, p2 ¼ 0, 07, p3 ¼ �0, 1Þ is shown, and in Figure 7(b),
a partly passable resonance with p ¼ 2, q ¼ 1 p1 ¼ 0, 1

�
, p2 ¼ 1=30, p3 ¼ �0, 1Þ is shown. In the

domain G2 the synchronization of oscillations on the main resonance (p ¼ q ¼ 1) takes place.

4.2. Neighborhood of the origin

Denote Un ¼ x; yð Þ : 0 ≤H x; yð Þ ≤Cε2=n� �
and substitute in Eq. (23):

x ¼ ε1=nξ, y ¼ _x ¼ ε1=nη

As a result, we arrive at the system

_ξ ¼ η, _η ¼ �ξþ ε C1ξcos βt
� �þ C2 þ C3ð Þη� �þ ε2=nξ3=6�

�ε1þ2=n C1ξ3cos βt
� �

=6þ ξ2η
� �þ…

(25)

Figure 7. Invariant curves (separatrices) of Poincaré map for Eq. (22) with p1 ¼ �0, 1, p3 ¼ 0, 1, β ¼ 1:6, and p2 ¼ �0, 07
(a) with p2 ≃ � 1=30 (b).
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System (25) is defined in D� S1 where D is a certain domain in R2. In the neighborhood
U1 n ¼ 1ð Þ, system (25) assumes the form

_ξ ¼ η, _η ¼ �ξþ ε C1 � ξ � cos βt
� �þ C2 þ C3ð Þη� �þO ε2

� �
: (26)

By discarding in Eq. (26) the terms O ε2
� �

, we arrive at the Mathieu equation with the extra
term resulting from the viscous friction. It is clear that in the framework of a linear equation
one cannot observe the (nonlinear) effects which accompany the transition from the nonlinear
resonance to the parametric one. So, let us consider a wider neighborhood U2 n ¼ 2ð Þ of the
origin. In Eq. (25) we discard the terms O ε2

� �
and, for the resulting system, consider the

resonance cases when ω ¼ 1 ¼ qβ=p (p and q being relatively prime integers). We then study
the bifurcations pertaining to the transition from the parametric resonance to the ordinary one.
We once again introduce the detuning 1� qβ=p ¼ γ1ε. As a result, the system in question will
be rewritten as

_ξ ¼ qβ=p
� �

ηþ γ1ε

_η ¼ � qβ=p
� �

ξþ ε C1ξcosβtþ C2 þ C3ð Þη� γ1ξþ ξ3=6
� �

:
(27)

Now, we introduce the action (I) – angle (ϑ) variables. Since the unperturbed system is linear,
the substitution has the simple form ξ ¼ ffiffiffiffiffi

2I
p

sinϑ and η ¼ ffiffiffiffiffi
2I

p
cosϑ. In terms of this variables,

system (27) will be written as

_I ¼ εF I;ϑ;φð Þ, _ϑ ¼ qβ=p� εR I;ϑ;φð Þ, _φ ¼ β, (28)

where F ¼ 2IGcosϑ� γ1

ffiffiffiffiffi
2I

p
sinϑ, R ¼ Gsinϑþ γ1cosϑ=

ffiffiffiffiffi
2I

p

G ¼ C1sinϑcosφþ C2 þ C3ð Þcosϑ� γ1sinϑþ I=3ð Þsin3ϑ:

Let us introduce in Eq. (28) the “resonance phase” ψ ¼ ϑ� qφ=p and average the resulting
system over the “fast” variable φ. As a result, we arrive at the two-dimensional autonomous
system

_u ¼ ε C1=2½ Þusin2vþ C2 þ C3ð Þu�
_v ¼ ε C1=4ð Þcos2v� u=8� γ1=2

� � (29)

when p ¼ 2 and q ¼ 1 and to the system

_u ¼ ε C2 þ C3ð Þ
_v ¼ ε �u=8� γ1=2

� � (30)

when p 6¼ 2 and/or q > 1. As we know, u ¼ I þO εð Þ, v ¼ ψþO ε2
� �

. From Eq. (29) and (30),
it follows that (in our approximation) only one resonance with p ¼ 2, q ¼ 1 appears in the
neighborhood U2.
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The investigation of system (29) when C2
2 þ C2

3 6¼ 0 for different values of detuning γ1 presents
no difficulty, because, according to the Bendixson criterion, there are no limit cycles. The most
typical rough phase portraits are presented in Figure 8where, parallel with the phase portraits
in the u; vð Þ plane, the corresponding phase portraits in Cartesian coordinates x; y ¼ _xð Þ
are shown. Figure 8(a) corresponds to the case when we have γ1 > γ∗ > 0, γ∗ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 � 4 C2 þ C3ð Þ2

q
=2, Figure 8(b) when ∣γ1∣ ≤γ∗, and Figure 8(c) when ∣γ1∣ > γ∗ and γ1 < 0.

In addition, in all three cases, we assume C2 þ C3 < 0.

4.3. Conclusion

The number of splittable resonances is bounded, when C2
2 þ C2

3 6¼ 0. For the actual pendulum
(Eq. (22)), when the small nonconservative forces are present, we, most likely, have one

Figure 8. Phase portraits of system (29) with C2
2 þ C2

3 6¼ 0.

Perturbation Methods with Applications in Science and Engineering96

resonance regime with p ¼ 2, q ¼ 1 in the oscillatory domain and the one with p ¼ 1, q ¼ 1 in
the rotational domain.

In conclusion we make the following remarks on Eqs. (22) and (23).

1. The transition from Figure 8(a)–(c) corresponds to two period-doubling bifurcations, while
the passage from the parametric resonance (Figure 8(b)) to the ordinary nonlinear reso-
nance (Figure 8(c)) corresponds to the birth of two periodic (of period 2) saddle points and
a node (focus) from a multiple saddle fixed point.

2. The bifurcation which involves the birth of a quasi-attractor (Figure 7(b)) in the neighbor-
hood of the unperturbed separatrix is the most interesting one. It may take place at any

magnitude of the external force (parameter C1). It suffices to have B sð Þ 1ð Þ ¼ 0, C2 ¼ð
�C3=3Þ, ε C2 � C3ð Þ < 0, for example, C2 ¼ �1=30, C3 ¼ 0:1, ε > 0:.

3. In the quasi-integrable nonconservative case, there appear no resonances with q > 1 and
odd p in the oscillatory domain and no resonances with q > 1 and even p in the rotational
domain.
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resonance regime with p ¼ 2, q ¼ 1 in the oscillatory domain and the one with p ¼ 1, q ¼ 1 in
the rotational domain.
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Abstract

Applying mechanical perturbations at the working electrode during the electrodeposi-
tion process is a novel strategy for materials synthesis that has been used for Cu(In,Ga)
Se2 (CIGS) thin film synthesis. A mechanical perturbations strategy was applied during 
one-step electrodeposition, and the results are compared with the traditional one-step 
electrodeposition where no mechanical perturbations were applied. In both cases, a 
potentiostatic mode was employed, where DC potential is applied to the working elec-
trode with respect to the reference electrode; the potential is regulated by the current at 
an auxiliary electrode. The CIGS films obtained from both strategies were analyzed as 
electrodeposited and after being annealed in a selenium atmosphere. The annealed film 
morphology obtained with the potentiostatic mode plus periodical mechanical pertur-
bations was denser and more compact than the film without mechanical perturbations. 
Using contour lines, the morphology evolution and mass transport distribution on the 
working electrode during the electrodeposition process are explained.

Keywords: mechanical perturbations, electrodeposition, thin film, morphology

1. Introduction

Advance of new materials is an important issue in different areas of the technological devel-
opment; however, the challenges are still diverse and important. A necessary aspect of human 
survival is the use of renewable energies, especially the solar energy. A technology that can 
convert the solar radiation in electricity directly is the use of solar cells. Different methods for 
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materials synthesis have been widely investigated for solar energy conversion. These meth-
ods can be classified into physical and chemical. Electrodeposition is a chemical method that 
has been used to obtain metallic or semiconducting films on substrates, with the aim of pro-
tecting the surface against the oxidation and corrosion, giving a better esthetic appearance, 
and providing some mechanical and electrical characteristics, different to the base material, to 
improve its physical properties. Electrodeposition has been considered for solar cell applica-
tions for a long time [1], with a considerable potential for the fabrication of a low-cost thin 
film for solar cells [2]. It is simple, versatile, and economical as compared to physical methods, 
such as high vacuum processes. Some of its advantages are requiring less capital investment, 
saving raw material, application on irregular surfaces, and industry scalability potential. It 
has been used for materials synthesis for perovskite [3], Cu2ZnSnS4 [4], and CuInxGa(1-x)Se2 
(CIGS) solar cell [5]. It is also used for nanoparticle synthesis for solar collectors [6] and to 
develop technology in the energy storage [7].

The electrodeposition method is considered difficult; perhaps because the electrodeposition 
process is affected by many variables. Some of them are concentration of the solution, solu-
tion temperature, pH, working electrode potential, working electrode resistivity, and distance 
between electrodes. During the electrodeposition process, there are phenomena that affect 
the film growth, among them, the diffusion layer, the depletion region, and the natural flow 
by convection. For such reasons, the electrodeposition method is still under investigation to 
improve the material quality.

2. Conventional electrodeposition

A conventional three-electrode electrolytic cell connected to potentiostat equipment is used 
for material synthesis investigation in solar cell applications by electrodeposition. A direct 
current (DC) potential is applied to the working electrode (WE) with respect to the reference 
electrode (RE). The DC potential in the WE is regulated in a closed-loop control system by 
adjusting the current at an auxiliary electrode (AE). According to the electrolytic solution, dif-
ferent materials can be deposited on the WE. Synthesizing a material by the electrodeposition 
technique consists of finding the values of the variables that produce a film growth with the 
desired characteristics. Thin films of materials with homogeneous growth and compact mor-
phology are desirable. If the material to be formed consists of two or more elements, there are 
diverse electrodeposition alternatives, principally (1) electrodeposition of elements in layers, 
followed by annealing, to get the desired structure, and (2) electrodeposition of elements in 
a simultaneous way, also followed by annealing, to increase crystallinity. The latter alterna-
tive is known as a one-step electrodeposition in which the electrochemical conditions must 
be met in such a way that the material composition is homogeneous from the first instant of 
formation. The advantage of the one-step electrodeposition alternative is that the film that 
is obtained is electro-crystallized. In addition, a single electrolytic solution with ions of the 
precursor elements is used, while in the electrodeposition by layers, an electrolytic solution is 
used for each layer.

The basic modes of crystal growth on a WE under electrochemical conditions have been 
established; the electrodeposition takes place at the electrode-electrolyte interface under the 
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influence of an electric field [8]. A scheme of load distribution as well as a simple electrical 
model of a three-electrode electrolytic cell is represented in Figure 1. Charge distribution in 
the electrode-electrolyte interface is analogous to charge distribution in a capacitor which 
is called the electrical double layer. The electric field lines are defined only at the interface, 
where CWE and CAE are the equivalent capacitances between the WE and AE and the solution, 
respectively. RSOL is the solution electric resistance. In a three-electrode-electrolytic cell, the 
electrode-solution interface is principally important in the WE and AE. Other detailed electric 
models [9] for the electrode-solution interface suggest that the interface is affected by the 
capacitance of the double layer, the resistance in the charge transfer zone, and the impedance 
due to adsorption and mass transport, and the parameter of the electrical model, mentioned 
earlier, can be obtained by electrochemical impedance [10].

In an electrodeposition process, the charge, which consists of electrons, is considered to be 
evenly distributed on the WE surface. When M2+ ions are present in the solution, the electro-
chemical of M2+ + 2e → M is carrier out on the WE. When more than one type of ions must be 
reduced, the transport mechanism of the ions until the load transfer zone plays an important 
role. It is assumed that the ratio at which the ions are consumed by the charge transfer reac-
tion is equal to the ratio at which the ions arrive at the charge transfer zone.

At the beginning of the electrodeposition process, the first nuclei grow on the WE surface. At 
that time, the solution around the nuclei is depleted of ionic species, and the only factor that 
influences the ion movement is diffusion [11], through which the depleted zones around the 

Figure 1. A diagram of a simple electrical model of a three-electrode electrolytic cell.
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that time, the solution around the nuclei is depleted of ionic species, and the only factor that 
influences the ion movement is diffusion [11], through which the depleted zones around the 

Figure 1. A diagram of a simple electrical model of a three-electrode electrolytic cell.
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nuclei start to propagate throughout the WE surface; as the electrodeposition time elapses, 
these zones begin to overlap [12]. Figure 2 shows a schematic representation of the ion move-
ment distribution on the WE surface at the initial stage of the film formation. The arrow lines 

Figure 3. A graphic representation of electrodeposition signals versus time obtained during the electrodeposition 
process: (a) WE potential and (b) WE current density [13].

Figure 2. A schematic representation of the mass transport distribution at the initial stage of the film formation by 
electrodeposition (modified from [12]).
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show the ion movement from the bulk solution to the WE vicinity. In this region, the ions 
concentration is different from their value in the bulk solution; this region is known as the 
diffusion layer.

When the DC potential is applied at the WE, the current density versus time shows a transi-
tory stage evolution, followed by a stage where the current variation is lower than the transi-
tory stage. Also, the potential has a transitory stage; after that, the WE potential reaches the 
set value. With acquisition data software, the voltage and current signals can be plotted as 
time function, as it is shown in the graph in Figure 3. According to the above, the electric 
model of the three-electrode-electrolytic cell represents an average model of the electrical 
phenomena that take place in the electrode-solution interface during the electrodeposition 
process.

3. CIGS thin film by electrodeposition

The semiconductor CIGS is a promising absorber in thin film solar cells, due to their direct 
band gap and large optical absorption coefficient. Small-area CIGS solar cells with efficiencies 
reaching 22.6% have been built with this semiconductor synthesized by the high vacuum 
deposition method [14]. A compact absorber morphology is a quality indicator to obtain high 
performance CIGS solar cells. To improve solar cell efficiency, the CIGS absorber should have, 
in cross view, large grains extending from the back to the front [15]. The CIGS absorber has 
the highest potential to develop large-scale solar cells. Employing high vacuum deposition 
method, high efficiencies have been achieved; however, economical deposition methods with 
the possibility of implementing in large area still need to be developed [16, 17]. It is consid-
ered that the CIGS absorber can be synthesized in a large area and with compact morphology 
employing the electrodeposition method. However, when CIGS solar cells have been built by 
synthesizing the absorber by electrodeposition, solar cell efficiencies of 11.3% for a one-step 
electrodeposition [18] and 14.17% for layers electrodeposition [19] have been achieved. The 
low efficiency is attributed to lack of absorber quality when it is obtained by the electrodeposi-
tion method, usually associated with the morphology. Microcracks have been identified in the 
CIGS film obtained by a one-step electrodeposition [20], which is one reason why relatively 
low efficiencies are obtained in the CIGS solar cell by electrodeposition.

To develop the CIGS solar cells on a large scale by electrodeposition, there are still aspects 
that must be investigated. The major challenges and required strategies have been identified. 
Among them, (1) the precise control of film stoichiometry (optimization of Ga content and 
Ga distribution), (2) novel deposition strategies, (3) understanding on the mechanism of Ga 
incorporation, and (4) establishing the strategy that allows electrodepositing the semiconduc-
tor with homogeneous composition and uniform morphology throughout the film [16, 21].

In several works, electrodeposition strategies for thin films synthesis have been used. It has 
been established that by using a pH-regulating solution, stability is provided to the electro-
deposition process. No oxides or hydroxides are obtained in the solution, and it is possible to 
incorporate a higher percentage of gallium in the film [20]. In the first stages of Cu-In-Se on 
Mo-coated glass by electrochemical deposition, the first nuclei are made of a copper-rich Cu-Se 
without indium and the nucleation is developed by a quasi-instantaneous three-dimensional 
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nuclei start to propagate throughout the WE surface; as the electrodeposition time elapses, 
these zones begin to overlap [12]. Figure 2 shows a schematic representation of the ion move-
ment distribution on the WE surface at the initial stage of the film formation. The arrow lines 

Figure 3. A graphic representation of electrodeposition signals versus time obtained during the electrodeposition 
process: (a) WE potential and (b) WE current density [13].

Figure 2. A schematic representation of the mass transport distribution at the initial stage of the film formation by 
electrodeposition (modified from [12]).
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show the ion movement from the bulk solution to the WE vicinity. In this region, the ions 
concentration is different from their value in the bulk solution; this region is known as the 
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tory stage. Also, the potential has a transitory stage; after that, the WE potential reaches the 
set value. With acquisition data software, the voltage and current signals can be plotted as 
time function, as it is shown in the graph in Figure 3. According to the above, the electric 
model of the three-electrode-electrolytic cell represents an average model of the electrical 
phenomena that take place in the electrode-solution interface during the electrodeposition 
process.

3. CIGS thin film by electrodeposition

The semiconductor CIGS is a promising absorber in thin film solar cells, due to their direct 
band gap and large optical absorption coefficient. Small-area CIGS solar cells with efficiencies 
reaching 22.6% have been built with this semiconductor synthesized by the high vacuum 
deposition method [14]. A compact absorber morphology is a quality indicator to obtain high 
performance CIGS solar cells. To improve solar cell efficiency, the CIGS absorber should have, 
in cross view, large grains extending from the back to the front [15]. The CIGS absorber has 
the highest potential to develop large-scale solar cells. Employing high vacuum deposition 
method, high efficiencies have been achieved; however, economical deposition methods with 
the possibility of implementing in large area still need to be developed [16, 17]. It is consid-
ered that the CIGS absorber can be synthesized in a large area and with compact morphology 
employing the electrodeposition method. However, when CIGS solar cells have been built by 
synthesizing the absorber by electrodeposition, solar cell efficiencies of 11.3% for a one-step 
electrodeposition [18] and 14.17% for layers electrodeposition [19] have been achieved. The 
low efficiency is attributed to lack of absorber quality when it is obtained by the electrodeposi-
tion method, usually associated with the morphology. Microcracks have been identified in the 
CIGS film obtained by a one-step electrodeposition [20], which is one reason why relatively 
low efficiencies are obtained in the CIGS solar cell by electrodeposition.

To develop the CIGS solar cells on a large scale by electrodeposition, there are still aspects 
that must be investigated. The major challenges and required strategies have been identified. 
Among them, (1) the precise control of film stoichiometry (optimization of Ga content and 
Ga distribution), (2) novel deposition strategies, (3) understanding on the mechanism of Ga 
incorporation, and (4) establishing the strategy that allows electrodepositing the semiconduc-
tor with homogeneous composition and uniform morphology throughout the film [16, 21].

In several works, electrodeposition strategies for thin films synthesis have been used. It has 
been established that by using a pH-regulating solution, stability is provided to the electro-
deposition process. No oxides or hydroxides are obtained in the solution, and it is possible to 
incorporate a higher percentage of gallium in the film [20]. In the first stages of Cu-In-Se on 
Mo-coated glass by electrochemical deposition, the first nuclei are made of a copper-rich Cu-Se 
without indium and the nucleation is developed by a quasi-instantaneous three-dimensional 
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nucleation [22]. In CuInSe2 (CIS) one-step electrodeposition, it has been established that the 
Cu-Se phase is formed at a low potential, and a reaction path has been established as a function 
of the potential. The Cu-Se phase acts as a nucleation site for indium incorporation [23, 24].  
The CIS film morphology deposited at various potentials has been analyzed [23]. At low 
polarizations between −0.4 and − 0.5 V, platelets characteristic of the Cu-Se were observed; 
when the polarization increased, the morphology was nodular. The mechanisms of Ga to CIS 
incorporation also have been established. It is incorporated as gallium selenide and GaO3 
[25]. The CIGS film morphology obtained by the one-step electrodeposition with potentiostat 
mode has been described as nodules with a cauliflower-like growth [22, 26]. The as-electrode-
posited CIGS film morphology is strongly influenced by the bath composition. Microcracks in 
the films have been observed when the films were deposited at low concentrations of CuCl3, 
InCl3, and GaCl3 salts and at high concentrations of H2SeO3 [27].

Many studies have examined ways of improving the CIGS film morphology by a one-step 
electrodeposition. The effect of sodium sulfamate as a complexing agent on the film mor-
phology was evaluated [28]. An improvement on CIGS thin film morphology was obtained 
when a short electrode pretreatment of a 1-min deposition at −0.5 V was carried out prior 
to deposition of the film [29]. The pulse electrodeposition process can produce a CIGS film 
that is more smooth, compact, and homogeneous than the one deposited by the DC potential 
electrodeposition [30]. Electrochemical studies in CIGS electrodeposition, generally, use an 
electrochemical cell with electrodes suspended vertically. However, an electrochemical cell 
with electrodes in a horizontal position has advantages over a cell with vertical electrodes, 
principally because the ion transport mechanism as well as the natural flow by convection 
allows a better uniformity on the WE surface; in this way, the composition is homogeneous 
through the film [31].

3.1. Characterization of CIGS films obtained by electrodeposition

An electrochemical cell system of three horizontal electrodes was installed with a scheme like 
the one shown in Figure 4. A glass substrate covered by an Mo film (1 μm of thickness and 
4x10−4 Ω cm of resistivity) was the WE. The RE and AE were made of a platinum mesh. The 
CIGS films were electrodeposited by applying −1.0-V DC potential to the WE versus the RE, 
employing an electrolytic solution with copper, indium, gallium, and selenium ions. At the 
start, it was the electrodeposition process, where a stage of nucleation and electrocrystallization 
of the CIGS film on the WE electrode was obtained. After the electrodeposition process, the WE 
with the CIGS film was removed from the electrochemical bath, rinsed with deionized water, 
and placed vertically for drying. Although copper, indium, gallium, and selenium ions have 
different reduction potential, a situation that complicates a simultaneous ED process, the CIGS 
films have been obtained with the composition ratios of Ga/(In+Ga) = 0.31 and Cu/(In+Ga) ≈ 0.9, 
close to those reported in the high efficiency cells [32, 33]. The film composition was measured 
by atomic emission spectroscopy (ICP-AES). The current evolution indicates that the steady-
state value can be reached after 5 min, with a limiting current density of ≈ 1 mA / cm2. The WE 
surface changes during the film formation affect the limiting current density in the steady state 
in such a way that it decreases with very slow dynamics. The above also indicates that diffu-
sion layer thickness increases. During the steady stage, the reaction at the WE is affected by the 
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transport of the chemical species from the bulk solution to the charge transfer zone. By increas-
ing the electrodeposition time, the film obtained is more rugged and darker in color; this is due 
to the lack of ions near to WE and to the increase of the diffusion layer thickness. The stirring of 
the solution is desirable since it enhances ion transport to the substrate and decreases the thick-
ness of the diffusion layer [34]. However, the agitation method of stirring for a laboratory-scale 
deposition leads to gradients of thickness in the flow direction of the electrolyte [35].

The CIGS films characterized by scanning electron microscope (SEM) are shown in Figure 5. 
Figure 5(a, b) shows micrographs of surface and cross section. In both cases, the morphol-
ogy consists of vertical nodules with a well-defined boundary between them. Some nod-
ules are larger than others, which apparently have stopped growing. The stunted nodules 
increase the boundary between the nodules that have a greater growth. Figure 5(c) shows 
the surface morphology of the vertical nodules with a cauliflower-like growth. The surface 
morphology among the nodule boundaries is shown in Figure 5(d). The film morphology 
in the nodule has differences with the one that exists in the boundary. Apparently, the film 
formed between boundaries is less compact than those formed in the nodule. In general, the 
CIGS films that were obtained through the one-step electrodeposition are not very compact 
and have a low crystalline structure, so that they do not have the properties to be used in 
solar cells. The principal morphology consisted in groups of atoms forming the cauliflower-
like growth. The annealing process in a selenium atmosphere is necessary to transform 
the as-electrodeposited film into a more crystalline, with large grains and with compact 
morphology.

The CIGS thin films that were subjected to an annealing process in a selenium atmosphere 
are shown in Figure 6. The selenization temperature was 550°C for 180 min. Figure 6(a,b) 
shows the surface and cross-section micrographs. In the micrographs, there is evidence that 
the nodules are of different length. On increasing the deposition time, some nodules continue 

Figure 4. A diagram of an electrolytic cell with three horizontal electrodes.

