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Preface

Network coding (NC) is a novel approach to optimize the flow of data by performing coding
operations across a network to increase the capacity of the network and improve its through‐
put and robustness. In recent years, a significant amount of research has been performed to
explore the impact of NC in different scenarios and enhance network performance.

This book attempts to expose the most recent important observation on network coding re‐
search. The essential issues of NC as well as some important future research directions are
illustrated in this book. Therefore, it is hoped that it will serve as a comprehensive reference
for graduate students who wish to enhance their knowledge of NC for networked systems.

Mohammad A. Matin
North South University

Bangladesh



Preface

Network coding (NC) is a novel approach to optimize the flow of data by performing coding
operations across a network to increase the capacity of the network and improve its through‐
put and robustness. In recent years, a significant amount of research has been performed to
explore the impact of NC in different scenarios and enhance network performance.

This book attempts to expose the most recent important observation on network coding re‐
search. The essential issues of NC as well as some important future research directions are
illustrated in this book. Therefore, it is hoped that it will serve as a comprehensive reference
for graduate students who wish to enhance their knowledge of NC for networked systems.

Mohammad A. Matin
North South University

Bangladesh



Chapter 1

Introductory Chapter: Network Coding

Mohammad Abdul Matin

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79423

Provisional chapter

DOI: 10.5772/intechopen.79423

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. 

Introductory Chapter: Network Coding

Mohammad Abdul Matin

Additional information is available at the end of the chapter

1. Introduction

Network coding is a novel approach that allows nodes in the network to perform coding 
operation at the packet level. In particular, network coding represents a powerful approach to 
protect data from losses due to link disconnections and can also allow exploiting the combina-
tion of multiple links to deliver data to users with the possibility of recoding at intermedi-
ate nodes. This phenomenon will reduce the information congestion at some nodes or links 
which will improve the network information flow such as to increase network throughput 
and robustness.

2. Outline of research contributions

This book attempts to present cutting-edge research in the field of network coding.

In “Digital All-Optical Physical-layer Network Coding,” the authors present the concept of digi-
tal All-Optical Physical-layer Network Coding (AOPNC) for mm-wave fiber-wireless signals 
modulated with up to 2.5 Gb/s OOK data, focusing on digital encoding schemes that are 
based on optical XOR logical gates. The encoding operation is performed on-the-fly at the 
Central Office (CO), and the resulting packet is broadcasted at the end users, where the elec-
trical decoding takes place. The AOPNC scheme in principle can be applied also in RoF net-
works employing other phase modulation formats, such as DPSK-SCM and dual polarization 
(DP)–DQPSK-SCM modulation techniques.

In “Network Coding for Distributed Antenna Systems,” the authors explore virtual MIMO-assisted 
distributed antenna system (DAS) and network coding (NC) to improve the performance of 
networks. An analysis is presented to provide design insights that could help in identifying 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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the network parameters to achieve the desired QoS. The results highlight the advantages of 
employing NC in VMIMO-assisted DAS.

In “Bringing the cloud to the fog for Industry 4.0,” the authors focus on the benefits and open 
challenges of the Industrial IoT (IIoT) architecture together with the implementation of net-
work coding techniques. The IIoT architectures require low-latency communications as well 
as guaranteed reliability to allow the performance of on-premise advanced cloud analytics for 
time-critical IIoT applications, i.e., bringing the cloud to the fog. This chapter also describes 
the communication process across the different levels of the architecture based on network 
coding.

In “Efficient Frontier and Benchmarking for Energy Multicast in Wireless Network Coding,” a net-
work coding algorithm is studied, and its performance is investigated for the data envelop-
ment analysis (DEA). The DEA methodology is necessary because coded packet is not fully 
efficient technique for energy efficiency. The DEA framework allows network administra-
tors to evaluate the technical efficiency rather than averages and standard deviation and 
determine how the inefficient wireless networks will attain a targeted efficiency frontier. The 
presented system model is based on frontier analysis that is consisting of several models 
including envelopment and benchmarking. These models are considered for evaluating the 
technical efficiency of multicast energy and performing the benchmark in wireless networks 
nodes without sacrificing the overall network performance. The author’s aim is to achieve 
economic efficiency by ensuring that wireless networks are multicast at the targeted energy 
rather than average energy.

3. Conclusion

Recently, the field of network coding (NC) has attracted intense research focus for its potential 
in providing enhanced network throughput and reduced network congestions. However, it is 
challenging to incorporate network coding, into the existing network architecture. This book 
provides few current research efforts which are supplemented with extensive references to 
enable researchers for further investigation of network coding applied to communications in 
wireless and wired networks.
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Abstract

Network coding (NC) has recently attracted intense research focus for its potential to 
provide network throughput enhancements, security and reduced network congestions, 
improving in this way the overall network performance without requiring additional 
resources. In this chapter, the all-optical physical-layer network coding (AOPNC) tech-
nique is presented, focusing on digital encoding schemes that are based on optical XOR 
logical gates. It is also discussed how digital AOPNC can be implemented between sub-
carrier-modulated (SCM) optical signals in radio-over-fiber (RoF) networks, circumvent-
ing the enhanced complexity arising by the use of SCM signals and the asynchrony that 
might exist between the data arriving at the encoding unit. AOPNC demonstrations are 
described for simple on/off keyed (OOK)-SCM data signals, as well as for more sophisti-
cated higher-order phase modulation formats aiming to further improve spectrum effi-
ciency and transmission capacity.

Keywords: all-optical physical-layer network coding (AOPNC), radio over fiber (ROF), 
millimeter wave communication, optical logic gates, semiconductor optical  
amplifier-Mach Zehnder interferometer (SOA-MZI)

1. Introduction

The explosive data traffic growth in combination with the increasing use of smart mobile devices 
has created the need for high-throughput wireless access networks at Gb/s scale [1, 2]. In this 
context, radio-over-fiber (RoF) networks have recently stepped in as a promising solution to sat-
isfy this demand by seamlessly converging the ubiquity and mobility of the “last-meter” wire-
less networks with the high capacity of backhaul optical networks [3, 4]. Up to now, there are 
several RoF signal generation and modulation schemes [5, 6] as well as advanced functionalities 
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related to end-user mobility, hand-off schemes [7] and to network coding (NC) in RoF networks 
[8, 9]. Network coding (NC) has drawn significant scientific attention due to its capability to 
provide network throughput enhancements, security and low latency by improving the capac-
ity resource utilization and enabling bidirectional data transport [10].

Until now, NC has been demonstrated separately for purely wireless networks [11] and pas-
sive optical networks (PONs) [12–14]. Regarding wireless networks, NC is performed at the 
relay by using conventional electronic processing of data, while most of the NC demonstra-
tions in PONs rely on optical-electrical-optical (OEO) conversion before the encoding oper-
ation, resulting in further complexity at the central office (CO) and additional latencies to 
the overall communication [13, 15]. RoF technology was introduced as the technology that 
can merge wireless and optical functionalities via remote antenna units (RAUs) to deliver 
seamless communication between the wireless user and the CO. In order to comply with the 
requirements imposed by the trend of optical-wireless convergence, RoF technology should 
be able to implement unified NC between the optical network and the wireless user. Network 
coding concepts satisfying the earlier requirement are expected to enhance the overall net-
work efficiency when implemented directly in the optical domain at the CO side.

However, till now, most of the optical PHY-layer NC (OPNC) demonstrations target the 
encoding of baseband optical signals transmitted in wired optical links. The cross-gain mod-
ulation (XGM) and cross-phase modulation (XPM) phenomena in semiconductor optical 
amplifiers (SOAs) and SOA-Mach Zehnder interferometers (SOA-MZIs) have been exploited 
to perform the XOR-based network coding between baseband on-off keyed (OOK) data sig-
nals [16, 17], while the four-wave mixing (FWM) phenomenon in SOA- [18] and highly-non-
linear fiber (HNLF)-based XOR gates [19] has been employed for the encoding of differential 
phase shift keyed (DPSK) signals. Although all the aforementioned demonstrations provide 
performance enhancements in wired optical links, they are not suitable for RoF networks due 
their incapability to deal with the sub-carrier modulation (SCM) formats of the RoF signals 
and the possible asynchrony between the data arriving at the NC-encoding unit.

Up to now, only a limited number of physical-layer OPNC demonstrations are compatible 
with RoF networks [8, 9, 20]. These schemes utilize orthogonal polarization multiplexing 
and optical power addition yet favoring analog physical-layer NC in order to cope with 
the increased coding complexity associated with SCM RoF data signals. Recently, a digital 
AOPNC scheme for RoF networks that can perform a bitwise XOR function between OOK-
SCM data has been demonstrated [21]. Moreover, the current trend in RoF networks is mov-
ing toward the use of phase modulation formats and high-order modulation [22, 23], aiming 
to improve the spectrum efficiency and transmission capacity. Therefore, digital AOPNC 
schemes compatible with DPSK- and differential quadrature phase shift keyed (DQPSK) 
phase-formatted SCM signals have been recently demonstrated for future radio-over-fiber 
(RoF) networks [24, 25].

In this chapter, a digital AOPNC demonstration for up to 2.5 Gb/s OOK data modulated over 
a 10 GHz SC is presented. The proposed experimental setup uses a SOA-MZI XOR gate as 
the all-optical encoder between two SCM-OOK data streams, exploiting the low-pass filter-
ing response of a SOA-MZI [26] in order to process the data envelope while discarding the 
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10 GHz SC. For validation purposes, the optical encoding operation is further evaluated by 
deploying a second MZI-XOR gate to decode the signal and retrieve the original information.

To extend the use of this concept in more sophisticated modulation formats and in mm-wave 
communications [6, 7, 27], a digital AOPNC scheme for 60 GHz SCM DQPSK signals was 
also investigated with physical-layer simulations for a bit rate equal to 4Gb/s. The all-optical 
encoder, residing in the central office (CO), consists of a delay interferometer (DI) stage for the 
DQPSK-to-OOK conversion, a stage of SOA-MZI-based OOK-XOR gates followed by the SOA-
MZI-based phase regenerator [28, 29] that forms the phase-encoded signal. A remote 60 GHz 
oscillator wavelength feeder is also incorporated in the NC unit to generate an additional 
wavelength spaced by 60 GHz to the encoded signal wavelength for allowing up-conversion 
through the beating at the receiver site [30]. An electrical XOR decoder was used in the simu-
lations, emulating the decoding operation that would normally be performed at the wireless 
users’ site, assuming wireless transmission by the RAU to the wireless user.

The rest of the chapter is organized as follows: Section 2 presents the proposed AOPNC-RoF-
based conceptual scheme; Section 3 includes the setup and the results for the coding between 
two OOK-SCM signals; Section 4 presents the AOPNC setup and results for the DQPSK-SCM 
signals. Finally, conclusions are addressed in Section 5.

2. Concept overview

Figure 1 illustrates the proposed AOPNC-based RoF network, comprising the NC unit at 
the CO and the two wireless end users communicated with the respective RAUs, which 
in turn are connected with the CO via a fiber. Users A and B transmit their packets to the 
RAUs, where they are converted to SCM optical streams through the modulation of the 
laser diodes (LDs), coupled together and forwarded to the CO through the optical media. 
The physical layer all-optical XOR-encoding operation is performed on the fly at the CO 
and the resultant signal is broadcasted back to both RAUs, de-multiplexed from the uplink 
traffic and converted from optical-to-electrical (o/e) by means of a photodiode (PD). The 
electrical encoded signal is transmitted from each RAU to the respective wireless user in 

Figure 1. All-optical digital network coding (NC) scheme at the central office of RoF networks.
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schemes compatible with DPSK- and differential quadrature phase shift keyed (DQPSK) 
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10 GHz SC. For validation purposes, the optical encoding operation is further evaluated by 
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2. Concept overview

Figure 1 illustrates the proposed AOPNC-based RoF network, comprising the NC unit at 
the CO and the two wireless end users communicated with the respective RAUs, which 
in turn are connected with the CO via a fiber. Users A and B transmit their packets to the 
RAUs, where they are converted to SCM optical streams through the modulation of the 
laser diodes (LDs), coupled together and forwarded to the CO through the optical media. 
The physical layer all-optical XOR-encoding operation is performed on the fly at the CO 
and the resultant signal is broadcasted back to both RAUs, de-multiplexed from the uplink 
traffic and converted from optical-to-electrical (o/e) by means of a photodiode (PD). The 
electrical encoded signal is transmitted from each RAU to the respective wireless user in 

Figure 1. All-optical digital network coding (NC) scheme at the central office of RoF networks.
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order to be decoded. Each user recovers the bit sequence originating from the other user 
by performing a second XOR function between its own locally stored data and the received 
NC-encoded data. In this way, the AOPNC technique implemented at the CO is capable of 
encoding information coming from users located in different cells, which is not feasible with 
current wireless NC schemes.

Figure 2(a) depicts the frame scheduling in an RoF network where no network coding is 
employed, as well as the frame scheduling in an RoF-NC-based communication scheme. In 
both cases, it is considered that for the uplink, RAU-A and B transmit data packets modu-
lated on the wavelengths λ1 and λ2, respectively, while for the downlink traffic, the CO 
uses λ3. When network coding is not employed, RAUs transmit Data A and B to the CO 
during the first timeslot, while the CO receives both packets and forwards packet from user 
A to B and packet from user B to A, using two successive timeslots. When network coding 
is applied in an RoF network, then the CO encodes and broadcasts the NC-encoded packet 
to both users in a single timeslot, occupied only two timeslots for the uplink and downlink 
traffic. This concept exploits the pre-amble and post-amble of the frames [31] for packet 
order resolving in case of non-synchronized packets. Figure 2(b) shows the encoding and 
decoding operation when packets from user A and B reach the encoding unit at the CO 
bit level synchronized or with a time delay equal to Δt (asynchronous operation). In the 
case of synchronous operation, data from user A and B are digitally encoded by means of 
a SOA-MZI XOR gate and broadcasted to both users. Each user recovers the packet of the 
other user by performing a second bitwise XOR operation between the received encoded 
signal and its own data. Considering that the end users are wireless clients that may reside 
at different distances from their respective RAUs resulting even to sub-bit time mismatch 
between the two packets reaching the CO, it is critical for the AOPNC scheme to operate 
also for asynchronous data.

As shown in Figure 2(b), during asynchronous operation, a sub-bit optical pulse with dura-
tion equal to Δt is generated in the encoding packet. However, the final decoded packets from 
the second XOR operation can still be correctly recovered by both end users through a second 
XOR operation, without any data loss.

Figure 2. (a) Frame scheduling for RoF network: Without network coding and with the proposed AOPNC scheme and 
(b) conceptual encoding and decoding operation for synchronous and asynchronous data with a time offset of a sub-bit 
delay Δt.
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3. Digital all-optical physical-layer network coding for OOK-SC 
signals

3.1. Experimental setup

Figure 3 shows the experimental configuration, exploiting two SOA-MZI gates, the first for 
the encoding process at the CO and the second for decoding XOR operation that in a realis-
tic RoF is performed at the end user. The continuous wave (CW) signals at λ1 = 1549.8 nm, 
λ2 = 1553.1 nm and λ3 = 1553.6 nm were emitted by three tunable LDs (TLDs), multiplexed 
by an array waveguide grating (AWG) and modulated by an electro-absorption modulator 
(EAM) by a 10 GHz electrical clock signal for the SC generation. The output of the EAM was 
amplified by an erbium-doped fiber amplifier (EDFA) and de-multiplexed by means of an 
AWG. Signals λ1 and λ2 were further OOK modulated by two LiNbO3 modulators, which 
were driven by a programmable pattern generator (PPG) loaded with 2.5 Gb/s NRZ 27–1 
pseudo random bit sequence (PRBS), so as to form the SCM-OOK uplink data A and B sig-
nals. These uplink signals were transmitted through spools of single-mode fibers (SMF) with 
lengths of 3.9 km and 4 km, emulating the uplink connections between the RAUs and CO.  
An optical delay line (ODL) was employed at the branch carrying the data B stream, in order 
to enable bit-level synchronization during synchronous operation and insert time offsets at 
the asynchronous operation. Stream λ3 was not modulated with data in order to emulate the 
SC produced at the CO and used for the downlink traffic. Variable optical attenuators (VOAs) 
and polarization controllers (PCs) were also employed for power regulation and polarization 
adjustments, respectively.

The data streams (λ1, λ2) were injected into the control ports A and D, while λ3-SC was 
applied at the port C of the SOA-MZI XOR gate 1. The input power levels were measured, 
800 μW(−1 dBm) for λ1, λ2 and 400 μW(−4 dBm) for λ3. The SOA-MZI was biased in such a 
way so that port G acts as the switching port. Hence, when only one of the two data is pres-
ent, a π shift between the two SOA-MZI branch signal constituents is obtained by cross-phase 
modulation (XPM) and λ3 emerges with a logical “1” at the output port G. Otherwise, when 
both data signals are equally present, then λ3 bears a logical “0”, confirming the implementa-
tion of an all-optical XOR gate by means of an SOA-MZI. The output port of the first XOR 
encoding gate was filtered and launched into port D of the second SOA-MZI XOR gate, which 

Figure 3. Experimental setup of the proposed AOPNC scheme comprising the SC-modulated data generation, the 
encoding and the decoding process.
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the second XOR operation can still be correctly recovered by both end users through a second 
XOR operation, without any data loss.
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delay Δt.
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3. Digital all-optical physical-layer network coding for OOK-SC 
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3.1. Experimental setup
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the encoding process at the CO and the second for decoding XOR operation that in a realis-
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nals. These uplink signals were transmitted through spools of single-mode fibers (SMF) with 
lengths of 3.9 km and 4 km, emulating the uplink connections between the RAUs and CO.  
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the asynchronous operation. Stream λ3 was not modulated with data in order to emulate the 
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way so that port G acts as the switching port. Hence, when only one of the two data is pres-
ent, a π shift between the two SOA-MZI branch signal constituents is obtained by cross-phase 
modulation (XPM) and λ3 emerges with a logical “1” at the output port G. Otherwise, when 
both data signals are equally present, then λ3 bears a logical “0”, confirming the implementa-
tion of an all-optical XOR gate by means of an SOA-MZI. The output port of the first XOR 
encoding gate was filtered and launched into port D of the second SOA-MZI XOR gate, which 
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acts as a decoder. A part of data A was connected with port A for decoding data B, while a 
CW signal launches port C (λ4 = 1548.4 nm). Equivalently, when data A is decoded, data B is 
connected to port A of the second SOA-MZI. The input power levels were measured, −1 dBm 
for the control signals λ1, λ3 and − 4 dBm for λ4. SMF and ODL were used for pattern and 
bit-level synchronization. The output of the XOR2 gate was filtered by a 0.65 nm filter and 
monitored by an optical sampling oscilloscope (OSC).

