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Preface

There has been a great deal of excitement during the recent past over the emergence of new
mathematical techniques for the modeling and analysis of complicated dynamic systems.
Coupled with analytical advances, there has been a vast increase in computational power
available for the simulation of nonlinear systems as well as for the implementation of non‐
linear techniques on a variety of physical examples. Moreover, recent years have witnessed
an explosion of work aimed at developing novel nonlinear estimation and stability analysis
methods. These are fascinating topics that require the use of diverse parts of mathematics—
analytic, numerical, and probabilistic ideas—as well as engineering. In this context, this
book is an attempt to provide a wide range of readers in applied mathematics and various
engineering disciplines an excellent survey of recent studies of nonlinear systems.

This book is divided into two sections that address the key aspects of nonlinear systems. The
first section consists of eight chapters that focus on nonlinear dynamic modeling and analy‐
sis techniques. Chapter 1 discusses the Appell-Gibbs dynamics formulation approach for
nonholonomic systems, i.e., systems that are subject to nonintegrable constraints. The effec‐
tiveness of this modeling approach is illustrated through a physical example, namely, a ball
moving inside a spherical cavity under external excitation. Chapter 2 is devoted to the can‐
onical generalized inversion-based dynamics formulation for nonholonomic mechanical sys‐
tems in the framework of Kane’s method. The main feature of the resulting equations of
motion is the explicit algebraic and geometric partitioning of the generalized acceleration
vector at every instant of time into two parts: one part that drives the system to abide by the
constraint dynamics and the other part that generates the momentum balance of the system
so as to follow Newton-Euler’s laws of motion. Chapter 3 proposes a fractal model to ana‐
lyze the dynamics of bio-structure flows. The fractal hydrodynamic equations are obtained
and applied to the laminar flow of biostructures. Chapter 4 provides a survey of soliton-like
solutions for nonlinear differential equations describing mechanical vibrations. Free vibra‐
tions of one-degree-of-freedom (DOF), two-DOF, and multiple-DOF nonlinear mechanical
systems are reviewed with the emphasis on the vibratory regimes that could go over into
the aperiodic motions under certain conditions. In Chapter 5, nonlinear aeroelastic respons‐
es of a flying wing aircraft due to three different gust profiles (light, moderate and severe
turbulence) are investigated. It is shown that when the engines are mounted at the root of
the aircraft, the flying wing experiences limit cycle oscillation for all three gust profiles.
However, when the engines are placed in the maximum flutter speed locations, the oscilla‐
tions die out. Chapter 6 introduces a reduced order Gauss-Newton method for nonlinear
problems that arise from discretization of nonlinear partial differential equations (PDEs).
The numerical results for a set of large-scale problems manifest the capability of the algo‐
rithm for reproducing the essential features of the full-order model while decreasing the
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computational cost and runtime. Chapter 7 introduces a nonlinear generalization of fluctua‐
tion-dissipation theorem (FDT) for Levy flights. Chapter 8 deals with a generalized fifth-or‐
der nonlinear partial differential equation (NLPDE). The classical Lie group method is
employed to derive similarity variables of this NLPDE that allow derivation of relevant or‐
dinary differential equations, which are studied so as to obtain a number of exact solutions.

The second section of the book is composed of five chapters that center on state estimation
methods and stability analysis for nonlinear systems. Chapter 9 considers a class of continu‐
ous-time nonlinear systems with nonlinear measurements and derives an optimal estimator
in the form of a recursive nonlinear least squares (RNLS) filter. The performance of the filter
is demonstrated via the Van der Pol oscillator driven by a band limited noise and subject to
noisy nonlinear measurement. Chapter 10 proposes a novel method for the design of Taka‐
gi-Sugeno (TS) fuzzy fault detection filters for a class of highly nonlinear mechanical sys‐
tems. The proposed method exploits the characteristics of the TS fuzzy system models.
Chapter 11 introduces a new filtering method that employs set-membership theory and
Monte Carlo boundary sampling technique to determine a state estimation ellipsoid. A nu‐
merical example is included to show that the proposed method performs much better than
the existing extended set membership filter, especially in the case when noise is large. Chap‐
ter 12 presents an overview of stability conditions for a class of nonlinear systems with de‐
lay. New delay-dependent stability conditions are derived by employing arrow from state
space representation and using tools from M-matrix theory and Lyapunov functional meth‐
od. A number of examples are included to illustrate the effectiveness of the theoretical re‐
sults. Finally, Chapter 13 deals with controlling equilibrium and synchrony in FitzHugh-
Nagumo (FHN)-type oscillator arrays. Three methods for controlling arrays of such
oscillators are described: stable filter technique, mean field nullifying technique, and repul‐
sive coupling technique. Stability analysis of the resulting equilibrium solutions is carried
out using Routh-Hurwitz criterion.

Mahmut Reyhanoglu, PhD
University of North Carolina Asheville

Department of Engineering
Asheville, North Carolina, USA
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Appell-Gibbs Approach in Dynamics of Non-Holonomic
Systems

Jiří Náprstek and Cyril Fischer

Additional information is available at the end of the chapter

Abstract

Hamiltonian functional and relevant Lagrange’s equations are popular tools in the inves-
tigation of dynamic systems. Various generalizations enable to extend the class of prob-
lems concerned slightly beyond conventional limits of Hamiltonian system. This strategy
is very effective, particularly concerning two-dimensional (2D) and simpler three-
dimensional (3D) systems. However, the governing differential systems of most non-
holonomic 3D systems suffer from inadequate complexity, when deduced using this way.
Any analytical investigation of such a governing system is rather impossible and its
physical interpretation can be multivalent. For easier analysis, particularly of systems with
non-holonomic constraints, the Appell-Gibbs approach seems to be more effective provid-
ing more transparent governing systems. In general, the Appell-Gibbs approach follows
from the Gaussian fifth form of the basic principle of dynamics. In this chapter, both
Lagrangian and Appell-Gibbs procedures are shortly characterized and later their effec-
tiveness compared on a particular dynamic system of a ball moving inside a spherical
cavity under external excitation. Strengths and shortcomings of both procedures are
evaluated with respect to applications.

Keywords: Appell-Gibbs function, Lagrangian approach, non-holonomic systems,
engineering applications

1. Introduction

The energy contained in a dynamic system is given by a scalar potential E tð Þ. It is a function of
time and system response components (displacement, velocity, and acceleration vectors).
Moreover, E tð Þ is a function of system parameters, position in a field of forces (potential or
not), internal sources of energy and of the system evolution including a residual energy. The
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total energy of the system increases or decreases accordingly with external excitation and
dissipation of energy. The form of energy contained within the system can have a deterministic
or stochastic character and similarly also excitation and dissipation.

Considering the mechanical energy only, the total energy increase/decrease of the system with
respect to time should be in equilibrium with the energy supplies and energy losses due to
dissipation. This relation can be outlined by the following equilibrium:

d
dt

E tð Þf g ¼ P tð Þ þ S tð Þ, (1)

where P tð Þ is power supply (excitation energy per unity time) and S tð Þ the specific dissipation
of energy also per unity time (supposed to be independent on accelerations €x). Functions
P tð Þ,S tð Þ can dispose in special cases with a superior potential, which, however, cannot be
incorporated into the potential part of total energy. Eq. (1) has a scalar character.

The energy is a primary value characterizing the system state and its evolution in time. The
function E tð Þ and external influences are a background for the derivation of a governing
differential system characterizing the system response with respect to initial and boundary
conditions. The governing differential system is then deduced from the equivalence of Eq. (1)
type using an adequate variational principle. It claims that the form of the system response
corresponds with the minimum of energy spent among all admissible shapes of the system
reaction. Take a note that many important settings of external forces and dissipation mecha-
nisms do not admit the formulation by means of potentials. In such cases, they should be
incorporated separately into the governing differential system using complementary princi-
ples and theorems, for example, virtual works, and so on.

We can find in monographs, for example, [1–4, 5] and many others, various formulations of
potentials E tð Þ and functions P tð Þ,S tð Þ combining the system parameters (physical and geo-
metric) and the system response vectors x-displacements, _x-velocities, and €x-accelerations.
They can be selected in individual cases with respect to physical or geometric complexity of
the system, components of the response, which are to be found, deterministic or stochastic
character of the system and its excitation, and so on.

2. Basic considerations

Approaches commonly applied to construct mathematical models of dynamic systems with
multiple degrees of freedoms (MDOF) follow mostly from principles symbolically outlined by
Eq. (1). The equation of this type can be deduced using, for instance, a procedure of virtual
displacements. They balance the energy flow in every step and subsequently applied minimi-
zation steps try to select such response trajectories, which represent a minimum of energy
consumption among all admissible shapes. Let us get briefly through Lagrangian and Appell-
Gibbs procedures in order to compare their basic properties. Later, we recognize that most of
these properties can be regarded as positive or negative in dependence on a particular problem.
Therefore, the solution method should be selected in every particular case very sensitively.

Nonlinear Systems - Modeling, Estimation, and Stability4

Let us remember that the aim of this chapter is a comparison of Lagrangian and Appell-Gibbs
approaches effectiveness to process dynamic systems in holonomic and non-holonomic set-
tings and to help estimate which one is more suitable to be employed in a particular case.
Despite that the most important features of non-holonomic systems themselves are briefly
treated as well, but for thorough evaluation of their properties, special literature should be
addressed. Except five monographs cited in introductory section containing a large number of
additional relevant references, a vast number of papers have been published concerning the
investigation of various properties of non-holonomic systems.

Motion of an MDOF system with n degrees of freedom can be described by a system of n
differential equations and l constraints:

ms€xs ¼ Xs þ
Xl
r¼1

λrArs, s ¼ 1, ::, n, x ¼ xs½ �, X ¼ ∣Xs∣, x,X∈Rn, að Þ

Xn
s¼1

Ars _xs þ Br ¼ 0, r ¼ 1, ::, l, λ ¼ λr½ �, B ¼ Br½ �, λ,B∈Rl, bð Þ

A ¼ Ars½ �, A∈Rl�n:

(2)

Vector X represents external forces, while λ are unknown multipliers. The summation in
Eq. (2a) characterizes influence of constraints (holonomic and non-holonomic) related with
constraints (Eq. (2b)). These constraints reduce the number of the original degrees of freedom
from n to k ¼ n� l. The system (Eq. (2)) includes nþ l differential equations for x and λ
unknown functions t, which can be determined, provided x, _x are given in an initial point t0.
If the system (Eq. (2b)) is fully integrable, it provides l functions f r ¼ f r x; tð Þ, r ¼ 1, ::, l and
constraints can be formulated as f r ¼ f r x; tð Þ ¼ cr. They are exclusively of a geometric character
and the system is holonomic. Corresponding constraints are formulated in displacements only.
In principle, l components of x can be eliminated and then remains to analyze the system with
n� l unknowns. Then, it can be considered λ � 0, and the second part on the right side of
Eq. (2a) vanishes. The system with holonomic constraints takes the form:

ms€xs ¼ Xs, f r ¼ f r x; tð Þ ¼ cr, s ¼ 1, ::, k, r ¼ 1, ::, l, k ¼ n� l: (3)

However, frankly speaking, such an operation is possible rather exceptionally. In general, the
full form of Eq. (2) should be treated, despite the system is holonomic. If some (or all) of
constraints (Eq. (2b)) are not integrable, then the system is non-holonomic. In practice, we
encounter these cases when the formulation of constraints includes velocities (more often
velocities only).

We should remember that the non-holonomic constraints introduced in Eq. (2b) represent the
most simple version of such constraints, as they are linear and in velocity. Many applications,
for example, robotics, wind engineering, automotive systems, plasma physics, and so on,
present more complicated types of non-holonomic constraints. Notifications to nonlinear
non-holonomic constraints in velocity are given in elderly monographs [2, 3]. Later, many
papers have appeared presenting results of systematic research at this field originating from

Appell-Gibbs Approach in Dynamics of Non-Holonomic Systems
http://dx.doi.org/10.5772/intechopen.76258
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total energy of the system increases or decreases accordingly with external excitation and
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Xn
s¼1
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A ¼ Ars½ �, A∈Rl�n:

(2)
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particular physical or engineering problems, for example, [6–8], where higher derivatives of
velocities in non-holonomic constraints are discussed. These attributes have been reflecting
also in pure mathematical studies with respect to control theory and systems with a delayed
feedback, see, for example, series [9–11] dealing with generalized Lagrange-d’Alembert-
Poincaré equations or other studies devoted to non-holonomic reduction and related prob-
lems, see, for example, [12] and many others.

Let us realize now that the virtual work of every constraint force should vanish in the meaning
as follows:

λr

Xn
s¼1

Arsδxs ¼ 0, r ¼ 1, ::, l: (4)

Therefore, we have with respect to Eq. (2a):

Xn
s¼1

ms€xs � Xrð Þδxs ¼ 0: (5)

This equation holds for any arbitrary virtual displacements and represents a generalization of
the principle of virtual works in statics and of the d’Alembert principle. The important issue is
that it does not include any reactions of constraints. It has been well investigated in the study.
For many details, see monographs, for example, [1, 3] and many others.

Let us consider that velocities in constraints Eq. (2b) are increased by virtual increments δ _x, so
that they read

Xn
s¼1

Ars _xs þ δ _xsð Þ þ Br ¼ 0, r ¼ 1, 2, ::, l, (6)

Deducting from Eq. (6), the initial state (Eq. (2b)) holds

Xn
s¼1

Arsδ _xs ¼ 0, r ¼ 1, 2, ::, l: (7)

Virtual increments of velocities δ _x fit into constraints requested for constraints (Eq. (4)) and,
consequently, in Eq. (5) the δxs can be replaced by δ _xs:

Xn
s¼1

ms€xs � Xsð Þδ _xs ¼ 0: (8)

We revisit Eq. (2b) and perform differentiation with respect to t:

Xn
s¼1

Ars€xs þ dArs

dt
_xs

� �
þ dBr

dt
¼ 0, r ¼ 1, ::, l, (9)
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where d=dt represents the operator ∂=∂tþP
n

i¼1
_xi∂=∂xi. Considering two possible movements of

the system in identical initial state and velocities in time t, but with different accelerations €x
and €x þ δ€x, then we obtain with respect to Eq. (9):

Xn
s¼1

Arsδ€xr ¼ 0, r ¼ 1, ::, l: (10)

It means that virtual accelerations δ€x satisfy constraints requested similarly like virtual dis-
placements or velocities following Eqs. (4) or (7). Therefore, we can write:

Xn
s¼1

mr€xs � Xsð Þδ€xs ¼ 0: (11)

Some authors call relations (Eqs. (5), (8), and (11)) as the first, second, and third form of the
system equation, see, for example, [3] and others.

Let us multiply each equation in the system (Eq. (2a)) by velocities _xs. Summing them together,
one obtains

Xn
s¼1

ms€xs _xs ¼
Xn
s¼1

Xs _xs þ
Xl
r¼1

Xn
s¼1

λrArs _xs, (12)

which can be rewritten in the form

dT
dt
þ dV

dt
¼
Xn
s¼1

~Xs _xs, (13)

where T ,V are kinetic and potential energy, respectively, and ~Xs are forces, which cannot be
included into the potential energy V. In other words, relation Eq. (13) indicates that the change
of the full energy (kinetic and potential) is equivalent to power (work on velocities) of all forces
~Xs, which do not contribute to the potential energy V. Relation Eq. (13) corresponds to equilib-
rium condition Eq. (1), where functions of excitation and dissipation P tð Þ,S tð Þ correspond with
the influence of non-potential forces ~Xs.

3. Lagrange’s equations

The original coordinates x should be replaced with respect to Lagrangian coordinates q. The
reason is that they represent the most inherent coordinates respecting the real movement of the
system and configuration of external forces. Let us write basic coordinates as functions of
Lagrangian ones:
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xr ¼ xr q1; ::; qn; t
� �

, r ¼ 1, ::, n: (14)

It can be easily shown

∂ _xr
∂ _qs
¼ ∂xr

∂qs
,

∂ _xr
∂qs
¼ d

dt
∂xr
∂qs

� �
: (15)

We reconsider Eq. (5) where the virtual displacement δx is replaced by

δxr ¼
Xn
s¼1

∂xr
∂qs

δqs, r ¼ 1, ::, n )
Xn
s¼1

Xn
r¼1

mr€xr � Xrð Þ ∂xr
∂qs

( )
δqs ¼ 0: (16)

The last Eq. (16) can be modified using Eqs. (15), which implies

Xn
s¼1

Xn
r¼1

mr
d
dt

_xr
∂ _xr
∂ _qs

� �
� _xr

∂ _xr
∂qs

� �
�
Xn
r¼1

Xr
∂xr
∂qs

( )
δqs ¼ 0, (17)

This equation can be rewritten now in the form:

Xn
s¼1

d
dt

∂L
∂ _qs

� �
� ∂L
∂qs
�Qs

� �
δqs ¼ 0, (18)

where it has been denoted:

L ¼
Xn
r¼1

_xr
∂ _xr
∂qs

, Qs ¼
Xn
r¼1

Xr
∂xr
∂qs

: (19)

Inspecting the polynomial L, we recognize that it consists of the polynomial of the second and
first degrees of components _q (coefficients are still functions of displacements q and time t)
and the absolute part without any velocity components _q. We can now assign the first part to
the kinetic energy T , while the part without velocities to the potential energy V. So that L can
be understood as the Lagrange function as usually defined

L ¼ T � V, (20)

provided the dynamic system studied is holonomic and no constraints are applied. In such a
case, all variations δqs are independent and Eq. (18) can be fulfilled only if every coefficient in
curly brackets vanishes individually. Consequently, we obtain Lagrange’s equations in the
form:

d
dt

∂T
∂ _qs

� �
� ∂T
∂qs
þ ∂V
∂qs
¼ Qs, s1, ::, n, (21)

where Qs are generalized external forces as functions of q and t. These forces are basically
linear transforms of original forces Xr, see Eq. (19). If holonomic constraints are inserted, then
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the number of remaining degrees of freedom is lower k ¼ n� lð Þ. Nevertheless, if there is
possibility to define the system after elimination of inactive DOFs, then we can consider
formally k ¼ n again and Eq. (21) remains in force.

Let us suppose now that the system includes l non-holonomic constraints and those
holonomic, which cannot be eliminated. Whatever is the reason for that, it still holds
kþ l ¼ n. These constraints are described by constraints in Lagrange’s coordinates (analogous
with Eq. (2b)) as follows:

Xn
s¼1

Crs _qs þDr ¼ 0, r ¼ 1, ::, l, D ¼ Dr½ �,D∈Rl , C ¼ Crs½ �,C∈Rl�n, (22)

This time, the variations δqs are not fully independent and only those components, which
satisfy conditions:

Xn
s¼1

Crsδqs ¼ 0 r ¼ 1, 2, ::, l, (23)

can be regarded as independent.

In such a case, the right side of Eq. (21) should be completed:

d
dt

∂T
∂ _qs

� �
� ∂T
∂qs
þ ∂V
∂qs
¼ Qs þ

Xl
r¼1

λrCrs, s ¼ 1, ::, n: (24)

To the system, Eq. (24) should be attached l constraints Eq. (22). So that, finally we have the
system of nþ l equations with unknowns q and λ. Multipliers λ are linearly related with forces
in constraints. In particular cases, multipliers λ can be physically interpreted, for instance, they
can have a meaning of reactions of a body moving along a given trajectory. Very knowledge-
able explanation about manipulation and interpretation of Lagrange’s multipliers from the
viewpoint of a general theory as well as of employment in particular cases can be found in the
monograph concerning non-holonomic systems, see [2]. For additional information and a large
overview of additional literature resources, see [5].

The real dynamic system is always influenced by energy dissipation. Some simple models can
be introduced using Rayleigh function R, see, for example, [3]. This way is typically applica-
ble, if linear viscous damping is considered and the Rayleigh function has a quadratic form in
velocities _qs. We can include this factor symbolically into Eq. (24), which reads now:

d
dt

∂T
∂ _qs

� �
� ∂T

∂qs
þ ∂V
∂qs
¼ Qs þ

∂ℛ
∂ _qs
þ
Xl
r¼1

λrCrs, s1, ::, n: (25)

Hence, the completed system Eqs. (22) and (25) with nþ l unknowns can be considered.
However, we should be aware that this supplement is rather intuitive and does not follow from
any rigorous derivation, although in practice it is widely and successfully used. Nevertheless,
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comparison of this system with the general relation Eq. (1) introduced in Section 1 is obvious.
Take a note that more sophisticated versions of Lagrange’s equations have been developed
inspired by physical problems; see, for instance, generalized Lagrange-d’Alembert-Poincaré
equations discussed in [11].

Let us add that many details (internal mechanisms and inclusion into governing system)
concerning more sophisticated models of damping can be found in monographs of the rational
dynamics, for example, [1, 4]. See also papers oriented to practical aspects of the damping
either of natural, for example, rheological, aeroelastic origin, or intentionally included in order
to achieve the highest damping effectiveness, for instance [13].

4. Appell-Gibbs function and equation system

Although the Appell-Gibbs approach is not referred so often in the study as the Lagrangian
procedure, there are some monographs treating the analytical dynamics, for example, [1, 3],
where detailed features of this method are explained. Moreover, journal papers can be found
where special aspects of the Appell-Gibbs approach are discussed. A close relation of the fifth
Gaussian form and the Gibbs equations from the viewpoint of Dynamics is studied, for
example, [14, 15], important remarks for application are concerned in [16, 17], as well as
possibilities of extension for systems with time-dependent masses [18] are indicated.

Let us briefly outline principal steps leading to the Appell-Gibbs differential system with
respect to essentials ascertained and introduced in Section 2. We should be aware that gener-
alized external forces Qs, introduced in Eq. (19), follow in principle only k degrees of freedom,
which remained free; thereafter, l constraints have been applied and the original number n of
DOFs has been reduced to k ¼ n� l, 0 < l ≤n. However, due to complicated relations inside the
dynamic system, this fact is rather impossible to be employed in basic coordinates xs, s ¼ 1, ::, n
and Lagrange’s coordinates qs, s ¼ 1, ::, n should be addressed, as we have also seen in previ-
ous Section 3. Nevertheless, it is worthy to involve only such coordinates qs, which correspond
to k remained DOFs. It can be easily expressed in Lagrange’s coordinates, unlike basic coordi-
nates xs. So that, as the first step, we reformulate some expressions of Section 2 concerning the
transform from basic to Lagrange’s coordinates.

Velocities _xr, r ¼ 1, ::, n should be evaluated with respect to the fact that coordinates xr are
functions of all Lagrange’s coordinates qs, s ¼ 1, ::, k and time t, see Eq. (14):

_xr ¼
Xk
s¼1

αrs _qs þ αr, r ¼ 1, ::, n, where : αrs ¼ ∂xr
∂qs

, αr ¼ ∂xr
∂t

, (26)

which also implies

δ _xr ¼
Xk
s¼1

αrsδ _qs, r ¼ 1, ::, n, (27)
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Differentiation of Eq. (26) with respect to time gives

€xr ¼
Xk
s¼1

αrs€qs þ
Xk
s¼1

dαrs

dt
_qs þ

dαr

dt
,

d
dt
¼ ∂

∂t
þ
Xk
m¼1

_qm
∂
dt

, r ¼ 1, ::, n: (28)

The incremented acceleration vector, when keeping velocities and displacements, can be for-
mulated as follows:

€xr þ δ€xr ¼
Xk
s¼1

αrs €qs þ δ€qs
� �þ

Xk
s¼1

dαrs

dt
_qs þ

dαr

dt
, r ¼ 1, ::, n: (29)

Deducting Eq. (28) from Eq. (29), one obtains

δ€xr ¼
Xk
s¼1

αrsδ€qs, r ¼ 1, ::, n: (30)

Hence, it can be written

Xn
r¼1

Xrδ€xr ¼
Xk
s¼1

Xn
r¼1

Xrαrs

 !
δ€qs ¼

Xk
s¼1

Qsδ€qs, (31)

where Qs are identical generalized forces, as they have been defined in Eq. (19). With reference
to Eq. (11), we can reformulate this equation as follows:

Xn
r¼1

mr€xrδ€xr �
Xk
s¼1

Qsδ€qs ¼ 0: (32)

This relation will be used later, see Eq. (36).

As a principal step of this section, we define now the Gibbs function G concentrating “acceler-
ation energy” included in all n DOFs as follows:

G ¼ 1
2

Xn
r¼1

mr€x2r , (33)

When we pass from basic to Lagrange’s coordinates, only k active coordinates remain in force
and so the expression Eq. (33) can be rewritten:

G ¼ 1
2

Xk
r¼1

mr€q2r , (34)

Expressions Eqs. (33) and (34) differ only in terms independent from accelerations.

Let us introduce the function H:
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Xk
s¼1
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Differentiation of Eq. (26) with respect to time gives
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Xk
s¼1
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Xk
s¼1

dαrs

dt
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dt
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d
dt
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þ
Xk
m¼1
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∂
dt
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H ¼ G �
Xk
s¼1

Qs€qs, (35)

and evaluate its virtual increment:

δH ¼ δ G �
Xk
s¼1

Qs€qs

 !
¼ 1

2

Xn
r¼1

mr €xr þ δ€xrð Þ2 � 1
2

Xn
r¼1

mr€x2r �
Xk
s¼1

Qsδ€qs

¼ 1
2

Xn
r¼1

mr δ€xrð Þ2 þ
Xn
r¼1

mr€xrδ€xr �
Xk
s¼1

Qsδ€qs

 !
:

(36)

The last parenthesis vanishes due to the relation Eq. (32). Therefore, if δ€x 6¼ 0, then the function
δH is always positive:

δH ¼ δ G �
Xk
s¼1

Qs€qs

 !
> 0, (37)

which implies that accelerations €qs, s ¼ 1, ::, k should lead to a minimum of the function H,
which means:

∂G
∂€qr
¼ Qr, r ¼ 1, ::, k: (38)

The energy dissipation terms Rx, Ry, Rz should be added to the right side of Eq. (38). At this
moment, the conformity of Eq. (38) with the equivalence Eq. (1) is well pronounced, similar
like in the previous section. The system Eq. (38) should be completed by geometric constraints:

_qr ¼
Xk
s¼1

βrs _qs þ βr r ¼ kþ 1, ::, n: (39)

Equations (38) and (39) are the Gibbs-Appell differential system including n equations, which
can be written in the normal form and hence it is suitable to be immediately investigated using
common methods.

The differential system (Eqs. (38) and (39)) represents the simplest and in the same time the
most general form of equations of the dynamic system movement. The form of this system is
very simple, and it can be used with the same effectiveness to the investigation of holonomic as
well as non-holonomic systems, as the constraints can represent non-holonomic but also
holonomic type of constraints. Unlike the Lagrangian approach, the non-holonomic or non-
eliminable constraints do not augment the number of differential equations.

Procedure of the Appell-Gibbs equations employment in particular cases is obvious, looking

back at this section. In the first step, the “so called kinetic energy of accelerations” 1
2

PN
r¼1 mr€x2r
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is composed using n acceleration components of the vector €x. It represents the Appell-Gibbs
function G. In a general case, this function includes also all coordinates x and velocities _x.
Nevertheless, it is important that G in Lagrange’s coordinates contains only k selected compo-
nents of accelerations €q. Anyway, all n components of _q and q are still included as a result of a
transformation from basic to Lagrange’s coordinates.

It is worthy to remind that the differentiation outlined in Eq. (38) is very easy in a particular
case. Indeed, let us realize that G can be symbolically expressed as a sum of quadratic function
of accelerations €qs, s ¼ 1, ::, k! G2, linear function of these components G1 and function with-
out accelerations G0. Differentiating G2, one obtains the relevant acceleration component in a
linear form, which will be moved onto the left side together with a coefficient, which can be a
function of all velocities and displacements _qs, qs, s ¼ 1, ::, n. Differentiation of G1 leads to
acceleration-free coefficients and G0 can be omitted leading to zeroes. Sometimes, the so-called
reduced Appell-Gibbs function G∗ is defined where G0 is a priori omitted.

In the second step, the work of k given forces Q on k virtual displacements q is carried out. It

has the form
Pk
s¼1

Qsδqs. We substitute now back into Eqs. (38) and add l ¼ n� k geometric

constraints following Eqs. (39). So we obtain kþ l ¼ n differential equations for n components
of the vector €q tð Þ. Take a note that no unknown multipliers λ emerge here, which on the other
hand increases the number of unknowns in a Lagrangian approach.

The procedure working with accelerations instead with velocities provides much simpler
governing differential system. Unlike velocities, the acceleration components in the Appell-
Gibbs function are included only in a few parts of energy expression. Therefore, all parts
including only velocity and displacement components disappear during the differentiation of
the Appell-Gibbs function with respect to €qr, r ¼ 1, ::, k, and therefore they can be considered
beforehand as unimportant.

Investigating problems with rotations, we work with Lagrange’s coordinates ω, which repre-
sent in fact velocities. So that by solving the abovementioned differential system, the displace-
ments and velocities ω emerge as results. Rotations themselves remain unattended. May be, it
is a forfeit for a relative simplicity of the governing system in comparison with the Lagrangian
approach. However, this shortcoming is mostly apparent only. The main part of the result
represents usually displacement components, which are obtained without restrictions.
Together with velocities ω, they represent a full set of information needed to get through the
shape of trajectories of the system response including rotation (illustrative example will be
presented later in Section 6). If detailed rotations (not only velocities) are still needed, a
subsequent integration can be performed independently using differential relations between
rotation velocity vector ω and (for instance) Euler angles, see monographs [1, 3, 4] and others.
They provide a detailed description of time history of a body orientation as a function of time t.
This step can be useful, for instance, when a detailed animation is needed for presentation
purposes.
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5. Planar movement of a ball in a spherical cavity

5.1. Engineering motivation

Passive vibration absorbers of various types are very widely used in civil engineering. TV
towers, masts, and other slender structures exposed to wind excitation are usually equipped
by such devices. Conventional passive absorbers are of the pendulum type. Although they are
very effective and reliable, they have several disadvantages limiting their application.

These shortcomings can be avoided using the absorber of the ball type. The basic principle
comes out of a rolling movement of a metallic ball of a radius r inside of a rubber-coated cavity
of a radius R > r. This system is closed in an airtight case, see, for instance, Figure 1. First
papers dealing with the theory and practical aspects of ball absorbers have been published
during the last decade, see [13, 19].

5.2. Planar layout of the system, Lagrangian procedure

The version, when the ball is forced to move solely in a vertical plane, has been thoroughly
studied using Lagrangian approach in [20, 21] and other detailed papers dealing not only with
theoretical aspects but also with experimental verification in the laboratory and in situ exam-
ining absorbers installed on real structures.

The cavity is fixed to a vibrating structure. Their dynamic character is represented by a linear
single degree of freedom (SDOF) system represented by a massM. Inside of the cavity, the ball
m in a vertical plane is moving, that is two degrees of freedom (TDOF) system should be
investigated, as it is outlined in Figure 2. It follows from geometric relations:

R � φ ¼ r ψþ φð Þ ) rψ ¼ ϱrφ, (40)

Figure 1. Dynamic scheme of (a) spherical pendulum absorber, (b) ball absorber, and (c) ball absorber during testing in a
dynamic laboratory, see [19].
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where rr ¼ R� r. It holds for vertical or horizontal components of a displacement and velocity
of the internal ball center:

horiz: : uþ ϱr � sinφ ) _u þ ϱr _φ cosφ,
vert: : ϱr � cosφ ) �ϱr _φ sinφ:

�
(41)

Kinetic energy of a moving system of the ball m and the cavity M can be written in a form:

T ¼ 1
2
m _u þ ϱr _φ cosφð Þ2 þ ϱ2r _φ

2 sin 2φ
h i

þ 1
2
J _ψ2 þ 1

2
M _u2 ¼ 1

2
mþMð Þ _u2 þmϱr _u _φ cosφþ m

2κ
ϱ2r _φ

2, (42)

where m=κ ¼ mþ J=r2 ) κ ¼ 5=7, while the potential energy is given by an expression:

V ¼ mgϱr 1� cosφð Þ þ 1
2
Cu2: (43)

The damping should be introduced in a form of a simple Rayleigh function:

R ¼ 1
2

Mbu _u2 þmbφϱ2r _φ
2� �
: (44)

m,M – mass of the ball m, mass of the cavity, M representing the protected structure;

J – inertia moment of the ball m;

bu, bφ – damping coefficients (logarithmic decrements, linear viscous damping);

Expressions Eqs. (42), (43), and (44) should be put into Lagrange’s equations of the second
type, see Eqs. (24) or (25) and monographs, for example, [1, 3, 4] and others:

Xn
r¼1

d
dt

∂T
∂ _qr

� �
� ∂T

∂qr
þ ∂V
∂qr
þ ∂ℛ

∂ _qr

� �
δqr ¼ Pr tð Þ,

q1 ¼ u ¼ ζ � ϱr , q2 ¼ φ , Pu tð Þ ¼ p tð Þ �Mϱr , Pφ tð Þ ¼ 0,

(45)

which give the governing equations of the system:

Figure 2. Basic scheme of a system.
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€φ þ κbφ _φ þ κω2
m sinφþ κ€ζ � cosφ ¼ 0, að Þ

μ €φ cosφ� μ _φ2 sinφþ 1þ μ
� �

€ζ þ bu _ζ þ ω2
Mζ ¼ p tð Þ, bð Þ

μ ¼ m=M, ω2
M ¼ C=M, ω2

m ¼ g=ϱr: cð Þ
(46)

Equation (46) describes 2D movement of a ball absorber under excitation by the force P tð Þ at
any arbitrary deviation amplitudes including incidental transition through a limit cycle toward
an open regime.

5.3. Illustration of some planar system features

Analysis of the governing system (Eqs. (46)) has been done in a couple of papers, for example,
[20, 21]. Investigation has been carried out using the harmonic or multi-harmonic balance
method, see, for example, [22, 23], respectively.

The system is auto-parametric, see, for example, [24] and other resources. Very rich overview
of a theoretical basis of auto-parametric systems can be found in [25]. Expecting a single mode
response, the Harmonic balance-based methods are applicable. Following approximate
expressions for excitation and response can be written (cf., e.g., [22]):

p tð Þ ¼ p0 sin ωtð Þ,
φ tð Þ ¼ α sin ωtð Þ þ β cos ωtð Þ,
ζ tð Þ ¼ γ sin ωtð Þ þ δ cos ωtð Þ:

(47)

Having four new variables α ¼ α tð Þ, β ¼ β tð Þ,γ ¼ γ tð Þ, δ ¼ δ tð Þ instead of two original
unknowns φ tð Þ, ζ tð Þ, two additional conditions can be freely chosen:

_α sin ωtð Þ þ _β cos ωtð Þ ¼ 0, _γ sin ωtð Þ þ _δ cos ωtð Þ ¼ 0: (48)

After substituting Eqs. (47) and (48) into Eqs. (46) and substituting the sinϖ and cosφ
functions by two terms of Taylor expansion, the harmonic balance procedure gives the differ-

ential system for unknown amplitudes Z ¼ α; β;γ; δ
� �T , see, for example, [21, 23]:

M Zð Þ _Z ¼ F Zð Þ: (49)

System (49) for amplitudes Z tð Þ is meaningful if they are functions of a “slow time,” in other
words, if their changes within one period 2π=ω are small or vanishing and individual steps of
the harmonic balance operation are acceptable. The matrix M and the right-hand side vector F
have the following form:

M ¼

0 �ω � 1
4
αβκω

1
8
κωAα

ω 0 � 1
8
κωAβ

1
4
αβκω

� 1
8
μωAβ

1
4
αβμω μþ 1

� �
ω 0

� 1
4
αβμω

1
8
μωAα 0 � μþ 1

� �
ω

0
BBBBBBBBBB@

1
CCCCCCCCCCA

, (50)
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F ¼ 1
48

6A0κ 3γω2 � αω2
m

� �þ 12ω2 κ αβδþ 8� β2
� �

γ
� �� 4α

� �� 48βκωbφ
6A0κ δω2 � βω2

m

� �þ 12ω2 αγκþ βδκ� 4
� �

βþ 48ακωbφ
ω2 A0 A0 þ 22ð Þβμ� 16 3δ μþ 1

� �� 4βμ
� �� �þ 48 γωbu þ δω2

M

� �

ω2 A0 A0 þ 22ð Þαμ� 16 3γ μþ 1
� �� 4αμ

� �� �� 48 δωbu � γω2
M þ p0

� �

0
BBBB@

1
CCCCA
, (51)

where A0 ¼ α2 þ β2 � 8, Aα ¼ 3α2 þ β2 � 8, Aβ ¼ α2 þ 3β2 � 8:

Let us consider stationary response of the system. In this case, the derivatives dZ=dt vanish
and the right-hand side has to vanish too. Eq. (49) degenerates to the form of

F Zð Þ ¼ 0 (52)

Thus, to identify the stationary solutions, the zero solution points of F, depending on the
excitation frequency and amplitude, should be traced. In the same time, the signum and the
zero points of the Jacobian det JFð Þ have to be checked. The negative value of the Jacobian for a
particular point indicates that the corresponding solution is stable, whereas when Jacobian
vanishes a bifurcation could occur.

The curve F α; β;γ; δ;ω
� � ¼ 0, projected into the planes ω;Rð Þ or ω; Sð Þ (for S2 ¼ γ2 þ δ2),

forms the resonance curves known from the analysis of linear oscillators. However, corre-
spondence of this curve to the original Eq. (46) is limited to the case of stationary response.
It is necessary to remind that limits of stationarity of the response cannot be determined
from properties of Eq. (52) itself. The complete Eq. (49) has to be taken into account for this
purpose.

With respect to actual experiences regarding passive vibration absorbers and some interesting
properties of system (46), the following reference input data have been introduced:

M ¼ 10:0; m ¼ 2:0; ϱr ¼ 0:71; bφ ¼ 0:1; bu ¼ 0:2; C ¼ 140; po ¼ 0:5÷2:5: (53)

Figure 3. Nonlinear resonance curves describing the stationary response of the system for excitation amplitudes
p0 ¼ 0:25, 0:5, 1, 1:5, 2:5. Stable branches are shown as solid blue curves, unstable parts are indicated as the red dashed

curves. Amplitudes, see Eq. (47), R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
are shown in the left part of the figure, amplitudes S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ δ2

q
are on

the right.
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€φ þ κbφ _φ þ κω2
m sinφþ κ€ζ � cosφ ¼ 0, að Þ

μ €φ cosφ� μ _φ2 sinφþ 1þ μ
� �

€ζ þ bu _ζ þ ω2
Mζ ¼ p tð Þ, bð Þ

μ ¼ m=M, ω2
M ¼ C=M, ω2

m ¼ g=ϱr: cð Þ
(46)
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(47)

Having four new variables α ¼ α tð Þ, β ¼ β tð Þ,γ ¼ γ tð Þ, δ ¼ δ tð Þ instead of two original
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System (49) for amplitudes Z tð Þ is meaningful if they are functions of a “slow time,” in other
words, if their changes within one period 2π=ω are small or vanishing and individual steps of
the harmonic balance operation are acceptable. The matrix M and the right-hand side vector F
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M ¼

0 �ω � 1
4
αβκω

1
8
κωAα

ω 0 � 1
8
κωAβ

1
4
αβκω

� 1
8
μωAβ

1
4
αβμω μþ 1

� �
ω 0

� 1
4
αβμω

1
8
μωAα 0 � μþ 1

� �
ω

0
BBBBBBBBBB@

1
CCCCCCCCCCA

, (50)
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Utilizing Eqs. (52) and (51), the nonlinear resonance curves describing the stationary response
of system (46) can be obtained. A set of such curves for excitation amplitudes
p0 ¼ 0:25; 0:5; 1; 1:5; 2:5 is shown in Figure 3. It is obvious for the first view the nonlinear
character manifesting oneself by a dependence of a position of extreme points on an amplitude
of excitation force. This effect is visible predominantly in a neighborhood of a conventional
“linear” natural frequency of the absorber, although also the second natural frequency
corresponding to the original natural frequency of the structure is affected. The resonance
curves are typical for a system with “softening” nonlinearities.

6. Spatial version of the system, Appell-Gibbs procedure

6.1. Gibbs function

The spatial version of the ball absorber on the basis of rational dynamics has been widely
investigated by authors of this chapter, see, for example, [26, 27]. Lagrangian approach and
Appell-Gibbs procedures have been discussed in these papers combining analytical and numer-
ical methods. Some important issues will be roughly outlined and for details see cited papers.

Unlike the planar version discussed in the previous section, the Appell-Gibbs approach is used
to formulate the governing nonlinear differential system. The authors tried to formulate the
spatial version using the Lagrangian procedure as well, see [28]. Although the governing
system of the respective holonomic system has been successfully assembled, the further anal-
ysis appeared very cumbersome, and therefore, it has been given up to follow this way. Thus,
the Appell-Gibbs approach is used to formulate the governing system. Its structure is much
more transparent and represents a wider option of analytical-numerical investigation of
detailed properties of the ball trajectories within the cavity.

With respect to Sections 2 and 4, the first step represents to construct the Appell-Gibbs function
(often referred to as an energy acceleration function) defined as follows:

G ¼ 1
2
M €u2

Gx þ €u2
Gy þ €u2

Gz

� �
þ 1
2
J _ω2

x þ _ω2
y þ _ω2

z

� �
, (54)

whereM is the mass of the ball, J is central inertia moment of the ball with respect to point G,ω
the angular velocity vector of the ball with respect to its center G, uG the displacement of the
ball center with respect to absolute origin O, C contact point of the ball and cavity, A moving
origin related with the cavity in its bottom point, see Figure 4. Coordinates x ¼ x; y; z½ � are
Cartesian coordinates with origin in the point O. Hence, it holds:

uG ¼ uA þ uC þ un, un ¼ r � n
_uG ¼ _uA þ _uC þ r � _un,|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

r _uC, r ¼ 1� r=R, cf: Eq: 40ð Þ : ϱr ¼ R� r
� �

,

(55)
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where uA is the displacement of the moving origin A with respect to absolute origin O, uC the
displacement of the contact point Cwith respect to moving origin A, un the displacement of the
ball center G with respect to contact point C, n the cavity normal unit vector in point C.

Geometry of the cavity (radius R) with respect to moving origin A is given by equation:

x2A þ y2A þ zA � Rð Þ2 ¼ R2, (56)

where xA ¼ xA; yA; zA
� �

are Cartesian coordinates with origin in the moving origin A.

Using Pfaff theorem and adopting a conjecture of non-sliding contact between the ball and the
cavity, the respective non-holonomic constraints of “perfect” rolling can be deduced after a
longer manipulation:

_uGx ¼ _uAx þ r ωy uCz � Rð Þ � ωzuCy
� �

,

_uGy ¼ _uAy þ r ωzuCx � ωx uCz � Rð Þð Þ,
_uGz ¼ þr ωxuCy � ωyuCx

� �
,

(57)

where r ¼ 1� r=R.

In order to substitute for accelerations uo into the Appell function (Eq. (54)), let us differentiate
constraints Eqs. (57).

Several manipulations provide expressions for components of the ball center acceleration €uG,
which consist of acceleration in the moving origin A : €uA representing the given external
kinematic excitation and acceleration related to the point A being given by an expression: r €uC:

Figure 4. Ball rotation vector in moving coordinates.
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p0 ¼ 0:25; 0:5; 1; 1:5; 2:5 is shown in Figure 3. It is obvious for the first view the nonlinear
character manifesting oneself by a dependence of a position of extreme points on an amplitude
of excitation force. This effect is visible predominantly in a neighborhood of a conventional
“linear” natural frequency of the absorber, although also the second natural frequency
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curves are typical for a system with “softening” nonlinearities.
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� �
, (54)

whereM is the mass of the ball, J is central inertia moment of the ball with respect to point G,ω
the angular velocity vector of the ball with respect to its center G, uG the displacement of the
ball center with respect to absolute origin O, C contact point of the ball and cavity, A moving
origin related with the cavity in its bottom point, see Figure 4. Coordinates x ¼ x; y; z½ � are
Cartesian coordinates with origin in the point O. Hence, it holds:

uG ¼ uA þ uC þ un, un ¼ r � n
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� �

,

(55)

Nonlinear Systems - Modeling, Estimation, and Stability18

where uA is the displacement of the moving origin A with respect to absolute origin O, uC the
displacement of the contact point Cwith respect to moving origin A, un the displacement of the
ball center G with respect to contact point C, n the cavity normal unit vector in point C.

Geometry of the cavity (radius R) with respect to moving origin A is given by equation:

x2A þ y2A þ zA � Rð Þ2 ¼ R2, (56)

where xA ¼ xA; yA; zA
� �

are Cartesian coordinates with origin in the moving origin A.

Using Pfaff theorem and adopting a conjecture of non-sliding contact between the ball and the
cavity, the respective non-holonomic constraints of “perfect” rolling can be deduced after a
longer manipulation:

_uGx ¼ _uAx þ r ωy uCz � Rð Þ � ωzuCy
� �

,

_uGy ¼ _uAy þ r ωzuCx � ωx uCz � Rð Þð Þ,
_uGz ¼ þr ωxuCy � ωyuCx

� �
,

(57)

where r ¼ 1� r=R.
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€uGx ¼ €uAx þ r _ωy uCz � Rð Þ � _ωzuCy
� �þ r ωy _uCz � ωz _uCy

� �
,

€uGy ¼ €uAy þ r _ωzuCx � _ωx uCz � Rð Þð Þ þ r ωy _uCz � ωz _uCy
� �

,

€uGz ¼ €uAz þ r _ωxuCy � _ωyuCx
� �þ r ωx _uCy � ωy _uCx

� �
,

(58)

Because the kinematic excitation is supposed to be horizontal, €uAz ¼ 0 into Eqs. (58) should be
substituted.

Expressions Eqs. (58) are to be substituted into Eq. (54). Thereby, we obtain the Appell-Gibbs
function G for the system investigated. The function G can be significantly simplified keeping
only terms including second-time derivatives €uG and _ω, which represent second-time deriva-
tives of respective rotations. This step provides the reduced Appell-Gibbs function Gr. Using
Gr, one can write the Appell-Gibbs differential system:

∂Gr=∂ _ωx ¼ FGx, ∂Gr=∂ _ωy ¼ FGy, ∂Gr=∂ _ωz ¼ FGz, (59)

where FG is the external force vector acting in ball center G. Vector FG is determined subse-
quently using the virtual displacements principle. Let us introduce the quasi-coordinates
φx, φy, φz where ωx ¼ _φx, ωy ¼ _φy, ωz ¼ _φz. The only external force acting in the ball

center is the gravity. Therefore, the elementary work performed can be expressed as

δFG ¼ �mg � δuGz: (60)

Virtual displacement δuGz can be determined using the third non-holonomic constraint in
Eqs. (57). It holds

δuGz ¼ r uCyδφx � uCxδφy

� �
, (61)

and therefore

δFG ¼ �mgr uCyδφx � uCxδφy

� �
: (62)

At the same time, the elementary work can be expressed in terms of quasi-coordinates:

δFG ¼ FGxδφx þ FGyδφy þ FGzδφz: (63)

Comparing coefficients at respective virtual components δφx, δφy, δφz, in Eqs. (61) and (63),

one obtains

FGx ¼ �rmg � uCy, FGy ¼ rmg � uCx, FGz ¼ 0: (64)

The damping will be introduced later in Section 6.3 in order to separate energy conservative
approach and enable to discuss various stationary regimes with respect to parameter and
excitation settings.
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6.2. Governing system

Carrying out the differentiation outlined in Eqs. (59), and respecting Eqs. (64), it can be written
after some adaptations:

Js _ωx � uCx _Ωs ¼ €uAy þ r ωz _uCx � ωx _uCzð Þ� �
uCz � Rð Þ�

�uCy gþ r ωx _uCy � ωy _uCx
� �� ��

,

Js _ωy � uCy _Ωs ¼ � €uAx þ r ωy _uCz � ωz _uCy
� �� �

uCz � Rð Þ�

þ uCx gþ r ωx _uCy � ωy _uCx
� �� �Þ, (65)

Js _ωz � uCz � Rð Þ _Ωs ¼ €uAx þ r ωy _uCz � ωz _uCy
� �� �

uCy
�

� €uAy þ r ωz _uCx � ωx _uCzð Þ� �
uCxÞ,

where

_Ωs ¼ uCx _ωx þ uCy _ωy þ uCz � Rð Þ _ωz,

Js ¼ J þmr2R2� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}=mr2:

mass interiamoment of the ball
with respect to center of the cavity

(66)

It can be shown that _Ωs ¼ 0 and therefore the second column on the left side of the system
Eqs. (65) should be omitted. External excitations are specified by movement or acceleration in
the point A. Hence, kinematic excitation in A is given as follows:

EAx tð Þ ¼ €uAx=r, EAy tð Þ ¼ €uAy=r, EAz tð Þ ¼ 0, (67)

as it can be seen in Eqs. (65). Provided we need to investigate the response processes in a
vertical plane, only one component remains non-zero and the second vanishes as well.

In order to obtain the system Eqs. (65) in the form with first-time derivatives concentrated on
the left side, the first derivatives _uC in its right sides should be expressed in displacements uC

using non-holonomic constraints Eqs. (57):

_uCx ¼ ωy uCz � Rð Þ � ωzuCy,

_uCy ¼ ωzuCx � ωx uCz � Rð Þ,
_uCz ¼ ωxuCy � ωyuCx:

(68)

Therefore, we obtained the system of six non-linear ODEs (Eqs. (65) and (68)) in a normal form
with six unknown functions of time: uCx, uCy, uCz,ωx,ωy,ωz. Vector uC depicts displacements of
the contact point and can be used to study the movement of the ball from a global point of view.
Detailed behavior of the ball as a rotating body is given by angular velocitiesω. If the time history
of rotation should be traced, then a subsequent run is necessary to obtain rotations by means of
Euler angles as solution of the system of three ODEs with an input of angular velocitiesω.
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Eqs. (65) should be omitted. External excitations are specified by movement or acceleration in
the point A. Hence, kinematic excitation in A is given as follows:
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as it can be seen in Eqs. (65). Provided we need to investigate the response processes in a
vertical plane, only one component remains non-zero and the second vanishes as well.

In order to obtain the system Eqs. (65) in the form with first-time derivatives concentrated on
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6.3. Influence of the damping

Influence of the damping will be taken into account. Basically, two sources of the energy
dissipation are ruling in the system: (1) dissipation due to air dynamic resistance and (2)
energy loss in contact of the cavity and rolling ball. The former one can be neglected with
respect to obvious geometric configuration of the device and relative velocity ball/cavity.
Concerning the latter one, complicated energy dissipating processes are ruling in contact of
the ball with cavity. Nevertheless, supposing that no slipping arises in the contact, the dissipa-
tion process can be approximated as proportional to relevant components of the angular
velocity vector ω and the quality of the cavity/ball contact. Considering the obvious setting,
the respective material coefficients characterizing the rolling movement of the ball can be
considered constant regardless of the direction in the tangential plane to the cavity in the point
C, see Figure 4. The coefficient determining the rotation resistance around the normal vector n
in the contact point C is different as a rule. Therefore, the resistance moment vector D can be
expressed in moving coordinates p, q, n, see Figure 4, as follows:

D ¼ Dp;Dq;Dn
� �T

: (69)

Components of the above vector can be written in a form as follows:

Dp ¼ κr � ωp, Dq ¼ κr � ωq, Dn ¼ κs � ωn, (70)

where κr,κs are coefficients of “viscous resistance” of rolling and spinning. Their meaning is:
the moment for a unity rotation per second, that is (Nms/rad).

Turning of the vector DG ¼ DGx;DGy;DGz
� �T expressed in xyzð Þ coordinates into the vector D

can be written as

D ¼ TC �DG, (71)

The transformation matrix TC reads

TC ¼

xC �zC þ Rð Þ
Rν

,
yC �zC þ Rð Þ

Rν
,

ν
R

�yC
ν

,
xC
ν
, 0

�xC
R

,
�yC
R

,
�zC þ R

R

2
66666664

3
77777775

(72)

where ν2 ¼ x2C þ y2C. The matrix TC is orthogonal and, therefore, the inverse transformation

goes using matrix T�1C ¼ TT
C, in particular:

DG ¼ TT
C �D, (73)
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Components of the vector DG should be incorporated onto the right side of Eqs. (59), where
right sides should be completed. It means that the elementary work δFG following Eq. (60)
must be completed by a negative dissipating work due to DG.

δFG ¼ �mg � δuGz �DG � δφ, (74)

Repeating the further derivation like in Section 6.2, one can revisit the system Eqs. (65) and
(68), where the right sides are completed and instead (Eqs. (65)) they read:

Js _ωx ¼ ð €uAy þ r ωz _uCx � ωx _uCzð Þ� �
uCz � Rð Þ � uCy gþ r ωx _uCy � ωy _uCx

� �� �Þ �DGx=m,

Js _ωy ¼ ð� €uAx þ r ωy _uCz � ωz _uCy
� �� �

uCz � Rð Þ þ uCx gþ r ωx _uCy � ωy _uCx
� �� �Þ �DGy=m,

Js _ωz ¼ ð €uAx þ r ωy _uCz � ωz _uCy
� �� �

uCy� €uAy þ r ωz _uCx � ωx _uCzð Þ� �
uCx
��DGz=m:

(75)

Terms DGx=m,DGy=m,DGz=m which are linear functions of ωx,ωy,ωz determine the viscous
type of the damping, although intensity in individual coordinates is variable depending on
the position of the ball within the cavity.

6.4. Ball trajectories within the fixed cavity due to initial conditions

A large program of a ball trajectory investigation within a spherical cavity has been performed
using the differential system (Eqs. (68) and (75)). Basically, it consists of two groups which are
briefly illustrated in this and the next subsections. The first group concerns the fixed cavity (no
excitation is applied). The only source of energy introduced is given by the initial deflection of
the ball from equilibrium position in the point A (“southern pole”), or in other words by non-
homogeneous initial conditions.

Differential system (Eqs. (68) and (75)) admits a number of singular solutions which can serve
as separating limits of zones within which regular solutions exhibit certain character of trajec-
tory shape. Some of them can be found analytically from the differential system taking into
account their special properties concerning individual response component along the trajec-
tory as a whole or in certain points of these curves. For details, special papers should be
referred. Take a note that most of them emerge when no damping is considered. The reason is
that the trajectory should be quasi-periodic (or cyclic-stationary), which is impossible when
damping is respected and no external energy supply is considered. Trajectories start in a
certain point on a meridian into which the ball is elevated. Then, it is thrown horizontally
along the cavity parallel circle. Let us mention a few of the most important:

1. circular trajectory in horizontal plane. No initial spin is considered ωn0 ¼ 0ð Þ. The impulse
applied corresponds with the initial velocity ω ¼ ωps; 0; 0

� �
, where it holds for ωps:

ωps ¼ gMruCz0 2R� uCz0ð Þ
J þMr2R2� �

R� uCz0ð Þ : (76)
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Terms DGx=m,DGy=m,DGz=m which are linear functions of ωx,ωy,ωz determine the viscous
type of the damping, although intensity in individual coordinates is variable depending on
the position of the ball within the cavity.
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using the differential system (Eqs. (68) and (75)). Basically, it consists of two groups which are
briefly illustrated in this and the next subsections. The first group concerns the fixed cavity (no
excitation is applied). The only source of energy introduced is given by the initial deflection of
the ball from equilibrium position in the point A (“southern pole”), or in other words by non-
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Differential system (Eqs. (68) and (75)) admits a number of singular solutions which can serve
as separating limits of zones within which regular solutions exhibit certain character of trajec-
tory shape. Some of them can be found analytically from the differential system taking into
account their special properties concerning individual response component along the trajec-
tory as a whole or in certain points of these curves. For details, special papers should be
referred. Take a note that most of them emerge when no damping is considered. The reason is
that the trajectory should be quasi-periodic (or cyclic-stationary), which is impossible when
damping is respected and no external energy supply is considered. Trajectories start in a
certain point on a meridian into which the ball is elevated. Then, it is thrown horizontally
along the cavity parallel circle. Let us mention a few of the most important:

1. circular trajectory in horizontal plane. No initial spin is considered ωn0 ¼ 0ð Þ. The impulse
applied corresponds with the initial velocity ω ¼ ωps; 0; 0
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, where it holds for ωps:
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This case is the most important and can be called separating circle (SC).

2. circular trajectory in inclined plane, see Figure 5, ω0 ¼ 100:0; 0:0; 0:0½ �. This state is exactly
valid for ωp0 ! ∞. The space spiral type trajectory changes from SC upwards successively
into the upper hemisphere. Before the limit state forωp0 ! ∞ is reached, the osculation plane
of the trajectory can be recognized. It rotates around the vertical axis with a descending
angular velocity as far as it vanishes and osculation and operating planes coincide.

3. trajectory of “kings crown form,” see Figure 5, ω0 ¼ 5:817; 0:0; 5:0537½ �. Cases, when the
initial spin is considered. For a special value of ωn0 ¼ 5:0537 takes a shape visible in the
picture. The apexes of this curve correspond to ω ¼ 0:0; 0:0;ωn0½ � and u ¼ 0:0; 0:0; 0:0½ �,
which is a clue to find forms and parameters of this special case. This trajectory is reached
from SC, increasing the initial spin velocity until the limit value. If it is lower, the trajectory
has the spiral form. For a higher value, it became a curly form, see Figure 5,
ω0 ¼ 5:817; 0:0; 10:0½ �. The limit state for infinite initial spin represents the ball apparently
fixed in the initial point and not moving neither horizontally nor vertically.

Let us have a look at the bottom two pictures in Figure 5. They respect the influence of the
damping. Coefficients κr,κs are different as it corresponds to conditions in the real system.
The left demonstrates trajectory for positive initial spin and the right for negative initial spin.
The transition through limit cases mentioned earlier is visible. The trajectory obviously finishes
in the bottom “southern pole” of the cavity.

Figure 5. Illustration of the ball trajectories; cavity is not excited; energy only supply is due to non-homogeneous initial
condition; in every triplet: movement time history of the contact point C: uCx, uCy, uCz; vertical view of trajectories uCx, uCy
components; axonometric view of trajectories; parameters above triplets: initial values of ω0 ¼ ωp0;ωq0;ωn0

� �
and

damping parameters: κr,κs; line (a): no spin, no damping, line (b): spin considered, line (c): spin and damping considered.
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6.5. Ball trajectories within kinematically excited cavity

The second group of tests deals with the cavity which is undergone to kinematic excitation in a
horizontal plane (only one-direction excitation is reported here).

Two extensive series of tests demonstrate the auto-parametric character of the system. In the
first series, the response has been evaluated separately for every excitation frequency ω
starting from homogeneous initial conditions. Figure 6 shows some selected results of numer-
ical simulations which follow from the differential system (Eqs. (68) and (75)). We briefly point
out a couple of features visible in Figure 6. In the picture (a), we can see the maximal
horizontal amplitude of the ball trajectory, when the cavity is kinematically excited in the
horizontal plane in x direction. The solid curve represents max∣uCx∣ and the dashed curve is
max∣uCy∣ as functions of the exciting frequency ω. We can see that in the interval ω∈ 0; 2:84ð Þ,
the semi-trivial solution is stable and so uy ¼ 0. The point ω ¼ 2:84 is a beginning of the
resonance zone, which spans in ω∈ 2:84; 2:99ð Þ, where auto-parametric resonance occurs and
amplitudes of both response components are commeasurable. For ω > 2:99, the semi-trivial
solution is regained. Samples of the trajectory shape are plotted in picture (b) for four frequen-
cies ω ¼ 2:84, 2:88, 2:92, 2:96. Their vertical views demonstrate the character of the semi-trivial
and the auto-parametric resonance states. Take a note that the trajectory since ω ¼ 2:94 is a
simple ellipse-like curve, which does not exhibit any symptom of a chaotic process. Compare
this finding with analysis concerning the sweeping up and down excitation frequency for
ω around and above B2 bifurcation point (BP) (see Figure 7 and explanation later in this
subsection).

The second series has been controlled by sweeping the excitation frequency up and down in a
large interval and in several detailed regimes in the area of the auto-parametric resonance

Figure 6. Response of the ball in the resonance and adjacent zones due to harmonic horizontal excitation of the cavity: (a)
amplitude of the displacement as a function of the excitation frequency; (b) vertical views of the ball trajectory for
frequencies ω ¼ 2:84, 2:88, 2:92, 2:96.
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zone. A few of the results are visible in Figure 7. Picture (a) demonstrates amplitudes max∣uCx∣
(solid curves) and max∣uCy∣ (dashed curve) and the total amplitude uCr in the interval
ω∈ 1:0; 8:5ð Þ. Picture (b) is the magnified detail of picture (a) within the interval
ω∈ 2:80; 3:05ð Þ in order to make visible the resonance zone.