Mechanical Perturbations at the Working Electrode to Materials Synthesis by Electrodeposition
http://dx.doi.org/10.5772/intechopen.78544

105



nucleation [22]. In CuInSe2 (CIS) one-step electrodeposition, it has been established that the 
Cu-Se phase is formed at a low potential, and a reaction path has been established as a function 
of the potential. The Cu-Se phase acts as a nucleation site for indium incorporation [23, 24].  
The CIS film morphology deposited at various potentials has been analyzed [23]. At low 
polarizations between −0.4 and − 0.5 V, platelets characteristic of the Cu-Se were observed; 
when the polarization increased, the morphology was nodular. The mechanisms of Ga to CIS 
incorporation also have been established. It is incorporated as gallium selenide and GaO3 
[25]. The CIGS film morphology obtained by the one-step electrodeposition with potentiostat 
mode has been described as nodules with a cauliflower-like growth [22, 26]. The as-electrode-
posited CIGS film morphology is strongly influenced by the bath composition. Microcracks in 
the films have been observed when the films were deposited at low concentrations of CuCl3, 
InCl3, and GaCl3 salts and at high concentrations of H2SeO3 [27].

Many studies have examined ways of improving the CIGS film morphology by a one-step 
electrodeposition. The effect of sodium sulfamate as a complexing agent on the film mor-
phology was evaluated [28]. An improvement on CIGS thin film morphology was obtained 
when a short electrode pretreatment of a 1-min deposition at −0.5 V was carried out prior 
to deposition of the film [29]. The pulse electrodeposition process can produce a CIGS film 
that is more smooth, compact, and homogeneous than the one deposited by the DC potential 
electrodeposition [30]. Electrochemical studies in CIGS electrodeposition, generally, use an 
electrochemical cell with electrodes suspended vertically. However, an electrochemical cell 
with electrodes in a horizontal position has advantages over a cell with vertical electrodes, 
principally because the ion transport mechanism as well as the natural flow by convection 
allows a better uniformity on the WE surface; in this way, the composition is homogeneous 
through the film [31].

3.1. Characterization of CIGS films obtained by electrodeposition

An electrochemical cell system of three horizontal electrodes was installed with a scheme like 
the one shown in Figure 4. A glass substrate covered by an Mo film (1 μm of thickness and 
4x10−4 Ω cm of resistivity) was the WE. The RE and AE were made of a platinum mesh. The 
CIGS films were electrodeposited by applying −1.0-V DC potential to the WE versus the RE, 
employing an electrolytic solution with copper, indium, gallium, and selenium ions. At the 
start, it was the electrodeposition process, where a stage of nucleation and electrocrystallization 
of the CIGS film on the WE electrode was obtained. After the electrodeposition process, the WE 
with the CIGS film was removed from the electrochemical bath, rinsed with deionized water, 
and placed vertically for drying. Although copper, indium, gallium, and selenium ions have 
different reduction potential, a situation that complicates a simultaneous ED process, the CIGS 
films have been obtained with the composition ratios of Ga/(In+Ga) = 0.31 and Cu/(In+Ga) ≈ 0.9, 
close to those reported in the high efficiency cells [32, 33]. The film composition was measured 
by atomic emission spectroscopy (ICP-AES). The current evolution indicates that the steady-
state value can be reached after 5 min, with a limiting current density of ≈ 1 mA / cm2. The WE 
surface changes during the film formation affect the limiting current density in the steady state 
in such a way that it decreases with very slow dynamics. The above also indicates that diffu-
sion layer thickness increases. During the steady stage, the reaction at the WE is affected by the 
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transport of the chemical species from the bulk solution to the charge transfer zone. By increas-
ing the electrodeposition time, the film obtained is more rugged and darker in color; this is due 
to the lack of ions near to WE and to the increase of the diffusion layer thickness. The stirring of 
the solution is desirable since it enhances ion transport to the substrate and decreases the thick-
ness of the diffusion layer [34]. However, the agitation method of stirring for a laboratory-scale 
deposition leads to gradients of thickness in the flow direction of the electrolyte [35].

The CIGS films characterized by scanning electron microscope (SEM) are shown in Figure 5. 
Figure 5(a, b) shows micrographs of surface and cross section. In both cases, the morphol-
ogy consists of vertical nodules with a well-defined boundary between them. Some nod-
ules are larger than others, which apparently have stopped growing. The stunted nodules 
increase the boundary between the nodules that have a greater growth. Figure 5(c) shows 
the surface morphology of the vertical nodules with a cauliflower-like growth. The surface 
morphology among the nodule boundaries is shown in Figure 5(d). The film morphology 
in the nodule has differences with the one that exists in the boundary. Apparently, the film 
formed between boundaries is less compact than those formed in the nodule. In general, the 
CIGS films that were obtained through the one-step electrodeposition are not very compact 
and have a low crystalline structure, so that they do not have the properties to be used in 
solar cells. The principal morphology consisted in groups of atoms forming the cauliflower-
like growth. The annealing process in a selenium atmosphere is necessary to transform 
the as-electrodeposited film into a more crystalline, with large grains and with compact 
morphology.

The CIGS thin films that were subjected to an annealing process in a selenium atmosphere 
are shown in Figure 6. The selenization temperature was 550°C for 180 min. Figure 6(a,b) 
shows the surface and cross-section micrographs. In the micrographs, there is evidence that 
the nodules are of different length. On increasing the deposition time, some nodules continue 
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to grow and others stop growing. The cross-section film micrograph shows the Mo layer and 
over it, a CIGS film with a compact morphology with 300 nm of thickness; this layer is also 
evident from the as-electrodeposited film shown in Figure 5(b). It was noticeable that the 
compact layer is due to the initial growth when the current density is in a transitory state and 
the diffusion layer is thin. Over the compact CIGS film, there are only formations of isolated 
nodules of different sizes with very large boundaries between them; in this stage of formation, 
the current density and the mechanism of mass transport are not locally uniform. In order to 
reduce the activation energy and grow large grains during the annealing process, a Cu-rich 
film was prepared. The film composition ratios were Ga/(In+Ga) = 0.29 and Cu/(In+Ga) = 1.18. 
The Cu content of the film determines the activation energy for grain boundary motion. It has 
been determined that by increasing the Cu content of the film from 17.9 to 25.7%, the activa-
tion energy decreases from 3.5 to 3.0 eV [36]. The micrographs of annealed films are shown in 
Figure 6(c, d). From these micrographs, it can be noted that there is also a compact CIGS film 
over the Mo film, which shows that in the copper-poor and copper-rich films, the films are 
compact in the first stage of growth, up to a thickness of 300 nm. A nonuniform grain growth 
is identified. There is only a grain growth in the boundaries indicating that the kinetic of grain 
growth during selenization process in the nodule boundaries was different, which is believed 
to be caused by the non-homogeneity in the film composition originated by the nonunifor-
mity of the current density during the one-step electrodeposition process. Copper-rich films 
were formed in the nodule boundaries. In this way, the atomic composition in the films is not 
uniform, the nodules are copper-poor, and the boundary nodules are copper-rich. That is, the 
film locally will have different electrical, structural, and optical characteristics.

Figure 5. Micrographs of the CIGS film that has been electrodeposited in a conventional mode: (a) surface, (b) cross 
section, (c) nodule with a cauliflower-like growth, and (d) morphology in the nodule boundary [13].
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4. Conventional electrodeposition plus periodical perturbations

In the electrodeposition theory, it is assumed that the WE surface is homogeneous so that 
the current density in the macroscopic level is uniformly distributed over the WE surface [8]. 
However, at the microscopic level, if the surface of the WE is considered as a surface with 
roughness, there will be a greater electric field strength in the peaks than in the surface val-
leys, as shown in Figure 7(a), where the WE roughness has been amplified. Thus, the electro-
chemical kinetic is affected. For this reason, the electric load will be concentrated in the crests 
of the WE. With the formation of the first nodules, the WE roughness increases in such a way 
that the current density and therefore the mass transport mechanism are concentrated at the 
nodules. The foregoing has been observed in other studies, where it has been determined that 
the nonuniformity in the local current densities can exist even when the macroscopic current 
distribution over a given surface is completely uniform [34]. Assuming that there is a direct 
relationship between the load transfer ratio and the current density that is demanded during 
the electrodeposition process, the load transfer process can be analyzed using the current 
density. The points of greatest intensity of the electric field are the crests of the WE. In this 
way, they produce a greater current density during the ion reduction process, in such a way 
that, in the crests, the growth of the film originates grains that grow perpendicularly with 
respect to the WE. In the valleys, the current density is lower, and therefore, the density of 
ions is reduced and the growth speed of the film is slower. From the previous results, it can 
be established that as a consequence of nonuniformity in the local current densities through 
the WE, due to the diffusion layer growth, the CIGS morphology consists of isolated nodules 

Figure 6. Micrographs of surface and cross section of the CIGS films with (a, b) composition ratio Cu/(In + Ga) = 0.9 and 
(c, d) composition ratio Cu/(In + Ga) = 1.18 [13].
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to grow and others stop growing. The cross-section film micrograph shows the Mo layer and 
over it, a CIGS film with a compact morphology with 300 nm of thickness; this layer is also 
evident from the as-electrodeposited film shown in Figure 5(b). It was noticeable that the 
compact layer is due to the initial growth when the current density is in a transitory state and 
the diffusion layer is thin. Over the compact CIGS film, there are only formations of isolated 
nodules of different sizes with very large boundaries between them; in this stage of formation, 
the current density and the mechanism of mass transport are not locally uniform. In order to 
reduce the activation energy and grow large grains during the annealing process, a Cu-rich 
film was prepared. The film composition ratios were Ga/(In+Ga) = 0.29 and Cu/(In+Ga) = 1.18. 
The Cu content of the film determines the activation energy for grain boundary motion. It has 
been determined that by increasing the Cu content of the film from 17.9 to 25.7%, the activa-
tion energy decreases from 3.5 to 3.0 eV [36]. The micrographs of annealed films are shown in 
Figure 6(c, d). From these micrographs, it can be noted that there is also a compact CIGS film 
over the Mo film, which shows that in the copper-poor and copper-rich films, the films are 
compact in the first stage of growth, up to a thickness of 300 nm. A nonuniform grain growth 
is identified. There is only a grain growth in the boundaries indicating that the kinetic of grain 
growth during selenization process in the nodule boundaries was different, which is believed 
to be caused by the non-homogeneity in the film composition originated by the nonunifor-
mity of the current density during the one-step electrodeposition process. Copper-rich films 
were formed in the nodule boundaries. In this way, the atomic composition in the films is not 
uniform, the nodules are copper-poor, and the boundary nodules are copper-rich. That is, the 
film locally will have different electrical, structural, and optical characteristics.

Figure 5. Micrographs of the CIGS film that has been electrodeposited in a conventional mode: (a) surface, (b) cross 
section, (c) nodule with a cauliflower-like growth, and (d) morphology in the nodule boundary [13].
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In the electrodeposition theory, it is assumed that the WE surface is homogeneous so that 
the current density in the macroscopic level is uniformly distributed over the WE surface [8]. 
However, at the microscopic level, if the surface of the WE is considered as a surface with 
roughness, there will be a greater electric field strength in the peaks than in the surface val-
leys, as shown in Figure 7(a), where the WE roughness has been amplified. Thus, the electro-
chemical kinetic is affected. For this reason, the electric load will be concentrated in the crests 
of the WE. With the formation of the first nodules, the WE roughness increases in such a way 
that the current density and therefore the mass transport mechanism are concentrated at the 
nodules. The foregoing has been observed in other studies, where it has been determined that 
the nonuniformity in the local current densities can exist even when the macroscopic current 
distribution over a given surface is completely uniform [34]. Assuming that there is a direct 
relationship between the load transfer ratio and the current density that is demanded during 
the electrodeposition process, the load transfer process can be analyzed using the current 
density. The points of greatest intensity of the electric field are the crests of the WE. In this 
way, they produce a greater current density during the ion reduction process, in such a way 
that, in the crests, the growth of the film originates grains that grow perpendicularly with 
respect to the WE. In the valleys, the current density is lower, and therefore, the density of 
ions is reduced and the growth speed of the film is slower. From the previous results, it can 
be established that as a consequence of nonuniformity in the local current densities through 
the WE, due to the diffusion layer growth, the CIGS morphology consists of isolated nodules 

Figure 6. Micrographs of surface and cross section of the CIGS films with (a, b) composition ratio Cu/(In + Ga) = 0.9 and 
(c, d) composition ratio Cu/(In + Ga) = 1.18 [13].
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with a cauliflower-like growth. It is evident after the transitory stage in the electrodeposi-
tion current density, and this is more noticeable when the electrodeposition time increases, a 
representation of isolated nodules is shown in Figure 7(b).

The contour lines are used in topographic maps to represent points of the same elevation. 
Here, we use it to represent the CIGS film morphology as shown in Figure 8. The contour 
lines were traced according to the film morphology shown in Figures 5 and 6. The contour 
lines represent the CIGS film morphology of the same thickness. According to the micro-
graphs, the CIGS films morphology is not uniform through the WE surface, being a function 
of the current density distribution during the electrodeposition process. Thus, the contour 
lines also represent the mass transport mechanism during the electrodeposition process. 
Figure 8 shows the contour lines that represent the electrodeposition process evolution. The 
highest mass transport density and the nodule formation are represented in zones with a 
dark color while less mass transport density and the boundary layer formation between nod-
ules are represented with a light gray color. When the electrodeposition process begins, a 
large number of nodules grow randomly distributed. The nodules distributions, which can 
be appreciated after the current transitory stage, are represented in Figure 8(a). When the first 
nodule has a cauliflower-like growth, the mass transport mechanism is concentrated in them; 
however, not all nodules grow at the same rate and eventually some stop growing. When 
the deposition time elapses, the nodules become more and more isolated and the boundary 
between them grows, because the mass transport mechanism is concentrated at very isolated 
points; this is represented as contour lines in Figure 8(b, c). The above causes the CIGS film 
morphology to appear as isolated nodules with a high roughness, and this is evident when 
the electrodeposition time increases. In previous studies, it has been shown that in the CIGS 
film synthesized by electrodeposition, the composition is related to the current density; if 

Figure 7. Growth model of CIGS films, obtained by the one-step electrodeposition: (a) effect of the WE roughness on the 
distribution of the electric field and (b) effect of the distribution of the electric field on the film morphology.
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the current density is high, the CIGS film composition is copper-poor. On the other hand, 
if the current density is low, the CIGS film composition is copper-rich [31]. Therefore, the 
CIGS film has a composition that varies according to the contour line; the zones with a dark 
color are cooper-poor while the zones with a light gray color are copper-rich. The above is 
evident in the surface morphology of CIGS films that were subjected to an annealing process 
as shown in Figure 6(c, d). At the initial stage of the electrodeposition process, the ratio of 
ion reduction in the WE surface is much greater than the speed at which the ionic species 
arrive at the load transfer zone; for this reason, the diffusion layer increases up to maintain 
an electric load balance. In this way, the zone of the depletion varies according to the contour 
plot. At this microscopic level, the diffusion layer is not uniform along the working electrode. 
It acquired this principal shape after the transient of the electrodeposition current density. 
At the macroscopic level, experimental results [37] revealed that the electrochemical kinetic 
behavior of CIGS thin films is strongly influenced by the electrical double layer existing 
between the substrate. With an increase in the electrodeposition time, the kinetic behavior of 
this electrodeposition system was gradually dominated by the diffusion process rather than 
charge transfer process.

5. CIGS thin film by electrodeposition plus periodical mechanical 
perturbations

The strategy of applying mechanical perturbations to the WE during the electrodeposition 
process was the result of analyzing the morphology of CIGS film produced by electrode-
position using DC potential at the WE; details of film preparation can be found in [13]. 
As it was shown with the cross-section micrographs, during the initial stage of CIGS film 
growth, a more compact CIGS layer is produced. This is evident in the as-electrodeposited 
film and in the annealed film. In order to promote this formation, a mechanical perturba-
tion to the working electrode was applied every 0.066 C/cm2 during the electrodeposition 
processes. With the mechanical perturbation, the solution near the WE, producing perhaps 
turbulent flow, the diffusion layer tends to disappear for a moment and a new nucleation 
and growth center was originated, and if the perturbation is periodical, the film will be 
more compact.

Figure 8. Contour lines that represent the CIGS film morphology, mass transport, and current density distribution in 
three different stages of the electrodeposition process [13].
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with a cauliflower-like growth. It is evident after the transitory stage in the electrodeposi-
tion current density, and this is more noticeable when the electrodeposition time increases, a 
representation of isolated nodules is shown in Figure 7(b).

The contour lines are used in topographic maps to represent points of the same elevation. 
Here, we use it to represent the CIGS film morphology as shown in Figure 8. The contour 
lines were traced according to the film morphology shown in Figures 5 and 6. The contour 
lines represent the CIGS film morphology of the same thickness. According to the micro-
graphs, the CIGS films morphology is not uniform through the WE surface, being a function 
of the current density distribution during the electrodeposition process. Thus, the contour 
lines also represent the mass transport mechanism during the electrodeposition process. 
Figure 8 shows the contour lines that represent the electrodeposition process evolution. The 
highest mass transport density and the nodule formation are represented in zones with a 
dark color while less mass transport density and the boundary layer formation between nod-
ules are represented with a light gray color. When the electrodeposition process begins, a 
large number of nodules grow randomly distributed. The nodules distributions, which can 
be appreciated after the current transitory stage, are represented in Figure 8(a). When the first 
nodule has a cauliflower-like growth, the mass transport mechanism is concentrated in them; 
however, not all nodules grow at the same rate and eventually some stop growing. When 
the deposition time elapses, the nodules become more and more isolated and the boundary 
between them grows, because the mass transport mechanism is concentrated at very isolated 
points; this is represented as contour lines in Figure 8(b, c). The above causes the CIGS film 
morphology to appear as isolated nodules with a high roughness, and this is evident when 
the electrodeposition time increases. In previous studies, it has been shown that in the CIGS 
film synthesized by electrodeposition, the composition is related to the current density; if 

Figure 7. Growth model of CIGS films, obtained by the one-step electrodeposition: (a) effect of the WE roughness on the 
distribution of the electric field and (b) effect of the distribution of the electric field on the film morphology.
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the current density is high, the CIGS film composition is copper-poor. On the other hand, 
if the current density is low, the CIGS film composition is copper-rich [31]. Therefore, the 
CIGS film has a composition that varies according to the contour line; the zones with a dark 
color are cooper-poor while the zones with a light gray color are copper-rich. The above is 
evident in the surface morphology of CIGS films that were subjected to an annealing process 
as shown in Figure 6(c, d). At the initial stage of the electrodeposition process, the ratio of 
ion reduction in the WE surface is much greater than the speed at which the ionic species 
arrive at the load transfer zone; for this reason, the diffusion layer increases up to maintain 
an electric load balance. In this way, the zone of the depletion varies according to the contour 
plot. At this microscopic level, the diffusion layer is not uniform along the working electrode. 
It acquired this principal shape after the transient of the electrodeposition current density. 
At the macroscopic level, experimental results [37] revealed that the electrochemical kinetic 
behavior of CIGS thin films is strongly influenced by the electrical double layer existing 
between the substrate. With an increase in the electrodeposition time, the kinetic behavior of 
this electrodeposition system was gradually dominated by the diffusion process rather than 
charge transfer process.

5. CIGS thin film by electrodeposition plus periodical mechanical 
perturbations

The strategy of applying mechanical perturbations to the WE during the electrodeposition 
process was the result of analyzing the morphology of CIGS film produced by electrode-
position using DC potential at the WE; details of film preparation can be found in [13]. 
As it was shown with the cross-section micrographs, during the initial stage of CIGS film 
growth, a more compact CIGS layer is produced. This is evident in the as-electrodeposited 
film and in the annealed film. In order to promote this formation, a mechanical perturba-
tion to the working electrode was applied every 0.066 C/cm2 during the electrodeposition 
processes. With the mechanical perturbation, the solution near the WE, producing perhaps 
turbulent flow, the diffusion layer tends to disappear for a moment and a new nucleation 
and growth center was originated, and if the perturbation is periodical, the film will be 
more compact.

Figure 8. Contour lines that represent the CIGS film morphology, mass transport, and current density distribution in 
three different stages of the electrodeposition process [13].
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Figure 9(a, b) shows the typical signal of the WE potential and current density versus time 
collected during the electrodeposition process by applying periodical mechanical perturba-
tions to the WE. The average current density value was 2.4 mA/cm2. The WE potential and the 
current density were periodically related to the periodicity of the mechanical perturbations. 
The WE potential had a variation of −1.0 to −0.995 V at each mechanical perturbation. With 
the periodical mechanical perturbations, it was possible to make CIGS films with 1.2–1.5 μm 
in 20 min, and the growth was faster with respect to not using mechanical perturbations. 
The film composition rations were of Ga/(In+Ga) = 0.28 and Cu/(In+Ga) = 0.93. With the 
mechanical perturbations, no film dissolution was produced as is presented in pulse reverse 
electrodeposition.

5.1. Characterization of CIGS films obtained by electrodeposition plus mechanical 
perturbations

The surface and cross-section morphology of the as-electrodeposited CIGS film are shown in 
Figure 10(a, b). It is identified that by applying mechanical perturbations, the films are more 
compact and with less roughness compared to those obtained without applying mechanical 

Figure 9. A graphic representation of electrodeposition signals versus time obtained during the electrodeposition 
process plus periodical mechanical perturbations: (a) WE potential and (b) WE current density [13].
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perturbations. Films were grown with two different thicknesses, 1200 and 500 nm, that were sub-
jected to the annealing process. The morphology of the annealed films is shown in Figure 10(c–
f). In both cases, it is identified that the films are more compact when it is compared to the one 
obtained by not using mechanical perturbations during the electrodeposition process. As it can 
be seen on the micrographs, there is coalescence of grains along the film cross section, and the 
morphology is dense and crack free. Coalescence is achieved due to the fact that the composition 
is more homogeneous, zones with copper-poor and cooper-rich have been minimized, and the 
activation energy for grain growth is more uniform throughout the film. This film morphology 
is completely different from that obtained without applying mechanical perturbations, where 
there was only coalescence in the first 300 nm of thickness. This is because a more compact 

Figure 10. Micrographs of the surface and cross section of the films that have been grown in a potentiostatic mode with 
mechanical perturbations. (a,b) without annealing, (c,d) annealed films with a thickness of 1200 nm, and (e,f) annealed 
films with a thickness of 500 nm [13].
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perturbations. Films were grown with two different thicknesses, 1200 and 500 nm, that were sub-
jected to the annealing process. The morphology of the annealed films is shown in Figure 10(c–
f). In both cases, it is identified that the films are more compact when it is compared to the one 
obtained by not using mechanical perturbations during the electrodeposition process. As it can 
be seen on the micrographs, there is coalescence of grains along the film cross section, and the 
morphology is dense and crack free. Coalescence is achieved due to the fact that the composition 
is more homogeneous, zones with copper-poor and cooper-rich have been minimized, and the 
activation energy for grain growth is more uniform throughout the film. This film morphology 
is completely different from that obtained without applying mechanical perturbations, where 
there was only coalescence in the first 300 nm of thickness. This is because a more compact 

Figure 10. Micrographs of the surface and cross section of the films that have been grown in a potentiostatic mode with 
mechanical perturbations. (a,b) without annealing, (c,d) annealed films with a thickness of 1200 nm, and (e,f) annealed 
films with a thickness of 500 nm [13].
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morphology was obtained from the electrodeposition process with mechanical perturba-
tions, and it represents a route for obtaining CIGS films by electrodeposition with improved 
morphology.

