
Petri Nets in
Science and Engineering

Edited by Raul Campos-Rodriguez
and Mildreth Alcaraz-Mejia

Edited by Raul Campos-Rodriguez
and Mildreth Alcaraz-Mejia

This book presents a collection of chapters from different areas of science and
engineering, where Petri Nets have been shown to be a useful tool for the design
and modeling of the problems that arise in such fields. The areas covered in this

book include manufacturing systems, authentication and cyber-security, computer
architectures, mechanical systems, process mining, control theory and time analysis.

The main focus of the chapters was to be illustrative, to help the development of
intuitive ideas that may guide the reader to adopt Petri Nets in their scientific or

engineering work. However, there are other chapters with deep mathematical basis
such as time analysis. Whenever possible, models, graphics and examples illustrate the

developed concepts.

Published in London, UK

© 2018 IntechOpen
© StationaryTraveller / iStock

ISBN 978-1-78923-692-7

Petri N
ets in Science and Engineering

PETRI NETS IN SCIENCE
AND ENGINEERING

Edited by Raul Campos-Rodriguez
and Mildreth Alcaraz-Mejia

PETRI NETS IN SCIENCE
AND ENGINEERING

Edited by Raul Campos-Rodriguez
and Mildreth Alcaraz-Mejia

Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.72258
Edited by Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Contributors

José Carlos Quezada Quezada, Ernesto Flores García, Joselito Medina Marín, Jorge Bautista López, Víctor Quezada
Aguilar, Wlodek Zuberek, Roman Stryczek, Ivo Martiník, Hamdi Awad, Jianing Wu, Raul Campos-Rodriguez

© The Editor(s) and the Author(s) 2018
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and
Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole
(compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without
INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to
INTECHOPEN LIMITED rights and permissions department (permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in London, United Kingdom, 2018 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number:
11086078, The Shard, 25th floor, 32 London Bridge Street
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Petri Nets in Science and Engineering
Edited by Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

p. cm.

Print ISBN 978-1-78923-692-7

Online ISBN 978-1-78923-693-4

eBook (PDF) ISBN 978-1-83881-667-4

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,750+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

115,000+
International authors and editors

119M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editors

Raul Campos-Rodriguez is a part-time professor at the
Monterrey Institute of Technology and Higher Educa-
tion in Mexico. He received his BE degree in Computer
Systems from the University of Guadalajara (2000) and
his master and PhD degrees in Electrical Engineering
from the CINVESTAV-IPN (2002 and 2007) in Jalisco,
Mexico. From 2007 to 2011, he was a research professor

at the University of Guadalajara. From 2011 to 2017, he was a research pro-
fessor at the ITESO University. He has published a number of international
journal papers, an international patent, and directed research and develop-
ment projects in the area of discrete-event systems, control, observability,
embedded systems design and implementation and machine learning
algorithms for predictions on dynamic software environments.

Mildreth Alcaraz-Mejia is a research professor at ITESO
University. She received her BE degree in Computer
Systems from the University of Colima (2001) and her
master and PhD degrees in Electrical Engineering from
the CINVESTAV-IPN (2003 and 2007) in Jalisco, Mexico.
From 2007 to 2011, she was a research professor at the
University of Guadalajara. From 2011, she has been a

research professor at the ITESO University. She has published numerous
scientific articles that have been internationally refereed, book chapters,
and one patent in the USA. She has directed research and development
projects in the area of discrete-event systems, high performance computing
and big data analysis. Her main interest areas include discrete-event sys-
tems, design, HPC, data mining and big data analysis, as well as methods
for scheduling problems.

Contents

Preface VII

Chapter 1 Introductory Chapter: Petri Nets in Science and
Engineering 1
Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Chapter 2 Ladder Diagram Petri Nets: Discrete Event Systems 17
José Carlos Quezada Quezada, Ernesto Flores García, Joselito
Medina Marín, Jorge Bautista López and Víctor Quezada Aguilar

Chapter 3 Petri Networks in the Planning of Discrete Manufacturing
Processes 37
Roman Stryczek

Chapter 4 Reliability Evaluation for Mechanical Systems by
Petri Nets 57
Jianing Wu and Shaoze Yan

Chapter 5 Performance Analysis of Shared-Memory Bus-Based
Multiprocessors Using Timed Petri Nets 75
Wlodek M. Zuberek

Chapter 6 Supervisory Control Systems: Theory and Industrial
Applications 93
Hamdi Awad

Chapter 7 Process Petri Nets with Time Stamps and Their Using in Project
Management 111
Ivo Martiník

Contents

Preface XI

Chapter 1 Introductory Chapter: Petri Nets in Science and
Engineering 1
Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Chapter 2 Ladder Diagram Petri Nets: Discrete Event Systems 17
José Carlos Quezada Quezada, Ernesto Flores García, Joselito
Medina Marín, Jorge Bautista López and Víctor Quezada Aguilar

Chapter 3 Petri Networks in the Planning of Discrete Manufacturing
Processes 37
Roman Stryczek

Chapter 4 Reliability Evaluation for Mechanical Systems by
Petri Nets 57
Jianing Wu and Shaoze Yan

Chapter 5 Performance Analysis of Shared-Memory Bus-Based
Multiprocessors Using Timed Petri Nets 75
Wlodek M. Zuberek

Chapter 6 Supervisory Control Systems: Theory and Industrial
Applications 93
Hamdi Awad

Chapter 7 Process Petri Nets with Time Stamps and Their Using in Project
Management 111
Ivo Martiník

Preface

Petri Nets have been widely used in different areas of science and technology since they
were first presented in the middle of the last century by Dr. Carl Adam Petri. It is believed
that he planned to use Petri Nets to represent chemical reactions.

Since then, Petri Networks have gained great acceptance in the design of manufacturing
processes, logistic processes, software design, communication protocols, modern control
theory, artificial intelligence and, of course, chemical process simulations.

Dra. Alcaraz-Mejia and I have been involved with Petri Nets since our master and PhD degrees
from 2000 onwards. We used Petri Nets as a way to represent the dynamics of abstract discrete-
event systems. Since then, we have used this modeling tool in our research activities in the
areas of fault prediction and detection, observability and controllability analysis, to mention a
few. Also, we have used Petri Nets as an instrument to teach the student models of concurren‐
cy, programming for embedded systems, distributed systems, data modeling and so on.

The graphic nature of the models in Petri Nets makes their use in different areas of science
and engineering very attractive, since the models can be obtained in a very intuitive and
natural way. Additionally, Petri Nets have a solid mathematical base that comes from linear
algebra, vector spaces and linguistic analysis, among others. This allows a formal analysis of
important properties such as liveness, interlocking, reachability, controllability or observa‐
bility, to mention a few.

The aim of this book is to present a collection of works to show the usability of Petri Nets in
different areas of science and engineering. Whenever possible, models and graphics illus‐
trate the concepts developed in the chapters. The focus was to develop intuitive ideas and to
motivate the reader, as much as possible, to use Petri Nets

We would like to thank Ms. Lada Bozic, Author Service Manager from INTECHOPEN, for
her dedication and support during this process. With her help and coaching, we had incred‐
ible guidance to do our best effort to assure the quality of this book.

We hope that the readers found this book entitled “Petri Nets in Science and Engineering”
illustrative and useful for their work in science and engineering.

Dr. Raul Campos-Rodriguez
Part-time Professor

School of Engineering and Sciences
Western Region

Monterrey Institute of Technology and Higher Education, Jalisco, Mexico

Dra. Mildreth Alcaraz-Mejia
Research Professor

Electronics, Systems and Informatic Department
ITESO University, Jalisco, Mexico

Preface

Petri Nets have been widely used in different areas of science and technology since they
were first presented in the middle of the last century by Dr. Carl Adam Petri. It is believed
that he planned to use Petri Nets to represent chemical reactions.

Since then, Petri Networks have gained great acceptance in the design of manufacturing
processes, logistic processes, software design, communication protocols, modern control
theory, artificial intelligence and, of course, chemical process simulations.

Dra. Alcaraz-Mejia and I have been involved with Petri Nets since our master and PhD degrees
from 2000 onwards. We used Petri Nets as a way to represent the dynamics of abstract discrete-
event systems. Since then, we have used this modeling tool in our research activities in the
areas of fault prediction and detection, observability and controllability analysis, to mention a
few. Also, we have used Petri Nets as an instrument to teach the student models of concurren‐
cy, programming for embedded systems, distributed systems, data modeling and so on.

The graphic nature of the models in Petri Nets makes their use in different areas of science
and engineering very attractive, since the models can be obtained in a very intuitive and
natural way. Additionally, Petri Nets have a solid mathematical base that comes from linear
algebra, vector spaces and linguistic analysis, among others. This allows a formal analysis of
important properties such as liveness, interlocking, reachability, controllability or observa‐
bility, to mention a few.

The aim of this book is to present a collection of works to show the usability of Petri Nets in
different areas of science and engineering. Whenever possible, models and graphics illus‐
trate the concepts developed in the chapters. The focus was to develop intuitive ideas and to
motivate the reader, as much as possible, to use Petri Nets

We would like to thank Ms. Lada Bozic, Author Service Manager from INTECHOPEN, for
her dedication and support during this process. With her help and coaching, we had incred‐
ible guidance to do our best effort to assure the quality of this book.

We hope that the readers found this book entitled “Petri Nets in Science and Engineering”
illustrative and useful for their work in science and engineering.

Dr. Raul Campos-Rodriguez
Part-time Professor

School of Engineering and Sciences
Western Region

Monterrey Institute of Technology and Higher Education, Jalisco, Mexico

Dra. Mildreth Alcaraz-Mejia
Research Professor

Electronics, Systems and Informatic Department
ITESO University, Jalisco, Mexico

Chapter 1

Introductory Chapter: Petri Nets in Science and
Engineering

Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79309

Provisional chapter

Introductory Chapter: Petri Nets in Science and
Engineering

Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Additional information is available at the end of the chapter

1. Introduction

The Petri nets are one of the most widely used methods for the study of the dynamics that falls
within the category of Discrete Event Systems (DES) [1]. The DES is a class of systems that are
guided by the occurrence of events asynchronous in time, which are becoming more and more
relevant nowadays. The Petri nets are graphically represented as a directed graph, with two
classes of nodes, called places and transitions. The places allow capturing the state of a system.
They also represent the conditions required by the events to occur, or to execute, in the DES.

The transitions represent the events, or actions, executed in a system. The execution of the
transitions may require one or more conditions to be activated. Moreover, it is possible that a
transition does not include input places, as t1 in Figure 2. This class of transitions allows
capturing situations in a DES where an event may be random or stochastic, for example, the
arrival of an information package in a communication channel. The explanation of the Petri net
in Figure 2 will be addressed lather in this section, after the introduction of the system that it
represents.

Figure 1 depicts a conceptual diagram of a multitasking manufacturing system [6]. The system is
supplied with the raw material from two conveyors, C1 and C2. A robot arm distributes the raw
material to either a mill machine or to a lather machine, depending on the manufacturing recipe.
The semi-finished pieces are then moved by transporting bands to the assembly machine.

Figure 2 depicts a Petri net model for this multitasking manufacturing system. The supply of
the raw material is represented as two transitions with no inputs. In means the material may
arrive at any time that the inventory of raw pieces is able to feed the manufacturing system.
The robotic arm moves the raw pieces to the mill machine, by means of t4, or to the lather
machine, by means of t5. The semi-finished pieces are moved to the assembly station to
produce a final product.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.79309

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 1

Introductory Chapter: Petri Nets in Science and
Engineering

Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79309

Provisional chapter

Introductory Chapter: Petri Nets in Science and
Engineering

Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Additional information is available at the end of the chapter

1. Introduction

The Petri nets are one of the most widely used methods for the study of the dynamics that falls
within the category of Discrete Event Systems (DES) [1]. The DES is a class of systems that are
guided by the occurrence of events asynchronous in time, which are becoming more and more
relevant nowadays. The Petri nets are graphically represented as a directed graph, with two
classes of nodes, called places and transitions. The places allow capturing the state of a system.
They also represent the conditions required by the events to occur, or to execute, in the DES.

The transitions represent the events, or actions, executed in a system. The execution of the
transitions may require one or more conditions to be activated. Moreover, it is possible that a
transition does not include input places, as t1 in Figure 2. This class of transitions allows
capturing situations in a DES where an event may be random or stochastic, for example, the
arrival of an information package in a communication channel. The explanation of the Petri net
in Figure 2 will be addressed lather in this section, after the introduction of the system that it
represents.

Figure 1 depicts a conceptual diagram of a multitasking manufacturing system [6]. The system is
supplied with the raw material from two conveyors, C1 and C2. A robot arm distributes the raw
material to either a mill machine or to a lather machine, depending on the manufacturing recipe.
The semi-finished pieces are then moved by transporting bands to the assembly machine.

Figure 2 depicts a Petri net model for this multitasking manufacturing system. The supply of
the raw material is represented as two transitions with no inputs. In means the material may
arrive at any time that the inventory of raw pieces is able to feed the manufacturing system.
The robotic arm moves the raw pieces to the mill machine, by means of t4, or to the lather
machine, by means of t5. The semi-finished pieces are moved to the assembly station to
produce a final product.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.79309

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. A multitasking manufacturing station. The system is supplied with raw material from two inventories C1 and
C2. A robotic arm moves the raw pieces to the mill machine or to the lather machine depending on a manufacturing
recipe. The robotic arm then moves the semi-finished pieces to the assembly station (AS), where final products are
produced.

Figure 2. A Petri net model for the multitasking manufacturing system. The model is divided into a supply section, a
robot section, lather and mill sections, and assembly section. The supply raw material is handled by a robotic arm that
moves it to the lather t5ð Þ or mill t4ð Þmachine depending on a recipe. The semi-finished pieces are routed to the assembly
machine by three different ways. Once the final product is assembled, t18 moves the products to the store section.

Petri Nets in Science and Engineering2

Depending on what is the interest of study of the system, for example, the design of control
strategies or the evaluation of performance of the assembly recipe, the model in Figure 2 could
be refined or extended. Even new sections of the assembly system may be added to the Petri
net model.

The manufacturing system and assembly lines, as well as communication protocols, are some of
the most popular type of systems that are modeled and studied with Petri net models [8–10].
However, other types of systems such as workflowmanagement or logistic systems are similarly
likely to be modeled and studies by means of Petri nets [15–17]. Moreover, the design and
implementation of complex software systems is as well plausible to be addressed with Petri net
models [18, 19, 26].

The addressing of software design with Petri nets is popular because the construction of
models for complex structures and control flow is quite intuitive thanks to its graphical nature.
Moreover, the techniques developed around the Petri nets allow the construction of models
that are usually more compact than the produced by other methods, such as those developed
in graph theory. However, Petri nets and graph theory are not antagonist. On the contrary, the
theory developed in one of them is usually extended to the other. Thus, they are usually
complementary to each other.

Figure 3 depicts a block diagram of a reader and writer problem in computer sciences. The
processes share a region of memory where they can read and write. The diagram depicts the
process that can read, process that can write, and process that perform both operations,
reading and writing to the shared memory region. This situation arises in several cases in the
design of monolithic and distributed system, within the area of software design.

Figure 4 depicts a model for the above problem of readers and writers [2]. The net represents a
system with 2k readers modeled as p2. The system allows up to k parallel reads from a shared
memory region. It is represented by the marking in p3. However, the writing operation

Figure 3. The problem of readers and writers. The problem considers a set of process that can read and write to a shared
memory region. The system must allow any number of simultaneous reading operations, while the writing operation
requires that no reading operation is in execution. On the other hand, when a writing operation is in execution, no other
writing, nor reading, operation is allowed.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

3

Figure 1. A multitasking manufacturing station. The system is supplied with raw material from two inventories C1 and
C2. A robotic arm moves the raw pieces to the mill machine or to the lather machine depending on a manufacturing
recipe. The robotic arm then moves the semi-finished pieces to the assembly station (AS), where final products are
produced.

Figure 2. A Petri net model for the multitasking manufacturing system. The model is divided into a supply section, a
robot section, lather and mill sections, and assembly section. The supply raw material is handled by a robotic arm that
moves it to the lather t5ð Þ or mill t4ð Þmachine depending on a recipe. The semi-finished pieces are routed to the assembly
machine by three different ways. Once the final product is assembled, t18 moves the products to the store section.

Petri Nets in Science and Engineering2

Depending on what is the interest of study of the system, for example, the design of control
strategies or the evaluation of performance of the assembly recipe, the model in Figure 2 could
be refined or extended. Even new sections of the assembly system may be added to the Petri
net model.

The manufacturing system and assembly lines, as well as communication protocols, are some of
the most popular type of systems that are modeled and studied with Petri net models [8–10].
However, other types of systems such as workflowmanagement or logistic systems are similarly
likely to be modeled and studies by means of Petri nets [15–17]. Moreover, the design and
implementation of complex software systems is as well plausible to be addressed with Petri net
models [18, 19, 26].

The addressing of software design with Petri nets is popular because the construction of
models for complex structures and control flow is quite intuitive thanks to its graphical nature.
Moreover, the techniques developed around the Petri nets allow the construction of models
that are usually more compact than the produced by other methods, such as those developed
in graph theory. However, Petri nets and graph theory are not antagonist. On the contrary, the
theory developed in one of them is usually extended to the other. Thus, they are usually
complementary to each other.

Figure 3 depicts a block diagram of a reader and writer problem in computer sciences. The
processes share a region of memory where they can read and write. The diagram depicts the
process that can read, process that can write, and process that perform both operations,
reading and writing to the shared memory region. This situation arises in several cases in the
design of monolithic and distributed system, within the area of software design.

Figure 4 depicts a model for the above problem of readers and writers [2]. The net represents a
system with 2k readers modeled as p2. The system allows up to k parallel reads from a shared
memory region. It is represented by the marking in p3. However, the writing operation

Figure 3. The problem of readers and writers. The problem considers a set of process that can read and write to a shared
memory region. The system must allow any number of simultaneous reading operations, while the writing operation
requires that no reading operation is in execution. On the other hand, when a writing operation is in execution, no other
writing, nor reading, operation is allowed.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

3

requires k tokens on p3. That is, it requires that no reading operation is currently in execution.
Correspondingly, when a writing operation is in execution, no read operation is allowed. This
is represented by k weighted arc of t1. Thus, when writing operation is in execution, by the
firing of t1, the k tokens in p3 are removed. Once the reading operation is done, the firing of t2
returns k tokens to p3. The Petri net model allows any of the 2k processes to read and to write to
the shared place p3 by connecting the place p2 to the reading or writing sections of the net.

Other attractive attribute of the Petri nets is their solid mathematical basis. The incidence
matrix that represents the structure of the net in Figure 4 is represented by Eq. (1). The
incidence matrix is independent of the initial condition of the net. This structure could be
analyzed by methods from the matrix theory, linear algebra, or vector spaces, for example.

1 �1 0 0
�1 1 �1 1
�k k �k k
0 0 1 �1

2
6664

3
7775 (1)

The state equation of a Petri net allows a formal definition of its dynamics. The next state of a
Petri net can be computed from the current state, and a multiplication of the matrix that repre-
sents the structure of the net and a vector that represents the transitions that can fire, as follows:

Mkþ1 ¼ Mk þ Buk
!

(2)

The vector uk
!

represents one or more transitions that are allowed to fire. It is known as the
Parikh vector, in a clear relationship to the Parikh’s theorem. This theorem relates the strings in
a context-free language and the number of the occurrences of the symbols in these strings.

Figure 4. A Petri net model that represents the typical problem of readers and writers. The model allows up to 2k
processes p2

� �
that can read or write to and from shared memory resources p3

� �
. However, only k of them can be

concurrently in a reading operation. On the other hand, the writing process requires k tokens to be on the shared place
p3. That is, no reading operation must be executed by any of the 2k readers in p2 to allow the writing operation. Thus, the
writing operation must wait until all the reading operations have finished. Similarly, when a writing operation is in
execution, no reading operation is allowed, since p3 is empty.

Petri Nets in Science and Engineering4

In a similar way, the vector uk
!

represents the number of times each transition is fired at a given
stage in the evolution of the net. In this sense, the Parikh vector behaves like a “functor” in the
sense of the category theory [3], from the strings over the alphabet of events in a DES to vectors
that quantifies the occurrence of events in a DES. That is, the Parikh vector “loses” the
execution order of the events in a trajectory of a DES to obtain a pure vector which is simpler
to operate by a matrix multiplication.

There are different semantics for the execution of the transitions in a Petri net model. First,
in a single firing semantics, only one of the enabled transitions can fire at a time. Second, in
the multiple firing semantics, all the enabled transitions are allowed to fire at a time. In all
the semantic approaches, the conflicting transitions, that is, the ones whose firing disables
the firing of others are resolved by priorities, by a probability distribution, or some other
conflict resolution mechanism. Depending on the adopted semantics, the ability of the
models to capture dynamics of real systems differs. For example, if the analyzed system is
of distributed nature, such as a cluster of computers or a cloud service, then the correct
semantics is that of multiple firing. The expressiveness of the different semantic mecha-
nisms is a theoretical question that lies around the computer sciences. The next subsections
detail some theoretical aspects of the Petri nets and application in science and theory of
systems.

2. Petri nets in science

As mentioned, the Petri nets are a very versatile tool that turns it useful in science, as well as in
engineering. In the science field, a wide developed aspect is related to the study of Petri nets as
a system and their associated abstract properties.

For example, the study of properties of the Petri net models in terms of vectors and matrices is
complemented with the linguistic study in terms of strings and formal languages. The well-
developed theory of matrices, linear algebra, and vector spaces are well suited to the analysis
of properties in the net models, providing efficient solutions. However, other studies such as
the reachability analysis, requires the partial expansion of the state space of the models, which
turns the investigation in an inverse direction, from a vector space to string over a language.
Though, the advantages of the study of the Petri net properties in terms of vectors, matrices,
and linear algebra in general are considerable, and many of the theory developed for Petri nets
relies on them.

Indeed, by restricting the marking of a Petri net to be non-negative, the state space entirely lies
in the positive cone of Z+. Thus, some of the theory of positive linear systems could be applied
[7]. Figure 5(a) depicts the state space, in R3, of the Petri net model in (b) for two different
initial conditionsM0 ¼ 1 0 0½ � andM0 ¼ 2 0 0½ �, the two hyperplanes are orthogonal to the
unitary vector u ¼ 1 1 1½ �. Moreover, if the net is conservative (i.e., the number of tokens
over all its places remains constant for any evolution trajectory), then it is easy to show that the
entire state space of the Petri net lives in one of the hyperplanes orthogonal to a vector in Rn,
where n is the number of places of the net.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

5

requires k tokens on p3. That is, it requires that no reading operation is currently in execution.
Correspondingly, when a writing operation is in execution, no read operation is allowed. This
is represented by k weighted arc of t1. Thus, when writing operation is in execution, by the
firing of t1, the k tokens in p3 are removed. Once the reading operation is done, the firing of t2
returns k tokens to p3. The Petri net model allows any of the 2k processes to read and to write to
the shared place p3 by connecting the place p2 to the reading or writing sections of the net.

Other attractive attribute of the Petri nets is their solid mathematical basis. The incidence
matrix that represents the structure of the net in Figure 4 is represented by Eq. (1). The
incidence matrix is independent of the initial condition of the net. This structure could be
analyzed by methods from the matrix theory, linear algebra, or vector spaces, for example.

1 �1 0 0
�1 1 �1 1
�k k �k k
0 0 1 �1

2
6664

3
7775 (1)

The state equation of a Petri net allows a formal definition of its dynamics. The next state of a
Petri net can be computed from the current state, and a multiplication of the matrix that repre-
sents the structure of the net and a vector that represents the transitions that can fire, as follows:

Mkþ1 ¼ Mk þ Buk
!

(2)

The vector uk
!

represents one or more transitions that are allowed to fire. It is known as the
Parikh vector, in a clear relationship to the Parikh’s theorem. This theorem relates the strings in
a context-free language and the number of the occurrences of the symbols in these strings.

Figure 4. A Petri net model that represents the typical problem of readers and writers. The model allows up to 2k
processes p2

� �
that can read or write to and from shared memory resources p3

� �
. However, only k of them can be

concurrently in a reading operation. On the other hand, the writing process requires k tokens to be on the shared place
p3. That is, no reading operation must be executed by any of the 2k readers in p2 to allow the writing operation. Thus, the
writing operation must wait until all the reading operations have finished. Similarly, when a writing operation is in
execution, no reading operation is allowed, since p3 is empty.

Petri Nets in Science and Engineering4

In a similar way, the vector uk
!

represents the number of times each transition is fired at a given
stage in the evolution of the net. In this sense, the Parikh vector behaves like a “functor” in the
sense of the category theory [3], from the strings over the alphabet of events in a DES to vectors
that quantifies the occurrence of events in a DES. That is, the Parikh vector “loses” the
execution order of the events in a trajectory of a DES to obtain a pure vector which is simpler
to operate by a matrix multiplication.

There are different semantics for the execution of the transitions in a Petri net model. First,
in a single firing semantics, only one of the enabled transitions can fire at a time. Second, in
the multiple firing semantics, all the enabled transitions are allowed to fire at a time. In all
the semantic approaches, the conflicting transitions, that is, the ones whose firing disables
the firing of others are resolved by priorities, by a probability distribution, or some other
conflict resolution mechanism. Depending on the adopted semantics, the ability of the
models to capture dynamics of real systems differs. For example, if the analyzed system is
of distributed nature, such as a cluster of computers or a cloud service, then the correct
semantics is that of multiple firing. The expressiveness of the different semantic mecha-
nisms is a theoretical question that lies around the computer sciences. The next subsections
detail some theoretical aspects of the Petri nets and application in science and theory of
systems.

2. Petri nets in science

As mentioned, the Petri nets are a very versatile tool that turns it useful in science, as well as in
engineering. In the science field, a wide developed aspect is related to the study of Petri nets as
a system and their associated abstract properties.

For example, the study of properties of the Petri net models in terms of vectors and matrices is
complemented with the linguistic study in terms of strings and formal languages. The well-
developed theory of matrices, linear algebra, and vector spaces are well suited to the analysis
of properties in the net models, providing efficient solutions. However, other studies such as
the reachability analysis, requires the partial expansion of the state space of the models, which
turns the investigation in an inverse direction, from a vector space to string over a language.
Though, the advantages of the study of the Petri net properties in terms of vectors, matrices,
and linear algebra in general are considerable, and many of the theory developed for Petri nets
relies on them.

Indeed, by restricting the marking of a Petri net to be non-negative, the state space entirely lies
in the positive cone of Z+. Thus, some of the theory of positive linear systems could be applied
[7]. Figure 5(a) depicts the state space, in R3, of the Petri net model in (b) for two different
initial conditionsM0 ¼ 1 0 0½ � andM0 ¼ 2 0 0½ �, the two hyperplanes are orthogonal to the
unitary vector u ¼ 1 1 1½ �. Moreover, if the net is conservative (i.e., the number of tokens
over all its places remains constant for any evolution trajectory), then it is easy to show that the
entire state space of the Petri net lives in one of the hyperplanes orthogonal to a vector in Rn,
where n is the number of places of the net.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

5

One of the most active areas of the applications of the Petri nets in science is in the field of the
modern control theory. The study of control techniques for discrete event system, including
Petri net models, covers the range of applications from design of discrete event controller,
design of state observers, analysis of fault tolerant systems, analysis of Lyapunov-like stability,
detectability analysis, isolation, and failure recovery techniques, among others [4–6].

In this context, considering a Petri net as an input-output system, as in classical control theory,
is useful. Figure 6 depicts the state equation of a Petri net given by a block diagram. The input

vector uk
!

is operated by the matrix B to produce a marking increment that is added to the
current marking. The sum of these two quantities becomes the new marking reached by the
current evolution of the net. A unit delay block allows the new marking becoming the current
marking for the next evolution of the net.

Considering the state equation of a Petri net as a block diagram as in Figure 6 allows studying
the dynamics of the model as in the control theory [4]. Techniques for the construction of
feedback controller or state observers could be addressed [6]. Performance analysis is as well, a
usual analysis stage in the design of the class of systems that could be modeled by a Petri net [5].

Figure 7 depicts a block diagram of a classical control scheme for a DES modeled as a Petri net.
The scheme considers two models, one of the system and the other of a reference. The
controller receives the difference of the output of the system and the reference in order to
compute the control actions. The objective of the control scheme is to achieve zero error, by the
actions that the controller can exert over the system. If the system to be controlled is a software,

Figure 5. A Petri net model and its respective state space shown as a hyperplane. The solid arrows show the flow of the
marking by the firing of the corresponding transition. Dashed arrows represent the marking change by the firing of a
single transition. Increasing the number of tokens in the initial marking represents an orthogonal movement of the
hyperplane away of the origin. The figure illustrates two hyperplanes. The lower one represents the initial marking with
one token at p1, while the upper one represents the initial marking with two tokens as p1.

Petri Nets in Science and Engineering6

for example, either distributed or monolithic, then the reference is a specification or recipe that
the software must meet. Then, the controller is another software responsible for computing the
required parameters and configurations in order to adapt the main software system to the
required behavior in an autonomous fashion. There is a huge trend in cloud computing and
artificial intelligence to transform current software systems, such as database clusters, into
autonomous intelligent systems that automatically adapts to user requirements and that are
even able to predict future workloads and adapt to them [11, 12].

The next section reviews some illustrative use of Petri net models in engineering applications.

3. Petri nets in engineering

The usability of the Petri nets in engineering applications is as well widely accepted. The stages
of the design, the implementation, and the validation of systems are suitable addressed with

Figure 6. The state equation of a Petri nets as a block diagram. The input vector uk is multiplied by the matrix B to
produce an increment of marking ΔMk. This increment is added to the current marking Mk to produce the new marking
Mkþ1. This new marking becomes the current marking for the next evolution of the net.

Figure 7. A control scheme for Petri nets. The system is modeled as a Petri net model. The required behavior for the
system is modeled as other net model called reference. The objective of the controller is to achieve zero error in
the difference of the outputs of the system and reference. If the system is a database software, for example, then the
reference is a specification that the database manager requires in the database. The controller is another software that
makes the overall scheme autonomous.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

7

One of the most active areas of the applications of the Petri nets in science is in the field of the
modern control theory. The study of control techniques for discrete event system, including
Petri net models, covers the range of applications from design of discrete event controller,
design of state observers, analysis of fault tolerant systems, analysis of Lyapunov-like stability,
detectability analysis, isolation, and failure recovery techniques, among others [4–6].

In this context, considering a Petri net as an input-output system, as in classical control theory,
is useful. Figure 6 depicts the state equation of a Petri net given by a block diagram. The input

vector uk
!

is operated by the matrix B to produce a marking increment that is added to the
current marking. The sum of these two quantities becomes the new marking reached by the
current evolution of the net. A unit delay block allows the new marking becoming the current
marking for the next evolution of the net.

Considering the state equation of a Petri net as a block diagram as in Figure 6 allows studying
the dynamics of the model as in the control theory [4]. Techniques for the construction of
feedback controller or state observers could be addressed [6]. Performance analysis is as well, a
usual analysis stage in the design of the class of systems that could be modeled by a Petri net [5].

Figure 7 depicts a block diagram of a classical control scheme for a DES modeled as a Petri net.
The scheme considers two models, one of the system and the other of a reference. The
controller receives the difference of the output of the system and the reference in order to
compute the control actions. The objective of the control scheme is to achieve zero error, by the
actions that the controller can exert over the system. If the system to be controlled is a software,

Figure 5. A Petri net model and its respective state space shown as a hyperplane. The solid arrows show the flow of the
marking by the firing of the corresponding transition. Dashed arrows represent the marking change by the firing of a
single transition. Increasing the number of tokens in the initial marking represents an orthogonal movement of the
hyperplane away of the origin. The figure illustrates two hyperplanes. The lower one represents the initial marking with
one token at p1, while the upper one represents the initial marking with two tokens as p1.

Petri Nets in Science and Engineering6

for example, either distributed or monolithic, then the reference is a specification or recipe that
the software must meet. Then, the controller is another software responsible for computing the
required parameters and configurations in order to adapt the main software system to the
required behavior in an autonomous fashion. There is a huge trend in cloud computing and
artificial intelligence to transform current software systems, such as database clusters, into
autonomous intelligent systems that automatically adapts to user requirements and that are
even able to predict future workloads and adapt to them [11, 12].

The next section reviews some illustrative use of Petri net models in engineering applications.

3. Petri nets in engineering

The usability of the Petri nets in engineering applications is as well widely accepted. The stages
of the design, the implementation, and the validation of systems are suitable addressed with

Figure 6. The state equation of a Petri nets as a block diagram. The input vector uk is multiplied by the matrix B to
produce an increment of marking ΔMk. This increment is added to the current marking Mk to produce the new marking
Mkþ1. This new marking becomes the current marking for the next evolution of the net.

Figure 7. A control scheme for Petri nets. The system is modeled as a Petri net model. The required behavior for the
system is modeled as other net model called reference. The objective of the controller is to achieve zero error in
the difference of the outputs of the system and reference. If the system is a database software, for example, then the
reference is a specification that the database manager requires in the database. The controller is another software that
makes the overall scheme autonomous.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

7

Petri net models. The covered applications include communication protocols, distributed sys-
tems, distributed database, concurrent and parallel programming and systems, industrial control
systems, multicore processor platforms, dataflow-computer systems design, workflows and
process-driven systems, fault-tolerant systems, and to mention a few. Properties practical interest
such as fairness in the execution of tasks, deadlock avoidance, state reachability, process
interlocking, among others, are possible to be analyzed within the Petri net framework.

For example, Figure 8 illustrates a very simple and conceptual communication protocol. The
communication act is analyzed from the sending process point of view. A sender process sends
a message by the output buffer and blocks its activity while waiting for an acknowledgement
by the input buffer. A receiver process is blocked while waiting for an input message. Once a
message has arrived, the receiving process reads the message and sends an acknowledgment
by the input buffer. After the communication act has finished, the process restarts its logic to be
ready for the next communication. This model could be extended to include faulty communi-
cation channels, which may lose the messages, acknowledge expiration periods, or other
characteristics of practical interest. The analysis and design of communications protocols has
been widely addressed with the use of Petri net models [9, 10].

There are some extensions to the Petri nets to handle specific aspects of different engineering
problems. Some of the extensions add structure and information to the tokens, transitions, and
places of a net. These extensions allow the construction of models that are quite compact

Figure 8. A Petri net representing a communication protocol. Process 1 sends a message by the output buffer and waits
for an acknowledgement buy the input buffer. Process 2 reads the message from the output buffer and sends an
acknowledgment by the input buffer. After the communication protocol is completed, the both processes restart their
logics to get ready for the next communication act.

Petri Nets in Science and Engineering8

compared to the models obtained with the traditional approach. These models are called
Colored Petri Net (CPN) [18].

As an illustration, Figure 9 depicts a CPN for a task scheduling problem. The structure of the
net represents the different stages of the working processes in a distributed multitasking
environment. The left-hand side of the net structure represents the stages that the processes
perform to acquire a job. The right-hand side represents the stages that the working processes
perform to release the resources and update the state of the overall scheduling problem. The
simulation of the model depicted in the figure allows to study the performance of different
scheduling policies over different workload conditions. For example, it is possible to approxi-
mate the optimal number of process required by the scheduling problem for a fixed number of
tasks. Even more, it is possible to study an optimum rate in the increment of the working
processes given a rate in the increment of the tasks over discrete interval of times [27].

Recently, with the increase of the cloud computing and the massive data content in the social
networks, the machine learning techniques and the methods related to the data analytics are
essential tools in the study and investigation of the big data. There are several proposals to
allow the Petri net models learn some kind of fuzzy reasoning and decision making [22–24].
Similar approaches as that of the supervised and unsupervised learning have been addressed
[21, 25].

Figure 10 shows a Petri net representing a workflow pattern for a customer reclaim system.
The customer may initiate a request at any time. Two activities are launched in parallel once a
request is in the system. First, a ticket check process is executed. Second, an examination of the
request is performed. At this point, based on the machine learning, data analytics and/or

Figure 9. A colored Petri net model of a task scheduling problem. The structure of the net represents the different stages
of the processes in a multitasking environment. The working processes compete among them to acquire the jobs that need
to be executed. Each token is a composite unit that carries the information about the state of the working process. The
simulation of this model allows us to study the performance of different scheduling policies.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

9

Petri net models. The covered applications include communication protocols, distributed sys-
tems, distributed database, concurrent and parallel programming and systems, industrial control
systems, multicore processor platforms, dataflow-computer systems design, workflows and
process-driven systems, fault-tolerant systems, and to mention a few. Properties practical interest
such as fairness in the execution of tasks, deadlock avoidance, state reachability, process
interlocking, among others, are possible to be analyzed within the Petri net framework.

For example, Figure 8 illustrates a very simple and conceptual communication protocol. The
communication act is analyzed from the sending process point of view. A sender process sends
a message by the output buffer and blocks its activity while waiting for an acknowledgement
by the input buffer. A receiver process is blocked while waiting for an input message. Once a
message has arrived, the receiving process reads the message and sends an acknowledgment
by the input buffer. After the communication act has finished, the process restarts its logic to be
ready for the next communication. This model could be extended to include faulty communi-
cation channels, which may lose the messages, acknowledge expiration periods, or other
characteristics of practical interest. The analysis and design of communications protocols has
been widely addressed with the use of Petri net models [9, 10].

There are some extensions to the Petri nets to handle specific aspects of different engineering
problems. Some of the extensions add structure and information to the tokens, transitions, and
places of a net. These extensions allow the construction of models that are quite compact

Figure 8. A Petri net representing a communication protocol. Process 1 sends a message by the output buffer and waits
for an acknowledgement buy the input buffer. Process 2 reads the message from the output buffer and sends an
acknowledgment by the input buffer. After the communication protocol is completed, the both processes restart their
logics to get ready for the next communication act.

Petri Nets in Science and Engineering8

compared to the models obtained with the traditional approach. These models are called
Colored Petri Net (CPN) [18].

As an illustration, Figure 9 depicts a CPN for a task scheduling problem. The structure of the
net represents the different stages of the working processes in a distributed multitasking
environment. The left-hand side of the net structure represents the stages that the processes
perform to acquire a job. The right-hand side represents the stages that the working processes
perform to release the resources and update the state of the overall scheduling problem. The
simulation of the model depicted in the figure allows to study the performance of different
scheduling policies over different workload conditions. For example, it is possible to approxi-
mate the optimal number of process required by the scheduling problem for a fixed number of
tasks. Even more, it is possible to study an optimum rate in the increment of the working
processes given a rate in the increment of the tasks over discrete interval of times [27].

Recently, with the increase of the cloud computing and the massive data content in the social
networks, the machine learning techniques and the methods related to the data analytics are
essential tools in the study and investigation of the big data. There are several proposals to
allow the Petri net models learn some kind of fuzzy reasoning and decision making [22–24].
Similar approaches as that of the supervised and unsupervised learning have been addressed
[21, 25].

Figure 10 shows a Petri net representing a workflow pattern for a customer reclaim system.
The customer may initiate a request at any time. Two activities are launched in parallel once a
request is in the system. First, a ticket check process is executed. Second, an examination of the
request is performed. At this point, based on the machine learning, data analytics and/or

Figure 9. A colored Petri net model of a task scheduling problem. The structure of the net represents the different stages
of the processes in a multitasking environment. The working processes compete among them to acquire the jobs that need
to be executed. Each token is a composite unit that carries the information about the state of the working process. The
simulation of this model allows us to study the performance of different scheduling policies.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

9

statistical learning mechanisms, guards for the transitions b and c are constructed. The guards
allow deciding when it is more convenient to execute an in-deep examination process or a
casual examination process. On the one hand, it saves time by executing a casual examination
when the guard determines that it is more likely that the characteristics of the request are that
of a genuine customer request. On the other hand, it saves money by executing a thoroughly
examination process when the guard determines that the current request is more likely to be a
fraudulent request.

Other important area of the engineering where the Petri nets have been successfully used is in
the automatic code generation. The exponential growth of the cloud computing and prolifera-
tion of solutions based on the Internet of Things have made the design of the system software
supporting them become more challenging. The set of requirements that this type of systems
must address includes the sensing of signals in soft and hard real-time and the traditional
support for media-reach services. This mixture of requirements turns the design of a correct
and efficient system of this type a whole challenge. Approaches based on model-based design
promise useful solutions for these challenges. The complex behavior and set of conditions that
this class of software must address can be well represented with Petri net patterns. Synchroni-
zation mechanisms, message passing, rise conditions, critical sections, parallel and concurrent
process, task activation conditions, and user interactions, to mention a few, could be easily
represented with intuitive Petri net blocks. Then, a simulation process may allow the study of
the performance of the solution and the adjustment of parameters for a fine-tuning process.

Figure 10. A Petri net model for a workflow pattern of a customer request. The customer may initiate a new request at
any time. Two activities are launched in parallel for every request. One activity is to check the ticket. The other is to
examine the request. At this point, a decision is made about how deep to examine the request. At this point, a guard based
on the machine learning and data analytics is constructed for the transitions b and c. A decision process then comes,
where either a compensation payment, a request rejection, or a request reinitiating may apply.

Petri Nets in Science and Engineering10

Figure 11 represents a Petri net model for three parallel processes. The transition t1 launches
the execution of the processes in parallel. Each process runs freely until they end its activities.
In this design, the transition t5 synchronizes the end of the processes. That is, if one process
ends its activities, then it must wait the others to end. Once all the processes have finished, the
loop repeats infinitely. The transitions t2, t3, and t4 represent the activity load of each process.
There are different approaches to add an amount of time to these transitions [13–15]. Within a
suitable simulation process, this allows to investigate the performance of the system under
different work load conditions, which is a must in the development of real world solutions.
Once the parameters of the model have been tuned and its performance evaluated, the next
step consists on the synthesis of the code in a target programming language for a specific
platform.

For example, Figure 12 shows a section of code in C/C++ implemented from the model in
Figure 11. The code implements a set of joinable posix threads. A for loop launches a number
of threads defined by the global constant NUM_THREADS. Other for loop waits for the end of
the threads. Once all the threads have finished, the loop repeats indefinitely. The automatic
code generation from Petri net models has recently been investigated with promissory results
[19, 20].

Figure 11. A Petri net model representing three parallel threads. The threads are launched in parallel by the firing of t1.
Each thread runs free to complete its activity. In this design, the end of the threads is synchronized at t5. That is, if one
thread finishes its work before the others, it must wait until the other threads end its activities. Once all the threads have
finished, they are reinitialized to repeat the loop.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

11

statistical learning mechanisms, guards for the transitions b and c are constructed. The guards
allow deciding when it is more convenient to execute an in-deep examination process or a
casual examination process. On the one hand, it saves time by executing a casual examination
when the guard determines that it is more likely that the characteristics of the request are that
of a genuine customer request. On the other hand, it saves money by executing a thoroughly
examination process when the guard determines that the current request is more likely to be a
fraudulent request.

Other important area of the engineering where the Petri nets have been successfully used is in
the automatic code generation. The exponential growth of the cloud computing and prolifera-
tion of solutions based on the Internet of Things have made the design of the system software
supporting them become more challenging. The set of requirements that this type of systems
must address includes the sensing of signals in soft and hard real-time and the traditional
support for media-reach services. This mixture of requirements turns the design of a correct
and efficient system of this type a whole challenge. Approaches based on model-based design
promise useful solutions for these challenges. The complex behavior and set of conditions that
this class of software must address can be well represented with Petri net patterns. Synchroni-
zation mechanisms, message passing, rise conditions, critical sections, parallel and concurrent
process, task activation conditions, and user interactions, to mention a few, could be easily
represented with intuitive Petri net blocks. Then, a simulation process may allow the study of
the performance of the solution and the adjustment of parameters for a fine-tuning process.

Figure 10. A Petri net model for a workflow pattern of a customer request. The customer may initiate a new request at
any time. Two activities are launched in parallel for every request. One activity is to check the ticket. The other is to
examine the request. At this point, a decision is made about how deep to examine the request. At this point, a guard based
on the machine learning and data analytics is constructed for the transitions b and c. A decision process then comes,
where either a compensation payment, a request rejection, or a request reinitiating may apply.

Petri Nets in Science and Engineering10

Figure 11 represents a Petri net model for three parallel processes. The transition t1 launches
the execution of the processes in parallel. Each process runs freely until they end its activities.
In this design, the transition t5 synchronizes the end of the processes. That is, if one process
ends its activities, then it must wait the others to end. Once all the processes have finished, the
loop repeats infinitely. The transitions t2, t3, and t4 represent the activity load of each process.
There are different approaches to add an amount of time to these transitions [13–15]. Within a
suitable simulation process, this allows to investigate the performance of the system under
different work load conditions, which is a must in the development of real world solutions.
Once the parameters of the model have been tuned and its performance evaluated, the next
step consists on the synthesis of the code in a target programming language for a specific
platform.

For example, Figure 12 shows a section of code in C/C++ implemented from the model in
Figure 11. The code implements a set of joinable posix threads. A for loop launches a number
of threads defined by the global constant NUM_THREADS. Other for loop waits for the end of
the threads. Once all the threads have finished, the loop repeats indefinitely. The automatic
code generation from Petri net models has recently been investigated with promissory results
[19, 20].

Figure 11. A Petri net model representing three parallel threads. The threads are launched in parallel by the firing of t1.
Each thread runs free to complete its activity. In this design, the end of the threads is synchronized at t5. That is, if one
thread finishes its work before the others, it must wait until the other threads end its activities. Once all the threads have
finished, they are reinitialized to repeat the loop.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

11

4. Conclusions

This chapter aims to briefly review the applications of the Petri nets in science and engineering.
It not pretends to be a deep review of the applications with complete detail and mathematical
foundation. Rather, the objective is to provide an illustrative introduction to Petri nets and its
potential applications, as intuitive as possible, avoiding the use of complex mathematical
notation and formulation. The focus of this chapter was in the graphical nature of the Petri
nets and the intuition about them, and with some emphasis in its mathematical foundation.
Also, the intention is that this chapter serves as an introduction to this book entitled Petri Nets
in Science and Engineering. The authors hope you find this book illustrative for your different
activities in science and engineering.

Sincerely,

R. Campos-Rodriguez, M. Alcaraz-Mejia.

Figure 12. A section of code in C/C++ implemented from the Petri net in the figure above. An infinite loop initializes a set
of joinable threads. A for loop launches the number of threads specified by the constant NUM_THREADS. A for loop
waits for the end of all the launched threads. This cycle repeats forever.

Petri Nets in Science and Engineering12

Acknowledgements

The authors want to thank Jose Valerio, from Oracle Guadalajara Development Center, for his
valuable comments in the review of this chapter and for his experience and comments in
Machine Learning and Data Analytics.

Author details

Raul Campos-Rodriguez1* and Mildreth Alcaraz-Mejia2

*Address all correspondence to: rr_campos@hotmail.com

1 Monterrey Institute of Technology and Higher Education, Guadalajara Campus,
Tlaquepaque, Jalisco, Mexico

2 ITESO University, Tlaquepaque, Jalisco, Mexico

References

[1] Reisig W. Petri Nets: An Introduction. Vol. 4. Luxemburgo: Springer Science & Business
Media; 2012

[2] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;
77(4):541-580

[3] Mac Lane S. Categories for the Working Mathematician. Vol. 5. Berlin: Springer Science &
Business Media; 2013

[4] Roxin EO. Control Theory and its Applications. Gordon and Breach; 1997

[5] Cassandras CG. Discrete Event Systems: Modeling and Performance Analysis. Aksen
Associates Series in Electrical and Computer Engineering, IFAC Proceedings Volumes.
2000:33(13):313-318

[6] Cassandras CG, Lafortune S. Introduction to Discrete Event Systems. Berlin: Springer
Science & Business Media; 2009

[7] Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. New York: John
Wiley & Sons; 2011

[8] Viswanadham N, Narahari Y. Performance Modeling of Automated Manufacturing Sys-
tems. Englewood Cliffs, NJ: Prentice Hall; 1992. pp. 497-508

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

13

4. Conclusions

This chapter aims to briefly review the applications of the Petri nets in science and engineering.
It not pretends to be a deep review of the applications with complete detail and mathematical
foundation. Rather, the objective is to provide an illustrative introduction to Petri nets and its
potential applications, as intuitive as possible, avoiding the use of complex mathematical
notation and formulation. The focus of this chapter was in the graphical nature of the Petri
nets and the intuition about them, and with some emphasis in its mathematical foundation.
Also, the intention is that this chapter serves as an introduction to this book entitled Petri Nets
in Science and Engineering. The authors hope you find this book illustrative for your different
activities in science and engineering.

Sincerely,

R. Campos-Rodriguez, M. Alcaraz-Mejia.

Figure 12. A section of code in C/C++ implemented from the Petri net in the figure above. An infinite loop initializes a set
of joinable threads. A for loop launches the number of threads specified by the constant NUM_THREADS. A for loop
waits for the end of all the launched threads. This cycle repeats forever.

Petri Nets in Science and Engineering12

Acknowledgements

The authors want to thank Jose Valerio, from Oracle Guadalajara Development Center, for his
valuable comments in the review of this chapter and for his experience and comments in
Machine Learning and Data Analytics.

Author details

Raul Campos-Rodriguez1* and Mildreth Alcaraz-Mejia2

*Address all correspondence to: rr_campos@hotmail.com

1 Monterrey Institute of Technology and Higher Education, Guadalajara Campus,
Tlaquepaque, Jalisco, Mexico

2 ITESO University, Tlaquepaque, Jalisco, Mexico

References

[1] Reisig W. Petri Nets: An Introduction. Vol. 4. Luxemburgo: Springer Science & Business
Media; 2012

[2] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;
77(4):541-580

[3] Mac Lane S. Categories for the Working Mathematician. Vol. 5. Berlin: Springer Science &
Business Media; 2013

[4] Roxin EO. Control Theory and its Applications. Gordon and Breach; 1997

[5] Cassandras CG. Discrete Event Systems: Modeling and Performance Analysis. Aksen
Associates Series in Electrical and Computer Engineering, IFAC Proceedings Volumes.
2000:33(13):313-318

[6] Cassandras CG, Lafortune S. Introduction to Discrete Event Systems. Berlin: Springer
Science & Business Media; 2009

[7] Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. New York: John
Wiley & Sons; 2011

[8] Viswanadham N, Narahari Y. Performance Modeling of Automated Manufacturing Sys-
tems. Englewood Cliffs, NJ: Prentice Hall; 1992. pp. 497-508

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

13

[9] Merlin P, Farber D. Recoverability of communication protocols—Implications of a theo-
retical study. IEEE Transactions on Communications. 1976;24(9):1036-1043

[10] Bochmann G, Sunshine C. Formal methods in communication protocol design. IEEE
Transactions on Communications. 1980;28(4):624-631

[11] Pavlo A, Angulo G, Arulraj J, Lin H, Lin J, Ma L, et al. Self-Driving Database Management
Systems. In: CIDR. 2017

[12] Available from: https://www.oracle.com/corporate/pressrelease/oow17-oracle-autonomous-
database-100217.html

[13] Wang J. Time Petri nets. In: Timed Petri Nets. Boston, MA: Springer; 1998. pp. 63-123

[14] Popova-Zeugmann L. Time Petri nets. In: Time and Petri Nets. Berlin, Heidelberg: Springer;
2013. pp. 31-137

[15] Ling S, Schmidt H. Time Petri nets for workflow modelling and analysis. In: 2000 IEEE
International Conference on Systems, Man, and Cybernetics, Vol. 4. IEEE; 2000. pp. 3039-
3044

[16] Yu J, Buyya R. A taxonomy of workflow management systems for grid computing.
Journal of Grid Computing. 2005;3(3–4):171-200

[17] Van der Aalst WM. The application of Petri nets to workflow management. Journal of
Circuits, Systems, and Computers. 1998;8(1):21-66

[18] Jensen K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1.
Berlin: Springer Science & Business Media; 2013

[19] Philippi S. Automatic code generation from high-level Petri-nets for model driven systems
engineering. Journal of Systems and Software. 2006;79(10):1444-1455

[20] Mortensen KH. Automatic code generation from coloured Petri nets for an access control
system. In: Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN;
Aarhus, Denmark. October 1999. pp. 41-58

[21] Shen VR, Chang YS, Juang TTY. Supervised and unsupervised learning by using Petri
nets. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans.
2010;40(2):363-375

[22] Bugarin AJ, Barro S. Fuzzy reasoning supported by Petri nets. IEEE Transactions on Fuzzy
Systems. 1994;2(2):135-150

[23] Konar A. Machine learning using fuzzy Petri nets. Computational Intelligence: Principles,
Techniques and Applications. Berlin Heidelberg: Springer-Verlag, 2005. pp. 521-546

[24] Looney CG. Fuzzy Petri nets for rule-based decision making. IEEE Transactions on Sys-
tems, Man, and Cybernetics. 1988;18(1):178-183

Petri Nets in Science and Engineering14

[25] Bulitko V, Wilkins DC. Machine learning for time interval Petri nets. In: Australasian Joint
Conference on Artificial Intelligence. Berlin, Heidelberg: Springer; December 2005. pp.
959-965

[26] Badouel E, Bernardinello L, Darondeau P. Petri Net Synthesis. Heidelberg: Springer; 2015.
p. 339

[27] Alcaraz-Mejia M, Campos-Rodriguez R, Caballero-GutierrezM.Modeling and simulation
of task allocation with colored Petri nets. In: Computer Simulation. London: InTech; 2017

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

15

[9] Merlin P, Farber D. Recoverability of communication protocols—Implications of a theo-
retical study. IEEE Transactions on Communications. 1976;24(9):1036-1043

[10] Bochmann G, Sunshine C. Formal methods in communication protocol design. IEEE
Transactions on Communications. 1980;28(4):624-631

[11] Pavlo A, Angulo G, Arulraj J, Lin H, Lin J, Ma L, et al. Self-Driving Database Management
Systems. In: CIDR. 2017

[12] Available from: https://www.oracle.com/corporate/pressrelease/oow17-oracle-autonomous-
database-100217.html

[13] Wang J. Time Petri nets. In: Timed Petri Nets. Boston, MA: Springer; 1998. pp. 63-123

[14] Popova-Zeugmann L. Time Petri nets. In: Time and Petri Nets. Berlin, Heidelberg: Springer;
2013. pp. 31-137

[15] Ling S, Schmidt H. Time Petri nets for workflow modelling and analysis. In: 2000 IEEE
International Conference on Systems, Man, and Cybernetics, Vol. 4. IEEE; 2000. pp. 3039-
3044

[16] Yu J, Buyya R. A taxonomy of workflow management systems for grid computing.
Journal of Grid Computing. 2005;3(3–4):171-200

[17] Van der Aalst WM. The application of Petri nets to workflow management. Journal of
Circuits, Systems, and Computers. 1998;8(1):21-66

[18] Jensen K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1.
Berlin: Springer Science & Business Media; 2013

[19] Philippi S. Automatic code generation from high-level Petri-nets for model driven systems
engineering. Journal of Systems and Software. 2006;79(10):1444-1455

[20] Mortensen KH. Automatic code generation from coloured Petri nets for an access control
system. In: Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN;
Aarhus, Denmark. October 1999. pp. 41-58

[21] Shen VR, Chang YS, Juang TTY. Supervised and unsupervised learning by using Petri
nets. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans.
2010;40(2):363-375

[22] Bugarin AJ, Barro S. Fuzzy reasoning supported by Petri nets. IEEE Transactions on Fuzzy
Systems. 1994;2(2):135-150

[23] Konar A. Machine learning using fuzzy Petri nets. Computational Intelligence: Principles,
Techniques and Applications. Berlin Heidelberg: Springer-Verlag, 2005. pp. 521-546

[24] Looney CG. Fuzzy Petri nets for rule-based decision making. IEEE Transactions on Sys-
tems, Man, and Cybernetics. 1988;18(1):178-183

Petri Nets in Science and Engineering14

[25] Bulitko V, Wilkins DC. Machine learning for time interval Petri nets. In: Australasian Joint
Conference on Artificial Intelligence. Berlin, Heidelberg: Springer; December 2005. pp.
959-965

[26] Badouel E, Bernardinello L, Darondeau P. Petri Net Synthesis. Heidelberg: Springer; 2015.
p. 339

[27] Alcaraz-Mejia M, Campos-Rodriguez R, Caballero-GutierrezM.Modeling and simulation
of task allocation with colored Petri nets. In: Computer Simulation. London: InTech; 2017

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

15

Chapter 2

Ladder Diagram Petri Nets: Discrete Event Systems

José Carlos Quezada Quezada,
Ernesto Flores García, Joselito Medina Marín,
Jorge Bautista López and Víctor Quezada Aguilar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75753

Provisional chapter

Ladder Diagram Petri Nets: Discrete Event Systems

José Carlos Quezada Quezada,
Ernesto Flores García, Joselito Medina Marín,
Jorge Bautista López and Víctor Quezada Aguilar

Additional information is available at the end of the chapter

Abstract

Ladder diagram language (LD) is a common programming language in industry to develop
control algorithms of discrete event systems (DESs). Besides, it is one of the five program-
ming languages supported by the International Electrotechnical Commission through the
IEC-61131-3 standard. On the other hand, Petri net (PN) theory is both a graphical and
mathematical tool used to model discrete event systems, particularly in this study, control
lines used in industrial algorithms. Control algorithms in LD are generally developed based
on the experience of control system programmers. Therefore, it is still a relevant problem
how to formalize the current and new control algorithms. In this chapter, are analyzed lines
in LD used more frequently in control algorithms. Additionally, an element-to-element
transformation methodology from a LD program to a PN model is proposed.

Keywords: control algorithms, discrete event systems, ladder diagram language, model,
petri nets

1. Introduction

LD language is one of the five languages contemplated in the standard IEC-61131-3 [1], its use
in the industry is due to its similarity with the electrical diagrams, and its behavior is based
mainly on the electromechanical relay, but LD language also has the capacity to include logical
functions blocks. The others languages are: function block diagram (FBD), instructions list (IL),
structured text (ST) and sequential function char (SFC).