Let us pay attention to bifurcation points (BPs). There are obviously concentrated in the
resonance zone. In principle, they can be classified into two categories. The most important
reveal B1 and B2. In the latter one, two branches start. The lower one bl2 approaches zero for
ω! ∞ which indicates the non-moving ball in the vertical view. This branch takes place in the
vertical plane and basically has a form of semi-trivial solution. Its stability increases with rising
ω > ωB2 as it follows from decreasing negative values of the Lyapunov exponent and of
inspection of the relevant stability basins. The upper branch bu2 is spatial. It follows from the
resonance zone where the spatial response type has a chaotic character. The relevant attractor
reveals as an annular concentric area with diminishing width with increasing ω. The trajectory
very quickly approaches a circular form in the horizontal plane. Its level with respect to the
vertical axis rises and approaches “equatorial” position. However, the stability of this trajec-
tory decreases, and we can see in Figure 7 that around ω ¼ 8:0 even numerical perturbations
of the integration process can overcome the stability limit (despite very small integration step)
and the response trajectory falls down to the lower branch in the point D2. Its position is not
fixed. If hypothetically zero perturbation occurs, it could shift to infinity and approach
together with the branch bu2 the asymptote at the level R ¼ 1. Observing black max∣uCx∣ and
red max∣uCy∣ parts of bu2, we can see that they are getting coincide with increasing ω. It means
that trajectory approaches the circle with radius R ¼ 1.

Let us briefly discuss the shape of the response amplitudes for ω below BP B1 and B4. The BP
B1 is reached sweeping up along the branch bl1, when it loses planar character passing through
B4. In such a case, the spatial response type emerges, exhibiting a chaotic response since B1.
This fact is obvious also looking at the dashed red curve representing uCy, which is trivial as far

Figure 7. Amplitudes of the ball displacement under cavity harmonic excitation, when the frequency is swept up and
down: (a) amplitudes overview in the interval ω∈ 1:0; 8:0ð Þ, (b) zooming in the interval ω∈ 2:4; 3:1ð Þ; curves: solid red—
max∣uCx∣, dashed red—max∣uCy∣, solid black—absolute displacement amplitude, blue dashed—attraction boundary
between bu1 and bl1.
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as B4 and can bring the system from the semi-trivial solution into the auto-parametric reso-
nance starting B4. Take a note that passing BP B4, planar response can remain in force, if any
perturbation is avoided. It meets in B3 the branch bl2 following also a planar path for swept up
ω. Branch bu1 starts in B1. Its stability rapidly decreases with descending ω. The point D1

illustrates its limited extent in sub-resonance zone. This feature is visible observing the curve
bs, which represents a limit separating the area of attraction to bu1 and to bl1. Take a note that bs
starts in B4 and approaches D1, despite hypothetically it goes together with D1 as far as the
vertical axis in the point R ¼ 1. The bs can be earned from stability basins for ω in the adequate
interval for initial value ωp ¼ 0. It corresponds to amplitude of uCx as a testing value for
decision about affiliation to bu1 or bl1 attractiveness.

The interval between B1 and B2 includes the spatial response, see non-trivial amplitude
max∣uCy∣. The spatial response has a chaotic character, as it has been already outlined in the
previous paragraph, when commenting the branch bu2.

7. Conclusion

The common physical origin of Lagrangian and Appell-Gibbs approaches has been shown. It
originates from the equilibrium of energy-level evolution in time on one side and power
supply together with energy dissipation on the other side. Various formulations of this princi-
ple lead finally to different variational principles, although they follow from the same minimi-
zation of the energy spent to system response portrait. Comparing individual sections of the
chapter, we can see that each one of commonly used procedures based on particular energy
formulations is preferable for a certain type of problems. It can be concluded that there does
not exist a single universal approach which should be recommended.

Some detailed properties of both approaches have been demonstrated in Sections 5 and 6. Both
of them discuss non-holonomic problem of the ball movement within the spherical cavity
under external excitation. The former one deals with a simple planar problem and shows that
the Lagrangian approach is easily applicable to obtain reasonable results as far as a wide
parametric discussion, which enable to earn a detailed insight into the system dynamic prop-
erties. The latter alternative represents the full space problem with six DOFs and three non-
holonomic constraints. Some earlier studies tried to formulate this problem also in Lagrangian
style using Lagrange’s multipliers. Finally, it proved that the relevant governing differential
system is too complex and does not enable appropriate detailed analysis of dynamic properties
of the system. Therefore, the space problem outlined in Section 6 has been formulated using
Appell-Gibbs approach. Transparent results have been obtained as needed for practical pur-
poses in a device design and in further study of multi-body system dynamics. Take a note
regarding the classification of singular solutions and their applicability for detailed analysis,
stability of various regimes of the system under kinematic excitation, transitions among semi-
trivial, auto-parametric, chaotic, and other states typical for nonlinear system. Let us add that
both 2D and 3D problems have been investigated respecting the full nonlinearity without any
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as B4 and can bring the system from the semi-trivial solution into the auto-parametric reso-
nance starting B4. Take a note that passing BP B4, planar response can remain in force, if any
perturbation is avoided. It meets in B3 the branch bl2 following also a planar path for swept up
ω. Branch bu1 starts in B1. Its stability rapidly decreases with descending ω. The point D1

illustrates its limited extent in sub-resonance zone. This feature is visible observing the curve
bs, which represents a limit separating the area of attraction to bu1 and to bl1. Take a note that bs
starts in B4 and approaches D1, despite hypothetically it goes together with D1 as far as the
vertical axis in the point R ¼ 1. The bs can be earned from stability basins for ω in the adequate
interval for initial value ωp ¼ 0. It corresponds to amplitude of uCx as a testing value for
decision about affiliation to bu1 or bl1 attractiveness.

The interval between B1 and B2 includes the spatial response, see non-trivial amplitude
max∣uCy∣. The spatial response has a chaotic character, as it has been already outlined in the
previous paragraph, when commenting the branch bu2.

7. Conclusion

The common physical origin of Lagrangian and Appell-Gibbs approaches has been shown. It
originates from the equilibrium of energy-level evolution in time on one side and power
supply together with energy dissipation on the other side. Various formulations of this princi-
ple lead finally to different variational principles, although they follow from the same minimi-
zation of the energy spent to system response portrait. Comparing individual sections of the
chapter, we can see that each one of commonly used procedures based on particular energy
formulations is preferable for a certain type of problems. It can be concluded that there does
not exist a single universal approach which should be recommended.

Some detailed properties of both approaches have been demonstrated in Sections 5 and 6. Both
of them discuss non-holonomic problem of the ball movement within the spherical cavity
under external excitation. The former one deals with a simple planar problem and shows that
the Lagrangian approach is easily applicable to obtain reasonable results as far as a wide
parametric discussion, which enable to earn a detailed insight into the system dynamic prop-
erties. The latter alternative represents the full space problem with six DOFs and three non-
holonomic constraints. Some earlier studies tried to formulate this problem also in Lagrangian
style using Lagrange’s multipliers. Finally, it proved that the relevant governing differential
system is too complex and does not enable appropriate detailed analysis of dynamic properties
of the system. Therefore, the space problem outlined in Section 6 has been formulated using
Appell-Gibbs approach. Transparent results have been obtained as needed for practical pur-
poses in a device design and in further study of multi-body system dynamics. Take a note
regarding the classification of singular solutions and their applicability for detailed analysis,
stability of various regimes of the system under kinematic excitation, transitions among semi-
trivial, auto-parametric, chaotic, and other states typical for nonlinear system. Let us add that
both 2D and 3D problems have been investigated respecting the full nonlinearity without any
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simplifications of transcendent functions and thus enabling to study all effects without any
limitations in amplitudes.

A certain shortcomings which apparently follow from the knowledge of rotation velocities
only (no rotations themselves are calculated) can be disregarded, when displacements have
been obtained. The rotation velocities represent mostly satisfactory information. Nevertheless,
if rotations are still needed, there exist several variants of a simple differential system (follow-
ing rotation vector definition) relating velocity and rotation vector components. This system
can be subsequently easily solved, when necessary. A hidden complexity of the Lagrangian
approach follows from an implicit connection of both parts, which are independent when
Appell-Gibbs procedure is applied.
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Abstract

The canonical generalized inversion dynamical equations of motion for ideally constrained
discrete mechanical systems are introduced in the framework of Kane’s method. The canon-
ical equations of motion employ the acceleration form of constraints and the Moore-Penrose
generalized inversion-based Greville formula for general solutions of linear systems of alge-
braic equations. Moreover, the canonical equations of motion are explicit and nonminimal
(full order) in the acceleration variables, and their derivation ismadewithout appealing to the
principle of virtual work or to Lagrange multipliers. The geometry of constrained motion is
revealed by the canonical equations of motion in a clear and intuitive manner by partitioning
the canonical accelerations’ column matrix into two portions: a portion that drives the
mechanical system to abide by the constraints and a portion that generates the momentum
balance dynamics of the mechanical system. Some geometrical perspectives of the canonical
equations of motion are illustrated via vectorial geometric visualization, which leads to
verifying the Gauss’ principle of least constraints and its Udwadia-Kalaba interpretation.

Keywords: canonical equations of motion, discrete mechanical systems, Kane’s method,
Gauss’ principle of least constraints, cononical generalized speeds, Greville formula

1. Introduction

Deriving mathematical models for dynamical systems is in the core of the discipline of analytical
dynamics, and it is the step that precedes dynamical system’s analysis, design, and control
synthesis. For discrete mechanical systems, i.e., those composed of particles and rigid bodies,
the mathematical models are in the forms of differential equations or differential/algebraic
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equations that are derived by using fundamental laws of motion or energy principles. Because
many mechanical systems nowadays are multi-bodied with numerous degrees of freedom and
large numbers of holonomic and nonholonomic constraints, simplicity of the derived equations of
motion is important for facilitating studying the mechanical system’s characteristics and for
extracting useful information out of its mathematical model. Hence, deriving the simplest possi-
ble form of the equations of motion that govern the dynamics of the mechanical system is crucial.
Moreover, because the mechanical system’s equations of motion are simulated on digital com-
puters, computational efficiency of the derived differential equations of motion when numeri-
cally integrated is another factor by which the quality of the mathematical model is judged on.

It has been a general trend for over two centuries to employ d’Alembert’s principle of virtual
work [1] to derive equations of motion that involve no constraint forces. The principle was
implemented by Lagrange [2] for deriving the first set of such equations, which constituted the
first paradigm shift from the Newton-Euler’s approach. The only other alternative to
employing d’Alembert’s principle has been to augment the equations with undetermined
multipliers, an approach that was initiated by Lagrange himself. Other formulations that
followed the trend include the Maggi [3] and Boltzmann-Hamel [4] formulations. A remark-
able contribution of the Lagrangian approach to analytical dynamics is utilizing the concept of
generalized coordinates instead of the Cartesian coordinate concept. The choice of generalized
coordinates greatly affects simplicity of the derived equations of motion.

Another paradigm shift in the subject took place when Gibbs [5] and Appell [6] independently
derived their equations of motion. For the first time, formulating the dynamical equations
involved neither invoking d’Alembert’s principle nor augmenting undetermined multipliers.
Because d’Alembert’s principle was to many analytical dynamics practitioners, “an ill-defined,
nebulous, and hence objectionable principle,” [7] the Gibbs-Appell model was widely accepted
within the analytical dynamics community. Moreover, the absence of undetermined multi-
pliers from the Gibbs-Appell equations contributed to maintaining simplicity and practicality
of the equations for large constrained mechanical systems. Another feature of the Gibbs-
Appell approach was initiating the concept of quasi-velocities, which equal in their number to
the number of the degrees of freedom of the mechanical system. Similar to the advantage of
generalized coordinates, carefully chosen quasi-velocities can lead to dramatic simplifications
of the dynamical equations of motion.

One feature that is associated with the Gibbs-Appell’s approach is that it is based on the
differential Gauss’ principle of least constraints [8] as was shown by Appell, [9] in contrast to the
Lagrange’s approach that is based on the variational Hamilton’s principle of least action [10] as
opposed. Another feature is adopting the acceleration form of constraints to model a mechanical
system’s constraints. Although easy by itself, employing the acceleration form eased the
historical hurdle of modeling nonholonomic constraints that used to obstruct variational-based
formulations, and it is a consequence of the differential theme that is based on Gauss’ princi-
ple. In particular, the acceleration form bypassed d’Alembert’s principle and the undetermined
multiplier augmentation practices that produce false equations of nonholonomically constrained
motion, and it unified the treatments of holonomic and nonholonomic constraints.

A key developments in the arena of analytical dynamics is the Kane’s method for modeling
constrained discrete mechanical systems [11–13]. Kane’s method adopts a vector approach that
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inspired useful geometric features of the derived equations of motion [14]. The generalized active
forces and generalized inertia forces are obtained by scalar (dot) multiplications of the active and
inertia forces, respectively, with the vector entities partial angular velocities and partial velocities.
This process delicately eliminates the contribution of constraint forces without invoking the
principle of virtual work. The resulting equations are simple and effective in describing the
motion of nonconservative and nonholonomic systems within the same framework, requiring
neither energy methods nor Lagrange multipliers.

The standard Kane’s equations of motion for nonholonomic systems are minimal in general-
ized speeds, i.e., their number is equal to the number of degrees of freedom of the dynamical
system, and only the independent portion of generalized speeds and their time derivatives
appear in the equations. Nevertheless, information about dependent generalized speeds can be
practically important, e.g., for the purpose of obtaining stability information about a depen-
dent dynamics or when it desired to target a dependent dynamics with a control system design
by using state space control methodologies.

On the other hand, generalized inversion and the Greville formula for general solutions of
linear systems of algebraic equations were introduced to the subject of analytical dynamics by
Udwadia and Kalaba [15, 16] as tools for deriving equations of constrained motion for discrete
mechanical systems. The success that the formula met in modeling ideally constrained motion
is due to its geometrical structure that captures orthogonality of ideal constraint forces on
active and inertia forces, which is the essence of the principle of virtual work.

Inspired by the Udwadia-Kalaba equations of motion and the Greville formula, this chapter
introduces a new form of Kane’s equations of motion. The introduced equations of motion
employ the acceleration form of constraints, and therefore holonomic and nonholonomic
constraints are augmented within the momentum balance formulation in a unified manner
and irrespective of being linear or nonlinear in generalized coordinates and generalized
speeds. The equations of motion are nonminimal, i.e., no reduction of generalized speed’s
space dimensionality takes place from the number of generalized coordinates to the number
of degrees of freedom. Furthermore, the new equations of motion are explicit, i.e., are sepa-
rated in the generalized acceleration variables, and only one generalized acceleration variable
appears in each equation.

The main feature of the derived equations of motion is the explicit algebraic and geometric
partitioning of the generalized acceleration vector at every instant of time into two portions:
one portion drives the mechanical system to abide by the constraint dynamics, and the other
portion generates the momentum balance of the mechanical system as to follow Newton-
Euler’s laws of motion.

2. Kane’s equations of motion for holonomic systems

Consider a set of ν particles and μ rigid bodies that form a holonomic system Sh possessing n
degrees of freedom in an inertial reference frame J. Assume that n generalized coordinates
q1,…, qn are used to describe the configuration of the system. Then a corresponding set of n
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employ the acceleration form of constraints, and therefore holonomic and nonholonomic
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The main feature of the derived equations of motion is the explicit algebraic and geometric
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2. Kane’s equations of motion for holonomic systems

Consider a set of ν particles and μ rigid bodies that form a holonomic system Sh possessing n
degrees of freedom in an inertial reference frame J. Assume that n generalized coordinates
q1,…, qn are used to describe the configuration of the system. Then a corresponding set of n
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holonomic generalized speeds uh1 ,…, uhn is used to model the kinematics of the system. The two
sets are related by the kinematical differential equations [12, 13]:

_q ¼ C q; tð Þuh þD q; tð Þ, (1)

where q∈Rn is a column matrix containing the generalized coordinates; uh ∈Rn is a column

matrix containing the generalized speeds, _q ¼ dq=dt, C∈Rn�n, D∈Rn; and C�1 exists for all
q∈Rn and all t∈R [12, 13]. Kane’s dynamical equations of motion for Sh are given by [12, 13]

Fr q; uh; tð Þ þ F⋆r q; uh; _uh; tð Þ ¼ 0 , r ¼ 1,…, n, (2)

where Fr and F⋆r are the rth holonomic generalized active force and the rth holonomic general-
ized inertia force on the system, respectively, and _uh ¼ duh=dt∈Rn is a column matrix
containing the generalized accelerations. Furthermore, the velocities and angular velocities of
the particles and bodies comprising a mechanical system are linear in the generalized speeds
uhr . Hence, the accelerations, angular accelerations, and consequently the generalized inertia
forces are linear in the generalized accelerations _uhr . Therefore, a column matrix F⋆ ∈Rn

containing F⋆r , r ¼ 1,…, n can be written in the following form [17]:

F⋆ q; uh; _uh; tð Þ ¼ �Q q; tð Þ _uh � L q; uh; tð Þ, (3)

where the generalized inertia matrix Q∈Rn�n is assumed symmetric and positive definite and
L∈Rn. Hence, a matrix form of (2) is written as [17]

Q q; tð Þ _uh ¼ �L q; uh; tð Þ þ F q; uh; tð Þ: (4)

3. Kane’s equations of motion for nonholonomic systems

Let us now consider a modification of the kinematics of Sh that is made by imposing the
following simple nonholonomic constraints on the generalized speeds [12, 13]:

upþr ¼
Xp

s¼1
Ars q; tð Þus þ Br q; tð Þ, r ¼ 1,…, m, (5)

where u1,…, un are the generalized speeds of the nonholonomic system S that is resulting from
constraining Sh according to (5), m ¼ n� p, and Ars and Br are scalar functions of the general-
ized coordinates q1,…, qn, and t. The nonholonomic generalized speeds are considered to satisfy
the same kinematical relations with generalized coordinates as their holonomic counterparts,
i.e.,

_q ¼ C q; tð ÞuþD q; tð Þ: (6)

The system dynamics of S changes from that given by (2) accordingly. Let the generalized
speed column matrix be partitioned as
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u ¼ uTI uTD
� �T

, (7)

where uI ¼ u1 ⋯ up
� �T and uD ¼ upþ1 ⋯ un

� �T . Kane’s dynamical equations of motion
for S are given by [12, 13]

eFr q; uI ; tð Þ þ eF⋆
r q; uI ; _uI ; tð Þ ¼ 0 , r ¼ 1,…, p, (8)

where eFr and eF
⋆
r are the rth nonholonomic generalized active force and the rth nonholonomic

generalized inertia force on S, respectively. The relationships between holonomic generalized
active forces on Sh and nonholonomic generalized active forces on S are given by [12, 13]

eFr q; uI ; tð Þ ¼ Fr q; u; tð Þ þ
Xm
s¼1

Fpþs q; u; tð ÞAsr, r ¼ 1,…, p: (9)

In a similar manner, the relationships between holonomic generalized inertia forces on Sh and
nonholonomic generalized inertia forces on S are given by [12, 13]

eF⋆
r q; uI ; _uI ; tð Þ ¼ F⋆r q; u; _u; tð Þ þ

Xm
s¼1

F⋆pþs q; u; _u; tð ÞAsr q; tð Þ, r ¼ 1,…, p: (10)

Substituting (9) and (10) in (8) yields the unreduced form of Kane’s equations of motion for S
[12, 13, 17]:

Fr q; u; tð Þ þ F⋆r q; u; _u; tð Þ þ
Xm
s¼1

Fpþs q; u; tð Þ þ F⋆pþs q; u; _u; tð Þ
� �

Asr q; tð Þ ¼ 0, r ¼ 1,…, p: (11)

The simple nonholonomic constraint equations given by (5) can be rewritten in the following
matrix representation [17]:

uD ¼ A q; tð ÞuI þ B q; tð Þ, (12)

where A∈Rm�p and B∈Rm. Furthermore, (12) can be rewritten as [17]

A1 q; tð Þu ¼ B q; tð Þ, (13)

where A1 ∈Rm�n is given by

A1 q; tð Þ ¼ �A q; tð Þ Im�m½ �: (14)

Also, (11) can be rewritten in the matrix form [17]:

A2 q; tð ÞF⋆ q; u; _u; tð Þ ¼ �A2 q; tð ÞF q; u; tð Þ, (15)

where A2 ∈Rp�n is given by
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A1 q; tð Þ ¼ �A q; tð Þ Im�m½ �: (14)

Also, (11) can be rewritten in the matrix form [17]:

A2 q; tð ÞF⋆ q; u; _u; tð Þ ¼ �A2 q; tð ÞF q; u; tð Þ, (15)

where A2 ∈Rp�n is given by

Canonical Generalized Inversion Form of Kane’s Equations of Motion for Constrained Mechanical Systems
http://dx.doi.org/10.5772/intechopen.76648

35



A2 q; tð Þ ¼ Ip�p AT q; tð Þ
h i

: (16)

Hence, (15) becomes [17]

A2 q; tð ÞQ q; tð Þ _u ¼ �A2 q; tð ÞL q; u; tð Þ þ A2 q; tð ÞF q; u; tð Þ: (17)

Notice that (17) is obtained by multiplying both sides of (4) by A2 q; tð Þ. Therefore, the unique
holonomic generalized acceleration vector _uh that solves the fully determined system given by
(4) solves the underdetermined system given by (17) also, among an infinite number of
generalized acceleration vectors that satisfy (17), each of which preserves a constrained
momentum balance dynamics of the mechanical system.

4. Canonical generalized speeds

Choosing the set of generalized speeds is a crucial step in formulating Kane’s dynamical
Eqs. (2) and (8) because the extent of how complex these equations appear is affected by this
choice. For every choice of nonholonomic generalized speeds u1,…, un, we define the canonical
set of nonholonomic generalized speeds w1,…, wn such that

w ¼ Q1=2 q; tð Þu, (18)

where w is the column matrix containing w1,…, wn and Q1=2 is the square root matrix of Q.
With this choice of generalized speeds, (13) becomes

A 1 q; tð Þw ¼ B q; tð Þ, (19)

where A 1 q; tð Þ ¼ A1 q; tð ÞQ�1=2 q; tð Þ. The time derivative of (18) is

_w ¼ _Q1=2 q; u; tð ÞuþQ1=2 q; tð Þ _u (20)

where _Q1=2 is the element-wise time derivative of Q1=2 along the trajectory solutions of the
kinematical differential Eqs. (6). Therefore, (17) becomes

A2 q; tð ÞQ1=2 q; tð Þ _w ¼ �A2 q; tð ÞL q; u; tð Þ þ A2 q; tð ÞF q; u; tð Þ þ A2 q; tð ÞQ1=2 q; tð Þ _Q1=2 q; u; tð Þu (21)

and can be simplified further to the following form:

A 2 q; tð Þ _w ¼ A 2 q; tð ÞQ�1=2 q; tð Þ F q; u; tð Þ � L q; u; tð Þð Þ þA 2 q; tð Þ _Q1=2 q; u; tð Þu (22)

whereA 2 q; tð Þ ¼ A2 q; tð ÞQ1=2 q; tð Þ. We view the nonholonomic mechanical system dynamics as
being composed of two parts: a constraint dynamics that is modeled by (19) and a momentum
balance dynamics that is modeled by (22). Scaling velocity variables and constraint matrices by
square roots of the inertia matrices for the purpose of characterizing constrained motion is
implicit in Gauss’ principle of least constraints [8] as will be shown later in this paper.
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Moreover, deriving explicit equations of motion for constrained mechanical systems by utiliz-
ing this type of scaling is first due to Udwadia and Kalaba. [15, 16] The arguments of the
functions are omitted in the remaining sections for brevity, unless necessary to clarify concepts.

5. Generalized accelerations from the acceleration form of constraints

Time differentiating the constraint dynamics given by (19) yields [17]

A 1 _w ¼ V1, (23)

where V1 ∈Rm is given by

V1 ¼ _B q; u; tð Þ � _A 1 q; u; tð Þw, (24)

where _B and _A 1 are the element-wise time derivatives of B and A 1 along the trajectory
solutions of the kinematical differential Eqs. (6). The general solution of the above-written
acceleration form of constraint equations for _w is given by the Greville formula as [18–20]

_w ¼ A þ
1 V1 þP1y1, (25)

where Aþ1 is the Moore-Penrose generalized inverse (MPGI) [21, 22] ofA1 and

P1 ¼ In�n �A þ
1 A 1 (26)

is the projection matrix on the nullspace of A 1 and y1 ∈Rn is an arbitrary vector as for
satisfying the acceleration form given by (25) but is yet to be determined to obtain the unique

natural generalized acceleration. Because Q�1=2 is of full rank, it follows thatA 1 retains the full
row rank of A1 and hence that A þ

1 ∈Rn�m is given by the closed form expression:

A þ
1 ¼ A T

1 A 1A
T
1

� ��1
: (27)

In (25), the following holds

A þ
1 V1 ∈R A T

1

� �
, P1y1 ∈N A 1ð Þ (28)

where R �ð Þ and N �ð Þ refer to the range space and the nullspace, respectively. The term A þ
1 V1

in (25) is the minimum norm solution of (23) for _w among infinitely many solutions that are
parameterized by y1.

6. Generalized accelerations from the momentum balance dynamics

Let V2 ∈Rn be given by
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V2 ¼ Q�1=2 F� Lð Þ þ _Q1=2u: (29)

Then the momentum balance Eq. (22) takes the following compact form:

A 2 _w ¼ A 2V2 (30)

where A2 retains the full row rank of A2 because Q1=2 is of full row rank. Hence, another
expression for the general solution of _w is obtained by utilizing the Greville formula to solve
(30) and is given by

_w ¼ A þ
2 A 2V2 þP2y2 (31)

where Aþ2 ∈Rn�p is given by the closed form expression:

A þ
2 ¼ A T

2 A 2A
T
2

� ��1
(32)

and

P2 ¼ In�n �A þ
2 A 2 (33)

and y2 ∈Rn is an arbitrary vector as for satisfying the momentum balance dynamics given by
(30), but its unique value that solves for the natural generalized acceleration vector _w is yet to
be determined, and

A þ
2 A 2V2 ∈R A þ

2 A 2
� � ¼ R A T

2

� �
, P2y2 ∈N A 2ð Þ: (34)

The term A þ
2 A 2V2 in (31) is the minimum norm solution of (30) for _w among infinitely many

solutions that are parameterized by y2.

7. Canonical generalized inversion Kane’s equations of motion

Since A1 and A2 are full row rank matrices and their numbers of rows m and p sum up to the
full space dimension n and since

A 1A
T
2 ¼ A1Q�1=2

� �
A2Q1=2
� �T

¼ A1Q�1=2
� �

A2Q1=2
� �T

¼ A1Q�1=2Q1=2AT
2 ¼ A1AT

2 ¼ �Aþ A ¼ 0m�m

(35)

it follows that the row spaces of A 1 and A 2 are orthogonal complements, i.e.,

R A T
1

� � ¼ R A T
2

� �� �⊥
: (36)

Nevertheless, since [23]
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R A T
1

� � ¼ N A 1ð Þ½ �⊥ (37)

then it follows from (36) that

R A T
2

� � ¼ N A 1ð Þ: (38)

Since the only part in the expression of _w given by (25) that is in N A 1ð Þ is the second term
P1y1, and since the ony part in the equivalent expression of _w given by (31) that is inR A T

2

� �
is

the first term A þ
2 A 2V2, it follows from (38) that

P1y1 ¼ A þ
2 A 2V2: (39)

Substituting (39) in (25) yields the canonical generalized inversion form of Kane’s equations for
nonholonomic systems:

_w ¼ A þ
1 V1 þA þ

2 A 2V2: (40)

The same result is obtained by using the fact:

N A 2ð Þ ¼ R A T
2

� �� �⊥
(41)

which implies by using (36) that

R A T
1

� � ¼ N A 2ð Þ (42)

Since the only part in the expression of _w given by (25) that is inR A T
1

� �
is the first termA þ

1 V1,
and since the only part in the equivalent expression of _w given by (31) that is in N A 2ð Þ is the
second term P2y2, it follows from (42) that

P2y2 ¼ A þ
1 V1: (43)

(Substituting (43) in (31) yields Eq. (40). Eq. (20) can be used to express (40) in terms of the
original generalized acceleration vector _u, resulting in

_u ¼ Q�1=2 A þ
1 V1 þA þ

2 A 2V2 � _Q1=2u
� �

: (44)

8. Geometric interpretation of the canonical generalized inversion form

Adopting the canonical set w1,⋯, wn of generalized speeds in deriving the dynamical equa-
tions for a mechanical system reveals the geometry of its constrained motion. Figure 1 depicts
a geometrical visualization of the n dimensional Euclidian space at an arbitrary time instant t.
The vertical and the horizontal axes resemble the orthogonally complements m dimensional
and p dimensional subspaces R A T

1

� �
and R A T

2

� �
, respectively.

Canonical Generalized Inversion Form of Kane’s Equations of Motion for Constrained Mechanical Systems
http://dx.doi.org/10.5772/intechopen.76648

39



V2 ¼ Q�1=2 F� Lð Þ þ _Q1=2u: (29)

Then the momentum balance Eq. (22) takes the following compact form:

A 2 _w ¼ A 2V2 (30)

where A2 retains the full row rank of A2 because Q1=2 is of full row rank. Hence, another
expression for the general solution of _w is obtained by utilizing the Greville formula to solve
(30) and is given by

_w ¼ A þ
2 A 2V2 þP2y2 (31)

where Aþ2 ∈Rn�p is given by the closed form expression:

A þ
2 ¼ A T

2 A 2A
T
2

� ��1
(32)

and

P2 ¼ In�n �A þ
2 A 2 (33)

and y2 ∈Rn is an arbitrary vector as for satisfying the momentum balance dynamics given by
(30), but its unique value that solves for the natural generalized acceleration vector _w is yet to
be determined, and

A þ
2 A 2V2 ∈R A þ

2 A 2
� � ¼ R A T

2

� �
, P2y2 ∈N A 2ð Þ: (34)

The term A þ
2 A 2V2 in (31) is the minimum norm solution of (30) for _w among infinitely many

solutions that are parameterized by y2.

7. Canonical generalized inversion Kane’s equations of motion

Since A1 and A2 are full row rank matrices and their numbers of rows m and p sum up to the
full space dimension n and since

A 1A
T
2 ¼ A1Q�1=2

� �
A2Q1=2
� �T

¼ A1Q�1=2
� �

A2Q1=2
� �T

¼ A1Q�1=2Q1=2AT
2 ¼ A1AT

2 ¼ �Aþ A ¼ 0m�m

(35)

it follows that the row spaces of A 1 and A 2 are orthogonal complements, i.e.,

R A T
1

� � ¼ R A T
2

� �� �⊥
: (36)

Nevertheless, since [23]
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R A T
1

� � ¼ N A 1ð Þ½ �⊥ (37)

then it follows from (36) that

R A T
2

� � ¼ N A 1ð Þ: (38)

Since the only part in the expression of _w given by (25) that is in N A 1ð Þ is the second term
P1y1, and since the ony part in the equivalent expression of _w given by (31) that is inR A T

2

� �
is

the first term A þ
2 A 2V2, it follows from (38) that

P1y1 ¼ A þ
2 A 2V2: (39)

Substituting (39) in (25) yields the canonical generalized inversion form of Kane’s equations for
nonholonomic systems:

_w ¼ A þ
1 V1 þA þ

2 A 2V2: (40)

The same result is obtained by using the fact:

N A 2ð Þ ¼ R A T
2

� �� �⊥
(41)

which implies by using (36) that

R A T
1

� � ¼ N A 2ð Þ (42)

Since the only part in the expression of _w given by (25) that is inR A T
1

� �
is the first termA þ

1 V1,
and since the only part in the equivalent expression of _w given by (31) that is in N A 2ð Þ is the
second term P2y2, it follows from (42) that

P2y2 ¼ A þ
1 V1: (43)

(Substituting (43) in (31) yields Eq. (40). Eq. (20) can be used to express (40) in terms of the
original generalized acceleration vector _u, resulting in

_u ¼ Q�1=2 A þ
1 V1 þA þ

2 A 2V2 � _Q1=2u
� �

: (44)

8. Geometric interpretation of the canonical generalized inversion form

Adopting the canonical set w1,⋯, wn of generalized speeds in deriving the dynamical equa-
tions for a mechanical system reveals the geometry of its constrained motion. Figure 1 depicts
a geometrical visualization of the n dimensional Euclidian space at an arbitrary time instant t.
The vertical and the horizontal axes resemble the orthogonally complements m dimensional
and p dimensional subspaces R A T

1

� �
and R A T

2

� �
, respectively.
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In viewing the canonical generalized acceleration _w given by (40) as the geometrical vector
shown in Figure 1, it is shown to be composed of two components that are orthogonal to each
other: The vertical component A þ

1 V1 resides in R A T
1

� �
, and it enforces the constraint dynam-

ics given by (23), and the horizontal component A þ
2 A 2V2 resides in R A T

2

� �
, and it generates

the momentum balance dynamics given by (30).

Moreover, the vertical component of _w is the shortest in length “minimum norm” solution
among infinitely many solutions of (23) that are parameterized by y1 according to (25). These
solutions can also be represented by arbitrary horizontal deviation vectors: Δ2i _w ¼ A þ

2 A 2δi
V2 ∈R A T

2

� �
, i ¼ 1, 2,… as

_w þ Δ2i _w ¼ A þ
1 V1 þA þ

2 A 2 V2 þ δiV2ð Þ (45)

and are shown to solve (23) by direct substitution and noticing that A 1A
þ
1 ¼ Im�m and

A 1A
þ
2 ¼ 0m�p. Two of these solutions are plotted (in dotted red) in Figure 1 for arbitrary

vectors δ1V2 and δ2V2 in Rn, in addition to the natural generalized acceleration vector _w that
is obtained by setting δiV2 ¼ 0n.

Similarly, the horizontal component A 2A
þ
2 V2 of _w is the shortest solution among infinitely

many solutions of (30) that are parameterized by y2 according to (31). These solutions can also

be represented by arbitrary vertical deviation vectors: Δ1i _w ¼ A þ
1 δiV1 ∈R A T

1

� �
, i ¼ 1, 2,… as

Figure 1. Geometric visualization of the constrained generalized acceleration vector _w.
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_w þ Δ1i _w ¼ A þ
2 A 2V2 þA þ

1 V1 þ δiV1ð Þ (46)

and are shown to solve (30) by direct substitution and noticing that A 2A
þ
2 ¼ Ip�p and

A 2A
þ
1 ¼ 0p�m. Two of these solutions are plotted (in dotted blue) in Figure 1 for arbitrary

vectors δ1V1 and δ2V1 in Rm, in addition to the natural generalized acceleration vector _w that is
obtained by setting δiV1 ¼ 0m. Notice that the canonical generalized acceleration vector _w is
the only solution that solves (45, 46) simultaneously and is obtained by setting δiV2 ¼ 0n and
δiV1 ¼ 0m.

Now consider a general deviation vector Δ _w that is composed of arbitrary vertical and hori-
zontal deviation components from _w as shown in Figure 2. The vertical component A þ

1 δV1

abides by (46) but violates (45), and the horizontal component A þ
2 A 2δV2 abides by (45) but

violates (46). Hence:

Δ _w ¼ A þ
1 δV1 þA þ

2 A 2δV2: (47)

The deviated canonical generalized acceleration vector _w þ Δ _w is obtained by summing (40)
and (47) as

Figure 2. Deviation from the constrained generalized acceleration vector _w.
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_w þ Δ1i _w ¼ A þ
2 A 2V2 þA þ
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_w þ Δ _w ¼ A þ
1 V1 þ δV1ð Þ þA þ

2 A 2 V2 þ δV2ð Þ (48)

and is shown in Figure 2 in dotted blue. On the other hand, the canonical holonomic generalized
acceleration vector in terms of the canonical generalized speeds is obtained from (4) and (20) as

_wh ¼ V2 (49)

where wh ¼ Q1=2u and u solves (4). Decomposing the expression of _wh along R A 1ð Þ and
R A 2ð Þ yields

_wh ¼ V2 ¼P1V2 þP2V2 (50)

¼ In�n �A þ
1 A 1

� �
V2 þ In�n �A þ

2 A 2
� �

V2 (51)

¼ A þ
2 A 2V2 þA þ

1 A 1V2: (52)

Let us now specify the deviated generalized acceleration vector _w þ Δ _w to be _wh as shown in
Figure 3. Equating the two expressions (48) and (52) and solving for δV1 and δV2 yield

δV1 ¼ A 1V2 � V1, (53)

and

δV2 ¼ 0n: (54)

Substituting δV1 and δV2 in (47) yields

Δ _w ¼ A þ
1 A 1V2 � V1ð Þ (55)

which corresponds to the vertical solid red vector in Fig. (3). Notice that Δ _w is the shortest
among all deviation vectors that end up at _wh (two of which are shown in dotted red) by
deviating from generalized acceleration vectors that abide by the constraint dynamics given by
(23) (two of which are shown in dotted green), i.e.,

∥Δ _w∥ ¼ ∥ _wh � _w∥ ¼ min
i

∥Δ _wi∥ ¼ min
i

∥ _wh � _wi∥, i ¼ 1, 2,… (56)

where _wi satisfies

A 1 _wi ¼ V1 (57)

and ∥x∥ denotes the Euclidean norm of x given by ∥x∥ ¼
ffiffiffiffiffiffiffiffi
xTx
p

. Moreover, Δw can be expressed
in terms of the original set of generalized speeds as

Δw ¼ Q1=2Δu (58)

where Δu ¼ uh � u is the difference between holonomic and nonholonomic generalized
speeds. Therefore:
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∥Δ _w∥ ¼ ∥Q1=2Δ _u þ _Q1=2Δu∥ ¼ min
i

∥Q1=2Δ _ui þ _Q1=2Δu∥, i ¼ 1, 2,… (59)

where Δ _ui ¼ _uh � _ui and _ui satisfies

A 1 _wi ¼ A 1 Q1=2 _ui þ _Q1=2u
� �

¼ V1: (60)

Nevertheless, (59) implies that

∥Q1=2Δ _u∥ ¼ min
i

∥Q1=2Δ _ui∥, i ¼ 1, 2,…:, (61)

which in terms of the square Euclidean norm implies that

∥Q1=2Δ _u∥2 ¼ Δ _uTQ1=2Q1=2Δ _u ¼ min
i

Δ _uT
i Q

1=2Q1=2Δ _ui

� �
(62)

¼ Δ _uTQΔ _u ¼ min
i

Δ _uT
i QΔ _ui

� �
, i ¼ 1, 2,…: (63)

Figure 3. Deviation from the constrained generalized acceleration vector _w.

Canonical Generalized Inversion Form of Kane’s Equations of Motion for Constrained Mechanical Systems
http://dx.doi.org/10.5772/intechopen.76648

43



_w þ Δ _w ¼ A þ
1 V1 þ δV1ð Þ þA þ

2 A 2 V2 þ δV2ð Þ (48)

and is shown in Figure 2 in dotted blue. On the other hand, the canonical holonomic generalized
acceleration vector in terms of the canonical generalized speeds is obtained from (4) and (20) as

_wh ¼ V2 (49)

where wh ¼ Q1=2u and u solves (4). Decomposing the expression of _wh along R A 1ð Þ and
R A 2ð Þ yields

_wh ¼ V2 ¼P1V2 þP2V2 (50)

¼ In�n �A þ
1 A 1

� �
V2 þ In�n �A þ

2 A 2
� �

V2 (51)

¼ A þ
2 A 2V2 þA þ

1 A 1V2: (52)

Let us now specify the deviated generalized acceleration vector _w þ Δ _w to be _wh as shown in
Figure 3. Equating the two expressions (48) and (52) and solving for δV1 and δV2 yield

δV1 ¼ A 1V2 � V1, (53)

and

δV2 ¼ 0n: (54)

Substituting δV1 and δV2 in (47) yields

Δ _w ¼ A þ
1 A 1V2 � V1ð Þ (55)

which corresponds to the vertical solid red vector in Fig. (3). Notice that Δ _w is the shortest
among all deviation vectors that end up at _wh (two of which are shown in dotted red) by
deviating from generalized acceleration vectors that abide by the constraint dynamics given by
(23) (two of which are shown in dotted green), i.e.,

∥Δ _w∥ ¼ ∥ _wh � _w∥ ¼ min
i

∥Δ _wi∥ ¼ min
i

∥ _wh � _wi∥, i ¼ 1, 2,… (56)

where _wi satisfies

A 1 _wi ¼ V1 (57)

and ∥x∥ denotes the Euclidean norm of x given by ∥x∥ ¼
ffiffiffiffiffiffiffiffi
xTx
p

. Moreover, Δw can be expressed
in terms of the original set of generalized speeds as

Δw ¼ Q1=2Δu (58)

where Δu ¼ uh � u is the difference between holonomic and nonholonomic generalized
speeds. Therefore:

Nonlinear Systems - Modeling, Estimation, and Stability42

∥Δ _w∥ ¼ ∥Q1=2Δ _u þ _Q1=2Δu∥ ¼ min
i

∥Q1=2Δ _ui þ _Q1=2Δu∥, i ¼ 1, 2,… (59)

where Δ _ui ¼ _uh � _ui and _ui satisfies

A 1 _wi ¼ A 1 Q1=2 _ui þ _Q1=2u
� �

¼ V1: (60)

Nevertheless, (59) implies that

∥Q1=2Δ _u∥ ¼ min
i

∥Q1=2Δ _ui∥, i ¼ 1, 2,…:, (61)

which in terms of the square Euclidean norm implies that

∥Q1=2Δ _u∥2 ¼ Δ _uTQ1=2Q1=2Δ _u ¼ min
i

Δ _uT
i Q

1=2Q1=2Δ _ui

� �
(62)

¼ Δ _uTQΔ _u ¼ min
i

Δ _uT
i QΔ _ui

� �
, i ¼ 1, 2,…: (63)

Figure 3. Deviation from the constrained generalized acceleration vector _w.

Canonical Generalized Inversion Form of Kane’s Equations of Motion for Constrained Mechanical Systems
http://dx.doi.org/10.5772/intechopen.76648

43



Eq. (63) is exactly the statement of Gauss’ principle of least constraints [8]. The present geo-
metric interpretation of Gauss’ principle was first introduced by Udwadia and Kalaba [24].

9. Conclusion

The chapter introduces the canonical generalized inversion dynamical equations of motion for
nonholonomic mechanical systems in the framework of Kane’s method. The introduced equa-
tions of motion use the Greville formula and utilize its geometric structure to produce a full
order set of dynamical equations for the nonholonomic system. Moreover, the acceleration
form of constraint equations is adopted in a similar manner as in the classical Gibbs-Appell,
Udwadia-Kalaba, and Bajodah-Hodges-Chen formulations.

The philosophy on which the present formulation of the dynamical equations of motion is
based views the constrained system dynamics of the mechanical system as being composed of
a constraint dynamics and a momentum balance dynamics that is unaltered by augmenting
the constraints. Inverting both dynamics by means of two Greville formulae and invoking the
geometric relations between the resulting two expressions yield the unique natural canonical
generalized acceleration vector.

Because the momentum balance dynamics and the acceleration form of constraint dynamics
are linear in generalized accelerations, only linear geometric and algebraic mathematical tools
are needed to analyze constrained motion of discrete mechanical systems. Also, the present
linear analysis is valid in despite of dependencies among the constraint equations and changes
in rank that the constraint matrix Amay experience because the matrices A1 and A2 are always
of full row ranks and their m and p rows span two orthogonally complement row spaces.
Another advantage of maintaining full row ranks of A1 and A2 is that their generalized
inverses have explicit and closed form expressions, which alleviate the need for employing
numerical methods for computing generalized inverses.
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Abstract

Various differentiable models are frequently used to describe the dynamics of complex
systems (see the kinetic models, fluid models, etc.). Given the complexity of all the
physical phenomena involved in the dynamics of such systems, it is required to introduce
the dynamic variable dependencies both on the space-time coordinates and on the scale
resolutions. Therefore, in this case an adequate theoretical approach may be the use of
non-linear physical models either in the form of the Scale Relativity Theory or of the
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However, not only the complex structure of bio-structure justifies the using of fractality, but
also the complex structure of the arterial system, with its multiple ramifications, which gener-
ate turbulence areas and interruptions of the linear flowing that make classical physics not
applicable in this context. We can thus discuss about multi-fractality: a morphological one due
to complex structure of the arterial tree as well as a functional one due to bio-structure flow
“regimes” [2]. Also, the stress of a visco-elastic fluid, unlike the Newtonian fluid, depends not
only on the actually stress applied but on the one applied during previous deformation of the
fluid [3, 4].

Standard theoretical models usually used in complex fluid dynamics and particularly that of
flow through bio-structure vessels are ambiguous [5]. The assessment that the entities
contained by bio-structure move along continuous and differentiable courses proves to be
false, as it cannot comprise the entire variety of dynamics that are induced by the flowing of
bio-structure through the vessel system (from the separation of bio-structure components
through turbulence regimes to bio-structure-bio-structure vessel interactions).

In this context, we propose a new hypothesis according to which bio-structure structural
unit move on continuous but non-differentiable curves (and particularly on fractal curves).
We cannot predict the entirety of the bio-structure-vessel system, bio-structure-organic tis-
sues, etc., or at elementary level, bio-structure entity-bio-structure structural unit (i.e., lym-
phocyte – granulocyte, lymphocyte – platelet and others) interactions. This is why accepting
the above stated hypothesis comes up as a simple, elegant and efficient solution, the impos-
sibility of predicting all these interactions that take place being substituted by the use of
fractality [6].

We are led to the dynamics of a special type of fluid, free of interactions, in which the stream
lines are continuous and non-differentiable curves.

Multiple physical models have been developed in the attempt to explain the dynamics of
bio-structure flow and its physiological and pathological changes on the course of the entire
arterial trunk, starting from the big elastic arteries and continuing with the small arteries
and arterioles – resistance vessels -, following with the bio-structure capillaries (with arter-
ial and venous components) and, backwards, with the post capillary veins, then with the
middle and large veins – capacitance vessels – ensuring the anti-gravitational mobilization of
bio-structure.

Thus, the hypothesis of the geometric risk factor in the development of the circulatory system’s
suffering has been proposed. This initially promising theory [7] proved its drawbacks that
derive from a non-differentiable, Euclidean approach to the dynamics of bio-structure flow
and its effects on the vessels’ wall. The proposed counterbalance is represented by fractal
physics laws [4, 8] that offer a great amount of freedom due to accepting the relativity of the
complex fluids’ behavior (bio-structure belongs to this category).

Correspondingly, the theoretical models that describe the complex fluids’ dynamics are sophis-
ticated [4, 8]. However, these models can be simplified since the complexity of the interaction
process imposes various temporal resolution scales. Also, one should take into account the fact
that the pattern evolution imposes different freedom degrees [3, 28].
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One could develop new theoretical models assuming the fact that the complex fluids
displaying chaotic behavior are recognized to acquire self-similarity in association with strong
fluctuations at all possible space-time scales [4, 9]. One can replace the deterministic trajecto-
ries by collections of potential trajectories for temporal scales which are large with respect to
the inverse of the highest Lyapunov exponent (see, e.g., [10, 11]). Also, the concept of definite
positions can be replaced by that of probability density. An interesting example is represented
by that of collisions processes in complex system, where the dynamics of the particles can be
described by fractal (non-differentiable) curves.

Since fractality (non-differentiability) is a universal property of complex fluids, one should
build a fractal (non-differentiable) physics. In this context, replacing the complexity of the
interactions processes by non-differentiability, it is not necessary anymore to use the classical
“arsenal” of quantities from the differentiable physics. This was developed in the Scale Rela-
tivity Theory (SRT) [12, 13] and in the non-standard Scale Relativity Theory (NSRT), i.e., Scale
Relativity Theory with arbitrary constant fractal dimension [14]. In the framework of SRT or
NSRT let us suppose that the complex system structural unit motions take place on continuous
but non-differentiable curves (called fractal curves). In this way, all physical phenomena that
are involved in the dynamics depend on the space-time coordinates and also on the space-time
scales resolution. In this context, the physical quantities describing the complex systems
dynamics could be considered to be fractal functions [13, 14]. Additionally, the complex system
entities could be reduced to and identified with their own trajectories. In this way, the complex
system behaves as a special interaction-less “fluid” by means of its geodesics in a non-
differentiable (fractal) space.

In the present chapter, various bio-structure flow dynamics are analyzed aiming to propose
new mechanisms for the genesis and evolution of different bio-structure-related pathologies
(arterial occlusion, cholesterol deposition, etc.).

2. Material and method

Assuming that the motions of bio-structure’s structural units take place on continuous but
non-differentiable curves (fractal curves), the following consequences emerge [13, 14]:

(i) Any continuous but non-differentiable curve of bio-structure’s structural units (bio-
structure fractal curve) is scale resolution δt dependent. This means that when δt tends to
zero, its length tends to infinity.

Let us recall that a curve is non-differentiable if it satisfies the Lebesgue theorem [9]. This
means that when the scale resolution goes to zero, its length becomes infinite. In consequence,
in this limit, a curve has a zigzag form and consequently it has the property of self-similarity in
every one of its points. Since every part reflects the whole, this can be translated into a
holography property [9];

(ii) The physics of bio-structure phenomena are related to the behavior of a set of functions
during the zoom operation of the resolution scale δt. Through the substitution principle, δt
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can be identified with dt, that is, δt � dt. Consequently, it will play the role of an indepen-
dent variable. We shall use the notation dt for the usual time as in the Hamiltonian bio-
structure dynamics;

(iii) The dynamics of bio-structure’s structural units are described by means of fractal vari-
ables. Since the differential time reflection invariance of any dynamical variable is broken,
these functions depend on the space-time coordinates and also on the resolution scale. In
consequence, one can define two derivatives of the variable fieldQ t; dtð Þ at any point of the
bio-structure fractal curve:

dþQ t; dtð Þ
dt

¼ lim
Δt!0þ

Q tþ Δt;Δtð Þ �Q t;Δtð Þ
Δt

d�Q t; dtð Þ
dt

¼ lim
Δt!0�

Q t;Δtð Þ �Q t� Δt;Δtð Þ
Δt

(1)

The “+” sign corresponds to forward processes of bio-structure’s structural units, while the
“�” sign correspond to the backwards ones;

(iv) The differential of the spatial coordinate field dXi t; dtð Þ by means of which we can describe
the bio-structure dynamics, is expressed as the sum of the two differentials, one of them
being scale resolution independent (differential part d�xi tð Þ and the other one being scale
resolution dependent (fractal part dþζi tð ÞÞ i.e.,

d�Xi tð Þ ¼ d�xi tð Þ þ d�ζi tð Þ (2)

(v) The non-differentiable part of the spatial coordinate field, by means of which we can
describe the bio-structure dynamics, satisfies the fractal equation [14]:

d�ζi t; dtð Þ ¼ λi
� dtð Þ1=DF (3)

where λi
� are constant coefficients that help to specify the fractalization type which describes

the bio-structure dynamics. Also, DF defines the fractal dimension of the bio-structure non-
differentiable curve.

In this way, the bio-structure processes imply dynamics on geodesics having different fractal
dimensions. This variety of fractal dimensions of the bio-structure geodesics is a result of the
bio-structure’s structure. For DF ¼ 2, quantum type processes are generated in bio-structure
dynamics [15]. For DF < 2, correlative type processes are induced and for DF > 2 non-
correlative type processes are generated [6, 12, 13].

(vi) The differential time reflection invariance of any dynamical variable of the bio-structure is
recovered by combining the derivatives dþ=dt and d�=dt in the non-differentiable operator

bddt ¼ 1
2

dþ þ d�
dt

� �
� i
2

dþ � d�
dt

� �
(4)

This is a natural result of the complex prolongation procedure applied to bio-structure dynam-
ics [14, 16]. Applying now the non-differentiable operator to the spatial coordinate field, by
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means of which we can describe the bio-structure dynamics, yields the complex velocity field
of the bio-structure.

bV i ¼
bdXi

dt
¼ Vi � iUi, i ¼

ffiffiffiffiffiffiffi
�1
p

(5)

with

Vi ¼ 1
2
dþXi þ d�Xi

dt
, Ui ¼ 1

2
dþXi � d�Xi

dt
(6)

The real part Vi of the bio-structure complex velocity field is differentiable and scale resolution

independent (differentiable velocity field). The imaginary part Ui is non-differentiable and
scale resolution dependent (fractal velocity field).

(vii) If we have no external constraint, one can find an infinite number of fractal curves (geo-
desics) relating any pair of points. This happens on all scales of bio-structure dynamics.
Then, in the fractal space of the bio-structure, all the structural units are substituted with the
geodesics themselves so that any external constraint can be interpreted as a selection of bio-
structure geodesics. The infinity of geodesics in the bundle, their non-differentiability and
the two values of the derivative imply a generalized statistical fluid-like description of the
bio-structure dynamics. Then, the average values of the bio-structure variables must be
considered in the previously mentioned sense, so the average of d�Xi is

d�Xi� � � d�xi (7)

with

d�ζi
� � ¼ 0 (8)

The previous relation (8) implies that the average of the fractal fluctuations is null.

(viii) One can describe the bio-structure dynamics by means of a scale covariant derivative. Its
explicit form can be obtained as follows. We assume that the bio-structure fractal curves
are immersed in a 3-dimensional space. We also suppose that Xi is the spatial coordinate
field of a point on this fractal curve. Let us also consider a variable field Q Xi; t

� �
and the

following Taylor expansion up to the second order

d�Q Xi; t
� � ¼ ∂tQdtþ ∂iQd�X

i þ 1
2
∂l∂kQd�X

ld�Xk (9)

These relations are valid at any point and more for the points Xi on the bio-structure fractal
curve which we have selected in Eq. (9). From here, forward and backward average values for
bio-structure variables from Eq. (9) become

d�Qh i ¼ ∂tQdth i þ ∂iQd�X
i� �þ 1

2
< ∂l∂kQd�X

ld�Xk > (10)
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We suppose that the average values of the all variable field Q and its derivatives coincide with
themselves and the differentials d�Xi and dt are independent. Therefore, the average of their
products coincides with the product of averages. Consequently, Eq. (10) becomes

d�Q ¼ ∂tQdtþ ∂iQ < d�Xi > þ 1
2
∂l∂kQ d�Xld�Xk� �

(11)

Even the average value of d�ζi is null, for the higher order of d�ζi the situation can still be

different. Let us focus on the averages d�ζld�ζk
� �

. Using Eq. (3) we can write

d�ζld�ζk
� � ¼ �λl

�λ
k
� dtð Þ

2
DF

� �
�1
dt (12)

where the sign + corresponds to dt > 0 and the sign – corresponds to dt < 0.

Then, Eq. (11) takes the form:

d�Q ¼ ∂tQdtþ ∂iQ < d�Xi > þ 1
2
∂l∂kQd�x

ld�xk � 1
2
∂l∂kQ λl

�λ
k
� dtð Þ

2
DF

� �
�1
dt

" #
(13)

If we divide by dt and neglect the terms that contain differential factors (for details, see the
method from [13, 14]) we obtain:

d�Q
dt
¼ ∂tQþ νi�∂iQ�

1
2
λl
�λ

k
� dtð Þ

2
DF

� �
�1
∂l∂kQ (14)

where νiþ ¼ dþxi
dt , νi� ¼ d�xi

dt .

These relations also allow us to define the operators

d�
dt
¼ ∂t þ νi�∂i �

1
2
λl
�λ

k
� dtð Þ

2
DF

� �
�1
∂l∂k (15)

Using Eqs. (4), (5), and (15), let us calculate the differentiable operator

bdQ
dt
¼ ∂tQþ bV i

∂iQþ 1
4

dtð Þ
2
DF

� �
�1
Dlk∂l∂kQ (16)

where

Dlk ¼ dlk � id
lk

dlk ¼ λl
þλ

k
þ � λl

�λ
k
�, d

lk ¼ λl
þλ

k
þ þ λl

�λ
k
�

(17)

Eq. (16) also allows us to define the covariant derivative in the bio-structure dynamics
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bd
dt
¼ ∂t þ bV i

∂i þ 1
4

dtð Þ
2
DF

� �
�1
Dlk∂l∂k (18)

Let us now consider the principle of scale covariance (the physics laws – bio-structure dynam-
ics specific – are invariant with respect to scale transformations) and postulate that the passage
from the classical (differentiable) physics to the fractal (non-differentiable) physics can
be implemented by replacing the standard time derivative d=dt by the non-differentiable

operator bd=dt. In this way, this operator has the role of a scale covariant derivative. More
precisely, it is used to write the bio-structure dynamics fundamental equations in the same
form as in the classic (differentiable) case. In these conditions, applying the operator (18) to the
complex velocity field (5), with no external constraint, the bio-structure geodesics take the
form:

bdbVi

dt
¼ ∂tbV i þ bV l

∂lbV i þ 1
4

dtð Þ
2
DF

� �
�1
Dlk∂l∂kbV i ¼ 0 (19)

This means that the local acceleration ∂tbV i
, the convection bV l

∂lbV i
and the dissipation Dlk∂l∂kbV i

,
make their balance at any point of the bio-structure fractal curve. Moreover, the presence of the

complex coefficient of viscosity-type 4�1 dtð Þ
2
DF

� �
�1
Dlk in the bio-structures dynamics specifies

that it is a rheological medium. So, it has memory, as a datum, by its own structure.

If the fractalization is achieved by Markov type stochastic processes, which involve Lévy type
movements [9, 13, 17] of the bio-structure structural units, then:

λi
þλ

l
þ ¼ λi

�λ
l
� ¼ 2λδil (20)

where δil is the Kronecker’s pseudo-tensor.

Under these conditions, the equation of bio-structure geodesics takes the simple form

bdbV i

dt
¼ ∂tbV i þ bVl

∂lbV i � iλ dtð Þ
2
DF

� �
�1
Dlk∂l∂kbV i ¼ 0 (21)

or more, by separating the motions on differential and fractal scale resolutions,

bdVi
D

dt ¼ ∂tVi
D þ Vl

D∂lV
i
D � Vl

F þ λ dtð Þ
2
DF

� �
�1
∂l

" #
∂lVi

F ¼ 0

bdVi
F

dt ¼ ∂tVi
F þ Vl

D∂lV
i
F þ Vl

F þ λ dtð Þ
2
DF

� �
�1
∂l

" #
∂lVi

D ¼ 0

(22)

Using the standard procedure from [18], the bio-structure dynamics at fractal scale resolution
can be described by means of the following equations:
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We suppose that the average values of the all variable field Q and its derivatives coincide with
themselves and the differentials d�Xi and dt are independent. Therefore, the average of their
products coincides with the product of averages. Consequently, Eq. (10) becomes

d�Q ¼ ∂tQdtþ ∂iQ < d�Xi > þ 1
2
∂l∂kQ d�Xld�Xk� �

(11)

Even the average value of d�ζi is null, for the higher order of d�ζi the situation can still be

different. Let us focus on the averages d�ζld�ζk
� �

. Using Eq. (3) we can write

d�ζld�ζk
� � ¼ �λl

�λ
k
� dtð Þ

2
DF

� �
�1
dt (12)

where the sign + corresponds to dt > 0 and the sign – corresponds to dt < 0.

Then, Eq. (11) takes the form:

d�Q ¼ ∂tQdtþ ∂iQ < d�Xi > þ 1
2
∂l∂kQd�x

ld�xk � 1
2
∂l∂kQ λl

�λ
k
� dtð Þ

2
DF

� �
�1
dt

" #
(13)

If we divide by dt and neglect the terms that contain differential factors (for details, see the
method from [13, 14]) we obtain:

d�Q
dt
¼ ∂tQþ νi�∂iQ�

1
2
λl
�λ

k
� dtð Þ

2
DF

� �
�1
∂l∂kQ (14)

where νiþ ¼ dþxi
dt , νi� ¼ d�xi

dt .

These relations also allow us to define the operators

d�
dt
¼ ∂t þ νi�∂i �
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2
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�λ

k
� dtð Þ

2
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� �
�1
∂l∂k (15)

Using Eqs. (4), (5), and (15), let us calculate the differentiable operator

bdQ
dt
¼ ∂tQþ bV i

∂iQþ 1
4

dtð Þ
2
DF

� �
�1
Dlk∂l∂kQ (16)

where

Dlk ¼ dlk � id
lk

dlk ¼ λl
þλ

k
þ � λl

�λ
k
�, d

lk ¼ λl
þλ

k
þ þ λl

�λ
k
�

(17)

Eq. (16) also allows us to define the covariant derivative in the bio-structure dynamics
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Let us now consider the principle of scale covariance (the physics laws – bio-structure dynam-
ics specific – are invariant with respect to scale transformations) and postulate that the passage
from the classical (differentiable) physics to the fractal (non-differentiable) physics can
be implemented by replacing the standard time derivative d=dt by the non-differentiable

operator bd=dt. In this way, this operator has the role of a scale covariant derivative. More
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form:
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This means that the local acceleration ∂tbV i
, the convection bV l
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and the dissipation Dlk∂l∂kbV i

,
make their balance at any point of the bio-structure fractal curve. Moreover, the presence of the

complex coefficient of viscosity-type 4�1 dtð Þ
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DF
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Dlk in the bio-structures dynamics specifies

that it is a rheological medium. So, it has memory, as a datum, by its own structure.

If the fractalization is achieved by Markov type stochastic processes, which involve Lévy type
movements [9, 13, 17] of the bio-structure structural units, then:
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where δil is the Kronecker’s pseudo-tensor.