Figure 11 shows the GIXRD diffraction pattern for the film deposited with a potentiostatic 
mode with and without periodical mechanical perturbations with an incidence angle of 
1.5°. The CuInxGa(1-x)Se2, Mo, and MoSe2 structures are identified according to PDF#35–1102, 
PDF#42–1120, and PDF#29–0914. First of all, the films exhibit a highly (112) preferred ori-
entation. From Figure 11(a), it can be seen that the as-electrodeposited film shows a poor 
crystallinity, which is a characteristic of CIGS films before annealing. Also, a diffraction peak 
of the Mo, which is the substrate and back contact, is identified. The main difference in the dif-
fraction patterns is that there is a greater intensity in the film formed with mechanical pertur-
bation than the film formed without mechanical perturbation. This indicates the presence of 
higher crystallinity in the film obtained with the mechanical perturbation. Figure 11(b) pres-
ents the diffraction patterns of the annealed films in selenium atmosphere; these show a high 
crystalline quality, which is revealed by the well-defined chalcopyrite peaks. The annealing 

Figure 11. GIXRD diffraction pattern of CIGS films obtained with mechanical perturbation and without mechanical 
perturbation: (a) as-electrodeposited films and (b) annealed films [13].
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process clearly increased the grain size, as indicated by the reduction of the peak full-width 
at half-maximum (FWHM). For the CIGS film formed without mechanical perturbation, the 
crystal size was 26.6 nm, and for the CIGS film formed with mechanical perturbation, the 
crystal size was 26.0 nm. This can be expected because the peaks of both films have FWHM 
that are alike. The annealed films, in a similar manner to the as-electrodeposited film, have 
a greater intensity in the diffraction peaks for the film formed with mechanical perturbation 
than for the film formed without mechanical perturbation. Probably, one of the reasons is 
that the films obtained with mechanical perturbation are denser. The results shown by XRD 
and SEM clearly demonstrate the advantages of applying periodic perturbations during the 
electrodeposition process, this being a new route to synthesize thin films.

6. Conclusion(s)

Employing periodic mechanical perturbations during the electrodeposition process allows a 
better distribution of ionic species on the working electrode surface. This methodology rep-
resents a novel approach for the fabrication of thin films by electrodeposition. This has been 
demonstrated successfully in the synthesis of compact CIGS thin films. It has the advantage to 
obtain a homogeneous morphology CIGS films in the as-electrodeposited films, as well, in the 
annealed film. In this strategy, there is no dissolution of the film during the electrodeposition 
process, as taking place in pulse-reverse electrodeposition. It is a route to obtain CIGS films 
by electrodeposition with compact morphology and large grains. Further studies should be 
done about the mechanical perturbation frequency and the effect on the solar cell efficiency.
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process clearly increased the grain size, as indicated by the reduction of the peak full-width 
at half-maximum (FWHM). For the CIGS film formed without mechanical perturbation, the 
crystal size was 26.6 nm, and for the CIGS film formed with mechanical perturbation, the 
crystal size was 26.0 nm. This can be expected because the peaks of both films have FWHM 
that are alike. The annealed films, in a similar manner to the as-electrodeposited film, have 
a greater intensity in the diffraction peaks for the film formed with mechanical perturbation 
than for the film formed without mechanical perturbation. Probably, one of the reasons is 
that the films obtained with mechanical perturbation are denser. The results shown by XRD 
and SEM clearly demonstrate the advantages of applying periodic perturbations during the 
electrodeposition process, this being a new route to synthesize thin films.

6. Conclusion(s)

Employing periodic mechanical perturbations during the electrodeposition process allows a 
better distribution of ionic species on the working electrode surface. This methodology rep-
resents a novel approach for the fabrication of thin films by electrodeposition. This has been 
demonstrated successfully in the synthesis of compact CIGS thin films. It has the advantage to 
obtain a homogeneous morphology CIGS films in the as-electrodeposited films, as well, in the 
annealed film. In this strategy, there is no dissolution of the film during the electrodeposition 
process, as taking place in pulse-reverse electrodeposition. It is a route to obtain CIGS films 
by electrodeposition with compact morphology and large grains. Further studies should be 
done about the mechanical perturbation frequency and the effect on the solar cell efficiency.
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1. Introduction

In this chapter, we show how to generate a semi-analytical solution for the wellbore pressure
response during a water injection test. In the petroleum industry, well testing is a common
practice which consists of wellbore pressure and wellbore flow rate data acquisition in order to
estimate parameters that govern flow in the porous media, i.e., the reservoir rock which stores
the hydrocarbons. Well tests give an insight into the oil and gas field production potential and
profitability and allow the estimation of reservoir parameters. Estimated parameters can be
used to calibrate the reservoir numerical simulation model that are used to describe the fluid
flow in these reservoirs and forecast their performance as well as to maximize the productivity
of the wells. Injections are important tests on reservoirs containing high amount of harmful
gases like carbon dioxide and sulfur dissolved in the oil, causing conventional production
testing in the exploratory phase of offshore field development inviable. Multiphase flow is the
norm in petroleum reservoirs, and an injection test consists of a period of water or gas injection
into an oil reservoir (Figure 1), a common technique known as waterflooding or gasflooding
that is used to displace oil to a producing well. Data from an injection test can be used to
estimate the reservoir rock absolute permeability (k), the skin zone permeability (ks), and the
water endpoint relative permeability (aw). The skin zone permeability is the rock permeability
in the zone around the well which was stimulated or damaged during the wellbore drilling
operation, while the water endpoint permeability is a measure of how easy water can flow in a
specific porous media when there is immobile oil present. In the pursuance of modeling the
wellbore pressure response during a water injection test, the Rapport-Leas equation [1], a
nonlinear pseudo-parabolic convection-dispersion equation, is used to determine the water
saturation distribution in the reservoir as a function of time by assuming a one-dimensional
homogeneous medium containing incompressible fluids. Water saturation (Sw) is the fraction
of water in a given pore space, and it is expressed in water volume by pore volume. In [2–4], it
has been shown how to obtain the wellbore pressure response for the case when capillary

Figure 1. Sketch of the injection test. Reservoir is assumed to be at rest at the beginning of the test with constant pressure
and immobile water saturation distribution (a). Water is injected at constant flow rate leading to pressure change that
propagates from the well (b).
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pressure effects are negligible, i.e., when dispersion effects are not significant. In this case, the
Rapport-Leas equation reduces to the Buckley-Leverett [5] equation, a nonlinear hyperbolic
equation. In this work, we have extended their model to include capillary pressure. Although
the wellbore pressure during injection seems to be insensitive to capillarity effects insensitive to
the accuracy of the calculated saturation distribution in the reservoir, knowledge of the correct
saturation profile at the end of injection represents the initial condition and hence is required to
calculate the saturation distribution during subsequent tests as shut-in (falloff) and flowback
(production) test which would allow the estimation of relative permeabilities and capillary
pressure curves. Once the water saturation distribution is determined for each time, the
corresponding pressure solution can be obtained by integrating the expression for the pressure
gradient, given by Darcy’s law, from the wellbore radius to infinity while assuming an infinite-
acting reservoir. Because Darcy’s law does not assume incompressible flow, the pressure solution
is transient and does not need to assume incompressible flow even though the saturation profile
is generated from a incompressible assumption. To actually evaluate this integral which repre-
sents the pressure solution, however, we must assume that the reservoir rate profile becomes
constant in a region from the wellbore to a radius such that all the injected water is contained
within the reservoir volume within this radius (Figure 2); this radius increases with time [6]. The
region within this radius is referred to as the steady-state region or zone. Intuitively, the assump-
tion that this steady-state zone exists appears to be more tenuous as the total compressibility of
the system increases. However, the assumption that this steady-state zone exists has shown to
yield accurate semi-analytical pressure solutions for gas-condensate systems [7].

2. Mathematical model

The solutions presented assume infinite-acting one-dimensional radial flow from and to a fully
penetrating vertical well with no gravity effects. We apply the method of matched asymptotic
expansions to solve the one-dimensional saturation convection-dispersion equation, a
nonlinear pseudo-parabolic partial differential equation. This equation is one of the governing
equations for two-phase flow in a porous media when including capillary pressure effects, for

Figure 2. Relationship between the water saturation (Sw), solid blue curve, the dimensionless total flow rate profile (qD),
and dotted red curve, during injection.
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pressure curves. Once the water saturation distribution is determined for each time, the
corresponding pressure solution can be obtained by integrating the expression for the pressure
gradient, given by Darcy’s law, from the wellbore radius to infinity while assuming an infinite-
acting reservoir. Because Darcy’s law does not assume incompressible flow, the pressure solution
is transient and does not need to assume incompressible flow even though the saturation profile
is generated from a incompressible assumption. To actually evaluate this integral which repre-
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the specific initial and boundary conditions arising when injecting water in an infinite radial
piecewise homogeneous horizontal medium containing oil and water. The method of matched
asymptotic expansions combines inner and outer expansions to construct the global solution.
In here, the outer expansion corresponds to the solution of the nonlinear first-order hyperbolic
equation obtained when the dispersion effects driven by capillary pressure became negligible.
This equation has a monotonic flux function with an inflection point, and its weak solution can
be found by applying the method of characteristics. The inner expansion corresponds to the
shock layer, which is modeled as a traveling wave obtained by a stretching transformation of
the partial differential equation. By combining the solution for saturation with the so-called
Thompson-Reynolds steady-state theory, one can obtain an approximate analytical solution for
the wellbore pressure, which can be used as the forward solution which analyzes pressure data
by pressure-transient analysis. Let us start by finding the saturation distribution in the reser-
voir during injection and show how to find pressure.

2.1. Saturation

The water mass balance equation, in radial coordinates, leads to the following nonlinear partial
differential equation [5]:

∂Sw
∂t

þ θqt
2πrhϕ

∂Fw Swð Þ
∂r

¼ 0, (1)

where throughout we assume that porosity (ϕ) is homogeneous; qt is the total liquid rate in
RB/D; θ represents in general a unit conversion factor where in the oil field units used here,
θ =5.6146/24; the reservoir thickness, h, and the radius, r, are in ft; and time, t, is in hours. Let us
use Darcy’s equation in radial coordinates without gravity for the oil (o) and water (w) flow
rate in RB/D given by

qp ¼ � k rð Þhλp Swð Þ
α

r
∂pp
∂r

� �
, for p ¼ o, w: (2)

For field units used throughout, α = 141.2. pp, is the phase p pressure. The λp is the phase p

mobility, given by the ratio of the phase permeability (krw or kro), which are functions of the
water saturation, by the phase viscosity (μw or μo). To find the water fractional flow (Fw), we
can subtract Eq. (2) for water from Eq. (2) for oil, to get

αqo
k rð Þhλo Swð Þ �

αqw
k rð Þhλw Swð Þ ¼ � r

∂po
∂r

� r
∂pw
∂r

� �
: (3)

Rearranging Eq. (3), substituting the capillary pressure pc given by the difference of the oil
pressure (po) and the water pressure (pw), and dividing the resulting equation by the total flow
rate, qt, yield

Fo � Fwλo Swð Þ
λw Swð Þ ¼ � k rð Þhλo Swð Þ

αqt
r
∂pc Swð Þ

∂r

� �
, (4)
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where Fo and Fw are the oil and water fractional flow given by qo and qw, respectively. We
assume throughout that water is the wetting phase. Finally, substituting Fo ¼ 1� Fw in Eq. (4)
and solving for Fw, we have the following expression for the water fractional flow including
capillary pressure effects

Fw Swð Þ ¼
1þ k rð Þhλo Swð Þ

αqt
r ∂pc∂r

� �

1þ λo Swð Þ
λw Swð Þ

¼ 1

1þ λo Swð Þ
λw Swð Þ

þ
k rð Þhkro
αqtμo

r ∂pc∂r

� �

1þ λo Swð Þ
λw Swð Þ

¼ f w þ erk rð Þf w Swð Þkro Swð Þ ∂pc Swð Þ
∂r

,
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where f w is the water mobility ratio (Figure 3), i.e., the ratio of water mobility and the total
mobility (λt), given by

f w Swð Þ ¼ 1

1þ λo Swð Þ
λw Swð Þ

¼ λw Swð Þ
λo Swð Þ þ λw Swð Þ

λw Swð Þ
λo Swð Þ þ λw Swð Þ , (6)

which usually assumes an S-shape. e is the perturbation parameter, defined by

e ¼ h
αqtμo

(7)

and the permeability is a function of radius because we consider a skin-damaged zone:

k rð Þ ¼ ks, rw ≤ r < rskin
k, r ≥ rskin,

�
(8)

where rw is the wellbore radius, rskin is the radius of the damaged zone, and ks is the perme-
ability in the skin zone. Grouping all the parameters that are the function of water saturation,
we can define (Figure 4)

dΨ
dSw

Swð Þ ¼ �f w Swð Þkro Swð Þ dpc
dSw

Swð Þ, (9)

Figure 3. Water fractional flow curve (dark solid curve) and its derivative (dotted curve).
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the specific initial and boundary conditions arising when injecting water in an infinite radial
piecewise homogeneous horizontal medium containing oil and water. The method of matched
asymptotic expansions combines inner and outer expansions to construct the global solution.
In here, the outer expansion corresponds to the solution of the nonlinear first-order hyperbolic
equation obtained when the dispersion effects driven by capillary pressure became negligible.
This equation has a monotonic flux function with an inflection point, and its weak solution can
be found by applying the method of characteristics. The inner expansion corresponds to the
shock layer, which is modeled as a traveling wave obtained by a stretching transformation of
the partial differential equation. By combining the solution for saturation with the so-called
Thompson-Reynolds steady-state theory, one can obtain an approximate analytical solution for
the wellbore pressure, which can be used as the forward solution which analyzes pressure data
by pressure-transient analysis. Let us start by finding the saturation distribution in the reser-
voir during injection and show how to find pressure.

2.1. Saturation

The water mass balance equation, in radial coordinates, leads to the following nonlinear partial
differential equation [5]:

∂Sw
∂t

þ θqt
2πrhϕ

∂Fw Swð Þ
∂r

¼ 0, (1)

where throughout we assume that porosity (ϕ) is homogeneous; qt is the total liquid rate in
RB/D; θ represents in general a unit conversion factor where in the oil field units used here,
θ =5.6146/24; the reservoir thickness, h, and the radius, r, are in ft; and time, t, is in hours. Let us
use Darcy’s equation in radial coordinates without gravity for the oil (o) and water (w) flow
rate in RB/D given by

qp ¼ � k rð Þhλp Swð Þ
α

r
∂pp
∂r

� �
, for p ¼ o, w: (2)

For field units used throughout, α = 141.2. pp, is the phase p pressure. The λp is the phase p

mobility, given by the ratio of the phase permeability (krw or kro), which are functions of the
water saturation, by the phase viscosity (μw or μo). To find the water fractional flow (Fw), we
can subtract Eq. (2) for water from Eq. (2) for oil, to get

αqo
k rð Þhλo Swð Þ �

αqw
k rð Þhλw Swð Þ ¼ � r

∂po
∂r

� r
∂pw
∂r

� �
: (3)

Rearranging Eq. (3), substituting the capillary pressure pc given by the difference of the oil
pressure (po) and the water pressure (pw), and dividing the resulting equation by the total flow
rate, qt, yield

Fo � Fwλo Swð Þ
λw Swð Þ ¼ � k rð Þhλo Swð Þ

αqt
r
∂pc Swð Þ

∂r

� �
, (4)
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where Fo and Fw are the oil and water fractional flow given by qo and qw, respectively. We
assume throughout that water is the wetting phase. Finally, substituting Fo ¼ 1� Fw in Eq. (4)
and solving for Fw, we have the following expression for the water fractional flow including
capillary pressure effects
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where f w is the water mobility ratio (Figure 3), i.e., the ratio of water mobility and the total
mobility (λt), given by
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which usually assumes an S-shape. e is the perturbation parameter, defined by

e ¼ h
αqtμo

(7)

and the permeability is a function of radius because we consider a skin-damaged zone:

k rð Þ ¼ ks, rw ≤ r < rskin
k, r ≥ rskin,
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(8)

where rw is the wellbore radius, rskin is the radius of the damaged zone, and ks is the perme-
ability in the skin zone. Grouping all the parameters that are the function of water saturation,
we can define (Figure 4)

dΨ
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Swð Þ ¼ �f w Swð Þkro Swð Þ dpc
dSw

Swð Þ, (9)

Figure 3. Water fractional flow curve (dark solid curve) and its derivative (dotted curve).
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and rewrite Eq. (10) as

Fw Swð Þ ¼ f w Swð Þ � erk rð Þ dΨ Swð Þ
dSw

∂Sw
∂r

: (10)

For simplicity, we use the Brooks and Corey model [8] given by

pc Swð Þ ¼ pt svþ Sw � Swi
1� Swi � Sor

� ��1
λ

, (11)

to represent capillary pressure. Here, Siw is the immobile water saturation and Sor is the
residual oil saturation. λ, where 0:4 ≤λ ≤ 4:0, is a measure of the pore size distribution (the
greater the λ value, the more uniform is the pore size distribution), and pt is the threshold
pressure. The threshold pressure is a measure of the maximum pore size [9], i.e., the minimum
capillary pressure at which a continuous nonwetting phase exists in the imbibition case and a
continuous wetting phase exists in the drainage case [10]. The greater is the maximum pore
size, the smaller is the pressure threshold. According to [11], the extrapolation of the capillary
pressure curve obtained from experimental data to Sw ¼ 1 yields the correct threshold value.
In practice, we introduce a small variable, sv, to limit the maximum value of pc to a finite value.
We can relate the relative permeabilities and the capillary pressure through λ by using the [12]
model for the water phase (wetting phase)

krw ¼ aw
Sw � Siw

1� Siw � Sor

� �2þλ
λ

, (12)

and the [8] model for the oil phase (nonwetting phase) [13]

kro ¼ 1� Sw � Siw
1� Siw � Sor

� �2

1� Sw � Siw
1� Siw � Sor

� �2þλ
λ

 !
: (13)

Figure 4. dΨ
dSw

versus water saturation for a partially water wet reservoir (b). For a strong water, we reservoir, dΨ
dSw

! ∞ at
Sw ¼ Siw.
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Now that we have defined the fractional flow rate and its parameters, let us go back to our
governing equation for saturation (Eq. (1)). Inserting Eq. (10) into Eq. (1) and defining

C ¼ θqt
πhϕ

, (14)

yields

∂Sw
∂t

þ C
2r

∂f w
∂r

� e
C
2r

∂
∂r

rk rð Þ ∂Ψ
∂r

� �
¼ 0, (15)

which is the nonlinear “pseudo-parabolic” governing equation for saturation. If we insert same
common values for the parameters in Eq. (7) to have an idea of its order of magnitude, we can
see that epsilon is a very small number. This suggests that the effect of the third term in Eq. (15)
may be treated as a perturbation to the first-order hyperbolic equation [5], given by

∂Sw
∂t

þ C
2r

∂f w
∂r

¼ 0, (16)

where f w is considered to be an S-shaped function along this chapter. During injection, for a
partially water wet reservoir, the capillary pressure dispersive effect will be non-negligible
only in a small region around the water front (hypodispersion phenomenon) [14, 15] where the
capillary pressure derivative and the saturation gradient are significant (Figure 5). The capil-
lary pressure smears the water front during injection balancing the self-sharpening tendency of
the shock. [16] have developed an exact analytical solution for linear waterflood including the
effects of capillary pressure, but their solution is limited to a particular functional form to
represent relative permeabilities and capillary pressure curves and does not consider radial
flow, which makes their solution very restrictive. As done by [17, 18] for Cartesian coordinates
and by [19] for streamlines and streamtubes, the perturbation caused by the capillary pressure
effects can be modeled as a shock layer (water front) which moves with the same speed as the
shock wave. By applying the method of matched asymptotic expansions [20, 21], we can

Figure 5. Capillary pressure curve (a) and saturation profile at a time t during water injection (b). The dashed green lines
represent the capillary pressure derivative (a) and the saturation gradient (b) at the water front.
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and rewrite Eq. (10) as
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For simplicity, we use the Brooks and Corey model [8] given by

pc Swð Þ ¼ pt svþ Sw � Swi
1� Swi � Sor

� ��1
λ

, (11)

to represent capillary pressure. Here, Siw is the immobile water saturation and Sor is the
residual oil saturation. λ, where 0:4 ≤λ ≤ 4:0, is a measure of the pore size distribution (the
greater the λ value, the more uniform is the pore size distribution), and pt is the threshold
pressure. The threshold pressure is a measure of the maximum pore size [9], i.e., the minimum
capillary pressure at which a continuous nonwetting phase exists in the imbibition case and a
continuous wetting phase exists in the drainage case [10]. The greater is the maximum pore
size, the smaller is the pressure threshold. According to [11], the extrapolation of the capillary
pressure curve obtained from experimental data to Sw ¼ 1 yields the correct threshold value.
In practice, we introduce a small variable, sv, to limit the maximum value of pc to a finite value.
We can relate the relative permeabilities and the capillary pressure through λ by using the [12]
model for the water phase (wetting phase)

krw ¼ aw
Sw � Siw
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and the [8] model for the oil phase (nonwetting phase) [13]
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dSw

versus water saturation for a partially water wet reservoir (b). For a strong water, we reservoir, dΨ
dSw

! ∞ at
Sw ¼ Siw.
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Now that we have defined the fractional flow rate and its parameters, let us go back to our
governing equation for saturation (Eq. (1)). Inserting Eq. (10) into Eq. (1) and defining

C ¼ θqt
πhϕ

, (14)

yields

∂Sw
∂t

þ C
2r

∂f w
∂r

� e
C
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∂
∂r

rk rð Þ ∂Ψ
∂r

� �
¼ 0, (15)

which is the nonlinear “pseudo-parabolic” governing equation for saturation. If we insert same
common values for the parameters in Eq. (7) to have an idea of its order of magnitude, we can
see that epsilon is a very small number. This suggests that the effect of the third term in Eq. (15)
may be treated as a perturbation to the first-order hyperbolic equation [5], given by

∂Sw
∂t

þ C
2r

∂f w
∂r

¼ 0, (16)

where f w is considered to be an S-shaped function along this chapter. During injection, for a
partially water wet reservoir, the capillary pressure dispersive effect will be non-negligible
only in a small region around the water front (hypodispersion phenomenon) [14, 15] where the
capillary pressure derivative and the saturation gradient are significant (Figure 5). The capil-
lary pressure smears the water front during injection balancing the self-sharpening tendency of
the shock. [16] have developed an exact analytical solution for linear waterflood including the
effects of capillary pressure, but their solution is limited to a particular functional form to
represent relative permeabilities and capillary pressure curves and does not consider radial
flow, which makes their solution very restrictive. As done by [17, 18] for Cartesian coordinates
and by [19] for streamlines and streamtubes, the perturbation caused by the capillary pressure
effects can be modeled as a shock layer (water front) which moves with the same speed as the
shock wave. By applying the method of matched asymptotic expansions [20, 21], we can

Figure 5. Capillary pressure curve (a) and saturation profile at a time t during water injection (b). The dashed green lines
represent the capillary pressure derivative (a) and the saturation gradient (b) at the water front.
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combine the solution of the Buckley-Leverett equation (Eq. (16)) with this steady traveling
wave to generate an approximate solution of the Rappaport and Leas equation, i.e., the
solution of the convection–dispersion saturation equation. In order to solve the [1] equation
for the injection period, with the following initial and boundary conditions

Sw r; 0ð Þ ¼ Siw, (17)

Fw rw; tð Þ ¼ 1, (18)

lim
r!∞

Sw ¼ Siw: (19)

we divide the domain into two regions, outer and inner regions (Figure 6), where the inner
region, the region around the water front, is modeled as a shock layer which propagates with
the same speed as the shock would be obtained when e ! 0, i.e., when the capillary pressure
effects are null. The combination of the self-sharpening tendency of the shock (Swf > Siw) with
the dispersive effect from the capillary pressure balance against each other leads to the shock
layer [22]. Note: in order to guarantee pressure continuity, we have assumed that the capillary
pressure gradient is zero at the wellbore, which means that Fw ¼ f w ¼ 1 is the wellbore, so
Sw rw; tð Þ ¼ 1� Sor. This boundary condition will be used for both the Buckley-Leverett and the
Rapoport-Leas solutions. Ref. [23] presented the idea of using the method of matched asymp-
totic equations to solve the Rapoport-Leas equation, while [18, 24, 19] showed how the mass
balance could be used to present a closed solution for the saturation distribution. Ref. [24]
derived an approximate solution for the [1] in Cartesian coordinates for both water and oil
injections into a core considering end effects by also applying the method of matched asymp-
totic expansions. The method of asymptotic expansions uses the inner and outer saturation
solutions combined with a matching function in order to obtain a composite solution which
avoids abruptly switching from the outer to the inner solution or vice versa. The inner and
outer solutions are each capable of representing the real solution in two distinct regions—the
“inner region” and the “outer region” of the boundary layer (Figure 6). Similarly, we approx-
imate the saturation solution of Rapoport-Leas equation by forming a composite solution

Figure 6. True saturation distribution in the reservoir (Sw) compared with the outer solution (SBLw ) and the inner solution
(SSLw ). The dashed square shows the saturation transition zone between the outer and the inner solution where none of
these two are capable of approximate Sw.
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given by the combination of three saturations: SBLw , the solution obtained when the capillary

pressure effects are neglected; SSLw , the saturation distribution in the shock layer obtained by

magnifying the dispersion effects in the saturation governing equation; and SSHw , the shock
wave represented by a Heaviside function:

Sw r; tð Þ≃SBLw r; tð Þ þ SSLw r; tð Þ � SSHw r; tð Þ, (20)

where BL stands for Buckley-Leverett, SL for shock layer, and SH for shock function.