The SOA-MZIs featured two 1600 μm long hybrid-integrated SOAs, both operating at a mod-
erate current value of 180 mA. The SOA gain recovery value at driving conditions was 180 ps 
for both SOA-MZI XOR gates, significantly longer than the 100 ps period of the SC signal. In 
this way, the SOA-MZI response of both XOR gates is turned into a low-pass filtering [26], 
neglecting the high-speed sub-carrier of the optical control data A and B signals but correctly 
processing their data envelopes.

3.2. Experimental results for synchronous operation

Figure 4 presents the experimental results obtained for the synchronous encoding and decod-
ing operations between two 2.5 Gb/s data streams. Figure 4(a) and (b) shows the input time 
traces of data A and B, respectively, while the XOR stream at the output of the first SOA-MZI 
is shown in Figure 4(c). The encoded stream features a logical “1” bit value when data A and 
B correspond to different bit values, while it is equal to “0” when the two data have the same 
logical bit value. Figure 4(d) and (e) illustrates the decoded data A and B at the output of the 
second SOA-MZI, after the XOR operation between the encoded signal and either the data 
B or data A, respectively. It should be noted that the decoded streams featured sub-bit dips 

Figure 4. Experimental results for 2.5 Gb/s data. Traces (400 ps/div): (a) data a, b) data B, (c) encoded XOR, (d) decoded 
data a and (e) data B. Eye diagrams (80 ps/div): (f) data a, (g) data B, (h) encoded XOR, (i) decoded data a and (j) decoded 
data B. (k) BER curves for the OOK data without SC, the OOK-SC data, the encoded XOR with/without fiber after the 
users and the decoded output OOK data.
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between successive “1”s, resulting from the XOR operation when logical “1”s are generated 
by the transition from differential phase +π between the SOA-MZI branches to −π. However, 
the initial data patterns were retrieved successfully, confirming the successful decoded pro-
cess at 2.5 Gb/s. Figure 4(f) and (g) depicts the eye diagrams of the input OOK-SCM data 
A and B, respectively. Figure 4(h) shows the eye diagram of the XOR-encoded signal at the 
output of the first SOA-MZI, exhibiting an extinction ratio (ER) of 9.6 dB and an amplitude 
modulation (AM) of 0.5 dB. Figure 4(i) and (j) illustrates the eye diagrams of the decoded data 
A and B, respectively, exiting the second SOA-MZI XOR gate. Both eye diagrams exhibit an 
ER equal to 8.2 dB and an AM equal to 1.2 dB.

The successful encoding and decoding operations were also verified with the aid of bit error 
rate (BER) measurements. Figure 4(k) shows the BER curves carried out at various stages 
of the system. The BER curves reveal error-free operations for both decoded data signals, 
having a power penalty equal to 3.2 dB when compared with the initial OOK data signals at 
BER = 10−9. This power penalty is partially attributed to the SC modulation of data A and B,  
which introduces a power penalty of 2 dB. BER curves for the encoded XOR stream exiting  
the first SOA-MZI were also carried out for two cases: when the SCM-OOK DATA are directly 
inserted to the encoder without the use of extra fiber and when fiber spools of 3.9 km and 
4 km are inserted between the OOK-SC data A and B and the first XOR gate in order to emu-
late the uplink connection. The power penalty between these two BER curves (with and with-
out fiber) is negligible. By comparing the XOR curves with the OOK SCM data, the power 
penalty at 10−9 is approximately 0.7 dB.

3.3. Experimental results for asynchronous operation

Possible asynchrony between the two data streams reaching the encoding unit was also exam-
ined by introducing various sub-bit temporal delays at data B, as may potentially be intro-
duced by mobile wireless users. Figure 5(a) and (b) illustrates the input traces of OOK-SC 
data A and the delayed-by-100-ps (0.25 τbit) data B, while Figure 5(c) depicts the encoded 
XOR trace. Although short “parasitic” pulses of 0.25 bit duration appear at the encoded XOR 
stream, by implementing the decoding XOR function between the encoded XOR and the 
delayed data B, the trace of the decoded data A can be successfully retrieved, as shown in 
Figure 5(d). Figure 5(e) shows that data B was also correctly decoded by the XOR operation 
between the encoded stream and data A, after a time delay of 0.25 bit duration.

Similar results were obtained for the asynchronous encoding and decoding of NC opera-
tion where data B is delayed by a sub-bit time offset equal to 200ps (0.5 τbit), as shown in  
Figure 5(f)–(j). Figure 5(f) and (g) illustrates the SCM-OOK data A and B, respectively, reach-
ing the encoding XOR gate with a time offset of 200 ps. Figure 5(h) shows the encoded XOR 
trace exiting the first SOA-MZI, while Figure 5(i) and (j) shows the decoded data A and B 
after the second XOR operation between the encoded pattern and the initial data pattern of 
data B or A, respectively. In this operation, both data A and B were successfully retrieved, 
with decoded data B having a delay equal to the time offset. The highlighted insets magnify 
the traces in a specific part of the stream where the asynchrony can be observed and the XOR 
signal appears to have “parasitic” pulses equal to the respective time offsets.
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between successive “1”s, resulting from the XOR operation when logical “1”s are generated 
by the transition from differential phase +π between the SOA-MZI branches to −π. However, 
the initial data patterns were retrieved successfully, confirming the successful decoded pro-
cess at 2.5 Gb/s. Figure 4(f) and (g) depicts the eye diagrams of the input OOK-SCM data 
A and B, respectively. Figure 4(h) shows the eye diagram of the XOR-encoded signal at the 
output of the first SOA-MZI, exhibiting an extinction ratio (ER) of 9.6 dB and an amplitude 
modulation (AM) of 0.5 dB. Figure 4(i) and (j) illustrates the eye diagrams of the decoded data 
A and B, respectively, exiting the second SOA-MZI XOR gate. Both eye diagrams exhibit an 
ER equal to 8.2 dB and an AM equal to 1.2 dB.

The successful encoding and decoding operations were also verified with the aid of bit error 
rate (BER) measurements. Figure 4(k) shows the BER curves carried out at various stages 
of the system. The BER curves reveal error-free operations for both decoded data signals, 
having a power penalty equal to 3.2 dB when compared with the initial OOK data signals at 
BER = 10−9. This power penalty is partially attributed to the SC modulation of data A and B,  
which introduces a power penalty of 2 dB. BER curves for the encoded XOR stream exiting  
the first SOA-MZI were also carried out for two cases: when the SCM-OOK DATA are directly 
inserted to the encoder without the use of extra fiber and when fiber spools of 3.9 km and 
4 km are inserted between the OOK-SC data A and B and the first XOR gate in order to emu-
late the uplink connection. The power penalty between these two BER curves (with and with-
out fiber) is negligible. By comparing the XOR curves with the OOK SCM data, the power 
penalty at 10−9 is approximately 0.7 dB.

3.3. Experimental results for asynchronous operation

Possible asynchrony between the two data streams reaching the encoding unit was also exam-
ined by introducing various sub-bit temporal delays at data B, as may potentially be intro-
duced by mobile wireless users. Figure 5(a) and (b) illustrates the input traces of OOK-SC 
data A and the delayed-by-100-ps (0.25 τbit) data B, while Figure 5(c) depicts the encoded 
XOR trace. Although short “parasitic” pulses of 0.25 bit duration appear at the encoded XOR 
stream, by implementing the decoding XOR function between the encoded XOR and the 
delayed data B, the trace of the decoded data A can be successfully retrieved, as shown in 
Figure 5(d). Figure 5(e) shows that data B was also correctly decoded by the XOR operation 
between the encoded stream and data A, after a time delay of 0.25 bit duration.

Similar results were obtained for the asynchronous encoding and decoding of NC opera-
tion where data B is delayed by a sub-bit time offset equal to 200ps (0.5 τbit), as shown in  
Figure 5(f)–(j). Figure 5(f) and (g) illustrates the SCM-OOK data A and B, respectively, reach-
ing the encoding XOR gate with a time offset of 200 ps. Figure 5(h) shows the encoded XOR 
trace exiting the first SOA-MZI, while Figure 5(i) and (j) shows the decoded data A and B 
after the second XOR operation between the encoded pattern and the initial data pattern of 
data B or A, respectively. In this operation, both data A and B were successfully retrieved, 
with decoded data B having a delay equal to the time offset. The highlighted insets magnify 
the traces in a specific part of the stream where the asynchrony can be observed and the XOR 
signal appears to have “parasitic” pulses equal to the respective time offsets.
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The successful asynchronous operation was also evaluated with BER measurements, by insert-
ing various relative delays between the two data and measuring the error rate for the down-
converted decoded signal. Figure 5(k) shows the BER curves versus the average received 
power for time offsets equal to 0 τbit, 0.1 τbit, 0.25 τbit and 0.5 τbit, revealing error-free operation 
at 10−9 for all these cases. No additional power penalty when comparing the synchronous 
with the asynchronous operation was observed. This fact indicates that the performance of 
the proposed system remains functional even in the case of non-synchronized packets. The 
power penalty of the decoded stream with respect to the original down-converted OOK-SCM 
data is approximately 1.5 dB.

4. Digital all-optical physical-layer network coding for DQPSK-SC 
signals

4.1. Simulated setup

Figure 6 illustrates the setup employed in order to evaluate the proposed AOPNC scheme in 
an RoF network that uses DQPSK-SCM data signals. The data A and B streams are modulated 
employing the DQPSK format in the wireless users’ transmitter (Tx) and transmitted to the 
RAUs for electrical-to-optical conversion. The CWs at λ1 = 1551 nm (RAU A) and λ2 = 1553 nm 
(RAU B), exiting the respective laser diodes (LDs), are modulated by the RF DQPSK signals 
via the MZMs. These signals are transmitted through a 4 km spool of SMFs, amplified by 
EDFAs and multiplexed by an AWG before entering the encoder in the CO premises. In the 
NC encoding unit, the data signals are inserted in two delay interferometers (DIs) in order to 
recover the OOK-u and -v complementary components. The differential optical phase between 

Figure 5. Experimental time traces οf asynchronous 2.5 Gb/s operation for two different time offsets. Time traces (400 ps/
div): For time offset equal to 0.25*τbit: (a) data a, (b) data B delayed by 0.25 bit, (c) encoded XOR signal, (d) decoded data a 
and (e) data B. For time offset equal to 0.5*τbit: (f) data a, (g) data B delayed by 0.5 bit, (h) encoded XOR signal, (i) decoded 
data a, (j) data B. Magnified insets highlight time offset. (k) BER curves of the decoded data signal for various time offsets 
between the input OOK-SC data.
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DI1-u and DI2-v arms is set to 45 and −45° so as to recover the u- and v-constituents of data 
A and B, respectively. The u and v components correspond to the PRBS sequences before  
the differential encoding to I and Q bits as it is explained by Vorreau et al. [28].

The upper output port of each DI is connected with an AWG that de-multiplexes Data A and 
B signals, while the output of the DI’s lower port is filtered by a band pass filter (BPF) with a 
center frequency equal to λ2 that keeps the OOK-SCM    ̄ ¯ DataB   and ignores the OOK-SCM data 
A. The OOK-converted streams are inserted into the control ports of the OOK-XOR gates 
based on SOA-MZIs and a continues wave λt (temp)=1555nm was inserted in their probe 
port. The data A-u and B-u are injected into the first SOA-MZI so as the OOK-XORu signal 
to be generated at the output switching port. The data A and    ̄ ¯ DataB u -constituents are applied 
at the second SOA-MZI forming the  OOK −   ̄  XORu   at the output of the switching port. Similarly, 
the OOK-XORv and  OOK −   ̄  XORv   are obtained at the output ports of the third and fourth MZIs, 
respectively. All the OOK encoded signals are then filtered and driven to the phase regen-
eration stage where the amplitude-to-phase conversion is performed by means of two SOA-
MZIs. Particularly, the OOK-XORu and  OOK −   ̄  XORu   are inserted into the control port of the 
fifth SOA-MZI and a continues wave in λ3=1557.36 nm was launched in the probe input port. 
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Figure 5. Experimental time traces οf asynchronous 2.5 Gb/s operation for two different time offsets. Time traces (400 ps/
div): For time offset equal to 0.25*τbit: (a) data a, (b) data B delayed by 0.25 bit, (c) encoded XOR signal, (d) decoded data a 
and (e) data B. For time offset equal to 0.5*τbit: (f) data a, (g) data B delayed by 0.5 bit, (h) encoded XOR signal, (i) decoded 
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between the input OOK-SC data.
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was converted to RF data by utilizing the beating at the PD [31]. The output is filtered by a 
BPF centered at 60 GHz and transmitted through an assumed wireless link to the user’s Rx, 
where the electrical decoding is performed.

Figure 7(a) presents the user’s Tx which produces the DQPSK-SCM data signal. Each user’s 
Tx comprises a PPG loaded with a 4 Gb/s NRZ 27–1 PRBS, so as to form the electrical data. 
A serial-to-parallel distributor is fed with the output stream of the PPG and synchronously 
splits it into the two output streams (u and v), each having a data rate of 2Gb/s, resulting in 
a total bit rate equal to 4 Gb/s. The DQPSK differential encoding unit converts the u- and 
v-constituents into the respective I and Q signals, which then are inserted into the electrical 
phase modulators (PMs) to modulate the 60 GHz signal coming from a local oscillator (LO). 
RF signals coming from the LO have a relative phase difference of 90°, so as the DQPSK-RF 
signal to be generated after the combination of the phase-formatted I and Q streams.

Figure 7(b) depicts the user’s Rx that is responsible for the down-conversion and the 
decoding of the incoming NC-encoded stream. Each user’s Rx receives the phase-encoded 
XOR signal from the RAU and splits it into two identical signals. Those signals are mul-
tiplied with the respective in-phase signals originating from the LO and having a relative 
phase difference of 90°. The phase matching of the 60 GHz signals coming from the LO 
and the splitter is achieved by the phase shifters (PSs). The power regulation of the down-
converted OOK u- and v-constituents, exiting the multiplier, is provided by a DC source. 
The resultant signals are filtered by low-pass filters (LPFs) and inserted in the electrical 
XOR gates where the decoding process is performed by the XOR operation between the 
NC encoding signals and a local copy of user’s data. In this way, user A extracts the data B 

Figure 7. (a) Setup of the users’ transmitter (Tx) generating the DQPSK-RF data and (b) setup of the users’ receiver (Rx) 
performing the decoding operation. Stages E and F are the stages where the down-converted XOR-u (XOR-v) and the 
final decoded data signals are generated, respectively.
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constituents, while user B decodes the data A u and v streams. The synchronization of the 
NC encoding signals and the user’s data is achieved by the use of a time delay (Δτ).

The simulations were carried out with the VPI photonics software suite [32], using as input 
the response of a custom-made SOA-MZI model [33] that matches the experimental measured 
response of a 1600-μm long hybrid-integrated SOA. The input power levels that were used 
were −1 dBm for the control signals and −4 dBm for the probe light, for all OOK SOA-MZIs. 
Both SOAs of the OOK-XOR and  OOK −   ̄  XOR   MZI gates were driven by current values of 250 
mA and had a recovery time of 100 ps, significantly longer than the 16.67 ps period of the 
60 GHz SC. The SOAs of the phase regeneration XOR gates are driven by a 300 mA DC cur-
rent and had an 80 ps recovery time.

4.2. Simulated results for synchronous operation

Figure 8 shows the time traces, eye diagrams and spectra obtained at various stages of the 
network coding-based 2 Gbaud RoF link during synchronous operation. The indicative 
patterns used for the simulation results are “1011111001” and “1010100110” for the u- and  
v- components of data A, while “1011010110” and “0100001100” were used for the data Bu 

Figure 8. Results for synchronous AOPNC operation: (a)–(e) time traces of the encoding operation, (f)–(j) respective 
eye diagrams of encoding operation, (k)–(n) time traces of the decoding operation, (o)–(r) respective eye diagrams of 
decoding operation, (s) spectrum and (t) time trace of the SCM encoding signal at the CO’s output and (u) spectrum 
and (v) time trace of the SCM RF encoding signal at the output of the RAU’s Rx. 500 ps/div (traces) and 100 ps/div (eye 
diagrams).
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constituents, while user B decodes the data A u and v streams. The synchronization of the 
NC encoding signals and the user’s data is achieved by the use of a time delay (Δτ).

The simulations were carried out with the VPI photonics software suite [32], using as input 
the response of a custom-made SOA-MZI model [33] that matches the experimental measured 
response of a 1600-μm long hybrid-integrated SOA. The input power levels that were used 
were −1 dBm for the control signals and −4 dBm for the probe light, for all OOK SOA-MZIs. 
Both SOAs of the OOK-XOR and  OOK −   ̄  XOR   MZI gates were driven by current values of 250 
mA and had a recovery time of 100 ps, significantly longer than the 16.67 ps period of the 
60 GHz SC. The SOAs of the phase regeneration XOR gates are driven by a 300 mA DC cur-
rent and had an 80 ps recovery time.

4.2. Simulated results for synchronous operation

Figure 8 shows the time traces, eye diagrams and spectra obtained at various stages of the 
network coding-based 2 Gbaud RoF link during synchronous operation. The indicative 
patterns used for the simulation results are “1011111001” and “1010100110” for the u- and  
v- components of data A, while “1011010110” and “0100001100” were used for the data Bu 
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and Bv components, respectively. Figure 8(a) and (b) shows the OOK-XORu and OOK-XORv 
time traces exiting the SOA-MZI-1 and SOA-MZI-3, respectively. Pulses are observed in the 
XOR streams, when data A and B constituents have different logical bit representations, while 
the power level is equal to 0 when data A and B exhibit the same logical value. The inten-
sity and phase traces of the NC-phase-formatted stream at the output of the regenerator are 
shown in Figure 8(c). The intensity envelope reveals a constant “high” power level, with small 
duration sub-bit dips generated by the transition of the differential phase between the SOA-
MZI-5 and SOA-MZI-6 branches from +90° to −90°. The phase time trace presents the NC 
phase-encoded resultant signal, whose optical phase φ can take one of the four values: [−135, 
135,−45 and 45°], corresponding to the logical bit pairs: “XORu, XORv”= [“00”, “01”, “10” and 
“11”], respectively. The grey markers highlight the encoding scheme, where the absence of 
the OOK-XORu and –XORv pulses is imprinted as −135°, the XORv pulses as 135°, the XORu 
pulses as −45° and the existence of both XORu, XORv pulses as 45°. Figure 8(d) and (e) depicts 
the electrical OOK down-converted XORu and XORv streams at the output of the low-pass 
filter (LPF) in the end-user receiver. These traces confirm the successful conversion of the 
four-level phase-formatted XOR signal to two binary NRZ-OOK XORu and XORv streams.

