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Preface

Differential equations are mathematical equations that relate some functions with their de‐
rivatives. The functions usually represent some physical quantities and their derivatives
represent their rates of change and the equation relates the two together. For example, in
fluid dynamics, the Navier-Stokes equations are a system of mathematical equations that
relate the velocities of the fluid to partial derivatives of velocity and pressure. The editor of
the present book has worked on solving the Navier-Stokes equations in cylindrical coordi‐
nates for multiphase flows where the equations are coupled to the continuity and level set
distance function equations. Such work now in press has revealed an analytical procedure to
solve this system of equations by defining a composite velocity formulation for the sum of
three principal directions of flow and connecting this to the level set function and its deriva‐
tives. It has been shown that it is possible to solve analytically multiphase flow using level
set methods for vertical and horizontal tubes. It has been shown that in this pursuit the
structure of the governing equations for multiphase flow has some interesting symmetries,
which reduce the composite formulation above ordinary differential equations. Further
analysis using pseudo-exact differential equations results in Abel-type equations emerging
in the analysis. It is a worthy exercise to correctly reduce a system of partial differential
equations to ordinary differential equations and hence prove the existence and uniqueness
of solutions to such mathematical problems. For this reason, the editor of this book has been
motivated to introduce various topics welcomed from an international audience of mathe‐
maticians and researchers to contribute various aspects of the theory and application of dif‐
ferential equations to the current project.

The editor has incorporated contributions from a diverse group of leading researchers in the
field of differential equations. This book aims to provide an overview of the current knowl‐
edge in the field of differential equations. The main subject areas are divided into general
theory and applications. These include fixed point approach to solution existence of differ‐
ential equations, existence theory of differential equations of arbitrary order, topological
methods in the theory of ordinary differential equations, impulsive fractional differential
equations with finite delay and integral boundary conditions, an extension of Massera’s the‐
orem for n-dimensional stochastic differential equations, phase portraits of cubic dynamic
systems in a Poincare circle, differential equations arising from the three-variable Hermite
polynomials and computation of their zeros and reproducing kernel method for differential
equations. Applications include local discontinuous Galerkin method for nonlinear Ginz‐
burg-Landau equation, general function method in transport boundary value problems of
theory of elasticity and solution of nonlinear partial differential equations by new Laplace
variational iteration method.
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Existence/uniqueness theory of differential equations is presented in this book with applica‐
tions that will be of benefit to mathematicians, applied mathematicians and researchers in
the field. The book is written primarily for those who have some knowledge of differential
equations and mathematical analysis. The authors of each section bring a strong emphasis
on theoretical foundations to the book.
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Abstract

In this chapter, we introduce a generalized contractions and prove some fixed point
theorems in generalized metric spaces by using the generalized contractions. Moreover,
we will apply the fixed point theorems to show the existence and uniqueness of solution
to the ordinary difference equation (ODE), Partial difference equation (PDEs) and frac-
tional boundary value problem.

Keywords: fixed point, contraction, generalized contraction, differential equation, partial
differential equation, fractional difference equation

1. Introduction

The study of differential equations is a wide field in pure and applied mathematics, chemistry,
physics, engineering and biological science. All of these disciplines are concerned with the
properties of differential equations of various types. Pure mathematics investigated the exis-
tence and uniqueness of solutions, but applied mathematics focuses on the rigorous justifica-
tion of the methods for approximating solutions. Differential equations play an important role
in modeling virtually every physical, technical, or biological process, from celestial motion, to
bridge design, to interactions between neurons. Differential equations such as those used to
solve real-life problems may not necessarily be directly solvable, i.e. do not have closed form
solutions. Instead, solutions can be approximated using numerical methods.
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Following the ordinary differential equations with boundary value condition

dnx
dtn

¼ f t; x;
dx
dt

;…;
dn�1x
dtn�1

� �

where y x0ð Þ ¼ 0, y0 x1ð Þ ¼ c1,…, y n�1ð Þ xn�1ð Þ ¼ cn�1 the positive integer n (the order of the
highest derivative). This will be discussed. Existence and uniqueness of solution for initial
value problem (IVP).

u0 tð Þ ¼ f t; u tð Þð Þ
u t0ð Þ ¼ u0:

Differential equations contains derivatives with respect to two or more variables is called a
partial differential equation (PDEs). For example,

A
∂2u
∂x2

þ B
∂2u
∂x∂y

þ C
∂2u
∂y2

þD
∂u
∂x

þ E
∂u
∂y

þ Fu ¼ G

where u is dependent variable and A, B, C,D, E, F and G are function of x, y above equation is
classified according to discriminant B2 � 4AC

� �
as follows,

1. Elliptic equation if B2 � 4AC
� �

< 0,

2. Hyperbolic equation if B2 � 4AC
� �

> 0,

3. Parabolic equation if B2 � 4AC
� � ¼ 0.

This will be discussed. Existence of solution for semilinear elliptic equation. Consider a func-
tion u : Ω⊂Rn ! Rn that solves,

�Δu ¼ f uð Þ in Ω

u ¼ u0 on ∂Ω

where f : Rm ! Rm is a typically nonlinear function. And fractional differential equations. This
will be discussed. Fractional differential equations are of two kinds, they are Riemann-
Liouville fractional differential equations and Caputo fractional differential equations with
boundary value.

cDα
t u tð Þ ¼ Bu tð Þ; t > 0

u 0ð Þ ¼ u0 ∈X

where cDα
t is the Caputo fractional derivative of order α∈ 0; 1ð Þ, and t∈ 0; τ½ �, for all τ > 0.

The following fractional differential equation will boundary value condition.

Dα
0þu tð Þ þ f t; u tð Þð Þ ¼ 0, 0 < t < 1, 1 < α ≤ 2

u 0ð Þ ¼ 0, u 1ð Þ ¼
ð1
0
u sð Þds,

Differential Equations - Theory and Current Research4

where f : 0; 1½ � � 0;∞½ Þ ! 0;∞½ Þ is a continuous function and Dα
0þ is the standard Riemann-

Liouville fractional derivative.

One method for existence and uniqueness of solution of difference equation due to fixed point
theory. The primary result in fixed point theory which is known as Banach’s contraction principle
was introduced by Banach [1] in 1922.

Theorem 1.1. Let X; dð Þ be a complete metric spaces and T : X ! X be a contraction mapping (that is,
there exists 0 ≤α < 1) such that

d Tx;Tyð Þ ≤αd x; yð Þ

for all x, y∈X, then T has a unique fixed point.

Since Banach contraction is a very popular and important tool for solving many kinds of
mathematics problems, many authors have improved, extended and generalized it (see in [2–4])
and references therein.

In this chapter, we discuss on the existence and uniqueness of the differential equations by
using fixed point theory to approach the solution.

2. Basic results

Throughout the rest of the chapter unless otherwise stated X; dð Þ stands for a complete metric
space.

2.1. Fixed point

Definition 2.1. Let X be a nonempty set and T : X ! X be a mapping. A point x∗ ∈X is said to
be a fixed point of T if T x∗ð Þ ¼ x∗:

Definition 2.2. Let X; dð Þ be a metric space. The mapping T : X ! X is said to be Lipschitzian if
there exists a constant α > 0 (called Lipschitz constant) such that

d Tx;Tyð Þ ≤αd x; yð Þ for all x, y∈X:

A mapping T with a Lipschitz constant α < 1 is called contraction.

Definition 2.3. Let F and X be normed spaces over the field K, T : F ! X an operator and c∈F.
We say that T is continuous at c if for every ε > 0 there exists δ > 0 such that ∥T xð Þ � T cð Þ∥ < e

whenever ∥x� c∥ < δ and x∈ F. If T is continuous at each x∈F, then T is said to be continuous
on T.

Definition 2.4. Let X and Y be normed spaces. The mapping T : X ! Y is said to be completely
continuous if T Cð Þ is a compact subset of Y for every bounded subset C of X.

Fixed Point Theory Approach to Existence of Solutions with Differential Equations
http://dx.doi.org/10.5772/intechopen.74560
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Definition 2.5. Compact operator is a linear operator L form a Banach space X to another
Banach space Y, such that the image under L of any bounded subset of X is a relatively
compact subset (has compact closure) of Y such an operator is necessarily a bounded operator,
and so continuous.

Definition 2.6. A subset C of a normed linear space X is said to be convex subset in X if
λxþ 1� λð Þy∈C for each x, y∈C and for each scalar λ∈ 0; 1½ �.
Definition 2.7. v is called the αth weak derivative of u

Dαu ¼ v

if
ð

Ω
uDαψdx ¼ �1ð Þ∣α∣

ð

Ω
vψdx

for all test function ψ∈C∞
c Ωð Þ.

Theorem 2.8. (Schauder’s Fixed Point Theorem) Let X be a Banach space, M⊂X be nonempty,
convex, bounded, closed and T : M⊂X ! M be a compact operator. Then T has a fixed point.

Lemma 2.9. ref. [5] Given f ∈C Rð Þ such that ∣f tð Þ∣ ≤ a ¼ b tj jr where a > 0, b > 0 and r > 0 are

positive constants. Then the map u↦ f uð Þ is continuous for Lp Ωð Þ to L
p
r Ωð Þ for p ≥ max 1; rð Þ and

maps bounded subset of Lp Ωð Þ to bounded subset of L
p
r Ωð Þ.

Proof. Form to Jensen’s inequality

aþ b tj jrð Þ
p
rð Þ ≤ 2p

r�1a
p
r þ 2

p
r�1b

p
r tj jp ≤C 1þ tj jpð Þ

where C is a positive constant depending on a, b, p and r only, since u∈Lp Ωð Þ, we have
ð

Ω
f uð Þj jprdx ≤C a; b; p; rð Þ jΩj þ

ð

Ω
updx

� �
< ∞

therefore f uð Þ∈ L
p
r Ωð Þ. Let un be a sequence converging to u in Lp Ωð Þ. There exists a subse-

quence un, and a function g∈Lp Ωð Þ such that set, un0 ! u xð Þ, and ∣un0 xð Þ∣ ≤ g xð Þ, almost every-
where. This is sometimes called the generalized DCT, or the partial converse of the DCT, or the
Riesz-Fisher Theorem. From the continuity of f , ∣f u xð Þð Þ � f un0ð Þ∣ ! 0 on Ω\ℕ, and

f u xð Þð Þ � f un0ð Þj jpr ≤C 1þ g xð Þp þ f uð Þj jpð Þ

where C is another positive constant depending on a, b, p and r only, the left-hand-side is
independent of n

0
and is in L1 Ωð Þ. We can apply the Dominated Convergence Theorem to

conclude the
ð

Ω
f u xð Þð Þ � f un0ð Þj jprdx ! 0
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or in other words, ∥f u xð Þð Þ � f un0ð Þ∥
L
p
r Ωð Þ ! 0: Since the limit does not depend on the subse-

quence this convergence u holds for un. □

Corollary 2.10. ref. [5] Let μ ≥ 0. Then the map g↦ �Δþ μId
� ��1g is

i. continuous as map from L2 Ωð Þ to H1
0 Ωð Þ in other words

∥v∥H1
0 Ωð Þ ≤C Ωð Þ∥g∥L2 Ωð Þ:

ii. compact as map form L2 Ωð Þ to L2 Ωð Þ.
Proof. The first part is due to the fact that L2 Ωð Þ is continuously in H�1 Ωð Þ. The second part

follows as �Δþ μId
� ��1

: L2 Ωð Þ ! L2 Ωð Þ can be viewed as composition of the continuous map

�Δþ μId
� ��1

: L2 Ωð Þ ! H1
0 Ωð Þ and the compact embedding H1

0 Ωð Þ↣L2 Ωð Þ and as the compo-
sition of a compact linear operator a continuous linear operator is again compact.

Theorem 2.11. (Poincare) For p∈ 1;∞½ Þ, there exists a constant C ¼ C Ω; pð Þ such that ∀∈W1, p
0 Ωð Þ;

∥u∥Lp Ωð Þ ≤C∥∇u∥Lp Ω:Rnð Þ. A key tool to obtain the compactness of the fixed point maps.

2.2. Fuzzy

A fuzzy set in X is a function with domain X and values in 0; 1½ �. If A is a fuzzy set on X and
x∈X, then the functional value Ax is called the grade of membership of x in A. The α� level
set of A, denoted by Aα is defined by

Aα ¼ x : Ax ≥αf g if α∈ 0; 1ð �, A0 ¼ x : Ax > 0f g,

where denotes by A the closure of the set A. For any A and B are subset of X we denote by
H A;Bð Þ the Huasdorff distance.

Definition 2.12. A fuzzy set A in a metric linear space is called an approximate quantity if and
only if Aα is convex and compact in X for each α∈ 0; 1½ � and supx∈XAx ¼ 1:

Let I ¼ 0; 1½ � and W Xð Þ⊂ IX be the collection of all approximate in X. For α∈ 0; 1½ �, the family

Wα Xð Þ is given by A∈ IX : Aα
�

is nonempty and compact}.

For a metric space X; dð Þwe denoted by V Xð Þ the collection of fuzzy sets A in X for which Aα is
compact and supAx ¼ 1 for all α∈ 0; 1½ �. Clearly, when X is a metric linear space W Xð Þ⊂V Xð Þ:
Definition 2.13. Let A, B∈V Xð Þ, α∈ 0; 1½ �: Then

pα A;Bð Þ ¼ inf
x∈Aα, y∈Bα

d x; yð Þ, Dα A;Bð Þ ¼ H Aα;Bαð Þ

where H is the Hausdorff distance.
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Definition 2.14. Let A, B∈V Xð Þ: Then A is said to be more accurate than B (or B includes A),
denoted by A⊂B, if and only if Ax ≤Bx for each x∈X:

Denote with Φ, the family of nondecreasing function ϕ : 0;þ∞½ Þ ! 0;þ∞½ Þ such thatP∞
n¼1 ϕ

n tð Þ < ∞ for all t > 0:

Theorem 2.15. ref. [6] Let X; d;≼ð Þ be a complete ordered metric space and T1, T2 : X ! Wα Xð Þ be
two fuzzy mapping satisfying

Dα T1x;T2yð Þ ≤ϕ M x; yð Þð Þ þ Lmin pα x;T1xð Þ; pα y;T2yð Þ; pα x;T2yð Þ; pα y;T1xð Þ� �

for all comparable element x, y∈X, where L ≥ 0 and

M x; yð Þ ¼ max d x; yð Þ; pα x;T1xð Þ; pα y;T2yð Þ; 1
2

pα x;T2yð Þ þ pα y;T1xð Þ� �� �
:

Also suppose that

i. if y∈ T1x0ð Þα, then y, x0 ∈X are comparable,

ii. if x, y∈X are comparable, then every u∈ T1xð Þα and every v∈ T2yð Þα are comparable,

iii. if a sequence xnf g in X converges to x∈X and its consecutive terms are comparable, then
xn and x are comparable for all n.

Then there exists a point x∈X such that xα ⊂T1x and xα ⊂T2x:

Proof. See in [6].

Corollary 2.16. ref. [6] Let X; d;≼ð Þ be a complete ordered metric space and T1, T2 : X ! Wα Xð Þ be
two fuzzy mappings satisfying

Dα T1x;T2yð Þ ≤ qmax d x; yð Þ; pα x;T1xð Þ; pα y;T2yð Þ; 1
2

pα x;T2yð Þ þ pα y;T1xð Þ� �� �

for all comparable elements x, y∈X. Also suppose that

i. if y∈ T1x0ð Þα, then y, x0 ∈X are comparable,

ii. if x, y∈X are comparable, then every u∈ T1xð Þα and every v∈ T2yð Þα are comparable,

iii. if a sequence xnf g in X converges to x∈X and its consecutive terms are comparable, then
xn and x are comparable for all n.

Then there exists a point x∈X such that xα ⊂T1x and xα ⊂T2x:

2.3. Metric-like space

Definition 2.17. [7] Let X be nonempty set and function p : X� X ! Rþ be a function satisfy-
ing the following condition: for all x, y, z∈X,
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p1
� �

p x; xð Þ ¼ p x; yð Þ ¼ p y; yð Þ if and only if x ¼ y,

p2
� �

p x; xð Þ ≤ p x; yð Þ,
p3
� �

p x; xð Þ ¼ p y; xð Þ,
p4
� �

p x; yð Þ ¼ p x; zð Þ þ p z; yð Þ � p z; zð Þ:

Then p is called a partial metric on X, so a pair X; pð Þ is said to be a partial metric space.

Definition 2.18. [8] A metric-like on nonempty set X is a function σ : X� X ! Rþ. If for all
x, y, z∈X, the following conditions hold:

σ1ð Þ σ x; yð Þ ¼ 0 ) x ¼ y;

σ2ð Þ σ x; yð Þ ¼ σ y; xð Þ;
σ3ð Þ σ x; yð Þ ¼ σ x; zð Þ þ σ z; yð Þ:

Then a pair X; σð Þ is called a metric-like space.

It is easy to see that a metric space is a partial metric space and each partial metric space is a
metric-like space, but the converse is not true but the converse is not true as in the following
examples:

Example 2.19. [8] Let X ¼ 0; 1f g and σ : X� X ! Rþ be defined by

σ x; yð Þ ¼ 2, if x ¼ y ¼ 0,
1, otherwise:

�

Then X; σð Þ is a metric-like space, but it is not a partial metric space, cause σ 0; 0ð Þ≰σ 0; 1ð Þ:
Lemma 2.20. ref. [9] Let X; pð Þ be a partial metric space. Then

i. xnf g is a Cauchy sequence in X; pð Þ if and only if it is a Cauchy sequence in the metric
space X; dp

� �
,

ii. X is complete if and only if the metric space X; dp
� �

is complete.

Definition 2.21. [8, 10] Let X; σð Þ be a metric-like space. Then:

i. A sequence xnf g in X converges to a point x∈X if limn!∞σ xn; xð Þ ¼ σ x; xð Þ: The sequence
xnf g is said to be σ� Cauchy if limn,m!∞σ xn; xmð Þ exists and is finite. The space X; σð Þ is

called complete if for every σ� Cauchy sequence in xnf g, there exists x∈X such that

lim
n!∞

σ xn; xð Þ ¼ σ x; xð Þ ¼ lim
n,m!∞

σ xn; xmð Þ:

ii. A sequence xnf g in X; σð Þ is said to be a 0� σ� Cauchy sequence if limn,m!∞σ xn; xmð Þ ¼ 0:
The space X; σð Þ is said to be 0� σ� complete if every 0� σ� Cauchy sequence in X
converges (in τσ) to a point x∈X such that σ x; xð Þ ¼ 0:
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iii. A mapping T : X ! X is continuous, if the following limits exist (finite) and

lim
n!∞

σ xn; xð Þ ¼ σ Tx; xð Þ:

Following Wardowski [11], we denote by F the family of all function, F : Rþ ! R satisfying
the following conditions:
(F1) F is strictly increasing on Rþ,

(F2) for every sequence snf g in Rþ, we have lim
n!∞

sn ¼ 0 if and only if lim
n!∞

F snð Þ ¼ �∞,

(F3) there exists a number k∈ 0; 1ð Þ such that lim
s!0þ

skF sð Þ ¼ 0:

Example 2.22. The following function F : Rþ ! R belongs to F :
i. F sð Þ ¼ ln s, with s > 0,

ii. F sð Þ ¼ ln sþ s, with s > 0:

Definition 2.23. [11] Let X; dð Þ be a metric space. A self-mapping T on X is called an F-
contraction mapping if there exist F∈F and τ∈Rþ such that

∀x, y∈X, d Tx;Tyð Þ > 0 ) τþ F d Tx;Tyð Þð Þ ≤ F d x; yð Þð Þ½ �: (2.1)

Definition 2.24. [12] Let X; σð Þ be a metric-like space. A mapping T : X ! X is called a
generalized Roger Hardy type F� contraction mapping, if there exist F∈F and τ∈Rþ such
that

σ Tx;Tyð Þ > 0 ) τþ F σ Tx;Tyð Þð Þ ≤ Fðασ x; yð Þ þ βσ x;Txð Þ þ γσ y;Tyð Þ
þησ x;Tyð Þ þ δσ y;Txð ÞÞ (2.2)

for all x, y∈X and α, β,γ, η, δ ≥ 0 with αþ βþ γþ 2ηþ 2δ < 1.

Theorem 2.25. ref. [12] Let X; σð Þ be 0� σ� complete metric-like spaces and T : X ! X be a
generalized Roger Hardy type F� contraction. Then T has a unique fixed point in X, either T or
F is continuous.

Proof. See in [12]. □

2.4. Modular metric space

Let X be a nonempty set. Throughout this paper, for a function ω : 0;∞ð Þ � X� X ! 0;∞½ �, we
write

ωλ x; yð Þ ¼ ω λ; x; yð Þ

for all λ > 0 and x, y∈X:

Definition 2.26 [13, 14] Let X be a nonempty set. A function ω : 0;∞ð Þ � X� X ! 0;∞½ � is
called a metric modular on X if satisfying, for all x, y, z∈X the following conditions hold:

Differential Equations - Theory and Current Research10

i. ωλ x; yð Þ ¼ 0 for all λ > 0 if and only if x ¼ y,

ii. ωλ x; yð Þ ¼ ωλ y; xð Þ for all λ > 0,

iii. ωλþμ x; yð Þ ≤ωλ x; zð Þ þ ωμ z; yð Þ for all λ,μ > 0.

If instead of (i) we have only the condition (i’)

ωλ x; xð Þ ¼ 0 for all λ > 0, x∈X,

then ω is said to be a pseudomodular (metric) on X: A modular metric ω on X is said to be
regular if the following weaker version of (i) is satisfied:

x ¼ y if and only if ωλ x; yð Þ ¼ 0 for some λ > 0:

Note that for a metric (pseudo)modular ω on a set X, and any x, y∈X, the function
λ↦ωλ x; yð Þ is nonincreasing on 0;∞ð Þ: Indeed, if 0 < μ < λ, then

ωλ x; yð Þ ≤ωλ�μ x; xð Þ þ ωμ x; yð Þ ¼ ωμ x; yð Þ:

Note that every modular metric is regular but converse may not necessarily be true.

Example 2.27. Let X ¼ R and ω is defined by ωλ x; yð Þ ¼ ∞ if λ < 1, and ωλ x; yð Þ ¼ ∣x� y∣ if
λ ≥ 1, it is easy to verify that ω is regular modular metric but not modular metric.

Definition 2.28. [13, 14] Let Xω be a (pseudo)modular on X: Fix x0 ∈X: The two sets

Xω ¼ Xω x0ð Þ ¼ x∈X : ωλ x; x0ð Þ ! 0 as λ ! ∞f g

and

X∗
ω ¼ X∗

ω x0ð Þ ¼ x∈X : ∃λ ¼ λ xð Þ > 0 such that ωλ x; x0ð Þ < ∞f g

are said to be modular spaces (around x0).

Throughout this section we assume that X;ωð Þ is a modular metric space, D be a nonempty
subset of Xω and G≔ Gωf is a directed graph with V Gωð Þ ¼ D and Δ⊆E Gωð Þg:
Definition 2.29. [15, 16] The pair D;Gωð Þ has Property (A) if for any sequence xnf gn∈ℕ in D,
with xn ! x as n ! ∞ and xn; xnþ1ð Þ∈E Gωð Þ, then xn; xð Þ∈E Gωð Þ, for all n:
Definition 2.30. ref. [17] Let F∈F and Gω ∈G: A mapping T : D ! D is said to be F-Gω-
contraction with respect to R : D ! D if
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We denote C T;Rð Þ≔ x∈D : Tx ¼ Rxf g the set of all coincidence points of two self-mappings T
and R, defined on D.

Theorem 2.32. ref. [17] Let X;ωð Þ be a regular modular metric space with a graph Gω: Assume
that D ¼ V Gωð Þ is a nonempty ω-bounded subset of Xω and the pair D;Gωð Þ has property (A)
and also satisfy ΔM-condition. Let R, T : D ! D be two self mappings satisfying the following
conditions:

i. there exists x0 ∈D such that Rx0;Tx0ð Þ∈E Gωð Þ,
ii. T is an F-Gω-contraction w.r.t R,

iii. T Dð Þ⊆R Dð Þ,
iv. R Dð Þ is ω complete.

Then C R;Tð Þ 6¼ Ø.

Proof. See in [17]. □

3. Fixed point approach to the solution of differential equations

Next, we will show a differential equation which solving by fixed point theorem in suitable
spaces.

3.1. Ordinary differential equation

Lemma 3.1. ref. [18] u is a solution of u0 tð Þ ¼ f t; u tð Þð Þ satisfying the initial condition u t0ð Þ ¼ u0
if and only if u tð Þ ¼ u0 þ

Ð t
t0
f s; u sð Þð Þds.

Proof. Suppose that u is a solution of u0 tð Þ ¼ f t; u tð Þð Þ defined on an interval I and satisfying
u t0ð Þ ¼ u0. We integrate both sides of the equation u0 tð Þ ¼ f t; u tð Þð Þ from t0 to t, where t is in I

ðt
t0
u0 sð Þds ¼

ðt
t0
f s; u sð Þð Þds

u tð Þ � u t0ð Þ ¼
ðt
t0
f s; u sð Þð Þds:

Since u t0ð Þ ¼ u0, we have

u tð Þ ¼ u0 þ
ðt
t0
f s; u sð Þð Þds, t∈ I: (3.1)

We will show that, conversely, any function which satisfies this integral equation satisfies both
the differential equation and the initial condition. Suppose that u is a function defined on an
interval I and satisfies (3.1). Setting t ¼ t0 yields u t0ð Þ ¼ u0, so that u satisfies the initial
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condition. Next, we note that an integral is always a continuous function, so that a solution of
(3.1) is automatically continuous. Since both u and f are continuous, it follows that the inte-
grand f s; u sð Þð Þ is continuous. We may therefore apply the fundamental theorem of calculus to
(3.1) and conclude that u is differentiable, and that is u0 tð Þ ¼ f t; u tð Þð Þ. □

The contraction mapping theorem may by used to prove the existence and uniqueness of the
initial problem for ordinary differential equations. We consider a first-order of ODEs for a
function u tð Þ that take value in Rn

u0 tð Þ ¼ f t; u tð Þð Þ (3.2)

u t0ð Þ ¼ u0: (3.3)

The function f t; u tð Þð Þ also take value in Rn and is assumed to be a continuous function of t and
a Lipschitz continuous function of u on suitable domain.

Definition 3.2. Suppose that f : I � Rn ! Rn where I is on interval in R. We say that f t; u tð Þð Þ is
a globally Lipschitz continuous function of u uniformly in t if there is a constant C > 0 such that

∥f t; uð Þ � f t; vð Þ∥ ≤C∥u� v∥ (3.4)

for all x, y∈Rn and all t∈ I.

The initial value problem can be reformulated as an integral equation.

u tð Þ ¼ u0 þ
ðt
t0
f s; u sð Þð Þds: (3.5)

By the fundamental theorem of calculus, a continuous solution of (3.5) is a continuously
differentiable solution of (3.2). Eq. (3.5) may by written as fixed point equation.

u ¼ Tu

for the map T defined by

Tu tð Þ ¼ u0 þ
ðt
t0
f s; u sð Þð Þds:

Theorem 3.3. ref. [19] Suppose that f : I � Rn ! Rn where I is on interval in R and t0 is a point
in the interior of I. If f t; uð Þ, is a continuous function of t; uð Þ and a globally Lipschitz continu-
ous function of u uniformly in t on I � Rn, then there is a unique continuously differentiable
function u : I ! Rn that satisfies (3.2).

Proof. We will show that T is a contraction on the space of continuous function defined on a
time interval t0 ⩽ t⩽ t0 þ δ, for sufficiently small δ.

Suppose that u, v : t0; t0 þ δ½ � ! Rn are two continuous function. Then, form (3.4), (3.5) we
estimate,
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jTu� Tvj∞ ¼ sup
t0 ⩽ t⩽ t0þδ

jTu tð Þ � Tv tð Þj

¼ sup
t0 ⩽ t⩽ t0þδ

j
ðt
t0
f s; u sð Þð Þ � f s; v sð Þð Þdsj

≤ sup
t0 ⩽ t⩽ t0þδ

ðt
t0
jf s; u sð Þð Þ � f s; v sð Þð Þjds

≤ sup
t0 ⩽ t⩽ t0þδ

Cju sð Þ � v sð Þj
ðt
t0
ds

≤ Cδju� vj∞:

If follow that if δ ≤ 1
c then T is contraction on C t0; t0 þ δ½ �ð Þ. Therefore, there is a unique solution

u : t0; t0 þ δ½ � ! Rn.

Let f x; yð Þ be a continuous real-valued function on a; b½ � � c; d½ �. The Cauchy initial value
problem is to find a continuous differentiable function y on a; b½ � satisfying the differential
equation

dy
dx

¼ f x; yð Þ, y x0ð Þ ¼ y0: (3.6)

Consider the Banach space C a; b½ � of continuous real-valued functions with supremum norm
defined by ∥y∥ ¼ sup y xð Þj : x∈ a; b½ �f g:
Integrating (3.6), that yield an integral equation

y xð Þ ¼ y0 þ
ðx
x0
f t; y tð Þð Þdt: (3.7)

The problem (3.6) is equivalent the problem solving the integral Eq. (3.7).

We define an integral operator T : C a; b½ � ! C a; b½ � by

Ty xð Þ ¼ y0 þ
ðx
x0
f t; y tð Þð Þdt:

Therefore, a solution of Cauchy initial value problem (3.6) corresponds with a fixed point of T.
One may easily check that if T is contraction, then the problem (3.6) has a unique solution.

Theorem 3.4. ref. [20] Let f x; yð Þ be a continuous function of Dom fð Þ ¼ a; b½ � � c; d½ � such that f
is Lipschitzian with respect to y, i.e., there exists k > 0 such that

∣f x; uð Þ � f x; vð Þ∣ ≤ k∣u� v∣ for all u, v∈ c; d½ � and for x∈ a; b½ �:

Suppose x0; y0
� �

∈ int Dom fð Þð Þ: Then for sufficiently small h > 0, there exists a unique solution
of the problem (3.6).

Proof. Let M ¼ sup jf x; yð Þj : x; y∈Dom fð Þf g and choose h > 0 such that
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C≔ y∈C x0 � h; x0 þ h½ � : jy xð Þ � y0j ≤Mh
� �

:

Then C is a closed subset of the complete metric space C x0 � h; x0 þ h½ � and hence C is com-
plete. Note T : C ! C is a contraction mapping. Indeed, for x∈ x0 � h; x0 þ h½ � and two contin-
uous functions y1, y2 ∈C, we have

∥Ty1 � Ty2∥ ¼ ∥
Ð x
x0
f x; y1
� �� f x; y2

� �
dt∥

≤ ∣x� x0∣ sup
s∈ x0�h;x0þh½ �

k∣y1 sð Þ � y2 sð Þ∣

≤ kh∥y1 � y2∥:

Therefore, T has a unique fixed point implying that the problem (3.6) has a unique fixed point.