Under these conditions, the equation of bio-structure geodesics takes the simple form

bdbV i

dt
¼ ∂tbV i þ bVl

∂lbV i � iλ dtð Þ
2
DF

� �
�1
Dlk∂l∂kbV i ¼ 0 (21)

or more, by separating the motions on differential and fractal scale resolutions,

bdVi
D

dt ¼ ∂tVi
D þ Vl

D∂lV
i
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Using the standard procedure from [18], the bio-structure dynamics at fractal scale resolution
can be described by means of the following equations:
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∂tVi
F þ Vl

F∂lV
i
F ¼ λ dtð Þ

2
DF

� �
�1
∂l∂lVi

F (23)

∂iVi
F ¼ 0 (24)

Eq. (23) corresponds to the specific impulse conservation law at fractal scale resolution, while
Eq. (24) corresponds to the states density conservation law at fractal scale resolution (we
consider that the density of the bio-structure at fractal scale resolution is constant – incom-
pressible bio-structure).

Since this equation system is non-linear, one could find relatively difficult finding the solutions
for these equations [19, 20]. However, in the particular case of a stationary flow in a plane
symmetry x; yð Þ, there is an analytical solution of this system. Then, for VF ¼ Vx;Vy; 0

� �
,

Eqs. (23) and (24) take the form:

Vx
∂Vx

∂x
þ Vy

∂Vx

∂x
¼ λ dtð Þ

2
DF

� �
�1 ∂2Vx

∂y2
(25)

∂Vx

∂x
þ ∂Vy

∂y
¼ 0 (26)

The boundary conditions of the flow are:

lim
y!0

Vy x; yð Þ ¼ 0, lim
y!0

∂Vx

∂y
¼ 0, lim

y!∞
Vx x; yð Þ ¼ 0 (27)

and the flux momentum per length unit is constant

Θ ¼ r

ðþ∞

�∞
V2

xdy ¼ const: (28)

Using the method from [18–20] for solving Eqs. (25) and (26), with the conditions (27) and (28),
the following solutions result:

Vx ¼
1:5 Θ

6ϱ

� �2
3

� �

λ dtð Þ
2
DF

� �
�1
x

" #1=3 � sech2 �
0:5y
� �

Θ
6ϱ

� �1
3

� �

λ dtð Þ
2
DF

� �
�1
x

" #2=3 (29)

Vy ¼
4:5 Θ

6ϱ

� �2
3

� �

3λ dtð Þ
2
DF

� �
�1
x

" #1=3 �
y Θ

6ϱ

� �1
3

� �

λ dtð Þ
2
DF

� �
�1
x

" #2
3
sech2 �

0:5y
� �

Θ
6ϱ

� �1
3

� �

λ dtð Þ
2
DF

� �
�1
x

" #2
3
� tanh

0:5y
� �

Θ
6ϱ

� �1
3

� �

λ dtð Þ
2
DF

� �
�1
x

" #2
3

2
6666664

(30)
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Relations (29) and (30) suggest that the bio-structure velocity field is highly non-linear through
topological solitons of kink type (tanh), various non-topological solitons of breather type
(sech2), and through topological – non-topological soliton mixtures of kink-breather type
(sech2-tanh). Given the structural complexity of the bio-structure (which is given by its various
structural units, that retains their own velocity field) an accurate way of writing relations (29)
and (30) will be the one in which we assign indexes for each component.

For y ¼ 0, we obtain in relation (29) the flow critical velocity of the bio-structure in the form

Vx x; y ¼ 0ð Þ ¼ Vc ¼
1:5 Θ

6ϱ

� �2
3

� �

λ dtð Þ
2
DF

� �
�1
x

" #1=3 (31)

while taking into account (31), relation (28) becomes

Θ ¼ r

ðþ∞

þ∞
V2

x x; yð Þdy ¼
ðþdc

�dc

V2
c x; 0ð Þdy, (32)

so that the critical cross section of the strains lines tube of the bio-structure is given by:

dc x; y ¼ 0ð Þ ¼ Θ

2rV2
c
¼ 2:42 λ dtð Þ

2
DF

� �
�1
x

" #2
3

r

Θ

� �1=3
(33)

Relations (29) and (30) can be strongly simplified if we introduce the normalized quantities

ζ ¼ x
x0

, η ¼ y
y0

, u ¼ Vx

w0
, v ¼ Vy

w0
,Ω ¼

Θ
6ϱ

� �2
3

w0 λ dtð Þ
2
DF

� �
�1
x0

" #1=3 ,ω ¼
Θ
6ϱ

� �2
3
y0

λ dtð Þ
2
DF

� �
�1
x0

" #2=3 (34)

where x0, y0, w0 are specific lengths and the specific velocity, respectively, of the laminar flow of
the bio-structure. It results that

u ζ; ηð Þ ¼ 1:5Ω

ζ
1
3

sech2 0:5Ωωη

ζ
2
3

 !
, (35)

v ζ; ηð Þ ¼ 4:52=3

3
1
3
�Ω
ζ
1
3

ωη

ζ
2
3
sech2 0:5Ωωη

ζ
2
3

 !
� tanh

0:5Ωωη

ζ
2
3

 !" #
(36)

We present in Figures 1a, b and 2a, b the dependence of the normalized velocity field u on the
normalized spatial coordinates ξ, η for various nonlinearity degrees (ω = 0.3; 6). The results
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Eq. (23) corresponds to the specific impulse conservation law at fractal scale resolution, while
Eq. (24) corresponds to the states density conservation law at fractal scale resolution (we
consider that the density of the bio-structure at fractal scale resolution is constant – incom-
pressible bio-structure).
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symmetry x; yð Þ, there is an analytical solution of this system. Then, for VF ¼ Vx;Vy; 0
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Relations (29) and (30) suggest that the bio-structure velocity field is highly non-linear through
topological solitons of kink type (tanh), various non-topological solitons of breather type
(sech2), and through topological – non-topological soliton mixtures of kink-breather type
(sech2-tanh). Given the structural complexity of the bio-structure (which is given by its various
structural units, that retains their own velocity field) an accurate way of writing relations (29)
and (30) will be the one in which we assign indexes for each component.

For y ¼ 0, we obtain in relation (29) the flow critical velocity of the bio-structure in the form

Vx x; y ¼ 0ð Þ ¼ Vc ¼
1:5 Θ
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DF
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while taking into account (31), relation (28) becomes
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ðþ∞
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x x; yð Þdy ¼
ðþdc

�dc

V2
c x; 0ð Þdy, (32)

so that the critical cross section of the strains lines tube of the bio-structure is given by:
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Relations (29) and (30) can be strongly simplified if we introduce the normalized quantities
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where x0, y0, w0 are specific lengths and the specific velocity, respectively, of the laminar flow of
the bio-structure. It results that

u ζ; ηð Þ ¼ 1:5Ω
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We present in Figures 1a, b and 2a, b the dependence of the normalized velocity field u on the
normalized spatial coordinates ξ, η for various nonlinearity degrees (ω = 0.3; 6). The results
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Figure 1. The dependence of the normalized velocity field u on the normalized spatial coordinates ξ, η for the non-
linearity degree ω = 0.3: (a) 3D representation; contour plot (b).

Figure 2. The dependence of the normalized velocity field u on the normalized spatial coordinates ξ, η for the non-
linearity degree ω = 6: (a) 3D representation; contour plot (b).
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showcase that the velocity field on the bio-structure flow direction (ξ) is affected in a weak
manner by the nonlinearity degree (the velocity always decreases on the flow axes regardless
of the nonlinearity degree). Also, the bio-structure flow direction (η) is strongly affected. Bio-
structure flow starts from constant values on the η axes and with the increase of ω, preferential
bio-structure flow direction can be identified.

In Figures 3a, b and 4a, b the dependences of the normalized velocity field v on the normalized
spatial coordinates ξ, η for various non-linearity degrees (ω = 0.3; 6) are represented. For small
non-linearity degrees, the variations (increase/decrease) of the velocity field have similar
behaviors on both directions (ξ, η), while for higher values of the non-linearity degree these
variations are only focused on a single direction (ξ).

Taking the above into account, the force that the bio-structure will exercise to the walls of the
flow vessels is of great importance for the understanding of arterial occlusion and other
circulatory system diseases.

Figure 3. The 3D representation (a) and the contour plot (b) of the normalized velocity field v on the normalized spatial
coordinates ξ, η for the nonlinearity degree ω = 0.3.
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In our case the normalized force is given by the relation:
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Figure 4. The 3D representation (a) and the contour plot (b) of the normalized velocity field v on the normalized spatial
coordinates ξ, η for the non-linearity degree ω = 6.
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Figure 5. The dependence of the normalized force field F of a bio-structure flow on the vessels, on the normalized spatial
coordinates ξ, η for two resolution scales: 3D representation (a); contour plot (b) for the non-linearity degree ω = 0.3.

Figure 6. The dependence of the normalized force field F of a bio-structure flow on the vessels, on the normalized spatial
coordinates ξ, η for two resolution scales: 3D representation (a) and contour plot (b), for the non-linearity degree ω = 6.
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In our case the normalized force is given by the relation:
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In Figures 5a, b and 6a, b the normalized force field evolution on the two-flow direction (ξ, η)
for various non-linear degrees is represented. It results that with the increase of the non-
linearity of the bio-structure the force toward the walls increases.

3. Discussions

The theory proposed in this chapter explains from a fractal viewpoint the atherogenesis
process [21], basically “molding” to the classical anatomical and histopathological descriptions
and completely respecting the process they postulate. In consequence, the fractal physics
model sustains already accumulated morpho-pathological information and research. There
are plenty of electronic and optical microscopy images that describe the spatial-temporal
hologram of the phenomenon; we can thus discuss about the non-fractal – fractal and micro-
scopic – macroscopic translation through holographically reproducible auto-similarity [21]. In
this way, we affirm that fractality is the mathematical and semantic quintessence for defining
atherogenesis, a process that can be physically characterized by fractal physics. This physics
becomes in this situation more of a component rather than an explanation for the complex
biological system represented by the atheroma plaque [22, 23].

In what concerns the recovery of such biological diseases, there are a huge number of techniques.
We recall that external electrical stimulation can cause changes in the bio-structure vessels.
Although atherosclerosis cause vasodilatation in the affected area and bio-structure flow remains
unchanged for an extended period of time, the vascular wall stiffness will increase the pulse
pressure. The purpose of the study developed in [24, 25] was to measure the effects of electrical
stimulation (ES) on bio-structure flow and bio-structure pressure. All subjects received electrical
stimulation at intensity sufficient to produce torque equal to 15% of the predetermined maximal
voluntary contraction of their right quadriceps femor is muscle. The conclusions were that the
increase in bio-structure flow occurred within 5 min after the onset of ES and dropped to resting
levels within 1 min after a 10-min period of ES [25]. Kinesiotherapy or Kinesitherapy or
kinesiatrics, is the therapeutic treatment of disease by passive and active muscular movements
(as by massage) and of exercise [26]. From the physiotherapeutic viewpoint, an efficient treat-
ment is directed toward improving bio-structure flow and also decreasing the disparity between
the demand for bio-structure and its supply [22]. An effective vascular rehabilitation training
program for improving walking efficiency and vascular remodeling in patients with diabetic
atherosclerosis suffering from intermittent claudication could be a supervised treadmill walking
exercise combined with Allen-Burger exercises [23].

4. Conclusions

The present chapter proposes a fractal model for the dynamics analysis of bio-structure
flows. The fractal hydrodynamic equations were obtained and applied for the laminar flow
of bio-structure.
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A second application was proposed for bio-structure flow, and of cholesterol deposition on the
vessel walls. The results revealed the directional flow toward the walls. This could explain in
our opinion the thickening effect which is one of the sources of arteriosclerosis. Moreover, our
model imposes redefinition of “good” and “bad” cholesterol (which are traditionally associ-
ated with HDL and LDL respectively); instead they should be replaced by the following
notions: specific cholesterol entities, associated with a certain non-differentiable curve, that
have a major endothelial impact and specific cholesterol entities which have no or low endo-
thelial impact.

There is currently a great number of works describing matter organization and behavior in all
of its variations, from which we mention [27]. We consider that our bio-structure flow model
could also be used to further development in the study of other complex systems dynamics
(such as pulmonary and metabolic diseases or environmental systems). Moreover, possible
therapeutic treatments can be developed, e.g., new drug release mechanisms.
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Abstract

In the given chapter, free vibrations of different nonlinear mechanical systems with one-
degree-of-freedom, two-degree-of-freedom, and multiple-degree-of-freedoms are reviewed
with the emphasis on the vibratory regimes which could go over into the aperiodic motions
under certain conditions. Such unfavorable and even dangerous regimes of vibrations
resulting in the irreversible process of energy exchange from its one type to another type
are discussed in detail. The solutions describing such processes are found analytically in
terms of functions, which are in frequent use in the theory of solitons.

Keywords: soliton-like solution, nonlinear mechanical systems, free vibrations, method of
multiple time scales, suspension bridge

1. Introduction

It is known [1] that the periodical transfer of energy from one type to another is made possible
during vibrational processes occurring in nonlinear mechanical systems. This phenomenon is
called energy exchange [2, 3].

Investigations on the energy exchange originate from the chapter [4], wherein the authors
studied small nonlinear vibrations of a two-degree-of-freedom (2dof) system consisting of a
load suspended on a linearly elastic spring and executing pendulum vibrations and vibrations
along the spring’s axis in the same vertical plane. In spite of the apparent simplicity of that
system, it realistically explains some phenomena occurring during vibrations of more complex
nonlinear systems and in particular describes all types of energy exchange from pendulum
vibratory motions into oscillatory motions along the spring’s axis, and vice versa: the periodic
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and aperiodic energy interchange, as well as stationary regimes during which the energy
exchange is absent.

The energy-exchange mechanism in a similar nonlinear 2dof system has been studied in [5, 6].
The system was made up of two loads, one of which was suspended on a linearly elastic spring
and executed vertical vibrations, and the other was suspended on an unstretched rod and
executed pendulum vibrations in the same vertical plane. Reviews devoted to nonlinear
vibrations of 2dof systems can be found in [2, 3].

However, the energy transfer is observed during free vibrations of different nonlinear mechan-
ical systems: possessing one-degree-of-freedom (1dof), two- (2dof), and more degrees-of-free-
dom (multiple-dof), and as well as having infinite number of degrees-of-freedom (deformable
solids). The internal resonance is realized when magnitudes of natural frequencies of two natural
modes belonging to the different types of vibrations of the system (partial subsystems) are
approximately equal to each other or one of them two to three times larger than the other. This
phenomenon is particular evident in modern engineering structures which are very light and
flexible due to the application of present-day materials, resulting in finite displacements of
individual structural elements as well as of the structure as a whole. Among such construc-
tions are suspension-combined systems: suspension and cable-stayed bridges, suspension
roofs in large public and industrial buildings, and so on. Suspension-combined systems and
suspension bridges, in particular, are distinguished by high esthetic merits, and many of them
are referred to the most remarkable up-to-date engineering structures. For example, “Golden
Gate” suspension bridge in San Francisco with the span of 1281 m, cable-stayed bridge in
Cologne with the span of 690 m, suspension roofing of Olympic sport complex in Moscow, and
many others.

The majority of papers devoted to the dynamic behavior of suspension-combined systems
studies free nonlinear vibrations of suspension bridges with a thin-walled stiffening girder
[7–11]. Different dynamic loads (wind, seismic excitation, moving loads, etc.) after the comple-
tion of acting on a suspended structure setup prolonged free nonlinear vibrations of this
structure, in so doing both vertical and flexural-torsional vibrations could be excited. One of
the most unfavorable nonlinear effects, which is observed in suspension systems during free
vibrations, is just the “energy exchange” from one type of vibratory motions into the other
under the conditions of the internal resonance.

The intensity and frequency of energy exchange between strongly coupled modes essentially
depend on an absolute level of the initial amplitudes [7, 8, 11, 12] which is governed by the
value of the initial mechanical energy of the system.

However, the qualitative character of the energy exchange is dependent on the relative level of
initial amplitudes which is independent of the system’s initial energy and is defined as the
ratio of the initial amplitudes of the two interacting modes [9]. It has been found in [9] that in
accordance with a value of that level, three types of an energy-exchange mechanism exist: two-
sided energy exchange (a periodic energy exchange from one subsystem to another), one-sided
energy exchange (one subsystem completely or partially transfers the energy to another), and
energy exchange does not occur (stationary vibrations). Among the three types of the behavior
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of the mechanical system, the second one may occur to be the most unfavorable. As for the
behavior of a suspension bridge, then the most hazardous type is the irreversible transfer of
the energy of vertical vibrations into the energy of its torsional vibrations in the case of a
bisymmetrical stiffening girder or into the energy of flexural-torsional vibrations in the case of
a mono-symmetrical girder. This is due to the fact that suspension bridges possess a rather
higher flexural rigidity than torsional one, that is, they perceive better than those dynamic
loads that result in vertical vibrations.

Solutions describing the one-sided energy transfer occurring in mechanical systems we shall
call as soliton-like solutions, since the functions entering in such solutions are widely met in the
theory of solitons [13, 14].

In this chapter, it is shown that solutions of such a type exist both in 1dof systems and in
systems possessing two- and more degrees-of-freedom.

2. A one-degree-of-freedom system

The phenomenon of energy transfer, when one type of the energy completely and irreversibly
goes into another type of the energy as time passes, can be observed on such a simple object as
a mathematical pendulum (Figure 1).

In order to demonstrate this, let us consider the expression for the total mechanical energy of
the mathematical pendulum which is combined from the kinetic energy

ð1Þ

and the potential energy (Figure 1)

Figure 1. A mathematical pendulum.
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ð2Þ

and has the form

ð3Þ

where an overdot denotes a time derivative, l is the string length, g is the gravity acceleration,
m is the load mass, is its velocity, and is the angle of the string’s deflection from the
vertical.

Rewrite Eq. (3) in the dimensionless form

ð4Þ

where and

Consider the case of motion of the mathematical pendulum when its energy E is exactly equal
to 4E0. Then, the law of conservation of energy Eq. (4) gives the simple relationship [15].

ð5aÞ

or

ð5bÞ

Dividing the variables in Eq. (5b), integrating separately the right and left parts of the relation-
ship obtained, and considering that at t = 0 yield

ð6aÞ

or

ð6bÞ

Differentiating Eq. (6b) over t, we find

ð7Þ

Reference to Eqs. (6) and (7) shows that if the mathematical pendulum begins its motion from
the extreme low position, then at t!∞ its velocity , in so doing does not vanish
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anywhere, and the angle , that is, the pendulum, tends to take the upper position of
equilibrium which is an unstable one. As this takes place, the kinetic energy completely trans-
forms into the potential energy. This solution is the soliton-like one, since the functions arctan
and ch are frequently met in soliton solutions.

If one represents the phase trajectories of the pendulum motion on the phase plane
at different magnitudes of the energy E, then solution (6) will correspond to the phase trajec-
tory which is called as a separatrix. This line divides closed trajectories from nonclosed ones
(Figure 2). Closed and nonclosed trajectories are consistent with the solutions for the periodic
transfer of the potential and kinetic energies into each other, in doing so in the first case, the
pendulum will vibrate, and in the second one, it will rotate around the point of suspension.

3. A two-degree-of-freedom system

3.1. Governing equations

Now, consider a 2dof system presented in Figure 3. The kinetic T and potential Π energies of
such a system have the form

ð8aÞ

ð8bÞ

where , k is the elastic spring rigidity, m1 and m2 are the masses of the first
and second loads, respectively, y is the vertical displacement of the first load, and is the angle
of the pendulum’s deflection.

Figure 2. Phase portrait describing vibrations of mathematical pendulum.
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Applying Lagrange equations of the second kind [15]

and considering Eq. (8), the system’s equations of motion in the dimensionless form within an
accuracy of the values of the second order of smallness with respect to y and can be written
as follows:

ð9aÞ

ð9bÞ

where

Suppose that the linear natural frequency is twice as large than the linear natural frequency
, that is,

Figure 3. Scheme of a 2dof mechanical system.
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ð10aÞ

or the linear natural frequency and the linear natural frequency are equal to each other,
that is,

ð10bÞ

It is said that the system is being under the conditions of the two-to-one internal resonance or the
one-to-one internal resonance if the condition Eq. (10a) or (10b) is fulfilled, respectively [2].

For analyzing nonlinear vibrations of the systems subjected to the internal resonance (10),
assume that the amplitudes of vibrations are small but finite values and weakly vary with
time. Then, perturbation technique could be used to construct the solution of the set of Eq. (9),
and, particularly, the method of multiple time scales [16].

3.2. Method of solution

An approximate solution of Eq. (9) can be represented by an expansion in terms of different
time scales limiting by the values of the third order of smallness in

ð11aÞ

ð11bÞ

where Tn ¼ εnt (n = 0,1,2…), and is a small parameter.

Substituting Eq. (11) into Eq. (9), considering that

and equating the coefficients of like powers of , one obtains, to order ,

ð12Þ

to order ,

ð13Þ

to order ,
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ð14Þ

The solution of Eq. (12) could be sought in the form

ð15Þ

where A1 and A2 are unknown complex functions, while and are the complex conjugates
of A1 and A2, respectively.

3.2.1. The case of a two-to-one internal resonance

Substituting Eq. (15) into the right-hand sides of Eq. (13) yields

ð16Þ

where cc denotes complex conjugate parts of the preceding terms.

The functions , ,
entering into the right-hand sides of Eq. (16) produce secular terms in the expression for

and , that is, the terms of the type of and . Since secular terms increase

without any limits as time goes on, then there is a need to eliminate them by equating the
coefficients standing at the enumerated functions to zero. As a result, we obtain

ð17aÞ

ð17bÞ

Multiply Eq. (17a) by and Eq. (17b) by and find the complex conjugate equations. Two
mutually conjugated equations first add to each other and then subtract one from another. As a
result of such a procedure, we obtain more convenient set of four equations:
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Representing the functions A1 and A2 in a polar form

ð18Þ

we can rewrite the set of four differential equations as

ð19aÞ

ð19bÞ

ð19cÞ

ð19dÞ

where an overdot denotes differentiation with respect to T1, and .

Eliminating the value from Eqs. (19a) and (19b) and integrating the net relation-
ship with respect to T1 yield

ð20Þ

where E0 is the initial magnitude of the system’s energy, which represents the law of conser-
vation of the total mechanical energy of the system under consideration. Expression (20) is the
first integral of the set of Eq. (19).

Introducing a new function such that

ð21Þ

and substituting Eq. (21) in Eq. (19a), we have

ð22Þ

where .

Doubling both sides of Eq. (19d) and subtracting from the net relationship Eq. (19c) with due
account for Eq. (21) and
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we obtain

ð23Þ

Putting

ð24Þ

and substituting Eq. (24) into Eqs. (22) and (23), we are led to the equation

ð25Þ

Separating the variables in Eq. (25) and integrating the equation obtained yield

ð26aÞ

or

ð26bÞ

where is an arbitrary constant determined from the initial

conditions, and and are the initial magnitudes of the values ξ and δ, respectively. Note
that relationship (26b) is the other first integral of the set of Eq. (19).

Finely, let us eliminate the value from Eqs. (26a) and (22), resulting in

ð27Þ

Separating the variables in Eq. (27) and integrating the net expression, we obtain implicitly the
desired function

ð28Þ

where is the value defining the relative level in the initial amplitudes.

The integral in Eq. (28) can be transformed into an incomplete integral of the first kind, which
is tabulated in [17].
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At G0 = 0, the integral in Eq. (28) can be calculated, in so doing, it possesses two magnitudes.

Really, changing the variable in the integral in Eq. (28) at G0 = 0, we have the first

magnitude

ð29aÞ

and the second magnitude

ð29bÞ

Considering Eq. (29), the solutions of Eq. (28) may be written in the following form:

the first solution

ð30aÞ

or

ð30bÞ

and the second solution

ð31aÞ

or

ð31bÞ

Solutions (30b) and (31b) at and 1 describe the motions corresponding to the one-sided
energy exchange between pendulum’s vibrations and vertical vibration of the load. As this
takes place, and in the first and second solutions, respectively, with the increase in
time . In other words, in the first solution, the energy of vibrations of the pendulum
completely transforms into the energy of vertical vibrations of the load, but in the second
solution, quite the reverse, the energy of vertical vibrations of the load completely goes into
the energy of vibrations of the pendulum.
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In the first solution, the process of energy transfer occurs over an infinitely large time interval,
which resembles the phenomenon of the transfer of the kinetic energy into potential one,
which is described by the soliton-like solution (6b) for the mathematical pendulum.

In the second solution, the process of energy transfer occurs during a finite instant of the time
from 0 till , where

According to our classification, both of them are the soliton-like solutions. At from
(30b), we obtain the known soliton-like solution in the form of a single kink [13].

ð32Þ

Physically speaking, this solution kink is responsible to the one-sided energy exchange when
the energy of the pendulum vibration completely transforms with time into the energy of the
vertical vibrations which energy was equal to zero at the initial moment of time, so the
pendulum vibrations give way to the vertical vibrations.

In order to understand the physical meaning of the first integral (26b), let us introduce into
consideration the phase plane and analyze on this plane the phase fluid flow that
interprets the motion of the mechanical system in hand. The velocity vector V of the phase

fluid particles motion has the components and . From Eqs. (22) and (23), it

follows that

ð33Þ

Writing the equation of a streamline of the phase fluid and substituting Eq. (33) in it,

we obtain that the function defined by the relationship (26b) is the stream function of the
phase fluid. In other words, Eq. (26b) at different magnitudes of and governs a family of
the streamlines of the phase fluid. Since the phase fluid is incompressible (div V = 0) and its
flow is steady and solenoidal (rot V 6¼0), then streamlines of the phase fluid will coincide with
trajectories of the phase fluid particles motion.

Streamlines constructed according to the relationship

ð34Þ

at different magnitudes of and are presented in Figure 4, where digits near the curves

denote the magnitudes of the value . Reference to Figure 4

shows that all phase trajectories are closed lines located around the perimeter of the rectangle
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bounded by the lines . The flow in each rectangle is

isolated. On all four rectangle sides, and inside it the value preserves its sign. On the
closed streamlines, a two-sided energy exchange takes place between the partial subsystems.
Along the lines , a one-sided energy interchange occurs corresponding to pure
amplitude-modulated aperiodic motions, in so doing on the lines with ascending flow of the
phase fluid particles (an arrow is directed upwards), the aperiodic regime is described by
Eq. (30b), and on the lines with descending flow (an arrow is directed downwards), the
aperiodic regime is governed by Eq. (31b). On the line , there exists the boundary phase-
modulated regime. The transition of fluid elements from the points with the coordinates

to the points proceeds instantly. The points with coordi-
nates , correspond to the stable stationary regimes.

3.2.2. The case of a one-to-one internal resonance

To construct the solution in the case of a one-to-one internal resonance (10b), it will suffice to
restrict consideration to the terms of the order of and to consider the amplitudes and
as functions of and .

The resonance (10b) is weaker than (10a), since in order to eliminate circular terms arising in
the second approximation, it would suffice to consider the functions and dependent on
only [18]. Under such an assumption, the set of equations providing the absence of circular
terms in the expressions for and has the form

Figure 4. Phase portrait in the case of the two-to-one internal resonance .
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ð35aÞ

ð35bÞ

ð35cÞ

ð35dÞ

where overdots denote differentiation with respect to , and .

The two first integrals of the system (35) have the following form:

ð36Þ

ð37Þ

in so doing

where , the function ξ (T2) is connected

with and by the relationships

and the rest of the values have the same meaning as in the abovementioned case (10a).

Streamlines constructed according to Eq. (37) at different magnitudes of and are
presented in Figure 5 when and . Magnitudes of the value that
correspond to the streamlines are indicated by digits near the curves; the flow direction of the
phase fluid elements is shown by arrows on the streamlines. Reference to Figure 5 shows that
there exist two types of the streamlines, namely (1) nonclosed which correspond to the peri-
odic change of amplitudes and the aperiodic change of phases and (2) closed ones which
correspond to the periodic change of both amplitudes and phases. The alignment of the
circulation zones resembles that of Von Karman vortex streets with a symmetric arrangement.
The adjacent circulation zones osculate at the saddle points with the coordinates

and , wherein the unstable stationary regime occurs.

On the boundary lines of these zones (separatrixes), the value , and the analytical
solution corresponding to the soliton-like regime has the form
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ð38Þ

where the sign “+” fits to the initial magnitudes ,
and but the sign “–” conforms to the

initial magnitudes , and

The upper branch of the separatrix describes the partial irreversible energy transfer from the
vertical vibrations to the pendulum vibrations, but the lower branch, on the contrary, is in
compliance with partial irreversible transfer of the energy of the pendulum vibrations to the
energy of the vertical vibrations.

The points with coordinates (points like a center)
corresponding to the stable stationary regime are located inside closed streamlines.

4. System with an infinite number of degrees-of-freedom

Similar solutions corresponding to the one-sided energy interchange could be obtained for
more complex nonlinear systems that describe dynamic behavior of real structures, as an

Figure 5. Phase portrait in the case of the one-to-one internal resonance.
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example, for systems with an infinite number of degree-of-freedom. Among such systems are
suspension bridges, the scheme of one of them is shown in Figure 6.

The suspension bridge scheme presents a bisymmetrical thin-walled stiffening girder, which is
connected with two suspended cables by virtue of vertical suspensions. The cables are thrown
over the pilons and are tensioned by anchor mechanisms. The suspensions are considered as
inextensible and uniformly distributed along the stiffening girder. The cables are parabolic,
and the contour of the girder’s cross section is undeformable. The cross section l – l in Figure 6
illustrates the displacements of the girder’s contour during vibratory motions of the suspen-
sion system. Reference to this scheme shows that the girder’s contour translates as a rigid body
vertically (in the y-axis direction) on the value of and rotates with respect to the girder’s
axis (the z-axis) through the angle of . The origin of the frame of references is in the center
of gravity of the cross section.

It is known for suspension bridges [8] that some natural modes belonging to different types of
vibrations could be coupled with each other, that is, the excitation of one natural mode gives
rise to another one. Two modes interact more often than not, although the possibility for the
interaction of a greater number of modes is not ruled out.

If only two modes predominate in the vibrational process, namely the vertical п-th mode with
linear natural frequency and the torsional m-th mode with the natural frequency , such
that the modes interaction is observed under the conditions (10a) or (10b), then the functions

and can be approximately defined as

ð39Þ

where x1n and x2m are the generalized displacements, and and are natural shapes
of the two interacting modes of vibrations.
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where the coefficients , , and are defined in [7]. Subsequently, for the
ease of presentation, the indices n and m will be omitted.

An approximate solution of Eq. (40) for small but finite amplitudes could be written as an
expansion in terms of different time scales in the following form [16]:

ð41Þ

The number of the independent time scales needed depends on the order to which the expan-
sion is carried out. Here, is the first scale characterizing motions with the natural
frequencies and , and are slow scales characterizing the modulations of the amplitudes
and phases.

Substituting Eq. (41) into Eq. (40) and equating the coefficients of like powers of ε, we obtain
on each step a set of two linear equations. On the first step, it is convenient to seek the solution
in the form:

ð42Þ

where and are unknown complex functions, and and are the complex conjugates of
and , respectively.

Substituting Eq. (42) into the set of equations obtained on the first step and using the second
step to eliminate secular terms, as well as representing the functions and in the polar
form we are led to the following system of equations for
the case of the two-to-one internal resonance (10a):

ð43Þ

where is an unknown function, , ,

is the system’s initial energy, , , and an overdot denotes differ-
entiation with respect to .

Representing and considering Eq. (43) yield

ð44Þ

The solution to Eq. (44) has the form
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ð45Þ

where is an arbitrary constant determined from the initial conditions. Note that relationship
(45) is similar to the first integral (26b) for a two-degree-of-freedom system.

In the case of the one-to-one internal resonance (10b), we seek the solution in the form of
Eq. (42) also. Using the procedure for the elimination of secular terms, we obtain the following
set of equations:

ð46Þ

where is an unknown function, , is the system’s

initial energy, , , an overdot denotes differentiation with

respect to , and the coefficients and dependent upon the system
parameters [8].

Representing and using Eq. (46) yield

ð47Þ

The solution to Eq. (47) has the form

ð48Þ

where is an arbitrary constant determined from the initial conditions.

Eliminating the variable γ in Eq. (48) and in the second equation of (46) and integrating over
yield

ð49Þ

where is a value determined by the relative level of the initial amplitudes, and the quantities
, , and are the coefficients [11]. The integral in Eq. (49) can be transformed to an

incomplete elliptic integral of the first kind [17].

4.1. Soliton-like solutions

As examples, the nonlinear free vibrations of the Golden Gate Bridge in San Francisco are
considered. All geometrical data, as well as natural frequency spectra and mode shapes for this
one of the most beautiful suspension bridges, are available in [19].
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It can be shown that under the relationship among the natural frequencies rad/s
(a two-to-one internal resonance between the sixth symmetrical mode of vertical vibrations and
the first symmetrical mode of torsional vibrations), one can obtain the analytical solution in the
form of a single kink (32), where B should be replaced by the coefficient b defined by the system’s
parameters according to Eq. (43). The physical sense of this solution kink is that it is responsible for
the one-sided energy exchange when the energy of the torsional vibrations completely transforms
into the energy of the vertical vibrations with time, so that the torsional vibrations initiate the
vertical vibrations [20].

Under the relationships among the natural frequencies, rad/s and
rad/s (a one-to-one internal resonance), the analytical solutions may be found by solving Eq. (49),
respectively, as [20]

ð50Þ

where denotes the evaluation at the upper and lower limits of integration.

In the first case of Eq. (50), the coefficients and in the integral (49) become zero, and the
analytical solution corresponding to the separatrix describes a one-sided energy
transfer from the vertical vibration to the torsional vibration (a low aperiodic regime), which
leads in time to the conversion of the flexural-torsional vibrations to the predominantly tor-
sional vibrations. This regime is the most unfavorable and dangerous for suspension bridges.

In the second case of Eq. (50), the analytical solution corresponding to the separatrix
describes a one-sided energy transfer from the torsional vibration to the vertical

vibration (an upper aperiodic regime), so that the flexural-torsional vibrations evolve into the
predominantly vertical vibrations with time.

The solutions obtained may be interpreted on the phase plane by virtue of streamlines of
the phase fluid which is demonstrated in Figures 5 and 7 for solutions (32) and (50), respec-
tively. Digits near curves indicate the magnitudes of the values and corresponding to the
streamlines.

The analysis of the phase portraits in terms of the variables ξ and γ for various oscillatory
regimes demonstrates that they contain both closed and nonclosed streamlines which are
separated by the curves separatrixes. Along the separatrixes, one succeeds in finding analytical
solutions that are inherently soliton-like solutions in the theory of vibrations and describe the
complete one-sided energy transfer from one subsystem to another.

Note that soliton-like solutions could be found also in an analytical form for the case of free
damped vibrations of a suspension bridge, when damping features of the system are described
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by ordinary first-order time derivative [21] or defined by a fractional derivative with a frac-
tional parameter (the order of the fractional derivative) changing from zero to one [22].

5. Conclusions

From the review presented, the following conclusions could be deduced. In all considered
vibratory systems—1dof, 2dof, and multi-dof—under certain conditions, there exist solutions
that describe irreversible processes of energy transfer from its one type to another. Such
solutions are called soliton-like solutions and could be written in an analytical form.

Figure 7. Phase portraits: (a) , and (b)
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On the phase plane, these solutions correspond to streamlines which separate closed lines of
phase fluid flow from nonclosed ones. These lines are called separatrixes.

Since soliton-like solution may describe unfavorable vibratory regimes of real mechanical
systems, then they should be investigated systematically by virtue of mathematical models of
these systems, in order to avoid, wherever possible, such dangerous vibratory regimes when
designing and constructing real structures. A thorough analysis of internal resonances in thin
plates and cylindrical shells could be found in [23, 24] and [25, 26], respectively.

Soliton-like solutions in the cases of combinational internal resonances for systems with an
infinite number of degrees-of-freedom, when more than two natural modes of vibration are
coupled, could be found in sight as well, and such examples for nonlinear plates and cylindri-
cal shells are presented in [27, 28] respectively.

Acknowledgements

The research described in this publication was made possible in part by the Ministry of
Education and Science of the Russian Federation under Project # 9.5138.2017/8.9.

Author details

Yury A. Rossikhin and Marina V. Shitikova*

*Address all correspondence to: mvs@vgasu.vrn.ru

Voronezh State Technical University, Voronezh, Russian Federation

References

[1] Mandel’shtam L. Lecture Notes on Theory of Vibrations (in Russian). Moscow: Nauka; 1972

[2] Nayfeh AH, Balachandran B. Modal interactions in dynamical and structural systems.
Applied Mechanics Reviews. 1989;42:175-201

[3] Sado D. Energy transfer in two-degree-of-freedom vibrating systems—A survey.
Mechanika Teoretyczna i Stosowana. 1993;31:151-173

[4] Vitt AA, Gorelik GA. Vibrations of an elastic pendulum as an example of vibrations of two
parametrically coupled linear systems (in Russian). Journal of Technical Physics. 1933;2–3:
294-307

[5] Sado D. Analysis of vibration of two-degree of freedom system with inertial coupling.
Machine Dynamics Problems. 1984;1:67-77

Soliton-Like Solutions in the Problems of Vibrations of Nonlinear Mechanical Systems: Survey
http://dx.doi.org/10.5772/intechopen.74434

85



by ordinary first-order time derivative [21] or defined by a fractional derivative with a frac-
tional parameter (the order of the fractional derivative) changing from zero to one [22].

5. Conclusions

From the review presented, the following conclusions could be deduced. In all considered
vibratory systems—1dof, 2dof, and multi-dof—under certain conditions, there exist solutions
that describe irreversible processes of energy transfer from its one type to another. Such
solutions are called soliton-like solutions and could be written in an analytical form.

Figure 7. Phase portraits: (a) , and (b)

Nonlinear Systems - Modeling, Estimation, and Stability84

On the phase plane, these solutions correspond to streamlines which separate closed lines of
phase fluid flow from nonclosed ones. These lines are called separatrixes.

Since soliton-like solution may describe unfavorable vibratory regimes of real mechanical
systems, then they should be investigated systematically by virtue of mathematical models of
these systems, in order to avoid, wherever possible, such dangerous vibratory regimes when
designing and constructing real structures. A thorough analysis of internal resonances in thin
plates and cylindrical shells could be found in [23, 24] and [25, 26], respectively.

Soliton-like solutions in the cases of combinational internal resonances for systems with an
infinite number of degrees-of-freedom, when more than two natural modes of vibration are
coupled, could be found in sight as well, and such examples for nonlinear plates and cylindri-
cal shells are presented in [27, 28] respectively.

Acknowledgements

The research described in this publication was made possible in part by the Ministry of
Education and Science of the Russian Federation under Project # 9.5138.2017/8.9.

Author details

Yury A. Rossikhin and Marina V. Shitikova*

*Address all correspondence to: mvs@vgasu.vrn.ru

Voronezh State Technical University, Voronezh, Russian Federation

References

[1] Mandel’shtam L. Lecture Notes on Theory of Vibrations (in Russian). Moscow: Nauka; 1972

[2] Nayfeh AH, Balachandran B. Modal interactions in dynamical and structural systems.
Applied Mechanics Reviews. 1989;42:175-201

[3] Sado D. Energy transfer in two-degree-of-freedom vibrating systems—A survey.
Mechanika Teoretyczna i Stosowana. 1993;31:151-173

[4] Vitt AA, Gorelik GA. Vibrations of an elastic pendulum as an example of vibrations of two
parametrically coupled linear systems (in Russian). Journal of Technical Physics. 1933;2–3:
294-307

[5] Sado D. Analysis of vibration of two-degree of freedom system with inertial coupling.
Machine Dynamics Problems. 1984;1:67-77

Soliton-Like Solutions in the Problems of Vibrations of Nonlinear Mechanical Systems: Survey
http://dx.doi.org/10.5772/intechopen.74434

85



[6] Shitikova MV. Modelling of free nonlinear vibrational processes in suspension bridges by
a two-mass system (in Russian). In: AdvancedMethods of Static and Dynamic Analysis of
Structures 1. Voronezh: Voronezh Civil Engineering Institute; 1992. pp. 147-153

[7] Abdel-Ghaffar AM, Rubin LI. Nonlinear free vibrations of suspension bridges: Theory
and application. ASCE Journal of Engineering Mechanics. 1983;109:313-345

[8] Rossikhin YA, Shitikova MV. Nonlinear free spatial vibrations of combined suspension
systems. Applied Mathematics and Mechanics. 1990;54:825-832

[9] Rossikhin YA, Shitikova MV. Effect of initial conditions on the behavior of vibrational
processes in a combined suspended system. Mechanics of Solids. 1991;26:143-154

[10] Rossikhin YA, ShitikovaMV. Effect of viscosity on the vibrational processes in a combined
suspension system. Mechanics of Solids. 1995;30:157-166

[11] Rossikhin YA, Shitikova MV. Analysis of nonlinear free vibrations of suspension bridges.
Journal of Sound and Vibration. 1995;186:369-393

[12] Goldenblat II. Dynamic Stability of Structures (in Russian). Moscow: Stroy Izdat; 1948

[13] Dodd R, Eilbeck J, Gibbon J, Morris H. Solitons and Non-linear Wave Equations. London:
Academic Press; 1982. 670 p

[14] Filippov AT. Manifold Soliton (in Russian). “Kvant” Library Series. Moscow: Nauka;
1990. 287 p

[15] Appell PE. Theoretical Mechanics (in Russian). Moscow: Fizmatlit; 1960. 516 p

[16] Nayfeh AH. Perturbation Methods. New York: Wiley; 1973. 450 p

[17] Abramowitz M, Stegan I, editors. Handbook of Mathematical Functions with Formulas,
Graphs, and Tables. Washington: National Bureau of Standards; 1964. 558 p

[18] Rossikhin YA, Shitikova MV. Analysis of nonlinear vibrations of a two-degree-of-freedom
mechanical systems with damping modeled by a fractional derivative. Journal of Engi-
neering Mathematics. 2000;37:343-362

[19] Abdel-Ghaffar AM, Scanlan RH. Ambient vibration studies of Golden Gate Bridge. I:
Suspended structure. ASCE Journal of Engineering Mechanics. 1985;111:463-482

[20] Rossikhin YA, Shitikova MV. Soliton-like solution to the equations of free nonlinear
vibrations of suspension bridges. In: Proceedings of the 1993 International Symposium
on Nonlinear Theory and Its Applications; December 5–10, 1993; Hawaii. pp. 705-708

[21] Rossikhin YA, Shitikova MV. Soliton-like solutions to the nonlinear damped vibrations of
a suspension bridge under an internal resonance. In: Proceedings of the 2nd European
Nonlinear Oscillations Conference; September 9–13, 1996; Prague. Vol. 2, pp. 203-206

[22] Rossikhin YA, Shitikova MV. Application of fractional calculus for analysis of nonlinear
damped vibrations of suspension bridges. Journal of Engineering Mechanics. 1998;124:
1029-1036

Nonlinear Systems - Modeling, Estimation, and Stability86

[23] Rossikhin YA, Shitikova MV. Analysis of free non-linear vibrations of a viscoelastic plate
under the conditions of different internal resonances. International Journal of Non-Linear
Mechanics. 2006;41:313-325

[24] Rossikhin YA, ShitikovaMV, Ngenzi JC. A new approach for studying nonlinear dynamic
response of a thin plate with internal resonance in a fractional viscoelastic medium. Shock
and Vibration. 2015;2015:795606

[25] Rossikhin YA, Shitikova MV. Nonlinear dynamic response of a fractionally damped
cylindrical shell with a three-to-one internal resonance. Applied Mathematics and Com-
putation. 2015;257:498-525

[26] Rossikhin YA, Shitikova MV. A new approach for studying nonlinear dynamic response
of a thin fractionally damped cylindrical shell with internal resonances of the order of ε.
In: Altenbach H, Mikhasev GI, editors. Shell and Membrane Theories in Mechanics and
Biology: From Macro- to Nanoscale Structures. Advanced Structural Materials. Berlin-
Heidelberg: Springer; 2015. Chapter 17. pp. 301-321

[27] Rossikhin YA, Shitikova MV, Ngenzi JC. Fractional calculus application in problems of
non-linear vibrations of thin plates with combinational internal resonances. Procedia
Engineering. 2016;144:849-858

[28] Rossikhin YA, Shitikova MV. Analysis of non-linear vibrations of a fractionally damped
cylindrical shell under the conditions of combinational internal resonance. In: Mastorakis
N et al., editors. Computational Problems in Science and Engineering. Lecture Notes in
Electrical Engineering. Vol. 343. Berlin-Heidelberg: Springer; 2015. pp. 59-107

Soliton-Like Solutions in the Problems of Vibrations of Nonlinear Mechanical Systems: Survey
http://dx.doi.org/10.5772/intechopen.74434

87



[6] Shitikova MV. Modelling of free nonlinear vibrational processes in suspension bridges by
a two-mass system (in Russian). In: AdvancedMethods of Static and Dynamic Analysis of
Structures 1. Voronezh: Voronezh Civil Engineering Institute; 1992. pp. 147-153

[7] Abdel-Ghaffar AM, Rubin LI. Nonlinear free vibrations of suspension bridges: Theory
and application. ASCE Journal of Engineering Mechanics. 1983;109:313-345

[8] Rossikhin YA, Shitikova MV. Nonlinear free spatial vibrations of combined suspension
systems. Applied Mathematics and Mechanics. 1990;54:825-832

[9] Rossikhin YA, Shitikova MV. Effect of initial conditions on the behavior of vibrational
processes in a combined suspended system. Mechanics of Solids. 1991;26:143-154

[10] Rossikhin YA, ShitikovaMV. Effect of viscosity on the vibrational processes in a combined
suspension system. Mechanics of Solids. 1995;30:157-166

[11] Rossikhin YA, Shitikova MV. Analysis of nonlinear free vibrations of suspension bridges.
Journal of Sound and Vibration. 1995;186:369-393

[12] Goldenblat II. Dynamic Stability of Structures (in Russian). Moscow: Stroy Izdat; 1948

[13] Dodd R, Eilbeck J, Gibbon J, Morris H. Solitons and Non-linear Wave Equations. London:
Academic Press; 1982. 670 p

[14] Filippov AT. Manifold Soliton (in Russian). “Kvant” Library Series. Moscow: Nauka;
1990. 287 p

[15] Appell PE. Theoretical Mechanics (in Russian). Moscow: Fizmatlit; 1960. 516 p

[16] Nayfeh AH. Perturbation Methods. New York: Wiley; 1973. 450 p

[17] Abramowitz M, Stegan I, editors. Handbook of Mathematical Functions with Formulas,
Graphs, and Tables. Washington: National Bureau of Standards; 1964. 558 p

[18] Rossikhin YA, Shitikova MV. Analysis of nonlinear vibrations of a two-degree-of-freedom
mechanical systems with damping modeled by a fractional derivative. Journal of Engi-
neering Mathematics. 2000;37:343-362

[19] Abdel-Ghaffar AM, Scanlan RH. Ambient vibration studies of Golden Gate Bridge. I:
Suspended structure. ASCE Journal of Engineering Mechanics. 1985;111:463-482

[20] Rossikhin YA, Shitikova MV. Soliton-like solution to the equations of free nonlinear
vibrations of suspension bridges. In: Proceedings of the 1993 International Symposium
on Nonlinear Theory and Its Applications; December 5–10, 1993; Hawaii. pp. 705-708

[21] Rossikhin YA, Shitikova MV. Soliton-like solutions to the nonlinear damped vibrations of
a suspension bridge under an internal resonance. In: Proceedings of the 2nd European
Nonlinear Oscillations Conference; September 9–13, 1996; Prague. Vol. 2, pp. 203-206

[22] Rossikhin YA, Shitikova MV. Application of fractional calculus for analysis of nonlinear
damped vibrations of suspension bridges. Journal of Engineering Mechanics. 1998;124:
1029-1036

Nonlinear Systems - Modeling, Estimation, and Stability86

[23] Rossikhin YA, Shitikova MV. Analysis of free non-linear vibrations of a viscoelastic plate
under the conditions of different internal resonances. International Journal of Non-Linear
Mechanics. 2006;41:313-325

[24] Rossikhin YA, ShitikovaMV, Ngenzi JC. A new approach for studying nonlinear dynamic
response of a thin plate with internal resonance in a fractional viscoelastic medium. Shock
and Vibration. 2015;2015:795606

[25] Rossikhin YA, Shitikova MV. Nonlinear dynamic response of a fractionally damped
cylindrical shell with a three-to-one internal resonance. Applied Mathematics and Com-
putation. 2015;257:498-525

[26] Rossikhin YA, Shitikova MV. A new approach for studying nonlinear dynamic response
of a thin fractionally damped cylindrical shell with internal resonances of the order of ε.
In: Altenbach H, Mikhasev GI, editors. Shell and Membrane Theories in Mechanics and
Biology: From Macro- to Nanoscale Structures. Advanced Structural Materials. Berlin-
Heidelberg: Springer; 2015. Chapter 17. pp. 301-321

[27] Rossikhin YA, Shitikova MV, Ngenzi JC. Fractional calculus application in problems of
non-linear vibrations of thin plates with combinational internal resonances. Procedia
Engineering. 2016;144:849-858

[28] Rossikhin YA, Shitikova MV. Analysis of non-linear vibrations of a fractionally damped
cylindrical shell under the conditions of combinational internal resonance. In: Mastorakis
N et al., editors. Computational Problems in Science and Engineering. Lecture Notes in
Electrical Engineering. Vol. 343. Berlin-Heidelberg: Springer; 2015. pp. 59-107

Soliton-Like Solutions in the Problems of Vibrations of Nonlinear Mechanical Systems: Survey
http://dx.doi.org/10.5772/intechopen.74434

87



Chapter 5

Nonlinear Aeroelastic Response of Highly Flexible
Flying Wing Due to Different Gust Loads

Ehsan Izadpanahi and Pezhman Mardanpour

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75804

Provisional chapter

Nonlinear Aeroelastic Response of Highly Flexible
Flying Wing Due to Different Gust Loads

Ehsan Izadpanahi and Pezhman Mardanpour

Additional information is available at the end of the chapter

Abstract

Nonlinear aeroelastic responses of a flying wing aircraft due to different gust profiles are
investigated. Three different gust profiles are obtained considering light, moderate, and
severe turbulence. A flying wing configuration is designed for the purpose of this investi-
gation. The structural properties of the wings are obtained using VABS software, and then
the flying wing is simulated with Nonlinear Aeroelastic Trim and Stability of HALE
Aircraft (NATASHA) computer program. The results of time domain analysis are
reported for the cases when engine is placed at the root of the wing and close to the area
of maximum flutter speed. It has been found that the flying wing experiences limit cycle
oscillation, when the engines are mounted at the root of the aircraft, for all three gust
profiles. However, when the engines are placed at the area of maximum flutter speed, the
oscillations die out. In addition, the real and imaginary part of eigenvalues and the
unstable mode shape of the aircraft are reported.

Keywords: gust response, flying wing, nonlinear time domain analysis, flutter analysis,
gust suppression

1. Introduction

Very flexible high-aspect-ratio wings are widely used in the design of high altitude long
endurance (HALE) aircrafts. These wings due to their characteristics may subject to large
deformation, which causes geometric nonlinearities. As a result, conducting the nonlinear
aeroelastic analysis is necessary when it comes to the design of very flexible configurations
[1–3]. In addition, time-dependent external excitation including gust [4–7] and blast [8–12] can
lead to instability even if the aircraft is flying below the stability boundary. Therefore, the
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Abstract

Nonlinear aeroelastic responses of a flying wing aircraft due to different gust profiles are
investigated. Three different gust profiles are obtained considering light, moderate, and
severe turbulence. A flying wing configuration is designed for the purpose of this investi-
gation. The structural properties of the wings are obtained using VABS software, and then
the flying wing is simulated with Nonlinear Aeroelastic Trim and Stability of HALE
Aircraft (NATASHA) computer program. The results of time domain analysis are
reported for the cases when engine is placed at the root of the wing and close to the area
of maximum flutter speed. It has been found that the flying wing experiences limit cycle
oscillation, when the engines are mounted at the root of the aircraft, for all three gust
profiles. However, when the engines are placed at the area of maximum flutter speed, the
oscillations die out. In addition, the real and imaginary part of eigenvalues and the
unstable mode shape of the aircraft are reported.

Keywords: gust response, flying wing, nonlinear time domain analysis, flutter analysis,
gust suppression

1. Introduction

Very flexible high-aspect-ratio wings are widely used in the design of high altitude long
endurance (HALE) aircrafts. These wings due to their characteristics may subject to large
deformation, which causes geometric nonlinearities. As a result, conducting the nonlinear
aeroelastic analysis is necessary when it comes to the design of very flexible configurations
[1–3]. In addition, time-dependent external excitation including gust [4–7] and blast [8–12] can
lead to instability even if the aircraft is flying below the stability boundary. Therefore, the
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determination of nonlinear aeroelastic responses to time-dependent excitation is a crucial topic
for the design of very flexible flying wings.

Gust loads can result in large deformations in the case of a highly flexible aircraft. The flight
dynamic characteristics and gust response of highly flexible aircraft were investigated by Patil
and Taylor [13]. It was reported that the non-uniform gust creates higher responses in a case of
high-aspect-ratio flying wing compared to uniform gusts. In addition, the nonlinear gust
response of a highly flexible aircraft was reported by Patil [14], which he found that the time
domain response matches with frequency domain response presented in the work by Patil and
Taylor [13]. Ricciardi et al. [15] investigated the accuracy of the Pratt method for unconven-
tional HALE aircraft. The Pratt method and transient method were used to analyze the gust
response on the joined-wing and flying-wing model. It was found that Pratt method is only
useful for the preliminary design of the joined-wing model. However, when it comes to the
design of flying-wing model, the Pratt method is inadequate. Yi et al. [16] compared a theoret-
ical and experimental approach of a flexible high-aspect-ratio wing exposed to a harmonic
gust. It was found that a very flexible wing experiences different gust response characteristics
under different load conditions and the responses are difficult to evaluate using linear analysis.

On the other hand, finding ways to suppress the responses of a highly flexible configuration
due to time-dependent excitations is a challenging aspect of design. Tang et al. [17] conducted
an experimental and theoretical study to investigate the effect of store span location and its
pitch stiffness on the flutter velocity and LCO. A delta wing for the purpose of experimentation
was chosen. In addition, the von-Karman plate theory, three-dimensional vortex lattice model,
and slender body aerodynamic theory were used for modeling the wing structure and deter-
mining the aerodynamic loads, respectively. It was reported that the experimental investiga-
tion and theoretical studies were in good agreement, and they showed that the structural
natural frequency of the wing/store declines as the store moves from the root to the tip of the
wing. They concluded that mounting the store at the leading edge of the wing tip leads to a
higher critical flutter velocity. Moreover, Mardanpour et al. [18] found that the maximum
flutter speed happened for engine placement at 60% of span forward the reference line. It was
reported that the body-freedom flutter mode was unaffected by the engine location except for
cases in which the engine was mounted at the wing tip and near the reference line.

Fazelzadeh et al. [19] investigated the effects of a nonlinear active control system on the flutter
vibration of a wing/store exposed to a random gust disturbance. It was found that the control
system is effective in suppressing the flutter vibration. In addition, Mardanpour et al. [7, 20]
reported that the gust response of a very flexible high-aspect-ratio wing can be suppressed by
changing the location of the engine. It was found that placing the engine close to 75% of the
span forward of the reference line increases the flutter speed and also leads to suppression of
the LCO due to gust loads.

In this chapter, the effect of engine placement on nonlinear aeroelastic gust response of a flying
wing aircraft is investigated using three gust profiles with different gust intensities. The gust
profiles are obtained utilizing different magnitude of turbulence at 10,000 m of altitude [21]. A
flying wing aircraft is simulated for this study. The wings are designed using the structural
properties which were obtained utilizing VABS software for NACA0012 airfoil. The computer
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program Nonlinear Aeroelastic Trim and Stability of High Altitude Long Endurance Aircraft
(NATASHA) [3, 22] is used to simulate the nonlinear behavior of the flying wing aircraft.
NATASHA is a powerful tool for the simulation of nonlinear behavior of HALE aircraft. It
uses the nonlinear composite beam theory [23] that accommodates the modeling of high-
aspect-ratio wings and the aerodynamic theory of Peters et al. [24] to model the aerodynamic
forces and the p method to evaluate the aeroelastic stability. NATASHA has been verified and
validated against experimental and theoretical studies many times [25, 26]. The nonlinear
responses of the aircraft are obtained for the cases when the engines are mounted at the root
of wings and at the area of maximum flutter speed (i.e., 60% of span forward of reference line).

2. Theory

2.1. Nonlinear composite beam theory

The equations of motion, which are presented in Eq. (1), are based on force, moment, angular
velocity, and velocity with nonlinearities of second order. These variables can be expressed in
the bases of the deformed and undeformed frames, B x1; tð Þ and b x1ð Þ, respectively, see Figure 1.

F0B þ ~KBFB þ f B ¼ _PB þ ~ΩBPB

M0B þ ~KBMB þ ~e1 þ ~γð ÞFB þmB ¼ _HB þ ~ΩBHB þ ~VBPB

(1)

In this set of equations, FB and MB represent the column matrices of cross-sectional stress and
moment resultant; VB and ΩB define column matrices of cross-sectional frame velocity and
angular velocity; PB and HB indicate the column matrices of cross-sectional linear and angular

Figure 1. Sketch of beam kinematics.
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momentummeasures; ~KB is Columnmatrix of deformed beam’s curvature and twist. All of the
abovementioned variables measure in Bi basis. The structural and the inertial constitutive
equations relate the stress resultants and moments to the generalized strains and velocities as
follows:

γ

κ

� �
¼ R S

ST T

� �
FB
MB

� �
(2)

PB

HB

� �
¼ μΔ �μ~ξ

μ~ξ I

" #
VB

ΩB

� �
(3)

here, R, S, and T represent 3�3 partitions of the cross-sectional flexibility matrix; μ is the mass
per unit length; Δ is the 3�3 identity matrix; I defines the 3�3 cross-sectional inertia matrix; ξ

is 0 ξ2 ξ3b cT in which ξ2 and ξ3 represent the position coordinates of the cross-sectional
mass center with respect to the reference line. Finally, strain- and velocity-displacement equa-
tions are utilized to derive the intrinsic kinematical partial differential Equations [23].

V 0B þ ~KBVB þ ~e1 þ ~γð ÞΩB ¼ _γ

Ω0B þ ~KBΩB ¼ _κ
(4)

In these equations, the tilde ~ð Þ represents the antisymmetric 3�3 matrix associated with the

column matrix over which the tilde is placed, _̇ð Þ defines the partial derivative with respect to
time, and ð Þ0 is the partial derivative with respect to the axial coordinate, x1. More details
about these equations can be found in Ref. [27]. In order to solve these first-order, partial
differential equations, one may eliminate γ and κ using Eq. (2) and PB and HB using Eq. (3),
and also 12 boundary conditions are required, in terms of force (FB), moment (MB), velocity
(VB), and angular velocity (ΩB). Displacement and rotation variables do not appear in this
formulation, and singularities due to finite rotations are avoided. The position and the orien-
tation can be obtained as postprocessing operations by integrating

r0i ¼ Cibe1

ri þ ui
0 ¼ CiB e1 þ γð Þ

(5)

and

Cbi� �0 ¼ �~kCbi

CBi� �0 ¼ � ~k þ ~κÞCBi
� (6)

2.2. Finite state-induced model of Peters et al.

The aerodynamic model of Peters et al. [24] is utilized in this study. This finite state model is a
state-space, thin-airfoil, inviscid, incompressible approximation of an infinite-state representation
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of the aerodynamic loads. By using known airfoil parameters, it can consider induced flow in
the wake and apparent mass effects. In addition, it can accommodate large motion of the airfoil
as well as deflection of a small trailing-edge flap. Available studies in literature [24–26] indicate
that although this model cannot simulate the three-dimensional effects associated with the
wing tip, it can accurately approximate the aerodynamic loads acting on high-aspect-ratio
wings. The lift, drag, and pitching moment at the quarter-chord are given by

Laero ¼ rb cl0 þ clββ
� �

VTVa2 � clα _Va3b=2� clαVa2 Va3 þ λ0 �Ωa1b=2ð Þ � cd0VTVa3

h i
(7)

Daero ¼ rb � cl0 þ clββ
� �

VTVa3 þ clα Va3 þ λ0ð Þ2 � cd0VTVa2

h i
(8)

Maero ¼ 2rb cm0 þ cmββ
� �

VT � cmαVTVa3 � bclα=8Va2Ωa1 � b2clα _Ωa1=32þ bclα _Va3=8
h i

(9)

Where,

VT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

a2 þ V2
a3

q
: (10)

sinα ¼ �Va3

VT
(11)

α rot ¼ Ωa1b=2
VT

(12)

and β is the angle of flap deflection, Va2 and Va3 denote the measure numbers of Va. The effect
of unsteady wake (induced flow) and apparent mass included as λ0 and acceleration terms in
the force and moment equation, which λ0 can be calculated using the induced flow model of
Peters et al. [24]:

Ainduced flow½ � _λ
� �þ VT

b

� �
λf g ¼ � _Va3 þ

b
2

_Ωa1

� �
cinduced flowf g (13)

λ0 ¼ 1
2

binduced flowf gT λf g (14)

here, λ defines the column matrix of induced flow states, and Ainduced flow½ �, cinduced flowf g,
binduced flowf g represent constant matrices, which are derived in Ref. [24].