There are two types of control lines that are analyzed and converted into PN structures: the
logical AND, OR, AND-OR, auto-loop and interlocking, which have both discrete inputs and

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75753

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 2

Ladder Diagram Petri Nets: Discrete Event Systems

José Carlos Quezada Quezada,
Ernesto Flores García, Joselito Medina Marín,
Jorge Bautista López and Víctor Quezada Aguilar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75753

Provisional chapter

Ladder Diagram Petri Nets: Discrete Event Systems

José Carlos Quezada Quezada,
Ernesto Flores García, Joselito Medina Marín,
Jorge Bautista López and Víctor Quezada Aguilar

Additional information is available at the end of the chapter

Abstract

Ladder diagram language (LD) is a common programming language in industry to develop
control algorithms of discrete event systems (DESs). Besides, it is one of the five program-
ming languages supported by the International Electrotechnical Commission through the
IEC-61131-3 standard. On the other hand, Petri net (PN) theory is both a graphical and
mathematical tool used to model discrete event systems, particularly in this study, control
lines used in industrial algorithms. Control algorithms in LD are generally developed based
on the experience of control system programmers. Therefore, it is still a relevant problem
how to formalize the current and new control algorithms. In this chapter, are analyzed lines
in LD used more frequently in control algorithms. Additionally, an element-to-element
transformation methodology from a LD program to a PN model is proposed.

Keywords: control algorithms, discrete event systems, ladder diagram language, model,
petri nets

1. Introduction

LD language is one of the five languages contemplated in the standard IEC-61131-3 [1], its use
in the industry is due to its similarity with the electrical diagrams, and its behavior is based
mainly on the electromechanical relay, but LD language also has the capacity to include logical
functions blocks. The others languages are: function block diagram (FBD), instructions list (IL),
structured text (ST) and sequential function char (SFC).

There are two types of control lines that are analyzed and converted into PN structures: the
logical AND, OR, AND-OR, auto-loop and interlocking, which have both discrete inputs and

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75753

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

outputs. The logic blocks such as timer, counter and comparator have all analog inputs, but
their control output is discrete.

The main motive or need to model the control algorithms in LD is because they are devel-
oped mainly based on the experience of programmers in industrial control [2, 3], so it is
important to propose approaches that help guarantee the safe control algorithms applied in
machines or industrial processes, and the theory of PN [4] allows modeling the basic control
lines used in the LD algorithms. Different approaches have been presented to provide a
solution to analyze, model and simulate control algorithms developed in LD with PN or vice
versa [5–11].

Physical or discrete memory signals can have two states (activated or deactivated, 0 or 1, etc.),
so, we propose a distribution of these signals to PN structure that can model both states, but
only one active at a time. On the other hand, the cyclic operation of PLC generates cyclic
evaluation of the control algorithm in function of the states of physical input and memory
signals. This behavior must be considered to avoid accumulation of tokens in places of PN
structures, for which reason marking conditions are proposed in places that represent physical
or memory outputs of PN structures of control lines in LD. Likewise, cyclic evaluation of
control lines generates the energized and de-energized behavior of coils; therefore, it is also
necessary to restore conditions of PN structures of each control line in LD, conditioning the
marking in function of the input places [12, 13].

To convert control lines with analog inputs, places where their marking is a data (color in
colored Petri nets) are included [9], which may be changing depending on the logic control
algorithm. Conditioned transitions are proposed for their firing depending on the behavior of
the control block in respective LD.

Based on analysis of the control lines, we propose the definition of a PN for discrete event
systems in LD (LDPN), with which PN structures of control lines in LD are generated.

2. Control lines in LD to discrete event systems

The LD language has as its operating principle the behavior of an electromechanical relay, with
the option of including function blocks. The standards IEC-61131-3 define LD like “modeling
networks of simultaneous functioning electromechanical elements, such as relay contacts and coils,
timers, counters, etc.” The control lines analyzed are the logic AND, OR, AND–OR, auto-loop,
interlocking, timers, counters and mathematic comparisons. The first five logical have discrete
inputs and output. Meanwhile in the logical of timers, counters and mathematical compari-
sons have analog inputs and discrete outputs.

The run of control algorithm in PLC is cyclic, and it mainly performs five actions such as
reading of physical inputs, copy status of physical inputs, evaluation of the control algorithm
with previous copy, copy of the status of physical outputs and sending of these statuses to
physical modules.

Petri Nets in Science and Engineering18

2.1. Control lines both discrete inputs and outputs

Figure 1 shows the control line of logic AND, when all contacts In_1, In_2, …, In_n allow
electric power flow, then Out1 coil is energized. Eq. (1) is the model corresponding.

Out1 ¼ In_1&& In_2&&…In_n (1)

Figure 2 shows the control line of logic OR, when any contact In_1, In_2, …, In_n allows
electric power flow, then Out1 coil is energized, its model is stand for the Eq. (2).

Out1 ¼ In_1 k In_2 k…In_n (2)

Figure 3 shows the control line of logic AND–OR. When the contacts In_1, In_2,…, In_n or the
contacts In_1, In_3,…, In_n allow electric power flow, then Out1 coil is energized. Eq. (3) is the
model corresponding.

Out1 ¼ In_1&& In_2&&…In_nð Þ k In_1&& In_3&&…In_nð Þ (3)

Figure 4 shows the control line of logic auto-loop. When the contacts In_1, In_2,…, In_n or the
contacts Out1, In_2, …, In_n allow electric power flow, then Out1 coil is energized. Eq. (4) is
the model corresponding.

Figure 1. Control line of logic AND.

Figure 2. Control line of logic OR.

Figure 3. Control line of logic AND–OR.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

19

outputs. The logic blocks such as timer, counter and comparator have all analog inputs, but
their control output is discrete.

The main motive or need to model the control algorithms in LD is because they are devel-
oped mainly based on the experience of programmers in industrial control [2, 3], so it is
important to propose approaches that help guarantee the safe control algorithms applied in
machines or industrial processes, and the theory of PN [4] allows modeling the basic control
lines used in the LD algorithms. Different approaches have been presented to provide a
solution to analyze, model and simulate control algorithms developed in LD with PN or vice
versa [5–11].

Physical or discrete memory signals can have two states (activated or deactivated, 0 or 1, etc.),
so, we propose a distribution of these signals to PN structure that can model both states, but
only one active at a time. On the other hand, the cyclic operation of PLC generates cyclic
evaluation of the control algorithm in function of the states of physical input and memory
signals. This behavior must be considered to avoid accumulation of tokens in places of PN
structures, for which reason marking conditions are proposed in places that represent physical
or memory outputs of PN structures of control lines in LD. Likewise, cyclic evaluation of
control lines generates the energized and de-energized behavior of coils; therefore, it is also
necessary to restore conditions of PN structures of each control line in LD, conditioning the
marking in function of the input places [12, 13].

To convert control lines with analog inputs, places where their marking is a data (color in
colored Petri nets) are included [9], which may be changing depending on the logic control
algorithm. Conditioned transitions are proposed for their firing depending on the behavior of
the control block in respective LD.

Based on analysis of the control lines, we propose the definition of a PN for discrete event
systems in LD (LDPN), with which PN structures of control lines in LD are generated.

2. Control lines in LD to discrete event systems

The LD language has as its operating principle the behavior of an electromechanical relay, with
the option of including function blocks. The standards IEC-61131-3 define LD like “modeling
networks of simultaneous functioning electromechanical elements, such as relay contacts and coils,
timers, counters, etc.” The control lines analyzed are the logic AND, OR, AND–OR, auto-loop,
interlocking, timers, counters and mathematic comparisons. The first five logical have discrete
inputs and output. Meanwhile in the logical of timers, counters and mathematical compari-
sons have analog inputs and discrete outputs.

The run of control algorithm in PLC is cyclic, and it mainly performs five actions such as
reading of physical inputs, copy status of physical inputs, evaluation of the control algorithm
with previous copy, copy of the status of physical outputs and sending of these statuses to
physical modules.

Petri Nets in Science and Engineering18

2.1. Control lines both discrete inputs and outputs

Figure 1 shows the control line of logic AND, when all contacts In_1, In_2, …, In_n allow
electric power flow, then Out1 coil is energized. Eq. (1) is the model corresponding.

Out1 ¼ In_1&& In_2&&…In_n (1)

Figure 2 shows the control line of logic OR, when any contact In_1, In_2, …, In_n allows
electric power flow, then Out1 coil is energized, its model is stand for the Eq. (2).

Out1 ¼ In_1 k In_2 k…In_n (2)

Figure 3 shows the control line of logic AND–OR. When the contacts In_1, In_2,…, In_n or the
contacts In_1, In_3,…, In_n allow electric power flow, then Out1 coil is energized. Eq. (3) is the
model corresponding.

Out1 ¼ In_1&& In_2&&…In_nð Þ k In_1&& In_3&&…In_nð Þ (3)

Figure 4 shows the control line of logic auto-loop. When the contacts In_1, In_2,…, In_n or the
contacts Out1, In_2, …, In_n allow electric power flow, then Out1 coil is energized. Eq. (4) is
the model corresponding.

Figure 1. Control line of logic AND.

Figure 2. Control line of logic OR.

Figure 3. Control line of logic AND–OR.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

19

Out1 ¼ In_1&&In_2&&In_nð Þ k Out1&&In_2&&In_nð Þ (4)

Figure 5 shows the control line of logic interlocking, when the contacts In_1, ~Out2, …, In_n
allow electric power flow, then Out1 coil is energized, and it blocks the energizing of Out2 coil.
If Out2 coil is energized first, then Out1 coil cannot be energized. Eq. (5) is the model
corresponding.

Out1 ¼ In_1&&Out2 &&… In_n;Out2 ¼ In_2&&Out1 &&… In_m (5)

2.2. Control lines with analog inputs and discrete output

Figure 6 shows the standard function block of on-delay timer (TON) and its timing diagram of
the functional [1]. The signals Preset_time and Elapsed_time are analog. If the contact In_1
allows electric energy flow, when Elapsed_time adds base time and if Elapsed_time is equal or
greater than Preset_time, then Out1 coil is energized. Eq. (6) depicts the logic model of the block
TON.

If In_1 ¼ 1&&ET ≥PTð Þ, then Out1 ¼ 1 (6)

Restart condition: If In_1 ¼ 0, then ET ¼ 0 and Out1 = 0.

Figure 7 shows the standard function block of off-delay timer (TOF) and its timing diagram of
the functional [1]. If the contact In_1 allows energy power, then the Out1 coil is energized, and
the Elapsed_time variable is set to zero. When the In_1 signal is equal to zero, the Elapsed_time
variable adds base time and if Elapsed_time is equal or greater than Present_time, then Out1 coil
is de-energized. Eq. (7) shows the logic model of block TOF.

If In_1 ¼ 0&&ET ≤PTð Þ, then Out1 ¼ 0 (7)

Restart condition: If In_1 ¼ 1, then ET ¼ 0 and Out1 = 1.

Figure 4. Control line of logic auto-loop.

Figure 5. Control line of logic interlocking.

Petri Nets in Science and Engineering20

Figure 8 shows two counter function blocks: (1) up-counter and (2) down-counter. In both
blocks, the contact In_1 is the pulse to counter, that is and positive transition is detected; if the
contact In_2 allows electric energy flow, then Out1 coil is de-energized, and the Current_value
variable is set to zero in up-counter and to Preset_value in down-counter. In up-counter, if
Current_value is equal or greater than Preset_value, then Out1 coil is energized. In down
counter, if Current_value is equal to zero, then Out1 coil is energized. Eqs. (8) and (9) are logic
models of the counters, respectively.

if In_1 ↑ð Þ, then CV ¼ CVþ 1; if In_2 ¼ 0&&CV ≥PVð Þ, then Out1 ¼ 1 (8)

Restart condition: If In_2 ¼ 1, then CV ¼ 0

if In_1 ↑ð Þ, then CV ¼ CV� 1; if In_2 ¼ 0&&CV ≤ 0ð Þ, then Out1 ¼ 1 (9)

Restart condition: If In_2 ¼ 1, then CV ¼ PV:

Figure 6. On-delay timer.

Figure 7. Off-delay timer.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

21

Out1 ¼ In_1&&In_2&&In_nð Þ k Out1&&In_2&&In_nð Þ (4)

Figure 5 shows the control line of logic interlocking, when the contacts In_1, ~Out2, …, In_n
allow electric power flow, then Out1 coil is energized, and it blocks the energizing of Out2 coil.
If Out2 coil is energized first, then Out1 coil cannot be energized. Eq. (5) is the model
corresponding.

Out1 ¼ In_1&&Out2 &&… In_n;Out2 ¼ In_2&&Out1 &&… In_m (5)

2.2. Control lines with analog inputs and discrete output

Figure 6 shows the standard function block of on-delay timer (TON) and its timing diagram of
the functional [1]. The signals Preset_time and Elapsed_time are analog. If the contact In_1
allows electric energy flow, when Elapsed_time adds base time and if Elapsed_time is equal or
greater than Preset_time, then Out1 coil is energized. Eq. (6) depicts the logic model of the block
TON.

If In_1 ¼ 1&&ET ≥PTð Þ, then Out1 ¼ 1 (6)

Restart condition: If In_1 ¼ 0, then ET ¼ 0 and Out1 = 0.

Figure 7 shows the standard function block of off-delay timer (TOF) and its timing diagram of
the functional [1]. If the contact In_1 allows energy power, then the Out1 coil is energized, and
the Elapsed_time variable is set to zero. When the In_1 signal is equal to zero, the Elapsed_time
variable adds base time and if Elapsed_time is equal or greater than Present_time, then Out1 coil
is de-energized. Eq. (7) shows the logic model of block TOF.

If In_1 ¼ 0&&ET ≤PTð Þ, then Out1 ¼ 0 (7)

Restart condition: If In_1 ¼ 1, then ET ¼ 0 and Out1 = 1.

Figure 4. Control line of logic auto-loop.

Figure 5. Control line of logic interlocking.

Petri Nets in Science and Engineering20

Figure 8 shows two counter function blocks: (1) up-counter and (2) down-counter. In both
blocks, the contact In_1 is the pulse to counter, that is and positive transition is detected; if the
contact In_2 allows electric energy flow, then Out1 coil is de-energized, and the Current_value
variable is set to zero in up-counter and to Preset_value in down-counter. In up-counter, if
Current_value is equal or greater than Preset_value, then Out1 coil is energized. In down
counter, if Current_value is equal to zero, then Out1 coil is energized. Eqs. (8) and (9) are logic
models of the counters, respectively.

if In_1 ↑ð Þ, then CV ¼ CVþ 1; if In_2 ¼ 0&&CV ≥PVð Þ, then Out1 ¼ 1 (8)

Restart condition: If In_2 ¼ 1, then CV ¼ 0

if In_1 ↑ð Þ, then CV ¼ CV� 1; if In_2 ¼ 0&&CV ≤ 0ð Þ, then Out1 ¼ 1 (9)

Restart condition: If In_2 ¼ 1, then CV ¼ PV:

Figure 6. On-delay timer.

Figure 7. Off-delay timer.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

21

Figure 9 shows the standard comparison function blocks: a) equal to, b) lower than and c) greater
than. In all the blocks, two analog signals are compared, and depending on result is energized or
de-energized Out1 coil. The logic models, respectively, are specified in Eqs. (10–12).

If Value_1 ¼ Value_2, then Out1 ¼ 1 (10)

If Value_1 < Value_2, then Out1 ¼ 1 (11)

If Value_1 > Value_2, then Out1 ¼ 1 (12)

3. Model of control lines in PN

In this section, the bases of the PN theory are indicated, and the discrete-LDPN network,
which is the basis for generating the PN structures of the control lines in LD, is defined.

Figure 8. Counters. a) Counter up, b) Counter down.

Figure 9. Mathematical comparisons. a) Relation, equal to, b) Relation, lower than, c) Relation, greater than.

Petri Nets in Science and Engineering22

Likewise, the conditions for marking places and triggering transitions are described to model
the cyclical evaluation behavior of the control algorithm in PLC.

3.1. Petri nets

PN are a graphic and mathematic tool mean to modeling DES behavior. Graphically, a PN uses
circles in order to represent places, rectangles to represent transitions and arcs with arrow or
circle to link the inputs and output places with a transition. The relation between places and
transition can be represented mathematically by means of an incidence matrix. For a PN with
n transitions and m places, its incidence matrix A ¼ aij

� �
is an integer number matrix

representing the weighting of the input and output arcs; aþij represents the weighting of output

arcs from transitions and a�ij represents input arcs to transitions. Eq. (13) represents how the

incidence matrix values are obtained.

aij ¼ aþij � a�ij (13)

To model the dynamic behavior of DES, PN has the state equation, which shows the marking
in the net sequentially from initial marking Mk�1 and when applying a firing vector uk to the

transpose of the respective incidence matrix AT , respectively. Eq. (14) shows the relationship
between them.

Mk ¼ Mk�1 þ ATuk (14)

3.2. LDPN: Discrete event systems

In an LD control algorithm, a discrete signal can have n contacts normally open and m contacts
normally closed. The work in [12] shows a representation of discrete signals used in LD to PN,

Figure 10. Distribution of discrete signals in PN.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

23

Figure 9 shows the standard comparison function blocks: a) equal to, b) lower than and c) greater
than. In all the blocks, two analog signals are compared, and depending on result is energized or
de-energized Out1 coil. The logic models, respectively, are specified in Eqs. (10–12).

If Value_1 ¼ Value_2, then Out1 ¼ 1 (10)

If Value_1 < Value_2, then Out1 ¼ 1 (11)

If Value_1 > Value_2, then Out1 ¼ 1 (12)

3. Model of control lines in PN

In this section, the bases of the PN theory are indicated, and the discrete-LDPN network,
which is the basis for generating the PN structures of the control lines in LD, is defined.

Figure 8. Counters. a) Counter up, b) Counter down.

Figure 9. Mathematical comparisons. a) Relation, equal to, b) Relation, lower than, c) Relation, greater than.

Petri Nets in Science and Engineering22

Likewise, the conditions for marking places and triggering transitions are described to model
the cyclical evaluation behavior of the control algorithm in PLC.

3.1. Petri nets

PN are a graphic and mathematic tool mean to modeling DES behavior. Graphically, a PN uses
circles in order to represent places, rectangles to represent transitions and arcs with arrow or
circle to link the inputs and output places with a transition. The relation between places and
transition can be represented mathematically by means of an incidence matrix. For a PN with
n transitions and m places, its incidence matrix A ¼ aij

� �
is an integer number matrix

representing the weighting of the input and output arcs; aþij represents the weighting of output

arcs from transitions and a�ij represents input arcs to transitions. Eq. (13) represents how the

incidence matrix values are obtained.

aij ¼ aþij � a�ij (13)

To model the dynamic behavior of DES, PN has the state equation, which shows the marking
in the net sequentially from initial marking Mk�1 and when applying a firing vector uk to the

transpose of the respective incidence matrix AT , respectively. Eq. (14) shows the relationship
between them.

Mk ¼ Mk�1 þ ATuk (14)

3.2. LDPN: Discrete event systems

In an LD control algorithm, a discrete signal can have n contacts normally open and m contacts
normally closed. The work in [12] shows a representation of discrete signals used in LD to PN,

Figure 10. Distribution of discrete signals in PN.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

23

which is the base of conversion of control lines that have both discrete inputs and outputs. On
the other hand, evaluation of control algorithm in PLC is cyclical, which generates two impor-
tant conditions to consider in the PN model; the cyclical evaluation in PN would generate
accumulation of marks in the places, and in function of the logic, marking and consuming of
theses in places that represent coils in the LD. This last condition is also necessary to restore
the information of places in PN that represent physical analog signals or memory registers.
Figure 10 shows the distribution of discrete signals in PN, and Eq. (15) its interpretation. Only
one transition can be enabled at a time; if the input place does not have a mark, then the
transition I;O;Bð Þc is enabled for inhibitor arc. Eq. (16) is the generalization of the marking of I,
O y B places.

Ii ¼ Ion ∪ I
c
m

� �
; Oo ¼ Oo

n ∪O
c
m

� �
; Bb ¼ Bo

n ∪B
c
m

� �
(15)

where the subscripts n and m are not necessarily equal.

M I;O;Bð Þ ¼ 0
1

� �
, then

M I;O;Bð Þo ¼ 0 and M I;O;Bð Þc ¼ 1
M I;O;Bð Þo ¼ 1 and M I;O;Bð Þc ¼ 0

� �
(16)

Considering symbols of [3], for a pre-set and post-set of places, are defined:

∗t ¼ p : p; tð Þ∈Ff g, the set of input places of t.
∗t ¼ p : t; pð Þ∈Ff g, the set of output places of t.
For tokens accumulation problem in input places, the Eqs. (17) and (18) are proposed. Both
equations are is in function of the marking of inputs places and of output place. Eq. (17) is for
structures with logic AND, and Eq. (18) for logic OR.

O;Bð Þ t∗ð Þ ¼
Y

M ∗tð Þ ¼ 1&& O;Bð Þ t∗ð Þ ¼ 0
n o

(17)

O;Bð Þ t∗ð Þ ¼
X

M ∗tð Þ ¼ 1&& O;Bð Þ t∗ð Þ ¼ 0
n o

(18)

In the same way, to consume token in output place and restoring conditions of PN structures,
Eqs. (19) and (20) are defined, which are in function of both marking input places and output
places.

RC t∗ð Þ ¼
Y

M ∗tð Þ ¼ 0&& O;Bð Þ t∗ð Þ ¼ 1
n o

(19)

RC t∗ð Þ ¼
X

M ∗tð Þ ¼ 0&& O;Bð Þ t∗ð Þ ¼ 1
n o

(20)

From the above, the ladder diagram Petri net: discrete event systems is defined as it is shown
in Table 1.

Eq. 16 to distribution of signals, Eqs. 17 and 18 to accumulate tokens and Eqs. 19 and 20 to
restart conditions should be evaluated after each marking of the net Mkþ1 to update the
marking of LDPN and simulate cycled behavior of PLC. Marking of input places I is in
function of discrete sensors states.

Petri Nets in Science and Engineering24

LDPN considers the following transition rules to dynamic behavior:

• In initial conditions of LDPN, inhibitor arcs enable transitions and put token in its output
places O and/or B in PN model with both inputs and outputs discrete. In AI places restart
condition of data.

• All output places (O and B) of the PN model are binary, only one can token.

• All transitions enabled should be fired in one some evaluation. To PN model with both
inputs and outputs discrete, transition fired T consume unique token W P;Tð Þ ¼ 1 of each
input place P of Tand put to unique tokenW T;Pð Þ ¼ 1 to each output place Tof P. For PN
model with some analog input place and output place discrete, the transition T should be
fired when it satisfies the respective condition (if - then) and put to unique token in each
output place T of P.

• To update, marking should be applied Eqs. 16–20.

3.3. Model of control lines both discrete inputs and outputs

Figure 11 shows the PN model of logic AND, if input places Io1, O
c
3 y Bo

2 have a token, then L1

transition is enabled. The L1 firing puts a token at place O1. When are updates the marking of
input places, the Eq. (17) disables the L1 transition, avoiding a token more in output place O1.

A Discrete-LDPN is a 5-tuple (P, T, W, F, M0), where:

P ¼ I ∪O ∪B ∪AI ∪AR ∪RCf g is a finite set of places, where:
I ¼ I1; I2;…; Iif g is a finite set of places that represent discrete physical inputs,
O ¼ O1;O2;…;Oof g is a finite set of places that represent discrete physical outputs,
B ¼ B1;B2;…;Bbf g is a finite set of places that represent discrete memory signals,
AI ¼ AI1;AI2;…;AIaif g is a finite set of places that represent analog physical inputs,
AR ¼ AR1;ARI2;…;ARarf g is a finite set of places that represent analog memory signals,
RC ¼ RC1;RC2;…;RCrcf g is a finite set of places to restart condition of the nets and its marking it in function of the states
of inputs and outputs of control line type.

T ¼ Ic∣o; ;Oc∣o; ;Bc∣o;L;AI;RC
� �

is a finite set of transitions, where:

Ic∣o ¼ Ic∣o1 ; Ic∣o2 ;…; Ic∣oi
n o

is a finite set of transitions that have discrete physical inputs,

Oc∣o ¼ Oc∣o
1 ;Oc∣o

2 ;…;Oc∣o
o

n o
is a finite set of transitions that have discrete physical outputs,

Bc∣o ¼ Bc∣o
1 ;Bc∣o

2 ;…;Bc∣o
b

n o
is a finite set of transitions that have discrete memory signals,

L ¼ L1;L2;…;Llf g is a finite set of transitions that may have places of discrete signals,
AI ¼ AI1;AI2;…;AIaif g is a finite set of transitions that can have discrete and/or analog signals, its fire condition it in
function of mathematics or logics restrictions.
RC¼ RC1;RC2;…;RCrcf g is a finite set of transitions that have input place RC to restart condition of PN structure.

F⊆ P� Tð Þ∪ T� Pð Þ is a set of arcs.

W ¼ F ! 1f g, all weights of the arcs are equal to 1.

M0 ¼
P ! 0; 1f g, discrete signal:
P ! Z 16 bit integerð Þf g, analog signal:

�

Table 1. Definition of LDPN: Discrete event systems.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

25

which is the base of conversion of control lines that have both discrete inputs and outputs. On
the other hand, evaluation of control algorithm in PLC is cyclical, which generates two impor-
tant conditions to consider in the PN model; the cyclical evaluation in PN would generate
accumulation of marks in the places, and in function of the logic, marking and consuming of
theses in places that represent coils in the LD. This last condition is also necessary to restore
the information of places in PN that represent physical analog signals or memory registers.
Figure 10 shows the distribution of discrete signals in PN, and Eq. (15) its interpretation. Only
one transition can be enabled at a time; if the input place does not have a mark, then the
transition I;O;Bð Þc is enabled for inhibitor arc. Eq. (16) is the generalization of the marking of I,
O y B places.

Ii ¼ Ion ∪ I
c
m

� �
; Oo ¼ Oo

n ∪O
c
m

� �
; Bb ¼ Bo

n ∪B
c
m

� �
(15)

where the subscripts n and m are not necessarily equal.

M I;O;Bð Þ ¼ 0
1

� �
, then

M I;O;Bð Þo ¼ 0 and M I;O;Bð Þc ¼ 1
M I;O;Bð Þo ¼ 1 and M I;O;Bð Þc ¼ 0

� �
(16)

Considering symbols of [3], for a pre-set and post-set of places, are defined:

∗t ¼ p : p; tð Þ∈Ff g, the set of input places of t.
∗t ¼ p : t; pð Þ∈Ff g, the set of output places of t.
For tokens accumulation problem in input places, the Eqs. (17) and (18) are proposed. Both
equations are is in function of the marking of inputs places and of output place. Eq. (17) is for
structures with logic AND, and Eq. (18) for logic OR.

O;Bð Þ t∗ð Þ ¼
Y

M ∗tð Þ ¼ 1&& O;Bð Þ t∗ð Þ ¼ 0
n o

(17)

O;Bð Þ t∗ð Þ ¼
X

M ∗tð Þ ¼ 1&& O;Bð Þ t∗ð Þ ¼ 0
n o

(18)

In the same way, to consume token in output place and restoring conditions of PN structures,
Eqs. (19) and (20) are defined, which are in function of both marking input places and output
places.

RC t∗ð Þ ¼
Y

M ∗tð Þ ¼ 0&& O;Bð Þ t∗ð Þ ¼ 1
n o

(19)

RC t∗ð Þ ¼
X

M ∗tð Þ ¼ 0&& O;Bð Þ t∗ð Þ ¼ 1
n o

(20)

From the above, the ladder diagram Petri net: discrete event systems is defined as it is shown
in Table 1.

Eq. 16 to distribution of signals, Eqs. 17 and 18 to accumulate tokens and Eqs. 19 and 20 to
restart conditions should be evaluated after each marking of the net Mkþ1 to update the
marking of LDPN and simulate cycled behavior of PLC. Marking of input places I is in
function of discrete sensors states.

Petri Nets in Science and Engineering24

LDPN considers the following transition rules to dynamic behavior:

• In initial conditions of LDPN, inhibitor arcs enable transitions and put token in its output
places O and/or B in PN model with both inputs and outputs discrete. In AI places restart
condition of data.

• All output places (O and B) of the PN model are binary, only one can token.

• All transitions enabled should be fired in one some evaluation. To PN model with both
inputs and outputs discrete, transition fired T consume unique token W P;Tð Þ ¼ 1 of each
input place P of Tand put to unique tokenW T;Pð Þ ¼ 1 to each output place Tof P. For PN
model with some analog input place and output place discrete, the transition T should be
fired when it satisfies the respective condition (if - then) and put to unique token in each
output place T of P.

• To update, marking should be applied Eqs. 16–20.

3.3. Model of control lines both discrete inputs and outputs

Figure 11 shows the PN model of logic AND, if input places Io1, O
c
3 y Bo

2 have a token, then L1

transition is enabled. The L1 firing puts a token at place O1. When are updates the marking of
input places, the Eq. (17) disables the L1 transition, avoiding a token more in output place O1.

A Discrete-LDPN is a 5-tuple (P, T, W, F, M0), where:

P ¼ I ∪O ∪B ∪AI ∪AR ∪RCf g is a finite set of places, where:
I ¼ I1; I2;…; Iif g is a finite set of places that represent discrete physical inputs,
O ¼ O1;O2;…;Oof g is a finite set of places that represent discrete physical outputs,
B ¼ B1;B2;…;Bbf g is a finite set of places that represent discrete memory signals,
AI ¼ AI1;AI2;…;AIaif g is a finite set of places that represent analog physical inputs,
AR ¼ AR1;ARI2;…;ARarf g is a finite set of places that represent analog memory signals,
RC ¼ RC1;RC2;…;RCrcf g is a finite set of places to restart condition of the nets and its marking it in function of the states
of inputs and outputs of control line type.

T ¼ Ic∣o; ;Oc∣o; ;Bc∣o;L;AI;RC
� �

is a finite set of transitions, where:

Ic∣o ¼ Ic∣o1 ; Ic∣o2 ;…; Ic∣oi
n o

is a finite set of transitions that have discrete physical inputs,

Oc∣o ¼ Oc∣o
1 ;Oc∣o

2 ;…;Oc∣o
o

n o
is a finite set of transitions that have discrete physical outputs,

Bc∣o ¼ Bc∣o
1 ;Bc∣o

2 ;…;Bc∣o
b

n o
is a finite set of transitions that have discrete memory signals,

L ¼ L1;L2;…;Llf g is a finite set of transitions that may have places of discrete signals,
AI ¼ AI1;AI2;…;AIaif g is a finite set of transitions that can have discrete and/or analog signals, its fire condition it in
function of mathematics or logics restrictions.
RC¼ RC1;RC2;…;RCrcf g is a finite set of transitions that have input place RC to restart condition of PN structure.

F⊆ P� Tð Þ∪ T� Pð Þ is a set of arcs.

W ¼ F ! 1f g, all weights of the arcs are equal to 1.

M0 ¼
P ! 0; 1f g, discrete signal:
P ! Z 16 bit integerð Þf g, analog signal:

�

Table 1. Definition of LDPN: Discrete event systems.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

25

By Eq. (19), the marking of place RC is in function of both marking input places and output
place.

Figure 12 shows the PNmodel of logic OR, if any input places Ic1, O
o
5 y Bo

2 have a token, then L1,
L2 or L3 transition is enabled, respectively. If the transition enabled is fired, then a token is put
at place O1. When are updates the marking of input places, the Eq. (18) disables the L1, L2 and
L3 transitions, avoiding a toke more in output place O1. By Eq. (20), the marking of place RC is
in function of both marking input places and output place.

Figure 13 shows the PN model of logic AND-OR, output place can get token from L1 or L2

transitions, in function of marking of input places Io1, O
c
3 y Bo

2 or Io1, O
c
3 y O

c
7 have a token,

respectively. The L1 or L2 firing puts a token at place O1. When are updates the marking of
input places, the Eqs. (17) and (18) disables the L1 and L2 transitions, avoiding a token more in
output place O1. The marking of place RC is in function of both marking input places of L1 and
L2 transitions and output place O1 based on Eqs. (19) and (20) to restart condition.

Figure 14 shows the PN model of logic auto-loop. In this model, it is necessary that L1

transition to be enabled and fired set a token in the output place O1, enabling theOo
1 transition,

which consumes the token ofO1 and sets a token in the placeOo
1, enabling the L2 and holding a

token inO1. The restart condition of the model auto-loop is in function of the Eqs. (19) and (20).

Figure 12. PN model of logic OR.

Figure 11. PN model of logic AND.

Petri Nets in Science and Engineering26

Figure 15 shows the PN model of logic interlocking. Both places O1 and O2 enable the Oc
1 and

Oc
2 transitions by the inhibitor arcs, placing a token in input places Oc

1 and Oc
2 of L1 and L2

transitions, respectively. If L1 or L2 transition is firing first disables the other transition by the
inhibitor arc. The restart condition places RC1 and RC2 are in function of Eq. (19).

3.4. Model of control lines with analog inputs and output discrete

Figure 16 shows the PN model of on-delay timer. The BT and PT are variables to determine
base time and preset time, respectively. The marking of the place AI2 is a data analog to store
the sum ET ¼ ETþ BT. The marking of the placeO1 is in function of firing of the AI2 transition,
which depends on the condition if I1 ¼ 1&&ET ≥PTð Þ. To restart condition of the places O1

and AI2 are in function of Ic1.

Figure 14. PN model of logic auto-loop.

Figure 13. PN model of logic AND–OR.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

27

By Eq. (19), the marking of place RC is in function of both marking input places and output
place.

Figure 12 shows the PNmodel of logic OR, if any input places Ic1, O
o
5 y Bo

2 have a token, then L1,
L2 or L3 transition is enabled, respectively. If the transition enabled is fired, then a token is put
at place O1. When are updates the marking of input places, the Eq. (18) disables the L1, L2 and
L3 transitions, avoiding a toke more in output place O1. By Eq. (20), the marking of place RC is
in function of both marking input places and output place.

Figure 13 shows the PN model of logic AND-OR, output place can get token from L1 or L2

transitions, in function of marking of input places Io1, O
c
3 y Bo

2 or Io1, O
c
3 y O

c
7 have a token,

respectively. The L1 or L2 firing puts a token at place O1. When are updates the marking of
input places, the Eqs. (17) and (18) disables the L1 and L2 transitions, avoiding a token more in
output place O1. The marking of place RC is in function of both marking input places of L1 and
L2 transitions and output place O1 based on Eqs. (19) and (20) to restart condition.

Figure 14 shows the PN model of logic auto-loop. In this model, it is necessary that L1

transition to be enabled and fired set a token in the output place O1, enabling theOo
1 transition,

which consumes the token ofO1 and sets a token in the placeOo
1, enabling the L2 and holding a

token inO1. The restart condition of the model auto-loop is in function of the Eqs. (19) and (20).

Figure 12. PN model of logic OR.

Figure 11. PN model of logic AND.

Petri Nets in Science and Engineering26

Figure 15 shows the PN model of logic interlocking. Both places O1 and O2 enable the Oc
1 and

Oc
2 transitions by the inhibitor arcs, placing a token in input places Oc

1 and Oc
2 of L1 and L2

transitions, respectively. If L1 or L2 transition is firing first disables the other transition by the
inhibitor arc. The restart condition places RC1 and RC2 are in function of Eq. (19).

3.4. Model of control lines with analog inputs and output discrete

Figure 16 shows the PN model of on-delay timer. The BT and PT are variables to determine
base time and preset time, respectively. The marking of the place AI2 is a data analog to store
the sum ET ¼ ETþ BT. The marking of the placeO1 is in function of firing of the AI2 transition,
which depends on the condition if I1 ¼ 1&&ET ≥PTð Þ. To restart condition of the places O1

and AI2 are in function of Ic1.

Figure 14. PN model of logic auto-loop.

Figure 13. PN model of logic AND–OR.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

27

Figure 17 shows the PN model of logic off-delay timer. The place to restart condition RC and
fire of RC1 is putting a token in output place O1 that is the initial condition of the structure PN.
When the Ic1 transition is fired put a token in place Ic1, which enables AI1 transition to allow the
sum of time ET ¼ ET þ BT. The fire of AI2 transition is in function of if I1 ¼ 0&&ET ≤PTð Þ, if

Figure 15. PN model of logic interlocking.

Figure 16. PN model of on-delay timer.

Petri Nets in Science and Engineering28

it is fired, then put a token in place AI4, which enables AI3 transition and consumes the token
of place O1.

Figure 18 shows the PN model of logic up-counter and Figure 19 to PN model of logic down-
counter. In both models, the marking of the place Io1 is in function of M Io1

� � ¼ M I1 ∗tð Þð Þ ¼f
0&&M I1 t∗ð Þð Þ ¼ 0g, which is to detect a positive transition in the marking, respectively. In place
AI1 are added the tokens (positive transition), if CV ≥PVð Þ then AI1 transition is enabled, and its
fire put a token in place O1. If the place RC Io2

� �
has a token, then it is consumed the token of the

place O1 andCV ¼ 0.

Figure 19 shows the PN model of logic down-counter, which has similar behavior to up-
counter, just that if one token in place Io1 consume one token of place AI1, if CV ≤ 0ð Þ, then the
fire of AI1 transition puts a token in place O1.

Figure 17. PN model of logic off-delay timer.

Figure 18. PN model of logic up-counter.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

29

Figure 17 shows the PN model of logic off-delay timer. The place to restart condition RC and
fire of RC1 is putting a token in output place O1 that is the initial condition of the structure PN.
When the Ic1 transition is fired put a token in place Ic1, which enables AI1 transition to allow the
sum of time ET ¼ ET þ BT. The fire of AI2 transition is in function of if I1 ¼ 0&&ET ≤PTð Þ, if

Figure 15. PN model of logic interlocking.

Figure 16. PN model of on-delay timer.

Petri Nets in Science and Engineering28

it is fired, then put a token in place AI4, which enables AI3 transition and consumes the token
of place O1.

Figure 18 shows the PN model of logic up-counter and Figure 19 to PN model of logic down-
counter. In both models, the marking of the place Io1 is in function of M Io1

� � ¼ M I1 ∗tð Þð Þ ¼f
0&&M I1 t∗ð Þð Þ ¼ 0g, which is to detect a positive transition in the marking, respectively. In place
AI1 are added the tokens (positive transition), if CV ≥PVð Þ then AI1 transition is enabled, and its
fire put a token in place O1. If the place RC Io2

� �
has a token, then it is consumed the token of the

place O1 andCV ¼ 0.

Figure 19 shows the PN model of logic down-counter, which has similar behavior to up-
counter, just that if one token in place Io1 consume one token of place AI1, if CV ≤ 0ð Þ, then the
fire of AI1 transition puts a token in place O1.

Figure 17. PN model of logic off-delay timer.

Figure 18. PN model of logic up-counter.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

29

Figure 20 shows the PN model of logic of comparisons of two analog places. Enabling and
firing of AI1 is in function of if V1 ¼ V2ð Þ; if V1 < V2ð Þ; if V1 > V2ð Þ; according to the compari-
son. Similarly, the marking of place RC is in function of RC V1 6¼ V2ð Þ; RC V1 ≥V2ð Þ;
RC V1 ≤V2ð Þ, respectively.

4. Example

Figure 21 shows the control algorithm in LD of run of three motors sequentially [14]. The Start
and Stop signals are physical inputs of type pushbutton. The Motor_1, Motor_2 and Motor_3
coils are physical outputs. The IR1, IR2 and IR3 variables are bits of memory. The first control
line is logic of auto-loop, if Start variable is equal to one, then, the IR1 coil is energized and so it
is hold by the contact IR1. It is also energized the Motor_1 coil, and the timer T1 and T2 begin
counting time. In T1, if ET ≥PT, then, the IR2 andMotor_2 coils are energized. In T2, if ET ≥PT,

Figure 19. PN model of logic down-counter.

Figure 20. PN model of logic of comparisons.

Petri Nets in Science and Engineering30

then, the IR3 andMotor_3 coils are energized. If Stop = 1, then, the IR1 coil is de-energized, and
are restart conditions of the control algorithm. Table 2 shows the equivalence of signals in
function of the definition LDPN.

Figure 22 shows the LDPN to control algorithm of run of three motors sequentially. Restart
conditions of the output places are in function of Bc

1 by Eq. 19. The restarting condition of place
B1 is in function of input places I1 and I2 by Eqs. 19 and 20. Restart condition places RC2 to RC6

Figure 21. Run of three motors sequentially.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

31

Figure 20 shows the PN model of logic of comparisons of two analog places. Enabling and
firing of AI1 is in function of if V1 ¼ V2ð Þ; if V1 < V2ð Þ; if V1 > V2ð Þ; according to the compari-
son. Similarly, the marking of place RC is in function of RC V1 6¼ V2ð Þ; RC V1 ≥V2ð Þ;
RC V1 ≤V2ð Þ, respectively.

4. Example

Figure 21 shows the control algorithm in LD of run of three motors sequentially [14]. The Start
and Stop signals are physical inputs of type pushbutton. The Motor_1, Motor_2 and Motor_3
coils are physical outputs. The IR1, IR2 and IR3 variables are bits of memory. The first control
line is logic of auto-loop, if Start variable is equal to one, then, the IR1 coil is energized and so it
is hold by the contact IR1. It is also energized the Motor_1 coil, and the timer T1 and T2 begin
counting time. In T1, if ET ≥PT, then, the IR2 andMotor_2 coils are energized. In T2, if ET ≥PT,

Figure 19. PN model of logic down-counter.

Figure 20. PN model of logic of comparisons.

Petri Nets in Science and Engineering30

then, the IR3 andMotor_3 coils are energized. If Stop = 1, then, the IR1 coil is de-energized, and
are restart conditions of the control algorithm. Table 2 shows the equivalence of signals in
function of the definition LDPN.

Figure 22 shows the LDPN to control algorithm of run of three motors sequentially. Restart
conditions of the output places are in function of Bc

1 by Eq. 19. The restarting condition of place
B1 is in function of input places I1 and I2 by Eqs. 19 and 20. Restart condition places RC2 to RC6

Figure 21. Run of three motors sequentially.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

31

are in function of the marking Bo
1, which are connected from Bc

1. For complex control algo-
rithms implies a larger graphic LDPN, it is advisable to indicate the marking function of the
places RC. Eq. 21 shows the incidence matrix of the PN model respectively, where the condi-
tioning if-then of transitions for reasons of space, which are indicated on corresponding figures,
is omitted.

Aij ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

Io1 �1 1

Ic2 �1 1 1

Bo
1 �1 1 1 1 1

Bc
1 �1 1 1 1 1 1

L1 �1 �1 1

L2 �1 1 �1

L3 �1 1

AI1 �1 BT ¼ 1ms ETþ BT

AI2 ETþ BT PT ¼ 104 1

AI3 �1 BT ¼ 1ms ETþ BT

AI4 ETþ BT PT ¼ 2∗104 1

RC1 �1 �1

RC2 �1 �1

RC3 �1 �1

RC4 ET �1

RC5 �1 �1

RC6 ET �1

2
6664

3
7775

The dynamic behavior of the PN model by run of three motors sequentially is described by the
following marking. Fired the transitions with inhibitor arcs, initial marking M0 is:

M0 ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

0 0 0 1 1 0 0 0 0 0 1ms 0 104 1ms 0 2∗104 0 0 0 0 1 1 1 1 1

� �

(21)

If place I1 has token, which enable the Io1 transition, its fire puts a token in the place Io1, which
enabled the L1 transition, its fire puts a token in the place B1. In these conditions, by Eq. (16),
the tokens in places of restarting conditions are consumed; the marking corresponding of
LDPN is shown in Eq. (23).

LD LDPN

Start I1

Stop I2

Motor_1 O1

Motor_2 O2

Motor_3 O3

IR1 B1

IR2 B2

IR3 B3

Table 2. Equivalence of signals of control algorithm in LDPN.

Petri Nets in Science and Engineering32

M1 ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

0 0 0 0 1 1 0 0 0 0 1ms 0 104 1ms 0 2∗104 0 0 0 0 0 0 0 0 0

� �

(22)

In these conditions, the Bo
1 transition is enabled, its fire puts a token in four places Bo

1, this
enables L2 transition, its fire puts a new token in the place B1, it disables the fire of L1 and L2

transitions by Eqs. (17) and (18). Another place Bo
1 enables L3 transition; its fire puts a token in

Figure 22. PN model of run of three motors sequentially.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

33

are in function of the marking Bo
1, which are connected from Bc

1. For complex control algo-
rithms implies a larger graphic LDPN, it is advisable to indicate the marking function of the
places RC. Eq. 21 shows the incidence matrix of the PN model respectively, where the condi-
tioning if-then of transitions for reasons of space, which are indicated on corresponding figures,
is omitted.

Aij ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

Io1 �1 1

Ic2 �1 1 1

Bo
1 �1 1 1 1 1

Bc
1 �1 1 1 1 1 1

L1 �1 �1 1

L2 �1 1 �1

L3 �1 1

AI1 �1 BT ¼ 1ms ETþ BT

AI2 ETþ BT PT ¼ 104 1

AI3 �1 BT ¼ 1ms ETþ BT

AI4 ETþ BT PT ¼ 2∗104 1

RC1 �1 �1

RC2 �1 �1

RC3 �1 �1

RC4 ET �1

RC5 �1 �1

RC6 ET �1

2
6664

3
7775

The dynamic behavior of the PN model by run of three motors sequentially is described by the
following marking. Fired the transitions with inhibitor arcs, initial marking M0 is:

M0 ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

0 0 0 1 1 0 0 0 0 0 1ms 0 104 1ms 0 2∗104 0 0 0 0 1 1 1 1 1

� �

(21)

If place I1 has token, which enable the Io1 transition, its fire puts a token in the place Io1, which
enabled the L1 transition, its fire puts a token in the place B1. In these conditions, by Eq. (16),
the tokens in places of restarting conditions are consumed; the marking corresponding of
LDPN is shown in Eq. (23).

LD LDPN

Start I1

Stop I2

Motor_1 O1

Motor_2 O2

Motor_3 O3

IR1 B1

IR2 B2

IR3 B3

Table 2. Equivalence of signals of control algorithm in LDPN.

Petri Nets in Science and Engineering32

M1 ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

0 0 0 0 1 1 0 0 0 0 1ms 0 104 1ms 0 2∗104 0 0 0 0 0 0 0 0 0

� �

(22)

In these conditions, the Bo
1 transition is enabled, its fire puts a token in four places Bo

1, this
enables L2 transition, its fire puts a new token in the place B1, it disables the fire of L1 and L2

transitions by Eqs. (17) and (18). Another place Bo
1 enables L3 transition; its fire puts a token in

Figure 22. PN model of run of three motors sequentially.

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

33

the place O1. The others two places Bo
1 enable AI1 and AI3 transition to add the base time,

respectively. Eq. (24) shows these conditions of LDPN, besides the update marking.

M1 ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

0 0 0 1 1 1 1 1 1 1 1ms Add 104 1ms Add 2∗104 1 0 0 0 0 0 0 0 0

� �

(23)

In these conditions, if ET ≥PT, in both AI2 and AI4 transitions put a token in places O2 and O3,
respectively. When place Io2 has a token enabling the RC1 transition, its fire consumes a token in
the place B1, restarting condition in LDPN.

5. Conclusions

There are two types of control lines for discrete event systems: those with discrete inputs and
outputs, and those with analog inputs and discrete output. Twelve logics that were analyzed
and converted into Petri network models.

For dynamic behavior of the PN model proposed, constraints and equations for marking
places and firing transitions are indicated to consider the problems of mark accumulation and
the restarting condition of the structure PN.

LDPN to discrete event systems allow to model control lines used in LD language, and conse-
quently, control algorithms development in LD, supporting that these are safe and reliable.

Each PN model is independent and can be interconnected in function of the control logic, as
well as, the number of PN model that is needed can be integrated.

Author details

José Carlos Quezada Quezada1*, Ernesto Flores García1, Joselito Medina Marín2,
Jorge Bautista López3 and Víctor Quezada Aguilar1

*Address all correspondence to: jcarlos@uaeh.edu.mx

1 High Education School Tizayuca, Autonomous University of Hidalgo State, Mexico

2 Advanced Research Center in Industrial Engineering, Autonomous University of Hidalgo
State, Mexico

3 Campus Zusmpango, Autonomous University of Mexico State, Mexico

References

[1] International Electrotechnical Commission, IEC 61131-3: Programmable Controllers: Pro-
gramming Languages, International standard, 2nd ed, 2003

Petri Nets in Science and Engineering34

[2] Korotkin S, Zaidner G, Cohen B, Ellenbogen A, Arad M, Cohen Y. A petri net formal
design methodology for discrete-event control of industrial automated systems, IEEE 26-
th convention of electrical and electronics engineers in Israel; 2010. pp. 431-435. DOI:
10.1109/EEEI.2010.5662187

[3] John K-H, Tiegelkamp M. IEC 61131–3: Programming Industrial Automation Systems.
2nd ed. Springer; 2010

[4] Murata. Petri Nets: Properties, analysis and applications. Proceedings of the IEEE. 1989.
pp. 541-580. DOI: 10.1109/5.24143

[5] Luo J, Zhang Q, Chen X, Zhou MC. Modeling and Race Detection of Ladder Diagrams via
Ordinary Petri Nets. IEEE Transactions on Systems, Man and Cybernetics. DOI: 10.1109/
TSMC.2016.2647219

[6] Năvrăpescu V, Deaconu I-D, Chirilă A-I, Deaconu A-S. Petri Net versus Ladder Diagram
for Controlling a Process Automation. The 8th International symposium on advanced
topics in electrical engineering. May 23–25, Bucharest, Romania, 2013. DOI: 10.1109/
ATEE.2013.6563402

[7] Xuekum C, Lilian L, Pengfei Q. Method For Translating Ladder Diagram To Ordinary
Petri Nets. 51st IEEE conference on decision and control; 2012. pp. 6716-6721. DOI:
10.1109/CDC.2012.6426901

[8] Zhang H, Jiang Y, Hung WN, Yang G, Gu M, Sun J. New strategies for reliability analysis
of programmable logic controllers. Mathematical and Computer Modeling. 2012;55(7/8):
1916-1931. DOI: 10.1016/j.mcm.2011.11.050

[9] da Silva Oliveira EA, da Silva LD, Gorgonio K, Perkusich A, Martins AF. 9th IEEE interna-
tional conference onObtaining formal models from ladder diagrams, industrial informat-
ics (INDIN), 26-29 July, 2011; p. 796-801. DOI: 10.1109/INDIN.2011.6034994

[10] Lee J, Lee JS. Conversion of ladder diagram to petri net using module synthesis technique.
International Journal of Modeling and Simulation. 2009;29(1):79-88. DOI: 10.1080/
02286203.2009.11442513

[11] Grobelna I, Grobelny M, Adamski M. Petri Nets and Activity Diagrams in Logic Control-
ler Specification—Transformation and Verification. 17th International Conference Mixed
Design of Integrated Circuits and Systems, Wroclaw, Poland; 2010. pp. 607-612

[12] Quezada JC, Medina J, Flores E, Seck Tuoh JC, Solís AE. Simulation and validation of
diagram ladder – Petri net. International Journal Advance Manufacturing Technology.
2017;88:1393-1405. DOI: 10.1007/s00170-016-8638-9

[13] Quezada JC, Medina J, Flores E, Seck Tuoh JC, Hernández N. Formal design methodology
for transforming ladder diagram to Petri nets. International Journal Advance Manufactur-
ing Technology. 2014;73:821-836. DOI: 10.1007/s00170-014-5715-9

[14] Bolton W. Programmable Logic Controllers. 5th ed. Elsevier Ltd.; 2009. pp. 222-223, ISBN:
978-1-85617-751-1

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

35

the place O1. The others two places Bo
1 enable AI1 and AI3 transition to add the base time,

respectively. Eq. (24) shows these conditions of LDPN, besides the update marking.

M1 ¼
I1 Io1 I2 Ic2 Ic2 B1 Bo

1 Bo
1 Bo

1 Bo
1 AI1 AI2 AI3 AI4 AI5 AI6 O1 O2 O3 RC1 RC2 RC3 RC4 RC5 RC6

0 0 0 1 1 1 1 1 1 1 1ms Add 104 1ms Add 2∗104 1 0 0 0 0 0 0 0 0

� �

(23)

In these conditions, if ET ≥PT, in both AI2 and AI4 transitions put a token in places O2 and O3,
respectively. When place Io2 has a token enabling the RC1 transition, its fire consumes a token in
the place B1, restarting condition in LDPN.

5. Conclusions

There are two types of control lines for discrete event systems: those with discrete inputs and
outputs, and those with analog inputs and discrete output. Twelve logics that were analyzed
and converted into Petri network models.

For dynamic behavior of the PN model proposed, constraints and equations for marking
places and firing transitions are indicated to consider the problems of mark accumulation and
the restarting condition of the structure PN.

LDPN to discrete event systems allow to model control lines used in LD language, and conse-
quently, control algorithms development in LD, supporting that these are safe and reliable.

Each PN model is independent and can be interconnected in function of the control logic, as
well as, the number of PN model that is needed can be integrated.

Author details

José Carlos Quezada Quezada1*, Ernesto Flores García1, Joselito Medina Marín2,
Jorge Bautista López3 and Víctor Quezada Aguilar1

*Address all correspondence to: jcarlos@uaeh.edu.mx

1 High Education School Tizayuca, Autonomous University of Hidalgo State, Mexico

2 Advanced Research Center in Industrial Engineering, Autonomous University of Hidalgo
State, Mexico

3 Campus Zusmpango, Autonomous University of Mexico State, Mexico

References

[1] International Electrotechnical Commission, IEC 61131-3: Programmable Controllers: Pro-
gramming Languages, International standard, 2nd ed, 2003

Petri Nets in Science and Engineering34

[2] Korotkin S, Zaidner G, Cohen B, Ellenbogen A, Arad M, Cohen Y. A petri net formal
design methodology for discrete-event control of industrial automated systems, IEEE 26-
th convention of electrical and electronics engineers in Israel; 2010. pp. 431-435. DOI:
10.1109/EEEI.2010.5662187

[3] John K-H, Tiegelkamp M. IEC 61131–3: Programming Industrial Automation Systems.
2nd ed. Springer; 2010

[4] Murata. Petri Nets: Properties, analysis and applications. Proceedings of the IEEE. 1989.
pp. 541-580. DOI: 10.1109/5.24143

[5] Luo J, Zhang Q, Chen X, Zhou MC. Modeling and Race Detection of Ladder Diagrams via
Ordinary Petri Nets. IEEE Transactions on Systems, Man and Cybernetics. DOI: 10.1109/
TSMC.2016.2647219

[6] Năvrăpescu V, Deaconu I-D, Chirilă A-I, Deaconu A-S. Petri Net versus Ladder Diagram
for Controlling a Process Automation. The 8th International symposium on advanced
topics in electrical engineering. May 23–25, Bucharest, Romania, 2013. DOI: 10.1109/
ATEE.2013.6563402

[7] Xuekum C, Lilian L, Pengfei Q. Method For Translating Ladder Diagram To Ordinary
Petri Nets. 51st IEEE conference on decision and control; 2012. pp. 6716-6721. DOI:
10.1109/CDC.2012.6426901

[8] Zhang H, Jiang Y, Hung WN, Yang G, Gu M, Sun J. New strategies for reliability analysis
of programmable logic controllers. Mathematical and Computer Modeling. 2012;55(7/8):
1916-1931. DOI: 10.1016/j.mcm.2011.11.050

[9] da Silva Oliveira EA, da Silva LD, Gorgonio K, Perkusich A, Martins AF. 9th IEEE interna-
tional conference onObtaining formal models from ladder diagrams, industrial informat-
ics (INDIN), 26-29 July, 2011; p. 796-801. DOI: 10.1109/INDIN.2011.6034994

[10] Lee J, Lee JS. Conversion of ladder diagram to petri net using module synthesis technique.
International Journal of Modeling and Simulation. 2009;29(1):79-88. DOI: 10.1080/
02286203.2009.11442513

[11] Grobelna I, Grobelny M, Adamski M. Petri Nets and Activity Diagrams in Logic Control-
ler Specification—Transformation and Verification. 17th International Conference Mixed
Design of Integrated Circuits and Systems, Wroclaw, Poland; 2010. pp. 607-612

[12] Quezada JC, Medina J, Flores E, Seck Tuoh JC, Solís AE. Simulation and validation of
diagram ladder – Petri net. International Journal Advance Manufacturing Technology.
2017;88:1393-1405. DOI: 10.1007/s00170-016-8638-9

[13] Quezada JC, Medina J, Flores E, Seck Tuoh JC, Hernández N. Formal design methodology
for transforming ladder diagram to Petri nets. International Journal Advance Manufactur-
ing Technology. 2014;73:821-836. DOI: 10.1007/s00170-014-5715-9

[14] Bolton W. Programmable Logic Controllers. 5th ed. Elsevier Ltd.; 2009. pp. 222-223, ISBN:
978-1-85617-751-1

Ladder Diagram Petri Nets: Discrete Event Systems
http://dx.doi.org/10.5772/intechopen.75753

35

Chapter 3

Petri Networks in the Planning of Discrete
Manufacturing Processes

Roman Stryczek

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75135

Provisional chapter

DOI: 10.5772/intechopen.75135

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Petri Networks in the Planning of Discrete
Manufacturing Processes

Roman Stryczek

Additional information is available at the end of the chapter

Abstract

This chapter puts forward characteristics of selected issues of manufacturing processes
planning using the Petri networks technique. It includes references to the extensive lit-
erature concerning the use of Petri networks in computer aided planning of discrete pro-
duction processes. Diversity of these problems is high as it refers both to the methods of
modeling and simulation of the course of manufacturing processes, the issue of optimiz-
ing these processes and production systems, representation of knowledge on production
parts of equipment and integration of planning and production activities in general. The
work puts forward example use of a temporary, priority Petri network for modeling and
optimizing production systems and manufacturing operations as well as an example of
fuzzy interference using the Petri network mechanism.

Keywords: CAPP, modeling production systems, representation of knowledge, CIM,
time-priority Petri nets

1. Introduction

The objective of modeling a manufacturing process is mostly utilitarian with aspects such as
support of its planning, ensuring optimizing or providing environment for automation of
its planning. Its cognitive aspect is also of importance as building a model forces a planner
to track the entire issue of generating a process plan. The main components of a production
process description include: a description of the stereo-metric structure (stereo-structure), a
description of the time structure (chrono-structure), a specification of processing conditions
and a description of the factors of ensuring reliability of processing. Stereo-structure involves
characteristics related to dimensional production chains, spatial arrangement and connection

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 3

Petri Networks in the Planning of Discrete
Manufacturing Processes

Roman Stryczek

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75135

Provisional chapter

DOI: 10.5772/intechopen.75135

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Petri Networks in the Planning of Discrete
Manufacturing Processes

Roman Stryczek

Additional information is available at the end of the chapter

Abstract

This chapter puts forward characteristics of selected issues of manufacturing processes
planning using the Petri networks technique. It includes references to the extensive lit-
erature concerning the use of Petri networks in computer aided planning of discrete pro-
duction processes. Diversity of these problems is high as it refers both to the methods of
modeling and simulation of the course of manufacturing processes, the issue of optimiz-
ing these processes and production systems, representation of knowledge on production
parts of equipment and integration of planning and production activities in general. The
work puts forward example use of a temporary, priority Petri network for modeling and
optimizing production systems and manufacturing operations as well as an example of
fuzzy interference using the Petri network mechanism.