3.2. Ordinary fuzzy differential equation

Now, we consider the existence of solution for the second order nonlinear boundary value
problem:

x00 tð Þ ¼ k t; x tð Þ; x0 tð Þð Þ, t∈ 0;Λ½ �, Λ > 0,
x t1ð Þ ¼ x1,
x t2ð Þ ¼ x2, t1, t2 ∈ 0;Λ;½ �

8><
>:

(3.8)

where k : 0;Λ½ � �W Xð Þ �W Xð Þ ! W Xð Þ is a continuous function. This problem is equivalent
to the integral equation

x tð Þ ¼
ðt2
t1
G t; sð Þk s; x sð Þ; x0 sð Þð Þdsþ β tð Þ, t∈ 0;Λ½ �, (3.9)

where the Green’s function G is given by

G t; sð Þ ¼
t2 � tð Þ s� t1ð Þ

t2 � t1
if t1 ≤ s ≤ t ≤ t2,

t2 � sð Þ t� t1ð Þ
t2 � t1

if t1 ≤ t ≤ s ≤ t2,

8>><
>>:

and β tð Þ satisfies β00 ¼ 0, β t1ð Þ ¼ x1, β t2ð Þ ¼ x2: Let us recall some properties of G t; sð Þ, precisely
we have

ðt2
t1
∣G t; sð Þ∣ds ≤ t2 � t1ð Þ2

8

and

ðt2
t1
∣Gt t; sð Þ∣ds ≤ t2 � t1ð Þ

2
:
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If necessary, for a more detailed explanation of the background of the problem, the reader can
refer to the reference [21, 22]. Here, we will prove our results, by establishing the existence of a
common fixed point for pair of integral operators defined as

Ti xð Þ tð Þ ¼
ðt2
t1
G t; sð Þki s; x sð Þ; x0 sð Þð Þdsþ β tð Þ, t∈ 0;Λ½ �, i∈ 1; 2f g (3.10)

where k1, k2 ∈C 0;Λ½ � �W Xð Þ �W Xð Þ;W Xð Þð Þ, x∈C1 0;Λ½ �;W Xð Þð Þ, and β∈C 0;Λ½ �;W Xð Þð Þ:
Theorem 3.5 ref. [6] Assume that the following conditions are satisfied:

i. k1, k2 : 0;Λ½ � �W Xð Þ �W Xð Þ ! W Xð Þ are increasing in its second and third variables,

ii. there exists x0 ∈C1 0;Λ½ �;W Xð Þð Þ such that, for all t∈ 0;Λ½ �, we have

x0 tð Þ ≤
ðt2
t1
G t; sð Þk1 t; x0 sð Þ; x00 sð Þ� �

dsþ β tð Þ,

where t1, t2 ∈ 0;Λ½ �,
iii. there exist constants γ, δ > 0 such that, for all t∈ 0;Λ½ �, we have

∣k1 t; x tð Þ; x0 tð Þð Þ � k2 t; y tð Þ; y0 tð Þð Þ∣ ≤γ∣x tð Þ � y tð Þ∣þ δ∣x0 tð Þ � y0 tð Þ∣

for all comparable x, y∈C1 0;Λ½ �;W Xð Þð Þ,
iv. for γ, δ > 0 and t1, t2 ∈ 0;Λ½ � we have

γ
t2 � t1ð Þ2

8
þ δ

t2 � t1ð Þ
2

< 1,

v. if x, y∈C1 0;Λ½ �;W Xð Þð Þ are comparable, then every u∈ T1xð Þ1 and every v∈ T2yð Þ1 are compa-
rable.

Then the pair of nonlinear integral equations

x tð Þ ¼
ðt2
t1
G t; sð Þki s; x sð Þ; x0 sð Þð Þdsþ β tð Þ t∈ 0;Λ½ �, i∈ 1; 2f g (3.11)

has a common solution in C1 t1; t2½ �;W Xð Þð Þ:

Proof. Consider C ¼ C1 t1; t2½ �;W Xð Þð Þ with the metric

D x; yð Þ ¼ max
t1 ≤ t ≤ t2

γjx tð Þ � y tð Þj þ δjx0 tð Þ � y0 tð Þjð Þ:

The C;Dð Þ is a complete metric space, which can also be equipped with the partial ordering
given by

x, y∈ C, ⇔ x tð Þ ≤ y tð Þ for all t∈ 0;Λ½ �:
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In [23], it is proved that C;≼ð Þ satisfies the following condition:

(r) for every nondecreasing sequence xnf g in C convergent to some x∈ C, we have xn≼x for all
n∈ℕ ∪ 0f g.
Let T1, T2 : C ! C be two integral operators defined by (3.10); clearly, T1, T � 2 are well defined
since k1, k2, and β are continuous functions. Now, x∗ is a solution of (3.9) if and only if x∗ is a
common fixed point of T1 and T2.

By hypothesis (a), T1, T2 are increasing and, by hypothesis (b), x0≼T1 x0ð Þ: Consequently, in
view of condition (r), hypothesis (i)-(iii) of Corollary 2.16 hold true.

Next, for all comparable x, y∈ C, From hypothesis (c) we obtain successively

∣T1 xð Þ tð Þ � T2 yð Þ tð Þ∣ ≤
ð

t1
t2∣G t; sð Þkk1 s; x sð Þ; x0 sð Þð Þ � k1 s; y sð Þ; y0 sð Þð Þ∣ds

≤D x; yð Þ
ðt2
t1
∣G t; sð Þ∣ds

≤
t2 � t1ð Þ2

8
D x; yð Þ

(3.12)

and

∣ T1 xð Þð Þ0 tð Þ � T2 yð Þð Þ0 tð Þ∣ ≤
ð

t1
t2∣Gt t; sð Þkk1 s; x sð Þ; x0

sð Þ
� �

� k1 s; y sð Þ; y0
sð Þ

� �
∣ds

≤D x; yð Þ
ðt2
t1
∣Gt t; sð Þ∣ds

≤
t2 � t1ð Þ

2
D x; yð Þ:

(3.13)

From (3.12) and (3.13), we obtain easily

D T1x;T2yð Þ ≤ γ
t2 � t1ð Þ2

8
þ δ

t2 � t1ð Þ
2

 !
D x; yð Þ:

Consequently, in view of hypothesis (d), the contractive condition (5) is satisfied with

q ¼ γ
t2 � t1ð Þ2

8
þ δ

t2 � t1ð Þ
2

< 1:

Therefore, Corollary 2.16 applied to T1 and T2, which have common fixed point x∗ ∈ C, that is,
x∗ is a common solution of (3.9). □

3.3. Second-order differential equation

Now, we consider the boundary value problem for second order differential equation
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x00 tð Þ ¼ �f t; x tð Þð Þ, t∈ I,
x 0ð Þ ¼ x 1ð Þ ¼ 0,

�
(3.14)

where I ¼ 0; 1½ � and f : I � R ! R: is a continuous function.

It is known, and easy to check, that the problem (3.14) is equivalent to the integral equation

x tð Þ ¼
ð1
0
G t; sð Þf s; x sð Þð Þds, for t∈ I, (3.15)

where G is the Green’s function define by

G t; sð Þ ¼ t 1� sð Þ if 0 ≤ t ≤ s ≤ 1
s 1� tð Þ if 0 ≤ s ≤ t ≤ 1:

�

That is, if x∈C2 I;Rð Þ, then x is a solution of problem (3.14) iff x is a solution of the integral
Eq. (3.15).

Let X ¼ C Ið Þ be the space of all continuous functions defined on I. Consider the metric-like σ
on X define by

σ x; yð Þ ¼ ∥x� y∥∞ þ ∥x∥∞ þ ∥y∥∞ for all x, y∈X,

where ∥u∥∞ ¼ maxt∈ 0;1½ �∣u tð Þ∣ for all u∈X.

Note that σ is also a partial metric on X and since

dσ x; yð Þ≔2σ x; yð Þ � σ x; xð Þ � σ y; yð Þ ¼ 2∥x� y∥∞:

By Lemma 2.20, hence X; σð Þ is complete since the metric space X; ∥ � ∥ð Þ is complete.

Theorem 3.6. ref. [12] Suppose the following conditions:

i. there exist continuous functions p : I ! Rþ such that

∣f s; að Þ � f s; bð Þ∣ ≤ 8p sð Þ∣a� b∣

for all s∈ I and a, b∈R;

ii. there exist continuous functions q : I ! Rþ such that

∣f s; að Þ∣ ≤ 8q sð Þ∣a∣

for all s∈ I and a∈R;

iii. maxs∈ Ip sð Þ ¼ αλ1 <
1
49 , which is 0 ≤α < 1

7;

iv. maxs∈ Iq sð Þ ¼ αλ2 <
1
49 which is 0 ≤α < 1

7 :

Then problem (3.14) has a unique solution u∈X ¼ C I;Rð Þ.
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Proof. Define the mapping T : X ! X by

Tx tð Þ ¼
ð1
0
G t; sð Þf s; x sð Þð Þds,

for all x∈X and t∈T: Then the problem (3.14) is equivalent to finding a fixed point u of T in X.
Let x, y∈X, we obtain

∣Tx tð Þ � Ty tð Þ∣ ¼ ∣
ð1
0
G t; sð Þf s; x sð Þð Þds�

ð1
0
G t; sð Þf s; y sð Þð Þds∣

≤
ð1
0
G t; sð Þ∣f s; x sð Þð Þ � f ðs, y sð Þ∣ds

≤ 8
ð1
0
G t; sð Þp sð Þ∣x sð Þ � y sð Þ∣ds

≤ 8αλ1∥x� y∥∞
Ð 1
0 G t; sð Þds

¼ αλ1∥x� y∥∞:

In the above equality, we used that for each t∈ I, we have
Ð 1
0 G t; sð Þds ¼ t

2 1� tð Þ and so

supt∈ I

Ð 1
0 G t; sð Þds ¼ 1

8 : Therefore,

∥Tx� Ty∥∞ ≤αλ1∥x� y∥∞: (3.16)

Moreover, we have

Tx tð Þ ¼ ∣
ð1
0
G t; sð Þf s; x sð Þð Þds∣

≤ 8
ð1
0
G t; sð Þq sð Þ∣x sð Þ∣ds

≤ 8αλ2∥x∥∞:

Hence,

∥Tx∥∞ ≤αλ2∥x∥∞: (3.17)

Similar method, we obtain

∥Ty∥∞ ≤αλ2∥y∥∞: (3.18)

Let e�τ ¼ λ1 þ 2λ2 < 1 where τ > 0: Form (3.16), (3.17) and (3.18), we obtain

σ Tx;Tyð Þ ¼ jTx� Tyj∞ þ jTxj∞ þ jTyj∞
≤ αλ1jx� yj∞ þ αλ2jxj∞ þ αλ2jyj∞
≤ λ1 þ 2λ2ð Þ αð Þ jTx� Tyj∞ þ jTxj∞ þ jTyj∞ð Þ½ �
¼ e�τð Þασ x; yð Þ:

(3.19)
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Let β,γ, η, δ > 0 where β < 1
7 ,γ < 1

7 , η < 1
7 , δ < 1

7 : It following (3.19), we get

σ Tx;Tyð Þ ≤ e�τð Þ ασ x; yð Þ þ βσ x;Txð Þ þ γσ y;Tyð Þ þ ησ x;Tyð Þ þ δσ y;Txð Þ� �
, (3.20)

where αþ βþ γþ 2ηþ 2δ < 1. Taking the function F : Rþ ! R in (3.20), where F tð Þ ¼ ln tð Þ,
which is F∈F , we get

τþ F σ Tx;Tyð Þð Þ ≤ F ασ x; yð Þ þ βσ x;Txð Þ þ γσ y;Tyð Þ þ ησ x;Tyð Þ þ δσ y;Txð Þ� �
:

Therefore all hypothesis of Theorem (2.25) are satisfied, and so T has a unique fixed point
u∈X, that is, the problem (3.14) has a unique solution u∈C2 Ið Þ: □

3.4. Partial differential equation

Consider the Laplace operator is a second order differential operator in the n-dimensional
Euclidean space, defined as the divergence ∇�ð Þ of the gradient ∇fð Þ. Thus if f is a twice-
differentiable real-valued function, then the Laplacian of f is defined by

Δf ¼ ∇2f ¼ ∇ � ∇f (3.21)

where the latter notations derive from formally writing ∇ ¼ ∂
∂x1

; ∂
∂x2

;⋯; ∂
∂xn

� �
. Equivalently, the

Laplacian of f the sum of all the unmixed

Δf ¼
Xn

i¼0

∂2f
∂x2i

: (3.22)

As a second-order differential operator, the Laplace operator maps Ck functions to Ck�2 func-

tions for k ≥ 2. the expression (3.21)(or equivalently(3.22)) defines an operator Δ : C kð Þ Rnð Þ !
C k�2ð Þ Rnð Þ or more generator Δ : C kð Þ Ωð Þ ! C k�2ð Þ Ωð Þ for any open set Ω Consider semilinear
elliptic equation. Look for a function u : Ω⊂Rn ! Rm that solves

�Δu ¼ f uð Þ in Ω (3.23)

u ¼ u0 on ∂Ω (3.24)

where f : Rn ! Rm is a typically nonlinear function. Equivalently look for a fixed point of

Tu≔ �Δu0ð Þ�1 f uð Þð Þ.
Theorem 3.7. ref. [5] Let f ∈C Rð Þ and supx∈R∣f xð Þ∣ ¼ a < ∞. then (3.23) has a weak solution

u∈H1
0 Ωð Þ, i.e.

ð

Ω
∇u � ∇Φdx ¼

ð

Ω
f uð ÞΦdx, ∀Φ∈C∞

0 Ωð Þ:
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Proof. Our strategy is to apply Schauder’s Fixed Point Theorem to the map

T : L2 Ωð Þ ! L2 Ωð Þ
u↦ �Δð Þ�1 f uð Þð Þ,

where T is continuous. Lemma (2.9) show that u ! f uð Þ is continuous form L2 Ωð Þ into itself.

Corollary (2.10) shows that �Δð Þ�1 is continuous form L2 Ωð Þ into H1
0 Ωð Þ, which is continu-

ously embedded in L2 Ωð Þ. Find a closed, non-empty bounded convex set such that T : M ! M.
Given u∈L2 Ωð Þ, Tu satisfies

ð

Ω
∇Tu � ∇Tudx ¼

ð

Ω
f uð ÞTudx ≤ a∣Ω∣∥Tu∥L2 Ωð Þ (3.25)

Cauchy-Schwarz. T here fore, using Ponincare’s inequality

∥Tu∥2L2 Ωð Þ ≤C Ωð Þ∥Tu∥2L2 Ωð Þ ≤ a∣Ω∣∥Tu∥2L2 Ωð Þ:

Thus if we set R ¼ a∣Ω∣C Ωð Þ and choose M ¼ u : ∥u∥2L2 Ωð Þ ≤R
n o

. We have established that

T : M ! M, T is compact. Using Poincare’s inequality on the right-hand-side in (3.25), we

obtain. ∥∇Tu∥2L2 Ωð Þ ≤R∥∇Tu∥L2 Ωð Þ. Thus T Mð Þ⊂ u : ∥u∥H1 Ωð Þ ≤R
n o

, and since the embedding

of H1 Ωð Þ into L2 Ωð Þ is compact, T is compact. □

3.5. A non-homogeneous linear parabolic partial differential equation

We consider the following initial value problem

ut x; tð Þ ¼ uxx x; tð Þ þH x; t; u x; tð Þ; ux x; tð Þð Þ, �∞ < x < ∞, 0 < t ≤T,
u x; 0ð Þ ¼ φ xð Þ ≥ 0, �∞ < x < ∞,

�
(3.26)

where H is continuous and φ assume to be continuously differentiable such that φ and φ0 are
bounded.

By a solution of the problem (3.26), we mean a function u � u x; tð Þ defined on R� I, where
I≔ 0;T½ �, satisfying the following conditions:

i. u, ut, ux, uxx ∈C R� Ið Þ: {C R� Ið Þ denote the space of all continuous real valued func-
tions},

ii. u and ux are bounded in R� I,

iii. ut x; tð Þ ¼ uxx x; tð Þ þH x; t; u x; tð Þ; ux x; tð Þð Þ for all x; tð Þ∈R� I,

iv. u x; 0ð Þ ¼ φ xð Þ for all x∈R.

It is important to note that the differential equation problem (3.26) is equivalent to the follow-
ing integral equation problem
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Let β,γ, η, δ > 0 where β < 1
7 ,γ < 1

7 , η < 1
7 , δ < 1

7 : It following (3.19), we get

σ Tx;Tyð Þ ≤ e�τð Þ ασ x; yð Þ þ βσ x;Txð Þ þ γσ y;Tyð Þ þ ησ x;Tyð Þ þ δσ y;Txð Þ� �
, (3.20)
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Δf ¼ ∇2f ¼ ∇ � ∇f (3.21)

where the latter notations derive from formally writing ∇ ¼ ∂
∂x1

; ∂
∂x2

;⋯; ∂
∂xn

� �
. Equivalently, the

Laplacian of f the sum of all the unmixed

Δf ¼
Xn

i¼0

∂2f
∂x2i

: (3.22)

As a second-order differential operator, the Laplace operator maps Ck functions to Ck�2 func-
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Theorem 3.7. ref. [5] Let f ∈C Rð Þ and supx∈R∣f xð Þ∣ ¼ a < ∞. then (3.23) has a weak solution

u∈H1
0 Ωð Þ, i.e.

ð

Ω
∇u � ∇Φdx ¼

ð

Ω
f uð ÞΦdx, ∀Φ∈C∞

0 Ωð Þ:
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Proof. Our strategy is to apply Schauder’s Fixed Point Theorem to the map
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u↦ �Δð Þ�1 f uð Þð Þ,

where T is continuous. Lemma (2.9) show that u ! f uð Þ is continuous form L2 Ωð Þ into itself.
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0 Ωð Þ, which is continu-

ously embedded in L2 Ωð Þ. Find a closed, non-empty bounded convex set such that T : M ! M.
Given u∈L2 Ωð Þ, Tu satisfies

ð

Ω
∇Tu � ∇Tudx ¼

ð

Ω
f uð ÞTudx ≤ a∣Ω∣∥Tu∥L2 Ωð Þ (3.25)
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n o
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n o
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We consider the following initial value problem

ut x; tð Þ ¼ uxx x; tð Þ þH x; t; u x; tð Þ; ux x; tð Þð Þ, �∞ < x < ∞, 0 < t ≤T,
u x; 0ð Þ ¼ φ xð Þ ≥ 0, �∞ < x < ∞,

�
(3.26)

where H is continuous and φ assume to be continuously differentiable such that φ and φ0 are
bounded.

By a solution of the problem (3.26), we mean a function u � u x; tð Þ defined on R� I, where
I≔ 0;T½ �, satisfying the following conditions:

i. u, ut, ux, uxx ∈C R� Ið Þ: {C R� Ið Þ denote the space of all continuous real valued func-
tions},

ii. u and ux are bounded in R� I,

iii. ut x; tð Þ ¼ uxx x; tð Þ þH x; t; u x; tð Þ; ux x; tð Þð Þ for all x; tð Þ∈R� I,

iv. u x; 0ð Þ ¼ φ xð Þ for all x∈R.

It is important to note that the differential equation problem (3.26) is equivalent to the follow-
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u x; tð Þ ¼
ð∞
�∞

k x� ξ; tð Þφ ξð Þdξþ
ðt
0

ð∞
�∞

k x� ξ; t� τð ÞH ξ; τ; u ξ; τð Þ; ux ξ; τð Þð Þdξdτ (3.27)

for all x∈R and 0 < t ≤T, where

k x; tð Þ≔ 1ffiffiffiffiffiffiffiffi
4πt

p e�
x2
4t :

The problem (3.26) admits a solution if and only if the corresponding problem (3.27) has a
solution.

Let

Ω≔ u x; tð Þ; u; ux ∈C R� Ið Þ and ∥u∥ < ∞f g,

where

∥u∥ ≔ sup
x∈R, t∈ I

∣u x; tð Þ∣þ sup
x∈R, t∈ I

∣ux x; tð Þ∣:

Obviously, the function ω : Rþ �Ω�Ω ! Rþ given by

ωλ u; vð Þ≔ 1
λ
∥u� v∥ ¼ 1

λ
d u; vð Þ

is a metric modular on Ω. Clearly, the set Ωω is a complete modular metric space independent
of generators.

Theorem 3.8. ref. [17] Consider the problem (3.26) and assume the following:

i. for c > 0 with ∣s∣ < c and ∣p∣ < c, the function F x; t; s; pð Þ is uniformly Hölder continuous
in x and t for each compact subset of R� I,

ii. there exists a constant cH ≤ T þ 2π�1
2T

1
2

� ��1
≤ q, where q∈ 0; 1ð Þ such that

0 ≤
1
λ

H x; t; s2; p2
� ��H x; t; s1; p1

� �� �

≤ cH
s2 � s1 þ p2 � p1

λ

� �

for all s1; p1
� �

, s2; p2
� �

∈R� R with s1 ≤ s2 and p1 ≤ p2,

iii. H is bounded for bounded s and p:

Then the problem (3.26) admits a solution.

Proof. It is well known that u∈Ωω is a solution (3.26) iff u∈Ωω is a solution integral Eq. (3.27).
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Consider the graph G with V Gð Þ ¼ D ¼ Ωω and E Gð Þ ¼ u; vð Þ∈D�D : u x; tð Þ ≤ v x; tð Þf
and ux x; tð Þ ≤ vx x; tð Þ at each x; tð Þ∈R� Ig. Clearly E Gð Þ is partial ordered and D;E Gð Þð Þ satisfy
property (A).

Also, define a mapping Λ : Ωω ! Ωω by

Λuð Þ x; tð Þ≔
ð∞
�∞

k x� ξ; tð Þφ ξð Þdξþ
ðt
0

ð∞
�∞

k x� ξ; t� τð ÞH ξ; τ; u ξ; τð Þ; ux ξ; τð Þð Þdξdτ

for all x; tð Þ∈R� I. Then, finding solution of problem (3.27) is equivalent to the ensuring the
existence of fixed point of Λ.

Since u; vð Þ∈E Gð Þ, ux; vxð Þ∈E Gð Þ and hence Λu;Λvð Þ∈E Gð Þ, Λux;Λvxð Þ∈E Gð Þ:
Thus, from the definition of Λ and by (ii) we have

1
λ
∣ Λvð Þ x; tð Þ � Λuð Þ x; tð Þ∣

≤
1
λ

ðt
0

ð∞
�∞

k x� ξ; t� τð Þ∣H ξ; τ; v ξ; τð Þ; vx ξ; τð Þð Þ �H ξ; τ; u ξ; τð Þ; ux ξ; τð Þð Þ∣dξdτ

≤
ðt
0

ð∞
�∞

k x� ξ; t� τð ÞcH 1
λ
jðv ξ; τð Þ � uðξ; τÞ þ vxðξ; τÞ � uxðξ; τÞÞj

� �
dξdτ

≤ cHωλ u; vð ÞT:

(3.28)

Similarly, we have

1
λ
∣ Λvð Þx x; tð Þ � Λuð Þx x; tð Þ∣ ≤ cHωλ u; vð Þ

ðt
0

ð∞
�∞

∣kx x� ξ; t� τð Þ∣dξdτ

≤ 2π�1
2T

1
2cHωλ u; vð Þ:

(3.29)

Therefore, from (3.28) and (3.29) we have

ωλ Λu;Λvð Þ ≤ T þ 2π�1
2T

1
2

� �
cHωλ u; vð Þ

i.e.

ωλ Λu;Λvð Þ ≤ qωλ u; vð Þ, q∈ 0; 1ð Þ

i.e.

d Λu;Λvð Þ ≤ e�τd u; vð Þ, τ > 0:

Now, by passing to logarithms, we can write this as

ln d Λu;Λvð Þð Þ ≤ ln e�τd u; vð Þð Þ
τþ ln d Λu;Λvð Þð Þ ≤ ln d u; vð Þð Þ:
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i. for c > 0 with ∣s∣ < c and ∣p∣ < c, the function F x; t; s; pð Þ is uniformly Hölder continuous
in x and t for each compact subset of R� I,

ii. there exists a constant cH ≤ T þ 2π�1
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λ

� �

for all s1; p1
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, s2; p2
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∈R� R with s1 ≤ s2 and p1 ≤ p2,

iii. H is bounded for bounded s and p:

Then the problem (3.26) admits a solution.

Proof. It is well known that u∈Ωω is a solution (3.26) iff u∈Ωω is a solution integral Eq. (3.27).
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0
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k x� ξ; t� τð ÞH ξ; τ; u ξ; τð Þ; ux ξ; τð Þð Þdξdτ

for all x; tð Þ∈R� I. Then, finding solution of problem (3.27) is equivalent to the ensuring the
existence of fixed point of Λ.

Since u; vð Þ∈E Gð Þ, ux; vxð Þ∈E Gð Þ and hence Λu;Λvð Þ∈E Gð Þ, Λux;Λvxð Þ∈E Gð Þ:
Thus, from the definition of Λ and by (ii) we have
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�∞
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jðv ξ; τð Þ � uðξ; τÞ þ vxðξ; τÞ � uxðξ; τÞÞj

� �
dξdτ

≤ cHωλ u; vð ÞT:
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∣ Λvð Þx x; tð Þ � Λuð Þx x; tð Þ∣ ≤ cHωλ u; vð Þ
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0
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�∞
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1
2cHωλ u; vð Þ:

(3.29)

Therefore, from (3.28) and (3.29) we have

ωλ Λu;Λvð Þ ≤ T þ 2π�1
2T

1
2

� �
cHωλ u; vð Þ

i.e.

ωλ Λu;Λvð Þ ≤ qωλ u; vð Þ, q∈ 0; 1ð Þ

i.e.

d Λu;Λvð Þ ≤ e�τd u; vð Þ, τ > 0:

Now, by passing to logarithms, we can write this as
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Now, from example 2.22 (i) and taking T ¼ Λ and R ¼ I (Identity map), we deduce that the
operator T satisfies all the hypothesis of theorem 2.32.

Therefore, as an application of theorem 2.32 we conclude the existence of u∗ ∈Ωω such that
u∗ ¼ Λu∗ and so u∗ is a solution of the problem 3.26.

3.6. Fractional differential equation

Before we will discuss the source of fractional differential equation.

Cauchy’s formula for repeated integration. Let f be a continuous function on the real line. Then the
nth repeated integral of f based at a,

f �nð Þ xð Þ ¼
ðx
a

ðσ1
a

ðσ2
a
…
ðσn�1

a
f σnð Þdσn…dσ3dσ2dσ1

is given by single integration

f �nð Þ xð Þ ¼ 1
n� 1ð Þ!

ðx
a

x� tð Þn�1f tð Þdt:

A proof is given by mathematical induction. Since f is continuous, the base case follows from
the fundamental theorem of calculus.

d
dx

f�1 xð Þ ¼ d
dx

ðx
a
f tð Þdt ¼ f xð Þ

where

f�1 að Þ ¼
ða
a
f tð Þdt ¼ 0:

Now, suppose this is true for n, and let us prove it for nþ 1.

Firstly, using the Leibniz integral rule. Then applying the induction hypothesis

f �nþ1ð Þ xð Þ ¼
ðx
a

ðσ1
a

ðσ2
a
…
ðσn
a
f σnþ1ð Þdσn…dσ3dσ2dσ1

¼
ðx
a

1
n� 1ð Þ!

ðσ1
a

σ1 � tð Þn�1f tð Þdtdσ1

¼
ðx
a

d
dσ1

1
n!

ðσ1
a

σ1 � tð Þnf tð Þdt
� �

dσ1

¼ 1
n!

ðx
a

x� tð Þnf tð Þdt:

This completes the proof. In fractional calculus, this formula can be used to construct a notion
of differintegral, allowing one to differentiate or integrate a fractional number of time.
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Integrating a fractional number of time with this formula is straightforward, one can use
fractional n by interpreting n� 1ð Þ! as Γ nð Þ, that is the Riemann-Liouville integral which is
defined by

Iαf xð Þ ¼ 1
Γ αð Þ

ðx
a
f tð Þ x� tð Þα�1dt:

This also makes sense if a ¼ �∞, with suitable restriction on f . The fundamental relation hold

d
dx

Iαþ1f xð Þ ¼ Iαf xð Þ

Iα Iβf
� � ¼ Iαþβf xð Þ

the latter of which is semigroup properties. These properties make possible not only the
definition of fractional differentiation by taking enough derivative of Iαf . One can define
fractional-order derivative of as well by

dα

dxα
f ¼ d α½ �

dx α½ � I
α½ ��αf

where �½ � denote the ceilling function. One also obtains a differintegral interpolation between
differential and integration by defining

Dα
x f xð Þ ¼

d α½ �

dx α½ � I
α½ ��αf xð Þ if α > 0

f xð Þ if α ¼ 0

I�αf xð Þ if α < 0:

8>>>><
>>>>:

An alternative fractional derivative was introduced by Caputo in 1967, and produce a deriva-
tive that has different properties it produces zero from constant function and more importantly
the initial value terms of the Laplace Transform are expressed by means of the value of that
function and of its derivative of integer order rather than the derivative of fractional order as in
the Riemann-Liouville derivative. The Caputo fractional derivative with base point x is then

cDα
x f xð Þ ¼ I α½ ��α d α½ �

dx α½ � f xð Þ:

Lemma 3.9. ref. [24] Let u : 0;∞½ � ! X be continuous function such that u∈C 0; τ½ �;Xð Þ for all
τ > 0. Then u is a global solution of

cDα
t u tð Þ ¼ Bu tð Þ; t > 0 (3.30)

u 0ð Þ ¼ u0 ∈X (3.31)

if and only if u the integral equation
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tive that has different properties it produces zero from constant function and more importantly
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τ > 0. Then u is a global solution of

cDα
t u tð Þ ¼ Bu tð Þ; t > 0 (3.30)

u 0ð Þ ¼ u0 ∈X (3.31)

if and only if u the integral equation
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u tð Þ ¼ u0 þ 1
Γ αð Þ

ðt
0
t� sð Þα�1Bu sð Þds, t ≥ 0:

Proof. )ð Þ Let τ > 0. Since u is a global solution of (3.30), then u∈C 0; τ½ �;Xð Þ, cDα
t u∈C 0; τ½ �;Xð Þ

andt

cDα
t u tð Þ ¼ Bu tð Þ, t∈ 0; τð �:

Thus, by applying Iαt in both sides of the equality (since cDα
t u∈L1 0; τ;Xð Þ) we obtain

u tð Þ ¼ u 0ð Þ þ Iαt Bu tð Þ ¼ u0 þ 1
Γ αð Þ

ðt
0
t� sð Þα�1Bu sð Þds, t ≥ 0:

Since τ > 0 was an arbitrary choice, u satisfies the integral equation for all t ≥ 0, as we wish.