2.1.1. Outer solution (SBLw )

The outer solution, SBLw , is obtained by letting e ! 0 in Eq. (15):

SBLw r; tð Þ ¼ lim
e!0, r;tð Þ fixed

Sw r; t; eð Þ: (21)

That is the nonlinear hyperbolic convection equation known as the Buckley-Leverett saturation
equation given by Eq. (16) which is obtained when capillary and gravity effects are neglected.
The well-known unique admissible weak solution of this Riemann problem, with the following
initial condition

SBLw r; 0ð Þ ¼ 1� Sor, for r ≤ rw
Siw, for r > rw,

�
(22)

can be obtained by the application of the method of characteristics and is given by [5].

SBLw r; tð Þ ¼

1� Sor, r2 ⩽ r2w
df w
dSw

� ��1 1
C

r2 � r2w
� �

t

� �
, r2w < r2 ⩽ r2w þDt

Siw, r2 > Dtþ r2w,

8>>><
>>>:

(23)

that is, by a family of rarefaction waves, a semi-shock wave, and a constant saturation zone
where water is immobile. The shock jump is caused by the S-shaped form of the fractional flow
curve, which leads to a gradient catastrophe and consequently a shock solution. This semi-
shock has a constant speed, satisfying the Rankine-Hugoniot condition [25]:

D ¼ C
f w Swf
� �� f w Siwð Þ� �

Swf � Siw
� � , (24)

where Swf and Siw are the shock saturations. In this case, in order to satisfy the conservation of
mass, the shock speed should correspond to the slope of a tangent line to the water fractional
flow curve, i.e.,

f w Swf
� �� f w Siwð Þ
Swf � Siw

¼ df w Swf
� �
dSw

: (25)
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combine the solution of the Buckley-Leverett equation (Eq. (16)) with this steady traveling
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solution of the convection–dispersion saturation equation. In order to solve the [1] equation
for the injection period, with the following initial and boundary conditions

Sw r; 0ð Þ ¼ Siw, (17)

Fw rw; tð Þ ¼ 1, (18)

lim
r!∞

Sw ¼ Siw: (19)

we divide the domain into two regions, outer and inner regions (Figure 6), where the inner
region, the region around the water front, is modeled as a shock layer which propagates with
the same speed as the shock would be obtained when e ! 0, i.e., when the capillary pressure
effects are null. The combination of the self-sharpening tendency of the shock (Swf > Siw) with
the dispersive effect from the capillary pressure balance against each other leads to the shock
layer [22]. Note: in order to guarantee pressure continuity, we have assumed that the capillary
pressure gradient is zero at the wellbore, which means that Fw ¼ f w ¼ 1 is the wellbore, so
Sw rw; tð Þ ¼ 1� Sor. This boundary condition will be used for both the Buckley-Leverett and the
Rapoport-Leas solutions. Ref. [23] presented the idea of using the method of matched asymp-
totic equations to solve the Rapoport-Leas equation, while [18, 24, 19] showed how the mass
balance could be used to present a closed solution for the saturation distribution. Ref. [24]
derived an approximate solution for the [1] in Cartesian coordinates for both water and oil
injections into a core considering end effects by also applying the method of matched asymp-
totic expansions. The method of asymptotic expansions uses the inner and outer saturation
solutions combined with a matching function in order to obtain a composite solution which
avoids abruptly switching from the outer to the inner solution or vice versa. The inner and
outer solutions are each capable of representing the real solution in two distinct regions—the
“inner region” and the “outer region” of the boundary layer (Figure 6). Similarly, we approx-
imate the saturation solution of Rapoport-Leas equation by forming a composite solution

Figure 6. True saturation distribution in the reservoir (Sw) compared with the outer solution (SBLw ) and the inner solution
(SSLw ). The dashed square shows the saturation transition zone between the outer and the inner solution where none of
these two are capable of approximate Sw.
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given by the combination of three saturations: SBLw , the solution obtained when the capillary

pressure effects are neglected; SSLw , the saturation distribution in the shock layer obtained by

magnifying the dispersion effects in the saturation governing equation; and SSHw , the shock
wave represented by a Heaviside function:

Sw r; tð Þ≃SBLw r; tð Þ þ SSLw r; tð Þ � SSHw r; tð Þ, (20)

where BL stands for Buckley-Leverett, SL for shock layer, and SH for shock function.

2.1.1. Outer solution (SBLw )

The outer solution, SBLw , is obtained by letting e ! 0 in Eq. (15):

SBLw r; tð Þ ¼ lim
e!0, r;tð Þ fixed

Sw r; t; eð Þ: (21)

That is the nonlinear hyperbolic convection equation known as the Buckley-Leverett saturation
equation given by Eq. (16) which is obtained when capillary and gravity effects are neglected.
The well-known unique admissible weak solution of this Riemann problem, with the following
initial condition

SBLw r; 0ð Þ ¼ 1� Sor, for r ≤ rw
Siw, for r > rw,

�
(22)

can be obtained by the application of the method of characteristics and is given by [5].

SBLw r; tð Þ ¼

1� Sor, r2 ⩽ r2w
df w
dSw
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that is, by a family of rarefaction waves, a semi-shock wave, and a constant saturation zone
where water is immobile. The shock jump is caused by the S-shaped form of the fractional flow
curve, which leads to a gradient catastrophe and consequently a shock solution. This semi-
shock has a constant speed, satisfying the Rankine-Hugoniot condition [25]:

D ¼ C
f w Swf
� �� f w Siwð Þ� �

Swf � Siw
� � , (24)

where Swf and Siw are the shock saturations. In this case, in order to satisfy the conservation of
mass, the shock speed should correspond to the slope of a tangent line to the water fractional
flow curve, i.e.,

f w Swf
� �� f w Siwð Þ
Swf � Siw

¼ df w Swf
� �
dSw

: (25)
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The details of this solution can be found in [5]. Figure 7 shows the shock jump slope tangent to
the fractional flow curve at Sw ¼ Swf and the saturation distribution in the reservoir at a time t.
The rarefaction wave family spans from 1� Sor to Swf from rw to r ¼ 25 ft, the water front
position, i.e., the shock front position, rs. Ahead of the water front position, there is an
immobile water. Figure 8 compares this solution, the outer solution, with the true solution;
there is the convection-dispersion saturation profile. Here, we call the true solution the solu-
tion obtained from a numerical simulator.

2.1.2. Inner solution (SSLw )

As mentioned, the inner solution intends to represent the saturation profile in the “inner” region
around the water front, which is a shock layer (a boundary layer) around the shock traveling

Figure 7. The shock jump slope tangent (blue curve) to the S-shaped fractional flow curve at Sw ¼ Swf (a) and the saturation
profile in the reservoir at a time t (b). The rarefaction waves family spans from 1� Sor 1 to Swf and from rw to r = 25 ft, the
water front position, i.e., the shock front position, rf , inj . Ahead of the water front position, there is immobile water.

Figure 8. Saturation distribution during the injection period for the outer solution (SBLw ), without capillary pressure, and
for the true solution (Sw), with capillary pressure. Both profiles agree in the region far from the water front, the region
outside the dashed square.
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with the same speed as the shock itself (Figure 9). In order to find SSLw , we magnify the shock
layer by using a stretching traveling wave coordinate. Similarly, as defined in [24, 18, 19]

w ¼ w r; tð Þ ¼ r2 � r2s tð Þ
e

, (26)

where rs is the shock front position:

r2s tð Þ ¼ r2w þ CDt, (27)

w is zero at r ¼ rs and goes to�∞ as e ! 0. We rewrite Eq. (15) in terms of moving coordinates,
r; tð Þ ! w; τð Þ, where τ ¼ τ tð Þ ¼ t. Using Eq. (26) in the transformed equation and multiplying
the resulting equation by e yield

e

C
∂Sw
∂τ

�D
∂Sw
∂w

þ ∂f w
∂w

� ∂
∂w

2 ewþ r2s τð Þ� �
k ewþ r2s τð Þ� � ∂Ψ

∂w

� �
¼ 0: (28)

The inner solution is obtained by letting e ! 0 in Eq. (28):

SSLw w; τð Þ ¼ lim
e!0, w;τð Þ fixed

Sw ewþ r2s τð Þ; τ; e� �
, (29)

as presented in [26]. Therefore, neglecting the terms of order e in Eq. (28), we have

�D
∂SSLw
∂w

þ ∂f w
∂w

� ∂
∂w

2r2s τð Þk r2s τð Þ� � ∂Ψ
∂w

� �
¼ 0: (30)

Note that here we are treating the permeability k as function of the shock position radius, rs,
only, by assuming that in the limit of the inner solution, e r ! rs τð Þð Þ. Intuitively, this assump-
tion does not seem valid when the shock layer is crossing heterogeneity interfaces, i.e., inter-
faces between two different permeability zones. However, for the water injection in a field

Figure 9. Saturation distribution during the injection period for the inner solution (SSLw ) and for the true solution (Sw),
with capillary pressure. Both profiles agree in the region around the water front, i.e., in the shock boundary layer which
we have defined as the inner region.
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The details of this solution can be found in [5]. Figure 7 shows the shock jump slope tangent to
the fractional flow curve at Sw ¼ Swf and the saturation distribution in the reservoir at a time t.
The rarefaction wave family spans from 1� Sor to Swf from rw to r ¼ 25 ft, the water front
position, i.e., the shock front position, rs. Ahead of the water front position, there is an
immobile water. Figure 8 compares this solution, the outer solution, with the true solution;
there is the convection-dispersion saturation profile. Here, we call the true solution the solu-
tion obtained from a numerical simulator.

2.1.2. Inner solution (SSLw )

As mentioned, the inner solution intends to represent the saturation profile in the “inner” region
around the water front, which is a shock layer (a boundary layer) around the shock traveling

Figure 7. The shock jump slope tangent (blue curve) to the S-shaped fractional flow curve at Sw ¼ Swf (a) and the saturation
profile in the reservoir at a time t (b). The rarefaction waves family spans from 1� Sor 1 to Swf and from rw to r = 25 ft, the
water front position, i.e., the shock front position, rf , inj . Ahead of the water front position, there is immobile water.

Figure 8. Saturation distribution during the injection period for the outer solution (SBLw ), without capillary pressure, and
for the true solution (Sw), with capillary pressure. Both profiles agree in the region far from the water front, the region
outside the dashed square.
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with the same speed as the shock itself (Figure 9). In order to find SSLw , we magnify the shock
layer by using a stretching traveling wave coordinate. Similarly, as defined in [24, 18, 19]

w ¼ w r; tð Þ ¼ r2 � r2s tð Þ
e

, (26)

where rs is the shock front position:

r2s tð Þ ¼ r2w þ CDt, (27)

w is zero at r ¼ rs and goes to�∞ as e ! 0. We rewrite Eq. (15) in terms of moving coordinates,
r; tð Þ ! w; τð Þ, where τ ¼ τ tð Þ ¼ t. Using Eq. (26) in the transformed equation and multiplying
the resulting equation by e yield

e

C
∂Sw
∂τ

�D
∂Sw
∂w

þ ∂f w
∂w

� ∂
∂w

2 ewþ r2s τð Þ� �
k ewþ r2s τð Þ� � ∂Ψ

∂w

� �
¼ 0: (28)

The inner solution is obtained by letting e ! 0 in Eq. (28):

SSLw w; τð Þ ¼ lim
e!0, w;τð Þ fixed

Sw ewþ r2s τð Þ; τ; e� �
, (29)

as presented in [26]. Therefore, neglecting the terms of order e in Eq. (28), we have

�D
∂SSLw
∂w

þ ∂f w
∂w

� ∂
∂w

2r2s τð Þk r2s τð Þ� � ∂Ψ
∂w

� �
¼ 0: (30)

Note that here we are treating the permeability k as function of the shock position radius, rs,
only, by assuming that in the limit of the inner solution, e r ! rs τð Þð Þ. Intuitively, this assump-
tion does not seem valid when the shock layer is crossing heterogeneity interfaces, i.e., inter-
faces between two different permeability zones. However, for the water injection in a field

Figure 9. Saturation distribution during the injection period for the inner solution (SSLw ) and for the true solution (Sw),
with capillary pressure. Both profiles agree in the region around the water front, i.e., in the shock boundary layer which
we have defined as the inner region.
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scale, the skin zone will be crossed by the water front in a very short time, and we will only
need to use the pseudo-parabolic equation (Eq. (15)) to find saturation for the end of injection
period (to be used as initial condition for falloff and flowback tests, as mentioned in the
introduction). Consequently, we can simplify the problem as shown above. Integrating the
ordinary differential equation given by Eq. (30) with respect to w for any fixed time τ and
applying the chain rule gives

�DSSLw þ f w SSLw
� �� 2r2s τð Þk r2s τð Þ� � dΨ SSLw

� �
dSw

∂SSLw w; τð Þ
∂w

¼ a τð Þ, (31)

where a τð Þ is constant for the injection case, as we will show later. As mentioned, the inner
solution is modeled as a traveling wave with a constant speed—the shock speed—and the
boundary conditions (for the inner solution) given by

w ! ∞ : SSLw ¼ Siw,
∂SSLw
∂w

¼ 0,

w ! �∞ : SSLw ¼ Swf ,
∂SSLw
∂w

¼ 0,

8>><
>>:

(32)

as the inner solution goes asymptotically to the shock saturations. This necessity of this
behavior will be clearer very soon when we compare the inner solution with the matching
saturation solution. Using the first boundary condition given by Eq. (32) in Eq. (31) leads to

a τð Þ ¼ �DSiw, (33)

while using the second boundary condition given by Eq. (32) yields

a τð Þ ¼ �DSwf þ f w Swf
� �

; (34)

implying that �D S_ iwf g � S_ wff gð Þ � f _w S_ wff gð Þ ¼ 0, which it is indeed correct from the
definition of D in Eq. (24). As we can see from Eqs. (33) and (34), a τð Þ is a constant and it will be
called simply by a from now on. Substituting the constant a (Eq. (33)) in Eq. (31) and dividing it
by D Siw � SSLw

� �þ f w SSLw
� �

yield

2r2s τð Þk r2s τð Þ� � dΨ SSLwð Þ
dSw

D Siw � SSLw
� �þ f w SSLw

� � ∂S
SL
w w; τð Þ
∂w

¼ 1: (35)

Integrating Eq. (35) from wwell ¼ w rw; τð Þ to any w at any time τ gives us the relationship
between any SSLw and w:

2r2s k r2s
� � ðSSLw

SSLw wwellð Þ

dΨ SSLwð Þ
dSw

D Siw � SSLw
� �þ f w SSLw

� � dSSLw ¼
ðw
wwell

dw: (36)

At SSLw ¼ Swf , the integral in the left side of Eq. (36) diverges as the integrand denominator goes

to 0. This behavior is consistent with our boundary condition assumptions for SSLw (Eq. (32)). At
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SSLw ¼ Siw, the integral in the left side of Eq. (36) does converge when the integrand numerator
also goes to zero (Figure 4), a behavior which is consistent when trying to model a
hypodispersion phenomenon (for a partially water wet reservoir). In another reservoir wetta-
bility scenario, e.g., a strong water wet rock, the capillary pressure would not be bounded at
Siw, and the integral in the left side of Eq. (36) would diverge. Note: we still do not know the
value of SSLw at w well. In order to find a closed form for this problem, mass balance can be
used, but first let us present the matching saturation, since this solution will be necessary for
the mass balance.

2.1.3. Matching solution (SSHw )

The matching saturation SSHw is defined using the matching principle by applying Prandtl’s
technique [26]:

lim
r2!r2wþCDt

SBLw r; tð Þ ¼ lim
w!�∞

SSLw w; tð Þ; (37)

and in the injection case is given by

SSHw r; tð Þ ¼ Siw, r2 ≥ r2s tð Þ ¼ r2w þ CDt,
Swf , r2w ≤ r2s tð Þ:

(
(38)

which is plotted in Figure 10 against the outer and inner solutions. As we were searching for,
SSHw matches with the outer solution in the inner region and with the inner solution in the outer
region, being able to subtract their effect in the composite solution in their “non-
correspondent” zones. Figure 11 compares the saturation distribution during the injection
period for the true solution obtained from the numerical simulator IMEX with the outer, inner,
and matching saturation solutions.

2.1.4. Mass balance

Now that we have defined all the three saturations that are composed of the approximate
solution for the convection dispersion saturation equation, let us try to find a closed form for

Figure 10. The matching saturation function (SSHw ) compared with the outer solution (SBLw ) (a) and with the inner solution
(SSHw ) (b). SSHw matches with the outer solution in the inner region and with the inner solution in the outer region, as desired.
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scale, the skin zone will be crossed by the water front in a very short time, and we will only
need to use the pseudo-parabolic equation (Eq. (15)) to find saturation for the end of injection
period (to be used as initial condition for falloff and flowback tests, as mentioned in the
introduction). Consequently, we can simplify the problem as shown above. Integrating the
ordinary differential equation given by Eq. (30) with respect to w for any fixed time τ and
applying the chain rule gives

�DSSLw þ f w SSLw
� �� 2r2s τð Þk r2s τð Þ� � dΨ SSLw

� �
dSw

∂SSLw w; τð Þ
∂w

¼ a τð Þ, (31)

where a τð Þ is constant for the injection case, as we will show later. As mentioned, the inner
solution is modeled as a traveling wave with a constant speed—the shock speed—and the
boundary conditions (for the inner solution) given by

w ! ∞ : SSLw ¼ Siw,
∂SSLw
∂w

¼ 0,

w ! �∞ : SSLw ¼ Swf ,
∂SSLw
∂w

¼ 0,

8>><
>>:

(32)

as the inner solution goes asymptotically to the shock saturations. This necessity of this
behavior will be clearer very soon when we compare the inner solution with the matching
saturation solution. Using the first boundary condition given by Eq. (32) in Eq. (31) leads to

a τð Þ ¼ �DSiw, (33)

while using the second boundary condition given by Eq. (32) yields

a τð Þ ¼ �DSwf þ f w Swf
� �

; (34)

implying that �D S_ iwf g � S_ wff gð Þ � f _w S_ wff gð Þ ¼ 0, which it is indeed correct from the
definition of D in Eq. (24). As we can see from Eqs. (33) and (34), a τð Þ is a constant and it will be
called simply by a from now on. Substituting the constant a (Eq. (33)) in Eq. (31) and dividing it
by D Siw � SSLw

� �þ f w SSLw
� �

yield

2r2s τð Þk r2s τð Þ� � dΨ SSLwð Þ
dSw

D Siw � SSLw
� �þ f w SSLw

� � ∂S
SL
w w; τð Þ
∂w

¼ 1: (35)

Integrating Eq. (35) from wwell ¼ w rw; τð Þ to any w at any time τ gives us the relationship
between any SSLw and w:

2r2s k r2s
� � ðSSLw

SSLw wwellð Þ

dΨ SSLwð Þ
dSw

D Siw � SSLw
� �þ f w SSLw

� � dSSLw ¼
ðw
wwell

dw: (36)

At SSLw ¼ Swf , the integral in the left side of Eq. (36) diverges as the integrand denominator goes

to 0. This behavior is consistent with our boundary condition assumptions for SSLw (Eq. (32)). At
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SSLw ¼ Siw, the integral in the left side of Eq. (36) does converge when the integrand numerator
also goes to zero (Figure 4), a behavior which is consistent when trying to model a
hypodispersion phenomenon (for a partially water wet reservoir). In another reservoir wetta-
bility scenario, e.g., a strong water wet rock, the capillary pressure would not be bounded at
Siw, and the integral in the left side of Eq. (36) would diverge. Note: we still do not know the
value of SSLw at w well. In order to find a closed form for this problem, mass balance can be
used, but first let us present the matching saturation, since this solution will be necessary for
the mass balance.

2.1.3. Matching solution (SSHw )

The matching saturation SSHw is defined using the matching principle by applying Prandtl’s
technique [26]:

lim
r2!r2wþCDt

SBLw r; tð Þ ¼ lim
w!�∞

SSLw w; tð Þ; (37)

and in the injection case is given by

SSHw r; tð Þ ¼ Siw, r2 ≥ r2s tð Þ ¼ r2w þ CDt,
Swf , r2w ≤ r2s tð Þ:

(
(38)

which is plotted in Figure 10 against the outer and inner solutions. As we were searching for,
SSHw matches with the outer solution in the inner region and with the inner solution in the outer
region, being able to subtract their effect in the composite solution in their “non-
correspondent” zones. Figure 11 compares the saturation distribution during the injection
period for the true solution obtained from the numerical simulator IMEX with the outer, inner,
and matching saturation solutions.

2.1.4. Mass balance

Now that we have defined all the three saturations that are composed of the approximate
solution for the convection dispersion saturation equation, let us try to find a closed form for

Figure 10. The matching saturation function (SSHw ) compared with the outer solution (SBLw ) (a) and with the inner solution
(SSHw ) (b). SSHw matches with the outer solution in the inner region and with the inner solution in the outer region, as desired.
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the saturation distribution based in the mass balance. Since both the Buckley-Leverett (SBLw )
solution and the composite solution (Sw) must obey material balance, the following equality

qtt ¼
ð∞
r2w

Sw r; tð Þ � Siwð Þπhdr2 ¼
ð∞
r2w

SBLw r; tð Þ � Siw
� �

πhdr2: (39)

must hold. From Eq. (20) and Eq. (39), it follows that
ð∞
r2w

SBLw þ SSLw � SSHw � Siw
� �

πhdr2 ¼
ð∞
r2w

SBLw r; tð Þ � Siw
� �

πhdr2, (40)

which, upon simplification, gives
ð∞
r2w

SSLw � SSHw
� �

dr2 ¼ 0: (41)

Rearranging Eq. (41) using Eq. (38) for SSHw gives

ð∞
r2w

SSLw dr2 ¼
ðr2s
r2w

Swf dr2 þ
ð∞
r2s

Siwdr2 ¼ Swf r2s � r2w
� �þ Siw

ð∞
r2w

dr2 � Siw

ðr2s
r2w

dr2
 !