2.3. Gust airloads model

The gust airloads are taken into account separately from the aerodynamic forces of the flight
dynamic velocities. The unsteady gust model measures the chordwise variation of the gust
field on the deformed state of the wing. Here, an interpretation of the Peters and Johnson [28]
theory that considers these effects is provided. The total induced flow is ωB, defining the
vertical gust velocity in the deformed beam frame
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L ¼ ω0 þ 1
2
ω1 þ 1

2
_ω0 þ 1

2
_ω1
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here, L denotes the velocity-normalized lift coefficient presented by Peters and Johnson [28]; ωn

is the coefficient of the nth Chebychev polynomial mode shape. ωB can approximated as

ωB ¼
XN
0

ωnTn (16)

where Tn is the nth order Chebyshev polynomial. The gust force can be provided as

f gust ¼
0
�rbClα V3 þ ω0ð ÞL
rbClαV2L

8><
>:

9>=
>;

(17)

and the gust contribution to the induced flow can be presented as

λ0gust ¼ _ω0 þ 1
2
_ω1 (18)

2.4. Aeroelastic system

By unifying the aerodynamic equations with the structural equations, the aeroelastic system is
constructed

A½ � _xf g þ B xð Þf g ¼ f cont
� �þ f gust

n o
(19)

here, xf g, f cont
� �

, and f gust
n o

define the vectors of all of the aeroelastic variables, the flight

controls, and gust loads, respectively. The resulting nonlinear ordinary differential equations are
then linearized about a static equilibrium state, which is obtained by nonlinear algebraic equa-
tions. Utilizing the Newton-Raphson procedure, NATASHA solves these equations to obtain
the steady-state trim solution [3]. The stability of the structure can be analyzed by linearizing
this system of nonlinear aeroelastic equations about the resulting trim state, which leads to a
standard eigenvalue problem. The linearized system is represented as

A½ � _bx
n o

þ B½ � bxf g ¼ bf cont
n o

þ f gust
n o

(20)

where bðÞ is the perturbation about the steady-state values.

2.5. Transient gust response

The dynamic aeroelastic equations are solved in time to obtain the transient gust response. A
central difference scheme in time-marching algorithm is used with a high-frequency damping.
The linearized system in time can be written as follows:
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1
δt

A½ � bxtþδt
n o

� bxt
n o� �

þ 1
2
B½ � 1þ ςð Þ bxtþδt

n o
þ 1� ςð Þ bxt

n o� �
¼ bf cont
n o

þ f gust
n o

(21)

here, δt and ς are the time step and the high-frequency-damping parameter, respectively.
Utilizing ς approximately equal to 0.01 provides a good time-marching algorithm, which the
results are close to the central difference method.

The gust profiles are presented in Figure 2. These profiles presented in Figure 2 are generated
by passing the Gaussian white noise through the Dryden spectrum model.

3. Case study

A very flexible high-aspect-ratio flying wing (see Figure 3) is designed in order to investigate
the effects of different gust loads. The properties of the flying wing are presented in Table 1.
The wings are aft swept 15 ∘ , and each wing has 20 elements. The fuselage is considered as a
rigid body which contains four elements. The weight of each element of fuselage is five times
of the weight of the elements of the wings. The aircraft has two engines with the mass
of 10 kg.

Figure 2. Gust velocity profile versus time.
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The wings are aft swept 15 ∘ , and each wing has 20 elements. The fuselage is considered as a
rigid body which contains four elements. The weight of each element of fuselage is five times
of the weight of the elements of the wings. The aircraft has two engines with the mass
of 10 kg.

Figure 2. Gust velocity profile versus time.
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Figure 3. A schematic 3D view of a very flexible high-aspect-ratio wing.

Property Value

Span 16

Number of elements 20

Sweep angle 15

R 9:06� 10�9 0 0

0 3:50� 10�8 7:22� 10�13

0 7:22� 10�13 1:18� 10�6

2
664

3
775

S 0 2:63� 10�12 7:57� 10�11

�3:01� 10�12 0 0

�1:02� 10�6 0 0

2
664

3
775

T 4:33� 10�6 0 0

0 5:53� 10�6 2:42� 10�14

0 2:42� 10�14 8:43� 10�8

2
664

3
775

I 4:78� 10�1 0 0

0 7:2� 10�3 �1:04� 10�10

0 �1:04� 10�10 4:71� 10�1

2
664

3
775

ξ 0
8:98� 10�4

�4:76� 10�7

2
64

3
75

Mass per unit length 4.38

Chord, c 1

Offset of aerodynamic center from reference line, e 0.125

clα 2π

clδ 1

cd0 0:01

cm0 0:0

cmα �0:08
Gravity, g 9:8

Air Density, r 0:4135

Table 1. Properties of wing in SI units.
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4. Results and discussion

In this section, two cases are considered. First, when the engine mounted at the root of the
wing and the second case when the engines are located at 60% of the span forward of
the reference line. For each case, the eigenvalues, the unstable mode shape of the aircraft, and
the nonlinear time domain responses to the gust profiles are reported. The velocity results are
normalized with the aircraft cruise speed of 50 m/s. The wing tip deflections also normalized
with the length of the entire flying wing (i.e., 35.2 m), and the time is normalized with the
period of oscillation of the flying wing at the flutter boundary when the engines are located at
the root (i.e., 0.129 s).

4.1. Engine at the root

When the engines are located at the root of the flying wing, the wings experience a flutter at
the speed of 48.9 m/s with a frequency of 7.7 rad/s. The real and imaginary parts of the
eigenvalues are shown in Figure 4. In addition, the mode shape of the unstable mode is shown
in Figure 5. The mode shape seems to contain first and second free-free bending mode.

Figures 6–11 illustrate the results of time domain analysis when the engine is mounted at the
root of the flying wing for different gust profiles in which Case 1, Case 2, and Case 3 indicate
the results when the flying wing is exposed to light, moderate, and severe turbulence, respec-
tively. It is found that the tip deflection increases in all directions when the gust load changes
from light to severe turbulence. The same also happens for velocities. The velocity of the wing
tip in different directions increases.

4.2. Engine at 60% of span forward of reference line

In another case, the engines are mounted at 60% of span forward of reference line.
Mardanpour et al. [18] reported that this area coincides with the area of maximum flutter

Figure 4. (a) Real part of eigenvalues and (b) imaginary part of eigenvalues.
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Figure 5. Unstable mode of the flying wing.

Figure 6. Normalized wing tip position r1þu1
l versus normalized time t

tN
. (a) Case 1, (b) Case 2, and (c) Case 3.

Figure 7. Normalized velocity vector of wing tip V1
VN

versus normalized wing tip position r1þu1
l . (a) Case 1, (b) Case 2, and

(c) Case 3.
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speed. It is found that the flying wing becomes unstable at the speed of 75.6 m/s. The real and
imaginary parts of the eigenvalues are shown in Figure 12, and the mode shape of the unstable
mode is displayed in Figure 13. Apparently, the mode shape only contains the first symmetric
free-free bending mode.

Figure 8. Normalized wing tip position r2þu2
l versus normalized time t

tN
. (a) Case 1, (b) Case 2, and (c) Case 3.

Figure 9. Normalized velocity vector of wing tip V2
VN

versus normalized wing tip position r2þu2
l . (a) Case 1, (b) Case 2, and

(c) Case 3.

Figure 10. Normalized wing tip position r3þu3
l versus normalized time t

tN
. (a) Case 1, (b) Case 2, and (c) Case 3.
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Figure 11. Normalized velocity vector of wing tip V3
VN

versus normalized wing tip position r3þu3
l . (a) Case 1, (b) Case 2, and

(c) Case 3.

Figure 12. (a) Real part of eigenvalues and (b) imaginary part of eigenvalues.

Figure 13. Unstable mode of the flying wing.
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Figures 14–16 show the results of time domain analysis when the engine is located at the area
of maximum flutter speed (i.e., 60% of span forward of reference line). The results are reported
for three different gust profiles. The results for this arrangement indicate that all the excitations
from gust loads with different strength ranges from light to severe loads die out and the wing
remains stable.

Figure 14. Normalized wing tip position r1þu1
l versus normalized time t

tN
. (a) Case 1, (b) Case 2, and (c) Case 3.

Figure 15. Normalized wing tip position r2þu2
l versus normalized time t

tN
. (a) Case 1, (b) Case 2, and (c) Case 3.

Figure 16. Normalized wing tip position r3þu3
l versus normalized time t

tN
. (a) Case 1, (b) Case 2, and (c) Case 3.
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Figures 14–16 show the results of time domain analysis when the engine is located at the area
of maximum flutter speed (i.e., 60% of span forward of reference line). The results are reported
for three different gust profiles. The results for this arrangement indicate that all the excitations
from gust loads with different strength ranges from light to severe loads die out and the wing
remains stable.

Figure 14. Normalized wing tip position r1þu1
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Figure 15. Normalized wing tip position r2þu2
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5. Conclusion

The nonlinear aeroelastic responses of a flying wing aircraft are investigated when the aircraft
is exposed to different gust profiles with different intensities. The aircraft is designed with two
aluminum wings with NACA 0012 airfoil. The properties of the wings are obtained using
VABS software. The properties are then used in geometrically exact beam formulation, which
is coupled with two-dimensional finite state aerodynamic model of Peters. The flutter charac-
teristics for two configurations of the aircraft (i.e., engines at the root of the wings and engines
at 60% of span forward of the reference line) as well as the eigenvalues and mode shape of the
unstable modes for each configuration are studied. The flutter results are in agreement with
the previous conclusion by Mardanpour et al. [18], which shows a higher flutter speed when
the engines are mounted at 60% of span forward of reference line.

Three different gust profiles are then produced by passing white noise through Dryden gust
model. The gust loads with light, moderate, and severe intensities are applied to the aircraft in
time domain when the aircraft is cruising at 50 m/s. The results indicate that when the engines
are mounted at the root of the wings, large oscillations exist, which their amplitude increases
as the intensity of the gust loads increases. On the contrary, for all of the gust loads, when the
engines are located at 60% of span forward of the reference line, the oscillations suppress.
Previous study on gust alleviation by Mardanpour et al. [7, 20] for a cantilever wing also
showed the suppression of gust responses when the engines are mounted at the area of
maximum flutter speed.

Nomenclature

a deformed beam aerodynamic frame of reference

b undeformed beam cross-sectional frame of reference

B deformed beam cross-sectional frame of reference

bi unit vectors in undeformed beam cross-sectional frame of reference (i ¼ 1; 2; 3)

Bi unit vectors of deformed beam cross-sectional frame of reference (i ¼ 1; 2; 3)

c chord

cmβ pitch moment coefficient w.r.t. flap deflection (β)

clα lift coefficient w.r.t. angle of attack (α)

clβ lift coefficient w.r.t. flap deflection (β)

e1 column matrix 1 0 0b cT

e offset of aerodynamic center from the origin of frame of reference along b2
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f column matrix of distributed applied force measures in Bi basis

F column matrix of internal force measures in Bi basis

g gravitational vector in Bi basis

H column matrix of cross-sectional angular momentum measures in Bi basis

i inertial frame of reference

ii unit vectors for inertial frame of reference (i ¼ 1; 2; 3)

I cross-sectional inertia matrix

k column matrix of undeformed beam initial curvature and twist measures in bi basis

K column matrix of deformed beam curvature and twist measures in Bi basis

l wing length

L velocity-normalized lift coefficient

m column matrix of distributed applied moment measures in Bi basis

M column matrix of internal moment measures in Bi basis

P column matrix of cross-sectional linear momentum measures in Bi basis

r column matrix of position vector measures in bi basis

u column matrix of displacement vector measures in bi basis

U∞ free stream velocity

V column matrix of velocity measures in Bi basis

x1 axial coordinate of beam

β trailing edge flap angle

Δ identity matrix

γ column matrix of 1D-generalized force strain measures

κ column matrix of elastic twist and curvature measures (1D-generalized moment strain
measures)

η dimensionless position of the engine along the span

λ column matrix of induced flow states

Λ sweep angle

μ mass per unit length

ξ column matrix of center of mass offset from the frame of reference origin in bi basis
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ψ column matrix of small incremental rotations

ω induced flow velocity

Ω column matrix of cross-sectional angular velocity measures in Bi basis

ð Þ0 partial derivative of ð Þ with respect to x1

_̇ð Þ partial derivative of ð Þ with respect to time

cð Þ nodal variable
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A global regularized Gauss-Newton (GN) method is proposed to obtain a zero residual for
square nonlinear problems on an affine subspace built by wavelets, which allows reducing
systems that arise from the discretization of nonlinear elliptic partial differential equations
(PDEs) without performing a priori simulations. This chapter introduces a Petrov-Galerkin
(PG) GN approach together with its standard assumptions that ensure retaining the q-
quadratic rate of convergence. It also proposes a regularization strategy, which maintains
the fast pace of convergence, to avoid singularities and high nonlinearities. It also includes a
line-search method for achieving global convergence. The numerical results manifest the
capability of the algorithm for reproducing the full-order model (FOM) essential features
while decreasing the runtime by a significant magnitude. This chapter refers to a wavelet-
based reduced-order model (ROM) as WROM, while PROM is the proper orthogonal
decomposition (POD)-based counterpart. The authors also implemented the combination
of WROM and PROM as a hybrid method referred herein as (HROM). Preliminary results
with Bratu’s problem show that if theWROM could correctly reproduce the FOM behavior,
then HROM can also reproduce that FOM accurately.

Keywords: Gauss-Newton method, line search, Petrov-Galerkin direction, data
compression, wavelets

1. Introduction

The Newton method for solving square nonlinear problems is one of the most popular tech-
niques used in engineering applications due to its simplicity and fast convergence rate [1–3].
However, the quality of the final numerical results is affected by the possible Jacobian’s
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singularity and high nonlinearity. Another drawback is that the method depends on the initial
point. Therefore, it is necessary to implement a globalization strategy to get the solution inde-
pendently of the initial guess. One such approach is the line-search method that relies on a
suitable merit function that yields that the iterations progress toward a solution of the problem.

From the numerical point of view, the technique requires solving square linear systems several
times, and it is necessary to carry out function evaluations of the order of the problem, as well
as first-order information of the square law of the function to compute the Jacobians. In the
case of high-dimensional nonlinear problems, the method can overcome the capacity of the
computer memory or decrease speed for solving these linear systems, even in the case of a few
iterations. One of the current research activities focuses on solving large-scale square nonlinear
problems in real time. The purpose of this chapter is to provide an algorithm for solving large-
scale square nonlinear problems, in real time, while retaining the fast convergence rate. One
strategy for addressing such challenges is to characterize an affine subspace, of much lower
dimension than the original one, that contains the initial solution and thus reproduces the
problem’s principal features.

One procedure to characterize the affine subspace consists of solving the full-order model
(FOM) in several input points whose solutions are called snapshots, then using a principal
component analysis method such as singular value decomposition (SVD) to build an ortho-
normal basis that spans the snapshots’ majority of energy. This oblique subspace, where one
seeks a solution, is projected on the original one. Good numerical results have been already
reported in the literature [1, 3–7]. But there are still open questions about this procedure as for
how and when to choose the snapshots and their number [8, 9]. It is important to emphasize
that at every picture it is required solving the FOM regardless of its cost. This chapter thus
promotes a new strategy that is snapshot free. The approach originated in signal processing
and consists of using the notion of wavelets to compress data in a subspace of smaller
dimension which retains the majority of the original energy [10, 11]. The discrete wavelet’s
low-pass matrix is used as the affine subspace; then, the optimization is performed in this
compressed subspace to obtain a cheaper solution that can decompress to its original size.

2. Reduced-order models using wavelet transformations

2.1. Wavelets and data compression

The rationale for using wavelet transformations for model reduction originates from the fields of
image processing, image compression, and transform coding. In these fields, massive amounts of
information, for example, images, are broadcasted over limited bandwidth communication lines
and networks such as the internet. One needs to compress these signals for quick transmission
and to diminish storage requirements [10]. In summary, data compression consists of, given a
signal x∈Rn find a lower dimensional signal bx ∈Rr with r≪ n to broadcast or store those lower
dimensional ones bx: The most widely used techniques for data compression are based on
wavelets transform. The key to using wavelets is to find a lower dimensional signal bx that relies
on a known subspace properly denoted as energy compaction. It is well comprehended that the
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wavelets tend to accumulate energy in the low-frequency sub-band of the wavelet decomposi-
tion [3, 12–14]. The energy relates to the L2-norm and is defined as e ¼ ∥x∥2 ¼Pn

i¼1 x
2
i : To

demonstrate the energy compaction, consider Figure 1, in which one has the original image
x∈R512�512: Notice that the upper left quadrant of the wavelet decomposition is a low-
dimensional approximation bx ∈R256�256 that is one-fourth the size of the original signal and
resembles the low-frequency sub-band wavelet coefficients. Using the previously measured
energy, the energy enclosed in bx is 95:75% using just one-fourth of the coefficients. Since bx
comprises most of the energy, a simple data compression scheme would execute all of the other
wavelet sub-bands to zero and store only the low-frequency information as in Figure 1 (see in the
bottom center). By only employing bx, one can reproduce an approximation of x∈Rn by its
generalized inverse of the sub-band compression [10]. Next section will provide details.

2.2. Reduced-order models

Let W ∈Rn�n describe an orthonormal wavelet. The transformation encompasses a low-pass
and a high-pass submatrix that is given by

Wn�n ¼ Lr�n
Hs�n

� �
, rþ s ¼ n: (1)

By orthogonality, rank Wð Þ ¼ n, rank Lð Þ ¼ r, and rank Hð Þ ¼ s: Now, by orthogonality of W,
WWT ¼ I, then LLT ¼ Ir, HHT ¼ Is. The energy of a signal x∈Rn is

∥x∥2 ¼ ∥Lx∥2 þ ∥Hx∥2: (2)

Choosing L that contains the majority of the energy such that the energy ∥Hx∥ ≈ 0, one has
∥x∥ ≈ ∥Lx∥: This means that the energy of the original data x∈Rn is approximately equal to the

Figure 1. Sample compression and decompression.
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energy to the compressed data bx ¼ Lx∈Rr: That is: ∥x∥ ≈ ∥bx∥: The decompressed data are
LTbx ¼ ~x ∈Rn: On the other hand, the compressed and decompressed energies are equal. That
is ∥bx∥ ¼ ∥~x∥ since LLT ¼ Ir: Therefore, the original, compressed, and decompressed data are
related as follows

∥x∥ ≈ ∥bx∥ ¼ ∥~x∥, (3)

where x∈Rn is the original data, bx ∈Rr is the compressed data, and ~x ∈Rn is the decompressed
data. Thus, once an appropriate low-pass submatrix L is determined, one proposes solving the
corresponding optimization problem in the reduced affine subspace determined by LT and later
coming back to the original size by its generalized inverse.

3. Problem formulation

3.1. Statement of the problem

Given a nonlinear function R from Rn to Rn, find a solution in an affine subspace determined
by an initial displacement point xo ∈Rn and an orthonormal base LTn�r, r < n: That is: find
x∗ ∈Rn with R x∗ð Þ ¼ 0 and x∗ ∈ xo þ η LT

� �
, where η LT

� �
is the subspace generated by the

linear combination of the operator LT.

3.2. Overdetermined problem

This section formulates this problem by using the overdetermined functions H and ϕ from Rr

to Rn

H pð Þ ¼ R ϕ pð Þ� � ¼ 0, ϕ pð Þ ¼ xo þ LTp, andp∈Rr: (4)

The fact that finding a solution p∗ of the overdetermined problem draws attention, H p∗ð Þ ¼ 0
for p∗ ∈Rr, is equivalent to finding the solution one is initially seeking. That is: x∗ ¼ ϕ p∗ð Þ and
R x∗ð Þ ¼ 0 is a solution on the affine subspace. Therefore, one studies the problem by finding a
zero residual of the nonlinear least-squares problem associated to H. Problem (4) is called an
overdetermined zero-residual problem.

3.3. Nonlinear least-squares problem

The residual problem (4) is immediately seen to be equivalent to solving the nonlinear zero-
residual least-square problem

minimize f pð Þ ¼ 1
2

Xn

i¼1
r2i ϕ pð Þ� �

, p∈Rr: (5)
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3.4. First derivatives for the residual functions R and H

The Jacobian of R at x∈Rn is given by

JR xð Þ ¼ J xð Þ ¼ ∇ri xð Þð ÞT
h i

1 ≤ i ≤ n
: (6)

A direct application of the chain rule, since Jϕ pð Þ ¼ LT yields:

JH pð Þ ¼ J ϕ pð Þ� �
LT : (7)

3.5. First and second derivatives for problem (5)

The gradient of each term of the problem is ∇r2i ϕ pð Þ� � ¼ 2LTri ϕ pð Þ� �
∇ri ϕ pð Þ� �

. Therefore the
gradient of f pð Þ is

∇f pð Þ ¼ J ϕ pð Þ� �
LT

� �T
R ϕ pð Þ� �

:
�

(8)

The second-order information is

∇2f pð Þ ¼ J ϕ pð Þ� �
LT

� �T
Jϕ pð Þ� �

LTÞ þ
Xn

i¼1
hi pð Þ∇2hi pð ÞÞ: (9)

4. Gauss-Newton method

This section presents a Gauss-Newton method to solve the nonlinear problem (5) which is
equivalent to solving the overdetermined nonlinear composite function (4). It describes the
standard Newton assumptions for this composite function problems that yield q-quadratic rate
of convergence. The inconvenience to use Newton method is that the second-order informa-
tion associated with the Hessian method is not easily accessible or is impractical for computa-
tional time. The latter makes the Newton method impractical for very large-scale problems.

4.1. Model order-reduction-based Gauss-Newton algorithm

This subsection presents a reduced-order Gauss-Newton algorithm for solving problem (5),
which is the interest herein.

Algorithm 1. Reduced-order Gauss-Newton (ROGN)

Inputs: Given the compressed base LT ∈Rn�r, and an initial displacement xo ∈Rn:

Output: Approximate solution in the affine subspace x∈Rn:

1: Initial point of the problem. Given po ∈Rr.

2: Initial point in the affine subspace. ϕ po
� � ¼ xo þ LTpo ∈Rn.
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3: For k ¼ 0 : until convergence ∥R ϕ pk
� �

∥ ≤ e
� ��

.

4: Gauss-Newton direction (compressed direction). Solve for Δpkþ1

J ϕ pk
� �� �

LT
� �T

Jϕ pk
� �� �

LTÞΔpkþ1 ¼ � J ϕ pk
� �� �

LT
� �T

R ϕ pk
� �� �

: (10)

5: Compressed update: pkþ1 ¼ pk þ Δpkþ1.

6: Decompressed update: ϕ pkþ1
� � ¼ xo þ LTpkþ1.

Remarks:

1. The algorithm presents two initial points. The first xo is the displacement to characterize the
affine subspace, and the second one po is the initial point for the algorithm.

2. The update ϕ pkþ1
� �

is the approximation to the solution one is looking for which one
denotes by xkþ1.

3. Finding Gauss-Newton direction Δpkþ1 is equivalent to solving the following linear least-
squares problem:

min
Δpkþ1

1
2
∥ Jϕ pk

� �
LT

� �
Δpþ R ϕ pk

� �� �
∥2

� �
: (11)

4. The Gauss-Newton direction is the Petrov-Galerkin direction obtained by approximating
Newton’s direction of square nonlinear problems for the following weighted problem:

min
Δpkþ1

1
2
∥ LTΔpþ R xð Þ∥2Q�1 ; Q ¼ J xð ÞTJ xð Þ > 0
� o

:

�
(12)

4.2. Local convergence of reduced Gauss-Newton algorithm

It is known that the Gauss-Newton method retains q-quadratic rate of convergence under
standard assumptions for zero-residual single-function problems [15]. The natural question is:
What are the standard assumptions that guarantee the Gauss-Newton conditions for the
composite function one is working with, that conserve q-quadratic rate of convergence? The
next theorem establishes these assumptions.

Theorem: Let H from Rr to Rn be defined by H pð Þ ¼ R xo þ LTp
� �

, xo ∈Rn, p∈Rr, and L∈Rr�n

are orthonormal operators with r < n: Assume there exists a solution p∗ ∈ ~D ⊂Rr, with ~D

convex and open. Define D ¼ xof g þ LT ~D
� �

, where LT ~D
� �

is the image of ~D under LT ∈Rn�r.

Assume that JR ∈ Lγ Dð Þ, JR is bounded on D, and the minimum eigenvalue of J x∗ð ÞTJ x∗ð Þ is
positive. Then, the sequence pkþ1

� �
given ROGN algorithm 1 is well defined, converges, and

has q-quadratic rate of convergence. That is:
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∥pkþ1 � p∗∥ ≤
1
2
∥pk � p∗∥ (13)

∥pkþ1 � p∗∥ ≤
~c~γ
2~σ

∥pk � p∗∥2 with ~c, ~γ, ~σ ∈Rþ: (14)

Proof: The residual problem R has solution x∗ on D. First, one proves that the Jacobian of H is
Lipchitz on ~D: Since JH pð Þ ¼ J ϕ pð Þ� �

LT, then

∥JH p1
� �� JH p2

� �
∥ ¼ ∥ J ϕ p1

� �� �� J ϕ p2
� �� �� �

LT∥, for p1, p2 ∈ ~D: (15)

Since the Jacobian of R is Lipschitz on D, one concludes

∥JH p1
� �� JH p2

� �
∥ ≤ ~γ∥p1 � p2∥, ~γ ¼ γ∗∥LT∥2 , forp1, p2 ∈ ~D: (16)

Second, one proves that the Jacobian of H is bounded on ~D: Since the Jacobian of H at p is
J ϕ pð ÞLT�

, then

∥JH pð Þ∥ ¼ ∥J ϕ pð ÞLT∥ forp∈ ~D:
�

(17)

Now, since the Jacobian of R is bounded on D, one concludes

∥JH pð Þ∥ ≤~c, ~c ¼ c∗∥LT∥ forp∈ ~D: (18)

Finally, one proves that the smallest eigenvalue of JH p∗ð ÞTJH p∗ð Þ is greater than zero.

JH p∗ð ÞTJH p∗ð Þ ¼ J x∗ð ÞLT� �T
J x∗ð ÞLT� �

with x∗ ¼ xo þ LTp∗: (19)

Let p 6¼ 0∈Rk and σ∈R be an eigenvector and eigenvalue associated with the last symmetric
matrix. Then

∥LTp∥2Q ¼ σ∥p∥2 , Q ¼ J x∗ð ÞTJ x∗ð Þ > 0: (20)

Therefore, σ > 0 since LT is a full rank and p 6¼ 0. The convergence and its fast rate of conver-
gence given by the last two inequalities follow from the Theorem 10.2.1 in the Dennis and
Schnabel book [15].

5. Regularization

Despite the advantages of the Gauss-Newton method, the algorithm will not perform well if
either the problem is ill conditioned or in the presence of high nonlinearity of some compo-
nents of it. The purpose of this section is to introduce two regularizations to overcome these
difficulties while retaining the fast rate of convergence of the Gauss-Newton method.
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3: For k ¼ 0 : until convergence ∥R ϕ pk
� �

∥ ≤ e
� ��

.
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� �� �

LT
� �T
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� �T

R ϕ pk
� �� �
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� �� �
∥2

� �
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1
2
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� o
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�
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5.1. Levenberg-Marquardt method

To prevent the Gauss-Newton algorithm to preclude in case some eigenvalues are near zero or
in case of rank deficiency of the linear systems to solve, the least-squares directions are
regularized by

min
Δp

1
2
∥ J ϕ pð Þ� �

LT
� �

Δpþ R ϕ pð Þ� �
∥2 þ μ

2
∥Δp∥2

� �
(21)

where μ > 0. The solution is given by

J ϕ pð Þ� �
LT

� �T
J ϕ xð Þ� �

LT
� �þ μI

� �
Δp ¼ � J ϕ pð Þ� �

LT
� �T

R ϕ pð Þ� �
: (22)

Under the standard Gauss-Newton assumptions written before and choosing the regulariza-

tion parameter as μ ¼ O ∥ J ϕ pð Þ� �
LT

� �T
R ϕ pð Þ∥� ��

, the regularized Gauss-Newton algorithm

converges and the q-quadratic rate of convergence is retained; see Theorem 10.2.6 [15].

∥pkþ1 � p∗∥ ≤
1
2
~α~γ
~λ

∥pk � p∗∥2: (23)

5.2. Scaling regularization

To avoid the influence of the high order of magnitude of some components with respect to the
rest of the components of the problem, one presents the following regularization:

min
Δp

1
2
∥ J ϕ pð Þ� �

LT
� �

Δpþ R ϕ pð Þ� �
∥2 þ σ

2
∥LTΔp∥2Q

� �
, (24)

where Q ¼ J ϕ pð Þ� �
LT

� �T
J ϕ pð Þ� �

LT
� �

. The solution is given by

J ϕ pð Þ� �
LT

� �T
J ϕ pð Þ� �

LT
� �� �

Δp ¼ � J ϕ pð Þ� �
LT

� �T R ϕ pð Þ� �

1þ σ∥R ϕ pð Þ� �
∥
: (25)

This regularization prevents that large components of the problem affect the behavior of the
algorithm. It is important to observe the Lipschitz constant of the problem is improved.
Considering the preceding two regularizations, one has

J ϕ pð Þ� �
LT

� �T
J ϕ pð Þ� �

LT
� �þ μI

� �
Δp ¼ � J ϕ pð Þ� �

LT
� �T R ϕ pð Þ� �

1þ σ∥R ϕ pð Þ� �
∥
: (26)

This last regularizations prevent the smallest eigenvalue affecting the behavior of the
Gauss-Newton algorithm and at the same time, through rescaling, components with
small values are not considered by the influence of large components while retain its fast
rate of convergence.
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6. Globalization strategy

The good performance of the Gauss-Newton algorithm depends on a suitable initial point that
must be inside its region of convergence. Rather than absorbing the computational cost asso-
ciated with choosing an appropriate initial point, the chapter proposes a line-search method
that provides convergence for initial points outside of the region of convergence. The goal of
this approach is to obtain a sufficient decrease in the merit function. If the direction fails, then a
backtracking is used until a sufficient reduction is obtained. A merit function should allow
moving toward a solution of the problem.

6.1. Merit function

It is natural to think that the merit function for the unconstrained minimization problem (5) is
itself. That is: M pð Þ ¼ f pð Þ.

6.2. Descent direction

One proves that Gauss-Newton direction is a descent direction for the merit function
M pð Þ ¼ f pð Þ.
Property: The regularized Gauss-Newton direction Δp given by (26) is a descent direction for
the merit function M pð Þ ¼ f pð Þ.
Proof: One proves that the directional derivative of f at the direction Δp is less than zero. The

gradient of f pð Þ is given by ∇f xð Þ ¼ J ϕ pð Þ� �
LT

� �T
R ϕ pð Þ� �

. Therefore

∇f pð ÞTΔp ¼ �∥ J ϕ pð Þ� �
LT

� �T
R ϕ pð Þ� �

∥2Q�1 < 0 (27)

since Q ¼ J ϕ pð Þ� �
LT

� �T
J ϕ pð Þ� �

LT
� �þ μ

� �
is positive definite.

Consequently, it is possible to progress toward a solution of the problem in the Δp direction.
The purpose is to find a step length α∈ 0; 1ð � that yields a sufficient decrease. To that effect one
follows the Armijo-Goldstein conditions given by

f pþ αΔpð Þ ≤ f pð Þ þ α λ∗∇f pð ÞTΔp
� �

(28)

and

∇f pþ αpð ÞTΔp ≥ β∇f pð ÞTΔp, (29)

for fixed values λ, β∈ 0; 1ð Þ: The first inequality allows sufficient decrease of the merit function,
and the second one avoids step lengths that are very small. It is important to observe that if β is
chosen, β∈ λ; 1½ �, then the two inequalities can be satisfied simultaneously. Wolfe proved that
if f is continuously differentiable on Rr,Δp is a descent direction, and assuming the set
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f pþ αΔpð Þ;α∈ 0, 1ð �f g is bounded below, then there exists an α∗ ∈ 0; 1ð � such that the two
inequalities be satisfied simultaneously [16].

It is important to realize that these two inequalities can be reached by using a back-tracking
procedure. Therefore, this work uses a line-search strategy to satisfy the inequalities. Next
section proposes a line-search regularized Gauss-Newton algorithm for solving the zero-
residual composite function problem.

7. A line-search regularized Gauss-Newton method

This section proposes the following regularized Gauss-Newton method with line search to
find a solution on the affine subspace xo þ η LT

� �
for problem (4).

Algorithm 2: A reduced-order regularized Gauss-Newton (RORGN)

Input: Given the compressed base LT ∈Rn�r, and a displacement xo ∈Rn.

Output: The approximate solution in the affine subspace x∈Rn:

1: Initial point of the problem. Given po ∈Rr:

2: Initial point in affine subspace. x1 ¼ xo þ LTpo ∈Rn:

3: For k ¼ 1 : until convergence (∥R xkð Þ∥ ≤ ε:).
4: Choose μk ¼ σk∥R xkð Þ∥, and σk ∈ 0; 1ð �:
5: Regularized Gauss-Newton direction. Solve for Δpk

�
J xkð ÞLT
� �T

J xkð ÞLT
� �þ μkI

� �
Δpk ¼ �

J xkð ÞLT
� �T

R xkð Þ
1þ σk∥R xkð Þ∥ : (30)

6: Line search (sufficient decrease). Find αk ∈ 0; 1ð � such that

∥R xk þ αkLTΔpk
� �

∥2 < ∥R xkð Þ∥2 þ 2 � 10�4αk∇f pk
� �TΔpk: (31)

7: Update. xkþ1 ¼ xk þ αkLTΔpk.

Remarks: The algorithm is amenable to the use of any suitable basis, not necessarily a wavelet
basis. The algorithm can be tested with different initial displacement points. On the other
hand, the election of the initial point of the algorithm is not limited to the origin.

8. Numerical examples

The authors run on a MacBook Pro laptop equipped with an Intel(R) Quad-Core(TM) i7-
2720QM CPU @ 2.20GHz and 8 GB of RAM. Section 8.2 presents Bratu’s 3D problem. This
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problem is more challenging since the nonlinear systems become ill conditioned where one
approaches the bifurcation point. Therefore, the RORGN algorithm was tested to solve them
efficiently. All these Bratu’s problems utilized wavelets-based ROM. One takes the regulariza-
tion by μk ¼ σkkR xkð Þk, with σk ∈ 0; 1ð Þ. One employs as stopping criteria for the algorithm;
either the norm of the residual, ek ¼ ∥R xkð Þ∥, is less than some small positive real value given,
e, or a maximum number of iterations reached, kmax.

8.1. Bratu’s 2D problem

The Bratu’s 1D equation can be generalized by replacing the second derivative by a Laplacian
[1, 17]. This section numerically studies the nonlinear diffusion equation with exponential
source term in two and three dimensions. Let Ω ¼ 0; 1½ �n, n ¼ 2, 3 be a unitary square or cube,
where xi ∈ 0; 1½ �, i ¼ 1,…, n are the spatial variables while n is the space dimension.

Δuþ ζ � eu ¼ 0 on Ω ; u ¼ u xð Þ,
u ¼ 0 on ∂Ω,

(32)

and ζ∈R is a coefficient. The Laplacian is defined by

Δ �ð Þ ¼
Xn

i¼1

∂2 �ð Þ
∂x2i

: (33)

One can discretize (32) by means of central finite differences on regular tensor product meshes.
Homogenous Dirichlet boundaries are enforced conditions in all square or cube faces, see [17]
for details.

8.2. Bratu’s 3D problem

Figures 2 and 3 present results from Bratu’s 3D problem. Figure 2 shows the parameter
continuation problem while Figure 3 compares FOM andWROM results in the whole domain.
For visualization purposes, one cuts away the front half of the cube to see inside it. Figure 2
shows the FOM in continuous line while dashed blue and magenta lines correspond to WROM
at 85 and 90%, respectively. The mesh size is 10� 10� 10 and ζ ¼ 1:5 is fixed. In the figure, one
has from left to right the FOM, the WROM, and the absolute error. Neither of these WROM
models could reproduce the FOM behavior beyond ζ > 9. They could not get into neither the
second branch nor close to the bifurcation point, where the system becomes highly nonlinear.
On the other hand, Figure 3 compares FOM versus WROM at 90% in order to show that these
WROM could properly reproduce the FOM behavior in the whole cube. Table 1 summarizes
the performance of the family of Gauss-Newton algorithms applied to FOM Bratu’s 3D prob-
lem. One employs these numerical values, etol ¼ 10�3 and kmax ¼ 32. Once again, one gets close
to the bifurcation point by choosing, ζ ¼ 9:9, to pose a challenging nonlinear system while σ
was tuned to achieve performance for a given rank.

One observes for all ranks reported herein that the regularized method provides convergence
tolerances likewise but it usually spent two iterations less than standard Newton and hence
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f pþ αΔpð Þ;α∈ 0, 1ð �f g is bounded below, then there exists an α∗ ∈ 0; 1ð � such that the two
inequalities be satisfied simultaneously [16].

It is important to realize that these two inequalities can be reached by using a back-tracking
procedure. Therefore, this work uses a line-search strategy to satisfy the inequalities. Next
section proposes a line-search regularized Gauss-Newton algorithm for solving the zero-
residual composite function problem.

7. A line-search regularized Gauss-Newton method

This section proposes the following regularized Gauss-Newton method with line search to
find a solution on the affine subspace xo þ η LT
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for problem (4).
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Output: The approximate solution in the affine subspace x∈Rn:

1: Initial point of the problem. Given po ∈Rr:
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5: Regularized Gauss-Newton direction. Solve for Δpk
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Δpk ¼ �

J xkð ÞLT
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7: Update. xkþ1 ¼ xk þ αkLTΔpk.

Remarks: The algorithm is amenable to the use of any suitable basis, not necessarily a wavelet
basis. The algorithm can be tested with different initial displacement points. On the other
hand, the election of the initial point of the algorithm is not limited to the origin.

8. Numerical examples

The authors run on a MacBook Pro laptop equipped with an Intel(R) Quad-Core(TM) i7-
2720QM CPU @ 2.20GHz and 8 GB of RAM. Section 8.2 presents Bratu’s 3D problem. This
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approaches the bifurcation point. Therefore, the RORGN algorithm was tested to solve them
efficiently. All these Bratu’s problems utilized wavelets-based ROM. One takes the regulariza-
tion by μk ¼ σkkR xkð Þk, with σk ∈ 0; 1ð Þ. One employs as stopping criteria for the algorithm;
either the norm of the residual, ek ¼ ∥R xkð Þ∥, is less than some small positive real value given,
e, or a maximum number of iterations reached, kmax.

8.1. Bratu’s 2D problem

The Bratu’s 1D equation can be generalized by replacing the second derivative by a Laplacian
[1, 17]. This section numerically studies the nonlinear diffusion equation with exponential
source term in two and three dimensions. Let Ω ¼ 0; 1½ �n, n ¼ 2, 3 be a unitary square or cube,
where xi ∈ 0; 1½ �, i ¼ 1,…, n are the spatial variables while n is the space dimension.

Δuþ ζ � eu ¼ 0 on Ω ; u ¼ u xð Þ,
u ¼ 0 on ∂Ω,

(32)

and ζ∈R is a coefficient. The Laplacian is defined by

Δ �ð Þ ¼
Xn

i¼1

∂2 �ð Þ
∂x2i

: (33)

One can discretize (32) by means of central finite differences on regular tensor product meshes.
Homogenous Dirichlet boundaries are enforced conditions in all square or cube faces, see [17]
for details.

8.2. Bratu’s 3D problem

Figures 2 and 3 present results from Bratu’s 3D problem. Figure 2 shows the parameter
continuation problem while Figure 3 compares FOM andWROM results in the whole domain.
For visualization purposes, one cuts away the front half of the cube to see inside it. Figure 2
shows the FOM in continuous line while dashed blue and magenta lines correspond to WROM
at 85 and 90%, respectively. The mesh size is 10� 10� 10 and ζ ¼ 1:5 is fixed. In the figure, one
has from left to right the FOM, the WROM, and the absolute error. Neither of these WROM
models could reproduce the FOM behavior beyond ζ > 9. They could not get into neither the
second branch nor close to the bifurcation point, where the system becomes highly nonlinear.
On the other hand, Figure 3 compares FOM versus WROM at 90% in order to show that these
WROM could properly reproduce the FOM behavior in the whole cube. Table 1 summarizes
the performance of the family of Gauss-Newton algorithms applied to FOM Bratu’s 3D prob-
lem. One employs these numerical values, etol ¼ 10�3 and kmax ¼ 32. Once again, one gets close
to the bifurcation point by choosing, ζ ¼ 9:9, to pose a challenging nonlinear system while σ
was tuned to achieve performance for a given rank.

One observes for all ranks reported herein that the regularized method provides convergence
tolerances likewise but it usually spent two iterations less than standard Newton and hence
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CPU time reduces as well. One notices for this particular problem that line search is equivalent
to standard Newton as well as combined matches the performance of the combined plus line-
search method.

8.3. Nonlinear benchmark problems

One also considers a benchmark nonlinear problem from the literature in order to challenge
the proposed algorithms. The Yamamura [18] problem is a nonlinear system of equations
defined by:

R : Rn ! Rn, x∈Rn, Ri xð Þ ¼ 0, 1 ≤ i ≤ n,

Ri xð Þ ¼ 2:5x3i � 10:5x2i þ 11:8xi � iþ
Xn

i¼1
xi ¼ 0:

(34)

Figure 3. FOM and ROM are compared: FOM (left), WROM at 90% (center), and error (right).

Figure 2. FOM vs. WROM parameter continuation solutions of (32), for n ¼ 3, are shown.
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where n is the size of the nonlinear system. One implemented the algorithms with etol ¼ 10�6,
kmax ¼ 128, and σ ¼ 0:025.

The objective is to challenge the algorithms presented in this research, and the results are
reported in Table 2. One can infer from this table that the standard Newton method could not
converge in any of these realizations except n ¼ 32. Conversely, the regularized method con-
verged for all realizations. This latter method outperformed all others. On the other hand, the

Newton method ek δk #Iter Success

N = 512, σ ¼ 0:03

Standard 1.637075E�04 4.497266E�08 7 True

Combined 5.089393E�04 8.391213E�07 5 True

Regularized 5.089393E�04 8.391213E�07 5 True

Scaled 1.637075E�04 4.497266E�08 7 True

Line search 1.637075E�04 4.497266E�08 7 True

Com. and Line search 5.089393E�04 8.391213E�07 5 True

N = 1000, σ ¼ 0:025

Standard 3.303599E�04 1.682251E�07 7 True

Combined 1.424983E�05 7.450719E�10 6 True

Regularized 1.424983E�05 7.450719E�10 6 True

Scaled 3.303599E�04 1.682251E�07 7 True

Line search 3.303599E�04 1.682251E�07 7 True

Com. and Line search 1.424983E�05 7.450719E�10 6 True

N = 1728, σ ¼ 0:020

Standard 5.792054E�04 4.806531E�07 7 True

Combined 1.197055E�04 6.096723E�08 5 True

Regularized 1.197055E�04 6.096723E�08 5 True

Scaled 5.792054E�04 4.806531E�07 7 True

Line search 5.792054E�04 4.806531E�07 7 True

Com. and Line search 1.197055E�04 6.096723E�08 5 True

N = 2744, σ ¼ 0:015

Standard 1.143068E�05 1.756738E�10 8 True

Combined 1.678400E�04 1.052920E�07 6 True

Regularized 1.678400E�04 1.052920E�07 6 True

Scaled 1.143068E�05 1.756738E�10 8 True

Line search 1.143068E�05 1.756738E�10 8 True

Com. and Line search 1.678400E�04 1.052920E�07 6 True

Table 1. Gauss-Newton results for Bratu’s 3D problem presented in Section 8.2.
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regularized and line-search method could consistently converge for all realizations but
n ¼ 2048. For larger ranks, that is, 512 and 1024, the latter method is the more efficient bottom
line; the regularized method performed well in this example.

9. Hybrid method: HROM

The idea is simple since the wavelet subspace is not a function of a priori known snapshots, it
can be determined without executing the so-called, computationally expensive, off-line stage,
in which one thoroughly studies the FOM and can sample the input space to record a

Newton method ek δk #Iter Success

N = 32

Standard 6.643960E�06 1.282327E�07 47 True

Regularized 3.547835E�05 8.310947E�07 32 True

Line search 8.835078E�09 2.415845E�13 78 True

Reg. and Line search 4.271577E�06 8.288108E�09 35 True

N = 256

Standard 2.992259E�01 3.018468E+07 128 False

Regularized 4.260045E�06 5.643326E�08 21 True

Line search 2.569192E�02 2.618397E+03 128 False

Reg. and Line search 2.893999E�06 2.380562E�08 35 True

N = 512

Standard 2.280299E�02 3.448757E+05 128 False

Regularized 2.384802E�07 2.579578E�10 46 True

Line search 1.127484E�01 1.845466E+07 128 False

Reg. and Line search 3.551655E�08 2.368659E�11 42 True

N = 1024

Standard 9.540053E�05 4.501800E+01 128 False

Regularized 1.730306E�06 8.414453E�09 41 True

Line search 7.199610E�05 5.095672E+00 128 False

Reg. and Line search 8.857816E�06 4.250476E�07 35 True

N = 2048

Standard 1.769950E+00 8.504131E+14 128 False

Regularized 7.270952E�08 1.578029E�10 68 True

Line search 6.195869E�02 4.180347E+09 128 False

Reg. and Line search 1.069042E�02 3.229689E�01 128 False

Table 2. Gauss-Newton results for Yamamura problem.
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representative set of snapshots. HROM considers as input snapshots those outputted by a
WROM procedure. As shown below, if this WROM happens to reproduce the FOM behavior
correctly, then one should expect the resulting PROM, that is, HROM, to replicate the original
FOM behavior accurately. At first, glance, depending upon the WROM compression ratio, this
procedure reduces the runtime of the off-line stage.

This section conducts a series of preliminary numerical experiments on the well-known Bratu’s
nonlinear benchmark problem, in particular in one and two dimensions [5] to sell this case.
Figures 4 and 5 depict results for the 1D continuation problem. They utilize the following
WROM compression ratios: 10 and 5%, where the compression ratio is constant during the
continuation problem. All plots display two distinct HROM compression ratios. TheWROM at
20% that is not depicted completely misses the bifurcation zone and the second branch thus the
HROM is also way off. However, as the WROM starts to catch up with the FOM then HROM
too does. Indeed, it is observed that HROM yields comparable results when comparing it to
the version that takes the original snapshots, that is, PROM.

One can repeat a similar experiment with Bratu’s 2D continuation problem, which produces
the same trend as before. Indeed, if the input WROM is way off targeting then, HROM is off as
well. For instance, 27% compression implies that all HROM miss the second branch, but still,
the 21% model could slightly reproduce the proper FOM trend. Things significantly improve
on models with 21 and 20% as shown in Figures 6 and 7. However, these models still miss the
bifurcation zone. They just render a flat profile there. These insights suggest that if the WROM
can correctly reproduce the FOM behavior, then HROM can do so. One is probably able to
improve the accuracy of the WROM by changing the compression ratio during the online

Figure 4. Bratu’s 1D, 10% compression.
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stage. For Bratu’s problem, one can assume a graded energy distribution which provides more
of it while approaching the bifurcation point. This approach is referred as “adaptive WROM”
or AWROM as shorthand.

Figure 5. Bratu’s 1D, 5% compression.

Figure 6. Bratu’s 2D, 10% compression.
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This section presents an alternative strategy that can rely on insights from the FOM, such
as Newton tolerances and number of iterations, which are in turn indirect error estimates.
Figure 8 plots the energy distribution that was utilized as a function of the continuation
parameter, ζ, for Bratu’s 1D problem. When one approaches the bifurcation point, ζ ¼ 3:5,
one should gradually bump up energy as shown. Notice that the distribution tends to concen-
trate more points toward the bifurcation point. With this energy distribution into account, one
obtains the AWROM results in Figure 9. This ROM accurately reproduces the FOM behavior
as noted. Let now conduct the following experiment. One must run the FOM, and at every
snapshot, one needs to store the number of Newton iterations and the resulting error tolerance.

Figure 7. Bratu’s 2D, 5% compression.

Figure 8. Linear energy distribution.

A Reduced-Order Gauss-Newton Method for Nonlinear Problems Based on Compressed Sensing for PDE Applications
http://dx.doi.org/10.5772/intechopen.74439

123



stage. For Bratu’s problem, one can assume a graded energy distribution which provides more
of it while approaching the bifurcation point. This approach is referred as “adaptive WROM”
or AWROM as shorthand.

Figure 5. Bratu’s 1D, 5% compression.

Figure 6. Bratu’s 2D, 10% compression.

Nonlinear Systems - Modeling, Estimation, and Stability122

This section presents an alternative strategy that can rely on insights from the FOM, such
as Newton tolerances and number of iterations, which are in turn indirect error estimates.
Figure 8 plots the energy distribution that was utilized as a function of the continuation
parameter, ζ, for Bratu’s 1D problem. When one approaches the bifurcation point, ζ ¼ 3:5,
one should gradually bump up energy as shown. Notice that the distribution tends to concen-
trate more points toward the bifurcation point. With this energy distribution into account, one
obtains the AWROM results in Figure 9. This ROM accurately reproduces the FOM behavior
as noted. Let now conduct the following experiment. One must run the FOM, and at every
snapshot, one needs to store the number of Newton iterations and the resulting error tolerance.

Figure 7. Bratu’s 2D, 5% compression.

Figure 8. Linear energy distribution.

A Reduced-Order Gauss-Newton Method for Nonlinear Problems Based on Compressed Sensing for PDE Applications
http://dx.doi.org/10.5772/intechopen.74439

123



One then computes the energy distribution that Figure 10 depicts. The following formula was
employed to do so:

Ei ¼ 1� θð Þ þ θ nItersi=nMaxItersð Þ, (35)

where nItersi is the number of iterations at the current location, and nMaxIters is the maximum
number of iterations reported by the FOM and θ∈ 0; 1½ �. Figure 11 depicts excellent accordance

Figure 9. 10–20% variable compression.

Figure 10. Variable energy distribution.
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between FOM and AWROM θ ¼ 0:2ð Þ. One should expect that if this last AWROM model is
inputted for an HROM simulation, HROM should reproduce the original FOM correctly.

Figures 12 and 13 depict preliminary results of HROM applied over a couple of AWROM
models whose energy distribution was described in Figures 8 and 10, respectively θ ¼ 0:2ð Þ.
These ROM reproduce the FOM behavior accordingly, which proves that there is potential to
study the performance of HROM further. Another important question that arises from further
research is how to improve the compression ratio of the AWROM scheme.

Figure 11. Variable compression.

Figure 12. Linear AWROM.
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10. Concluding remarks

This chapter introduced a global regularized Gauss-Newton method for resolving square
nonlinear algebraic systems in an affine subspace that enable real-time solutions without a
priori simulations. Solving a nonlinear least-squares composite function poses the problem
where the answer is derived from the inside argument. The authors thus presented the stan-
dard Newton assumptions that guarantee a q-quadratic rate of convergence. The findings
include that the Petrov-Galerkin projection directions for the Newton method are no other
than the Gauss-Newton ones for a composite function. The technique uses two initial points,
one that determines the affine subspace and the other is the starting guess for solving the
composition mentioned earlier. The notion of compressed sensing with wavelets produces the
characterization of an affine subspace that comprises the majority of the energy of the problem.
The chapter showed some numerical experimentations that back up the proposed globaliza-
tion methodology for solving highly nonlinear dynamic systems in real time. These last ones
reproduce the principal features of the FOM. Results underline the fact that one does not need
to employ information at any particular point. The Bratu’s 3D FOM results prove that the
proposed RORGN algorithm outperforms the standard GN method while retaining its
q-quadratic rate of convergence. This chapter concludes that the regularized and line-search-
enabled scheme is the most robust and efficient algorithm for the problems presented herein.
The numerical results imply that this approach performs well and it does not significantly
increase the CPU time.

From the numerical results presented in Section 9 for Bratu’s 1D and 2D problems, the data
fusion procedure (HROM) can be used as an alternative procedure when the simulation time
for a problem can be limited. This method uses two different sceneries. In the first, one implies

Figure 13. Variable AWROM.
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that the data come through out of the model, while in the second, the data are obtained
independently of the latter. That is, in the first case the model governs the data, and the other
the input information rules the model.
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independently of the latter. That is, in the first case the model governs the data, and the other
the input information rules the model.
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Abstract

As well known, the fluctuation-dissipation theorem (FDT) establishes the relation between
two different physical phenomena: the fluctuations and the dissipation. The fluctuations or
the stochastic motion are determined by random stochastic forces. The dissipation or the
directed motion is determined by regular forces. Nevertheless in the linear case, they are
related by the FDT. One of the first and well-known examples of the FDT is Einstein’s
relation between diffusion coefficient and mobility of particle. It has been shown that a
particle’s velocity depends on electrical field in a nonlinear way in arbitrary weak fields
due to anomalous super-diffusion character of Levy flight. The relation between two differ-
ent critical indexes, describing Levy flight diffusion and dependence of current on electric
field, has been established. This relation is the generalization of fluctuation-dissipation
theorem for such a nonlinear Levy flight case. The physical interpretation of these results is
given.
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fluctuation-dissipation theorem (FDT). One of the first and well-known examples of this FDT
is Einstein’s relation between diffusion coefficient D and mobility of particle η:

qD ¼ η kT (1)

HereT is the temperatureof the system, k is Boltzmann’s constant, and q is the chargeof theparticle.

We first recall the well-known Einstein’s arguments [1]. Let the diffusion current be Jd and the
field current be Jf in the system. In the equilibrium state, the diffusion current is compensated
by the field current:

Jd þ Jf ¼ 0 (2)

and the particles are in the equilibrium state and are described by Boltzmann’s distribution
function:

Neq ¼ N0 exp � U
kT

� �
(3)

where U is the potential energy, T is the temperature, and k is Boltzmann’s constant, N0 is the
initial number of particles. Let us consider in more details the assumptions, which are used.
There are three assumptions:

i. Boltzmann’s statistics

ii. Fick’s law for the diffusion current:

Jd ¼ �D∇n (4)

It also means that the root-mean-square displacement depends on time in a linear way
and it is characterized by diffusion coefficient D:

< X2 tð Þ >� D t (5)

iii. Ohm’s law, which describes a linear dependence on electric field

Jf ¼ nηE (6)

Consequently, if one of these above assumptions does not hold, then we expect that Einstein’s
relation is broken and the new generalized relation will be appeared.

Subsequently, we consider the case, when diffusion has an anomalous power character:

< X2 tð Þ >� tk (7)

These anomalous stochastic processes were intensively studied [2]. The value k ¼ 1 corre-
sponds to the usual ordinary diffusion, the value of exponent k < 1 corresponds to the sub-
diffusion case, and the value of exponent k > 1 corresponds to the super-diffusion or Levy
flights case. Usually, anomalous sub-diffusion random walks were observed in disordered
materials as fractals and percolations clusters [3–5]. Another anomalous super-diffusion, that
is, Levy flights, was observed in the chaotic dynamics problem [6–10].
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In this chapter, the Levy flights diffusion in an external weak electric field is considered. The
problem consists of that the diffusion coefficient for Levy flight, which is determined in a usual
way, has an infinite value:

D ¼ lim
t!∞

< X2 tð Þ >
t

! ∞

It occurs due to the possibility of diffusing particle to move for an arbitrary distances at every
step. So, if we apply the usual Einstein relation (1), then we obtain the infinite value for a
mobility of particle η at arbitrary weak fields:

η! ∞

But it is not possible to have infinite value of mobility from the physical point of view. What
does it means? We believe that it means Einstein’s relation in its usual form does not apply.
Furthermore, we show that instead of linear response—Ohm’s law—another new nonlinear
response is appeared in the studied problem. Namely, the drift velocity depends on a weak
electric field in a nonlinear way:

V � Eν (8)

Here, ν is the critical exponent of new nonlinearity. The relation between the exponent of
nonlinearity ν and the exponent of anomalous super-diffusion μ has been established:

ν ¼ μ� 1 (9)

It is necessary to emphasize that this nonlinearity occurs in arbitrary weak fields and it was a
consequence of the anomalous Levy super-diffusion. In other words, Ohm’s law (the linear
response to a field) holds in the case of usual diffusion and Ohm’s law does not apply at all for
case of Levy flight super-diffusion.

This chapter was organized as follows. In Section 2, the preliminary generalization of Einstein’s
relation for a Levy flights was obtained. The qualitative estimations for drift velocity in two cases
of super diffusion and usual diffusion were obtained too in Section 2. In Section 3, the one-
dimensional discrete Levy flight diffusion was studied. The stable non-Gaussian distribution
was deduced. The problem of Levy random walks in an external electric field or anisotropic
Levy diffusion was studied in Section 4. The numerical simulations of Levy flights in an electric
field were presented in Section 5. In Section 6, obtained new results for particle mobility were
represented in the scaling form. The fluctuation-dissipation theorem for Levy flight case was
rewritten in the scaling form also in Section 7. Section 8 concludes the chapter and the discussion
of results was given in this section.

2. Qualitative estimation and generalization of Einstein relation for Levy
flight case

Let us briefly remind the Levy flights diffusion. A feature of Levy flight random walks consists
of the possibility for a diffusing particle to move on arbitrary large distances at every step, so
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that the root-mean-square displacement appears to be infinite. The numerical simulation of
Levy hops diffusion has shown that the points, visited during Levy flights diffusion, have
formed spatially well-defined clusters. “For more in-depth consideration it makes easy to see
that each of clusters consists of a collection of clusters, in turn, so a structure of self -similar
clusters was appeared due to Levy flights” [6]. The probability distribution function P in k; tð Þ-
representation is

P k; tð Þ ¼ exp �A kj jμtð Þ (10)

where A and μ are positive quantities, 1 < μ < 2. Such distributions are called as stable Levy
distributions. For more information about diffusion, see also [7, 8].

Let us check the above three assumptions for Einstein’s relation—formulae (2–4) in the case of
anomalous Levy flights super-diffusion. The first assumption about Gibbs-Boltzmann’s statis-
tics keeps the same, because the type of statistics—Gibbs- Boltzmann’s classical statistics—was
determined by the statistical properties of the system in the equilibrium and it does not depend
on the kinetic properties of the system. (The kinetic phenomena as relaxation and diffusion
describe the processes or ways, which lead to the equilibrium state, only.) So we use Gibbs-
Boltzmann’s distribution function too. But the second assumption about Fick’s law for diffu-
sion current is broken. The diffusion current has another form in the Levy flights case, and we
write it in a general operator form:

Jd ¼ �bKn (11)

Here, n is the concentration of diffusing particles, the operator bK in the k- representation is
equal to

bK
� �

k
¼ ik kj jμ�2 (12)

And in the r- presentation, it is equal to

bK ¼∇! Δ2
�� ��μ�2=4 (13)

where Δ is the Laplace operator and K is the fractional order operator—see, for example [10].
And finally, we use the general form for the field current instead of linear Ohm’s law approx-
imation as

Jf
! ¼ n V

!
(14)

where V
!

is the drift velocity. In the general case, this velocity depends on electric field in an
arbitrary way: a linear or may be a nonlinear way. Repeating the same reasons for equilibrium
stated as above, we obtain the general formula for the drift velocity:

V
!¼

bKNeq

Neq
¼ exp

U
kT

� �
bK exp � U

kT

� �
(15)
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In the case of the anomalous diffusion, we obtain

bK ¼∇! Δ2
�� ��μ�2=4

By taking a definition for the derivative of the fractional order in the form of the set [10]:

V
!¼ exp

U
kT

� �
lim
ε!0

Δ2 þ ε
� � μ�2ð Þ=4 p! exp

U
kT

� �
(16)

we recover that the drift velocity depends on the homogeneous electric field U ¼ �q E
!

r! in a
nonlinear way:

V
!

∝Eν
!

(17)

It should be emphasized that this nonlinearity occurs in arbitrarily weak fields, and it was a
result of the unusual anomalous character of Levy flights diffusion. The exponent of this
nonlinearity relates with the critical exponent of the Levy hop diffusion as above (9):
ν ¼ μ� 1. We consider this relation between two critical exponents, which describe the
nonlinear mobility on one hand and the anomalous super-diffusion on the other hand, as
generalization of FDT for Levy flight diffusion case.