(ð Þ On the other hand, choose τ > 0 (but arbitrary). By hypothesis, u∈C 0; τ½ �;Xð Þ, and
satisfies the integral equation,

u tð Þ ¼ u0 þ 1
Γ αð Þ

ðt
0
t� sð Þα�1Bu sð Þds, t∈ 0; τ½ �:

Observing also u 0ð Þ ¼ u0 and rewriting the equality above, we obtain

u tð Þ ¼ u 0ð Þ þ Iαt Bu sð Þ, t∈ 0; τ½ �:

Since Bu sð Þ∈C 0; τ½ �;Xð Þ, we conclude, by cDα
t I

α
t f tð Þ ¼ f tð Þ of the fractional integral and deriv-

ative property that we can apply cDα
t in both sides of the integral equation, obtaining

cDα
t u tð Þ ¼ Bu tð Þ, t∈ 0; τ½ �

what lead us to verify that cDα
t u∈C 0; τ½ �;Xð Þ. Since τ > 0 was an arbitrary choice, we conclude

that the function u is a global solution of (3.30). □

Theorem 3.10. ref. [24] Let α∈ 0; 1ð Þ, B∈L Xð Þ and u0 ∈X then the problem (3.30).

have a unique global solution.

Proof. Choose τ > 0. then consider Kτ ¼ u∈C 0; τ½ �;Xð Þ; u 0ð Þ ¼ u0 and operator.

T : Kτ ! Kτ given by

T u tð Þð Þ ¼ u0 þ 1
Γ αð Þ

ðt
0
Bu tð Þdt:

We will show that a power (with respect to be composition) of this operator is a contraction
and therefore by Banach’s Fixed Point Theorem, T have a unique fixed point in Kτ to this end,
observe that for any u, v∈Kτ
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kT u tð Þð Þ � T v tð Þð Þk ¼ k 1
Γ αð Þ

ðt
0
t� sð Þ α�1ð ÞB u sð Þ � v sð Þð Þdsk

≤ k 1
Γ αð Þ

ðt
0
t� sð Þ α�1ð Þ Bk kL Xð Þku sð Þ � v sð ÞÞkds

≤
Bk kL Xð Þ
Γ αð Þ ku sð Þ � v sð ÞÞk

ðt
0
t� sð Þα�1ds

≤
tα Bk kL Xð Þ
αΓ αð Þ ku sð Þ � v sð ÞÞk

≤
tα

Γ αþ 1ð Þ Bk kL Xð Þku sð Þ � v sð ÞÞk

≤
tα

Γ αþ 1ð Þ Bk kL Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk:

By iterating this relation, we find that

kT2 u tð Þð Þ � T2 v tð Þð Þk ≤
tα

Γ αþ 1ð Þ Bk kL Xð Þ sup
0⩽ s⩽ τ

kTu sð Þ � Tv sð ÞÞk

≤
t2α

Γ2 αþ 1ð Þ Bk k2L Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk

kT3 u tð Þð Þ � T3 v tð Þð Þk ≤
tα

Γ αþ 1ð Þ Bk kL Xð Þ sup
0⩽ s⩽ τ

kT2u sð Þ � T2v sð ÞÞk

≤
t3α

Γ3 αþ 1ð Þ Bk k3L Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk
≤ ⋯

kTn u tð Þð Þ � Tn v tð Þð Þk ≤
tnα

Γn αþ 1ð Þ Bk knL Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk

and for an sufficiently large n,the constant in question is less than 1, i.e., there exists a fixed
point u∈Kτ. Observe now that τ > 0 was an arbitrary choice, so we conclude that the fixed
point u∈C 0; τ½ �;Xð Þ for all τ > 0 and Lemma (3.9), we obtain the existence and uniqueness of a
global solution to the problem (3.30). □

Corollary 3.11. ref. [24] Consider the same hypothesis of theorem (3.10).

i. Let Un tð Þf gj∞n¼0 be a sequence of continuous functions Un : 0;∞½ Þ ! X given by

U0 tð Þ ¼ u0, Un ¼ u0 þ 1
Γ αð Þ
Ð t
0 t� sð Þα�1BUn�1 sð Þds, n∈ 1; 2;…f g.

Then there exists a continuous function U : 0;∞½ Þ ! X, such that for any τ > 0, we con-
clude that Un ! U in C 0; τ½ �;Xð Þ. Moreover, U tð Þ is the unique global solution of (3.30).

ii. It holds that

U tð Þ ¼
X∞

k¼0

tαBð Þku0
Γ αkþ 1ð Þ :
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andt
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t I
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t f tð Þ ¼ f tð Þ of the fractional integral and deriv-

ative property that we can apply cDα
t in both sides of the integral equation, obtaining

cDα
t u tð Þ ¼ Bu tð Þ, t∈ 0; τ½ �

what lead us to verify that cDα
t u∈C 0; τ½ �;Xð Þ. Since τ > 0 was an arbitrary choice, we conclude

that the function u is a global solution of (3.30). □

Theorem 3.10. ref. [24] Let α∈ 0; 1ð Þ, B∈L Xð Þ and u0 ∈X then the problem (3.30).

have a unique global solution.

Proof. Choose τ > 0. then consider Kτ ¼ u∈C 0; τ½ �;Xð Þ; u 0ð Þ ¼ u0 and operator.

T : Kτ ! Kτ given by

T u tð Þð Þ ¼ u0 þ 1
Γ αð Þ

ðt
0
Bu tð Þdt:

We will show that a power (with respect to be composition) of this operator is a contraction
and therefore by Banach’s Fixed Point Theorem, T have a unique fixed point in Kτ to this end,
observe that for any u, v∈Kτ
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kT u tð Þð Þ � T v tð Þð Þk ¼ k 1
Γ αð Þ
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0
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Bk kL Xð Þ
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≤
tα Bk kL Xð Þ
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≤
tα

Γ αþ 1ð Þ Bk kL Xð Þku sð Þ � v sð ÞÞk

≤
tα

Γ αþ 1ð Þ Bk kL Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk:

By iterating this relation, we find that
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≤
t3α

Γ3 αþ 1ð Þ Bk k3L Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk
≤ ⋯

kTn u tð Þð Þ � Tn v tð Þð Þk ≤
tnα

Γn αþ 1ð Þ Bk knL Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk

and for an sufficiently large n,the constant in question is less than 1, i.e., there exists a fixed
point u∈Kτ. Observe now that τ > 0 was an arbitrary choice, so we conclude that the fixed
point u∈C 0; τ½ �;Xð Þ for all τ > 0 and Lemma (3.9), we obtain the existence and uniqueness of a
global solution to the problem (3.30). □

Corollary 3.11. ref. [24] Consider the same hypothesis of theorem (3.10).

i. Let Un tð Þf gj∞n¼0 be a sequence of continuous functions Un : 0;∞½ Þ ! X given by

U0 tð Þ ¼ u0, Un ¼ u0 þ 1
Γ αð Þ
Ð t
0 t� sð Þα�1BUn�1 sð Þds, n∈ 1; 2;…f g.

Then there exists a continuous function U : 0;∞½ Þ ! X, such that for any τ > 0, we con-
clude that Un ! U in C 0; τ½ �;Xð Þ. Moreover, U tð Þ is the unique global solution of (3.30).

ii. It holds that

U tð Þ ¼
X∞

k¼0

tαBð Þku0
Γ αkþ 1ð Þ :
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Proof. (i) It follows directly from proof of Theorem (3.10).

(ii) It is trivial that U0 tð Þ ¼ u0. So we compute, using the gamma function properties, that

U1 tð Þ ¼ u0 þ 1
Γ αð Þ

ðt
0
t� sð Þα�1Bu0 sð Þds ¼ u0 þ tαBu0

αΓ αð Þ ¼ u0 þ tαBu0
Γ αþ 1ð Þ :

By a simple induction process, we conclude that

Un tð Þ ¼
Xn

k¼0

tαBð Þku0
Γ αkþ 1ð Þ

and therefore

U tð Þ ¼ lim
n!∞

Xn

k¼0

tαBð Þku0
Γ αkþ 1ð Þ ¼

X∞

k¼0

tαBð Þku0
Γ αkþ 1ð Þ≔Eα tαBð Þu0:

□

From the above works, we can see a fact, although the fractional boundary value problems
have been studied, to the best of our knowledge, there have been a few works using the lower
and upper solution method. However, only positive solution are useful for many application,
motivated by the above works, we study the existence and uniqueness of positive solution of
the following integral boundary value problem.

Dα
0þu tð Þ þ f t; u tð Þð Þ ¼ 0, 0 < t < 1, 1 < α ≤ 2 (3.32)

u 0ð Þ ¼ 0, u 1ð Þ ¼
ð1
0
u sð Þds, (3.33)

where f : 0; 1½ � � 0;∞½ Þ ! 0;∞½ Þ is a continuous function and Dα
0þ is the standard Riemann-

Liouville fractional derivative.

We need the following lemmas that will be used to prove our main results.

Lemma 3.12. ref. [25] Let α > 0 and u∈C 0; 1ð Þ ∩L 0; 1ð Þ. Then fractional differential equation

Dα
0þu tð Þ ¼ 0

has

u tð Þ ¼ C1tα�1 þ C2tα�2 þ⋯þ CNtα�N, (3.34)

Ci ∈R, i ¼ 1, 2,⋯, N, N ¼ α½ � þ 1 as unique solution.

Lemma 3.13. ref. [25] Assume that u∈C 0; 1ð Þ ∩ L 0; 1ð Þ with a fractional derivative of order
α > 0 that belongs to C 0; 1ð Þ ∩ L 0; 1ð Þ. Then
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Iα0þD
α
0þu tð Þ ¼ u tð Þ � C1tα�1 � C2tα�2 �⋯� CNtα�N (3.35)

for some Ci ∈R, i ¼ 1, 2,⋯, N, N ¼ α½ � þ 1.

In the following, we present the Green function of fractional differential equation with integral
boundary value condition.

Theorem 3.14. ref. [26] Let 1 < α < 2, Assume y tð Þ∈C 0; 1½ �, then the following equation

Dα
0þu tð Þ þ y tð Þ ¼ 0, 0 < t < 1 (3.36)

u 0ð Þ ¼ 0, u 1ð Þ ¼
ð1
0
u sð Þds, (3.37)

has a unique solution

u tð Þ ¼
ð1
0
G t; sð Þy sð Þds (3.38)

where

G t; sð Þ ¼
t 1� sð Þ½ �α�1 α� 1þ sð Þ � t� s½ �α�1 α� 1ð Þ

α� 1ð ÞΓ αð Þ if 0 ≤ s ≤ t ≤ 1

t 1� sð Þ½ �α�1 α� 1þ sð Þ
α� 1ð ÞΓ αð Þ if 0 ≤ t ≤ s ≤ 1:

8>>><
>>>:

Proof. We may apply Lemma (3.13) to reduce Eq. (3.36) to an equivalent integral equation

u tð Þ ¼ �Iα0þy tð Þ þ C1tα�1 þ C2tα�2

for some C1, C2 ∈R. Therefore, the general solution of (3.36) is

u tð Þ ¼ �
ð1
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ C1tα�1 þ C2tα�2: (3.39)

By u 0ð Þ ¼ 0, we can get C2 ¼ 0. In addition, u 1ð Þ ¼ �
ðt
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ C1, it follows

C1 ¼
ð1
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ
ð1
0
u sð Þds: (3.40)

Take (3.40) into (3.39), we have

u tð Þ ¼ �
ð1
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ tα�1
ð1
0

1� sð Þα�1

Γ αð Þ y sð Þdsþ tα�1
ð1
0
u sð Þds: (3.41)
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Proof. (i) It follows directly from proof of Theorem (3.10).

(ii) It is trivial that U0 tð Þ ¼ u0. So we compute, using the gamma function properties, that

U1 tð Þ ¼ u0 þ 1
Γ αð Þ

ðt
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t� sð Þα�1Bu0 sð Þds ¼ u0 þ tαBu0
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By a simple induction process, we conclude that
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k¼0
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□
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and upper solution method. However, only positive solution are useful for many application,
motivated by the above works, we study the existence and uniqueness of positive solution of
the following integral boundary value problem.

Dα
0þu tð Þ þ f t; u tð Þð Þ ¼ 0, 0 < t < 1, 1 < α ≤ 2 (3.32)

u 0ð Þ ¼ 0, u 1ð Þ ¼
ð1
0
u sð Þds, (3.33)

where f : 0; 1½ � � 0;∞½ Þ ! 0;∞½ Þ is a continuous function and Dα
0þ is the standard Riemann-

Liouville fractional derivative.

We need the following lemmas that will be used to prove our main results.

Lemma 3.12. ref. [25] Let α > 0 and u∈C 0; 1ð Þ ∩L 0; 1ð Þ. Then fractional differential equation

Dα
0þu tð Þ ¼ 0

has

u tð Þ ¼ C1tα�1 þ C2tα�2 þ⋯þ CNtα�N, (3.34)

Ci ∈R, i ¼ 1, 2,⋯, N, N ¼ α½ � þ 1 as unique solution.

Lemma 3.13. ref. [25] Assume that u∈C 0; 1ð Þ ∩ L 0; 1ð Þ with a fractional derivative of order
α > 0 that belongs to C 0; 1ð Þ ∩ L 0; 1ð Þ. Then
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Theorem 3.14. ref. [26] Let 1 < α < 2, Assume y tð Þ∈C 0; 1½ �, then the following equation

Dα
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has a unique solution
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where
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8>>><
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Proof. We may apply Lemma (3.13) to reduce Eq. (3.36) to an equivalent integral equation
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for some C1, C2 ∈R. Therefore, the general solution of (3.36) is

u tð Þ ¼ �
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0

t� sð Þα�1

Γ αð Þ y sð Þdsþ C1tα�1 þ C2tα�2: (3.39)

By u 0ð Þ ¼ 0, we can get C2 ¼ 0. In addition, u 1ð Þ ¼ �
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0
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Γ αð Þ y sð Þdsþ C1, it follows

C1 ¼
ð1
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ
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0
u sð Þds: (3.40)

Take (3.40) into (3.39), we have
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0
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Let
Ð 1
0 u sð Þds ¼ A,by (3.41), we can get

ð1
0
u tð Þdt ¼ �

ð1
0

ðt
0

t� sð Þα�1

Γ αð Þ y sð Þdsdtþ
ð1
0
tα�1

ðt
0

1� sð Þα�1

Γ αð Þ y sð Þdsdtþ A
ð1
0
tα�1dt

¼ �
ð1
0

1� sð Þα
αΓ αð Þ y sð Þdsþ

ð1
0

1� sð Þα�1

αΓ αð Þ y sð Þdsþ A
α

¼
ð1
0

s 1� sð Þα�1

αΓ αð Þ y sð Þdsþ A
α
:

So,

A ¼ α
α� 1

ð1
0

s 1� sð Þα�1

αΓ αð Þ y sð Þds ¼
ð1
0

s 1� sð Þα�1

α� 1ð ÞΓ αð Þ y sð Þds:

Combine with (3.41), we have

u tð Þ ¼ �
ðt
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ tα�1
ð1
0

1� sð Þα�1

Γ αð Þ y sð Þdsþ tα�1
ð1
0

s 1� sð Þα�1

α� 1ð ÞΓðÞα y sð Þds

¼ �
ðt
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ
ð1
0

t 1� sð Þα�1 α� 1þ sð Þ
h i

α� 1ð ÞΓ αð Þ y sð Þds

¼
ð1
0

t 1� sð Þα�1 α� 1þ sð Þ � t� sð Þα�1 α� 1ð Þ
h i

α� 1ð ÞΓ αð Þ y sð Þdsþ
ð1
t

½t 1� sð Þα�1 α� 1þ sð Þ
α� 1ð ÞΓ αð Þ y sð Þds

¼
ð1
0
G t; sð Þy sð Þds:

This complete the proof.

Remark 3.15. Obviously, the Green function G t; sð Þ satisfies the following properties:

i. G t; sð Þ > 0, t, s∈ 0; 1ð Þ;
ii. G t; sð Þ ≤ 2

α�1ð ÞΓ αð Þ ; 0 ≤ t, s ≤ 1.

Theorem 3.16. ref. [26] Assume that function f satisfies

∣f t; uð Þ � f t; vð Þ∣ ≤ a tð Þ∣u� v∣ (3.42)

where t∈ 0; 1½ �, u, v∈ 0;∞½ Þ, a : 0; 1½ � ! 0;∞½ Þ is a continuous function. If
ð1
0
sα�1 α� 1þ sð Þa sð Þds < α� 1ð ÞΓ αð Þ (3.43)

then the Eq. (3.32) has a unique positive solution.

Proof. If Tn is a contraction operator for n sufficiently large, then the Eq. (3.32) has a unique
positive solution.
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In fact, by the definition of Green function G t; sð Þ, for u, v∈P, we have the estimate

∣Tu tð Þ � Tv tð Þ∣ ¼
ð1
0
G t; sð Þ∣f s; u sð Þð Þ � f s; v sð Þð Þ∣ds

≤
ð1
0
G t; sð Þa sð Þ∣u sð Þ � v sð Þ∣ds

≤
ð1
0

½t 1� sð Þα�1 α� 1þ sð Þ
α� 1ð ÞΓ αð Þ a sð Þku� vkds

≤
ku� vktα�1

α� 1ð ÞΓ αð Þ
ð1
0

1� sð Þα�1 α� 1þ sð Þa sð Þds:

Denote K ¼
ð1
0

1� sð Þα�1 α� 1þ sð Þa sð Þds, then

∣Tu tð Þ � Tv tð Þ∣ ≤ Ktα�1

α� 1ð ÞΓ αð Þ ku� vk:

Similarly,

∣T2u tð Þ � T2v tð Þ∣ ¼
ð1
0
G t; sð Þ∣f s;Tu sð Þð Þ � f s;Tv sð Þð Þ∣ds

≤
ð1
0
G t; sð Þa sð Þ∣Tu sð Þ � Tv sð Þ∣ds

≤
ð1
0
G t; sð Þa sð Þ Ksα�1

α� 1ð ÞΓ αð Þ ku� vkds

≤
ð1
0

K t 1� sð Þ½ �α�1 α� 1þ sð Þ
α� 1ð Þ2Γ2 αð Þ a sð Þsα�1ku� vkds

≤
Kku� vktα�1

α� 1ð Þ2Γ2 αð Þ

ð1
0
sα�1 1� sð Þα�1 α� 1þ sð Þa sð Þds

¼ KHtα�1

α� 1ð Þ2Γ2 αð Þ ku� vk

where H ¼
ð1
0
sα�1 1� sð Þα�1 α� 1þ sð Þa sð Þds. By mathematical induction, it follows

∣Tnu tð Þ � Tnv tð Þ∣ ≤ KHn�1tα�1

α� 1ð ÞnΓn αð Þ ku� vk

by (3.43), for n large enough, we have

KHn�1tα�1

α� 1ð ÞnΓn αð Þ ¼
K

α� 1ð ÞΓ αð Þ
H

α� 1ð ÞΓ αð Þ
� �n�1

< 1:

Hence, it holds
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Let
Ð 1
0 u sð Þds ¼ A,by (3.41), we can get

ð1
0
u tð Þdt ¼ �

ð1
0

ðt
0

t� sð Þα�1

Γ αð Þ y sð Þdsdtþ
ð1
0
tα�1

ðt
0

1� sð Þα�1

Γ αð Þ y sð Þdsdtþ A
ð1
0
tα�1dt

¼ �
ð1
0

1� sð Þα
αΓ αð Þ y sð Þdsþ

ð1
0

1� sð Þα�1

αΓ αð Þ y sð Þdsþ A
α

¼
ð1
0

s 1� sð Þα�1

αΓ αð Þ y sð Þdsþ A
α
:

So,

A ¼ α
α� 1

ð1
0

s 1� sð Þα�1

αΓ αð Þ y sð Þds ¼
ð1
0

s 1� sð Þα�1

α� 1ð ÞΓ αð Þ y sð Þds:

Combine with (3.41), we have

u tð Þ ¼ �
ðt
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ tα�1
ð1
0

1� sð Þα�1

Γ αð Þ y sð Þdsþ tα�1
ð1
0

s 1� sð Þα�1

α� 1ð ÞΓðÞα y sð Þds

¼ �
ðt
0

t� sð Þα�1

Γ αð Þ y sð Þdsþ
ð1
0

t 1� sð Þα�1 α� 1þ sð Þ
h i

α� 1ð ÞΓ αð Þ y sð Þds

¼
ð1
0

t 1� sð Þα�1 α� 1þ sð Þ � t� sð Þα�1 α� 1ð Þ
h i

α� 1ð ÞΓ αð Þ y sð Þdsþ
ð1
t

½t 1� sð Þα�1 α� 1þ sð Þ
α� 1ð ÞΓ αð Þ y sð Þds

¼
ð1
0
G t; sð Þy sð Þds:

This complete the proof.

Remark 3.15. Obviously, the Green function G t; sð Þ satisfies the following properties:

i. G t; sð Þ > 0, t, s∈ 0; 1ð Þ;
ii. G t; sð Þ ≤ 2

α�1ð ÞΓ αð Þ ; 0 ≤ t, s ≤ 1.

Theorem 3.16. ref. [26] Assume that function f satisfies

∣f t; uð Þ � f t; vð Þ∣ ≤ a tð Þ∣u� v∣ (3.42)

where t∈ 0; 1½ �, u, v∈ 0;∞½ Þ, a : 0; 1½ � ! 0;∞½ Þ is a continuous function. If
ð1
0
sα�1 α� 1þ sð Þa sð Þds < α� 1ð ÞΓ αð Þ (3.43)

then the Eq. (3.32) has a unique positive solution.

Proof. If Tn is a contraction operator for n sufficiently large, then the Eq. (3.32) has a unique
positive solution.
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kTnu� Tnvk < ku� vk,

which implies Tn is a contraction operator for n sufficiently large, then the Eq. (3.32) has a
unique positive solution. □
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Abstract

The aims of this chapter are devoted to investigate a system of fractional-order differential
equations (FDEs) with multipoint boundary conditions. Necessary and sufficient condi-
tions are investigated for at most one solution to the proposed problem. Also, results for
the existence of at least one or two positive solutions are developed by using a fixed-point
theorem of concave-type operator for the considered problem. Further, we extend the
conditions for more than two solutions and established some adequate conditions for
multiplicity results to the proposed problem. Also, a result devoted to Hyers-Ulam stabil-
ity is discussed. Suitable examples are provided to verify the established results.

Keywords: fractional differential equations, coupled system, boundary condition,
concave operator
Mathematics subject classification: 26A33, 34A08, 35B40

1. Introduction

Arbitrary-order differential equations are the excellent tools in the description of many phenom-
ena and process in different fields of science, technology, and engineering (see [1, 2]). Therefore,
considerable attention has been paid to the subject of differential equations of arbitrary order
(see [3–5] and the references therein). The area devoted to the existence of positive solutions to
fractional differential equations and their system especially coupled systems was greatly studied
by many authors (for details see [6–9]). In all these articles, the concerned results were obtained
by using classical fixed point theorems like Banach contraction principle, Leray-Schauder fixed
point theorem, and fixed point theorems of cone type. The aforesaid area has been very well
explored for both ordinary- and arbitrary-order differential equations. Existence and uniqueness
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results for nonlinear and linear, classical, as well as arbitrary-order differential equations have
been investigated in many papers (see few of them as [10–13]).

Another warm area of research in the theory of fractional-order differential equations (FDEs) is
devoted to the multiplicity of solutions. Plenty of research articles are available on this topic in
literature. In [14], the author studied the given boundary value problem (BVP) for existence of
multiple solutions:

Dθ1p tð Þ þH t; p tð Þð Þ ¼ 0, t∈ I, θ1 ∈ 1; 2ð �,
p tð Þ t¼0 ¼ p tð Þj jt¼1 ¼ 0:

(

where D is the Riemann-Liouville derivative of non-integer order and I ¼ 0; 1½ �. In same line,
Kaufmann and Mboumi [15] studied the given boundary value problem of fractional differen-
tial equations for multiplicity of positive solutions:

Dθ1p tð Þ þ ϕ tð ÞH t; p tð Þð Þ ¼ 0, t∈ I, θ1 ∈ 1; 2ð �,
p tð Þ t¼0 ¼ p

0
tð Þ�� ��

t¼1 ¼ 0,

(

where D is the Riemann-Liouville derivative and ϕ∈C I;Rð Þ, H∈C I� R;Rð Þ:
In the last few decades, the theory devoted to the multiplicity of solutions is very well
extended to coupled systems of nonlinear FDEs, and we refer to few papers in [16–18]. Wang
et al. [19] established some conditions under which the given system of three point BVP

Dθ1p tð Þ ¼ H1 t; q tð Þð Þ; t∈ I,

Dθ2q tð Þ ¼ H2 t; p tð Þð Þ; t∈ I,

p tð Þt¼0 ¼ 0; p tð Þt¼1 ¼ μp tð Þ��t¼ξ; q tð Þ t¼0 ¼ 0; q tð Þt¼1 ¼ νq tð Þ�� ��
t¼ξ,

8>>><
>>>:

has a solution, where θ1, θ2 ∈ 1; 2ð � and μ, ν∈ I, ξ∈ 0; 1ð Þ, Hi : 0; 1½ � � R ! R for i ¼ 1, 2 are
nonlinear functions.

In the last few decades, another important aspect devoted to stability analysis of FDEs with
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studied for the aforesaid FDEs including exponential, Mittag-Leffler, and Lyapunov stability.
Recently, Hyers-Ulam stability has given more attention. This concept was initially introduced
by Ulam and then by Hyers (for details see [20–22]). Now, many articles have been written on
this concept (see [23–27]). So far, the aforementioned stability has not yet well studied for
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where j ¼ 0; 1; 2,⋯m� 2, m ≥ 3, I ¼ 0; 1½ �, η, ξ∈ 0; 1ð Þ, H1,H2 : 0; 1½ � � 0f g∪Rþ � 0f g∪Rþ !
0f g∪Rþ are continuous functions, and Dθ1 , Dθ2 stand for Riemann-Liouville fractional derivative
of order θ1,θ2 in sequel. We obtain necessary and sufficient conditions for the existence of solution
to system (1) by using another type of fixed point result based on a concave-type operator with
increasing or decreasing property. The idea then extends to form some conditions which ensure
multiplicity of solutions to the considered problem. Also, we discuss some results about the Hyers-
Ulam stability for the considered problem. Further by providing examples, we illustrate the
established results.

2. Preliminaries

In the current section, we review few fundamental lemmas and results found in [2, 4, 6, 28, 29].

Definition 2.1. Arbitrary-order integral of function ψ : 0;∞ð Þ ! R is recalled as

Iθ1ψ tð Þ ¼ 1
Γ θ1ð Þ

ðt
0
t� sð Þθ1�1ψ sð Þds,

where θ1 > 0 is a real number and also the integral is pointwise defined on Rþ

Definition 2.2. Arbitrary-order derivative in Riemann-Liouville sense for a function ψ∈ 0;∞ð Þ;Rð Þ
is given by

Dθ1ψ tð Þ ¼ d
dt

� �m ðt
0

t� sð Þm�θ1�1

Γ m� θ1ð Þ ψ sð Þds,θ1 > 0,where m ¼ θ1½ � þ 1:

Lemma 2.3. [16] Let θ1 > 0, then for arbitrary Cj ∈R, j ¼ 1, 2,…, m, m ¼ θ1½ � þ 1, and the
solution of

Dθ1ψ tð Þ ¼ f tð Þ

is provided by

ψ tð Þ ¼ Iθ1 f tð Þ þ C1tθ1�1 þ C2tθ1�2 þ…þ Cmtθ1�m:

Definition 2.4. [17, 28] Consider a Banach space E with a closed set C⊂E. Then, C is said to be
partially ordered if p⪯q such that q� p∈C: Further, C is said to be a cone if it holds the given
conditions:

1. p∈C and for a real constant κ ≥ 0 the relation κp∈C holds.

2. p and �p∈C yield that 0∈C, where 0 is zero element of Banach space E
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results for nonlinear and linear, classical, as well as arbitrary-order differential equations have
been investigated in many papers (see few of them as [10–13]).

Another warm area of research in the theory of fractional-order differential equations (FDEs) is
devoted to the multiplicity of solutions. Plenty of research articles are available on this topic in
literature. In [14], the author studied the given boundary value problem (BVP) for existence of
multiple solutions:

Dθ1p tð Þ þH t; p tð Þð Þ ¼ 0, t∈ I, θ1 ∈ 1; 2ð �,
p tð Þ t¼0 ¼ p tð Þj jt¼1 ¼ 0:

(

where D is the Riemann-Liouville derivative of non-integer order and I ¼ 0; 1½ �. In same line,
Kaufmann and Mboumi [15] studied the given boundary value problem of fractional differen-
tial equations for multiplicity of positive solutions:
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0
tð Þ�� ��

t¼1 ¼ 0,

(

where D is the Riemann-Liouville derivative and ϕ∈C I;Rð Þ, H∈C I� R;Rð Þ:
In the last few decades, the theory devoted to the multiplicity of solutions is very well
extended to coupled systems of nonlinear FDEs, and we refer to few papers in [16–18]. Wang
et al. [19] established some conditions under which the given system of three point BVP
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by Ulam and then by Hyers (for details see [20–22]). Now, many articles have been written on
this concept (see [23–27]). So far, the aforementioned stability has not yet well studied for
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to system (1) by using another type of fixed point result based on a concave-type operator with
increasing or decreasing property. The idea then extends to form some conditions which ensure
multiplicity of solutions to the considered problem. Also, we discuss some results about the Hyers-
Ulam stability for the considered problem. Further by providing examples, we illustrate the
established results.
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has a solution, where θ1, θ2 ∈ 1; 2ð � and μ, ν∈ I, ξ∈ 0; 1ð Þ, Hi : 0; 1½ � � R ! R for i ¼ 1, 2 are
nonlinear functions.