Keywords: CAPP, modeling production systems, representation of knowledge, CIM,
time-priority Petri nets

1. Introduction

The objective of modeling a manufacturing process is mostly utilitarian with aspects such as
support of its planning, ensuring optimizing or providing environment for automation of
its planning. Its cognitive aspect is also of importance as building a model forces a planner
to track the entire issue of generating a process plan. The main components of a production
process description include: a description of the stereo-metric structure (stereo-structure), a
description of the time structure (chrono-structure), a specification of processing conditions
and a description of the factors of ensuring reliability of processing. Stereo-structure involves
characteristics related to dimensional production chains, spatial arrangement and connection

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

with movement of working units of the machine tool. Chrono-structure involves character-
istics related to structural components of operation time and the sequence of these compo-
nents. Chrono-structure of a complex, multi-tool machining processes involves the following
components: specification of simple operations completed on individual features; assigning
simple operations to complex operations; distribution of operations into complex operations
and defining a reasonable sequence of complex operations.

A simple operation understood as processing one feature with one tool is a basic component
of the operations chrono-structure. A complex operation means a group of simple operations
completed using one tool without replacing it, changing the position of the processed part
and without re-mounting, even a partial one. Complex operations are combined in sequences
on rising hierarchy levels. Borders of these sequences are set by: change of a tool, change of
the parts processing position within the reference frame of the machine tool, re-mounting,
change of reference frame and, on a higher level of production process, division into roughing
and precise processing.

A manufacturing operation might be defined as a cause-and-effect process including three
basic subgroups:

1. Passive (static) including current statuses of features, tools, status of the machine tool’s
auxiliary assemblies such as tailstock sleeve, steady rest, turntable, pallet changer, position
of tool head as well as selected manufacturing datum and clamping methods;

2. Active (dynamic) including operations, changes of tools, movement of auxiliary units, re-
clamping, and so on;

3. Decision-making, including events, the nature of which is not temporary, but informative
such as releasing the opportunity of changing a tool, forcing a change in the table’s posi-
tion, and so on.

A description of the chrono-structure might be made by defining organization and concur-
rency relations on sets of components of the aforementioned subgroups. If the first of the sub-
groups is treated as a set of conditions and the other two as a set of events, and flow relation
is described on these two sets, the result is a directed bipartite graph structure—a base of the
Petri network.

Topological characteristics of a bipartite directed graph that the Petri network is allowed for
modeling various logical, cause and effect, time, attribute, linguistic, semantic, geometrical
and other relations. Such relations are considered both at the stage of planning a production
process and at the stage of implementing it. Therefore, an interest in the methodology of
Petri networks for the purpose of planning manufacturing processes grew as early as in the
second half of the 1980s [1]. The first attempts to use the Petri network in planning manufac-
turing processes were related to connecting the production process plan to conditions result-
ing from the production department’s potential. Therefore, their basic use in construction of
machines consisted of modeling of production systems, mostly the flexible manufacturing
system (FMS). A comprehensive review of use of Petri networks in planning manufacturing
processes by 1992 is put forward in this work [2].

Petri Nets in Science and Engineering38

This period was followed by a range of significant applications of Petri networks in modeling
discrete manufacturing processes. The team of Kiritsis has showed particular interest in this
issue [3–10]. The published works analyzed the opportunities of classifying operations in the
process of production, representation of alternative courses of manufacturing process and
dynamic planning of processes. The complete approach in the 1990s has also been put for-
ward by the duo of Horvát and Rudas [11–14]. It involved both acquisition of knowledge and
modeling the structure of the manufacturing process as well as evaluation of the generated
Petri network. The authors aimed at developing a knowledge-based manufacturing process
modeling methodology. In the same period, the use of Petri networks was forecast for two
purposes: modeling knowledge related to selection and classifying operations and flexible
representation of the sequence of operations [15, 16].

Today, it might be stated that this modeling technique has become the most popular one in
FMS modeling, scheduling production [17], controlling and management of manufacturing
processes in FMS. Stochastic Petri networks are used for considering the random nature of
some events [18]. Preventive detection of locks is one of the FMS model’s main functions [19].

The issue of flow of objects through the manufacturing process remains in between plan-
ning of the manufacturing process and the measures necessary to implement it. The Petri
networks methodology is also used here. The work [10] considering the issue of estimating
the upper and lower limit of time and cost of completing a production series of a given part in
certain workshop conditions is essential here. An opportunity of variant course of individual
processes for individual parts of a production batch is assumed. A more efficient model was
obtained—compared to the traditional approach based on determining critical path—with
regard to the availability of production tools and machinery.

The most expanded Petri network classes in manufacturing are used in the work [20] for the
purpose of loading machinery in FMS. Based on of hybrid Petri networks [21], which are
fuzzy neural Petri networks, their language was expanded by adding color attributes, inhibi-
tory arcs and time function. According to the authors, the ENhanced Fuzzy Neural Petri Net
(ENFNPN) gives extraordinary opportunities of flexible modeling perfectly corresponding to
FMS, allowing for modeling and processing knowledge at the expert system level.

Multi-axis machine tools with a larger number of machine units currently play an increas-
ingly significant role in machine processing. The effective use of such machine tools is strictly
determined with maximizing concurrency, which is reflected by an optimum chrono-struc-
ture of operations. In order to optimize the chrono-structure of a concurrent operation, it is
necessary to define subsets of operations that might be conducted simultaneously and to
define the optimum relation of preferences, taking into account the division along with a
range of various conditions and limitations. It is not a trivial task; hence, it is preferable to
use a correctly adapted computer aided process planning (CAPP) class system and planning
methodology.

Process specification language (PSL) is the most complex project in modeling and analysis of
manufacturing processes using the Petri network technique. The works on this project, which
were coordinated by the National Institute of Standards and Technology (NIST) aimed at devel-
oping an international standard of a description language for all aspects of manufacturing

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

39

with movement of working units of the machine tool. Chrono-structure involves character-
istics related to structural components of operation time and the sequence of these compo-
nents. Chrono-structure of a complex, multi-tool machining processes involves the following
components: specification of simple operations completed on individual features; assigning
simple operations to complex operations; distribution of operations into complex operations
and defining a reasonable sequence of complex operations.

A simple operation understood as processing one feature with one tool is a basic component
of the operations chrono-structure. A complex operation means a group of simple operations
completed using one tool without replacing it, changing the position of the processed part
and without re-mounting, even a partial one. Complex operations are combined in sequences
on rising hierarchy levels. Borders of these sequences are set by: change of a tool, change of
the parts processing position within the reference frame of the machine tool, re-mounting,
change of reference frame and, on a higher level of production process, division into roughing
and precise processing.

A manufacturing operation might be defined as a cause-and-effect process including three
basic subgroups:

1. Passive (static) including current statuses of features, tools, status of the machine tool’s
auxiliary assemblies such as tailstock sleeve, steady rest, turntable, pallet changer, position
of tool head as well as selected manufacturing datum and clamping methods;

2. Active (dynamic) including operations, changes of tools, movement of auxiliary units, re-
clamping, and so on;

3. Decision-making, including events, the nature of which is not temporary, but informative
such as releasing the opportunity of changing a tool, forcing a change in the table’s posi-
tion, and so on.

A description of the chrono-structure might be made by defining organization and concur-
rency relations on sets of components of the aforementioned subgroups. If the first of the sub-
groups is treated as a set of conditions and the other two as a set of events, and flow relation
is described on these two sets, the result is a directed bipartite graph structure—a base of the
Petri network.

Topological characteristics of a bipartite directed graph that the Petri network is allowed for
modeling various logical, cause and effect, time, attribute, linguistic, semantic, geometrical
and other relations. Such relations are considered both at the stage of planning a production
process and at the stage of implementing it. Therefore, an interest in the methodology of
Petri networks for the purpose of planning manufacturing processes grew as early as in the
second half of the 1980s [1]. The first attempts to use the Petri network in planning manufac-
turing processes were related to connecting the production process plan to conditions result-
ing from the production department’s potential. Therefore, their basic use in construction of
machines consisted of modeling of production systems, mostly the flexible manufacturing
system (FMS). A comprehensive review of use of Petri networks in planning manufacturing
processes by 1992 is put forward in this work [2].

Petri Nets in Science and Engineering38

This period was followed by a range of significant applications of Petri networks in modeling
discrete manufacturing processes. The team of Kiritsis has showed particular interest in this
issue [3–10]. The published works analyzed the opportunities of classifying operations in the
process of production, representation of alternative courses of manufacturing process and
dynamic planning of processes. The complete approach in the 1990s has also been put for-
ward by the duo of Horvát and Rudas [11–14]. It involved both acquisition of knowledge and
modeling the structure of the manufacturing process as well as evaluation of the generated
Petri network. The authors aimed at developing a knowledge-based manufacturing process
modeling methodology. In the same period, the use of Petri networks was forecast for two
purposes: modeling knowledge related to selection and classifying operations and flexible
representation of the sequence of operations [15, 16].

Today, it might be stated that this modeling technique has become the most popular one in
FMS modeling, scheduling production [17], controlling and management of manufacturing
processes in FMS. Stochastic Petri networks are used for considering the random nature of
some events [18]. Preventive detection of locks is one of the FMS model’s main functions [19].

The issue of flow of objects through the manufacturing process remains in between plan-
ning of the manufacturing process and the measures necessary to implement it. The Petri
networks methodology is also used here. The work [10] considering the issue of estimating
the upper and lower limit of time and cost of completing a production series of a given part in
certain workshop conditions is essential here. An opportunity of variant course of individual
processes for individual parts of a production batch is assumed. A more efficient model was
obtained—compared to the traditional approach based on determining critical path—with
regard to the availability of production tools and machinery.

The most expanded Petri network classes in manufacturing are used in the work [20] for the
purpose of loading machinery in FMS. Based on of hybrid Petri networks [21], which are
fuzzy neural Petri networks, their language was expanded by adding color attributes, inhibi-
tory arcs and time function. According to the authors, the ENhanced Fuzzy Neural Petri Net
(ENFNPN) gives extraordinary opportunities of flexible modeling perfectly corresponding to
FMS, allowing for modeling and processing knowledge at the expert system level.

Multi-axis machine tools with a larger number of machine units currently play an increas-
ingly significant role in machine processing. The effective use of such machine tools is strictly
determined with maximizing concurrency, which is reflected by an optimum chrono-struc-
ture of operations. In order to optimize the chrono-structure of a concurrent operation, it is
necessary to define subsets of operations that might be conducted simultaneously and to
define the optimum relation of preferences, taking into account the division along with a
range of various conditions and limitations. It is not a trivial task; hence, it is preferable to
use a correctly adapted computer aided process planning (CAPP) class system and planning
methodology.

Process specification language (PSL) is the most complex project in modeling and analysis of
manufacturing processes using the Petri network technique. The works on this project, which
were coordinated by the National Institute of Standards and Technology (NIST) aimed at devel-
oping an international standard of a description language for all aspects of manufacturing

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

39

process completion [6]. Petri network class called the Compact Process Planning net (CPP-net)
is the technical representation of PSL concept. Formally, CPP-net is an organized set of four
components (P, T, E, M0); it is therefore a base Petri network. A set of P locations in CPP-net
includes three subsets: control locations, input locations and locations representing limits.
Components of T set represent tasks to be performed, conditioned by the E flow relation. A
feasibility graph is developed based on the Petri network. It presents all the possible transition
sequences in CPP-net corresponding to possible courses of the process. A large proportion of
this course is irrational. Therefore, the subsequent stage includes a heuristic method to elimi-
nate the courses that are not compliant with certain assumptions resulting from correctness of
the production process [5]. It allows to significantly reduce the number of possible variants of
the course of the process.

2. Generative process planning

Basically, there are two various approaches to plan a process in CAPP systems: generative
(GCAPP) and variant (VCAPP). Differences are significant and are also reflected in models of
manufacturing processes. An intermediate approach, also called a hybrid one, is also custom-
ary, but its description cannot be easily formalized. Generative planning consists of drawing
up the process using individual features, to synthesis of tasks on an increasingly higher level:
a complex operation, mounting, operation, processing stage, manufacturing process. The gen-
erative approach is used if manufactured machine parts significantly differ from each other
and groups of parts with manufacturing similarities cannot be identified. The process model
in GCAPP is generated gradually as progress is made in planning it. A generated model has a
dispersed nature; however, it includes modules with a previously defined structure. It is then
necessary to determine the number of modules of a certain type and classify them. Figure 1
presents the general structure of such models.

The Petri network language class used for building the model has the following form:

 PN 1  =  (P, T, E, I, S, R,  M 0) , (1)

where P: a nonempty, finite set of places, T: a nonempty, finite, disjointed of P set of transi-
tions, E ⊂ (P × T) ∪ (T × P): a flow relation, I: a set of inhibitor arcs, S: T → N0, a function of time,
R: T → [0, 1], a priority function, and M0: P → (0, 1), an initial marking.

The conditions of preparing transition t for firing have the following form:

 M (p)  =  {
1, ∀ p ∈  . t   0, ∀ i (p, t)  ∈ I  (2)

where M (p)—a current marking for p place, ∙t–t transition input places set, i(p, t)—inhibitor
arc from p place to t transition.

Eq. (2) applies in cases where only one transition meets the feasibility conditions. If two or
more transitions meet the feasibility conditions, only one of them—the highest priority one—
is completed. Other transitions are ranked in next iteration of the simulations process.

Petri Nets in Science and Engineering40

The interdependence between M current status and M’ status directly resulting from it has
been defined as follows:

 M (p)  = 
⎧

⎪

 ⎨
⎪

⎩

0 if p ∈  . t and p ∉  t .

 1 if p ∈  t .  
M (p) otherwise 

 (3)

where t . —t transition output places set.

Figure 1. General (partial) multi-tool processing operation model.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

41

process completion [6]. Petri network class called the Compact Process Planning net (CPP-net)
is the technical representation of PSL concept. Formally, CPP-net is an organized set of four
components (P, T, E, M0); it is therefore a base Petri network. A set of P locations in CPP-net
includes three subsets: control locations, input locations and locations representing limits.
Components of T set represent tasks to be performed, conditioned by the E flow relation. A
feasibility graph is developed based on the Petri network. It presents all the possible transition
sequences in CPP-net corresponding to possible courses of the process. A large proportion of
this course is irrational. Therefore, the subsequent stage includes a heuristic method to elimi-
nate the courses that are not compliant with certain assumptions resulting from correctness of
the production process [5]. It allows to significantly reduce the number of possible variants of
the course of the process.

2. Generative process planning

Basically, there are two various approaches to plan a process in CAPP systems: generative
(GCAPP) and variant (VCAPP). Differences are significant and are also reflected in models of
manufacturing processes. An intermediate approach, also called a hybrid one, is also custom-
ary, but its description cannot be easily formalized. Generative planning consists of drawing
up the process using individual features, to synthesis of tasks on an increasingly higher level:
a complex operation, mounting, operation, processing stage, manufacturing process. The gen-
erative approach is used if manufactured machine parts significantly differ from each other
and groups of parts with manufacturing similarities cannot be identified. The process model
in GCAPP is generated gradually as progress is made in planning it. A generated model has a
dispersed nature; however, it includes modules with a previously defined structure. It is then
necessary to determine the number of modules of a certain type and classify them. Figure 1
presents the general structure of such models.

The Petri network language class used for building the model has the following form:

 PN 1  =  (P, T, E, I, S, R,  M 0) , (1)

where P: a nonempty, finite set of places, T: a nonempty, finite, disjointed of P set of transi-
tions, E ⊂ (P × T) ∪ (T × P): a flow relation, I: a set of inhibitor arcs, S: T → N0, a function of time,
R: T → [0, 1], a priority function, and M0: P → (0, 1), an initial marking.

The conditions of preparing transition t for firing have the following form:

 M (p)  =  {
1, ∀ p ∈  . t   0, ∀ i (p, t)  ∈ I  (2)

where M (p)—a current marking for p place, ∙t–t transition input places set, i(p, t)—inhibitor
arc from p place to t transition.

Eq. (2) applies in cases where only one transition meets the feasibility conditions. If two or
more transitions meet the feasibility conditions, only one of them—the highest priority one—
is completed. Other transitions are ranked in next iteration of the simulations process.

Petri Nets in Science and Engineering40

The interdependence between M current status and M’ status directly resulting from it has
been defined as follows:

 M (p)  = 
⎧

⎪

 ⎨
⎪

⎩

0 if p ∈  . t and p ∉  t .

 1 if p ∈  t .  
M (p) otherwise 

 (3)

where t . —t transition output places set.

Figure 1. General (partial) multi-tool processing operation model.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

41

The aforementioned class is therefore a temporary Petri network with a binary marking
function and inhibitor arcs. Inhibitor arcs make the model simpler, more transparent, there-
fore, easier to build and analyze. The suggested module structure allows for automation in
generating the model. Modules for replacement of tools in the number of tools used for the
process control the need to replace a tool. Topologically identical modules of control of call-
ing the Workpiece Coordinate System (WCS) should be identified as the position required
by the production process and the orientation of a processed object in a machine coordinate
system. A module of complex operations is the core of the model. Each transition in the
module calls a tool and WCS for the subsequent complex operation. A subsequent module
is a sequence of operations conducted using the same tool on subsequent features. The mod-
ules is an area for structural optimization of the process by way of minimizing the number
of tool changes. The model is supplemented by modules classifying simple operations for
individual features. A marker on the last item of a module means ending processing of a
given feature.

The aforementioned issue of optimizing the structure of multi-tool production operations
might be solved using two simple heuristics: give preference to the tool that might currently
process the largest possible number of areas and give preference to the tool that might cur-
rently complete all the operations that have been assigned to it. The suggested approach
allows for a satisfying sequence of simple operations with a small number or iterations equal
to the number of tools used. It is an optimal sequence in more than 95% cases. In order to
appreciate the benefits of this method, one can compare it to the full browsing algorithm. The
advantages of this method also include a very simple method of transferring its results in the
form of an organized sequence of complex operations to a formal network model.

The sequence of processing individual features might be conditional on their technological
nature. An opportunity to automatically classify the conducted operations then requires initi-
ating the optimizing procedure. A function of priorities assigned to each transition is used for
this purpose. Example use of this method based on genetic algorithm is shown in the work [22].

3. Variant process planning

Variant process planning consists of completing a certain scheme of indexing a designed part,
which allows to find the most structurally and manufacturing similar component and take
over its manufacturing process it with an insignificant number of adjustments. Such approach
to process design shows its benefits when it is possible to classify manufactured machine
parts in groups of parts, which are structurally and manufacturing similar. VCAPP is there-
fore closely linked to the group technology of machines and use of flexible manufacturing
cells.

The effective use of flexible, robotized manufacturing cells is guaranteed by completion in
such group technology idea systems. Hence, similarity of the machine parts processed there
should be considered both at the stage of design, equipment and software configuration and
during everyday use of the production cells. The Group Technology (GT) method has reached
its mature form at the beginning of the 1990s [23]. Currently, GT is considered as a concept of
production, in which production resource is functionally grouped in production cells for the

Petri Nets in Science and Engineering42

purpose of processing machine parts with similar features in order to achieve a high level of
production reproducibility and artificially extend the size of a production batch. GT is related
to the cellular production [24] concept, which means production both in flexible manufactur-
ing cells and in autonomous flex-cell. GT therefore involves a range of various operations of a
design, production and organizational nature, which requires coherence and synchronization.
Many of them, such as determining production similarity of machine parts, grouping and clas-
sification of machine parts, variant design, parametric programming of computer numerical
control (CNC) machine tools, developing group manufacturing processes, designing group
processing equipment, configuration of manufacturing cells [25] and the issue of planning and
controlling the manufacturing process are still readily raised subject of development works.

Technical implementations of VCAPP systems most frequently include one of the two solutions:
building a system based on finding a similar part of a previously manufactured machine part and
adopting its production process plan or developing a group production process for the so-called
synthetic representative of the group. In both cases, it is possible to use a process model developed
in the Petri network technique; however, the second method is more natural in using its potential.

Feature precedence network (FPN) defined as a directed graph representing precedences that
result from limitations imposed by the features is a precondition for designing a correct manu-
facturing operation. For complex parts, with a large number of processed features and relations
between them, FPN might be very complex and very difficult to manually process. In [26, 27]
has developed a system generating FPN based on the analysis of interactions between the fea-
tures and verification of FPN using the Petri network model. The developed structure involves
generating features by way of mapping from CAD system, analysis of interactions between
the features and an algorithm automatically creating a Petri network corresponding to a given
FPN. An analysis of interaction between the features involves comparing each pair of features
with reference to the defined set of rules. These rules include heuristic preferences of processing
sequence, which guarantee its effectiveness. The rules take geometric, production and economic
factors into account.

In case of variant approach to production process design FPN represents a model developed
for the synthetic representative of a given group of machines. The synthetic representative
represents an abstract object that includes all types of features that can be found in the group of
parts with production similarities. The process model should allow for an explicit definition of
a processing task only by way of correct positioning of initial marking vector M0. The sequence
of processing individual features is defined based on the FPN. Subsequent, structurally unified
modules of the model supplement the remaining functions of the model. The work [28] elabo-
rates on this issue and gives an example of the variant approach for axially symmetrical parts.

4. Modeling and optimizing production systems

As it has been mentioned in Section 1, modeling, simulation and controlling the production
process in automated, robotized, discrete production systems is the main area of using the Petri
network technique in production. The systems are typical examples of asynchronous concur-
rent systems. The problem of management of limited resources, classifying tasks and auto-
diagnosis in such systems is a very complex issue and requires optimizing procedures both at

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

43

The aforementioned class is therefore a temporary Petri network with a binary marking
function and inhibitor arcs. Inhibitor arcs make the model simpler, more transparent, there-
fore, easier to build and analyze. The suggested module structure allows for automation in
generating the model. Modules for replacement of tools in the number of tools used for the
process control the need to replace a tool. Topologically identical modules of control of call-
ing the Workpiece Coordinate System (WCS) should be identified as the position required
by the production process and the orientation of a processed object in a machine coordinate
system. A module of complex operations is the core of the model. Each transition in the
module calls a tool and WCS for the subsequent complex operation. A subsequent module
is a sequence of operations conducted using the same tool on subsequent features. The mod-
ules is an area for structural optimization of the process by way of minimizing the number
of tool changes. The model is supplemented by modules classifying simple operations for
individual features. A marker on the last item of a module means ending processing of a
given feature.

The aforementioned issue of optimizing the structure of multi-tool production operations
might be solved using two simple heuristics: give preference to the tool that might currently
process the largest possible number of areas and give preference to the tool that might cur-
rently complete all the operations that have been assigned to it. The suggested approach
allows for a satisfying sequence of simple operations with a small number or iterations equal
to the number of tools used. It is an optimal sequence in more than 95% cases. In order to
appreciate the benefits of this method, one can compare it to the full browsing algorithm. The
advantages of this method also include a very simple method of transferring its results in the
form of an organized sequence of complex operations to a formal network model.

The sequence of processing individual features might be conditional on their technological
nature. An opportunity to automatically classify the conducted operations then requires initi-
ating the optimizing procedure. A function of priorities assigned to each transition is used for
this purpose. Example use of this method based on genetic algorithm is shown in the work [22].

3. Variant process planning

Variant process planning consists of completing a certain scheme of indexing a designed part,
which allows to find the most structurally and manufacturing similar component and take
over its manufacturing process it with an insignificant number of adjustments. Such approach
to process design shows its benefits when it is possible to classify manufactured machine
parts in groups of parts, which are structurally and manufacturing similar. VCAPP is there-
fore closely linked to the group technology of machines and use of flexible manufacturing
cells.

The effective use of flexible, robotized manufacturing cells is guaranteed by completion in
such group technology idea systems. Hence, similarity of the machine parts processed there
should be considered both at the stage of design, equipment and software configuration and
during everyday use of the production cells. The Group Technology (GT) method has reached
its mature form at the beginning of the 1990s [23]. Currently, GT is considered as a concept of
production, in which production resource is functionally grouped in production cells for the

Petri Nets in Science and Engineering42

purpose of processing machine parts with similar features in order to achieve a high level of
production reproducibility and artificially extend the size of a production batch. GT is related
to the cellular production [24] concept, which means production both in flexible manufactur-
ing cells and in autonomous flex-cell. GT therefore involves a range of various operations of a
design, production and organizational nature, which requires coherence and synchronization.
Many of them, such as determining production similarity of machine parts, grouping and clas-
sification of machine parts, variant design, parametric programming of computer numerical
control (CNC) machine tools, developing group manufacturing processes, designing group
processing equipment, configuration of manufacturing cells [25] and the issue of planning and
controlling the manufacturing process are still readily raised subject of development works.

Technical implementations of VCAPP systems most frequently include one of the two solutions:
building a system based on finding a similar part of a previously manufactured machine part and
adopting its production process plan or developing a group production process for the so-called
synthetic representative of the group. In both cases, it is possible to use a process model developed
in the Petri network technique; however, the second method is more natural in using its potential.

Feature precedence network (FPN) defined as a directed graph representing precedences that
result from limitations imposed by the features is a precondition for designing a correct manu-
facturing operation. For complex parts, with a large number of processed features and relations
between them, FPN might be very complex and very difficult to manually process. In [26, 27]
has developed a system generating FPN based on the analysis of interactions between the fea-
tures and verification of FPN using the Petri network model. The developed structure involves
generating features by way of mapping from CAD system, analysis of interactions between
the features and an algorithm automatically creating a Petri network corresponding to a given
FPN. An analysis of interaction between the features involves comparing each pair of features
with reference to the defined set of rules. These rules include heuristic preferences of processing
sequence, which guarantee its effectiveness. The rules take geometric, production and economic
factors into account.

In case of variant approach to production process design FPN represents a model developed
for the synthetic representative of a given group of machines. The synthetic representative
represents an abstract object that includes all types of features that can be found in the group of
parts with production similarities. The process model should allow for an explicit definition of
a processing task only by way of correct positioning of initial marking vector M0. The sequence
of processing individual features is defined based on the FPN. Subsequent, structurally unified
modules of the model supplement the remaining functions of the model. The work [28] elabo-
rates on this issue and gives an example of the variant approach for axially symmetrical parts.

4. Modeling and optimizing production systems

As it has been mentioned in Section 1, modeling, simulation and controlling the production
process in automated, robotized, discrete production systems is the main area of using the Petri
network technique in production. The systems are typical examples of asynchronous concur-
rent systems. The problem of management of limited resources, classifying tasks and auto-
diagnosis in such systems is a very complex issue and requires optimizing procedures both at

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

43

the stage of design and during use. Building a model of a designed production systems allows
to avoid a range of conceptual errors and facilitate modifications of a project. Simulation tech-
niques implemented on abstract models allow to optimize the operation of a system, define its
potential efficiency, identify any bottlenecks and define the actual utilization rate on produc-
tion resource. Simulation of models developed in the Petri network technique allows to gener-
ate a network availability graph and, consequently, at the stage of using the system, to avoid
downtime, diagnose the system and facilitate making correct decisions.

The following organized eight items are the appropriate class of Petri networks for the afore-
mentioned tasks:

 PN 2  =  (P, T, E, W, I, S, R,  M 0) , (4)

where P, T, E, I, S, R, M0 components meet the PN1, whereas W component is a function of
multiplicity the arcs:

 W :  (E ∪ I)  → N; N : set of natural numbers.

In this case, the conditions of preparing transition t for firing have the following form:

 {
M (p)  > = W (p, t) , ∀ p ∈  . t   M (p)  < W (p, t) , ∀  (p, t)  ∈ I  (5)

It is essential to remember that multiplicity of flow through the arc is assigned to both ordi-
nary arcs assigned to E flow relation and to inhibitor arcs. Assigning multiplicity to inhibitor
arcs—which is not a frequent case—allows for giving up another element: function of loca-
tions capacity. Inhibitor arcs might be used for controlling flow of markers, for instance, to
avoid overflow of intra-operation buffers. Appropriate software of this class of Petri networks
is an intuitive, flexible tool of modeling and simulation for an engineer. A lack of opportunity
to generate random events, allowed by stochastic Petri networks is a certain limitation of the
aforementioned Petri network class [18].

Software processing PN2 class might be easily supplemented with a function optimizing the
production system. The following example uses the genetic algorithm to find optimum pri-
orities for individual transitions. The chromosome of each solution includes just as many
genes as is found in the sum of transitions (Figure 2). Each of the genes is represented as a
number between [0, 1], which corresponds to the priority value for the appropriate transition.
The reproduction process for a new descendant includes random appropriate gene of their
parents or, with certain low probability, the value of the gene is drawn from the range [0, 1],
which corresponds to the mutation process. Details of the suggested algorithm have been put
forward in the works [28, 29]. Figure 2 shows an example of optimum chromosome for the
production system presented in the further part.

The number of produced parts, the total number of order completion or, for example, the
number of measured parts might be used as an optimization criterion. The last example
refers to a situation, in which production efficiency is satisfying, there is a production

Petri Nets in Science and Engineering44

margin, so the manufacturer places more emphasis on improving production quality. It
can be indirectly completed by attaching higher priority to transitions serving the mea-
surement station.

The following example presents a production system model (Figure 3) with two lathes CNC
(L1, L2), two drill-tap machining centers (M1, M2), two industrial robots (R1, R2), an input trans-
porter (IN) and an output transporter (OUT), a measurement station (MS) and an intra-opera-
tion buffer. It has been designed for the purpose of processing rear axle guide pins—right (B)
and left (A). A pin is processed at L1 and M1, B pin at L2 and M2. L1 and L2 lathes are identical,
whereas M1 processed four pins at the same time and M2 only processes one.

Figure 4 presents Petri network for a robotized production system of processing rear axle
guide pins. Marking the network corresponds to the production launch status. Only one
transition (t1) is possible in this status. The green spot means that it has at least one marker.
M0(p30) = 4 should be set to ensure correct course of simulation. Arc multiplicity function has

Figure 2. The best chromosome.

Figure 3. Robotized production system scheme.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

45

the stage of design and during use. Building a model of a designed production systems allows
to avoid a range of conceptual errors and facilitate modifications of a project. Simulation tech-
niques implemented on abstract models allow to optimize the operation of a system, define its
potential efficiency, identify any bottlenecks and define the actual utilization rate on produc-
tion resource. Simulation of models developed in the Petri network technique allows to gener-
ate a network availability graph and, consequently, at the stage of using the system, to avoid
downtime, diagnose the system and facilitate making correct decisions.

The following organized eight items are the appropriate class of Petri networks for the afore-
mentioned tasks:

 PN 2  =  (P, T, E, W, I, S, R,  M 0) , (4)

where P, T, E, I, S, R, M0 components meet the PN1, whereas W component is a function of
multiplicity the arcs:

 W :  (E ∪ I)  → N; N : set of natural numbers.

In this case, the conditions of preparing transition t for firing have the following form:

 {
M (p)  > = W (p, t) , ∀ p ∈  . t   M (p)  < W (p, t) , ∀  (p, t)  ∈ I  (5)

It is essential to remember that multiplicity of flow through the arc is assigned to both ordi-
nary arcs assigned to E flow relation and to inhibitor arcs. Assigning multiplicity to inhibitor
arcs—which is not a frequent case—allows for giving up another element: function of loca-
tions capacity. Inhibitor arcs might be used for controlling flow of markers, for instance, to
avoid overflow of intra-operation buffers. Appropriate software of this class of Petri networks
is an intuitive, flexible tool of modeling and simulation for an engineer. A lack of opportunity
to generate random events, allowed by stochastic Petri networks is a certain limitation of the
aforementioned Petri network class [18].

Software processing PN2 class might be easily supplemented with a function optimizing the
production system. The following example uses the genetic algorithm to find optimum pri-
orities for individual transitions. The chromosome of each solution includes just as many
genes as is found in the sum of transitions (Figure 2). Each of the genes is represented as a
number between [0, 1], which corresponds to the priority value for the appropriate transition.
The reproduction process for a new descendant includes random appropriate gene of their
parents or, with certain low probability, the value of the gene is drawn from the range [0, 1],
which corresponds to the mutation process. Details of the suggested algorithm have been put
forward in the works [28, 29]. Figure 2 shows an example of optimum chromosome for the
production system presented in the further part.

The number of produced parts, the total number of order completion or, for example, the
number of measured parts might be used as an optimization criterion. The last example
refers to a situation, in which production efficiency is satisfying, there is a production

Petri Nets in Science and Engineering44

margin, so the manufacturer places more emphasis on improving production quality. It
can be indirectly completed by attaching higher priority to transitions serving the mea-
surement station.

The following example presents a production system model (Figure 3) with two lathes CNC
(L1, L2), two drill-tap machining centers (M1, M2), two industrial robots (R1, R2), an input trans-
porter (IN) and an output transporter (OUT), a measurement station (MS) and an intra-opera-
tion buffer. It has been designed for the purpose of processing rear axle guide pins—right (B)
and left (A). A pin is processed at L1 and M1, B pin at L2 and M2. L1 and L2 lathes are identical,
whereas M1 processed four pins at the same time and M2 only processes one.

Figure 4 presents Petri network for a robotized production system of processing rear axle
guide pins. Marking the network corresponds to the production launch status. Only one
transition (t1) is possible in this status. The green spot means that it has at least one marker.
M0(p30) = 4 should be set to ensure correct course of simulation. Arc multiplicity function has

Figure 2. The best chromosome.

Figure 3. Robotized production system scheme.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

45

been used for solving two problems: control of intra-operation buffer overflow and loading
and unloading M1. The buffer allows for storing up to five parts, therefore i(3, 12) and i(3, 22)
inhibitor arcs have the multiplicity of 5, which results in blocking 12 and 22 transitions if
p3 has 5 markers. Position 5 aims at preventing simultaneous access to buffers of R1 and R2
robots. The i(31, 30) inhibitor arc, on the other hand, prevents loading non-processing parts
to M1 before all processed parts are unloaded. Multiplicity of 4th p31→t31 arc allows to start
processing only when M1 includes a set of four parts. After completing t31 four markers are
transferred to p32 and the unloading stage begins. Processed parts might be transferred to
the input transporter (t32, t42) directly, or to the measurement station first, provided that it is
expecting parts for measurement. The network topology ensures that parts processed at M1
and M2 are transferred for measurement. It is ensured by the marker flowing in the loop p51→
t51→p52→t52→p53→t53→p61→t61→p62→t62→p63→t63→p51.

Table 1 puts forward a description of module locations, whereas a description of transition
of the presented model is put forward by Figure 5. The figure is an example of visualizing
transformation results with a spreadsheet. Subchapter 6 puts forward the opportunities to
integrate specialist software for Petri networks with other software packages.

Figure 4. Robotized production system model.

Petri Nets in Science and Engineering46

Figure 5. Spreadsheet of production resources utilization rate.

Table 1. List of places from Figure 4.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

47

been used for solving two problems: control of intra-operation buffer overflow and loading
and unloading M1. The buffer allows for storing up to five parts, therefore i(3, 12) and i(3, 22)
inhibitor arcs have the multiplicity of 5, which results in blocking 12 and 22 transitions if
p3 has 5 markers. Position 5 aims at preventing simultaneous access to buffers of R1 and R2
robots. The i(31, 30) inhibitor arc, on the other hand, prevents loading non-processing parts
to M1 before all processed parts are unloaded. Multiplicity of 4th p31→t31 arc allows to start
processing only when M1 includes a set of four parts. After completing t31 four markers are
transferred to p32 and the unloading stage begins. Processed parts might be transferred to
the input transporter (t32, t42) directly, or to the measurement station first, provided that it is
expecting parts for measurement. The network topology ensures that parts processed at M1
and M2 are transferred for measurement. It is ensured by the marker flowing in the loop p51→
t51→p52→t52→p53→t53→p61→t61→p62→t62→p63→t63→p51.

Table 1 puts forward a description of module locations, whereas a description of transition
of the presented model is put forward by Figure 5. The figure is an example of visualizing
transformation results with a spreadsheet. Subchapter 6 puts forward the opportunities to
integrate specialist software for Petri networks with other software packages.

Figure 4. Robotized production system model.

Petri Nets in Science and Engineering46

Figure 5. Spreadsheet of production resources utilization rate.

Table 1. List of places from Figure 4.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

47

Figure 6. Setting the CF of conclusion.

5. Petri networks as a manufacturing knowledge representation
method

Contemporary CAPP systems have the architecture of expert systems [8]. Systems based on
rules prevail among knowledge representation methods applied in expert systems. Petri net-
works do not constitute a turning point here. They are only another variant of the rule method.
However, it is a ready carrier of knowledge with a large potential of expanding its capabilities,
flexible as frames, able to capture the context to the extent not smaller than semantic networks,
allowing for intelligent inference by way of introducing fuzzy rules. An advanced suggestion
for using Petri networks for knowledge representation in CAPP systems has been put for-
ward in the work [15], the authors of which present characteristics of the component of a rule
approach to knowledge representation and an approach based on Petri network. Multilateral
usefulness of Petri networks at various stages of building and using expert systems should be
noted. Starting from a knowledge acquisition system [22, 30], to knowledge representation in
a knowledge database [31, 32], user interface handling [33], inference mechanism [32, 34] to
knowledge validation [33], the Petri network technique is helpful in all of these aspects.

Knowledge engineers most frequently use the structural formalism of knowledge representa-
tion based on the Petri network technique. Logical Petri Net (LPN) allows for easy modeling and
verification of knowledge. The work [30] puts forward a fuzzy inference algorithm and a back-
ward propagation algorithm for Adaptive Fuzzy Petri Network (AFPN). AFPN might be a fin-
ished platform for an expert system allowing for knowledge acquisition based on a teaching set.

The following example uses a maximally simplified version of AFPN, which still is a logical
fuzzy Petri network (Eq.(6)) in the form of organized five units:

 PT 3  =  (P, T, E, α, μ) , (6)

where P is a set of facts: premises and conclusions; T: a set of rule cores; E: flow relation; α:
P→[0, 1], association function which assigns a real value to each p∈P; and μ: T→[0, 1], cer-
tainty factor of the rule.

M0 functions are replaced here with α component. A rule in PT3 includes t transition and a set
of premises (input locations) and conclusions (output locations). The fuzzy nature of infer-
ence results from using fuzzy aggregation functions used for calculating the certainty factor
(CF) of the generated conclusions. If a conclusion is generated by only one rule (Figure 6a), we

Petri Nets in Science and Engineering48

Figure 7. A fragment of knowledge database represented in the form of a petri network.

Table 2. List of places.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

49

Figure 6. Setting the CF of conclusion.

5. Petri networks as a manufacturing knowledge representation
method

Contemporary CAPP systems have the architecture of expert systems [8]. Systems based on
rules prevail among knowledge representation methods applied in expert systems. Petri net-
works do not constitute a turning point here. They are only another variant of the rule method.
However, it is a ready carrier of knowledge with a large potential of expanding its capabilities,
flexible as frames, able to capture the context to the extent not smaller than semantic networks,
allowing for intelligent inference by way of introducing fuzzy rules. An advanced suggestion
for using Petri networks for knowledge representation in CAPP systems has been put for-
ward in the work [15], the authors of which present characteristics of the component of a rule
approach to knowledge representation and an approach based on Petri network. Multilateral
usefulness of Petri networks at various stages of building and using expert systems should be
noted. Starting from a knowledge acquisition system [22, 30], to knowledge representation in
a knowledge database [31, 32], user interface handling [33], inference mechanism [32, 34] to
knowledge validation [33], the Petri network technique is helpful in all of these aspects.

Knowledge engineers most frequently use the structural formalism of knowledge representa-
tion based on the Petri network technique. Logical Petri Net (LPN) allows for easy modeling and
verification of knowledge. The work [30] puts forward a fuzzy inference algorithm and a back-
ward propagation algorithm for Adaptive Fuzzy Petri Network (AFPN). AFPN might be a fin-
ished platform for an expert system allowing for knowledge acquisition based on a teaching set.

The following example uses a maximally simplified version of AFPN, which still is a logical
fuzzy Petri network (Eq.(6)) in the form of organized five units:

 PT 3  =  (P, T, E, α, μ) , (6)

where P is a set of facts: premises and conclusions; T: a set of rule cores; E: flow relation; α:
P→[0, 1], association function which assigns a real value to each p∈P; and μ: T→[0, 1], cer-
tainty factor of the rule.

M0 functions are replaced here with α component. A rule in PT3 includes t transition and a set
of premises (input locations) and conclusions (output locations). The fuzzy nature of infer-
ence results from using fuzzy aggregation functions used for calculating the certainty factor
(CF) of the generated conclusions. If a conclusion is generated by only one rule (Figure 6a), we

Petri Nets in Science and Engineering48

Figure 7. A fragment of knowledge database represented in the form of a petri network.

Table 2. List of places.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

49

use fuzzy conjunction. Its CF is a product of premises of the rule and the CF of the very rule. If
a conclusion is supported by two (Figure 6b) or more rules, fuzzy disjunction should be used.
Its CF is a soft logical sum of indices generated by each of the rules separately. If the CF of
transition is negative, what we have is a fuzzy negation (Figure 6c). All the three aggregation
functions ensure maintaining CF between 0 and 1. Contrary to the previously presented PN1
and PN2 classes, PN3 class cannot include a loop. It is also allowed that a graph is inconsistent.
The threshold value of certainty indices is defined as global for the entire network. Table 2
presents a description and list of CF for the shown example. Figure 7 puts forward a fragment
of the manufacturing knowledge database related to the method of mounting parts on a lathe,
developed using the mechanism presented above.

6. Petri networks in computer integration manufacturing

Computer integration manufacturing (CIM) involves the integration of technical systems of
constructing a product, planning a manufacturing process, technical preparation of produc-
tion, programming CNC equipment, manufacturing, assembly, ensuring quality control,
monitoring [35] and testing a product with facility and organizational systems of planning
and controlling production in a company. Such integration should be implemented based on
a shared, coherent system of databases: structural ones, ones for manufacturing processes,
resource of production and transport, tools, processing and measuring equipment. Possible
scope of modeling using the Petri network technique with respect to issues related to com-
puter integration of manufacturing is very broad nowadays. The use of graphic tools such as
the Update Petri Nets (UPN) class [36] based on Color Petri Networks (CPN) might be used as
an example. UPN applications are systems based on rules, integrating control of information
flow between CAD, CAPP, resources management and production flow.

A data exchange system between individual modules is a prerequisite for integration. It is still
the weakest link of the contemporary computer integration systems. Currently, the bottleneck
of integration might be removed, after introducing and popularization of the Automation
Markup Language (AML). IEC 62714 [37] project available since 2014 is a solution for data
exchange concentrating on the area of industrial automation. The document defines AML
data exchange format based on Extensible Markup Language (XML) scheme data format. It
has been developed to support data exchange for heterogeneous engineering tools in the envi-
ronment of automated production resource. The objective of AML is to combine engineering
tools of various fields, that is, mechanical engineering, workshop design, electric engineering,
production process design, controlling course of production, development of human machine
interface (HMI), programmable logic controller (PLC) programming, programming CNC
machine tools and industrial robots, and so on. AML might describe both physical and logi-
cal aspects of all components of a production system, their topology, geometry, kinematics,
logics of control, and represent the links and hierarchy of all objects considered. It should be
emphasized that XML format serving as a base for AML language has been developed since
1990, mostly as a spontaneous initiative of engineers dissatisfied with previously offered solu-
tions, including standard for the exchange of product model data (STEP). The success of XML
format is a result of flexibility of the language, ease of defining complex data structures, lack
of barriers in other suggested solutions, its alphanumeric character, ease of control and direct

Petri Nets in Science and Engineering50

analysis, open and intuitive character. Solutions have been put forward for several years,
also in the form of standards, presenting data representation for the Petri network model in a
format based on the Petri Net Markup Language (PNML) [38]. PNML has been introduced as
a data exchange format for all Petri network classes. All of this is a fundamental premise for
formulating a favorable forecast for acceptance and quick popularization of AML language as
a data exchange language in industrial automation and its environment.

Figure 8 shows a scheme of an integrated production unit design system, taking into account
data exchange streams and main functions of individual modules. Attention should be drawn

Figure 8. Data exchange streams in integrated manufacturing cell planning system.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

51

use fuzzy conjunction. Its CF is a product of premises of the rule and the CF of the very rule. If
a conclusion is supported by two (Figure 6b) or more rules, fuzzy disjunction should be used.
Its CF is a soft logical sum of indices generated by each of the rules separately. If the CF of
transition is negative, what we have is a fuzzy negation (Figure 6c). All the three aggregation
functions ensure maintaining CF between 0 and 1. Contrary to the previously presented PN1
and PN2 classes, PN3 class cannot include a loop. It is also allowed that a graph is inconsistent.
The threshold value of certainty indices is defined as global for the entire network. Table 2
presents a description and list of CF for the shown example. Figure 7 puts forward a fragment
of the manufacturing knowledge database related to the method of mounting parts on a lathe,
developed using the mechanism presented above.

6. Petri networks in computer integration manufacturing

Computer integration manufacturing (CIM) involves the integration of technical systems of
constructing a product, planning a manufacturing process, technical preparation of produc-
tion, programming CNC equipment, manufacturing, assembly, ensuring quality control,
monitoring [35] and testing a product with facility and organizational systems of planning
and controlling production in a company. Such integration should be implemented based on
a shared, coherent system of databases: structural ones, ones for manufacturing processes,
resource of production and transport, tools, processing and measuring equipment. Possible
scope of modeling using the Petri network technique with respect to issues related to com-
puter integration of manufacturing is very broad nowadays. The use of graphic tools such as
the Update Petri Nets (UPN) class [36] based on Color Petri Networks (CPN) might be used as
an example. UPN applications are systems based on rules, integrating control of information
flow between CAD, CAPP, resources management and production flow.

A data exchange system between individual modules is a prerequisite for integration. It is still
the weakest link of the contemporary computer integration systems. Currently, the bottleneck
of integration might be removed, after introducing and popularization of the Automation
Markup Language (AML). IEC 62714 [37] project available since 2014 is a solution for data
exchange concentrating on the area of industrial automation. The document defines AML
data exchange format based on Extensible Markup Language (XML) scheme data format. It
has been developed to support data exchange for heterogeneous engineering tools in the envi-
ronment of automated production resource. The objective of AML is to combine engineering
tools of various fields, that is, mechanical engineering, workshop design, electric engineering,
production process design, controlling course of production, development of human machine
interface (HMI), programmable logic controller (PLC) programming, programming CNC
machine tools and industrial robots, and so on. AML might describe both physical and logi-
cal aspects of all components of a production system, their topology, geometry, kinematics,
logics of control, and represent the links and hierarchy of all objects considered. It should be
emphasized that XML format serving as a base for AML language has been developed since
1990, mostly as a spontaneous initiative of engineers dissatisfied with previously offered solu-
tions, including standard for the exchange of product model data (STEP). The success of XML
format is a result of flexibility of the language, ease of defining complex data structures, lack
of barriers in other suggested solutions, its alphanumeric character, ease of control and direct

Petri Nets in Science and Engineering50

analysis, open and intuitive character. Solutions have been put forward for several years,
also in the form of standards, presenting data representation for the Petri network model in a
format based on the Petri Net Markup Language (PNML) [38]. PNML has been introduced as
a data exchange format for all Petri network classes. All of this is a fundamental premise for
formulating a favorable forecast for acceptance and quick popularization of AML language as
a data exchange language in industrial automation and its environment.

Figure 8 shows a scheme of an integrated production unit design system, taking into account
data exchange streams and main functions of individual modules. Attention should be drawn

Figure 8. Data exchange streams in integrated manufacturing cell planning system.

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

51

to the role of a spreadsheet with active macro application option, which allows to compile
input data for computer aided design (CAD) and computer aided manufacturing (CAM) sys-
tems and control their correctness, completeness, consistency and adherence with the allowed
range. Diagnostics of data is a significant element that influences comfort of using the design
system. Full integration of a spreadsheet with popular CAD systems is possible nowadays,
which significantly facilitates structural designing and drawing up documentation in the
form of drawings. At the same time, a spreadsheet allows for drawing up a data file for a
parametrized program of processing a selected class of produced machine parts by using
related data sheets. An Excel Macro-Enable Workbook (XLSM) format file allows to use mac-
ros, that is, command sequences that might be used for the automation of completed func-
tions in a spreadsheet. A 3D model is made by preparing a drawing in CAD program, which
is integrally linked to the data included in the spreadsheet’s data file. Then, 2D documenta-
tion is made based on such model, if it is necessary. The code generated in a spreadsheet has
a simple structure in the form of a list of R-parameters plus the name of a processed part.
These are input data for CAM system and/or the numerical control system of the machine
tool, where parametric programs related to the aforementioned list of variable parameters
are archived. Aside from formal verification of the controlling program’s form, processing
in CAM aims at providing a simulation of processing. Aside from confirming correctness of
programmed trajectories of a machine’s movement, the simulation made provides an exact
completion time for individual processing operations. The results are exported to the Petri
Nets Modeler (PNM) package, which allows for exact time simulation of a production unit’s
work. A list of Petri network model transitions in XML format are again transferred to the
spreadsheet, thus closing the process chain. It includes a list of transitions with their com-
pletion times and a number of repetitions in a given period. A spreadsheet allows to easily
obtain a clearly structured document presenting, for example, utilization rate on production
resource (Figure 5).

PNM package is a key module of the presented design system. Its objective consists of
computer simulation, modeling and optimizing of both individual and group processes of
production, dedicated to autonomous flex-cells, multi-machine tool stations and robotized
manufacturing systems.

7. Summary

Both the very process of planning manufacturing processes and the structure of the manu-
facturing processes require applying a conditional-event mechanism that is naturally repre-
sented in the Petri networks technique. This chapter briefly outlines the broad opportunities
of applying this technique to design of discrete production processes. The period 1990s are the
most intense development period of Petri networks technology. We are currently at the stage
of applying already mature programming tools, increasingly frequently integrated in hetero-
geneous planning systems. The greatest advantages of Petri networks technique visible and
acknowledged by engineers include: an opportunity to generate models with various levels of

Petri Nets in Science and Engineering52

detail, graphic user interface at the stage of acquisition, verification and processing a model,
ease of modification and expansion of a model using its hierarchical and block character. The
fact that each model contains production knowledge is the greatest advantage of applying mod-
eling techniques in the planning of production processes. Hence, the premises for automation
of the design process, at least in the area of implementing routine works. An engineer’s intel-
lectual efforts might therefore be aimed at introducing innovative solutions and improvements.

Author details

Roman Stryczek

Address all correspondence to: rstryczek@ath.bielsko.pl

University of Bielsko-Biala, Poland

References

[1] Ham I, Lu CY. Computer-aided process planning: The present and the future. Annals of
the CIRP. 1988;37:1-11. DOI: 10.1016/S0007-8506(07)60756-2

[2] Cecile JA, Srihari K, Emerson CR. A review of petri net application in process planning.
International Journal of Advanced Manufacturing Technology. 1992;7:168-177. DOI:
10.1007/BF02601620

[3] Kiritsis D. Petri net modelling for dynamic process planning. In: Vernadat F, edi-
tor. Integrated Manufacturing Systems Engineering. 1995. pp. 206-218. DOI: 10.1007/978-0-
387-34919-0_14

[4] Kiritsis D. A review of knowledge-based expert systems for process planning. Methods
and problems. International Journal of Advanced Manufacturing Technology. 1995;10:240-
262. DOI: 10.1007/BF01186876

[5] Kiritsis D, Porchet M. A generic petri net model for dynamic process planning and
sequence optimization. Advances in Engineering Software. 1996;25:61-71. DOI: 10.1016/
0965-9978(95)00086-0

[6] Kiritsis D, Xirouchakis P, Gunther C. Petri net representation for the process specifica-
tion language. In: Proceedings of International Workshop on Intelligent Manufacturing
Systems (IMS-EUROPE); 1998; Lausanne. Available from: https://www.researchgate.
net/publication/268259692 [Accessed: 2015-01-19]

[7] Kiritsis D, Neuendorf KP, Xirouchakis P. Petri net techniques for process planning cost
estimation. Advanced in Engineering Software. 1999;30(6):375-387. DOI: 1016/S0965-
9978(98)00126-4

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

53

to the role of a spreadsheet with active macro application option, which allows to compile
input data for computer aided design (CAD) and computer aided manufacturing (CAM) sys-
tems and control their correctness, completeness, consistency and adherence with the allowed
range. Diagnostics of data is a significant element that influences comfort of using the design
system. Full integration of a spreadsheet with popular CAD systems is possible nowadays,
which significantly facilitates structural designing and drawing up documentation in the
form of drawings. At the same time, a spreadsheet allows for drawing up a data file for a
parametrized program of processing a selected class of produced machine parts by using
related data sheets. An Excel Macro-Enable Workbook (XLSM) format file allows to use mac-
ros, that is, command sequences that might be used for the automation of completed func-
tions in a spreadsheet. A 3D model is made by preparing a drawing in CAD program, which
is integrally linked to the data included in the spreadsheet’s data file. Then, 2D documenta-
tion is made based on such model, if it is necessary. The code generated in a spreadsheet has
a simple structure in the form of a list of R-parameters plus the name of a processed part.
These are input data for CAM system and/or the numerical control system of the machine
tool, where parametric programs related to the aforementioned list of variable parameters
are archived. Aside from formal verification of the controlling program’s form, processing
in CAM aims at providing a simulation of processing. Aside from confirming correctness of
programmed trajectories of a machine’s movement, the simulation made provides an exact
completion time for individual processing operations. The results are exported to the Petri
Nets Modeler (PNM) package, which allows for exact time simulation of a production unit’s
work. A list of Petri network model transitions in XML format are again transferred to the
spreadsheet, thus closing the process chain. It includes a list of transitions with their com-
pletion times and a number of repetitions in a given period. A spreadsheet allows to easily
obtain a clearly structured document presenting, for example, utilization rate on production
resource (Figure 5).

PNM package is a key module of the presented design system. Its objective consists of
computer simulation, modeling and optimizing of both individual and group processes of
production, dedicated to autonomous flex-cells, multi-machine tool stations and robotized
manufacturing systems.

7. Summary

Both the very process of planning manufacturing processes and the structure of the manu-
facturing processes require applying a conditional-event mechanism that is naturally repre-
sented in the Petri networks technique. This chapter briefly outlines the broad opportunities
of applying this technique to design of discrete production processes. The period 1990s are the
most intense development period of Petri networks technology. We are currently at the stage
of applying already mature programming tools, increasingly frequently integrated in hetero-
geneous planning systems. The greatest advantages of Petri networks technique visible and
acknowledged by engineers include: an opportunity to generate models with various levels of

Petri Nets in Science and Engineering52

detail, graphic user interface at the stage of acquisition, verification and processing a model,
ease of modification and expansion of a model using its hierarchical and block character. The
fact that each model contains production knowledge is the greatest advantage of applying mod-
eling techniques in the planning of production processes. Hence, the premises for automation
of the design process, at least in the area of implementing routine works. An engineer’s intel-
lectual efforts might therefore be aimed at introducing innovative solutions and improvements.