2.1. Qualitative estimations for particle velocity

Subsequently, we want to confirm the result (17), which was obtained from the phenomeno-
logical approach, in another way. For this aim, we consider the problem of diffusion in an
electric field in more details. When we introduce the electric field into the diffusion problem,
then the new “field” length, governed by external electric field, was appeared:

LE ¼ kT
qE

(18)

To understand physical sense of this new “field” length and to make necessary estimations for
drift velocity, let us imagine that the medium was partitioned into the boxes of size LE [11].
Further, we proceed the particle motion inside of this box. After leaving this box, the particle
goes along the electric field direction with the probabilityWþ, which is approximately equal to
the unity, (Wþ ∝ 1) and the particle leaves this box with the approximately zero probabilityW�
in the opposite direction (W� ∝ 0). It means that at these scales of LE, the directed motion
prevails over the random diffusion motion. So we can estimate the particle velocity as follows:

V ¼ LE
TE

(19)

where TE is a diffusion time for a length LE.

In the case of usual diffusion, this diffusion time equals to: TE ¼ L2E
D and we obtain Ohm’s law

with well-known Einstein relation between diffusion and mobility:
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drift velocity, let us imagine that the medium was partitioned into the boxes of size LE [11].
Further, we proceed the particle motion inside of this box. After leaving this box, the particle
goes along the electric field direction with the probabilityWþ, which is approximately equal to
the unity, (Wþ ∝ 1) and the particle leaves this box with the approximately zero probabilityW�
in the opposite direction (W� ∝ 0). It means that at these scales of LE, the directed motion
prevails over the random diffusion motion. So we can estimate the particle velocity as follows:

V ¼ LE
TE

(19)

where TE is a diffusion time for a length LE.

In the case of usual diffusion, this diffusion time equals to: TE ¼ L2E
D and we obtain Ohm’s law

with well-known Einstein relation between diffusion and mobility:
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V
!¼ q2D E

!

kT
(20)

In the case of Levy flight, the diffusion time is proportional to powers of “field” length: TE ∝LμE
according to Eq. (10). Repeating the same estimation, we obtain the same nonlinear relation as
formula (17):

V
!¼ q2D

�

kT
qE
kT

����
����
μ�2

E
!

(21)

Here, D
�
is the constant diffusion coefficient for Levy hop diffusion. Correspondingly for a case

of two different diffusion regimes, we obtain two different laws for drift velocity: nonlinear
behavior (21) and Ohm’s law (20).

We want to stress that these preliminary generalizations of Einstein’s relation in Section 2, see
formulae (17, 21), only reveal the possibility of new nonlinear behavior for drift velocity in the
anomalous super-diffusion case. To prove this result in an exact way, we need to study the
microscopic model.

3. The Levy flight diffusion

To prove the fluctuation-dissipation for Levy flights diffusion case, let us consider the one-
dimensional Levy flights diffusion in more details. Briefly, we remind how the Levy stable law
(10) for distribution function has been obtained. Let us denote the probability of particle to
occupy l- site after n steps as Pn lð Þ and the probability of hops on length l at every step as f lð Þ.
So we obtain the following master equation for a discrete case:

Pnþ1 lð Þ ¼
X∞
m¼�∞

f jl�mjð ÞPn mð Þ (22)

Here, l and m are integer numbers, which describe positions of sites. In the case of usual
diffusion, when the particle hops on the nearest (left or right) sites only, this function f lð Þ is
equal to

2f lð Þ ¼ δl, b þ δl,�b (23)

where δl, b is the Kronecker’s delta symbol. And the known main equation describing diffusion
on the nearest sites is received:

Pnþ1 lð Þ ¼ 1
2

Pn lþ 1ð Þ þ Pn l� 1ð Þð Þ (24)

To simulate a Levy flight, the following Weierstrass function has been used as f lð Þ
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f lð Þ ¼
X∞
n¼0

a�n δl,�bn þ δl, bn
� �

(25)

Here, parameter b is a length of hop, parameter 1
a is a possibility to make hop of length b (e.g., a

possibility to hop for a distance b2 is equal to 1
a2 and so on). The value of parameter a is confined

by the bound values:b < a < b2, consequently

1 < μ ¼ ln a
ln b

< 2 (26)

Let us shortly discuss the physical picture of Levy flight diffusion. Due to power distribution
of hops over the lengths according to (25), the diffusing particle prefers to hop at nearest sites
due to the biggest probability for nearest sites, to create the cluster from the nearest visited
sites. But there is a small possibility to make a long hop from time to time. After this long hop,
the new cluster of another nearest visited sites has formed at new place. So finally, the structure
of self-similar clusters appears [6]. So we can say that Levy diffusion is the random walks
along self-similar clusters.

Then the structural function for such random walks is equal to

λ kð Þ ¼
ð
f lð Þ exp iklð Þdl ¼

X∞
n¼0

a�n cos kbnð Þ (27)

Note too that the structural function of Levy flight satisfies the functional equation:

λ kð Þ ¼ aλ kbð Þ þ cos kð Þ (28)

Therefore, for k! 0, it has a power behavior:

λ kð Þ ≈ kμ,where μ ¼ ln a= ln b (29)

Exactly, the nonanalytic power behavior for k has been established by means of Mellin’s
transformation or by formulas of Poisson’s set summation. In more detail, see [7].

4. Introduction of field in the Levy flight problem and nonlinear response
on electric field

Let us introduce an anisotropy into the random walk on self-similar clusters, formed during
Levy flights diffusion. By virtue of specific nature of Levy hops, a particle can move for an
arbitrary distance bn at every step. For this reason, a small anisotropy 1þ αð Þ for small displace-

ments s (with α ¼ qEs
kT ) has an exponential large value at large distances bn as 1þ αð Þbn . Since at

each step, a diffusing particle certainly leaves a site, so the sum of probability of motion along the
electric field directionW + and probability of motion in opposite directionW _must be equal to 1:
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Levy flights diffusion. By virtue of specific nature of Levy hops, a particle can move for an
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W� þWþ ¼ 1 (30)

Hence, we obtain the following expressions for these probabilities:

W� ¼ 1� αð Þbn

1þ αð Þbn þ 1� αð Þbn
(31)

Therefore, the structural function λ (k; E) for Levy flights diffusion in an electrical field is equal to

2λ k;Eð Þ ¼
X

a�n cos kbnð Þ þ i sin kbnð Þ Wþ �W�ð Þ½ � (32)

As well as for the usual ordinary diffusion, the second member with anisotropy for small
k! 0 contains the expression for the drift velocity:

V ¼ i
∂λ k;Eð Þ

∂k

����
k!0
¼
X b

a

� �n 1þ αð Þbn � 1� αð Þbn

1þ αð Þbn þ 1� αð Þbn
≈
X b

a

� �n

th αbnð Þ (33)

here th xð Þ is the hyperbolic tangent.
It is easy to see that the drift velocity satisfies the following functional equation:

V αð Þ ¼ b
a
V αbð Þ þ cth αð Þ (34)

It means that at weak fields α! 0, the velocity depends on the electric field in a power-like way:

V αð Þ∝αν (35)

with exponent ν ¼ μ� 1
� �

.

To calculate the velocity by exact way, we used Poisson’s formula:

X∞
n¼0

f nð Þ ¼ 1
2
f 0ð Þ þ

ð
f tð Þdtþ 2

X∞
m¼1

f tð Þ cos 2πmtð Þdt (36)

After calculations, we obtain the formula for the velocity:

V αð Þ ¼ α
2
þ α μ�1ð Þ X∞

m¼�∞

ð
th zð Þz�γmdz

" #
þ
ðα

0

th zð Þz�γmdz� (37)

where a power exponent is equal to γm = μ + 2πmi /ln b. It is easy to see that for arbitrary weak
fields α, the first term has been neglected in comparison with the second term in the brackets.
Thus, in arbitrary weak electric fields, the nonlinear dependence on electrical field of velocity
(35) has appeared.
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5. Numerical simulations

Subsequently, the results of numerical simulations of Levy random walks were reported. Let
us briefly explain the algorithm of simulations. Probabilities of left and right walks are deter-
mined as probabilities to have a random value from [0, 0.5] and [0.5, 1] correspondingly. The
anisotropy of random walks is simulated by the decreasing length of [0, 0.5] for quantity W�
anti-parallel field and increasing [0.5, 1] for quantity W+ in parallel field case. The simulations
are made at different values of parameters a and b. As the probability a�n decreases rather
rapidly, so we can confine finite members in the sum (10). For example, at a = 50, b = 10, n = 6
and a = 6, b = 3, n = 12. But we proceed that at every hop, the sum of all probabilities with finite
numbers of hops is equal to 1, that is, particle does not stay in the site.

The results of random walks, Figure 1, are in accordance with the known results [2].

The step-like dependence of rms as a function of time is easy to understand as follows. The
particle diffuses at nearest sites mainly, making the cluster from visited sites, and with a small
probability hops at big distance (at next step) and again diffuses at nearest sites and so on.

The electric field leads to the particle drift. The dependence of the average displacement < X >

as function of the time is represented in Figure 2 at different values of anisotropy. From linear
dependence, it is easy to find the particle velocity by standard way: V = <X>/N. The value of the
nonlinear dependence index is determined from numerical simulation data as.

Figure 1. Typical dependence of RMS for Levy flight.
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numbers of hops is equal to 1, that is, particle does not stay in the site.
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Figure 1. Typical dependence of RMS for Levy flight.
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μ exp ¼ 1þ ln V=V0ð Þ= ln α=α0ð Þ

These results are represented in Figure 3. The main distortion in the simulations is due to the
random character of walks, and it was checked in the calculations from values of average
displacement at zero fields.

Figure 2. Dependence of the average displacement <X(t) > on number of hops N.

Figure 3. Dependence of relation μ exp =μtheor at different values of anisotropy.
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6. Transition from nonlinear response to Ohm’s law

6.1. Transition from Levy super-diffusion to ordinary diffusion

In this section, we additionally introduce the usual diffusion on the nearest neighboring sites in
the process of random Levy walks. It gives us the possibility to proceed the transition from
Levy super-diffusion to the usual diffusion. For this aim, the finite hop length ξ at every step
has been introduced. So we construct the complex random walks, in which the Levy super-
diffusion alternates with the usual diffusion. Accordingly, the distribution function for lengths
of hops has the following form:

f l; ξð Þ ¼
X∞
n¼0

a�n δl,� bnþξð Þ þ δl, bnþξ
� �

(38)

Hence, the structural function for complex random walks with Levy diffusion and ordinary
diffusion is equal to

λ k; ξð Þ ¼
X

a�n cos kbn þ kξð Þ (39)

In the case of complex alternative diffusion, the main contribution to the root-mean-square
displacement was provided by Levy flights on long times, corresponding to big scales. Corre-
spondingly, on small times and at small scales, the main contribution was provided by the
usual diffusion. In the limit of the small lengths of hops b << ξ, we obtain the formula for
structural function, which corresponds to the usual diffusion:

lim
b!0

λ k; ξð Þ ¼ a
a� 1

cos kξð Þ (40)

We consider this transition b << ξ as transition from the discrete medium to the continuous
mediumwith heterogeneity length as ξ. It is easy to check that the usual diffusion equation has
followed from this structural function as a result.

6.2. The drift in the case of both ordinary and Levy diffusion

Let us introduce the anisotropy into these complex randomwalks as described earlier, but now
we replace the hop length bn to the new quantity: bn þ ξ. After this replacement, we obtain the
formula for the new structural function in an electric field with finite hop length:

2λ k; ξ;Eð Þ ¼
X∞
n¼0

a�n cos kbn þ kξð Þ þ i sin kbn þ kξð Þ Wþ �W�ð Þ½ � (41)

Accordingly, the velocity has been described by the following formula:

V ¼ i
∂λ k; ξ;Eð Þ

∂k

����
k!0
¼
X bn þ ξ

an

� �
tanh αbn þ αξð Þ: (42)
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����
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To calculate this sum in formula (42), Poisson’s method of summation has been used again.

The following results have obtained. For weak electric fields (qEξkT << 1), the velocity is a
nonlinear function of the electric field:

V � Eμ�1 (43)

and in the strong fields (qEξkT >> 1), the velocity became a linear function in the field:

V � Eξ2�μ (44)

Note that the particle velocity has two asymptotic regimes in accordance with the diffusion
limits: Levy hops and usual ordinary diffusion. The Levy flight diffusion leads to the nonlinear
response, and the usual diffusion leads to the linear Ohm’s law. So the two different power
dependencies of particle mobility (43, 44) were obtained for a specific distribution of hops as
(38). But before this result was obtained without any assumptions about the nature of hops,
only specific form of Levy diffusion current was used as (11). And now, we consider the
specific distribution of hops (38) only as microscopic model. We believe that the same
nonlinear result will be correct for another hops distribution over lengths.

7. Scaling for particle mobility

We want to remark that above results look similar to the phase transition theory results
[12, 13]. First of all, we have the analog of correlation radius for phase transition Lc—in our
case, this is the finite length of hop ξ. At scales, which bigger than ξ, we have anomalous
super-diffusion and at scales, which are smaller than ξ, we have the usual diffusion. So this
length ξ has a role of heterogeneous scale as correlation radius. Second as it is well known that
if the correlation radius Lc trends to the infinity at the phase transition point (at threshold),
then any characteristic scales in the phase transition theory at threshold are absent, so any
response for external fields has the power behavior, which is described by the critical expo-
nents of phase transition theory. Near threshold point, results of the phase transitions theory
were easy to understand if they have the scaling form. So we want to present the above-
obtained results in the general scaling automodel form too, using the finite hop length ξ
instead of correlation length Lc.

So to clarify the obtained results, the expression for the particle mobility η ¼ V
E has been

rewritten in the scaling form too:

η∝ ξ�λf
qEξ
kT

� �
(45)

where λ is the critical exponent of scaling, and the scaling function f xð Þ has the asymptotic
power behavior:
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f xð Þ ¼ 1, x << 1
xλ, x >> 1

� �
(46)

For our model of Levy flights diffusion, this scaling exponent λ is connected with the exponent
of the super-diffusion as

λ ¼ μ� 2 (47)

At the small scales ξ << kT
qE, where the usual diffusion dominates, the particle mobility

depends on the homogeneity length ξ only (correlation radius in the phase transitions theory).
At the large scales, where the Levy super-diffusion dominates, the mobility depends on the
electric field E only or, in other words, the mobility became a function of the new “field” length
LE ¼ kT

qE with the same exponent λ (see formula (42) too).

7.1. The scaling form for fluctuation-dissipation theorem for nonlinear case

Usually, the Einstein relation between diffusion and conductivity was considered as a simple
example of fluctuation-dissipation theorem (FDT), which was connected by the different charac-
teristics of the considered system: the dissipation, described by the relaxation time τ (the particle
mobility η ¼ qτ

m), and the fluctuation characteristic, described by the diffusion coefficient D:

qD ¼ qτ
m

kT ¼ ηkT (48)

We want to stress that this obtained nonlinearity (43) essentially differs from the usual
nonlinearity, and our result means that the relation between the nonlinear mobility and the
coefficient of diffusion existed in the new nonlinear form, when the mobility became as
nonlinear function of the electric field

η Eð Þ � Eλ (49)

Here, λ is exponent of the nonlinear dependence of mobility. And new nonlinear generalized
fluctuation-dissipation theorem relates the exponent of the nonlinear response λ with the
exponent of the anomalous diffusion μ:

λ ¼ d ln η Eð Þ
d lnE

¼ μ� 2 (50)

It seems that this investigated case was a first case when the fluctuation-dissipation theorem in
the usual form of linear relation between two coefficients was broken. And instead of simple
relation between linear coefficients, the new and more general relation between exponents of
mobility and exponent of the super-diffusion appeared.

From this point of view, we believe that the case of usual diffusion or Einstein’s relation
between two coefficients of diffusion and mobility is the limiting case of new generalized

Nonlinear Response on External Electric Field and Nonlinear Generalization of Fluctuation-Dissipation Theorem…
http://dx.doi.org/10.5772/intechopen.78549

141



To calculate this sum in formula (42), Poisson’s method of summation has been used again.
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only specific form of Levy diffusion current was used as (11). And now, we consider the
specific distribution of hops (38) only as microscopic model. We believe that the same
nonlinear result will be correct for another hops distribution over lengths.

7. Scaling for particle mobility

We want to remark that above results look similar to the phase transition theory results
[12, 13]. First of all, we have the analog of correlation radius for phase transition Lc—in our
case, this is the finite length of hop ξ. At scales, which bigger than ξ, we have anomalous
super-diffusion and at scales, which are smaller than ξ, we have the usual diffusion. So this
length ξ has a role of heterogeneous scale as correlation radius. Second as it is well known that
if the correlation radius Lc trends to the infinity at the phase transition point (at threshold),
then any characteristic scales in the phase transition theory at threshold are absent, so any
response for external fields has the power behavior, which is described by the critical expo-
nents of phase transition theory. Near threshold point, results of the phase transitions theory
were easy to understand if they have the scaling form. So we want to present the above-
obtained results in the general scaling automodel form too, using the finite hop length ξ
instead of correlation length Lc.

So to clarify the obtained results, the expression for the particle mobility η ¼ V
E has been

rewritten in the scaling form too:

η∝ ξ�λf
qEξ
kT

� �
(45)

where λ is the critical exponent of scaling, and the scaling function f xð Þ has the asymptotic
power behavior:
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f xð Þ ¼ 1, x << 1
xλ, x >> 1

� �
(46)

For our model of Levy flights diffusion, this scaling exponent λ is connected with the exponent
of the super-diffusion as

λ ¼ μ� 2 (47)

At the small scales ξ << kT
qE, where the usual diffusion dominates, the particle mobility

depends on the homogeneity length ξ only (correlation radius in the phase transitions theory).
At the large scales, where the Levy super-diffusion dominates, the mobility depends on the
electric field E only or, in other words, the mobility became a function of the new “field” length
LE ¼ kT

qE with the same exponent λ (see formula (42) too).

7.1. The scaling form for fluctuation-dissipation theorem for nonlinear case

Usually, the Einstein relation between diffusion and conductivity was considered as a simple
example of fluctuation-dissipation theorem (FDT), which was connected by the different charac-
teristics of the considered system: the dissipation, described by the relaxation time τ (the particle
mobility η ¼ qτ

m), and the fluctuation characteristic, described by the diffusion coefficient D:

qD ¼ qτ
m

kT ¼ ηkT (48)

We want to stress that this obtained nonlinearity (43) essentially differs from the usual
nonlinearity, and our result means that the relation between the nonlinear mobility and the
coefficient of diffusion existed in the new nonlinear form, when the mobility became as
nonlinear function of the electric field

η Eð Þ � Eλ (49)

Here, λ is exponent of the nonlinear dependence of mobility. And new nonlinear generalized
fluctuation-dissipation theorem relates the exponent of the nonlinear response λ with the
exponent of the anomalous diffusion μ:

λ ¼ d ln η Eð Þ
d lnE

¼ μ� 2 (50)

It seems that this investigated case was a first case when the fluctuation-dissipation theorem in
the usual form of linear relation between two coefficients was broken. And instead of simple
relation between linear coefficients, the new and more general relation between exponents of
mobility and exponent of the super-diffusion appeared.

From this point of view, we believe that the case of usual diffusion or Einstein’s relation
between two coefficients of diffusion and mobility is the limiting case of new generalized
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FDT between exponents of mobility of particle in an electric field and exponent of diffusion:
λ ¼ 0 μ ¼ 2

� �
.

8. Discussion

Let us discuss the results. All the above obtained both the nonanalytic behavior of structural
function for small k ! 0 and the nonlinear electric field dependence of the velocity in arbi-
trarily weak fields which were the asymptotical results. We show that the current (velocity)
depends on electric field in a nonlinear way due to the anomalous character of Levy flights and
possibility to fly at arbitrary distances:

J Eð Þ � Eν (51)

Nonlinear properties of media intensively have been studied. Usually, the nonlinearity has
been connected with the expansion of electric current for set in powers of the electric field and
with consideration of the cubic nonlinearity [14]:

J
!¼ σ E

! þχ Ej j2 E
! þ… (52)

But our result essentially differs from the results, obtained by this method. We show that in the
investigated case of Levy super-diffusion, the nonlinear behavior appeared due to anomalous
super-diffusion character and the electric current depends on electric field in a power
nonlinear way. It means that Ohm’s law or a linear term was absent in the field series expan-
sion of the current (58) in the investigated case.

The generalization of fluctuation-dissipation theorem for a case of Levy flights diffusion was
obtained. Instead of well-known Einstein’s relation between diffusion coefficient D and mobil-
ity η, which is correct in linear Ohm’s law case, the new relation between exponents, which
describes the nonlinear response of system ν on the hand and anomalous Levy flight diffusion
μ on the other hand, was obtained:

ν ¼ μ� 1

It is interesting to note that from the above-obtained results, we understand what two results
were contained in Einstein’s relation (1). Firstly, we can say that Einstein recovers or proves the
existence of Ohm’s law (linear response) for any systems with usual diffusion, and secondly, he
established the relation between diffusion coefficient and mobility of particle in a linear case.

As for “real” systems, the different theories with different predictions have been existed and
numerical simulations have not given a clear answer yet: the non-monotonically dependence
with time were founded [15, 16]. We hope that these results may be applied for real disordered
systems and in particular also for the problem of hopping in the disordered systems, but we
need to make further investigations for it [17].
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Abstract

The fifth order non-linear partial differential equation in generalized form is analyzed for
Lie symmetries. The classical Lie group method is performed to derive similarity variables
of this equation and the ordinary differential equations (ODEs) are deduced. These ordi-
nary differential equations are further studied and some exact solutions are obtained.

Keywords: generalized fifth order non-linear partial differential equation, lie symmetries,
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1. Introduction

The theories of modern physics mainly include a mathematical structure, defined by a certain
set of differential equations and extended by a set of rules for translating the mathematical
results into meaningful statements about the physical work. Theories of non-linear science
have been widely developed over the past century. In particular, non-linear systems have
fascinated much interest among mathematicians and physicists. A lot of study has been
conducted in the area of non-linear partial differential equations (NLPDEs) that arise in
various areas of applied mathematics, mathematical physics, and many other areas. Apart
from their theoretical importance, they have sensational applications to various physical sys-
tems such as hydrodynamics, non-linear optics, continuum mechanics, plasma physics and so
on. A large variety of physical, chemical, and biological phenomena is governed by nonlinear
partial differential equations (NLPDEs). A number of methods has been introduced for finding
solutions of these equations such as Homotopy method [1], G0=G expansion method [2, 3],
variational iteration method [4], sub-equation method [5], exp. function method [6], and Lie
symmetry method [7–10]. Although solutions of such equations can be obtained easily by
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numerical computation. However, in order to obtain good understanding of the physical
phenomena described by NLPDEs it is important to study the exact solutions of the NLPDEs.
Exact solutions of mathematical equations play an major role in the proper understanding of
qualitative features of many phenomena and processes in different areas of natural and
applied sciences. Exact solutions of non-linear differential equations graphically demonstrate
and allow unraveling the mechanisms of many complex non-linear phenomena. However,
finding exact solutions of NLPDEs representing some physical phenomena is a tough task.
However, because of importance of exact solutions for describing physical phenomena, many
powerful methods have been introduced for finding solitons and other type of exact solutions
of NLPDEs [2, 11–13]. Comparing to other approximate and numerical methods, which pro-
vides approximate solutions [14–16], the Lie group method provides the exact and analytic
solutions of the differential structure (Figures 1–3).

Lie groupmethod is one of themost effectivemethods for finding exact solutions of NLPDEs [17, 18].
This method was basically initiated by Norwegian mathematician Sophus Lie [19]. He devel-
oped the theory of “Continuous Groups” known as Lie groups. This method is orderly used in
various fields of non-linear science. Shopus Lie was the first who arranged differential equations
in terms of their symmetry groups, thereby analyzing the set of equations, which could be
integrated or reduced to lower order equations by group theoretic algorithms. The Lie group
analysis is a mathematical theory that synthesizes symmetry of differential equations. In this
method, the differential structure is studied for their invariance by acting one or several param-
eter continuous group of transformations on the space of dependent and independent variables.
We observe a plenty books and research article about Lie group method [17, 18, 20–22].

Wazwaz [23] introduced a fifth order non-linear evolution equation as follows:

uttt � utxxxx � 4 uxutð Þxx � 4 uxuxtð Þx ¼ 0: (1)

In this chapter, he obtained multiple soliton solutions of this equation.

Figure 1. Kink wave solution (17) for α ¼ β ¼ λ ¼ μ ¼ 1, b1 ¼ b3 ¼ 0.
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We will consider the generalized fifth order non-linear evolution equation of the form:

uttt � utxxxx � α uxutð Þxx � β uxuxtð Þx ¼ 0, (2)

where α, β are parameters.

In this chapter, we will study the Eq. (2) by the Lie classical method. Firstly, Lie classical
method will be used to obtain symmetries of generalized fifth order non-linear evolution
Eq. (2). Symmetries will be used to reduce the Eq. (2) to ordinary differential equations (ODEs)
and corresponding exact solutions of the generalized fifth order non-linear evolution Eq. (2)
will be obtained.

Figure 3. Singularity solution (19) for α ¼ b2 ¼ b4 ¼ 0, b4 ¼ λ ¼ 1,μ ¼ �1.

Figure 2. Singularity solution (18) for α ¼ λ ¼ μ ¼ b5 ¼ 1, b2 ¼ b4 ¼ 0.
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2. Symmetry analysis

Lie classical method of infinitesimal transformation groups reduces the number of independent
variables in partial differential equations (PDEs) and reduces the order of ODEs. Lie’s method
has been widely used in equations of mathematical physics and many other fields [11, 24]. In this
chapter, we will perform Lie symmetry analysis [17–19, 24] for the generalized fifth order non-
linear evolution Eq. (2).

Let the group of infinitesimal transformations be defined as:

t∗ ¼ tþ ετ x; t; uð Þ þO e2
� �

x∗ ¼ xþ εξ x; t; uð Þ þO e2
� �

u∗ ¼ uþ εη x; t; uð Þ þO e2
� �

,
(3)

which leaves the Eq. (2) invariant. The infinitesimal transformations (3) are such that if u is
solution of Eq. (2), then u∗ is also a solution.

Herein, on invoking the invariance criterion as mentioned in [18], the following relation is
deduced:

ηttt � ηtxxxx � α ηxxxut þ ηtuxxx
� �� 2αþ β

� �
ηxxuxt þ ηxtuxx
� �� αþ β

� �
ηxuxxt þ ηxxtux
� � ¼ 0, (4)

where ηx, ηt, ηxt, ηxx, ηxxx, ηttt, ηtxxxx and ηxxt are extended (prolonged) infinitesimals acting
on an enlarged space corresponding to ux, ut, uxt, uxx, uxxx, uttt, utxxxx and uxxt, respectively,
given by:

ηx ¼ Dxη� uxDxξ� utDxτ,

ηt ¼ Dtη� uxDtξ� utDtτ,

ηxx ¼ Dxηx � uxxDxξ� uxtDxτ,

ηxt ¼ Dtηx � uxxDtξ�uxtDtτ,

ηxxx ¼ Dxηxx � uxxxDxξ� uxxtDxτ,

ηttt ¼ Dtηtt � uxttDtξ� utttDtτ,

ηxxxxt ¼ Dtηxxxx � uxxxxxDtξ� uxxxxtDtτ,

(5)

where Dx and Dt are total derivative operators with respect to x and t respectively given as:

Dx ¼ ∂
∂x
þ ux

∂
∂u
þ uxx

∂
∂ux
þ⋯,

Dt ¼ ∂
∂t
þ ut

∂
∂u
þ utt

∂
∂ut
þ⋯:

Now, after computing (5) we get:
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ηx ¼ ηx þ ηu � ξx
� �

ux � τxut � ξuu2x � τuuxut,

ηt ¼ ηt þ ηu � τt
� �

ut � ξtux � τuu2t � ξuuxut,

ηxx ¼ ηxx þ ux 2ηxu � ξxx
� �� utτxx þ2

x ηuu � 2ξxu
� �þ uxx ηu � 2ξx

� �� 2uxtτx � 2utuxτxu

� u3xξuu � u2xutτuu � 2uxuxtτu � uxxutτu � 3uxuxxξu,

ηxt ¼ ηxt þ ux ηtu � ξxt
� �þ ηt ηxu � τxt

� �� u2xξtu � u2t τxu � uxxξt � uxt τt þ ξx � ηu
� �� uttτx

þ uxut ηuu � ξxu
� �� uxuxtξu � uxtuxξu � uxtutτu � uttuxτu � u2xutξuu � u2t uxτuu

� utuxτtu � utuxtτu � uxxutξu,

ηxxx ¼ ηxxxþx 3ηxxu � ξxxx
� �� utτxxx þ uxx 3ηxu � 3ξxx

� �� 3uxtτxx � 3uxutτxxu � 3uxxtτx

þ u2x 3ηxuu � 3ξxxu
� �þ uxuxx 3ηuu � 9ξxu

� �þ u3x ηuuu � 3ξxuu
� �þ uxxx ηu � 3ξx

� �

� 2uxuxtτxu � u4xξuuu � 6u2xuxxξuu � 3uxx2ξu � 4uxuxxxξu � 3utu2xτxuu � 3utuxxτxu

� 4uxutxτxu � u3xutτuuu � 3uxutuxxτuu � 3u2xuxtτuu � 3utxuxxτu � 3uxuxxtτu

� utuxxxτu,

ηttt ¼ ηttt � uxξttt þ ut 3ηttu � τttt
� �þ u2t 3ηtuu � 3τttu

� �þ u3t ηuuu � 3τtuu
� �� u4t τuuu � u2tt3τu

� 3uxutξttu � 3u2xutξtuu � 3uxuttξut � 6uxtutξtu � 3uxuttξtu þ uxt 4ηxxxu � 3ξtt � ξxxxx
� �

þ 3utt ηtu � τtt
� �� utttτt � 2uxtt ξþ 2τxxxð Þt þ uxxx ηu � 2τt

� �� uxttξt � uxttutξu

� u3t uxξuuu � 3u2t uxtξuu � 3uxtuttξu � 2uxttutξu � ututtt τu þ ξuð Þ � ututt 9τtu � 3ηuu
� �

� 6u2t uttτuu � 3ututttξu,

ηxxxxt ¼ ηxxxxt þ ux 4ηxxxtu � ξxxxxt
� �þ utτxxxxt � u2xτxxxxu þ u3x 6ηxxtuu � 4ξxxxtu

� �

þ u3x 4ηxtuuu � 6ξxxtuu
� �þ u4x ηtuuuu � 4ξxtuuuu

� �� u5xξtuuuu � 4uxtτxxxt

þ uxx 6ηxxtu � 4ξxxxt
� �þ 2uxxxt 2ηxu � 3ξxx � 2τxt

� �þ uxxx 4ηxtu � 6ξxxt
� �

þ uxxxx ηtu � 4ξxt
� �þ uxxt 6ηxxu � 6τxxt� 4ξxxx

� �þ uxxxuxt 4ηuu � 16ξxu
� �

þ 6uxxuxxt ηuu � 4ξxu
� �þ uxxxxut ηuu � 4ξxu

� �þ 4uxuxxxt ηuu � 4ξxu
� �

� 6u2xuttτxxuu � 24uxutuxtτxxuu � 6uxxu2t τxxuu � 4uxuttτxxxu � 8uxtutτxxxu

� 10u2xuxxxtξuu � 5uxutuxxxxξuu � 30uxxuxxtuxξuu � 20uxxxuxtuxξuu

� 15u2xxuxtξuu � 5uxuxxxxtξu � 10uxxuxxxtξu � 5uxtuxxxxξu � 10uxxtuxxxξu

� 5uxuxxxxξtu � 10uxxuxxxξtu � 6u2xuxxtτtuu � 12uxxuxtuxτtuu � 4uxutuxxxτtuu

� 3u2xxutτtuu � 12uxuxxtτxtu � 4utuxxxτxtu � uxxuxt 12τxtu þ 18ξxxuð Þ � 18uxuxxtξxxu

� 6utuxxxξxxu � 4uxxxuxttτu � 6u2xxtτu� uttuxxxxτu� 8uxtuxxxtτu� 6uxxuxxttτu

� utuxxxxtτu� 4uxuxxxttτu� 12u2xuxttτxuu� 24uxutuxxtτxuu� 12uxuxxuttτxuu

� 24u2xtuxτxuu� 4u2t uxxxτxuu� 24utuxxuxtτxuu� 4u3xuxttτuuu� 12utu2xuxxtτuuu
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2. Symmetry analysis

Lie classical method of infinitesimal transformation groups reduces the number of independent
variables in partial differential equations (PDEs) and reduces the order of ODEs. Lie’s method
has been widely used in equations of mathematical physics and many other fields [11, 24]. In this
chapter, we will perform Lie symmetry analysis [17–19, 24] for the generalized fifth order non-
linear evolution Eq. (2).

Let the group of infinitesimal transformations be defined as:

t∗ ¼ tþ ετ x; t; uð Þ þO e2
� �

x∗ ¼ xþ εξ x; t; uð Þ þO e2
� �

u∗ ¼ uþ εη x; t; uð Þ þO e2
� �

,
(3)

which leaves the Eq. (2) invariant. The infinitesimal transformations (3) are such that if u is
solution of Eq. (2), then u∗ is also a solution.

Herein, on invoking the invariance criterion as mentioned in [18], the following relation is
deduced:

ηttt � ηtxxxx � α ηxxxut þ ηtuxxx
� �� 2αþ β

� �
ηxxuxt þ ηxtuxx
� �� αþ β

� �
ηxuxxt þ ηxxtux
� � ¼ 0, (4)

where ηx, ηt, ηxt, ηxx, ηxxx, ηttt, ηtxxxx and ηxxt are extended (prolonged) infinitesimals acting
on an enlarged space corresponding to ux, ut, uxt, uxx, uxxx, uttt, utxxxx and uxxt, respectively,
given by:

ηx ¼ Dxη� uxDxξ� utDxτ,

ηt ¼ Dtη� uxDtξ� utDtτ,

ηxx ¼ Dxηx � uxxDxξ� uxtDxτ,

ηxt ¼ Dtηx � uxxDtξ�uxtDtτ,

ηxxx ¼ Dxηxx � uxxxDxξ� uxxtDxτ,

ηttt ¼ Dtηtt � uxttDtξ� utttDtτ,

ηxxxxt ¼ Dtηxxxx � uxxxxxDtξ� uxxxxtDtτ,

(5)

where Dx and Dt are total derivative operators with respect to x and t respectively given as:

Dx ¼ ∂
∂x
þ ux

∂
∂u
þ uxx

∂
∂ux
þ⋯,

Dt ¼ ∂
∂t
þ ut

∂
∂u
þ utt

∂
∂ut
þ⋯:

Now, after computing (5) we get:
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ηx ¼ ηx þ ηu � ξx
� �

ux � τxut � ξuu2x � τuuxut,

ηt ¼ ηt þ ηu � τt
� �

ut � ξtux � τuu2t � ξuuxut,

ηxx ¼ ηxx þ ux 2ηxu � ξxx
� �� utτxx þ2

x ηuu � 2ξxu
� �þ uxx ηu � 2ξx

� �� 2uxtτx � 2utuxτxu

� u3xξuu � u2xutτuu � 2uxuxtτu � uxxutτu � 3uxuxxξu,

ηxt ¼ ηxt þ ux ηtu � ξxt
� �þ ηt ηxu � τxt

� �� u2xξtu � u2t τxu � uxxξt � uxt τt þ ξx � ηu
� �� uttτx

þ uxut ηuu � ξxu
� �� uxuxtξu � uxtuxξu � uxtutτu � uttuxτu � u2xutξuu � u2t uxτuu

� utuxτtu � utuxtτu � uxxutξu,

ηxxx ¼ ηxxxþx 3ηxxu � ξxxx
� �� utτxxx þ uxx 3ηxu � 3ξxx

� �� 3uxtτxx � 3uxutτxxu � 3uxxtτx

þ u2x 3ηxuu � 3ξxxu
� �þ uxuxx 3ηuu � 9ξxu

� �þ u3x ηuuu � 3ξxuu
� �þ uxxx ηu � 3ξx

� �

� 2uxuxtτxu � u4xξuuu � 6u2xuxxξuu � 3uxx2ξu � 4uxuxxxξu � 3utu2xτxuu � 3utuxxτxu

� 4uxutxτxu � u3xutτuuu � 3uxutuxxτuu � 3u2xuxtτuu � 3utxuxxτu � 3uxuxxtτu

� utuxxxτu,

ηttt ¼ ηttt � uxξttt þ ut 3ηttu � τttt
� �þ u2t 3ηtuu � 3τttu

� �þ u3t ηuuu � 3τtuu
� �� u4t τuuu � u2tt3τu

� 3uxutξttu � 3u2xutξtuu � 3uxuttξut � 6uxtutξtu � 3uxuttξtu þ uxt 4ηxxxu � 3ξtt � ξxxxx
� �

þ 3utt ηtu � τtt
� �� utttτt � 2uxtt ξþ 2τxxxð Þt þ uxxx ηu � 2τt

� �� uxttξt � uxttutξu

� u3t uxξuuu � 3u2t uxtξuu � 3uxtuttξu � 2uxttutξu � ututtt τu þ ξuð Þ � ututt 9τtu � 3ηuu
� �

� 6u2t uttτuu � 3ututttξu,

ηxxxxt ¼ ηxxxxt þ ux 4ηxxxtu � ξxxxxt
� �þ utτxxxxt � u2xτxxxxu þ u3x 6ηxxtuu � 4ξxxxtu

� �

þ u3x 4ηxtuuu � 6ξxxtuu
� �þ u4x ηtuuuu � 4ξxtuuuu

� �� u5xξtuuuu � 4uxtτxxxt

þ uxx 6ηxxtu � 4ξxxxt
� �þ 2uxxxt 2ηxu � 3ξxx � 2τxt

� �þ uxxx 4ηxtu � 6ξxxt
� �

þ uxxxx ηtu � 4ξxt
� �þ uxxt 6ηxxu � 6τxxt� 4ξxxx

� �þ uxxxuxt 4ηuu � 16ξxu
� �

þ 6uxxuxxt ηuu � 4ξxu
� �þ uxxxxut ηuu � 4ξxu

� �þ 4uxuxxxt ηuu � 4ξxu
� �

� 6u2xuttτxxuu � 24uxutuxtτxxuu � 6uxxu2t τxxuu � 4uxuttτxxxu � 8uxtutτxxxu

� 10u2xuxxxtξuu � 5uxutuxxxxξuu � 30uxxuxxtuxξuu � 20uxxxuxtuxξuu

� 15u2xxuxtξuu � 5uxuxxxxtξu � 10uxxuxxxtξu � 5uxtuxxxxξu � 10uxxtuxxxξu

� 5uxuxxxxξtu � 10uxxuxxxξtu � 6u2xuxxtτtuu � 12uxxuxtuxτtuu � 4uxutuxxxτtuu

� 3u2xxutτtuu � 12uxuxxtτxtu � 4utuxxxτxtu � uxxuxt 12τxtu þ 18ξxxuð Þ � 18uxuxxtξxxu

� 6utuxxxξxxu � 4uxxxuxttτu � 6u2xxtτu� uttuxxxxτu� 8uxtuxxxtτu� 6uxxuxxttτu

� utuxxxxtτu� 4uxuxxxttτu� 12u2xuxttτxuu� 24uxutuxxtτxuu� 12uxuxxuttτxuu

� 24u2xtuxτxuu� 4u2t uxxxτxuu� 24utuxxuxtτxuu� 4u3xuxttτuuu� 12utu2xuxxtτuuu
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� 6uxxuttu2xτuuu� 12u2xtu
2
xτuuu� 4u2t uxxxτuuu� 24uxutuxxuxtτuuu� 3u2t u

2
xxτuuu

� 12uxuxxttτxu� 8utuxxxtτxu� 12uxxuxttτxu� 24uxxtuxtτxu� 4uxxxuttτxu

� uttτxxxx þ utηxxxxu � 10u3xuxxξtuuu � 24u2xuxxξxtuu þ uxuxx 12ηxtuu � 18ξxxtu
� �

� 6u2xu
2
t τxxuuu � u2xut 4ξxxxuu � 6τxxtuuð Þ þ u3xut 4ηxuuuu � 6ξxxuuu � 4τxtuuu

� �

þ u4xut ηuuuuu � 4ξxuuuu � τtuuuu
� �þ 6u2xutηxxuuu � 4u3xu

2
t τxuuuu � 10u3xuxxutξuuuu

� 5u4xuxtξuuuu þ u2xuxxut 6ηuuuu � 24ξxuuu � 6τtuuu
� �þ u3xuxt 4ηuuuu � 16ξxuuu � 4τtuuu

� �

� 4u3xuttτxuuu � 24u2xutuxtτxuuu � 12uxxu2t τxuuu � 10u2xuxxxξxuu � 15uxu2xxξxuu

þ 6u2xuxt 2ηxuuu � 2τxtuu � 3ξxxuu
� �þ 6uxutuxx 2ηxuuu � 2τxtuu � 3ξxxuu

� �� 10u3xuxxtξuuu

� 10utu2xuxxxξuuu � 30uxxuxtuu2xξuuu � 15u2xxuxutξuuu � u4xu
2
t τuuuuu � 8u3xutuxtτuuuu

þ uxut 4ηxxxuu � ξxxxxu � 4τxxxtu
� �� u5xutξuuuuu � u4xuxtτuuuu � 6u2xu

2
t uxxτuuuu

� 4uxu2t τxxxuu þ 6u2xuttηtuuu � 24u2xuxxtξxuu þ 12uxxuxtux ηuuu � 4ξxuu
� �� 16uxutuxxxξxuu

� 12u2xxutξxuu þ uxuxxt12ηxuu þ uxxxut4ηxuu þ uxxuxtηxuu � 6u2xuxxxttτuu � 8uxutuxxxtτuu

� 12uxuxxuxttτuu � 24uxuxtuxxtτuu � 4uxuttuxxxτuu � u2t uxxxxτuu � 12uxxuxxtutτuu

� 8uxxxuxtutτuu � 3u2xxuttτuu � 12uxxu2xtτuu þ 6u2xuxxtηuuu þ 4uxutuxxxηuuu þ 3u2xxutηuuu

� 12uxuxtτxxtu � 6uxxutτxxtu þ uxuxxx ηtuu � 16ξxtu
� �þ u2xx ηtuu � 12ξxtu

� �� 8uxuxtξxxxu

� 4uxxutξxxxu þ 12uxuxtηxxuu þ 6uxxutηxxuu � 12uxxtutτxxu � 12uxuxttτxxu � 6uxxuttτxxu

� 12u2xtτxxu � 4uxxxuxtτxu � 6uxxuxxtτtu � utuxxxxτtu � 4uxuxxxtτtu � 6uxxttτxx

� 4uxxxtt � uxxxxxξt þ uxxxxt ηu � τt � 4ξx
� �� uxxxxtutτu � uxxxxxutξu:τx

(6)

The Lie classical method for determining the similarity variables of (2) is mainly consists of
finding the infinitesimals τ, ξ, and η, which are functions of x, t, u: After substituting the values
of ηx, ηt, ηxt, ηxx, ηxxx, ηttt, ηtxxxx and ηxxt from (5) to (4) and equating the coefficients of different
differentials of u to zero, we get a number of PDEs in τ, ξ, and η, that need to be satisfied. Solving
these system of PDEs, we obtain the infinitesimals τ, ξ, and η as follows:

τ ¼ C1 þ tC4

ξ ¼ C2 þ x
2
C4

η ¼ C3 � u
2
C4,

(7)

where C1, C2, C3, and C4 are arbitrary constants.

Corresponding vector fields can be written as:

V1 ¼ ∂
∂t
, V2 ¼ ∂

∂x
, V3 ¼ ∂

∂u
, V4 ¼ x

2
∂
∂x
þ t

∂
∂t
� u

2
∂
∂u

: (8)
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3. Symmetry reductions and invariant solutions

To obtain the symmetry reductions of Eq. (2), we have to solve the characteristic equation:

dx
ξ
¼ dt

τ
¼ du

η
, (9)

where ξ, τ and η are given by Eq. (7).

To solve Eq. (9), following cases will be considered: (i) V1 þ μV2 þ λV3 and (ii) V4, where μ,λ
are arbitrary constants.

Case (i) V1 þ μV2 þ λV3

On solving Eqs. (9) we have,

r ¼ x� μt
u ¼ λtþ F rð Þ, (10)

where r is new independent variables and F rð Þ is new dependent variable. Substituting (10)
into Eq. (2), we obtain the reduced ODE which reads:

μ 2αþ β
� �

F0 � μ3 � αλ
� �

F000 þ μ 2αþ β
� �

F002 þ F00000
h i

¼ 0, (11)

where primes 0ð Þ denotes derivative with respect to r.

Let assume the solution of ODE (11) in following form:

F ¼ a0 þ a1r þ a2
r
, (12)

where a0, a1, and a2 needs to be determined. Substituting (12) into ODE (11) and equating
coefficients of the different powers of r equal to zero, we obtain:

a0 ¼ arbitrary

a1 ¼ μ3 þ αλ
μ 2αþ β
� �

a2 ¼ 12
2αþ β

:

(13)

Corresponding solution of ODE (11) can be written as:

F ¼ a0 þ μ3 þ αλ
μ 2αþ β
� �

 !
r þ 12

2αþ β
� �

r
, (14)

where β 6¼ �2α.
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� 6uxxuttu2xτuuu� 12u2xtu
2
xτuuu� 4u2t uxxxτuuu� 24uxutuxxuxtτuuu� 3u2t u

2
xxτuuu

� 12uxuxxttτxu� 8utuxxxtτxu� 12uxxuxttτxu� 24uxxtuxtτxu� 4uxxxuttτxu

� uttτxxxx þ utηxxxxu � 10u3xuxxξtuuu � 24u2xuxxξxtuu þ uxuxx 12ηxtuu � 18ξxxtu
� �

� 6u2xu
2
t τxxuuu � u2xut 4ξxxxuu � 6τxxtuuð Þ þ u3xut 4ηxuuuu � 6ξxxuuu � 4τxtuuu

� �

þ u4xut ηuuuuu � 4ξxuuuu � τtuuuu
� �þ 6u2xutηxxuuu � 4u3xu

2
t τxuuuu � 10u3xuxxutξuuuu
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2
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2
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� 4uxxutξxxxu þ 12uxuxtηxxuu þ 6uxxutηxxuu � 12uxxtutτxxu � 12uxuxttτxxu � 6uxxuttτxxu

� 12u2xtτxxu � 4uxxxuxtτxu � 6uxxuxxtτtu � utuxxxxτtu � 4uxuxxxtτtu � 6uxxttτxx

� 4uxxxtt � uxxxxxξt þ uxxxxt ηu � τt � 4ξx
� �� uxxxxtutτu � uxxxxxutξu:τx

(6)

The Lie classical method for determining the similarity variables of (2) is mainly consists of
finding the infinitesimals τ, ξ, and η, which are functions of x, t, u: After substituting the values
of ηx, ηt, ηxt, ηxx, ηxxx, ηttt, ηtxxxx and ηxxt from (5) to (4) and equating the coefficients of different
differentials of u to zero, we get a number of PDEs in τ, ξ, and η, that need to be satisfied. Solving
these system of PDEs, we obtain the infinitesimals τ, ξ, and η as follows:

τ ¼ C1 þ tC4

ξ ¼ C2 þ x
2
C4

η ¼ C3 � u
2
C4,

(7)

where C1, C2, C3, and C4 are arbitrary constants.

Corresponding vector fields can be written as:

V1 ¼ ∂
∂t
, V2 ¼ ∂

∂x
, V3 ¼ ∂

∂u
, V4 ¼ x

2
∂
∂x
þ t

∂
∂t
� u

2
∂
∂u

: (8)
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3. Symmetry reductions and invariant solutions

To obtain the symmetry reductions of Eq. (2), we have to solve the characteristic equation:

dx
ξ
¼ dt

τ
¼ du

η
, (9)

where ξ, τ and η are given by Eq. (7).

To solve Eq. (9), following cases will be considered: (i) V1 þ μV2 þ λV3 and (ii) V4, where μ,λ
are arbitrary constants.

Case (i) V1 þ μV2 þ λV3

On solving Eqs. (9) we have,

r ¼ x� μt
u ¼ λtþ F rð Þ, (10)

where r is new independent variables and F rð Þ is new dependent variable. Substituting (10)
into Eq. (2), we obtain the reduced ODE which reads:

μ 2αþ β
� �

F0 � μ3 � αλ
� �

F000 þ μ 2αþ β
� �

F002 þ F00000
h i

¼ 0, (11)

where primes 0ð Þ denotes derivative with respect to r.

Let assume the solution of ODE (11) in following form:

F ¼ a0 þ a1r þ a2
r
, (12)

where a0, a1, and a2 needs to be determined. Substituting (12) into ODE (11) and equating
coefficients of the different powers of r equal to zero, we obtain:

a0 ¼ arbitrary

a1 ¼ μ3 þ αλ
μ 2αþ β
� �

a2 ¼ 12
2αþ β

:

(13)

Corresponding solution of ODE (11) can be written as:

F ¼ a0 þ μ3 þ αλ
μ 2αþ β
� �

 !
r þ 12

2αþ β
� �

r
, (14)

where β 6¼ �2α.
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Corresponding solution of main Eq. (2) is given by:

u x; tð Þ ¼ λtþ a0 þ μ3 þ αλ
μ 2αþ β
� �

 !
x� μt
� �þ 12

2αþ β
� �

x� μt
� � , (15)

with β 6¼ �2α.
Some more solutions of ODE (11) are given by:

ið ÞF rð Þ ¼ b3 �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

μ 2αþ β
� � tanh b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

r

2μ

0
@

1
Awith β 6¼ �2α,

iið Þ F rð Þ ¼ b4 þ b5 cosh b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

r

μ

0
@

1
Awith β ¼ �2α,

iiið Þ F rð Þ ¼ b3 þ b4 coth b1 þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

r

μ

0
@

1
Awith β ¼ 2

b4
�b4αþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

μ

0
@

1
A,

(16)

where b1, b2, b3, b4 and b5 are arbitrary constants.

Corresponding solutions of main Eq. (2) are given by:

ið Þu x; tð Þ ¼ λtþ b3 �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

μ 2αþ β
� � tanh b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

x� μt
� �

2μ

0
@

1
Awith β 6¼ �2α, (17)

iið Þu x; tð Þ ¼ λtþ b4 þ b5cosh b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

x� μt
� �

μ

0
@

1
Awith β ¼ �2α, (18)

iiið Þu x; tð Þ ¼ λtþ b3 þ b4 coth b1 þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

x� μt
� �

μ

0
@

1
A

with β ¼ 2
b4

�b4αþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ αλþ μ3
� �q

μ

0
@

1
A,

(19)

where b1, b2, b3, b4, and b5 are arbitrary constants.

Case (ii) V4

On solving Eq. (9) for vector field V4, we have:

ϕ ¼ t
x2

u ¼ G ϕ
� �
x

,

(20)
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where ϕ is new independent variables and G ϕ
� �

is new dependent variable. Substituting (20)
into Eq. (2), we obtain the reduced ODE which reads

138αþ 54β
� �

ϕG02 þ 8 betaþ 2αð Þϕ3G000 þ 30αþ 18β
� �

Gþ 148αþ 68β
� �

ϕ2G00 � 360
� �

G0

þ8 βþ 2α
� �

ϕ3G002 þ 4 αþ β
� �

ϕ2GG000 þ 26αþ 22β
� �

ϕGG00 � 16ϕ4G00000 þ 1� 1020ϕ2� �
G000

�1320ϕG00 � 240ϕ3G0000 ¼ 0,
(21)

where primes 0ð Þ denotes derivatives with respect to ϕ.

Let assume the solution of ODE (21) in following form:

G ¼ b2
ϕ2 þ

b1
ϕ
þ a0 þ a1ϕþ a2ϕ2, (22)

where b1, b2, a0, a1 and a2 needs to be determined.

Substituting (22) into ODE (21) and equating coefficients of the different powers of ϕ equal to
zero, we obtain:

ið Þ a0 ¼ arbitrary, a1 ¼ a2 ¼ b1 ¼ 0, b2 ¼ 1
5αþ 3β

iið Þ a0 ¼ a1 ¼ a2 ¼ 0, b1 ¼ arbitrary, b2 ¼ 1
5αþ 3β

(23)

Corresponding solution of ODE (21) can be written as:

ið ÞG ¼ 1
5αþ 3β
� �

ϕ2 þ a0,

iið ÞG ¼ 1
5αþ 3β
� �

ϕ2 þ
b1
ϕ
,

(24)

where b1 is arbitrary constant.

Corresponding solution of main Eq. (2) can be written as:

ið Þ u x; tð Þ ¼ 1
x

x4

5αþ 3β
� �

t2
þ a0

 !
,

iið Þ u x; tð Þ ¼ x3

5αþ 3β
� �

t2
þ b1x

t
,

(25)

where b1 is arbitrary constant.
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4. Conclusion

In this chapter, we derived the symmetry variables and symmetry transformations of the gener-
alized fifth order non-linear partial differential equation. We applied Lie symmetry analysis for
investigating considered nonlinear partial differential equation and using similarity variables,
given equation is reduced into ordinary differential equations. We derived explicit exact solu-
tions of considered partial differential equation corresponding to each ordinary differential equ-
ation obtained by reduction.
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Abstract

An optimal estimator for continuous nonlinear systems with nonlinear dynamics, and
nonlinear measurement based on the continuous least square error criterion is derived.
The solution is exact, explicit, in closed form and gives recursive formulas of the optimal
filter. For the derivation of the filter, the following elements are combined: (i) the least
squares (LS) criterion based on statistical-deterministic-likelihood approach to estimation;
(ii) the state-dependent coefficient (SDC) form representation of the nonlinear system; and
(iii) the calculus of variation. The resulting filter is optimal per sample. The filter’s gains
need the solution of a nonsymmetric differential matrix Riccati equation. The stability of
the estimator is investigated. The performances are demonstrated by simulation of the
Van der Pol equation with noisy nonlinear measurement, and system driving noise.

Keywords: nonlinear system, nonlinear estimator, Van der Pol equation, nonsymmetric
differential matrix Riccati equation, optimal estimator, stability of nonlinear filter

1. Introduction

The Kalman filter and the Kalman-Bucy filter [1, 2] solved the problem of optimal estimation of
stochastic and deterministic linear systems. Since then, there is a continuing research on estima-
tion of nonlinear systems.

There are many different approaches for the state reconstruction, estimation, and filtering of
nonlinear systems, for a recent review, see [3, 4] and the references within. The space in this
chapter is too short to cover them. These approaches can be classified roughly into two types:
the stochastic approach and the statistical-deterministic-likelihood approach.
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The stochastic approach is based on the Itȏ calculus and computation of the conditional
probabilities by the Kolmogorov’s forward/Fokker-Plank equation or Zakai’s equation that
are difficult to solve and usually need numerical solution, e.g., see a numerical approach to
the filtering problem for a class of nonlinear time-varying systems [5]. The innovations
approach to the nonlinear estimation in a white noise is presented in [6]. However, explicit
result for a specific nonlinear system is difficult to arrive at. Thus, when a closed-form estima-
tor is sought, the stochastic approach leads, in general, to suboptimal and approximate solu-
tions. The exceptions are [7, 8], where some restricted cases for which closed-form solutions of
the optimal filtering equations of continuous systems are presented. Moreover, it was shown
that generally the stochastic approach leads to infinite dimensional solution of the optimal
estimator [9]. Different classes of nonlinear systems for which there is a closed-form explicit
solution are presented in [10, 11] for the nonlinear problem of estimating the parameters of
linear system with unknown coefficients. These belong to the specific class of nonlinear sys-
tems for which a general solution is presented in [12], Chapter 10.

The Kalman filter [1, 2] was obtained as well by solving the dual of the linear quadratic control
problem criterion [13–15] by calculus of variations within the framework using the statistical-
deterministic-likelihood approach. The dual of the LQ criterion is the least squares (LS) criterion
also called the mean squares error (MSE) criterion, or joint maximum likelihood (JML) criterion
[15–17], or just maximum likelihood (ML). The statistical-deterministic-likelihood approach has
been used to derive filters of linear systems [13, 15]. For linear system, this approach leads to the
structure of the Kalman and Kalman-Bucy filters. This shows that the Kalman and Kalman-Bucy
filters are not only optimal estimators on the average but also optimal estimators for a single
sample. Within the likelihood approach [18], the noises are white and the criterion is the likeli-
hood functional [15]. The deterministic variational approach has been applied in [18] to nonlinear
system. Within the statistical-deterministic-likelihood approach [13, 19], the input disturbance
and output measurement error are considered as disturbances with unknown statistics ([20], p.
361). This approach is based on the calculus of variations [13] and has been widely used for
numerical implicit computations of estimates and smoothers for nonlinear dynamic systems [21].

Thus, the statistical-deterministic-likelihood approach is most tempting for application in
developing filters of nonlinear systems [18]. Mortensen [18] derives the general structure of
the optimal recursive estimator’s state propagation equation derived from the likelihood
approach point of view. This solution has the structure of the state propagation equation of
the extended Kalman filter (EKF) thus justifying its usage beyond the heuristic of usage as the
first-order Taylor series expansion. However, Mortensen [18] does not derive the respective
equation of the gain. Moreover, Mortensen [18] states that the computation of the gain “…
suffers from the same kind moment problem or closure problem as does the minimum vari-
ance nonlinear filtering.” This means that the derived estimation error gain is not feasible. The
solution in this chapter shows that the statistical-deterministic-likelihood approach based on
the calculus of variations leads to a solution that is not plagued with the closure problem.

Themost popular estimation filter of nonlinear systems is the EKF. The EKF uses the Jacobian fx of
the system’s differential equations function _x ¼ f xð Þ and Jacobianmx of the measurement’s equa-
tions y = m(x) for computation of the estimator’s gain. The stability of the EKF is not guaranteed.
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An additional estimation filter of nonlinear systems that has been developed in the recent
years with success is the state-dependent differential/difference Riccati equation (SDRE/
SDDRE)-based filter of nonlinear system [22–25]. This has been enabled by the introduction
of the state-dependent coefficient (SDC) form [23, 24] approach to filtering. The SDC form
represents the nonlinear equation in the quasilinear form _x ¼ F xð Þx and y = M(x)x. The SDC
representation always exists albeit it is not unique. The observability and controllability of the
SDC representation are needed; however, for any SDC form, they are not guaranteed. Finding-
synthesizing a controllable and observable SDC form representation can be difficult and is not
trivial. This problem is dealt with in [26–29] and some approaches to synthesize feasible SDC
forms are proposed. The selection of the “best” SDC is dealt with in [26, 27, 29]. The global
uniform stability properties of the SDRE-based filter have been proved only lately in [30–33].

Since Mortensen’s derivation [18], no progress has been made [4, 34, 35] in explicitly solving
the optimal nonlinear filtering problem till [16, 17, 36–38] for continuous nonlinear systems
and [39] for discrete nonlinear systems.

This chapter combines: (i) the LS criterion based on the statistical-deterministic-likelihood
approach to estimation; (ii) the SDC form representation of the nonlinear system; and
(iii) the calculus of variations; for derivation of a recursive filter in the form of a differential
equation as the filter-estimator for nonlinear systems with nonlinear dynamics and nonlinear
measurement.

This chapter is based on the preliminary publication [16]. The results for nonlinear time-varying
system are presented in [17], for system with input in [37] and for the H∞ criterion in [38].

The presented approach leads to an optimal, exact, explicit, closed-form, and recursive solu-
tion, where state propagation equation is as derived in [18] (and is that as of the EKF). This
filter is called here the recursive nonlinear least squares (RNLS) filter. The optimal gain is
computed via the solution of a nonsymmetric differential matrix Riccati equation (NDMRE)
that uses the respective Jacobians and the SDC form representation.

The importance and novelty of the result in this chapter are:

i. An optimal, exact, explicit, closed-form, and recursive solution to the estimation of
nonlinear time-varying systems based on the quadratic least-squares criterion is presented.

ii. The fact that the optimal filter of nonlinear systems can be derived by calculus of varia-
tions is highlighted.

iii. The optimal filter can be taught to students that are familiar with calculus of variations
before mastering stochastic calculus.

The RNLS-based filter, the EKF, and the SDDRE-based filter were compared on a common
basis in [36, 40].

In the chapter, derivation of the result is presented. The performances of the RNLS-based filter
are demonstrated with the Van der Pol differential equation driven by a band-limited noise,
and the nonlinear measurement is noise corrupted.
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2. Problem statement

A general nonlinear system is dealt with. Let the reality be represented by:

_ζ tð Þ ¼ φ ζ tð Þ;ω tð Þð Þ, ζ toð Þ ¼ ζo

y tð Þ ¼ η ζ tð Þ; υ tð Þð Þ
(1)

where ζ(t) is the real state (unknown and of unknown dimension), y(t) is the measured output,
υ(t) is the measurement noise, ω(t) is the system driving noise, and the functions φ and η
represent the reality. The functions φ and η that describe the real system cannot be either
precisely represented or are unknown precisely up to the last detail (e.g., the output measure-
ment function may include some measurement noise or themselves exhibit random uncertain
behavior). For the design of the observer, we use the representation model given by:

_x tð Þ ¼ f x tð Þ;w tð Þð Þ, x toð Þ ¼ xo

y tð Þ ¼ m x tð Þ; v tð Þð Þ
(2)

where x(t) ∈ Rn is the state of the model, y(t) ∈ Rp is the model output, w(t) ∈ Rr is the system
driving disturbance noise, v(t) ∈ Rp is the measurement noise, f(.):Rn � Rr ! Rn and m(.):
Rn � Rp ! Rp are the representation (model, i.e., exactly known) of the reality and thus
approximation of the reality, w(t) and v(t) are the functions of time that represent the difference
between the reality and its model. It is assumed that the time functions w(t) and v(t) and the
initial conditions, xo, are of “unknown character” ([15], Section 5.3), i.e., with unknown statis-
tics [18] ([20], p. 361).