In the last few decades, another important aspect devoted to stability analysis of FDEs with
initial/boundary conditions has been given much attention. This is because stability is very
important from the numerical and optimization point of view. Various forms of stabilities were
studied for the aforesaid FDEs including exponential, Mittag-Leffler, and Lyapunov stability.
Recently, Hyers-Ulam stability has given more attention. This concept was initially introduced
by Ulam and then by Hyers (for details see [20–22]). Now, many articles have been written on
this concept (see [23–27]). So far, the aforementioned stability has not yet well studied for
multipoint BVPs of FDEs. Motivated by the aforesaid discussion, we propose the following
coupled system of four-point BVP provided as

Dθ1p tð Þ ¼ H1 t; p tð Þ; q tð Þð Þ; t∈ I; θ1 ∈ m� 1;mð �,
Dθ2q tð Þ ¼ H2 t; p tð Þ; q tð Þð Þ; t∈ I; θ2 ∈ m� 1;mð �,
p jð Þ tð Þt¼0 ¼ q jð Þ tð Þ��t¼0 ¼ 0, p tð Þ t¼1 ¼ p tð Þj jt¼η, q tð Þ t¼1 ¼ q tð Þj jt¼ξ:

8>>><
>>>:

(1)

Differential Equations - Theory and Current Research36

where j ¼ 0; 1; 2,⋯m� 2, m ≥ 3, I ¼ 0; 1½ �, η, ξ∈ 0; 1ð Þ, H1,H2 : 0; 1½ � � 0f g∪Rþ � 0f g∪Rþ !
0f g∪Rþ are continuous functions, and Dθ1 , Dθ2 stand for Riemann-Liouville fractional derivative
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increasing or decreasing property. The idea then extends to form some conditions which ensure
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Ulam stability for the considered problem. Further by providing examples, we illustrate the
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is given by
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is provided by
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Definition 2.5. [17, 28] A closed and convex set C of E is said to be a normal cone if it obeys the given
properties:

1. For 0⪯p⪯q∈E, there exists β > 0, such that pk kE ≤ β qk kE;
2. p � q, for all p, q∈E yields that there exist constants a, b > 0 such that ap⪯q⪯bq:

Remark 2.6. As � is an equivalence relation, therefore defines a set Cf ¼ p∈E : p � ff g for f ∈C.
Obviously, one can derive that Cf ⊂C for f ≻ 0:

Definition 2.7. The operator S : C ! C is said to be λ concave for every θ,λ∈ 0; 1ð Þ, p∈C, if and
only if S λpð Þ⪰θλSp:

Definition 2.8. The operator S : C ! C is said to be to be increasing if p, q∈C, p⪯q gives that
Sp⪯Sq:

Lemma 2.9. [17, 28] Assume that S : C ! C is increasing λ�concave operator for a normal cone C
produced by Banach space E, such that there exists p≻ 0 with Sf ∈Cf . Then, S has a unique fixed point
p∈Cf

Theorem 2.10. [30] Let E be a Banach space with C⊆B, which is closed and convex. Let E be a
relatively open subset of C with 0∈ E and S : E ! C be a continuous and compact operator. Then.

1. The operator S has a fixed point in E,

2. There exist w∈ ∂ℰ and λ∈ 0; 1ð Þ with w ¼ λSw:

Lemma 2.11. [30] For a Banach space E together with a cone C, there exist two relatively open subsets
A1 and A2 of E such that 0∈A1 ⊂A1 ⊂A2. Moreover, for a completely continuous operator
S : C ∩ A2\A1

� �! C, one of the given conditions holds:

1. ∥Sp∥ ≤ ∥p∥ for all p∈C ∩ ∂A1; ∥Sp∥ ≥ ∥p∥, for all p∈C ∩ ∂A2;

2. ∥Sp∥ ≥ ∥p∥ for all p∈C ∩ ∂A1; ∥Sp∥ ≤ ∥p∥, for all p∈C ∩ ∂A2

Then, S has at least one fixed point in C ∩ A2\A1
� �

:

3. Main results

Theorem 3.1. Let φ∈C 0; 1½ �;Rð Þ, η∈ 0; 1ð Þ and λ1 ¼ 1� ηθ1�1 < 1, and then the unique solution
to BVP of linear FDE

Dθ1p tð Þ ¼ φ tð Þ, t∈ I, θ1 ∈ m� 1;mð �,
p jð Þ tð Þt¼0 ¼ 0, p tð Þ t¼1 ¼ p tð Þj jt¼η, j ¼ 0; 1; 2,⋯m� 2, m ≥ 3,

(
(2)

is given by

p tð Þ ¼
ð1
0
G t; sð Þφ sð Þds, (3)
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where G t; sð Þ is the Green’s function defined by

G t; sð Þ ¼ 1
Γ θ1ð Þ

1
λ1

� t 1� sð Þ½ �θ1�1 þ t η� sð Þ½ �θ1�1
h i

þ t� sð Þθ1�1, 0 ≤ s ≤ t ≤ η ≤ 1,

1
λ1

� t 1� sð Þ½ �θ1�1 þ t η� sð Þ½ �θ1�1
h i

, 0 ≤ t ≤ s ≤ η ≤ 1,

� 1
λ1

t 1� sð Þ½ �θ1�1 þ t� sð Þθ1�1, 0 ≤ η ≤ s ≤ t ≤ 1,

� 1
λ1

t 1� sð Þ½ �θ1�1, 0 ≤ η ≤ t ≤ s ≤ 1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(4)

Proof. In view of Lemma 2.3, we may write Eq. (2) as

p tð Þ ¼ Iθ1φ tð Þ þ C1tθ1�1 þ C2tθ1�2 þ…þ Cmtθ1�m: (5)

In view of conditions p jð Þ tð Þt¼0 ¼ 0, j ¼ 0, 1,…m� 2, m ≥ 3, , Eq. (5) suffers from singularity;
therefore, we have C2 ¼ C3 ¼ … ¼ Cn ¼ 0: Hence, Eq. (5) becomes

p tð Þ ¼ Iθ1φ tð Þ þ C1tθ1�1: (6)

Applying boundary condition p tð Þ t¼1 ¼ p tð Þj jt¼η and d ¼ 1� ηθ1 in Eq. (6), one has

p tð Þ ¼ Iθ1φ tð Þ þ tθ1�1

λ1
Iθ1φ ηð Þ � Iθ1φ 1ð Þ� �

p tð Þ ¼ Ð 10 G t; sð Þφ sð Þds:
(7)

where G t; sð Þ is Green’s function given in Eq. (4).

In view of Theorem 3.1 and using λ1 ¼ 1� ηθ1�1, λ2 ¼ 1� ξθ2�1, the corresponding coupled
system of integral equations to the proposed system (1) is given as

p tð Þ ¼ Ð 10 G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds,
q tð Þ ¼ Ð 10 G2 t; sð ÞH2 s; p sð Þ; q sð Þð Þds,

8<
: (8)

whereG1 t; sð Þ,G2 t; sð Þ are Green’s functions, which can be similarly computed like in Theorem
3.1. Further, they are continuous on I� I and satisfy the following properties:
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Definition 2.5. [17, 28] A closed and convex set C of E is said to be a normal cone if it obeys the given
properties:

1. For 0⪯p⪯q∈E, there exists β > 0, such that pk kE ≤ β qk kE;
2. p � q, for all p, q∈E yields that there exist constants a, b > 0 such that ap⪯q⪯bq:

Remark 2.6. As � is an equivalence relation, therefore defines a set Cf ¼ p∈E : p � ff g for f ∈C.
Obviously, one can derive that Cf ⊂C for f ≻ 0:

Definition 2.7. The operator S : C ! C is said to be λ concave for every θ,λ∈ 0; 1ð Þ, p∈C, if and
only if S λpð Þ⪰θλSp:

Definition 2.8. The operator S : C ! C is said to be to be increasing if p, q∈C, p⪯q gives that
Sp⪯Sq:

Lemma 2.9. [17, 28] Assume that S : C ! C is increasing λ�concave operator for a normal cone C
produced by Banach space E, such that there exists p≻ 0 with Sf ∈Cf . Then, S has a unique fixed point
p∈Cf

Theorem 2.10. [30] Let E be a Banach space with C⊆B, which is closed and convex. Let E be a
relatively open subset of C with 0∈ E and S : E ! C be a continuous and compact operator. Then.

1. The operator S has a fixed point in E,

2. There exist w∈ ∂ℰ and λ∈ 0; 1ð Þ with w ¼ λSw:

Lemma 2.11. [30] For a Banach space E together with a cone C, there exist two relatively open subsets
A1 and A2 of E such that 0∈A1 ⊂A1 ⊂A2. Moreover, for a completely continuous operator
S : C ∩ A2\A1

� �! C, one of the given conditions holds:

1. ∥Sp∥ ≤ ∥p∥ for all p∈C ∩ ∂A1; ∥Sp∥ ≥ ∥p∥, for all p∈C ∩ ∂A2;

2. ∥Sp∥ ≥ ∥p∥ for all p∈C ∩ ∂A1; ∥Sp∥ ≤ ∥p∥, for all p∈C ∩ ∂A2

Then, S has at least one fixed point in C ∩ A2\A1
� �

:

3. Main results

Theorem 3.1. Let φ∈C 0; 1½ �;Rð Þ, η∈ 0; 1ð Þ and λ1 ¼ 1� ηθ1�1 < 1, and then the unique solution
to BVP of linear FDE

Dθ1p tð Þ ¼ φ tð Þ, t∈ I, θ1 ∈ m� 1;mð �,
p jð Þ tð Þt¼0 ¼ 0, p tð Þ t¼1 ¼ p tð Þj jt¼η, j ¼ 0; 1; 2,⋯m� 2, m ≥ 3,

(
(2)

is given by

p tð Þ ¼
ð1
0
G t; sð Þφ sð Þds, (3)
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where G t; sð Þ is the Green’s function defined by

G t; sð Þ ¼ 1
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λ1
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>>>>>>>>>>>>>:

(4)

Proof. In view of Lemma 2.3, we may write Eq. (2) as

p tð Þ ¼ Iθ1φ tð Þ þ C1tθ1�1 þ C2tθ1�2 þ…þ Cmtθ1�m: (5)

In view of conditions p jð Þ tð Þt¼0 ¼ 0, j ¼ 0, 1,…m� 2, m ≥ 3, , Eq. (5) suffers from singularity;
therefore, we have C2 ¼ C3 ¼ … ¼ Cn ¼ 0: Hence, Eq. (5) becomes

p tð Þ ¼ Iθ1φ tð Þ þ C1tθ1�1: (6)

Applying boundary condition p tð Þ t¼1 ¼ p tð Þj jt¼η and d ¼ 1� ηθ1 in Eq. (6), one has

p tð Þ ¼ Iθ1φ tð Þ þ tθ1�1

λ1
Iθ1φ ηð Þ � Iθ1φ 1ð Þ� �

p tð Þ ¼ Ð 10 G t; sð Þφ sð Þds:
(7)

where G t; sð Þ is Green’s function given in Eq. (4).

In view of Theorem 3.1 and using λ1 ¼ 1� ηθ1�1, λ2 ¼ 1� ξθ2�1, the corresponding coupled
system of integral equations to the proposed system (1) is given as

p tð Þ ¼ Ð 10 G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds,
q tð Þ ¼ Ð 10 G2 t; sð ÞH2 s; p sð Þ; q sð Þð Þds,
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: (8)

whereG1 t; sð Þ,G2 t; sð Þ are Green’s functions, which can be similarly computed like in Theorem
3.1. Further, they are continuous on I� I and satisfy the following properties:
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¼ G1 1; sð Þ, for all s∈ I,
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¼ G2 1; sð Þ, for all s∈ I;
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2 G 1; sð Þ for every θ s∈ 0; 1ð Þ;
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2 G 1; sð Þ for every θ s∈ 0; 1ð Þ;
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where G t; sð Þ is Green’s function given in Eq. (4).
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whereG1 t; sð Þ,G2 t; sð Þ are Green’s functions, which can be similarly computed like in Theorem
3.1. Further, they are continuous on I� I and satisfy the following properties:
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Let us define a Banach space by E ¼ p tð Þjp∈C Ið Þf g endowed with a norm pk kE ¼ maxt∈ I∣p tð Þ∣.
Further, in the norm for the product space, we define it as p; qð Þk kE�E ¼ pk kE þ qk kE. Clearly,
E� E; �k kE�E

� �
is a Banach space. Onward, we define the cone C⊂E� E by

C ¼ p; qð Þ∈E� E : min
t∈ I

p tð Þ þ q tð Þ½ � ≥γ p; qð Þk kE�E

� �
:

Consider an operator S : E� E ! E� E defined by

S p; qð Þ tð Þ ¼
ð1

0

G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds;
ð1

0

G2ðt; sÞH2ðs; p sð Þ; q sð ÞÞds
0
@

1
A:

¼ S1p tð Þ;S2q tð Þð Þ:

(9)

It is to be noted that the fixed points of the operator S correspond with the solution of the
system (1) under consideration.

Theorem 3.2. Under the continuity of H1,H2 : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ 0f g, the operator S
satisfies that S Cð Þ⊂C and S : C ! C is completely continuous.

Proof. To derive S Cð Þ⊂C, let p; qð Þ∈C, and then we have

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≥γ1

ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (10)

Also, we get

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≤
ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (11)

Thus, from Eqs. (10) and (11), we have

S1 p tð Þ; q tð Þð Þ ≥γ∥S1 p; qð Þ∥E, for every t∈ I:

Similarly, we can obtain

S2 p tð Þ; q tð Þð Þ ≥γ∥S2 p; qð Þ∥E, for every t∈ I:

Thus S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ ≥γ∥ p; qð Þ∥E�E, forall t∈ I,

min
t∈ I

S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ½ � ≥γ∥ p; qð Þ∥E�E:

Hence, we have S p; qð Þ∈C ) S Cð Þ⊂C:
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Let us consider

max
t∈ I

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤M1, max
t∈ I

∣H2 t; p tð Þ; q tð Þð Þ∣ ≤M2:

Then, we consider t1 < t2 ∈ I, such that

∣S1 p; qð Þ t2ð Þ � S1 p; qð Þ t1ð Þ∣ ¼
ð1
0

Gðt2; sÞ �G1 t1; sð Þð ÞH1ðs; p sð Þ; q sð ÞÞds
����

����

≤
M1

Γ θ1ð Þ
tθ1�1
2 � tθ1�1

1

� �

λ1

ðη
0

η� sð Þθ1�1ds�
ð1
0

1� sð Þθ1�1ds
� �2

4
3
5

þ M1

Γ θ1ð Þ
ðt2
0

t2 � sð Þθ1�1ds�
ðt1
0

t1 � sð Þθ1�1ds
� �

≤
M1

λ1Γ θ1 þ 1ð Þ tθ1�1
2 � tθ1�1

1

� �
ηθ1 � λ1
� �þ λ1 tθ1

2 � tθ1
1

� �h i
:

(12)

By the same fashion, we obtain for S2 as

∣S2 p; qð Þ t2ð Þ � S2 p; qð Þ t1ð Þ∣ ≤ M2

λ2Γ θ2 þ 1ð Þ tθ2�1
2 � tθ2�1

1

� �
ξθ2 � λ2
� �þ λ2 tθ2

2 � tθ2
1

� �h i
: (13)

The right hand sides of Eqs. (12) and (13) are approaching to zero at t1 ! t2: Thus, the operator
S is equi-continuous. Therefore, thanks to the Arzelá-Ascoli theorem, we receive that
S ¼ S1;S2ð Þ : C ! C is completely continuous.

Theorem 3.3. Due to continuity of H1 and H2 on I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ, there exist
φj,ψj, σj j ¼ 1; 2ð Þ : 0; 1ð Þ ! Rþ∪ 0f g for t∈ 0; 1ð Þ, p, q ≥ 0 such that

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤ φ1 tð Þ þ ψ1 tð Þ∣p tð Þ∣þ σ1 tð Þ∣q tð Þ∣;
∣H2 t; p tð Þ; q tð Þð Þ∣ ≤ φ2 tð Þ þ ψ2 tð Þ∣p tð Þ∣þ σ2 tð Þ∣q tð Þ∣,

along with the following conditions:

i. Δ1 ¼
Ð1
0
G1 1; sð Þφ1 sð Þds < ∞, Λ1 ¼

Ð1
0
G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds < 1;

ii. Δ2 ¼
Ð1
0
G2 1; sð Þφ2 sð Þds < ∞, Λ2 ¼

Ð1
0
G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds < 1

are satisfied. Then, the system (1) has at least one solution p; qð Þ which lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < min
2Δ1

1� 2Λ1
;

2Δ2

1� 2Λ2

� �� �
:
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Let us define a Banach space by E ¼ p tð Þjp∈C Ið Þf g endowed with a norm pk kE ¼ maxt∈ I∣p tð Þ∣.
Further, in the norm for the product space, we define it as p; qð Þk kE�E ¼ pk kE þ qk kE. Clearly,
E� E; �k kE�E

� �
is a Banach space. Onward, we define the cone C⊂E� E by

C ¼ p; qð Þ∈E� E : min
t∈ I

p tð Þ þ q tð Þ½ � ≥γ p; qð Þk kE�E

� �
:

Consider an operator S : E� E ! E� E defined by

S p; qð Þ tð Þ ¼
ð1

0

G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds;
ð1

0

G2ðt; sÞH2ðs; p sð Þ; q sð ÞÞds
0
@

1
A:

¼ S1p tð Þ;S2q tð Þð Þ:

(9)

It is to be noted that the fixed points of the operator S correspond with the solution of the
system (1) under consideration.

Theorem 3.2. Under the continuity of H1,H2 : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ 0f g, the operator S
satisfies that S Cð Þ⊂C and S : C ! C is completely continuous.

Proof. To derive S Cð Þ⊂C, let p; qð Þ∈C, and then we have

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≥γ1

ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (10)

Also, we get

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≤
ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (11)

Thus, from Eqs. (10) and (11), we have

S1 p tð Þ; q tð Þð Þ ≥γ∥S1 p; qð Þ∥E, for every t∈ I:

Similarly, we can obtain

S2 p tð Þ; q tð Þð Þ ≥γ∥S2 p; qð Þ∥E, for every t∈ I:

Thus S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ ≥γ∥ p; qð Þ∥E�E, forall t∈ I,

min
t∈ I

S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ½ � ≥γ∥ p; qð Þ∥E�E:

Hence, we have S p; qð Þ∈C ) S Cð Þ⊂C:
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Let us consider

max
t∈ I

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤M1, max
t∈ I

∣H2 t; p tð Þ; q tð Þð Þ∣ ≤M2:

Then, we consider t1 < t2 ∈ I, such that

∣S1 p; qð Þ t2ð Þ � S1 p; qð Þ t1ð Þ∣ ¼
ð1
0

Gðt2; sÞ �G1 t1; sð Þð ÞH1ðs; p sð Þ; q sð ÞÞds
����

����

≤
M1

Γ θ1ð Þ
tθ1�1
2 � tθ1�1

1

� �

λ1

ðη
0

η� sð Þθ1�1ds�
ð1
0

1� sð Þθ1�1ds
� �2

4
3
5

þ M1

Γ θ1ð Þ
ðt2
0

t2 � sð Þθ1�1ds�
ðt1
0

t1 � sð Þθ1�1ds
� �

≤
M1

λ1Γ θ1 þ 1ð Þ tθ1�1
2 � tθ1�1

1

� �
ηθ1 � λ1
� �þ λ1 tθ1

2 � tθ1
1

� �h i
:

(12)

By the same fashion, we obtain for S2 as

∣S2 p; qð Þ t2ð Þ � S2 p; qð Þ t1ð Þ∣ ≤ M2

λ2Γ θ2 þ 1ð Þ tθ2�1
2 � tθ2�1

1

� �
ξθ2 � λ2
� �þ λ2 tθ2

2 � tθ2
1

� �h i
: (13)

The right hand sides of Eqs. (12) and (13) are approaching to zero at t1 ! t2: Thus, the operator
S is equi-continuous. Therefore, thanks to the Arzelá-Ascoli theorem, we receive that
S ¼ S1;S2ð Þ : C ! C is completely continuous.

Theorem 3.3. Due to continuity of H1 and H2 on I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ, there exist
φj,ψj, σj j ¼ 1; 2ð Þ : 0; 1ð Þ ! Rþ∪ 0f g for t∈ 0; 1ð Þ, p, q ≥ 0 such that

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤ φ1 tð Þ þ ψ1 tð Þ∣p tð Þ∣þ σ1 tð Þ∣q tð Þ∣;
∣H2 t; p tð Þ; q tð Þð Þ∣ ≤ φ2 tð Þ þ ψ2 tð Þ∣p tð Þ∣þ σ2 tð Þ∣q tð Þ∣,

along with the following conditions:

i. Δ1 ¼
Ð1
0
G1 1; sð Þφ1 sð Þds < ∞, Λ1 ¼

Ð1
0
G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds < 1;

ii. Δ2 ¼
Ð1
0
G2 1; sð Þφ2 sð Þds < ∞, Λ2 ¼

Ð1
0
G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds < 1

are satisfied. Then, the system (1) has at least one solution p; qð Þ which lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < min
2Δ1

1� 2Λ1
;

2Δ2

1� 2Λ2

� �� �
:
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Let us define a Banach space by E ¼ p tð Þjp∈C Ið Þf g endowed with a norm pk kE ¼ maxt∈ I∣p tð Þ∣.
Further, in the norm for the product space, we define it as p; qð Þk kE�E ¼ pk kE þ qk kE. Clearly,
E� E; �k kE�E

� �
is a Banach space. Onward, we define the cone C⊂E� E by

C ¼ p; qð Þ∈E� E : min
t∈ I

p tð Þ þ q tð Þ½ � ≥γ p; qð Þk kE�E

� �
:

Consider an operator S : E� E ! E� E defined by

S p; qð Þ tð Þ ¼
ð1

0

G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds;
ð1

0

G2ðt; sÞH2ðs; p sð Þ; q sð ÞÞds
0
@

1
A:

¼ S1p tð Þ;S2q tð Þð Þ:

(9)

It is to be noted that the fixed points of the operator S correspond with the solution of the
system (1) under consideration.

Theorem 3.2. Under the continuity of H1,H2 : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ 0f g, the operator S
satisfies that S Cð Þ⊂C and S : C ! C is completely continuous.

Proof. To derive S Cð Þ⊂C, let p; qð Þ∈C, and then we have

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≥γ1

ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (10)

Also, we get

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≤
ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (11)

Thus, from Eqs. (10) and (11), we have

S1 p tð Þ; q tð Þð Þ ≥γ∥S1 p; qð Þ∥E, for every t∈ I:

Similarly, we can obtain

S2 p tð Þ; q tð Þð Þ ≥γ∥S2 p; qð Þ∥E, for every t∈ I:

Thus S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ ≥γ∥ p; qð Þ∥E�E, forall t∈ I,

min
t∈ I

S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ½ � ≥γ∥ p; qð Þ∥E�E:

Hence, we have S p; qð Þ∈C ) S Cð Þ⊂C:
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max
t∈ I

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤M1, max
t∈ I

∣H2 t; p tð Þ; q tð Þð Þ∣ ≤M2:

Then, we consider t1 < t2 ∈ I, such that

∣S1 p; qð Þ t2ð Þ � S1 p; qð Þ t1ð Þ∣ ¼
ð1
0

Gðt2; sÞ �G1 t1; sð Þð ÞH1ðs; p sð Þ; q sð ÞÞds
����

����

≤
M1

Γ θ1ð Þ
tθ1�1
2 � tθ1�1

1

� �

λ1

ðη
0

η� sð Þθ1�1ds�
ð1
0

1� sð Þθ1�1ds
� �2

4
3
5

þ M1

Γ θ1ð Þ
ðt2
0

t2 � sð Þθ1�1ds�
ðt1
0

t1 � sð Þθ1�1ds
� �

≤
M1

λ1Γ θ1 þ 1ð Þ tθ1�1
2 � tθ1�1

1

� �
ηθ1 � λ1
� �þ λ1 tθ1

2 � tθ1
1

� �h i
:

(12)

By the same fashion, we obtain for S2 as

∣S2 p; qð Þ t2ð Þ � S2 p; qð Þ t1ð Þ∣ ≤ M2

λ2Γ θ2 þ 1ð Þ tθ2�1
2 � tθ2�1

1

� �
ξθ2 � λ2
� �þ λ2 tθ2

2 � tθ2
1

� �h i
: (13)

The right hand sides of Eqs. (12) and (13) are approaching to zero at t1 ! t2: Thus, the operator
S is equi-continuous. Therefore, thanks to the Arzelá-Ascoli theorem, we receive that
S ¼ S1;S2ð Þ : C ! C is completely continuous.

Theorem 3.3. Due to continuity of H1 and H2 on I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ, there exist
φj,ψj, σj j ¼ 1; 2ð Þ : 0; 1ð Þ ! Rþ∪ 0f g for t∈ 0; 1ð Þ, p, q ≥ 0 such that

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤ φ1 tð Þ þ ψ1 tð Þ∣p tð Þ∣þ σ1 tð Þ∣q tð Þ∣;
∣H2 t; p tð Þ; q tð Þð Þ∣ ≤ φ2 tð Þ þ ψ2 tð Þ∣p tð Þ∣þ σ2 tð Þ∣q tð Þ∣,

along with the following conditions:

i. Δ1 ¼
Ð1
0
G1 1; sð Þφ1 sð Þds < ∞, Λ1 ¼

Ð1
0
G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds < 1;

ii. Δ2 ¼
Ð1
0
G2 1; sð Þφ2 sð Þds < ∞, Λ2 ¼

Ð1
0
G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds < 1

are satisfied. Then, the system (1) has at least one solution p; qð Þ which lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < min
2Δ1

1� 2Λ1
;

2Δ2

1� 2Λ2

� �� �
:
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Let us define a Banach space by E ¼ p tð Þjp∈C Ið Þf g endowed with a norm pk kE ¼ maxt∈ I∣p tð Þ∣.
Further, in the norm for the product space, we define it as p; qð Þk kE�E ¼ pk kE þ qk kE. Clearly,
E� E; �k kE�E

� �
is a Banach space. Onward, we define the cone C⊂E� E by

C ¼ p; qð Þ∈E� E : min
t∈ I

p tð Þ þ q tð Þ½ � ≥γ p; qð Þk kE�E

� �
:

Consider an operator S : E� E ! E� E defined by

S p; qð Þ tð Þ ¼
ð1

0

G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds;
ð1

0

G2ðt; sÞH2ðs; p sð Þ; q sð ÞÞds
0
@

1
A:

¼ S1p tð Þ;S2q tð Þð Þ:

(9)

It is to be noted that the fixed points of the operator S correspond with the solution of the
system (1) under consideration.

Theorem 3.2. Under the continuity of H1,H2 : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ 0f g, the operator S
satisfies that S Cð Þ⊂C and S : C ! C is completely continuous.

Proof. To derive S Cð Þ⊂C, let p; qð Þ∈C, and then we have

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≥γ1

ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (10)

Also, we get

S1 p tð Þ; q tð Þð Þ ¼
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≤
ð1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (11)

Thus, from Eqs. (10) and (11), we have

S1 p tð Þ; q tð Þð Þ ≥γ∥S1 p; qð Þ∥E, for every t∈ I:

Similarly, we can obtain

S2 p tð Þ; q tð Þð Þ ≥γ∥S2 p; qð Þ∥E, for every t∈ I:

Thus S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ ≥γ∥ p; qð Þ∥E�E, forall t∈ I,

min
t∈ I

S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ½ � ≥γ∥ p; qð Þ∥E�E:

Hence, we have S p; qð Þ∈C ) S Cð Þ⊂C:
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max
t∈ I

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤M1, max
t∈ I

∣H2 t; p tð Þ; q tð Þð Þ∣ ≤M2:

Then, we consider t1 < t2 ∈ I, such that

∣S1 p; qð Þ t2ð Þ � S1 p; qð Þ t1ð Þ∣ ¼
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0
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1

� �

λ1
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0
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3
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0
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ðt1
0
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≤
M1

λ1Γ θ1 þ 1ð Þ tθ1�1
2 � tθ1�1

1

� �
ηθ1 � λ1
� �þ λ1 tθ1

2 � tθ1
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� �h i
:

(12)

By the same fashion, we obtain for S2 as

∣S2 p; qð Þ t2ð Þ � S2 p; qð Þ t1ð Þ∣ ≤ M2

λ2Γ θ2 þ 1ð Þ tθ2�1
2 � tθ2�1

1

� �
ξθ2 � λ2
� �þ λ2 tθ2

2 � tθ2
1

� �h i
: (13)

The right hand sides of Eqs. (12) and (13) are approaching to zero at t1 ! t2: Thus, the operator
S is equi-continuous. Therefore, thanks to the Arzelá-Ascoli theorem, we receive that
S ¼ S1;S2ð Þ : C ! C is completely continuous.

Theorem 3.3. Due to continuity of H1 and H2 on I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ, there exist
φj,ψj, σj j ¼ 1; 2ð Þ : 0; 1ð Þ ! Rþ∪ 0f g for t∈ 0; 1ð Þ, p, q ≥ 0 such that

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤ φ1 tð Þ þ ψ1 tð Þ∣p tð Þ∣þ σ1 tð Þ∣q tð Þ∣;
∣H2 t; p tð Þ; q tð Þð Þ∣ ≤ φ2 tð Þ þ ψ2 tð Þ∣p tð Þ∣þ σ2 tð Þ∣q tð Þ∣,

along with the following conditions:

i. Δ1 ¼
Ð1
0
G1 1; sð Þφ1 sð Þds < ∞, Λ1 ¼

Ð1
0
G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds < 1;

ii. Δ2 ¼
Ð1
0
G2 1; sð Þφ2 sð Þds < ∞, Λ2 ¼

Ð1
0
G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds < 1

are satisfied. Then, the system (1) has at least one solution p; qð Þ which lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < min
2Δ1

1� 2Λ1
;

2Δ2

1� 2Λ2

� �� �
:
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Proof. Let E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < rf g with min 2Δ1
1�2Λ1

; 2Δ2
1�2Λ2

� �
< r:

Define the operator S : E ! C as in Eq. (9).