: (42)

Using Eq. (27) in Eq. (42), it follows that
ð∞
r2w

SSLw dr2 ¼ Swf � Siw
� �

CDtþ Siw
ð∞
r2w

dr2: (43)

Transforming Eq. (43) from r; tð Þ ! w; τð Þ and using Eq. (26), Eq. (43) becomes

e

ð∞
�CDτ

e

SSLw wð Þdw ¼ Swf � Siw
� �

CDτþ eSiw
ð∞
�CDτ

e

dw: (44)

Figure 11. Saturation distribution during the injection period with (true solution) and without capillary pressure (outer
solution), the traveling wave (inner solution), and the matching saturation (a). SSHw matches with the region inner solution
in the outer region, the region far from the water front.
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From Eq. (35),

dw ¼ 2r2s k r2s
� � dΨ

dSw

D Siw � SSLw
� �þ f w

dSSLw : (45)

Substituting Eq. (45) in Eq. (44) and solving the resulting equation divided by eSiw for

ð∞
�CDτ

e

dw ¼ 2r2s k r2s
� �

Siw

ðSiw
SSLw �CDτ

eð Þ
SSLw

dΨ
dSw

SSLw
� �

D Siw � SSLw
� �þ f w SSLw

� � dSSLw � Swf � Siw
� �

CDτ
eSiw

: (46)

Setting Sw ¼ Siw in the upper limits of the integrals of Eq. (36) and exchanging the two sides of
the equation yield

ð∞
�CDτ

e

dw ¼ 2r2s k r2s
� � ðSiw

SSLw �CDτ
eð Þ

dΨ
dSw

SSLw
� �

D Siw � SSLw
� �þ f w SSLw

� � dSSLw : (47)

As the left sides of Eqs. (46) and (47) are the same, the right sides of these two equations must
be equal which gives

2r2s k r2s
� � ðSiw

SSLw �CDτ
eð Þ

dΨ
dSw

SSLw
� �

dSSLw
D Siw � SSLw
� �þ f w SSLw

� � ¼ 2r2s k r2s
� �

Siw

ðSiw
SSLw �CDτ

eð Þ

SSLw dΨ
dSw

SSLw
� �

dSSLw
D Siw � SSLw
� �þ f w SSLw

� �� Swf � Siw
� �

CDτ
eSiw

:

(48)

Multiplying Eq. (48) by eSiw and rearranging the resulting equation give

2r2s k r2s
� �

e

ðSiw
SSLw �CDτ

eð Þ
SSLw � Siw
� � dΨ

dSw
SSLw
� �

D Siw � SSLw
� �þ f w SSLw

� � dSSLw ¼ Swf � Siw
� �

CDτ: (49)

Once the value SSLw � CDτ
e

� �
(i.e., the inner solution saturation in the wellbore SSLw wwellð Þ) is

determined numerically by solving Eq. (49) using the bisection method at each time τ,
Eq. (36) is used to determine the saturation profile in the stabilized zone. It is important to
note that, as SSLw should reach Swf and Siw asymptotically as w ! �∞, here we did not have to
fix a finite distance in which the traveling wave would reach its open bounds as done by
[18, 19, 24]. With our approach, as shown in the validation section (Figure 12), we can obtain
essentially a perfect match with the numerical solution, with a “smoother” water front, which
is expected from the dispersive effect of capillary pressure, contrary to the sharp transition
between the saturation at the water front foot (rwf ) which is the finite position at which water
can be considered immobile—and the initial water saturation in the oil zone exhibited by
solutions of previous authors.
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the saturation distribution based in the mass balance. Since both the Buckley-Leverett (SBLw )
solution and the composite solution (Sw) must obey material balance, the following equality

qtt ¼
ð∞
r2w

Sw r; tð Þ � Siwð Þπhdr2 ¼
ð∞
r2w

SBLw r; tð Þ � Siw
� �

πhdr2: (39)

must hold. From Eq. (20) and Eq. (39), it follows that
ð∞
r2w

SBLw þ SSLw � SSHw � Siw
� �

πhdr2 ¼
ð∞
r2w

SBLw r; tð Þ � Siw
� �

πhdr2, (40)

which, upon simplification, gives
ð∞
r2w

SSLw � SSHw
� �

dr2 ¼ 0: (41)

Rearranging Eq. (41) using Eq. (38) for SSHw gives

ð∞
r2w

SSLw dr2 ¼
ðr2s
r2w

Swf dr2 þ
ð∞
r2s

Siwdr2 ¼ Swf r2s � r2w
� �þ Siw

ð∞
r2w

dr2 � Siw

ðr2s
r2w

dr2
 !

: (42)

Using Eq. (27) in Eq. (42), it follows that
ð∞
r2w

SSLw dr2 ¼ Swf � Siw
� �

CDtþ Siw
ð∞
r2w

dr2: (43)

Transforming Eq. (43) from r; tð Þ ! w; τð Þ and using Eq. (26), Eq. (43) becomes

e

ð∞
�CDτ

e

SSLw wð Þdw ¼ Swf � Siw
� �

CDτþ eSiw
ð∞
�CDτ

e

dw: (44)

Figure 11. Saturation distribution during the injection period with (true solution) and without capillary pressure (outer
solution), the traveling wave (inner solution), and the matching saturation (a). SSHw matches with the region inner solution
in the outer region, the region far from the water front.
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From Eq. (35),

dw ¼ 2r2s k r2s
� � dΨ

dSw

D Siw � SSLw
� �þ f w

dSSLw : (45)

Substituting Eq. (45) in Eq. (44) and solving the resulting equation divided by eSiw for

ð∞
�CDτ

e

dw ¼ 2r2s k r2s
� �

Siw

ðSiw
SSLw �CDτ

eð Þ
SSLw

dΨ
dSw

SSLw
� �

D Siw � SSLw
� �þ f w SSLw

� � dSSLw � Swf � Siw
� �

CDτ
eSiw

: (46)

Setting Sw ¼ Siw in the upper limits of the integrals of Eq. (36) and exchanging the two sides of
the equation yield

ð∞
�CDτ

e

dw ¼ 2r2s k r2s
� � ðSiw

SSLw �CDτ
eð Þ

dΨ
dSw

SSLw
� �

D Siw � SSLw
� �þ f w SSLw

� � dSSLw : (47)

As the left sides of Eqs. (46) and (47) are the same, the right sides of these two equations must
be equal which gives

2r2s k r2s
� � ðSiw

SSLw �CDτ
eð Þ

dΨ
dSw

SSLw
� �

dSSLw
D Siw � SSLw
� �þ f w SSLw

� � ¼ 2r2s k r2s
� �

Siw

ðSiw
SSLw �CDτ

eð Þ

SSLw dΨ
dSw

SSLw
� �

dSSLw
D Siw � SSLw
� �þ f w SSLw

� �� Swf � Siw
� �

CDτ
eSiw

:

(48)

Multiplying Eq. (48) by eSiw and rearranging the resulting equation give

2r2s k r2s
� �

e

ðSiw
SSLw �CDτ

eð Þ
SSLw � Siw
� � dΨ

dSw
SSLw
� �

D Siw � SSLw
� �þ f w SSLw

� � dSSLw ¼ Swf � Siw
� �

CDτ: (49)

Once the value SSLw � CDτ
e

� �
(i.e., the inner solution saturation in the wellbore SSLw wwellð Þ) is

determined numerically by solving Eq. (49) using the bisection method at each time τ,
Eq. (36) is used to determine the saturation profile in the stabilized zone. It is important to
note that, as SSLw should reach Swf and Siw asymptotically as w ! �∞, here we did not have to
fix a finite distance in which the traveling wave would reach its open bounds as done by
[18, 19, 24]. With our approach, as shown in the validation section (Figure 12), we can obtain
essentially a perfect match with the numerical solution, with a “smoother” water front, which
is expected from the dispersive effect of capillary pressure, contrary to the sharp transition
between the saturation at the water front foot (rwf ) which is the finite position at which water
can be considered immobile—and the initial water saturation in the oil zone exhibited by
solutions of previous authors.
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2.2. Wellbore pressure

As mentioned previously, after finding the saturation distribution, we can obtain the wellbore
pressure by applying the pressure solutions presented by [2]. During injection at a constant
flow rate, qt rw; tð Þ RB/D, where t ¼ 0 at the beginning of the water injection, by integrating
Darcy’s law as in [6, 2], given by

qt ¼ � k rð Þhr
α

λt
∂po
∂r

� λw
∂pc
∂r

� �
, (50)

where pw ¼ po � pc. Eq. (50) can be solved for the oil pressure gradient by integrating it from
the wellbore radius to infinite, assuming an infinite-acting reservoir. The bottom hole pressure
difference from the reservoir initial pressure (poi) can then be expressed as

Δpwf tð Þ ¼ pwf tð Þ � poi ¼
ð∞

rw

αqt r; tð Þ
hλt r; tð Þk rð Þ

dr
r
�
ð∞

rw

f w
dpc
dSw

∂Sw
∂r

dr, (51)

where it is assumed that po rw; tð Þ ¼ pw rw; tð Þ, i.e., pc ¼ 0 at r ¼ rw, in order to satisfy the
compatibility condition [27], i.e., to guarantee phase pressure continuity at the wellbore.
Eq. (51) can be rewritten as

Δpwf tð Þ ¼
ð∞

rw

αqt r; tð Þ
hλt r; tð Þk rð Þ

dr
r
�
ðrwf tð Þ

rw

f w
dpc
dSw

∂Sw
∂r

dr, (52)

by assuming that the second term in the right-hand side of Eq. (52) is zero from rwf to ∞,

considering f w Siwð Þ ¼ 0 and ∂Sw
∂r ¼ 0 for r > rwf tð Þ, since the water in the region ahead of the

water front foot is assumed immobile. rwf can be defined as the position at which
Sw � Siwð Þ < δ, where δ is a very small number. For the hypodispersion phenomenon, we can
find a finite rwf where δ ! 0, i.e., at which Sw ¼ Siw. Using the [6] steady-state theory, which
assumes that, qt r; tð Þ ¼ qt rw; tð Þ, for r ≤ rwf tð Þ, Eq. (52) becomes

Figure 12. Comparison of the saturation distribution from analytical solution and IMEX during the injection period with
capillary pressure.
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Δpwf tð Þ ¼ αqt rw; tð Þ
h

ðrwf tð Þ

rw

1
λt r;Δtprod
� �

k rð Þ
dr
r
þ α

h

ð∞

rwf tð Þ

qt r; tð Þ
λt r; tð Þk rð Þ

dr
r
�
ðrwf tð Þ

rw

f w
dpc
dSw

∂Sw
∂r

dr, (53)

where for any practical set of values of physical properties [28] indicate that this assumption is

valid. Adding and subtracting the term α
h

Ðrwf tð Þ

rw

qt rw ;tð Þ
bλok rð Þ

dr
r , where bλo ¼ kro Swið Þ

μo
is the endpoint oil

mobility at Sw ¼ Swi, Eq. (53) can be rewritten as

Δpwf tð Þ ¼ α
h

ð∞

rw

qt r; tð Þ
bλo

r; tð Þk rð Þ dr
r
þ αqt rw; tð Þ

h

ðrwf tð Þ

rw

1
λt r; tð Þ �

1
bλo

 !
dr

k rð Þr�
ðrwf tð Þ

rw

f w
dpc
dSw

∂Sw
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Δbpo tð Þ is the single-phase oil transient pressure drop, the known pressure drop solution that is
obtained if we inject oil into an oil reservoir (injection period), whose well-known approximate
solution can be approximated as

Δbpo tð Þ ¼ pwf , o tð Þ � pi ¼
αqt
khbλo

1
2
ln
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Here, β is a unit conversion factor in which oil field unit is 0.0002637 and the single-phase total
compressibility is

bcto ¼ co 1� Swið Þ þ cwSwi þ cr: (56)

3. Validation

We have compared our pressure and saturation solution including capillary pressure effects with
the commercial numerical simulator IMEX, using the properties shown in Table 1. Figure 12
compares the saturation distribution obtained from our analytical solution with the one obtained
with IMEX, while Figure 13 shows the comparison of the wellbore pressure response from our
analytical solution and IMEX during injection test. In order to be able to match saturation and
pressure obtained from our solution with IMEX, we have to use a very refined grid (0.01 ft)
around the wellbore in the zone invaded by water and then increase it exponentially to a very
large external radius (10,000 times the wellbore radius) in order to reproduce an infinite acting
reservoir. In addition, we have to start with very short time steps, 10�7 day. Figure 14 presents
the log-log diagnostic plots of injection. We can see that at early times of injection, there is a
plateau (stabilization) in the wellbore pressure derivative plot, which by inspection reflects the
original total mobility (endpoint oil mobility), while, at late times, we find that the derivative
shows stabilized radial flow, which by inspection reflects the endpoint water mobility.
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2.2. Wellbore pressure

As mentioned previously, after finding the saturation distribution, we can obtain the wellbore
pressure by applying the pressure solutions presented by [2]. During injection at a constant
flow rate, qt rw; tð Þ RB/D, where t ¼ 0 at the beginning of the water injection, by integrating
Darcy’s law as in [6, 2], given by
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where pw ¼ po � pc. Eq. (50) can be solved for the oil pressure gradient by integrating it from
the wellbore radius to infinite, assuming an infinite-acting reservoir. The bottom hole pressure
difference from the reservoir initial pressure (poi) can then be expressed as
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where it is assumed that po rw; tð Þ ¼ pw rw; tð Þ, i.e., pc ¼ 0 at r ¼ rw, in order to satisfy the
compatibility condition [27], i.e., to guarantee phase pressure continuity at the wellbore.
Eq. (51) can be rewritten as
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by assuming that the second term in the right-hand side of Eq. (52) is zero from rwf to ∞,

considering f w Siwð Þ ¼ 0 and ∂Sw
∂r ¼ 0 for r > rwf tð Þ, since the water in the region ahead of the

water front foot is assumed immobile. rwf can be defined as the position at which
Sw � Siwð Þ < δ, where δ is a very small number. For the hypodispersion phenomenon, we can
find a finite rwf where δ ! 0, i.e., at which Sw ¼ Siw. Using the [6] steady-state theory, which
assumes that, qt r; tð Þ ¼ qt rw; tð Þ, for r ≤ rwf tð Þ, Eq. (52) becomes

Figure 12. Comparison of the saturation distribution from analytical solution and IMEX during the injection period with
capillary pressure.
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where for any practical set of values of physical properties [28] indicate that this assumption is
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Here, β is a unit conversion factor in which oil field unit is 0.0002637 and the single-phase total
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analytical solution and IMEX during injection test. In order to be able to match saturation and
pressure obtained from our solution with IMEX, we have to use a very refined grid (0.01 ft)
around the wellbore in the zone invaded by water and then increase it exponentially to a very
large external radius (10,000 times the wellbore radius) in order to reproduce an infinite acting
reservoir. In addition, we have to start with very short time steps, 10�7 day. Figure 14 presents
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Property Value Unit Property Value Unit

qt 3000 RB/DAY Bo 1.003 RB/STB

h 60 ft Bw 1.002 RB/STB

rw 0.35 ft co 8� 10�6 1/psi

re 6800 ft cw 3:02� 10�6 1/psi

k 300 ft cr 5� 10�6 1/psi

s 0 mD μo 3.0 cp

Siw 0.10 μw 0.5 cp

Sor 0.25 λ 2

pi 2500 psi pt 0.5 psi

ϕ 0.22

Table 1. Reservoir, rock, and fluid properties for simulation and analytical solution.

Figure 13. Comparison of the wellbore pressure response from analytical solution and IMEX during water injection test
with capillary pressure (a).

Figure 14. The log-log diagnostic plots for wellbore pressure data (blue curve) and its derivative with respect to time (red
curve) during water injection (b).
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4. Conclusions

In this work, an accurate approximate analytical solution was constructed for wellbore pres-
sure during water injection test in a reservoir containing oil and immobile water. Our solution
was validated by comparing the bottom hole pressure calculated from the analytical model
with the data obtained from a commercial numerical simulator. Our solution presented here
for water injection together with the wellbore pressure and flow rate history for subsequent
tests as shut-in and flowback can be used as forward model in a nonlinear regression in order
to estimate relative permeabilities and capillary pressure curves in addition to the rock abso-
lute permeability, the skin zone permeability, and the water endpoint relative permeability.
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Nomenclature

β Unit conversion factor (0.0002637)

Δpo Single-phase oil pressure drop (psi)

λo Oil mobility (1/cp)

λt Total mobility (1/cp)

λw Water mobility (1/cp)

μo Oil viscosity (cp)

μw Water viscosity (cp)

aw Water endpoint relative permeability

Fo Oil fractional flow

Fw Water fractional flow

f w Water mobility ratio
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k Absolute permeability (mD)

ks Skin permeability (mD)

kro Oil relative permeability (mD)

krw Water relative permeability (mD)

pc Capillary pressure (psi)

pi Reservoir initial pressure (psi)

po Oil pressure (psi)

pt Pressure threshold (psi)

pw Water pressure (psi)

qo Oil flow rate (RB/D)

qt Total liquid rate (RB/D)

rs Shock front position (ft)

rskin Skin zone radius (ft)

rw Wellbore radius (ft)

Sw Water saturation

Siw Immobile water saturation

Sor Residual oil saturation

t Time (h)

C Constant given by θqt
πhϕ

D Shock speed

h Reservoir thickness (ft)

r Radius (ft)

w Traveling wave coordinate

α Unit conversion factor (141.2)

e Perturbation parameter

λ Pore size distribution index

ϕ Porosity

θ Unit conversion factor (5.6146/24)

co Oil compressibility (1/psi)
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cr Rock compressibility (1/psi)

cw Water compressibility (1/psi)

cto Single-phase total compressibility (1/psi)
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Abstract

A new scheme based on perturbation method is presented to solve the problem of solar/
infrared radiative transfer (SRT/IRT) in a scattering medium, in which the inherent optical
properties (IOPs) are vertically inhomogeneous. The Eddington approximation for SRT and
the two-stream approximation for IRT are used as the zeroth-order solution, and multiple-
scattering effect of inhomogeneous IOPs is included in the first-order solution. Observations
show that the stratocumulus clouds are vertically inhomogeneous, and the accuracy of SRT/
IRT for stratocumulus clouds by different solutions is evaluated. In the spectral band of
0.25–0.69 μm, the relative error in absorption with inhomogeneous SRT solution is 1.4% at
most, but with the homogeneous SRT solution, it can be up to 7.4%. In the spectral band of
5–8 μm, the maximum relative error of downward emissivity can reach �11% for the
homogeneous IRT solution but only �2% for the inhomogeneous IRT solution.

Keywords: perturbation method, radiative transfer, vertical inhomogeneity

1. Introduction

Solving the radiative transfer equation (RTE) is a key issue in radiation scheme for climate
model and remote sensing. In most numerical radiative transfer algorithms, the atmosphere is
divided into many homogeneous layers. The inherent optical properties (IOPs) are then fixed
within each layer and the variations of IOPs inside each layer are ignored, effectively regarding
each layer as internally homogeneous. The standard solar/infrared radiative transfer (SRT/IRT)
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Abstract

A new scheme based on perturbation method is presented to solve the problem of solar/
infrared radiative transfer (SRT/IRT) in a scattering medium, in which the inherent optical
properties (IOPs) are vertically inhomogeneous. The Eddington approximation for SRT and
the two-stream approximation for IRT are used as the zeroth-order solution, and multiple-
scattering effect of inhomogeneous IOPs is included in the first-order solution. Observations
show that the stratocumulus clouds are vertically inhomogeneous, and the accuracy of SRT/
IRT for stratocumulus clouds by different solutions is evaluated. In the spectral band of
0.25–0.69 μm, the relative error in absorption with inhomogeneous SRT solution is 1.4% at
most, but with the homogeneous SRT solution, it can be up to 7.4%. In the spectral band of
5–8 μm, the maximum relative error of downward emissivity can reach �11% for the
homogeneous IRT solution but only �2% for the inhomogeneous IRT solution.

Keywords: perturbation method, radiative transfer, vertical inhomogeneity

1. Introduction

Solving the radiative transfer equation (RTE) is a key issue in radiation scheme for climate
model and remote sensing. In most numerical radiative transfer algorithms, the atmosphere is
divided into many homogeneous layers. The inherent optical properties (IOPs) are then fixed
within each layer and the variations of IOPs inside each layer are ignored, effectively regarding
each layer as internally homogeneous. The standard solar/infrared radiative transfer (SRT/IRT)
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solutions are based on this assumption of internal homogeneity [1–4], which cannot resolve
within-layer vertical inhomogeneity.

It has been well established by observation that cumulus and stratocumulus clouds (hereinaf-
ter, collectively referred to as cumulus clouds) are inhomogeneous, both horizontally and
vertically [5–9]. Inside a cumulus cloud, the liquid water content (LWC) and the cloud droplet
size distribution vary with height, and so the IOPs of cloud droplets depend on vertical height.

How to deal with vertical internal inhomogeneity in SRT/IRTmodels is an interesting topic for
researchers. Li developed a Monte Carlo cloud model that can be used to investigate photon
transport in inhomogeneous clouds by considering an internal variation of the optical proper-
ties [10]. Their model showed that when overcast clouds become broken clouds, the difference
in reflectance at large solar zenith angles between vertically inhomogeneous clouds and their
plane-parallel counterparts can be as much as 10%.

However, the Monte Carlo method is very expensive in computing and not applicable to
climate models or remote sensing [11]. The albedo of inhomogeneous mixed-phase clouds at
visible wavelengths could be obtained by using a Monte Carlo method to compare such clouds
with plane-parallel homogeneous clouds [12].

In principle, the vertical inhomogeneity problem of the SRT/IRT process can be solved by
increasing the number of layers of the climate model. However, it is time-consuming to
increase the vertical resolution of a climate model. Typically, there are only 30–100 layers in a
climate model [13], which is not high enough to resolve the cloud vertical inhomogeneity. To
completely address the problem of vertical inhomogeneity by using a limited number of layers
in a climate model, the standard SRT method must be extended to deal with the vertical
inhomogeneity inside each model layer. The primary purpose of this study is to introduce a
new inhomogeneous SRT/IRT solution presented by Zhang and Shi. This solution follows a
perturbation method: the zeroth-order solution is the standard Eddington approximation for
SRT and two-stream approximation for IRT, with a first-order perturbation to account for the
inhomogeneity effect. In Section 2, the basic theory of SRT/IRT is introduced, and the new
inhomogeneous SRT/IRT solution is presented. In Section 3, the inhomogeneous SRT/IRT
solution is applied to cloud as realistic examples to demonstrate the practicality of this new
method. A summary is given in Section 4.

2. SRT/IRT solution for an inhomogeneous layer

2.1. SRT solution

The azimuthally averaged solar radiative transfer equation [1–4, 10–12] is

μ
dIS τ;μ
� �
dτ

¼ IS τ;μ
� �� ω τð Þ

2

ð1
�1

IS τ;μ
� �

P τ;μ;μ0� �
dμ0 � ω τð Þ

4π
F0P τ;μ;�μ0

� �
e�

τ
μ0 (1)

where μ is the cosine of the zenith angle (μ > 0 and μ < 0 refer to upward and downward
radiation, respectively), P τ;μ;μ0� �

is the scattering phase function, τ is the optical depth
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(τ ¼ 0 and τ ¼ τ0 refer to the top and bottom of the medium, respectively), ω τð Þ is the
single-scattering albedo, and F0 is the incoming solar flux. For the Eddington approxima-
tion, P τ;μ;μ0� � ¼ 1þ 3g τð Þμμ0 (�1 < μ <1) and g τð Þ are the asymmetry factors. For the
scattering atmosphere, the irradiance fluxes in the upward and downward directions can
be written as

F�S τð Þ ¼ 2π
ð�1

0
IS τ;μ
� �

μdμ (2)

To simulate a realistic medium such as cloud or snow, we consider ω τð Þ and g τð Þ to vary with
τ, and we use exponential expressions here to simplify the process. The single-scattering
albedo and asymmetry factor are written as

ω τð Þ ¼ bω þ εω e�a1τ � e�a1τ0=2
� �

(3a)

g τð Þ ¼ bg þ εg e�a2τ � e�a2τ0=2
� �

(3b)

where τ0 is the optical depth of the layer, bω is the single-scattering albedo at τ0=2, and bg is the
asymmetry factor at the same place. Both εg and εω are small parameters that are far less than bg
and bω, respectively, in a realistic medium.

According to the Eddington approximation, the radiative intensity IS τ;μ
� �

can be written as

IS τ;μ
� � ¼ IS0 τð Þ þ IS1 τð Þμ (4)

Using Eqs. (1), (2), and (4), we obtain

dFþS τð Þ
dτ

¼ γ1 τð ÞFþS τð Þ � γ2 τð ÞF�S τð Þ � γ3 τð Þω τð ÞF0e�
τ
μ0 (5a)

dF�S τð Þ
dτ

¼ γ2 τð ÞFþS τð Þ � γ1 τð ÞF�S τð Þ þ 1� γ3 τð Þ� �
ω τð ÞF0e�

τ
μ0 (5b)

F�S 0ð Þ ¼ 0, FþS τ0ð Þ ¼ Rdif F�S τ0ð Þ þ Rdirμ0F0e
�τ0

μ0 (5c)

where γ1 τð Þ ¼ 1
4 7� 4þ 3g τð Þ½ �ω τð Þf g, γ2 τð Þ ¼ �1

4 1� 4� 3g τð Þ½ �ω τð Þf g, and γ3 τð Þ ¼ 1
4 2� 3g τð Þμ0

� �
;

τ0 is the optical depth of the single layer; and Rdif (Rdir) is the diffuse (resp., direct) reflection from
the layer below or the diffuse (direct) surface albedo. Substituting γ1 τð Þ, γ2 τð Þ, and γ3 τð Þ into
Eq. (3) and ignoring the small second-order parameters εω2, εg2, and εωεg, we get

γ1 τð Þ ¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �

(6a)

γ2 τð Þ ¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �

(6b)

γ3 τð Þ ¼ γ0
3 þ γ2

3εg e�a2τ � e�a2τ0=2
� �

(6c)
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solutions are based on this assumption of internal homogeneity [1–4], which cannot resolve
within-layer vertical inhomogeneity.