The problem: Derive a recursive estimator (in form of a differential equation) for the state of
the model, x(t), from the output measurements.

The continuous least square criterion is used [13–15] in the evaluation of the optimal estimator
of linear systems. The covariance constraint and the minimum model error concepts [21]
rationalize this approach as well.

The continuous least squares criterion is the dual of the LQ criterion for the control problem.

The objective is ([15], Eq. 5.24)

J0 tð Þ ¼ 1
2

x toð Þ � x toð Þð ÞTP�1to x toð Þ � x toð Þð Þ

þ
ðt

to

y τð Þ �m x τð Þ; v τð Þð Þ½ �TR�1 y τð Þ �m x τð Þ; v τð Þð Þ½ �

þw τð ÞTQ�1w τð Þ

2
4

3
5dτ

8>>>><
>>>>:

9>>>>=
>>>>;

(3)

where Q is an a priori estimate of the driving force errors, w(t),Q ∈ Rr � r, Q > 0, R is an a priori
estimate of the measurement noise errors, v(t), R ∈ Rp � p, R > 0, Pto is an a priori covariance
estimate of the initial conditions errors, Pto ∈ Rn � n, Pto > 0, x toð Þ is an a priori estimate of the
initial conditions.
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We wish to minimize the continuous least squares error objective (3) with respect to w(τ),
to ≤ τ ≤ t subject to the model (2) in order to find an estimate of x(τ). That is, we are looking
for the representation-realization of the difference between the reality and the model, w(t), that
best fits, the observations. In other words and roughly speaking, “we want to pass the solution
to Eq. (3) as closely as possible, through the observations.” The presented approach also
constitutes the statistical methods approach to filtering ([15], Section 5.3).

The problem above is solvable by a batch solution [21] that will minimize the objective (3).
Here, we look for a recursive solution in the form of differential equations.

Throughout the chapter, it is assumed that all functions satisfy the necessary boundedness,
smoothness, and differentiability conditions for existence of solution.

3. The state-dependent coefficient—SDC form

In this chapter, we deal with a specific structure of the model of the nonlinear system (2). It is
assumed that:

I. Eq. (2) is partitioned as (with a slight abuse of notation):

f x;wð Þ≕ f x tð Þð Þ þ Gw tð Þ; x toð Þ ¼ xo,
m x; vð Þ≕m x tð Þð Þ þ v tð Þ (4)

II. At the origin, we have

f 0ð Þ ¼ 0
m 0ð Þ ¼ 0

(5)

Then, by defining the state-dependent coefficient form (SDC) [23] as:

f x tð Þð Þ≕ F x tð Þð Þx tð Þ
m x tð Þð Þ≕M x tð Þð Þx tð Þ (6)

The dynamic equations of the system (4) are written as

_x tð Þ ¼ F x tð Þð Þx tð Þ þ Gw tð Þ, x toð Þ ¼ xo,
y tð Þ ¼M x tð Þð Þx tð Þ þ v tð Þ (7)

where F ∈ Rn � n, G ∈ Rn � r,M ∈ Rp � n. The SDC form (6) always exists albeit is not unique. It
is assumed that all matrices F(ξ), M(ξ), are piecewise continuous and uniformly bounded with
respect to all variables.1 An important property of the SDC representation, that is needed, is its
observability and controllability as a time-varying system along all trajectories that the RNLS
filter can attain. The observability and/or controllability of a specific SDC form are not

1
Not all nonlinear system can be represented in the SDC form with uniformly bounded F(x), M(x).
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1
Not all nonlinear system can be represented in the SDC form with uniformly bounded F(x), M(x).
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guaranteed. Finding-synthesizing a controllable and an observable SDC form representation
can be difficult and is not trivial. This problem is dealt with in [26–29] where some approaches
to synthesize feasible SDC forms are proposed.

4. Derivation of the main result

In this section, the main result is derived for the specific structure of the nonlinear system (7),
i.e., nonlinear dynamics, f(x(t)), nonlinear measurement, m(x(t)), that are represented in the
SDC form given in Eq. (6), and the quadratic criterion

J tð Þ ¼ 1
2

x toð Þ � x toð Þð ÞTP�1to x toð Þ � x toð Þð Þ

þ
ðt

to

y τð Þ �m x τð Þð Þ½ �TR�1 y τð Þ �m x τð Þð Þ½ � þ w τð ÞTQ�1w τð Þ
h i

dτ

8>>><
>>>:

9>>>=
>>>;

(8)

that is minimized with respect to, w(t), subject to Eq. (7). Calculus of variations is applied in
derivation of the main result for nonlinear systems (7). The Hamiltonian is

H x;λ; tð Þ ¼ 1
2
y tð Þ �m x tð Þð Þ½ �TR�1 y tð Þ �m x tð Þð Þ½ �

þ 1
2
w tð ÞTQ�1w tð Þ � λ tð ÞT f x tð Þð Þ þ Gw tð Þ½ �

(9)

where λ(t) is the costate.

The necessary conditions for optimality ([15], Example 7.11) are

Hw ¼ 0
_λ tð Þ ¼ HT

x ;

λ toð Þ ¼ 1
2

∂
∂bx toð Þ

bx toð Þ � x toð Þð ÞTP�1to bx toð Þ � x toð Þð Þ

λ tð Þ ¼ 0 since x tð Þ is free
Q�1 > 0, P�1to > 0, R�1 > 0

(10)

This gives

Hw ¼ w tð ÞTQ�1 � λ tð ÞTG ¼ 0

_λ tð Þ ¼ y tð Þ �m bx tð Þð Þ½ �TR�1 �mbx bx tð Þð Þ
h i

� λ tð ÞTfbx bx tð Þð Þ
h iT

λ toð Þ ¼ bx toð Þ � x toð Þð ÞTP�1to

(11)

This leads to the nonlinear two-point boundary value problem (TPBVP) for to ≤ τ ≤ t,
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bw τð Þ ¼ QGTλ τð Þ
d
dτ
bx τð Þ ¼ f bx τð Þð Þ þ GQGTλ τð Þ; bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ (12)

d
dτ

λ τð Þ ¼ � f x̂ bx τð Þð Þ� �Tλ τð Þ � mx̂ bx τð Þð Þ½ �TR�1 y τð Þ �m bx τð Þð Þ½ �; λ tð Þ ¼ 0

4.1. Explicit solution of the TPBVP

The system’s dynamic equation (Eq. (4)) in the SDC form is Eq. (7). Thus, the optimal solution
is given by the TPBVP.

bw τð Þ ¼ QGTλ τð Þ
d
dτ
bx τð Þ ¼ F bx τð Þð Þbx τð Þ þ GQGTλ τð Þ; bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ (13)

d
dτ

λ τð Þ ¼ � f x̂ bx τð Þð Þ� �Tλ τð Þ � mx̂ bx τð Þð Þ½ �TR�1 y τð Þ �M bx τð Þð Þbx τð Þ½ �;λ tð Þ ¼ 0 (14)

The usage of the SDC form converts the nonlinear TPBVP (Eq. (12)) to a time-varying TPBVP
(Eq. (13)) thus enables a causal solution. This is as up to the current time, as the solution
propagates forward in time, bx tð Þ is a known function of time and the integration goes forward
in time. The solution follows [16]. For illustration, the “homogeneous” case is presented here.
In this case, the TPBVP is

d
dτ
bx τð Þ ¼ F bx τð Þð Þbx τð Þ þ GQGTλ τð Þ; bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ

d
dτ

λ τð Þ ¼ � f x̂ bx τð Þð Þ� �Tλ τð Þ þ mx̂ bx τð Þð Þ½ �TR�1M bx τð Þð Þbx τð Þ; λ tð Þ ¼ 0
(15)

By setting bx τð Þ ¼ P τð Þλ τð Þ in Eq. (15), the nonsymmetric differential matrix Riccati equation is
given by:

_P ¼ F bx τð Þð ÞPþ P f x̂ bx τð Þð Þ� �T þ GQGT � P mx̂ bx τð Þð Þ½ �TR�1M bx τð Þð ÞP, P toð Þ ¼ Pto (16)

The solution of the nonhomogeneous time-varying TPBVP (Eqs. (13) and (14)) is hinted by the
necessary condition bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ. The derivation then follows closely [16].

4.2. The main result

The solution in the form of differential equations, the continuous recursive nonlinear least
squares (RNLS) filter, is given by:

_bx tð Þ ¼ f bx tð Þð Þ þ K bx tð Þ; tð Þ y tð Þ �m bx tð Þð Þ½ �, bx toð Þ ¼ bxo
or
_bx tð Þ ¼ F bx tð Þð Þbx tð Þ þ K bx tð Þ; tð Þ y tð Þ �M bx tð Þð Þbx tð Þ½ �, bx toð Þ ¼ bxo

(17)
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guaranteed. Finding-synthesizing a controllable and an observable SDC form representation
can be difficult and is not trivial. This problem is dealt with in [26–29] where some approaches
to synthesize feasible SDC forms are proposed.
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� λ tð ÞTfbx bx tð Þð Þ
h iT
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This leads to the nonlinear two-point boundary value problem (TPBVP) for to ≤ τ ≤ t,
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bw τð Þ ¼ QGTλ τð Þ
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dτ
bx τð Þ ¼ f bx τð Þð Þ þ GQGTλ τð Þ; bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ (12)

d
dτ
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where the filter’s gain is

K bx tð Þ; tð Þ ¼ P bx tð Þ; tð Þ mx̂ bx tð Þð Þ½ �TR�1 (18)

and P bx tð Þ; tð Þ is given by the nonsymmetric differential matrix Riccati equation

_P bx tð Þ; tð Þ ¼ F bx tð Þð ÞP bx tð Þ; tð Þ þ P bx tð Þ; tð Þ f x̂ bx tð Þð Þ� �T

þ GQGT � P bx tð Þ; tð Þ mx̂ bx tð Þð Þ½ �TR�1M bx tð Þð ÞP bx tð Þ; tð Þ; P toð Þ ¼ Pto

(19)

where bx tð Þ is the estimated state and f xð Þ≕F xð Þx, f x xð Þ ¼ ∂f xð Þ
∂x , m xð Þ≕M xð Þx, mx xð Þ ¼ ∂m xð Þ

∂x .

Notice:

i. The first term of the right-hand side of Eq. (19) includes the SDC form and the second
term includes the Jacobian and same is in the last term. The SDC and the Jacobian are
equal for linear systems only.

ii. bx tð Þ is known up to the current time t. Thus, Eq. (17) can be propagated forward in time.

iii. The solution requires the solution of the nonsymmetric differential matrix Riccati equa-
tion (Eq. (19)) and the solution, P, is nonsymmetric.

iv. The solution of the nonsymmetric Riccati matrix equation depends on the estimated state
bx tð Þ, and is formally denoted P bx tð Þ; tð Þ.

v. Notice that the state propagation Eq. (19) has exactly the same structure as derived by
Mortensen [18] and used by the EKF. The solution of Eqs. (18) and (19) gives explicitly the
filter’s gain.

vi. In [18], it is claimed that computation of the filter’s optimal gain, P, (Eqs. (18) and (19))
suffers from “…the moment or closure problem…”. In this chapter, it is shown that the
filter’s optimal gain is solved completely and explicitly by the NDMRE (Eq. (19)).

4.3. A compact form of the optimal solution

In order to enable better understanding of Eq. (17–19), the following presents Eq. (17–19) by
suppressing the explicit and implicit dependence on time.2 The optimal filter is

_bx ¼ Fbx þ K y�Mbx½ �, bx toð Þ ¼ bxo (20)

K ¼ PmT
x̂ R
�1 (21)

_P ¼ FPþ Pf Tx̂ þ GQGT � PmT
x̂ R
�1MP; P toð Þ ¼ Pto (22)

or

2
Explicit on time, t, and implicitly through the estimated state, bx tð Þ.
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_P ¼ FPþ P f x̂
� �T þ GQGT � KMP; P toð Þ ¼ Pto (23)

One can clearly see that for linear system, Eq. (20–22) gets the structure of the Kalman filter as
then F ¼ f x̂ and M ¼ mx̂ .

5. Stability analysis of the RNLS estimator

The deterministic stability of the RNLS estimator-filter along the filter’s trajectories Eq. (20–22) is
considered. Recall that optimality does not guarantee stability. The stability of the RNLS filter is
connected to the stability of the NDMRE equation. Let us consider the system/observer:

_bx ¼ Fbx þ K y�Mbx½ � ¼ F� KM½ �bx þ Ky, bx toð Þ ¼ bxo (24)

K ¼ PMTR�1 (25)

_P ¼ FPþ PFT þ GQGT � PMTR�1MP; P toð Þ ¼ Pto (26)

where the explicit and implicit time dependency is suppressed as in the previous section. Eqs.
(24–26) are actually the deterministic SDDRE-based observer of Eq. (7) whose stability is
treated in [31–33]. The matrix Riccati equation (Eq. (26)) is symmetric.

First, existing result on the stability of optimal estimators of system Eqs. (24–26) as a linear
time-varying system is cited. The following result is valid for linear time-invariant and time-
variant systems.

Theorem 1. [31, 32, 41] Consider the symmetric Riccati equation (Eq. (26)) where Q ≥ 0, R > 0

and Po ≥ 0 are symmetric, F;Mð Þ is detectable, and F;GQ1=2
� �

is stabilizable. Then, there exists

K ¼ PMTR�1 such that F� KMis asymptotically stable.

A Lyapunov function for the autonomous system Eqs. (24–26) (i.e. y = 0) is

V tð Þ ¼ 1
2
bx tð ÞTP�1 tð Þbx tð Þ (27)

For which

_V tð Þ ¼ �bx tð ÞTP�T GQGT þ PMTR�1MP
� �

P�1bx tð Þ (28)

where GQGT þ PMTR�1MP
� �

is positive definite.

Next, the NDMRE equation is considered. It is dealt with in [42–46]. The only reference that is
directly addressing the stability issue of an NDMRE is [42] (Chapter 9). The Riccati equation
related to the time-invariant control problem is dealt with in [42] (Theorem 9.1.23 and Remark
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(24–26) are actually the deterministic SDDRE-based observer of Eq. (7) whose stability is
treated in [31–33]. The matrix Riccati equation (Eq. (26)) is symmetric.
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time-varying system is cited. The following result is valid for linear time-invariant and time-
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Theorem 1. [31, 32, 41] Consider the symmetric Riccati equation (Eq. (26)) where Q ≥ 0, R > 0
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is stabilizable. Then, there exists
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For which
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Next, the NDMRE equation is considered. It is dealt with in [42–46]. The only reference that is
directly addressing the stability issue of an NDMRE is [42] (Chapter 9). The Riccati equation
related to the time-invariant control problem is dealt with in [42] (Theorem 9.1.23 and Remark
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9.1.24). Although not explicitly stated, these results apply as well to time-varying systems.
Motivated by this theorem and remark, translated by duality to the estimation problem, the
following conjecture is formulated.

Conjecture 1. Consider the nonsymmetric differential Riccati matrix equation.

_P ¼ FPþ Pf Tx̂ þ GQGT � PmT
x̂ R
�1MP, P toð Þ ¼ Po, (29)

where Q ≥ 0, R > 0 are symmetric, F;Mð Þ and f x̂ ;mx̂
� �

are detectable, and F;GQ1=2
� �

and

f x̂ ;GQ
1=2

� �
are stabilizable. Then, there exist K1 ¼ PMTR�1 and K2 ¼ PmT

x̂ R
�1 such that

F� K1M and f x̂ � K2mx̂ are stable.

This conjecture is supported by [42] (Theorem 9.1.23 and Remark 9.1.24). The requirement
of detectability (observability) and stabilizability (controllability) is not explicitly required
in [42] (supposedly they appear implicitly). This conjecture means that the filter given by
Eqs. (20–22) is stable. An issue under research is (loosely): in addition to the conditions in
Conjecture 1, the boundedness conditions of all matrices and variables (the output and
system driving noise and measurement noise) are sufficient conditions for this stability, as
for the SDDRE-based filter [31–33]?

Notice that for the symmetric case, this well-known result for linear system results in Theorem 1.

The stability of the RNLS filter is investigated via Lyapunov analysis. As the solution of the
nonsymmetric Riccati equation in Eq. (19) is eventually not symmetric, the following symmet-
ric Lyapunov function is dealt with here:

V ¼ 1
2
xT P�1 þ P�T
� �

x (30)

The derivative of the Lyapunov function is [47]

_V ¼ � 1
2
xT

P�TP MTR�1MþmT
xR
�1mx

� �

� P�TP M�mxð ÞTR�1 M�mxð Þ
þP�1GQGTP�1 þ P�TGQGTP�T

þ f x � F
� �TP�1 þ P�T f x � F

� �

2
66664

3
77775
x (31)

For linear system, F ¼ f x̂ ,M ¼ mx̂ , we have Eq. (28).

The first terms in Eq. (31) are potentially nonnegative definite

P�TP MTR�1MþmT
xR
�1mx

� �
≥ 0 (32)

The second term in Eq. (31) is negative (nonpositive) definite

�P�TP M�mxð ÞTR�1 M�mxð Þ ≥ 0 (33)
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The next two terms in Eq. (31) are indefinite and can be negative

P�1GQGTP�1 þ P�TGQGTP�T (34)

The last two terms in Eq. (31)

f x � F
� �TPα

�1 þ Pα
�T f x � F
� �

(35)

are indefinite.

The discussion above hints that for small nonsymmetry, for sure, the NDMRE stabilizes the
RNLS filter. The stability of the RNLS filter is summarized in the following conjecture. Further
results are beyond the scope of this chapter.

Conjecture 2: If

i. The nonlinearities are such that f x � F
�� �� and mx �Mk k are bounded/uniformly bounded

and sufficiently small,

ii. The observability and controllability conditions are satisfied along the filter trajectories,

then the RNLS filter is asymptotically stable.

Remark: Simulation results show/hint that as long as the incremental observability matrices

Ob F xð Þ;M xð Þð Þ ¼

M xð Þ
M xð ÞF xð Þ
⋮

M xð ÞF xð Þn�1

2
666664

3
777775
, Ob f x xð Þ;mx xð Þ� � ¼

mx xð Þ
mx xð Þf x xð Þ
⋮

mx xð Þf x xð Þn�1

2
666664

3
777775

and the incremental controllability matrices

Co F xð Þ;GQ1=2
� �

¼ GQ1=2 F xð ÞGQ1=2 ⋯ F xð Þn�1GQ1=2
h i

,

Co f x xð Þ;GQ1=2
� �

¼ GQ1=2 f x xð ÞGQ1=2 ⋯ f x xð Þn�1GQ1=2
h i

along the estimator’s trajectory of the RNLS filter are nonsingular, i.e.,

rank Ob F xð Þ;M xð Þð Þ½ � ¼ n, rank Ob f x xð Þ;mx xð Þ� �� � ¼ n, rank Co F xð Þ;GQ1=2
� �h i

¼ n, and

rank Co f x xð Þ;GQ1=2
� �h i

¼ n
,

then: (i) the estimation errors of the filter for the deterministic case, i.e., w(t) = 0 and v(t) = 0,
converge to zero; and (ii) for the case with bounded disturbance and bounded measurement
noise, the estimation errors are bounded, i.e., do not diverge.
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6. Example

This section demonstrates the performance of the RNLS-based estimator on a generalized
nonlinear time-varying Van der Pol differential equation driven by band-limited noise and

noise-corrupted nonlinear measurement. The state is x ¼ ξ _ξ
� �T interpreted as position and

velocity. The Van der Pol equation is

μ€ξ þ 2c ξ2 � 1
� �

_ξ þ kξ ¼ w

That can be put in matrix form as:

d
dt

ξ
_ξ

� �
¼

0 1

� k
μ
� 2c

μ
ξ2 � 1
� �

2
4

3
5 ξ

_ξ

� �
þ 0

1

� �
w

The noisy measurement is

y ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p þ v

Then, we have

f xð Þ ¼
0 1

� k
μ
� 2c

μ
ξ2 � 1
� �

2
4

3
5 ξ

_ξ

� �
¼

_ξ

� kξ
μ
� 2c

μ
ξ2 � 1
� �

_ξ

2
4

3
5

The SDC form system matrix is selected as:

F xð Þ ¼
0 1

� k
μ
� 2c

μ
ξ2 � 1
� �

2
4

3
5

and the Jacobian is

f x xð Þ ¼
0 1

� k
μ
þ 4c

μ
ξ _ξ

� �
� 2c

μ
ξ2 � 1
� �

2
4

3
5

m xð Þ ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p

M xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p 0
� �

mx xð Þ ¼
1

1þ ξ2
� �3=2 0
" #
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The observability matrices are

Ob F xð Þ;M xð Þð Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p

2
6664

3
7775,

Ob f x xð Þ;mx xð Þ� � ¼

1

1þ ξ2
� �3=2 0

0
1

1þ ξ2
� �3=2

2
66664

3
77775

and controllability matrices are

Co F xð Þ;GQ1=2
� �

¼
0 1

1 � 2c
μ

ξ2 � 1
� �

2
4

3
5Q1=2

Co f x xð Þ;GQ1=2
� �

¼
0 1

1 � 2c
μ

ξ2 � 1
� �

2
4

3
5Q1=2

The observability and controllability matrices have full rank for all bounded trajectories.

The system and the RNLS estimator were implemented in SIIMULINK® with the following
parameters:

Ts = 0.1 msec Sampling interval

μ = 1 Mass

c = 0.01 Damping coefficient

k = 0.1 Spring stiffness

R = 1e-5 [1/Hz] Spectral density of the measurement noise—v

Q = 1e0 [(1/sec2)2/Hz] Spectral density of the system driving noise—w

Po = [0.001 0; 0 0.001] Initial condition of the P matrix

x(to) = [2 0]T Initial conditions of the state

The measurement noise and system driving noises are white in 100 [rad/sec] bandwidth.

The following figures present the performances of the RNLS filter. Figure 1 presents the
measured output—y and the estimated output versus time. Figure 2 presents the real (true)

position—ξ and the estimated position—bξ versus time. Figure 3 presents the real (true)

velocity— _ξ and the estimated velocity— _bξ versus time. The transient performance is demon-
strated. Figure 4 presents the filter’s gains: gain of the position state, K1, and the gain of the
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6. Example

This section demonstrates the performance of the RNLS-based estimator on a generalized
nonlinear time-varying Van der Pol differential equation driven by band-limited noise and

noise-corrupted nonlinear measurement. The state is x ¼ ξ _ξ
� �T interpreted as position and

velocity. The Van der Pol equation is

μ€ξ þ 2c ξ2 � 1
� �

_ξ þ kξ ¼ w

That can be put in matrix form as:

d
dt

ξ
_ξ

� �
¼

0 1

� k
μ
� 2c

μ
ξ2 � 1
� �

2
4

3
5 ξ

_ξ

� �
þ 0

1

� �
w

The noisy measurement is

y ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p þ v
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f xð Þ ¼
0 1

� k
μ
� 2c

μ
ξ2 � 1
� �

2
4

3
5 ξ

_ξ

� �
¼

_ξ

� kξ
μ
� 2c

μ
ξ2 � 1
� �

_ξ

2
4

3
5

The SDC form system matrix is selected as:

F xð Þ ¼
0 1

� k
μ
� 2c

μ
ξ2 � 1
� �

2
4

3
5

and the Jacobian is

f x xð Þ ¼
0 1

� k
μ
þ 4c

μ
ξ _ξ

� �
� 2c

μ
ξ2 � 1
� �

2
4

3
5

m xð Þ ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p

M xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p 0
� �

mx xð Þ ¼
1

1þ ξ2
� �3=2 0
" #

Nonlinear Systems - Modeling, Estimation, and Stability170

The observability matrices are

Ob F xð Þ;M xð Þð Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p

2
6664

3
7775,

Ob f x xð Þ;mx xð Þ� � ¼

1

1þ ξ2
� �3=2 0

0
1

1þ ξ2
� �3=2

2
66664

3
77775

and controllability matrices are

Co F xð Þ;GQ1=2
� �

¼
0 1

1 � 2c
μ

ξ2 � 1
� �

2
4

3
5Q1=2

Co f x xð Þ;GQ1=2
� �

¼
0 1

1 � 2c
μ

ξ2 � 1
� �

2
4

3
5Q1=2

The observability and controllability matrices have full rank for all bounded trajectories.
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x(to) = [2 0]T Initial conditions of the state

The measurement noise and system driving noises are white in 100 [rad/sec] bandwidth.

The following figures present the performances of the RNLS filter. Figure 1 presents the
measured output—y and the estimated output versus time. Figure 2 presents the real (true)

position—ξ and the estimated position—bξ versus time. Figure 3 presents the real (true)

velocity— _ξ and the estimated velocity— _bξ versus time. The transient performance is demon-
strated. Figure 4 presents the filter’s gains: gain of the position state, K1, and the gain of the
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Figure 1. The measured output—y and the estimated output versus time.

Figure 2. The real position—x and the estimated position state—bx versus time.
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Figure 3. The real velocity— _x and the estimated velocity—b_x , versus time.

Figure 4. Filter’s gains, K1 gain of the position state, K2 gain of the velocity state, versus time.
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Figure 3. The real velocity— _x and the estimated velocity—b_x , versus time.

Figure 4. Filter’s gains, K1 gain of the position state, K2 gain of the velocity state, versus time.
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Figure 5. The terms of the solution of the Riccati equation—P matrix, versus time.

Figure 6. Phase plane plot of velocity versus position estimation errors.
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velocity state, K2, versus time. Figure 5 shows the solution of the Riccati equation matrix, P,
versus time. One can clearly see that the P matrix is nonsymmetric P12 6¼ P21.

Figure 6 presents the phase plane plot of the velocity estimation error versus the position
estimation errors. One can see that following the initial transient, the estimation errors concen-
trate around the origin.

7. Conclusions

The mean least square error criterion has been used to derive the optimal estimator for
continuous nonlinear systems with nonlinear dynamics and nonlinear measurement. The
solution is exact, explicit, in closed form, and in recursive form. Simulation example demon-
strates the performance.
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Abstract

The constrained unitary formalism to fuzzy fault detection filter synthesis for one class of
nonlinear systems, representable by continuous-time Takagi-Sugeno fuzzy models, is
presented in the chapter. In particular, a way to produce the special set of matrix param-
eters of the fuzzy filter is proposed to obtain the desired H∞ norm properties of the filter
transfer function matrix. The significance of the treatment in relation to the systems under
influence of actuator faults is analyzed in this context, and relations to corresponding
setting of singular values of filters are discussed.

Keywords: multiple models, continuous-time Takagi-Sugeno fuzzy models, fuzzy fault
detection filters, fuzzy state observers

1. Introduction

Since the work of Hou and Patton [1], there has been much interest in the design of fault
residuals for linear systems that use H∞=H� optimization principle in transfer function matrix
of fault detection filter designed to scale up fault detection punctuality and high sensitivity to
faults [2]. While retaining these features, a novel class of fault detection filters are proposed in
[3, 4], preserving the unitary implementation of the fault detection filter transfer function
matrix and receipting residual signal directional properties. However, the use of this method-
ology for Takagi-Sugeno (TS) fuzzy systems hits the boundaries of the working sectors and
requires special adaptations.
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Abstract

The constrained unitary formalism to fuzzy fault detection filter synthesis for one class of
nonlinear systems, representable by continuous-time Takagi-Sugeno fuzzy models, is
presented in the chapter. In particular, a way to produce the special set of matrix param-
eters of the fuzzy filter is proposed to obtain the desired H∞ norm properties of the filter
transfer function matrix. The significance of the treatment in relation to the systems under
influence of actuator faults is analyzed in this context, and relations to corresponding
setting of singular values of filters are discussed.

Keywords: multiple models, continuous-time Takagi-Sugeno fuzzy models, fuzzy fault
detection filters, fuzzy state observers

1. Introduction

Since the work of Hou and Patton [1], there has been much interest in the design of fault
residuals for linear systems that use H∞=H� optimization principle in transfer function matrix
of fault detection filter designed to scale up fault detection punctuality and high sensitivity to
faults [2]. While retaining these features, a novel class of fault detection filters are proposed in
[3, 4], preserving the unitary implementation of the fault detection filter transfer function
matrix and receipting residual signal directional properties. However, the use of this method-
ology for Takagi-Sugeno (TS) fuzzy systems hits the boundaries of the working sectors and
requires special adaptations.
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Considering the properties of TS fuzzy models [5, 6], and some specifics in frequency character-
istic evaluation of multiple model structures, the approach proposed in the chapter reformulates
the H∞ norm technique suitable in TS fuzzy fault detection filter design. The problem is solved
via unitary modal technique when every linear TS fuzzy filter part is designed to have the same
singular values of the transfer function matrix. Since working sector constraints may cause that
the stable linear filter component cannot be obtained for a linear part in TS fuzzy model, to
maintain H∞ norm of the filter, the LQ modal control principle [7] is used for additional stabili-
zation. Because additional stabilization aggravates directional properties of the applied linear
part, in general, if additional stabilization is necessary, the residuals are only quasi-directional. It
is immediately apparent that the formulated problem is related to forcing the singular values
conditioned as state observer dynamics. The chosen model of the system is selected for this
chapter to be sufficiently complex in illustration of all these specifics of synthesis.

Throughout the chapter, the following notations are used: xT and XT denote the transpose
of the vector x and the matrix X, respectively; for a square matrix X ≥ 0 means that X is a
symmetric positive semi-definite matrix; the symbol In indicates the nth-order unit matrix; IR
denotes the set of real numbers; and IRn and IRn�r refer to the set of all n-dimensional real
vectors and n� r real matrices.

2. System description

The considered class of the Takagi-Sugeno dynamic systems with additive faults is described
as the following:

_q tð Þ ¼
Xs

i¼1
hi θ tð Þð Þ Aiq tð Þ þ Biu tð Þ þ Fif tð Þ� �

(1)

y tð Þ ¼ Cq tð Þ (2)

where q tð Þ∈ IRn, u tð Þ∈ IRr, and y tð Þ∈ IRm stand for state, control input, and measurable output,
respectively; f tð Þ∈ IRp is an additive fault vector; Ai ∈ IRn�n, Bi ∈ IRn�r, Fi ∈ IRn�p, C∈ IRm�n, and
m ¼ p and the matrix products V i ¼ CFi and V i ∈ IRm�m are regular matrices for all i.

The variables θj tð Þ and j ¼ 1, 2,…, o, bound with the sector TS model, span the o-dimensional
vector of premise variables:

θ tð Þ ¼ θ1 tð Þ θ2 tð Þ ⋯ θo tð Þ½ � (3)

and [8]

Xs

i¼1
hi θ tð Þð Þ ¼ 1 (4)

where hi θ tð Þð Þ, i ¼ 1, 2,…, s is the set of normalized membership function. It is supposed that
the measurable premise variables, the nonlinear sectors, and the normalized membership

Nonlinear Systems - Modeling, Estimation, and Stability180

functions are chosen in such a way that the pairs Ai;Bið Þ are controllable and the pairs Ai;Cð Þ
are observable for all i.

3. Basic preliminaries from linear systems

Let the state-space description of a linear continuous-time dynamic systems take the form with
equivalent meanings and dimensions as they are described in Section 2. The nature of the
characterization of expected solutions to the system [(5), (6)] is given by the following results.

_q tð Þ ¼ Aq tð Þ þ Bu tð Þ þ Ff tð Þ (5)

y tð Þ ¼ Cq tð Þ (6)

Definition1 [9, 10] IfA has no imaginary eigenvalues, theH∞ norm of the system transfer functionmatrix

G sð Þ ¼ C sIn � Að Þ�1B (7)

is

∥G sð Þ∥∞ ¼ sup
ω∈ IR

σ1 G jωð Þð Þ ¼ sup
ω∈ IR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1 G∗ jωð ÞG jωð Þð Þ

q
(8)

while the kth singular value σh of the complex matrix G jωð Þ is the nonnegative square root
of the kth largest eigenvalue εk of G∗ jωð ÞG jωð Þ, G∗ jωð Þ is the adjoint of G jωð Þ, and σ1 is the
largest singular value. The singular values of the transfer function matrix G sð Þ are evaluated
on the imaginary axis, and it is assumed that the singular values are ordered such that
σk ≥σkþ1, k ¼ 1, 2,…, n� 1.

To apply in design methodology, the following result from [4] is quoted.

Lemma 1 If m ¼ p and V ¼ CF are regular matrices, then the system matrix factorization can be
realized such that

C ¼ V 0½ �T, TF ¼ Im
0

� �
(9)

and the transform matrix T ∈ IRn�n takes the form

T ¼ V�1C
F⊥

" #
, (10)

where V�1C∈ IRm�n, F⊥ ∈ IR n�mð Þ�n, and F⊥ are the left orthogonal complements to F.

The idea of the following condition was derived originally as an approximation in the fre-
quency domain for the fault transfer function matrix reflecting Eqs. (5) and (6) from [12]. Here,
it is demonstrated that it can be simply adapted for fault residual filter design.
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Theorem 1 A linear fault detection filter to the system [(5), (6)] is stable and unitary if for regular
V ¼ CF and a given positive scalar so ∈ IR the square transfer function matrix Gr sð Þ of the fault
detection filter satisfies the conditions

P sð Þ ¼ det sIn � A� JCð Þð Þ ¼ sþ soð ÞmPo sð Þ, (11)

σ1 ¼ σ2 ¼ ⋯ ¼ σm, lim
ω!0

σh ¼ so, (12)

Gr 0ð Þ ¼ diag s�1o s�1o ⋯ s�1o

� �
, (13)

Gr sð Þ ¼ V�1C sIn � A� JCð Þð Þ�1F ¼ sþ soð Þ�1Im, (14)

Ao ¼ TAT�1 ¼ Ao11 Ao12

Ao21 Ao22

� �
, (15)

J ¼ T�1LoV�1, Lo ¼ soIm þ Ao11

Ao21

� �
, (16)

where J ∈ IRn�r is the residual filter gain matrix, σ1 is the maximal singular value of Gr sð Þ, the
polynomial Po sð Þ of order n�mð Þ is stable, and Gr 0ð Þ∈ IRm�m.

Proof. Considering the fault transfer function matrix of dimension m�m as

Gf sð Þ ¼ C sIn � Að Þ�1F (17)

and then regrouping terms using Eqs. (9) and (10), it yields immediately the expressions

Gf sð Þ ¼ CT�1T sIn � Að Þ�1T�1TF ¼ CT�1 sIn � TAT�1
� ��1

TF,
�

(18)

Gf sð Þ ¼ V 0½ � sIn � Aoð Þ�1 Ip
0

� �
, (19)

respectively, where Ao is given in Eq. (15).

Specifying the following matrix product Ao ¼ TMV�1CT�1, whereM ∈ IRn�m is a real matrix, it
yields

Ao ¼ TMV�1CT�1 ¼ V�1C
F⊥

" #
MV�1 V 0½ � ¼ V�1CM 0

F⊥M 0

" #
(20)

and, with the block matrix structure of Eqs. (15) and (21), it can be defined as

ΔAo ¼ Ao � Ao ¼ Ao11 � V�1CM Ao12

Ao21 � F⊥M Ao22

" #
: (21)
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Presetting

Ao11 � V�1CM ¼ �soIm, Ao21 � F⊥M ¼ 0, (22)

where so ∈ IR is a prescribed positive real value. The plus sign is introduced for the
purposes that come to light in the stability ensuing development of the observer system
matrix.

Then,

ΔAo ¼
�soIm Ao12

0 Ao22

� �
(23)

and it is evident that ΔAo is stable if Ao22 is Hurwitz, denoting here that

Po sð Þ ¼ det sIn�m � Ao22ð Þ: (24)

Rewriting the set of Eq. (22) to admit a stable solution

soIm þ Ao11

Ao21

� �
¼ V�1C

F⊥

" #
M ¼ TM ¼ TT�1Lo ¼ Lo, (25)

where

M ¼ T�1Lo, (26)

then Eqs. (20) and (21) must satisfy the following conditions:

Ao ¼ TMV�1CT�1 ¼ TJCT�1, (27)

ΔAo ¼ Ao �Ao ¼ T A� JCð ÞT�1 ¼ TAeT�1: (28)

Therefore, the observer system matrix Ae takes the form

Ae ¼ A� JC ¼ A�MV�1C (29)

and

J ¼MV�1 ¼ T�1LoV�1 (30)

implies Eq. (16).

Regarding the transfer function matrix Ge sð Þ of the state error estimate as follows

Ge sð Þ ¼ C sIn � Aeð Þ�1F, (31)

then with Eq. (29), it is
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Ge sð Þ ¼ CT�1 sIn � TAeT�1
� ��1

TF ¼ V 0½ � sIn � ΔAoð Þ�1 Ip
0

� �
: (32)

Since

sIn � ΔAo ¼
sþ soð ÞIm �Ao12

0 sIn�m � Ao22

� �
, (33)

sIn � ΔAoð Þ�1 ¼ sþ soð Þ�1Im sþ soð Þ�1Ao12 sIn�m � Ao22ð Þ�1
0 sIn�m � Ao22ð Þ�1
" #

, (34)

Substituting Eq. (34) into Eq. (32), it can obtain

Ge sð Þ ¼ V sþ soð Þ�1Im ¼ V
sþ so

: (35)

Thus, defining the fault detection filter transfer function matrix as Gr sð Þ ¼ V�1Ge sð Þ, then
Gr sð Þ ¼ V�1Ge sð Þ ¼ sþ soð Þ�1Im (36)

and Eq. (36) implies Eq. (14). This concludes the proof.

Corollary 1 Evidently, writing the fault residual vector as

r tð Þ ¼ V�1Ce tð Þ ¼ V�1C q tð Þ � qe tð Þ� �
, (37)

where

e tð Þ ¼ q tð Þ � qe tð Þ (38)

and r tð Þ∈ IRm is the vector of residual signals, then based on the following observer structure

_qe tð Þ ¼ Aqe tð Þ þ Bu tð Þ þ JC q tð Þ � qe tð Þ
� �

, (39)

ye tð Þ ¼ Cqe tð Þ, (40)

the autonomous observer error equation is

_e tð Þ ¼ A� JCð Þe tð Þ, (41)

where qe tð Þ∈ IRn is the observer state, ye tð Þ∈ IRm is the estimated system output, and J ∈ IRn�m is
the observer gain matrix; the fault detection filter (37), (39) is stable and unitary if for given
positive scalar so ∈ IR and the Hurwitz matrix Ao22 the conditions (15) and (16) are satisfied.

Practically, with understanding Eq. (30), the observer sensor subsystem for the fault detection filter can
be designed as follows:
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ez tð Þ ¼ z tð Þ � ze tð Þ ¼ V�1C q tð Þ � qe tð Þ
� �

(42)

and, consequently, it yields

_qe tð Þ ¼ Aqe tð Þ þ Bu tð Þ þMC q tð Þ � qe tð Þ
� �

: (43)

Another option is to design the observer sensor subsystem so that V ¼ Im.

With existence of the system parameter transformation, the above structures really mean
that the subset of transformed state variables whose dynamics is explicitly affected by the
additive fault f tð Þ and the second one, whose dynamics is not affected explicitly by the fault
f tð Þ, exists.

Remark 1 It is important to note the fact that the eigenvalues of A and of Ao are the same whenever

Ao is related to A as Ao ¼ TAT�1 for any invertible T [11]. But this does not mean that if
eigenvalues of the matrix Ao are stable then eigenvalues of the matrix Ao22 are also stable. Thus, as
well as for a stable system, it can lead to an unstable matrix Ao22, and any additional stabilization is
required.

To apply the above results, it is necessary to be able to design fault residual filter if an unstable
Ao22 results such that Ae be stable without loss of unitarity.

Lemma 2 [7, 12] To change signs of unstable eigenvalues of the system matrix A, the gain matrix
K ∈ IRn�r of the state feedback additive stabilization

u tð Þ ¼ �Kq tð Þ (44)

is a solution of the continuous-time algebraic Riccati equation (CARE)

PAþ ATP� PBR�1BTPþQ ¼ 0, (45)

where the matrix Q∈ IRn�n is null matrix and R∈ IRr�r and R ¼ RT > 0 are positive definite
symmetric matrices.

Then, K is given as

K ¼ R�1BTP: (46)

It is in that form that is able to be exploit for specific properties of the problem in TS fuzzy fault
detection filter design.

In view of the above, these results hold for continuous-time linear systems, and, in principle,
Theorem 1 gives a practical method to design unitary fault residual filters for the given linear
system. Similar results are obtained for unitary TS fuzzy fault detection filter design in the
following section.
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ez tð Þ ¼ z tð Þ � ze tð Þ ¼ V�1C q tð Þ � qe tð Þ
� �

(42)

and, consequently, it yields

_qe tð Þ ¼ Aqe tð Þ þ Bu tð Þ þMC q tð Þ � qe tð Þ
� �

: (43)

Another option is to design the observer sensor subsystem so that V ¼ Im.

With existence of the system parameter transformation, the above structures really mean
that the subset of transformed state variables whose dynamics is explicitly affected by the
additive fault f tð Þ and the second one, whose dynamics is not affected explicitly by the fault
f tð Þ, exists.

Remark 1 It is important to note the fact that the eigenvalues of A and of Ao are the same whenever

Ao is related to A as Ao ¼ TAT�1 for any invertible T [11]. But this does not mean that if
eigenvalues of the matrix Ao are stable then eigenvalues of the matrix Ao22 are also stable. Thus, as
well as for a stable system, it can lead to an unstable matrix Ao22, and any additional stabilization is
required.

To apply the above results, it is necessary to be able to design fault residual filter if an unstable
Ao22 results such that Ae be stable without loss of unitarity.

Lemma 2 [7, 12] To change signs of unstable eigenvalues of the system matrix A, the gain matrix
K ∈ IRn�r of the state feedback additive stabilization

u tð Þ ¼ �Kq tð Þ (44)

is a solution of the continuous-time algebraic Riccati equation (CARE)

PAþ ATP� PBR�1BTPþQ ¼ 0, (45)

where the matrix Q∈ IRn�n is null matrix and R∈ IRr�r and R ¼ RT > 0 are positive definite
symmetric matrices.

Then, K is given as

K ¼ R�1BTP: (46)

It is in that form that is able to be exploit for specific properties of the problem in TS fuzzy fault
detection filter design.

In view of the above, these results hold for continuous-time linear systems, and, in principle,
Theorem 1 gives a practical method to design unitary fault residual filters for the given linear
system. Similar results are obtained for unitary TS fuzzy fault detection filter design in the
following section.
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4. TS fuzzy fault detection filters

Using the same set of membership functions, the fuzzy fault detection filter is built on the TS
fuzzy observer

_qe tð Þ ¼
Xs

i¼1
hi θ tð Þð Þ Aiq tð Þ þ Biui tð Þ þ J iC q tð Þ � qe tð Þ� �� �

(47)

ye tð Þ ¼ Cqe tð Þ (48)

where qe tð Þ∈ IRn is the observer state vector, ye tð Þ∈ IRm is the estimated system output vector,
and J i ∈ IRn�m and i ¼ 1, 2,…, s are the sets of the observer gain matrices. Additionally, the
output vector of the residual TS fuzzy filter is defined as

r tð Þ ¼
Xs

i¼1
hi θ tð Þð Þri tð Þ ¼

Xs

i¼1
hi θ tð Þð ÞV�1i Ce tð Þ (49)

ri tð Þ ¼ V�1i Ce tð Þ (50)

e tð Þ ¼ q tð Þ � qe tð Þ (51)

where r tð Þ, ri tð Þ∈ IRm, V i ∈ IRm�m. Evidently, V i ¼ CFi has to be a regular matrix for all i.

Formally, the following result can be simply derived.

Theorem 2 A TS fuzzy fault detection filter to the system [(1), (2)] is stable and unitary if for the set of
regular matrices V i ¼ CFi and i ¼ 1, 2,…, s, and a given positive scalar so ∈ IR every square transfer
function matrix Gri sð Þ of the fault detection filter satisfies for all i the conditions

σ1 ¼ σ2 ¼ ⋯ ¼ σm, lim
ω!0

σh ¼ so, (52)

Gri 0ð Þ ¼ diag s�1o s�1o ⋯ s�1o

� �
, (53)

Gri sð Þ ¼ V�1i C sIn � Ai � J iC
� �� ��1Fi ¼ sþ soð Þ�1Im, (54)

while

T i ¼ V�1i C
F⊥
i

" #
, (55)

Aoi ¼ T iAiT�1i ¼
Ao11i Ao12i

Ao21i Ao22i

� �
, (56)

J i ¼ T�1i Lo
iV
�1
i , Lo

i ¼
soIm þ Ao11i

Ao21i

� �
, (57)
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Pi sð Þ ¼ det sIn � Ai � J iC
� �� � ¼ sþ soð ÞmPoi sð Þ, (58)

Poi sð Þ ¼ det sIn�m � Ao22ið Þ: (59)

J i ∈ IRn�r is the residual filter gain matrix, σ1 is the maximal singular value of Gri sð Þ, the polynomial

Poi sð Þ of order n�mð Þ is stable, and Gri 0ð Þ∈ IRm�m and F⊥
i ∈ IR n�mð Þ�n are left orthogonal comple-

ments to the fault input matrix Fi.

Proof. Because every sub-model in Eq. (47) is described by linear equations, Eqs. (15) and (16)
imply directly the conditions (56) and (57), and Eq. (58) is given by Eq. (11). This concludes the
proof.

Corollary 2 In practice, an additive fault typically enters through a matrix F that does not depend on
the sectoral boundaries defining the TS model. In this case, the synthesis is substantially simplified
because V is a constant matrix, and so it yields

T ¼ V�1C
F⊥

" #
, (60)

Aoi ¼ TAiT�1 ¼
Ao11i Ao12i

Ao21i Ao22i

� �
, (61)

J i ¼ T�1Lo
iV
�1, Lo

i ¼
soIm þ Ao11i

Ao21i

� �
: (62)

Corollary 3 Since, independently on i, the condition (52) is satisfied (σ1 ¼ σ2 ¼ ⋯ ¼ σm), all
sub-filter transfer function matrices have the same H∞ norm, i.e.,

∥Gri sð Þ∥∞ ¼ ∥Gro sð Þ∥∞ for all i: (63)

Moreover, considering that
Ps
i¼1

hi θ tð Þð Þ ¼ 1, then

∥Gr sð Þ∥∞ ¼
Xs

i¼1
hi θ tð Þð Þ∥Gri sð Þ∥∞ ¼ ∥Gro sð Þ∥∞ (64)

That is, the H∞ norm of the transfer function matrix of such defined TS fuzzy fault detection filter is
independent on the system working point. Of course, this cannot be said about the dynamics of the time
response of the sub-filter components.

Moreover, Gri 0ð Þ implies that all residual components of TS fuzzy fault detection filter have the same
directional properties, which ensure unitary properties of the filter.
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That is, the H∞ norm of the transfer function matrix of such defined TS fuzzy fault detection filter is
independent on the system working point. Of course, this cannot be said about the dynamics of the time
response of the sub-filter components.
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Remark 2 Sectoral boundaries may cause a matrix Ai to be such, when transformed using T i that Ao22i

will not be Hurwitz matrix. Because the transfer function matrix of the corresponding filter linear
component in this case is unstable, maintaining the unitary property requires changes in the signs of the
unstable eigenvalues of the associated A

�
ei ¼ Ai � J iC.

Applying the duality principle and inserting the additive observer gain component KT
si obtained as a

solution of the Riccati equation (45) for A
�T
ei , according to the scheme given in Lemma 2, the observer

gain matrix is changed as

J
�
i ¼ J i þ KT

si, A
�
ei ¼ Ai � J

�
iC: (65)

This additive stabilization results that the consequential characteristic polynomial, taking also the form
Pi sð Þ ¼ det sIn � Aeið Þ ¼ sþ soð ÞmPoi sð Þ, (66)

is stable since Poi sð Þ is now stable.

The price for such an additional stabilization is that if j signs are changing in eigenvalues of Ao22i to
obtain the stable Ao22i, also j eigenvalues so of Gri 0ð Þ change their signs and the resulting matrix Gri 0ð Þ
will not be diagonal. According to Eq. (8), this does not result in a change in H∞ norm, but such filter
component will arrive at the unitary directional residual properties.

5. Illustrative example

The three-tank system is described by the set of Eqs. [13, 14] as

dq1 tð Þ
dt
¼ u1 tð Þ

F1
� α1sign q1 tð Þ � q2 tð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q1 tð Þ � q2 tð Þ∣p

F1
P3
i¼1

λiqi tð Þ

X3

i¼1
λiqi tð Þ,

dq2 tð Þ
dt

¼ u2 tð Þ
F2
� α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gq2 tð Þp

F2q2 tð Þ q2 tð Þ þ α1sign q1 tð Þ � q2 tð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g ∣q1 tð Þ � q2 tð Þ∣p

F1
X3

i¼1
λiqi tð Þ

X3

i¼1
λiqi tð Þ

þα3sign q3 tð Þ � q2 tð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g ∣q3 tð Þ � q2 tð Þ∣p

F3
X3

i¼1
ηiqi tð Þ

X3

i¼1
ηiqi tð Þ,

dq3 tð Þ
dt
¼ u3 tð Þ

F3
� α3sign q3 tð Þ � q2 tð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q3 tð Þ � q2 tð Þ∣p

F3
P3
i¼1

ηiqi tð Þ

X3

i¼1
ηiqi tð Þ,

yk tð Þ ¼ Fkqk tð Þ, k ¼ 1; 2; 3,
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where the measured output variables yk tð Þ are water levels in tanks qk tð Þ m½ �, k ¼ 1; 2; 3 and
the incoming flows are considered as the inputs variables uk tð Þ m3=s

� �
, k ¼ 1; 2; 3; the bounds

of the state and input variables are

qmax
1 ¼ qmax

3 ¼ 1:00 m½ �, qmax
2 ¼ 0:90 m½ �, umin

1;2;3 ¼ 0 m3=s
� �

,

qmin
1 ¼ qmin

3 ¼ 0:02 m½ �, qmin
2 ¼ 0:01 m½ �, umax

1;2;3 ¼ 0:005 m3=s
� �

:

λk, ηk ∈ IR are positive scalars and sign �ð Þ is the sign function.

The model parameters of the system are considered as:

g

Fk

α1

α3

α2

-the gravitational acceleration 9:80665 m=s2
� �

,

-the sameð Þ section of tanks 0:25 m2
� �

,

-the equivalent section of the pipe between the first and second tank 6:5� 10�4 m2
� �

,

-the equivalent section of the pipe between the third and second tank 6:5� 10�4 m2
� �

,

-the equivalent section of the outlet pipe from the second tank 6:5� 10�3 m2
� �

,

Minimizing the number of premise variables and excluding switching modes in controller
work, the premise variables are chosen as follows

θ1 tð Þ ¼ α1sign q1 tð Þ � q2 tð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g ∣q1 tð Þ � q2 tð Þ∣p

F1
X3

i¼1
λiqi tð Þ

,

θ2 tð Þ ¼ α2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gq2 tð Þp

F2q2 tð Þ ¼ α2

F2

ffiffiffiffiffiffiffiffiffiffi
2g
q2 tð Þ

s
,

θ3 tð Þ ¼ α3sign q3 tð Þ � q2 tð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g ∣q3 tð Þ � q2 tð Þ∣p

F3
X3

i¼1
ηiqi tð Þ

:

Computed from the input variable bounds, the sector bounds of the premise variables imply
the numbering:

i ¼ 1 θmax
1 ;θmax

2 ;θmax
3

� �
, i ¼ 2 θmax

1 ;θmax
2 ;θmin

3

� �
,

i ¼ 3 θmax
1 ;θmin

2 ;θmax
3

� �
, i ¼ 4 θmax

1 ;θmin
2 ;θmin

3

� �
,

i ¼ 5 θmin
1 ;θmax

2 ;θmax
3

� �
, i ¼ 6 θmin

1 ;θmax
2 ;θmin

3

� �
,

i ¼ 7 θmin
1 ;θmin

2 ;θmax
3

� �
, i ¼ 8 θmin

1 ;θmin
2 ;θmin

3

� �
,

which is used in the system state matrix construction
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Ai ¼
�λ1θi

1 �λ2θi
1 �λ3θi

1

λ1θi
1 þ η1θ

i
3 λ2θi

1 þ η2θ
i
3 � θi

2 λ3θi
1 þ η3θ

i
3

�η1θi
3 �η2θi

3 �η3θi
3

2
64

3
75,B ¼

F�11 0 0
0 F�12 0
0 0 F�13

2
64

3
75,C ¼

F1 0 0
0 F2 0
0 0 F3

2
64

3
75

and prescribed, moreover, that the matrix C is given in such a way that the product CB is
the identity matrix. This regularizes the residual design conditions if B and C are diagonal
matrices.

The sector functions are trapezoidal, and the membership functions are constructed as product
of three sector functions with the same ordering as Ai.

The set of real scalars, λk, ηk, and k ¼ 1; 2; 3, is interactively optimized under limitations that all
couples Ai;Bð Þ and Ai;Cð Þ are controllable and observable for the given set of indices i, where

λ1 ¼ 0:1992, λ2 ¼ 0:6894, λ3 ¼ 0:1618,
η1 ¼ 0:6891, η2 ¼ 0:3646, η3 ¼ 0:0569:

Consequently, the TS model matrix parameters are

A1 ¼
�0:0163 �0:0563 �0:0132
0:1225 �1:0392 0:0220

�0:1062 �0:0562 �0:0088

2
6664

3
7775, A2 ¼

�0:0163 �0:0563 �0:0132
�0:0054 �1:1069 0:0114

0:0217 0:0115 0:0018

2
6664

3
7775,

A3 ¼
�0:0163 �0:0563 �0:0132
0:1225 �0:0089 0:0220

�0:1062 �0:0562 �0:0088

2
6664

3
7775, A4 ¼

�0:0163 �0:0563 �0:0132
�0:0054 �0:0766 0:0114

0:0217 0:0115 0:0018

2
6664

3
7775,

A5 ¼
0:0034 0:0119 0:0028

0:1028 �1:1073 0:0060

�0:1062 �0:0562 �0:0088

2
6664

3
7775, A6 ¼

0:0034 0:0119 0:0028

�0:0251 �1:1750 �0:0046
0:0217 0:0115 0:0018

2
6664

3
7775,

A7 ¼
0:0034 0:0119 0:0028

0:1028 �0:0771 0:0060

�0:1062 �0:0562 �0:0088

2
6664

3
7775, A8 ¼

0:0034 0:0119 0:0028

�0:0251 �0:1447 �0:0046
0:0217 0:0115 0:0018

2
6664

3
7775:

B ¼
4 0 0
0 4 0
0 0 4

2
64

3
75, C ¼

0:25 0 0
0 0:25 0
0 0 0:25

2
64

3
75:

Since the orthogonal complement to a square matrix does not exist, three fault detection filters
can be considered for single actuator fault detection. To illustrate the design procedure, the TS
fuzzy fault detection filter for the pair (C23, B23) is considered, i.e.,
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C( C23 ¼
0 0:25 0
0 0 0:25

� �
, F ( B23 ¼

0 0
4 0
0 4

2
64

3
75,

with the derived parameters

V ¼ CF ¼ 1 0
0 1

� �
, V�1C ¼ 0 0:25 0

0 0 0:25

� �
, F⊥ ¼ 1 0 0½ �, T ¼

0 0:25 0
0 0 0:25
1 0 0

2
64

3
75:

Note that in this case all Ai with index higher than 4 lead to an unstable structure of A
�
o22i and

the resulting observer matrices Aei need to be additionally stabilized, applying the principle
given in Lemma 2.

Applying Eq. (56), the following structure of Ao1 for the initial matrix A1 is computed:

Ao1 ¼
�1:0392 0:0220 0:0306

�0:0562 �0:0088 �0:0266
�0:2250 �0:0528 �0:0163

2
6664

3
7775,

Ao111 ¼
�1:0392 0:0220

�0:0562 �0:0088

2
4

3
5, Ao121 ¼

0:0306

�0:0266

2
4

3
5,

Ao211 ¼ �0:2250 �0:0528½ �, Ao221 ¼ �0:0163½ �,

and Ao221 ¼ �0:0163 implies that the associated TS fuzzy fault detection filter linear compo-
nent can be designed directly.

Choosing so ¼ 5, it is resulting from Eqs. (57) and (58) that

L
�
1 ¼

3:9608 0:0220

�0:0562 4:9912

�0:2250 �0:0528

2
64

3
75, J1 ¼

�0:2250 �0:0528
15:8432 0:0879
�0:2248 19:9649

2
64

3
75,Ae1 ¼

�0:0163 0 0
0:1225 �5:0 0
�0:1062 0 �5:0

2
64

3
75,

where the eigenvalue spectrum of Ae1 and the steady-state value of the TS fuzzy fault detection
filter transfer function matrix Gr1 0ð Þ are

r Ae1ð Þ ¼ �0:0163 �5:0 �5:0f g, Gr1 0ð Þ ¼ �V�1CA�1e1 F ¼
0:2

0:2

� �
,

respectively. It is evident that all diagonal elements ofGr1 0ð Þ take the value s�1o ¼ 0:2. The same
structure of Gr∗ 0ð Þ is obtained solving with Al for l ¼ 1; 2; 3; 4.

Analogously, designing for the matrix A5, it can be seen that

Ao5 ¼
�1:1073 0:0060 0:0257

�0:0562 �0:0088 �0:0266
0:0475 0:0111 0:0034

2
664

3
775,

Ao511 ¼
�1:1073 0:0060

�0:0562 �0:0088

" #
, Ao512 ¼

0:0257

�0:0266

" #
,

Ao521 ¼ 0:0475 0:0111½ �, Ao522 ¼ 0:0034½ �:
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Ai ¼
�λ1θi
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3 λ2θi
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2 λ3θi
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i
3

�η1θi
3 �η2θi

3 �η3θi
3
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0 F2 0
0 0 F3

2
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3
75

and prescribed, moreover, that the matrix C is given in such a way that the product CB is
the identity matrix. This regularizes the residual design conditions if B and C are diagonal
matrices.

The sector functions are trapezoidal, and the membership functions are constructed as product
of three sector functions with the same ordering as Ai.
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Since the orthogonal complement to a square matrix does not exist, three fault detection filters
can be considered for single actuator fault detection. To illustrate the design procedure, the TS
fuzzy fault detection filter for the pair (C23, B23) is considered, i.e.,
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Note that in this case all Ai with index higher than 4 lead to an unstable structure of A
�
o22i and

the resulting observer matrices Aei need to be additionally stabilized, applying the principle
given in Lemma 2.

Applying Eq. (56), the following structure of Ao1 for the initial matrix A1 is computed:

Ao1 ¼
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�0:0562 �0:0088 �0:0266
�0:2250 �0:0528 �0:0163

2
6664

3
7775,

Ao111 ¼
�1:0392 0:0220

�0:0562 �0:0088

2
4

3
5, Ao121 ¼

0:0306

�0:0266

2
4

3
5,

Ao211 ¼ �0:2250 �0:0528½ �, Ao221 ¼ �0:0163½ �,

and Ao221 ¼ �0:0163 implies that the associated TS fuzzy fault detection filter linear compo-
nent can be designed directly.

Choosing so ¼ 5, it is resulting from Eqs. (57) and (58) that
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where the eigenvalue spectrum of Ae1 and the steady-state value of the TS fuzzy fault detection
filter transfer function matrix Gr1 0ð Þ are

r Ae1ð Þ ¼ �0:0163 �5:0 �5:0f g, Gr1 0ð Þ ¼ �V�1CA�1e1 F ¼
0:2

0:2

� �
,

respectively. It is evident that all diagonal elements ofGr1 0ð Þ take the value s�1o ¼ 0:2. The same
structure of Gr∗ 0ð Þ is obtained solving with Al for l ¼ 1; 2; 3; 4.

Analogously, designing for the matrix A5, it can be seen that

Ao5 ¼
�1:1073 0:0060 0:0257

�0:0562 �0:0088 �0:0266
0:0475 0:0111 0:0034
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775,
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" #
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Since Ao222 ¼ 0:0034, evidently, the associated TS fuzzy fault detection filter linear component
with the unitary transfer function matrix has to be stabilized additively.

Solving also for so ¼ 5, then

L
�
5 ¼

3:8927 0:0060
�0:0562 4:9912
0:0475 0:0111

2
64

3
75, J5 ¼

0:0475 0:0111
15:5707 0:0239
�0:2248 19:9649

2
64

3
75,Ae5 ¼

0:0034 0 0
0:1028 �5:0 0
�0:1062 0 �5:0

2
64

3
75:

It is evident that matrix Fe5 is not Hurwitz and has to be additively stabilized.