Figure 8(f) and (g) illustrates the eye diagrams of the OOK-XORu and XORv components 
exiting the SOA-MZI-1 and SOA-MZI-3. The eye diagrams exhibit an ER equal to 11.7 dB, an 
AM of 1.1 dB, a pulse overshoot (PO) of 1.4dB and a jitter of 23ps, showing a limited impact of 
pattern effects, stemming from the signal processing by SOAs. Figure 8(h) depicts the inten-
sity eye diagram and the phase eye diagram of the NC-encoded phase-formatted signal exit-
ing the phase regenerator. The intensity eye diagram exhibits an AM equal to 1.8 dB and a 
PO of 2.1 dB, while the respective phase eye diagram shows the four different phase levels 
of the encoded signal, revealing a relatively small-phase fluctuation of 1.5° from the expected 
phase values. In both diagrams, small duration dips at the beginning of the symbol pulse are 
observed, without yielding, however, any data loss. Figure 8(i) and (j) shows the eye dia-
grams of the electrical down-converted OOK XORu and XORv signal streams at the output 
of the LPF in the end-user Rx. The binary OOK XOR signals reveals an ER, AM, PO and jitter 
equal to 9 dB, 0.7 dB, 0.9 dB and 32 ps, respectively.

Figure 8(k) and (l) illustrates the decoded data Bu and Au streams, while Figure 8(m) and 
(n) depicts the complementary decoded data Bv and Av traces, each generated by the bit-
wise XOR between the NC-encoded XOR trace and the local copy of the user’s data pattern. 
Figure 8(o) and (p) shows the eye diagrams of the decoded data Bu or Au signals, reporting 
an open eye with an ER, AM and jitter equal to 8.7 dB, 1.1 dB and 40 ps, respectively, with the 
dips appearing at the beginning of the pulses. Similarly, Figure 8(q) and (r) depicts the eye 
diagrams of the decoded data Av and Bv, respectively, both exhibiting an ER of 8.7 dB, an AM 
of 1.1 dB and a jitter of 40 ps.

Figure 8(s) represents the optical spectrum of the phase-encoded signal at the output of the 
CO after the coupling of the four-level XOR signal with a continuous wave coming from 
the 60 GHz OSC wavelength feeder. The phase-formatted signal has a center wavelength 
of λ3=1557.36nm (192.5 THz), while the continuous wave is emitted at the wavelength of 
1556.88 nm (192.560 THz), resulting in a frequency spacing equal to 60 GHz. The time trace at 
the same stage is illustrated in Figure 8(t), showing an envelope with a constant power level, 
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modulated by the sub-carrier of 60 GHz. Figure 8(u) shows the electrical spectrum of the beat-
ing signal at 60 GHz, produced by the photodiode and sent to the receiver of the end-user, 
while Figure 8(v) illustrates the respective time trace, showing the oscillations of the 60 GHz 
electrical signal below the constant power envelope.

4.3. Simulated results for asynchronous operation

In this section, the asynchronous operation was evaluated for different sub-bit time offsets 
between the two data signals. Figure 9 includes the time traces and eye diagrams of the asyn-
chronous encoding and decoding operation for a time offset of 0.5 of the symbol time dura-
tion (250ps). Figure 9(a) shows the OOK-XORu stream, generated after the XOR operation 
between the data Au and the delayed by 250 ps data Bu constituents at the output of the 
SOA-MZI-1, while Figure 9(b) illustrates the OOK-XORv signal exiting the SOA-MZI-3. As it 
is highlighted by the grey markers, the data asynchrony generates sub-bit pulses and dips at 
the encoded streams, which are said to be “interrupted”. Figure 9(c) illustrates the intensity 
and phase traces of the four-level phase-formatted XOR signal exiting the regeneration stage 
after the recombination of the binary phase-XORu and phase-XORv signals. The intensity 
trace exhibits a constant power envelope with small duration sub-bit dips generated from the 

Figure 9. Results for the asynchronous AOPNC operation with a temporal offset equal to 0.5τbit: (a)–(e) time traces of the 
encoding operation, (f)–(j) respective eye diagrams of encoding operation, (k)–(n) time traces of the decoding operation, 
(o)–(r) respective eye diagrams of decoding operation. 500 ps/div (traces) and 100 ps/div (eyes).
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and Bv components, respectively. Figure 8(a) and (b) shows the OOK-XORu and OOK-XORv 
time traces exiting the SOA-MZI-1 and SOA-MZI-3, respectively. Pulses are observed in the 
XOR streams, when data A and B constituents have different logical bit representations, while 
the power level is equal to 0 when data A and B exhibit the same logical value. The inten-
sity and phase traces of the NC-phase-formatted stream at the output of the regenerator are 
shown in Figure 8(c). The intensity envelope reveals a constant “high” power level, with small 
duration sub-bit dips generated by the transition of the differential phase between the SOA-
MZI-5 and SOA-MZI-6 branches from +90° to −90°. The phase time trace presents the NC 
phase-encoded resultant signal, whose optical phase φ can take one of the four values: [−135, 
135,−45 and 45°], corresponding to the logical bit pairs: “XORu, XORv”= [“00”, “01”, “10” and 
“11”], respectively. The grey markers highlight the encoding scheme, where the absence of 
the OOK-XORu and –XORv pulses is imprinted as −135°, the XORv pulses as 135°, the XORu 
pulses as −45° and the existence of both XORu, XORv pulses as 45°. Figure 8(d) and (e) depicts 
the electrical OOK down-converted XORu and XORv streams at the output of the low-pass 
filter (LPF) in the end-user receiver. These traces confirm the successful conversion of the 
four-level phase-formatted XOR signal to two binary NRZ-OOK XORu and XORv streams.

Figure 8(f) and (g) illustrates the eye diagrams of the OOK-XORu and XORv components 
exiting the SOA-MZI-1 and SOA-MZI-3. The eye diagrams exhibit an ER equal to 11.7 dB, an 
AM of 1.1 dB, a pulse overshoot (PO) of 1.4dB and a jitter of 23ps, showing a limited impact of 
pattern effects, stemming from the signal processing by SOAs. Figure 8(h) depicts the inten-
sity eye diagram and the phase eye diagram of the NC-encoded phase-formatted signal exit-
ing the phase regenerator. The intensity eye diagram exhibits an AM equal to 1.8 dB and a 
PO of 2.1 dB, while the respective phase eye diagram shows the four different phase levels 
of the encoded signal, revealing a relatively small-phase fluctuation of 1.5° from the expected 
phase values. In both diagrams, small duration dips at the beginning of the symbol pulse are 
observed, without yielding, however, any data loss. Figure 8(i) and (j) shows the eye dia-
grams of the electrical down-converted OOK XORu and XORv signal streams at the output 
of the LPF in the end-user Rx. The binary OOK XOR signals reveals an ER, AM, PO and jitter 
equal to 9 dB, 0.7 dB, 0.9 dB and 32 ps, respectively.

Figure 8(k) and (l) illustrates the decoded data Bu and Au streams, while Figure 8(m) and 
(n) depicts the complementary decoded data Bv and Av traces, each generated by the bit-
wise XOR between the NC-encoded XOR trace and the local copy of the user’s data pattern. 
Figure 8(o) and (p) shows the eye diagrams of the decoded data Bu or Au signals, reporting 
an open eye with an ER, AM and jitter equal to 8.7 dB, 1.1 dB and 40 ps, respectively, with the 
dips appearing at the beginning of the pulses. Similarly, Figure 8(q) and (r) depicts the eye 
diagrams of the decoded data Av and Bv, respectively, both exhibiting an ER of 8.7 dB, an AM 
of 1.1 dB and a jitter of 40 ps.

Figure 8(s) represents the optical spectrum of the phase-encoded signal at the output of the 
CO after the coupling of the four-level XOR signal with a continuous wave coming from 
the 60 GHz OSC wavelength feeder. The phase-formatted signal has a center wavelength 
of λ3=1557.36nm (192.5 THz), while the continuous wave is emitted at the wavelength of 
1556.88 nm (192.560 THz), resulting in a frequency spacing equal to 60 GHz. The time trace at 
the same stage is illustrated in Figure 8(t), showing an envelope with a constant power level, 
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modulated by the sub-carrier of 60 GHz. Figure 8(u) shows the electrical spectrum of the beat-
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while Figure 8(v) illustrates the respective time trace, showing the oscillations of the 60 GHz 
electrical signal below the constant power envelope.
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between the two data signals. Figure 9 includes the time traces and eye diagrams of the asyn-
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tion (250ps). Figure 9(a) shows the OOK-XORu stream, generated after the XOR operation 
between the data Au and the delayed by 250 ps data Bu constituents at the output of the 
SOA-MZI-1, while Figure 9(b) illustrates the OOK-XORv signal exiting the SOA-MZI-3. As it 
is highlighted by the grey markers, the data asynchrony generates sub-bit pulses and dips at 
the encoded streams, which are said to be “interrupted”. Figure 9(c) illustrates the intensity 
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transitions of the differential phase from +90° to −90° between the SOA-MZI-5 and/or SOA-
MZI-6 branches. The phase trace shows the four different phase levels of the encoded signal, 
exhibiting sub-bit phase pulses and dips with a duration equal to 250 ps. Figure 9(d) and (e) 
depicts the XOR-u and XOR-v signals that were at the same time OOK- and down-converted 
by multiplying the received XOR streams with the respective in-phase 60 GHz signals gener-
ated by the LO at stage E.

Figure 9(f)–(j) shows the eye diagrams of the asynchronous encoding process. Particularly, 
Figure 9(f) and (g) illustrates the eye diagrams of OOK-XOR-u and XOR-v streams for a 
temporal offset equal to 0.5, exhibiting an ER of 11.7 dB, an AM of 1.1 dB, a PO of 1.4 dB and 
a jitter of 25 ps. As shown, an intersection is observed at both eye diagrams after a time delay 
equal to 250 ps from the beginning of the pulse. This intersection that has a jitter equal to 21 ps 
is formed by both sub-bit pulse falls and risings during the asynchronous XOR operation. 
Figure 9(h) illustrates the intensity and phase eye diagrams of the NC-phase-encoding signal 
at the output of the regenerator. An intensity envelope with an AM of 1.8 dB and PO of 2.1 dB 
is shown, exhibiting sub-bit dips when the relative phase of SOA-MZI-5 and/or SOA-MZI-6 is 
changed from 90 to −90° and vice versa. The respective phase eye diagram shows the four dif-
ferent phase levels of the encoded signal, revealing a small phase fluctuation equal to 1.5°. The 
electrical eye diagrams of the down-converted OOK-XORu and XORv signals at the users’ Rx 
are depicted in Figure 9(i) and (j), revealing an ER, AM, PO and a jitter equal to 9, 0.7, 0.9 dB 
and 32 ps, respectively.

Figure 9(k)–(r) shows the time traces and eye diagrams of the asynchronous decoding opera-
tion. Figure 9(k) and (l) depicts the decoded data Bu and Au components after the digital 
XOR operation between the encoded pattern of XORu and the initial pattern either of data 
Au or data Bu at the users A and B Rx, respectively. Similarly, Figure 9(m) and (n) illustrates 
the decoded data Bv and Av at the user A and B receivers, respectively. In that operation, 
it is shown that despite the interruptions which appear as “parasitic” pulses or dips at the 
NC-encoded signals, both the components of data A and B were at the end correctly recovered 
with the decoded data B components having a delay equal to the time offset. Figure 9(o) and (p)  
depicts the eye diagrams of the decoded data Bu and Au, respectively, both exhibiting an ER of 
8.7 dB, an AM of 1.1 dB and jitter of 40 ps, with short duration dips and spikes appearing after 
time delay equal to 250 ps from the beginning of the symbol. Similarly, Figure 9(q) and (r)  
shows the eye diagrams of the decoded data Bv and Av, reporting similar eye characteristics 
(ER=8.7 dB and AM=1.1 dB, jitter=40 ps).

The asynchronous decoding operation was evaluated by carrying out BER measurements. 
Figure 10(a) shows the BER measurements versus the received RF power, for the decoded 
Au and Bu streams, when the time offset between the two data is equal to 0.25, 0.5 and 0.75 
of the symbol duration. All BER curves show error-free operations at 10−9. The BER curves 
reveal similar performance between synchronous and asynchronous operation, owing to the 
dips and spikes that were present at the edge of the pulse during synchronous operation 
being shifted within the duration of the pulses, however, without affecting the other pulse 
characteristics, such as ER, AM, PO, jitter and noise. Similarly, Figure 10(b) depicts the BER 
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curves of the decoded Av and Bv streams for time offsets equal to 0τsymbol, 0.25τsymbol, 0.5τsymbol 
and 0.75τsymbol, showing error-free operations with negligible power penalty between the dif-
ferent BER curves. It is evident that the performance of the proposed AOPNC scheme remains 
similar even in the case of asynchronous packets reaching the network coder.

5. Conclusion

In this chapter, the concept of digital all-optical physical-layer network coding (AOPNC) 
was presented, targeting the future high-throughput radio-over-fiber (RoF) networks. In this 
scheme, the bitwise network coding (NC) is performed on the fly at the central office (CO) and 
the resultant packet is broadcasted at the wireless users, where the decoding takes place. The 
applicability of the AOPNC scheme between OOK-sub-carrier-modulated (SCM) data signals 
was confirmed by an experimental demonstration, employing a 10 GHz SC and an all-optical 
XOR gate as the digital NC encoder. An AOPNC scheme capable of performing the digital 
encoding and decoding between DQPSK-SCM data signals was also described. In this scheme 
the scenario of all optical encoding for 60 GHz SC used in mm-wave communications, fol-
lowed by electrical decoding at the end users, was evaluated via physical-layer simulations. 
It should be noted that the described all-optical network Coding concept may in principle 
be applied also in RoF systems using DPSK-SCM and dual polarization (DP)-DQPSK-SCM 
modulation formats.
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Abstract

The mushroom growth of devices that require connectivity has led to an increase in the 
demand for spectrum resources as well as high data rates. 5G has introduced numer-
ous solutions to counter both problems, which are inherently interconnected. Distributed 
antenna systems (DASs) help in expanding the coverage area of the network by reducing 
the distance between radio access unit (RAU) and the user equipment. DASs that use 
multiple-input multiple-output (MIMO) technology allow devices to operate using mul-
tiple antennas, which lead to spectrum efficiency. Recently, the concept of virtual MIMO 
(VMIMO) has gained popularity. VMIMO allows single antenna nodes to cooperate and 
form a cluster resulting in a transmission flow that corresponds to MIMO technology.  In 
this chapter, we discuss MIMO-assisted DAS and its utility in forming a cooperative net-
work between devices in proximity to enhance spectral efficiency. We further amalgam-
ate VMIMO-assisted DAS and network coding (NC) to quantify end-to-end transmission 
success.  NC is deemed to be particularly helpful in energy constrained environments, 
where the devices are powered by battery. We conclude by highlighting the utility of 
NC-based DAS for several applications that involve single antenna empowered sensors 
or devices.

Keywords: network coding, D2D, opportunistic networks, cooperative communication, 
energy-efficiency

1. Introduction

The evolution of 5G networks will open up numerous new opportunities in terms of applica-
tions that require higher data rates, reliability and low latency. Spectrum limitation is one of the 
obstacles that could impede the growth of 5G networks. Several solutions have been proposed 
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distribution, and reproduction in any medium, provided the original work is properly cited.
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Abstract

The mushroom growth of devices that require connectivity has led to an increase in the 
demand for spectrum resources as well as high data rates. 5G has introduced numer-
ous solutions to counter both problems, which are inherently interconnected. Distributed 
antenna systems (DASs) help in expanding the coverage area of the network by reducing 
the distance between radio access unit (RAU) and the user equipment. DASs that use 
multiple-input multiple-output (MIMO) technology allow devices to operate using mul-
tiple antennas, which lead to spectrum efficiency. Recently, the concept of virtual MIMO 
(VMIMO) has gained popularity. VMIMO allows single antenna nodes to cooperate and 
form a cluster resulting in a transmission flow that corresponds to MIMO technology.  In 
this chapter, we discuss MIMO-assisted DAS and its utility in forming a cooperative net-
work between devices in proximity to enhance spectral efficiency. We further amalgam-
ate VMIMO-assisted DAS and network coding (NC) to quantify end-to-end transmission 
success.  NC is deemed to be particularly helpful in energy constrained environments, 
where the devices are powered by battery. We conclude by highlighting the utility of 
NC-based DAS for several applications that involve single antenna empowered sensors 
or devices.

Keywords: network coding, D2D, opportunistic networks, cooperative communication, 
energy-efficiency

1. Introduction

The evolution of 5G networks will open up numerous new opportunities in terms of applica-
tions that require higher data rates, reliability and low latency. Spectrum limitation is one of the 
obstacles that could impede the growth of 5G networks. Several solutions have been proposed 
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to overcome the spectrum scarcity. The efficient utilization of available spectrum resources has 
gained attention of the research community. Distributed antenna systems (DAS) are consid-
ered as one of the solutions for ensuring efficient utilization of spectral resources [1] and pro-
viding high data rates. DAS are based on a dense deployment of remote access units (RAUs) in 
a cellular network, thereby reducing the distance between the users and the RAUs. The RAUs 
are connected to a central control module through high rate dedicated links. The presence of 
the users in a close vicinity allows the RAUs to transmit at low power, which leads to energy 
savings. One of the underlining features of 5G networks is the concept of green communications 
[2]. DAS can help in realizing green communications by ensuring energy-efficient network 
operation. Several works can be found in literature that addresses the energy-efficiency (EE) 
of DAS [3, 4]. Another key technology is the multiple-input multiple-output (MIMO), which 
signifies the presence of multiple antennas in the form of an antenna array [5]. MIMO-assisted 
DAS provides a robust solution for network connectivity by mitigating the impact of interfer-
ence and allowing the transmission of multiple data streams simultaneously.