Author details

Roman Stryczek

Address all correspondence to: rstryczek@ath.bielsko.pl

University of Bielsko-Biala, Poland

References

[1] Ham I, Lu CY. Computer-aided process planning: The present and the future. Annals of
the CIRP. 1988;37:1-11. DOI: 10.1016/S0007-8506(07)60756-2

[2] Cecile JA, Srihari K, Emerson CR. A review of petri net application in process planning.
International Journal of Advanced Manufacturing Technology. 1992;7:168-177. DOI:
10.1007/BF02601620

[3] Kiritsis D. Petri net modelling for dynamic process planning. In: Vernadat F, edi-
tor. Integrated Manufacturing Systems Engineering. 1995. pp. 206-218. DOI: 10.1007/978-0-
387-34919-0_14

[4] Kiritsis D. A review of knowledge-based expert systems for process planning. Methods
and problems. International Journal of Advanced Manufacturing Technology. 1995;10:240-
262. DOI: 10.1007/BF01186876

[5] Kiritsis D, Porchet M. A generic petri net model for dynamic process planning and
sequence optimization. Advances in Engineering Software. 1996;25:61-71. DOI: 10.1016/
0965-9978(95)00086-0

[6] Kiritsis D, Xirouchakis P, Gunther C. Petri net representation for the process specifica-
tion language. In: Proceedings of International Workshop on Intelligent Manufacturing
Systems (IMS-EUROPE); 1998; Lausanne. Available from: https://www.researchgate.
net/publication/268259692 [Accessed: 2015-01-19]

[7] Kiritsis D, Neuendorf KP, Xirouchakis P. Petri net techniques for process planning cost
estimation. Advanced in Engineering Software. 1999;30(6):375-387. DOI: 1016/S0965-
9978(98)00126-4

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

53

[8] Lee DH, Kiritsis D, Xirouchakis P. Iterative approach to operation selection and sequenc-
ing in process planning. International Journal of Production Research. 2004;42:4745-4766.
DOI: 10.10180/00207540410001720412

[9] Xirouchakis P, Kiritsis D, Persson JG. A Petri net technique for process planning cost
estimation. Annals of the CIRP. 1998;47:427-430. DOI: 10.1016/S0007-8506(07)62867-4

[10] Xirouchakis P, Kiritsis D, Gunther C, Persson JG. A petri net technique for batch deliv-
ery time estimation. CIRP Annals—Manufacturing Technology. 1999;48:361-364. DOI:
10.1016/S0007-8506(07)63202-8

[11] Horvát L, Rudas IJ. Manufacturing process planning using Object Oriented Petri nets
supported by entropy based fuzzy reasoning. In: Proceedings of IFAC Conference; 27-29
September 1994; Baden-Baden: Integrated Systems Engineering; 1995. pp. 311-316. DOI:
10.1016/B978-0-08-042361-6.50054-4

[12] Horvát L, Rudas IJ, Camarinha-Matos LM. Structured model representation of manu-
facturing process using petri nets and knowledge based tools. In: Balance Automation
Systems II. Boston: Springer; 1996. pp. 472-480. DOI: 10.1007/978-0-387-35065-3_47

[13] Rudas IJ, Horvát L. Modelling of manufacturing processes using a petri-net repre-
sentation. Engineering Applications of Artificial Intelligence. 1997;10(3):243-255. DOI:
10.1016/S0952-1976(97)00006-7

[14] Horvát L, Rudas IJ. Evaluation of Petri net process model representation as a tool of vir-
tual manufacturing. In: Proceedings of the Conference: Systems, Man, and Cybernetics;
November 1998; IEEE; 1998. DOI: 10.1109/ICSMC.1998.725405

[15] Lee KH, Jung MY. Flexible process sequencing using petri net theory. Computers &
Industrial Engineering. 1995;28(2):279-290. DOI: 10.1016/0360-8352(94)00191-O

[16] Lee DH, Kiritsis D, Xirouchakis P. Search heuristics for operation sequencing in pro-
cess planning. International Journal of Production Research. 2001;39:3771-3788. DOI:
10.1080/00207540110061922

[17] Tuncel G, Bayhan GM. Applications of petri nets in production scheduling: A review.
International Journal of Advanced Manufacturing Technology. 2007;34:762-773. DOI:
10.1007/s00170-006-0640-1

[18] Al-Ahmari A, Li Z. Analysis of multimachine flexible manufacturing cell using sto-
chastic petri nets. Advances in Mechanical Engineering. 2016;8(11):1-9. DOI: 10.1177/
1687814016680168

[19] Uzam M. The use of the petri net reduction approach for an optimal deadlock pre-
vention policy for flexible manufacturing systems. International Journal of Advanced
Manufacturing Technology. 2004;23:204-219. DOI: 10.1007/s00170-002-1526-5

[20] Kumar RR, Singh A, Tiwari MK. A fuzzy based algorithm to solve the machine-load-
ing problems of a FMS and its neuro fuzzy petri net model. International Journal of
Advanced Manufacturing Technology. 2004;23:318-341. DOI: 10.1007/s00170-002-1499-4

Petri Nets in Science and Engineering54

[21] Ahson SI. Petri net models of fuzzy neural networks. IEEE Transaction Systems
Manufacturing and Cybernetic. 1995;25(6):926-932. DOI: 10.1109/21.384255

[22] Stryczek RA. Hybrid approach for manufacturability analysis. Advances in Manu-
facturing Science and Technology. 2011;35(3):55-70. Available from: http://advancesmst.
prz.edu.pl/

[23] Kusiak A. Group Technology. Intelligent Design and Manufacturing. New York: Wiley;
1992

[24] Suresh NC, Kay JM, editors. Group Technology and Cellular Manufacturing: A State-Of
the-Art Synthesis of Research and Practice. USA: Springer; 1998. DOI: 10./1007/978-
1-4615-5467-7

[25] Kou Y, Yang J. Two-stage optimization of manufacturing cell. In: Proceedings of the First
International Conference on Advances in Swarm Intelligence; 12-15 June 2010; Beijing:
ICCPR; 2010. pp. 281-289. DOI: 10.1007/978-3-642-13495-1_35

[26] Sormaz DN, Khoshnevis B. Modeling of manufacturing feature interaction for automated
process planning. Journal of Manufacturing Systems. 2000;19(1):28-45. DOI: 10.1016/
S0278-6125(00)88888-3

[27] Sormaz DN, Thiruppalli S, Arumugam J. Evaluation of manufacturing feature prece-
dence constraints using Petri nets. In: Proceedings of the 11th Industrial Engineering
Research Conference; Orlando. 2002. Available from: www.researchgate.net/publication/
2534056

[28] Stryczek R. Petri nets in computer aided group technology. In: Zawiślak S, Rysiński J,
editors. Graph-Based Modelling in Engineering. Mechanisms and Machine Science 42.
Springer; 2017. pp. 143-164. DOI: 10.1007/978-3-319-39020-8_11

[29] Stryczek R. A meta-heuristics for manufacturing systems optimization. Advances in
Manufacturing Science and Technology. 2009;33(2):23-32. Available from: http://advanc-
esmst.prz.edu.pl/

[30] Li X, Yu W, Lara-Rosano F. Dynamic knowledge interface and learning under adap-
tive fuzzy petri net framework. IEEE Transactions on Systems Man and Cybernetics.
2000;30(4):442-450. DOI: 10.1109/5326.897071

[31] Garg ML, Ashon SI, Gupta PV. A fuzzy petri net for knowledge representation and reason-
ing. Information Processing Letters. 1991;39:165-171. DOI: 10.1016/0020-0190(91)90114-W

[32] Liu HC, You JX, Li ZW, Tian G. Fuzzy petri nets for knowledge representation and
reasoning: A literature review. Engineering Applications of Artificial Intelligence.
2017;60:45-56. DOI: 10.1016/j.engappai.2017.01.012

[33] Stryczek R. Petri net-based knowledge acquisition framework for CAPP. Advances in
Manufacturing Science and Technology. 2008;32(2):21-38. Available from: http://advanc-
esmst.prz.edu.pl/

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

55

[8] Lee DH, Kiritsis D, Xirouchakis P. Iterative approach to operation selection and sequenc-
ing in process planning. International Journal of Production Research. 2004;42:4745-4766.
DOI: 10.10180/00207540410001720412

[9] Xirouchakis P, Kiritsis D, Persson JG. A Petri net technique for process planning cost
estimation. Annals of the CIRP. 1998;47:427-430. DOI: 10.1016/S0007-8506(07)62867-4

[10] Xirouchakis P, Kiritsis D, Gunther C, Persson JG. A petri net technique for batch deliv-
ery time estimation. CIRP Annals—Manufacturing Technology. 1999;48:361-364. DOI:
10.1016/S0007-8506(07)63202-8

[11] Horvát L, Rudas IJ. Manufacturing process planning using Object Oriented Petri nets
supported by entropy based fuzzy reasoning. In: Proceedings of IFAC Conference; 27-29
September 1994; Baden-Baden: Integrated Systems Engineering; 1995. pp. 311-316. DOI:
10.1016/B978-0-08-042361-6.50054-4

[12] Horvát L, Rudas IJ, Camarinha-Matos LM. Structured model representation of manu-
facturing process using petri nets and knowledge based tools. In: Balance Automation
Systems II. Boston: Springer; 1996. pp. 472-480. DOI: 10.1007/978-0-387-35065-3_47

[13] Rudas IJ, Horvát L. Modelling of manufacturing processes using a petri-net repre-
sentation. Engineering Applications of Artificial Intelligence. 1997;10(3):243-255. DOI:
10.1016/S0952-1976(97)00006-7

[14] Horvát L, Rudas IJ. Evaluation of Petri net process model representation as a tool of vir-
tual manufacturing. In: Proceedings of the Conference: Systems, Man, and Cybernetics;
November 1998; IEEE; 1998. DOI: 10.1109/ICSMC.1998.725405

[15] Lee KH, Jung MY. Flexible process sequencing using petri net theory. Computers &
Industrial Engineering. 1995;28(2):279-290. DOI: 10.1016/0360-8352(94)00191-O

[16] Lee DH, Kiritsis D, Xirouchakis P. Search heuristics for operation sequencing in pro-
cess planning. International Journal of Production Research. 2001;39:3771-3788. DOI:
10.1080/00207540110061922

[17] Tuncel G, Bayhan GM. Applications of petri nets in production scheduling: A review.
International Journal of Advanced Manufacturing Technology. 2007;34:762-773. DOI:
10.1007/s00170-006-0640-1

[18] Al-Ahmari A, Li Z. Analysis of multimachine flexible manufacturing cell using sto-
chastic petri nets. Advances in Mechanical Engineering. 2016;8(11):1-9. DOI: 10.1177/
1687814016680168

[19] Uzam M. The use of the petri net reduction approach for an optimal deadlock pre-
vention policy for flexible manufacturing systems. International Journal of Advanced
Manufacturing Technology. 2004;23:204-219. DOI: 10.1007/s00170-002-1526-5

[20] Kumar RR, Singh A, Tiwari MK. A fuzzy based algorithm to solve the machine-load-
ing problems of a FMS and its neuro fuzzy petri net model. International Journal of
Advanced Manufacturing Technology. 2004;23:318-341. DOI: 10.1007/s00170-002-1499-4

Petri Nets in Science and Engineering54

[21] Ahson SI. Petri net models of fuzzy neural networks. IEEE Transaction Systems
Manufacturing and Cybernetic. 1995;25(6):926-932. DOI: 10.1109/21.384255

[22] Stryczek RA. Hybrid approach for manufacturability analysis. Advances in Manu-
facturing Science and Technology. 2011;35(3):55-70. Available from: http://advancesmst.
prz.edu.pl/

[23] Kusiak A. Group Technology. Intelligent Design and Manufacturing. New York: Wiley;
1992

[24] Suresh NC, Kay JM, editors. Group Technology and Cellular Manufacturing: A State-Of
the-Art Synthesis of Research and Practice. USA: Springer; 1998. DOI: 10./1007/978-
1-4615-5467-7

[25] Kou Y, Yang J. Two-stage optimization of manufacturing cell. In: Proceedings of the First
International Conference on Advances in Swarm Intelligence; 12-15 June 2010; Beijing:
ICCPR; 2010. pp. 281-289. DOI: 10.1007/978-3-642-13495-1_35

[26] Sormaz DN, Khoshnevis B. Modeling of manufacturing feature interaction for automated
process planning. Journal of Manufacturing Systems. 2000;19(1):28-45. DOI: 10.1016/
S0278-6125(00)88888-3

[27] Sormaz DN, Thiruppalli S, Arumugam J. Evaluation of manufacturing feature prece-
dence constraints using Petri nets. In: Proceedings of the 11th Industrial Engineering
Research Conference; Orlando. 2002. Available from: www.researchgate.net/publication/
2534056

[28] Stryczek R. Petri nets in computer aided group technology. In: Zawiślak S, Rysiński J,
editors. Graph-Based Modelling in Engineering. Mechanisms and Machine Science 42.
Springer; 2017. pp. 143-164. DOI: 10.1007/978-3-319-39020-8_11

[29] Stryczek R. A meta-heuristics for manufacturing systems optimization. Advances in
Manufacturing Science and Technology. 2009;33(2):23-32. Available from: http://advanc-
esmst.prz.edu.pl/

[30] Li X, Yu W, Lara-Rosano F. Dynamic knowledge interface and learning under adap-
tive fuzzy petri net framework. IEEE Transactions on Systems Man and Cybernetics.
2000;30(4):442-450. DOI: 10.1109/5326.897071

[31] Garg ML, Ashon SI, Gupta PV. A fuzzy petri net for knowledge representation and reason-
ing. Information Processing Letters. 1991;39:165-171. DOI: 10.1016/0020-0190(91)90114-W

[32] Liu HC, You JX, Li ZW, Tian G. Fuzzy petri nets for knowledge representation and
reasoning: A literature review. Engineering Applications of Artificial Intelligence.
2017;60:45-56. DOI: 10.1016/j.engappai.2017.01.012

[33] Stryczek R. Petri net-based knowledge acquisition framework for CAPP. Advances in
Manufacturing Science and Technology. 2008;32(2):21-38. Available from: http://advanc-
esmst.prz.edu.pl/

Petri Networks in the Planning of Discrete Manufacturing Processes
http://dx.doi.org/10.5772/intechopen.75135

55

[34] Yang SJH, Chu WC, Lee J, Huang WT. A fuzzy Petri net mechanism for fuzzy rules
reasoning. In: Proceedings of the 21st International Computer Software and Application
Conference (COMPSAC’97); 11-15 August 1997; Washington: IEEE; 1997. pp. 438-443.
DOI: 10.1109/CMPSAC.1997.625031

[35] Miyagi PE, Riascos LAM. Modeling and analysis of fault-tolerant systems for machin-
ing operations based on petri nets. Control Engineering Practice. 2006;14:397-408. DOI:
10.1016/S1474-6670(17)32785-4

[36] Harhalakis G, Lin CP, Mark L, Muro-Medrano PR. Structured representation of rule-
based specifications in CIM using updated petri nets. IEEE Transactions on System
Manufacturing and Cybernetics. 1995;25(1):130-144. DOI: 10.1109/21.362959

[37] IEC 62714-1:2014. Engineering data exchange format for use in industrial automation sys-
tems engineering—Automation Markup Language. International Electronical Commission.
Available from: http://reference.globalspec.com/standard/3889214/iec-62714-1-2014

[38] Hillah LM, Kindler E, Kordon F, Petrucci L, Trèves N. A primer on the Petri net markup
language and ISO/IEC 15909-2. In: Proceedings of the CPN Workshop; October 2009;
Aarhus. Available from: http://www.pnml.org/papers/pnnl76.pdf

Petri Nets in Science and Engineering56

Chapter 4

Reliability Evaluation for Mechanical Systems by Petri
Nets

Jianing Wu and Shaoze Yan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79624

Provisional chapter

Reliability Evaluation for Mechanical Systems by Petri
Nets

Jianing Wu and Shaoze Yan

Additional information is available at the end of the chapter

Abstract

The current trend in mechanical engineering is to design mechanical systems with
higher stability, reliability, availability and operability. In order to meet the requirement
of high reliability for a machine, it is of great importance for designers to seek the weak
links in the system and learn the state of the key subsystems, carrying out the remedial
measures when necessary. Hence, behavior modeling and failure analysis are the two
aspects seriously concerned in the reliability evaluation in mechanical systems. This
chapter will introduce new methodologies that use the fuzzy reasoning Petri net (FRPN)
models to evaluate the reliability of mechanical systems in reliability prediction, reli-
ability apportionment and reliability analysis. Cases are proposed by analyzing a space-
craft solar array system using the proposed method. Results indicate that the Petri nets
models can contribute to a higher accuracy in reliability evaluation for mechanical
systems.

Keywords: reliability evaluation, mechanical system, Petri nets

1. Introduction

Some mechanical systems experience complicated environment which may continuously
influence the reliability and availability. For instance, the spacecraft solar arrays are one of the
most vital links to satellite mission success because providing reliable power over the antici-
pated mission life is critical to all satellites [1–3]. Although the faults have been reduced in the
last few years by some measures, it still affects the longevity of the satellite severely, and faults
of mechanical system occupy a large proportion of all the anomalies [3]. As a result, it is
necessary for mechanical systems to evaluate reliability in different stages, including conceptual
design of mechanical system, initial design and system improvement. The tasks of reliability

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.79624

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[34] Yang SJH, Chu WC, Lee J, Huang WT. A fuzzy Petri net mechanism for fuzzy rules
reasoning. In: Proceedings of the 21st International Computer Software and Application
Conference (COMPSAC’97); 11-15 August 1997; Washington: IEEE; 1997. pp. 438-443.
DOI: 10.1109/CMPSAC.1997.625031

[35] Miyagi PE, Riascos LAM. Modeling and analysis of fault-tolerant systems for machin-
ing operations based on petri nets. Control Engineering Practice. 2006;14:397-408. DOI:
10.1016/S1474-6670(17)32785-4

[36] Harhalakis G, Lin CP, Mark L, Muro-Medrano PR. Structured representation of rule-
based specifications in CIM using updated petri nets. IEEE Transactions on System
Manufacturing and Cybernetics. 1995;25(1):130-144. DOI: 10.1109/21.362959

[37] IEC 62714-1:2014. Engineering data exchange format for use in industrial automation sys-
tems engineering—Automation Markup Language. International Electronical Commission.
Available from: http://reference.globalspec.com/standard/3889214/iec-62714-1-2014

[38] Hillah LM, Kindler E, Kordon F, Petrucci L, Trèves N. A primer on the Petri net markup
language and ISO/IEC 15909-2. In: Proceedings of the CPN Workshop; October 2009;
Aarhus. Available from: http://www.pnml.org/papers/pnnl76.pdf

Petri Nets in Science and Engineering56

Chapter 4

Reliability Evaluation for Mechanical Systems by Petri
Nets

Jianing Wu and Shaoze Yan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79624

Provisional chapter

Reliability Evaluation for Mechanical Systems by Petri
Nets

Jianing Wu and Shaoze Yan

Additional information is available at the end of the chapter

Abstract

The current trend in mechanical engineering is to design mechanical systems with
higher stability, reliability, availability and operability. In order to meet the requirement
of high reliability for a machine, it is of great importance for designers to seek the weak
links in the system and learn the state of the key subsystems, carrying out the remedial
measures when necessary. Hence, behavior modeling and failure analysis are the two
aspects seriously concerned in the reliability evaluation in mechanical systems. This
chapter will introduce new methodologies that use the fuzzy reasoning Petri net (FRPN)
models to evaluate the reliability of mechanical systems in reliability prediction, reli-
ability apportionment and reliability analysis. Cases are proposed by analyzing a space-
craft solar array system using the proposed method. Results indicate that the Petri nets
models can contribute to a higher accuracy in reliability evaluation for mechanical
systems.

Keywords: reliability evaluation, mechanical system, Petri nets

1. Introduction

Some mechanical systems experience complicated environment which may continuously
influence the reliability and availability. For instance, the spacecraft solar arrays are one of the
most vital links to satellite mission success because providing reliable power over the antici-
pated mission life is critical to all satellites [1–3]. Although the faults have been reduced in the
last few years by some measures, it still affects the longevity of the satellite severely, and faults
of mechanical system occupy a large proportion of all the anomalies [3]. As a result, it is
necessary for mechanical systems to evaluate reliability in different stages, including conceptual
design of mechanical system, initial design and system improvement. The tasks of reliability

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.79624

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

evaluation in these stages are defined as reliability prediction, reliability apportionment and
reliability analysis, respectively. Many methodologies such as reliability block diagram (RBD),
failure mode effect analysis (FMEA) and fault tree analysis (FTA) are widely used in reliability
evaluation for electronic systems [4–6]. Recently, a number of papers reported the methodolo-
gies that use these models to evaluate reliability of the mechanical systems [7–9]. However,
there still has some obstacles needed to be overcome for reliability evaluation of mechanical
systems. Generally, three tasks should be accomplished, including reliability prediction, reli-
ability apportionment and reliability analysis. We summarize the defects of previous research
from the three aspects mentioned above.

For reliability prediction, there are currently four main ways of reliability prediction for
mechanical systems [10–12], including the similar product method (SPM), correction coeffi-
cient method (CCM), analysis of physics reliability method (APR) and parts count reliability
prediction (PCRP). However, in the phase of conceptual design stage for one complex mechan-
ical system, there has no enough experimental data or field record because the machine is not
physically built. Moreover, APR is based on the physical failure mechanism which cannot be
clearly identified in the conceptual design stage.

For reliability apportionment, there are two important issues needed to be addressed, i.e. how
to describe the relationship among the different components and how to overcome data
deficiency problem in the early stage of design [13–16]. It is usually hard to describe the factors
of one mechanical system by the binary logic because the state cannot be simply classified into
function or failure. Further, since the lack of system reliability data is a commonly encountered
case in the initial stage of design, the reliability apportionment merely based on mathematics
may not be feasible.

For reliability analysis, the FTA model has been widely employed as a powerful technique to
evaluate the safety and reliability of complex systems by many scholars [17–19]. However, FTA
has some limitations in reliability analysis. Firstly, in FTA, the probabilities of basic events
must be known before analysis, but the designers can hardly obtain the probability of each
fault because the conventional reliability test of the solar array mechanical system is difficult to
carry out [19]. Secondly, it is not easy for FTA to conduct further quantitative analysis auto-
matically due to the lack of effective means of mathematical expression. Thirdly, FTA cannot
find the weak links of the system precisely, describe the propagation of fault and represent the
characteristics of the system before and after improvement. In the literature, fuzzy reasoning is
an effective method to solve the above problems [20].

The Petri net is one of the mathematical modeling approaches for the description of distributed
systems, which consists of places, transitions, and directed arcs [21–23]. Many extensions to
the Petri nets have been successfully applied in analyzing reliability of mechanical systems
[24]. The fuzzy reasoning Petri net is a mathematical and graphical combined tool that can
build a complex system with a variety of logical connections by using fuzzy reasoning, which
may fit for building the reliability model for mechanical systems and evaluating reliability of
them [20]. As a result, the primary objective of this chapter is to introduce the FRPN based
models to evaluate the reliability of mechanical systems, including reliability prediction,

Petri Nets in Science and Engineering58

reliability apportionment and reliability analysis. Some cases are included to illustrate the
effectiveness of the methods.

2. Fuzzy reasoning Petri net

A great volume of literature combines fuzzy reasoning and Petri net to accomplish the fault
diagnosis and reliability analysis [25–27]. Gao presented an FRPN model and proposed a
fuzzy reasoning algorithm based on matrix equation expression [19]. An FRPN model can be
defined as an 8-tuple model instead of the basic 5-tuple Petri net model [19].

1. Places, namely, a set of propositions,

P ¼ p1; p2…pn
� �

, 1� n; (1)

2. Transitions,

R ¼ r1; r2…rmf g, 1�m; (2)

3. Directed arcs propositions to rules,

I : P� R ! 0; 1f g, n�m (3)

4. Directed arcs from rules to propositions,

O : P� R ! 0; 1f g, n�m (4)

5. Complementary arcs from positions to rules,

H : P� R ! 0; 1f g, n�m (5)

6. Truth degree vector:

θ ¼ θ1;θ2;⋯θnð ÞT,θi ∈ 0; 1½ �, n� 1 (6)

7. Marking vector:

γ : P ! 0; 1f g,γ ¼ γ1; γ2…γn

� �T, n� 1 (7)

8. Confidence of

rj : C ¼ diag c1; c2…c25f g, 1�m: (8)

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

59

evaluation in these stages are defined as reliability prediction, reliability apportionment and
reliability analysis, respectively. Many methodologies such as reliability block diagram (RBD),
failure mode effect analysis (FMEA) and fault tree analysis (FTA) are widely used in reliability
evaluation for electronic systems [4–6]. Recently, a number of papers reported the methodolo-
gies that use these models to evaluate reliability of the mechanical systems [7–9]. However,
there still has some obstacles needed to be overcome for reliability evaluation of mechanical
systems. Generally, three tasks should be accomplished, including reliability prediction, reli-
ability apportionment and reliability analysis. We summarize the defects of previous research
from the three aspects mentioned above.

For reliability prediction, there are currently four main ways of reliability prediction for
mechanical systems [10–12], including the similar product method (SPM), correction coeffi-
cient method (CCM), analysis of physics reliability method (APR) and parts count reliability
prediction (PCRP). However, in the phase of conceptual design stage for one complex mechan-
ical system, there has no enough experimental data or field record because the machine is not
physically built. Moreover, APR is based on the physical failure mechanism which cannot be
clearly identified in the conceptual design stage.

For reliability apportionment, there are two important issues needed to be addressed, i.e. how
to describe the relationship among the different components and how to overcome data
deficiency problem in the early stage of design [13–16]. It is usually hard to describe the factors
of one mechanical system by the binary logic because the state cannot be simply classified into
function or failure. Further, since the lack of system reliability data is a commonly encountered
case in the initial stage of design, the reliability apportionment merely based on mathematics
may not be feasible.

For reliability analysis, the FTA model has been widely employed as a powerful technique to
evaluate the safety and reliability of complex systems by many scholars [17–19]. However, FTA
has some limitations in reliability analysis. Firstly, in FTA, the probabilities of basic events
must be known before analysis, but the designers can hardly obtain the probability of each
fault because the conventional reliability test of the solar array mechanical system is difficult to
carry out [19]. Secondly, it is not easy for FTA to conduct further quantitative analysis auto-
matically due to the lack of effective means of mathematical expression. Thirdly, FTA cannot
find the weak links of the system precisely, describe the propagation of fault and represent the
characteristics of the system before and after improvement. In the literature, fuzzy reasoning is
an effective method to solve the above problems [20].

The Petri net is one of the mathematical modeling approaches for the description of distributed
systems, which consists of places, transitions, and directed arcs [21–23]. Many extensions to
the Petri nets have been successfully applied in analyzing reliability of mechanical systems
[24]. The fuzzy reasoning Petri net is a mathematical and graphical combined tool that can
build a complex system with a variety of logical connections by using fuzzy reasoning, which
may fit for building the reliability model for mechanical systems and evaluating reliability of
them [20]. As a result, the primary objective of this chapter is to introduce the FRPN based
models to evaluate the reliability of mechanical systems, including reliability prediction,

Petri Nets in Science and Engineering58

reliability apportionment and reliability analysis. Some cases are included to illustrate the
effectiveness of the methods.

2. Fuzzy reasoning Petri net

A great volume of literature combines fuzzy reasoning and Petri net to accomplish the fault
diagnosis and reliability analysis [25–27]. Gao presented an FRPN model and proposed a
fuzzy reasoning algorithm based on matrix equation expression [19]. An FRPN model can be
defined as an 8-tuple model instead of the basic 5-tuple Petri net model [19].

1. Places, namely, a set of propositions,

P ¼ p1; p2…pn
� �

, 1� n; (1)

2. Transitions,

R ¼ r1; r2…rmf g, 1�m; (2)

3. Directed arcs propositions to rules,

I : P� R ! 0; 1f g, n�m (3)

4. Directed arcs from rules to propositions,

O : P� R ! 0; 1f g, n�m (4)

5. Complementary arcs from positions to rules,

H : P� R ! 0; 1f g, n�m (5)

6. Truth degree vector:

θ ¼ θ1;θ2;⋯θnð ÞT,θi ∈ 0; 1½ �, n� 1 (6)

7. Marking vector:

γ : P ! 0; 1f g,γ ¼ γ1; γ2…γn

� �T, n� 1 (7)

8. Confidence of

rj : C ¼ diag c1; c2…c25f g, 1�m: (8)

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

59

On the basis of algorithm provided by Gao [19], the simulation can be operated automatically.
The following are the main rules:

1. If one transition is fired, the token will be sent to the upper place.

2. If there are many places to one transition like AND gate in FTA model, the upper truth
value will be the minimum; if there are many places to many transitions like OR gate in
FTA model, the upper truth value will be the maximum.

3. The vector γ ¼ γ1; γ2…γi⋯γn

� �T, n� 1 shows the propagation of the faults in model. If the
element γi ¼ 1, the place pi will get the token.

4. The truth degree vector θ ¼ θ1;θ2;⋯θnð ÞT shows the fuzzy possibility of the faults.

The PRPN model takes advantage of the following maximum algebra

1. ⊕ : A⊕B ¼ D, where A, B and D are all m� n dimensional matrices, such that

dij ¼ max aij; bij
� �

(9)

2. ⊗ : A⊗B ¼ D, where A, B and D are m� p, p� n and m� n-dimensional matrices
respectively, such that

dij ¼ max
1 ≤ k ≤ p

aik � bkj
� �

(10)

The firing and control vectors are stated as follows [19]:

μk
m�1 ¼ 1m�1 � I þHð ÞT ⊗γk

rkm�1 ¼ 1m�1 � IT ⊗ γk ⊕θ
k

� �� �
⊕ HT ⊗ γk ⊕θk� �� �

8<
: (11)

in which

θ
k ¼ 1m�1 � θk

γk ¼ 1m�1 � γk

(
(12)

The marking and truth degree vectors can be obtained by

γkþ1 ¼ γk ⊕ O⊗μ
� �

θkþ1 ¼ θk ⊕ O � Cð Þ⊗ r½ �

(
(13)

which reflects the status of the components in the mechanical system. The FRPN model is
suitable to describe the status transition in a mechanical system because

1. The FRPN model is constructed by the places and logical connections which match the
properties of mechanical systems with multiple components.

Petri Nets in Science and Engineering60

2. The FRPN model can describe the fault propagation in mechanical system by fuzzy
reasoning, which can describe the properties of mechanical systems accurately.

3. The FRPN model is based on an iteration algorithm, so the status transition can be easily
tracked, which may be useful for examining the fault propagation and fault severity in the
system.

3. Reliability evaluation by FRPN

For evaluating the reliability of a mechanical system, one should complete a series of work
including reliability prediction in the stage of conceptual design, reliability apportionment in
the stage of initial design, and reliability analysis in the stage of system improvement. The
following subsections will illustrate the method of how to evaluate reliability by FRPNmodels.

3.1. Reliability prediction by FRPN

3.1.1. Method

Reliability prediction acts when a product is in the stage of conceptual design. Here we
introduce a method of reliability prediction of mechanical systems. This method includes the
following steps (Figure 1). First, we will build an FRPN model of the mechanical system by its
working principle and the logical connections among the components. Second, we get three
key values which characterize quantity, importance and quality of the components in the
mechanical system. Third, we will arrive at the reliability prediction result by parts count
reliability prediction (PCRP). Finally, the reliability prediction formula of mechanical system
denotes to

Figure 1. Main process of reliability prediction.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

61

On the basis of algorithm provided by Gao [19], the simulation can be operated automatically.
The following are the main rules:

1. If one transition is fired, the token will be sent to the upper place.

2. If there are many places to one transition like AND gate in FTA model, the upper truth
value will be the minimum; if there are many places to many transitions like OR gate in
FTA model, the upper truth value will be the maximum.

3. The vector γ ¼ γ1; γ2…γi⋯γn

� �T, n� 1 shows the propagation of the faults in model. If the
element γi ¼ 1, the place pi will get the token.

4. The truth degree vector θ ¼ θ1;θ2;⋯θnð ÞT shows the fuzzy possibility of the faults.

The PRPN model takes advantage of the following maximum algebra

1. ⊕ : A⊕B ¼ D, where A, B and D are all m� n dimensional matrices, such that

dij ¼ max aij; bij
� �

(9)

2. ⊗ : A⊗B ¼ D, where A, B and D are m� p, p� n and m� n-dimensional matrices
respectively, such that

dij ¼ max
1 ≤ k ≤ p

aik � bkj
� �

(10)

The firing and control vectors are stated as follows [19]:

μk
m�1 ¼ 1m�1 � I þHð ÞT ⊗γk

rkm�1 ¼ 1m�1 � IT ⊗ γk ⊕θ
k

� �� �
⊕ HT ⊗ γk ⊕θk� �� �

8<
: (11)

in which

θ
k ¼ 1m�1 � θk

γk ¼ 1m�1 � γk

(
(12)

The marking and truth degree vectors can be obtained by

γkþ1 ¼ γk ⊕ O⊗μ
� �

θkþ1 ¼ θk ⊕ O � Cð Þ⊗ r½ �

(
(13)

which reflects the status of the components in the mechanical system. The FRPN model is
suitable to describe the status transition in a mechanical system because

1. The FRPN model is constructed by the places and logical connections which match the
properties of mechanical systems with multiple components.

Petri Nets in Science and Engineering60

2. The FRPN model can describe the fault propagation in mechanical system by fuzzy
reasoning, which can describe the properties of mechanical systems accurately.

3. The FRPN model is based on an iteration algorithm, so the status transition can be easily
tracked, which may be useful for examining the fault propagation and fault severity in the
system.

3. Reliability evaluation by FRPN

For evaluating the reliability of a mechanical system, one should complete a series of work
including reliability prediction in the stage of conceptual design, reliability apportionment in
the stage of initial design, and reliability analysis in the stage of system improvement. The
following subsections will illustrate the method of how to evaluate reliability by FRPNmodels.

3.1. Reliability prediction by FRPN

3.1.1. Method

Reliability prediction acts when a product is in the stage of conceptual design. Here we
introduce a method of reliability prediction of mechanical systems. This method includes the
following steps (Figure 1). First, we will build an FRPN model of the mechanical system by its
working principle and the logical connections among the components. Second, we get three
key values which characterize quantity, importance and quality of the components in the
mechanical system. Third, we will arrive at the reliability prediction result by parts count
reliability prediction (PCRP). Finally, the reliability prediction formula of mechanical system
denotes to

Figure 1. Main process of reliability prediction.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

61

λp ¼
XT

i¼1

Ni � λGiπQi (14)

where λp is the final predicted failure rate, λGi and πQi are the indexes which indicate impor-
tance and quality of the components [28].

3.1.2. Case study

We take the deployable solar array used in spacecraft as an example. The running process of a
typical deployable solar array is shown in Figure 2, which is widely used for power supply in
the spacecraft nowadays. In general, the entire running process includes three stages, i.e. the
deployable solar array is first folded, then deployed in the orbit and finally oriented to the sun
to generate power for satellite.

In general, the mechanical system of the solar array consists of seven kinds of mechanisms
[29–31], i.e. the hold-down and release mechanism, the solar panel, the driving mechanism, the
deployable mechanism, the locking mechanism, the synchronization mechanism, and the
orientation mechanism, as shown in Figure 3. Torsion spring is often chosen to drive the solar
array, the closed cable loop (CCL) is used as the synchronization mechanism, and the stepping
motor or servo motor is carried to orient to the sun. The driving mechanism, the deployable
mechanism and the locking mechanism are always integrated into the hinge. Therefore the five
main mechanisms of the solar array include hold-down and release mechanism, the solar
panel, the hinge, the synchronization mechanism and the orientation mechanism.

We use R1 to R5 to represent the reliability of the five mechanisms, respectively. Then the
reliability of the mechanical system can be calculated as follows:

R ¼ R1R2R3R4R5 (15)

Figure 2. Operating principle of a deployable solar array.

Petri Nets in Science and Engineering62

In the phase of conceptual design, designers should divide the reliability of the system into the
five main parts. The following section introduces a new method of reliability apportionment
which focuses on how to get the predicted values of Ri i ¼ 1; 2; 3; 4; 5ð Þ to meet the requirement
of the design standard. We build an FRPN model for the mechanical system of the solar array
(Figure 4). Table 1 shows the markers and events of FRPN model [32, 33].

By the method shown in Figure 1, we can measure the complexity of the ith place (CP) as a
number of Ni, the final truth degree of the ith place (FTD) as λGi, and the environmental factor

Figure 4. The FRPN model of the solar array for reliability prediction.

Figure 3. Mechanisms in a spacecraft solar array.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

63

λp ¼
XT

i¼1

Ni � λGiπQi (14)

where λp is the final predicted failure rate, λGi and πQi are the indexes which indicate impor-
tance and quality of the components [28].

3.1.2. Case study

We take the deployable solar array used in spacecraft as an example. The running process of a
typical deployable solar array is shown in Figure 2, which is widely used for power supply in
the spacecraft nowadays. In general, the entire running process includes three stages, i.e. the
deployable solar array is first folded, then deployed in the orbit and finally oriented to the sun
to generate power for satellite.

In general, the mechanical system of the solar array consists of seven kinds of mechanisms
[29–31], i.e. the hold-down and release mechanism, the solar panel, the driving mechanism, the
deployable mechanism, the locking mechanism, the synchronization mechanism, and the
orientation mechanism, as shown in Figure 3. Torsion spring is often chosen to drive the solar
array, the closed cable loop (CCL) is used as the synchronization mechanism, and the stepping
motor or servo motor is carried to orient to the sun. The driving mechanism, the deployable
mechanism and the locking mechanism are always integrated into the hinge. Therefore the five
main mechanisms of the solar array include hold-down and release mechanism, the solar
panel, the hinge, the synchronization mechanism and the orientation mechanism.

We use R1 to R5 to represent the reliability of the five mechanisms, respectively. Then the
reliability of the mechanical system can be calculated as follows:

R ¼ R1R2R3R4R5 (15)

Figure 2. Operating principle of a deployable solar array.

Petri Nets in Science and Engineering62

In the phase of conceptual design, designers should divide the reliability of the system into the
five main parts. The following section introduces a new method of reliability apportionment
which focuses on how to get the predicted values of Ri i ¼ 1; 2; 3; 4; 5ð Þ to meet the requirement
of the design standard. We build an FRPN model for the mechanical system of the solar array
(Figure 4). Table 1 shows the markers and events of FRPN model [32, 33].

By the method shown in Figure 1, we can measure the complexity of the ith place (CP) as a
number of Ni, the final truth degree of the ith place (FTD) as λGi, and the environmental factor

Figure 4. The FRPN model of the solar array for reliability prediction.

Figure 3. Mechanisms in a spacecraft solar array.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

63

(EF) of the ith place as πQi. Some details can be checked in [32]. We collected the actual reliability
data (lifetime of mechanical systems) of the solar arrays in a group of satellites from 1950s to 2000s
provided by [34]. The results show that all of the predicted reliability lies in the interval of the
operation data, which demonstrates the correctness of FRPN-based model for reliability predic-
tion. Figure 5 validates the predicted reliability by using the four selected time: 0.025 � 106 h,
0.05 � 106 h, 0.075 � 106 h and 0.1 � 106 h. Some more details can be checked in [34].

3.2. Reliability apportionment by FRPN

3.2.1. Method

After reliability prediction in the conceptual design phase, the engineer should start reliability
apportionment that acts when a product is in the stage of initial design. The conventional

Marker Event Truth
degree

Marker Event Truth
degree

P1 Harsh thermal environment in
space

0.9 P16 Fault of the bearing in the reducer 0.4

P2 Vacuum and micro-gravity
environment in space

0.6 P17 Fault of the electronic arcing of the hold-
down and release mechanism

0.7

P3 Fault of the grease used in
hinges between panels

0.4 P18 Fault of the cutter of the hold-down and
release mechanism

0.7

P4 Impact caused by particles in
space

0.7 P19 Fault of the driving mechanism _

P5 Fault of the brass gasket 0.5 P20 Fault of the deployable mechanism _

P6 Fault of the main driving torsion
spring

0.6 P21 Fault of the locking mechanism _

P7 Fault of the reserved driving
torsion spring

0.6 P22 Fault of the steel wire 0.7

P8 Fault of the driving pin in the
hinge

_ P23 Fault of the stepping motor _

P9 Fault of the side wall of the
hinge

_ P24 Fault of the transmission system _

P10 Fault of the main locking spring 0.8 P25 Fault of the hold-down and release
mechanism

_

P11 Fault of the reserved locking
spring

0.5 P26 Fault of the solar panels _

P12 Fault of the locking pin of the
hinge

0.5 P27 Fault of the hinges _

P13 Fault in the mechanical part of
the stepping motor

0.3 P28 Fault of the synchronization mechanism _

P14 Fault in the electronic part of the
stepping motor

0.2 P29 Fault of the orientation mechanism _

P15 Fault of the gear in the reducer _ P30 Fault of the mechanical system of the solar
array

_

Table 1. Markers and events of FRPN model for reliability prediction.

Petri Nets in Science and Engineering64

reliability apportionment approaches including equal distribution method, Alins distribution
method and algebra distribution method are widely used in the early stage of the reliability
design [35, 36]. However, these methods have some limitations. It is obvious that dividing the
system reliability into those of the subsystems equally may ignore the diversity of the compo-
nents. Although the Alins distribution method and the algebra distribution method involve
the importance or complexity of the different units, they are heavily dependent on the existing
data and engineering experience which are scare in the early stage of the reliability design.
Here we propose an FRPN-based method for reliability apportionment to solve the problems
discussed above. This method includes the following steps (Figure 6):

Figure 6. Procedures for reliability apportionment by FRPN. The FRPN model is used in the first and second steps and
the following two steps use the fuzzy comprehensive evaluation.

Figure 5. Comparison between the predicted reliability and real reliability at selected phases.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

65

(EF) of the ith place as πQi. Some details can be checked in [32]. We collected the actual reliability
data (lifetime of mechanical systems) of the solar arrays in a group of satellites from 1950s to 2000s
provided by [34]. The results show that all of the predicted reliability lies in the interval of the
operation data, which demonstrates the correctness of FRPN-based model for reliability predic-
tion. Figure 5 validates the predicted reliability by using the four selected time: 0.025 � 106 h,
0.05 � 106 h, 0.075 � 106 h and 0.1 � 106 h. Some more details can be checked in [34].

3.2. Reliability apportionment by FRPN

3.2.1. Method

After reliability prediction in the conceptual design phase, the engineer should start reliability
apportionment that acts when a product is in the stage of initial design. The conventional

Marker Event Truth
degree

Marker Event Truth
degree

P1 Harsh thermal environment in
space

0.9 P16 Fault of the bearing in the reducer 0.4

P2 Vacuum and micro-gravity
environment in space

0.6 P17 Fault of the electronic arcing of the hold-
down and release mechanism

0.7

P3 Fault of the grease used in
hinges between panels

0.4 P18 Fault of the cutter of the hold-down and
release mechanism

0.7

P4 Impact caused by particles in
space

0.7 P19 Fault of the driving mechanism _

P5 Fault of the brass gasket 0.5 P20 Fault of the deployable mechanism _

P6 Fault of the main driving torsion
spring

0.6 P21 Fault of the locking mechanism _

P7 Fault of the reserved driving
torsion spring

0.6 P22 Fault of the steel wire 0.7

P8 Fault of the driving pin in the
hinge

_ P23 Fault of the stepping motor _

P9 Fault of the side wall of the
hinge

_ P24 Fault of the transmission system _

P10 Fault of the main locking spring 0.8 P25 Fault of the hold-down and release
mechanism

_

P11 Fault of the reserved locking
spring

0.5 P26 Fault of the solar panels _

P12 Fault of the locking pin of the
hinge

0.5 P27 Fault of the hinges _

P13 Fault in the mechanical part of
the stepping motor

0.3 P28 Fault of the synchronization mechanism _

P14 Fault in the electronic part of the
stepping motor

0.2 P29 Fault of the orientation mechanism _

P15 Fault of the gear in the reducer _ P30 Fault of the mechanical system of the solar
array

_

Table 1. Markers and events of FRPN model for reliability prediction.

Petri Nets in Science and Engineering64

reliability apportionment approaches including equal distribution method, Alins distribution
method and algebra distribution method are widely used in the early stage of the reliability
design [35, 36]. However, these methods have some limitations. It is obvious that dividing the
system reliability into those of the subsystems equally may ignore the diversity of the compo-
nents. Although the Alins distribution method and the algebra distribution method involve
the importance or complexity of the different units, they are heavily dependent on the existing
data and engineering experience which are scare in the early stage of the reliability design.
Here we propose an FRPN-based method for reliability apportionment to solve the problems
discussed above. This method includes the following steps (Figure 6):

Figure 6. Procedures for reliability apportionment by FRPN. The FRPN model is used in the first and second steps and
the following two steps use the fuzzy comprehensive evaluation.

Figure 5. Comparison between the predicted reliability and real reliability at selected phases.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

65

1. Decompose the mechanical system;

2. Build the FRPN model of the mechanical system;

3. Analyze the three aspects including the complexity of one component during propagation
of the faults, the importance of one component and the working environment;

4. Fuzzy comprehensive evaluation;

5. Reliability apportionment.

Figure 7. The FRPN model of the solar array for reliability apportionment.

Figure 8. The reliability apportionment of the five key components of solar array. The reliability system is equal to 0.9,
0.99 and 0.999 respectively.

Petri Nets in Science and Engineering66

3.2.2. Case study

We take the spacecraft solar array as an example to conduct the reliability apportionment by
using the FRPN model (Figure 3). According to the operational principle of array mechanical
systems of a solar array, we build an FRPN model for reliability apportionment of spacecraft
solar array. The graphical representation of this model is shown in Figure 7. Table 2 shows the
markers and events of the FRPN model [32].

From Figure 7, the FRPN model of solar array includes 13 bottom places- P1, P2, P3, P4, P7, P8,
P9, P10, P11, P12, P18, P19 and P20. And P21, P22, P23, P24, and P25 represent the subsystems
(Table 2). The final reliability apportionment results are illustrated in Figure 8 under the
system reliability of 0.9, 0.99 and 0.999. In this figure, RS represents the reliability of the system
and Ri i ¼ 21; 22; 23; 24; 25ð Þ expresses the reliability of the five key subsystems. The reliability
apportionments are shown in Figure 8. By using the FRPN based model, the system reliability
can be allocated considering the environmental factors and the intrinsic connection in the
mechanical system itself [33].

3.3. Reliability analysis by FRPN

3.3.1. Method

Reliability analysis happens in the stage that the mechanical system has been built physically. By
using the FRPN model, we can analyze the reliability of the system with the following steps:

Marker Event Truth
degree

Marker Event Truth
degree

P1 Grease used in hinges between panels 0.4 P14 Particles in space —

P2 Brass gasket 0.5 P15 Driving mechanism —

P3 Main deriving torsion spring 0.6 P16 Deployable mechanism —

P4 Reserved driving torsion spring 0.6 P17 Locking mechanism —

P5 Driving pin in the hinge — P18 Steel wire 0.7

P6 Side wall of the hinge — P19 Stepping motor 0.2

P7 Main locking spring 0.8 P20 Transmission system 0.6

P8 Reserved locking spring 0.5 P21 Hold-down and release
mechanism

—

P9 Locking pin of the hinge 0.5 P22 Solar panels —

P10 Electronic arcing of the hold-down and
release mechanism

0.7 P23 Hinges —

P11 Cutter of the of the hold-down and release
mechanism

0.7 P24 Synchronization mechanism —

P12 Harsh thermal environment in space 0.9 P25 Orientation mechanism —

P13 Vacuum and micro-gravity environment in
space

— P26 Mechanical system of the
solar array

—

Table 2. Markers and events of FRPN model for reliability apportionment.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

67

1. Decompose the mechanical system;

2. Build the FRPN model of the mechanical system;

3. Analyze the three aspects including the complexity of one component during propagation
of the faults, the importance of one component and the working environment;

4. Fuzzy comprehensive evaluation;

5. Reliability apportionment.

Figure 7. The FRPN model of the solar array for reliability apportionment.

Figure 8. The reliability apportionment of the five key components of solar array. The reliability system is equal to 0.9,
0.99 and 0.999 respectively.

Petri Nets in Science and Engineering66

3.2.2. Case study

We take the spacecraft solar array as an example to conduct the reliability apportionment by
using the FRPN model (Figure 3). According to the operational principle of array mechanical
systems of a solar array, we build an FRPN model for reliability apportionment of spacecraft
solar array. The graphical representation of this model is shown in Figure 7. Table 2 shows the
markers and events of the FRPN model [32].

From Figure 7, the FRPN model of solar array includes 13 bottom places- P1, P2, P3, P4, P7, P8,
P9, P10, P11, P12, P18, P19 and P20. And P21, P22, P23, P24, and P25 represent the subsystems
(Table 2). The final reliability apportionment results are illustrated in Figure 8 under the
system reliability of 0.9, 0.99 and 0.999. In this figure, RS represents the reliability of the system
and Ri i ¼ 21; 22; 23; 24; 25ð Þ expresses the reliability of the five key subsystems. The reliability
apportionments are shown in Figure 8. By using the FRPN based model, the system reliability
can be allocated considering the environmental factors and the intrinsic connection in the
mechanical system itself [33].

3.3. Reliability analysis by FRPN

3.3.1. Method

Reliability analysis happens in the stage that the mechanical system has been built physically. By
using the FRPN model, we can analyze the reliability of the system with the following steps:

Marker Event Truth
degree

Marker Event Truth
degree

P1 Grease used in hinges between panels 0.4 P14 Particles in space —

P2 Brass gasket 0.5 P15 Driving mechanism —

P3 Main deriving torsion spring 0.6 P16 Deployable mechanism —

P4 Reserved driving torsion spring 0.6 P17 Locking mechanism —

P5 Driving pin in the hinge — P18 Steel wire 0.7

P6 Side wall of the hinge — P19 Stepping motor 0.2

P7 Main locking spring 0.8 P20 Transmission system 0.6

P8 Reserved locking spring 0.5 P21 Hold-down and release
mechanism

—

P9 Locking pin of the hinge 0.5 P22 Solar panels —

P10 Electronic arcing of the hold-down and
release mechanism

0.7 P23 Hinges —

P11 Cutter of the of the hold-down and release
mechanism

0.7 P24 Synchronization mechanism —

P12 Harsh thermal environment in space 0.9 P25 Orientation mechanism —

P13 Vacuum and micro-gravity environment in
space

— P26 Mechanical system of the
solar array

—

Table 2. Markers and events of FRPN model for reliability apportionment.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

67

1. Decompose the mechanical system.

2. Build the FRPN model of the mechanical system.

3. Get the truth degrees of the bottom places according to the characteristics of the faults in
the system, operation data and engineering experience

4. Calculate the truth degree of top place.

5. Use the cosine matching function (CMF) to analyze reliability of the system.

3.3.2. Case study

We also take the spacecraft solar array as a case for reliability analysis. Figure 9 shows the FRPN
model of the spacecraft solar array for reliability analysis and Table 3 represents markers and
events [37].

Figure 9. The FRPN model of solar array for reliability analysis.

Marker Event Marker Event

P24 Failure of the solar array system P1 Harsh thermal environment in space

P19 Fault of the unlock-mechanism P2 Fault of the grease used in hinges between panels

P20 Faults during deployment process P3 Insufficient torque of the main torsion spring

P21 Faults during locking process P4 Insufficient torque of the reserved torsion spring

P22 Fault of orientation to the sun P5 Insufficient preload of the cable

P23 Other faults of mechanical system P6 Poor thermal characteristic of the cable

P10 Deadlocking in hinges P13 Inappropriate driving torque of the locking torsion
spring

P11 Insufficient preload of the torsion spring P14 Fault of the motor

Petri Nets in Science and Engineering68

Define θi as the truth degree of the bottom place pi, θi ∈ 0; 1½ �. A higher value indicates that the
possibility of the event is higher, which means the fault occurs much easier. Table 4 demonstrates
the ranks, occurrence, and truth degrees of the bottom places. According to the characteristics of

Rank I II III IV V VI VII

Occurrence Very low Low Fairly low Moderate Fairly high High Very high

Truth degree 0.1 0.3 0.4 0.5 0.6 0.8 1.0

Table 4. Solar array classification ranks of the fault model.

Marker of bottom places P1 P2 P3 P4 P5 P6 P7

Rank VII III V V VI V VI

Truth degree 1.0 0.4 0.6 0.4 0.8 0.6 0.8

Marker of bottom places P8 P9 P13 P14 P15 P16 P17

Rank V V V II IV VI VI

Truth degree 0.4 0.6 0.8 0.3 0.5 0.8 0.8

Table 5. Fault rank of the bottom places and their truth degree.

Marker Event Marker Event

P12 Fault of CCL P15 Fault of the transmission unit

P18 Vibration of panels induced by thermal
deformation

P16 Impact caused by particles in space

P8 Electronic arcing is out of service P17 Vibration caused by clearances of hinges

P9 Fault of the cutters P7 Bad thermal characteristic of honeycomb materials

Table 3. Markers and events of FRPN for reliability analysis.

Bottom
place

Improvement measures

P1 The thermal environment in space is the crucial factor of the failure. Some approaches to improve the
reliability of the system. (1) Investigate the temperature in space precisely where the solar array works and
sum the rules; (2) use new material that is fit for the change of the temperature in space; (3) research the
temperature impact on the structure, and optimize the structure of the crucial part of the system

P13 (1) Test the torsion spring on the ground, then find the torque-angle curve to know the characteristics of the
torsion spring more deeply; (2) test the performance of the whole system, using torsion springs with
different characters, like stiffness

P16 That happens occasionally. There is no effective measure to avoid particles in space, maybe only two ways:
(1) make the structure stronger; (2) make the system more agile to detect the vibration caused by the impact
of particles, and make adjustment with expedition

Table 6. Improvement measures.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

69

1. Decompose the mechanical system.

2. Build the FRPN model of the mechanical system.

3. Get the truth degrees of the bottom places according to the characteristics of the faults in
the system, operation data and engineering experience

4. Calculate the truth degree of top place.

5. Use the cosine matching function (CMF) to analyze reliability of the system.

3.3.2. Case study

We also take the spacecraft solar array as a case for reliability analysis. Figure 9 shows the FRPN
model of the spacecraft solar array for reliability analysis and Table 3 represents markers and
events [37].

Figure 9. The FRPN model of solar array for reliability analysis.

Marker Event Marker Event

P24 Failure of the solar array system P1 Harsh thermal environment in space

P19 Fault of the unlock-mechanism P2 Fault of the grease used in hinges between panels

P20 Faults during deployment process P3 Insufficient torque of the main torsion spring

P21 Faults during locking process P4 Insufficient torque of the reserved torsion spring

P22 Fault of orientation to the sun P5 Insufficient preload of the cable

P23 Other faults of mechanical system P6 Poor thermal characteristic of the cable

P10 Deadlocking in hinges P13 Inappropriate driving torque of the locking torsion
spring

P11 Insufficient preload of the torsion spring P14 Fault of the motor

Petri Nets in Science and Engineering68

Define θi as the truth degree of the bottom place pi, θi ∈ 0; 1½ �. A higher value indicates that the
possibility of the event is higher, which means the fault occurs much easier. Table 4 demonstrates
the ranks, occurrence, and truth degrees of the bottom places. According to the characteristics of

Rank I II III IV V VI VII

Occurrence Very low Low Fairly low Moderate Fairly high High Very high

Truth degree 0.1 0.3 0.4 0.5 0.6 0.8 1.0

Table 4. Solar array classification ranks of the fault model.

Marker of bottom places P1 P2 P3 P4 P5 P6 P7

Rank VII III V V VI V VI

Truth degree 1.0 0.4 0.6 0.4 0.8 0.6 0.8

Marker of bottom places P8 P9 P13 P14 P15 P16 P17

Rank V V V II IV VI VI

Truth degree 0.4 0.6 0.8 0.3 0.5 0.8 0.8

Table 5. Fault rank of the bottom places and their truth degree.

Marker Event Marker Event

P12 Fault of CCL P15 Fault of the transmission unit

P18 Vibration of panels induced by thermal
deformation

P16 Impact caused by particles in space

P8 Electronic arcing is out of service P17 Vibration caused by clearances of hinges

P9 Fault of the cutters P7 Bad thermal characteristic of honeycomb materials

Table 3. Markers and events of FRPN for reliability analysis.

Bottom
place

Improvement measures

P1 The thermal environment in space is the crucial factor of the failure. Some approaches to improve the
reliability of the system. (1) Investigate the temperature in space precisely where the solar array works and
sum the rules; (2) use new material that is fit for the change of the temperature in space; (3) research the
temperature impact on the structure, and optimize the structure of the crucial part of the system

P13 (1) Test the torsion spring on the ground, then find the torque-angle curve to know the characteristics of the
torsion spring more deeply; (2) test the performance of the whole system, using torsion springs with
different characters, like stiffness

P16 That happens occasionally. There is no effective measure to avoid particles in space, maybe only two ways:
(1) make the structure stronger; (2) make the system more agile to detect the vibration caused by the impact
of particles, and make adjustment with expedition

Table 6. Improvement measures.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

69

the faults in the system, operation data and engineering experience [9]. Table 5 represents the
fault rank of the bottom places and their truth degrees.

We can get the results of reliability analysis by using the method in Section 3.3.1. According to
the results, we can evaluate the importance of bottom places in the FRPN model. Some details
can be checked in [37]. To improve the system reliability, we should propose some approaches
to enhance the weak links. Table 6 shows some improvement measures for the mechanical
system of a spacecraft solar array.

4. Conclusion

With the ever-increased high requirement of reliability and safety for critical equipment,
accurately performing the reliability evaluation of the mechanical systems, such as solar
arrays, gains much attention in recent years. The proposed method for reliability evaluation
by FRPN can be used to solve the problem on how to describe the relationship among the
different components and how to overcome data deficiency. The FRPN based models may
open up a new way for evaluating complex mechanical systems with multi-state operation in
variable working environment.

Acknowledgements

This work was supported by the National Science Foundation of China under Contract No.
50875149, High Technology Project under Contract No. 2009AA04Z401, and Research Project
of The State Key Laboratory of Tribology under Contract No. SKLT11B03.

Conflict of interest

There has no conflict of interests.

Author details

Jianing Wu1,2* and Shaoze Yan1

*Address all correspondence to: jianing.wu@me.gatech.edu

1 Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology,
Department of Mechanical Engineering, Tsinghua University, Beijing, China

2 School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Petri Nets in Science and Engineering70

References

[1] Henley EJ, Kumamoto H. Reliability Engineering and Risk Assessment. Vol. 568. Engle-
wood Cliffs, NJ: Prentice-Hall; 1981

[2] Brandhorst HW Jr, Rodiek JA. Space solar array reliability: A study and recommenda-
tions. Acta Astronautica. 2008;63(11–12):1233-1238. DOI: 10.1016/j.actaastro.2008.05.010

[3] Harland DM, Lorenz RD. Space Systems Failures. 1st ed. Chichester: Springer-Praxis;
2005. DOI: 10.1007/978-0-387-27961-9

[4] Huang W, Askin RG. Reliability analysis of electronic devices with multiple competing
failure modes involving performance aging degradation. Quality and Reliability Engi-
neering International. 2003;19(3):241-254. DOI: 10.1002/qre.524

[5] Arifujjaman M, Iqbal MT, Quaicoe JE. Reliability analysis of grid connected small wind
turbine power electronics. Applied Energy. 2009;86(9):1617-1623. DOI: 10.1016/j.apenergy.
2009.01.009

[6] Foucher B, Boullie J, Meslet B, Das D. A review of reliability prediction methods for
electronic devices. Microelectronics Reliability. 2002;42(8):1155-1162. DOI: 10.1016/S0026-
2714(02)00087-2

[7] RausandM,HφylandA. System Reliability Theory:Models, Statistical Methods, andAppli-
cations. 2nd ed. Hoboken: JohnWiley & Sons, Inc.; 2004. DOI: 10.1198/tech.2004.s242

[8] Bertsche B. Reliability in Automotive and Mechanical Engineering: Determination of
Component and System Reliability. Hoboken, New Jersey: Springer Science & Business
Media; 2008

[9] Tang J. Mechanical system reliability analysis using a combination of graph theory and
Boolean function. Reliability Engineering & System Safety. 2001;72(1):21-30

[10] Zeng SK, Zhao TD, Zhang JG, et al. Design and Analysis of System Reliability. Beijing:
Beijing University of Aeronautics and Astronautics Press; 2001. (in Chinese)

[11] Son YK. Reliability prediction of engineering systems with competing failure modes due
to component degradation. Journal of Mechanical Science and Technology. 2010;25:
1717-1725

[12] Hu Y, Zhu MR. Handbook of Reliability Design. Beijing: China Zhijian Publishing House;
2007. (in Chinese)

[13] Huang HZ, Qu J, Zuo MJ. Genetic-algorithm-based optimal apportionment of reliability
and redundancy under multiple objectives. IIE Transactions. 2009;41(4):287-298. DOI:
10.1080/07408170802322994

[14] James KB, Donald HG. Reliability growth apportionment. IEEE Transactions on Reliabil-
ity. 1977;26(4):242-244. DOI: 10.1109/TR.1977.5220138

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

71

the faults in the system, operation data and engineering experience [9]. Table 5 represents the
fault rank of the bottom places and their truth degrees.

We can get the results of reliability analysis by using the method in Section 3.3.1. According to
the results, we can evaluate the importance of bottom places in the FRPN model. Some details
can be checked in [37]. To improve the system reliability, we should propose some approaches
to enhance the weak links. Table 6 shows some improvement measures for the mechanical
system of a spacecraft solar array.