Let p; qð Þ∈ E that is ∥ p; qð Þ∥E�E < r: Then, we have

∣S1 p; qð Þ tð Þ∣ ¼ max
t∈ I

ð1
0
G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds

����
����

≤
ð1
0
G1 1; sð Þφ1 sð Þdsþ

ð1
0
G1ð1; sÞψ1 sð Þjp sð Þjdsþ

ð1
0
G1ð1; sÞσ1 sð Þjq sð Þjds

� �

≤
ð1
0
G1 1; sð Þφ1 sð Þdsþ r

ð1
0
G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds
� �

¼ Δ1 þ rΛ1 ≤
r
2
:

(14)

Thus, from Eq. (14), we have

∥S1 p; qð Þ∥E ≤
r
2
: (15)

Similarly, one can derive that

∥S2 p; qð Þ∥E ≤
r
2
: (16)

Thus, from Eqs. (15) and (16), we get

∥S p; qð Þ∥E�E ≤ r: (17)

Therefore, S p; qð Þ⊆E: Hence, by Theorem 3.2 the operator S : E ! E is completely continuous.

Consider the eigenvalue problem:

p; qð Þ ¼ rS p; qð Þ, with r∈ 0; 1ð Þ: (18)

Under the assumption that p; qð Þ is a solution of Eq. (18) for r∈ 0; 1ð Þ, we have

∣p tð Þ∣ ≤ rmax
t∈ I

ð1

0

G1 t; sð Þ H1ðs; p sð Þ; q sð ÞÞdsj j

≤ r
ð1

0

G1 1; sð Þφ1 sð Þdsþ
ð1

0

G1ð1; sÞðψ1 sð Þjp sð Þj þ σ1 sð Þjq sð ÞjÞds
2
4

3
5

≤ r Δ1 þ rΛ1ð Þ
which implies that ∥p∥E <

r
2
:

Similarly, we can obtain that ∥q∥E < r
2 , so ∥ p; qð Þ∥E�E < r, which implies that p; qð Þ does not

belong to ∂E for all r∈ 0; 1ð Þ: Therefore, due to Theorem 2.10, S has a fixed point in E
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Assume that the given hypothesis holds:

(H1) The nonlinear functions H1 and H2 are continuous on I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ∪ 0f g
(H2) For all t∈ I, we have

H1 t; p; qð Þ ¼6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ

and

H1 t; p; qð Þ 6¼ 1, H2 t; 1; 1ð Þ 6¼ 1; at p; qð Þ ¼ 1; 1ð Þ;

(H3) For all t∈ I such that

0 ≤ p ≤ p1, 0 ≤ q ≤ q1 ) H1 t; p; qð Þ ≤H1 t; p1; q1
� �

, H2 t; p; qð Þ ≤H1 t; p1; q1
� �

;

(H4) For p, q ≥ 0, there exist real numbers 0 < λ,μ < 1, such that for each t∈ I, τ∈ 0; 1ð Þ, we
have

H1 t; τp; τqð Þ ≥ τλH1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τμH2 t; p; qð Þ:

Theorem 3.4. Under the assumptions H1ð Þ � H4ð Þ, the BVP (1) has a unique solution in Cf where

f tð Þ ¼ tθ1�1; tθ2�1
� �

.

Proof. Let max λ;μ
� � ¼ κ and p; qð Þ∈C. For each t∈ I, using H4ð Þ, we have

S1 τp; τqð Þ tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; τp sð Þ; τq sð Þð Þds

≥ τλ
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ¼ τλS1 p; qð Þ tð Þ ≥ τκS1 p; qð Þ tð Þ,

Analogously, we also get

S2 τp; τqð Þ tð Þ ≥ τκS2 p; qð Þ tð Þ:

In view of partial order ⪰ on E� E induced by the cone C, we get S τp; τqð Þ⪰τκS p tð Þ; qð
tð ÞÞ, τ∈ 0; 1ð Þ, p; qð Þ∈C: Which yields that S is τ� concave and nondecreasing operator
with respect to the partial order by using hypothesis H4ð Þ. Hence, taking f ∈C for each t∈ I
defined by

f tð Þ ¼ tθ1�1; tθ2�1� � ¼ f 1 tð Þ; f 2 tð Þ� �
:

Suppose that
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Proof. Let E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < rf g with min 2Δ1
1�2Λ1

; 2Δ2
1�2Λ2

� �
< r:

Define the operator S : E ! C as in Eq. (9).

Let p; qð Þ∈ E that is ∥ p; qð Þ∥E�E < r: Then, we have

∣S1 p; qð Þ tð Þ∣ ¼ max
t∈ I

ð1
0
G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds

����
����

≤
ð1
0
G1 1; sð Þφ1 sð Þdsþ

ð1
0
G1ð1; sÞψ1 sð Þjp sð Þjdsþ

ð1
0
G1ð1; sÞσ1 sð Þjq sð Þjds

� �

≤
ð1
0
G1 1; sð Þφ1 sð Þdsþ r

ð1
0
G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds
� �

¼ Δ1 þ rΛ1 ≤
r
2
:

(14)

Thus, from Eq. (14), we have

∥S1 p; qð Þ∥E ≤
r
2
: (15)

Similarly, one can derive that

∥S2 p; qð Þ∥E ≤
r
2
: (16)

Thus, from Eqs. (15) and (16), we get

∥S p; qð Þ∥E�E ≤ r: (17)

Therefore, S p; qð Þ⊆E: Hence, by Theorem 3.2 the operator S : E ! E is completely continuous.

Consider the eigenvalue problem:

p; qð Þ ¼ rS p; qð Þ, with r∈ 0; 1ð Þ: (18)

Under the assumption that p; qð Þ is a solution of Eq. (18) for r∈ 0; 1ð Þ, we have

∣p tð Þ∣ ≤ rmax
t∈ I

ð1

0

G1 t; sð Þ H1ðs; p sð Þ; q sð ÞÞdsj j

≤ r
ð1

0

G1 1; sð Þφ1 sð Þdsþ
ð1

0

G1ð1; sÞðψ1 sð Þjp sð Þj þ σ1 sð Þjq sð ÞjÞds
2
4

3
5

≤ r Δ1 þ rΛ1ð Þ
which implies that ∥p∥E <

r
2
:

Similarly, we can obtain that ∥q∥E < r
2 , so ∥ p; qð Þ∥E�E < r, which implies that p; qð Þ does not

belong to ∂E for all r∈ 0; 1ð Þ: Therefore, due to Theorem 2.10, S has a fixed point in E

Differential Equations - Theory and Current Research42

Assume that the given hypothesis holds:

(H1) The nonlinear functions H1 and H2 are continuous on I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ∪ 0f g
(H2) For all t∈ I, we have

H1 t; p; qð Þ ¼6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ

and

H1 t; p; qð Þ 6¼ 1, H2 t; 1; 1ð Þ 6¼ 1; at p; qð Þ ¼ 1; 1ð Þ;

(H3) For all t∈ I such that

0 ≤ p ≤ p1, 0 ≤ q ≤ q1 ) H1 t; p; qð Þ ≤H1 t; p1; q1
� �

, H2 t; p; qð Þ ≤H1 t; p1; q1
� �

;

(H4) For p, q ≥ 0, there exist real numbers 0 < λ,μ < 1, such that for each t∈ I, τ∈ 0; 1ð Þ, we
have

H1 t; τp; τqð Þ ≥ τλH1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τμH2 t; p; qð Þ:

Theorem 3.4. Under the assumptions H1ð Þ � H4ð Þ, the BVP (1) has a unique solution in Cf where

f tð Þ ¼ tθ1�1; tθ2�1
� �

.

Proof. Let max λ;μ
� � ¼ κ and p; qð Þ∈C. For each t∈ I, using H4ð Þ, we have

S1 τp; τqð Þ tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; τp sð Þ; τq sð Þð Þds

≥ τλ
ð1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ¼ τλS1 p; qð Þ tð Þ ≥ τκS1 p; qð Þ tð Þ,

Analogously, we also get

S2 τp; τqð Þ tð Þ ≥ τκS2 p; qð Þ tð Þ:

In view of partial order ⪰ on E� E induced by the cone C, we get S τp; τqð Þ⪰τκS p tð Þ; qð
tð ÞÞ, τ∈ 0; 1ð Þ, p; qð Þ∈C: Which yields that S is τ� concave and nondecreasing operator
with respect to the partial order by using hypothesis H4ð Þ. Hence, taking f ∈C for each t∈ I
defined by

f tð Þ ¼ tθ1�1; tθ2�1� � ¼ f 1 tð Þ; f 2 tð Þ� �
:

Suppose that
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Consider the eigenvalue problem:
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Under the assumption that p; qð Þ is a solution of Eq. (18) for r∈ 0; 1ð Þ, we have

∣p tð Þ∣ ≤ rmax
t∈ I

ð1

0

G1 t; sð Þ H1ðs; p sð Þ; q sð ÞÞdsj j

≤ r
ð1

0

G1 1; sð Þφ1 sð Þdsþ
ð1

0

G1ð1; sÞðψ1 sð Þjp sð Þj þ σ1 sð Þjq sð ÞjÞds
2
4

3
5

≤ r Δ1 þ rΛ1ð Þ
which implies that ∥p∥E <

r
2
:

Similarly, we can obtain that ∥q∥E < r
2 , so ∥ p; qð Þ∥E�E < r, which implies that p; qð Þ does not
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have
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Theorem 3.4. Under the assumptions H1ð Þ � H4ð Þ, the BVP (1) has a unique solution in Cf where
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.

Proof. Let max λ;μ
� � ¼ κ and p; qð Þ∈C. For each t∈ I, using H4ð Þ, we have

S1 τp; τqð Þ tð Þ ¼
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≥ τλ
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G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ¼ τλS1 p; qð Þ tð Þ ≥ τκS1 p; qð Þ tð Þ,

Analogously, we also get

S2 τp; τqð Þ tð Þ ≥ τκS2 p; qð Þ tð Þ:

In view of partial order ⪰ on E� E induced by the cone C, we get S τp; τqð Þ⪰τκS p tð Þ; qð
tð ÞÞ, τ∈ 0; 1ð Þ, p; qð Þ∈C: Which yields that S is τ� concave and nondecreasing operator
with respect to the partial order by using hypothesis H4ð Þ. Hence, taking f ∈C for each t∈ I
defined by

f tð Þ ¼ tθ1�1; tθ2�1� � ¼ f 1 tð Þ; f 2 tð Þ� �
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Suppose that
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Similarly, one can derive that
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Thus, from Eqs. (15) and (16), we get
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Therefore, S p; qð Þ⊆E: Hence, by Theorem 3.2 the operator S : E ! E is completely continuous.

Consider the eigenvalue problem:

p; qð Þ ¼ rS p; qð Þ, with r∈ 0; 1ð Þ: (18)

Under the assumption that p; qð Þ is a solution of Eq. (18) for r∈ 0; 1ð Þ, we have
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which implies that ∥p∥E <
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Similarly, we can obtain that ∥q∥E < r
2 , so ∥ p; qð Þ∥E�E < r, which implies that p; qð Þ does not

belong to ∂E for all r∈ 0; 1ð Þ: Therefore, due to Theorem 2.10, S has a fixed point in E
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Assume that the given hypothesis holds:

(H1) The nonlinear functions H1 and H2 are continuous on I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ∪ 0f g
(H2) For all t∈ I, we have
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and
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(H3) For all t∈ I such that

0 ≤ p ≤ p1, 0 ≤ q ≤ q1 ) H1 t; p; qð Þ ≤H1 t; p1; q1
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, H2 t; p; qð Þ ≤H1 t; p1; q1
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;

(H4) For p, q ≥ 0, there exist real numbers 0 < λ,μ < 1, such that for each t∈ I, τ∈ 0; 1ð Þ, we
have

H1 t; τp; τqð Þ ≥ τλH1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τμH2 t; p; qð Þ:

Theorem 3.4. Under the assumptions H1ð Þ � H4ð Þ, the BVP (1) has a unique solution in Cf where

f tð Þ ¼ tθ1�1; tθ2�1
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.

Proof. Let max λ;μ
� � ¼ κ and p; qð Þ∈C. For each t∈ I, using H4ð Þ, we have

S1 τp; τqð Þ tð Þ ¼
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0

G1 t; sð ÞH1 s; τp sð Þ; τq sð Þð Þds

≥ τλ
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0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ¼ τλS1 p; qð Þ tð Þ ≥ τκS1 p; qð Þ tð Þ,

Analogously, we also get

S2 τp; τqð Þ tð Þ ≥ τκS2 p; qð Þ tð Þ:

In view of partial order ⪰ on E� E induced by the cone C, we get S τp; τqð Þ⪰τκS p tð Þ; qð
tð ÞÞ, τ∈ 0; 1ð Þ, p; qð Þ∈C: Which yields that S is τ� concave and nondecreasing operator
with respect to the partial order by using hypothesis H4ð Þ. Hence, taking f ∈C for each t∈ I
defined by

f tð Þ ¼ tθ1�1; tθ2�1� � ¼ f 1 tð Þ; f 2 tð Þ� �
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Suppose that
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w1 ¼ max
1

Γ θ1ð Þ
ð1

0

H1 s; 1; 1ð Þds; 1
Γ θ2ð Þ

ð1

0

H2 s; 1; 1ð Þds
8<
:

9=
;

and

w2 ¼ max
1

Γ θ1ð Þ
ð1

0

L sð ÞH1 s; 0; 0ð Þds; 1
Γ θ2ð Þ

ð1

0

K sð ÞH2 s; 0; 0ð Þds
8<
:

9=
;:

Also, from Green’s functions, we can obtain that

L sð Þ ¼ 1� sð Þθ1�1 1þ λ1

λ1

� �
, K sð Þ ¼ 1� sð Þθ2�1 1þ λ2

λ2

� �
: (19)

Due to nondecreasing property of H1,H2 in view of H3ð Þ, we get μ > 0, ν > 0. Therefore,
applying (19) together with H4ð Þ, one has

S1h tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; f 1 sð Þ; f 2 sð Þ� �
ds

¼
ð1

0

G1 t; sð ÞH1 s; sθ1�1; sθ2�1� �
ds ≤

ð1

0

G1 t; sð ÞH1 s; 1; 1ð Þds

≤
1

Γ θ1ð Þ
ð1

0

1� sð Þθ1�1H1 s; 1; 1ð Þds
0
@

1
Atθ1�1 ≤μf 1 tð Þ:

Similarly, we can get

S2f tð Þ ≤μf 2 tð Þ:

Then, we obtain

Sf⪯μf : (20)

Like the aforesaid process, applying Eq. (19) together with H4ð Þ, for each t∈ I, one has

S1f tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; sθ1�1; sθ2�1� �
ds ≥

ð1

0

G1 t; sð ÞH1 s; 0; 0ð Þds

≥
1

Γθ1

ð1

0

L sð ÞH1 s; 0; 0ð Þds
0
@

1
Atθ1�1 ≥ νh1 tð Þ,

With same fashion, we can obtain
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S2f tð Þ ≥ νf 2 tð Þ:

Thus, we have

Sf tð Þ⪰νf : (21)

From Eqs. (20) and (21), we produce

νf⪯Sf⪯μf ,

which implies that Sf ∈Cf . So, thanks to Lemma 2.9, we see that the operator S is concave;
hence, it has at most one fixed point p; qð Þ∈Cf which is the corresponding solution of BVPs (1).

Now, we define the following:

(C1) Hj j ¼ 1; 2ð Þ : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ∪ 0f g is uniformly bounded and continuous on I
with respect to t.

(C2) Green’s functions G1 1; sð Þ,G2 1; sð Þ satisfy

0 <

ð1

0

G1 1; sð Þds < ∞, 0 <

ð1

0

G2 1; sð Þds < ∞;

(C3) Let these limits hold:

Hϱ
1 ¼ lim

pþq!ϱ
max
t∈ I

H1 t; p; qð Þ
pþ q

, Hϱ
2 ¼ lim

pþg!ϱ
max
t∈ I

H2 t; p; qð Þ
pþ q

,

H1,ϱ ¼ lim
pþq!ϱ

inf
t∈ I

H1 t; p; qð Þ
pþ q

, H2,ϱ ¼ lim
pþq!ϱ

inf
t∈ I

H2 t; p; qð Þ
pþ q

, where ϱ∈ 0;∞f g:

δ1 ¼ max
t∈ I

ð1

0

G1 t; sð Þds, δ2 ¼ max
t∈ I

ð1

0

G2 t; sð Þds:

Theorem 3.5. Assume that the conditions C1ð Þ � C3ð Þ together with given assumptions are satisfied:

(H5) H1,0 γ2
1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1,H1,∞ γ2

1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1 and

H2,0 γ2
2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1,H2,∞ γ2

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Moreover, H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞ also hold:

(H6) There exists constant α > 0 such that
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From Eqs. (20) and (21), we produce
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which implies that Sf ∈Cf . So, thanks to Lemma 2.9, we see that the operator S is concave;
hence, it has at most one fixed point p; qð Þ∈Cf which is the corresponding solution of BVPs (1).

Now, we define the following:

(C1) Hj j ¼ 1; 2ð Þ : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ∪ 0f g is uniformly bounded and continuous on I
with respect to t.
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Theorem 3.5. Assume that the conditions C1ð Þ � C3ð Þ together with given assumptions are satisfied:
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2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Moreover, H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞ also hold:

(H6) There exists constant α > 0 such that
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w1 ¼ max
1

Γ θ1ð Þ
ð1

0

H1 s; 1; 1ð Þds; 1
Γ θ2ð Þ

ð1

0

H2 s; 1; 1ð Þds
8<
:

9=
;

and

w2 ¼ max
1

Γ θ1ð Þ
ð1

0

L sð ÞH1 s; 0; 0ð Þds; 1
Γ θ2ð Þ

ð1

0

K sð ÞH2 s; 0; 0ð Þds
8<
:

9=
;:

Also, from Green’s functions, we can obtain that

L sð Þ ¼ 1� sð Þθ1�1 1þ λ1

λ1

� �
, K sð Þ ¼ 1� sð Þθ2�1 1þ λ2

λ2

� �
: (19)

Due to nondecreasing property of H1,H2 in view of H3ð Þ, we get μ > 0, ν > 0. Therefore,
applying (19) together with H4ð Þ, one has

S1h tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; f 1 sð Þ; f 2 sð Þ� �
ds

¼
ð1

0

G1 t; sð ÞH1 s; sθ1�1; sθ2�1� �
ds ≤

ð1

0

G1 t; sð ÞH1 s; 1; 1ð Þds

≤
1

Γ θ1ð Þ
ð1

0

1� sð Þθ1�1H1 s; 1; 1ð Þds
0
@

1
Atθ1�1 ≤μf 1 tð Þ:

Similarly, we can get

S2f tð Þ ≤μf 2 tð Þ:

Then, we obtain

Sf⪯μf : (20)

Like the aforesaid process, applying Eq. (19) together with H4ð Þ, for each t∈ I, one has

S1f tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; sθ1�1; sθ2�1� �
ds ≥

ð1

0

G1 t; sð ÞH1 s; 0; 0ð Þds

≥
1

Γθ1

ð1

0

L sð ÞH1 s; 0; 0ð Þds
0
@

1
Atθ1�1 ≥ νh1 tð Þ,

With same fashion, we can obtain
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S2f tð Þ ≥ νf 2 tð Þ:

Thus, we have

Sf tð Þ⪰νf : (21)

From Eqs. (20) and (21), we produce

νf⪯Sf⪯μf ,

which implies that Sf ∈Cf . So, thanks to Lemma 2.9, we see that the operator S is concave;
hence, it has at most one fixed point p; qð Þ∈Cf which is the corresponding solution of BVPs (1).

Now, we define the following:

(C1) Hj j ¼ 1; 2ð Þ : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ∪ 0f g is uniformly bounded and continuous on I
with respect to t.

(C2) Green’s functions G1 1; sð Þ,G2 1; sð Þ satisfy

0 <

ð1

0

G1 1; sð Þds < ∞, 0 <

ð1

0

G2 1; sð Þds < ∞;

(C3) Let these limits hold:

Hϱ
1 ¼ lim

pþq!ϱ
max
t∈ I

H1 t; p; qð Þ
pþ q

, Hϱ
2 ¼ lim

pþg!ϱ
max
t∈ I

H2 t; p; qð Þ
pþ q

,

H1,ϱ ¼ lim
pþq!ϱ

inf
t∈ I

H1 t; p; qð Þ
pþ q

, H2,ϱ ¼ lim
pþq!ϱ

inf
t∈ I

H2 t; p; qð Þ
pþ q

, where ϱ∈ 0;∞f g:

δ1 ¼ max
t∈ I

ð1

0

G1 t; sð Þds, δ2 ¼ max
t∈ I

ð1

0

G2 t; sð Þds:

Theorem 3.5. Assume that the conditions C1ð Þ � C3ð Þ together with given assumptions are satisfied:

(H5) H1,0 γ2
1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1,H1,∞ γ2

1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1 and

H2,0 γ2
2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1,H2,∞ γ2

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Moreover, H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞ also hold:

(H6) There exists constant α > 0 such that
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w1 ¼ max
1

Γ θ1ð Þ
ð1

0

H1 s; 1; 1ð Þds; 1
Γ θ2ð Þ

ð1

0

H2 s; 1; 1ð Þds
8<
:

9=
;

and

w2 ¼ max
1

Γ θ1ð Þ
ð1

0

L sð ÞH1 s; 0; 0ð Þds; 1
Γ θ2ð Þ

ð1

0

K sð ÞH2 s; 0; 0ð Þds
8<
:

9=
;:

Also, from Green’s functions, we can obtain that

L sð Þ ¼ 1� sð Þθ1�1 1þ λ1

λ1

� �
, K sð Þ ¼ 1� sð Þθ2�1 1þ λ2

λ2

� �
: (19)

Due to nondecreasing property of H1,H2 in view of H3ð Þ, we get μ > 0, ν > 0. Therefore,
applying (19) together with H4ð Þ, one has

S1h tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; f 1 sð Þ; f 2 sð Þ� �
ds

¼
ð1

0

G1 t; sð ÞH1 s; sθ1�1; sθ2�1� �
ds ≤

ð1

0

G1 t; sð ÞH1 s; 1; 1ð Þds

≤
1

Γ θ1ð Þ
ð1

0

1� sð Þθ1�1H1 s; 1; 1ð Þds
0
@

1
Atθ1�1 ≤μf 1 tð Þ:

Similarly, we can get

S2f tð Þ ≤μf 2 tð Þ:

Then, we obtain

Sf⪯μf : (20)

Like the aforesaid process, applying Eq. (19) together with H4ð Þ, for each t∈ I, one has

S1f tð Þ ¼
ð1

0

G1 t; sð ÞH1 s; sθ1�1; sθ2�1� �
ds ≥

ð1

0

G1 t; sð ÞH1 s; 0; 0ð Þds

≥
1

Γθ1

ð1

0

L sð ÞH1 s; 0; 0ð Þds
0
@

1
Atθ1�1 ≥ νh1 tð Þ,

With same fashion, we can obtain
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S2f tð Þ ≥ νf 2 tð Þ:

Thus, we have

Sf tð Þ⪰νf : (21)

From Eqs. (20) and (21), we produce

νf⪯Sf⪯μf ,

which implies that Sf ∈Cf . So, thanks to Lemma 2.9, we see that the operator S is concave;
hence, it has at most one fixed point p; qð Þ∈Cf which is the corresponding solution of BVPs (1).

Now, we define the following:

(C1) Hj j ¼ 1; 2ð Þ : I� Rþ∪ 0f g � Rþ∪ 0f g ! Rþ∪ 0f g is uniformly bounded and continuous on I
with respect to t.

(C2) Green’s functions G1 1; sð Þ,G2 1; sð Þ satisfy

0 <

ð1

0

G1 1; sð Þds < ∞, 0 <

ð1

0

G2 1; sð Þds < ∞;

(C3) Let these limits hold:

Hϱ
1 ¼ lim

pþq!ϱ
max
t∈ I

H1 t; p; qð Þ
pþ q

, Hϱ
2 ¼ lim

pþg!ϱ
max
t∈ I

H2 t; p; qð Þ
pþ q

,

H1,ϱ ¼ lim
pþq!ϱ

inf
t∈ I

H1 t; p; qð Þ
pþ q

, H2,ϱ ¼ lim
pþq!ϱ

inf
t∈ I

H2 t; p; qð Þ
pþ q

, where ϱ∈ 0;∞f g:

δ1 ¼ max
t∈ I

ð1

0

G1 t; sð Þds, δ2 ¼ max
t∈ I

ð1

0

G2 t; sð Þds:

Theorem 3.5. Assume that the conditions C1ð Þ � C3ð Þ together with given assumptions are satisfied:

(H5) H1,0 γ2
1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1,H1,∞ γ2

1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1 and

H2,0 γ2
2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1,H2,∞ γ2

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Moreover, H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞ also hold:

(H6) There exists constant α > 0 such that
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max
t∈ I, p;qð Þ∈ ∂Cα

H1 t; p; qð Þ < α
2δ1

and

max
t∈ I, p;qð Þ∈ ∂Cα

H2 t; p; qð Þ < α
2δ2

:

Then, the system (1) of BVPs has at least two positive solutions p; qð Þ, p; qð Þ which obeying

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E: (22)

Proof. Assume that H5ð Þ holds, and consider e, α, λ such that 0 < e < α < λ. Further we
define a set by

Ωr ¼ u; vð Þ∈E� E : ∥ u; vð Þ∥E�E < rf g, where r∈ e;α;λf g:

Now, if

H1,0 γ2
1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A > 1 and H2,0 γ2

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Then, obviously, we can obtain that

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωε: (23)

Now, if H1,∞ γ2
1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1 and H2,∞ γ2

2

Ð1�θ

θ
G2 1; sð Þds

 !
> 1:

Then, like the proof of Eq. (23), we have

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωλ: (24)

Also, from H5ð Þ and p; qð Þ∈C ∩ ∂Ωα, we get

∣S1 p; qð Þ tð Þ∣ ¼ Ð 1
0 G1 t; sð ÞHðs; u sð Þ; v sð ÞÞds
���

���
≤
Ð 1
0 G1 1; sð Þ∣H1 s; p sð Þ; q sð Þð Þ∣ds:

From which we have

∥S1 p; qð Þ∥E�E <
α
2ϱ1

ð1
0
G1 1; sð Þds ¼ α

2
:

Similarly, we have ∥S1 p; qð Þ∥E�E < α
2 as p; qð Þ∈C ∩ ∂Ωα. Hence, we have
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∥S p; qð Þ∥E�E < ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωα: (25)

Now, applying Lemma 2.11 to Eqs. (23) and (25) yields that S has a fixed point
p; qð Þ∈C ∩ Ωα\Cε

� �
and a fixed point in p; qð Þ∈C ∩ Ωλ\Ωα

� �
: Hence, we conclude that the

system of BVPs (1) has at least two positive solutions p; qð Þ, p; qð Þ such that ∥ p; qð Þ∥E�E 6¼ α and
∥ p; qð Þ∥E�E 6¼ α. Thus, relation (22) holds.

Theorem 3.6. Consider that C1ð Þ � C3ð Þ together with the following hypothesis are satisfied:

(H7) δ1H1,0 < 1, δ1H1,∞ < 1; δ2H1,0 < 1, and δ2H2,∞ < 1;

(H8) There exist r > 0 such that

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
1H1 t; p; qð Þ > α

2

ð1�θ

θ

G1 1; sð Þds
0
@

1
A

�1

,

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
2H2 t; p; qð Þ > α

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A

�1

such that

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E:

Then, the proposed coupled system of BVPs (1) has at least two positive solutions.

Proof. Proof is like the proof of Theorem 3.4.

Analogously, we deduce from Theorem 3.5 and 3.6 the following results for multiplicity of
solutions to the system (1) of BVPs.

Theorem 3.7. Under the conditions C1ð Þ � C3ð Þ, there exist 2k positive numbers aj,ba j, j ¼ 1, 2…k
with a1 < γ1ba1 < ba1 < a2 < γ1ba2 < ba2…ak < γ1bak < bak and a1 < γ2ba1 < ba1 < a2 < γ2ba2 <
ba2…ak < γ2bak < bak such that.

(H9) H1 t; p tð Þ; q tð Þð Þ γ1

Ð1
0
G1 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and

H1 t; p tð Þ; q tð Þð Þδ1 ≤bai, for t; p; qð Þ∈ I� γ1ba j;baj
h i

� γ2aj; ai
� �

, j ¼ 1, 2…k;

(H10) H2 t; p tð Þ; q tð Þð Þ γ2

Ð1
0
G2 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and
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max
t∈ I, p;qð Þ∈ ∂Cα

H1 t; p; qð Þ < α
2δ1

and

max
t∈ I, p;qð Þ∈ ∂Cα

H2 t; p; qð Þ < α
2δ2

:

Then, the system (1) of BVPs has at least two positive solutions p; qð Þ, p; qð Þ which obeying

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E: (22)

Proof. Assume that H5ð Þ holds, and consider e, α, λ such that 0 < e < α < λ. Further we
define a set by

Ωr ¼ u; vð Þ∈E� E : ∥ u; vð Þ∥E�E < rf g, where r∈ e;α;λf g:

Now, if

H1,0 γ2
1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A > 1 and H2,0 γ2

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Then, obviously, we can obtain that

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωε: (23)

Now, if H1,∞ γ2
1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1 and H2,∞ γ2

2

Ð1�θ

θ
G2 1; sð Þds

 !
> 1:

Then, like the proof of Eq. (23), we have

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωλ: (24)

Also, from H5ð Þ and p; qð Þ∈C ∩ ∂Ωα, we get

∣S1 p; qð Þ tð Þ∣ ¼ Ð 1
0 G1 t; sð ÞHðs; u sð Þ; v sð ÞÞds
���

���
≤
Ð 1
0 G1 1; sð Þ∣H1 s; p sð Þ; q sð Þð Þ∣ds:

From which we have

∥S1 p; qð Þ∥E�E <
α
2ϱ1

ð1
0
G1 1; sð Þds ¼ α

2
:

Similarly, we have ∥S1 p; qð Þ∥E�E < α
2 as p; qð Þ∈C ∩ ∂Ωα. Hence, we have
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∥S p; qð Þ∥E�E < ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωα: (25)

Now, applying Lemma 2.11 to Eqs. (23) and (25) yields that S has a fixed point
p; qð Þ∈C ∩ Ωα\Cε

� �
and a fixed point in p; qð Þ∈C ∩ Ωλ\Ωα

� �
: Hence, we conclude that the

system of BVPs (1) has at least two positive solutions p; qð Þ, p; qð Þ such that ∥ p; qð Þ∥E�E 6¼ α and
∥ p; qð Þ∥E�E 6¼ α. Thus, relation (22) holds.