Recently, the concept of virtual MIMO (VMIMO) has been explored for dense network envi-
ronments. In VMIMO, the single antenna sensors or user equipments cooperate to form a 
cluster. The cluster is then considered as a single MIMO system that transmits packets to 
the adjacent cluster in a multi-hop manner [6]. In this chapter, we consider the VMIMO-
assisted DAS and employ network coding (NC) to gauge the network performance. NC 
techniques can further improve the performance of the network with regards to EE and 
spectral-efficiency (SE) by avoiding packet retransmission. Packets sent by the source nodes 
can be combined to form coded messages, which are then sent to the destination. NC is 
particularly helpful in energy constrained environments, where the devices possess lim-
ited battery power. NC can be employed in DAS to enhance the network throughput and 
improve the end-to-end success of the network [7]. In DAS involving multi-hop transmis-
sions, NC can minimize the transmission delay by allowing cooperation between nodes. In 
this chapter, we consider two DAS environments (1) Low-density DAS, and (2) High-density 
DAS. Applications for low-density DAS include device-to-device (D2D) communications, 
where a few antenna elements in the form of user equipments (UEs) are trying to connect 
to each other. On the other hand, a typical wireless sensor network, where a large number 
of nodes are deployed in an area, provides an example of high-density DAS. The remainder 
of the chapter is organized as follows. First, we enlist the benefits of DAS and applications 
that utilize DAS to enhance coverage and quality-of-service (QoS). Next, we discuss MIMO-
assisted DAS and the concept of VMIMO, which is followed by the evaluation of NC in the 
aforementioned DAS environments. The results quantify the end-to-end transmission suc-
cess and probability distribution at different network parameters, providing a designerâ€™s 
perspective for VMIMO-assisted DAS.

2. Applications, benefits and limitations of DAS

DAS can help in realizing several new applications. There are several benefits associated with DAS; 
however, there are also some limitations that need to be taken into consideration while designing 
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networks based on DAS. Multi-service indoor DAS (MS-IDAS) is a class of DAS, which is particu-
larly helpful in applications that involve indoor environments, such as shopping malls, restaurants 
and bus stations. The hardware modules for such environments are manufactured by keeping in 
view the esthetics of the environment [8]. DAS are helpful in network applications that involve 
mobility. Similarly, DAS allow the expansion of coverage to areas, which cannot be covered by 
the traditional network due to the blockage by physical structures. The geographical areas that 
undergo blockages are referred to as coverage holes. DAS can alleviate the situation with regards to 
coverage holes and can help in realizing the concept of ubiquitous connectivity. For example, the 
network connectivity can be ensured on a high speed train by employing the concept of DAS [9].

Massively DAS (MDAS) lead to higher network diversity but at the cost of higher computa-
tional complexity. A coordinated antenna selection (CAS) is required to control the opera-
tion of a MDAS [10] by selectively activating the antenna elements that provide the best link 
quality. CAS can help in mitigating the impact of co-channel interference by coordinating 
the antenna activation; however, one of the limitations of designing a CAS for MDAS is the 
perfect channel state information (CSI) that is required for scheduling the transmissions. The 
practical limitations with regards to acquiring perfect CSI restrict the MDAS operation by 
allowing it to serve less number of users. Channel estimation or prediction techniques are 
required for smooth operation of a MDAS.

The geographical distribution of RAUs allows spatial degrees of freedom but at the cost of higher 
computational complexity. In a multi-user DAS-based network, the users with the best channel 
conditions are served while the users suffering from adverse channel conditions are not sched-
uled, leading to unfairness in resource allocation [11]. The concept of ubiquitous connectivity for 
5G networks is also compromised due to unfair resource allocation. A fair scheduling mecha-
nism is necessary to ensure that the QoS requirements of all the users are met with efficient utili-
zation of resources. Moreover, in an internet-of-things (IoT) environment it is imperative that all 
the devices and users are able to connect to the network. Concluding, the benefits of DAS include

• spatial diversity,

• efficient spectrum utilization,

• energy-efficiency,

• higher network rate,

• enhanced end-to-end success,

• ubiquitous connectivity,

• interference mitigation.

DAS can go a long way in realizing new applications that would arise with the introduction of 5G 
networks. An illustration of a DAS based network is shown in Figure 1, where the DAS nodes are 
connected through fiber links to the central processing unit. DAS allows to extend the coverage to 
geographical areas which are not covered by the traditional networks due to physical blockages.
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3. MIMO-assisted DAS

Based on the number of antenna elements, the DAS can be further categorized as

• DAS based on single-antenna RAU

• DAS based on multiple-antenna RAU

Initially, the research related to DAS focused on single-antenna RAU [12]. However, the intro-
duction of MIMO technologies opened up a new arena with regards to spectrum utilization. 
The integration of the concept of DAS empowered by MIMO envisioned significant gains 
in terms of network reliability. The presence of multiple antennas at the RAUs and users 
allows multiple links to be established between the user and the RAU, leading to higher rates. 
Moreover, the number of users also impact the performance of the MIMO assisted DAS. If 
there are multiple users within the coverage range of the RAU, beamforming is conducted to 
serve all the users. The network performance is impacted by the increase in the antenna ele-
ments at the RAU [13].

MIMO can be categorized into: (1) single-user MIMO (SU-MIMO), (2) multi-user MIMO 
(MU-MIMO). The impact of channel environment on the network performance is less pro-
nounced in case of MU-MIMO, as compared to SU-MIMO. The reason for such behavior lies 
in the multi-user diversity that can be achieved through MU-MIMO [14]. In SU-MIMO, the 
resources are dedicated to a single user for achieving higher capacity. Spatial multiplexing 
and beamforming aid in forming high capacity transmission links. Spatial multiplexing allows 
the transmission of multiple streams, where these streams undergo spatial processing at the 
receiver [15]. On the other hand, MU-MIMO allows allocation of resources to multiple users 
leading to multi-user diversity and performance gains as compared to SU-MIMO. MU-MIMO 
is particularly helpful in scenarios marked by high traffic. MU-MIMO leads to increased 
throughput, increased diversity gain and reduced costs as compared to SU-MIMO.

Figure 1. Example of DAS-based network.
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MIMO involves an integration of multiple antenna elements at access points (APs) and base 
stations (BSs), leading to higher network capacity. Transmission beams with high directiv-
ity are formed through beamforming, leading to low interference and high transmission gain 
communication links. The concept of MIMO has been included in several wireless network 
standards such as IEEE 802.11n, 802.11 ac WLAN, 802.16e (Mobile WiMAX), 802.16 m (world-
wide interoperability for microwave access (WiMAX), 802.20 mobile broadband wireless 
access (MBWA), 802.22 (WRAN), 3GPP long-term evolution (LTE) and LTE-Advanced evolved 
universal terrestrial radio access(E-UTRA) [16]. Resource allocation techniques for massive 
MIMO have been devised to ensure efficient utilization of resources. The resource allocation 
is conducted by keeping in view the requirements of the desired QoS of the individual users. 
Moreover, the MIMO is backed by spatial diversity and multiplexing techniques to improve the 
network performance. Spatial multiplexing is required in multi-user MIMO to enjoy the gains 
of spatial diversity. In multi-user MIMO, simultaneous data streams are sent to multiple users 
to increase the network capacity. Below, we list some challenges related to massive MIMO:

• manufacturing low cost base stations

• ensuring hardware compatibility

• designing lower antenna size

• acquiring CSI

• designing low power base stations

Third generation partnership project (3GPP) has defined the key features of MIMO and refers 
to two-dimensional (2D) antenna array structures as full dimensional MIMO (FD-MIMO). 
FD-MIMO involves 3D channel propagation, where the path loss is dependent upon the 
height and distance of the user from the AP. The elevation angle is also one of the aspects that 
is included in the 3D channel model. An increase in the number of antennas allows a simple 
interference management by using a precoder [17]. The presence of a dense antenna array also 
allows network robustness in case of hardware failures [18]. SE and EE can be achieved by 
utilizing antenna arrays at the user and the BS, but the size of antenna array depends on the 
hardware compatibility and size of the device.

3.1. Virtual MIMO for multi-hop networks

5G networks would involve densification of devices and D2D networks are considered as 
one of the technologies that could alleviate the burden on the BS. The BS can be equipped 
with multiple-antennas but the D2D UE is limited to having a single-antenna capability due 
to size limitations. However, in the up-link transmission mode, multiple users can coor-
dinate with each other to use the same sub-channels and create a virtual antenna array, 
leading to the concept of VMIMO [6]. The concept of VMIMO is also helpful in multi-hop 
networks involving cluster environments, e.g., D2D cluster networks [19]. Each cluster con-
tains multiple nodes having single antennas. The cluster acts as a multi-antenna node and 
helps in transmitting the information cooperatively to the adjacent clusters [20]. The relay 
mechanisms that can be utilized to realize multi-hop transmission between clusters or nodes 
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include amplify-and-forward (AF), compress-and-forward (CF) and decode-and-forward 
(DF). Another VMIMO architecture that has been proposed is the multi-hop relaying based 
on coding techniques. The relay node collects the information sent by the transmitters and 
forms a coded message that is shared with the destination in the next time slot [21].

4. Network coding for DAS

In Section 1.4, we built the case for DAS by presenting their advantages with regards to 5G 
networks and also discussed MIMO assisted DAS. In this section, we signify the utility of 
employing NC in DAS. We divide the study into two environments:

1. Low density DAS (D2D multi-hop networks)

2. High density DAS [opportunistic large array (OLA) multi-hop networks]

In the proceeding, we first provide a brief overview of the NC techniques that have been dis-
cussed in literature. Next, we describe the system models of both environments and quantify 
the performance gains achieved through NC in terms of end-to-end transmission success.

4.1. Network coding in low density DAS (D2D multi-hop networks)

D2D networks are based on a peer-to-peer (P2P) network between devices instead of relying on 
the BS for data transmission. The BS is responsible for supporting the control plane, while the 
devices establish a direct link to share the message with each other. Cooperative diversity could 
be exploited by D2D networks for ensuring reliable communication. NC-aided cooperative D2D 
networks enhance the success probability of end-to-end data delivery. In [22], NC is employed in 
BS-assisted D2D networks. Figure 2 shows the system model, where the BS operates as a relay 
between the two D2D users. The D2D users transmit in the first two time slots. In the third time 
slot, the BS applies exclusive OR (XOR) to form a coded message and transmits it to the D2D users.

Generally, interference is considered as an impairment, but [23] introduces the concept of 
physical layer NC (PNC) in D2D networks, where interference is maneuvered positively to 
form coded messages. PNC scheme simply superimposes electromagnetic waves and forms a 
code. Figure 3 highlights the PNC operation in a two-source, one-relay scenario. The first time 
slot is reserved for transmission of the messages  X1  and  X2  by the D2D users. The relay performs 
PNC to form a coded message  X3  in the second time slot. The conventional two-source relay 
networks utilize four time slots to complete information exchange. However, PNC-assisted 
 two-source relay network realizes information exchange in two time slots, thereby enhancing 
the network capacity.

NC can be utilized to enhance performance in mobile cloud scenarios [24]. The authors highlight 
the diversity gains that can be achieved in high node density D2D networks. The results also 
show the benefits of D2D networks assisted by NC for providing live data transmission. The 
devices form a cooperative network and share chunks of data cooperatively to complete the 
downloading process. The proposed technique leads to energy savings and helps in avoiding 
delay in transmissions.
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In [25], the authors present the integration of caching techniques and NC-assisted D2D com-
munication networks. Such networks are particularly helpful in realizing the proximity ser-
vices. D2D users that require similar content can utilize such networks receive the desired 
content, cooperatively. Ref. [26] presents a comparison between D2D aided by space–time 
analog NC (STANC), traditional D2D networks and D2D aided by analog NC. The system 
model comprises of a relay that has two antennas and three D2D pairs. The relay employs 
amplify and forward technique to transmit the message to the destination. The desired infor-
mation is recovered at the destination through zero forcing detection. The average sum rate is 
computed to highlight the utility of STANC as compared to other techniques.

4.1.1. Evaluation model

In our analysis, we consider a DAS with 3-D2D pair network aided by a relay node as shown 
in Figure 4. One transmission cycle comprises of four time slots. The source   S  

1
    transmits in 

the first time slot. Sources   S  
2
   ,   S  

3
    and relay  R  transmit in the next three time slots, respectively 

[27]. The transmission is considered successful if the received SNR is greater than a threshold  
τ . The source   S  

1
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The transmission model presented in Figure 4 is designed to provide diversity to the channels 
suffering from weakest links. In the case shown in Figure 4, the highest priority   P  

1
    is assigned 

to D2D pair 1, as in the ideal case the destination   D  
1
    can receive four codewords that contain the 

message   X  
1
   . Similarly, priorities   P  

2
    and   P  

3
    are assigned to the destinations   D  

2
    and   D  

3
   , respectively. It 

is pertinent to mention that the transmission flow can be adapted dynamically according to the 
channel states. For example, if D2D pair 2 suffers from worse channel conditions, then priority   P  

1
    

could be assigned to it, leading to more diversity and hence an increase in success probability for 
the transmissions that are destined for   D  

2
   . Another criteria that drives the assignment of the prior-

ities is the sensitivity of the information that is being shared over the network. If the information 
being transmitted is sensitive in nature, then a higher priority could be assigned to that D2D pair.

A comparison between traditional relay-aided D2D network and RANC is presented [27]. The 
aim of the comparison is to ascertain the deployment that best suits the QoS requirements in a 
particular network setting. Figure 5 signifies the behavior of simple relay-aided D2D network 
and RANC versus the signal-to-noise ratio (SNR) margin. SNR margin is defined as SNR nor-
malized by the threshold,  τ . In these results, we assume that D2D pair 1 is assigned priority   P  

1
   .  

We determine the success probability for two different scenarios:

1. Network model excluding the impact of path loss

2. Network model including the impact of path loss

Figure 4. Relay-aided-network-coded (RANC) D2D network transmission model [27].
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It can be observed that at a specific SNR margin, e.g., 15 dB, the performance of RANC and 
simple relay-aided D2D network can be analyzed. In this case, RANC outperforms the simple 
relay-aided D2D network for both aforementioned scenarios. These results could be particu-
larly helpful in identifying the SNR margins that would be required for maintaining a particu-
lar end-to-end success probability in VMIMO-assisted DAS.

To further elaborate the findings, we present the performance comparison between simple 
relay-aided D2D and RANC D2D at different values of SNR margin. If   P   s  RANC     D  i      and   P   s  relay−aided  

   D  i      denote 
the success probabilities of RANC and simple relay-aided D2D network when calculated at 
a particular destination   D  i   , respectively, then the percentage improvement in success prob-
ability for RANC is given as

  percentage improvement =   
 P   s  RANC     D  i     −  P   s  relay−aided  

   D  i    
 __________  P   s  relay−aided  

   D  i       × 100.  (1)

Table 1 highlights the comparative analysis of simple relay-aided D2D and RANC D2D. The 
results are presented at different SNR margins in the form of percentages calculated using 
(1.1). The negative entries in the table signify a performance degradation of RANC, while the 
positive entries signify the performance gains that can be achieved through RANC.

The performance of RANC at D2D pair 1 is analyzed for different fading characteristics. 
Note that  λ  characterizes the power of Rayleigh channel in a link. The fading characteristics 
are varied by changing the values of  λ , where  λ = 0.2  denotes the strongest gain. It can be 
observed that at higher values of SNR margin, RANC provides significant performance 
gains as compared to the simple relay-aided D2D network. Similar results are presented 
in Table 2 for a scenario involving path loss. The results signify the utility of employing 
RANC when the links suffer from channel degradation. Dynamic priority assignment can 
help in increasing the end-to-end transmission success for links suffering from channel 
degradation.

Figure 5. Success probability for D2D pair 1.
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It can be observed that at a specific SNR margin, e.g., 15 dB, the performance of RANC and 
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are varied by changing the values of  λ , where  λ = 0.2  denotes the strongest gain. It can be 
observed that at higher values of SNR margin, RANC provides significant performance 
gains as compared to the simple relay-aided D2D network. Similar results are presented 
in Table 2 for a scenario involving path loss. The results signify the utility of employing 
RANC when the links suffer from channel degradation. Dynamic priority assignment can 
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4.2. NC in high density DAS (OLA multi-hop networks)

Cooperative OLA networks allow a cluster of nodes to share the message with the adjacent 
cluster through multi-hop communication. OLA can be considered as a variant of DAS in 
network environments involving high density of nodes. In our analysis, we consider an OLA 
network which comprises of multiple source nodes that transmit the message to a common 
destination using a multi-hop topology [28]. We consider two network topologies for evalua-
tion (1) Deterministic topology, and (2) Random topology.

Deterministic topology Consider a network topology shown in Figure 6, where two sources are 
deployed at a particular distance from each other. There are  N  relay nodes in a cluster (hop), where 
the average distance between each cluster is denoted by  d . The number of clusters is denoted by  n , 
while the destination is denoted by  D . The source nodes operate at orthogonal frequencies to send 
the information to the first cluster of nodes. The relays in the first cluster employ DF mechanism 
to transmit the information to the adjacent cluster, until the information reaches the desired desti-
nation. In Figure 6, nodes 1, 2 and 4 shown by the filled circles are the first hop nodes that success-
fully decode the message from both the sources, while the nodes that are not able to decode the 
message from either of the source nodes are shown by hollow circles. The nodes in the first cluster 

SNR margin(dB) 0 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%)

D2D Pair 1 572 −6.14 1.58 1.4 0.56 0.19

D2D Pair 2 1258 −3.39 5.15 3.08 1.16 0.39

D2D Pair 3 470 −2.61 5.29 3.10 1.16 0.39

D2D Pair 1,  λ  = 0.2 39.58 12 5.16 1.86 0.61 0.19

D2D Pair 1,  λ  = 0.4 93.73 7.27 4.23 1.74 0.60 0.19

D2D Pair 1,  λ  = 0.6 196.05 2.56 3.33 1.63 0.59 0.19

D2D Pair 1,  λ  = 0.8 361.02 −1.90 2.45 1.52 0.58 0.19

Table 2. Analysis of RANC D2D with simple relay-aided D2D(including path loss) [27].