4. Conclusion

With the ever-increased high requirement of reliability and safety for critical equipment,
accurately performing the reliability evaluation of the mechanical systems, such as solar
arrays, gains much attention in recent years. The proposed method for reliability evaluation
by FRPN can be used to solve the problem on how to describe the relationship among the
different components and how to overcome data deficiency. The FRPN based models may
open up a new way for evaluating complex mechanical systems with multi-state operation in
variable working environment.

Acknowledgements

This work was supported by the National Science Foundation of China under Contract No.
50875149, High Technology Project under Contract No. 2009AA04Z401, and Research Project
of The State Key Laboratory of Tribology under Contract No. SKLT11B03.

Conflict of interest

There has no conflict of interests.

Author details

Jianing Wu1,2* and Shaoze Yan1

*Address all correspondence to: jianing.wu@me.gatech.edu

1 Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology,
Department of Mechanical Engineering, Tsinghua University, Beijing, China

2 School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Petri Nets in Science and Engineering70

References

[1] Henley EJ, Kumamoto H. Reliability Engineering and Risk Assessment. Vol. 568. Engle-
wood Cliffs, NJ: Prentice-Hall; 1981

[2] Brandhorst HW Jr, Rodiek JA. Space solar array reliability: A study and recommenda-
tions. Acta Astronautica. 2008;63(11–12):1233-1238. DOI: 10.1016/j.actaastro.2008.05.010

[3] Harland DM, Lorenz RD. Space Systems Failures. 1st ed. Chichester: Springer-Praxis;
2005. DOI: 10.1007/978-0-387-27961-9

[4] Huang W, Askin RG. Reliability analysis of electronic devices with multiple competing
failure modes involving performance aging degradation. Quality and Reliability Engi-
neering International. 2003;19(3):241-254. DOI: 10.1002/qre.524

[5] Arifujjaman M, Iqbal MT, Quaicoe JE. Reliability analysis of grid connected small wind
turbine power electronics. Applied Energy. 2009;86(9):1617-1623. DOI: 10.1016/j.apenergy.
2009.01.009

[6] Foucher B, Boullie J, Meslet B, Das D. A review of reliability prediction methods for
electronic devices. Microelectronics Reliability. 2002;42(8):1155-1162. DOI: 10.1016/S0026-
2714(02)00087-2

[7] RausandM,HφylandA. System Reliability Theory:Models, Statistical Methods, andAppli-
cations. 2nd ed. Hoboken: JohnWiley & Sons, Inc.; 2004. DOI: 10.1198/tech.2004.s242

[8] Bertsche B. Reliability in Automotive and Mechanical Engineering: Determination of
Component and System Reliability. Hoboken, New Jersey: Springer Science & Business
Media; 2008

[9] Tang J. Mechanical system reliability analysis using a combination of graph theory and
Boolean function. Reliability Engineering & System Safety. 2001;72(1):21-30

[10] Zeng SK, Zhao TD, Zhang JG, et al. Design and Analysis of System Reliability. Beijing:
Beijing University of Aeronautics and Astronautics Press; 2001. (in Chinese)

[11] Son YK. Reliability prediction of engineering systems with competing failure modes due
to component degradation. Journal of Mechanical Science and Technology. 2010;25:
1717-1725

[12] Hu Y, Zhu MR. Handbook of Reliability Design. Beijing: China Zhijian Publishing House;
2007. (in Chinese)

[13] Huang HZ, Qu J, Zuo MJ. Genetic-algorithm-based optimal apportionment of reliability
and redundancy under multiple objectives. IIE Transactions. 2009;41(4):287-298. DOI:
10.1080/07408170802322994

[14] James KB, Donald HG. Reliability growth apportionment. IEEE Transactions on Reliabil-
ity. 1977;26(4):242-244. DOI: 10.1109/TR.1977.5220138

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

71

[15] Park KS. Fuzzy apportionment of system reliability. IEEE Transactions on Reliability. 1987;
36(1):129-132. DOI: 10.1109/TR.1987.5222317

[16] Dhingra AK. Optimal apportionment of reliability and redundancy in series systems
under multiple objectives. IEEE Transactions on Reliability. 1992;41(4):576-582. DOI:
10.1109/24.249589

[17] Mentes A, Helvacioglu IH. An application of fuzzy fault tree analysis for spread mooring
systems. Ocean Engineering. 2011;38:285-294. DOI: 10.1016/j.oceaneng.2010.11.003

[18] Lee WS, Grosh DL, Tillman FA, Lie CH. Fault tree analysis, methods, and applications: A
review. IEEE Transactions on Reliability. 1985;34(3):194-203. DOI: 10.1109/TR.1985.5222114

[19] de Queiroz Souza R, Álvares AJ. FMEA and FTA analysis for application of the reliability
centered maintenance methodology: Case study on hydraulic turbines. In: ABCM Sym-
posium Series in Mechatronics; Vol. 3; 2008. pp. 803-812

[20] Gao M, Zhou M, Huang X, Wu Z. Fuzzy reasoning Petri nets. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans. 2003;33(3):314-324. DOI:
10.1109/TSMCA.2002.804362

[21] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;
77(4):541-580. DOI: 10.1109/5.24143

[22] Yuan CY. Petri Nets. 1st ed. Nanjing: Press of Southeastern University; 1989. (in Chinese)

[23] Pedrycz W, Gomide F. A generalized fuzzy Petri net model. IEEE Transactions on Fuzzy
Systems. 1994;2(4):295-301. DOI: 10.1109/91.324809

[24] UzamM. The use of the Petri net reduction approach for an optimal deadlock prevention
policy for flexible manufacturing systems. International Journal of AdvancedManufactur-
ing Technology. 2004;23(3–4):204-219. DOI: 10.1007/s00170-002-1526-5

[25] Zhao JH, Liu ZH, DaoMT. Reliability optimization usingmultiobjective ant colony system
approaches. Reliability Engineering and System Safety. 2007;92(1):109-120. DOI: 10.1016/j.
ress.2005.12.001

[26] Leveson NG, Stolzy JL. Safety analysis using Petri nets. IEEE Transactions on Software
Engineering. 1987;13(3):386-397. DOI: 10.1109/TSE.1987.233170

[27] Yang BS, Jeong SK, Oh YM, Tan ACC. Case-based reasoning system with Petri nets for
induction motor fault diagnosis. Expert Systems with Applications. 2004;27(2):301-311.
DOI: 10.1016/j.eswa.2004.02.004

[28] Constantinescu C. Trends and challenges in VLSI circuit reliability. IEEEMicro. 2003;23(4):
14-19. DOI: 10.1109/MM.2003.1225959

[29] Wallrapp O, Wiedemann S. Simulation of deployment of a flexible solar array. Multibody
System Dynamics. 2002;7(1):101-125. DOI: 10.1023/A:1015295720991

Petri Nets in Science and Engineering72

[30] Rauschenbach HS. Solar Cell Array Design Handbook: The Principles and Technology of
Photovoltaic Energy Conversion. 1st ed. Beijing: China Astronautic Publishing House;
1994. (in Chinese)

[31] Fragnito M, Pastena M. Design of smart microsatellite deployable solar wings. Acta
Astronautica. 2000;46(2–6):335-344. DOI: 10.1016/S0094-5765(99)00228-3

[32] Wu J, Yan S. An approach to system reliability prediction for mechanical equipment using
fuzzy reasoning Petri net. Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability. 2014;228(1):39-51. DOI: 10.1177/1748006X13495130

[33] Wu J, Yan S, Xie L, Gao P. Reliability apportionment approach for spacecraft solar array
using fuzzy reasoning Petri net and fuzzy comprehensive evaluation. Acta Astronautica.
2012;76:136-144. DOI: 10.1016/j.actaastro.2012.02.023

[34] Castet JF, Saleh JH. Satellite and satellite subsystems reliability: Statistical data analysis
and modeling. Reliability Engineering & System Safety. 2009;94(11):1718-1728. DOI:
10.1016/j.ress.2009.05.004

[35] Rome Laboratory. Reliability Prediction of Electronic Equipment. 1991. Available from:
www.barringer1.com/mil_files/MIL-HDBK-217RevF.pdf [Accessed: October 24, 2012]

[36] USAF Rome Air Development Center. Non-Electronics Parts Reliability Data (NPRD).
1995. Available from: www.theriac.org/riacapps/search/?category=all%20products&key-
word=nprd [Accessed: October 24, 2012]

[37] Wu J, Yan S, Xie L. Reliability analysis method of a solar array by using fault tree analysis
and fuzzy reasoning Petri net. Acta Astronautica. 2011;69(11–12):960-968. DOI: 10.1016/j.
actaastro.2011.07.012

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

73

[15] Park KS. Fuzzy apportionment of system reliability. IEEE Transactions on Reliability. 1987;
36(1):129-132. DOI: 10.1109/TR.1987.5222317

[16] Dhingra AK. Optimal apportionment of reliability and redundancy in series systems
under multiple objectives. IEEE Transactions on Reliability. 1992;41(4):576-582. DOI:
10.1109/24.249589

[17] Mentes A, Helvacioglu IH. An application of fuzzy fault tree analysis for spread mooring
systems. Ocean Engineering. 2011;38:285-294. DOI: 10.1016/j.oceaneng.2010.11.003

[18] Lee WS, Grosh DL, Tillman FA, Lie CH. Fault tree analysis, methods, and applications: A
review. IEEE Transactions on Reliability. 1985;34(3):194-203. DOI: 10.1109/TR.1985.5222114

[19] de Queiroz Souza R, Álvares AJ. FMEA and FTA analysis for application of the reliability
centered maintenance methodology: Case study on hydraulic turbines. In: ABCM Sym-
posium Series in Mechatronics; Vol. 3; 2008. pp. 803-812

[20] Gao M, Zhou M, Huang X, Wu Z. Fuzzy reasoning Petri nets. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans. 2003;33(3):314-324. DOI:
10.1109/TSMCA.2002.804362

[21] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;
77(4):541-580. DOI: 10.1109/5.24143

[22] Yuan CY. Petri Nets. 1st ed. Nanjing: Press of Southeastern University; 1989. (in Chinese)

[23] Pedrycz W, Gomide F. A generalized fuzzy Petri net model. IEEE Transactions on Fuzzy
Systems. 1994;2(4):295-301. DOI: 10.1109/91.324809

[24] UzamM. The use of the Petri net reduction approach for an optimal deadlock prevention
policy for flexible manufacturing systems. International Journal of AdvancedManufactur-
ing Technology. 2004;23(3–4):204-219. DOI: 10.1007/s00170-002-1526-5

[25] Zhao JH, Liu ZH, DaoMT. Reliability optimization usingmultiobjective ant colony system
approaches. Reliability Engineering and System Safety. 2007;92(1):109-120. DOI: 10.1016/j.
ress.2005.12.001

[26] Leveson NG, Stolzy JL. Safety analysis using Petri nets. IEEE Transactions on Software
Engineering. 1987;13(3):386-397. DOI: 10.1109/TSE.1987.233170

[27] Yang BS, Jeong SK, Oh YM, Tan ACC. Case-based reasoning system with Petri nets for
induction motor fault diagnosis. Expert Systems with Applications. 2004;27(2):301-311.
DOI: 10.1016/j.eswa.2004.02.004

[28] Constantinescu C. Trends and challenges in VLSI circuit reliability. IEEEMicro. 2003;23(4):
14-19. DOI: 10.1109/MM.2003.1225959

[29] Wallrapp O, Wiedemann S. Simulation of deployment of a flexible solar array. Multibody
System Dynamics. 2002;7(1):101-125. DOI: 10.1023/A:1015295720991

Petri Nets in Science and Engineering72

[30] Rauschenbach HS. Solar Cell Array Design Handbook: The Principles and Technology of
Photovoltaic Energy Conversion. 1st ed. Beijing: China Astronautic Publishing House;
1994. (in Chinese)

[31] Fragnito M, Pastena M. Design of smart microsatellite deployable solar wings. Acta
Astronautica. 2000;46(2–6):335-344. DOI: 10.1016/S0094-5765(99)00228-3

[32] Wu J, Yan S. An approach to system reliability prediction for mechanical equipment using
fuzzy reasoning Petri net. Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability. 2014;228(1):39-51. DOI: 10.1177/1748006X13495130

[33] Wu J, Yan S, Xie L, Gao P. Reliability apportionment approach for spacecraft solar array
using fuzzy reasoning Petri net and fuzzy comprehensive evaluation. Acta Astronautica.
2012;76:136-144. DOI: 10.1016/j.actaastro.2012.02.023

[34] Castet JF, Saleh JH. Satellite and satellite subsystems reliability: Statistical data analysis
and modeling. Reliability Engineering & System Safety. 2009;94(11):1718-1728. DOI:
10.1016/j.ress.2009.05.004

[35] Rome Laboratory. Reliability Prediction of Electronic Equipment. 1991. Available from:
www.barringer1.com/mil_files/MIL-HDBK-217RevF.pdf [Accessed: October 24, 2012]

[36] USAF Rome Air Development Center. Non-Electronics Parts Reliability Data (NPRD).
1995. Available from: www.theriac.org/riacapps/search/?category=all%20products&key-
word=nprd [Accessed: October 24, 2012]

[37] Wu J, Yan S, Xie L. Reliability analysis method of a solar array by using fault tree analysis
and fuzzy reasoning Petri net. Acta Astronautica. 2011;69(11–12):960-968. DOI: 10.1016/j.
actaastro.2011.07.012

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

73

Chapter 5

Performance Analysis of Shared-Memory Bus-Based
Multiprocessors Using Timed Petri Nets

Wlodek M. Zuberek

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75589

Provisional chapter

Performance Analysis of Shared-Memory Bus-Based
Multiprocessors Using Timed Petri Nets

Wlodek M. Zuberek

Additional information is available at the end of the chapter

Abstract

In shared-memory bus-based multiprocessors, the number of processors is often limited
by the (shared) bus; when the utilization of the bus approaches 100%, processors spend an
increasing amount of time waiting to get access to the bus (and shared memory) and this
degrades their performance. The limitations imposed by the bus depend upon many
parameters, and different parameters affect the performance in different ways. This chap-
ter uses timed Petri nets to model shared-memory bus-based multiprocessors at the
instruction execution level and shows how the performance of processors and the system
are affected by different modeling parameters. Discrete-event simulation of the developed
net models is used to get performance results.

Keywords: shared-memory multiprocessors, bus-based multiprocessors, timed Petri nets,
performance analysis, discrete-event simulation

1. Introduction

Due to continuous progress in manufacturing technologies, the performance of microproces-
sors has been steadily improving over several decades, doubling every 18 months (the so-
called Moore’s law [1]). The capacity of memory chips has also been doubling every 18 months,
but the performance has been improving less than 10% per year [2]. The performance gap [3]
between the processor and its memory have been doubling approximately every 6 years, and
an increasing part of the processor’s time is being spent on waiting for the completion of
memory operations. Although multilevel cache memories are used to reduce the average
latencies of memory accesses, matching the performances of the processor and the memory is
an increasingly difficult task. In effect, it is often the case that more than 50% of processor

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75589

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 5

Performance Analysis of Shared-Memory Bus-Based
Multiprocessors Using Timed Petri Nets

Wlodek M. Zuberek

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75589

Provisional chapter

Performance Analysis of Shared-Memory Bus-Based
Multiprocessors Using Timed Petri Nets

Wlodek M. Zuberek

Additional information is available at the end of the chapter

Abstract

In shared-memory bus-based multiprocessors, the number of processors is often limited
by the (shared) bus; when the utilization of the bus approaches 100%, processors spend an
increasing amount of time waiting to get access to the bus (and shared memory) and this
degrades their performance. The limitations imposed by the bus depend upon many
parameters, and different parameters affect the performance in different ways. This chap-
ter uses timed Petri nets to model shared-memory bus-based multiprocessors at the
instruction execution level and shows how the performance of processors and the system
are affected by different modeling parameters. Discrete-event simulation of the developed
net models is used to get performance results.

Keywords: shared-memory multiprocessors, bus-based multiprocessors, timed Petri nets,
performance analysis, discrete-event simulation

1. Introduction

Due to continuous progress in manufacturing technologies, the performance of microproces-
sors has been steadily improving over several decades, doubling every 18 months (the so-
called Moore’s law [1]). The capacity of memory chips has also been doubling every 18 months,
but the performance has been improving less than 10% per year [2]. The performance gap [3]
between the processor and its memory have been doubling approximately every 6 years, and
an increasing part of the processor’s time is being spent on waiting for the completion of
memory operations. Although multilevel cache memories are used to reduce the average
latencies of memory accesses, matching the performances of the processor and the memory is
an increasingly difficult task. In effect, it is often the case that more than 50% of processor

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75589

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

cycles are spent waiting for the completion of memory accesses [4]. A model of a pipelined
processor at the instruction execution level is used in this chapter to study the mismatch of
processor and memory performances.

This model of a processor is then used for performance analysis of shared-memory bus-based
multiprocessors. The main objective of this analysis is to study the degradation of the pro-
cessor’s performance when the utilization of the (shared) bus approaches 100%. This perfor-
mance degradation limits the number of processors in bus-based systems.

Modeling and analysis of shared-memory bus-based systems requires a flexible formalism that
can easily handle concurrent activities as well as synchronization of different events and
processes that occur in such systems. Petri nets [5, 6] are such formal models.

As formal models, Petri nets are bipartite directed graphs in which the two types of vertices
represent, in a very general sense, conditions and events. An event can occur only when all
conditions associated with it (represented by arcs directed to the event) are satisfied. An
occurrence of an event usually satisfies some other conditions, indicated by arcs directed from
the event. Hence, an occurrence of one event causes some other event (or events) to occur, and
so on.

In order to study the performance aspects of systems modeled by Petri nets, the durations of
modeled activities must also be taken into account. This can be done in different ways,
resulting in different types of temporal nets [7]. In timed Petri nets [8], occurrence times are
associated with events, and the events occur in real time (as opposed to instantaneous occur-
rences in other models). For timed nets with constant or exponentially distributed occurrence
times, the state graph of a net is a Markov chain (or an embedded Markov chain). If the state
space of a timed net is finite and reasonably small, the stationary probabilities of states can be
determined by standard methods [9]. Then these stationary probabilities are used for the
derivation of many performance characteristics of the model [10]. In other cases, discrete event
simulation [11] is used to find the performance characteristics of a timed net.

In this chapter, timed Petri nets are used to model shared-memory bus-based multiprocessor
systems. Section 2 recalls basic concepts of Petri nets and timed Petri nets. Section 3 discusses a
model of a pipelined processor and its performance as a function of modeling parameters.
Shared-memory bus-based systems are described and analyzed in Section 4. Section 5 concludes
the chapter.

2. Timed Petri nets

In Petri nets, concurrent activities are represented by tokens that can move within a (static)
graph-like structure of the net. More formally, a marked place/transition Petri netM is defined
as a pairM ¼ N ;m0ð Þ, where the structure N is a bipartite directed graph, N ¼ P;T;Að Þ, with
two types of vertices, a set of places P and a set of transitions T, and a set of directed arcs A
connecting places with transitions and transitions with places, A ⊆ P�T ∪ T�P. The initial

Petri Nets in Science and Engineering76

marking function m0 assigns nonnegative numbers of tokens to places of the net,
m0 : P ! 0; 1;…f g. Marked nets can be equivalently defined as M ¼ P;T;A;m0ð Þ.
A place is shared if it is connected to more than one transition. A shared place p is free-choice if
the sets of places connected by directed arcs to all transitions sharing p are identical. A shared
place p is (dynamically) conflict-free if for each marking reachable from the initial marking, at
most one transition sharing p is enabled. If a shared place p is not free-choice and not conflict-
free, the transitions sharing p are conflicting.

In timed nets [8], occurrence times are associated with transitions, and transition occurrences
are real-time events, i.e., tokens are removed from input places at the beginning of the occur-
rence period and are deposited to the output places at the end of this period. All occurrences of
enabled transitions are initiated in the same instants of time in which the transitions become
enabled (although some enabled transitions may not initiate their occurrences). If, during the
occurrence period of a transition, the transition becomes enabled again, a new, independent
occurrence can be initiated, which will overlap with the other occurrence(s). There is no limit
on the number of simultaneous occurrences of the same transition (sometimes this is called
infinite occurrence semantics). Similarly, if a transition is enabled “several times” (i.e., it
remains enabled after initiating an occurrence), it may start several independent occurrences
in the same time instant.

More formally, a timed Petri net is a triple, T ¼ M; c; fð Þ, where M is a marked net, c is a
choice function which assigns probabilities to transitions in free-choice classes, or relative
frequencies of occurrences to conflicting transitions, c ! 0; 1½ �, and f is a timing function,
which assigns an (average) occurrence time to each transition of the net, f : T ! Rþ, where
Rþ is the set of nonnegative real numbers.

The occurrence times of transitions can be either deterministic or stochastic (i.e., described by
some probability distribution function). In the first case, the corresponding timed nets are
referred to as D-timed nets [12]; in the second, for the (negative) exponential distribution of
occurrence times, the nets are called M-timed nets (Markovian nets) [13]. In both cases, the
concepts of state and state transitions have been formally defined and used in the derivation of
different performance characteristics of the model. In simulation applications, other distribu-
tions can also be used, for example, the uniform distribution (U-timed nets) is sometimes a
convenient option. In timed Petri nets, different distributions can be associated with different
transitions in the same model providing flexibility that is used in simulation examples that
follow.

In timed nets, the occurrence times of some transitions may be equal to zero, which means that
the occurrences are instantaneous; all such transitions are called immediate (while the others
are called timed). Since immediate transitions have no tangible effects on the (timed) behavior
of the model, it is convenient to “split” the set of transitions into two parts, the set of immedi-
ate and the set of timed transitions, and to first perform all occurrences of the (enabled)
immediate transitions, and then (still in the same time instant), when no more immediate
transitions are enabled, to start the occurrences of (enabled) timed transitions. It should be
noted that such a convention effectively introduces the priority of immediate transitions over

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

77

cycles are spent waiting for the completion of memory accesses [4]. A model of a pipelined
processor at the instruction execution level is used in this chapter to study the mismatch of
processor and memory performances.

This model of a processor is then used for performance analysis of shared-memory bus-based
multiprocessors. The main objective of this analysis is to study the degradation of the pro-
cessor’s performance when the utilization of the (shared) bus approaches 100%. This perfor-
mance degradation limits the number of processors in bus-based systems.

Modeling and analysis of shared-memory bus-based systems requires a flexible formalism that
can easily handle concurrent activities as well as synchronization of different events and
processes that occur in such systems. Petri nets [5, 6] are such formal models.

As formal models, Petri nets are bipartite directed graphs in which the two types of vertices
represent, in a very general sense, conditions and events. An event can occur only when all
conditions associated with it (represented by arcs directed to the event) are satisfied. An
occurrence of an event usually satisfies some other conditions, indicated by arcs directed from
the event. Hence, an occurrence of one event causes some other event (or events) to occur, and
so on.

In order to study the performance aspects of systems modeled by Petri nets, the durations of
modeled activities must also be taken into account. This can be done in different ways,
resulting in different types of temporal nets [7]. In timed Petri nets [8], occurrence times are
associated with events, and the events occur in real time (as opposed to instantaneous occur-
rences in other models). For timed nets with constant or exponentially distributed occurrence
times, the state graph of a net is a Markov chain (or an embedded Markov chain). If the state
space of a timed net is finite and reasonably small, the stationary probabilities of states can be
determined by standard methods [9]. Then these stationary probabilities are used for the
derivation of many performance characteristics of the model [10]. In other cases, discrete event
simulation [11] is used to find the performance characteristics of a timed net.

In this chapter, timed Petri nets are used to model shared-memory bus-based multiprocessor
systems. Section 2 recalls basic concepts of Petri nets and timed Petri nets. Section 3 discusses a
model of a pipelined processor and its performance as a function of modeling parameters.
Shared-memory bus-based systems are described and analyzed in Section 4. Section 5 concludes
the chapter.

2. Timed Petri nets

In Petri nets, concurrent activities are represented by tokens that can move within a (static)
graph-like structure of the net. More formally, a marked place/transition Petri netM is defined
as a pairM ¼ N ;m0ð Þ, where the structure N is a bipartite directed graph, N ¼ P;T;Að Þ, with
two types of vertices, a set of places P and a set of transitions T, and a set of directed arcs A
connecting places with transitions and transitions with places, A ⊆ P�T ∪ T�P. The initial

Petri Nets in Science and Engineering76

marking function m0 assigns nonnegative numbers of tokens to places of the net,
m0 : P ! 0; 1;…f g. Marked nets can be equivalently defined as M ¼ P;T;A;m0ð Þ.
A place is shared if it is connected to more than one transition. A shared place p is free-choice if
the sets of places connected by directed arcs to all transitions sharing p are identical. A shared
place p is (dynamically) conflict-free if for each marking reachable from the initial marking, at
most one transition sharing p is enabled. If a shared place p is not free-choice and not conflict-
free, the transitions sharing p are conflicting.

In timed nets [8], occurrence times are associated with transitions, and transition occurrences
are real-time events, i.e., tokens are removed from input places at the beginning of the occur-
rence period and are deposited to the output places at the end of this period. All occurrences of
enabled transitions are initiated in the same instants of time in which the transitions become
enabled (although some enabled transitions may not initiate their occurrences). If, during the
occurrence period of a transition, the transition becomes enabled again, a new, independent
occurrence can be initiated, which will overlap with the other occurrence(s). There is no limit
on the number of simultaneous occurrences of the same transition (sometimes this is called
infinite occurrence semantics). Similarly, if a transition is enabled “several times” (i.e., it
remains enabled after initiating an occurrence), it may start several independent occurrences
in the same time instant.

More formally, a timed Petri net is a triple, T ¼ M; c; fð Þ, where M is a marked net, c is a
choice function which assigns probabilities to transitions in free-choice classes, or relative
frequencies of occurrences to conflicting transitions, c ! 0; 1½ �, and f is a timing function,
which assigns an (average) occurrence time to each transition of the net, f : T ! Rþ, where
Rþ is the set of nonnegative real numbers.

The occurrence times of transitions can be either deterministic or stochastic (i.e., described by
some probability distribution function). In the first case, the corresponding timed nets are
referred to as D-timed nets [12]; in the second, for the (negative) exponential distribution of
occurrence times, the nets are called M-timed nets (Markovian nets) [13]. In both cases, the
concepts of state and state transitions have been formally defined and used in the derivation of
different performance characteristics of the model. In simulation applications, other distribu-
tions can also be used, for example, the uniform distribution (U-timed nets) is sometimes a
convenient option. In timed Petri nets, different distributions can be associated with different
transitions in the same model providing flexibility that is used in simulation examples that
follow.

In timed nets, the occurrence times of some transitions may be equal to zero, which means that
the occurrences are instantaneous; all such transitions are called immediate (while the others
are called timed). Since immediate transitions have no tangible effects on the (timed) behavior
of the model, it is convenient to “split” the set of transitions into two parts, the set of immedi-
ate and the set of timed transitions, and to first perform all occurrences of the (enabled)
immediate transitions, and then (still in the same time instant), when no more immediate
transitions are enabled, to start the occurrences of (enabled) timed transitions. It should be
noted that such a convention effectively introduces the priority of immediate transitions over

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

77

the timed ones, so the conflicts of immediate and timed transitions are not allowed in timed
nets. Detailed characterization of the behavior of timed nets with immediate and timed transi-
tions is given in [8].

3. Pipelined processors

A timed Petri net model of a pipelined processor [14] at the level of instruction execution is
shown in Figure 1 (as usual, timed transitions are represented by solid bars, and immediate
transitions by thin bars). It is assumed that the first level cache does not delay the processor,
while cache misses (at the first level cache) introduce a delay of tc processor cycles. For
simplicity, only two levels of cache memory are represented in the model; it appears that such
a simplification does not affect the results in a significant way [15].

Place Pnxt is marked when the processor is ready to execute the next instruction. Pnxt is a free-
choice place with three possible outcomes that model issuing an instruction without any
further delay (Ts0 with the choice probability ps0), a single-cycle pipeline stall (modeled by
Td1 with the choice probability ps1 associated with Ts1), and a two-cycle pipeline stall
(modeled by Td2 and then Td1 with the choice probability ps2 assigned to Ts2). Other pipeline
stalls could be represented in a similar way, if needed.

Marked place Cont indicates that an instruction is ready to be issued to the execution pipeline.
It is assumed that once the instruction enters the pipeline, it will progress through all the stages
and, eventually, leave the pipeline. Since the details of pipeline implementation are not impor-
tant for performance analysis of the processor, they are not represented here. Only the first
stage of the execution pipeline is shown as timed transition Trun.

Done is another free-choice place which determines if the executing instruction results in a
cache miss or not. Transition Tnxt occurs (with the corresponding probability) if cache miss
does not occur and the processor can continue fetching and issuing instructions. Cache miss is
represented by Tsel. The choice probability associated with Tsel determines the instruction

Figure 1. Instruction-level Petri net model of a pipelined processor.

Petri Nets in Science and Engineering78

runlength, nℓ, i.e., the average number of instructions between two consecutive cache misses; if
this choice probability is equal to 0.1, the runlength is equal to 10; if it is equal to 0.2, the
runlength is 5; and so on.

Psel is another free-choice place; it models the hits and misses of the second-level cache. The
probability associated with transition Tloc represents the hit ratio of the second-level cache (the
occurrence time of Tloc is the average access time to the second-level cache, tc) while the miss
ratio is associated with transition Tmem which represents accesses to the main memory (with
the occurrence time tm).

Typical values of modeling parameters used in this chapter are shown in Table 1.

All temporal data in Table 1 (i.e., cache and memory access times) are in processor cycles.

Processor utilization as a function of h1, the hit rate of the first-level cache, is shown in Figure 2
for two values of the second-level cache access time, tc ¼ 5, and tc ¼ 10. It should not be

Symbol Parameter Value

h1 First-level cache hit rate 0.9

h2 Second-level cache hit rate 0.8

tp First-level cache access time 1

tc Second-level cache access time 5

tm Main memory access time 25

ps1 Prob. of one-cycle pipeline stall 0.1

ps2 Prob. of two-cycle pipeline stall 0.05

Table 1. Modeling parameters and their typical values.

Figure 2. Processor utilization as a function of first-level cache hit rate for h2 ¼ 0:8, ps ¼ 0:2.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

79

the timed ones, so the conflicts of immediate and timed transitions are not allowed in timed
nets. Detailed characterization of the behavior of timed nets with immediate and timed transi-
tions is given in [8].

3. Pipelined processors

A timed Petri net model of a pipelined processor [14] at the level of instruction execution is
shown in Figure 1 (as usual, timed transitions are represented by solid bars, and immediate
transitions by thin bars). It is assumed that the first level cache does not delay the processor,
while cache misses (at the first level cache) introduce a delay of tc processor cycles. For
simplicity, only two levels of cache memory are represented in the model; it appears that such
a simplification does not affect the results in a significant way [15].

Place Pnxt is marked when the processor is ready to execute the next instruction. Pnxt is a free-
choice place with three possible outcomes that model issuing an instruction without any
further delay (Ts0 with the choice probability ps0), a single-cycle pipeline stall (modeled by
Td1 with the choice probability ps1 associated with Ts1), and a two-cycle pipeline stall
(modeled by Td2 and then Td1 with the choice probability ps2 assigned to Ts2). Other pipeline
stalls could be represented in a similar way, if needed.

Marked place Cont indicates that an instruction is ready to be issued to the execution pipeline.
It is assumed that once the instruction enters the pipeline, it will progress through all the stages
and, eventually, leave the pipeline. Since the details of pipeline implementation are not impor-
tant for performance analysis of the processor, they are not represented here. Only the first
stage of the execution pipeline is shown as timed transition Trun.

Done is another free-choice place which determines if the executing instruction results in a
cache miss or not. Transition Tnxt occurs (with the corresponding probability) if cache miss
does not occur and the processor can continue fetching and issuing instructions. Cache miss is
represented by Tsel. The choice probability associated with Tsel determines the instruction

Figure 1. Instruction-level Petri net model of a pipelined processor.

Petri Nets in Science and Engineering78

runlength, nℓ, i.e., the average number of instructions between two consecutive cache misses; if
this choice probability is equal to 0.1, the runlength is equal to 10; if it is equal to 0.2, the
runlength is 5; and so on.

Psel is another free-choice place; it models the hits and misses of the second-level cache. The
probability associated with transition Tloc represents the hit ratio of the second-level cache (the
occurrence time of Tloc is the average access time to the second-level cache, tc) while the miss
ratio is associated with transition Tmem which represents accesses to the main memory (with
the occurrence time tm).

Typical values of modeling parameters used in this chapter are shown in Table 1.

All temporal data in Table 1 (i.e., cache and memory access times) are in processor cycles.

Processor utilization as a function of h1, the hit rate of the first-level cache, is shown in Figure 2
for two values of the second-level cache access time, tc ¼ 5, and tc ¼ 10. It should not be

Symbol Parameter Value

h1 First-level cache hit rate 0.9

h2 Second-level cache hit rate 0.8

tp First-level cache access time 1

tc Second-level cache access time 5

tm Main memory access time 25

ps1 Prob. of one-cycle pipeline stall 0.1

ps2 Prob. of two-cycle pipeline stall 0.05

Table 1. Modeling parameters and their typical values.

Figure 2. Processor utilization as a function of first-level cache hit rate for h2 ¼ 0:8, ps ¼ 0:2.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

79

surprising that processor utilization is quite sensitive to the values of h1, but is much less
sensitive to the values of tc.

Processor utilization as a function of h2, the hit rate of the second-level cache, is shown in
Figure 3 for two values of the main memory access time, tm ¼ 25 and tm ¼ 50. Processor
utilization is rather insensitive to values of h2, and does not change much with tm.

Processor utilization as a function of the probability of pipeline stalls ps ¼ ps1 þ 2ps2 is shown
in Figure 4 for three combinations of values of tc and tm.

Again, processor utilization is rather insensitive to the probability of pipeline stalls as well as
the values of tc and tm.

Figure 3. Processor utilization as a function of second-level cache hit rate for h1 ¼ 0:9, ps ¼ 0:2.

Figure 4. Processor utilization as a function of probability of pipeline stalls for h1 ¼ 0:9, h2 ¼ 0:8.

Petri Nets in Science and Engineering80

For pipelined processors shown in Figure 1, processor utilization can be estimated using the
following formula:

up ¼ 1
1þ ps1 þ 2∗ps2 þ 1� h1ð Þ∗ tc þ 1� h2ð Þ∗tmð Þ : (1)

For the values of modeling parameters shown in Table 1, processor utilization is:

up ¼ 1
1þ 0:1þ 0:1þ 0:1∗ 5þ 0:2∗25ð Þ ≈ 0:45: (2)

The estimated values agree quite well with the values shown in Figures 2–4.

4. Shared-memory bus–based systems

An outline of a shared-memory bus-based multiprocessor is shown in Figure 5. The system is
composed of n identical processors, which access the shared memory using a system bus. To
reduce the average access time to the shared memory, the processors use (multilevel) cache
memories. It is assumed that memory consistency is provided by a cache coherence mecha-
nism [16], which usually increases the miss ratio of accessing caches (and is otherwise not
represented in the model).

A timed Petri net model of a shared-memory bus-based multiprocessor is shown in Figure 6. It
contains models of n processors (only two are shown in Figure 6), which are copies of the
model shown in Figure 1 except for the main memory (transition Tmem) which becomes
shared memory in Figure 6. The remaining part of Figure 6 is modeling the bus that coordi-
nates accesses of processors to the shared memory.

Figure 5. A shared-memory bus-based multiprocessor.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

81

surprising that processor utilization is quite sensitive to the values of h1, but is much less
sensitive to the values of tc.

Processor utilization as a function of h2, the hit rate of the second-level cache, is shown in
Figure 3 for two values of the main memory access time, tm ¼ 25 and tm ¼ 50. Processor
utilization is rather insensitive to values of h2, and does not change much with tm.

Processor utilization as a function of the probability of pipeline stalls ps ¼ ps1 þ 2ps2 is shown
in Figure 4 for three combinations of values of tc and tm.

Again, processor utilization is rather insensitive to the probability of pipeline stalls as well as
the values of tc and tm.

Figure 3. Processor utilization as a function of second-level cache hit rate for h1 ¼ 0:9, ps ¼ 0:2.

Figure 4. Processor utilization as a function of probability of pipeline stalls for h1 ¼ 0:9, h2 ¼ 0:8.

Petri Nets in Science and Engineering80

For pipelined processors shown in Figure 1, processor utilization can be estimated using the
following formula:

up ¼ 1
1þ ps1 þ 2∗ps2 þ 1� h1ð Þ∗ tc þ 1� h2ð Þ∗tmð Þ : (1)

For the values of modeling parameters shown in Table 1, processor utilization is:

up ¼ 1
1þ 0:1þ 0:1þ 0:1∗ 5þ 0:2∗25ð Þ ≈ 0:45: (2)

The estimated values agree quite well with the values shown in Figures 2–4.

4. Shared-memory bus–based systems

An outline of a shared-memory bus-based multiprocessor is shown in Figure 5. The system is
composed of n identical processors, which access the shared memory using a system bus. To
reduce the average access time to the shared memory, the processors use (multilevel) cache
memories. It is assumed that memory consistency is provided by a cache coherence mecha-
nism [16], which usually increases the miss ratio of accessing caches (and is otherwise not
represented in the model).

A timed Petri net model of a shared-memory bus-based multiprocessor is shown in Figure 6. It
contains models of n processors (only two are shown in Figure 6), which are copies of the
model shown in Figure 1 except for the main memory (transition Tmem) which becomes
shared memory in Figure 6. The remaining part of Figure 6 is modeling the bus that coordi-
nates accesses of processors to the shared memory.

Figure 5. A shared-memory bus-based multiprocessor.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

81

When a processor i, i ¼ 1,…, n, requests an access to shared memory, place Pri becomes
marked. If the bus is available (i.e., if place Bus is marked), the occurrence of transition Tai
indicates that processor i begins its access to shared memory. Transitions Ta1, ..., Tan consti-
tute a conflict class with a fair resolution of conflicts (i.e., all conflicting processors have the
same probability of being selected for accessing memory). In real systems, accessing the shared
bus is often based on priorities assigned to processors; such priorities could easily be
represented using inhibitor arcs in Petri nets.

Place Pmem collects memory access requests from all processors (occurrences of transitions
Tai). The end of memory access (i.e., the end of the occurrence of Tmem) is indicated by an
occurrence of transition Tei of the processor which initiated memory access. The occurrence of
Tei also returns a token to Bus, allowing another access to shared memory to be executed.

Figure 7 shows the utilization of processors and the bus as functions of the number of pro-
cessors in a shared-memory system for the values of modeling parameters shown in Table 1.

Figure 6. A timed Petri net model of bus-based shared-memory multiprocessor.

Petri Nets in Science and Engineering82

In Figure 7, the bus utilization approaches 100% for about five processors. Moreover, the
degradation of processors’ performance due to increasing waiting times for accessing the bus
(and shared memory) is well illustrated in Figure 7.

The average waiting time (in processor cycles) of accessing shared memory (i.e., the times from
requesting memory access in place Pri to granting this access by an occurrence of Tai) is shown
in Figure 8 as a function of the number of processors in the system.

Figure 8 shows that the waiting times increase almost linearly with the number of processors
when this number is greater than 5, i.e., when the bus (and shared memory) is utilized in
almost 100%.

Figure 7. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:9, h2 ¼ 0:8, ps ¼ 0:2.

Figure 8. The average waiting time for accessing shared memory as a function of the number of processors for h1 ¼ 0:9,
h2 ¼ 0:8, ps ¼ 0:2.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

83

When a processor i, i ¼ 1,…, n, requests an access to shared memory, place Pri becomes
marked. If the bus is available (i.e., if place Bus is marked), the occurrence of transition Tai
indicates that processor i begins its access to shared memory. Transitions Ta1, ..., Tan consti-
tute a conflict class with a fair resolution of conflicts (i.e., all conflicting processors have the
same probability of being selected for accessing memory). In real systems, accessing the shared
bus is often based on priorities assigned to processors; such priorities could easily be
represented using inhibitor arcs in Petri nets.

Place Pmem collects memory access requests from all processors (occurrences of transitions
Tai). The end of memory access (i.e., the end of the occurrence of Tmem) is indicated by an
occurrence of transition Tei of the processor which initiated memory access. The occurrence of
Tei also returns a token to Bus, allowing another access to shared memory to be executed.

Figure 7 shows the utilization of processors and the bus as functions of the number of pro-
cessors in a shared-memory system for the values of modeling parameters shown in Table 1.

Figure 6. A timed Petri net model of bus-based shared-memory multiprocessor.

Petri Nets in Science and Engineering82

In Figure 7, the bus utilization approaches 100% for about five processors. Moreover, the
degradation of processors’ performance due to increasing waiting times for accessing the bus
(and shared memory) is well illustrated in Figure 7.

The average waiting time (in processor cycles) of accessing shared memory (i.e., the times from
requesting memory access in place Pri to granting this access by an occurrence of Tai) is shown
in Figure 8 as a function of the number of processors in the system.

Figure 8 shows that the waiting times increase almost linearly with the number of processors
when this number is greater than 5, i.e., when the bus (and shared memory) is utilized in
almost 100%.

Figure 7. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:9, h2 ¼ 0:8, ps ¼ 0:2.

Figure 8. The average waiting time for accessing shared memory as a function of the number of processors for h1 ¼ 0:9,
h2 ¼ 0:8, ps ¼ 0:2.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

83

If the value of the second-level cache hit rate, h2, increases (and the other parameters do not
change), the number of accesses to main memory is reduced, so that the performances of
processors and the whole system improve. Figure 9 shows the utilization of processors and
the bus as functions of the number of processors in the system for h2 ¼ 0:9. It also shows that
the reduced (in comparison with Figure 7) utilization of the bus allows the increase of the
number of processors without significant degradation of their performance.

By a similar argument, reduced hit rate at the first-level cache, h1, increases the number of
accesses to the second-level cache as well as to the main memory, and this results in reduced
performance of the system. Figure 10 shows the utilization of processors and the bus as
functions of the number of processors in the system for h1 ¼ 0:8. It provides a good illustration
of the degradation of performance when compared with Figure 7.

Figure 9. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:9, h2 ¼ 0:9, ps ¼ 0:2.

Figure 10. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:8, h2 ¼ 0:8, ps ¼ 0:2.

Petri Nets in Science and Engineering84

The number of processors for which the bus is used to almost 100% can be estimated by the
following formula:

np ¼ 1þ ps1 þ 2∗ps2 þ 1� h1ð Þ∗ tc þ 1� h2ð Þ∗tmð Þ
1� h1ð Þ∗ 1� h2ð Þ∗tm : (3)

For the case shown in Figure 7, this number is:

1þ 0:1þ 0:1þ 0:1∗ 5þ 0:2∗25ð Þ
0:1∗0:2∗25

¼ 1:2þ 1:0
0:5

¼ 4:4: (4)

For the case shown in Figure 9, this value is 8.2.

There are several ways in which the number of processors can be increased in bus-based
systems without sacrificing the processors’ performance. The simplest approach is to introduce
the second bus which allows two concurrent accesses to shared memory, provided the mem-
ory is dual port (it allows two concurrent accesses). Figure 11 outlines a dual bus shared-
memory system.

Petri net model of a dual bus system is the same as in Figure 6; the only difference is the initial
marking of place Bus, which now requires two tokens to represent two concurrent accesses to
shared memory. It should be observed observed that, for a small number of processors, the
utilization of each bus in Figure 12 is one half of that in Figure 7, and also the number of
processors that can be used in such a dual bus system without degradation of their perfor-
mance is twice as large as in a single bus system (Figure 7).

The results shown in Figure 12 are very similar to those shown in Figure 9. The second bus in a
shared-memory system allows to perform two concurrent accesses to the shared memory.
From a single processor’s performance point of view, this effect is similar to reducing two

Figure 11. A dual bus shared-memory multiprocessor.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

85

If the value of the second-level cache hit rate, h2, increases (and the other parameters do not
change), the number of accesses to main memory is reduced, so that the performances of
processors and the whole system improve. Figure 9 shows the utilization of processors and
the bus as functions of the number of processors in the system for h2 ¼ 0:9. It also shows that
the reduced (in comparison with Figure 7) utilization of the bus allows the increase of the
number of processors without significant degradation of their performance.

By a similar argument, reduced hit rate at the first-level cache, h1, increases the number of
accesses to the second-level cache as well as to the main memory, and this results in reduced
performance of the system. Figure 10 shows the utilization of processors and the bus as
functions of the number of processors in the system for h1 ¼ 0:8. It provides a good illustration
of the degradation of performance when compared with Figure 7.

Figure 9. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:9, h2 ¼ 0:9, ps ¼ 0:2.

Figure 10. Processor and bus utilization as functions of the number of processors for h1 ¼ 0:8, h2 ¼ 0:8, ps ¼ 0:2.

Petri Nets in Science and Engineering84

The number of processors for which the bus is used to almost 100% can be estimated by the
following formula:

np ¼ 1þ ps1 þ 2∗ps2 þ 1� h1ð Þ∗ tc þ 1� h2ð Þ∗tmð Þ
1� h1ð Þ∗ 1� h2ð Þ∗tm : (3)

For the case shown in Figure 7, this number is:

1þ 0:1þ 0:1þ 0:1∗ 5þ 0:2∗25ð Þ
0:1∗0:2∗25

¼ 1:2þ 1:0
0:5

¼ 4:4: (4)

For the case shown in Figure 9, this value is 8.2.

There are several ways in which the number of processors can be increased in bus-based
systems without sacrificing the processors’ performance. The simplest approach is to introduce
the second bus which allows two concurrent accesses to shared memory, provided the mem-
ory is dual port (it allows two concurrent accesses). Figure 11 outlines a dual bus shared-
memory system.

Petri net model of a dual bus system is the same as in Figure 6; the only difference is the initial
marking of place Bus, which now requires two tokens to represent two concurrent accesses to
shared memory. It should be observed observed that, for a small number of processors, the
utilization of each bus in Figure 12 is one half of that in Figure 7, and also the number of
processors that can be used in such a dual bus system without degradation of their perfor-
mance is twice as large as in a single bus system (Figure 7).

The results shown in Figure 12 are very similar to those shown in Figure 9. The second bus in a
shared-memory system allows to perform two concurrent accesses to the shared memory.
From a single processor’s performance point of view, this effect is similar to reducing two

Figure 11. A dual bus shared-memory multiprocessor.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

85

times the number of accesses to the shared memory, and this is the effect of reducing two times
the miss rate for the second-level cache (which is shown in Figure 9).

If dual port memory cannot be used, the shared memory can be split into several independent
modules which can be accessed concurrently by the processors provided that the bus is also
split into sections associated with each module, with processors accessing all such sections, as
shown in Figure 13 for four independent memory modules. The main difference between a
multibus system (Figure 11) and a system with split bus is in accessing the shared memory; in
a multiple bus system, the whole shared memory is accessed by each bus, while in a split bus
system (Figure 13), each section of the bus accesses only one memory module. In the system

Figure 12. Processor and bus utilization as functions of the number of processors—dual bus system with h1 ¼ 0:9,
h2 ¼ 0:8, ps ¼ 0:2.

Figure 13. A shared-memory multiprocessor with multiple memory modules.

Petri Nets in Science and Engineering86

Fi
gu

re
14
.
P
et
ri
ne

tm
od

el
of

a
sh
ar
ed

-m
em

or
y
m
u
lt
ip
ro
ce
ss
or

w
it
h
m
u
lt
ip
le

m
em

or
y
m
od

u
le
s.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

87

times the number of accesses to the shared memory, and this is the effect of reducing two times
the miss rate for the second-level cache (which is shown in Figure 9).

If dual port memory cannot be used, the shared memory can be split into several independent
modules which can be accessed concurrently by the processors provided that the bus is also
split into sections associated with each module, with processors accessing all such sections, as
shown in Figure 13 for four independent memory modules. The main difference between a
multibus system (Figure 11) and a system with split bus is in accessing the shared memory; in
a multiple bus system, the whole shared memory is accessed by each bus, while in a split bus
system (Figure 13), each section of the bus accesses only one memory module. In the system

Figure 12. Processor and bus utilization as functions of the number of processors—dual bus system with h1 ¼ 0:9,
h2 ¼ 0:8, ps ¼ 0:2.

Figure 13. A shared-memory multiprocessor with multiple memory modules.

Petri Nets in Science and Engineering86

Fi
gu

re
14
.
P
et
ri
ne

tm
od

el
of

a
sh
ar
ed

-m
em

or
y
m
u
lt
ip
ro
ce
ss
or

w
it
h
m
u
lt
ip
le

m
em

or
y
m
od

u
le
s.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

87

shown in Figure 13, up to four (the number of memory modules) memory accesses can be
performed concurrently, but if two (or more) processors request access to the same memory
module, the requests are served one after another.

Petri net model of a system outlined in Figure 13 is shown in Figure 14 where only two
processors and two memory modules are detailed.

In Figure 14, there is a free-choice place Pri for each processor i, i ¼ 1,…, n. This free-choice
place selects the requested memory module by transitions Tij, j ¼ 1,…, 4, and forwards the
memory access request to the selected memory module (place Pij). If the selected module is
available, i.e., if place Busj is marked, the access to shared memory is initiated by the occur-
rence of Taij. When this memory access is completed, the occurrence of Teij releases the
memory modules (by returning a token to Busj) and resumes instruction execution in the
processor that requested the memory access.

If memory module is not available when it is requested, the memory access is delayed (in Pij)
until the requested module becomes available.

It is possible that more than one processor becomes waiting for the same memory module. The
selection of the processor which will get access first is random with the same probability
assigned to all waiting processors. In real systems, there is usually some priority scheme that
determines the order in which the waiting processors access the bus. Such a priority scheme
could easily be modeled if it is needed (for example, for studying the starvation effect which
can be created when the system is overloaded).

In Figure 14, the selection of memory modules is random, with the same probabilities for all
modules. If this policy is not realistic, a different memory accessing policy can be implemented,

Figure 15. Processor and bus utilization as functions of the number of processors—system with four memory modules
and h1 ¼ 0:9, h2 ¼ 0:8, ps ¼ 0:2.

Petri Nets in Science and Engineering88

for example, the probabilities of accessing consecutive memory modules by each processor
could be used to model sequential processing of large arrays, and so on.

Figure 15 shows the utilization of processors and busses as functions of the number of pro-
cessors in a system outlined in Figure 13.

In Figure 15, even for 20 processors, the average utilization of the bus is close to 80%, so the
system can accommodate more processors.

5. Concluding remarks

The chapter uses timed Petri nets to model shared-memory bus-based architectures at the level of
instruction execution to study the effects of modeling parameters on the performance of the
system. Themodels are rather simple with straightforward representation of modeling parameters.

Performance results presented in this chapter have been obtained by the simulation of devel-
oped Petri net models. However, the model shown in Figure 7 has only 10 states, so its
analytical solution (for different values of modeling parameters) can be easily obtained and
compared with simulation results to verify their accuracy. Table 2 shows such a comparison of
processor utilization for several combinations of parameters h1 and h2. In all cases, the
simulation-based results are very close to the analytical ones.

The models of multiprocessor systems are usually composed of many copies of the same
submodel of a processor and possibly other elements of the system. Colored Petri nets [17]
can significantly simplify such models by eliminating copies of similar subsystems. Analysis of
colored Petri nets is, however, much more complex than that of ordinary Petri nets.

Finally, it should be noted that the performance of real-life multiprocessor systems very rarely
can be described by a set of parameters that remain stable for any significant period of time.
The basic parameters like the hit rates depend upon the executed programs as well as their
data, and can change very quickly in a significant way. Consequently, the characteristics
presented in this chapter can only be used as some insight into the complex behavior of
multiprocessor systems.

h1 h2 Simulated results Analytical results

0.8 0.8 0.3341 0.3333

0.8 0.9 0.3846 0.3846

0.9 0.8 0.4763 0.4762

0.9 0.9 0.5255 0.5263

Table 2. A comparison of simulation and analytical results.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

89

shown in Figure 13, up to four (the number of memory modules) memory accesses can be
performed concurrently, but if two (or more) processors request access to the same memory
module, the requests are served one after another.

Petri net model of a system outlined in Figure 13 is shown in Figure 14 where only two
processors and two memory modules are detailed.

In Figure 14, there is a free-choice place Pri for each processor i, i ¼ 1,…, n. This free-choice
place selects the requested memory module by transitions Tij, j ¼ 1,…, 4, and forwards the
memory access request to the selected memory module (place Pij). If the selected module is
available, i.e., if place Busj is marked, the access to shared memory is initiated by the occur-
rence of Taij. When this memory access is completed, the occurrence of Teij releases the
memory modules (by returning a token to Busj) and resumes instruction execution in the
processor that requested the memory access.

If memory module is not available when it is requested, the memory access is delayed (in Pij)
until the requested module becomes available.

It is possible that more than one processor becomes waiting for the same memory module. The
selection of the processor which will get access first is random with the same probability
assigned to all waiting processors. In real systems, there is usually some priority scheme that
determines the order in which the waiting processors access the bus. Such a priority scheme
could easily be modeled if it is needed (for example, for studying the starvation effect which
can be created when the system is overloaded).

In Figure 14, the selection of memory modules is random, with the same probabilities for all
modules. If this policy is not realistic, a different memory accessing policy can be implemented,

Figure 15. Processor and bus utilization as functions of the number of processors—system with four memory modules
and h1 ¼ 0:9, h2 ¼ 0:8, ps ¼ 0:2.

Petri Nets in Science and Engineering88

for example, the probabilities of accessing consecutive memory modules by each processor
could be used to model sequential processing of large arrays, and so on.

Figure 15 shows the utilization of processors and busses as functions of the number of pro-
cessors in a system outlined in Figure 13.

In Figure 15, even for 20 processors, the average utilization of the bus is close to 80%, so the
system can accommodate more processors.

5. Concluding remarks

The chapter uses timed Petri nets to model shared-memory bus-based architectures at the level of
instruction execution to study the effects of modeling parameters on the performance of the
system. Themodels are rather simple with straightforward representation of modeling parameters.

Performance results presented in this chapter have been obtained by the simulation of devel-
oped Petri net models. However, the model shown in Figure 7 has only 10 states, so its
analytical solution (for different values of modeling parameters) can be easily obtained and
compared with simulation results to verify their accuracy. Table 2 shows such a comparison of
processor utilization for several combinations of parameters h1 and h2. In all cases, the
simulation-based results are very close to the analytical ones.

The models of multiprocessor systems are usually composed of many copies of the same
submodel of a processor and possibly other elements of the system. Colored Petri nets [17]
can significantly simplify such models by eliminating copies of similar subsystems. Analysis of
colored Petri nets is, however, much more complex than that of ordinary Petri nets.

Finally, it should be noted that the performance of real-life multiprocessor systems very rarely
can be described by a set of parameters that remain stable for any significant period of time.
The basic parameters like the hit rates depend upon the executed programs as well as their
data, and can change very quickly in a significant way. Consequently, the characteristics
presented in this chapter can only be used as some insight into the complex behavior of
multiprocessor systems.

h1 h2 Simulated results Analytical results

0.8 0.8 0.3341 0.3333

0.8 0.9 0.3846 0.3846

0.9 0.8 0.4763 0.4762

0.9 0.9 0.5255 0.5263

Table 2. A comparison of simulation and analytical results.