Theorem 3.6. Consider that C1ð Þ � C3ð Þ together with the following hypothesis are satisfied:

(H7) δ1H1,0 < 1, δ1H1,∞ < 1; δ2H1,0 < 1, and δ2H2,∞ < 1;

(H8) There exist r > 0 such that

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
1H1 t; p; qð Þ > α

2

ð1�θ

θ

G1 1; sð Þds
0
@

1
A

�1

,

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
2H2 t; p; qð Þ > α

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A

�1

such that

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E:

Then, the proposed coupled system of BVPs (1) has at least two positive solutions.

Proof. Proof is like the proof of Theorem 3.4.

Analogously, we deduce from Theorem 3.5 and 3.6 the following results for multiplicity of
solutions to the system (1) of BVPs.

Theorem 3.7. Under the conditions C1ð Þ � C3ð Þ, there exist 2k positive numbers aj,ba j, j ¼ 1, 2…k
with a1 < γ1ba1 < ba1 < a2 < γ1ba2 < ba2…ak < γ1bak < bak and a1 < γ2ba1 < ba1 < a2 < γ2ba2 <
ba2…ak < γ2bak < bak such that.

(H9) H1 t; p tð Þ; q tð Þð Þ γ1

Ð1
0
G1 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and

H1 t; p tð Þ; q tð Þð Þδ1 ≤bai, for t; p; qð Þ∈ I� γ1ba j;baj
h i

� γ2aj; ai
� �

, j ¼ 1, 2…k;

(H10) H2 t; p tð Þ; q tð Þð Þ γ2

Ð1
0
G2 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and

Existence Theory of Differential Equations of Arbitrary Order
http://dx.doi.org/10.5772/intechopen.75523

47



max
t∈ I, p;qð Þ∈ ∂Cα

H1 t; p; qð Þ < α
2δ1

and

max
t∈ I, p;qð Þ∈ ∂Cα

H2 t; p; qð Þ < α
2δ2

:

Then, the system (1) of BVPs has at least two positive solutions p; qð Þ, p; qð Þ which obeying

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E: (22)

Proof. Assume that H5ð Þ holds, and consider e, α, λ such that 0 < e < α < λ. Further we
define a set by

Ωr ¼ u; vð Þ∈E� E : ∥ u; vð Þ∥E�E < rf g, where r∈ e;α;λf g:

Now, if

H1,0 γ2
1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A > 1 and H2,0 γ2

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Then, obviously, we can obtain that

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωε: (23)

Now, if H1,∞ γ2
1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1 and H2,∞ γ2

2

Ð1�θ

θ
G2 1; sð Þds

 !
> 1:

Then, like the proof of Eq. (23), we have

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωλ: (24)

Also, from H5ð Þ and p; qð Þ∈C ∩ ∂Ωα, we get

∣S1 p; qð Þ tð Þ∣ ¼ Ð 1
0 G1 t; sð ÞHðs; u sð Þ; v sð ÞÞds
���

���
≤
Ð 1
0 G1 1; sð Þ∣H1 s; p sð Þ; q sð Þð Þ∣ds:

From which we have

∥S1 p; qð Þ∥E�E <
α
2ϱ1

ð1
0
G1 1; sð Þds ¼ α

2
:

Similarly, we have ∥S1 p; qð Þ∥E�E < α
2 as p; qð Þ∈C ∩ ∂Ωα. Hence, we have
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∥S p; qð Þ∥E�E < ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωα: (25)

Now, applying Lemma 2.11 to Eqs. (23) and (25) yields that S has a fixed point
p; qð Þ∈C ∩ Ωα\Cε

� �
and a fixed point in p; qð Þ∈C ∩ Ωλ\Ωα

� �
: Hence, we conclude that the

system of BVPs (1) has at least two positive solutions p; qð Þ, p; qð Þ such that ∥ p; qð Þ∥E�E 6¼ α and
∥ p; qð Þ∥E�E 6¼ α. Thus, relation (22) holds.

Theorem 3.6. Consider that C1ð Þ � C3ð Þ together with the following hypothesis are satisfied:

(H7) δ1H1,0 < 1, δ1H1,∞ < 1; δ2H1,0 < 1, and δ2H2,∞ < 1;

(H8) There exist r > 0 such that

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
1H1 t; p; qð Þ > α

2

ð1�θ

θ

G1 1; sð Þds
0
@

1
A

�1

,

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
2H2 t; p; qð Þ > α

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A

�1

such that

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E:

Then, the proposed coupled system of BVPs (1) has at least two positive solutions.

Proof. Proof is like the proof of Theorem 3.4.

Analogously, we deduce from Theorem 3.5 and 3.6 the following results for multiplicity of
solutions to the system (1) of BVPs.

Theorem 3.7. Under the conditions C1ð Þ � C3ð Þ, there exist 2k positive numbers aj,ba j, j ¼ 1, 2…k
with a1 < γ1ba1 < ba1 < a2 < γ1ba2 < ba2…ak < γ1bak < bak and a1 < γ2ba1 < ba1 < a2 < γ2ba2 <
ba2…ak < γ2bak < bak such that.

(H9) H1 t; p tð Þ; q tð Þð Þ γ1

Ð1
0
G1 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and

H1 t; p tð Þ; q tð Þð Þδ1 ≤bai, for t; p; qð Þ∈ I� γ1ba j;baj
h i

� γ2aj; ai
� �

, j ¼ 1, 2…k;

(H10) H2 t; p tð Þ; q tð Þð Þ γ2

Ð1
0
G2 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and
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max
t∈ I, p;qð Þ∈ ∂Cα

H1 t; p; qð Þ < α
2δ1

and

max
t∈ I, p;qð Þ∈ ∂Cα

H2 t; p; qð Þ < α
2δ2

:

Then, the system (1) of BVPs has at least two positive solutions p; qð Þ, p; qð Þ which obeying

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E: (22)

Proof. Assume that H5ð Þ holds, and consider e, α, λ such that 0 < e < α < λ. Further we
define a set by

Ωr ¼ u; vð Þ∈E� E : ∥ u; vð Þ∥E�E < rf g, where r∈ e;α;λf g:

Now, if

H1,0 γ2
1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A > 1 and H2,0 γ2

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A > 1:

Then, obviously, we can obtain that

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωε: (23)

Now, if H1,∞ γ2
1

Ð1�θ

θ
G1 1; sð Þds

 !
> 1 and H2,∞ γ2

2

Ð1�θ

θ
G2 1; sð Þds

 !
> 1:

Then, like the proof of Eq. (23), we have

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωλ: (24)

Also, from H5ð Þ and p; qð Þ∈C ∩ ∂Ωα, we get

∣S1 p; qð Þ tð Þ∣ ¼ Ð 1
0 G1 t; sð ÞHðs; u sð Þ; v sð ÞÞds
���

���
≤
Ð 1
0 G1 1; sð Þ∣H1 s; p sð Þ; q sð Þð Þ∣ds:

From which we have

∥S1 p; qð Þ∥E�E <
α
2ϱ1

ð1
0
G1 1; sð Þds ¼ α

2
:

Similarly, we have ∥S1 p; qð Þ∥E�E < α
2 as p; qð Þ∈C ∩ ∂Ωα. Hence, we have
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∥S p; qð Þ∥E�E < ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωα: (25)

Now, applying Lemma 2.11 to Eqs. (23) and (25) yields that S has a fixed point
p; qð Þ∈C ∩ Ωα\Cε

� �
and a fixed point in p; qð Þ∈C ∩ Ωλ\Ωα

� �
: Hence, we conclude that the

system of BVPs (1) has at least two positive solutions p; qð Þ, p; qð Þ such that ∥ p; qð Þ∥E�E 6¼ α and
∥ p; qð Þ∥E�E 6¼ α. Thus, relation (22) holds.

Theorem 3.6. Consider that C1ð Þ � C3ð Þ together with the following hypothesis are satisfied:

(H7) δ1H1,0 < 1, δ1H1,∞ < 1; δ2H1,0 < 1, and δ2H2,∞ < 1;

(H8) There exist r > 0 such that

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
1H1 t; p; qð Þ > α

2

ð1�θ

θ

G1 1; sð Þds
0
@

1
A

�1

,

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
2H2 t; p; qð Þ > α

2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A

�1

such that

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E:

Then, the proposed coupled system of BVPs (1) has at least two positive solutions.

Proof. Proof is like the proof of Theorem 3.4.

Analogously, we deduce from Theorem 3.5 and 3.6 the following results for multiplicity of
solutions to the system (1) of BVPs.

Theorem 3.7. Under the conditions C1ð Þ � C3ð Þ, there exist 2k positive numbers aj,ba j, j ¼ 1, 2…k
with a1 < γ1ba1 < ba1 < a2 < γ1ba2 < ba2…ak < γ1bak < bak and a1 < γ2ba1 < ba1 < a2 < γ2ba2 <
ba2…ak < γ2bak < bak such that.

(H9) H1 t; p tð Þ; q tð Þð Þ γ1

Ð1
0
G1 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and

H1 t; p tð Þ; q tð Þð Þδ1 ≤bai, for t; p; qð Þ∈ I� γ1baj;baj
h i

� γ2aj; ai
� �

, j ¼ 1, 2…k;

(H10) H2 t; p tð Þ; q tð Þð Þ γ2

Ð1
0
G2 1; sð Þds

 !
≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �� γ2aj; aj
� �

, and
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H1 t; p tð Þ; q tð Þð Þδ2 ≤baj, for t; p; qð Þ∈ I� γ1aj; aj
� �� γ2baj;ba j

h i
, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

aj ≤ ∥ pj; qj
� �

∥E�E ≤baj, j ¼ 1, 2…k:

Further, if assumptions C1ð Þ � C3ð Þ hold such that there exist 2k positive numbers bj, bb j, j ¼ 1, 2…k,
with

b1 < bb1 < b2 < bb2… < bk < bbk,

together with following hypothesis hold:

(H11) H1 t; p; qð Þ and H2 t; p; qð Þ are nondecreasing on 0; bbk

h i
for all t∈ I;

ðH11ÞH1 t; p tð Þ; q tð Þð Þ γ1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A ≥bj,H1 t; p tð Þ; q tð Þð Þδ1 ≤ bb j, j ¼ 1, 2…k, (26)

H2 t; u tð Þ; v tð Þð Þ γ2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A ≥bj,H2 t; p tð Þ; q tð Þð Þδ2 ≤ bb j, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

bj ≤ ∥ pj; qj
� �

∥E�E ≤ bbj, j ¼ 1, 2…k:

4. Hyers-Ulam stability

Definition 4.1. ([31, Definition 2]) Consider a Banach space E� E such that S1,S2 : E� E ! E� E
be the two operators. Then, the operator system provided by

p tð Þ ¼ S1 p; qð Þ tð Þ,
q tð Þ ¼ S2 p; qð Þ tð Þ

�
(27)

is called Hyers-Ulam stability if we can find C i i ¼ 1; 2; 3; 4ð Þ > 0, such that for each ri i ¼ 1; 2ð Þ > 0
and for each solution p∗; q∗ð Þ∈E� E of the inequalities given by

∥p∗ �H1 p∗; q∗ð Þ∥E�E ≤ r1,
∥q∗ �H2 p∗; q∗ð Þ∥E�E ≤ r2,

�
(28)
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there exist a solution p; qð Þ∈E� E of system (26) which satisfy

∥p∗ � p∥E�E ≤ C1r1 þ C2r2,
∥q∗ � q∥E�E ≤ C3r1 þ C4r2:

�
(29)

Definition 4.2. If λi, for i ¼ 1, 2,⋯, n be the (real or complex) eigenvalues of a matrixM∈ Cn�n, then
the spectral radius r Mð Þ is defined by

r Mð Þ ¼ max jλij; for i ¼ 1; 2;⋯; nf g:

Further, the matrix will converge to zero if r Mð Þ < 1:.

Theorem 4.3. ([31, Theorem 4]) Consider a Banach space E� E with S1,S2 : E� E ! E� E be the
two operators such that

∥S1 p; qð Þ � S1 p∗; q∗ð Þ∥E�E ≤ C1∥p� p∗∥E�E þ C2∥q� q∗∥E�E,
∥S2 p; qð Þ � S2 p∗; q∗ð Þ∥E�E ≤ C3∥p� p∗∥E�E þ C4∥q� q∗∥E�E,
for all p; qð Þ, p∗; q∗ð Þ∈E� E,

8><
>:

(30)

and if the matrix

M ¼ C1 C2

C3 C4

� �

converges to zero ([31, Theorem 1]), then the fixed points corresponding to operatorial system (26) are
Hyers-Ulam stable.

For the stability results, the following should be hold:

(H13) Under the continuity ofHi, i ¼ 1, 2, there exist ai, bi ∈ c 0; 1ð Þ, i ¼ 1, 2 and p; qð Þ, p; qð Þ such
that

∣Hi t; p; qð Þ �Hi t; p; qð Þ∣ ≤ ai tð Þ∣p� p∣þ bi tð Þ∣q� q∣, i ¼ 1, 2:

In this section, we study Hyers-Ulam stability for the solutions of our proposed system.
Thanks to Definition 4.1 and Theorem 4.3, the respective results are received.

Theorem 4.4. Suppose that the assumptions H13ð Þ along with condition that matrix

M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #

is converging to zero. Then, the solutions of (1) are Hyers-Ulam stable.

Proof. In view of Theorem 4.3, we have
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H1 t; p tð Þ; q tð Þð Þδ2 ≤baj, for t; p; qð Þ∈ I� γ1aj; aj
� �� γ2baj;baj

h i
, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

aj ≤ ∥ pj; qj
� �

∥E�E ≤baj, j ¼ 1, 2…k:

Further, if assumptions C1ð Þ � C3ð Þ hold such that there exist 2k positive numbers bj, bb j, j ¼ 1, 2…k,
with

b1 < bb1 < b2 < bb2… < bk < bbk,

together with following hypothesis hold:

(H11) H1 t; p; qð Þ and H2 t; p; qð Þ are nondecreasing on 0; bbk

h i
for all t∈ I;

ðH11ÞH1 t; p tð Þ; q tð Þð Þ γ1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A ≥bj,H1 t; p tð Þ; q tð Þð Þδ1 ≤ bb j, j ¼ 1, 2…k, (26)

H2 t; u tð Þ; v tð Þð Þ γ2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A ≥bj,H2 t; p tð Þ; q tð Þð Þδ2 ≤ bb j, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

bj ≤ ∥ pj; qj
� �

∥E�E ≤ bbj, j ¼ 1, 2…k:

4. Hyers-Ulam stability

Definition 4.1. ([31, Definition 2]) Consider a Banach space E� E such that S1,S2 : E� E ! E� E
be the two operators. Then, the operator system provided by

p tð Þ ¼ S1 p; qð Þ tð Þ,
q tð Þ ¼ S2 p; qð Þ tð Þ

�
(27)

is called Hyers-Ulam stability if we can find C i i ¼ 1; 2; 3; 4ð Þ > 0, such that for each ri i ¼ 1; 2ð Þ > 0
and for each solution p∗; q∗ð Þ∈E� E of the inequalities given by

∥p∗ �H1 p∗; q∗ð Þ∥E�E ≤ r1,
∥q∗ �H2 p∗; q∗ð Þ∥E�E ≤ r2,

�
(28)
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there exist a solution p; qð Þ∈E� E of system (26) which satisfy

∥p∗ � p∥E�E ≤ C1r1 þ C2r2,
∥q∗ � q∥E�E ≤ C3r1 þ C4r2:

�
(29)

Definition 4.2. If λi, for i ¼ 1, 2,⋯, n be the (real or complex) eigenvalues of a matrixM∈ Cn�n, then
the spectral radius r Mð Þ is defined by

r Mð Þ ¼ max jλij; for i ¼ 1; 2;⋯; nf g:

Further, the matrix will converge to zero if r Mð Þ < 1:.

Theorem 4.3. ([31, Theorem 4]) Consider a Banach space E� E with S1,S2 : E� E ! E� E be the
two operators such that

∥S1 p; qð Þ � S1 p∗; q∗ð Þ∥E�E ≤ C1∥p� p∗∥E�E þ C2∥q� q∗∥E�E,
∥S2 p; qð Þ � S2 p∗; q∗ð Þ∥E�E ≤ C3∥p� p∗∥E�E þ C4∥q� q∗∥E�E,
for all p; qð Þ, p∗; q∗ð Þ∈E� E,

8><
>:

(30)

and if the matrix

M ¼ C1 C2

C3 C4

� �

converges to zero ([31, Theorem 1]), then the fixed points corresponding to operatorial system (26) are
Hyers-Ulam stable.

For the stability results, the following should be hold:

(H13) Under the continuity ofHi, i ¼ 1, 2, there exist ai, bi ∈ c 0; 1ð Þ, i ¼ 1, 2 and p; qð Þ, p; qð Þ such
that

∣Hi t; p; qð Þ �Hi t; p; qð Þ∣ ≤ ai tð Þ∣p� p∣þ bi tð Þ∣q� q∣, i ¼ 1, 2:

In this section, we study Hyers-Ulam stability for the solutions of our proposed system.
Thanks to Definition 4.1 and Theorem 4.3, the respective results are received.

Theorem 4.4. Suppose that the assumptions H13ð Þ along with condition that matrix

M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #

is converging to zero. Then, the solutions of (1) are Hyers-Ulam stable.

Proof. In view of Theorem 4.3, we have
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H1 t; p tð Þ; q tð Þð Þδ2 ≤baj, for t; p; qð Þ∈ I� γ1aj; aj
� �� γ2baj;baj

h i
, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

aj ≤ ∥ pj; qj
� �

∥E�E ≤baj, j ¼ 1, 2…k:

Further, if assumptions C1ð Þ � C3ð Þ hold such that there exist 2k positive numbers bj, bb j, j ¼ 1, 2…k,
with

b1 < bb1 < b2 < bb2… < bk < bbk,

together with following hypothesis hold:

(H11) H1 t; p; qð Þ and H2 t; p; qð Þ are nondecreasing on 0; bbk

h i
for all t∈ I;

ðH11ÞH1 t; p tð Þ; q tð Þð Þ γ1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A ≥bj,H1 t; p tð Þ; q tð Þð Þδ1 ≤ bb j, j ¼ 1, 2…k, (26)

H2 t; u tð Þ; v tð Þð Þ γ2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A ≥bj,H2 t; p tð Þ; q tð Þð Þδ2 ≤ bb j, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

bj ≤ ∥ pj; qj
� �

∥E�E ≤ bbj, j ¼ 1, 2…k:

4. Hyers-Ulam stability

Definition 4.1. ([31, Definition 2]) Consider a Banach space E� E such that S1,S2 : E� E ! E� E
be the two operators. Then, the operator system provided by

p tð Þ ¼ S1 p; qð Þ tð Þ,
q tð Þ ¼ S2 p; qð Þ tð Þ

�
(27)

is called Hyers-Ulam stability if we can find C i i ¼ 1; 2; 3; 4ð Þ > 0, such that for each ri i ¼ 1; 2ð Þ > 0
and for each solution p∗; q∗ð Þ∈E� E of the inequalities given by

∥p∗ �H1 p∗; q∗ð Þ∥E�E ≤ r1,
∥q∗ �H2 p∗; q∗ð Þ∥E�E ≤ r2,

�
(28)
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there exist a solution p; qð Þ∈E� E of system (26) which satisfy

∥p∗ � p∥E�E ≤ C1r1 þ C2r2,
∥q∗ � q∥E�E ≤ C3r1 þ C4r2:

�
(29)

Definition 4.2. If λi, for i ¼ 1, 2,⋯, n be the (real or complex) eigenvalues of a matrixM∈ Cn�n, then
the spectral radius r Mð Þ is defined by

r Mð Þ ¼ max jλij; for i ¼ 1; 2;⋯; nf g:

Further, the matrix will converge to zero if r Mð Þ < 1:.

Theorem 4.3. ([31, Theorem 4]) Consider a Banach space E� E with S1,S2 : E� E ! E� E be the
two operators such that

∥S1 p; qð Þ � S1 p∗; q∗ð Þ∥E�E ≤ C1∥p� p∗∥E�E þ C2∥q� q∗∥E�E,
∥S2 p; qð Þ � S2 p∗; q∗ð Þ∥E�E ≤ C3∥p� p∗∥E�E þ C4∥q� q∗∥E�E,
for all p; qð Þ, p∗; q∗ð Þ∈E� E,

8><
>:

(30)

and if the matrix

M ¼ C1 C2

C3 C4

� �

converges to zero ([31, Theorem 1]), then the fixed points corresponding to operatorial system (26) are
Hyers-Ulam stable.

For the stability results, the following should be hold:

(H13) Under the continuity ofHi, i ¼ 1, 2, there exist ai, bi ∈ c 0; 1ð Þ, i ¼ 1, 2 and p; qð Þ, p; qð Þ such
that

∣Hi t; p; qð Þ �Hi t; p; qð Þ∣ ≤ ai tð Þ∣p� p∣þ bi tð Þ∣q� q∣, i ¼ 1, 2:

In this section, we study Hyers-Ulam stability for the solutions of our proposed system.
Thanks to Definition 4.1 and Theorem 4.3, the respective results are received.

Theorem 4.4. Suppose that the assumptions H13ð Þ along with condition that matrix

M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #

is converging to zero. Then, the solutions of (1) are Hyers-Ulam stable.

Proof. In view of Theorem 4.3, we have
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H1 t; p tð Þ; q tð Þð Þδ2 ≤baj, for t; p; qð Þ∈ I� γ1aj; aj
� �� γ2baj;baj

h i
, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

aj ≤ ∥ pj; qj
� �

∥E�E ≤baj, j ¼ 1, 2…k:

Further, if assumptions C1ð Þ � C3ð Þ hold such that there exist 2k positive numbers bj, bb j, j ¼ 1, 2…k,
with

b1 < bb1 < b2 < bb2… < bk < bbk,

together with following hypothesis hold:

(H11) H1 t; p; qð Þ and H2 t; p; qð Þ are nondecreasing on 0; bbk

h i
for all t∈ I;

ðH11ÞH1 t; p tð Þ; q tð Þð Þ γ1

ð1�θ

θ

G1 1; sð Þds
0
@

1
A ≥bj,H1 t; p tð Þ; q tð Þð Þδ1 ≤ bb j, j ¼ 1, 2…k, (26)

H2 t; u tð Þ; v tð Þð Þ γ2

ð1�θ

θ

G2 1; sð Þds
0
@

1
A ≥bj,H2 t; p tð Þ; q tð Þð Þδ2 ≤ bb j, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj
� �

, satisfying

bj ≤ ∥ pj; qj
� �

∥E�E ≤ bbj, j ¼ 1, 2…k:

4. Hyers-Ulam stability

Definition 4.1. ([31, Definition 2]) Consider a Banach space E� E such that S1,S2 : E� E ! E� E
be the two operators. Then, the operator system provided by

p tð Þ ¼ S1 p; qð Þ tð Þ,
q tð Þ ¼ S2 p; qð Þ tð Þ

�
(27)

is called Hyers-Ulam stability if we can find C i i ¼ 1; 2; 3; 4ð Þ > 0, such that for each ri i ¼ 1; 2ð Þ > 0
and for each solution p∗; q∗ð Þ∈E� E of the inequalities given by

∥p∗ �H1 p∗; q∗ð Þ∥E�E ≤ r1,
∥q∗ �H2 p∗; q∗ð Þ∥E�E ≤ r2,

�
(28)
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there exist a solution p; qð Þ∈E� E of system (26) which satisfy

∥p∗ � p∥E�E ≤ C1r1 þ C2r2,
∥q∗ � q∥E�E ≤ C3r1 þ C4r2:

�
(29)

Definition 4.2. If λi, for i ¼ 1, 2,⋯, n be the (real or complex) eigenvalues of a matrixM∈ Cn�n, then
the spectral radius r Mð Þ is defined by

r Mð Þ ¼ max jλij; for i ¼ 1; 2;⋯; nf g:

Further, the matrix will converge to zero if r Mð Þ < 1:.

Theorem 4.3. ([31, Theorem 4]) Consider a Banach space E� E with S1,S2 : E� E ! E� E be the
two operators such that

∥S1 p; qð Þ � S1 p∗; q∗ð Þ∥E�E ≤ C1∥p� p∗∥E�E þ C2∥q� q∗∥E�E,
∥S2 p; qð Þ � S2 p∗; q∗ð Þ∥E�E ≤ C3∥p� p∗∥E�E þ C4∥q� q∗∥E�E,
for all p; qð Þ, p∗; q∗ð Þ∈E� E,

8><
>:

(30)

and if the matrix

M ¼ C1 C2

C3 C4

� �

converges to zero ([31, Theorem 1]), then the fixed points corresponding to operatorial system (26) are
Hyers-Ulam stable.

For the stability results, the following should be hold:

(H13) Under the continuity ofHi, i ¼ 1, 2, there exist ai, bi ∈ c 0; 1ð Þ, i ¼ 1, 2 and p; qð Þ, p; qð Þ such
that

∣Hi t; p; qð Þ �Hi t; p; qð Þ∣ ≤ ai tð Þ∣p� p∣þ bi tð Þ∣q� q∣, i ¼ 1, 2:

In this section, we study Hyers-Ulam stability for the solutions of our proposed system.
Thanks to Definition 4.1 and Theorem 4.3, the respective results are received.

Theorem 4.4. Suppose that the assumptions H13ð Þ along with condition that matrix

M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #

is converging to zero. Then, the solutions of (1) are Hyers-Ulam stable.

Proof. In view of Theorem 4.3, we have
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∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G1 1; sð Þb1 sð Þ∥q� q∥E�Eds

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G2 1; sð Þb2 sð Þ∥q� q∥E�Eds:

From which we get

∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þds�

h i
∥p� p∥E�E þ

Ð 1
0 G1 1; sð Þb1 sð Þds

h i
∥q� q∥E�E

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þds

h i
∥p� p∥E�E þ

Ð 1
0 G2 1; sð Þb2 sð Þds

h i
∥q� q∥E�E:

(31)

Hence, we get

∥S p; qð Þ � S p; qð Þ∥E�E ≤M∥ p; qð Þ � p; qð Þ∥E�E, (32)

where M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #
. Hence, we received the required results.

5. Illustrative examples

Example 5.1. Consider the given system of BVPs

D
7
2p tð Þ þ 1� t2

� �þ p tð Þq tð Þ½ �13 ¼ 0, D
11
3 q tð Þ þ 1þ tþ p tð Þq tð Þ½ �14 ¼ 0, t∈ 0; 1ð Þ,

p tð Þ ¼ p
0
tð Þ ¼ p

00
tð Þ ¼ q tð Þ ¼ q

0
tð Þ ¼ q

00
tð Þ ¼ 0, at t ¼ 0,

p 1ð Þ ¼ p
1
4

� �
, q 1ð Þ ¼ q

1
3

� �
:

8>>>><
>>>>:

(33)

Clearly, H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at
p; qð Þ ¼ 1; 1ð Þ. Simple computation yields that H1,H2 are nondecreasing for every t∈ 0; 1ð Þ: Also, for
τ, t∈ 0; 1ð Þ, and p, q ≥ 0, one has max 1

4 ;
1
3

� � ¼ 1
3 ,

H1 t; τp; τqð Þ ≥ τ1
3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ1

3H2 t; p; qð Þ:

Thus, all the conditions of Theorem 3.4 are fulfilled, so the system (32) of BVPs has unique positive

solution in Bf where f tð Þ ¼ t
5
2; t

9
2

� �
:

Example 5.2. Consider the following system of BVPs:

D
9
2p tð Þ þ 1þ tð Þ2 þ p tð Þ þ q tð Þ½ �3 ¼ 0, D

9
2q tð Þ þ 1þ tþ p tð Þ þ q tð Þ½ �2 ¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2; 3, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>><
>>>:

(34)
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It is obvious that H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0,
H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 1; 1ð Þ. Also, an easy computation yields that H1,H2 are nondecreasing for
each t∈ 0; 1ð Þ: Moreover, for τ, t∈ 0; 1ð Þ, and p, q ≥ 0, we see that max 3; 2f g ¼ 3,

H1 t; τp; τqð Þ ≥ τ3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ3H2 t; p; qð Þ:

Thus, all the assumption of Theorem 3.4 is fulfilled, so the coupled system (33) has a unique positive

solution in Bf where f tð Þ ¼ t
3
4; t

4
3

� �
:

Example 5.3. Consider the following system of BVPs:

D
7
2p tð Þ ¼ t

40
þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣, t∈ 0; 1ð Þ,

D
7
2q tð Þ ¼ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>>>>>>>><
>>>>>>>>>:

(35)

From system (33), we see that

∣H1 t; p; qð Þ∣ ≤ t
40

þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣

and

∣H2 t; p; qð Þ∣ ≤ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣:

where φ1 tð Þ ¼ t
40 , φ2 tð Þ ¼ t2

50 , ψ1 tð Þ ¼ t
20 , ψ2 tð Þ ¼ t2

60 , σ1 tð Þ ¼ t2
20 , σ2 tð Þ ¼ t

60. Also,

η ¼ ξ ¼ 1
2 ,λ1 ¼ λ2 ¼ 0:17677: Thus, by computation, we have

Gj 1; sð Þ ¼ 6:65710
1� sð Þ52
Γ 7

2

� � , for j ¼ 1, 2:

Upon computation, we get

Δ1 ¼
ð1
0
G1 1; sð Þφ1 sð Þds ¼ 0:003577 < ∞, Δ2 ¼

ð1
0
G2 1; sð Þφ2 sð Þds ¼ 0:000924 < ∞:

Similarly, we can also compute.

Λ1 ¼
Ð 1
0 G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds ¼ 0:03092853 < 1, Λ2 ¼
Ð 1
0 G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds ¼ 0:00289 < 1:
Further, we see that max 0:007626; 0:00185f g ¼ 0:007626. So, all the conditions of Theorem 3.3 are
satisfied. So, the BVP (34) has at least one solution and the solution lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < 0:007626f g:
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∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G1 1; sð Þb1 sð Þ∥q� q∥E�Eds

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G2 1; sð Þb2 sð Þ∥q� q∥E�Eds:

From which we get

∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þds�

h i
∥p� p∥E�E þ

Ð 1
0 G1 1; sð Þb1 sð Þds

h i
∥q� q∥E�E

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þds

h i
∥p� p∥E�E þ

Ð 1
0 G2 1; sð Þb2 sð Þds

h i
∥q� q∥E�E:

(31)

Hence, we get

∥S p; qð Þ � S p; qð Þ∥E�E ≤M∥ p; qð Þ � p; qð Þ∥E�E, (32)

where M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #
. Hence, we received the required results.