SNR margin(dB) 0 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%)

D2D Pair 1 23.60 6.56 2.75 0.95 0.31 0.1

D2D Pair 2 −17.71 3.88 2.4 0.92 0.30 0.09

D2D Pair 3 −4.81 1.81 −4.23 0.06 0.21 0.09

D2D Pair 1,  λ  = 0.2 29.28 8.83 3.03 0.98 0.31 0.09

D2D Pair 1,  λ  = 0.4 28 8.2 2.9 0.90 0.31 0.09

D2D Pair 1,  λ  = 0.6 26.6 7.67 2.89 0.97 0.30 0.09

D2D Pair 1,  λ  = 0.8 25.18 7.11 2.82 0.96 0.30 0.09

Table 1. Analysis of simple relay-aided D2D with RANC D2D (excluding path loss) [27].
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employ NC by combining the message from the two sources, i.e., the message   I  
1
    &   I  

2
    transmitted 

by source   S  
1
    and   S  

2
   , respectively, are network coded at the first cluster nodes to form linearly 

independent codes at each DF relay. Each relay in the first hop transmits these network codes 
to next cluster of nodes. Each node in the second hop receives network coded copies of   I  

1
    and   I  

2
   ,  

which can be decoded using Gaussian elimination. Diversity is achieved at second hop nodes 
as many network coded copies of   I  

1
    and   I  

2
    are received. The similar process is continued until the 

transmission are received by the destination. The state of the cluster at each hop is modeled by a 
Markov chain, as the current state of the system depends only on the previous state of the system.

Random topology In random topology, instead of placing the relay nodes deterministically, 
the source nodes and the  N  relay nodes are randomly distributed in a region of area  L × L .  
Figure 7 illustrates a network where the network is extended in the form of a strip of  L × L  sized 
contiguous regions. A fixed number of nodes at each hop is considered, resulting in a bino-
mial point process (BPP). The transmission flow is similar to deterministic topology, i.e., the 
nodes that decode the message in the first hop transmit the information to the next hop. The 
nodes that are able to decode the message from both sources form a codeword. Moreover, in 
this topology it is assumed that the nodes that decode either   I  

1
    or   I  

2
    are also able to forward the 

message to the next hop. A single node in a cluster can have four possible states

• State 0 = node does not decode anything,

• State 1 =   I  
1
    is decoded,

• State 2 =   I  
1
    and   I  

2
    are decoded,

• State 3 =   I  
2
    is decoded.

Figure 6. Deterministic network topology:  N = 4  [28].

Figure 7. Random topology: Nodes at each hop = 6 [29].
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4.2. NC in high density DAS (OLA multi-hop networks)
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cluster through multi-hop communication. OLA can be considered as a variant of DAS in 
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It is not feasible to model the state of this topology by Markov chain due to the presence of a 
high number of states. Therefore, state distribution probability model is employed to model 
the network.

4.2.1. Evaluation model

First, we present results related to the deterministic topology. Figure 8 shows the relationship 
between the Perron eigen value,  ρ , SNR margin and  γ .  ρ  is the one-hop success probability 
that corresponds to a state where at least two nodes in a hop are able to successfully decode a 
message. It can be observed that for a fixed value of  N , an increase in the SNR margin leads to 
an increase in one-hop success probability. Moreover, an increase in the number of nodes,  N , 
leads to higher success probability for a fixed SNR margin because the diversity gain increases. 
Hence, NC provides a way to transmit data to a far off destination by providing diversity.

The number of hops in the network impact the end-to-end success of data delivery, as the 
probability of successful hop decreases at each hop. If we want to maintain a certain QoS,  η ,  
we need to find the number of nodes in a cluster that would be sufficient for providing the 
desired QoS. The probability of delivering the message to the   m   th   hop with a constraint that the 
probability is greater than a threshold  η , can be determined through   ρ   m  ≥ η , where  m  represents 
the number of hops. Figure 9 shows the results pertaining to the normalized distance denoted 
by  m × d  and the QoS.  d  is distance between two adjacent hops and the results are presented for 
values of  N  and  η . It can be seen that as the QoS criteria is relaxed, the coverage is extended to 
a higher normalized distance.

Now, we present the results for random topology. Figure 10 represents the number of nodes 
that are in state 2 versus  γ , for  N = 8  and  N = 10  at the fifth hop. Recall that state 2 is a desired 
state because a node is in state 2, if it has decoded both   I  

1
    and   I  

2
   . The information sent by the 

Figure 8. Success probability versus SNR margin for different values of  N ;   P  t   = 1 ,  d = 1  [28].
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sources can be recovered if a minimum of two nodes are available at each hop. The increase 
in  γ  leads to an increase in the number of nodes in state 2.

The aforementioned results shown for two multi-hop network topologies empowered by the 
NC provide a designer’s perspective for VMIMO-assisted DAS. The number of nodes that 
form a part of the VMIMO cluster, and the distance between adjacent clusters impact the 
network performance. Moreover, NC could help in increasing the end-to-end transmission 
success probability and therefore increases the coverage area. The network design parameters 
can be ascertained for VMIMO-assisted DAS to meet the desired QoS criteria.

Figure 9. Normalized distance;  γ = 6 dB ,   P  t   = 1 ,  d = 1  [28].

Figure 10. Number of nodes in state 2 versus SNR margin at   5   th   hop.
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the number of hops. Figure 9 shows the results pertaining to the normalized distance denoted 
by  m × d  and the QoS.  d  is distance between two adjacent hops and the results are presented for 
values of  N  and  η . It can be seen that as the QoS criteria is relaxed, the coverage is extended to 
a higher normalized distance.

Now, we present the results for random topology. Figure 10 represents the number of nodes 
that are in state 2 versus  γ , for  N = 8  and  N = 10  at the fifth hop. Recall that state 2 is a desired 
state because a node is in state 2, if it has decoded both   I  

1
    and   I  

2
   . The information sent by the 

Figure 8. Success probability versus SNR margin for different values of  N ;   P  t   = 1 ,  d = 1  [28].
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sources can be recovered if a minimum of two nodes are available at each hop. The increase 
in  γ  leads to an increase in the number of nodes in state 2.

The aforementioned results shown for two multi-hop network topologies empowered by the 
NC provide a designer’s perspective for VMIMO-assisted DAS. The number of nodes that 
form a part of the VMIMO cluster, and the distance between adjacent clusters impact the 
network performance. Moreover, NC could help in increasing the end-to-end transmission 
success probability and therefore increases the coverage area. The network design parameters 
can be ascertained for VMIMO-assisted DAS to meet the desired QoS criteria.

Figure 9. Normalized distance;  γ = 6 dB ,   P  t   = 1 ,  d = 1  [28].

Figure 10. Number of nodes in state 2 versus SNR margin at   5   th   hop.
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5. Conclusion

In this chapter, we presented an overview of the benefits of DAS and the limitations that 
could arise due to DAS-based network operation. Then, we discussed the concept of VMIMO-
assisted DAS and its utility in the network based on single-antenna empowered devices. 
VMIMO-assisted DAS help in realizing key aspects of 5G technology, i.e., energy/spectral effi-
ciency and enhanced reliability. We analyzed the MIMO-assisted DAS by employing NC and 
quantify the performance metrics such as end-to-end transmission success probability. We 
considered a multi-hop environment and based our analysis on two network topologies: (1) 
Low density DAS (D2D multi-hop networks), and (2) High density DAS (OLA multi-hop net-
works). We discussed the transmission flow mechanism for both cases and presented results 
related to network reliability. Moreover, we also quantified the sustainability of the transmis-
sions by determining the maximum distance that could be achieved by operating on particu-
lar network parameters. The analysis presented in this chapter provides design insights that 
could help in identifying the network parameters to achieve the desired QoS. The results 
highlight the advantages of employing NC in VMIMO-assisted DAS.
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Abstract

Industry 4.0 has become the main source of applications of the Internet of Things (IoT), 
which is generating new business opportunities. The use of cloud computing and artifi-
cial intelligence is also showing remarkable improvements in industrial operation, sav-
ing millions of dollars to manufacturers. The need for time-critical decision-making is 
evidencing a trade-off between latency and computation, urging Industrial IoT (IIoT) 
deployments to integrate fog nodes to perform early analytics. In this chapter, we review 
next-generation IIoT architectures, which aim to meet the requirements of industrial 
applications, such as low-latency and highly reliable communications. These architec-
tures can be divided into IoT node, fog, and multicloud layers. We describe these three 
layers and compare their characteristics, providing also different use-cases of IIoT archi-
tectures. We introduce network coding (NC) as a solution to meet some of the require-
ments of next-generation communications. We review a variety of its approaches as 
well as different scenarios that improve their performance and reliability thanks to this 
technique. Then, we describe the communication process across the different levels of the 
architecture based on NC-based state-of-the-art works. Finally, we summarize the ben-
efits and open challenges of combining IIoT architectures together with NC techniques.
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Industry 4.0, that is, the fourth industrial revolution, represents industry and manufacturing 
digitalization bringing with it, among other things, the so-called smart factories. This trans-
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the Industrial IoT (IIoT) and allows to interconnect humans, machines, and smart devices, as 
well as to share huge amounts of data among them.

In order to cope with big data and predictive analytics [2], cloud computing is becoming 
another key enabler due to its computing, storage, and networking capabilities. It allows us 
to obtain meaningful information and valuable insights which will increase the efficiency, 
productivity, and performance of manufacturing processes and services. Several IIoT appli-
cations, such as system control, anomaly detection, or robot guidance, are time-critical, and 
therefore, they require millisecond response times. Thus, low-latency communications, as 
well as real-time analysis and monitoring, are indispensable for immediate decision-making.

Although the cloud offers high scalability, flexibility, and responsiveness, cloud-based ana-
lytics may introduce excessive latency, which would compromise the performance of time-
critical applications. In order to accomplish a trade-off between latency and computation, IIoT 
deployments are moving cloud capabilities downwards to fog nodes to perform early analyt-
ics and minimize latency. Furthermore, most delay-critical applications not only require low-
latency communications but also ensure high reliability. A promising technique that increases 
network reliability while reducing end-to-end latency is network coding (NC). Its properties 
are particularly beneficial for enhancing the robustness and reducing delays of wireless sen-
sor network (WSN) communications [3]. Moreover, it improves the efficiency of distributed 
storage systems, regarding both data download speed and redundancy [4].

In this chapter, we overview next-generation IIoT systems, which must provide low-latency 
communications as well as ensure their reliability in order to allow the performance of on-
premise advanced cloud analytics for time-critical IIoT applications, that is, to bring the cloud 
to the fog (see Figure 1). This objective can be achieved by implementing a three-layer archi-
tecture based on IoT nodes, fog nodes and a multicloud environment, and also by exploiting 
the advantageous properties of NC techniques across the architecture.

Figure 1. Bringing the cloud to the fog.
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The rest of this chapter is organized as follows. First, we overview next-generation IIoT 
architectures, briefly describing and comparing the different layers as well as providing dif-
ferent use-cases in which these architectures are integrated. Next, we introduce some NC 
approaches and describe the benefits of NC regarding different scenarios. Then, we describe 
the communication process across the different levels of the architecture. We also summarize 
the benefits of merging IIoT architectures and NC techniques. Finally, we discuss existing 
issues and open challenges, and we report the final conclusions of the chapter.

2. Next-generation IIoT architectures

Nowadays, due to its scalability and big data management capabilities, cloud-based archi-
tectures are most widely used in Industry 4.0 applications. However, the integration of the 
IoT into industrial environments poses new challenges, which implies an architectural adap-
tation. As previously mentioned, IIoT applications are mostly delay-sensitive and require 
instant decision-making. This has led to the integration of fog nodes into the industrial sys-
tems in order to perform early analytics and closed-loop control. Moreover, systems of this 
nature must be robust. Thus, with the aim of providing a fault-tolerant architecture and 
guarantee system reliability, multicloud deployments are emerging as a promising solu-
tion. In addition to the latter, they enable to use the connections under the best conditions 
and therefore, delays can be reduced. Dependencies on a single cloud provider can also be 
avoided.

It can be said that next-generation IIoT architectures, as shown in Figure 2, will consist of 
three layers, composed of IoT or smart devices, fog nodes and multiple clouds. The lowest 
layer, comprised of a variety of end-nodes, is responsible for sending taken measurements to 
actuators or fog devices. In the fog layer, time-critical analytics, as well as closed-loop control, 
can be performed. Finally, cloud servers are in charge of heavy data analytics and compute-
intense workloads that manage a vast amount of data.

2.1. Architecture design

A description and comparison of the layers that comprise next-generation IIoT architectures 
are next provided.

2.1.1. WSN

WSNs can be considered the main communication technologies of IIoT due to the flexibility 
they offer to connect and manage a large number of sensors and actuators, independently of 
their location. A WSN consists of several IoT nodes, including sensors, actuators, and smart 
devices, which take several measurements. These devices are mainly battery, storage, and 
processing power constrained. This layer is responsible for gathering sensor data, such as 
machine temperature or vibration measurements, and for uploading them. It also receives 
instructions from the upper layers in order to perform a corresponding task or action.
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premise advanced cloud analytics for time-critical IIoT applications, that is, to bring the cloud 
to the fog (see Figure 1). This objective can be achieved by implementing a three-layer archi-
tecture based on IoT nodes, fog nodes and a multicloud environment, and also by exploiting 
the advantageous properties of NC techniques across the architecture.

Figure 1. Bringing the cloud to the fog.
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The rest of this chapter is organized as follows. First, we overview next-generation IIoT 
architectures, briefly describing and comparing the different layers as well as providing dif-
ferent use-cases in which these architectures are integrated. Next, we introduce some NC 
approaches and describe the benefits of NC regarding different scenarios. Then, we describe 
the communication process across the different levels of the architecture. We also summarize 
the benefits of merging IIoT architectures and NC techniques. Finally, we discuss existing 
issues and open challenges, and we report the final conclusions of the chapter.

2. Next-generation IIoT architectures

Nowadays, due to its scalability and big data management capabilities, cloud-based archi-
tectures are most widely used in Industry 4.0 applications. However, the integration of the 
IoT into industrial environments poses new challenges, which implies an architectural adap-
tation. As previously mentioned, IIoT applications are mostly delay-sensitive and require 
instant decision-making. This has led to the integration of fog nodes into the industrial sys-
tems in order to perform early analytics and closed-loop control. Moreover, systems of this 
nature must be robust. Thus, with the aim of providing a fault-tolerant architecture and 
guarantee system reliability, multicloud deployments are emerging as a promising solu-
tion. In addition to the latter, they enable to use the connections under the best conditions 
and therefore, delays can be reduced. Dependencies on a single cloud provider can also be 
avoided.

It can be said that next-generation IIoT architectures, as shown in Figure 2, will consist of 
three layers, composed of IoT or smart devices, fog nodes and multiple clouds. The lowest 
layer, comprised of a variety of end-nodes, is responsible for sending taken measurements to 
actuators or fog devices. In the fog layer, time-critical analytics, as well as closed-loop control, 
can be performed. Finally, cloud servers are in charge of heavy data analytics and compute-
intense workloads that manage a vast amount of data.

2.1. Architecture design

A description and comparison of the layers that comprise next-generation IIoT architectures 
are next provided.

2.1.1. WSN

WSNs can be considered the main communication technologies of IIoT due to the flexibility 
they offer to connect and manage a large number of sensors and actuators, independently of 
their location. A WSN consists of several IoT nodes, including sensors, actuators, and smart 
devices, which take several measurements. These devices are mainly battery, storage, and 
processing power constrained. This layer is responsible for gathering sensor data, such as 
machine temperature or vibration measurements, and for uploading them. It also receives 
instructions from the upper layers in order to perform a corresponding task or action.
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2.1.2. Fog

The fog can be considered as an intermediate layer between the cloud and IoT devices and 
so, it extends cloud computing capabilities to the edge of the network [5]. One of its main 
advantages is its closeness to the end-nodes, which makes possible to reduce communica-
tion latency and to enable real-time service support. Since fog computing allows early data 
processing, the amount of data sent to the cloud can be reduced. In addition, its mobility and 
location-awareness enable to deliver rich services to moving devices [6].

2.1.3. Multicloud

The cloud can be described as several distributed remote servers which can be accessed 
via the Internet to store and manage big amounts of data [7]. Cloud computing enables the 
remote on-demand use of computing resources, that is, networks, servers, storage, applica-
tions, and services. It provides virtualized, elastic, and controllable services and power-
ful computational capabilities, enabling complex application systems at lower costs. The 
deployment of more than one cloud, in addition to the mentioned advantages, provides 
fault tolerance against service outages, and the system security level is improved since 
it is possible to store the information divided into different clouds. Furthermore, appli-
cation requirements can be better adapted to available cloud resources and connectivity 
conditions.

Figure 2. Next-generation IIoT architecture.
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2.1.4. Comparison

With the adoption of IoT, the number of things connected to the Internet is expected to grow 
up to 20 billion in 2020 [8]. Thus, a scalable architecture is required in order to adapt to such 
a huge number of devices. Moreover, the need for large amounts of data to be accessed more 
quickly is ever-increasing, where the inherent latency of the cloud can be detrimental. Latency 
issues become highly damaging, particularly for IIoT time-critical applications. Autonomous 
decisions are required in order to prevent failures or optimize production, and thus, millisec-
onds matter when trying, for instance, to prevent manufacturing line downtimes or to get the 
right decision in autonomous vehicles.

Processing data directly in the end-devices would be the best solution in order to provide the low-
est latency and jitter. However, the constrained nature of these nodes inhibits the performance of 
more advanced processing and analytics. Thus, fog computing can be the most suitable solution for 
applications that cannot afford the delay caused by the round trip to the cloud server. Nonetheless, 
fog computing requires local management of redundancy and data backup. Moreover, the integra-
tion of devices capable of performing remote data analytics implies the increase of the architecture 
complexity, as well as of the associated costs in hardware and software investments. Table 1 shows 
the most significant differences between WSNs, fog computing, and cloud computing.

2.2. Application use-cases

The three-layer architecture enables to exploit the efficiency and scalability of the fog while 
benefiting from the powerful storage and computing resources of the cloud. Next, we show 
some use-case examples.