It has been well established by observation that cumulus and stratocumulus clouds (hereinaf-
ter, collectively referred to as cumulus clouds) are inhomogeneous, both horizontally and
vertically [5–9]. Inside a cumulus cloud, the liquid water content (LWC) and the cloud droplet
size distribution vary with height, and so the IOPs of cloud droplets depend on vertical height.

How to deal with vertical internal inhomogeneity in SRT/IRTmodels is an interesting topic for
researchers. Li developed a Monte Carlo cloud model that can be used to investigate photon
transport in inhomogeneous clouds by considering an internal variation of the optical proper-
ties [10]. Their model showed that when overcast clouds become broken clouds, the difference
in reflectance at large solar zenith angles between vertically inhomogeneous clouds and their
plane-parallel counterparts can be as much as 10%.

However, the Monte Carlo method is very expensive in computing and not applicable to
climate models or remote sensing [11]. The albedo of inhomogeneous mixed-phase clouds at
visible wavelengths could be obtained by using a Monte Carlo method to compare such clouds
with plane-parallel homogeneous clouds [12].

In principle, the vertical inhomogeneity problem of the SRT/IRT process can be solved by
increasing the number of layers of the climate model. However, it is time-consuming to
increase the vertical resolution of a climate model. Typically, there are only 30–100 layers in a
climate model [13], which is not high enough to resolve the cloud vertical inhomogeneity. To
completely address the problem of vertical inhomogeneity by using a limited number of layers
in a climate model, the standard SRT method must be extended to deal with the vertical
inhomogeneity inside each model layer. The primary purpose of this study is to introduce a
new inhomogeneous SRT/IRT solution presented by Zhang and Shi. This solution follows a
perturbation method: the zeroth-order solution is the standard Eddington approximation for
SRT and two-stream approximation for IRT, with a first-order perturbation to account for the
inhomogeneity effect. In Section 2, the basic theory of SRT/IRT is introduced, and the new
inhomogeneous SRT/IRT solution is presented. In Section 3, the inhomogeneous SRT/IRT
solution is applied to cloud as realistic examples to demonstrate the practicality of this new
method. A summary is given in Section 4.

2. SRT/IRT solution for an inhomogeneous layer

2.1. SRT solution

The azimuthally averaged solar radiative transfer equation [1–4, 10–12] is

μ
dIS τ;μ
� �
dτ

¼ IS τ;μ
� �� ω τð Þ

2

ð1
�1

IS τ;μ
� �

P τ;μ;μ0� �
dμ0 � ω τð Þ

4π
F0P τ;μ;�μ0

� �
e�

τ
μ0 (1)

where μ is the cosine of the zenith angle (μ > 0 and μ < 0 refer to upward and downward
radiation, respectively), P τ;μ;μ0� �

is the scattering phase function, τ is the optical depth
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(τ ¼ 0 and τ ¼ τ0 refer to the top and bottom of the medium, respectively), ω τð Þ is the
single-scattering albedo, and F0 is the incoming solar flux. For the Eddington approxima-
tion, P τ;μ;μ0� � ¼ 1þ 3g τð Þμμ0 (�1 < μ <1) and g τð Þ are the asymmetry factors. For the
scattering atmosphere, the irradiance fluxes in the upward and downward directions can
be written as

F�S τð Þ ¼ 2π
ð�1

0
IS τ;μ
� �

μdμ (2)

To simulate a realistic medium such as cloud or snow, we consider ω τð Þ and g τð Þ to vary with
τ, and we use exponential expressions here to simplify the process. The single-scattering
albedo and asymmetry factor are written as

ω τð Þ ¼ bω þ εω e�a1τ � e�a1τ0=2
� �

(3a)

g τð Þ ¼ bg þ εg e�a2τ � e�a2τ0=2
� �

(3b)

where τ0 is the optical depth of the layer, bω is the single-scattering albedo at τ0=2, and bg is the
asymmetry factor at the same place. Both εg and εω are small parameters that are far less than bg
and bω, respectively, in a realistic medium.

According to the Eddington approximation, the radiative intensity IS τ;μ
� �

can be written as

IS τ;μ
� � ¼ IS0 τð Þ þ IS1 τð Þμ (4)

Using Eqs. (1), (2), and (4), we obtain

dFþS τð Þ
dτ

¼ γ1 τð ÞFþS τð Þ � γ2 τð ÞF�S τð Þ � γ3 τð Þω τð ÞF0e�
τ
μ0 (5a)

dF�S τð Þ
dτ

¼ γ2 τð ÞFþS τð Þ � γ1 τð ÞF�S τð Þ þ 1� γ3 τð Þ� �
ω τð ÞF0e�

τ
μ0 (5b)

F�S 0ð Þ ¼ 0, FþS τ0ð Þ ¼ Rdif F�S τ0ð Þ þ Rdirμ0F0e
�τ0

μ0 (5c)

where γ1 τð Þ ¼ 1
4 7� 4þ 3g τð Þ½ �ω τð Þf g, γ2 τð Þ ¼ �1

4 1� 4� 3g τð Þ½ �ω τð Þf g, and γ3 τð Þ ¼ 1
4 2� 3g τð Þμ0

� �
;

τ0 is the optical depth of the single layer; and Rdif (Rdir) is the diffuse (resp., direct) reflection from
the layer below or the diffuse (direct) surface albedo. Substituting γ1 τð Þ, γ2 τð Þ, and γ3 τð Þ into
Eq. (3) and ignoring the small second-order parameters εω2, εg2, and εωεg, we get

γ1 τð Þ ¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �

(6a)

γ2 τð Þ ¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �

(6b)

γ3 τð Þ ¼ γ0
3 þ γ2

3εg e�a2τ � e�a2τ0=2
� �

(6c)
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where γ0
1 ¼ 1

4 7� 4þ 3bgð Þbω½ �, γ0
2 ¼ �1

4 1� 4� 3bgð Þbω½ �, γ0
3 ¼ 1

4 2� 3bgμ0

� �
, γ1

1 ¼ �1
4 4þ 3bgð Þ,

γ2
1 ¼ � 3

4 bω, γ1
2 ¼ 1

4 4� 3bgð Þ, γ2
2 ¼ � 3

4 bω, and γ2
3 ¼ � 3

4μ0.

By perturbation theory [14], the corresponding flux can also be expanded by using the pertur-
bation coefficients εω and εg:

FþS ¼ FþS0 þ εωFþS1 þ εgFþS2 (7a)

F�S ¼ F�S0 þ εωF�S1 þ εgF�S2 (7b)

Substituting Eqs. (6) and (7) into Eq. (5) yields

dFþS
dτ

¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �h i

FþS0 þ εωFþS1 þ εgFþS2
� �

� γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �þ γ2

2εg e�a2τ � e�a2τ0=2
� �� �

F�S0 þ εωF�S1 þ εgF�S2
� �

� bωγ0
3 þ γ0

3εω e�a1τ � e�a1τ0=2
� �þ bωγ2

3εg e�a2τ � e�a2τ0=2
� �� �

F0e
� τ

μ0

(8a)

dF�S
dτ

¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �h i

FþS0 þ εωFþS1 þ εgFþS2
� �

� γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �þ γ2

1εg e�a2τ � e�a2τ0=2
� �� �

F�S0 þ εωF�S1 þ εgF�S2
� �

þ bωγ0
4 þ γ0

4εω e�a1τ � e�a1τ0=2
� �� bωγ2

3εg e�a2τ � e�a2τ0=2
� �� �

F0e
� τ

μ0

(8b)

where γ0
4 ¼ 1� γ0

3. And, Eq. (8) can be rewritten as separate equations for F�S0, F
�
S1, and F�S2. We

obtain the following equations for the scattered flux F�S0:

dFþS0
dτ

¼ γ0
1F

þ
S0 � γ0

2F
�
S0 � γ0

3bωF0e
� τ

μ0 (9a)

dF�S0
dτ

¼ γ0
2F

þ
S0 � γ0

1F
�
S0 þ γ0

4bωF0e
� τ

μ0 (9b)

F�S0 0ð Þ ¼ 0, FþS0 τ0ð Þ ¼ Rdif F�S0 τ0ð Þ þ Rdirμ0F0e
�τ0

μ0 (9c)

Eq. (9) is the standard SRT equation for a homogeneous layer [15] and has the following
solution:

FþS0 ¼ K1ekτ þ ΓK2e�kτ þ G1e
� τ

μ0 (10a)

F�S0 ¼ ΓK1ekτ þ K2e�kτ þ G2e
� τ

μ0 (10b)

where K1 ¼ Γ�Rdifð ÞΓG2e�kτ0� G1�RdirG2�Rdirμ0F0ð Þe�τ0
μ0

1�Rdif Γð Þekτ0� Γ�Rdifð ÞΓe�kτ0
, K2 ¼ �ΓK1 � G2, G1 ¼ γ0

3
1
μ0
� γ0

1

� �
� γ0

2γ
0
4

h i

μ0
2bωF0

1�μ0
2k2
, G2 ¼ � γ0

4
1
μ0
þ γ0

1

� �
þ γ0

2γ
0
3

h i
μ0

2bωF0
1�μ0

2k2
, Γ ¼ 1� 2k

γ0
1þγ0

2þk, and k2 ¼ γ0
1 þ γ0

2

� �
γ0
1 � γ0

2

� �
. And,

the equations for the perturbation terms F�Si (i = 1, 2) are
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dFþSi
dτ

¼ γ0
1F

þ
Si � γ0

2F
�
Si þ e�aiτ � e�aiτ0=2

� �
γi
1F

þ
S0 � γi

2F
�
S0

� �� γi�1
3 F0 e�aiτ � e�aiτ0=2

� �
e�

τ
μ0 (11a)

dF�Si
dτ

¼ γ0
2F

þ
Si � γ0

1F
�
Si þ e�aiτ � e�aiτ0=2

� �
γi
2F

þ
S0 � γi

1F
�
S0

� �� γi�1
4 F0 e�aiτ � e�aiτ0=2

� �
e�

τ
μ0 (11b)

F�Si 0ð Þ ¼ 0, FþSi τ0ð Þ ¼ Rdif F�Si τ0ð Þ (11c)

where γ1
3 ¼ �γ1

4 ¼ bωγ2
3. Letting Mi ¼ FþSi þ F�Si and Ni ¼ FþSi � F�Si, Eq. (11a) and (11b) yields

dMi

dτ
¼ γ0

1 þ γ0
2

� �
Ni þ ψþ

i þ ψ�
i

� �
e� kþaið Þτ þ ζþi þ ζ�i

� �
e k�aið Þτ þ χþ

i þ χ�
i

� �
e
� aiþ 1

μ0

� �
τ

�e�aiτ0=2 ψþ
i þ ψ�

i

� �
e�kτ þ ζþi þ ζ�i

� �
ekτ þ χþ

i þ χ�
i

� �
e�

τ
μ0

h i (12a)

dNi

dτ
¼ γ0

1 � γ0
2

� �
Mi þ ψþ

i � ψ�
i

� �
e� kþaið Þτ þ ζþi � ζ�i

� �
e k�aið Þτ þ χþ

i � χ�
i

� �
e
� aiþ 1

μ0

� �
τ

�e�aiτ0=2 ψþ
i � ψ�

i

� �
e�kτ þ ζþi � ζ�i

� �
ekτ þ χþ

i � χ�
i

� �
e�

τ
μ0

h i (12b)

where Ψþ
i ¼ K2 γi

1Γ� γi
2

� �
, Ψ�

i ¼ K2 γi
2Γ� γi

1

� �
, ζþi ¼ K1 γi

1 � γi
2Γ

� �
, ζ�i ¼ K1 γi

2 � γi
1Γ

� �
,

χþ
i ¼ γi

1G1 � γi
2G2 � γi�1

3 F0, and χ�
i ¼ γi

2G1 � γi
1G2 þ γi�1

4 F0.

From Eq. (12), we obtain

d2Mi

dτ2
¼ k2Mi þ ηþ1ie

� kþaið Þτ þ ηþ2ie
k�aið Þτ þ ηþ3ie

� aiþ 1
μ0

� �
τ þ ηþ4ie

�kτ þ ηþ5ie
kτ þ ηþ6ie

� τ
μ0 (13a)

d2Ni

dτ2
¼ k2Ni þ η�1ie

� kþaið Þτ þ η�2ie
k�aið Þτ þ η�3ie

� aiþ 1
μ0

� �
τ þ η�4ie

�kτ þ η�5ie
kτ þ η�6ie

� τ
μ0 (13b)

where η�1i ¼ γ0
1 � γ0

2

� �
ψþ
i ∓ψ�

i

� �� kþ aið Þ ψþ
i � ψ�

i

� �
, η�2i ¼ k� aið Þ ζþi � ζ�i

� �þ γ0
1 � γ0

2

� �

ζþi ∓ ζ�i
� �

, η�3i ¼ χþ
i ∓χ�

i

� �
γ0
1 � γ0

2

� �� ai þ 1
μ0

� �
χþ
i ∓χ�

i

� �
, η�4i ¼ �e�aiτ0=2 γ0

1 � γ0
2

� �
ψþ
i ∓ψ�

i

� ���

k ψþ
i � ψ�

i

� ��, η�5i ¼ �e�aiτ0=2 k ζþi � ζ�i
� �þ γ0

1 � γ0
2

� �
ζþi ∓ ζ�i
� �� �

, and η�6i ¼ �e�aiτ0=2 χþ
i ∓χ�

i

� ��

γ0
1 � γ0

2

� �� 1
μ0

χþ
i ∓χ�

i

� ��.

The solutions of Eq. (13) are

Mi ¼ Aþ
i e

�kτ þ Bþ
i e

kτ þ Pþ
i e

� kþaið Þτ þQþ
i e

k�aið Þτ þ Rþ
i e

� aiþ 1
μ0

� �
τ � ηþ4i

2k
e�kτ þ ηþ5i

2k
ekτ þ ηþ6iμ

2
0

1� μ2
0k

2 e
� τ

μ0

(14a)

Ni ¼ A�
i e

�kτ þ B�
i e

kτ þ P�
i e

� kþaið Þτ þQ�
i e

k�aið Þτ þ R�
i e

� aiþ 1
μ0

� �
τ � η�4i

2k
e�kτ þ η�5i

2k
ekτ þ η�6iμ

2
0

1� μ2
0k

2 e
� τ

μ0

(14b)
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where γ0
1 ¼ 1

4 7� 4þ 3bgð Þbω½ �, γ0
2 ¼ �1

4 1� 4� 3bgð Þbω½ �, γ0
3 ¼ 1

4 2� 3bgμ0

� �
, γ1

1 ¼ �1
4 4þ 3bgð Þ,

γ2
1 ¼ � 3

4 bω, γ1
2 ¼ 1

4 4� 3bgð Þ, γ2
2 ¼ � 3

4 bω, and γ2
3 ¼ � 3

4μ0.

By perturbation theory [14], the corresponding flux can also be expanded by using the pertur-
bation coefficients εω and εg:

FþS ¼ FþS0 þ εωFþS1 þ εgFþS2 (7a)

F�S ¼ F�S0 þ εωF�S1 þ εgF�S2 (7b)

Substituting Eqs. (6) and (7) into Eq. (5) yields

dFþS
dτ

¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �h i

FþS0 þ εωFþS1 þ εgFþS2
� �

� γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �þ γ2

2εg e�a2τ � e�a2τ0=2
� �� �

F�S0 þ εωF�S1 þ εgF�S2
� �

� bωγ0
3 þ γ0

3εω e�a1τ � e�a1τ0=2
� �þ bωγ2

3εg e�a2τ � e�a2τ0=2
� �� �

F0e
� τ

μ0

(8a)

dF�S
dτ

¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �h i

FþS0 þ εωFþS1 þ εgFþS2
� �

� γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �þ γ2

1εg e�a2τ � e�a2τ0=2
� �� �

F�S0 þ εωF�S1 þ εgF�S2
� �

þ bωγ0
4 þ γ0

4εω e�a1τ � e�a1τ0=2
� �� bωγ2

3εg e�a2τ � e�a2τ0=2
� �� �

F0e
� τ

μ0

(8b)

where γ0
4 ¼ 1� γ0

3. And, Eq. (8) can be rewritten as separate equations for F�S0, F
�
S1, and F�S2. We

obtain the following equations for the scattered flux F�S0:

dFþS0
dτ

¼ γ0
1F

þ
S0 � γ0

2F
�
S0 � γ0

3bωF0e
� τ

μ0 (9a)

dF�S0
dτ

¼ γ0
2F

þ
S0 � γ0

1F
�
S0 þ γ0

4bωF0e
� τ

μ0 (9b)

F�S0 0ð Þ ¼ 0, FþS0 τ0ð Þ ¼ Rdif F�S0 τ0ð Þ þ Rdirμ0F0e
�τ0

μ0 (9c)

Eq. (9) is the standard SRT equation for a homogeneous layer [15] and has the following
solution:

FþS0 ¼ K1ekτ þ ΓK2e�kτ þ G1e
� τ

μ0 (10a)

F�S0 ¼ ΓK1ekτ þ K2e�kτ þ G2e
� τ

μ0 (10b)

where K1 ¼ Γ�Rdifð ÞΓG2e�kτ0� G1�RdirG2�Rdirμ0F0ð Þe�τ0
μ0

1�Rdif Γð Þekτ0� Γ�Rdifð ÞΓe�kτ0
, K2 ¼ �ΓK1 � G2, G1 ¼ γ0

3
1
μ0
� γ0

1

� �
� γ0

2γ
0
4

h i

μ0
2bωF0

1�μ0
2k2
, G2 ¼ � γ0

4
1
μ0
þ γ0

1

� �
þ γ0

2γ
0
3

h i
μ0

2bωF0
1�μ0

2k2
, Γ ¼ 1� 2k

γ0
1þγ0

2þk, and k2 ¼ γ0
1 þ γ0

2

� �
γ0
1 � γ0

2

� �
. And,

the equations for the perturbation terms F�Si (i = 1, 2) are
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dFþSi
dτ

¼ γ0
1F

þ
Si � γ0

2F
�
Si þ e�aiτ � e�aiτ0=2

� �
γi
1F

þ
S0 � γi

2F
�
S0

� �� γi�1
3 F0 e�aiτ � e�aiτ0=2

� �
e�

τ
μ0 (11a)

dF�Si
dτ

¼ γ0
2F

þ
Si � γ0

1F
�
Si þ e�aiτ � e�aiτ0=2

� �
γi
2F

þ
S0 � γi

1F
�
S0

� �� γi�1
4 F0 e�aiτ � e�aiτ0=2

� �
e�

τ
μ0 (11b)

F�Si 0ð Þ ¼ 0, FþSi τ0ð Þ ¼ Rdif F�Si τ0ð Þ (11c)

where γ1
3 ¼ �γ1

4 ¼ bωγ2
3. Letting Mi ¼ FþSi þ F�Si and Ni ¼ FþSi � F�Si, Eq. (11a) and (11b) yields

dMi

dτ
¼ γ0

1 þ γ0
2

� �
Ni þ ψþ

i þ ψ�
i

� �
e� kþaið Þτ þ ζþi þ ζ�i

� �
e k�aið Þτ þ χþ

i þ χ�
i

� �
e
� aiþ 1

μ0

� �
τ

�e�aiτ0=2 ψþ
i þ ψ�

i

� �
e�kτ þ ζþi þ ζ�i

� �
ekτ þ χþ

i þ χ�
i

� �
e�

τ
μ0

h i (12a)

dNi

dτ
¼ γ0

1 � γ0
2

� �
Mi þ ψþ

i � ψ�
i

� �
e� kþaið Þτ þ ζþi � ζ�i

� �
e k�aið Þτ þ χþ

i � χ�
i

� �
e
� aiþ 1

μ0

� �
τ

�e�aiτ0=2 ψþ
i � ψ�

i

� �
e�kτ þ ζþi � ζ�i

� �
ekτ þ χþ

i � χ�
i

� �
e�

τ
μ0

h i (12b)

where Ψþ
i ¼ K2 γi

1Γ� γi
2

� �
, Ψ�

i ¼ K2 γi
2Γ� γi

1

� �
, ζþi ¼ K1 γi

1 � γi
2Γ

� �
, ζ�i ¼ K1 γi

2 � γi
1Γ

� �
,

χþ
i ¼ γi

1G1 � γi
2G2 � γi�1

3 F0, and χ�
i ¼ γi

2G1 � γi
1G2 þ γi�1

4 F0.

From Eq. (12), we obtain

d2Mi

dτ2
¼ k2Mi þ ηþ1ie

� kþaið Þτ þ ηþ2ie
k�aið Þτ þ ηþ3ie

� aiþ 1
μ0

� �
τ þ ηþ4ie

�kτ þ ηþ5ie
kτ þ ηþ6ie

� τ
μ0 (13a)

d2Ni

dτ2
¼ k2Ni þ η�1ie

� kþaið Þτ þ η�2ie
k�aið Þτ þ η�3ie

� aiþ 1
μ0

� �
τ þ η�4ie

�kτ þ η�5ie
kτ þ η�6ie

� τ
μ0 (13b)

where η�1i ¼ γ0
1 � γ0

2

� �
ψþ
i ∓ψ�

i

� �� kþ aið Þ ψþ
i � ψ�

i

� �
, η�2i ¼ k� aið Þ ζþi � ζ�i

� �þ γ0
1 � γ0

2

� �

ζþi ∓ ζ�i
� �

, η�3i ¼ χþ
i ∓χ�

i

� �
γ0
1 � γ0

2

� �� ai þ 1
μ0

� �
χþ
i ∓χ�

i

� �
, η�4i ¼ �e�aiτ0=2 γ0

1 � γ0
2

� �
ψþ
i ∓ψ�

i

� ���

k ψþ
i � ψ�

i

� ��, η�5i ¼ �e�aiτ0=2 k ζþi � ζ�i
� �þ γ0

1 � γ0
2

� �
ζþi ∓ ζ�i
� �� �

, and η�6i ¼ �e�aiτ0=2 χþ
i ∓χ�

i

� ��

γ0
1 � γ0

2

� �� 1
μ0

χþ
i ∓χ�

i

� ��.