5. Illustrative examples

Example 5.1. Consider the given system of BVPs

D
7
2p tð Þ þ 1� t2

� �þ p tð Þq tð Þ½ �13 ¼ 0, D
11
3 q tð Þ þ 1þ tþ p tð Þq tð Þ½ �14 ¼ 0, t∈ 0; 1ð Þ,

p tð Þ ¼ p
0
tð Þ ¼ p

00
tð Þ ¼ q tð Þ ¼ q

0
tð Þ ¼ q

00
tð Þ ¼ 0, at t ¼ 0,

p 1ð Þ ¼ p
1
4

� �
, q 1ð Þ ¼ q

1
3

� �
:

8>>>><
>>>>:

(33)

Clearly, H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at
p; qð Þ ¼ 1; 1ð Þ. Simple computation yields that H1,H2 are nondecreasing for every t∈ 0; 1ð Þ: Also, for
τ, t∈ 0; 1ð Þ, and p, q ≥ 0, one has max 1

4 ;
1
3

� � ¼ 1
3 ,

H1 t; τp; τqð Þ ≥ τ1
3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ1

3H2 t; p; qð Þ:

Thus, all the conditions of Theorem 3.4 are fulfilled, so the system (32) of BVPs has unique positive

solution in Bf where f tð Þ ¼ t
5
2; t

9
2

� �
:

Example 5.2. Consider the following system of BVPs:

D
9
2p tð Þ þ 1þ tð Þ2 þ p tð Þ þ q tð Þ½ �3 ¼ 0, D

9
2q tð Þ þ 1þ tþ p tð Þ þ q tð Þ½ �2 ¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2; 3, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>><
>>>:

(34)
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It is obvious that H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0,
H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 1; 1ð Þ. Also, an easy computation yields that H1,H2 are nondecreasing for
each t∈ 0; 1ð Þ: Moreover, for τ, t∈ 0; 1ð Þ, and p, q ≥ 0, we see that max 3; 2f g ¼ 3,

H1 t; τp; τqð Þ ≥ τ3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ3H2 t; p; qð Þ:

Thus, all the assumption of Theorem 3.4 is fulfilled, so the coupled system (33) has a unique positive

solution in Bf where f tð Þ ¼ t
3
4; t

4
3

� �
:

Example 5.3. Consider the following system of BVPs:

D
7
2p tð Þ ¼ t

40
þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣, t∈ 0; 1ð Þ,

D
7
2q tð Þ ¼ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>>>>>>>><
>>>>>>>>>:

(35)

From system (33), we see that

∣H1 t; p; qð Þ∣ ≤ t
40

þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣

and

∣H2 t; p; qð Þ∣ ≤ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣:

where φ1 tð Þ ¼ t
40 , φ2 tð Þ ¼ t2

50 , ψ1 tð Þ ¼ t
20 , ψ2 tð Þ ¼ t2

60 , σ1 tð Þ ¼ t2
20 , σ2 tð Þ ¼ t

60. Also,

η ¼ ξ ¼ 1
2 ,λ1 ¼ λ2 ¼ 0:17677: Thus, by computation, we have

Gj 1; sð Þ ¼ 6:65710
1� sð Þ52
Γ 7

2

� � , for j ¼ 1, 2:

Upon computation, we get

Δ1 ¼
ð1
0
G1 1; sð Þφ1 sð Þds ¼ 0:003577 < ∞, Δ2 ¼

ð1
0
G2 1; sð Þφ2 sð Þds ¼ 0:000924 < ∞:

Similarly, we can also compute.

Λ1 ¼
Ð 1
0 G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds ¼ 0:03092853 < 1, Λ2 ¼
Ð 1
0 G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds ¼ 0:00289 < 1:
Further, we see that max 0:007626; 0:00185f g ¼ 0:007626. So, all the conditions of Theorem 3.3 are
satisfied. So, the BVP (34) has at least one solution and the solution lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < 0:007626f g:
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∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G1 1; sð Þb1 sð Þ∥q� q∥E�Eds

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G2 1; sð Þb2 sð Þ∥q� q∥E�Eds:

From which we get

∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þds�

h i
∥p� p∥E�E þ

Ð 1
0 G1 1; sð Þb1 sð Þds

h i
∥q� q∥E�E

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þds

h i
∥p� p∥E�E þ

Ð 1
0 G2 1; sð Þb2 sð Þds

h i
∥q� q∥E�E:

(31)

Hence, we get

∥S p; qð Þ � S p; qð Þ∥E�E ≤M∥ p; qð Þ � p; qð Þ∥E�E, (32)

where M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #
. Hence, we received the required results.

5. Illustrative examples

Example 5.1. Consider the given system of BVPs

D
7
2p tð Þ þ 1� t2

� �þ p tð Þq tð Þ½ �13 ¼ 0, D
11
3 q tð Þ þ 1þ tþ p tð Þq tð Þ½ �14 ¼ 0, t∈ 0; 1ð Þ,

p tð Þ ¼ p
0
tð Þ ¼ p

00
tð Þ ¼ q tð Þ ¼ q

0
tð Þ ¼ q

00
tð Þ ¼ 0, at t ¼ 0,

p 1ð Þ ¼ p
1
4

� �
, q 1ð Þ ¼ q

1
3

� �
:

8>>>><
>>>>:

(33)

Clearly, H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at
p; qð Þ ¼ 1; 1ð Þ. Simple computation yields that H1,H2 are nondecreasing for every t∈ 0; 1ð Þ: Also, for
τ, t∈ 0; 1ð Þ, and p, q ≥ 0, one has max 1

4 ;
1
3

� � ¼ 1
3 ,

H1 t; τp; τqð Þ ≥ τ1
3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ1

3H2 t; p; qð Þ:

Thus, all the conditions of Theorem 3.4 are fulfilled, so the system (32) of BVPs has unique positive

solution in Bf where f tð Þ ¼ t
5
2; t

9
2

� �
:

Example 5.2. Consider the following system of BVPs:

D
9
2p tð Þ þ 1þ tð Þ2 þ p tð Þ þ q tð Þ½ �3 ¼ 0, D

9
2q tð Þ þ 1þ tþ p tð Þ þ q tð Þ½ �2 ¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2; 3, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>><
>>>:

(34)
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It is obvious that H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0,
H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 1; 1ð Þ. Also, an easy computation yields that H1,H2 are nondecreasing for
each t∈ 0; 1ð Þ: Moreover, for τ, t∈ 0; 1ð Þ, and p, q ≥ 0, we see that max 3; 2f g ¼ 3,

H1 t; τp; τqð Þ ≥ τ3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ3H2 t; p; qð Þ:

Thus, all the assumption of Theorem 3.4 is fulfilled, so the coupled system (33) has a unique positive

solution in Bf where f tð Þ ¼ t
3
4; t

4
3

� �
:

Example 5.3. Consider the following system of BVPs:

D
7
2p tð Þ ¼ t

40
þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣, t∈ 0; 1ð Þ,

D
7
2q tð Þ ¼ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>>>>>>>><
>>>>>>>>>:

(35)

From system (33), we see that

∣H1 t; p; qð Þ∣ ≤ t
40

þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣

and

∣H2 t; p; qð Þ∣ ≤ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣:

where φ1 tð Þ ¼ t
40 , φ2 tð Þ ¼ t2

50 , ψ1 tð Þ ¼ t
20 , ψ2 tð Þ ¼ t2

60 , σ1 tð Þ ¼ t2
20 , σ2 tð Þ ¼ t

60. Also,

η ¼ ξ ¼ 1
2 ,λ1 ¼ λ2 ¼ 0:17677: Thus, by computation, we have

Gj 1; sð Þ ¼ 6:65710
1� sð Þ52
Γ 7

2

� � , for j ¼ 1, 2:

Upon computation, we get

Δ1 ¼
ð1
0
G1 1; sð Þφ1 sð Þds ¼ 0:003577 < ∞, Δ2 ¼

ð1
0
G2 1; sð Þφ2 sð Þds ¼ 0:000924 < ∞:

Similarly, we can also compute.

Λ1 ¼
Ð 1
0 G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds ¼ 0:03092853 < 1, Λ2 ¼
Ð 1
0 G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds ¼ 0:00289 < 1:
Further, we see that max 0:007626; 0:00185f g ¼ 0:007626. So, all the conditions of Theorem 3.3 are
satisfied. So, the BVP (34) has at least one solution and the solution lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < 0:007626f g:
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∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G1 1; sð Þb1 sð Þ∥q� q∥E�Eds

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G2 1; sð Þb2 sð Þ∥q� q∥E�Eds:

From which we get

∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þds�

h i
∥p� p∥E�E þ

Ð 1
0 G1 1; sð Þb1 sð Þds

h i
∥q� q∥E�E

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þds

h i
∥p� p∥E�E þ

Ð 1
0 G2 1; sð Þb2 sð Þds

h i
∥q� q∥E�E:

(31)

Hence, we get

∥S p; qð Þ � S p; qð Þ∥E�E ≤M∥ p; qð Þ � p; qð Þ∥E�E, (32)

where M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #
. Hence, we received the required results.

5. Illustrative examples

Example 5.1. Consider the given system of BVPs

D
7
2p tð Þ þ 1� t2

� �þ p tð Þq tð Þ½ �13 ¼ 0, D
11
3 q tð Þ þ 1þ tþ p tð Þq tð Þ½ �14 ¼ 0, t∈ 0; 1ð Þ,

p tð Þ ¼ p
0
tð Þ ¼ p

00
tð Þ ¼ q tð Þ ¼ q

0
tð Þ ¼ q

00
tð Þ ¼ 0, at t ¼ 0,

p 1ð Þ ¼ p
1
4

� �
, q 1ð Þ ¼ q

1
3

� �
:

8>>>><
>>>>:

(33)

Clearly, H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at
p; qð Þ ¼ 1; 1ð Þ. Simple computation yields that H1,H2 are nondecreasing for every t∈ 0; 1ð Þ: Also, for
τ, t∈ 0; 1ð Þ, and p, q ≥ 0, one has max 1

4 ;
1
3

� � ¼ 1
3 ,

H1 t; τp; τqð Þ ≥ τ1
3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ1

3H2 t; p; qð Þ:

Thus, all the conditions of Theorem 3.4 are fulfilled, so the system (32) of BVPs has unique positive

solution in Bf where f tð Þ ¼ t
5
2; t

9
2

� �
:

Example 5.2. Consider the following system of BVPs:

D
9
2p tð Þ þ 1þ tð Þ2 þ p tð Þ þ q tð Þ½ �3 ¼ 0, D

9
2q tð Þ þ 1þ tþ p tð Þ þ q tð Þ½ �2 ¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2; 3, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>><
>>>:

(34)
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It is obvious that H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0,
H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 1; 1ð Þ. Also, an easy computation yields that H1,H2 are nondecreasing for
each t∈ 0; 1ð Þ: Moreover, for τ, t∈ 0; 1ð Þ, and p, q ≥ 0, we see that max 3; 2f g ¼ 3,

H1 t; τp; τqð Þ ≥ τ3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ3H2 t; p; qð Þ:

Thus, all the assumption of Theorem 3.4 is fulfilled, so the coupled system (33) has a unique positive

solution in Bf where f tð Þ ¼ t
3
4; t

4
3

� �
:

Example 5.3. Consider the following system of BVPs:

D
7
2p tð Þ ¼ t

40
þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣, t∈ 0; 1ð Þ,

D
7
2q tð Þ ¼ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>>>>>>>><
>>>>>>>>>:

(35)

From system (33), we see that

∣H1 t; p; qð Þ∣ ≤ t
40

þ t
20

cos∣p tð Þ∣þ t2

20
sin∣q tð Þ∣

and

∣H2 t; p; qð Þ∣ ≤ t2

50
þ t2

60
sin∣p tð Þ∣þ t

60
cos∣q tð Þ∣:

where φ1 tð Þ ¼ t
40 , φ2 tð Þ ¼ t2

50 , ψ1 tð Þ ¼ t
20 , ψ2 tð Þ ¼ t2

60 , σ1 tð Þ ¼ t2
20 , σ2 tð Þ ¼ t

60. Also,

η ¼ ξ ¼ 1
2 ,λ1 ¼ λ2 ¼ 0:17677: Thus, by computation, we have

Gj 1; sð Þ ¼ 6:65710
1� sð Þ52
Γ 7

2

� � , for j ¼ 1, 2:

Upon computation, we get

Δ1 ¼
ð1
0
G1 1; sð Þφ1 sð Þds ¼ 0:003577 < ∞, Δ2 ¼

ð1
0
G2 1; sð Þφ2 sð Þds ¼ 0:000924 < ∞:

Similarly, we can also compute.

Λ1 ¼
Ð 1
0 G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ� �

ds ¼ 0:03092853 < 1, Λ2 ¼
Ð 1
0 G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ� �

ds ¼ 0:00289 < 1:
Further, we see that max 0:007626; 0:00185f g ¼ 0:007626. So, all the conditions of Theorem 3.3 are
satisfied. So, the BVP (34) has at least one solution and the solution lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < 0:007626f g:
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D
11
2 p tð Þ þ p tð Þ þ q tð Þ½ �2 þ 1

15þ t2
� �

δ1
¼ 0, D

11
2 q tð Þ þ p tð Þ þ q tð Þ½ �2 þ t

15þ t2
� �

δ2
¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2; 3; 4, at t ¼ 0,

p 1ð Þ ¼ p
1
4

� �
, q 1ð Þ ¼ q

1
4

� �
:

8>>>>>><
>>>>>>:

(36)

It is simple to check that H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞: Also, for any t; p; qð Þ∈ I� I� I, we see
that

H1 t; p; qð Þ ≤
1
3δ1

H2 t; p; qð Þ ≤
1
3δ2

:

Thus, all the assumptions of Theorem 3.5 are satisfied with taking α ¼ 1, so the coupled system (35) has
two solutions satisfying 0 < ∥ p; qð Þ∥E�E < 1 < ∥ p; qð Þ∥E�E.

Example 5.5. Consider the following coupled systems of boundary value problems:

D
5
2p tð Þ þ Γ

5
2

� �
tp tð Þ
16

þ t2q tð Þ
32

� �
¼ 0, t∈ 0; 1ð Þ,

D
5
2q tð Þ þ Γ

5
2

� �
9t2∣cos p tð Þð Þ∣

16
ffiffiffiffi
π

p þ 9t∣cos q tð Þð Þ∣
32

ffiffiffiffi
π

p
� �

¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2, at t ¼ 0,

p 1ð Þ ¼ p
1
2

� �
, q 1ð Þ ¼ q

1
2

� �
:

8>>>>>>>>>><
>>>>>>>>>>:

(37)

Here, a1 tð Þ ¼ Γ 5
2

� �
t
16 , b1 tð Þ ¼ Γ 5

2

� �
t2
32 , a2 tð Þ ¼ Γ 5

2

� �
9t2

16
ffiffiffi
π

p , b2 tð Þ ¼ Γ 5
2

� �
9t

32
ffiffiffi
π

p . Moreover

M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds Ð 1

0 G1 1; sð Þb1 sð Þds
Ð 1
0 G2 1; sð Þa2 sð Þds Ð 1

0 G2 1; sð Þb2 sð Þds

" #
¼ 0:0460 0:0007

0:0068 0:0058

� �
:

Here, r Mð Þ ¼ 4:61� 10�2 < 1: Therefore, matrixM converges to zero, and hence the solutions of (36)
are Hyers-Ulam stable by using Theorem 4.4.

6. Conclusion

We have developed a comprehensive theory on existence of solutions and its Hyers-Ulam
stability for system of multipoint BVP of FDEs. The concerned theory has been enriched by
providing suitable examples.
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It is simple to check that H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞: Also, for any t; p; qð Þ∈ I� I� I, we see
that
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Here, r Mð Þ ¼ 4:61� 10�2 < 1: Therefore, matrixM converges to zero, and hence the solutions of (36)
are Hyers-Ulam stable by using Theorem 4.4.

6. Conclusion

We have developed a comprehensive theory on existence of solutions and its Hyers-Ulam
stability for system of multipoint BVP of FDEs. The concerned theory has been enriched by
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It is simple to check that H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞: Also, for any t; p; qð Þ∈ I� I� I, we see
that

H1 t; p; qð Þ ≤
1
3δ1

H2 t; p; qð Þ ≤
1
3δ2

:

Thus, all the assumptions of Theorem 3.5 are satisfied with taking α ¼ 1, so the coupled system (35) has
two solutions satisfying 0 < ∥ p; qð Þ∥E�E < 1 < ∥ p; qð Þ∥E�E.
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that
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Abstract

In this chapter, we consider a periodic SDE in the dimension n ≥ 2, and we study the existence
of periodic solutions for this type of equations using the Massera principle. On the other
hand, we prove an analogous result of the Massera’s theorem for the SDE considered.
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1. Introduction

The theory of stochastic differential equations is given for the first time by Itô [7] in 1942. This
theory is based on the concept of stochastic integrals, a new notion of integral generalizing the
Lebesgue–Stieltjes one.

The stochastic differential equations (SDE) are applied for the first time in the problems of
Kolmogorov of determining of Markov processes [8]. This type of equations was, from the first
work of Itô, the subject of several investigations; the most recent include the generalization
of known results for EDO, such as the existence of periodic and almost periodic solutions.
It has, among others, the work of Bezandry and Diagana [1, 2], Dorogovtsev [4], Vârsan [12],
Da Prato [3], and Morozan and his collaborators [10, 11].
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The existence of periodic solutions for differential equations has received a particular interest.
We quote the famous results of Massera [9]. In its approach, Massera was the first to establish a
relation between the existence of bounded solutions and that of a periodic solution for a
nonlinear ODE.

In this work, we will prove an extension of Massera’s theorem for the following:

nonlinear SDE in dimension n ≥ 2

dx ¼ a t; xð Þdtþ b t; xð ÞdWt

2. Preliminaries

Let Ω; F; Ftf gt ≥ 0;P
� �

be the complete probability space with a filtration Ftf gt ≥ 0 satisfying the
usual conditions

• Ftf gt ≥ 0 is an increasing family of sub algebras containing negligible sets of F and is
continuous at right.

F∞ ¼ σ ∪t ≥ 0Ftf g:

Let a Brownian motion W tð Þ, adapted to Ft; t ≥ 0f g, i.e.,W 0ð Þ ¼ 0, ∀t ≥ 0,W tð Þ is Ft�measurable.
We consider the SDE

dx ¼ a t; xð Þdtþ b t; xð ÞdWt

x t0ð Þ ¼ z:

�
(1)

in Ω; F; Ftf gt ≥ 0;P
� �

:

The functions a t; xð Þ : Rþ � Rn ! Rn and b t; xð Þ : Rþ � Rn ! Rn�m are measurable. We sup-
pose that Ft is the completion of σ Wr; t0 ≤ r ≤ tf g for all t ≥ t0, and the initial condition z is
independent of Wt, for t ≥ t0 and E zj jp < ∞.

Suppose that the functions a t; xð Þ and b t; xð Þ satisfy the global Lipschitz and the linear growth
conditions

∃k > 0, ∀t∈Rþ,∀x, y∈Rn : a t; xð Þ � a t; yð Þk k þ b t; xð Þ � b t; yð Þk k ≤ k x� yk k

and

a t; xð Þk kp þ b t; xð Þk kp ≤ kp 1þ xk kpð Þ

We know that if a and b satisfy these conditions, then the system (1) admits a single global
solution.

We note by B the space of random Ft�measurable functions x tð Þ for all t, satisfying the relation
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sup
t ≥ 0

E x tð Þj j2,

we consider in B the norm

xk kB ¼ sup
t ≥ 0

E xj j2
� �1

2

B; :k kB
� �

is the Banach space.

2.1. Markov property

The following result proves that the solution of the SDE (1) is a Markov process.

Theorem 1. ([5], Th. 2, p. 466) Assume that a t; xð Þ and b t; xð Þ satisfy the hypothesis of the theorem

([5], Th. 1, p. 461) and that X t;xð Þ sð Þ is a process such that for s∈ t,∞Þ for all t > t0 is a solution of SDE

X t;xð Þ sð Þ ¼ xþ
ðs
t
a u;X t;xð Þ uð Þ
� �

duþ
ðs
t
b u;X t;xð Þ uð Þ
� �

dWu (2)

Then the process Xt, solution of SDE (1), is a Markovian process with a transition function

p t; x; s;Að Þ ¼ P X t;xð Þ sð Þ∈A
� �

:

Let p s; x; t;Að Þ be a transition function; we construct a Markov process with an initial arbitrary
distribution. In a particular case, for t > s, we associate with the function p s; x; t;Að Þ a

family X s;zð Þ t;ωð Þ of a Markov process such that the processes X s;zð Þ t;ωð Þ exist with initial point
z in s, i.e.,

P X s;zð Þ t;ωð Þ ¼ z
� �

¼ 1 (3)

2.2. Notions of periodicity and boundedness

Définition 1. A stochastic process X t;ωð Þ is said to be periodic with period T T > 0ð Þ if its finite
dimensional distributions are periodic with periodic T, i.e., for all m ≥ 0, and t1, t2,…tm ∈Rþ the joint
distributions of the stochastic processes Xt1þkT ωð Þ, Xt2þkT ωð Þ,…XtmþkT ωð Þ are independent of k
k∈Zð Þ:
Remark 1. If X t;ωð Þ is T�periodic, then m tð Þ ¼ EX tð Þ, v tð Þ ¼ VarX tð Þ are T�periodic, in this case,
this process is said to be T�periodic in the wide sense.

Définition 2. The function p s; x; t;Að Þ ¼ P Xt ∈A=Xsð Þ for 0 ≤ s ≤ t, is said to be periodic if
p s; x; tþ s;Að Þ is periodic in s:
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Définition 3. The Markov families X t0;zð Þ ωð Þ are said to be p�uniformly bounded p > 2ð Þ, if
∀α > 0, ∃θ αð Þ > 0, ∀t ≥ t0:

zk kB,p ≤α ) X t0;zð Þ ωð Þ�� ��
B,p ≤θ αð Þ

We denote X t0;zð Þ ωð Þ as the family of all Markov process for t0 ∈ℝþand z in Lp:

Remark 2. It is easy to see that all Lp�borné Markov processes Xt, i:e∃M > 0; ∀t ≥ t0 : Xtk kpB,p ≤M;
� �

is p�uniformly bounded.

Lemme 1. ([6], Theorem 3.2 and Remark 3.1, pp. 66–67) A necessary and sufficient condition for

the existence of a Markov T�periodic X t0 ;zð Þ ωð Þ with a given T�periodic transition function

p s; x; t;Að Þ, is that for some t0, z, X t0 ;zð Þ ωð Þ are uniformly stochastically continuous and

lim
R!∞

lim
L!∞

inf
1
L

ðt0þL

t0
p t0; z; t;UR,p
� �

dt ¼ 0 (4)

if the transition function p s;Xs; t;Að Þ satisfies the following not very restrictive assumption

α Rð Þ ¼ sup
z∈Uβ Rð Þ,p

0 < t0, t� t0 < Tp t0; z; t;UR,p
� �!R!∞0 (5)

for some function β Rð Þ which tends to infinity as R ! ∞:

In Eq. (4), we have R∈R∗
þ:

UR,p ¼ x∈Rn : xj jp < Rf g

UR,p ¼ x∈Rn : xj jp ≥Rf g

The conditions of Lemma 1 are of little use for stochastic differential equations, since the
properties of transition functions of such processes are usually not expressible in terms of the
coefficients of the equation. So, in the following, we will give some new useful sufficient
conditions in terms of uniform boundedness and point dissipativity of systems.

Lemme 2. If Markov families X t0 ;zð Þ ωð Þ with T�periodic transition functions are uniformly bounded
uniformly stochastically continuous, then there is a T�periodic Markov process.

Proof. By using a Markov inequality [13], we have

p t0; z; t;UR,p
� � ¼ 1

RP Xt0 ¼ zð ÞE X t0;zð Þ ωð Þ�� ��p

≤
1

RP zð Þ X t0 ;zð Þ ωð Þ�� ��p
B,p

Then, for α > 0, ∃θ αð Þ > 0, such that for all t ≥ t0
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zk kB,p ≤α ) X t0;zð Þ ωð Þ�� ��
B,p ≤θ αð Þ

we get

p t0; z; t;UR,p
� �

≤
1

RP zð Þθ
p αð Þ

Then

0 ≤ lim
R!∞

lim
L!∞

inf
1
L

ðt0þL

t0
p t0; z; t;UR,p
� �

dt ≤ lim
R!∞

1
RP zð Þθ

p αð Þ lim
L!∞

inf
1
L

ðt0þL

t0
dt

� �

¼ lim
R!∞

θp αð Þ
RP zð Þ ¼ 0,

that is, Eq. (4). From Lemma 1, we have a T�periodic Markov process.

3. Main result

Let the SDE

dx ¼ a t; xð Þdtþ b t; xð ÞdWt

xt0 ¼ z, E zj jp < ∞

(
(6)

We assume that this SDE satisfies the conditions as in Section 2 after Eq. (1).

Suppose that

H1) the functions a t; xð Þ and b t; xð Þ are T�periodic in t.

H2) the functions a t; xð Þ and b t; xð Þ satisfy the condition

a t; xð Þk kp þ b t; xð Þk kp ≤ϕ xk kpð Þ, p > 2 (7)

where ϕ is a concave non-decreasing function.

Lemme 3. ([13], Lemme 3.4) Assume that a t; xð Þand b t; xð Þ verify

E a t; xð Þk kpð Þ þ E b t; xð Þk kpð Þ ≤ η, p > 2

then, the solutions of periodic SDE (6) are uniformly stochastically continuous.

We prove the Massera’s theorem for the SDE in dimension n ≥ 2:
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Theorem 2. Under H1ð Þ, H2ð Þ, if the solutions of the SDE (6) are Lp�bounded, then there is a
T�periodic Markov process.

Proof.We note by X t0;zð Þ t;ωð Þ an Lp-bounded solution of SDE (6), from Theorem 1, this solution
is unique a Markov process that is Ft�measurable. Suppose that p t0; z; t;Að Þ is a transition

function of Markov process X t0 ;zð Þ t;ωð Þ, under H1ð Þ and since p t0; z; t;Að Þ depend of
a t; xð Þ, b t; xð Þ then this function is T�periodic in t: In the other hand, ϕ is concave non-
decreasing function, we get

Eϕ xj jpð Þ ≤ϕ E xj jpð Þ

From the Lp�boundedness of X t0;zð Þ t;ωð Þ, then under H2ð Þ: ∃η > 0 such that

E a t;X t0;zð Þ t;ωð Þ
� ����

���
p
þ E b t;X t0;zð Þ t;ωð Þ

� ����
���
p
< η

for p > 2: By Lemma 3, we have X t0;zð Þ t;ωð Þ is p�uniformly bounded and p�uniformly sto-
chastically continuous, this gives, the conditions of Lemma 2 are verified, finally, we can
conclude the existence of the T�periodic Markov process. □

Author details

Boudref Mohamed Ahmed1*, Berboucha Ahmed1 and Osmanov Hamid Ibrahim Ouglu2

*Address all correspondence to: mohamed.hp1@gmail.com

1 Laboratoire de Mathématique Appliqées, Faculté des Sciences Exactes, Université de
Bejaia, Algérie

2 Faculté des Sciences, Université de Boumerdes, Algérie

References

[1] Bezandry PH, Diagana T. Existence of almost periodic solutions to some stochastic differ-
ential equations. Applicable Analysis. 2007;86(7):819-827. MR 2355540 (2008i: 60089)

[2] Bezandry PH, Diagana T. Square-mean almost periodic solutions nonautonomous sto-
chastic differential equations. Electronic Journal of Differential Equations. 2007;117:10.
(electronic) MRMR2349945 (2009e: 34171)

[3] Da Prato G. Periodic and almost periodic solutions for semilinear stochastic equations.
Stochastic Analysis and Applications. 1995;13(1):13-33

[4] Dorogovtsev A. Existence of periodic solutions or abstract stochastic equations. Asymp-
totic periodicity of the Cauchy problem (in Russsian). Teorija na Verojatnost i Matematika
Statistika. 1988;39:47-52

Differential Equations - Theory and Current Research62

[5] Guikhman I, Skorokhod A. Introduction à la Théorie des Processus Aléatoires. Moscou:
Mir; 1980

[6] Has’minskii RZ. Stochastic Stability of Differential Equations. Second ed. Berlin Heidel-
berg: Springer-Verlag; 2012

[7] Itô K. On stochastic differential equations. Memoirs of the American Mathematical Soci-
ety. 1951;4. (Russian translation: Mathematika. 1957;1(1):78-116. MR 12 #724

[8] Mao XR. Stochastic Differential Equations and Applications. Chichester: Horwood; 1997

[9] Massera JL. The existence of periodic solutions of systems of differential equations. Duke
Mathematical Journal. 1950;17:457-475

[10] Morozan T, Tudor C. Almost periodic solutions of affine Itô equations. Stochastic Analy-
sis and Applications. 1989;7(4):451-474. MR 1040479 (91k: 60064)

[11] Tudor C. Almost periodic solutions of affine stochastic evolution equations. Stochastics
and Stochastics Reports. 1992;38(4):251-266. MR1274905 (95e: 60058)

[12] Vârsan C. Asymptotic almost periodic solutions for stochastic differential equations.
Tohoku Mathematical Journal. 1986;41:609-618

[13] Xu DY, Huang YM, Yang ZG. Existence theorems for periodic Markov process and
stochastic functional differential equations. Discrete and Continuous Dynamical Systems.
2009;24(3):1005-1023

An Extension of Massera’s Theorem for N-Dimensional Stochastic Differential Equations
http://dx.doi.org/10.5772/intechopen.73183

63



Theorem 2. Under H1ð Þ, H2ð Þ, if the solutions of the SDE (6) are Lp�bounded, then there is a
T�periodic Markov process.