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

89

Author details

Wlodek M. Zuberek

Address all correspondence to: wlodek@mun.ca

Department of Computer Science, Memorial University, Canada

References

[1] Hamilton S. Taking Moore’s law into the next century. IEEE Computer. 1999;32(1):43-48

[2] Patterson DA, Hennessy JL. Computer Architecture—A Quantitative Approach. 4th ed.
San Mateo, CA: Morgan Kaufmann; 2006

[3] Wilkes MV. The memory gap and the future of high-performance memories. ACM Archi-
tecture News. 2001;29(1):2-7

[4] Mutlu O, Stark J, Wilkerson C, Patt YN. Runahead execution: An effective alternative to
large instruction windows. IEEE Micro. 2003;23(6):20-25

[5] Murata T. Petri nets: Properties, analysis and applications. Proceedings of IEEE. 1989;
77(4):541-580

[6] Reisig W. Petri nets—An introduction (EATCS Monographs on Theoretical Computer
Science. Vol. 4). New York, NY: Springer-Verlag; 1985

[7] Popova-Zeugmann L. Time and Petri Nets. Berlin, Heidelberg: Springer-Verlag; 2013

[8] Zuberek WM. Timed petri nets—Definitions, properties and applications. Microelectron-
ics and Reliability (Special Issue on Petri Nets and Related Graph Models). 1991;31(4):627-
644

[9] Allen AA. Probability, Statistics and Queueing Theory with Computer Science Applica-
tions. 2nd ed. San Diego, CA: Academic Press; 1991

[10] Jain R. The Art of Computer Systems Performance Analysis. New York, NY: Wiley Inter-
science; 1991

[11] Pooch UW, Wall JA. Discrete Event Simulation. Boca Raton, FL: CRC Press; 1993

[12] Zuberek WM. D-timed petri nets and modelling of timeouts and protocols. Transactions
of the Society for Computer Simulation. 1987;4(4):331-357

[13] Zuberek WM. M-timed petri nets, priorities, preemptions, and performance evaluation of
systems. In: Advances in Petri Nets 1985 (LNCS 222). Berlin, Heidelberg: Springer-Verlag;
1986. pp. 478-498

[14] Ramamoorthy CV, Li HF. Pipeline architecture. ACM Computing Surveys. 1977;9(1):61-102

Petri Nets in Science and Engineering90

[15] Zuberek WM. Modeling and analysis of simultaneous multithreading. In: Proceedings of
the 14th International Conference on Analytical and Stochastic Modeling Techniques and
Applications (ASMTA-07), a part of the 21st European Conference on Modeling and
Simulation (ECMS’07); Prague, Czech Republic; 2007. pp. 115-120

[16] Suh T, Lee H-HS, Blough DM. Integrating cache coherence protocols for heterogeneous
multiprocessor system. Part 2. IEEE Micro. 2004;24(5):55-69

[17] Jensen K, Kristensen LM. Coloured Petri Nets—Modeling and Validation of Concurrent
Systems. Berlin, Heidelberg: Springer-Verlag; 2009

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

91

Author details

Wlodek M. Zuberek

Address all correspondence to: wlodek@mun.ca

Department of Computer Science, Memorial University, Canada

References

[1] Hamilton S. Taking Moore’s law into the next century. IEEE Computer. 1999;32(1):43-48

[2] Patterson DA, Hennessy JL. Computer Architecture—A Quantitative Approach. 4th ed.
San Mateo, CA: Morgan Kaufmann; 2006

[3] Wilkes MV. The memory gap and the future of high-performance memories. ACM Archi-
tecture News. 2001;29(1):2-7

[4] Mutlu O, Stark J, Wilkerson C, Patt YN. Runahead execution: An effective alternative to
large instruction windows. IEEE Micro. 2003;23(6):20-25

[5] Murata T. Petri nets: Properties, analysis and applications. Proceedings of IEEE. 1989;
77(4):541-580

[6] Reisig W. Petri nets—An introduction (EATCS Monographs on Theoretical Computer
Science. Vol. 4). New York, NY: Springer-Verlag; 1985

[7] Popova-Zeugmann L. Time and Petri Nets. Berlin, Heidelberg: Springer-Verlag; 2013

[8] Zuberek WM. Timed petri nets—Definitions, properties and applications. Microelectron-
ics and Reliability (Special Issue on Petri Nets and Related Graph Models). 1991;31(4):627-
644

[9] Allen AA. Probability, Statistics and Queueing Theory with Computer Science Applica-
tions. 2nd ed. San Diego, CA: Academic Press; 1991

[10] Jain R. The Art of Computer Systems Performance Analysis. New York, NY: Wiley Inter-
science; 1991

[11] Pooch UW, Wall JA. Discrete Event Simulation. Boca Raton, FL: CRC Press; 1993

[12] Zuberek WM. D-timed petri nets and modelling of timeouts and protocols. Transactions
of the Society for Computer Simulation. 1987;4(4):331-357

[13] Zuberek WM. M-timed petri nets, priorities, preemptions, and performance evaluation of
systems. In: Advances in Petri Nets 1985 (LNCS 222). Berlin, Heidelberg: Springer-Verlag;
1986. pp. 478-498

[14] Ramamoorthy CV, Li HF. Pipeline architecture. ACM Computing Surveys. 1977;9(1):61-102

Petri Nets in Science and Engineering90

[15] Zuberek WM. Modeling and analysis of simultaneous multithreading. In: Proceedings of
the 14th International Conference on Analytical and Stochastic Modeling Techniques and
Applications (ASMTA-07), a part of the 21st European Conference on Modeling and
Simulation (ECMS’07); Prague, Czech Republic; 2007. pp. 115-120

[16] Suh T, Lee H-HS, Blough DM. Integrating cache coherence protocols for heterogeneous
multiprocessor system. Part 2. IEEE Micro. 2004;24(5):55-69

[17] Jensen K, Kristensen LM. Coloured Petri Nets—Modeling and Validation of Concurrent
Systems. Berlin, Heidelberg: Springer-Verlag; 2009

Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
http://dx.doi.org/10.5772/intechopen.75589

91

Chapter 6

Supervisory Control Systems: Theory and Industrial
Applications

Hamdi Awad

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75166

Provisional chapter

Supervisory Control Systems: Theory and Industrial
Applications

Hamdi Awad

Additional information is available at the end of the chapter

Abstract

Hybrid control system is an exciting field of research where it contains two distinct types
of systems: one with continuous dynamics continuous variable dynamic system and the
other with discrete dynamics discrete event dynamic system, that interact with each other.
The research in the area of hybrid control can be categorized into two areas: one deals
with the conventional control systems, and the other deals with the decision making
systems. The former addresses the control functions at the low level (field level). The latter
addresses the modeling, analysis, and design at the higher level found in the supervision,
coordination and management levels. The study of hybrid systems is central in designing
intelligent hybrid control systems with high degree of autonomy and it is essential in
designing discrete event supervisory controllers for continuous systems.

Keywords: discrete event systems, supervisory control systems, petri nets, embedded
systems, industrial processes

1. Introduction

In general automation systems’ structure can be categorized into six levels: Sensor/Actuator
Level, Machine/Controller Level, Process Automation Level, Operation Unit Level, Plant
Level. Trends are making this structure possible and desirable to create streamlined three-
level automation systems or even to collapse it [1]. This is due the trend to create embedded
control systems, cyber physical systems, networking, and discrete hybrid control systems. The
trend to reduce machine size and cost while increasing productivity using nanotechnology,
requires new approaches to control systems [2]. Thanks to the increased reliability of industrial
PC technology, traditional rack-based PLCs can be replaced with more powerful PC-based

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75166

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 6

Supervisory Control Systems: Theory and Industrial
Applications

Hamdi Awad

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75166

Provisional chapter

Supervisory Control Systems: Theory and Industrial
Applications

Hamdi Awad

Additional information is available at the end of the chapter

Abstract

Hybrid control system is an exciting field of research where it contains two distinct types
of systems: one with continuous dynamics continuous variable dynamic system and the
other with discrete dynamics discrete event dynamic system, that interact with each other.
The research in the area of hybrid control can be categorized into two areas: one deals
with the conventional control systems, and the other deals with the decision making
systems. The former addresses the control functions at the low level (field level). The latter
addresses the modeling, analysis, and design at the higher level found in the supervision,
coordination and management levels. The study of hybrid systems is central in designing
intelligent hybrid control systems with high degree of autonomy and it is essential in
designing discrete event supervisory controllers for continuous systems.

Keywords: discrete event systems, supervisory control systems, petri nets, embedded
systems, industrial processes

1. Introduction

In general automation systems’ structure can be categorized into six levels: Sensor/Actuator
Level, Machine/Controller Level, Process Automation Level, Operation Unit Level, Plant
Level. Trends are making this structure possible and desirable to create streamlined three-
level automation systems or even to collapse it [1]. This is due the trend to create embedded
control systems, cyber physical systems, networking, and discrete hybrid control systems. The
trend to reduce machine size and cost while increasing productivity using nanotechnology,
requires new approaches to control systems [2]. Thanks to the increased reliability of industrial
PC technology, traditional rack-based PLCs can be replaced with more powerful PC-based

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75166

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

control systems. While Industrial PC’s provide the highest performance and control capacity,
new generations of PC technology based on open embedded operating systems, combine the
functions of a PLC and an operator panel in one unit which is applicable to smaller scale
applications.

The development of complex man-made systems that perform complicated and interacted
tasks, has been accompanied by an ever increasing demand for even more sophisticated
modeling and control schemes. The need for a systematic and mathematical approach to
analysis, design, and control of complex large scale systems is highly demanded. In fact, In
operations research, for example, researchers have been interested for a long time in systematic
methods to deal with large-scale systems [3–6]. However, control engineers have taken up this
challenge in recent years to develop intelligent models for hybrid dynamical systems [7].

The study of hybrid systems is central in designing intelligent hybrid control systems with
high degree of autonomy. Such systems include discrete and continuous activities [8]. The field
of discrete vent systems (DES) is relatively a new research area that combines different formal-
isms, methodologies and tools from Supervisory control theory, artificial intelligence (AI) and
operations research (OR) [9]. The domains of DES are: manufacturing automation, communi-
cation protocols, robotics, process control, nuclear reactors, space exploration systems, aircraft
control systems, fault diagnosis, and refinery systems [5, 10, 11]. Historically, DES were intro-
duced in the early 1980s, in the field of chemical engineering. They quickly gained popularity
in modeling and supervision of hybrid systems [12, 13].

The design of supervisory controllers for discrete event systems has received considerable
attention in research centers [14–16]. There are methods for designing supervisors based on
automata models [17], however, they need exhaustive search over the system states that makes
them impractical for systems with large number of states, as the number of states increases the
state space explosion problem arises [18, 19]. One way of dealing with these problems is to
model discrete event systems with Petri Nets (PNs). In this way the state explosion problem
can be avoided. Some recent contributions on the Petri net based supervisory control can be
found in [20, 21]. PN models are normally more compact compared with automata-based
models and are better suited for the representation of discrete event systems due to its math-
ematical manipulation and graphical representation [22–24]. Timed Petri nets are common
used for industrial control systems [14].

The main objective of this chapter is to explore and step by step construct a supervisory control
scheme in the field of DES modeling and control. It also shows how the continuous activities;
temperature control, pressure control, etc. are represented by few places resided in the embed-
ded PN models. These objectives can be achieved as follows.

1.1. Investigation of DES modeling and supervision

Types of events that may occur in discrete event systems are controllable, and uncontrollable
events (sensors). The latter arises a severe problem when the plant works under control. It
cannot be inhibited from firing by the supervisor. Embedded supervisors should be developed
to deal with such problems.

Petri Nets in Science and Engineering94

1.2. Selection of the best modeling formalism

There are many tools to develop DES models e.g. finite state automata, and Petri nets. The
latter has a good descriptive power compared with the former. Petri nets models are more
compact than automata-based models for representing DES.

1.3. Developing supervisory control scheme

There are two types of supervisors, one is mapping supervisors, and the other is compiled
supervisors. The latter has two notable features, its computational demand is small, and its
structure can be reconfigured online. The developed supervisors should perform resource
allocation, coordination, and deadlock avoidance tasks at the higher level of complex hybrid
industrial systems. Ordinary and timed Petri nets are employed in this chapter to structure
embedded supervisory control models for industrial processes.

1.4. Testing the proposed scheme

Chemical batch processes and kernel railroad crossing system were employed for testing the
proposed control scheme; they have resources scarce, forbidden states, and deadlock prob-
lems. This chapter structures embedded supervisory control scheme that deals with the con-
tinuous activities at the lower level, as well as the discrete ones at the higher level in efficient
manner. The continuous activities can be modeled and supervised using intelligent control
schemes.

2. Supervisory control systems

This section gives an introduction to the hybrid nature of complex systems as well as their
hierarchical structure. It also includes a brief overview of relative work in the area of DES
supervision using finite state automata and Petri nets. A comparison between Petri nets and
finite state automata as modeling formalisms for the purpose of supervisor synthesis is given
in this section.

2.1. Investigation of DES modeling and supervision

Discrete event systems are useful when dealing with dynamic systems that are not fully
modeled by classical models, such as differential or difference equations. It is noted that while
differential and difference equation models evolve with time, a discrete event system evolves
with the occurrence of events. An comprehensive literature on discrete event systems has
appeared in the last 30 years, and their study continues to be an area of ongoing research.
DED combines different formalisms, methodologies and tools from control theory (CT), artifi-
cial intelligence (AI), and operations research (OR) as shown in Figure 1 [9]. These methods
facilitate the modeling of continuous and discrete activities as a unified approach.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

95

control systems. While Industrial PC’s provide the highest performance and control capacity,
new generations of PC technology based on open embedded operating systems, combine the
functions of a PLC and an operator panel in one unit which is applicable to smaller scale
applications.

The development of complex man-made systems that perform complicated and interacted
tasks, has been accompanied by an ever increasing demand for even more sophisticated
modeling and control schemes. The need for a systematic and mathematical approach to
analysis, design, and control of complex large scale systems is highly demanded. In fact, In
operations research, for example, researchers have been interested for a long time in systematic
methods to deal with large-scale systems [3–6]. However, control engineers have taken up this
challenge in recent years to develop intelligent models for hybrid dynamical systems [7].

The study of hybrid systems is central in designing intelligent hybrid control systems with
high degree of autonomy. Such systems include discrete and continuous activities [8]. The field
of discrete vent systems (DES) is relatively a new research area that combines different formal-
isms, methodologies and tools from Supervisory control theory, artificial intelligence (AI) and
operations research (OR) [9]. The domains of DES are: manufacturing automation, communi-
cation protocols, robotics, process control, nuclear reactors, space exploration systems, aircraft
control systems, fault diagnosis, and refinery systems [5, 10, 11]. Historically, DES were intro-
duced in the early 1980s, in the field of chemical engineering. They quickly gained popularity
in modeling and supervision of hybrid systems [12, 13].

The design of supervisory controllers for discrete event systems has received considerable
attention in research centers [14–16]. There are methods for designing supervisors based on
automata models [17], however, they need exhaustive search over the system states that makes
them impractical for systems with large number of states, as the number of states increases the
state space explosion problem arises [18, 19]. One way of dealing with these problems is to
model discrete event systems with Petri Nets (PNs). In this way the state explosion problem
can be avoided. Some recent contributions on the Petri net based supervisory control can be
found in [20, 21]. PN models are normally more compact compared with automata-based
models and are better suited for the representation of discrete event systems due to its math-
ematical manipulation and graphical representation [22–24]. Timed Petri nets are common
used for industrial control systems [14].

The main objective of this chapter is to explore and step by step construct a supervisory control
scheme in the field of DES modeling and control. It also shows how the continuous activities;
temperature control, pressure control, etc. are represented by few places resided in the embed-
ded PN models. These objectives can be achieved as follows.

1.1. Investigation of DES modeling and supervision

Types of events that may occur in discrete event systems are controllable, and uncontrollable
events (sensors). The latter arises a severe problem when the plant works under control. It
cannot be inhibited from firing by the supervisor. Embedded supervisors should be developed
to deal with such problems.

Petri Nets in Science and Engineering94

1.2. Selection of the best modeling formalism

There are many tools to develop DES models e.g. finite state automata, and Petri nets. The
latter has a good descriptive power compared with the former. Petri nets models are more
compact than automata-based models for representing DES.

1.3. Developing supervisory control scheme

There are two types of supervisors, one is mapping supervisors, and the other is compiled
supervisors. The latter has two notable features, its computational demand is small, and its
structure can be reconfigured online. The developed supervisors should perform resource
allocation, coordination, and deadlock avoidance tasks at the higher level of complex hybrid
industrial systems. Ordinary and timed Petri nets are employed in this chapter to structure
embedded supervisory control models for industrial processes.

1.4. Testing the proposed scheme

Chemical batch processes and kernel railroad crossing system were employed for testing the
proposed control scheme; they have resources scarce, forbidden states, and deadlock prob-
lems. This chapter structures embedded supervisory control scheme that deals with the con-
tinuous activities at the lower level, as well as the discrete ones at the higher level in efficient
manner. The continuous activities can be modeled and supervised using intelligent control
schemes.

2. Supervisory control systems

This section gives an introduction to the hybrid nature of complex systems as well as their
hierarchical structure. It also includes a brief overview of relative work in the area of DES
supervision using finite state automata and Petri nets. A comparison between Petri nets and
finite state automata as modeling formalisms for the purpose of supervisor synthesis is given
in this section.

2.1. Investigation of DES modeling and supervision

Discrete event systems are useful when dealing with dynamic systems that are not fully
modeled by classical models, such as differential or difference equations. It is noted that while
differential and difference equation models evolve with time, a discrete event system evolves
with the occurrence of events. An comprehensive literature on discrete event systems has
appeared in the last 30 years, and their study continues to be an area of ongoing research.
DED combines different formalisms, methodologies and tools from control theory (CT), artifi-
cial intelligence (AI), and operations research (OR) as shown in Figure 1 [9]. These methods
facilitate the modeling of continuous and discrete activities as a unified approach.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

95

Systemmodeling is an important phase in the supervisory system synthesis procedure. There is a
set of methods for designing supervisors based on automata system models [16, 17]. The disad-
vantage of these methods is that they need a huge search over the system states as mentioned in
Section 1. One way of dealing with these problems is to model discrete event systems with Petri
nets (PNs). Petri net-based solutions have several advantages over finite state automata. These
advantages recommends the Petri nets to be used in this chapter. They are listed as follows.

• The states of a Petri net are represented by the possible markings and not by the places.
Thus Petri nets give a more compact description.

• The plant and the specifications can be represented graphically in an easily understood
format using Petri nets instead of using textual descriptions or mathematical notations,
which are difficult to understand.

• Petri net models can be used for the analysis of their properties, performance evaluation
and the systematic construction of discrete event supervisors [20, 22].

• The Petri net model allows for the simultaneous occurrence of multiple events.

2.2. Structuring a supervisory control scheme

This subsection shows the use of Petri nets to design a supervisor, including its synthesis tech-
niques, methods of handling uncontrollable and unobservable transitions within the plant struc-
ture. The supervision based on place invariants method is employed in this chapter to build an
embedded supervisory control systems. In this method, the control objective is to force the process
to obey linear constraints in the form of linear inequalities. The ideas of developing such supervi-
sors were borrowed from [21]. The developed supervisory control scheme can be employed to
control the processes that have controllable and uncontrollable transitions [25]. Using an embed-
ded Petri net structure, the developed scheme is easy to implement and its computational
demand is relatively small. The design method has numerical properties that make it particularly
appealing for large scale systems. Mathematically, the developed scheme can be detailed as
follows.

Figure 1. DES: the AI-OR-CT intersection.

Petri Nets in Science and Engineering96

A place invariant is an integer vector x that satisfies [21, 25]:

xTμ ¼ xTμ0 (1)

for all reachable marking μ. Thus xTμ is constant for all reachable states if x is a place invariant.
Place invariants can be computed by finding solutions to Eq. (2).

xTD ¼ 0 (2)

Based on the method of place invariants, it is possible to enforce a set of constraints on the
plant state μp. The plant state is represented by an n� 1 marking vector of non-negative

integers, where each vector component is equal to the marking of the corresponding place in
the Petri net model of the plant. The supervisory control goal is to restrict the reachable
marking vectors of a plant μp as:

Lμp ≤B (3)

where L is a nc � n integer matrix (L∈Ζnc�n), and B is a nc � 1 integer vector (B∈Ζnc), and nc is
the number of constraints. After adding the slack variables, constraint define in Eq. (3) becomes:

Lμp þ μc ¼ B (4)

Each place invariant defined in Eq. (6) must satisfy Eq. (2) such that:

LDp þDc ¼ 0 (5)

The matrix Dc contains the arcs that connect the controller places to the transitions of the process
net. So, given the Petri net model of the processDp and the constraints, the Petri net controllerDc

is constructed see [25].

DC ¼ �LDP (6)

If the initial marking defined in Eq. (7) does not violate the given set of constraints, these
constraints can be enforced by a supervisor with the incidence matrix Dc [21].

μC0 ¼ B� Lμp0 (7)

where μp0 is the n� 1 initial plant marking vector of non-negative integers. The supervisor is a

Petri net with incidence matrix Dc made up of the process net’s transitions and a separate set of
places. With the addition of supervisor places the overall system is given by.

D ¼ Dp

DC

� �
μ ¼ μp

μC

� �
(8)

This method admits the structure of the process net as well as a set of specifications. This is
because the constraints on these transitions is a subset of the specifications. Supervisors are used
to insure that the behavior of the plant does not violate a set of constraints defined in Eq. (3)
under a variety of operating conditions. Every single constraint is transformed to a marking

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

97

Systemmodeling is an important phase in the supervisory system synthesis procedure. There is a
set of methods for designing supervisors based on automata system models [16, 17]. The disad-
vantage of these methods is that they need a huge search over the system states as mentioned in
Section 1. One way of dealing with these problems is to model discrete event systems with Petri
nets (PNs). Petri net-based solutions have several advantages over finite state automata. These
advantages recommends the Petri nets to be used in this chapter. They are listed as follows.

• The states of a Petri net are represented by the possible markings and not by the places.
Thus Petri nets give a more compact description.

• The plant and the specifications can be represented graphically in an easily understood
format using Petri nets instead of using textual descriptions or mathematical notations,
which are difficult to understand.

• Petri net models can be used for the analysis of their properties, performance evaluation
and the systematic construction of discrete event supervisors [20, 22].

• The Petri net model allows for the simultaneous occurrence of multiple events.

2.2. Structuring a supervisory control scheme

This subsection shows the use of Petri nets to design a supervisor, including its synthesis tech-
niques, methods of handling uncontrollable and unobservable transitions within the plant struc-
ture. The supervision based on place invariants method is employed in this chapter to build an
embedded supervisory control systems. In this method, the control objective is to force the process
to obey linear constraints in the form of linear inequalities. The ideas of developing such supervi-
sors were borrowed from [21]. The developed supervisory control scheme can be employed to
control the processes that have controllable and uncontrollable transitions [25]. Using an embed-
ded Petri net structure, the developed scheme is easy to implement and its computational
demand is relatively small. The design method has numerical properties that make it particularly
appealing for large scale systems. Mathematically, the developed scheme can be detailed as
follows.

Figure 1. DES: the AI-OR-CT intersection.

Petri Nets in Science and Engineering96

A place invariant is an integer vector x that satisfies [21, 25]:

xTμ ¼ xTμ0 (1)

for all reachable marking μ. Thus xTμ is constant for all reachable states if x is a place invariant.
Place invariants can be computed by finding solutions to Eq. (2).

xTD ¼ 0 (2)

Based on the method of place invariants, it is possible to enforce a set of constraints on the
plant state μp. The plant state is represented by an n� 1 marking vector of non-negative

integers, where each vector component is equal to the marking of the corresponding place in
the Petri net model of the plant. The supervisory control goal is to restrict the reachable
marking vectors of a plant μp as:

Lμp ≤B (3)

where L is a nc � n integer matrix (L∈Ζnc�n), and B is a nc � 1 integer vector (B∈Ζnc), and nc is
the number of constraints. After adding the slack variables, constraint define in Eq. (3) becomes:

Lμp þ μc ¼ B (4)

Each place invariant defined in Eq. (6) must satisfy Eq. (2) such that:

LDp þDc ¼ 0 (5)

The matrix Dc contains the arcs that connect the controller places to the transitions of the process
net. So, given the Petri net model of the processDp and the constraints, the Petri net controllerDc

is constructed see [25].

DC ¼ �LDP (6)

If the initial marking defined in Eq. (7) does not violate the given set of constraints, these
constraints can be enforced by a supervisor with the incidence matrix Dc [21].

μC0 ¼ B� Lμp0 (7)

where μp0 is the n� 1 initial plant marking vector of non-negative integers. The supervisor is a

Petri net with incidence matrix Dc made up of the process net’s transitions and a separate set of
places. With the addition of supervisor places the overall system is given by.

D ¼ Dp

DC

� �
μ ¼ μp

μC

� �
(8)

This method admits the structure of the process net as well as a set of specifications. This is
because the constraints on these transitions is a subset of the specifications. Supervisors are used
to insure that the behavior of the plant does not violate a set of constraints defined in Eq. (3)
under a variety of operating conditions. Every single constraint is transformed to a marking

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

97

invariant that corresponds to a place invariant of the supervised system. The regulatory actions
of the supervisor are based on observations of the plant state, resulting in feedback control. More
details about the P-invariant-based supervisory control schemes can be found in [17, 21, 25].

2.3. Step by step developing P-invariant-based supervisory control scheme

The most common examples of hybrid systems are batch processes which are characterized by
combination of discrete and continuous dynamics [17, 26]. Batch processes are currently used
in the chemical and food process industries. A comprehensive model of batch systems has to
include discrete event aspects as well as continuous ones. As a consequence, their automation
and optimization pose difficult issues mainly because it is necessary to operate concurrently
with continuous and discrete models.

Batch plants consist of many transport resources (transporters) like valves and pipes, and
processing resources (processors) like mixing tanks, batch reactor vessels, and other container
like units [27–29]. Transporters and processors are involved in transforming a batch from raw
materials to final products.

The main problems inherent to the modeling and supervision of batch processes are:

• The hybrid nature of the process. State variables like the tank level or the pump speed are
continuous, others like the on-off valves, are discrete-state components. Moreover, the
whole process behaves as a cycle of discrete events.

• The variety of knowledge. Some elements of the process can be described by physical
equations, e.g. the tank level, and others by experimental models, e.g. the behavior of the
pump described by a transfer function.

The event driven part of a batch plant is modeled using Petri nets. The most appropriate
method in batch plants modeling is the Petri net Bottom-up synthesis method [30, 31], where
plants in process industries generally exhibit less flexible structure than manufacturing pro-
cesses and the individual process units are well defined and standardized [29].

This section uses the bottom-up approach to Petri net modeling of the chemical batch pro-
cesses. It also employs the P-invariant supervisory control scheme described in Section 2.2 to
structure an embedded PN-supervisory control model of the batch process.

2.3.1. Example 1: a simple batch plant

This process used to illustrate the idea of supervisor design for the purpose of resource
allocation for two process lines chemical process shown in Figure 2.

In this figure, two mixing tanks shared the same supply tank and only one tank can be filled at
a time. Based on the receipt given in Table 1, using Petri net tool ver. 2.1 [33] the PN model of
the two individual process lines shown in Figure 2 is constructed as depicted in Figure 3. This
model is structured using the bottom-up synthesis method [31].

In this sample, the places Pm3 are corresponding to the outlet valve of the supply tank. The
invariant-based supervision discussed in Section 2.2 is employed for the purpose of supervisor

Petri Nets in Science and Engineering98

synthesis. This is particularly interesting, because the resulting supervisory mechanism is
computed efficiently. All transitions are assumed to be controllable.

It is clear that, if transitions Tma1 and Tmb1 are fired, the place Pm3 contains two tokens and
therefore the Petri net model is not safe. The safeness of the place Pm3 is required, because it
represents the operation of opening and closing the outlet valve of the supply tank. The double-
booking problem should be avoided in this case, otherwise, the situation is considered as a
malfunction. To overcome this problem, the supervisor has to be designed to co-ordinate the
two mixers in such a way that only one will be filled at a time. This requirement is written as:

μm3 ≤ 1 (9)

Figure 2. Batch process cell.

Place Associated action

Pm1 Process ready

Pm2 Open the inlet valve of the mixing tank

Pm3 Open the valve of supply tank

Pm4 Stir the content of mixing tank

Pm5 Discharge the mixing tank (open the outlet valve)

Transition Associated event

Tm1 Start a new batch

Tm2 Mixing tank is filled

Tm3 Duration of mixing operation is vanished

Tm4 Empty the mixing tank

Table 1. Places and transitions for each submodel of Figure 3.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

99

invariant that corresponds to a place invariant of the supervised system. The regulatory actions
of the supervisor are based on observations of the plant state, resulting in feedback control. More
details about the P-invariant-based supervisory control schemes can be found in [17, 21, 25].

2.3. Step by step developing P-invariant-based supervisory control scheme

The most common examples of hybrid systems are batch processes which are characterized by
combination of discrete and continuous dynamics [17, 26]. Batch processes are currently used
in the chemical and food process industries. A comprehensive model of batch systems has to
include discrete event aspects as well as continuous ones. As a consequence, their automation
and optimization pose difficult issues mainly because it is necessary to operate concurrently
with continuous and discrete models.

Batch plants consist of many transport resources (transporters) like valves and pipes, and
processing resources (processors) like mixing tanks, batch reactor vessels, and other container
like units [27–29]. Transporters and processors are involved in transforming a batch from raw
materials to final products.

The main problems inherent to the modeling and supervision of batch processes are:

• The hybrid nature of the process. State variables like the tank level or the pump speed are
continuous, others like the on-off valves, are discrete-state components. Moreover, the
whole process behaves as a cycle of discrete events.

• The variety of knowledge. Some elements of the process can be described by physical
equations, e.g. the tank level, and others by experimental models, e.g. the behavior of the
pump described by a transfer function.

The event driven part of a batch plant is modeled using Petri nets. The most appropriate
method in batch plants modeling is the Petri net Bottom-up synthesis method [30, 31], where
plants in process industries generally exhibit less flexible structure than manufacturing pro-
cesses and the individual process units are well defined and standardized [29].

This section uses the bottom-up approach to Petri net modeling of the chemical batch pro-
cesses. It also employs the P-invariant supervisory control scheme described in Section 2.2 to
structure an embedded PN-supervisory control model of the batch process.

2.3.1. Example 1: a simple batch plant

This process used to illustrate the idea of supervisor design for the purpose of resource
allocation for two process lines chemical process shown in Figure 2.

In this figure, two mixing tanks shared the same supply tank and only one tank can be filled at
a time. Based on the receipt given in Table 1, using Petri net tool ver. 2.1 [33] the PN model of
the two individual process lines shown in Figure 2 is constructed as depicted in Figure 3. This
model is structured using the bottom-up synthesis method [31].

In this sample, the places Pm3 are corresponding to the outlet valve of the supply tank. The
invariant-based supervision discussed in Section 2.2 is employed for the purpose of supervisor

Petri Nets in Science and Engineering98

synthesis. This is particularly interesting, because the resulting supervisory mechanism is
computed efficiently. All transitions are assumed to be controllable.

It is clear that, if transitions Tma1 and Tmb1 are fired, the place Pm3 contains two tokens and
therefore the Petri net model is not safe. The safeness of the place Pm3 is required, because it
represents the operation of opening and closing the outlet valve of the supply tank. The double-
booking problem should be avoided in this case, otherwise, the situation is considered as a
malfunction. To overcome this problem, the supervisor has to be designed to co-ordinate the
two mixers in such a way that only one will be filled at a time. This requirement is written as:

μm3 ≤ 1 (9)

Figure 2. Batch process cell.

Place Associated action

Pm1 Process ready

Pm2 Open the inlet valve of the mixing tank

Pm3 Open the valve of supply tank

Pm4 Stir the content of mixing tank

Pm5 Discharge the mixing tank (open the outlet valve)

Transition Associated event

Tm1 Start a new batch

Tm2 Mixing tank is filled

Tm3 Duration of mixing operation is vanished

Tm4 Empty the mixing tank

Table 1. Places and transitions for each submodel of Figure 3.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

99

where μ3 is the marking vector component that corresponds to place Pm3. The requirement can
be easily transformed to the form Eq. (6) with the plant marking vector being:

μp ¼ μma1 μma2 μm3 μma4 μma5 μmb1 μmb2 μmb4 μmb5

� �T

μp0 ¼ 1 0 0 0 0 1 0 0 0½ �T , L ¼ 0 0 1 0 0 0 0 0 0½ � and B ¼ 1.

Given the incident matrix of the PN model shown in Figure 3; Dp:

Dp ¼

�1 0 0 1 0 0 0 0

1 �1 0 0 0 0 0 0

1 �1 0 0 1 �1 0 0

0 1 �1 0 0 0 0 0

0 0 1 �1 0 0 0 0

0 0 0 0 �1 0 0 1

0 0 0 0 1 �1 0 0

0 0 0 0 0 1 �1 0

0 0 0 0 0 0 1 �1

2
666666666666666666664

3
777777777777777777775

The supervisor can be computed by Eqs. (6) and (7) as follows:

Dc ¼ �LDp ¼ �1 1 0 0 �1 1 0 0½ �, μC0 ¼ B� Lμp0 ¼ 1� 0 ¼ 1.

Figure 3. Petri net model of the overall system.

Petri Nets in Science and Engineering100

The supervisor consists of a single place that is connected to the plant Petri net as shown in
Figure 4. The marking invariant that is enforced by the supervisor is:

μm3 þ μc1 ¼ 1 (10)

The simulation of the unsupervised system via Reachability graph analysis method of PN
indicates that the unsupervised plant has 16 reachable states, one of them indicates the absence

of safety condition, this marking vector is: μ4 ¼ 0 1 2 0 0 0 1 0 0½ �T i.e. μm3 ¼ 2. On the other
hand, the simulation of the supervised system indicates that the supervised plant has 15
reachable states. In this case, the supervisor eliminates the marking μ4 which is forbidden
state, and all the reachable states satisfy the safety condition. This procedure can be general-
ized for more complex batch processes such as coordination, deadlock avoidance, and resource
allocation discussed in [17].

Quiz 1: With the help of our work in [14], can you model the chemical batch process shown in
Figure 2 using timed Petri nets?

2.3.2. Control of continuous activities as a part of hybrid systems

The main objective of this subsection is to control the continuous part of a complex batch process
shown in Figure 5. This process comprises six input buffers, two mixing tanks and two reactor
vessels. In this case, heating and cooling are continuous variables of this batch process. The
preparation of the input substances takes place in two mixing tanks to which the raw materials
are supplied from three supply tanks (buffers). The substance is composed from one of the two
basic components (component ‘a’ or component ‘b’) that is diluted to the required concentration
by component ‘c’. The filling of the mixing tank is controlled by the on/off valve Vma in

Figure 4. Petri net model of the supervised system.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

101

where μ3 is the marking vector component that corresponds to place Pm3. The requirement can
be easily transformed to the form Eq. (6) with the plant marking vector being:

μp ¼ μma1 μma2 μm3 μma4 μma5 μmb1 μmb2 μmb4 μmb5

� �T

μp0 ¼ 1 0 0 0 0 1 0 0 0½ �T , L ¼ 0 0 1 0 0 0 0 0 0½ � and B ¼ 1.

Given the incident matrix of the PN model shown in Figure 3; Dp:

Dp ¼

�1 0 0 1 0 0 0 0

1 �1 0 0 0 0 0 0

1 �1 0 0 1 �1 0 0

0 1 �1 0 0 0 0 0

0 0 1 �1 0 0 0 0

0 0 0 0 �1 0 0 1

0 0 0 0 1 �1 0 0

0 0 0 0 0 1 �1 0

0 0 0 0 0 0 1 �1

2
666666666666666666664

3
777777777777777777775

The supervisor can be computed by Eqs. (6) and (7) as follows:

Dc ¼ �LDp ¼ �1 1 0 0 �1 1 0 0½ �, μC0 ¼ B� Lμp0 ¼ 1� 0 ¼ 1.

Figure 3. Petri net model of the overall system.

Petri Nets in Science and Engineering100

The supervisor consists of a single place that is connected to the plant Petri net as shown in
Figure 4. The marking invariant that is enforced by the supervisor is:

μm3 þ μc1 ¼ 1 (10)

The simulation of the unsupervised system via Reachability graph analysis method of PN
indicates that the unsupervised plant has 16 reachable states, one of them indicates the absence

of safety condition, this marking vector is: μ4 ¼ 0 1 2 0 0 0 1 0 0½ �T i.e. μm3 ¼ 2. On the other
hand, the simulation of the supervised system indicates that the supervised plant has 15
reachable states. In this case, the supervisor eliminates the marking μ4 which is forbidden
state, and all the reachable states satisfy the safety condition. This procedure can be general-
ized for more complex batch processes such as coordination, deadlock avoidance, and resource
allocation discussed in [17].

Quiz 1: With the help of our work in [14], can you model the chemical batch process shown in
Figure 2 using timed Petri nets?

2.3.2. Control of continuous activities as a part of hybrid systems

The main objective of this subsection is to control the continuous part of a complex batch process
shown in Figure 5. This process comprises six input buffers, two mixing tanks and two reactor
vessels. In this case, heating and cooling are continuous variables of this batch process. The
preparation of the input substances takes place in two mixing tanks to which the raw materials
are supplied from three supply tanks (buffers). The substance is composed from one of the two
basic components (component ‘a’ or component ‘b’) that is diluted to the required concentration
by component ‘c’. The filling of the mixing tank is controlled by the on/off valve Vma in

Figure 4. Petri net model of the supervised system.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

101

combination by one of the supply tank valves Vsa, Vsb, or Vsc. The discharging of the mixer is
controlled by the on/off valve Vmb. The level in the mixing tank is measured by the level sensor;
L. The required quantities of each input depend on the recipe detailed in [17].

The mathematical differential equations of the heat system of the reactor is detailed in [22]. In
this case, the temperature of the reaction for each reactor is controlled using fuzzy neural
systems-based local controllers [32] that are designed for each of heating and cooling phases
in each process line. It is controlled by feeding hot or cold glycol through the reactor jacket,
which surrounds the reactor vessel.

Using the P-invariant supervisory control method discussed in Section 2.2, the embedded PN-
based supervisory control model is structured using Petri net tool ver. 2.1 [33]. A part of this
embedded model is shown in Figure 6. The main objective of this subsection is to show how
can activate the continuous activities resided inside the embedded model of the process. It also
shows the control result of heating phase as a set of continuous places resided in the embedded
model using fuzzy neural controller. The full simulation results can be found in our work [17].
To show the firing of the continuous activity resided in the embedded model, consider the
initial marking vector, μ0 defined below.

μ0 ¼ 0 1 0 1 1 1 1 1 1½ �T

Starting from this initial marking vector, the simulation of a part of the embedded PN-based
model shown in Figure 6 [17], can be carried out. When the transition Trb3 is fired, the fuzzy
neural controller resided in place 8; Prb8, is activated as shown in Figure 6 and the marking
vector becomes, μHR.

μHR ¼ 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1½ �T

The response of the reaction at the desired set point 50�C is depicted in Figure 7.

Figure 5. Batch process cell with two mixers and two reactors.

Petri Nets in Science and Engineering102

2.3.3. Example 3: KRC modeling and supervision using timed PNs

The kernel railroad crossing (KRC) shown in Figure 8 is a standard benchmark in real time
systems [14]. When a train is sensed to approach the crossing, a signal is sent to the supervisor

Figure 6. A part of the embedded PN model of batch process shown in Figure 5.

Figure 7. Reactor temperature for the heating phase.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

103

combination by one of the supply tank valves Vsa, Vsb, or Vsc. The discharging of the mixer is
controlled by the on/off valve Vmb. The level in the mixing tank is measured by the level sensor;
L. The required quantities of each input depend on the recipe detailed in [17].

The mathematical differential equations of the heat system of the reactor is detailed in [22]. In
this case, the temperature of the reaction for each reactor is controlled using fuzzy neural
systems-based local controllers [32] that are designed for each of heating and cooling phases
in each process line. It is controlled by feeding hot or cold glycol through the reactor jacket,
which surrounds the reactor vessel.

Using the P-invariant supervisory control method discussed in Section 2.2, the embedded PN-
based supervisory control model is structured using Petri net tool ver. 2.1 [33]. A part of this
embedded model is shown in Figure 6. The main objective of this subsection is to show how
can activate the continuous activities resided inside the embedded model of the process. It also
shows the control result of heating phase as a set of continuous places resided in the embedded
model using fuzzy neural controller. The full simulation results can be found in our work [17].
To show the firing of the continuous activity resided in the embedded model, consider the
initial marking vector, μ0 defined below.

μ0 ¼ 0 1 0 1 1 1 1 1 1½ �T

Starting from this initial marking vector, the simulation of a part of the embedded PN-based
model shown in Figure 6 [17], can be carried out. When the transition Trb3 is fired, the fuzzy
neural controller resided in place 8; Prb8, is activated as shown in Figure 6 and the marking
vector becomes, μHR.

μHR ¼ 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1½ �T

The response of the reaction at the desired set point 50�C is depicted in Figure 7.

Figure 5. Batch process cell with two mixers and two reactors.

Petri Nets in Science and Engineering102

2.3.3. Example 3: KRC modeling and supervision using timed PNs

The kernel railroad crossing (KRC) shown in Figure 8 is a standard benchmark in real time
systems [14]. When a train is sensed to approach the crossing, a signal is sent to the supervisor

Figure 6. A part of the embedded PN model of batch process shown in Figure 5.

Figure 7. Reactor temperature for the heating phase.

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

103

that sends a command to the specified gate that is closed to prevent cars crossing that survives
ourselves. Having more than one track and more than one train may enter crossing zone, leads
to a complicated situation that is out of our paper scope. For simplicity let us merge the two
depicted zones as one zone (region). The Petri net of the system is depicted in Figure 9. The
train needs one time unit (t.u.) to enter the R-Y zoon and five (t.u.) to leave it for departure
phase. The gate needs no time to start closing and requires two (t.u.) to be completely closed. It
needs extra two (t.u.) to be completely opened after firing the transition T5. The problem arises

Figure 8. A kernel railroad crossing system.

Figure 9. The simplified Petri net model of Figure 8.

Petri Nets in Science and Engineering104

at the beginning of opening the gate that has unknown time units “[0, ∞]”. This is due to the
reason that no expectation for beginning the departure phase of the train; its departure
depends on the passenger riding. The analysis should be performed to get the exact period
time unit required to activate the transition T5 every departure phase. This means that this
transition is continuously evaluated. The system comprises two tasks, train task and gate task.
In our work [14], consider that the controllable events are the beginning of each task. However,
the accomplishing of the tasks is uncontrollable. Therefore, our goal was to control the begin-
ning of the tasks in order to obtain safe arrival and departure of the train. Also, the synthesized
control scheme should avoid the forbidden state (P2, P4). This means that the train in the R-Y
zone and the gate still opened.

Using Petri net tool software ver. 2.1 [33], the system incidence matrix is of the PN model
shown in Figure 9 is:

DP ¼

�1 0 0 0 0 0
1 �1 0 0 0 0
0 1 0 0 0 0
0 0 �1 0 0 1
0 0 1 �1 0 0
0 0 0 1 �1 0
0 0 0 0 1 �1

2
666666666664

3
777777777775

In this simulation, there are 11 reachable states starting from the initial marking vector μ0 to the

final vector μ11. The firing sequence shows that the marking vector, μ1 ¼ 0 1 0 1 0 0 0½ �T is a
forbidden state. It is clear that the marking vector μ1 includes the forbidden state (P2, P4). Based
on P-invariant, a supervisory control scheme for the KRC system is synthesized in Section 2.2. The
constraints vector is L ¼ 0 1 0 1 0 0 0½ �, the controller incidence matrix isDc ¼ �LDp ¼
�1 1 1 0 0 �1½ �, the initial marking of the controller is μc0 ¼ B� Lμ0 ¼ 0, and B ¼ 1.
The developed supervised time Petri net of the KRC system is depicted in Figure 10. There are 10
reachable states starting from the initial marking vector μ0 to the final vector μ10 and the supervi-

sor eliminates the forbidden state vector μ1 ¼ 0 1 0 1 0 0 0½ �T.
Another issue, in distributed hybrid systems, each process line is controlled by its own logic
controller and supervisory part resides in another level. The interaction among different modules
is performed through synchronized transitions. In practical implementation, it is difficult to
achieve such synchronization among the logic controllers of the embedded systems. Because of
the communication delays, it cannot be guaranteed that transitions in different controllers fire
simultaneously. One way for dealing with this problem is to define the firing order of the
transitions. In the cases when the two logic controllers share the same resource and the supervi-
sor performs the resource allocation such as indicated in Figure 4, the transition that reserve the
resource must be fired in the supervisor first and then in the local controller. In the opposite case
the communication delay would allow double booking problem of the shared resource by the
two controllers or even deadlock. Due to the pages limitation, more details about this implemen-
tation problem the readers can be directed to read our work detailed in [34].

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

105

that sends a command to the specified gate that is closed to prevent cars crossing that survives
ourselves. Having more than one track and more than one train may enter crossing zone, leads
to a complicated situation that is out of our paper scope. For simplicity let us merge the two
depicted zones as one zone (region). The Petri net of the system is depicted in Figure 9. The
train needs one time unit (t.u.) to enter the R-Y zoon and five (t.u.) to leave it for departure
phase. The gate needs no time to start closing and requires two (t.u.) to be completely closed. It
needs extra two (t.u.) to be completely opened after firing the transition T5. The problem arises

Figure 8. A kernel railroad crossing system.

Figure 9. The simplified Petri net model of Figure 8.

Petri Nets in Science and Engineering104

at the beginning of opening the gate that has unknown time units “[0, ∞]”. This is due to the
reason that no expectation for beginning the departure phase of the train; its departure
depends on the passenger riding. The analysis should be performed to get the exact period
time unit required to activate the transition T5 every departure phase. This means that this
transition is continuously evaluated. The system comprises two tasks, train task and gate task.
In our work [14], consider that the controllable events are the beginning of each task. However,
the accomplishing of the tasks is uncontrollable. Therefore, our goal was to control the begin-
ning of the tasks in order to obtain safe arrival and departure of the train. Also, the synthesized
control scheme should avoid the forbidden state (P2, P4). This means that the train in the R-Y
zone and the gate still opened.

Using Petri net tool software ver. 2.1 [33], the system incidence matrix is of the PN model
shown in Figure 9 is:

DP ¼

�1 0 0 0 0 0
1 �1 0 0 0 0
0 1 0 0 0 0
0 0 �1 0 0 1
0 0 1 �1 0 0
0 0 0 1 �1 0
0 0 0 0 1 �1

2
666666666664

3
777777777775

In this simulation, there are 11 reachable states starting from the initial marking vector μ0 to the

final vector μ11. The firing sequence shows that the marking vector, μ1 ¼ 0 1 0 1 0 0 0½ �T is a
forbidden state. It is clear that the marking vector μ1 includes the forbidden state (P2, P4). Based
on P-invariant, a supervisory control scheme for the KRC system is synthesized in Section 2.2. The
constraints vector is L ¼ 0 1 0 1 0 0 0½ �, the controller incidence matrix isDc ¼ �LDp ¼
�1 1 1 0 0 �1½ �, the initial marking of the controller is μc0 ¼ B� Lμ0 ¼ 0, and B ¼ 1.
The developed supervised time Petri net of the KRC system is depicted in Figure 10. There are 10
reachable states starting from the initial marking vector μ0 to the final vector μ10 and the supervi-

sor eliminates the forbidden state vector μ1 ¼ 0 1 0 1 0 0 0½ �T.
Another issue, in distributed hybrid systems, each process line is controlled by its own logic
controller and supervisory part resides in another level. The interaction among different modules
is performed through synchronized transitions. In practical implementation, it is difficult to
achieve such synchronization among the logic controllers of the embedded systems. Because of
the communication delays, it cannot be guaranteed that transitions in different controllers fire
simultaneously. One way for dealing with this problem is to define the firing order of the
transitions. In the cases when the two logic controllers share the same resource and the supervi-
sor performs the resource allocation such as indicated in Figure 4, the transition that reserve the
resource must be fired in the supervisor first and then in the local controller. In the opposite case
the communication delay would allow double booking problem of the shared resource by the
two controllers or even deadlock. Due to the pages limitation, more details about this implemen-
tation problem the readers can be directed to read our work detailed in [34].

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

105

Quiz 2: With the help of our work in [17], can the reader complete the missing part of the
supervised embedded PN model depicted in Figure 6 using P-invariant supervisory control
discussed in Section 2.2?

Quiz 3: With the help of our work in [34], can you overcome the communication problems
through the embedded PN model of Quiz 2?

3. Conclusions

Hybrid systems modeling and supervision have been used extensively in automation, robot-
ics, and manufacturing applications. Different frameworks for dynamic supervisory control-
lers are used in flexible manufacturing systems and automated batch processes. The high-
level system changes in hybrid systems are modeled as discrete event dynamic systems,
while the low-level systems changes are modeled as continuous variable dynamic systems.
The major issue in studying hybrid systems is the consistency between continuous and
discrete models evolution. Petri nets possess many assets as models for DES. They provide
more compact representation for larger reachable state spaces, and increase the behavioral
complexity compared with automata-based models. Batch plants are common examples of
hybrid systems. In this chapter Petri net embedded models were developed by abstracting
the behavior of hybrid systems. As a final conclusion, the work in this chapter allows the
readers to design and analysis their own supervisory control schemes using Petri net tools
ver. 2.1 or higher [33]. Although the developed schemes are tested using batch chemical

Figure 10. The supervised timed Petri net of the KRC (Figure 8).

Petri Nets in Science and Engineering106

processes, they are promising to control complex industrial automated processes. This chap-
ter opens several research directions to be considered and investigated. It may extend this
work to optimization of supervisory control schemes, modeling and supervision of hybrid
industrial systems using timed Petri nets, and implementing the proposed schemes for large
scale systems.

Author details

Hamdi Awad1,2

Address all correspondence to: awadhaa@yahoo.co.uk

1 College of Engineering, Shaqra University, Dawadmi, KSA

2 Faculty of Electronic Engineering, Menoufia University, Egypt

References

[1] Strasser T, Froschauer R. Autonomous application recovery in distributed intelligent auto-
mation and control systems. Intelligent Automation and Control Systems, IEEE Transac-
tions on Systems Man and Cybernetics Part C (Applications and Reviews). 2012;42:1054-
1070. DOI: 10.1109/TSMCC.2012.2185928

[2] Lu K. Nanoparticulate Materials: Synthesis, Characterization, and Processing. USA: John
Wiley & Sons, Inc.; 2013. p. 464, ISBN: 978-1-118-29142-9. DOI: 10.1002/9781118408995

[3] Lemmon MD, He KX, Markovsky I. A tutorial introduction to supervisory hybrid systems.
Technical Report of the ISIS Group at the University of Notre Dame ISIS-98-004; 1998

[4] Antsaklis PJ. Intelligent control. In: Encyclopedia of Electrical and Electronics Engineering.
Vol. 10. USA: John Wiley & Sons, Inc.; 1999. pp. 493-503. DOI: 10.1002/047134608X.W1019

[5] Böhme TJ, Frank B. Hybrid Systems, Optimal Control and Hybrid Vehicles: Theory,
Methods and Applications. Berlin: Springer Nature; 2017, 519 p. DOI: 10.1007/978-3-
319-51317-1

[6] Jalivand A, Khanmohammadi S. Integrating of event detection and mode recognition in
hybrid systems by fuzzy Petri nets. In: Proceeding of the IEEE Conference on Robotic,
Automation, and Mechatronics; 1–3 December 2004; Singapore. pp. 265-270

[7] Giua A, Silva M. Modeling, analysis and control of discrete event systems: A Petri net
perspective. IFAC-PapersOnLine. 2017;50:1772-1783. DOI: 10.1016/j.ifacol.2017.08.156

[8] Chen CH, Dai JH. Design and high-level Synthesis of hybrid controller. In: Proceedings of
the IEEE International Conference on Networking, Sensing ,and Control; 21–23 March
2004; Taipei, Taiwan. pp. 433-438. DOI: 10.1109/ICNSC.2004.1297477

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

107

Quiz 2: With the help of our work in [17], can the reader complete the missing part of the
supervised embedded PN model depicted in Figure 6 using P-invariant supervisory control
discussed in Section 2.2?

Quiz 3: With the help of our work in [34], can you overcome the communication problems
through the embedded PN model of Quiz 2?

3. Conclusions

Hybrid systems modeling and supervision have been used extensively in automation, robot-
ics, and manufacturing applications. Different frameworks for dynamic supervisory control-
lers are used in flexible manufacturing systems and automated batch processes. The high-
level system changes in hybrid systems are modeled as discrete event dynamic systems,
while the low-level systems changes are modeled as continuous variable dynamic systems.
The major issue in studying hybrid systems is the consistency between continuous and
discrete models evolution. Petri nets possess many assets as models for DES. They provide
more compact representation for larger reachable state spaces, and increase the behavioral
complexity compared with automata-based models. Batch plants are common examples of
hybrid systems. In this chapter Petri net embedded models were developed by abstracting
the behavior of hybrid systems. As a final conclusion, the work in this chapter allows the
readers to design and analysis their own supervisory control schemes using Petri net tools
ver. 2.1 or higher [33]. Although the developed schemes are tested using batch chemical

Figure 10. The supervised timed Petri net of the KRC (Figure 8).

Petri Nets in Science and Engineering106

processes, they are promising to control complex industrial automated processes. This chap-
ter opens several research directions to be considered and investigated. It may extend this
work to optimization of supervisory control schemes, modeling and supervision of hybrid
industrial systems using timed Petri nets, and implementing the proposed schemes for large
scale systems.

Author details

Hamdi Awad1,2

Address all correspondence to: awadhaa@yahoo.co.uk

1 College of Engineering, Shaqra University, Dawadmi, KSA

2 Faculty of Electronic Engineering, Menoufia University, Egypt

References

[1] Strasser T, Froschauer R. Autonomous application recovery in distributed intelligent auto-
mation and control systems. Intelligent Automation and Control Systems, IEEE Transac-
tions on Systems Man and Cybernetics Part C (Applications and Reviews). 2012;42:1054-
1070. DOI: 10.1109/TSMCC.2012.2185928

[2] Lu K. Nanoparticulate Materials: Synthesis, Characterization, and Processing. USA: John
Wiley & Sons, Inc.; 2013. p. 464, ISBN: 978-1-118-29142-9. DOI: 10.1002/9781118408995

[3] Lemmon MD, He KX, Markovsky I. A tutorial introduction to supervisory hybrid systems.
Technical Report of the ISIS Group at the University of Notre Dame ISIS-98-004; 1998

[4] Antsaklis PJ. Intelligent control. In: Encyclopedia of Electrical and Electronics Engineering.
Vol. 10. USA: John Wiley & Sons, Inc.; 1999. pp. 493-503. DOI: 10.1002/047134608X.W1019

[5] Böhme TJ, Frank B. Hybrid Systems, Optimal Control and Hybrid Vehicles: Theory,
Methods and Applications. Berlin: Springer Nature; 2017, 519 p. DOI: 10.1007/978-3-
319-51317-1

[6] Jalivand A, Khanmohammadi S. Integrating of event detection and mode recognition in
hybrid systems by fuzzy Petri nets. In: Proceeding of the IEEE Conference on Robotic,
Automation, and Mechatronics; 1–3 December 2004; Singapore. pp. 265-270

[7] Giua A, Silva M. Modeling, analysis and control of discrete event systems: A Petri net
perspective. IFAC-PapersOnLine. 2017;50:1772-1783. DOI: 10.1016/j.ifacol.2017.08.156

[8] Chen CH, Dai JH. Design and high-level Synthesis of hybrid controller. In: Proceedings of
the IEEE International Conference on Networking, Sensing ,and Control; 21–23 March
2004; Taipei, Taiwan. pp. 433-438. DOI: 10.1109/ICNSC.2004.1297477

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

107

[9] Ho Y-C. A road map for DEDS research. IFAC Proceedings Volumes. 1993;26:663-669. DOI:
10.1016/S1474-6670(17)49211-1

[10] Villani E, Miyagi PE, Valette R. Landing system verification based on Petri nets and a
hybrid approach. IEEE Transactions on Aerospace and Electronic Systems. 2006;42:1420-
1436. DOI: 10.1109/TAES.2006.314582

[11] Sobh TM, Benhabib B. Discrete event and hybrid systems in robotics and automation: An
overview. IEEE Robotics and Automation Magazine. 1997;4:16-19. DOI: 10.1109/100.591642

[12] Cohn G, Cnet PM, Quadrat JP. Linear system theory for discrete event systems. In:
Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas; 12–14
December 1984; USA. p. C1. DOI: 10.1109/CDC.1984.272058

[13] Silva M, Recalde L. On fluidification of Petri nets: From discrete hybrid and continuous
models. Annual Reviews in Control. 2004;28:253-266. DOI: 10.1016/j.arcontrol.2004.05.002

[14] Allaa H, Awad H, Anwar A, El-Hajri E. Modelling and control of KRC systems using
TPN and TA. International Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, USA. 2015;4: ISSN (Online): 2278-8875:1111-1130

[15] Hopcroft JE, Ullman JD. Introduction to Automata Theory, Languages, and Computation.
3rd ed.. Addison-Wesley series in Computer Science, ISBN 0-201-02988-X, 530 p ed1979

[16] Ramadge PJ, Wonham WM. The control of discrete event systems. Proceedings of the
IEEE. 1989;77:81-97. DOI: 10.1109/5.21072

[17] Anwar A. Modelling and supervision of discrete event systems [thesis]. Egypt: Menoufia
University; 2007

[18] Giua A, DiCesare F. Petri net structural analysis for supervisory control. IEEE Transac-
tions on Robotics and Automation. 1994;10:185-195. DOI: 10.1109/70.282543

[19] Music G, Matko D. Petri net based control of a modular production system. In: Proceed-
ings of the IEEE International Symposium on Industrial Electronics, Vol. 3; 12–16 July
1999; Bled, Slovenia. pp. 1383-1388. DOI: 10.1109/ISIE.1999.796909

[20] Wang S, Wang C, Zhou M. Design of optimal monitor-based supervisors for a class of
Petri nets with uncontrollable transitions. IEEE Transactions on Systems, Man, and
Cybernetics: Systems. 2013;43:1248-1255. DOI: 10.1109/TSMC.2012.2235427

[21] Iordache MV, Antsaklis PJ. Supervision based on place invariants: A survey. Technical
Report of the ISIS Group at the University of Notre Dame ISIS-2004-003; July, 2004

[22] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;
77:541-580. DOI: 10.1109/5.24143

[23] David R, Alla H. Petri nets for modeling of dynamic systems: A survey. Automatica. 1994;
30:175-202. DOI: 10.1016/0005-1098(94)90024-8

Petri Nets in Science and Engineering108

[24] Cheung KS, Cheung TY, Chow KO. A Petri-net-based synthesis methodology for se-case-
driven system design. Journal of Systems and Software. 2006;79:772-790. DOI: 10.1016/j.
jss.2005.06.018

[25] Moody JO, Antsaklis PJ. Petri net supervisors for DES with uncontrollable and unobservable
transitions. IEEE Transactions on Automatic Control. 2000;45:462-476. DOI: 10.1109/9.847725

[26] Lennartson B, Egardt B, Tittu M. Hybrid systems in process control. In: Proceedings of
33rd Conference on Decision and Control; 14–16 December 1994; Lake Buena, USA. IEEE.
pp. 3587-3592. DOI. 10.1109/CDC.1994.411706

[27] Tittus M, Lennartson B. Hierarchical supervisory control for batch processes. IEEE Trans-
actions on Control Systems Technology. 1999;7:542-554. DOI: 10.1109/87.784418

[28] Falkman P, Lennartson B, Tittus M. Specification of a batch plant using process algebra
and Petri nets. In: Proceedings of the IEEE International Conference on Automation
Science and Engineering; 1–2 August 2005; Edmonton, Canada. pp. 339-344. DOI:
10.1109/COASE.2005.1506792

[29] Music G, Matko D. Petri net based supervisory control of flexible batch plant. IFAC
Proceedings Volumes. 15–17 July 1998;31:941-946. DOI: 10.1016/S1474-6670(17)41919-7

[30] Luo J, Zhou M. Petri-net controller synthesis for partially controllable and observable
discrete event systems. IEEE Transactions on Automatic Control. 2017;62:1301-1313.
DOI: 10.1109/TAC.2016.2586604

[31] Wang S, You D, Wang C. Optimal supervisor synthesis for Petri nets with uncontrollable
transitions: A bottom-up algorithm. Information Sciences. 2016;363:261-273. DOI: 10.1016/j.
ins.2015.11.003

[32] Awad H. Fuzzy neural networks for modelling and controlling dynamic Systems [thesis].
Wales, England: Cardiff University; 2001

[33] Petri Net Toolbox for Matlab. Department of Automatic Control and Industrial Informatics
of the Technical University “Gh. Asachi” of Iasi, Romania. Available from: http://www.ac.
tuiasi.ro/pntool/ [Accessed: May 2007]

[34] Gomaa M, Awad H, Anwar A. Design and implementation of supervisory control
schemes in industrial automation systems. In: Proceedings of the IEEE International
Conference of Computer Engineering & Systems, ICCES'08; 25–27 November 2008; Cairo,
Egypt. pp. 398-404. DOI: 10.1109/ICCES.2008.4773035

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

109

[9] Ho Y-C. A road map for DEDS research. IFAC Proceedings Volumes. 1993;26:663-669. DOI:
10.1016/S1474-6670(17)49211-1

[10] Villani E, Miyagi PE, Valette R. Landing system verification based on Petri nets and a
hybrid approach. IEEE Transactions on Aerospace and Electronic Systems. 2006;42:1420-
1436. DOI: 10.1109/TAES.2006.314582

[11] Sobh TM, Benhabib B. Discrete event and hybrid systems in robotics and automation: An
overview. IEEE Robotics and Automation Magazine. 1997;4:16-19. DOI: 10.1109/100.591642

[12] Cohn G, Cnet PM, Quadrat JP. Linear system theory for discrete event systems. In:
Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas; 12–14
December 1984; USA. p. C1. DOI: 10.1109/CDC.1984.272058

[13] Silva M, Recalde L. On fluidification of Petri nets: From discrete hybrid and continuous
models. Annual Reviews in Control. 2004;28:253-266. DOI: 10.1016/j.arcontrol.2004.05.002

[14] Allaa H, Awad H, Anwar A, El-Hajri E. Modelling and control of KRC systems using
TPN and TA. International Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, USA. 2015;4: ISSN (Online): 2278-8875:1111-1130

[15] Hopcroft JE, Ullman JD. Introduction to Automata Theory, Languages, and Computation.
3rd ed.. Addison-Wesley series in Computer Science, ISBN 0-201-02988-X, 530 p ed1979

[16] Ramadge PJ, Wonham WM. The control of discrete event systems. Proceedings of the
IEEE. 1989;77:81-97. DOI: 10.1109/5.21072

[17] Anwar A. Modelling and supervision of discrete event systems [thesis]. Egypt: Menoufia
University; 2007

[18] Giua A, DiCesare F. Petri net structural analysis for supervisory control. IEEE Transac-
tions on Robotics and Automation. 1994;10:185-195. DOI: 10.1109/70.282543

[19] Music G, Matko D. Petri net based control of a modular production system. In: Proceed-
ings of the IEEE International Symposium on Industrial Electronics, Vol. 3; 12–16 July
1999; Bled, Slovenia. pp. 1383-1388. DOI: 10.1109/ISIE.1999.796909

[20] Wang S, Wang C, Zhou M. Design of optimal monitor-based supervisors for a class of
Petri nets with uncontrollable transitions. IEEE Transactions on Systems, Man, and
Cybernetics: Systems. 2013;43:1248-1255. DOI: 10.1109/TSMC.2012.2235427

[21] Iordache MV, Antsaklis PJ. Supervision based on place invariants: A survey. Technical
Report of the ISIS Group at the University of Notre Dame ISIS-2004-003; July, 2004

[22] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;
77:541-580. DOI: 10.1109/5.24143

[23] David R, Alla H. Petri nets for modeling of dynamic systems: A survey. Automatica. 1994;
30:175-202. DOI: 10.1016/0005-1098(94)90024-8

Petri Nets in Science and Engineering108

[24] Cheung KS, Cheung TY, Chow KO. A Petri-net-based synthesis methodology for se-case-
driven system design. Journal of Systems and Software. 2006;79:772-790. DOI: 10.1016/j.
jss.2005.06.018

[25] Moody JO, Antsaklis PJ. Petri net supervisors for DES with uncontrollable and unobservable
transitions. IEEE Transactions on Automatic Control. 2000;45:462-476. DOI: 10.1109/9.847725

[26] Lennartson B, Egardt B, Tittu M. Hybrid systems in process control. In: Proceedings of
33rd Conference on Decision and Control; 14–16 December 1994; Lake Buena, USA. IEEE.
pp. 3587-3592. DOI. 10.1109/CDC.1994.411706

[27] Tittus M, Lennartson B. Hierarchical supervisory control for batch processes. IEEE Trans-
actions on Control Systems Technology. 1999;7:542-554. DOI: 10.1109/87.784418

[28] Falkman P, Lennartson B, Tittus M. Specification of a batch plant using process algebra
and Petri nets. In: Proceedings of the IEEE International Conference on Automation
Science and Engineering; 1–2 August 2005; Edmonton, Canada. pp. 339-344. DOI:
10.1109/COASE.2005.1506792

[29] Music G, Matko D. Petri net based supervisory control of flexible batch plant. IFAC
Proceedings Volumes. 15–17 July 1998;31:941-946. DOI: 10.1016/S1474-6670(17)41919-7

[30] Luo J, Zhou M. Petri-net controller synthesis for partially controllable and observable
discrete event systems. IEEE Transactions on Automatic Control. 2017;62:1301-1313.
DOI: 10.1109/TAC.2016.2586604

[31] Wang S, You D, Wang C. Optimal supervisor synthesis for Petri nets with uncontrollable
transitions: A bottom-up algorithm. Information Sciences. 2016;363:261-273. DOI: 10.1016/j.
ins.2015.11.003

[32] Awad H. Fuzzy neural networks for modelling and controlling dynamic Systems [thesis].
Wales, England: Cardiff University; 2001

[33] Petri Net Toolbox for Matlab. Department of Automatic Control and Industrial Informatics
of the Technical University “Gh. Asachi” of Iasi, Romania. Available from: http://www.ac.
tuiasi.ro/pntool/ [Accessed: May 2007]

[34] Gomaa M, Awad H, Anwar A. Design and implementation of supervisory control
schemes in industrial automation systems. In: Proceedings of the IEEE International
Conference of Computer Engineering & Systems, ICCES'08; 25–27 November 2008; Cairo,
Egypt. pp. 398-404. DOI: 10.1109/ICCES.2008.4773035

Supervisory Control Systems: Theory and Industrial Applications
http://dx.doi.org/10.5772/intechopen.75166

109

Chapter 7

Process Petri Nets with Time Stamps and Their Using in
Project Management

Ivo Martiník

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76769

Provisional chapter

Process Petri Nets with Time Stamps and Their Using in
Project Management

Ivo Martiník

Additional information is available at the end of the chapter

Abstract

Process Petri nets with time stamps (PPNTS) are the newly introduced class of low-level
Petri nets, whose definition and the properties are the main topic of this chapter; they
generalize the properties of Petri net processes in the area of design, modeling and
verification of generally parallel systems with the discrete time. Property-preserving Petri
net process algebras (PPPAs) were originally designed for the specification and verifica-
tion of manufacturing systems. PPPA does not need to verify composition of Petri net
processes because all their algebraic operators preserve the specified set of the properties.
These original PPPAs are generalized for the class of the PPNTSs in this chapter. The new
COMP, SYNC and JOIN algebraic operators are defined for the class of PPNTS and their
chosen properties are proved. With the support of these operators, the PPNTSs can be
extended also to the areas of project management and the determination of the project
critical path with the support of the critical path method (CPM). The new CPNET subclass
of PPNTS class is defined in this chapter. It is specially designed for the generalization of
the CPM activity charts and their properties. This fact is then demonstrated on the simple
project example and its critical path and other property specifications.