2.2.1. Smart energy

Wind energy-based smart grids require data analysis and real-time decision making. In 
a large wind farm, the health of the turbines is monitored by analyzing data collected by 

Feature WSNs Fog computing Cloud computing

Latency Very low Low High

Delay jitter Very low Low High

Server location — Local Internet

Client–server distance — One hop Multiple hops

Location awareness Yes Yes No

Distribution Highly distributed Distributed Centralized

Mobility awareness Guaranteed Supported Limited

Real-time interactions Guaranteed Supported Limited

Table 1. Comparison between WSN, fog, and cloud computing [9].
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onds matter when trying, for instance, to prevent manufacturing line downtimes or to get the 
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Processing data directly in the end-devices would be the best solution in order to provide the low-
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more advanced processing and analytics. Thus, fog computing can be the most suitable solution for 
applications that cannot afford the delay caused by the round trip to the cloud server. Nonetheless, 
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tion of devices capable of performing remote data analytics implies the increase of the architecture 
complexity, as well as of the associated costs in hardware and software investments. Table 1 shows 
the most significant differences between WSNs, fog computing, and cloud computing.
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The three-layer architecture enables to exploit the efficiency and scalability of the fog while 
benefiting from the powerful storage and computing resources of the cloud. Next, we show 
some use-case examples.

2.2.1. Smart energy

Wind energy-based smart grids require data analysis and real-time decision making. In 
a large wind farm, the health of the turbines is monitored by analyzing data collected by 
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numerous sensors [10]. Each turbine can be monitored locally, that is, in the fog, and the col-
lective performance can be improved by processing data on remote servers in the cloud. Thus, 
it enables to combine real-time response for early actions and advanced analyses for a deeper 
view of the whole wind farm. It can increase energy output, decrease operational costs, and 
increase turbine uptime.

2.2.2. Smart transportation

Self-driving vehicles, for instance, are equipped with an on-board system that, through real-
time data analysis, allows controlling the car without human interaction. In such systems, 
highly reliable and low latency communication is crucial. Thus, critical decisions that require an 
instantaneous response are better managed with fog computing [11]. However, for monitoring 
the tracking performance of a truck fleet [12], as there is no need for real-time analytics, cloud 
computing is more suitable. Advanced cloud analytics based on information gathered from dif-
ferent parts of the truck can bring insights to improve the maintenance and lower repair costs.

2.2.3. Smart manufacturing

Smart factories are able to perform predictive maintenance of their machines or improve 
product quality by real-time sensor analysis [13]. Fog computing is crucial for these delay-
critical data processing. However, cloud computing can provide an overall system manage-
ment as well as machine learning analytics that require greater computing power.

2.2.4. Smart cities

Fog computing can provide a fast, real-time, and location-aware solution for many IoT use 
cases of smart cities, such as smart buildings [14]. Several sensors gather diverse measure-
ments like temperature, energy usage, humidity, parking occupancy, air quality, elevators, 
smoke, and so on. The efficiency of the system can be improved by managing critical data 
at the fog layer in real time, as in traffic control, and by performing big data analytics in the 
cloud.

3. Next-generation communications

Most IIoT systems are deployed in harsh environments, where different devices within the 
architecture can be connected and disconnected from the network any time. Thus, besides 
providing low-latency communications, it is crucial to strengthen these communications in 
order to ensure a robust and highly reliable environment.

3.1. Issues

IIoT networks require system reliability, data availability and high communication quality. 
This may be difficult to achieve due to inherent constraints of these scenarios. WSNs, for 
example, may suffer from noise or multipath interferences, among others, which cause packet 
loss and inevitably degrades the quality of the communications. Moreover, the dynamic 
topology of these architectures in which devices connect intermittently, can destabilize 
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communications and introduce variable delays. In order to overcome these issues, the inte-
gration of NC techniques across the shown architecture can be a suitable solution due to its 
properties.

3.2. Network coding

NC breaks with the traditional store-and-forward transmission model [15] by allowing any 
intermediate node to recombine incoming packets into coded ones, which are decoded at 
destination. Its properties make it a promising solution to improve the performance of wire-
less and peer-to-peer networks. It exploits the broadcast nature of the wireless medium [3], 
which facilitates node cooperation to provide significant benefits in terms of communication 
robustness, stability, throughput, and latency.

Moreover, dependency on obtaining a particular packet is removed by applying NC since it 
is sufficient to get enough linearly independent packet combinations in order to recover the 
required data. Thus, in distributed systems, such as P2P [16] or multicloud environments [17], 
the use of NC can reduce additional data download or access delays in highly loaded condi-
tions as well as improve the performance of data recovery and acquisition [4].

3.2.1. Advanced techniques

Advanced NC techniques are based on the widely used NC approach random linear network 
coding (RLNC) [18], where the received  K  packets are linearly combined with randomly cho-
sen coefficients from a finite field or Galois Field (GF)   𝔽𝔽  

q
   , before forwarding them. The perfor-

mance of RLNC is influenced by the following coding parameters: finite field size, generation 
size, and coding vector density [19], among others. Eq. (1) represents the encoding process, 
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Several variants of this technique have been developed in order to adapt it to different sce-
narios and application requirements. Perpetual codes [20], for instance, can be considered as 
a supplement of RLNC. In manifold scenarios, particularly for large generation sizes, they can 
substantially increase the throughput due to their sparsity and the possibility of structured 
decoding.

For heterogeneous networks with devices of different resources, fulcrum codes [21] allow 
to use binary GF operations in the network to achieve reduced overhead and computational 
cost, and reach compatibility with heterogeneous devices and data flows in the network, while 
providing the opportunity of employing higher coding finite fields end-to-end for greater 
performance. On the other hand, systematic coding [22] allows sending coded packets along 
with original ones, that is, uncoded packets, which can help to reduce overhead and improve 
the real-time decoding performance.
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critical data processing. However, cloud computing can provide an overall system manage-
ment as well as machine learning analytics that require greater computing power.
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This may be difficult to achieve due to inherent constraints of these scenarios. WSNs, for 
example, may suffer from noise or multipath interferences, among others, which cause packet 
loss and inevitably degrades the quality of the communications. Moreover, the dynamic 
topology of these architectures in which devices connect intermittently, can destabilize 
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communications and introduce variable delays. In order to overcome these issues, the inte-
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intermediate node to recombine incoming packets into coded ones, which are decoded at 
destination. Its properties make it a promising solution to improve the performance of wire-
less and peer-to-peer networks. It exploits the broadcast nature of the wireless medium [3], 
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Moreover, dependency on obtaining a particular packet is removed by applying NC since it 
is sufficient to get enough linearly independent packet combinations in order to recover the 
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Several variants of this technique have been developed in order to adapt it to different sce-
narios and application requirements. Perpetual codes [20], for instance, can be considered as 
a supplement of RLNC. In manifold scenarios, particularly for large generation sizes, they can 
substantially increase the throughput due to their sparsity and the possibility of structured 
decoding.

For heterogeneous networks with devices of different resources, fulcrum codes [21] allow 
to use binary GF operations in the network to achieve reduced overhead and computational 
cost, and reach compatibility with heterogeneous devices and data flows in the network, while 
providing the opportunity of employing higher coding finite fields end-to-end for greater 
performance. On the other hand, systematic coding [22] allows sending coded packets along 
with original ones, that is, uncoded packets, which can help to reduce overhead and improve 
the real-time decoding performance.
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For low-delay applications such as real-time control applications, on-the-fly or sliding win-
dow coding can be the most suitable solutions. Unlike block codes where all packets in a 
block need to be present to start generating useful coded packets, on-the-fly codes [23] are 
able to encode data while they become available and these packets are progressively decoded. 
Sliding window codes [24] are more flexible since they remove the limitation of fixed blocks 
by creating a variable-sized sliding window.

Finally, Tunable Sparse Network Coding (TSNC) [25], unlike RLNC that applies a fixed coding 
density for the entire process, tunes the density of coded packets during transmission to adjust 
to the trade-off between real-time performance and reliability. TSNC proposes to increase the 
coding density as the destination node receives more linearly independent packets since the 
probability of receiving innovative packets is lower, thereby reducing coding complexity.

3.2.2. NC benefits

This section lists different benefits of NC, showing its suitability for IIoT systems and 
applications.

• Distributed storage systems: IIoT systems require high reliability and availability. Thus, data 
must be distributed and stored in such a way as to ensure fault tolerance, for example in 
the event of a server failure. Packet loss, delay, and bandwidth fluctuation can hinder data 
distribution. The main benefit of NC over P2P environments is in relation to the coupon 
collector problem [16], being able to solve this issue due to the redundancy introduced 
in packet transmissions. Therefore, the performance of data streaming is enhanced since 
download times are minimized. With NC, the performance of the system depends much 
less on the underlying topology and schedule.

NC can help to increase the reliability of distributed storage systems like multicloud 
deployments [17]. In case of data loss, the amount of redundant data required for repair 
is minimized. In addition, each cloud is used at its maximum speed even in highly loaded 
conditions or dynamically changing environments. Thus, NC improves storage efficiency 
in terms of data retrieval time and storage space.

• Dynamic topologies: NC techniques can be helpful for efficient content distribution [26] in 
changing environments. For example in Vehicular Ad-Hoc Networks (VANETs), in order 
to avoid possible accidents, vehicles exchange road state information among them. Even in 
dynamic road changing conditions, VANET applications, such as traffic live video broad-
cast, must guarantee a correct data reception. Since NC enhances network performance 
and reduces the number of required data transmissions, it can reduce transmission delays.

Due to the previous and together with its decentralized nature and robustness, NC can be 
extrapolated also to dynamic IIoT architectures, where end-nodes may connect periodi-
cally in order to save power or they can connect to different access points.

• Constrained environments: the use of NC has been extended also to constrained environments. 
In satellite communications, for instance, bandwidth is usually limited and round-trip 
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delays are high. The properties of this technique can be advantageous particularly in mul-
tibeam satellites [27]. On the one hand, NC improves throughput and bandwidth usage. 
On the other hand, it does not require any change at the physical layer and thus, it easies 
the implementation on already deployed satellite systems. NC techniques can also be used 
in applications aimed at energy-efficient data transmissions, such as Wireless Body Area 
Networks (WBANs), since they can provide reliable communications under low-energy 
constraints [28]. Therefore, IIoT applications can also profit from this technique as the 
majority of end-devices are resource constrained.

• Poor quality channels: NC can improve the transmission performance in environments 
with unstable channel conditions which quality may not meet end-user quality of ser-
vice (QoS) requirements, such as delay and reliability. An example of the previous are 
Underwater Sensor Networks (UWSNs) and Power Line Communication (PLC) systems. 
In UWSNs, the acoustic communications suffer high error rates and long propagation 
delays, which require efficient error recovery. NC can exploit the broadcast property of 
acoustic channels, improving data throughput [29]. PLC systems, on the other hand, are 
able to provide multicast and broadcast services by exploiting existing electrical wires. Due 
to the similarities between power line and wireless channels, NC protocols can be applied 
in order to achieve the implementation constraints [30] and provide reliable communica-
tions in harsh environments.

IIoT systems that relay on WSNs may deal with interferences or channel contention that 
cause QoS issues. Thus, NC-based techniques can help to improve channel resources as 
well as data rate while maintaining QoS.

4. NC over IIoT architectures

In this section, we introduce NC into next-generation IIoT architectures reviewing related 
state-of-the-art works. We also outline some of the most relevant benefits and challenges.

4.1. Communication process

In IIoT systems, not only low-latency communications between end-nodes (things) and the 
cloud must be guaranteed but the whole system must be robust, including the connections and 
the provided service. Next, the communication process across the architecture is described.

4.1.1. Things

Implementing NC techniques through the WSN, communication latency can be reduced 
[31] and its robustness [32, 33] improved. Here, sensors and actuators combine their mea-
surements and transmit them across the network. By using NC, intermediate nodes recode 
received data and send them to one or more gateways which compose the fog layer. These 
devices are then in charge of uploading incoming data to the multicloud framework.
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For low-delay applications such as real-time control applications, on-the-fly or sliding win-
dow coding can be the most suitable solutions. Unlike block codes where all packets in a 
block need to be present to start generating useful coded packets, on-the-fly codes [23] are 
able to encode data while they become available and these packets are progressively decoded. 
Sliding window codes [24] are more flexible since they remove the limitation of fixed blocks 
by creating a variable-sized sliding window.

Finally, Tunable Sparse Network Coding (TSNC) [25], unlike RLNC that applies a fixed coding 
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probability of receiving innovative packets is lower, thereby reducing coding complexity.

3.2.2. NC benefits

This section lists different benefits of NC, showing its suitability for IIoT systems and 
applications.

• Distributed storage systems: IIoT systems require high reliability and availability. Thus, data 
must be distributed and stored in such a way as to ensure fault tolerance, for example in 
the event of a server failure. Packet loss, delay, and bandwidth fluctuation can hinder data 
distribution. The main benefit of NC over P2P environments is in relation to the coupon 
collector problem [16], being able to solve this issue due to the redundancy introduced 
in packet transmissions. Therefore, the performance of data streaming is enhanced since 
download times are minimized. With NC, the performance of the system depends much 
less on the underlying topology and schedule.

NC can help to increase the reliability of distributed storage systems like multicloud 
deployments [17]. In case of data loss, the amount of redundant data required for repair 
is minimized. In addition, each cloud is used at its maximum speed even in highly loaded 
conditions or dynamically changing environments. Thus, NC improves storage efficiency 
in terms of data retrieval time and storage space.

• Dynamic topologies: NC techniques can be helpful for efficient content distribution [26] in 
changing environments. For example in Vehicular Ad-Hoc Networks (VANETs), in order 
to avoid possible accidents, vehicles exchange road state information among them. Even in 
dynamic road changing conditions, VANET applications, such as traffic live video broad-
cast, must guarantee a correct data reception. Since NC enhances network performance 
and reduces the number of required data transmissions, it can reduce transmission delays.

Due to the previous and together with its decentralized nature and robustness, NC can be 
extrapolated also to dynamic IIoT architectures, where end-nodes may connect periodi-
cally in order to save power or they can connect to different access points.

• Constrained environments: the use of NC has been extended also to constrained environments. 
In satellite communications, for instance, bandwidth is usually limited and round-trip 
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delays are high. The properties of this technique can be advantageous particularly in mul-
tibeam satellites [27]. On the one hand, NC improves throughput and bandwidth usage. 
On the other hand, it does not require any change at the physical layer and thus, it easies 
the implementation on already deployed satellite systems. NC techniques can also be used 
in applications aimed at energy-efficient data transmissions, such as Wireless Body Area 
Networks (WBANs), since they can provide reliable communications under low-energy 
constraints [28]. Therefore, IIoT applications can also profit from this technique as the 
majority of end-devices are resource constrained.

• Poor quality channels: NC can improve the transmission performance in environments 
with unstable channel conditions which quality may not meet end-user quality of ser-
vice (QoS) requirements, such as delay and reliability. An example of the previous are 
Underwater Sensor Networks (UWSNs) and Power Line Communication (PLC) systems. 
In UWSNs, the acoustic communications suffer high error rates and long propagation 
delays, which require efficient error recovery. NC can exploit the broadcast property of 
acoustic channels, improving data throughput [29]. PLC systems, on the other hand, are 
able to provide multicast and broadcast services by exploiting existing electrical wires. Due 
to the similarities between power line and wireless channels, NC protocols can be applied 
in order to achieve the implementation constraints [30] and provide reliable communica-
tions in harsh environments.

IIoT systems that relay on WSNs may deal with interferences or channel contention that 
cause QoS issues. Thus, NC-based techniques can help to improve channel resources as 
well as data rate while maintaining QoS.

4. NC over IIoT architectures

In this section, we introduce NC into next-generation IIoT architectures reviewing related 
state-of-the-art works. We also outline some of the most relevant benefits and challenges.

4.1. Communication process

In IIoT systems, not only low-latency communications between end-nodes (things) and the 
cloud must be guaranteed but the whole system must be robust, including the connections and 
the provided service. Next, the communication process across the architecture is described.

4.1.1. Things

Implementing NC techniques through the WSN, communication latency can be reduced 
[31] and its robustness [32, 33] improved. Here, sensors and actuators combine their mea-
surements and transmit them across the network. By using NC, intermediate nodes recode 
received data and send them to one or more gateways which compose the fog layer. These 
devices are then in charge of uploading incoming data to the multicloud framework.
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4.1.2. Fog

Fog nodes can be any device with computing, storage, and network connectivity, such as con-
trollers, routers, gateways, and so on. They can be deployed anywhere with a network con-
nection, for instance, alongside a factory floor. They are interconnected among them, with the 
IoT devices and also with cloud servers, forming a distributed network. Therefore, NC-based 
techniques can be extrapolated from WSNs to the communication between the devices within 
the fog layer [34, 35].

The fog layer is responsible for gathering data from end-devices and for distributing coded 
packets to the different clouds that comprise the multicloud deployment. The use of NC has 
also been demonstrated to be beneficial for data distribution [36]. Moreover, this technique 
is advantageous for distributed storage systems, since it can achieve an optimal trade-off 
between storage and repair traffic. Thus, it can also help to deal with fog storage nodes that 
may continuously leave the network without a replacement [37].

4.1.3. Multicloud

Clouds within the multicloud deployment are responsible for storing incoming network-
coded data from the lower layer. NC-based techniques can improve the process of lost data 
recovery, as well as enhance the efficiency of data redundancy [38]. As an example, Figure 3 
illustrates the repair operation in case of a cloud failure using exact minimum-storage regen-
erating (EMSR) codes. A file is divided into for fragments, and both original and coded 
chunks are distributed as shown in the figure. Assuming Cloud 1 is down (A and B are lost), 
the surviving nodes XOR their own chunks to create new encoded ones in order to make 
possible the reconstruction of A and B.

Figure 3. Repair process with EMSR codes [17].
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Clouds are then able to perform required operations for decision-making or further ana-
lytics. Data or action commands are transmitted to the corresponding devices based on 
the results of the performed analysis. The cloud response time can also be reduced, as in 
the upstream communication, due to the implementation of NC. In [39], for instance, if a 
file has been divided into  g  fragments, the number of coded packets   P  

i
    stored on each of 

the  N  clouds is calculated in order to achieve optimal scheduling during data retrieval (see 
Eqs. (2) and (3), where   R  

i
    defines the download rate and   α  

i
    denotes the minimum part of 

the data to be stored).