The solutions of Eq. (13) are

Mi ¼ Aþ
i e

�kτ þ Bþ
i e

kτ þ Pþ
i e

� kþaið Þτ þQþ
i e

k�aið Þτ þ Rþ
i e

� aiþ 1
μ0

� �
τ � ηþ4i

2k
e�kτ þ ηþ5i

2k
ekτ þ ηþ6iμ

2
0

1� μ2
0k

2 e
� τ

μ0

(14a)

Ni ¼ A�
i e

�kτ þ B�
i e

kτ þ P�
i e

� kþaið Þτ þQ�
i e

k�aið Þτ þ R�
i e

� aiþ 1
μ0

� �
τ � η�4i

2k
e�kτ þ η�5i

2k
ekτ þ η�6iμ

2
0

1� μ2
0k

2 e
� τ

μ0

(14b)
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where P�
i ¼ η�1i

kþaið Þ2�k2
, Q�

i ¼ η�2i
k�aið Þ2�k2

, and R�
i ¼ η�3i

aiþ 1
μ0

� �2

�k2
e�

τ
μ0 . Finally, we can obtain F�Si and FþSi

as

FþSi ¼ Dþ
1ie

�kτ þDþ
2ie

kτ þ φþ
1ie

� kþaið Þτ þ φþ
2ie

k�aið Þτ þ φþ
3ie

� aiþ 1
μ0

� �
τ þ φþ

4iτe
�k1τ þ φþ

5iτe
kτ þ φþ

6ie
� τ

μ0

(15a)

F�Si ¼ D�
1ie

�kτ þD�
2ie

kτ þ φ�
1ie

� kþaið Þτ þ φ�
2ie

k�aið Þτ þ φ�
3ie

� aiþ 1
μ0

� �
τ þ φ�

4iτe
�k1τ þ φ�

5iτe
kτ þ φ�

6ie
� τ

μ0

(15b)

where D�
1i ¼ Aþ

i α
∓ � Xi, D�

2i ¼ Bþ
i α

� � Y, α� ¼ 1
2 1� k

γ0
1þγ02

� �
, Xi ¼ e

�aiτ0=2 ψþ
i
þψ�

ið Þ
2 γ0

1þγ0
2ð Þ � ηþ4i

4k γ01þγ0
2ð Þ,

Yi ¼ e
�aiτ0=2 ζþ

i
þζ�

ið Þ
2 γ0

1þγ0
2ð Þ þ ηþ5i

4k γ0
1þγ0

2ð Þ, ϕ�
1i ¼ 1

2 Pþ
i � P�

i

� �
, ϕ�

2i ¼ 1
2 Qþ

i �Q�
i

� �
, ϕ�

3i ¼ 1
2 Rþ

i � R�
i

� �
,

ϕ�
4i ¼ � ηþ4i�η�4i

4k , ϕ�
5i ¼

ηþ5i�η�5i
4k , and ϕ�

6i ¼
ηþ6i�η�6ið Þμ2

0

1�μ2
0k

2 . Bi and Ai are determined by the boundary

conditions as

Bþ
i

¼ �ϕ�
1i þ ϕ�

2i þ ϕ�
3i þ ϕ�

6iÞ α� � Rdifαþ� �
e�kτ0 þ αþ ϕþ

1i � Rdifϕ
�
1i

� �
e� kþaið Þτ0 þ ϕþ

2i � Rdifϕ
�
2i

� �
e k�aið Þτ0� �

α� α� � Rdifαþ� �
e�kτ0 � αþ αþ � Rdifα�� �

ekτ0

þαþ ϕþ
3i � Rdifϕ

�
3i

� �
e
� aiþ 1

μ0

� �
τ0 þ ϕþ

4i � Rdifϕ
�
4iÞτ0e�kτ0 þ ϕþ

5i � Rdifϕ
�
5i

� �
τ0ekτ0 þ ϕþ

6i � Rdifϕ
�
6i

� �
e�

τ0
μ0 �

α� α� � Rdifαþ� �
e�kτ0 � αþ αþ � Rdifα�� �

ekτ0

þ Xi þ Yið Þ α� � Rdifαþ� �
e�kτ0 þ Xi þ Rdif Xi

� �
αþe�kτ0 þ Yi þ Rdif Yi

� �
αþekτ0

α� α� � Rdifαþ� �
e�kτ0 � αþ αþ � Rdifα�� �

ekτ0

(16a)

Aþ
i ¼ 1

αþ Xi þ Yi � Biα� � ϕ�
1i � ϕ�

2i � ϕ�
3i � ϕ�

6i

� �
(16b)

All detailed calculation about solar radiation can be found at [16].

2.2. IRT solution

The azimuthally averaged infrared radiative transfer equation for intensity II τ;μ
� �

is [1–4, 10–12]

μ
dII τ;μ
� �
dτ

¼ II τ;μ
� �� ω τð Þ

2

ð1
�1

II τ;μ
� �

P τ;μ;μ
0

� �
dμ

0 � 1� ω τð Þ½ �B Tð Þ (17)

where μ, τ, P τ;μ;μ
0� �
, and ω τð Þ are same as in Eq. (1). B Tð Þ is the Planck function at temper-

ature T, which represents the internal infrared emission of the medium.
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The Planck function is approximated lineally as a function of optical depth [2] as

B T τð Þ½ � ¼ B0 þ βτ (18)

where β ¼ B1 � B0ð Þ=τ0 and τ0 are the total optical depth of the medium. The Planck functions
B0 and B1 are evaluated by using the temperature of the top (τ ¼ 0) and the bottom (τ ¼ τ0) of
the medium.

According to the two-stream approximation, the intensities can be written as II τ;μ1

� � ¼ IþI τð Þ
and II τ;μ�1

� � ¼ I�I τð Þ, respectively, where μ1 ¼ �μ�1 ¼ 1=1:66 is a diffuse factor that converts

radiative intensity to flux [17].
Ð 1
�1 II τ;μ

� �
P τ;μ;μ0� �

dμ0 can be written as
ð1
�1

II τ;μ
� �

P τ;μ;μ0� �
dμ0 ¼ 1þ 3g τð Þμμ1

� �
IþI τð Þ þ 1þ 3g τð Þμμ�1

� �
I�I τð Þ (19)

where g τð Þ is the asymmetry factor.

Using Eqs. (17) and (19), we can obtain

dIþI τð Þ
dτ

¼ γ1 τð ÞIþI τð Þ � γ2 τð ÞI�I τð Þ � γ3 τð ÞB τð Þ (20a)

dIþI τð Þ
dτ

¼ γ2 τð ÞIþI τð Þ � γ1 τð ÞI�I τð Þ þ γ3 τð ÞB τð Þ (20b)

where γ1 τð Þ ¼ 1-ω τð Þ 1þg τð Þð Þ=2
μ1

, γ2 τð Þ ¼ ω τð Þ 1�g τð Þ½ �
2μ1

, and γ3 τð Þ ¼ 1�ω τð Þ
μ1

.

For IRT, we also use Eq. (3) to represent an inhomogeneous medium such as cloud or snow, in
which ω τð Þ and g τð Þ vary with τ. By substituting Eq. (3) into γ1 τð Þ, γ2 τð Þ, and γ3 τð Þ and by
ignoring the second order of the small parameters of ε2ω, ε

2
g, and εωεg, we can obtain

γ1 τð Þ ¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �

(21a)

γ2 τð Þ ¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �

(21b)

γ3 τð Þ ¼ γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �

(21c)

In the above formula, γ0
i , γ

1
i , and γ2

i (i = 1, 2, 3) are the known factors of bω and bg. These known

factors are introduced for simplifying original expressions, in which γ0
1 ¼

1�bω 1þbg� �
=2

μ1
,

γ0
2 ¼

bω 1�bg� �
2μ1

, γ0
3 ¼ 1�bω

μ1
, γ1

1 ¼ � 1þbg
2μ1

, γ1
2 ¼ 1�bg

2μ1
, γ1

3 ¼ � 1
μ1
, γ2

1 ¼ γ2
2 ¼ � bω

2μ1
, and γ2

3 ¼ 0.

Same as in Eq. (7), the upward and downward intensity can be written as

IþI ¼ IþI0 þ εωIþI1 þ εgIþI1 (22a)

I�I ¼ I�I0 þ εωI�I1 þ εgI�I1 (22b)
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where P�
i ¼ η�1i

kþaið Þ2�k2
, Q�

i ¼ η�2i
k�aið Þ2�k2

, and R�
i ¼ η�3i

aiþ 1
μ0

� �2

�k2
e�

τ
μ0 . Finally, we can obtain F�Si and FþSi

as

FþSi ¼ Dþ
1ie

�kτ þDþ
2ie

kτ þ φþ
1ie

� kþaið Þτ þ φþ
2ie

k�aið Þτ þ φþ
3ie

� aiþ 1
μ0

� �
τ þ φþ

4iτe
�k1τ þ φþ

5iτe
kτ þ φþ

6ie
� τ

μ0

(15a)

F�Si ¼ D�
1ie

�kτ þD�
2ie

kτ þ φ�
1ie

� kþaið Þτ þ φ�
2ie

k�aið Þτ þ φ�
3ie

� aiþ 1
μ0

� �
τ þ φ�

4iτe
�k1τ þ φ�

5iτe
kτ þ φ�

6ie
� τ

μ0

(15b)

where D�
1i ¼ Aþ

i α
∓ � Xi, D�

2i ¼ Bþ
i α

� � Y, α� ¼ 1
2 1� k

γ0
1þγ02

� �
, Xi ¼ e

�aiτ0=2 ψþ
i
þψ�

ið Þ
2 γ0

1þγ0
2ð Þ � ηþ4i

4k γ01þγ0
2ð Þ,

Yi ¼ e
�aiτ0=2 ζþ

i
þζ�

ið Þ
2 γ0

1þγ0
2ð Þ þ ηþ5i

4k γ0
1þγ0

2ð Þ, ϕ�
1i ¼ 1

2 Pþ
i � P�

i

� �
, ϕ�

2i ¼ 1
2 Qþ

i �Q�
i

� �
, ϕ�

3i ¼ 1
2 Rþ

i � R�
i

� �
,

ϕ�
4i ¼ � ηþ4i�η�4i

4k , ϕ�
5i ¼

ηþ5i�η�5i
4k , and ϕ�

6i ¼
ηþ6i�η�6ið Þμ2

0

1�μ2
0k

2 . Bi and Ai are determined by the boundary

conditions as

Bþ
i

¼ �ϕ�
1i þ ϕ�

2i þ ϕ�
3i þ ϕ�

6iÞ α� � Rdifαþ� �
e�kτ0 þ αþ ϕþ

1i � Rdifϕ
�
1i

� �
e� kþaið Þτ0 þ ϕþ

2i � Rdifϕ
�
2i

� �
e k�aið Þτ0� �

α� α� � Rdifαþ� �
e�kτ0 � αþ αþ � Rdifα�� �

ekτ0

þαþ ϕþ
3i � Rdifϕ

�
3i

� �
e
� aiþ 1

μ0

� �
τ0 þ ϕþ

4i � Rdifϕ
�
4iÞτ0e�kτ0 þ ϕþ

5i � Rdifϕ
�
5i

� �
τ0ekτ0 þ ϕþ

6i � Rdifϕ
�
6i

� �
e�

τ0
μ0 �

α� α� � Rdifαþ� �
e�kτ0 � αþ αþ � Rdifα�� �

ekτ0

þ Xi þ Yið Þ α� � Rdifαþ� �
e�kτ0 þ Xi þ Rdif Xi

� �
αþe�kτ0 þ Yi þ Rdif Yi

� �
αþekτ0

α� α� � Rdifαþ� �
e�kτ0 � αþ αþ � Rdifα�� �

ekτ0

(16a)

Aþ
i ¼ 1

αþ Xi þ Yi � Biα� � ϕ�
1i � ϕ�

2i � ϕ�
3i � ϕ�

6i

� �
(16b)

All detailed calculation about solar radiation can be found at [16].

2.2. IRT solution

The azimuthally averaged infrared radiative transfer equation for intensity II τ;μ
� �

is [1–4, 10–12]

μ
dII τ;μ
� �
dτ

¼ II τ;μ
� �� ω τð Þ

2

ð1
�1

II τ;μ
� �

P τ;μ;μ
0

� �
dμ

0 � 1� ω τð Þ½ �B Tð Þ (17)

where μ, τ, P τ;μ;μ
0� �
, and ω τð Þ are same as in Eq. (1). B Tð Þ is the Planck function at temper-

ature T, which represents the internal infrared emission of the medium.
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The Planck function is approximated lineally as a function of optical depth [2] as

B T τð Þ½ � ¼ B0 þ βτ (18)

where β ¼ B1 � B0ð Þ=τ0 and τ0 are the total optical depth of the medium. The Planck functions
B0 and B1 are evaluated by using the temperature of the top (τ ¼ 0) and the bottom (τ ¼ τ0) of
the medium.

According to the two-stream approximation, the intensities can be written as II τ;μ1

� � ¼ IþI τð Þ
and II τ;μ�1

� � ¼ I�I τð Þ, respectively, where μ1 ¼ �μ�1 ¼ 1=1:66 is a diffuse factor that converts

radiative intensity to flux [17].
Ð 1
�1 II τ;μ

� �
P τ;μ;μ0� �

dμ0 can be written as
ð1
�1

II τ;μ
� �

P τ;μ;μ0� �
dμ0 ¼ 1þ 3g τð Þμμ1

� �
IþI τð Þ þ 1þ 3g τð Þμμ�1

� �
I�I τð Þ (19)

where g τð Þ is the asymmetry factor.

Using Eqs. (17) and (19), we can obtain

dIþI τð Þ
dτ

¼ γ1 τð ÞIþI τð Þ � γ2 τð ÞI�I τð Þ � γ3 τð ÞB τð Þ (20a)

dIþI τð Þ
dτ

¼ γ2 τð ÞIþI τð Þ � γ1 τð ÞI�I τð Þ þ γ3 τð ÞB τð Þ (20b)

where γ1 τð Þ ¼ 1-ω τð Þ 1þg τð Þð Þ=2
μ1

, γ2 τð Þ ¼ ω τð Þ 1�g τð Þ½ �
2μ1

, and γ3 τð Þ ¼ 1�ω τð Þ
μ1

.

For IRT, we also use Eq. (3) to represent an inhomogeneous medium such as cloud or snow, in
which ω τð Þ and g τð Þ vary with τ. By substituting Eq. (3) into γ1 τð Þ, γ2 τð Þ, and γ3 τð Þ and by
ignoring the second order of the small parameters of ε2ω, ε

2
g, and εωεg, we can obtain

γ1 τð Þ ¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �

(21a)

γ2 τð Þ ¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �

(21b)

γ3 τð Þ ¼ γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �

(21c)

In the above formula, γ0
i , γ

1
i , and γ2

i (i = 1, 2, 3) are the known factors of bω and bg. These known

factors are introduced for simplifying original expressions, in which γ0
1 ¼

1�bω 1þbg� �
=2

μ1
,

γ0
2 ¼

bω 1�bg� �
2μ1

, γ0
3 ¼ 1�bω

μ1
, γ1

1 ¼ � 1þbg
2μ1

, γ1
2 ¼ 1�bg

2μ1
, γ1

3 ¼ � 1
μ1
, γ2

1 ¼ γ2
2 ¼ � bω

2μ1
, and γ2

3 ¼ 0.

Same as in Eq. (7), the upward and downward intensity can be written as

IþI ¼ IþI0 þ εωIþI1 þ εgIþI1 (22a)

I�I ¼ I�I0 þ εωI�I1 þ εgI�I1 (22b)
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By substituting Eqs. (21)–(22) into Eq. (20), we obtain

dIþI
dτ

¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �h i

IþI0 þ εωIþI1 þ εgIþI2
� �

� γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �þ γ2

2εg e�a2τ � e�a2τ0=2
� �� �

I�I0 þ εωI�I1 þ εgI�I2
� �

� γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �� �

B τð Þ
(23a)

dI�I
dτ

¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �h i

IþI0 þ εωIþI1 þ εgIþI2
� �

� γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �þ γ2

1εg e�a2τ � e�a2τ0=2
� �� �

I�I0 þ εωI�I1 þ εgI�I2
� �

þ γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �� �

B τð Þ

(23b)

By removing the second-order and higher-order perturbation terms, we can also separate
Eq. (23) into three equations of I�Ii (i = 0, 1, 2). The equations of I�I0 can be written as

dIþI0
dτ

¼ γ0
1dI

þ
I0 � γ0

2dI
�
I0 � γ0

3B τð Þ (24a)

dI�I0
dτ

¼ γ0
2I

þ
I0 � γ0

1I
�
I0 þ γ0

3B τð Þ (24b)

I�I0 0ð Þ ¼ 0, IþI0 τ0ð Þ ¼ 1� εsð ÞI�I0 τ0ð Þ þ εsB Tsð Þ (24c)

where Ts and εs are surface temperature and surface emissivity, respectively. Eq. (24) is
the standard homogeneous two-stream infrared radiative transfer equation [3, 15] with
solutions

IþI0 ¼ αþK0e�k τ0�τð Þ þ α�H0e�kτ þ G1τþ Gþ
2 (25a)

I�I0 ¼ α�K0e�k τ0�τð Þ þ αþH0e�kτ þ G1τþ G�
2 (25b)

where k2 ¼ γ0
1 þ γ0

2

� �
γ0
1 � γ0

2

� �
, α� ¼ 1

2 1� k
γ01þγ02

� �
, G1 ¼ γ03

γ01�γ02
β, G�

2 ¼ γ03
γ0
1�γ0

2
B0 � βγ0

3

k2
,

H0 ¼ α�e�kτ0 Gþ
2 �RG�

2ð Þþ 1�Rð ÞG1τ0� 1�Rð ÞB Tsð Þ½ �� αþ�Rα�ð ÞG�
2

αþ αþ�Rα�ð Þ�α� α��Rdif αþð Þe�2kτ0
, K0 ¼ � αþH0þG�

2
α�e�kτ0

, and R ¼ 1� εs.

The equations for I�Ii (i = 1, 2) are

dIþIi
dτ

¼ γ0
1I

þ
Ii � γ0

2I
�
Ii þ e�aiτ � e�aiτ0=2

� �
γi
1I

þ
I0 � γi

2I
�
I0 � γi

3B τð Þ� �
(26a)

dI�Ii
dτ

¼ γ0
2I

þ
Ii � γ0

1I
�
Ii þ e�aiτ � e�aiτ0=2

� �
γi
2I

þ
I0 � γi

1I
�
I0 þ γi

3B τð Þ� �
(26b)

I�Ii 0ð Þ ¼ 0, IþIi τ0ð Þ ¼ 1� εsð ÞI�Ii τ0ð Þ (26c)

Let Mi ¼ IþIi þ I�Ii and Ni ¼ IþIi � I�Ii . Eq. (26a) and (26b) yields
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dMi

dτ
¼ γ0

1 þ γ0
2

� �
Ni þ χþ

1ie
�kτ0þ k�aið Þτ þ χþ

2ie
� kþaið Þτ þ χþ

3ie
�k τ0�τð Þ þ χþ

4ie
�kτ þ χþ

5i þ χþ
6ie

�aiτ (27a)

dNi

dτ
¼ γ0

1 � γ0
2

� �
Mi þ χ�

1ie
�kτ0þ k�aið Þτ þ χ�

2ie
� kþaið Þτ þ χ�

3ie
�k τ0�τð Þ þ χ�

4ie
�kτ þ χ�

5i þ χ�
6ie

�aiτ

þχ�
7iτþ χ�

8iτe
�aiτ

(27b)

where χ�
1i ¼ K0 αþ ∓α�ð Þ γi

1 � γi
2

� �
, χ�

2i ¼ ∓H0 αþ ∓α�ð Þ γi
1 � γi

2

� �
, χ�

3i ¼ �K0 αþ ∓α�ð Þ γi
1�

�

γi
2Þe�aiτ0=2, χ�

4i ¼ �H0 αþ ∓α�ð Þ γi
1 � γi

2

� �
e�aiτ0=2, χþ

5i ¼ � Gþ
2 � G�

2

� �
γi
1 þ γi

2

� �
e�aiτ0=2, χ�

5i ¼ �
Gþ

2 þ G�
2

� �
γi
1 � γi

2

� �
e�aiτ0=2 þ 2B0γi

3e
�aiτ0=2, χþ

6i ¼ Gþ
2 � G�

2

� �
γi
1 þ γi

2

� �
, χ�

6i ¼ Gþ
2 þ G�

2

� �
γi
1�

�

γi
2Þ � 2B0γi

3, χ
�
7i ¼ �2G1 γi

1 � γi
2

� �þ 2βγi
3

� �
e�aiτ0=2, and χ�

8i ¼ 2G1 γi
1 � γi

2

� �� 2βγi
3.

From Eq. (27), we can obtain

d2Mi

dτ2
¼ k2Mi þ ϕþ

1ie
�kτ0þ k�aið Þτ þ ϕþ

2ie
� kþaið Þτ þ ϕþ

3ie
�k τ0�τð Þ þ ϕþ

4ie
�kτ þ ϕþ

5i þ ϕþ
6ie

�aiτ

þϕþ
7iτþ ϕþ

8iτe
�aiτ

(28a)

d2Ni

dτ2
¼ k2Ni þ ϕ�

1ie
�kτ0þ k�aið Þτ þ ϕ�

2ie
� kþaið Þτ þ ϕ�

3ie
�k τ0�τð Þ þ ϕ�

4ie
�kτ þ ϕ�

5i þ ϕ�
6ie

�aiτ

þϕ�
8iτe

�aiτ
(28b)

where ϕ�
1i ¼ γ0

1 � γ0
2

� �
χ∓
1i þ k� aið Þχ�

1i, ϕ�
2i ¼ γ0

1 � γ0
2

� �
χ∓
2i � kþ aið Þχ�

2i, ϕ�
3i ¼ γ0

1 � γ0
2

� �
χ∓
3i þ

kχ�
3i, ϕ�

4i ¼ γ0
1 � γ0

2

� �
χ∓
4i � kχ�

4i, ϕþ
5i ¼ γ0

1 þ γ0
2

� �
χ�
5i, ϕ�

5i ¼ γ0
1 � γ0

2

� �
χþ
5i þ χ�

7i, ϕþ
6i ¼ γ0

1 þ γ0
2

� �

χ�
6i � aiχþ

6i, ϕ�
6i ¼ γ0

1 � γ0
2

� �
χþ
6i � aiχ�

6i þ χ�
8i, ϕþ

7i ¼ γ0
1 þ γ0

2

� �
χ�
7i, ϕþ

8i ¼ γ0
1 þ γ0

2

� �
χ�
8i, and ϕ�

8i ¼
�aiχ�

8i. Thus, the solutions are

Mi ¼ K1ie�k τ0�τð Þ þH1ie�kτ þ Pþ
1ie

�kτ0þ k�aið Þτ þ Pþ
2ie

� kþaið Þτ þ Pþ
3iτe

�k τ0�τð Þ þ Pþ
4iτe

�kτ

þPþ
5i þ Pþ

6ie
�aiτ þ Pþ

7iτþ Pþ
8iτe

�aiτ
(29a)

Ni ¼ K2ie�k τ0�τð Þ þH2ie�kτ þ P�
1ie

�kτ0þ k�aið Þτ þ P�
2ie

� kþaið Þτ þ P�
3iτe

�k τ0�τð Þ þ P�
4iτe

�kτ

þP�
5i þ P�

6ie
�aiτ þ P�

8iτe
�aiτ

(29b)

where P�
1i ¼ ϕ�

1i

k�aið Þ2�k2
, P�

2i ¼ ϕ�
2i

kþaið Þ2�k2
, P�

3i ¼ ϕ�
3i
2k , P�

4i ¼ � ϕ�
4i
2k , P�

5i ¼ � ϕ�
5i

k2
, P�

6i ¼
ϕ�
6i a2i �k2ð Þþ2aiϕ�

8i

a2i �k2ð Þ2 ,

Pþ
7i ¼ � ϕþ

7i

k2
, and Pþ

8i ¼
ϕþ
8i

a2i �k2
.

The expressions of I�Ii are

IþIi ¼ Dþ
1ie

�k τ0�τð Þ þDþ
2ie

�kτ þ σþ1ie
�kτ0þ k�aið Þτ þ σþ2ie

� kþaið Þτ þ σþ3iτe
�k τ0�τð Þ þ σþ4iτe

�kτ

þσþ5i þ σþ6ie
�aiτ þ σ7iτþ σþ8iτe

�aiτ
(30a)

I�Ii ¼ D�
1ie

�k τ0�τð Þ þD�
2ie

�kτ þ σ�1ie
�kτ0þ k�aið Þτ þ σ�2ie

� kþaið Þτ þ σ�3iτe
�k τ0�τð Þ þ σ�4iτe

�kτ

þσ�5i þ σ�6ie
�aiτ þ σ7iτþ σ�8iτe

�aiτ
(30b)
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By substituting Eqs. (21)–(22) into Eq. (20), we obtain

dIþI
dτ

¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2
� �h i

IþI0 þ εωIþI1 þ εgIþI2
� �

� γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �þ γ2

2εg e�a2τ � e�a2τ0=2
� �� �

I�I0 þ εωI�I1 þ εgI�I2
� �

� γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �� �

B τð Þ
(23a)

dI�I
dτ

¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2
� �h i

IþI0 þ εωIþI1 þ εgIþI2
� �

� γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �þ γ2

1εg e�a2τ � e�a2τ0=2
� �� �

I�I0 þ εωI�I1 þ εgI�I2
� �

þ γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �� �

B τð Þ

(23b)

By removing the second-order and higher-order perturbation terms, we can also separate
Eq. (23) into three equations of I�Ii (i = 0, 1, 2). The equations of I�I0 can be written as

dIþI0
dτ

¼ γ0
1dI

þ
I0 � γ0

2dI
�
I0 � γ0

3B τð Þ (24a)

dI�I0
dτ

¼ γ0
2I

þ
I0 � γ0

1I
�
I0 þ γ0

3B τð Þ (24b)

I�I0 0ð Þ ¼ 0, IþI0 τ0ð Þ ¼ 1� εsð ÞI�I0 τ0ð Þ þ εsB Tsð Þ (24c)

where Ts and εs are surface temperature and surface emissivity, respectively. Eq. (24) is
the standard homogeneous two-stream infrared radiative transfer equation [3, 15] with
solutions

IþI0 ¼ αþK0e�k τ0�τð Þ þ α�H0e�kτ þ G1τþ Gþ
2 (25a)

I�I0 ¼ α�K0e�k τ0�τð Þ þ αþH0e�kτ þ G1τþ G�
2 (25b)

where k2 ¼ γ0
1 þ γ0

2

� �
γ0
1 � γ0

2

� �
, α� ¼ 1

2 1� k
γ01þγ02

� �
, G1 ¼ γ03

γ01�γ02
β, G�

2 ¼ γ03
γ0
1�γ0

2
B0 � βγ0

3

k2
,

H0 ¼ α�e�kτ0 Gþ
2 �RG�

2ð Þþ 1�Rð ÞG1τ0� 1�Rð ÞB Tsð Þ½ �� αþ�Rα�ð ÞG�
2

αþ αþ�Rα�ð Þ�α� α��Rdif αþð Þe�2kτ0
, K0 ¼ � αþH0þG�

2
α�e�kτ0

, and R ¼ 1� εs.