Keywords: process Petri nets with time stamps, property-preserving Petri net process
algebras, critical path method, discrete time, property preservation, parallel systems
modeling

1. Introduction

There are currently a number of formally defined classes of Petri nets [1, 2] available for
modeling of generally parallel systems. When studying distributed parallel programming
systems, real-time systems, economic systems and many other types of systems, it plays a role
modeling of the time variables associated with individual system events, the duration of the

DOI: 10.5772/intechopen.76769

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 7

Process Petri Nets with Time Stamps and Their Using in
Project Management

Ivo Martiník

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76769

Provisional chapter

Process Petri Nets with Time Stamps and Their Using in
Project Management

Ivo Martiník

Additional information is available at the end of the chapter

Abstract

Process Petri nets with time stamps (PPNTS) are the newly introduced class of low-level
Petri nets, whose definition and the properties are the main topic of this chapter; they
generalize the properties of Petri net processes in the area of design, modeling and
verification of generally parallel systems with the discrete time. Property-preserving Petri
net process algebras (PPPAs) were originally designed for the specification and verifica-
tion of manufacturing systems. PPPA does not need to verify composition of Petri net
processes because all their algebraic operators preserve the specified set of the properties.
These original PPPAs are generalized for the class of the PPNTSs in this chapter. The new
COMP, SYNC and JOIN algebraic operators are defined for the class of PPNTS and their
chosen properties are proved. With the support of these operators, the PPNTSs can be
extended also to the areas of project management and the determination of the project
critical path with the support of the critical path method (CPM). The new CPNET subclass
of PPNTS class is defined in this chapter. It is specially designed for the generalization of
the CPM activity charts and their properties. This fact is then demonstrated on the simple
project example and its critical path and other property specifications.

Keywords: process Petri nets with time stamps, property-preserving Petri net process
algebras, critical path method, discrete time, property preservation, parallel systems
modeling

1. Introduction

There are currently a number of formally defined classes of Petri nets [1, 2] available for
modeling of generally parallel systems. When studying distributed parallel programming
systems, real-time systems, economic systems and many other types of systems, it plays a role
modeling of the time variables associated with individual system events, the duration of the

DOI: 10.5772/intechopen.76769

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

studied activities, the time history of the modeled system and many other time characteristics.
Special classes of Petri nets were introduced for the modeling of these types of systems with
discrete time and their properties were studied in detail. Time Petri nets and timed Petri nets
[3, 4] are currently the twomost important classes of low-level Petri nets that use the concept of
discrete time in their definition. Other classes of low-level Petri nets with discrete time are
introduced and discussed for instance in [5–7]. It can be stated that most of the currently
studied classes of Petri nets with discrete time use only the relative time variables usually
related to the specific marking of the given Petri net. This fact can then cause difficulties, for
example, in modeling complex time-synchronized distributed systems in which an external
time source is usually available and individual components of this system must be synchro-
nized with this external time source.

Process Petri nets (PPN) [8] were primarily introduced as a special subclass of classic low-level
Petri nets for their using in the area of workflow management. PPN is a continuous Petri net
that include within the set of all its places the unique input place, the unique output place and
a finite set of so-called resource places which may contain, along with the input place, the
tokens in the entry marking of the given PPN. These tokens located in the entry marking of
PPN at the resource places usually represent the permanent resources of the modeled system.
The given PPN can pass into its exit marking that is reachable from its entry marking by
performing the final sequence of the transition firings. The tokens of the PPN’s exit marking
may be then located only at its single output place and also at its resource places.

Process Petri nets with time stamps (PPNTS) are the newly introduced class of low-level Petri
nets whose definition and the properties are the main topics of this chapter. PPNTS generalize
the properties of PPNs in the area of design, modeling and verification of generally parallel
systems with the discrete time.

Property-preserving Petri net process algebras (PPPA) [9] were originally designed for the
specification and verification of manufacturing systems. PPPA has four types of operators:
extensions, compositions, refinements and reductions. All operators can preserve about 20
PPN’s properties (some of them under additional conditions), such as liveness, boundedness,
reversibility, RC-property, traps, siphons, proper termination, and so on. PPPA does not need
to verify composition of PPNs because all their algebraic operators preserve the specified set of
the properties. Hence, if the source PPNs satisfy the desirable properties, each of the composite
PPN, including the PPN that models the resulting system itself, also satisfies these properties.
These original PPPA are generalized for the class of the PPNTS in this chapter and their
properties of proper-formed, well-formed and pure-formed PPNTS are then newly introduced.
The new COMP, SYNC and JOIN algebraic operators are defined for the class of PPNTS and
their chosen properties are proved.

With the support of these operators, the PPNTS can be extended also to the areas of the project
management and the determination of the project critical path with the support of the critical
path method (CPM) [10]. The new CPPNET subclass of PPNTS class is then defined in this
chapter to represent pure-formed time-dependent processes. It is specially designed for the
generalization of the CPM activities charts and their properties. This fact is then demonstrated
on the simple project example and its critical path and other properties specification.

Petri Nets in Science and Engineering112

This chapter is arranged into the following sections: Section 2 explains the base term of this
chapter, that is, process Petri nets with time stamps and introduces the terms of proper-
formed, well-formed and pure-formed PPNTS; Section 3 discusses algebraic operators COMP
and SYNC defined over the class of PPNTS and their main properties; Section 4 then intro-
duces the special subclass CPPNET of the PPNTS class and explains its use in the area of the
project management to represent pure-formed time-dependent processes with using of
PPNTSs and to find critical paths for these processes similarly as in the case of the well-known
critical path method (CPM). Finally, Section 5 gives the conclusions of the research to conclude
the chapter.

2. Process Petri nets with time stamps and their properties

Let N denote the set of all natural numbers, N := {1, 2,…}; N0 the set of all non-negative integer
numbers, N0 := {0, 1, 2, …}; ∅ the empty set; |A| the cardinality of the given set A; P (A)
denotes the family of all the subsets of the given set A; f: A ! B a function on a domain A to a
codomain B; ⌐ the logical negation operator. Let (A ⊂ N0) ∧ (∃n ∈ N: |A| = n) ∧ (A 6¼ ∅); then
max(A) := x, where (x ∈ A) ∧ (∀y ∈ A: x ≥ y). Multiset M over a nonempty set S is a function M:
S ! N0. The non-negative number M(a) ∈ N0, where a ∈ S, denotes the number of occurrences
of the element a in the multisetM. The multisetM over a nonempty set Swill be represented by
the notation M := [aM(a), bM(b), cM(c), …] = [a, …, a, b, …, b, c, …, c, …], where S := {a, b, c, …}.
Notation SMS then denotes the class of all the multisets over the set S.

Definition 1. Let A be a nonempty set. By the (nonempty finite) sequence σ over the set Awe
understand a function σ: {1, 2, …, n} ! A, where n ∈ N. Function ε: ∅ ! A is called the empty
sequence on the set A. We usually represent the sequence σ: {1, 2, …, n} ! A by the notation
σ = <a1, a2, …, an > of the elements of the set A, where ai = σ(i) for 1 ≤ i ≤ n. Empty sequence ε:
∅ ! A on the set A we usually represent by the notation ε = <>. We denote the set of all finite
(and possible empty) sequences over the set A by the notation ASQ.

If σ = <a1, a2,…, an > and τ = <b1, b2, …, bm > are the finite sequences, where σ ∈ ASQ, τ ∈ ASQ, n
∈ N, m ∈ N, then by the concatenation of the sequences σ and τ, denoted by σ++τ, we
understand the finite sequence σ++τ := < a1, a2, …, an, b1, b2, …, bm>. The following functions
are defined:

i. length: ASQ ! N0, so that: length(σ) := n, length(ε) := 0,

ii. elements: ASQ ! P (A), so that: elements(σ) := {a | ∃i, 1 ≤ i ≤ n: a = σ(i)}, elements(ε) := ∅,

iii. prefix: ASQ � N0 ! ASQ, so that:

prefix(<a1, a2, …, an>, m) := < a1, a2, …, am>, if m ≤ n,

prefix(<a1, a2, …, an>, m) := < a1, a2, …, an>, if m > n,

prefix(ε, m) := ε,

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

113

studied activities, the time history of the modeled system and many other time characteristics.
Special classes of Petri nets were introduced for the modeling of these types of systems with
discrete time and their properties were studied in detail. Time Petri nets and timed Petri nets
[3, 4] are currently the twomost important classes of low-level Petri nets that use the concept of
discrete time in their definition. Other classes of low-level Petri nets with discrete time are
introduced and discussed for instance in [5–7]. It can be stated that most of the currently
studied classes of Petri nets with discrete time use only the relative time variables usually
related to the specific marking of the given Petri net. This fact can then cause difficulties, for
example, in modeling complex time-synchronized distributed systems in which an external
time source is usually available and individual components of this system must be synchro-
nized with this external time source.

Process Petri nets (PPN) [8] were primarily introduced as a special subclass of classic low-level
Petri nets for their using in the area of workflow management. PPN is a continuous Petri net
that include within the set of all its places the unique input place, the unique output place and
a finite set of so-called resource places which may contain, along with the input place, the
tokens in the entry marking of the given PPN. These tokens located in the entry marking of
PPN at the resource places usually represent the permanent resources of the modeled system.
The given PPN can pass into its exit marking that is reachable from its entry marking by
performing the final sequence of the transition firings. The tokens of the PPN’s exit marking
may be then located only at its single output place and also at its resource places.

Process Petri nets with time stamps (PPNTS) are the newly introduced class of low-level Petri
nets whose definition and the properties are the main topics of this chapter. PPNTS generalize
the properties of PPNs in the area of design, modeling and verification of generally parallel
systems with the discrete time.

Property-preserving Petri net process algebras (PPPA) [9] were originally designed for the
specification and verification of manufacturing systems. PPPA has four types of operators:
extensions, compositions, refinements and reductions. All operators can preserve about 20
PPN’s properties (some of them under additional conditions), such as liveness, boundedness,
reversibility, RC-property, traps, siphons, proper termination, and so on. PPPA does not need
to verify composition of PPNs because all their algebraic operators preserve the specified set of
the properties. Hence, if the source PPNs satisfy the desirable properties, each of the composite
PPN, including the PPN that models the resulting system itself, also satisfies these properties.
These original PPPA are generalized for the class of the PPNTS in this chapter and their
properties of proper-formed, well-formed and pure-formed PPNTS are then newly introduced.
The new COMP, SYNC and JOIN algebraic operators are defined for the class of PPNTS and
their chosen properties are proved.

With the support of these operators, the PPNTS can be extended also to the areas of the project
management and the determination of the project critical path with the support of the critical
path method (CPM) [10]. The new CPPNET subclass of PPNTS class is then defined in this
chapter to represent pure-formed time-dependent processes. It is specially designed for the
generalization of the CPM activities charts and their properties. This fact is then demonstrated
on the simple project example and its critical path and other properties specification.

Petri Nets in Science and Engineering112

This chapter is arranged into the following sections: Section 2 explains the base term of this
chapter, that is, process Petri nets with time stamps and introduces the terms of proper-
formed, well-formed and pure-formed PPNTS; Section 3 discusses algebraic operators COMP
and SYNC defined over the class of PPNTS and their main properties; Section 4 then intro-
duces the special subclass CPPNET of the PPNTS class and explains its use in the area of the
project management to represent pure-formed time-dependent processes with using of
PPNTSs and to find critical paths for these processes similarly as in the case of the well-known
critical path method (CPM). Finally, Section 5 gives the conclusions of the research to conclude
the chapter.

2. Process Petri nets with time stamps and their properties

Let N denote the set of all natural numbers, N := {1, 2,…}; N0 the set of all non-negative integer
numbers, N0 := {0, 1, 2, …}; ∅ the empty set; |A| the cardinality of the given set A; P (A)
denotes the family of all the subsets of the given set A; f: A ! B a function on a domain A to a
codomain B; ⌐ the logical negation operator. Let (A ⊂ N0) ∧ (∃n ∈ N: |A| = n) ∧ (A 6¼ ∅); then
max(A) := x, where (x ∈ A) ∧ (∀y ∈ A: x ≥ y). Multiset M over a nonempty set S is a function M:
S ! N0. The non-negative number M(a) ∈ N0, where a ∈ S, denotes the number of occurrences
of the element a in the multisetM. The multisetM over a nonempty set Swill be represented by
the notation M := [aM(a), bM(b), cM(c), …] = [a, …, a, b, …, b, c, …, c, …], where S := {a, b, c, …}.
Notation SMS then denotes the class of all the multisets over the set S.

Definition 1. Let A be a nonempty set. By the (nonempty finite) sequence σ over the set Awe
understand a function σ: {1, 2, …, n} ! A, where n ∈ N. Function ε: ∅ ! A is called the empty
sequence on the set A. We usually represent the sequence σ: {1, 2, …, n} ! A by the notation
σ = <a1, a2, …, an > of the elements of the set A, where ai = σ(i) for 1 ≤ i ≤ n. Empty sequence ε:
∅ ! A on the set A we usually represent by the notation ε = <>. We denote the set of all finite
(and possible empty) sequences over the set A by the notation ASQ.

If σ = <a1, a2,…, an > and τ = <b1, b2, …, bm > are the finite sequences, where σ ∈ ASQ, τ ∈ ASQ, n
∈ N, m ∈ N, then by the concatenation of the sequences σ and τ, denoted by σ++τ, we
understand the finite sequence σ++τ := < a1, a2, …, an, b1, b2, …, bm>. The following functions
are defined:

i. length: ASQ ! N0, so that: length(σ) := n, length(ε) := 0,

ii. elements: ASQ ! P (A), so that: elements(σ) := {a | ∃i, 1 ≤ i ≤ n: a = σ(i)}, elements(ε) := ∅,

iii. prefix: ASQ � N0 ! ASQ, so that:

prefix(<a1, a2, …, an>, m) := < a1, a2, …, am>, if m ≤ n,

prefix(<a1, a2, …, an>, m) := < a1, a2, …, an>, if m > n,

prefix(ε, m) := ε,

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

113

iv. suffix: ASQ � N0 ! ASQ, so that:

suffix(<a1, a2, …, an>, m) := < am + 1, am + 2, …, an>, if m < n,

suffix(<a1, a2, …, an>, m) := ε, if m ≥ n,

suffix(ε, m) := ε,

v. create: N � A ! ASQ, so that: create(n, a) := < a, a, …, a>, where length(<a, a, …, a>) = n,

vi. sort: (N0)SQ ! (N0)SQ, so that: sort(σ) := r,

where (r = <b1, b2, …, bn>) ∧ (b1 ≤ b2 ≤ … ≤ bn) ∧ ([a1, a2, …, an] = [b1, b2, …, bn]).

We use the following subsets of the set (N0)SQ:

• N# := {σ ∈ (N0)SQ | (σ = ε) ∨ ((σ = <a1, a2, …, an>) ∧ (a1 ≤ a2 ≤ … ≤ an)), n ∈ N},

• N0 := {σ ∈ (N0)SQ | (σ = ε) ∨ ((σ = <0, 0, …, 0>) ∧ (length(σ) = n)), n ∈ N}.

Thus, the elements of the set N# constitute the empty sequence ε and all the finite ascending
ordered sequences σ consisting of non-negative integer numbers. Similarly, the elements of the
set N0 then form an empty sequence ε and all the sequences in the form <0, 0, …, 0 > of any
finite length.

Definition 2. Net NET is an ordered triple NET := (P, T, A), where P is finite nonempty set of
places, T is finite set of transitions, P ∩ T = ∅, and A is finite set of arcs, A ⊆ (P� T) ∪ (T� P).□

The given net NET is then described with a bipartite graph containing a finite nonempty set P
of places used for expressing of the conditions of a modeled process (we usually use circles for
their representation), a finite set T of transitions describing the changes in the modeled process
(we usually draw them in the form of rectangles) and a finite set A of arcs being principally
oriented while connecting the place with the transition or the transition with the place and we
usually draw them as lines with arrows.

Some commonly used notations for the nets are •y = {x | (x, y) ∈ A} for the preset and y• = {x |
(y, x)∈A} for the postset of a net node y (i.e., place or transition). A path of a netNET := (P, T,A) is
a nonempty sequence <x1,…, xk> of net nodes, where k∈N, which satisfies (x1, x2), (x2, x3),…, (xk-
1, xk) ∈A. A path of the netNET := (P, T, A) leading from its node x to its node y is a circuit if (y, x)
∈ A. We denote the set of all the circuits of the net NET by CIRCUITSNET. Net NET’ := (P0, T’, A’)
is a subnet of the net NET := (P, T, A) if (P0 ⊆ P) ∧ (T’ ⊆ T) ∧ (A’ = A ∩ ((P0 � T’) ∪ (T’ � P0))). Net
NET is connected if and only if it is not composed of two ormore disjoint and nonempty subnets.

Definition 3. Process net with time stamps (PNTS) PNTS is an ordered tuple PNTS := (P, T, A,
AF, TP, TI, IP, OP, RP), where

i. (P, T, A) is the connected net, ∀t ∈ T: (•t 6¼ ∅) ∧ (t• 6¼ ∅),

ii. AF: (P � T) ∪ (T � P) ! N0 is the arc function,

AF x; yð Þ > 0⇔ x; yð Þ∈A,AF x; yð Þ ¼ 0⇔ x; yð Þ∉A,where x, y∈P∪T,

Petri Nets in Science and Engineering114

iii. TP is the transition priority function, TP: T ! N,

iv. TI: (T � P) ! N0 is the time interval function,

v. IP is the input place, (IP ∈ P) ∧ (•IP = ∅) ∧ (∀p ∈ (P \ ({IP} ∪ RP)): •p 6¼ ∅),

vi. OP is the output place, (OP ∈ P) ∧ (OP• = ∅) ∧ (∀p ∈ (P \ ({OP} ∪ RP)): p• 6¼ ∅),

vii. RP is the set of resource places, (RP ⊆ (P \ {IP, OP})) ∧ (∀t ∈ T: ⌐(•t ⊆ RP)).

The class of all the PNTS will be denoted by PNTS. □
The given PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is represented by the connected net
(P, T, A) with nonempty preset and postset of each of its transitions t; the arc function AF
assigning each arc with a natural number (such number has the default value of 1, if not
explicitly indicated in the PNTS diagram) expressing the number of removed or added tokens
from or to the place associated with that arc when firing a particular transition; transition
priority function TP assigns with each transition the natural number value expressing its
priority (with the default value of 1); the time interval function TI assigns to each arc of the type
(transition, place) a non-negative integer d expressing the minimum time interval during which
the token has to remain in the place instead of being able to participate in the next firing of some
transition and it thus determines the so-called time marking of the given PNTS (the value d
associated with the respective arc is given in the format +d in the PNTS diagram); the input place
IP is the only one nonresource place of PNTS PNTSwith no input arc(s); the output place OP is
the only one nonresource place of PNTS PNTSwith no output arc(s); the finite set RP of resource
places is used for expressing conditions of a modeled process containing some initial resources
and we use circles with the double line for their representation.

Definition 4. Let PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) be the PNTS. Then:

i. marking M of the PNTS PNTS is a function M: P ! N0,

ii. time marking m of the PNTS PNTS is a function m: P ! N#,

where ∀p ∈ P: |M(p)| = length(m(p)),

iii. variable τ ∈ N0 is the net time of the PNTS PNTS,

iv. state S of the PNTS PNTS is an ordered triple S := (M, m, τ),

v. transition t ∈ T is enabled in the state S := (M,m, τ) of the PNTS PNTS that is denoted by t
en S, if ∀p ∈ •t: (M(p) ≥ AF(p, t)) ∧ (∀n ∈ elements(prefix(m(p), AF(p, t))): n ≤ τ)),

vi. firing of the transition t ∈ T results in changing the state S := (M, m, τ) of the PNTS PNTS
into its state S0 := (M’, m’, τ) that is denoted by S [t〉 S0, where ∀p ∈ P:

• M’(p) := M(p) � AF(p, t) + AF(t, p),

• m’(p) := sort(suffix(m(p), AF(p, t))++create(τ + TI(t, p), AF(t, p))),

vii. elapsing of time interval δ∈N results in changing the state S := (M,m, τ) of PNTSPNTS into
its state S0 := (M,m, τ + δ), where ∀t ∈ T: ⌐(t en (M,m, τ)), that is denoted by S [δ〉 S0, so that:

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

115

iv. suffix: ASQ � N0 ! ASQ, so that:

suffix(<a1, a2, …, an>, m) := < am + 1, am + 2, …, an>, if m < n,

suffix(<a1, a2, …, an>, m) := ε, if m ≥ n,

suffix(ε, m) := ε,

v. create: N � A ! ASQ, so that: create(n, a) := < a, a, …, a>, where length(<a, a, …, a>) = n,

vi. sort: (N0)SQ ! (N0)SQ, so that: sort(σ) := r,

where (r = <b1, b2, …, bn>) ∧ (b1 ≤ b2 ≤ … ≤ bn) ∧ ([a1, a2, …, an] = [b1, b2, …, bn]).

We use the following subsets of the set (N0)SQ:

• N# := {σ ∈ (N0)SQ | (σ = ε) ∨ ((σ = <a1, a2, …, an>) ∧ (a1 ≤ a2 ≤ … ≤ an)), n ∈ N},

• N0 := {σ ∈ (N0)SQ | (σ = ε) ∨ ((σ = <0, 0, …, 0>) ∧ (length(σ) = n)), n ∈ N}.

Thus, the elements of the set N# constitute the empty sequence ε and all the finite ascending
ordered sequences σ consisting of non-negative integer numbers. Similarly, the elements of the
set N0 then form an empty sequence ε and all the sequences in the form <0, 0, …, 0 > of any
finite length.

Definition 2. Net NET is an ordered triple NET := (P, T, A), where P is finite nonempty set of
places, T is finite set of transitions, P ∩ T = ∅, and A is finite set of arcs, A ⊆ (P� T) ∪ (T� P).□

The given net NET is then described with a bipartite graph containing a finite nonempty set P
of places used for expressing of the conditions of a modeled process (we usually use circles for
their representation), a finite set T of transitions describing the changes in the modeled process
(we usually draw them in the form of rectangles) and a finite set A of arcs being principally
oriented while connecting the place with the transition or the transition with the place and we
usually draw them as lines with arrows.

Some commonly used notations for the nets are •y = {x | (x, y) ∈ A} for the preset and y• = {x |
(y, x)∈A} for the postset of a net node y (i.e., place or transition). A path of a netNET := (P, T,A) is
a nonempty sequence <x1,…, xk> of net nodes, where k∈N, which satisfies (x1, x2), (x2, x3),…, (xk-
1, xk) ∈A. A path of the netNET := (P, T, A) leading from its node x to its node y is a circuit if (y, x)
∈ A. We denote the set of all the circuits of the net NET by CIRCUITSNET. Net NET’ := (P0, T’, A’)
is a subnet of the net NET := (P, T, A) if (P0 ⊆ P) ∧ (T’ ⊆ T) ∧ (A’ = A ∩ ((P0 � T’) ∪ (T’ � P0))). Net
NET is connected if and only if it is not composed of two ormore disjoint and nonempty subnets.

Definition 3. Process net with time stamps (PNTS) PNTS is an ordered tuple PNTS := (P, T, A,
AF, TP, TI, IP, OP, RP), where

i. (P, T, A) is the connected net, ∀t ∈ T: (•t 6¼ ∅) ∧ (t• 6¼ ∅),

ii. AF: (P � T) ∪ (T � P) ! N0 is the arc function,

AF x; yð Þ > 0⇔ x; yð Þ∈A,AF x; yð Þ ¼ 0⇔ x; yð Þ∉A,where x, y∈P∪T,

Petri Nets in Science and Engineering114

iii. TP is the transition priority function, TP: T ! N,

iv. TI: (T � P) ! N0 is the time interval function,

v. IP is the input place, (IP ∈ P) ∧ (•IP = ∅) ∧ (∀p ∈ (P \ ({IP} ∪ RP)): •p 6¼ ∅),

vi. OP is the output place, (OP ∈ P) ∧ (OP• = ∅) ∧ (∀p ∈ (P \ ({OP} ∪ RP)): p• 6¼ ∅),

vii. RP is the set of resource places, (RP ⊆ (P \ {IP, OP})) ∧ (∀t ∈ T: ⌐(•t ⊆ RP)).

The class of all the PNTS will be denoted by PNTS. □
The given PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is represented by the connected net
(P, T, A) with nonempty preset and postset of each of its transitions t; the arc function AF
assigning each arc with a natural number (such number has the default value of 1, if not
explicitly indicated in the PNTS diagram) expressing the number of removed or added tokens
from or to the place associated with that arc when firing a particular transition; transition
priority function TP assigns with each transition the natural number value expressing its
priority (with the default value of 1); the time interval function TI assigns to each arc of the type
(transition, place) a non-negative integer d expressing the minimum time interval during which
the token has to remain in the place instead of being able to participate in the next firing of some
transition and it thus determines the so-called time marking of the given PNTS (the value d
associated with the respective arc is given in the format +d in the PNTS diagram); the input place
IP is the only one nonresource place of PNTS PNTSwith no input arc(s); the output place OP is
the only one nonresource place of PNTS PNTSwith no output arc(s); the finite set RP of resource
places is used for expressing conditions of a modeled process containing some initial resources
and we use circles with the double line for their representation.

Definition 4. Let PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) be the PNTS. Then:

i. marking M of the PNTS PNTS is a function M: P ! N0,

ii. time marking m of the PNTS PNTS is a function m: P ! N#,

where ∀p ∈ P: |M(p)| = length(m(p)),

iii. variable τ ∈ N0 is the net time of the PNTS PNTS,

iv. state S of the PNTS PNTS is an ordered triple S := (M, m, τ),

v. transition t ∈ T is enabled in the state S := (M,m, τ) of the PNTS PNTS that is denoted by t
en S, if ∀p ∈ •t: (M(p) ≥ AF(p, t)) ∧ (∀n ∈ elements(prefix(m(p), AF(p, t))): n ≤ τ)),

vi. firing of the transition t ∈ T results in changing the state S := (M, m, τ) of the PNTS PNTS
into its state S0 := (M’, m’, τ) that is denoted by S [t〉 S0, where ∀p ∈ P:

• M’(p) := M(p) � AF(p, t) + AF(t, p),

• m’(p) := sort(suffix(m(p), AF(p, t))++create(τ + TI(t, p), AF(t, p))),

vii. elapsing of time interval δ∈N results in changing the state S := (M,m, τ) of PNTSPNTS into
its state S0 := (M,m, τ + δ), where ∀t ∈ T: ⌐(t en (M,m, τ)), that is denoted by S [δ〉 S0, so that:

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

115

∀t∈T ∀n∈N; 1 ≤n < δ : ⌐ t en M;m; τþ nð Þð Þð Þ ∧ ∃t∈T : t en M;m; τþ δð Þð Þ,
viii. if the transitions t1, t2, …, tn ∈ T are enabled in the state S := (M, m, τ) of PNTS PNTS (i.e.,

(t1 en S) ∧ (t2 en S) ∧ … ∧ (tn en S)) we say that these transitions are enabled in parallel in
the state S that is denoted by {t1, t2, …, tn} en S,

ix. finite nonempty sequence σ := t1 t2 … tn of the transitions t1, t2, …, tn ∈ T for which the
following is valid in the state S1 := (M1, m1, τ1) of PNTS PNTS:

• (M1, m1, τ1) [t1〉 (M2, m2, τ1) [t2〉 … [tn〉 (Mn + 1, mn + 1, τ1),

• ∀t ∈ T: ⌐(t en (Mn + 1, mn + 1, τ1)),

is called step σ in the given state S1 of PNTS PNTS and it is denoted by.

M1;m1; τ1ð Þ σ½ i Mnþ1;mnþ1; τ1ð Þ,
x. finite nonempty sequence r of steps and time intervals elapsing that represents the

following finite sequence

M1;m1; τ1ð Þ σ1½ i M2;m2; τ1ð Þ δ1½ i… Mnþ1;mnþ1; τnð Þ δn½ i Mnþ1;mnþ1; τnþ1ð Þ
of the state changes of PNTS PNTS is the sequence r := σ1 δ1 σ2 δ2 … σn δn of steps σ1, σ2, …,
σn and time intervals elapsing δ1, δ2, …, δn,

xi. we say the state S0 of PNTS PNTS is reachable from its state S if there exists the finite
sequence r := σ1 δ1 σ2 δ2 … σn δn of steps σ1, σ2, …, σn and time intervals elapsing
δ1, δ2, …, δn such that S [σ1 δ1 σ2 δ2 … σn δn〉 S0; the set of all the reachable states
of PNTS PNTS from its state S is denoted by [S〉; the set of all the finite sequences
r := σ1 δ1 σ2 δ2 … σn δn associated with all the reachable states S0 ∈ [S〉 is denoted by
[S〉〉, that is,

S½ ii≔ σ1 δ1 σ2 δ2… σn δn ∣∃S0 ∈ S½ i : S σ1 δ1 σ2 δ2… σn δn½ i S0, n∈Nf g,
xii. the set of all the states S := (M, m, τ) of PNTS PNTS is denoted by S,

xiii. the set of all the markings M associated with the set S of all the states of PNTS PNTS is
denoted by M, that is, M := {M | (S = (M, m, τ)) ∧ (S ∈ S)},

xiv. static state Ss := (Ms, ms, τs) of PNTS PNTS is every of its states where

∀p∈P\RP : Ms pð Þ ¼ 0ð Þ ∧ ms pð Þ ¼<>ð Þ,
xv. the set of all the static states Ss := (Ms, ms, τs) of PNTS PNTS is denoted by Ss,

xvi. the set of all the static markings Ms associated with the set Ss of all the static states of
PNTS PNTS is denoted by Ms, that is, Ms := {Ms | (Ss := (Ms, ms, τs)) ∧ (Ss ∈ Ss)},

xvii. the function ξ:M!Ms which assigns to each markingM ∈M of a given PNTS PNTS the
associated static marking Ms ∈ Ms is defined as follows:

• ∀p ∈ RP: ξ(M(p)) := M(p),

• ∀p ∈P \ RP: ξ(M(p)) := 0,

Petri Nets in Science and Engineering116

xviii. entry state Se := (Me, me, τe) of PNTS PNTS is every of its states where
• ∃k ∈ N: (Me(IP) = k) ∧ (length(me(IP)) = k),

• ∀p ∈ P \ (RP ∪ {IP}): (Me(p) = 0) ∧ (me(p) = <>),

• ∀p ∈ RP: (Me(p) ≥ 0) ∧ (me(p) ∈ N0),

xix. the set of all the entry states Se := (Me, me, τe) of PNTS PNTS is denoted by Se,

xx. exit state Sx := (Mx, mx, τx) of PNTS PNTS that is reachable from its entry state
Se := (Me, me, τe) is every of its states where
• Sx ∈ [Se〉,

• Mx(OP) = Me(IP),

• ∀p ∈ P \ (RP ∪ {OP}): (Me(p) = 0) ∧ (me(p) = <>),

xxi. the set of all the exit states Sx := (Me, me, τe) of PNTS PNTS that are reachable from its
entry state Se := (Me, me, τe) is denoted by [Se〉x,

xxii. the set of all the exit states Sx of PNTS PNTS that are reachable from all its entry states
Se ∈ Se is denoted by Sx. □

The above established concepts are demonstrated in a simple example of the PNTS PNTS1 :=
(P, T, A, AF, TP, TI, IP, OP, RP) that is shown in Figure 1, where P := {IP, P1, R1, OP}, T := {T1,
T2, T3}, A := {(IP, T1), (IP, T2), (T1, P1), (T2, P1), (R1, T1), (P1, T3), (T3, R1), (T3, OP)}, AF :=
{((IP, T1), 1), ((IP, T2), 1), ((T1, P1), 1), ((T2, P1), 2), ((R1, T1), 1), ((P1, T3), 1), ((T3, R1), 1), ((T3,
OP), 1)}, TP := {(T1, 2), (T2, 1), (T3, 1)}, TI := {((T1, P1), 3), ((T2, P1), 3), ((T3, R1), 1), ((T3, OP),
4)}, IP := IP, OP := OP, RP := {R1}.

PNTS PNTS1 is in its entry state Se := (Me, me, τe), where markingMe := (Me(IP),Me(P1),Me(R1),
Me(OP)) = (2, 0, 2, 0), time marking me := (me(IP),me(P1),me(R1),me(OP)) = (<0, 2>, <>, <0, 0>, <>)
and net time τe = 0 (i.e., τe = τ). Static marking Ms ∈ Ms associated with the entry marking Me

(see (xiv) and (xvii) of Definition 4) has the value Ms := ξ(Me) = (0, 0, 2, 0).

Figure 1. Firing of transition T1 in PNTS PNTS1.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

117

∀t∈T ∀n∈N; 1 ≤n < δ : ⌐ t en M;m; τþ nð Þð Þð Þ ∧ ∃t∈T : t en M;m; τþ δð Þð Þ,
viii. if the transitions t1, t2, …, tn ∈ T are enabled in the state S := (M, m, τ) of PNTS PNTS (i.e.,

(t1 en S) ∧ (t2 en S) ∧ … ∧ (tn en S)) we say that these transitions are enabled in parallel in
the state S that is denoted by {t1, t2, …, tn} en S,

ix. finite nonempty sequence σ := t1 t2 … tn of the transitions t1, t2, …, tn ∈ T for which the
following is valid in the state S1 := (M1, m1, τ1) of PNTS PNTS:

• (M1, m1, τ1) [t1〉 (M2, m2, τ1) [t2〉 … [tn〉 (Mn + 1, mn + 1, τ1),

• ∀t ∈ T: ⌐(t en (Mn + 1, mn + 1, τ1)),

is called step σ in the given state S1 of PNTS PNTS and it is denoted by.

M1;m1; τ1ð Þ σ½ i Mnþ1;mnþ1; τ1ð Þ,
x. finite nonempty sequence r of steps and time intervals elapsing that represents the

following finite sequence

M1;m1; τ1ð Þ σ1½ i M2;m2; τ1ð Þ δ1½ i… Mnþ1;mnþ1; τnð Þ δn½ i Mnþ1;mnþ1; τnþ1ð Þ
of the state changes of PNTS PNTS is the sequence r := σ1 δ1 σ2 δ2 … σn δn of steps σ1, σ2, …,
σn and time intervals elapsing δ1, δ2, …, δn,

xi. we say the state S0 of PNTS PNTS is reachable from its state S if there exists the finite
sequence r := σ1 δ1 σ2 δ2 … σn δn of steps σ1, σ2, …, σn and time intervals elapsing
δ1, δ2, …, δn such that S [σ1 δ1 σ2 δ2 … σn δn〉 S0; the set of all the reachable states
of PNTS PNTS from its state S is denoted by [S〉; the set of all the finite sequences
r := σ1 δ1 σ2 δ2 … σn δn associated with all the reachable states S0 ∈ [S〉 is denoted by
[S〉〉, that is,

S½ ii≔ σ1 δ1 σ2 δ2… σn δn ∣∃S0 ∈ S½ i : S σ1 δ1 σ2 δ2… σn δn½ i S0, n∈Nf g,
xii. the set of all the states S := (M, m, τ) of PNTS PNTS is denoted by S,

xiii. the set of all the markings M associated with the set S of all the states of PNTS PNTS is
denoted by M, that is, M := {M | (S = (M, m, τ)) ∧ (S ∈ S)},

xiv. static state Ss := (Ms, ms, τs) of PNTS PNTS is every of its states where

∀p∈P\RP : Ms pð Þ ¼ 0ð Þ ∧ ms pð Þ ¼<>ð Þ,
xv. the set of all the static states Ss := (Ms, ms, τs) of PNTS PNTS is denoted by Ss,

xvi. the set of all the static markings Ms associated with the set Ss of all the static states of
PNTS PNTS is denoted by Ms, that is, Ms := {Ms | (Ss := (Ms, ms, τs)) ∧ (Ss ∈ Ss)},

xvii. the function ξ:M!Ms which assigns to each markingM ∈M of a given PNTS PNTS the
associated static marking Ms ∈ Ms is defined as follows:

• ∀p ∈ RP: ξ(M(p)) := M(p),

• ∀p ∈P \ RP: ξ(M(p)) := 0,

Petri Nets in Science and Engineering116

xviii. entry state Se := (Me, me, τe) of PNTS PNTS is every of its states where
• ∃k ∈ N: (Me(IP) = k) ∧ (length(me(IP)) = k),

• ∀p ∈ P \ (RP ∪ {IP}): (Me(p) = 0) ∧ (me(p) = <>),

• ∀p ∈ RP: (Me(p) ≥ 0) ∧ (me(p) ∈ N0),

xix. the set of all the entry states Se := (Me, me, τe) of PNTS PNTS is denoted by Se,

xx. exit state Sx := (Mx, mx, τx) of PNTS PNTS that is reachable from its entry state
Se := (Me, me, τe) is every of its states where
• Sx ∈ [Se〉,

• Mx(OP) = Me(IP),

• ∀p ∈ P \ (RP ∪ {OP}): (Me(p) = 0) ∧ (me(p) = <>),

xxi. the set of all the exit states Sx := (Me, me, τe) of PNTS PNTS that are reachable from its
entry state Se := (Me, me, τe) is denoted by [Se〉x,

xxii. the set of all the exit states Sx of PNTS PNTS that are reachable from all its entry states
Se ∈ Se is denoted by Sx. □

The above established concepts are demonstrated in a simple example of the PNTS PNTS1 :=
(P, T, A, AF, TP, TI, IP, OP, RP) that is shown in Figure 1, where P := {IP, P1, R1, OP}, T := {T1,
T2, T3}, A := {(IP, T1), (IP, T2), (T1, P1), (T2, P1), (R1, T1), (P1, T3), (T3, R1), (T3, OP)}, AF :=
{((IP, T1), 1), ((IP, T2), 1), ((T1, P1), 1), ((T2, P1), 2), ((R1, T1), 1), ((P1, T3), 1), ((T3, R1), 1), ((T3,
OP), 1)}, TP := {(T1, 2), (T2, 1), (T3, 1)}, TI := {((T1, P1), 3), ((T2, P1), 3), ((T3, R1), 1), ((T3, OP),
4)}, IP := IP, OP := OP, RP := {R1}.

PNTS PNTS1 is in its entry state Se := (Me, me, τe), where markingMe := (Me(IP),Me(P1),Me(R1),
Me(OP)) = (2, 0, 2, 0), time marking me := (me(IP),me(P1),me(R1),me(OP)) = (<0, 2>, <>, <0, 0>, <>)
and net time τe = 0 (i.e., τe = τ). Static marking Ms ∈ Ms associated with the entry marking Me

(see (xiv) and (xvii) of Definition 4) has the value Ms := ξ(Me) = (0, 0, 2, 0).

Figure 1. Firing of transition T1 in PNTS PNTS1.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

117

Time marking m of any PNTS expresses the current time state of the modeled system using the
final (or empty) ascending ordered sequences of non-negative integers (i.e., elements of the set
N#) associated with each of its places. The individual values of the time marking m associated
with the arbitrary place p of the given PNTS in its state S, informally said, represent the values
of the net time τ at which the respective token can first participate in the firing of selected
enabled transition t of the given PNTS.

The transitions T1 and T2 are enabled in the entry state Se because (see (v) of Definition 4):

• ∀p ∈ •T1: (2 =M(IP) ≥ AF(IP, T1) = 1) ∧ (2 =M(R1) ≥ AF(R1, T1) = 1) ∧ (∀n ∈ elements(prefix
(m(IP), AF(IP, T1))) = elements(prefix(<0, 2>, 1)) = elements(<0>) = {0}: 0 ≤ 0) ∧ (∀n ∈ elements
(prefix(m(R1), AF(R1, T1))) = elements(prefix(<0, 0>, 1)) = elements(<0>) = {0}: 0 ≤ 0),

• ∀p ∈ •T2: (2 = M(IP) ≥ AF(IP, T1) = 1) ∧ (∀n ∈ elements(prefix(m(IP), AF(IP, T2))) = elements
(prefix(<0, 2>, 1)) = elements(<0>) = {0}: 0 ≤ 0).

When enabling individual transitions of the given PNTS so-called conflicts can originate in its
certain markings (or conflict transitions). At the enabling of the transitions t1 and t2 of the
given PNTS in its state S the conflict occurs, if both transitions t1 and t2 have at least one input
place, each of the transitions t1 and t2 is individually enabled in the state S, but the transitions
t1 and t2 are not enabled in parallel in the state S (see (viii) of Definition 4) and enabling of one
of them will prevent enabling of the other (i.e., (•t1 ∩ •t2 6¼ ∅) ∧ (t1 en S) ∧ (t2 en S) ∧ ⌐({t1, t2} en
S)). The term of conflict transitions can be obviously easily generalized for the case of a finite
set t1, t2, …, tn, n ∈ N of the transitions of the given PNTS.

The transitions T1 and T2 in the entry state Se of PNTS PNTS1 are conflict transitions because
the time marking me(IP) = <0, 2 > (i.e., only one token of the entry marking Me(IP) may
participate in the firing of the transition T1 or T2 in the net time τe = 0). When solving such
transitions conflict we therefore follow the rule which determines, informally said, that from
the set of conflict transitions the one will be enabled, whose value of the transition priority
function TP is the highest. If such transition from the set of conflict transitions does not exist,
the given conflict would have to be solved by other means. The transition T1 is then enabled in
the entry state Se on the basis of that rule in our studied example (because TP(T1) = 2 and TP
(T2) = 1).

Firing of the transition T1 changes the entry state Se := (Me, me, τe) of the PNTS PNTS1 into its
state S1 := (M1, m1, τe) (i.e., Se [T1〉 S1—see Figure 1), where (see (vi) of Definition 4):

• M1(IP) := Me(IP) - AF(IP, T1) = 2 � 1 = 1,

• m1(IP) := sort(suffix(me(IP), AF(IP, T1))) = sort(suffix(<0, 2>, 1)) = sort(<2>) = <2>,

• M1(P1) := Me(P1) + AF(T1, P1) = 0 + 1 = 1,

• m1(P1) := sort(create(τ + TI(T1, P1), AF(T1, P1))) = sort(create(0 + 3, 1)) = sort(create(3,
1)) = sort(<3>) = <3>,

• M1(R1) := Me(R1) - AF(R1, T1) = 2 � 1 = 1,

• m1(R1) := sort(suffix(me(R1), AF(R1, T1))) = sort(suffix(<0, 0>, 1)) = sort(<0>) = <0> .

Petri Nets in Science and Engineering118

There is no enabled transition in the state S1 := (M1, m1, τ1) and it is necessary to perform the
time interval elapsing with the value of δ = 2. This will change the state S1 := (M1, m1, τe) into
the state S2 := (M1, m1, τ1), where τ1 := τe + δ = 2 (i.e., S1 [2〉 S2). It can be easily shown that
transition T1 in the state S2 is enabled and firing of this transition changes the state S2 :=
(M1, m1, τ1) of the PNTS PNTS1 into its state S3 := (M2, m2, τ1) (i.e., S2 [T1〉 S3), where M2 :=
(M2(IP), M2(P1), M2(R1), M2(OP)) = (0, 2, 0, 0) and m2 := (m2(IP), m2(P1), m2(R1), m2(OP)) = (<>,
<3, 5>, <>, <>).

It can then be easily verified that S3 [1〉 S4 [T3〉 S5 [2〉 S6 [T3〉 Sx, where:

• S4 = (M2, m2, τ2) = ((0, 2, 0, 0), (<>, <3, 5>, <>, <>), 3),

• S5 = (M3, m3, τ2) = ((0, 1, 1, 1), (<>, <5>, <4>, <7>), 3),

• S6 = (M3, m3, τ3) = ((0, 1, 1, 1), (<>, <5>, <4>, <7>), 5),

• Sx = (M4, m4, τ3) = ((0, 0, 2, 2), (<>, <>, <4, 6>, <7, 9>), 5).

There are no enabled transitions in the exit state Sx := (M4, m4, τ3) of PNTS PNTS1 that is
reachable from the entry state Se := (Me,me, τe) (see (xx) of Definition 4) and there is also no time
interval elapsing value δ in this state that enables any of the transitions.

The set AMs ⊆Ms of all the allowed static markings of the given PNTS PNTS, informally said,
expresses how many tokens may be located in its individual resource places if PNTS PNTS be
in its (now no longer arbitrary) allowed entry state ASe ∈ ASe, where ASe ⊆ Se. For instance, the
set AMs of the PNTS PNTS1 (see Figure 1) can be defined as AMs := {(0, 0, k, 0) | k ∈ N}, that is,
there must be at least one token in the resource place R1 (and of course at least one token in the
input place IP) in any allowed entry state ASe ∈ ASe.

Definition 5. Let PNTS := (P, T, A, AF, TP, TI, IP,OP, RP) be a PNTS, AMs ⊆Ms be the set of all
of its allowed static markings and ASe := {ASe | (ASe = (AMe, ame, 0)) ∧ (ξ(AMe) ∈ AMs)} be the
set of all of its allowed entry states. Then:

i. PNTS is k-bounded PNTS if

∀ASe ∈ASe ∃k∈N0∀p∈P ∀S∈ ASe½ i, S≔ M;m; τð Þ : M p
� �

≤k,

ii. PNTS is proper-formed PNTS if

∀ASe ∈ASe : ∀S∈ ASe½ i∃Sx ∈ ASe½ ix : Sx ∈ S½ ið Þ ∧ ∃n∈N : ∣ ASe½ ið i∣ ¼ nÞ,
iii. proper-formed PNTS is well-formed PNTS if

∀ASe ∈ASe∀Sx ∈ ASe½ ix, Sx≔ Mx;mx; τxð Þ : ξ Mxð Þ∈AMs,

iv. well-formed PNTS is pure-formed PNTS if

∀ASe ∈ASe∀Sx ∈ ASe½ ix, Sx≔ Mx;mx; τxð Þ : ξ AMeð Þ ¼ ξ Mxð Þ: □
PNTS is proper-formed PNTS if for any of its state S that is reachable from any allowed entry
state ASe ∈ ASe there exists its output state Sx that is also reachable from its allowed entry state

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

119

Time marking m of any PNTS expresses the current time state of the modeled system using the
final (or empty) ascending ordered sequences of non-negative integers (i.e., elements of the set
N#) associated with each of its places. The individual values of the time marking m associated
with the arbitrary place p of the given PNTS in its state S, informally said, represent the values
of the net time τ at which the respective token can first participate in the firing of selected
enabled transition t of the given PNTS.

The transitions T1 and T2 are enabled in the entry state Se because (see (v) of Definition 4):

• ∀p ∈ •T1: (2 =M(IP) ≥ AF(IP, T1) = 1) ∧ (2 =M(R1) ≥ AF(R1, T1) = 1) ∧ (∀n ∈ elements(prefix
(m(IP), AF(IP, T1))) = elements(prefix(<0, 2>, 1)) = elements(<0>) = {0}: 0 ≤ 0) ∧ (∀n ∈ elements
(prefix(m(R1), AF(R1, T1))) = elements(prefix(<0, 0>, 1)) = elements(<0>) = {0}: 0 ≤ 0),

• ∀p ∈ •T2: (2 = M(IP) ≥ AF(IP, T1) = 1) ∧ (∀n ∈ elements(prefix(m(IP), AF(IP, T2))) = elements
(prefix(<0, 2>, 1)) = elements(<0>) = {0}: 0 ≤ 0).

When enabling individual transitions of the given PNTS so-called conflicts can originate in its
certain markings (or conflict transitions). At the enabling of the transitions t1 and t2 of the
given PNTS in its state S the conflict occurs, if both transitions t1 and t2 have at least one input
place, each of the transitions t1 and t2 is individually enabled in the state S, but the transitions
t1 and t2 are not enabled in parallel in the state S (see (viii) of Definition 4) and enabling of one
of them will prevent enabling of the other (i.e., (•t1 ∩ •t2 6¼ ∅) ∧ (t1 en S) ∧ (t2 en S) ∧ ⌐({t1, t2} en
S)). The term of conflict transitions can be obviously easily generalized for the case of a finite
set t1, t2, …, tn, n ∈ N of the transitions of the given PNTS.

The transitions T1 and T2 in the entry state Se of PNTS PNTS1 are conflict transitions because
the time marking me(IP) = <0, 2 > (i.e., only one token of the entry marking Me(IP) may
participate in the firing of the transition T1 or T2 in the net time τe = 0). When solving such
transitions conflict we therefore follow the rule which determines, informally said, that from
the set of conflict transitions the one will be enabled, whose value of the transition priority
function TP is the highest. If such transition from the set of conflict transitions does not exist,
the given conflict would have to be solved by other means. The transition T1 is then enabled in
the entry state Se on the basis of that rule in our studied example (because TP(T1) = 2 and TP
(T2) = 1).

Firing of the transition T1 changes the entry state Se := (Me, me, τe) of the PNTS PNTS1 into its
state S1 := (M1, m1, τe) (i.e., Se [T1〉 S1—see Figure 1), where (see (vi) of Definition 4):

• M1(IP) := Me(IP) - AF(IP, T1) = 2 � 1 = 1,

• m1(IP) := sort(suffix(me(IP), AF(IP, T1))) = sort(suffix(<0, 2>, 1)) = sort(<2>) = <2>,

• M1(P1) := Me(P1) + AF(T1, P1) = 0 + 1 = 1,

• m1(P1) := sort(create(τ + TI(T1, P1), AF(T1, P1))) = sort(create(0 + 3, 1)) = sort(create(3,
1)) = sort(<3>) = <3>,

• M1(R1) := Me(R1) - AF(R1, T1) = 2 � 1 = 1,

• m1(R1) := sort(suffix(me(R1), AF(R1, T1))) = sort(suffix(<0, 0>, 1)) = sort(<0>) = <0> .

Petri Nets in Science and Engineering118

There is no enabled transition in the state S1 := (M1, m1, τ1) and it is necessary to perform the
time interval elapsing with the value of δ = 2. This will change the state S1 := (M1, m1, τe) into
the state S2 := (M1, m1, τ1), where τ1 := τe + δ = 2 (i.e., S1 [2〉 S2). It can be easily shown that
transition T1 in the state S2 is enabled and firing of this transition changes the state S2 :=
(M1, m1, τ1) of the PNTS PNTS1 into its state S3 := (M2, m2, τ1) (i.e., S2 [T1〉 S3), where M2 :=
(M2(IP), M2(P1), M2(R1),M2(OP)) = (0, 2, 0, 0) and m2 := (m2(IP), m2(P1), m2(R1), m2(OP)) = (<>,
<3, 5>, <>, <>).

It can then be easily verified that S3 [1〉 S4 [T3〉 S5 [2〉 S6 [T3〉 Sx, where:

• S4 = (M2, m2, τ2) = ((0, 2, 0, 0), (<>, <3, 5>, <>, <>), 3),

• S5 = (M3, m3, τ2) = ((0, 1, 1, 1), (<>, <5>, <4>, <7>), 3),

• S6 = (M3, m3, τ3) = ((0, 1, 1, 1), (<>, <5>, <4>, <7>), 5),

• Sx = (M4, m4, τ3) = ((0, 0, 2, 2), (<>, <>, <4, 6>, <7, 9>), 5).

There are no enabled transitions in the exit state Sx := (M4, m4, τ3) of PNTS PNTS1 that is
reachable from the entry state Se := (Me,me, τe) (see (xx) of Definition 4) and there is also no time
interval elapsing value δ in this state that enables any of the transitions.

The set AMs ⊆Ms of all the allowed static markings of the given PNTS PNTS, informally said,
expresses how many tokens may be located in its individual resource places if PNTS PNTS be
in its (now no longer arbitrary) allowed entry state ASe ∈ ASe, where ASe ⊆ Se. For instance, the
set AMs of the PNTS PNTS1 (see Figure 1) can be defined as AMs := {(0, 0, k, 0) | k ∈ N}, that is,
there must be at least one token in the resource place R1 (and of course at least one token in the
input place IP) in any allowed entry state ASe ∈ ASe.