Thus, defining the weighting matrices of appropriate dimensions as

Q ¼ 0, S ¼ 0, R ¼ VVT ¼ I2

and solving the dual LQ control problem to change the sign of unstable eigenvalue of Fe5 using
the MATLAB function Ks5 ¼ care FT

e2;Q;R; S; I3
� �

, then

KT
s5 ¼

0:6456 �0:6671
0:0133 �0:0137
�0:0137 0:0142

2
64

3
75, Aes5 ¼ Ae5 � KT

s5C ¼
0:0034 �0:1614 0:1668
0:1028 �5:0033 0:0034
�0:1062 0:0034 �5:0035

2
64

3
75:

It can be easily verified that

r Aes5ð Þ ¼ �0:0034 �5:0 �5:0f g,

Gr5 0ð Þ ¼ �V�1CA�1es5F ¼
�0:0066 �0:1999
�0:1999 0:0066

� �
, r Gr5 0ð Þð Þ ¼ �0:2000 0:2000f g:

while, evidently, Gr5 0ð Þ is not diagonal and the eigenvalues of Gr5 0ð Þ are �0:2 ¼ �s�10 .

Note that the same structure of Grl 0ð Þ is obtained solving with the system matrices Al and
l ¼ 5; 6; 7; 8 when additional stabilization is required. Evidently, elements of this set of TS
fuzzy residual filter linear components are stable, non-unitary, and without directional resid-
ual properties. Nevertheless, these properties guarantee the same singular values of the linear
transfer function matrix components; as follows the result of Definition 1, the TS fuzzy residual
filter will have all the singular values the same. To document this, the singular value plot of the
TS fuzzy fault detection filter, as well as of all its linear parts, is equal to that presented in
Figure 1. With respect to the structure of the matrices B and C, the comparable results are
obtainable for the matrix pairs C12ð , B12Þ and (C13, B13).

The rest of gain matrices of the stable TS fault detection filter is as follows:

J2 ¼
�0:2250 �0:0528
15:5725 0:0456
0:0459 20:0072

2
64

3
75, J3 ¼

�0:2250 �0:0528
19:9643 0:0879
�0:2248 19:9649

2
64

3
75, J4 ¼

�0:2250 �0:0528
19:6935 0:0456
0:0459 20:0072

2
64

3
75,
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J5 ¼
0:6930 �0:6560
15:5840 0:0102
�0:2385 19:9791

2
64

3
75, J6 ¼

�3:0809 2:7126
15:3157 �0:0319
0:0324 20:0189

2
64

3
75,

J7 ¼
0:6930 �0:6560
19:7051 0:0102
�0:2385 19:9791

2
64

3
75, J8 ¼

�3:0809 2:7126
19:4367 �0:0319
0:0324 20:0189

2
64

3
75:

Since the matrices Ai of the TS fuzzy system are not Hurwitz, the system in simulations is
stabilized using the local-state feedback control laws, acting in the forced modes. Adapting the
method presented in [14] to design the control law parameters, the local controller parameters
are computed as

K1 ¼
0:1780 0:0083 �0:0150
0:0083 �0:0701 �0:0041
�0:0150 �0:0043 0:1798

2
64

3
75,K2 ¼

0:1780 �0:0079 0:0008
�0:0075 �0:0869 0:0028
0:0008 0:0027 0:1824

2
64

3
75,

K3 ¼
0:1780 0:0084 �0:0150
0:0082 0:1842 �0:0041
�0:0150 �0:0042 0:1798

2
64

3
75,K4 ¼

0:1780 �0:0078 0:0008
�0:0076 0:1675 0:0027
0:0008 0:0028 0:1824

2
64

3
75,

K5 ¼
0:1829 0:0142 �0:0131
0:0141 �0:0870 �0:0061
�0:0130 �0:0063 0:1798

2
64

3
75,K6 ¼

0:1829 �0:0020 0:0027
�0:0017 �0:1037 0:0008
0:0027 0:0007 0:1824

2
64

3
75,

Figure 1. TS fuzzy fault detection filter singular value plot.
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Since Ao222 ¼ 0:0034, evidently, the associated TS fuzzy fault detection filter linear component
with the unitary transfer function matrix has to be stabilized additively.

Solving also for so ¼ 5, then

L
�
5 ¼

3:8927 0:0060
�0:0562 4:9912
0:0475 0:0111
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3
75, J5 ¼

0:0475 0:0111
15:5707 0:0239
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0:0034 0 0
0:1028 �5:0 0
�0:1062 0 �5:0
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It is evident that matrix Fe5 is not Hurwitz and has to be additively stabilized.

Thus, defining the weighting matrices of appropriate dimensions as

Q ¼ 0, S ¼ 0, R ¼ VVT ¼ I2

and solving the dual LQ control problem to change the sign of unstable eigenvalue of Fe5 using
the MATLAB function Ks5 ¼ care FT

e2;Q;R; S; I3
� �

, then

KT
s5 ¼

0:6456 �0:6671
0:0133 �0:0137
�0:0137 0:0142
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s5C ¼
0:0034 �0:1614 0:1668
0:1028 �5:0033 0:0034
�0:1062 0:0034 �5:0035
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It can be easily verified that

r Aes5ð Þ ¼ �0:0034 �5:0 �5:0f g,

Gr5 0ð Þ ¼ �V�1CA�1es5F ¼
�0:0066 �0:1999
�0:1999 0:0066

� �
, r Gr5 0ð Þð Þ ¼ �0:2000 0:2000f g:

while, evidently, Gr5 0ð Þ is not diagonal and the eigenvalues of Gr5 0ð Þ are �0:2 ¼ �s�10 .

Note that the same structure of Grl 0ð Þ is obtained solving with the system matrices Al and
l ¼ 5; 6; 7; 8 when additional stabilization is required. Evidently, elements of this set of TS
fuzzy residual filter linear components are stable, non-unitary, and without directional resid-
ual properties. Nevertheless, these properties guarantee the same singular values of the linear
transfer function matrix components; as follows the result of Definition 1, the TS fuzzy residual
filter will have all the singular values the same. To document this, the singular value plot of the
TS fuzzy fault detection filter, as well as of all its linear parts, is equal to that presented in
Figure 1. With respect to the structure of the matrices B and C, the comparable results are
obtainable for the matrix pairs C12ð , B12Þ and (C13, B13).

The rest of gain matrices of the stable TS fault detection filter is as follows:

J2 ¼
�0:2250 �0:0528
15:5725 0:0456
0:0459 20:0072

2
64

3
75, J3 ¼

�0:2250 �0:0528
19:9643 0:0879
�0:2248 19:9649

2
64

3
75, J4 ¼

�0:2250 �0:0528
19:6935 0:0456
0:0459 20:0072

2
64

3
75,

Nonlinear Systems - Modeling, Estimation, and Stability192

J5 ¼
0:6930 �0:6560
15:5840 0:0102
�0:2385 19:9791

2
64

3
75, J6 ¼

�3:0809 2:7126
15:3157 �0:0319
0:0324 20:0189

2
64

3
75,

J7 ¼
0:6930 �0:6560
19:7051 0:0102
�0:2385 19:9791

2
64

3
75, J8 ¼

�3:0809 2:7126
19:4367 �0:0319
0:0324 20:0189

2
64

3
75:

Since the matrices Ai of the TS fuzzy system are not Hurwitz, the system in simulations is
stabilized using the local-state feedback control laws, acting in the forced modes. Adapting the
method presented in [14] to design the control law parameters, the local controller parameters
are computed as
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Figure 1. TS fuzzy fault detection filter singular value plot.
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K7 ¼
0:1829 0:0143 �0:0131
0:0140 0:1674 �0:0061
�0:0130 �0:0063 0:1798

2
64

3
75,K8 ¼

0:1829 �0:0019 0:0027
�0:0018 0:1507 0:0007
0:0027 0:0007 0:1824

2
64

3
75,

W1 ¼
0:1821 0:0224 �0:0117
�0:0223 0:1897 �0:0096
0:0115 0:0098 0:1820

2
64

3
75,W2 ¼

0:1821 0:0062 0:0041
�0:0061 0:1899 �0:0001
�0:0047 �0:0002 0:1819

2
64

3
75,

W3 ¼
0:1821 0:0225 �0:0117
�0:0224 0:1865 �0:0096
0:0115 0:0098 0:1820

2
64

3
75,W4 ¼

0:1821 0:0063 0:0041
�0:0062 0:1867 �0:0001
�0:0047 �0:0001 0:1819

2
64

3
75,

W5 ¼
0:1820 0:0112 �0:0138
�0:0116 0:1899 �0:0076
0:0135 0:0077 0:1820

2
64

3
75,W6 ¼

0:1820 �0:0049 0:0021
0:0046 0:1901 0:0019
�0:0027 �0:0022 0:1819
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64
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75,

W7 ¼
0:1820 0:0114 �0:0138
�0:0117 0:1867 �0:0076
0:0135 0:0078 0:1820

2
64

3
75,W8 ¼

0:1820 �0:0048 0:0021
0:0045 0:1869 0:0019
�0:0027 �0:0021 0:1819

2
64

3
75,

where

W i ¼ � C Ai � BKið Þ�1B
� ��1

,

ui tð Þ ¼ �Kiq tð Þ þW iwo,

while wo ∈ IRn is the vector of the desired steady-state system outputs.

If necessary for any more complex system, PDS controller principle can be applied to stabilize
the plant (see, e.g., authors’ publications [15, 16] or other references [17, 18]).

To display simulations in the MATLAB and Simulink environment, the forced mode control is
established with local controller parameter given as above for the system initial conditions
qT 0ð Þ ¼ 0:2 0:3 0:2½ � andwT

o ¼ 0:6 0:5 0:4½ �. Fault detection filter is constructed on the couple
(C23, B23) and the set of matrices Ai and i ¼ 1, 2…, 8.

As the results, Figure 2 shows the TS fuzzy system output responses, illustrating their asymp-
totic convergence to the steady states, and Figure 3 presents the TS fuzzy fault detection filter
response, reflecting a steplike 90% gain loss of the second actuator at the time instant t ¼ 60s.
These examples illustrate the power that can be invoked through the prescribed H∞ norm
properties.

It can verify that TS fuzzy fault detection filters created for the couple pairs (C12, B12) and (C13,
B13) have similar properties as that defined for the couple (C23, B23). The difference is, for
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example, that in the occurrence of a single fault of the second actuator the responses of TS
fuzzy fault detection filter defined for the couple (C13, B13) naturally do not have directional
properties, since the second column of K is not included in its construction.

As can be seen from the solution, the sector functions defined in this way cannot create a
unitary TS fuzzy fault detection filter, but the obtained orthogonal properties of the residual
signals are sufficient to detect and isolate actuator faults.

Figure 2. System output responses.

Figure 3. Residual signal responses.
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0:0115 0:0098 0:1820

2
64

3
75,W4 ¼

0:1821 0:0063 0:0041
�0:0062 0:1867 �0:0001
�0:0047 �0:0001 0:1819

2
64

3
75,

W5 ¼
0:1820 0:0112 �0:0138
�0:0116 0:1899 �0:0076
0:0135 0:0077 0:1820

2
64

3
75,W6 ¼

0:1820 �0:0049 0:0021
0:0046 0:1901 0:0019
�0:0027 �0:0022 0:1819

2
64

3
75,

W7 ¼
0:1820 0:0114 �0:0138
�0:0117 0:1867 �0:0076
0:0135 0:0078 0:1820

2
64

3
75,W8 ¼

0:1820 �0:0048 0:0021
0:0045 0:1869 0:0019
�0:0027 �0:0021 0:1819

2
64

3
75,

where

W i ¼ � C Ai � BKið Þ�1B
� ��1

,

ui tð Þ ¼ �Kiq tð Þ þW iwo,

while wo ∈ IRn is the vector of the desired steady-state system outputs.

If necessary for any more complex system, PDS controller principle can be applied to stabilize
the plant (see, e.g., authors’ publications [15, 16] or other references [17, 18]).

To display simulations in the MATLAB and Simulink environment, the forced mode control is
established with local controller parameter given as above for the system initial conditions
qT 0ð Þ ¼ 0:2 0:3 0:2½ � andwT

o ¼ 0:6 0:5 0:4½ �. Fault detection filter is constructed on the couple
(C23, B23) and the set of matrices Ai and i ¼ 1, 2…, 8.

As the results, Figure 2 shows the TS fuzzy system output responses, illustrating their asymp-
totic convergence to the steady states, and Figure 3 presents the TS fuzzy fault detection filter
response, reflecting a steplike 90% gain loss of the second actuator at the time instant t ¼ 60s.
These examples illustrate the power that can be invoked through the prescribed H∞ norm
properties.

It can verify that TS fuzzy fault detection filters created for the couple pairs (C12, B12) and (C13,
B13) have similar properties as that defined for the couple (C23, B23). The difference is, for
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example, that in the occurrence of a single fault of the second actuator the responses of TS
fuzzy fault detection filter defined for the couple (C13, B13) naturally do not have directional
properties, since the second column of K is not included in its construction.

As can be seen from the solution, the sector functions defined in this way cannot create a
unitary TS fuzzy fault detection filter, but the obtained orthogonal properties of the residual
signals are sufficient to detect and isolate actuator faults.

Figure 2. System output responses.

Figure 3. Residual signal responses.
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6. Concluding remarks

The problem of designing the TS fuzzy fault detection filters for highly nonlinear mechanical
systems representable by the TS fuzzy model is considered, to achieve the desired filter H∞

norm property in all working point belonging to the assigned work sectors. The proposed
method exploits features offered in TS fuzzy system models to design TS fuzzy fault detection
filters. The rules and formulation are developed to generate residual signals with quasi-
directional properties and to make the TS filter transfer function matrix with prescribed H∞

norm properties. By a convenient choose of the sector functions, this purpose is reached using
a relative small number of membership functions. If unitary definition for TS fuzzy fault
detection filters is satisfied, the design methodology provides new opportunities for fault
detection and isolation rules in fault tolerant nonlinear control systems, their analysis, and
optimization.
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Abstract

This chapter considers the nonlinear filtering problem involving noises that are unknown
and bounded. We propose a new filtering method via set-membership theory and bound-
ary sampling technique to determine a state estimation ellipsoid. In order to guarantee the
online usage, the nonlinear dynamics are linearized about the current estimate, and the
remainder term is then bounded by an optimization ellipsoid, which can be described as
the solution of a semi-infinite optimization problem. It is an analytically intractable prob-
lem for general nonlinear dynamic systems. Nevertheless, for a typical nonlinear dynamic
system in target tracking, some certain regular properties for the remainder are analyti-
cally derived; then, we use a randomized method to approximate the semi-infinite opti-
mization problem efficiently. Moreover, for some quadratic nonlinear dynamic systems,
the semi-infinite optimization problem is equivalent to solving a semi-definite program
problem. Finally, the set-membership prediction and measurement update are derived
based on the recent optimization method and the online bounding ellipsoid of the remain-
der other than a priori bound. Numerical example shows that the proposed method
performs better than the extended set-membership filter, especially in the situation of the
larger noise.

Keywords: nonlinear dynamic systems, set-membership filter, randomization,
semi-definite optimization, target tracking

1. Introduction

Filtering techniques for dynamic systems are widely used in practiced fields such as target
tracking, signal processing, automatic control, and computer vision. The Kalman filter is a
fundamental tool for solving a broad class of filtering problems with linear dynamic systems.
When dynamic systems are nonlinear, some well-known generalizations include the extended
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Kalman filter (EKF) and unscented Kalman filtering (UKF) [1]. These methods are based on
local linear approximations of the nonlinear system where the higher order terms are ignored.
Most recently, [2] proposes box particle filter to handle interval data based on interval analysis
and constraint satisfaction techniques. The advantage of the box particle filter against the
standard particle filter is its reduced computational complexity [3–5]. However, most of Monte
Carlo filtering techniques are based on the assumptions that probability density functions of
the state noise and measurement noise are known.

Actually, when the underlying probabilistic assumptions are not realistic (e.g., the main per-
turbation may be deterministic), it seems more natural to assume that the state noise and
measurement noise are unknown but bounded [6]; then, [7] proposed set-membership estima-
tion technique. The idea of propagating bounding ellipsoids (or boxes, polytopes, simplexes,
parallelotopes, and polytopes) for systems with bounded noises has also been extensively
investigated (e.g., see recent papers [6, 8–12] and references therein). Most of these methods
concentrate on the linear dynamic systems.

The set-membership filtering for nonlinear dynamic systems is known to be a challenging
problem. Based on ellipsoid-bounded, fuzzy-approximated, or Lipschitz-like nonlinearities,
several results have been made [13–15]. These results assume that the ellipsoid bounds, the
coefficients of fuzzy-approximation, or Lipschitz constants are known before filtering,
which limits them in real time implementation. For example, for a typical nonlinear
dynamic system in a radar, the bounds of the remainder depend on the past estimates so
that they cannot be obtained before filtering. Recently, the paper [16] gives an overview of
recent developments in set-theoretic methods for nonlinear systems, with a particular focus
on a two-reaction model of anaerobic digestion, and the key idea of [17, 18] consists in
a combination of Bayesian and set-valued estimation concepts. To our knowledge, [19, 20]
develop nonlinear set-membership filters which can estimate the bounding ellipsoid of
nonlinearities in real time, and the filters are called the extended set-membership filter
(ESMF) and set-valued nonlinear filter (SVNF), respectively. Both [19, 20] derive the bounds
of the remainder by an outer bounding box. Actually, if the remainder can be bounded by
a tighter ellipsoid and using some recent advanced optimization techniques for filtering,
it should be able to derive a tighter set-membership filtering for the nonlinear dynamic
system.

In this chapter, when the underlying state noises and measurement noises are unknown but
bounded, we propose a tighter set-membership filtering methods via set-membership estimation
theory and boundary sampling technique. In order to guarantee the online usage, the nonlinear
dynamics are linearized about the current estimate, and the remainder terms are then bounded
by an ellipsoid, which can be formulated as the solution of a semi-infinite optimization problem.
In general, it is an analytically intractable problem when dynamic systems are nonlinear. The
main contributions of the paper are summarized as follows:

• For a typical nonlinear dynamic system in target tracking, we can analytically derive some
regular properties for the remainder. Then, the semi-infinite optimization problem can be
efficiently solved by using boundary sampling technique.
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• For some quadratic nonlinear dynamic systems, using the samples on all vertices of a
polyhedron, we obtain a tight bounding ellipsoid, which can cover the remainder by
solving a semi-definite program (SDP) problem.

• The set-membership prediction and measurement update are derived based on the recent
optimization method and the online bounding ellipsoid of the remainder other than a
priori bound.

The rest of the paper is organized as follows. Preliminaries are given in Section 2. In Section 3,
the bounding ellipsoid of the remainder set is calculated. In Section 4, the prediction step
and the measurement update step of the set-membership filtering for nonlinear dynamic sys-
tems are derived, respectively. Examples and conclusions are given in Section 5 and Section 6,
respectively.

2. Preliminaries

2.1. Problem formulation

We consider a nonlinear dynamic system:

xkþ1 ¼ f k xkð Þ þwk, (1)

yk ¼ hk xkð Þ þ vk, (2)

where xk ∈Rn is the state of system at time k and yk ∈Rn1 is the measurement. f k xkð Þ and hk xkð Þ
are nonlinear functions of xk,wk ∈Rn is the uncertainty of process noises or system biases, and
vk ∈Rn1 is the uncertainty of measurement noises or system biases. They are assumed to be
confined to the specified ellipsoidal sets:

Wk ¼ wk : wT
kQ
�1
k wk ≤ 1

� �

Vk ¼ vk : vTkR
�1
k vk ≤ 1

� �
,

where Qk and Rk are the shape matrices of the ellipsoids Wk and Vk, respectively, which are
known as symmetric positive-definite matrices. At time k given that xk belongs to a current
bounding ellipsoid:

Ek ¼ x∈Rn : x� bxkð ÞT Pkð Þ�1 x� bxkð Þ ≤ 1
n o

¼ x∈Rn : x ¼ bxk þ Ekuk;Pk ¼ EkET
k ; ∥uk∥ ≤ 1

� � (3)

where bxk is the center of ellipsoid Ek and Pk is a known symmetric positive-definite matrix.
Moreover, we assume that when the nonlinear functions are linearized, the remainder terms
can be bounded by an ellipsoid. Specifically, by Taylor’s theorem, f k and hk can be linearized to
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Monte Carlo Set-Membership Filtering for Nonlinear Dynamic Systems
http://dx.doi.org/10.5772/intechopen.74387

201



f k bxk þ Ekukð Þ ¼ f k bxkð Þ þ Jf kEkuk þ Δf k ukð Þ, (4)

hk bxk þ Ekukð Þ ¼ hk bxkð Þ þ JhkEkuk þ Δhk ukð Þ, (5)

where Ek and uk are defined in (3), Jf k ¼
∂f k xkð Þ
∂x

���bxk
and Jhk ¼ ∂hk xkð Þ

∂x

���bxk
are Jacobian matrices, and

Δf k ukð Þ and Δhk ukð Þ are high-order remainders, which can be bounded in an ellipsoid for all
kukk ≤ 1, respectively, i.e.,

Δf k ukð Þ∈ E f k ¼ x∈Rn : x� ef k
� �T Pf k

� ��1 x� ef k
� �

≤ 1
n o

, (6)

¼ x∈Rn : x ¼ ef k þ Bf kΔf k ;Pf k ¼ Bf kB
T
f k
; ∥Δf k∥ ≤ 1

n o
, (7)

Δhk ukð Þ∈ Ehk ¼ x∈Rn1 : x� ehkð ÞT Phkð Þ�1 x� ehkð Þ ≤ 1
n o

, (8)

¼ x∈Rn1 : x ¼ ehk þ BhkΔhk ;Phk ¼ BhkB
T
hk ; ∥Δhk∥ ≤ 1

n o
, (9)

where ef k and ehk are the centers of the ellipsoids E f k and Ehk , respectively, and Pf k and Phk are the
shape matrices of the ellipsoids E f k and Ehk , respectively. Note that we do not assume that the
ellipsoids E f k and Ehk are given before filtering, and we will compute these ellipsoids online.

Suppose that the initial state x0 belongs to a given bounding ellipsoid:

E0 ¼ x∈Rn : x� bx0ð ÞT P0ð Þ�1 x� bx0ð Þ ≤ 1
n o

, (10)

where bx0 is the center of ellipsoid E0 and P0 is the shape matrix of the ellipsoid E0 which is a
known symmetric positive-definite matrix.

The proposed set-membership filter mainly contains two steps: prediction step and measure-
ment update step. The goal of prediction step is to determine a bounding ellipsoid Ekþ1∣k based
on the measurement yk at time k, i.e., look for bxkþ1∣k,Pkþ1∣k such that the state xkþ1 belongs to

Ekþ1∣k ¼ x∈Rn : x� bxkþ1∣k
� �T Pkþ1∣k

� ��1 x� bxkþ1∣k
� �

≤ 1
n o

,

whenever (i) xk is in Ek; (ii) the processeswk, vk are bounded in ellipsoids, i.e.,wk ∈Wk, vk ∈Vk;
and (iii) the remainders Δf k ukð Þ∈ E f k and Δhk ukð Þ∈ Ehk . The robust measurement update step is
aimed to determine a bounding ellipsoid Ekþ1 based on the measurement ykþ1 at time kþ 1,
i.e., look for bxkþ1,Pkþ1 such that the state xkþ1 belongs to

Ekþ1 ¼ x∈Rn : x� bxkþ1ð ÞT Pkþ1ð Þ�1 x� bxkþ1ð Þ ≤ 1
n o

,

whenever (i) xkþ1 is in Ekþ1∣k; (ii) the measurement noises vkþ1 is bounded in ellipsoid, i.e.,
vkþ1 ∈Vkþ1; and (iii) the remainders Δhkþ1 ukþ1ð Þ∈ Ehkþ1 . The key issue is to determine two
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tight bounding ellipsoids E f k and Ehk in real time so that the filtering algorithm can be impl-
emented online.

3. Ellipsoidal remainder bounding

In this section, we discuss the key problem on how to adaptively determine a tighter bounding
ellipsoid to cover the high-order remainders from the optimization point of view.

3.1. Ellipsoidal remainder bounding by sampling

By (4)–(5), the high-order remainders are

Δf k ukð Þ ¼ f k bxk þ Ekukð Þ � f k bxkð Þ � Jf kEkuk,

Δhk ukð Þ ¼ hk bxk þ Ekukð Þ � hk bxkð Þ � JhkEkuk,

whenever ∥uk∥ ≤ 1. Obviously, it is a hard problem to cover a remainder by an ellipsoid since f k
and hk are generally nonlinear functions. The outer bounding ellipsoid for Δf k ukð Þ is not
uniquely defined, which can be optimized by minimizing the size f Pð Þ of the bounding
ellipsoid. Thus, the optimization problem for the bounding ellipsoid of Δf k ukð Þ defined in (6)
can be written as

min f Pf k

� �
(11)

subject to Δf k ukð Þ � ef k
� �T Pf k

� ��1
Δf k ukð Þ � ef k
� �

≤ 1, for all kukk ≤ 1: (12)

where Pf k ¼ Bf kB
T
f k
and ef k and Pf k are decision variables. Since the optimization problem (11)–

(12) has an infinite number of constraints, it is called a semi-infinite optimization problem in
[21]. In general, it is a NP-hard problem.

Remark 1. In practice, we want to achieve a state estimation ellipsoid by minimizing its “size” at each
time; it is a function of the shape matrix P denoted by f Pð Þ. If we choose trace function, i.e.,
f Pð Þ ¼ tr Pð Þ, it means the sum of squares of semiaxes lengths of the ellipsoid E. The other common
“size” of the ellipsoid is logdet Pð Þ, which corresponds to the volume of the ellipsoid E.

For a general nonlinear dynamic system, it is hard to solve the problem (11)–(12) [22]. It is this
reason that the literatures [23, 24] are sought to find the particular relaxations of the original
optimization problem (11)–(12). One of the typical methods is based on randomization of the
parameter uk. Specifically, to solve the problem (11)–(12), we may take some samples from the
boundary and interior points of the sphere kukk ≤ 1 so that we can get a finite set of u1

k ,…,uN
k ,

and then the infinite constraint (12) can be approximated by N constraints based on u1
k ,…,uN

k .
Moreover, by Schur complement, an approximate bounding ellipsoid for Δf k ukð Þ can be
derived by solving the following SDP optimization problem:
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tight bounding ellipsoids E f k and Ehk in real time so that the filtering algorithm can be impl-
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In this section, we discuss the key problem on how to adaptively determine a tighter bounding
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time; it is a function of the shape matrix P denoted by f Pð Þ. If we choose trace function, i.e.,
f Pð Þ ¼ tr Pð Þ, it means the sum of squares of semiaxes lengths of the ellipsoid E. The other common
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For a general nonlinear dynamic system, it is hard to solve the problem (11)–(12) [22]. It is this
reason that the literatures [23, 24] are sought to find the particular relaxations of the original
optimization problem (11)–(12). One of the typical methods is based on randomization of the
parameter uk. Specifically, to solve the problem (11)–(12), we may take some samples from the
boundary and interior points of the sphere kukk ≤ 1 so that we can get a finite set of u1

k ,…,uN
k ,

and then the infinite constraint (12) can be approximated by N constraints based on u1
k ,…,uN
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min f Pf k

� �
(13)

subject to
�1 Δf k ui

k

� �� ef k
� �T

Δf k ui
k

� �� ef k �Pf k

2
4

3
5≼0

i ¼ 1,…, N:

(14)

Although the randomized solution may not be feasible for all kukk ≤ 1, [24] has used statistical
learning techniques to provide an explicit bound on the measure of the set of original con-
straints that are possibly violated by the randomized solution, and they prove this measure
rapidly decreases to zero as N is increasing. Therefore, the obtained randomized solution of
the optimization problem (13)–(14) can be made approximately feasible for the semi-infinite
optimization (11)–(12) by sampling a sufficient number of constraints.

Similarly, the outer bounding ellipsoid for Δhk ukð Þ can be derived by solving

min f Phkð Þ (15)

subject to
�1 Δhk ui

k

� �� ehk
� �T

Δhk ui
k

� �� ehk �Phk

2
4

3
5≼0,

i ¼ 1,…, N:

(16)

Remark 2. Note that the bounding ellipsoid of [19] is derived by interval mathematics. We derive the
bounding ellipsoid by solving a semi-infinite optimization problem. Figure 1 illustrates the difference of
two methods. It is obvious to see that the bounding ellipsoid derived by solving the SDP (13) is tighter
than that obtained by interval mathematics. The cumulative effect of the conservative bounding ellipsoid
at each time step may yield divergence of a filtering.

Figure 1. (Top) The bounding ellipsoid is derived by covering the solid points of the remainder which are obtained byMonte
Carlo sampling. (Bottom) The bounding ellipsoid is derived by covering the vertices of the rectangle obtained by interval
mathematics [19].
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3.2. Ellipsoidal remainder bounding by boundary sampling

In this subsection, for a typical nonlinear dynamic system in target tracking, we discuss that
the remainder can be bounded by an ellipsoid via boundary sampling for target tracking. Thus,
the new method can reduce the computation complexity efficiently in the bounding step.

Let us consider the following nonlinear measurement Eq. [1]:

h xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1ð Þ � að Þ2 þ x 2ð Þ � bð Þ2

q

arctan
x 2ð Þ � b
x 1ð Þ � a

� �

2
664

3
775, a, b∈R (17)

where x is a four-dimensional state variable that includes position and velocity x; y; _x; _y½ �T.
Note that h xð Þ only depends on the first two dimensions x 1ð Þ and x 2ð Þ.
We discuss the relationship between the set kukk ≤ 1;uk ¼ uk 1ð Þ uk 2ð Þ½ �f g and the remainder
set Δhkþ1 ukð Þ : kukk ≤ 1f g.
Proposition 1. If we let the remainder g uð Þ ¼ h bx þ Euð Þ � h bxð Þ � JhEu where h bxð Þ is defined in (17),
E is a Cholesky factorization of a positive-definite P such that ellipsoid x ¼ bx þ Eu : ∥u∥ ≤ 1f g does
not intersect with the radial x : x 1ð Þ <¼ a; x 2ð Þ ¼ bf g, and then the boundary of the remainder set
S ¼ g uð Þ : ∥u∥ ≤ 1f g belongs to the set g uð Þ : ∥u∥ ¼ 1f g.

Remark 3. Note that the ellipsoid x ¼ bx þ Eu : ∥u∥ ≤ 1f g does not intersect with the radial. x : x 1ð Þf
<¼ a; x 2ð Þ ¼ bg is a weak condition, which is in order to satisfy the continuity of g uð Þ, and we can verify
the condition by using the distance from the ellipsoid center bx to the radial. Moreover, if the condition is
violated, i.e., the true target is near the radial, we can transform the data to a new coordinate system where
the target is far way the radial, and then the assumption can be satisfied.

The proof of Proposition 1 relies on the following three lemmas:

Lemma 1. (Remainder lemma). The determinant of the derivative of the remainder g uð Þ is not less than
0, and the equality holds if and only if cu 1ð Þ þ du 2ð Þ ¼ 0, where c ¼ E11 bx 2ð Þ � bð Þ � E21 bx 1ð Þ � að Þ,
d ¼ E12 bx 2ð Þ � bð Þ � E22 bx 1ð Þ � að Þ, and Eij are the entries of the ith row and the jth column of the matrix
E. Meanwhile, if cu 1ð Þ þ du 2ð Þ ¼ 0, then g uð Þ ¼ 0.

Lemma 2. If the sets S1∪S2 ¼ S3∪S4, S3 ∩S4 ¼ ∅, and S1 ⊂S3, then S4 ⊂S2.

Lemma 3. (Inverse function theorem [25]) Suppose that φ : Rn ! Rn is continuously differentiable
in an open set containing u and det φ0 uð Þð Þ 6¼ 0, then there is an open set V containing u and open set
W containing φ uð Þ such that φ : V!W has a continuous inverse φ�1 : W! V which is differentia-

ble and for all y∈W satisfies φ�1
� �0 yð Þ ¼ φ0 φ�1 yð Þ� �� ��1.

Example 1. To illustrate Proposition 1, we give an example as follow: if a ¼ 50, b ¼ 100, bx ¼
80 130½ �T, and P ¼ diag 500; 1000ð Þ, it is easy to check that g uð Þ is continuously differentiable in set

S1 ¼ u : ∥u∥ ≤ 1f g. We divide S1 into three parts, i.e., S1 ¼ A1∪B1∪C1, where A1 ¼ u : cu 1ð Þþf
du 2ð Þ < 0; ∥u∥ ≤ 1g, B1 ¼ u : cu 1ð Þ þ du 2ð Þ > 0; ∥u∥ ≤ 1f g, and C1 ¼ u : cu 1ð Þ þ du 2ð Þ ¼ 0;f
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∥u∥ ≤ 1g. Meanwhile, we can also divide S into the corresponding parts, such that A ¼ g uð Þ :f
u∈A1g, B ¼ g uð Þ : u∈B1� �

, C ¼ g uð Þ : u∈C1� �
, and then S ¼ A∪B∪C.

Figure 2 shows the separation area of the circle and their corresponding area of g uð Þ. Three observations
can be made as follows:

• The remainder set is the union of two sets.

• The (red) line C1 is mapped to the point 0.

• The boundary of S belongs to the set g uð Þ : ∥u∥ ¼ 1f g.
In summary, when we take samples from the boundary, they are sufficient to derive the outer bounding
ellipsoids of the remainder set. Therefore, based on Proposition 1, the computation complexity in the
bounding step of the new method can be reduced much more.

Remark 4. In order to further reduce the samples and cover the remainder set at the same time, we can
heuristically enlarge the sampling area, such as kukk ¼ 1:1f g; then, the remainder set becomes a little
larger. If we derive an ellipsoid to cover the little larger remainder, then this ellipsoid can cover the
original remainder set Δhkþ1 ukð Þ : kukk ≤ 1f g.

3.3. A tight solution

In this subsection, for some quadratic nonlinear dynamic systems, the semi-infinite optimization
problem (11)–(12) may be equivalent to solving an SDP problem via sampling on all vertices of a
polyhedron. Thus, we can obtain a tight bounding ellipsoid to cover the remainder.

We consider a quadratic nonlinear state equation:

f k xkð Þ ¼

α1 0 0 0
0 α2 0 0
0 0 ⋱ 0
0 0 0 αn

2
6664

3
7775

x1k
� �2

x2k
� �2
⋮
xnk
� �2

2
66664

3
77775

(18)

Figure 2. (Left) The separation of circle. (Right) The corresponding area of g uð Þ.
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where xk ∈Rn is the state of system at time k, and xik denoted the ith component of xk; αi are
known parameters, i ¼ 1,…, n.

Proposition 2. If we let the high-order remainder Δf k ukð Þ ¼ f bxk þ Ekukð Þ � f bxkð Þ � Jf kEkuk where

∥uk∥ ≤ 1, assume that f k bxkð Þ is a quadratic function defined in (18) and Ek is a diagonal matrix; then, a
tight bounding ellipsoid can be derived to cover the high-order remainder Δf k ukð Þ by solving the
following optimization problem:

min f Pf k

� �
(19)

ð20Þ

for i ¼ 1, 2,…, n:

where Eii
k is the ith row and jth column of Ek.

In summary, we can determine the remainder bounding ellipsoid by sampling as follows.

1 For general nonlinear functions, samples may be taken from the sphere kukk ≤ 1.
2 For a typical nonlinear dynamic system in target tracking or nonlinear functions, samples

may be taken on the boundary of the sphere kukk ≤ 1.
3 For some quadratic nonlinear functions, samples only need vertices of a polyhedron.

4. Ellipsoidal state bounding via SDP

In this section, we present the prediction step and the measurement step of the set-membership
filtering by extending El Ghaoui and Calafiore’s optimization method [26]. The point is that
when the nonlinear dynamics are linearized on the current estimate, the uncertainties of the
new linearized dynamic system include the uncertain bounding ellipsoids of the remainder
terms and the noises.
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2
6664

3
7775

x1k
� �2

x2k
� �2
⋮
xnk
� �2

2
66664

3
77775

(18)

Figure 2. (Left) The separation of circle. (Right) The corresponding area of g uð Þ.
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where Eii
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In summary, we can determine the remainder bounding ellipsoid by sampling as follows.

1 For general nonlinear functions, samples may be taken from the sphere kukk ≤ 1.
2 For a typical nonlinear dynamic system in target tracking or nonlinear functions, samples

may be taken on the boundary of the sphere kukk ≤ 1.
3 For some quadratic nonlinear functions, samples only need vertices of a polyhedron.

4. Ellipsoidal state bounding via SDP

In this section, we present the prediction step and the measurement step of the set-membership
filtering by extending El Ghaoui and Calafiore’s optimization method [26]. The point is that
when the nonlinear dynamics are linearized on the current estimate, the uncertainties of the
new linearized dynamic system include the uncertain bounding ellipsoids of the remainder
terms and the noises.
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4.1. Prediction step

Proposition 3. At time kþ 1, based on measurements yk, the bounding ellipsoids of the state, and the

remainders Ek, E f k , and Ehk , a predicted bounding ellipsoid Ekþ1∣k ¼ x : x� bxkþ1∣k
� �T Pkþ1∣k

� ��1n

x� bxkþ1∣k
� �

≤ 1g can be obtained by solving the optimization problem in the variables Pkþ1∣k and bxkþ1∣k
and nonnegative scalars τu ≥ 0, τw ≥ 0, τv ≥ 0, τf ≥ 0, τh ≥ 0:

min f Pkþ1∣k
� �

(21)

subject to � τu ≤ 0, � τw ≤ 0, � τv ≤ 0, (22)

� τf ≤ 0, � τh ≤ 0, � Pkþ1∣k ≺ 0, (23)

�Pkþ1∣k Φkþ1∣k Ψkþ1∣k
� �

⊥

Φkþ1∣k Ψkþ1∣k
� �

⊥

� �T � Ψkþ1∣k
� �T

⊥Ξ Ψkþ1∣k
� �

⊥

2
64

3
75≼0, (24)

where

Φkþ1∣k ¼ f k bxkð Þ þ ef k � bxkþ1∣k; Jf kEk; I; 0;Bf k ; 0
h i

, 0∈Rn,n1 , (25)

Ψkþ1∣k ¼ hk bxkð Þ þ ehk � yk; JhkEk; 0; I; 0;Bhk

� �
: (26)

Ψkþ1∣k
� �

⊥ is the orthogonal complement ofΨkþ1∣k. Ek is the Cholesky factorization of Pk, i.e., Pk ¼ Ek Ekð ÞT .
ef k , ehk , Bf k , and Bhk are denoted by (7) and (9), respectively. Jf k ¼

∂f k xkð Þ
∂x

���bxk

and Jhk ¼ ∂hk xkð Þ
∂x

���bxk

:

Ξ ¼ diag 1� τu � τw � τv � τf � τh; τuI; τwQ�1k ; τvR�1k ; τf I; τhI
� �

: (27)

Remark 5. The objective function (21) is aimed at minimizing the shape matrix of the predicted
ellipsoid, and the constraints (22)–(24) ensure that the true state is contained in predicted bounding
ellipsoid Ekþ1∣k. Notice that if f Pð Þ ¼ tr Pð Þ, the optimization problems (13)–(16), (21)–(24), and
(28)–(31) are SDP problems, which can be efficiently solved by modern interior-point methods [27].
According to the guidelines in [28], the computational complexity of solving an SDP problem is

O max m; nð Þ4n1=2log1=e
� �

, where n is the number of the states. With the development of convex

optimization technology technique, one can also use first-order optimizing algorithm. The computa-
tional complexity may be reduced further (see [29]).

4.2. Measurement update step

Similarly, we can derive the measurement update step of the nonlinear filtering.

Proposition 4. At time kþ 1, based on measurement ykþ1, the predicted bounding ellipsoid Ekþ1∣k,
and the bounding ellipsoid of the remainder Ehkþ1, an estimated bounding ellipsoid
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Ekþ1 ¼ x : x� bxkþ1ð ÞT Pkþ1ð Þ�1
n

x� bxkþ1ð Þ ≤ 1g can be obtained by solving the optimization problem

in the variables Pkþ1 and bxkþ1 and nonnegative scalars τu ≥ 0, τv ≥ 0, τh ≥ 0:

min f Pkþ1ð Þ (28)

subject to � τu ≤ 0, � τv ≤ 0, � τh ≤ 0, (29)

�Pkþ1 ≺ 0, (30)

�Pkþ1 Φkþ1 Ψkþ1ð Þ⊥
Φkþ1 Ψkþ1ð Þ⊥
� �T � Ψkþ1ð ÞT⊥Ξ Ψkþ1ð Þ⊥

" #
≼0, (31)

where

Φkþ1 ¼ bxkþ1∣k � bxkþ1;Ekþ1∣k; 0; 0
� �

, 0∈Rn,n1 , (32)

Ψkþ1 ¼ hkþ1 bxkþ1∣k
� �þ ehkþ1 � ykþ1; Jhkþ1∣kEkþ1∣k; I;Bhkþ1

h i
: (33)

Ψkþ1ð Þ⊥ is the orthogonal complement of Ψkþ1. Ekþ1∣k is the Cholesky factorization of Pkþ1∣k, i.e.,

Pkþ1∣k ¼ Ekþ1∣k Ekþ1∣k
� �T . bxkþ1∣k is the center of the predicted bounding ellipsoid Ekþ1∣k. ehkþ1 and Bhkþ1

are denoted by 9ð Þ at the time step kþ 1. Jhkþ1∣k ¼ ∂hkþ1 xkð Þ
∂x

���bx kþ1∣k:

Ξ ¼ diag 1� τu � τv � τh; τuI; τvR�1kþ1; τ
hI

� �
: (34)

4.3. Sampling-based ellipsoidal bounding filter algorithm

• Step 1: (Initialization step) Set k ¼ 0 and initial values bx0;P0ð Þ such that x0 ∈ E0.

• Step 2: (Bounding step) Take samples u1
k ,…,uN

k from the sphere kukk ≤ 1, and then determine
two bounding ellipsoids to cover the remainders Δf k and Δhk by (13)–(14) and (15)–(16),
respectively.

• Step 3: (Prediction step) Optimize the center and shape matrix of the state prediction
ellipsoid bxkþ1∣k;Pkþ1∣k

� �
such that xkþ1∣k ∈ Ekþ1∣k by solving the optimization problem (21)–(24).

• Step 4: (Bounding step) Take samples u1
kþ1∣k,…,uN

kþ1∣k from the sphere kukþ1∣kk ≤ 1, and then

determine one bounding ellipsoid to cover the remainder Δhkþ1 by (15)–(16).

• Step 5: (Measurement update step) Optimize the center and shape matrix of the state estima-
tion ellipsoid bxkþ1;Pkþ1ð Þ such that xkþ1 ∈ Ekþ1 by solving the optimization problem (28)–(31).

• Step 6: Set k ¼ kþ 1 and go to Step 2.
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, where n is the number of the states. With the development of convex

optimization technology technique, one can also use first-order optimizing algorithm. The computa-
tional complexity may be reduced further (see [29]).

4.2. Measurement update step

Similarly, we can derive the measurement update step of the nonlinear filtering.

Proposition 4. At time kþ 1, based on measurement ykþ1, the predicted bounding ellipsoid Ekþ1∣k,
and the bounding ellipsoid of the remainder Ehkþ1, an estimated bounding ellipsoid
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n

x� bxkþ1ð Þ ≤ 1g can be obtained by solving the optimization problem
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" #
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� �

, 0∈Rn,n1 , (32)

Ψkþ1 ¼ hkþ1 bxkþ1∣k
� �þ ehkþ1 � ykþ1; Jhkþ1∣kEkþ1∣k; I;Bhkþ1

h i
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respectively.
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kþ1∣k,…,uN

kþ1∣k from the sphere kukþ1∣kk ≤ 1, and then

determine one bounding ellipsoid to cover the remainder Δhkþ1 by (15)–(16).

• Step 5: (Measurement update step) Optimize the center and shape matrix of the state estima-
tion ellipsoid bxkþ1;Pkþ1ð Þ such that xkþ1 ∈ Ekþ1 by solving the optimization problem (28)–(31).

• Step 6: Set k ¼ kþ 1 and go to Step 2.
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5. Numerical example in target tracking

In this section, we compare the performance between the proposed set-membership filter and
extended set-membership filter (ESMF) [19], which can also be implemented online for target
tracking with a nonlinear dynamic system, when the state noises and measurement noises are
unknown but bounded.

By considering a two-dimensional Cartesian, coordinate system as follows [1]:

xkþ1 ¼

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

2
6664

3
7775xk þwk, (35)

yk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk 1ð Þð Þ2 þ xk 2ð Þð Þ2

q

arctan
xk 2ð Þ
xk 1ð Þ
� �

2
664

3
775þ vk, (36)

x is a four-dimensional state variable that includes position and velocity x; y; _x; _y½ �T, and T ¼ 1
s is the time sampling interval. The process noise and measurement noise assumed to be
confined to specified ellipsoidal sets:

Wk ¼ wk : wT
kQ
�1
k wk ≤ 1

� �

Vk ¼ vk : vTk R
�1
k vk ≤ 1

� �
:

where

Qk ¼ σ2

T3

3
0

T2

2
0

0
T3

3
0

T2

2
T2

2
0 T 0

0
T2

2
0 T

2
666666666664

3
777777777775

,Rk ¼ q � 32 0
0 12

" #
:

The target acceleration σ2 equals to 10. The parameter q is used to control the uncertainty of
the measurement noise. In the example, the target starts at the point 50; 30ð Þ with a velocity of

5; 5ð Þ. The center and the shape matrix of the initial bounding ellipsoid are bx0 ¼ 49:5 29:5 5 5½ �T
and P0 ¼ diag 5; 5; 2; 2½ �ð Þ, respectively.
The following simulation results include three parts: the first part is about the size of the
remainder bounding ellipsoid, the second part is about the root-mean-square error (RMSE) of
the state estimation, and the third part is about the computation time. They are illustrated and
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discussed by the number of samples, the time steps, and the uncertain parameter q of the
measurement noise, respectively:

• In Figure 3, the log size of the remainder bounding ellipsoid is plotted as a function of the
time steps with the uncertain parameter q ¼ 0:01. It shows that the size of the new method
is much smaller than that of the ESMF, i.e., the new method derives a tighter ellipsoid to
cover the remainder. Moreover, we use 30 samples to calculate a remainder bounding
ellipsoid on a time step based on solving the optimization problem (15)–(16). The corresp-
onding bounding ellipsoid is presented in Figure 4. It shows that the bounding ellipsoid
can cover all points of the remainder set with a very small size. In Figures 5 and 6, the
average size of the remainder bounding ellipsoid through the time steps 1–20 is plotted as a
function of the uncertain parameter q of the measurement noise. The larger q means that the
measurement noise is more uncertain. Thus, Figures 5 and 6 show that when the uncer-
tainty of the measurement noise is increasing, the size of the remainder bounding ellipsoid
of ESMF is quickly increasing; however, that of the new method is slowly increasing and
relatively stable.

• RMSE of the state estimation along the position direction is plotted as a function of the time
steps in Figure 7. It shows that RMSE of the new method is less than that of ESMF. The reason
may be that the new method derives a tighter ellipsoid to cover the remainder, which can be
seen in the Figure 4. Figure 7 also shows that RMSEs of the proposed filter based on 30 and 40
samples are almost same. The reason may be that the remainder bounding ellipsoid is same
when the number of samples is more than 30. In Figure 8, the average RMSE of the state
estimation through the time steps 1 to 20 is plotted as a function of the uncertain parameter q. It

Figure 3. The log size of the remainder bounding ellipsoid is plotted as a function of time steps with q ¼ 0:01.
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Figure 4. The remainder bounding ellipsoid on a time step based on 30 samples from the boundary.

Figure 5. The average size of the remainder bounding ellipsoid is plotted as a function of the uncertain parameter q by ESMF.
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Figure 6. The average size of the remainder bounding ellipsoid is plotted as a function of the uncertain parameter q by the
new method.

Figure 7. The RMSE of the state estimation is plotted as a function of time steps with q ¼ 0:01.
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Figure 5. The average size of the remainder bounding ellipsoid is plotted as a function of the uncertain parameter q by ESMF.
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Figure 6. The average size of the remainder bounding ellipsoid is plotted as a function of the uncertain parameter q by the
new method.

Figure 7. The RMSE of the state estimation is plotted as a function of time steps with q ¼ 0:01.
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Figure 8. The average RMSE of the state estimation through the time steps 1 to 20 is plotted as a function of the uncertain
parameter q.

Figure 9. The computation time of the proposed state bounding filter and ESMF at each time step.
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shows that the average RMSE of the state estimation based on the new method is also less than
that of ESMF. The larger uncertain parameter q is a better performance of the new method than
that of ESMF. In summary, Figures 5–8 indicate that the new method performs much better
than ESMF, especially in the situation of the larger noise.

• Since the predictive step and measurement update step of the new method are calculated by
solving an SDP, the computation time of the new method is greater than that of ESMF, which
can be seen in the right of Figure 9, but it may be tolerated and be done in polynomial time.

6. Conclusion

In order to deal with the nonlinear dynamic systems with unknown but bounded noise, we
have proposed a new filtering method via set-membership theory and boundary sampling
technique to determine a state estimation ellipsoid. To guarantee the online usage, the nonli-
near dynamics are linearized about the current estimate, and the remainder terms are then
bounded by an ellipsoid, which can be written as the solution of a semi-infinite optimization
problem. For a typical nonlinear dynamic system in target tracking, the semi-infinite optimi-
zation problem can be efficiently approximated by a randomized method. Moreover, for some
quadratic nonlinear dynamic systems, using the samples on all vertices of a polyhedron, we
obtain a tight bounding ellipsoid, which covers the remainder by solving an SDP problem.
Finally, the set-membership prediction and measurement update are derived based on the
recent optimization method and the online bounding ellipsoid of the remainder other than a
priori bound, so that a tighter set-membership filter can be achieved. Numerical example
shows that the proposed method performs much better than ESMF, especially in the situation
of the larger noise. Future work will include that the multisensor fusion, multiple target
tracking, and various applications such as sensor management and placement for structures
and different types of wireless networks.
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Abstract

This chapter presents an extension and offers a more comprehensive overview of our
previous paper entitled “Stability conditions for a class of nonlinear time delay systems”
published in “Nonlinear Dynamics and Systems Theory” journal. We first introduce a
more complete approach of the nonlinear system stability for the single delay case. Then,
we show the application of the obtained results to delayed Lur’e Postnikov systems. A
state space representation of the class of system under consideration is used and a new
transformation is carried out to represent the system, with delay, by an arrow formmatrix.
Taking advantage of this representation and applying the Kotelyanski lemma in combina-
tion with properties of M-matrices, some new sufficient stability conditions are deter-
mined. Finally, illustrative example is provided to show the easiness of using the given
stability conditions.

Keywords: nonlinear systems, time delay, arrow matrix, M-matrix, Lur’e Postnikov,
stability conditions

1. Introduction

Studying stability of dynamical systems with time delay has received the attention of many
researchers from the control community in the past decades, see [1–27] and the references
therein. Time-varying delay which varies within an interval with nonzero lower bound is
encountered in a variety of engineering applications which spreads from recurrent neural
networks to chemical reactors and power systems with loss-less transmission lines. It is there-
fore more appropriate to study stability analysis and control synthesis of these dynamical
systems with time-varying delays as these delays are usually time varying in nature. There
are mainly two strategies in obtaining stability conditions. We can obtain delay-independent
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(i.o.d) results [28, 29] and the references therein, which are applicable to delays of arbitrary size
or when there is no information about the delay. In general this lack of information about the
delay will result in conservative criteria, especially when the delay is relatively small. When-
ever it is possible to include information on the size of the delay, we can get delay-dependent
(d.d) conditions which are usually less conservative. Most of the systems described above are
nonlinear in practical engineering problems. For this reason, the chapter focuses on determin-
ing easy to test sufficient stability conditions for nonlinear systems with time-varying delay
[30–33].

New delay dependent stability conditions are derived by employing arrow form state space
representation [31–34], Kotelyanski lemma and using tools from M-matrix theory and
Lyapunov functional method.

The obtained results are exploited to design a state feedback controller that stabilizes Lur’e
systems with time-varying delay and sector-bounded nonlinearity [26, 28, 34]. In fact, Lur’e
control systems is considered as one the most important classes of nonlinear control systems
and continue to be one of the important problems in control theory that has been studied
widely because it has many practical applications [32–36].

The chapter is organized as follows: Section 2 presents the notation used throughout the
chapter and some facts on M-matrices that will be needed in proving the obtained results. In
sections 3 the main results are given. Application of these results to delayed nonlinear nth
order all pole plant and the well-known Lur’e systems, is presented in Section 4. Illustrative
example is given in Section 5 and some concluding remarks are provided in Section 6.

2. Notation and facts

Let us fix the notation used. Let Cn ¼ C -τ 0½ �;Rnð Þ be the Banach space of continuous functions
mapping the interval -τ 0½ � into Rn with the topology of uniform convergence. Let xt ∈Cn be

defined by xt θð Þ ¼ x tþ θð Þ,θ∈ -τ 0½ �where x tð Þ ¼ y tð Þ _y tð Þ … y n-1ð Þ tð Þ� �0
. For a given φ∈Cn,

we define φk k ¼ sup -τ ≤θ ≤ 0 φ θð Þk k,φ θð Þ∈Rn. The functions ai :ð Þ, bi :ð Þ, i ¼ 1,…,n-1 are

completely continuous mapping the set Ja � CH
n � Sϖ into R, where CH

n = φ∈Cn; φk k < Hf g,
H > 0, Ja ¼ a þ ∞½ Þ, a∈R and Sϖ ¼ ϖ; k1 ≤ϖ ≤ k2=k1 ≤k2 ∈Rf g: In the sequel, we denote
t; xt;ϖð Þ ¼ :ð Þ.
Now we introduce several useful facts, including some definitions of M-matrices and the
Kotelyanski lemma that will be used in subsequent parts of the chapter.

Definition 1. The n� n matrix A ¼ ai, j
� �

1 ≤ i, j ≤ n is called an M-matrix if the following condi-
tions are satisfied for i ¼ 1, 2,…, n [34]:

1. ai, i > 0 , ai, j ≤ 0 i 6¼ j; j ¼ 1; 2;…; nð Þ.
2. Successive principal minors of A are positive, i.e.
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det
a1,1 … a1, i
⋮ … ⋮
ai,1 … ai, i

0
B@

1
CA > 0

Definition 2. The matrix A is the opposite of an M-matrix if (�A) is an M-matrix. There are
many equivalent conditions for characterizing an M matrix. In fact, the following definition is
the most appropriate for our purposes [34].
Definition 3. The matrix A ¼ ai, j

� �
n ≤ i, j ≤n is called an M-matrix if ai, i > 0 i ¼ 1; 2;…;nð Þ,

ai, j ≤ 0 , i 6¼ j, i; j ¼ 1; 2;…;nð Þ and for any vector σ∈R∗n
þ , the algebraic equation A

0
c ¼ σ has a

solution c ¼ A
0� �-1

σ∈R∗n
þ [34].

Kotelyanski Lemma

The real parts of the eigenvalues of a matrix A, with non-negative off diagonal elements, are
less than a real number μ if and only if all those of the matrix M, M ¼ In � μA, are positive,
with In the n� n identity matrix [34, 35].

3. Sufficient stability conditions

Our work consists of determining stability conditions for systems described by the following
equation:

y nð Þ tð Þ þ
Xn-1
i¼0

ai t; xt;ϖð Þy ið Þ tð Þ þ
Xn
j¼0

bj t; xt;ϖð Þy jð Þ t-τð Þ ¼ u tð Þ

y ið Þ tð Þ ¼ φi tð Þ, t∈ -τ 0½ �, i ¼ 0,…,n-1,

8>><
>>:

(1)

where τ is a constant delay and ai :ð Þ, bi :ð Þ, i ¼ 1,…,n-1 are nonlinear functions.

We start by representing the system (1), under another form. Using the following notation:

xiþ1 tð Þ ¼ y ið Þ tð Þ, i ¼ 0,…,n-1 (2)

we get:

_xi tð Þ ¼ xiþ1 tð Þ i ¼ 1,…,n-1

_xn tð Þ ¼ -
Xn-1
i¼0

ai :ð Þxi tð Þ-
Xn-1
i¼0

bi :ð Þxi t-τð Þ

8><
>:

(3)

or under matrix form:

_x tð Þ ¼ A :ð Þx tð Þ þ B :ð Þx t-τð Þ (4)

A :ð Þ and B :ð Þ are n� n matrices given by:
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many equivalent conditions for characterizing an M matrix. In fact, the following definition is
the most appropriate for our purposes [34].
Definition 3. The matrix A ¼ ai, j

� �
n ≤ i, j ≤n is called an M-matrix if ai, i > 0 i ¼ 1; 2;…;nð Þ,

ai, j ≤ 0 , i 6¼ j, i; j ¼ 1; 2;…;nð Þ and for any vector σ∈R∗n
þ , the algebraic equation A

0
c ¼ σ has a

solution c ¼ A
0� �-1

σ∈R∗n
þ [34].

Kotelyanski Lemma

The real parts of the eigenvalues of a matrix A, with non-negative off diagonal elements, are
less than a real number μ if and only if all those of the matrix M, M ¼ In � μA, are positive,
with In the n� n identity matrix [34, 35].

3. Sufficient stability conditions

Our work consists of determining stability conditions for systems described by the following
equation:

y nð Þ tð Þ þ
Xn-1
i¼0

ai t; xt;ϖð Þy ið Þ tð Þ þ
Xn
j¼0

bj t; xt;ϖð Þy jð Þ t-τð Þ ¼ u tð Þ

y ið Þ tð Þ ¼ φi tð Þ, t∈ -τ 0½ �, i ¼ 0,…,n-1,

8>><
>>:

(1)

where τ is a constant delay and ai :ð Þ, bi :ð Þ, i ¼ 1,…,n-1 are nonlinear functions.

We start by representing the system (1), under another form. Using the following notation:

xiþ1 tð Þ ¼ y ið Þ tð Þ, i ¼ 0,…,n-1 (2)

we get:

_xi tð Þ ¼ xiþ1 tð Þ i ¼ 1,…,n-1

_xn tð Þ ¼ -
Xn-1
i¼0

ai :ð Þxi tð Þ-
Xn-1
i¼0

bi :ð Þxi t-τð Þ

8><
>:

(3)

or under matrix form:

_x tð Þ ¼ A :ð Þx tð Þ þ B :ð Þx t-τð Þ (4)

A :ð Þ and B :ð Þ are n� n matrices given by:
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A :ð Þ ¼

0 1 … 0

⋮ ⋱ ⋱ ⋮

0 0 … 1

-a0 :ð Þ -a1 :ð Þ … -an-1 :ð Þ

2
666664

3
777775
,B :ð Þ ¼

0 … 0

⋮ … ⋮

0 … 0

-b0 :ð Þ … -bn-1 :ð Þ

2
666664

3
777775

(5)

The regular basis change P transforms the original system to the new one defined by:

x tð Þ ¼ Pz tð Þ, (6)

with:

P ¼

1 1 … 1
α1 α2 … αn-1
⋮ ⋮ … ⋮
αn-1
1 αn-1

2 … αn-1
n-1

0

0

⋮

1

2
666664

3
777775

(7)

The new state space representation is:

_z tð Þ ¼ F :ð Þz tð Þ þD :ð Þz t-τð Þ (8)

with:

F :ð Þ ¼ P�1A :ð ÞP ¼

α1 β1

α2 β2

⋱ ⋮
αn-1 βn-1

γ1 :ð Þ γ2 :ð Þ … γn-1 :ð Þ γn :ð Þ

2
6666664

3
7777775

(9)

Elements of the matrix F :ð Þ are defined in [33] by:

γi :ð Þ ¼ -pA αi; :ð Þ for i ¼ 1,…,n-1,

γn :ð Þ ¼ -an-1 :ð Þ-
Xn-1
i¼1

αi

8><
>:

(10)

where

pA s; :ð Þ ¼ sn þ
Xn-1
i¼0

ai :ð Þsi (11)

and

βi ¼
λ-αi

Q λð Þ λ ¼ αi
for i ¼ 1,…,n-1

���� (12)
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where

Q λð Þ ¼
Yn-1
j¼1

λ-αj
� �

(13)

and the matrix D :ð Þ is given by:

D :ð Þ ¼ P�1B :ð ÞP ¼ On-1,n-1 On-1,1
δ1 :ð Þ … δn-1 :ð Þ δn :ð Þ

� �
(14)

Elements of the matrix D :ð Þ are defined in [18] by:

δi :ð Þ ¼ -pB αi; :ð Þ, i ¼ 1,…,n-1
δn :ð Þ ¼ -bn-1 :ð Þ

�
(15)

Based on this transformation and the arbitrary choice of parameters αi, i ¼ 1,…, n� 1 which
play an important role in simplifying the use of aggregate techniques, we give now the main
result. Let us start by writing our system in another form. By using the Newton-Leibniz
formula

x t-τð Þ ¼
ðt
t-τ

_x uð Þdu (16)

Equation (Eq. 8) becomes

_z tð Þ ¼ F :ð Þ þD :ð Þð Þz tð Þ-D :ð Þ
ðt
t-τ

_x θð Þdθ (17)

Let Ω be a domain of Rn, containing a neighborhood of the origin, and sup Jτ,Ω, Sϖ the suprema

calculated for t∈ Jτ i:e t ≥ τð Þ, for functions x with values in Ω, and for ϖ in Sϖ.