   α  i   =   
 R  i   ______ 

  ∑  
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N
    R  i    
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   P  i   ≥  α  i   · g  (3)

If the information is stored over distributed untrusted platforms, such as public clouds, the 
inherent use of NC schemes can provide, in addition to fault tolerance, a security level against 
eavesdroppers [40]. However, it is necessary to find a trade-off between fault-tolerance and 
security [41], since the more redundant data, the more vulnerable the system becomes.

4.2. Summary

We overview the most relevant benefits the integration of IIoT architectures and NC provides. 
While this approach can bring significant advantages, it also poses some issues. We identify 
and describe future challenges that may arise with the implementation of next-generation 
IIoT architectures.

4.2.1. Benefits

As the IIoT architecture relies on a multicloud deployment, the reliability and availability 
of the entire system can be enhanced. Data are distributed across different clouds, and so, 
the possibilities of suffering a cyber-attack are reduced. Moreover, this information is stored 
differently from the original form. Thus, data privacy is improved. The multicloud environ-
ment, due to its fault tolerance, increases the robustness in case of service outages. Due to 
the implementation of multiple clouds, this architecture enables to distribute data to the 
most convenient cloud, which makes possible not only to choose the service provider that 
better fits the moment requirements but to use the connections under the best conditions. 
Thus, it helps to identify the right service architecture to optimize latency, location, and cost.

The use of NC-based techniques can enhance the performance of the communications over 
congested WSNs, as well as of the data distribution and recovery processes over multicloud 
deployments. Since data redundancy is more efficient, reliability and availability of the pro-
vided service are improved. Besides, the integration of NC-based techniques into the architec-
ture can lead to the reduction of end-to-end latency.
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Clouds are then able to perform required operations for decision-making or further ana-
lytics. Data or action commands are transmitted to the corresponding devices based on 
the results of the performed analysis. The cloud response time can also be reduced, as in 
the upstream communication, due to the implementation of NC. In [39], for instance, if a 
file has been divided into  g  fragments, the number of coded packets   P  
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the  N  clouds is calculated in order to achieve optimal scheduling during data retrieval (see 
Eqs. (2) and (3), where   R  
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    defines the download rate and   α  
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    denotes the minimum part of 

the data to be stored).
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If the information is stored over distributed untrusted platforms, such as public clouds, the 
inherent use of NC schemes can provide, in addition to fault tolerance, a security level against 
eavesdroppers [40]. However, it is necessary to find a trade-off between fault-tolerance and 
security [41], since the more redundant data, the more vulnerable the system becomes.

4.2. Summary

We overview the most relevant benefits the integration of IIoT architectures and NC provides. 
While this approach can bring significant advantages, it also poses some issues. We identify 
and describe future challenges that may arise with the implementation of next-generation 
IIoT architectures.

4.2.1. Benefits

As the IIoT architecture relies on a multicloud deployment, the reliability and availability 
of the entire system can be enhanced. Data are distributed across different clouds, and so, 
the possibilities of suffering a cyber-attack are reduced. Moreover, this information is stored 
differently from the original form. Thus, data privacy is improved. The multicloud environ-
ment, due to its fault tolerance, increases the robustness in case of service outages. Due to 
the implementation of multiple clouds, this architecture enables to distribute data to the 
most convenient cloud, which makes possible not only to choose the service provider that 
better fits the moment requirements but to use the connections under the best conditions. 
Thus, it helps to identify the right service architecture to optimize latency, location, and cost.

The use of NC-based techniques can enhance the performance of the communications over 
congested WSNs, as well as of the data distribution and recovery processes over multicloud 
deployments. Since data redundancy is more efficient, reliability and availability of the pro-
vided service are improved. Besides, the integration of NC-based techniques into the architec-
ture can lead to the reduction of end-to-end latency.
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All of the above advantages allow the computational power of the cloud to be available closer 
to the end nodes, improving the performance of delay-sensitive IIoT applications.

4.2.2. Challenges

As mentioned throughout the chapter, next-generation IIoT architectures aim to reduce the 
end-to-end communication latency and to increase the system reliability by merging both 
fog and multicloud-based schemes as well as NC techniques. However, the use of complex 
NC schemes can result in extra delays taking into account that IoT devices have limited com-
putational resources. Thus, in order to exploit the benefits of this technique, it is crucial to 
choose the most suitable coding parameters as well as to design simpler coding schemes and 
adaptable scheduling and routing algorithms.

IIoT systems must also provide scalability and flexibility. A cloud environment is inherently 
a scalable architecture due to its capability to manage network topology variations while han-
dling big amounts of data. However, in architectures such as the proposed, as devices may be 
intermittently connected to the network, not only the architecture itself needs to be scalable 
and adaptable to changing environments, but also the coding techniques.

5. Conclusions

This chapter overviews next-generation IIoT systems which, in order to satisfy the demands 
of Industry 4.0 applications, must ensure low-latency and highly reliable communications. 
This will enable advanced analytics for time-critical IIoT applications. The previous objec-
tive can be achieved on one hand, by implementing a three-layer architecture based on 
IoT devices, fog nodes, and a multicloud deployment. On the other hand, the use of NC 
techniques across this architecture can improve the communication quality and increase the 
system reliability. In this chapter, we describe next-generation IIoT architectures and pro-
vide different application use-cases where they can be applied. We also review NC-based 
techniques and the benefits of this technique for different scenarios. Next, we describe the 
introduction of NC for the communications across the architecture. We also outline the 
advantages of the approach and finally, we present some challenges that may arise, such as 
the design of scalable and adaptive coding schemes and routing algorithms, and which may 
inspire future research lines.
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to the end nodes, improving the performance of delay-sensitive IIoT applications.

4.2.2. Challenges
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intermittently connected to the network, not only the architecture itself needs to be scalable 
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of Industry 4.0 applications, must ensure low-latency and highly reliable communications. 
This will enable advanced analytics for time-critical IIoT applications. The previous objec-
tive can be achieved on one hand, by implementing a three-layer architecture based on 
IoT devices, fog nodes, and a multicloud deployment. On the other hand, the use of NC 
techniques across this architecture can improve the communication quality and increase the 
system reliability. In this chapter, we describe next-generation IIoT architectures and pro-
vide different application use-cases where they can be applied. We also review NC-based 
techniques and the benefits of this technique for different scenarios. Next, we describe the 
introduction of NC for the communications across the architecture. We also outline the 
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Abstract

This chapter introduces efficiency frontier and benchmarking concepts to evaluate the
efficiency performance of wireless networks for multicast energy. These concepts are
efficiency models based on the data envelopment analysis (DEA) technique. The DEA
framework allows network administrators to evaluate the technical efficiency and deter-
mine how the inefficient wireless networks will attain a targeted efficiency frontier. In
order to achieve efficiency frontier and benchmark by a wireless network, this chapter
presents several models including the envelopment and the slack. The envelopment
model evaluates the technical efficiency scores of each wireless network, while the slack
model shows how the inefficient wireless network achieves efficiency frontier. The bench-
mark model evaluates the efficiency reference set and the lambda values of each network.
The efficiency frontier algorithm has shown that many of the wireless networks sampled
are inefficient. However, the algorithm has capability to help the inefficient wireless
networks to achieve efficiency frontier and benchmark with their peers that are fully
efficient.

Keywords: efficiency frontier, network coding, modeling, wireless networks,
multicast energy

1. Introduction

Technical efficiency evaluation and expectation are new kinds of thinking for many evaluators
especially in the field of network coding [1, 2]. The current approach to coded packet evalua-
tions is largely dependent on average measurement [3]. This type of approach is only good to
demonstrate the impact of a program but inadequate to evaluate the technical efficiency and
benchmark [4]. One of the major factors in the evaluation of efficiency is the limited resources
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and decisions on how to allocate such resources. This requires a special consideration in
evaluation processes [5, 6].

In literature, the essence of minimum energy multicast is to optimize high-energy transmission
over the network. This was achieved using the minimum energy multicast algorithm. How-
ever, the minimum energy multicast problem is NP-hard [7]. The alternative solutions using
polynomial time-based heuristics approach were considered [8–10]. One of these solutions is
the multicast incremental power algorithm. As an improvement to this technique, the mini-
mum energy multicast problem in ad hoc wireless networks is solvable as a linear program,
assuming network coding technique [11]. Compared with conventional routing solutions,
network coding technique does not only promise a potentially lower multicast energy but also
enables finding the optimal solution in polynomial time. Other energy efficiency algorithms
presented in the literature for energy efficiency were all designed to achieve similar goals using
the effective performance evaluation approach [12–14].

In this chapter, a network coding algorithm is studied and its performance is investigated for
the data evaluation analysis (DEA) technique. The DEA methodology is necessary because the
coded packet is not a fully efficient technique for energy efficiency [15]. The DEA, which was
used to study the relative efficiency and productivity of systems in economic and operational
research (OR) disciplines, is a nonparametric method that relies on linear programming tech-
niques for optimizing discrete units of observation called the decision-making units (DMUs)
[16]. The DEA method is different from other because it adopts the frontier analysis approach
to evaluate efficiency rather than averages and standard deviation [16]. Therefore, our system
model is based on frontier analysis that consists of several models including envelopment and
benchmarking. These models are considered for evaluating the technical efficiency of multicast
energy and performing the benchmark in wireless network nodes without affecting the overall
network performance.

The remainder of this chapter is presented in sections: Section 2 provides necessary back-
ground information on the minimum energy multicast and Section 3 presents the network
coding performance that is based on average multicar energy. Section 4 and 5 discuss the
efficiency frontier method and benchmarking model, respectively. In Section 6, efficiency
frontier implementation and results analyzed are discussed while Section 7 concludes the
chapter.

2. Background

This section begins with the discussion of energy-efficient multicast following the various
multicasting techniques used to minimize the wireless multicast energy.

2.1. Energy-efficient multicast

Researchers have worked on energy-efficient networking for several years especially with the
growth of the wireless networks such as wireless sensor networks, mesh networks, and ad hoc
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wireless networks. Many studies have explored the topic of energy efficiency of these networks
[17–19]. Some of the studies that were investigated in literature include routing, coding, cross-
layer designs, MAC protocols, spectrum allocation, resource allocation, and scheduling. The
scope of this chapter is to present the actual efficiency of multicast energy in wireless networks.
So it discusses energy efficiency in the routing. An approach to energy efficiency is the
exploration of the broadcast nature of the wireless links. Wireless links are either omnidirec-
tional or directed over a large area to ensure that transmissions are received by more than one
node. This feature has effects on multicast networks, and it is known as wireless multicast
advantage (WMA) [20, 21]. In routing, the problem of performing energy-efficient multicast
considering WMA is NP-complete [22]. Thus the problem of minimum energy broadcast and
multicast is solved in wire-line cases by various minimum weight-spanning tree algorithms
but the solutions are generally suboptimal [23]. However, alternative approach using the
network coding method was employed [24–27].

2.2. Minimum-energy multicast

The main optimization problem for energy efficiency broadcast and multicast routing in ad
hoc wireless networks is to minimize the total transmission power assigned to all nodes [15].
This is widely recognized as one of the performance challenges in wireless networking. The
minimum energy multicast problem in ad hoc wireless networks is solvable using several
approaches. A popular approach is the minimum shortest path tree (MSPT) algorithm that
has been applied to solve minimum energy network problems [22]. This algorithm builds
minimum energy networks and measures the cost (energy) of an edge based on certain levels
[23]. However, this problem is known to be NP-hard [7]. An alternative approach such as
minimum spanning tree that is based on the greedy heuristic algorithm was proposed [9]. The
method used can compute minimum energy in polynomial time, thereby reducing the cost
(energy) on multicast tree twice than that of SMPT. However, the solutions provided by this
approach are suboptimal. In order to improve the solutions, a large number of approximation
algorithms were proposed for energy-efficient multicast in wireless networks including a
unique method to improve the energy efficiency of multicast trees using pruned or greedy
heuristics [21]. In the literature, the performances of three greedy heuristics algorithms,
multicast incremental power (MIP) algorithm, multicast least-unicast-cost (MLU) algorithm,
and multicast link-based MST (MLiMST) algorithm, were analyzed [22]. It has been shown
that MIP algorithm has best performance for all network nodes that are considered. However,
the MIP approach is also suboptimal. Thus, the network coding technique has been considered
for improved performance [25].

3. Network coding performance

In this section, the performance of a network coded algorithm is investigated and the results
serve as imputes for the frontier analysis. We consider a flow-based approach that addresses
networks with costs such as energy using a linear programming technique [26]. The cost is a
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but the solutions are generally suboptimal [23]. However, alternative approach using the
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has been applied to solve minimum energy network problems [22]. This algorithm builds
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function of coding subgraph z. We represent the cost function with ξ. This approach assumes
that all nodes in the network are capable of coding with a focus on the problem of minimizing
network resource such as multicast energy. We represent this function with z which is the
coding subgraph. We then consider a formulated multicast problem connection, which is a
triplet S;T; Rtf gð Þt∈T , where S is the source of the connection, T is the set of network receivers,
and Rt is the set of rates at which the flow is being injected to the sinks. Furthermore, the
multicast connections using the random linear network coding (RLNC) algorithm that has
been proved in the literature to address such problems are considered. The optimization
formulation for this problem is given as:

minξ zð Þ

subject to

z∈Z
X
j∈K

xtiJjð Þ ≤ ziJKbiJK, ∀ i; Jð Þ∈H, K⊂ J, t∈T, xt ∈ Ft

minξ zð Þ

subject to

z∈Z
X
j∈ J

xtiJjð Þ ≤ ziJ , ∀ i; Jð Þ∈H, t∈T, xt ∈Ft

where xtiJjð Þ represents the average rate of the packets that are injected on the hyper arc link and

received by exactly the set of nodes J, which occurs with the average rate ziJ and that allocated
to a particular connection. Ft is the bounded polyhedron of points

xt satisfying the conservation of flow constraints. We consider a lossless network with
multicast applications and made some assumptions [27]. For example, it is assumed that when
nodes transmit, they reach all other nodes in certain regions, with cost increasing as the region
expands. These assumptions have helped the problem to reduce in the case of linear separable
cost and separable constraints. Therefore, a fixed cost such as energy can easily be evaluated
while the constraints set for Z are dropped. Readers are referred to [28] for more details about
this formation. A well-known RLNC algorithm, which is appropriate to deploy network
coding in a real multicast network, is considered for the simulation of this optimization
problem. The details and the pseudocode for the RLNC algorithm are presented in [29].

The authors have considered various network parameters which include the network sizes, the
radius of connectivity, the dimension for the nodes, the source nodes, and the receiving nodes.
Randomly generated nodes were simulated and the average energy of the multicast networks
was evaluated using the RLNC algorithm. The effective performance of the network coding
algorithm presented has shown the limitation of the algorithm and the evaluation approach in
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terms of efficiency performance [30]. It is important to understand that “effectiveness” is
mainly concerned with achieving a set goal. For instance, network effectiveness is the ability
of such a network to attain its predetermined goals. For instance, one of the goals of the RLNC
algorithm is to minimize energy such that the results or outcome is better than the previous
algorithms [31, 32]. This evaluation approach is concerned on the right way of minimizing
multicast energy rather than how well the multicast energy is being minimized. Thus, effi-
ciency is concerned with how well the multicast energy is minimized. This is achieved by
quantitatively evaluating the ratio of output to input. With efficiency evaluation, the perfor-
mance is based on the combination of both inputs and outputs rather than focusing on the
outcome results (outputs) only. For example, in [33], the results presented based on average
performance show that the performance of the RLNC algorithm in minimizing energy was
degraded as the number of sinks increased but improved as the network size increased. This
result has been shown to perform better than the existing algorithm when compared. How-
ever, it is an effective performance and cannot determine the efficiency of the algorithms.

4. Efficient frontier method

Data envelopment analysis (DEA) is a nonparametric method that relies on the linear pro-
gramming technique for optimization using frontier analysis. It is used to measure the relative
efficiency of peer decision-making units (DMUs) that have multiple inputs and outputs [34].
Unlike network coding evaluation method that is based on average performance evaluation,
the frontier method is used to evaluate the technical efficiency of DMUs. Besides, the efficiency
frontier technique is capable of improving the input resources as well augment the output
results while the performance remained the same. In case of input resources, the multicast
energy of a wireless network is considered to be minimized, while the number of sinks
remained the same. Also, in the case of output augmentation, the number of sinks can be
increased, while the multicast energy is kept constant. Furthermore, the efficiency frontier
method evaluates the performance of a wireless network by comparing its efficiency with the
best observed performance in the data set. Thus, efficiency frontier represents the best
observed performance among the networks [35].

4.1. Illustrating efficient frontier

This concept of efficiency frontier is best explained with a simple case of one input and one
output. Let us consider the data in Table 1 where the technical efficiency of each set of eight
wireless networks (DMUs) is evaluated. A data value for each DMU is provided. We plot
the data in Table 1 with input on the x axis (the horizontal axis) and the output on the y axis
(the vertical axis) to obtain Figure 1. This figure shows the technical efficiency of each DMU.
The figure also shows the picture of efficient frontier. The wireless network with efficiency
frontier is the one that floats on top of data observations.

Figure 1 shows the wireless network E on the efficiency frontier with an efficiency of 1. The
line that spans from the origin through the wireless network (DMU E) is known as efficiency
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method evaluates the performance of a wireless network by comparing its efficiency with the
best observed performance in the data set. Thus, efficiency frontier represents the best
observed performance among the networks [35].

4.1. Illustrating efficient frontier

This concept of efficiency frontier is best explained with a simple case of one input and one
output. Let us consider the data in Table 1 where the technical efficiency of each set of eight
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frontier [36]. The inefficient wireless networks are located beneath the efficient frontier. These
inefficient wireless networks can be moved unto the efficient frontier using an orientation
approach [36]. There are two fundamental directions to achieve this move: The input-oriented
and the output-oriented approaches. The input-oriented approach will be applied to reduce
the multicast energy while the number of receives is fixed at their current levels. The output-
oriented approach is outside the scope of this chapter. Using input orientation and considering
the wireless network F, which is an example of inefficient network, a projection to point E can
be performed. This is the targeted position for wireless network F to become efficient. In the
real world, most problems are multidimensional in nature with many input and output vari-
ables. As a result, the efficiency frontier using DEA solver that is based on the linear program-
ing technique is considered for the evaluation of efficiency frontier in this chapter.