Definition 5. Let PNTS := (P, T, A, AF, TP, TI, IP,OP, RP) be a PNTS, AMs ⊆Ms be the set of all
of its allowed static markings and ASe := {ASe | (ASe = (AMe, ame, 0)) ∧ (ξ(AMe) ∈ AMs)} be the
set of all of its allowed entry states. Then:

i. PNTS is k-bounded PNTS if

∀ASe ∈ASe ∃k∈N0∀p∈P ∀S∈ ASe½ i, S≔ M;m; τð Þ : M p
� �

≤k,

ii. PNTS is proper-formed PNTS if

∀ASe ∈ASe : ∀S∈ ASe½ i∃Sx ∈ ASe½ ix : Sx ∈ S½ ið Þ ∧ ∃n∈N : ∣ ASe½ ið i∣ ¼ nÞ,
iii. proper-formed PNTS is well-formed PNTS if

∀ASe ∈ASe∀Sx ∈ ASe½ ix, Sx≔ Mx;mx; τxð Þ : ξ Mxð Þ∈AMs,

iv. well-formed PNTS is pure-formed PNTS if

∀ASe ∈ASe∀Sx ∈ ASe½ ix, Sx≔ Mx;mx; τxð Þ : ξ AMeð Þ ¼ ξ Mxð Þ: □
PNTS is proper-formed PNTS if for any of its state S that is reachable from any allowed entry
state ASe ∈ ASe there exists its output state Sx that is also reachable from its allowed entry state

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

119

ASe ∈ ASe such that the output state Sx is also reachable from the state S (i.e., ∀S ∈ [ASe〉 ∃Sx ∈
[ASe〉x: Sx ∈ [S〉). Furthermore, the cardinality of the set [ASe〉〉 of all the sequences r := σ1 δ1 σ2
δ2 … σn δn associated with all the reachable states S ∈ [ASe〉〉 must be finite (i.e., (∃n ∈ N: |
[ASe〉〉| = n).

Proper-formed PNTS is well-formed PNTS if for any of its allowed entry state ASe ∈ ASe and
for any of its exit state Sx ∈ [ASe〉x, where Sx := (Mx, mx, τx), it is true that the exit static marking
ξ(Mx) of all its resource places is an element of the set AMs of all its allowed static markings if
PNTS PNTS be in its allowed entry state ASe ∈ ASe (i.e., ∀ASe ∈ ASe ∀Sx ∈ [ASe〉x, Sx := (Mx, mx,
τx): ξ(Mx) ∈ AMs).

Well-formed PNTS is pure-formed PNTS if for any of its allowed entry state ASe ∈ ASe, where
ASe := (AMe, ame, τe), and for any of its exit state Sx ∈ [ASe〉x, where Sx := (Mx, mx, τx), it is true
that the exit static marking ξ(Mx) of all its resource places is equal to the entry static marking
ξ(AMe) of all its resource places that is associated with the allowed entry state ASe (i.e., ∀ASe ∈
ASe ∀Sx ∈ [ASe〉x, Sx := (Mx, mx, τx): ξ(AMe) = ξ(Mx)).

For instance, if the set AMs of the PNTS PNTS1 (see Figure 1) is defined as:

i. AMs := {(0, 0, k, 0) | k ∈ N} (i.e., there must be at least one token in the resource place R1 in
any allowed entry state ASe ∈ ASe), then it can be shown that PNTS PNTS1 is k-bounded,
proper-formed, well-formed and pure-formed PNTS,

ii. AMs := {(0, 0, 0, 0)} (i.e., there may not be any token in the resource place R1 in any
allowed entry state ASe ∈ ASe), then it can be shown that PNTS PNTS1 is k-bounded,
proper-formed, but not well-formed or pure-formed PNTS (see for instance the sequence

1; 0; 0; 0ð Þ; < 0 >;<>;<>;<>ð Þ; 0ð Þ T2½ i 0; 2; 0; 0ð Þ; <>;< 3; 3 >;<>;<>ð Þ; 0ð Þ 3½ i:
0; 2; 0; 0ð Þ; <>;< 3; 3 >;<>;<>ð Þ; 3ð Þ T3 T3½ i 0; 0; 2; 2ð Þ; <>;<>;< 4; 4 >;< 7; 7 >ð Þ; 3ð Þ,

where ξ Mxð Þ ¼ ξ 0; 0; 2; 2ð Þð Þ ¼ 0; 0; 2; 0ð Þ∉ 0; 0; 0; 0ð Þf g ¼ AMsÞ:

Lemma 1. If PNTS is proper-formed PTNS then PNTS is k-bounded PNTS.

Proof. Clear. PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is a connected net that contains the
finite set T of the transitions. Then the finite number of tokens will be added to each of the
places p ∈ P by firing each of the transitions t ∈ T. The number of states S ∈ [ASe〉 for any
allowed entry state ASe ∈ ASe must be also finite because PNTS is proper-formed PNTS (i.e., ∃n
∈ N: |[ASe〉〉| = n). From these facts then immediately follows that in any state S ∈ [ASe〉 the
finite number of tokens must be placed in any place p ∈ P, where any final number of tokens is
placed in the input place IP in the entry state ASe. From these facts then immediately follows
that ∀ASe ∈ASe ∃k∈N0 ∀p∈P ∀S∈ ASe½ i, S≔ M;m; τð Þ : M pð Þ ≤ k: □

Definition 6. Process Petri net with time stamps (PPNTS) PPNTS is an ordered couple
PPNTS := (PNTS, Se), where PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is the PNTS and Se ∈ Se
is the entry state of PNTS PNTS. The class of all PPNTSs will be denoted by PPNTS. □

Petri Nets in Science and Engineering120

3. Algebraic operators COMP and SYNC and their properties

We study the issue of transforming PNTS through precisely defined binary operator COMP
and n-ary operator SYNC over the class PNTS and we also examine the preservation of
individual PNTS’s properties when applying each of these operators. Formal enrollment of an
application of generally n-ary operator OP whose operands are the PNTS PNTS1, PNTS2, …,
PNTSn (n ∈ N) and whose application requires the specification of values of k formal parame-
ters (k ∈ N) par1, par2, … park, will be denoted by the expression.

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:OP par1; par2;…; park
� �

,

where PNTS is the resulting PNTS.

Definition 7. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2,
AF2, TP2, TI2, IP2, OP2, RP2) be the PNTSs. Let AMs1 := {(AMs1(IP1), AMs1(p11), …, AMs1(p1n),
AMs1(r11), …, AMs1(r1m), AMs1(OP1)) | P1 := {p11, …, p1n, r11, …, r1m}, RP1 := {r11, …, r1m}, n ∈
N, m ∈ N} be the set of all the allowed static markings of PNTS1, AMs2 := {(AMs2(IP2),
AMs2(p21), …, AMs2(p2k), AMs2(r21), …, AMs2(r2h), AMs2(OP2)) | P2 := {p21, …, p2k, r21, …,
r2h}, RP2 := {r21, …, r2h}, k ∈ N, h ∈ N} be the set of all the allowed static markings of PNTS2.

Cartesian product AMs1 ⊗ AMs2 is then the following set:

AMs1 ⊗AMs2≔ AMs1 IP1ð Þ;AMs1 p11ð Þ;…;AMs1 p1nð Þ;AMs1 r11ð Þ;…;AMs1 r1mð Þ;AMs1 OP1ð Þ;ðf
AMs2 IP2ð Þ;AMs2 p21ð Þ;…;AMs2 p2kð Þ;AMs2 r21ð Þ;…;AMs2 r2hð Þ;AMs2 OP2ð ÞÞ j:

AMs1 IP1ð Þ;AMs1 p11ð Þ;…;AMs1 p1nð Þ;AMs1 r11ð Þ;…;AMs1 r1mð Þ;AMs1 OP1ð Þð Þ∈AMs1 ∧ :

AMs2 IP2ð Þ;AMs2 p21ð Þ;…;AMs2 p2kð Þ;AMs2 r21ð Þ;…;AMs2 r2hð Þ;AMs2 OP2ð Þð Þ∈AMs2g:

PNTS PNTS1 and PNTS2 are disjoint and we denote this fact by PNTS1 ∠ PNTS2 if.

P1 ∩P2 ¼ ∅ð Þ ∧ T1 ∩T2 ¼ ∅ð Þ: □

Definition 8. The function COMP: PNTS � PNTS! PNTS of nets composition is defined as
follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2, AF2, TP2,
TI2, IP2, OP2, RP2) be the arbitrary PNTSs, PNTS1 ∠ PNTS2, t be an arbitrary transition, where
(t ∉ T1) ∧ (t ∉ T2), ti ∈ N0, then PNTS := [PNTS1, PNTS2].COMP(t, ti), where PNTS PNTS :=
(P, T, A, AF, TP, TI, IP, OP, RP) fulfills the following:

i. P := P1 ∪ P2,

ii. T := T1 ∪ T2 ∪ {t},

iii. A := A1 ∪ A2 ∪ {(OP1, t), (t, IP2)},

iv. AF := AF1 ∪ AF2 ∪ {((OP1, t), 1), ((t, IP2), 1)},

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

121

ASe ∈ ASe such that the output state Sx is also reachable from the state S (i.e., ∀S ∈ [ASe〉 ∃Sx ∈
[ASe〉x: Sx ∈ [S〉). Furthermore, the cardinality of the set [ASe〉〉 of all the sequences r := σ1 δ1 σ2
δ2 … σn δn associated with all the reachable states S ∈ [ASe〉〉 must be finite (i.e., (∃n ∈ N: |
[ASe〉〉| = n).

Proper-formed PNTS is well-formed PNTS if for any of its allowed entry state ASe ∈ ASe and
for any of its exit state Sx ∈ [ASe〉x, where Sx := (Mx, mx, τx), it is true that the exit static marking
ξ(Mx) of all its resource places is an element of the set AMs of all its allowed static markings if
PNTS PNTS be in its allowed entry state ASe ∈ ASe (i.e., ∀ASe ∈ ASe ∀Sx ∈ [ASe〉x, Sx := (Mx, mx,
τx): ξ(Mx) ∈ AMs).

Well-formed PNTS is pure-formed PNTS if for any of its allowed entry state ASe ∈ ASe, where
ASe := (AMe, ame, τe), and for any of its exit state Sx ∈ [ASe〉x, where Sx := (Mx, mx, τx), it is true
that the exit static marking ξ(Mx) of all its resource places is equal to the entry static marking
ξ(AMe) of all its resource places that is associated with the allowed entry state ASe (i.e., ∀ASe ∈
ASe ∀Sx ∈ [ASe〉x, Sx := (Mx, mx, τx): ξ(AMe) = ξ(Mx)).

For instance, if the set AMs of the PNTS PNTS1 (see Figure 1) is defined as:

i. AMs := {(0, 0, k, 0) | k ∈ N} (i.e., there must be at least one token in the resource place R1 in
any allowed entry state ASe ∈ ASe), then it can be shown that PNTS PNTS1 is k-bounded,
proper-formed, well-formed and pure-formed PNTS,

ii. AMs := {(0, 0, 0, 0)} (i.e., there may not be any token in the resource place R1 in any
allowed entry state ASe ∈ ASe), then it can be shown that PNTS PNTS1 is k-bounded,
proper-formed, but not well-formed or pure-formed PNTS (see for instance the sequence

1; 0; 0; 0ð Þ; < 0 >;<>;<>;<>ð Þ; 0ð Þ T2½ i 0; 2; 0; 0ð Þ; <>;< 3; 3 >;<>;<>ð Þ; 0ð Þ 3½ i:
0; 2; 0; 0ð Þ; <>;< 3; 3 >;<>;<>ð Þ; 3ð Þ T3 T3½ i 0; 0; 2; 2ð Þ; <>;<>;< 4; 4 >;< 7; 7 >ð Þ; 3ð Þ,

where ξ Mxð Þ ¼ ξ 0; 0; 2; 2ð Þð Þ ¼ 0; 0; 2; 0ð Þ∉ 0; 0; 0; 0ð Þf g ¼ AMsÞ:

Lemma 1. If PNTS is proper-formed PTNS then PNTS is k-bounded PNTS.

Proof. Clear. PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is a connected net that contains the
finite set T of the transitions. Then the finite number of tokens will be added to each of the
places p ∈ P by firing each of the transitions t ∈ T. The number of states S ∈ [ASe〉 for any
allowed entry state ASe ∈ ASe must be also finite because PNTS is proper-formed PNTS (i.e., ∃n
∈ N: |[ASe〉〉| = n). From these facts then immediately follows that in any state S ∈ [ASe〉 the
finite number of tokens must be placed in any place p ∈ P, where any final number of tokens is
placed in the input place IP in the entry state ASe. From these facts then immediately follows
that ∀ASe ∈ASe ∃k∈N0 ∀p∈P ∀S∈ ASe½ i, S≔ M;m; τð Þ : M pð Þ ≤ k: □

Definition 6. Process Petri net with time stamps (PPNTS) PPNTS is an ordered couple
PPNTS := (PNTS, Se), where PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is the PNTS and Se ∈ Se
is the entry state of PNTS PNTS. The class of all PPNTSs will be denoted by PPNTS. □

Petri Nets in Science and Engineering120

3. Algebraic operators COMP and SYNC and their properties

We study the issue of transforming PNTS through precisely defined binary operator COMP
and n-ary operator SYNC over the class PNTS and we also examine the preservation of
individual PNTS’s properties when applying each of these operators. Formal enrollment of an
application of generally n-ary operator OP whose operands are the PNTS PNTS1, PNTS2, …,
PNTSn (n ∈ N) and whose application requires the specification of values of k formal parame-
ters (k ∈ N) par1, par2, … park, will be denoted by the expression.

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:OP par1; par2;…; park
� �

,

where PNTS is the resulting PNTS.

Definition 7. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2,
AF2, TP2, TI2, IP2, OP2, RP2) be the PNTSs. Let AMs1 := {(AMs1(IP1), AMs1(p11), …, AMs1(p1n),
AMs1(r11), …, AMs1(r1m), AMs1(OP1)) | P1 := {p11, …, p1n, r11, …, r1m}, RP1 := {r11, …, r1m}, n ∈
N, m ∈ N} be the set of all the allowed static markings of PNTS1, AMs2 := {(AMs2(IP2),
AMs2(p21), …, AMs2(p2k), AMs2(r21), …, AMs2(r2h), AMs2(OP2)) | P2 := {p21, …, p2k, r21, …,
r2h}, RP2 := {r21, …, r2h}, k ∈ N, h ∈ N} be the set of all the allowed static markings of PNTS2.

Cartesian product AMs1 ⊗ AMs2 is then the following set:

AMs1 ⊗AMs2≔ AMs1 IP1ð Þ;AMs1 p11ð Þ;…;AMs1 p1nð Þ;AMs1 r11ð Þ;…;AMs1 r1mð Þ;AMs1 OP1ð Þ;ðf
AMs2 IP2ð Þ;AMs2 p21ð Þ;…;AMs2 p2kð Þ;AMs2 r21ð Þ;…;AMs2 r2hð Þ;AMs2 OP2ð ÞÞ j:

AMs1 IP1ð Þ;AMs1 p11ð Þ;…;AMs1 p1nð Þ;AMs1 r11ð Þ;…;AMs1 r1mð Þ;AMs1 OP1ð Þð Þ∈AMs1 ∧ :

AMs2 IP2ð Þ;AMs2 p21ð Þ;…;AMs2 p2kð Þ;AMs2 r21ð Þ;…;AMs2 r2hð Þ;AMs2 OP2ð Þð Þ∈AMs2g:

PNTS PNTS1 and PNTS2 are disjoint and we denote this fact by PNTS1 ∠ PNTS2 if.

P1 ∩P2 ¼ ∅ð Þ ∧ T1 ∩T2 ¼ ∅ð Þ: □

Definition 8. The function COMP: PNTS � PNTS! PNTS of nets composition is defined as
follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2, AF2, TP2,
TI2, IP2, OP2, RP2) be the arbitrary PNTSs, PNTS1 ∠ PNTS2, t be an arbitrary transition, where
(t ∉ T1) ∧ (t ∉ T2), ti ∈ N0, then PNTS := [PNTS1, PNTS2].COMP(t, ti), where PNTS PNTS :=
(P, T, A, AF, TP, TI, IP, OP, RP) fulfills the following:

i. P := P1 ∪ P2,

ii. T := T1 ∪ T2 ∪ {t},

iii. A := A1 ∪ A2 ∪ {(OP1, t), (t, IP2)},

iv. AF := AF1 ∪ AF2 ∪ {((OP1, t), 1), ((t, IP2), 1)},

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

121

v. TP := TP1 ∪ TP2 ∪ {(t, 1)},

vi. TI := TI1 ∪ TI2 ∪ {(t, IP2), ti)},

vii. IP := IP1,

viii. OP := OP2,

ix. RP := RP1 ∪ RP2. □
Symbolic representation of PNTS [PNTS1, PNTS2].COMP(t, ti) can be seen in Figure 2.

Lemma 2. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2, AF2,
TP2, TI2, IP2,OP2, RP2) be two arbitrary PNTS, PNTS1 ∠ PNTS2, t be an arbitrary transition, (t ∉
T1) ∧ (t ∉ T2), ti ∈ N0, AMs1 and AMs2 be the sets of all the allowed static markings of PNTS1
and PNTS2. Let PNTS := [PNTS1, PNTS2].COMP(t, ti).

Figure 2. Symbolic representation of PNTS [PNTS1, PNTS2].COMP(t, ti).

Petri Nets in Science and Engineering122

If PNTS1 and PNTS2 are proper-formed, resp. well-formed, resp. pure-formed, PNTS and
AMs = AMs1 ⊗ AMs2 be the set of all the allowed static markings of PNTS PNTS, then also
resulting PNTS is proper-formed, resp. well-formed, resp. pure-formed, PNTS.

Proof. Clear, it directly follows from Definition 5, Definition 7 and Definition 8. □

Definition 9. The function SYNC: PNTS� PNTS�…� PNTS! PNTS of synchronous nets
composition is defined as follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1,OP1, RP1), PNTS2 :=
(P2, T2, A2, AF2, TP2, TI2, IP2, OP2, RP2), …, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn, OPn, RPn),
be the arbitrary PNTSs, ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PNTSi ∠ PNTSj, where n ∈ N, pi and po
be the arbitrary places, (pi ∉ P1 ∪ P2 ∪ … ∪ Pn) ∧ (po ∉ P1 ∪ P2 ∪ … ∪ Pn) ∧ (pi 6¼ po), ti and to be
the arbitrary transitions, (ti ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (ti 6¼ to), af1 ∈ N, af2 ∈
N, …, afn ∈ N, ti1 ∈ N0, ti2 ∈ N0, …, tin ∈ N0, tio ∈ N0, then

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:SYNC pi; po; ti; to; af 1;…; afn; ti1;…; tin; tioð Þ,

where PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) fulfills the following:

i. P := P1 ∪ P2 ∪ … ∪ Pn ∪ {pi, po},

ii. T := T1 ∪ T2 ∪ … ∪ Tn ∪ {ti, to},

iii. A := A1 ∪ A2 ∪ … ∪ An ∪ {(pi, ti), (ti, IP1), …, (ti, IPn), (OP1, to), …, (OPn, to), (to, po)},

iv. AF := AF1 ∪ AF2 ∪ … ∪ AFn ∪ {((pi, ti), 1), ((ti, IP1), af1), …, ((ti, IPn), afn), ((OP1, to), af1), …,
((OPn, to), afn), ((to, po), 1)},

v. TP := TP1 ∪ TP2 ∪ … ∪ TPn ∪ {(ti, 1), (to, 1)},

vi. TI := TI1 ∪ TI2 ∪ … ∪ TIn ∪ {((ti, IP1), ti1), …, ((ti, IPn), tin), ((to, po), tio)},

vii. IP := pi,

viii. OP := po,

ix. RP := RP1 ∪ RP2 ∪ … ∪ RPn. □
Symbolic representation of PNTS [PNTS1, PNTS2,…, PNTSn].SYNC(pi, po, ti, to, af1,…, afn, ti1,
…, tin, tio) can be seen in Figure 3.

Lemma 3. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1), PNTS2 := (P2, T2, A2, AF2, TP2,
TI2, IP2,OP2, RP2),…, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn,OPn, RPn) be arbitrary PNTSs, ∀i,
1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PNTSi ∠ PNTSj, where n ∈ N, pi and po be arbitrary places, (pi ∉ P1

∪ P2 ∪… ∪ Pn) ∧ (po ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (pi 6¼ po), ti and to be arbitrary transitions, (ti ∉ T1 ∪ T2 ∪
… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (ti 6¼ to), af1 ∈ N, af2 ∈ N,…, afn ∈ N, ti1 ∈ N0, ti2 ∈ N0,…, tin
∈ N0, tio ∈ N0 and AMs1, AMs2, …, AMsn be the sets of all the allowed static markings of
PNTS1, PNTS2, …, PNTSn. Let PNTS := [PNTS1, PNTS2, …, PNTSn].SYNC(pi, po, ti, to, af1, …,
afn, ti1, …, tin, tio).

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

123

v. TP := TP1 ∪ TP2 ∪ {(t, 1)},

vi. TI := TI1 ∪ TI2 ∪ {(t, IP2), ti)},

vii. IP := IP1,

viii. OP := OP2,

ix. RP := RP1 ∪ RP2. □
Symbolic representation of PNTS [PNTS1, PNTS2].COMP(t, ti) can be seen in Figure 2.

Lemma 2. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2, AF2,
TP2, TI2, IP2,OP2, RP2) be two arbitrary PNTS, PNTS1 ∠ PNTS2, t be an arbitrary transition, (t ∉
T1) ∧ (t ∉ T2), ti ∈ N0, AMs1 and AMs2 be the sets of all the allowed static markings of PNTS1
and PNTS2. Let PNTS := [PNTS1, PNTS2].COMP(t, ti).

Figure 2. Symbolic representation of PNTS [PNTS1, PNTS2].COMP(t, ti).

Petri Nets in Science and Engineering122

If PNTS1 and PNTS2 are proper-formed, resp. well-formed, resp. pure-formed, PNTS and
AMs = AMs1 ⊗ AMs2 be the set of all the allowed static markings of PNTS PNTS, then also
resulting PNTS is proper-formed, resp. well-formed, resp. pure-formed, PNTS.

Proof. Clear, it directly follows from Definition 5, Definition 7 and Definition 8. □

Definition 9. The function SYNC: PNTS� PNTS�…� PNTS! PNTS of synchronous nets
composition is defined as follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1,OP1, RP1), PNTS2 :=
(P2, T2, A2, AF2, TP2, TI2, IP2, OP2, RP2), …, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn, OPn, RPn),
be the arbitrary PNTSs, ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PNTSi ∠ PNTSj, where n ∈ N, pi and po
be the arbitrary places, (pi ∉ P1 ∪ P2 ∪ … ∪ Pn) ∧ (po ∉ P1 ∪ P2 ∪ … ∪ Pn) ∧ (pi 6¼ po), ti and to be
the arbitrary transitions, (ti ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (ti 6¼ to), af1 ∈ N, af2 ∈
N, …, afn ∈ N, ti1 ∈ N0, ti2 ∈ N0, …, tin ∈ N0, tio ∈ N0, then

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:SYNC pi; po; ti; to; af 1;…; afn; ti1;…; tin; tioð Þ,

where PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) fulfills the following:

i. P := P1 ∪ P2 ∪ … ∪ Pn ∪ {pi, po},

ii. T := T1 ∪ T2 ∪ … ∪ Tn ∪ {ti, to},

iii. A := A1 ∪ A2 ∪ … ∪ An ∪ {(pi, ti), (ti, IP1), …, (ti, IPn), (OP1, to), …, (OPn, to), (to, po)},

iv. AF := AF1 ∪ AF2 ∪ … ∪ AFn ∪ {((pi, ti), 1), ((ti, IP1), af1), …, ((ti, IPn), afn), ((OP1, to), af1), …,
((OPn, to), afn), ((to, po), 1)},

v. TP := TP1 ∪ TP2 ∪ … ∪ TPn ∪ {(ti, 1), (to, 1)},

vi. TI := TI1 ∪ TI2 ∪ … ∪ TIn ∪ {((ti, IP1), ti1), …, ((ti, IPn), tin), ((to, po), tio)},

vii. IP := pi,

viii. OP := po,

ix. RP := RP1 ∪ RP2 ∪ … ∪ RPn. □
Symbolic representation of PNTS [PNTS1, PNTS2,…, PNTSn].SYNC(pi, po, ti, to, af1,…, afn, ti1,
…, tin, tio) can be seen in Figure 3.

Lemma 3. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1), PNTS2 := (P2, T2, A2, AF2, TP2,
TI2, IP2,OP2, RP2),…, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn,OPn, RPn) be arbitrary PNTSs, ∀i,
1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PNTSi ∠ PNTSj, where n ∈ N, pi and po be arbitrary places, (pi ∉ P1

∪ P2 ∪… ∪ Pn) ∧ (po ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (pi 6¼ po), ti and to be arbitrary transitions, (ti ∉ T1 ∪ T2 ∪
… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (ti 6¼ to), af1 ∈ N, af2 ∈ N,…, afn ∈ N, ti1 ∈ N0, ti2 ∈ N0,…, tin
∈ N0, tio ∈ N0 and AMs1, AMs2, …, AMsn be the sets of all the allowed static markings of
PNTS1, PNTS2, …, PNTSn. Let PNTS := [PNTS1, PNTS2, …, PNTSn].SYNC(pi, po, ti, to, af1, …,
afn, ti1, …, tin, tio).

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

123

If PNTS1, PNTS2, …, PNTSn are proper-formed, resp. well-formed, resp. pure-formed, PNTS
and AMs = AMs1 ⊗ AMs2 ⊗ … ⊗ AMsn is the set of all the allowed static markings of PNTS
PNTS, then also PNTS is proper-formed, resp. well-formed, resp. pure-formed, PNTS.

Proof. Clear, it directly follows from Definition 5, Definition 7 and Definition 9. □

4. Process Petri nets with time stamps and their applications in project
management area

Critical Path Method (CPM) is a method used in modeling and project management that was
developed at the end of 1950s and that is commonly used for all the types of projects including
software development [10]. The CPM is the most widely used method of so-called network
analysis, even though it is designed to analyze the time consumption of only deterministic
projects, that is, projects where the duration of each of their activities is exactly known,
including all their sub-activities.

The basis for using CPM is to create a project model that includes:

• the list of all activities needed to complete the project,

• the time duration of each activity that is constant,

• the dependencies between the project activities,

Figure 3. Symbolic representation of PNTS [PNTS1, PNTS2, …, PNTSn].SYNC(pi, po, ti, to, af1, …, afn, ti1, …, tin, tio).

Petri Nets in Science and Engineering124

A critical path is then a designation for a sequence of activities whose time duration directly
affects the time duration of the entire project. The activities that make up the critical path are
then referred to as critical activities. There may be several critical paths in the project. When
managing the project, a sequence of activities within a given network chart describing this
project that increases the longest total time duration of a project is called its critical path. The
critical path within the network chart can be used to determine the shortest time required to
complete the project. The application of the CPM method can therefore determine which
activities within the studied project are “critical” (i.e., activities on the longest path in the
network chart describing the project) and which activities may be delayed in the execution of
the project without increasing its total time.

The special class CPNET ⊂ PNTS of PNTS is introduced in the following paragraphs to
represent network chart used in the CPMmethod through PNTS. Special unary operator JOIN
that is required in the definition of the class CPNET is introduced first.

Definition 10. The function JOIN: PNTS ! PNTS of net transition joining is defined as
follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) be the arbitrary PNTS, p ∉ P1 be
the arbitrary place, t1 and t2 be the arbitrary transitions, (t1 6¼ t2) ∧ (t1 ∈ T1) ∧ (t2 ∈ T1), ti ∈ N0,
then PNTS := PNTS1.JOIN(p, t1, t2, ti), where PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP)
fulfills the following:

i. P := P1 ∪ {p},

ii. T := T1,

iii. A := A1 ∪ {(t1, p), (p, t2)},

iv. AF := AF1 ∪ {((t1, p), 1), ((p, t2), 1)},

v. TP := TP1 ∪ {(t, 1)},

vi. TI := TI1 ∪ {(t1, p), ti)},

vii. IP := IP1,

viii. OP := OP1,

ix. RP := RP1. □
Symbolic representation of the unary operator JOIN application over the PNTS PNTS1 can be
seen in Figure 4.

Definition 11. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1), PNTS2 := (P2, T2, A2, AF2,
TP2, TI2, IP2, OP2, RP2), …, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn, OPn, RPn), where n ∈ N, be
the arbitrary PNTSs, ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PTSNi ∠ PTSNj. The class CPNET ⊂ PNTS
then contains the following PNTSs:

i. if p be an arbitrary place, p ∉ (P1 ∪ P2 ∪ … ∪ Pn), then PNTS BASEp ∈ CPNET, where
BASEp := ({p}, ∅, ∅, ∅, ∅, ∅, p, p, ∅},

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

125

If PNTS1, PNTS2, …, PNTSn are proper-formed, resp. well-formed, resp. pure-formed, PNTS
and AMs = AMs1 ⊗ AMs2 ⊗ … ⊗ AMsn is the set of all the allowed static markings of PNTS
PNTS, then also PNTS is proper-formed, resp. well-formed, resp. pure-formed, PNTS.

Proof. Clear, it directly follows from Definition 5, Definition 7 and Definition 9. □

4. Process Petri nets with time stamps and their applications in project
management area

Critical Path Method (CPM) is a method used in modeling and project management that was
developed at the end of 1950s and that is commonly used for all the types of projects including
software development [10]. The CPM is the most widely used method of so-called network
analysis, even though it is designed to analyze the time consumption of only deterministic
projects, that is, projects where the duration of each of their activities is exactly known,
including all their sub-activities.

The basis for using CPM is to create a project model that includes:

• the list of all activities needed to complete the project,

• the time duration of each activity that is constant,

• the dependencies between the project activities,

Figure 3. Symbolic representation of PNTS [PNTS1, PNTS2, …, PNTSn].SYNC(pi, po, ti, to, af1, …, afn, ti1, …, tin, tio).

Petri Nets in Science and Engineering124

A critical path is then a designation for a sequence of activities whose time duration directly
affects the time duration of the entire project. The activities that make up the critical path are
then referred to as critical activities. There may be several critical paths in the project. When
managing the project, a sequence of activities within a given network chart describing this
project that increases the longest total time duration of a project is called its critical path. The
critical path within the network chart can be used to determine the shortest time required to
complete the project. The application of the CPM method can therefore determine which
activities within the studied project are “critical” (i.e., activities on the longest path in the
network chart describing the project) and which activities may be delayed in the execution of
the project without increasing its total time.

The special class CPNET ⊂ PNTS of PNTS is introduced in the following paragraphs to
represent network chart used in the CPMmethod through PNTS. Special unary operator JOIN
that is required in the definition of the class CPNET is introduced first.

Definition 10. The function JOIN: PNTS ! PNTS of net transition joining is defined as
follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) be the arbitrary PNTS, p ∉ P1 be
the arbitrary place, t1 and t2 be the arbitrary transitions, (t1 6¼ t2) ∧ (t1 ∈ T1) ∧ (t2 ∈ T1), ti ∈ N0,
then PNTS := PNTS1.JOIN(p, t1, t2, ti), where PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP)
fulfills the following:

i. P := P1 ∪ {p},

ii. T := T1,

iii. A := A1 ∪ {(t1, p), (p, t2)},

iv. AF := AF1 ∪ {((t1, p), 1), ((p, t2), 1)},

v. TP := TP1 ∪ {(t, 1)},

vi. TI := TI1 ∪ {(t1, p), ti)},

vii. IP := IP1,

viii. OP := OP1,

ix. RP := RP1. □
Symbolic representation of the unary operator JOIN application over the PNTS PNTS1 can be
seen in Figure 4.

Definition 11. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1), PNTS2 := (P2, T2, A2, AF2,
TP2, TI2, IP2, OP2, RP2), …, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn, OPn, RPn), where n ∈ N, be
the arbitrary PNTSs, ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PTSNi ∠ PTSNj. The class CPNET ⊂ PNTS
then contains the following PNTSs:

i. if p be an arbitrary place, p ∉ (P1 ∪ P2 ∪ … ∪ Pn), then PNTS BASEp ∈ CPNET, where
BASEp := ({p}, ∅, ∅, ∅, ∅, ∅, p, p, ∅},

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

125

ii. if PNTS1 ∈ CPNET, PNTS2 ∈ CPNET, t be an arbitrary transition, where (t ∉ T1) ∧ (t ∉ T2),
ti ∈ N0, then also [PNTS1, PNTS2].COMP(t, ti) ∈ CPNET,

iii. if PNTS1, PNTS2,…, PNTSn ∈ CPNET, pi and po be the arbitrary places, (pi ∉ P1 ∪ P2 ∪… ∪
Pn) ∧ (po ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (pi 6¼ po), ti and to be the arbitrary transitions, (ti ∉ T1 ∪ T2 ∪
… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪ … ∪ Tn) ∧ (ti 6¼ to), ti1 ∈ N0, ti2 ∈ N0, …, tin ∈ N0, tio ∈ N0, then
also PNTS PNTS ∈ CPNET, where

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:SYNC pi; po; ti; to; 1;…; 1; ti1; ti2;…; tin; tioð Þ,
iv. if PNTS1 ∈ CPNET, p ∉ P1 be an arbitrary place, t1 and t2 be the arbitrary transitions,

(t1 6¼ t2) ∧ (t1 ∈ T1) ∧ (t2 ∈ T1), ti ∈ N0 and af ∈ N, then also PNTS ∈ CPNET, where PNTS
:= (P, T, A, AF, TP, TI, IP, OP, RP), such that:

• PNTS := PNTS1.JOIN(p, t1, t2, ti),

• ⌐(∃ x1 x2 … xn ∈ CIRCUITSPNTS: (x1 ∈ T) ∧ (xn ∈ P) ∧ (n ∈ N)). □

Four simple PNTSs BASEP1
, CPNET1, CPNET2 and CPNET3 that are the members of the class

CPNET can be seen in Figure 5, where:

• CPNET1 := [[BASEP2
, BASEP3].COMP(T2, 2), BASEP4].COMP(T3, 5),

• CPNET2 := [[BASEP6, BASEP8].COMP(T6, 2), BASEP7]

.SYNC(P5, P9, T5, T7, 1, 1, 1, 6, 3),

• CPNET3 := [ANET2, ANET3, BASEP1
].SYNC(IP, OP, T1, T8, 1, 1, 1, 4, 1, 8, 2)

.JOIN(P10, T3, T5, 4).

.JOIN(P11, T3, T6, 5).

Note also that the PNTS CPNET3 does not contain any circuit as it is required in the (4) of
Definition 11.

Lemma 4. Let PNTS ∈ CPNET be an arbitrary PNTS. Then PNTS is pure-formed PNTS.

Figure 4. Symbolic representation of PNTS PNTS := PNTS1.JOIN(p, t1, t2, ti).

Petri Nets in Science and Engineering126

Proof. Clear, it directly follows from Definition 5, Definition 7, Definition 10 and Definition 11
and from the fact that any PNTS ∈ CPNETdoes not contain any resource place (i.e., if the given
PNTS is proper-formed PNTS, then it is also immediately well-formed and pure-formed
PNTS). Furthermore, it is also clear that if we allow the existence of a circuit within the PNTS
PNTS (see (iv) of Definition 11), there is always the danger of a deadlock in such a PNTS and
PNTS is in this case neither a proper-formed PTSN. See, for instance, PNTS CPNET4 in its
entry state Se in Figure 6, where CPNET4 := CPNET3.JOIN(P12, T7, T2, 6). It is true that
CPNET4 ∉ CPNET because there exists for instance the circuit.

T2 P3 T3 P10 T5 P6 T6 P8 T7 P12∈CIRCUITSCPNET4:

It is also clear that after the firing of the transition T1 in the entry state Se of the PNTS CPNET4
no one transition will be enabled for any value of the net time τ in this PNTS (i.e., there exists
the deadlock marking in this PNTS) and thus the CPNET4 is not even proper-formed PNTS.□

Definition 12. The class CPPNET ⊂ PPNTS contains all the PPNTSs PPNTS := (PNTS, Se)
where PNTS ∈ CPNET and Se := ((1, 0, …, 0), (<0>, <>, …, <>), 0). □

An example of a simple process is presented in the following paragraphs the characteristics of
which will be studied with using of the PPNTS from the CPPNET class. The studied process is
described in the following table of activities (see Table 1):

The CPM chart of the abovementioned process comprising the activities listed in Table 1 is
shown in Figure 7 where:

Figure 5. PNTSs BASEP1, CPNET1, CPNET2 and CPNET3.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

127

ii. if PNTS1 ∈ CPNET, PNTS2 ∈ CPNET, t be an arbitrary transition, where (t ∉ T1) ∧ (t ∉ T2),
ti ∈ N0, then also [PNTS1, PNTS2].COMP(t, ti) ∈ CPNET,

iii. if PNTS1, PNTS2,…, PNTSn ∈ CPNET, pi and po be the arbitrary places, (pi ∉ P1 ∪ P2 ∪… ∪
Pn) ∧ (po ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (pi 6¼ po), ti and to be the arbitrary transitions, (ti ∉ T1 ∪ T2 ∪
… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪ … ∪ Tn) ∧ (ti 6¼ to), ti1 ∈ N0, ti2 ∈ N0, …, tin ∈ N0, tio ∈ N0, then
also PNTS PNTS ∈ CPNET, where

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:SYNC pi; po; ti; to; 1;…; 1; ti1; ti2;…; tin; tioð Þ,
iv. if PNTS1 ∈ CPNET, p ∉ P1 be an arbitrary place, t1 and t2 be the arbitrary transitions,

(t1 6¼ t2) ∧ (t1 ∈ T1) ∧ (t2 ∈ T1), ti ∈ N0 and af ∈ N, then also PNTS ∈ CPNET, where PNTS
:= (P, T, A, AF, TP, TI, IP, OP, RP), such that:

• PNTS := PNTS1.JOIN(p, t1, t2, ti),

• ⌐(∃ x1 x2 … xn ∈ CIRCUITSPNTS: (x1 ∈ T) ∧ (xn ∈ P) ∧ (n ∈ N)). □

Four simple PNTSs BASEP1
, CPNET1, CPNET2 and CPNET3 that are the members of the class

CPNET can be seen in Figure 5, where:

• CPNET1 := [[BASEP2
, BASEP3].COMP(T2, 2), BASEP4].COMP(T3, 5),

• CPNET2 := [[BASEP6, BASEP8].COMP(T6, 2), BASEP7]

.SYNC(P5, P9, T5, T7, 1, 1, 1, 6, 3),

• CPNET3 := [ANET2, ANET3, BASEP1
].SYNC(IP, OP, T1, T8, 1, 1, 1, 4, 1, 8, 2)

.JOIN(P10, T3, T5, 4).

.JOIN(P11, T3, T6, 5).

Note also that the PNTS CPNET3 does not contain any circuit as it is required in the (4) of
Definition 11.

Lemma 4. Let PNTS ∈ CPNET be an arbitrary PNTS. Then PNTS is pure-formed PNTS.

Figure 4. Symbolic representation of PNTS PNTS := PNTS1.JOIN(p, t1, t2, ti).

Petri Nets in Science and Engineering126

Proof. Clear, it directly follows from Definition 5, Definition 7, Definition 10 and Definition 11
and from the fact that any PNTS ∈ CPNETdoes not contain any resource place (i.e., if the given
PNTS is proper-formed PNTS, then it is also immediately well-formed and pure-formed
PNTS). Furthermore, it is also clear that if we allow the existence of a circuit within the PNTS
PNTS (see (iv) of Definition 11), there is always the danger of a deadlock in such a PNTS and
PNTS is in this case neither a proper-formed PTSN. See, for instance, PNTS CPNET4 in its
entry state Se in Figure 6, where CPNET4 := CPNET3.JOIN(P12, T7, T2, 6). It is true that
CPNET4 ∉ CPNET because there exists for instance the circuit.

T2 P3 T3 P10 T5 P6 T6 P8 T7 P12∈CIRCUITSCPNET4:

It is also clear that after the firing of the transition T1 in the entry state Se of the PNTS CPNET4
no one transition will be enabled for any value of the net time τ in this PNTS (i.e., there exists
the deadlock marking in this PNTS) and thus the CPNET4 is not even proper-formed PNTS.□

Definition 12. The class CPPNET ⊂ PPNTS contains all the PPNTSs PPNTS := (PNTS, Se)
where PNTS ∈ CPNET and Se := ((1, 0, …, 0), (<0>, <>, …, <>), 0). □

An example of a simple process is presented in the following paragraphs the characteristics of
which will be studied with using of the PPNTS from the CPPNET class. The studied process is
described in the following table of activities (see Table 1):

The CPM chart of the abovementioned process comprising the activities listed in Table 1 is
shown in Figure 7 where:

Figure 5. PNTSs BASEP1, CPNET1, CPNET2 and CPNET3.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

127

• selected activity of the studied process and its duration is associated with each edge of the
CPM chart,

• each node of the CPM chart is associated with its serial number (indicated in the upper
half of the node), the earliest possible activation time of the given node (shown in the

Figure 6. PNTS CPNET4 in its entry state Se.

Activity Duration Previous activities

A 2 —

B 3 —

C 4 —

D 2 C

E 6 B, D

F 5 A

G 5 C

H 3 E, F

Table 1. Table of activities and their dependencies of studied process.

Petri Nets in Science and Engineering128

lower left quarter of the node) and the possible latest activation time of the given node
(shown in the lower right quarter circle of the node),

• the desired links of the individual activities are expressed through the oriented edges and
their associated nodes in the CPM chart,

• the critical path of the CPM chart passes through its nodes where the earliest possible
activation time is equal to the latest possible activation time, that is, through nodes 1, 2, 3,
5 and 6, and it is thus formed by A, D, E and H activities (these activities are represented
by dashed line graphs in the CPM chart) with a total duration of 15 time units.

The pure-formed PPNTS PROC that represents the process comprising the activities listed in
Table 1 can be seen in Figure 8, where

• PROC := [PROC1, [BASEC, BASEG].COMP(T5, 5)].SYNC(IP, OP, T1, T7, 1, 1, 0, 4, 0),

• PROC1 := [[BASEA, BASEF].COMP(T3, 5), [BASEB, BASEE].COMP(T4, 6)]

.SYNC(P1, H, T2, T6, 1, 1, 2, 3, 3).

Places A, B, C, D, E, F, G and H of PNTS PROC represent individual activities of the studied
process and the appropriate values of the time interval function TI then express the time
durations of relevant activities (i.e., for instance, the time duration of the activity A is
represented by the value of TI(T2, A) = 2, etc.).

In order to find the critical path of the process represented by PPNTS PROC, we first perform
the association of each place and transition of the PPNTS PROC with the value of the critical
path function CP that is introduced in the following Definition 13.

Definition 13. Let PPNTS PPNTS := (P, T, A, AF, TP, TI, IP, OP, RP, Se), PPNTS ∈ CPPNET.
The critical path function CP: (P ∪ T) ! N0 is defined as follows:

i. CP(IP) := 0,

ii. ∀p ∈ (P \ IP): CP(p) := CP(t) + TI(t, p), where t = •p,

iii. ∀t ∈ T: CP(t) := max({CP(p1), CP(p2), …, CP(pn)}), where •t = {p1, p2, …, pn}, n ∈ N. □

Figure 7. CPM chart of process activities listed in Table 1.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

129

• selected activity of the studied process and its duration is associated with each edge of the
CPM chart,

• each node of the CPM chart is associated with its serial number (indicated in the upper
half of the node), the earliest possible activation time of the given node (shown in the

Figure 6. PNTS CPNET4 in its entry state Se.

Activity Duration Previous activities

A 2 —

B 3 —

C 4 —

D 2 C

E 6 B, D

F 5 A

G 5 C

H 3 E, F

Table 1. Table of activities and their dependencies of studied process.

Petri Nets in Science and Engineering128

lower left quarter of the node) and the possible latest activation time of the given node
(shown in the lower right quarter circle of the node),

• the desired links of the individual activities are expressed through the oriented edges and
their associated nodes in the CPM chart,

• the critical path of the CPM chart passes through its nodes where the earliest possible
activation time is equal to the latest possible activation time, that is, through nodes 1, 2, 3,
5 and 6, and it is thus formed by A, D, E and H activities (these activities are represented
by dashed line graphs in the CPM chart) with a total duration of 15 time units.

The pure-formed PPNTS PROC that represents the process comprising the activities listed in
Table 1 can be seen in Figure 8, where

• PROC := [PROC1, [BASEC, BASEG].COMP(T5, 5)].SYNC(IP, OP, T1, T7, 1, 1, 0, 4, 0),

• PROC1 := [[BASEA, BASEF].COMP(T3, 5), [BASEB, BASEE].COMP(T4, 6)]

.SYNC(P1, H, T2, T6, 1, 1, 2, 3, 3).

Places A, B, C, D, E, F, G and H of PNTS PROC represent individual activities of the studied
process and the appropriate values of the time interval function TI then express the time
durations of relevant activities (i.e., for instance, the time duration of the activity A is
represented by the value of TI(T2, A) = 2, etc.).

In order to find the critical path of the process represented by PPNTS PROC, we first perform
the association of each place and transition of the PPNTS PROC with the value of the critical
path function CP that is introduced in the following Definition 13.

Definition 13. Let PPNTS PPNTS := (P, T, A, AF, TP, TI, IP, OP, RP, Se), PPNTS ∈ CPPNET.
The critical path function CP: (P ∪ T) ! N0 is defined as follows:

i. CP(IP) := 0,

ii. ∀p ∈ (P \ IP): CP(p) := CP(t) + TI(t, p), where t = •p,

iii. ∀t ∈ T: CP(t) := max({CP(p1), CP(p2), …, CP(pn)}), where •t = {p1, p2, …, pn}, n ∈ N. □

Figure 7. CPM chart of process activities listed in Table 1.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

129

The PPNTS PROCwhose each place and transition is associated with the value of the critical path
function CP can be seen in Figure 9 (where, for instance, CP(E) = CP(T4) + TI(T4, E) = 6 + 6 = 12,
where T4 = •E; CP(T4) = max({CP(B), CP(D)}) = max({3, 6}) = 6, where •T4 = {B,D}, etc.).

It follows directly from the Definition 4 that the value of the critical path function CP associ-
ated with any transition t ∈ T of the arbitrary PPNTS := (P, T, A, AF, TP, TI, IP, OP, RP, Se),
where Se := ((1, 0,…, 0), (<0>, <>,…, <>), 0), then represents the net time τ value when the given
transition t will be fired. The value of the critical path function CP associated with the output
placeOP (i.e., CP(OP)) then immediately indicates the total duration of the process critical path
(i.e., the net time τ value when the transition t = •OP will be fired). The algorithm for finding
the set of PPNTS nodes of which the project critical path is formed is then obvious and it is
expressed by the following pseudocode in PASCAL (the set of nodes forming the critical path
of the project is then contained in the CriticalPath variable):

Node := OP; CriticalPath := {OP};

WHILE (Node <> IP) DO

Figure 8. PPNTS PROC of process activities listed in Table 1.

Petri Nets in Science and Engineering130

BEGIN

MaxValue := max({CP(X1), CP(X2), …, CP(Xn)}), where •Node = {X1, X2, …, Xn}, n ∈ N;

Node := Xi, where (Xi ∈ {X1, X2, …, Xn}) ∧ (CP(Xi) = MaxValue);

CriticalPath := CriticalPath ∪ {Node};

END;

The critical path of PPNTS PROC is after applying of the above algorithm represented by the
set CriticalPath := {IP, T1, C, T5, D, T4, E, T6, H, T7, OP} (see Figure 9). It is also clear that the
given PPNTS may contain more critical paths with the same total time duration.

5. Conclusions

Further research in the field of PNTSs is mainly focused on the definition of additional unary,
binary and n-ary PPPA operators preserving their specified properties, for instance, the binary
SUBST operator that performs the substitution of the given PNTS for the selected place of
another PNTS, and so on. In the field of the project management the research is focused on

Figure 9. PPNTS PROC with the associated values of critical path function CP.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

131

The PPNTS PROCwhose each place and transition is associated with the value of the critical path
function CP can be seen in Figure 9 (where, for instance, CP(E) = CP(T4) + TI(T4, E) = 6 + 6 = 12,
where T4 = •E; CP(T4) = max({CP(B), CP(D)}) = max({3, 6}) = 6, where •T4 = {B,D}, etc.).

It follows directly from the Definition 4 that the value of the critical path function CP associ-
ated with any transition t ∈ T of the arbitrary PPNTS := (P, T, A, AF, TP, TI, IP, OP, RP, Se),
where Se := ((1, 0,…, 0), (<0>, <>,…, <>), 0), then represents the net time τ value when the given
transition t will be fired. The value of the critical path function CP associated with the output
placeOP (i.e., CP(OP)) then immediately indicates the total duration of the process critical path
(i.e., the net time τ value when the transition t = •OP will be fired). The algorithm for finding
the set of PPNTS nodes of which the project critical path is formed is then obvious and it is
expressed by the following pseudocode in PASCAL (the set of nodes forming the critical path
of the project is then contained in the CriticalPath variable):

Node := OP; CriticalPath := {OP};

WHILE (Node <> IP) DO

Figure 8. PPNTS PROC of process activities listed in Table 1.

Petri Nets in Science and Engineering130

BEGIN

MaxValue := max({CP(X1), CP(X2), …, CP(Xn)}), where •Node = {X1, X2, …, Xn}, n ∈ N;

Node := Xi, where (Xi ∈ {X1, X2, …, Xn}) ∧ (CP(Xi) = MaxValue);

CriticalPath := CriticalPath ∪ {Node};

END;

The critical path of PPNTS PROC is after applying of the above algorithm represented by the
set CriticalPath := {IP, T1, C, T5, D, T4, E, T6, H, T7, OP} (see Figure 9). It is also clear that the
given PPNTS may contain more critical paths with the same total time duration.

5. Conclusions

Further research in the field of PNTSs is mainly focused on the definition of additional unary,
binary and n-ary PPPA operators preserving their specified properties, for instance, the binary
SUBST operator that performs the substitution of the given PNTS for the selected place of
another PNTS, and so on. In the field of the project management the research is focused on

Figure 9. PPNTS PROC with the associated values of critical path function CP.

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

131

modeling complex processes, which individual activities can additionally share in parallel a
selected set of the resources. These resources are then represented in the given PNTS by
individual tokens located in the resource places of its selected net marking. Finding the time-
optimal critical path of such a process as well as verifying the properties of the given PNTS that
models such a process is generally a nontrivial problem and the use of PPPAs plays a crucial
role here.

Another class currently being studied is the class of multiprocess Petri nets with time stamps
that represents the generalization of the class of PNTS. The given multiprocess Petri net with
time stamps then represents the finite set of processes each of which is modeled by a separate
PNTS that share a common set of resources modeled by its individual resource places and their
tokens. Many of the studied properties of the multiprocess Petri nets with time stamps are
similar or identical to those of the PNTS class and they allow for a further generalization of the
concept of a critical path formed by a sequence of activities of the process modeled by the
given multiprocess Petri nets with time stamps.

Acknowledgements

This chapter was supported by the SGS at the Faculty of Economics, VŠB-TU Ostrava, under
Grant Evaluation of comparative applications using cognitive analysis and method of data
envelopment analysis, number SP2018/146.

Author details

Ivo Martiník

Address all correspondence to: ivo.martinik@vsb.cz

VŠB-Technical University of Ostrava, Ostrava, Czech Republic

References

[1] David R, Alla H. Discrete, Continuous and Hybrid Petri Nets. 2nd ed. Berlin: Springer-
Verlag; 2010. 550 p. ISBN: 978-3642424694

[2] Reisig W. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. 1st
ed. Berlin: Springer-Verlag; 1998. 302 p. ISBN: 3-540-62752-9

[3] Diaz M. Petri Nets: Fundamental Models, Verification and Applications. 1st ed. London:
John Willey & Sons; 2009. 656 p. ISBN: 978-0-470-39430-4

[4] Popova-Zeugmann L. Time and Petri Nets. 1st ed. Heidelberg: Springer-Verlag; 2013. 209 p.
ISBN: 978-3662514351

Petri Nets in Science and Engineering132

[5] Furia CA, Mandrioli D, Morzenti A, Rossi M. Modeling Time in Computing. 1st ed.
Heidelberg: Springer-Verlag; 2012. 424 p. ISBN: 978-3642323317

[6] van Hee K, Sidorova N. The right timing: Reflections on the modeling and analysis of
time. In: Application and Theory of Petri Nets and Concurrency 2013, 34th International
Conference Proceedings; 24–28 June 2013; Milan. Berlin: Springer-Verlag; 2013. pp. 1-20

[7] Martos-SalgadoM, Rosa-Velardo F. Dynamic networks of timed Petri nets. In: Application
and Theory of Petri Nets and Concurrency 2014, 35th International Conference Proceed-
ings; 23–27 June 2014; Tunis. Berlin: Springer-Verlag; 2014. pp. 294-313

[8] van der Alst W, van Hee K. WorkflowManagement: Models, Methods and Systems. 1st ed.
Massachusetts: MIT Press; 2004. 384 p. ISBN: 978-0262720465

[9] Huang H, Jiao L, Cheung T, Mak WM. Property-Preserving Petri Net Process Algebra in
Software Engineering. 1st ed. Singapore: World Scientific Publishing; 2012. 318 p. ISBN:
978-981-4324-28-1

[10] O’Brien JJ, Plotnick FL. CPM in Construction Management. 8th ed. New York: McGraw-
Hill; 2016. 736 p. ISBN: 978-1259587276

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

133

modeling complex processes, which individual activities can additionally share in parallel a
selected set of the resources. These resources are then represented in the given PNTS by
individual tokens located in the resource places of its selected net marking. Finding the time-
optimal critical path of such a process as well as verifying the properties of the given PNTS that
models such a process is generally a nontrivial problem and the use of PPPAs plays a crucial
role here.

Another class currently being studied is the class of multiprocess Petri nets with time stamps
that represents the generalization of the class of PNTS. The given multiprocess Petri net with
time stamps then represents the finite set of processes each of which is modeled by a separate
PNTS that share a common set of resources modeled by its individual resource places and their
tokens. Many of the studied properties of the multiprocess Petri nets with time stamps are
similar or identical to those of the PNTS class and they allow for a further generalization of the
concept of a critical path formed by a sequence of activities of the process modeled by the
given multiprocess Petri nets with time stamps.

Acknowledgements

This chapter was supported by the SGS at the Faculty of Economics, VŠB-TU Ostrava, under
Grant Evaluation of comparative applications using cognitive analysis and method of data
envelopment analysis, number SP2018/146.

Author details

Ivo Martiník

Address all correspondence to: ivo.martinik@vsb.cz

VŠB-Technical University of Ostrava, Ostrava, Czech Republic

References

[1] David R, Alla H. Discrete, Continuous and Hybrid Petri Nets. 2nd ed. Berlin: Springer-
Verlag; 2010. 550 p. ISBN: 978-3642424694

[2] Reisig W. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. 1st
ed. Berlin: Springer-Verlag; 1998. 302 p. ISBN: 3-540-62752-9

[3] Diaz M. Petri Nets: Fundamental Models, Verification and Applications. 1st ed. London:
John Willey & Sons; 2009. 656 p. ISBN: 978-0-470-39430-4

[4] Popova-Zeugmann L. Time and Petri Nets. 1st ed. Heidelberg: Springer-Verlag; 2013. 209 p.
ISBN: 978-3662514351

Petri Nets in Science and Engineering132

[5] Furia CA, Mandrioli D, Morzenti A, Rossi M. Modeling Time in Computing. 1st ed.
Heidelberg: Springer-Verlag; 2012. 424 p. ISBN: 978-3642323317

[6] van Hee K, Sidorova N. The right timing: Reflections on the modeling and analysis of
time. In: Application and Theory of Petri Nets and Concurrency 2013, 34th International
Conference Proceedings; 24–28 June 2013; Milan. Berlin: Springer-Verlag; 2013. pp. 1-20

[7] Martos-SalgadoM, Rosa-Velardo F. Dynamic networks of timed Petri nets. In: Application
and Theory of Petri Nets and Concurrency 2014, 35th International Conference Proceed-
ings; 23–27 June 2014; Tunis. Berlin: Springer-Verlag; 2014. pp. 294-313

[8] van der Alst W, van Hee K. WorkflowManagement: Models, Methods and Systems. 1st ed.
Massachusetts: MIT Press; 2004. 384 p. ISBN: 978-0262720465

[9] Huang H, Jiao L, Cheung T, Mak WM. Property-Preserving Petri Net Process Algebra in
Software Engineering. 1st ed. Singapore: World Scientific Publishing; 2012. 318 p. ISBN:
978-981-4324-28-1

[10] O’Brien JJ, Plotnick FL. CPM in Construction Management. 8th ed. New York: McGraw-
Hill; 2016. 736 p. ISBN: 978-1259587276

Process Petri Nets with Time Stamps and Their Using in Project Management
http://dx.doi.org/10.5772/intechopen.76769

133

Petri Nets in
Science and Engineering

Edited by Raul Campos-Rodriguez
and Mildreth Alcaraz-Mejia

Edited by Raul Campos-Rodriguez
and Mildreth Alcaraz-Mejia

This book presents a collection of chapters from different areas of science and
engineering, where Petri Nets have been shown to be a useful tool for the design
and modeling of the problems that arise in such fields. The areas covered in this

book include manufacturing systems, authentication and cyber-security, computer
architectures, mechanical systems, process mining, control theory and time analysis.

The main focus of the chapters was to be illustrative, to help the development of
intuitive ideas that may guide the reader to adopt Petri Nets in their scientific or

engineering work. However, there are other chapters with deep mathematical basis
such as time analysis. Whenever possible, models, graphics and examples illustrate the

developed concepts.

Published in London, UK

© 2018 IntechOpen
© StationaryTraveller / iStock

ISBN 978-1-78923-692-7

Petri N
ets in Science and Engineering

ISBN 978-1-83881-667-4

	Petri Nets in Science and Engineering
	Contents
	Preface
	Chapter 1
Introductory Chapter: Petri Nets in Science and Engineering
	Chapter 2
Ladder Diagram Petri Nets: Discrete Event Systems
	Chapter 3
Petri Networks in the Planning of Discrete Manufacturing Processes
	Chapter 4
Reliability Evaluation for Mechanical Systems by Petri Nets
	Chapter 5
Performance Analysis of Shared-Memory Bus-Based Multiprocessors Using Timed Petri Nets
	Chapter 6
Supervisory Control Systems: Theory and Industrial Applications
	Chapter 7
Process Petri Nets with Time Stamps and Their Using in Project Management