Next, using the special form of system (Eq. (1)) and applying the notation sup Jτ,Ω, Sϖ ¼ sup :½ �,

we can announce the following theorem.

Theorem 2.1. The system (Eq. (1)) is asymptotically stable, if there exist distinct parameters

αi < 0, i ¼ 1,…,n-1, such that the matrix ~F :ð Þ is the opposite of an M-matrix, where ~F :ð Þ is
given by

~F :ð Þ ¼

α1 β1

�� ��
α2 β2

�� ��
⋱ ⋮

αn-1 βn-1
�� ��

~γ1 :ð Þ ~γ2 :ð Þ … ~γn-1 :ð Þ ~γn :ð Þ

2
6666664

3
7777775

(18)

and the elements ~γi :ð Þ, i ¼ 1,…,n, are given by
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A :ð Þ ¼

0 1 … 0

⋮ ⋱ ⋱ ⋮

0 0 … 1

-a0 :ð Þ -a1 :ð Þ … -an-1 :ð Þ

2
666664

3
777775
,B :ð Þ ¼

0 … 0

⋮ … ⋮

0 … 0

-b0 :ð Þ … -bn-1 :ð Þ

2
666664

3
777775

(5)

The regular basis change P transforms the original system to the new one defined by:

x tð Þ ¼ Pz tð Þ, (6)

with:

P ¼

1 1 … 1
α1 α2 … αn-1
⋮ ⋮ … ⋮
αn-1
1 αn-1

2 … αn-1
n-1

0

0

⋮

1

2
666664

3
777775

(7)

The new state space representation is:

_z tð Þ ¼ F :ð Þz tð Þ þD :ð Þz t-τð Þ (8)

with:

F :ð Þ ¼ P�1A :ð ÞP ¼

α1 β1

α2 β2

⋱ ⋮
αn-1 βn-1

γ1 :ð Þ γ2 :ð Þ … γn-1 :ð Þ γn :ð Þ

2
6666664

3
7777775

(9)

Elements of the matrix F :ð Þ are defined in [33] by:

γi :ð Þ ¼ -pA αi; :ð Þ for i ¼ 1,…,n-1,

γn :ð Þ ¼ -an-1 :ð Þ-
Xn-1
i¼1

αi

8><
>:

(10)

where

pA s; :ð Þ ¼ sn þ
Xn-1
i¼0

ai :ð Þsi (11)

and

βi ¼
λ-αi

Q λð Þ λ ¼ αi
for i ¼ 1,…,n-1

���� (12)
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where

Q λð Þ ¼
Yn-1
j¼1

λ-αj
� �

(13)

and the matrix D :ð Þ is given by:

D :ð Þ ¼ P�1B :ð ÞP ¼ On-1,n-1 On-1,1
δ1 :ð Þ … δn-1 :ð Þ δn :ð Þ

� �
(14)

Elements of the matrix D :ð Þ are defined in [18] by:

δi :ð Þ ¼ -pB αi; :ð Þ, i ¼ 1,…,n-1
δn :ð Þ ¼ -bn-1 :ð Þ

�
(15)

Based on this transformation and the arbitrary choice of parameters αi, i ¼ 1,…, n� 1 which
play an important role in simplifying the use of aggregate techniques, we give now the main
result. Let us start by writing our system in another form. By using the Newton-Leibniz
formula

x t-τð Þ ¼
ðt
t-τ

_x uð Þdu (16)

Equation (Eq. 8) becomes

_z tð Þ ¼ F :ð Þ þD :ð Þð Þz tð Þ-D :ð Þ
ðt
t-τ

_x θð Þdθ (17)

Let Ω be a domain of Rn, containing a neighborhood of the origin, and sup Jτ,Ω, Sϖ the suprema

calculated for t∈ Jτ i:e t ≥ τð Þ, for functions x with values in Ω, and for ϖ in Sϖ.

Next, using the special form of system (Eq. (1)) and applying the notation sup Jτ,Ω, Sϖ ¼ sup :½ �,

we can announce the following theorem.

Theorem 2.1. The system (Eq. (1)) is asymptotically stable, if there exist distinct parameters

αi < 0, i ¼ 1,…,n-1, such that the matrix ~F :ð Þ is the opposite of an M-matrix, where ~F :ð Þ is
given by

~F :ð Þ ¼

α1 β1

�� ��
α2 β2

�� ��
⋱ ⋮

αn-1 βn-1
�� ��

~γ1 :ð Þ ~γ2 :ð Þ … ~γn-1 :ð Þ ~γn :ð Þ

2
6666664

3
7777775

(18)

and the elements ~γi :ð Þ, i ¼ 1,…,n, are given by
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~γi :ð Þ ¼
γi :ð Þ þ δi :ð Þ
�� ��þ τ αij jsup :½ � δi :ð Þj j

1� τ sup :½ � δn :ð Þj j , i ¼ 1,…,n-1

~γn :ð Þ ¼ γn :ð Þ þ δn :ð Þ þ
τ sup :½ � δn :ð Þj j γn :ð Þ þ δn :ð Þ�� ��

1� τ sup :½ � δn :ð Þj j þ
Xn

i¼1

τ βi

�� ��sup :½ � δi :ð Þj j
1� τ sup :½ � δn :ð Þj j

8>>>>><
>>>>>:

(19)

Proof:

We use the following vector norm p zð Þ ¼ p1 zð Þ p2 zð Þ p3 zð Þ…pn zð Þ� �0, where

pi zð Þ ¼ zij j, i ¼ 1,…,n-1

pn zð Þ ¼ znj j þ

Xn

i¼1
sup :½ � δi :ð Þj j

1� τ sup :½ � δn :ð Þj j
ð0
�τ

ðt
tþθ

_zi ϑð Þj j dϑdθ

8>>>>><
>>>>>:

(20)

with the condition

τ sup :½ � δn :ð Þj j < 1 (21)

Let V tð Þ be a radially unbounded Lyapunov function given by (Eq. (22)).

V tð Þ ¼ p z tð Þð Þ� �0
;w

D E
¼
Xn
i¼1

wipi z tð Þð Þ (22)

where w∈Rn
þ,wi > 0, i ¼ 1,…,n. First, note that

V t0ð Þ ≤
Xn
i¼1

wi zi t0ð Þj j þwn zn t0ð Þj j þ
sup :½ � jδn :ð Þjð Þ

1-τ sup :½ � jδn :ð Þjð Þ sup-τ;0½ �
_φn

�� �� τ2
2

 !
≔r < þ∞

and

V tð Þ ≥
Xn
i¼1

wi zi tð Þj j

The right Dini derivative of V tð Þ, along the solution of (Eq. (22)), gives

DþV tð Þ ¼
Xn
i¼1

wi
dþpi z tð Þð Þ

dtþ
(23)

For clarification reasons, each element of dþpi z tð Þð Þ
dtþ , i = 1, …, n is calculated separately. Let us

begin with the first n-1ð Þ elements. Because zij j ¼ zisign zið Þ, we can write, for i ¼ 1,…,n-1,
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dþpi z tð Þð Þ
dtþ

¼ dþ zi tð Þj j
dtþ

¼ dþzi tð Þ
dtþ

sign zi tð Þð Þ

¼ αi zi tð Þj j þ βizn tð Þsign zi tð Þð Þ
≤αi zi tð Þj j þ βi

�� �� zn tð Þj j

(24)

and

dþpn zð Þ
dtþ

¼ dþ znj j
dtþ

þ
Pn
i¼1

sup :½ � δi :ð Þj j
1-τ sup :½ � δn :ð Þj j

dþ

dtþ

ð0
-τ

ðt
tþθ

_zi υð Þj j dυdθ (25)

because

Pn
i¼1

sup :½ � δi :ð Þj j
1� τ sup :½ � δn :ð Þj j

dþ

dtþ

ð0
�τ

ðt
tþθ

_zi ϑð Þj j dϑdθ ¼

Pn
i¼1

sup :½ � δi :ð Þj j
1-τ sup :½ � jδn :ð Þjð Þ τ _zi tð Þj j �

ðt
t�τ

_zi ϑð Þj jdϑ
� �

and

dþ zn tð Þj j
dtþ

≤ γn :ð Þ þ δn :ð Þ� �
zn tð Þj j þ

Xn-1
i¼1

γi :ð Þ þ δi :ð Þ
�� �� zi tð Þj j þ

Xn
i¼1

sup :½ � δi :ð Þj j
ðt
t-τ

_zi θð Þj jdθ

Finally, it is easy to see that equation (Eq. (25)) can be overvalued by the following one

dþpn zð Þ
dtþ

≤
Xn
i¼1

~γi :ð Þ zij j

Then we obtain the following inequality

DþV tð Þ < ~F :ð Þ z tð Þj j;wi�
(26)

where z tð Þj j ¼ z1 tð Þj j … zn tð Þj jð Þ0, and

~F :ð Þ ¼

α1 β1

�� ��
α2 β2

�� ��
⋱ ⋮

αn-1 βn-1
�� ��

~γ1 :ð Þ ~γ2 :ð Þ … ~γn-1 :ð Þ ~γn :ð Þ

2
6666664

3
7777775

(27)

Because the nonlinear elements of ~F :ð Þ are isolated in the last row, the eigenvector v t; xt;ϖð Þ
relative to the eigenvalue λm is constant [34, 35], where λm is such that Re λmð Þ ¼
maxi Re λið Þ;λi ∈λ ~F :ð ÞÞ� ��

. Then, in order to have DþV tð Þ < 0, it is sufficient to have ~F :ð Þ as
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~γi :ð Þ ¼
γi :ð Þ þ δi :ð Þ
�� ��þ τ αij jsup :½ � δi :ð Þj j

1� τ sup :½ � δn :ð Þj j , i ¼ 1,…,n-1

~γn :ð Þ ¼ γn :ð Þ þ δn :ð Þ þ
τ sup :½ � δn :ð Þj j γn :ð Þ þ δn :ð Þ�� ��

1� τ sup :½ � δn :ð Þj j þ
Xn

i¼1

τ βi

�� ��sup :½ � δi :ð Þj j
1� τ sup :½ � δn :ð Þj j

8>>>>><
>>>>>:

(19)

Proof:

We use the following vector norm p zð Þ ¼ p1 zð Þ p2 zð Þ p3 zð Þ…pn zð Þ� �0, where

pi zð Þ ¼ zij j, i ¼ 1,…,n-1

pn zð Þ ¼ znj j þ

Xn

i¼1
sup :½ � δi :ð Þj j

1� τ sup :½ � δn :ð Þj j
ð0
�τ

ðt
tþθ

_zi ϑð Þj j dϑdθ

8>>>>><
>>>>>:

(20)

with the condition

τ sup :½ � δn :ð Þj j < 1 (21)

Let V tð Þ be a radially unbounded Lyapunov function given by (Eq. (22)).

V tð Þ ¼ p z tð Þð Þ� �0
;w

D E
¼
Xn
i¼1

wipi z tð Þð Þ (22)

where w∈Rn
þ,wi > 0, i ¼ 1,…,n. First, note that

V t0ð Þ ≤
Xn
i¼1

wi zi t0ð Þj j þwn zn t0ð Þj j þ
sup :½ � jδn :ð Þjð Þ

1-τ sup :½ � jδn :ð Þjð Þ sup-τ;0½ �
_φn

�� �� τ2
2

 !
≔r < þ∞

and

V tð Þ ≥
Xn
i¼1

wi zi tð Þj j

The right Dini derivative of V tð Þ, along the solution of (Eq. (22)), gives

DþV tð Þ ¼
Xn
i¼1

wi
dþpi z tð Þð Þ

dtþ
(23)

For clarification reasons, each element of dþpi z tð Þð Þ
dtþ , i = 1, …, n is calculated separately. Let us

begin with the first n-1ð Þ elements. Because zij j ¼ zisign zið Þ, we can write, for i ¼ 1,…,n-1,
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dþpi z tð Þð Þ
dtþ

¼ dþ zi tð Þj j
dtþ

¼ dþzi tð Þ
dtþ

sign zi tð Þð Þ

¼ αi zi tð Þj j þ βizn tð Þsign zi tð Þð Þ
≤αi zi tð Þj j þ βi

�� �� zn tð Þj j

(24)

and

dþpn zð Þ
dtþ

¼ dþ znj j
dtþ

þ
Pn
i¼1

sup :½ � δi :ð Þj j
1-τ sup :½ � δn :ð Þj j

dþ

dtþ

ð0
-τ

ðt
tþθ

_zi υð Þj j dυdθ (25)

because

Pn
i¼1

sup :½ � δi :ð Þj j
1� τ sup :½ � δn :ð Þj j

dþ

dtþ

ð0
�τ

ðt
tþθ

_zi ϑð Þj j dϑdθ ¼

Pn
i¼1

sup :½ � δi :ð Þj j
1-τ sup :½ � jδn :ð Þjð Þ τ _zi tð Þj j �

ðt
t�τ

_zi ϑð Þj jdϑ
� �

and

dþ zn tð Þj j
dtþ

≤ γn :ð Þ þ δn :ð Þ� �
zn tð Þj j þ

Xn-1
i¼1

γi :ð Þ þ δi :ð Þ
�� �� zi tð Þj j þ

Xn
i¼1

sup :½ � δi :ð Þj j
ðt
t-τ

_zi θð Þj jdθ

Finally, it is easy to see that equation (Eq. (25)) can be overvalued by the following one

dþpn zð Þ
dtþ

≤
Xn
i¼1

~γi :ð Þ zij j

Then we obtain the following inequality

DþV tð Þ < ~F :ð Þ z tð Þj j;wi�
(26)

where z tð Þj j ¼ z1 tð Þj j … zn tð Þj jð Þ0, and

~F :ð Þ ¼

α1 β1

�� ��
α2 β2

�� ��
⋱ ⋮

αn-1 βn-1
�� ��

~γ1 :ð Þ ~γ2 :ð Þ … ~γn-1 :ð Þ ~γn :ð Þ

2
6666664

3
7777775

(27)

Because the nonlinear elements of ~F :ð Þ are isolated in the last row, the eigenvector v t; xt;ϖð Þ
relative to the eigenvalue λm is constant [34, 35], where λm is such that Re λmð Þ ¼
maxi Re λið Þ;λi ∈λ ~F :ð ÞÞ� ��

. Then, in order to have DþV tð Þ < 0, it is sufficient to have ~F :ð Þ as
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the opposite of an M-matrix. Indeed, according to properties of M-matrices, we have

∀σ∈R∗n
þ , ∃w∈R∗n

þ such that - ~F0 :ð Þ� �-1
σ ¼ w. This enables us to write the following equation

DþV tð Þ < ~F :ð Þ z tð Þj j� �0
;w

D E
¼ z tð Þj j0; ~F0 :ð Þw� � ¼ z tð Þj j0;�σ� � ¼ �

Xn

i¼1
σi zi tð Þj j < 0 (28)

This completes the proof of theorem.

Corollary 2.1. The system (Eq. (1)) is asymptotically stable, if there exist distinct parameters
αi < 0, i ¼ 1,…,n-1, such that the following condition:

μ :ð Þ þ 2τν :ð Þ � ξ :ð Þ < 0 (29)

is satisfied.

where:

μ :ð Þ ¼ γn :ð Þ þ δn :ð Þ þ τ sup :½ � δn :ð Þj j γn :ð Þ þ δn :ð Þ�� ��� γn :ð Þ þ δn :ð Þ� �� �

ν :ð Þ ¼
Xn�1

i¼1
βi

�� ��sup :½ � δi :ð Þj j

ξ :ð Þ ¼
Xn�1

i¼1

γi :ð Þ þ δi :ð Þ
�� �� βi

�� ��
αi

þ

8>>>>>>>>><
>>>>>>>>>:

(30)

Proof:

Basing on definition 1 and definition 2, the choice of αk < 0, k ¼ 1,…,n-1, αi 6¼ αj for i 6¼ j, the
condition of signs on the principal minors is as follows

det
-α1 0

⋱
0 -αi

0
B@

1
CA > 0 , i ¼ 1; 2; 3;…;n-1ð Þ (31)

and

det -~F :ð ÞÞ ¼ - ~γn :ð Þ-
Xn-1
i¼1

~γi :ð Þ βi

�� ��
αi

 !Yn-1
i¼1

-αið Þ > 0

 
(32)

which yields to the following condition

~γn :ð Þ-
Xn-1
i¼1

~γi :ð Þ βi

�� ��
αi

< 0 (33)

Replacing each term in (Eq. (33)) of by its expression we get

Nonlinear Systems - Modeling, Estimation, and Stability226

~γn :ð Þ-
Xn-1
i¼1

~γi :ð Þ βi

�� ��
αi

≔γn :ð Þ þ δn :ð Þ þ
τ sup

:½ �
∣δn :ð Þkγn :ð Þ þ δn :ð Þ∣

1� τ sup
:½ �

∣δn :ð Þ∣ þ
τ
Xn�1

i¼1
∣βi∣ sup

:½ �
∣δi :ð Þ∣

1� τ sup
:½ �

∣δn :ð Þ∣

�
Xn�1

i¼1

jγi :ð Þ þ δi :ð Þj þ τjαij sup
:½ �
jδi :ð Þj

 !
∣βi∣

1� τ sup
:½ �
jδn :ð Þj

 !
αi

¼ 1� 2 sup
:½ �
jδn :ð Þj

 !
γn :ð Þ þ δn :ð Þ� �þ τ

Xn�1

i¼1
∣βi∣ sup

:½ �
∣δi :ð Þ∣

�
Xn�1

i¼1

jγi :ð Þ þ δi :ð Þj � ταi sup
:½ �
jδi :ð Þj

 !
∣βi∣

αi

which can be re-written as:

μ :ð Þ þ τ ν :ð Þ �
Xn�1

i¼1

∣γi :ð Þ þ δi :ð Þkβi∣
αi

�
Xn�1

i¼1

�ταi sup
:½ �

∣δi :ð Þkβi∣

αi

¼ μ :ð Þ þ τ ν :ð Þ � ξ :ð Þ þ τ ν :ð Þ
¼ μ :ð Þ þ 2τ ν :ð Þ � ξ :ð Þ

where:

μ :ð Þ ¼ ð1� 2τ sup
:½ �

δn :ð Þð Þ γn :ð Þ þ δn :ð Þ� �

ν :ð Þ ¼
Xn�1

i¼1
∣βi∣ sup

:½ �
∣δi :ð Þ∣

ξ :ð Þ ¼
Xn�1

i¼1

∣γi :ð Þ þ δi :ð Þkβi∣
αi

8>>>>>>>>><
>>>>>>>>>:

which completes the proof.

Remark 2.1. If the couple pA s; :ð Þ þ pB s; :ð Þ;Q sð Þ� �
forms a positive pair, then there exist

distinct negative parameters αi, i ¼ 1,…,n-1, verifying the condition γi :ð Þ þ δi :ð Þ
� �

βi > 0 for
i ¼ 1,…,n-1.

Using Theorem 2.1 and Remark 2.1, the obtained supremum of time delay is a function of αi

values, i ¼ 1,…,n-1. As a result, a sufficient condition for asymptotic stability of our system is
when values of the time delay are less than this supremum.
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the opposite of an M-matrix. Indeed, according to properties of M-matrices, we have

∀σ∈R∗n
þ , ∃w∈R∗n

þ such that - ~F0 :ð Þ� �-1
σ ¼ w. This enables us to write the following equation

DþV tð Þ < ~F :ð Þ z tð Þj j� �0
;w

D E
¼ z tð Þj j0; ~F0 :ð Þw� � ¼ z tð Þj j0;�σ� � ¼ �

Xn

i¼1
σi zi tð Þj j < 0 (28)
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μ :ð Þ ¼ γn :ð Þ þ δn :ð Þ þ τ sup :½ � δn :ð Þj j γn :ð Þ þ δn :ð Þ�� ��� γn :ð Þ þ δn :ð Þ� �� �

ν :ð Þ ¼
Xn�1

i¼1
βi

�� ��sup :½ � δi :ð Þj j

ξ :ð Þ ¼
Xn�1

i¼1

γi :ð Þ þ δi :ð Þ
�� �� βi

�� ��
αi

þ

8>>>>>>>>><
>>>>>>>>>:

(30)

Proof:
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det
-α1 0

⋱
0 -αi

0
B@

1
CA > 0 , i ¼ 1; 2; 3;…;n-1ð Þ (31)

and

det -~F :ð ÞÞ ¼ - ~γn :ð Þ-
Xn-1
i¼1

~γi :ð Þ βi

�� ��
αi

 !Yn-1
i¼1

-αið Þ > 0

 
(32)
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~γn :ð Þ-
Xn-1
i¼1

~γi :ð Þ βi

�� ��
αi

< 0 (33)
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Xn-1
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�� ��
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τ sup

:½ �
∣δn :ð Þkγn :ð Þ þ δn :ð Þ∣

1� τ sup
:½ �

∣δn :ð Þ∣ þ
τ
Xn�1

i¼1
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:½ �
∣δi :ð Þ∣

1� τ sup
:½ �

∣δn :ð Þ∣

�
Xn�1

i¼1

jγi :ð Þ þ δi :ð Þj þ τjαij sup
:½ �
jδi :ð Þj

 !
∣βi∣

1� τ sup
:½ �
jδn :ð Þj

 !
αi

¼ 1� 2 sup
:½ �
jδn :ð Þj

 !
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∣δi :ð Þ∣

�
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Using Theorem 2.1 and Remark 2.1, the obtained supremum of time delay is a function of αi
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Corollary 2.1. If the couple D s; :ð Þ þN s; :ð Þ;Q sð Þð Þ forms a positive pair and there exist distinct
negative parameters αi, i ¼ 1,…,n-1, such that:

2τ γn :ð Þ þ δn :ð Þ� �
sup :½ � δn :ð Þj j-ν :ð Þ� �þD 0; :ð Þ þN 0; :ð Þ

Q 0ð Þ > 0 (34)

then the system (Eq. (1)) is asymptotically stable.

Proof.

According to Remark 2.1, we find that

γn :ð Þ þ δn :ð Þ-
Xn-1
j¼1

γj :ð Þ þ δj :ð Þ
���

��� βj

���
���

αj
¼ γn :ð Þ þ δn :ð Þ-

Xn-1
j¼1

γj :ð Þ þ δj :ð Þ
� �

βj

αj

¼ -
D 0; :ð Þ þN 0; :ð Þ

Q 0ð Þ

The result of Theorem 2.1 becomes

2τ γn :ð Þ þ δn :ð Þ� �
sup :½ � δn :ð Þj j-ν :ð Þ� �þD 0; :ð Þ þN 0; :ð Þ

Q 0ð Þ > 0

This completes the proof of corollary.

Remark 2.2

• Theorem 2.1 depends on the new basis change, where parameters αi of the matrix P are
arbitrary chosen such that matrix T :ð Þ is the opposite of an M-matrix. The appropriate
choice of the set of free parameters αi makes the given stability conditions satisfied.

• The theorem takes into account the fact that delayed terms may stabilize our system.
Theorem 2.1 can hold even if pA s; :ð Þ is unstable. This is another advantage as the majority
of previously published results assume that pA s; :ð Þ is linear and stable.

4. Application to delayed nonlinear nth order all pole plant

Consider the complex system S given in Figure 1.

D sð Þ ¼ pA sð Þ defined by (Eq. (11)) and pB sð Þ ¼ 1, respectively. In this case ~f i :ð Þ are constants
and g is a function satisfying the finite sector condition.

Let bg be a function defined as follows
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bg e θð Þ; y θð Þð Þ ¼ g e θð Þ � y θð Þð Þ
e θð Þ � y θð Þ , e θð Þ 6¼ y θð Þ ∀θ∈ �τþ ∞½½ (35)

sup
:½ �

∣bg e tð Þ; y tð Þð Þ∣ ¼ g∈R∗
þ:

The presence of delay in the system of Figure 1 makes stability study difficult. The following
steps show how to represent this system in the form of system (Eq. (1)). Then we can write

y nð Þ tð Þ þ
Xn�1

i¼0
ai
diy tð Þ
dti
¼ �bg e t� τð Þ; y t� τð Þð Þy t� τð Þ þ bg e t� τð Þ; y t� τð Þð Þe t� τð Þ:

Using the following notation bg :ð Þ ¼ bg e t� τð Þ; bx t� τð Þð Þ, therefore

y nð Þ tð Þ þ
Xn�1

i¼0
aiy ið Þ tð Þ þ bg :ð Þy t� τð Þ ¼ bg :ð Þe t� τð Þ: (36)

It is clear that system (Eq. (36)) is equivalent to system (Eq. (1)) in the special cases e θð Þ ¼ 0 and

e θð Þ ¼ �Kx θð Þ, x tð Þ ¼ y tð Þ; _y tð Þ;…; y nð Þ tð Þ� �0
, ∀ θ∈ �τþ ∞½½ . We will now consider each case

separately.

4.1. Case e tð Þ ¼ 0

In case, e tð Þ ¼ 0 ∀t∈ �τþ ∞½½ , the description of the system becomes

y nð Þ tð Þ þ
Xn�1

i¼0
aiy ið Þ tð Þ þ bg :ð Þy t� τð Þ ¼ 0:

This is a special representation of system (Eq. (1)) where ~f i :ð Þ ¼ ai, ~g1 :ð Þ ¼ bg :ð Þ ~gi :ð Þ ¼ 0 ∀

i ¼ 2,…, n� 1, D s; :ð Þ ¼ D sð Þ, N s; :ð Þ ¼ bg :ð Þ, γn :ð Þ ¼ γn ¼ �an�1 �
Pn�1
i¼1

αi and δn :ð Þ ¼ 0.

Figure 1. Block diagram of studied system.
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According to Remark 2.1, we find that

γn :ð Þ þ δn :ð Þ-
Xn-1
j¼1

γj :ð Þ þ δj :ð Þ
���
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���
���
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� �
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The result of Theorem 2.1 becomes

2τ γn :ð Þ þ δn :ð Þ� �
sup :½ � δn :ð Þj j-ν :ð Þ� �þD 0; :ð Þ þN 0; :ð Þ

Q 0ð Þ > 0

This completes the proof of corollary.

Remark 2.2

• Theorem 2.1 depends on the new basis change, where parameters αi of the matrix P are
arbitrary chosen such that matrix T :ð Þ is the opposite of an M-matrix. The appropriate
choice of the set of free parameters αi makes the given stability conditions satisfied.

• The theorem takes into account the fact that delayed terms may stabilize our system.
Theorem 2.1 can hold even if pA s; :ð Þ is unstable. This is another advantage as the majority
of previously published results assume that pA s; :ð Þ is linear and stable.

4. Application to delayed nonlinear nth order all pole plant

Consider the complex system S given in Figure 1.

D sð Þ ¼ pA sð Þ defined by (Eq. (11)) and pB sð Þ ¼ 1, respectively. In this case ~f i :ð Þ are constants
and g is a function satisfying the finite sector condition.

Let bg be a function defined as follows
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e θð Þ � y θð Þ , e θð Þ 6¼ y θð Þ ∀θ∈ �τþ ∞½½ (35)

sup
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∣bg e tð Þ; y tð Þð Þ∣ ¼ g∈R∗
þ:

The presence of delay in the system of Figure 1 makes stability study difficult. The following
steps show how to represent this system in the form of system (Eq. (1)). Then we can write
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¼ �bg e t� τð Þ; y t� τð Þð Þy t� τð Þ þ bg e t� τð Þ; y t� τð Þð Þe t� τð Þ:

Using the following notation bg :ð Þ ¼ bg e t� τð Þ; bx t� τð Þð Þ, therefore

y nð Þ tð Þ þ
Xn�1

i¼0
aiy ið Þ tð Þ þ bg :ð Þy t� τð Þ ¼ bg :ð Þe t� τð Þ: (36)

It is clear that system (Eq. (36)) is equivalent to system (Eq. (1)) in the special cases e θð Þ ¼ 0 and

e θð Þ ¼ �Kx θð Þ, x tð Þ ¼ y tð Þ; _y tð Þ;…; y nð Þ tð Þ� �0
, ∀ θ∈ �τþ ∞½½ . We will now consider each case

separately.

4.1. Case e tð Þ ¼ 0

In case, e tð Þ ¼ 0 ∀t∈ �τþ ∞½½ , the description of the system becomes

y nð Þ tð Þ þ
Xn�1

i¼0
aiy ið Þ tð Þ þ bg :ð Þy t� τð Þ ¼ 0:

This is a special representation of system (Eq. (1)) where ~f i :ð Þ ¼ ai, ~g1 :ð Þ ¼ bg :ð Þ ~gi :ð Þ ¼ 0 ∀

i ¼ 2,…, n� 1, D s; :ð Þ ¼ D sð Þ, N s; :ð Þ ¼ bg :ð Þ, γn :ð Þ ¼ γn ¼ �an�1 �
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i¼1
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Figure 1. Block diagram of studied system.

Stability Conditions for a Class of Nonlinear Systems with Delay
http://dx.doi.org/10.5772/intechopen.76600

229



A sufficient stability condition for this system is given in the following proposition.

Proposition 4.1. If there exist distinct αi < 0 i ¼ 1,…, n� 1, such that the following conditions

γn < 0
μ1 :ð Þ þ 2τν1 :ð Þ � ξ1 :ð Þ < 0

�
(37)

where

μ1 :ð Þ ¼ γn

ν1 :ð Þ ¼ g

ξ1 :ð Þ ¼ ∣D α1ð Þ þ bg :ð Þkβ1∣
α1

þ
Xn�1

i¼2

∣D αið Þkβi∣
αi

8>>>><
>>>>:

(38)

are satisfied. Then the system S is asymptotically stable.

Suppose that D sð Þ admits n distinct real roots pi, i ¼ 1,…, n among which there are n� 1

negative ones. By using the fact that an�1 ¼ �
Pn
i¼1

pi, then the choice αi ¼ pi, ∀i ¼ 1, ::, n� 2 and

αn�1 ¼ pn�1 þ ε permit us to write γn ¼ �an�1 �
Pn�1
i¼1

pi ¼ pn � ε. In this case the last proposition

becomes.

Proposition 4.2. If D sð Þ admits n� 1 distinct real negative roots such that the following
conditions

pn � ε < 0
μ2 :ð Þ þ 2τν2 :ð Þ � ξ2 :ð Þ < 0

�
(39)

are satisfied, where

μ2 :ð Þ ¼ pn � ε

ν2 :ð Þ ¼ g

ξ2 :ð Þ ¼ ∣bg :ð Þkβ1∣
α1

þ ∣D αn�1ð Þkβn�1∣
αn�1

8>>><
>>>:

(40)

then the system S is asymptotically stable.

4.2. Case e tð Þ ¼ �Kx tð Þ

In this case, take e tð Þ ¼ �Kx tð Þ with K ¼ k0; k1;…; kn�1ð Þ, then the obtained system has the

same form as (Eq. (1)), with bgK1 :ð Þ ¼ bgK :ð Þ k0 þ 1ð Þ and bgKi :ð Þ ¼ bgK :ð Þki�1, i ¼ 2,…, n.
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The stabilizing values of K can be obtained by making the following changes:

γn ¼ �an�1 �
Xn�1

i¼1
αi, δKn :ð Þ ¼ �bgK :ð Þkn�1, νK1 :ð Þ ¼ gK

Xn�1

i¼1
~N αið Þjwhere gK ¼ sup

:½ �
∣bgK :ð Þ∣

�����

and ~N αð Þ ¼ 1þ k0ð Þ þ
Xn�1

i¼1
bi þ kið Þαi:

Proposition 4.3. If there exist distinct αi < 0, i ¼ 1,…, n� 1, such that the following conditions

γn � bgK :ð Þkn�1 < 0

τ <
1

2gK∣kn�1∣

μK
1 :ð Þ þ 2τνK1 :ð Þ � ξk1 :ð Þ < 0

8>>>>><
>>>>>:

(41)

where

μK
1 :ð Þ ¼ 1� 2gKτjkn�1j

� �
γn þ δKn :ð Þ� �

νK1 :ð Þ ¼ gK
Xn�1

i¼1
∣βik ~N αið Þ∣

ξK1 :ð Þ ¼
Xn�1

i¼1
∣D αið Þ þ bgK :ð Þ

~N αið Þkβi∣
αi

8>>>>>>>>><
>>>>>>>>>:

(42)

are satisfied. Then the system S is asymptotically stable.

By a special choice of K the result of proposition 3.3 can be simplified. In fact, if the conditions
of this proposition are verified we can choose the vector K such that D pi

� � ¼ ~N pi
� �

. In this case

we obtain D pi
� � ¼ ~N pi

� � ¼ 0, ∀ i ¼ 1,…, n� 1 and ν1 :ð Þ ¼ ξ1 :ð Þ ¼ 0 which yields the following
new proposition.

Proposition 4.4. If D sð Þ admits n� 1 distinct real negative roots pi such that the following
conditions are satisfied.

γn � bgK :ð Þkn�1 < 0

τ <
1

2gK∣kn�1∣

μK
1 :ð Þ < 0

8>>>>><
>>>>>:

(43)

Then the system S is asymptotically stable.
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are satisfied. Then the system S is asymptotically stable.
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of this proposition are verified we can choose the vector K such that D pi

� � ¼ ~N pi
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. In this case
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5. Illustrative example

Let us study the same example in [34] defined by Figure 2 which refer to the dynamics of a
time-delayed DC motor speed control system with nonlinear gain, Block diagram of time-
delayed DC motor speed control system with nonlinear gain.

where:

• p1 ¼ 1
Te
and p2 ¼ 1

Tm
where Te and Tm are, respectively, electrical constant and mechanical

constant.

• τf presents the feedback delay between the output and the controller. This delay repre-
sents the measurement and communication delays (sensor-to-controller delay).

• τc the controller processing and communication delay (controller-to-actuator delay) is
placed in the feedforward part between the controller and the DC motor.

• g :ð Þ : R! R is a function that represents a nonlinear gain.

The process of Figure 2 can also be modeled by Figure 1, where τ ¼ τf þ τc.
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By applying the control e tð Þ ¼ �Kx tð Þ with K ¼ k0; k1; k2ð Þ, we can determine the stabilizing
values of K can be obtained by making the following changes:
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∣k2∣ <
1
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8><
>:

(45)

Finally we find the domain of stabilizing k0, k1, k2 as follows:
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0 < k2 <
1

2τgK

k1 ¼ p1p2k2
and
k0 ¼ p1 þ p2

� �
k2 � 1

8>>>>><
>>>>>:

(46)

6. Conclusion

In this chapter, a joined and structured procedure for the analysis of delayed nonlinear systems
is proven. A complete structured analysis formulation based on the comparison principle and
vector norms for the asymptotic stability is presented. Based on the arrow form matrices, and
by taking into account for the system parameters, a new stability conditions are synthesized,
leading to a practical estimation of the stability domain. In order to highlight the feasibility and
the main capabilities of the proposed approach, the case of nonlinear nth order all pole plant
and delayed Lur’e Postnikov systems are presented and discussed. In addition, the simplicity
of the application of these criteria is demonstrated on model of time-delayed DC motor speed
control.
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Abstract

We present a case study of the FitzHugh–Nagumo (FHN) type model with a strongly
asymmetric activation function. The proposed model is an electronically rather than a
biologically inspired approach. The asymmetric exponential model imitates the shape of
spikes in real neurons better than the classical FHN model with a cubic van der Pol
activation function. An array of mean-field coupled non-identical FHN type oscillators is
considered. The effect of mutual synchronization (phase locking) of units, originally
oscillating at their individual frequencies, is demonstrated. Several feedback control
methods, including stable tracking filter technique, mean field nullifying, and repulsive
coupling are shown either to stabilize unstable equilibrium states or to suppress syn-
chrony of the coupled FHN oscillators. The stability of the equilibrium states is analyzed
by employing the eigenvalues, obtained from the characteristic equation, and by using the
diagonal minors of the Routh–Hurwitz matrix. Nonlinear differential equations are solved
numerically.

Keywords: nonlinear dynamics, spiking neuron model, FitzHugh�Nagumo oscillator,
arrays of coupled oscillators, equilibrium states, synchronization, control methods

1. Introduction

The stability of any either natural or artificial system is a valuable and desired property.
Therefore, the control of dynamical systems, in particular stabilization of their unstable equi-
librium (UEQ) states, is an important problem in basic science and engineering applications,
if periodic or chaotic oscillations are unacceptable behaviors. Usual control methods, based
on proportional feedback control [1, 2] require knowledge of a mathematical model of a
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dynamical system or at least the exact coordinates of the UEQ in the phase space for the
reference point. However, in many real complex systems, especially in biology, physiology,
economics, sociology, and chemistry neither the full reliable models nor the exact coordinates
of the UEQ are a priori known. Moreover, the position of the UEQ may change with time
because of external unknown and unpredictable forces. In these cases, adaptive, that is model-
independent and reference-free methods, automatically tracing and stabilizing unknown UEQ,
can be helpful [3–5].

Synchronization is a universal and very common phenomenon, widely observed in nature,
science, engineering, and social life [6]. Coupled oscillators and their arrays, exhibiting syn-
chrony, range from pendulum clocks to various biological populations. In many cases, syn-
chronization plays a positive role. However, sometimes, it has an unfavorable impact. Strong
synchronization of neurons in human brain is an example. It is assumed that synchrony of
spiking neurons in a neuronal population causes the symptoms of the Parkinson’s disease and
essential tremor [7]. Therefore, development of the methods and practical techniques for
controlling, more specifically, for suppressing synchrony of coupled oscillators, in general,
and particularly with possible application to neuronal arrays, is of great importance [8–10].

A variety of adaptive feedback methods for stabilizing UEQ of nonlinear dynamical systems
have been described in literature. Here, we mention only some of them, e.g., derivative control
technique [11–13], stable filter technique [3, 4, 14–17], unstable filter technique [18–20], and
combined filters techniques [21–23]. A comprehensive list and an overview of control methods
developed to stabilize UEQ states can be found in [24]. We note that the above mentioned
techniques deal with single unstable dynamical systems. Stabilization of a network of coupled
oscillators has been considered in a recent paper [25].

Suppression of synchrony in arrays of oscillators by means of feedback methods has been
described in many papers [7–10, 26–29]. More publications and discussion on the feedback
techniques for control of synchrony are presented in [24, 25].

Another way to avoid synchrony in arrays of oscillators is a non-feedback method using
external periodic drive at relatively high frequency (much higher than the natural frequency
of the oscillators). In neurology, it is known as deep brain stimulation (DBS), applying about
150 Hz periodic pulses to certain brain areas [30]. It is a clinically approved therapy for
patients with the Parkinson’s disease symptoms. However, mechanism of the DBS is not fully
understood. There are several papers considering the Hodgkin–Huxley and the FitzHugh–
Nagumo models and demonstrating that high frequency forcing can stabilize the UEQ of the
neuronal oscillators and thus inhibit spiking cells [31–33].

In this chapter, we present a case study of the FitzHugh–Nagumo (FHN) type model with a
strongly asymmetric activation function (Section 2). An array of mean-field coupled non-
identical FHN type oscillators is considered in Section 3. The effect of mutual synchronization
(phase locking) of units originally oscillating at their individual frequencies is demonstrated.
Several feedback control methods, including stable tracking filter technique (Section 4), mean
field nullifying (Section 5), and repulsive coupling (Section 6) are shown either to stabilize
UEQ states or to suppress synchrony of the coupled FHN type oscillators.
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2. Single FHN type oscillator

An extremely simple electrical circuit, imitating a single spiking neuron, is sketched in Figure 1.
The negative resistance Rn can be implemented by means of a negative impedance converter
[34]. Typical train of spikes from its output is presented in Figure 2.

We apply the Kirchhoff’s laws to electrical circuit in Figure 1, use the Shockley current–voltage
characteristic for the diode, and introduce the following dimensionless quantities:

x ¼ VC

V∗ , y ¼ rIL
V∗ , t! tffiffiffiffiffiffi

LC
p , α ¼ r

Rnj j , β ¼ r
r
, γ ¼ Ir

V∗ , δ ¼ ISr
V∗ , μ ¼ qV∗

nkBT
, r ¼

ffiffiffiffi
L
C

r
, (1)

where V* = 1 V, kB is the Boltzmann constant, T is the absolute temperature (in K), q is the
elementary charge, kBT/q is the thermal potential (≈ 25 mVat room temperature, T = 293 K), n is
a diode ideality factor, sometimes called emission coefficient (assumed value n = 2). Then,
differential equations, convenient for analysis and numerical integration, are derived:

_x ¼ F xð Þ � y� γ,
_y ¼ x� βy:

(2)

Activation function F(x) in Eq. (2) is a strongly asymmetric one (Figure 3):

F xð Þ ¼ αxþ δ exp �μx� �� 1
� �

: (3)

Figure 1. Circuit diagram of the electronic analog of spiking neuron. Rn is a negative resistance.

Figure 2. Voltage spikes from the circuit in Figure 1, generated by means of Electronics Workbench Professional software.
Rn = � 680 Ω, D is a semiconductor diode (BAV99 type) with saturation current IS = 10 nA (δ = 10�5), L = 100 mH,
C = 100 nF, (r = 1 kΩ), r = 50 Ω (β = 0.05), I = 1 mA (γ = 1).
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F(x) essentially differs from the odd function FFH(x) = x�x3/3, introduced by FitzHugh [35] and
used in many later papers, e.g., in [28]. It also differs from the asymmetric three-segment
[x < �1, �1≤ x ≤ 1, x > 1] piecewise linear function FPL(x) = αx + d(x + 1)H(�x–1) + g(x–1)H(x–1)
suggested in [36], where d >> g and H(u) is the Heaviside unit step function, i.e., H(u > 0) = 1, H
(u ≤ 0) = 0. In contrast to the FPL(x), the F(x) is a smooth function, and therefore it seems a more
realistic option.

For αβ < 1 and

γ <<
1� αβ
μβ

ln δ�1 (4)

the equilibrium solution of Eq. (2) is given by the fixed point coordinates

x0 ¼ � βγ
1� αβ

, y0 ¼ �
γ

1� αβ
: (5)

Due to the exponent in the activation function F(x), strong inequality (4) practically can be
replaced with a simple inequality:

γ ≤
1� αβ
2μβ

ln δ�1: (6)

Note empiric factor 2 is in the denominator. Eqs. (2), linearized around the fixed point (5), read

_x ¼ αx� y,
_y ¼ x� βy:

(7)

The corresponding characteristic equation is

λ2 � α� β
� �

λþ 1� αβ ¼ 0: (8)

Figure 3. Activation function F(x) from formula (3). α = 1.5, δ = 10�5, and μ = 20. Black dot on the curve marks the
equilibrium coordinate x0 = �0.12 from formula (5) at β = 0.1 and γ = 1.
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It has two eigenvalues

λ1,2 ¼
α� β
� �

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α� β
� �2

4
� 1� αβ
� �

s
¼ α� β
� �

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ β
� �2

4
� 1

s
: (9)

If α > β, then both real parts of the eigenvalues, Reλ1,2 are positive, proving that the equilib-
rium (x0, y0) is an unstable fixed point. If α + β > 2, it is a node, and if α + β < 2, it is a spiral.

Numerical solution of nonlinear equation Eq. (2) is presented in Figure 4.

3. Array of FHN type oscillators

An array of isolated (non-coupled) oscillators is given by

_xi ¼ F xið Þ � yi � γ,
_yi ¼ xi � βiyi,

(10)

F xið Þ ¼ αxi þ δ exp �μxi
� �� 1

� �
: (11)

Here and elsewhere i = 1, 2, …, N. Note that the structure of function F(x) and parameters α, δ,
and μ are the same for all oscillators, whereas the damping parameters βi in Eq. (10) are
intentionally set different for each oscillator to make them slightly non-identical units.

Now we introduce interaction between oscillators. To be specific, we consider mean-field cou-
pling, which is also called “star” coupling in electronics (Figure 5):

Figure 4. Waveforms x(t) from Eq. (2) with α = 1.5, γ = 1, δ = 10�5, and μ = 20 for different damping β. (Top) β = 0.05 and
(bottom) β = 0.1. Note, different inter-spike periods in the two plots.
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_xi ¼ F xið Þ � yi � γþ k xh i � xið Þ,
_yi ¼ xi � βiyi,

(12)

Here, k = r/R* is the strength of coupling and

xh i ¼ 1
N

XN

i¼1
xi: (13)

Typical phase portraits for isolated and coupled (synchronized) oscillators are shown in Figure 6.

Intricate phase trajectories in Figure 6 (left) indicate that the oscillators are not synchronized,
but oscillate at their individual frequencies, whereas simple closed loop in Figure 6 (right)

Figure 5. Diagram of mean-field coupled oscillators. R* are coupling resistors and CN is a coupling node.

Figure 6. Phase portraits. N = 24, α = 1.5, β i = 0.05 + 0.001i, γ = 1, δ = 10�5, and μ = 20. (Left) Isolated oscillators either from
Eq. (10) or Eq. (12) with k = 0, and (right) coupled oscillators from Eq. (12) with k = 1.

Figure 7. Waveform of the mean-field variable <x> from Eq. (12). N = 24, α = 1.5, β i = 0.05 + 0.001i, γ = 1, δ = 10�5, and
μ = 20. Coupling (k = 1) is switched on at t = 100.
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proves that oscillators are in synchrony (phase-locked), i.e., oscillate at the same frequency. For
synchronized oscillators, the phase difference is not necessarily zero (the phase portrait is not
fine diagonal), but it does not change with time. The mean variable <x> for the two cases is
shown in Figure 7. The amplitude of mean-field variable <x> is relatively low for isolated
oscillators (k = 0), but becomes large for synchronized state (k = 1).

4. Stabilizing equilibrium states in array of oscillators

When an external capacitor is applied to the coupling node CN (Figure 8), the overall system
becomes (2 N + 1)-dimensional system:

_xi ¼ F xið Þ � yi � γþ k z� xið Þ,
_yi ¼ xi � βiyi,
_z ¼ ωf xh i � zð Þ:

(14)

Here, z is a dimensionless dynamical variable related to voltage across the external capacitor
C0, z = VC0/V*, the mean <x> is given by formula (13), and ωf is the dimensionless cut-off
frequency of the filter composed by R* and C0.

Analysis of the high-dimensional system is very complicated. Therefore, we consider a mean-
field approach. We average all terms in Eq. (14) over all oscillators i = 1, 2, …, N:

_xh i ¼ Fh i � yh i � γþ k z� xh ið Þ,
_yh i ¼ xh i � βy

� �
,

_z ¼ ωf xh i � zð Þ:
(15)

Here,

xh i ¼ 1
N

XN

i¼1
xi, yh i ¼ 1

N

XN

i¼1
yi, Fh i ¼ 1

N

XN

i¼1
F xið Þ, βy

� � ¼ 1
N

XN

i¼1
βiyi, ωf ¼ N

ffiffiffiffiffiffi
LC
p

R∗C0
: (16)

Figure 8. Diagram of mean-field coupled oscillators with a stabilizing capacitor C0. Stable RC filter is composed of
coupling resistors R* and capacitor C0 (see formulas (16)).
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Eq. (15) is not suitable to describe full dynamics of the system. However, we can exploit it to
find equilibrium coordinates. If inequality (6) is valid for all oscillators with different βi, the
steady-state equations read

0 ¼ x0h i � y0
� �� γþ k z0 � x0h ið Þ,

0 ¼ x0h i � βy0
� �

,
0 ¼ x0h i � z0:

(17)

Here,

x0h i ¼ 1
N

XN

i¼1
x0i, y0

� � ¼ 1
N

XN

i¼1
y0i, βy0

� � ¼ 1
N

XN

i¼1
βiy0i, β

� � ¼ 1
N

XN

i¼1
βi: (18)

There is a problem in Eq. (17) with the term <βy0> βy0
� �

. In general, <βy0> 6¼ <β> < y0>. How-
ever, if the ranges of the multiplicands βi and y0i in (18) are considerably different (in our case,
the individual equilibrium coordinates y0i, in comparison with βi, much weaker depend on i),
then <βy0> ≈ <β> <y0>. Similarly to a single oscillator, considered in Section 2, for αβi < 1, the
equilibrium coordinates are

x0h i ¼ �
β
� �

γ

1� α β
� � , y0

� � ¼ � γ
1� α β

� � , z0 ¼ x0h i: (19)

Linearization of Eqs. (15) around the equilibrium coordinates yields:

_xh i ¼ α xh i � yh i þ k z� xh ið Þ,
_yh i ¼ xh i � β

� �
yh i,

_z ¼ ωf xh i � zð Þ:
(20)

The corresponding characteristic equation is

λ3 þ h2λ2 þ h1λþ h0 ¼ 0, (21)

where

h2 ¼ �αþ β
� �þ kþ ωf , h1 ¼ 1� α β

� �þ β
� �

k� α� β
� �� �

ωf , h0 ¼ 1� α β
� �� �

ωf : (22)

Numerical solution of Eq. (21) is presented in Figure 9 for different values of the coupling
parameter k. The equilibrium is stable, if the real parts of all three eigenvalues are negative,
Reλ1,2,3 < 0.

Necessary and sufficient conditions of stability can be found analytically from the Hurwitz matrix

H ¼
h2 h0 0
1 h1 0
0 h2 h0

0
B@

1
CA: (23)
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The Routh–Hurwitz stability criterion claims that the system is stable, if all diagonal minors of
the matrix H are positive:

Δ1 ¼ h2 > 0, Δ2 ¼ h2h1 � h0 > 0, Δ3 ¼ h0Δ2 > 0: (24)

The first minor is Δ1 > 0, if

k > k1 ¼ α� β
� �� ωf : (25)

For α = 1.5, βi = 0.05 + 0.001i, and ωf = 0.1, the threshold is k1 = 1.34.

The second minor Δ2 is more cumbersome and yields quadratic equation:

β
� �

k2 þ dkþ g ¼ 0: (26)

where

d ¼ 1� 2α β
� �þ β

� �2 � α� 2 β
� �� �

ωf ,

g ¼ � α� β
� �� �

1� α β
� �� α� β

� �� �
ωf þ ω2

f

h i
:

(27)

Eq. (26) has an analytical solution

k2,3 ¼ � d
2 β
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4 β
� �2 �

g
β
� �

vuut , (28)

which provides two different values. For α = 1.5, βi = 0.05 + 0.001i, and ωf = 0.1, the values
are k2 = 1.44 and k3 = �12.3. Eventually, we evaluate the threshold kth = max(k1, k2, k3) = 1.44.
It is in a very good agreement with numerical value of kth obtained from Reλ1,2,3(k)
in Figure 9.

Figure 9. Real parts of the eigenvalues from Eq. (21). N = 24, α = 1.5, βi = 0.05 + 0.001i, <β> = 0.0625, and ωf = 0.1. Arrow in
the plot indicates the threshold coupling parameter kth = 1.44, where the largest eigenvalues become negative.
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Eq. (15) is not suitable to describe full dynamics of the system. However, we can exploit it to
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steady-state equations read

0 ¼ x0h i � y0
� �� γþ k z0 � x0h ið Þ,

0 ¼ x0h i � βy0
� �

,
0 ¼ x0h i � z0:

(17)

Here,

x0h i ¼ 1
N

XN

i¼1
x0i, y0

� � ¼ 1
N

XN

i¼1
y0i, βy0

� � ¼ 1
N

XN

i¼1
βiy0i, β

� � ¼ 1
N

XN

i¼1
βi: (18)

There is a problem in Eq. (17) with the term <βy0> βy0
� �

. In general, <βy0> 6¼ <β> < y0>. How-
ever, if the ranges of the multiplicands βi and y0i in (18) are considerably different (in our case,
the individual equilibrium coordinates y0i, in comparison with βi, much weaker depend on i),
then <βy0> ≈ <β> <y0>. Similarly to a single oscillator, considered in Section 2, for αβi < 1, the
equilibrium coordinates are

x0h i ¼ �
β
� �

γ

1� α β
� � , y0

� � ¼ � γ
1� α β

� � , z0 ¼ x0h i: (19)

Linearization of Eqs. (15) around the equilibrium coordinates yields:

_xh i ¼ α xh i � yh i þ k z� xh ið Þ,
_yh i ¼ xh i � β

� �
yh i,

_z ¼ ωf xh i � zð Þ:
(20)

The corresponding characteristic equation is

λ3 þ h2λ2 þ h1λþ h0 ¼ 0, (21)

where

h2 ¼ �αþ β
� �þ kþ ωf , h1 ¼ 1� α β

� �þ β
� �

k� α� β
� �� �

ωf , h0 ¼ 1� α β
� �� �

ωf : (22)

Numerical solution of Eq. (21) is presented in Figure 9 for different values of the coupling
parameter k. The equilibrium is stable, if the real parts of all three eigenvalues are negative,
Reλ1,2,3 < 0.

Necessary and sufficient conditions of stability can be found analytically from the Hurwitz matrix

H ¼
h2 h0 0
1 h1 0
0 h2 h0

0
B@

1
CA: (23)
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The Routh–Hurwitz stability criterion claims that the system is stable, if all diagonal minors of
the matrix H are positive:
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The first minor is Δ1 > 0, if

k > k1 ¼ α� β
� �� ωf : (25)

For α = 1.5, βi = 0.05 + 0.001i, and ωf = 0.1, the threshold is k1 = 1.34.

The second minor Δ2 is more cumbersome and yields quadratic equation:

β
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� �þ β

� �2 � α� 2 β
� �� �

ωf ,

g ¼ � α� β
� �� �

1� α β
� �� α� β

� �� �
ωf þ ω2

f

h i
:

(27)

Eq. (26) has an analytical solution

k2,3 ¼ � d
2 β
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4 β
� �2 �

g
β
� �

vuut , (28)

which provides two different values. For α = 1.5, βi = 0.05 + 0.001i, and ωf = 0.1, the values
are k2 = 1.44 and k3 = �12.3. Eventually, we evaluate the threshold kth = max(k1, k2, k3) = 1.44.
It is in a very good agreement with numerical value of kth obtained from Reλ1,2,3(k)
in Figure 9.
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Once Δ2 > 0, the inequality for the third minor Δ3 > 0 can be replaced simply with h0 > 0. This
can be further simplified to (1–α<β>) > 0, since ωf > 0 by definition. Finally, we come to
inequality α<β> <1, which satisfied by itself, because it was already used as an assumption to
derive the equilibrium coordinates; see formulas (19).

Numerical results from Eqs. (14), demonstrating dynamics of equilibrium stabilization, are
presented in Figure 10.

5. Mean-field “nullifying” technique

A straightforward way to desynchronize the mean-field coupled oscillators is to “nullify” the
mean field at the coupling node CN, i.e., to remove the reason of synchronization. The
corresponding diagram is shown in Figure 11.

We repeat here Eq. (12) from Section 3 for clarity and for comparison with Eq. (30):

_xi ¼ F xið Þ � yi � γþ k xh i � xið Þ,
_yi ¼ xi � βiyi

and emphasize that the mean-field value <x> by itself is not zero:

xh i ¼ 1
N

XN

i¼1
xi 6¼ 0: (29)

The control technique implicates that the mean-field variable <x> is not fully nullified, but its
value at the coupling node CN, <x> CN is set zero:

Figure 10. Waveforms from Eq. (14). N = 24, α = 1.5, βi = 0.05 + 0.001i, γ = 1, δ = 10�5, μ = 20, ωf = 0.1, and k = 1.6. (Top)
Mean-field variable <x>, (bottom) control term z – <x>. Control is switched on at t = 300 (<x> in the coupling term is
replaced with z).

Nonlinear Systems - Modeling, Estimation, and Stability246

_xi ¼ F xið Þ � yi � γþ k 0� xið Þ,
_yi ¼ xi � βiyi:

(30)

The coupling node is simply grounded, as sketched in Figure 11. Numerical results are shown
in Figure 12. Note that when the control is switched on, the value of actual mean-field variable
<x> becomes relatively small, but is not zero.

6. Repulsive coupling technique

An alternative method of desynchronization of coupled oscillators is the repulsive coupling,
also called “repulsive synchronization” technique [26]. Diagram is sketched in Figure 13.

Voltage at the coupling node xCN is found from the Kirchhoff’s law for current:

XN

i¼1
k xi � xCNð Þ � GxCN ¼ 0, (31)

xCN ¼ VCN

V∗ , G ¼ r

Rn
: (32)

Figure 12. Waveform of the mean-field variable <x> from Eq. (30). N = 24, α = 1.5, βi = 0.05 + 0.001i, γ = 1, δ = 10�5, μ = 20,
and k = 1. Control is switched on at t = 300 (xCN = <x> in the coupling term is replaced with xCN = 0).

Figure 11. Diagram of mean-field coupled oscillators with the coupling node CN grounded.
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The coupling node is simply grounded, as sketched in Figure 11. Numerical results are shown
in Figure 12. Note that when the control is switched on, the value of actual mean-field variable
<x> becomes relatively small, but is not zero.

6. Repulsive coupling technique

An alternative method of desynchronization of coupled oscillators is the repulsive coupling,
also called “repulsive synchronization” technique [26]. Diagram is sketched in Figure 13.

Voltage at the coupling node xCN is found from the Kirchhoff’s law for current:
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i¼1
k xi � xCNð Þ � GxCN ¼ 0, (31)

xCN ¼ VCN
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Rn
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Figure 12. Waveform of the mean-field variable <x> from Eq. (30). N = 24, α = 1.5, βi = 0.05 + 0.001i, γ = 1, δ = 10�5, μ = 20,
and k = 1. Control is switched on at t = 300 (xCN = <x> in the coupling term is replaced with xCN = 0).

Figure 11. Diagram of mean-field coupled oscillators with the coupling node CN grounded.
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Eq. (31) yields:

xCN ¼ kN xh i= kN þ Gð Þ: (33)

Evidently, for Rn = 0, the G! ∞ and xCN = 0, as expected. It is the case considered in previous
Section 5. If Rn is negative, say it provides value of G = �2kN, then xCN = � <x>. It is the case of
so-called repulsive coupling:

_xi ¼ F xið Þ � yi � γþ k � xh i � xið Þ,
_yi ¼ xi � βiyi:

(34)

Numerical results are presented in Figure 14. Similarly to the mean-field “nullifying” tech-
nique, the mean <x> becomes small, which is a typical feature of either non-synchronized or
antiphase synchronized oscillators.

7. Conclusions

A modification of the FitzHugh–Nagumo (FHN) model of a spiking neuron has been pro-
posed. In the original model, developed by FitzHugh [35], the cubic activation function x–x3/3

Figure 13. Diagram of mean-field coupled oscillators with coupling node CN, grounded via resistor Rn.

Figure 14. Waveform of the mean-field variable <x> from Eq. (34). N = 24, α = 1.5, βi = 0.05 + 0.001i, γ = 1, δ = 10�5, μ = 20,
and k = 1. Control is switched on at t = 300 (xCN = <x> in the coupling term is replaced with xCN = � < x>).
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has been replaced with a strongly asymmetric exponential one. This function provides more
realistic shape of the membrane voltage spikes. Synchronization effect in an array of mean-
field coupled non-identical FHN type oscillators has been demonstrated.

Three methods for controlling arrays of coupled FHN type oscillators have been described:

• Stable filter technique aimed to damp spikes in coupled oscillators. It is based on replacing
the mean variable <x> at the coupling node with its filtered version z.

• Mean field nullifying technique, <x> = 0 (grounding the coupling node).

• Repulsive coupling technique, following the idea described in [26] and shown for an array
of Kuramoto 1D phase oscillators. It is based on replacing the mean-field variable <x> at
the coupling node with the inverse version “– <x>.”

The above control techniques have different physical mechanisms behind, ranging from stabi-
lization of the equilibrium states to desynchronization and antiphase synchronization. How-
ever, all of them ensure low value of mean-field variable in the array.
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Eq. (31) yields:

xCN ¼ kN xh i= kN þ Gð Þ: (33)
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has been replaced with a strongly asymmetric exponential one. This function provides more
realistic shape of the membrane voltage spikes. Synchronization effect in an array of mean-
field coupled non-identical FHN type oscillators has been demonstrated.

Three methods for controlling arrays of coupled FHN type oscillators have been described:

• Stable filter technique aimed to damp spikes in coupled oscillators. It is based on replacing
the mean variable <x> at the coupling node with its filtered version z.

• Mean field nullifying technique, <x> = 0 (grounding the coupling node).

• Repulsive coupling technique, following the idea described in [26] and shown for an array
of Kuramoto 1D phase oscillators. It is based on replacing the mean-field variable <x> at
the coupling node with the inverse version “– <x>.”

The above control techniques have different physical mechanisms behind, ranging from stabi-
lization of the equilibrium states to desynchronization and antiphase synchronization. How-
ever, all of them ensure low value of mean-field variable in the array.
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