4.2. Efficient frontier system model and procedure

A wireless network (DMU) that lies on the efficiency frontier is said to attain its targeted
energy level. The main problem that this chapter addresses is that many networks multicast
their messages using average energy rather than targeted energy. A wireless network admin-
istrator, especially at this stage of technological development, cannot base network evaluation
on average performance. Therefore, one of the problems is that given the different set of
wireless networks with a node (source) multicast to some selected group of nodes (receivers)
using average energy, how can we qualitatively evaluate performance so that they attain
targeted energy? This problem is impossible to answer without the efficiency frontier method.

DMU A B C D E F G H

Output 4 6 6 8 10 10 12 16

Input 2 3 4 6 10 4 6 10

Table 1. Data of simple efficiency ratio to evaluate efficient frontier.

Figure 1. DMU on efficient frontier versus inefficient DMUs.
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The existing approach was to calculate the average energy multicast and then rank them
according to the lowest. The lowest average energy multicast is considered the most effective
network. However, the lowest average energy multicast does not mean it is the most efficient
[37]. We state that any wireless network that multicasts messages to a selected group of nodes
using targeted or projected energy is said to attain efficiency frontier. Performance according
to the efficiency frontier is possible if a network makes use of the combination of its multiple
inputs and multiple output resources correctly.

Figure 2 presents the flowchart that is used to solve this problem. The flowchart consists of
different steps. The first step, which is envelopment model, evaluates the technical efficiency
scores of a wireless network. Subsequently, the second step, which is the slack model calculates
and classifies the efficient wireless into full or weak networks. The last step is the projection
model that determines how the weakly efficient wireless network will be fully efficient so that
they also attain efficiency frontier. These procedures are computed using the DEA solver and
the efficiency frontier results are compared with the average energy computed using the
network coding algorithm. The differences in multicast energy are recorded. If there is no
difference, it means that the average energy used by RLNC is fully efficient. Otherwise, it is

Figure 2. Algorithm of the targeted multicast energy based on efficiency frontier approach.
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inefficient or weakly efficient. However, as discussed, the efficiency frontier method provides
mechanisms for making the inefficient wireless network to achieve efficiency. The models
considered are based on Charnes, Cooper, and Rhodes (CCR) with assumption of constant
returns to scale (CRS) [38].

4.3. The envelopment model

This chapter considers the minimization of multicast energy using efficiency frontier method
that relies on the linear programing (LP) technique of the DEA. The LP is an approach to
evaluate a set of weights that yields the maximum efficiency. An appropriate envelopment
DEA model that evaluates energy efficiency was presented in [39] and is given below:

θ∗ ¼ min θ

subject to

Xn

j¼1

λjxij ≤θxi0, i ¼ 1, 2,…, m;

Xn

j¼1

λjyrj ≥ yr0, r ¼ 1, 2,…, s;

λj ≥ 0, j ¼ 1, 2,…, n,

(1)

where λj are unknown weights with j ¼ 1, 2,…, n and they correspond to the DMU numbers.
DMU0 is one of the n DMUs under evaluation, and θxi0 and yr0 are the i

th input and rth output
for DMU0, respectively.

The following conditions are required for the calculation of efficiency scores: If θ∗ ¼ 1 , then
the DMU under evaluation is a frontier point (fully or weakly efficient). Otherwise if θ∗ < 1,
then the DMU under evaluation is inefficient. To address inefficiency, the DMU can either
increase its output levels or decrease its input levels to achieve efficiency [40]. The θ∗ repre-
sents the efficiency score of DMUo based on input-orientation. This means that the model is
able to minimize energy while maintaining the current output levels.

4.4. The slack model

The slack model is needed to push the weak efficient or inefficient wireless networks to their
real efficiency frontier so that targeted energy is achieved. The linear programming formulated
for slack model is given as [40, 41]:

max
Xm

i¼1

s�j þ
Xs

r¼1

sþr

subject to
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Xn

j¼1

λjxij þ s�j ¼ θ∗xio, i ¼ 1, 2,…,m;

Xn

j¼1

λjyrj � sþr ¼ yr0, r ¼ 1, 2,…, s;

j ≥ 0 j ¼ 1, 2,…, n

(2)

where s�j and sþr represent input and output slacks, respectively. The superscripts (�) and (+)

represent input reduction and output augmentation, respectively. The condition for fully

(100%) efficient is if and only if both (a) θ∗ = 1 and (b) all slacks s �∗ð Þ
i ¼ s þ∗ð Þ

r ¼ 0. The targeted
multicast energy can be calculated using the following expressions:

X∗
i0 ¼ θ∗xio � S�∗

i , i ¼ 1, 2,…, m

Y∗
r0 ¼ yro þ Sþ∗

r , r ¼ 1, 2,…, s

(
(3)

This is calculated by multiplying the average multicast energy with an optimal efficiency score
(θ∗), and slack amounts are subtracted.

5. Benchmarking model

In this section, a variable-benchmark model is considered for minimum energy multicast. The
variable benchmark allows a new wireless network to be evaluated against a set of given
benchmarks or standards. Also, it is formulated upon input-oriented CCR/CRS model. The
model extends the envelopment and slack models discussed in the previous section. The
benchmark model determined the efficiency reference set (ERS) and the amount required by
each wireless network to catch up with their peers. The remainder of this section presents the
mathematical function and the requirements for benchmark evaluation.

In the process of developing a benchmark, once the efficiency frontier is established, we can
compare a set of new wireless networks with the reference efficiency frontier. The idea is that
whenever a new wireless network outperforms the identified efficiency frontier, a new effi-
ciency frontier is generated by the DEA solver. This means that the benchmark for a wireless
network is different from other new wireless networks depending on network condition and
variables used. The benchmark model contributes to how a wireless network learns the best
way to utilize the available resources [42]. The benchmark model first evaluates the efficiency
reference set (ERS) and the amount required by each wireless network to catch up with their
peers. This magnitude is called the lambdas.

In order to formulate variable benchmark, the envelopment model is modified for the bench-
mark optimization problem as follows:
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Minimise αCCR=CRS

subject to
X
j∈E∗

λjxij ≤αCCR=CRSxnewi

X
j∈E∗

λjyrj ≥ y
new
r

λj ≥ 0, j∈E∗,

(4)

where αCCR=CRS represents the optimal value to model, and Ε∗ represents the set of benchmarks
identified by the DEA. The new observation is represented by DMUnew with inputs
xnewi i ¼ 1; 2;…;mð Þ and outputs ynewr r ¼ 1; 2;…; sð Þ. The superscript of CCR/CRS indicates that
the benchmark composed by benchmark DMUs in set E∗ is based on CCR/CRS model. Model
represents the performance of DMUnew with respect to benchmark DMUs in set E∗, when
outputs are fixed at their current levels. Furthermore, model is capable of yielding a bench-
mark for DMUnew. Thus the ith input and the rth output for the benchmark can be expressed
as:

X
j∈E∗

λ∗
j xij ith inputð Þ

X
j∈E∗

λ∗
j yrj rth ouputð Þ

8>>><
>>>:

(5)

The expression (5) indicates that although the DMUs associated with set E∗ are given, the
resulting benchmark may be different for each new DMU under evaluation. Thus, there is a
variable-benchmark scenario.

6. Implementation, results, and discussions

This section begins with brief overview of the software used for the implementation of the
algorithm presented in Section 4 and 5. It then discusses and analyses the results obtained from
the models.

6.1. DEA solver for efficient frontier analysis

The frontier analysis is evaluated using the DEA software, which is the tool that was specially
packaged to solve the envelopment model and other types of DEA models. The efficiency
frontier analysis relies on the DEA library, which includes the Solver and LPsolver (linear
programming solver) program to perform optimizations. This work makes use of DEAOS for
the implementation of the efficiency frontier models. The DEAOS is a web-based software. The
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readers are referred to [43] for details about the DEAOS package and user’s documentation.
The DEA implementation procedures were discussed in [40].

6.2. Technical efficiency performance

The DEA solver compares each DMU with all other DMUs and identifies those DMUs that are
operating inefficiently. It also evaluates the magnitude of inefficiency of the DMUs that are
suboptimal. The efficient DMUs are those that attain efficient frontier and are identified by a
DEA efficiency rating of θ = 1. The inefficient DMUs are identified by the efficiency score of
less than 1 (θ < 1). Column 1 of Table 2 is the results of the average multicast energy computed
by the RLNC reports. This result was presented in [43]. Column 2 of Tables 2 and 3 report the
results of DEA technical efficiency and inefficiency scores of 54 wireless networks, respectively.
From Table 2, only DMU9, DMU18, DMU27, and DMU45 have the efficiency score of θ = 1 (i.e.,
100%) and thus they are identified as efficient. Other DMUs have efficiency scores of less than
1 (θ < 1) but greater than 0 and are identified as inefficient. It is possible for inefficient DMUs to
improve their technical efficiency scores by reducing certain inputs using input orientation.
For example, DMU1 can improve its technical efficiency score by reducing certain inputs up to
73.4% (100–26.6). Similarly, DMU2 can do so with approximately 63.1% of input reduction.
However, DMU36 is closer to an efficiency frontier and needs only a 2.4% reduction of its input
resources. This is achieved using the slack model.

6.3. Evaluation of slacks and targeted multicast energy

Column 4 of Table 2 presents the targeted results using slack and projection. In the slack
model, none of the efficient DMUs have a slack, meaning that slacks exist only for those DMUs
identified as inefficient. The slacks are obtained after proportional reductions in inputs. The
slack is essential whenever a wireless network cannot reach the targeted multicast energy.
Then, slacks are required to project such wireless networks to the targeted multicast energy
which is their efficient frontier. The general rule is that a DMU with at least a slack input value
is needed to be projected into the frontier, but a DMU that has zero slack for all the inputs does
not need any projection because it already reached targeted efficient frontier. The targeted
multicast energy is calculated by multiplying the average multicast energy with the technical
efficiency score, and the slack values are subtracted. This calculation is used to achieve the
target set for multicast energy.

6.4. Benchmarking for ERS and lambdas evaluation

The benchmark model addresses the benchmark problem. It is a model for establishing the
standard of excellence. The model is able to determine the efficiency reference set (ERS) and
lambdas of the inefficient wireless networks. Lambdas define the amount of inputs to be
reduced for an inefficient wireless network to catch up with their peers that are already
operating efficiently. We consider the same data set used for envelopment and slack model.
The implementation procedures for benchmarking are also similar. The same DEA solver is
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DMU Ave. energy (RLNC) Efficiency score (%) Inefficiency score (%) Targeted energy

DMU1 4.5 30 70 1.3

DMU2 5.5 40.1 59.9 2.2

DMU3 6.2 49.2 50.8 3.1

DMU4 6.8 58 42 4

DMU5 7.3 66.3 33.7 4.9

DMU6 7.2 78 22 5.6

DMU7 8.1 82.4 17.6 6.7

DMU8 8.8 90 10 7.6

DMU9 8.5 100 0 8.5

DMU10 5.2 27.5 72.5 1.4

DMU11 5.6 39.5 60.5 2.2

DMU12 6.3 48.7 51.3 3.1

DMU13 6.9 57.3 42.7 3.9

DMU14 7.1 67.1 32.9 4.8

DMU15 7.2 77.8 22.2 5.6

DMU16 7.7 84.4 15.6 6.5

DMU17 8.6 90 10 7.5

DMU18 8.3 100 0 8.3

DMU19 4.2 30.3 69.7 1.3

DMU20 5.3 36.5 63.5 1.9

DMU21 5.4 48.3 51.7 2.6

DMU22 6.1 54.5 45.5 3.3

DMU23 6.2 64.5 35.5 4

DMU24 6.4 73.4 26.6 4.7

DMU25 6.6 81.8 18.2 5.4

DMU26 7.3 90 10 6.1

DMU27 6.7 100 0 6.7

DMU28 3.6 34.9 65.1 1.3

DMU29 5.1 37.7 62.3 1.9

DMU30 5.6 46.8 53.2 2.6

DMU31 5.9 56.1 43.9 3.3

DMU32 6.1 65.3 34.7 4

DMU33 6.8 69.9 30.1 4.7

DMU34 6.6 81.2 18.8 5.4

DMU35 7.1 87 13 6.2

DMU36 7.1 96.8 3.2 6.9
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used for the benchmark model. The benchmark model is able to identify the ERS and calculate
the lambda values.

Table 3 is extracted from the DEA simulation output sheet. The network administrators whose
network is inefficient can observe the benchmark networks that they need to catch upwith. From
Table 3, the full efficient networkmay consider itself to be its own “benchmarks.” This is because
efficient network has already achieved 100% efficiency. So, benchmark for DMU9 is DMU9 and
for DMU18 is DMU18. The same applies to DMU27 and DMU45. However, for inefficient ad hoc
networks, their benchmarks are one or many of the efficient ad hoc networks. For example, a
benchmark for DMU2 and DMU3 are DMU9, DMU18 and DMU27. This means, DMU2 and
DMU3 must use a combination from DMU9, DMU18 and DMU27 to become efficient.

Another benchmark analysis is the lambda value. This benchmark analysis calculates the
amounts of benchmark needed from a DMU to achieve efficiency. These values are reported
as magnitude (lambda) next to each benchmark DMU on Table 3. For instance, as seen from
Table 3 and as shown in Figure 3, DMU16 will attempt to become like DMU18 (blue bar) more
than DMU27 (red bar) as observed from their respective lambda weights of DMU18 and
DMU27 (λ18 = 71.3 and λ27 = 8.7).

DMU Ave. energy (RLNC) Efficiency score (%) Inefficiency score (%) Targeted energy

DMU37 3.1 40.1 59.9 1.3

DMU38 4.6 41 59 1.9

DMU39 4.8 53 47 2.5

DMU40 4.8 66.2 33.8 3.2

DMU41 5.6 68 32 3.8

DMU42 5.6 79 21 4.4

DMU43 6.3 80.6 19.4 5

DMU44 6.3 90.1 9.9 5.7

DMU45 6.3 100 0 6.3

DMU46 3.6 34.8 65.2 1.3

DMU47 4.3 43.8 56.2 1.9

DMU48 5.1 49.7 50.3 2.5

DMU49 5.1 61.5 38.5 3.2

DMU50 5.5 69.3 30.7 3.8

DMU51 5.7 76.8 23.2 4.4

DMU52 6.4 78.7 21.3 5.1

DMU53 6.4 88.6 11.4 5.7

DMU54 6.5 97.6 2.4 6.3

Table 2. Results of the average multicast energy computed by network coding (RLNC) algorithm, the envelopment
model, (efficiency and inefficiency), and the projected multicast energy computed by DEA Solver.
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DMU Ave. energy (RLNC) Efficiency score (%) Inefficiency score (%) Targeted energy
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DMU13 6.9 57.3 42.7 3.9
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DMU19 4.2 30.3 69.7 1.3

DMU20 5.3 36.5 63.5 1.9
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DMUs Efficiency reference set (ERS) Lambdas values (%)

DMU1 DMU18, DMU27 0.020 19.98

DMU2 DMU9, DMU18, DMU27 7.310 2.520 20.17

DMU3 DMU9, DMU18, DMU27 19.28 2.300 18.41

DMU4 DMU9, DMU18, DMU27 32.03 2.000 15.98

DMU5 DMU9, DMU18, DMU27 45.89 1.570 12.54

DMU6 DMU9, DMU18, DMU27 51.99 2.000 16.00

DMU7 DMU9, DMU18, DMU27 74.54 0.610 4.850

DMU8 DMU9 90.00

DMU9 DMU9 100.0

DMU10 DMU18, DMU27 5.000 15.00

DMU11 DMU18, DMU27 10.91 19.09

DMU12 DMU18, DMU27 22.69 17.31

DMU13 DMU18, DMU27 35.30 14.70

DMU14 DMU18, DMU27 45.86 14.14

DMU15 DMU18, DMU27 54.47 15.53

DMU16 DMU18, DMU27 71.28 8.720

DMU17 DMU9 90.00

DMU18 DMU18 100.0

DMU19 DMU45 20.00

DMU20 DMU27, DMU45 10.44 19.56

DMU21 DMU27, DMU45 15.14 24.86

DMU22 DMU27, DMU45 36.41 13.59

DMU23 DMU27, DMU45 46.63 13.37

DMU24 DMU27, DMU45 59.82 10.18

DMU25 DMU27, DMU45 74.70 5.300

DMU26 DMU27, DMU45 31.69 58.31

DMU27 DMU27 100.0

DMU28 DMU45 20.00

DMU29 DMU27, DMU45 6.970 23.03

DMU30 DMU27, DMU45 19.50 20.50

DMU31 DMU27, DMU45 31.77 18.23

DMU32 DMU27, DMU45 44.20 15.80

DMU33 DMU18, DMU27 0.360 69.64

DMU34 DMU27, DMU45 76.40 3.600

DMU35 DMU18, DMU27 8.970 81.03

DMU36 DMU18, DMU27 9.610 90.39

DMU37 DMU45 20.00
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DMUs Efficiency reference set (ERS) Lambdas values (%)

DMU38 DMU45 30.00

DMU39 DMU45 40.00

DMU40 DMU45 50.00

DMU41 DMU45 60.00

DMU42 DMU45 70.00

DMU43 DMU45 80.00

DMU44 DMU45 90.00

DMU45 DMU45 100.00

DMU46 DMU45 20.00

DMU47 DMU45 30.00

DMU48 DMU45 40.00

DMU49 DMU45 50.00

DMU50 DMU45 60.00

DMU51 DMU45 70.00

DMU52 DMU27, DMU45 5.290 74.71

DMU53 DMU27, DMU45 5.630 84.37

DMU54 DMU27, DMU45 9.660 90.34

Table 3. ERS and lambdas of input-oriented variable benchmark.

Figure 3. Benchmarks and lambdas of the input-oriented variable benchmark.
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7. Conclusion

This chapter studied the existing network coding algorithm and investigated the efficiency
performance of the multicast energy in wireless networks. The previous reports have shown
that network coding based on effective evaluation is sub-optimal because they were largely
calculated using central tendency performance such as average and standard deviation. While
effective performance is a good evaluation tool, it is not enough to measure the actual efficiency
of networks. In order to appropriately evaluate the network efficiency, a new algorithm based on
efficiency frontier was considered for the evaluation. With this approach, the targeted multicast
energy for wireless networks is achieved using envelopment, slack, and benchmarking models.
These models were formulated upon input-oriented CCR/CRS assumptions. The aim of this
chapter was to achieve economic efficiency by ensuring that wireless networks are multicast at
the targeted energy rather than average energy. Furthermore, this was achieved without sacrific-
ing the network performance.
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