The equations for I�Ii (i = 1, 2) are

dIþIi
dτ

¼ γ0
1I

þ
Ii � γ0

2I
�
Ii þ e�aiτ � e�aiτ0=2

� �
γi
1I

þ
I0 � γi

2I
�
I0 � γi

3B τð Þ� �
(26a)

dI�Ii
dτ

¼ γ0
2I

þ
Ii � γ0

1I
�
Ii þ e�aiτ � e�aiτ0=2

� �
γi
2I

þ
I0 � γi

1I
�
I0 þ γi

3B τð Þ� �
(26b)

I�Ii 0ð Þ ¼ 0, IþIi τ0ð Þ ¼ 1� εsð ÞI�Ii τ0ð Þ (26c)

Let Mi ¼ IþIi þ I�Ii and Ni ¼ IþIi � I�Ii . Eq. (26a) and (26b) yields
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dMi

dτ
¼ γ0

1 þ γ0
2

� �
Ni þ χþ

1ie
�kτ0þ k�aið Þτ þ χþ

2ie
� kþaið Þτ þ χþ

3ie
�k τ0�τð Þ þ χþ

4ie
�kτ þ χþ

5i þ χþ
6ie

�aiτ (27a)

dNi

dτ
¼ γ0

1 � γ0
2

� �
Mi þ χ�

1ie
�kτ0þ k�aið Þτ þ χ�

2ie
� kþaið Þτ þ χ�

3ie
�k τ0�τð Þ þ χ�

4ie
�kτ þ χ�

5i þ χ�
6ie

�aiτ

þχ�
7iτþ χ�

8iτe
�aiτ

(27b)

where χ�
1i ¼ K0 αþ ∓α�ð Þ γi

1 � γi
2

� �
, χ�

2i ¼ ∓H0 αþ ∓α�ð Þ γi
1 � γi

2

� �
, χ�

3i ¼ �K0 αþ ∓α�ð Þ γi
1�

�

γi
2Þe�aiτ0=2, χ�

4i ¼ �H0 αþ ∓α�ð Þ γi
1 � γi

2

� �
e�aiτ0=2, χþ

5i ¼ � Gþ
2 � G�

2

� �
γi
1 þ γi

2

� �
e�aiτ0=2, χ�

5i ¼ �
Gþ

2 þ G�
2

� �
γi
1 � γi

2

� �
e�aiτ0=2 þ 2B0γi

3e
�aiτ0=2, χþ

6i ¼ Gþ
2 � G�

2

� �
γi
1 þ γi

2

� �
, χ�

6i ¼ Gþ
2 þ G�

2

� �
γi
1�

�

γi
2Þ � 2B0γi

3, χ
�
7i ¼ �2G1 γi

1 � γi
2

� �þ 2βγi
3

� �
e�aiτ0=2, and χ�

8i ¼ 2G1 γi
1 � γi

2

� �� 2βγi
3.

From Eq. (27), we can obtain

d2Mi

dτ2
¼ k2Mi þ ϕþ

1ie
�kτ0þ k�aið Þτ þ ϕþ

2ie
� kþaið Þτ þ ϕþ

3ie
�k τ0�τð Þ þ ϕþ

4ie
�kτ þ ϕþ

5i þ ϕþ
6ie

�aiτ

þϕþ
7iτþ ϕþ

8iτe
�aiτ

(28a)

d2Ni

dτ2
¼ k2Ni þ ϕ�

1ie
�kτ0þ k�aið Þτ þ ϕ�

2ie
� kþaið Þτ þ ϕ�

3ie
�k τ0�τð Þ þ ϕ�

4ie
�kτ þ ϕ�

5i þ ϕ�
6ie

�aiτ

þϕ�
8iτe

�aiτ
(28b)

where ϕ�
1i ¼ γ0

1 � γ0
2

� �
χ∓
1i þ k� aið Þχ�

1i, ϕ�
2i ¼ γ0

1 � γ0
2

� �
χ∓
2i � kþ aið Þχ�

2i, ϕ�
3i ¼ γ0

1 � γ0
2

� �
χ∓
3i þ

kχ�
3i, ϕ�

4i ¼ γ0
1 � γ0

2

� �
χ∓
4i � kχ�

4i, ϕþ
5i ¼ γ0

1 þ γ0
2

� �
χ�
5i, ϕ�

5i ¼ γ0
1 � γ0

2

� �
χþ
5i þ χ�

7i, ϕþ
6i ¼ γ0

1 þ γ0
2

� �

χ�
6i � aiχþ

6i, ϕ�
6i ¼ γ0

1 � γ0
2

� �
χþ
6i � aiχ�

6i þ χ�
8i, ϕþ

7i ¼ γ0
1 þ γ0

2

� �
χ�
7i, ϕþ

8i ¼ γ0
1 þ γ0

2

� �
χ�
8i, and ϕ�

8i ¼
�aiχ�

8i. Thus, the solutions are

Mi ¼ K1ie�k τ0�τð Þ þH1ie�kτ þ Pþ
1ie
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þPþ
5i þ Pþ

6ie
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�aiτ
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�k τ0�τð Þ þ P�
4iτe

�kτ

þP�
5i þ P�

6ie
�aiτ þ P�

8iτe
�aiτ

(29b)
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1i

k�aið Þ2�k2
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2i

kþaið Þ2�k2
, P�

3i ¼ ϕ�
3i
2k , P�

4i ¼ � ϕ�
4i
2k , P�

5i ¼ � ϕ�
5i

k2
, P�
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ϕ�
6i a2i �k2ð Þþ2aiϕ�

8i
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7i ¼ � ϕþ

7i

k2
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8i ¼
ϕþ
8i

a2i �k2
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1ie

�k τ0�τð Þ þDþ
2ie

�kτ þ σþ1ie
�kτ0þ k�aið Þτ þ σþ2ie

� kþaið Þτ þ σþ3iτe
�k τ0�τð Þ þ σþ4iτe

�kτ

þσþ5i þ σþ6ie
�aiτ þ σ7iτþ σþ8iτe

�aiτ
(30a)

I�Ii ¼ D�
1ie

�k τ0�τð Þ þD�
2ie

�kτ þ σ�1ie
�kτ0þ k�aið Þτ þ σ�2ie

� kþaið Þτ þ σ�3iτe
�k τ0�τð Þ þ σ�4iτe

�kτ

þσ�5i þ σ�6ie
�aiτ þ σ7iτþ σ�8iτe

�aiτ
(30b)
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where D�
1i ¼ K1iα� � Xi, D�

2i ¼ H1iα∓ � Yi, Xi ¼ Pþ
3i�χþ

3i

2 γ01þγ0
2ð Þ, Yi ¼ Pþ

4i�χþ
4i

2 γ0
1þγ02ð Þ, σ

�
ji ¼ 1

2 Pþ
ji � P�

ji

� �
. (j = 1,

2, 3, 4, 5, 6, 8), σ7i ¼ 1
2P

þ
7i, and K1i and H1i are determined by boundary conditions. By

substituting Eq. (30) into the boundary conditions of Eq. (26c), we can obtain

H1i ¼
αþ � Rα�ð Þ Xie�kτ0 þ Yi � σ�1ie

�kτ0 � σ�2i � σ�5i � σ�6i
� �þ α�e�kτ0 Rþ 1ð ÞXi þ Rþ 1ð ÞYie�kτ0

� �

αþ αþ � Rdifα�� �� α� α� � Rdifα�� �
e�2kτ0

�α�e�kτ0 Rσ�1i � σþ1i
� �

e�aiτ0 þ Rσ�2i � σþ2i
� �

e� kþaið Þτ0 þ Rσ�3i � σþ3i
� �

τ0 þ Rσ�4i � σþ4i
� �

τ0e�kτ0
� �

αþ αþ � Rdifα�� �� α� α� � Rdifα�� �
e�2kτ0

�α�e�kτ0 Rσ�5i � σþ5i
� �þ Rσ�6i � σþ6i

� �
e�aiτ0 þ R� 1ð Þσ7iτ0 þ Rσ�8i � σþ8i

� �
τ0e�aiτ0

� �

αþ αþ � Rdifα�� �� α� α� � Rdifα�� �
e�2kτ0

(31a)

K1i ¼ 1
α�e�kτ0

Xie�kτ0 þ Yi � αþH1i � σ�1ie
�kτ0 � σ�2i � σ�5i � σ�6i

� �
(31b)

Finally, the upward and downward fluxes are obtained by

FþI 0ð Þ ¼ πIþI 0ð Þ (32a)

F�I τ0ð Þ ¼ πI�I τ0ð Þ (32b)

All detailed calculation about solar radiation can be found at [18].

3. Results and discussion

We apply the two schemes to idealized medium to investigate its accuracy, and the result has
been shown on [16] and [18].

For true cloud medium, because ice clouds’ optical properties strongly depend on the complex
particle habits [19–21]. Therefore, we limit our discussion here to water cloud only. According to
the observation, the internal LWC (g m�3) and droplet radius of the cloud tend to increase with
height [22]. To take this feature into account, LWC and droplet cross-sectional area (DCA; cm�2,
m�3) should increase linearly from the cloud base to the position near the top of the cloud:

LWC ¼ 0:22þ 0:00008z (33a)

DCA ¼ 100þ z (33b)

where 0 < z < z0. The terms z and z0 denote the height from the cloud base and the height of the
cloud top, respectively. From Eq. (33a) to (33b), the cloud effective radius (re; μm) and liquid
water path (LWP; g m�2) can be obtained:

re zð Þ ¼ 3
4r

LWC
DCA

1010 (34a)

LWP ¼
ðz0
0
LWCdz (34b)
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where r (g m�3) is the liquid water density. In this case, LWC varies from 0.22 to 0.30 g m�3,
and re varies from 2.06 to 16.50 μm, in which both ranges are consistent with observation [23].
According to [24], we choose LWP = 260 (g m�2) to represent low cloud. In the benchmark
calculations, z0 is divided into 100 internal homogeneous sub-layers, although other numbers
can be chosen (e.g., 200). In principle, more internal sub-layers should result in more accurate
results. We use 100 internal sub-layers throughout this study because having any more makes
little difference to the calculated results. Using 100 sub-layers are sufficiently accurate to
resolve the vertical internal inhomogeneity of the medium. We use the optical properties of a

Figure 1. For the band of 0.25–0.69 μm, (a-b) show cloud asymmetry factor/single-scattering albedo versus cloud optical
depth (a for asymmetry factor; b for single-scattering albedo), (c-d) show the reflectance/absorptance versus solar zenith
angle (c for reflectance; d for absorptance) and (e-f) show the relative errors of the homogeneous and inhomogeneous
solutions (e for reflectance error, f for absorptance error).
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All detailed calculation about solar radiation can be found at [18].

3. Results and discussion

We apply the two schemes to idealized medium to investigate its accuracy, and the result has
been shown on [16] and [18].

For true cloud medium, because ice clouds’ optical properties strongly depend on the complex
particle habits [19–21]. Therefore, we limit our discussion here to water cloud only. According to
the observation, the internal LWC (g m�3) and droplet radius of the cloud tend to increase with
height [22]. To take this feature into account, LWC and droplet cross-sectional area (DCA; cm�2,
m�3) should increase linearly from the cloud base to the position near the top of the cloud:

LWC ¼ 0:22þ 0:00008z (33a)

DCA ¼ 100þ z (33b)

where 0 < z < z0. The terms z and z0 denote the height from the cloud base and the height of the
cloud top, respectively. From Eq. (33a) to (33b), the cloud effective radius (re; μm) and liquid
water path (LWP; g m�2) can be obtained:
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where r (g m�3) is the liquid water density. In this case, LWC varies from 0.22 to 0.30 g m�3,
and re varies from 2.06 to 16.50 μm, in which both ranges are consistent with observation [23].
According to [24], we choose LWP = 260 (g m�2) to represent low cloud. In the benchmark
calculations, z0 is divided into 100 internal homogeneous sub-layers, although other numbers
can be chosen (e.g., 200). In principle, more internal sub-layers should result in more accurate
results. We use 100 internal sub-layers throughout this study because having any more makes
little difference to the calculated results. Using 100 sub-layers are sufficiently accurate to
resolve the vertical internal inhomogeneity of the medium. We use the optical properties of a

Figure 1. For the band of 0.25–0.69 μm, (a-b) show cloud asymmetry factor/single-scattering albedo versus cloud optical
depth (a for asymmetry factor; b for single-scattering albedo), (c-d) show the reflectance/absorptance versus solar zenith
angle (c for reflectance; d for absorptance) and (e-f) show the relative errors of the homogeneous and inhomogeneous
solutions (e for reflectance error, f for absorptance error).
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water cloud in the solar spectral band of 0.25–0.69 μm and at 0.94 μm and in the infrared
spectral band of 5–8 μm and 11 μm.

In Figure 1a and b, the benchmark values of the inhomogeneous IOPs and the parameterized
results for the spectral band of 0.25–0.69 μm are shown. The parameterized inhomogeneous
IOPs are

1� ω τð Þ ¼ 3:979� 10�7 � 1:897� 10�6 e�0:1539τ � e�0:1539τ0=2
� �

(35a)

g τð Þ ¼ 0:8359þ 0:0289 e�0:1539τ � e�0:1539τ0=2
� �

(35b)

Figure 2. Same as Figure 1 but for the wavelength 0.94 μm.
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where τ0 ¼ 110:84. The corresponding results for reflection and absorption are shown in
Figure 1c–f. For reflection, the relative error with the homogeneous solution increases from
0.25 to 0.71% as μ0 increases from 0.01 to 1, whereas the relative error with the inhomogeneous
solution increases from 0.05 to 0.14%. For absorption, the relative error is not sensitive to μ0; it
is around 7.4% with the homogeneous solution but around only 1.4% with the inhomogeneous
solution.

In Figure 2a and b, the benchmark values of the inhomogeneous IOPs and the parame-
terized results for the wavelength 0.94 μm are shown. The parameterized inhomogeneous
IOPs are

1� ω τð Þ ¼ 1:936� 10�4 � 5:263� 10�4 e�0:0357τ � e�0:0357τ0=2
� �

(36a)

g τð Þ ¼ 0:8321� 0:0403 e0:0218τ � e0:0218τ0=2
� �

(36b)

where τ0 ¼ 54:46. Figure 2c–f shows the corresponding results for reflection and absorp-
tion. For reflection, the relative error with the homogeneous solution increases from 1.1 to
3.0% as μ0 increases from 0.01 to 1, whereas the relative error with the inhomogeneous
solution increases from 0.7 to 2.0%. For absorption, the relative error is not sensitive to μ0;
it is around 10% with the homogeneous solution but around only 5.7% with the inhomo-
geneous solution.

The benchmark values of IOPs and parameterized results for the band of 5–8 μm are shown in
Figure 3a and b. Here, we assume

ω τð Þ ¼ 0:6757� 0:3697 e�0:0142τ � e�0:0142τ0=2
� �

(37a)

g τð Þ ¼ 0:8644þ 0:1023 e�0:0155τ � e0:0155τ0=2
� �

(37b)

where τ0 ¼ 55:85. For upward emissivity (Figure 3c and d), the relative errors of both solutions
are not sensitive to FþI τ0ð Þ; the errors are around �3% for homogeneous solution and around
1% for inhomogeneous solution. For downward emissivity (Figure 3e and f), the relative error
of homogeneous solution is 4% when FþI τ0ð Þ ¼ 0, while the error of inhomogeneous solution is
only 1%. With FþI τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of homogeneous solution
decreases to 0 firstly but then negatively increases to around �10%. The error of inhomoge-
neous solution shows a similar decreasing-increasing pattern, but the negative increase only
reaches about �2%.

The benchmark values of IOPs and parameterized results for the band of 11 μm are shown in
Figure 4a and b. In this case, we assume

ω τð Þ ¼ 0:4623� 0:2155 e�0:1018τ � e�0:1018τ0=2
� �

(38a)

g τð Þ ¼ 0:9118� 0:0083 e0:1087τ � e0:1087τ0=2
� �

(38b)
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where τ0 ¼ 55:85. For upward emissivity (Figure 3c and d), the relative errors of both solutions
are not sensitive to FþI τ0ð Þ; the errors are around �3% for homogeneous solution and around
1% for inhomogeneous solution. For downward emissivity (Figure 3e and f), the relative error
of homogeneous solution is 4% when FþI τ0ð Þ ¼ 0, while the error of inhomogeneous solution is
only 1%. With FþI τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of homogeneous solution
decreases to 0 firstly but then negatively increases to around �10%. The error of inhomoge-
neous solution shows a similar decreasing-increasing pattern, but the negative increase only
reaches about �2%.

The benchmark values of IOPs and parameterized results for the band of 11 μm are shown in
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where τ0 ¼ 28:23. For upward emissivity (Figure 4c and d), the relative error of homogeneous
solution is �1.2%, while the error of inhomogeneous solution is less than 0.5%. For downward
emissivity (Figure 4e and f), with FþI τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of homoge-
neous (inhomogeneous) solution varies from 3 to �11% (from 0 to �1%).

Figure 3. For the band of 5-8 μm, (a-b) show the cloud single-scattering albedo and asymmetry factor versus cloud
optical depth, black dots represent the exact values and the blue lines is the fitting results (a for single-scattering albedo; b
for asymmetry factor); (c-d) show the upward/downward emissivity versus the ratio of the radiation incident from the
bottom to the internal infrared emission of the medium (c for upward emissivity; d for downward emissivity) and (e-f)
show the relative errors of the homogeneous and inhomogeneous solutions (e for upward emissivity; f for downward
emissivity).
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4. Summary and conclusions

In the above, we have considered the vertically inhomogeneous structures of only cloud and
snow, whereas all physical quantities in the atmosphere are vertically inhomogeneous (e.g., the
concentrations of all types of gases and aerosols). In current climate models, the vertical layer
resolution is far from that required to resolve such vertical inhomogeneity. In this study, we
have proposed a new inhomogeneous SRT/IRT solution to address the vertical inhomogeneity

Figure 4. Same as Figure 3 but for the wavelength of 11 μm.
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by introducing an internal variation of IOPs inside each model layer. This scheme is based on
standard perturbation theory and allows us to use the standard solar Eddington solution and
standard infrared two-stream solution for homogeneous layers to identify a zeroth-order
equation and a first-order equation that includes the inhomogeneous effect. The new SRT/IRT
solution can accurately express the inhomogeneous effect in each model layer, and it reduces
to the standard solution when the medium is homogeneous.

The new inhomogeneous SRT/IRT solution is a good way to resolve cloud vertical inhomoge-
neity. In the spectral band of 0.25–0.69 μm, the relative error in the inhomogeneous SRT
solution is no more than 1.4%, whereas the error with the homogeneous SRT solution can be
up to 7.4%. At the specific wavelength of 0.94 μm, the relative error with the inhomogeneous
solution is not more than 5.7% but can be up to 10% with the homogeneous SRT solution. In
the band of 5–8 μm, the homogeneous IRT solution is not sensitive to FþI τ0ð Þ, and its relative
error may reach �3.2% for upward emissivity, whereas the error of inhomogeneous IRT
solution is only 1%. With FþI τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of downward emissiv-
ity for homogeneous solution varies from 4 to �10%, while the error ranges from 1 to �2% for
inhomogeneous IRT solution. In the band of 11 μm, the relative error of homogeneous IRT
solution is around �1.2% for upward emissivity, and the error of inhomogeneous IRT solution
is only less than 0.5%. For downward emissivity, the maximum error of homogeneous IRT
solution can be up to �11%, and the maximum error of inhomogeneous IRT solution is only
around �1% when FþI τ0ð Þ ¼ 5πB Tð Þ.
In specific spectral bands or at particular wavelengths, the vertical variations in IOPs can
typically be fitted easily into Eq. (3) to obtain the required parameters. A simple fitting
program can be easily incorporated into a climate model to produce the inhomogeneous IOPs
of stratocumulus clouds. If no such cloud inhomogeneity information is available in the
current climate models, the vertical variation rates of cloud LWC and DCA can be derived
empirically from observations, which show that the vertical variation rates of LWC and DCA
in stratocumulus clouds are not very different [5, 7, 8].

In this study, we presented only a single-layer inhomogeneous SRT/IRT solution. To imple-
ment the new solution in a climate model, the adding process for layer-to-layer connections
has to be solved. Under the homogeneous condition, the single-layer result in reflection and
transmission is the same for an upward path and a downward path, but this is not true for an
inhomogeneous layer. Therefore, the adding process has to be modified. We will present an
algorithm for this multilayer adding process in our next study, in which the climatic impact of
inhomogeneous clouds and inhomogeneous snows will be explored. The code base for the
inhomogeneous SRT/IRT solution is available from the authors upon request.
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by introducing an internal variation of IOPs inside each model layer. This scheme is based on
standard perturbation theory and allows us to use the standard solar Eddington solution and
standard infrared two-stream solution for homogeneous layers to identify a zeroth-order
equation and a first-order equation that includes the inhomogeneous effect. The new SRT/IRT
solution can accurately express the inhomogeneous effect in each model layer, and it reduces
to the standard solution when the medium is homogeneous.

The new inhomogeneous SRT/IRT solution is a good way to resolve cloud vertical inhomoge-
neity. In the spectral band of 0.25–0.69 μm, the relative error in the inhomogeneous SRT
solution is no more than 1.4%, whereas the error with the homogeneous SRT solution can be
up to 7.4%. At the specific wavelength of 0.94 μm, the relative error with the inhomogeneous
solution is not more than 5.7% but can be up to 10% with the homogeneous SRT solution. In
the band of 5–8 μm, the homogeneous IRT solution is not sensitive to FþI τ0ð Þ, and its relative
error may reach �3.2% for upward emissivity, whereas the error of inhomogeneous IRT
solution is only 1%. With FþI τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of downward emissiv-
ity for homogeneous solution varies from 4 to �10%, while the error ranges from 1 to �2% for
inhomogeneous IRT solution. In the band of 11 μm, the relative error of homogeneous IRT
solution is around �1.2% for upward emissivity, and the error of inhomogeneous IRT solution
is only less than 0.5%. For downward emissivity, the maximum error of homogeneous IRT
solution can be up to �11%, and the maximum error of inhomogeneous IRT solution is only
around �1% when FþI τ0ð Þ ¼ 5πB Tð Þ.
In specific spectral bands or at particular wavelengths, the vertical variations in IOPs can
typically be fitted easily into Eq. (3) to obtain the required parameters. A simple fitting
program can be easily incorporated into a climate model to produce the inhomogeneous IOPs
of stratocumulus clouds. If no such cloud inhomogeneity information is available in the
current climate models, the vertical variation rates of cloud LWC and DCA can be derived
empirically from observations, which show that the vertical variation rates of LWC and DCA
in stratocumulus clouds are not very different [5, 7, 8].

In this study, we presented only a single-layer inhomogeneous SRT/IRT solution. To imple-
ment the new solution in a climate model, the adding process for layer-to-layer connections
has to be solved. Under the homogeneous condition, the single-layer result in reflection and
transmission is the same for an upward path and a downward path, but this is not true for an
inhomogeneous layer. Therefore, the adding process has to be modified. We will present an
algorithm for this multilayer adding process in our next study, in which the climatic impact of
inhomogeneous clouds and inhomogeneous snows will be explored. The code base for the
inhomogeneous SRT/IRT solution is available from the authors upon request.
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