Proof.We note by X t0;zð Þ t;ωð Þ an Lp-bounded solution of SDE (6), from Theorem 1, this solution
is unique a Markov process that is Ft�measurable. Suppose that p t0; z; t;Að Þ is a transition

function of Markov process X t0 ;zð Þ t;ωð Þ, under H1ð Þ and since p t0; z; t;Að Þ depend of
a t; xð Þ, b t; xð Þ then this function is T�periodic in t: In the other hand, ϕ is concave non-
decreasing function, we get

Eϕ xj jpð Þ ≤ϕ E xj jpð Þ

From the Lp�boundedness of X t0;zð Þ t;ωð Þ, then under H2ð Þ: ∃η > 0 such that

E a t;X t0;zð Þ t;ωð Þ
� ����

���
p
þ E b t;X t0;zð Þ t;ωð Þ

� ����
���
p
< η

for p > 2: By Lemma 3, we have X t0;zð Þ t;ωð Þ is p�uniformly bounded and p�uniformly sto-
chastically continuous, this gives, the conditions of Lemma 2 are verified, finally, we can
conclude the existence of the T�periodic Markov process. □

Author details

Boudref Mohamed Ahmed1*, Berboucha Ahmed1 and Osmanov Hamid Ibrahim Ouglu2

*Address all correspondence to: mohamed.hp1@gmail.com

1 Laboratoire de Mathématique Appliqées, Faculté des Sciences Exactes, Université de
Bejaia, Algérie

2 Faculté des Sciences, Université de Boumerdes, Algérie

References

[1] Bezandry PH, Diagana T. Existence of almost periodic solutions to some stochastic differ-
ential equations. Applicable Analysis. 2007;86(7):819-827. MR 2355540 (2008i: 60089)

[2] Bezandry PH, Diagana T. Square-mean almost periodic solutions nonautonomous sto-
chastic differential equations. Electronic Journal of Differential Equations. 2007;117:10.
(electronic) MRMR2349945 (2009e: 34171)

[3] Da Prato G. Periodic and almost periodic solutions for semilinear stochastic equations.
Stochastic Analysis and Applications. 1995;13(1):13-33

[4] Dorogovtsev A. Existence of periodic solutions or abstract stochastic equations. Asymp-
totic periodicity of the Cauchy problem (in Russsian). Teorija na Verojatnost i Matematika
Statistika. 1988;39:47-52

Differential Equations - Theory and Current Research62

[5] Guikhman I, Skorokhod A. Introduction à la Théorie des Processus Aléatoires. Moscou:
Mir; 1980

[6] Has’minskii RZ. Stochastic Stability of Differential Equations. Second ed. Berlin Heidel-
berg: Springer-Verlag; 2012

[7] Itô K. On stochastic differential equations. Memoirs of the American Mathematical Soci-
ety. 1951;4. (Russian translation: Mathematika. 1957;1(1):78-116. MR 12 #724

[8] Mao XR. Stochastic Differential Equations and Applications. Chichester: Horwood; 1997

[9] Massera JL. The existence of periodic solutions of systems of differential equations. Duke
Mathematical Journal. 1950;17:457-475

[10] Morozan T, Tudor C. Almost periodic solutions of affine Itô equations. Stochastic Analy-
sis and Applications. 1989;7(4):451-474. MR 1040479 (91k: 60064)

[11] Tudor C. Almost periodic solutions of affine stochastic evolution equations. Stochastics
and Stochastics Reports. 1992;38(4):251-266. MR1274905 (95e: 60058)

[12] Vârsan C. Asymptotic almost periodic solutions for stochastic differential equations.
Tohoku Mathematical Journal. 1986;41:609-618

[13] Xu DY, Huang YM, Yang ZG. Existence theorems for periodic Markov process and
stochastic functional differential equations. Discrete and Continuous Dynamical Systems.
2009;24(3):1005-1023

An Extension of Massera’s Theorem for N-Dimensional Stochastic Differential Equations
http://dx.doi.org/10.5772/intechopen.73183

63



Chapter 4

Phase Portraits of Cubic Dynamic Systems in a Poincare
Circle

Irina Andreeva and Alexey Andreev

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75527

Provisional chapter

Phase Portraits of Cubic Dynamic Systems in a Poincare
Circle

Irina Andreeva and Alexey Andreev

Additional information is available at the end of the chapter

Abstract

In the proposed chapter, we are going to outline the results of a study on an arithmetical
plane of a broad family of dynamic systems having polynomial right parts. Let these
polynomials be of cubic and square reciprocal forms. The task of our investigation is to
find out all the different (in the topological sense) phase portraits in a Poincare circle and
indicate the coefficient criteria of their appearance. To achieve this goal, we use the
Poincare method of central and orthogonal consecutive displays (or mappings). As a
result of this thorough investigation, we have constructed more than 250 topologically
different phase portraits in total. Every portrait we present using a special table called a
descriptive phase portrait. Each line of such a special table corresponds to one invariant
cell of the phase portrait and describes its boundaries, as well as a source of its phase flow
and a sink of it.

Keywords: dynamic systems, phase portraits, phase flows, Poincare sphere, Poincare
circle, singular points, separatrices, trajectories

1. Introduction

A dynamic system appears to be a mathematical model of some process or phenomenon, in
which fluctuations and other so-called statistical events are not taken into consideration. It can
be characterized by its initial state and a law according to which the system goes into a
different state. A phase space of a dynamic system is the totality of all admissible states of this
system.

It is necessary to distinguish dynamic systems with the discrete time and with the continuous
time. For dynamic systems with the discrete time (they are called cascades), a system’s behavior
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is described with a sequence of its states. For dynamic systems with continuous time (which
are called flows), a state of the system is defined for each moment of time on a real or an
imaginary axis. Cascades and flows are the main subject of study in symbolic and topological
dynamics.

Dynamic systems, both with discrete and continuous time, can be usually described by an
autonomous system of differential equations, defined in a certain domain and satisfying in it
the conditions of the Cauchy theorem of existence and uniqueness of solutions of the differen-
tial equations.

Singular points of differential equations correspond to equilibrium positions of dynamic sys-
tems, and periodical solutions of differential equations correspond to closed phase curves of
dynamic systems.

The main task of the theory of dynamic systems is a study of curves, defined by differential
equations. This process includes splitting of a phase space into trajectories and studying their
limit behavior—finding and classifying the equilibrium positions, and revealing the attracting
and repulsive manifolds (i.e., attractors and repellers; sinks and sources). The most important
notions of the theory of dynamic systems are the notion of stability of equilibrium states, which
means the ability of a system under considerably small changes of initial data to remain near
an equilibrium state (or on a given manifold) for an arbitrary long period of time, as well as the
notion of roughness of a system (i.e., the saving of a system’s properties under small changes
of a model itself). A rough dynamic system is a system that preserves its qualitative character
of motion under small changes of parameters.

The research methods proposed in this chapter are new and effective; they can also be used for
the study of applied dynamic systems of the second order with polynomial right parts.

According to Jules H. Poincare, a normal autonomous second-order differential system with
polynomial right parts, in principle, allows its full qualitative investigation on an extended

arithmetical plane R
2
x,y [1]. Inspired by the great Poincare’s works, mathematicians of the next

generations, including contemporary researchers, have studied some of such systems, for
example, quadratic dynamic systems [2], ones containing nonzero linear terms, homogeneous
cubic systems, and dynamic systems with nonlinear homogeneous terms of the odd degrees
(3, 5, 7) [3], which have a center or a focus in a singular point O (0, 0) [4], as well as other
particular kinds of systems.

We consider in the present chapter a family of dynamic systems on a real plane x, y.

dx
dt

¼ X x; yð Þ, dy
dt

¼ Y x; yð Þ (1)

such that X (x, y), Y (x, y) are reciprocal forms of x and y, X is a cubic, Y a square form, and
X (0,1) > 0, Y (0, 1) > 0. Our objective is to depict in a Poincare circle all kinds (different in
the topological sense) of possible for systems phase portraits for Eq. (1), and also to indicate
the criteria of every portrait realization close to coefficient ones. With this aim, we apply
Poincare’s method of consecutive mappings: first, the central mapping of a plane x, y (from a
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center (0, 0, 1) of a sphere ∑), augmented with a line at infinity (i.e., R
2
x,y plane) on a sphere

∑: X2 þ Y2 þ Z2 ¼ 1 with identified diametrically opposite points, and second, the orthogo-
nal mapping of a lower enclosed semi-sphere of a sphere ∑ to a circle Ω: x2 þ y2 ≤ 1 with
identified diametrically opposite points of its boundary Г. We will now describe this process
in more detail.

The circle Ω and the sphere ∑ in this process are called the Poincare circle and the Poincare
sphere, respectively [1].

2. Basic definitions and notation

φ t; pð Þ, p ¼ x; yð Þ�a fixed point: = a solution (a motion) of Eq. (1) – system with initial
data 0; pð Þ:
Lp:φ ¼ φ t; pð Þ, t∈ Imax, � a trajectory of motion φ t; pð Þ:

Lþ �ð Þ
p := + (�) – a semi-trajectory of a trajectory Lp:

O-curve of a system := the system’s semi-trajectory Lsp(p 6¼O, s∈ þ;�gf ) adjoining to a point O
under a condition such that st ! þ∞:

Oþ �ð Þ- curve of a system: = the system’s O-curve Lþ �ð Þ
p :

Oþ �ð Þ-curve of a system: = the system’s O-curve adjoining to a point O from a domain x > 0
(x < 0).

TO-curve of a system: = the system’s O-curve, which, being supplemented by a point O,
touches some ray in it.

A nodal bundle of NO-curves of a system := an open continuous family of the system’s TO-
curves Lsp, where s∈ þ;�gf is a fixed index, p∈ ᴧ, ᴧ a simple open arc, Lsp ∩ ᴧ ¼ pf g:
A saddle bundle of SO-curves of a system, a separatrix of the point O:= a fixed TO-curve,
which is not included in some bundle of NO-curves of a system.

E, H, P-O-sectors of a system: an elliptical, a hyperbolic, a parabolic sector.

A topological type (T-type) of a singular point O of a system:= a word AO consisting of letters
N, S (a word BO consisting of letters E, H, P), which describes a circular order of bundles N, S of
its O-curves (of its O-sectors E, H, P) when traversing the point O in the “ + ”-direction, i. e.,
counterclockwise, starting with some of them.

P uð Þ ≔ X 1; uð Þ � p0 þ p1uþ p2u
2 þ p3u

3,

Q uð Þ ≔ Y 1; uð Þ � aþ buþ cu2:

Note 1. For every Eq. (1) system:
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is described with a sequence of its states. For dynamic systems with continuous time (which
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autonomous system of differential equations, defined in a certain domain and satisfying in it
the conditions of the Cauchy theorem of existence and uniqueness of solutions of the differen-
tial equations.

Singular points of differential equations correspond to equilibrium positions of dynamic sys-
tems, and periodical solutions of differential equations correspond to closed phase curves of
dynamic systems.

The main task of the theory of dynamic systems is a study of curves, defined by differential
equations. This process includes splitting of a phase space into trajectories and studying their
limit behavior—finding and classifying the equilibrium positions, and revealing the attracting
and repulsive manifolds (i.e., attractors and repellers; sinks and sources). The most important
notions of the theory of dynamic systems are the notion of stability of equilibrium states, which
means the ability of a system under considerably small changes of initial data to remain near
an equilibrium state (or on a given manifold) for an arbitrary long period of time, as well as the
notion of roughness of a system (i.e., the saving of a system’s properties under small changes
of a model itself). A rough dynamic system is a system that preserves its qualitative character
of motion under small changes of parameters.

The research methods proposed in this chapter are new and effective; they can also be used for
the study of applied dynamic systems of the second order with polynomial right parts.

According to Jules H. Poincare, a normal autonomous second-order differential system with
polynomial right parts, in principle, allows its full qualitative investigation on an extended

arithmetical plane R
2
x,y [1]. Inspired by the great Poincare’s works, mathematicians of the next

generations, including contemporary researchers, have studied some of such systems, for
example, quadratic dynamic systems [2], ones containing nonzero linear terms, homogeneous
cubic systems, and dynamic systems with nonlinear homogeneous terms of the odd degrees
(3, 5, 7) [3], which have a center or a focus in a singular point O (0, 0) [4], as well as other
particular kinds of systems.

We consider in the present chapter a family of dynamic systems on a real plane x, y.

dx
dt

¼ X x; yð Þ, dy
dt

¼ Y x; yð Þ (1)

such that X (x, y), Y (x, y) are reciprocal forms of x and y, X is a cubic, Y a square form, and
X (0,1) > 0, Y (0, 1) > 0. Our objective is to depict in a Poincare circle all kinds (different in
the topological sense) of possible for systems phase portraits for Eq. (1), and also to indicate
the criteria of every portrait realization close to coefficient ones. With this aim, we apply
Poincare’s method of consecutive mappings: first, the central mapping of a plane x, y (from a
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center (0, 0, 1) of a sphere ∑), augmented with a line at infinity (i.e., R
2
x,y plane) on a sphere

∑: X2 þ Y2 þ Z2 ¼ 1 with identified diametrically opposite points, and second, the orthogo-
nal mapping of a lower enclosed semi-sphere of a sphere ∑ to a circle Ω: x2 þ y2 ≤ 1 with
identified diametrically opposite points of its boundary Г. We will now describe this process
in more detail.

The circle Ω and the sphere ∑ in this process are called the Poincare circle and the Poincare
sphere, respectively [1].

2. Basic definitions and notation

φ t; pð Þ, p ¼ x; yð Þ�a fixed point: = a solution (a motion) of Eq. (1) – system with initial
data 0; pð Þ:
Lp:φ ¼ φ t; pð Þ, t∈ Imax, � a trajectory of motion φ t; pð Þ:

Lþ �ð Þ
p := + (�) – a semi-trajectory of a trajectory Lp:

O-curve of a system := the system’s semi-trajectory Lsp(p 6¼O, s∈ þ;�gf ) adjoining to a point O
under a condition such that st ! þ∞:

Oþ �ð Þ- curve of a system: = the system’s O-curve Lþ �ð Þ
p :

Oþ �ð Þ-curve of a system: = the system’s O-curve adjoining to a point O from a domain x > 0
(x < 0).

TO-curve of a system: = the system’s O-curve, which, being supplemented by a point O,
touches some ray in it.

A nodal bundle of NO-curves of a system := an open continuous family of the system’s TO-
curves Lsp, where s∈ þ;�gf is a fixed index, p∈ ᴧ, ᴧ a simple open arc, Lsp ∩ ᴧ ¼ pf g:
A saddle bundle of SO-curves of a system, a separatrix of the point O:= a fixed TO-curve,
which is not included in some bundle of NO-curves of a system.

E, H, P-O-sectors of a system: an elliptical, a hyperbolic, a parabolic sector.

A topological type (T-type) of a singular point O of a system:= a word AO consisting of letters
N, S (a word BO consisting of letters E, H, P), which describes a circular order of bundles N, S of
its O-curves (of its O-sectors E, H, P) when traversing the point O in the “ + ”-direction, i. e.,
counterclockwise, starting with some of them.

P uð Þ ≔ X 1; uð Þ � p0 þ p1uþ p2u
2 þ p3u

3,

Q uð Þ ≔ Y 1; uð Þ � aþ buþ cu2:

Note 1. For every Eq. (1) system:
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1) T-type of a singular point O in its form BO is easy to construct using its Т-type in the form
AO, and going backward (we need to determine both forms, see Corollary 1);

2) Real roots of a polynomial P(u) (polynomial Q(u)) are in fact angular coefficients of isoclines
of infinity (isoclines of a zero));

3) When we write out the real roots of the system’s polynomials P(u), Q(u), separately or all
together, we always number the roots of each one of them in an ascending order.

3. Topological type (T-type) of a singular point O(0, 0)

In order to find all O-curves and to split their totality into the bundles N, S, let us use the
method of exceptional directions of a system in the point O [1]. According to this method, the
equation of exceptional directions for the point O of the Eq. (1) system has the form.

xY x; yð Þ � x ax2 þ bxyþ cy2
� � ¼ 0:

For this, the following cases are possible:

1. When d � b2 � 4ac > 0, this equation defines simple straight lines x ¼ 0 and.

y ¼ qix, i ¼ 1, 2, q1 < q2

2. When d ¼ 0, this equation defines the straight line x ¼ 0 and the double straight line.

y ¼ qx, q ¼ � b
2c

3. When d < 0, the equation defines only the straight line x ¼ 0:

Theorem 1 is true for the aforementioned cases [5].

Theorem 1. Words AO and BO, which define a topological type (T-type) of a singular point O
(0, 0) of the Eq. (1) system:

1) in the case of d > 0, depending on signs of values PðqiÞ ¼ 1, 2, have forms, indicated in a
Table 1;

r P (q1) P (q2) AO BO

1, 4 + + S0S1þN
2
þS

0N1
�S

2
� ¼ S0S1þNS2� PH2

2 _ _ S0N1
þS

2
þS

0S1�N
2
� ¼ NS2þS

0S1þ PH2

3, 6 _ + S0N1
þN

2
þS

0S1�S
2
� PEPH3

5 + _ S0S1þS
2
þS

0N1
�N

2
� H3PEP

Table 1. Т-type of a singular point when d > 0 (r = 1, 6).
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2) in the case of d ¼ 0 depending on signs of values q and P(q), they have forms, indicated in a
Table 2,

3) in the case of d < 0 they have forms: AO = S0S
0, BO = HH (Table 1).

Note 2. Let us clarify the meaning of the new symbols introduced in Theorem 1.

S0 (S
0) means a bundle S, adjoining to point O(0,0) from the domain x > 0 along a semi-axis

x ¼ 0, y < 0, when t ! þ∞ (along a semi-axis x ¼ 0, y > 0, when t! �∞).

The lower sign index “ + ” or “–” on every bundle N or S, different from S0 and S0, indicates
whether the bundle consists of Oþ-curves or of O�-curves. Upper index 1 or 2 on every such a
bundle indicates whether its O-curves are adjoining to point O along a straight line y ¼ q1x or
along a straight line y ¼ q2x:

In Table 2, row 5, 6, a bundle N does not have a lower sign index because it contains both Oþ -
curves and O� -curves simultaneously.

Corollary 1. From Theorem 1, it follows, that Eq. (1) systems do not have limit cycles on the
R2

x;y plane.

Indeed, such a cycle could surround a singular point O (0,0) of an Eq. (1) system, and then the
Poincare index of this singular point must be equal to 1 [1]. However, Bendixon’s formula for
the index of an isolated singular point of a smooth dynamic system is as follows:

I Oð Þ ¼ 1þ e� h
2

where e hð Þ is the number of elliptical (hyperbolic) O-sectors of the system. This formula and
our Theorem 1 give: for the singular point O (0, 0) of every Eq. (1) system, Poincare index
I(O) = 0.

Corollary 2. For the singular point O (0, 0) of an Eq. (1) system, 11 different topological types
(T-types) are possible, and from the analysis of these 11 T-types we can conclude:

q P (q) AO BO

+ + S0SþNþS0 H2P

_ _ S0NþSþS0 PH2

+ _ S0S0S�N� H2P

_ + S0S0N�S� PH2

0 + S0SþNS� H2P

0 _ NSþS0S� PH2

Table 2. T-type of the singular point O(0, 0) when d = 0.
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1) T-type of a singular point O in its form BO is easy to construct using its Т-type in the form
AO, and going backward (we need to determine both forms, see Corollary 1);

2) Real roots of a polynomial P(u) (polynomial Q(u)) are in fact angular coefficients of isoclines
of infinity (isoclines of a zero));

3) When we write out the real roots of the system’s polynomials P(u), Q(u), separately or all
together, we always number the roots of each one of them in an ascending order.

3. Topological type (T-type) of a singular point O(0, 0)

In order to find all O-curves and to split their totality into the bundles N, S, let us use the
method of exceptional directions of a system in the point O [1]. According to this method, the
equation of exceptional directions for the point O of the Eq. (1) system has the form.

xY x; yð Þ � x ax2 þ bxyþ cy2
� � ¼ 0:

For this, the following cases are possible:

1. When d � b2 � 4ac > 0, this equation defines simple straight lines x ¼ 0 and.

y ¼ qix, i ¼ 1, 2, q1 < q2

2. When d ¼ 0, this equation defines the straight line x ¼ 0 and the double straight line.

y ¼ qx, q ¼ � b
2c

3. When d < 0, the equation defines only the straight line x ¼ 0:

Theorem 1 is true for the aforementioned cases [5].

Theorem 1. Words AO and BO, which define a topological type (T-type) of a singular point O
(0, 0) of the Eq. (1) system:

1) in the case of d > 0, depending on signs of values PðqiÞ ¼ 1, 2, have forms, indicated in a
Table 1;

r P (q1) P (q2) AO BO

1, 4 + + S0S1þN
2
þS

0N1
�S

2
� ¼ S0S1þNS2� PH2

2 _ _ S0N1
þS

2
þS

0S1�N
2
� ¼ NS2þS

0S1þ PH2

3, 6 _ + S0N1
þN

2
þS

0S1�S
2
� PEPH3

5 + _ S0S1þS
2
þS

0N1
�N

2
� H3PEP

Table 1. Т-type of a singular point when d > 0 (r = 1, 6).
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2) in the case of d ¼ 0 depending on signs of values q and P(q), they have forms, indicated in a
Table 2,

3) in the case of d < 0 they have forms: AO = S0S
0, BO = HH (Table 1).

Note 2. Let us clarify the meaning of the new symbols introduced in Theorem 1.

S0 (S
0) means a bundle S, adjoining to point O(0,0) from the domain x > 0 along a semi-axis

x ¼ 0, y < 0, when t ! þ∞ (along a semi-axis x ¼ 0, y > 0, when t! �∞).

The lower sign index “ + ” or “–” on every bundle N or S, different from S0 and S0, indicates
whether the bundle consists of Oþ-curves or of O�-curves. Upper index 1 or 2 on every such a
bundle indicates whether its O-curves are adjoining to point O along a straight line y ¼ q1x or
along a straight line y ¼ q2x:

In Table 2, row 5, 6, a bundle N does not have a lower sign index because it contains both Oþ -
curves and O� -curves simultaneously.

Corollary 1. From Theorem 1, it follows, that Eq. (1) systems do not have limit cycles on the
R2

x;y plane.

Indeed, such a cycle could surround a singular point O (0,0) of an Eq. (1) system, and then the
Poincare index of this singular point must be equal to 1 [1]. However, Bendixon’s formula for
the index of an isolated singular point of a smooth dynamic system is as follows:

I Oð Þ ¼ 1þ e� h
2

where e hð Þ is the number of elliptical (hyperbolic) O-sectors of the system. This formula and
our Theorem 1 give: for the singular point O (0, 0) of every Eq. (1) system, Poincare index
I(O) = 0.

Corollary 2. For the singular point O (0, 0) of an Eq. (1) system, 11 different topological types
(T-types) are possible, and from the analysis of these 11 T-types we can conclude:

q P (q) AO BO

+ + S0SþNþS0 H2P

_ _ S0NþSþS0 PH2

+ _ S0S0S�N� H2P

_ + S0S0N�S� PH2

0 + S0SþNS� H2P

0 _ NSþS0S� PH2

Table 2. T-type of the singular point O(0, 0) when d = 0.
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for every Eq. (1) system, the singular point O(0, 0) has not more than four separatrices (actually
2, 3, or 4 ones).

4. Infinitely remote singular points (IR points)

Now it is time to discuss the behavior of trajectories of the Eq. (1) systems in a neighborhood of
infinity. For the investigation of this question we use the method of Poincare consecutive
transformations, or mappings [1].

The first Poincare transformation

x ¼ 1
z
, y ¼ u

z
u ¼ y

x
, z ¼ 1

x

� �
:

unambiguously maps a phase plane R2
x,y of the Eq. (1) system onto a Poincare sphere ∑:

x2 þ y2 þ z2 ¼ 1 (where z ¼ �Z 1½ �) with the diametrically opposite points identified, which is

considered without its equator E, and an infinitely remote straight line of a plane R2
x,y . The first

Poincare transformation maps onto the equator E of the sphere ∑; the diametrically opposite
points are also considered to be identified.

The Eq. (1) system in this mapping transforms into a system, which in the Poincare coordinates
u, z after a time change dt ¼ �z2dτ looks like the following:

du
dτ

¼ P uð Þu�Q uð Þz, dz
dτ

¼ P uð Þz,

where P uð Þ :� X 1; uð Þ and Q uð Þ :� Y 1; uð Þ are reciprocal polynomials.

This new system is determined on the whole sphere ∑, including its equator, and on the whole
u; zð Þ � plane α∗, which is tangent to a sphere ∑ at point C = (1, 0, 0). We shall study this

system, namely on a plane R2
u, z , and project the received results onto a closed circle

Ω, sequentially mapping, first, a plane R2
u,z onto the sphere ∑ from its center, and second, its

lower semi-sphere H onto the Poincare circle Ω, i. e., onto a closed unit circle of a plane R2
x,y

through the orthogonal mapping.

For our new system, the axis z ¼ 0 is invariant (consists of this system’s trajectories). On this
axis, lie its singular points Oi ui; 0ð Þ, i ¼ 0, m,where ui, i ¼ 1, m are all real roots of the
polynomial P uð Þ, and u0 ¼ 0; at the same time, there may exist i0 ∈ 1;…;mgf : ui0 = 0. Let us call
such points IR points of the first kind for the Eq. (1) system.

The second Poincare transformation

x ¼ v
z
, y ¼ 1

z
v ¼ x

y
; z ¼ 1

y

� �
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also unambiguously maps a phase plane R2
x,y onto a Poincare sphere ∑ with the diametrically

opposite points identified, considered without its equator. Every Eq. (1) system transforms into
a system, which in the coordinates τ, v, z looks like the following:

dv
dτ

¼ �X v; 1ð Þ þ Y v; 1ð Þvz, dz
dτ

¼ Y v; 1ð Þz2:

This last system is determined on the whole sphere ∑, and on the whole v; zð Þ � plane bα,
which is tangent to a sphere

P
at point D ¼ 0; 1; 0ð Þ [1]. A set z ¼ 0 is invariant for this last

system. On this set, lie its singular points v0; 0ð Þ,where v0 is any real root of the polynomial
X v; 1ð Þ � p3 þ p2vþ p1v

2 þ p0v
3: It would be natural to call such points IR points of the second

kind for Eq. (1) systems, but each of these points, for which v0 6¼ 0, obviously coincides with

one of the IR-points of the first kind, namely with the point 1
v0
; 0

� �
,

while v0 ¼ 0 is not a root of the polynomial X(x, 1), because X(0, 1) = p36¼ 0 for the Eq. (1)
system. Consequently, the following corollary is correct.

Corollary 3. The infinitely remote singular points of any Eq. (1) system are only IR-points of
the first kind.

With the orthogonal projection of a closed lower semi-sphere H of a Poincare sphere ∑ onto a
plane x, y, its open part H one-to-one maps onto an open Poincare circle Ω, while its boundary
E (an equator of the Poincare sphere ∑) maps onto the boundary of the Poincare circle Γ¼∂Ω,
which implies the following. 1) Trajectories of any Eq.(– (including its singular point O (0, 0))
are displayed in a circle Ω, filling it.

2) Such a system’s infinitely remote trajectories (including IR points) are displayed on the
boundary Γ of a circle Ω, filling it.

Following Poincare, we call the first trajectories of the Eq. (1) system in Ω, and the second, we
call trajectories of the Eq. (1) system on Γ.

As it follows from the aforementioned conclusions, to each IR point Oi ui; 0ð Þ, of the Eq. (1)
system, i∈ 1;…;mg,f correspond two diametrically opposite points situated on the Γ circle.

O�
i ui; 0ð Þ : Oþ

i O�
i

� �
∈ Γþ �ð Þ ≔ Γ

��
x>0 x<0ð Þ:

∀i∈ 1;…;mg for the point Oþ
i O�

i

� �
,

�
we shall introduce the following notation.

1. Let a Oþ
i O�

i

� �
—curve be a semi-trajectory of the Eq. (1) system in Ω, starting in an

ordinary point p∈Ω and adjacent to a point Oþ �ð Þ
i :

2. A notation for bundles N, S, adjacent to a point Oþ
i O�

i

� �
from the circle Ω, similar to the

notation introduced for the point O (0, 0).
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for every Eq. (1) system, the singular point O(0, 0) has not more than four separatrices (actually
2, 3, or 4 ones).

4. Infinitely remote singular points (IR points)

Now it is time to discuss the behavior of trajectories of the Eq. (1) systems in a neighborhood of
infinity. For the investigation of this question we use the method of Poincare consecutive
transformations, or mappings [1].

The first Poincare transformation

x ¼ 1
z
, y ¼ u

z
u ¼ y

x
, z ¼ 1

x

� �
:

unambiguously maps a phase plane R2
x,y of the Eq. (1) system onto a Poincare sphere ∑:

x2 þ y2 þ z2 ¼ 1 (where z ¼ �Z 1½ �) with the diametrically opposite points identified, which is

considered without its equator E, and an infinitely remote straight line of a plane R2
x,y . The first

Poincare transformation maps onto the equator E of the sphere ∑; the diametrically opposite
points are also considered to be identified.

The Eq. (1) system in this mapping transforms into a system, which in the Poincare coordinates
u, z after a time change dt ¼ �z2dτ looks like the following:

du
dτ

¼ P uð Þu�Q uð Þz, dz
dτ

¼ P uð Þz,

where P uð Þ :� X 1; uð Þ and Q uð Þ :� Y 1; uð Þ are reciprocal polynomials.

This new system is determined on the whole sphere ∑, including its equator, and on the whole
u; zð Þ � plane α∗, which is tangent to a sphere ∑ at point C = (1, 0, 0). We shall study this

system, namely on a plane R2
u, z , and project the received results onto a closed circle

Ω, sequentially mapping, first, a plane R2
u,z onto the sphere ∑ from its center, and second, its

lower semi-sphere H onto the Poincare circle Ω, i. e., onto a closed unit circle of a plane R2
x,y

through the orthogonal mapping.

For our new system, the axis z ¼ 0 is invariant (consists of this system’s trajectories). On this
axis, lie its singular points Oi ui; 0ð Þ, i ¼ 0, m,where ui, i ¼ 1, m are all real roots of the
polynomial P uð Þ, and u0 ¼ 0; at the same time, there may exist i0 ∈ 1;…;mgf : ui0 = 0. Let us call
such points IR points of the first kind for the Eq. (1) system.

The second Poincare transformation

x ¼ v
z
, y ¼ 1

z
v ¼ x

y
; z ¼ 1

y

� �
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also unambiguously maps a phase plane R2
x,y onto a Poincare sphere ∑ with the diametrically

opposite points identified, considered without its equator. Every Eq. (1) system transforms into
a system, which in the coordinates τ, v, z looks like the following:

dv
dτ

¼ �X v; 1ð Þ þ Y v; 1ð Þvz, dz
dτ

¼ Y v; 1ð Þz2:

This last system is determined on the whole sphere ∑, and on the whole v; zð Þ � plane bα,
which is tangent to a sphere

P
at point D ¼ 0; 1; 0ð Þ [1]. A set z ¼ 0 is invariant for this last

system. On this set, lie its singular points v0; 0ð Þ,where v0 is any real root of the polynomial
X v; 1ð Þ � p3 þ p2vþ p1v

2 þ p0v
3: It would be natural to call such points IR points of the second

kind for Eq. (1) systems, but each of these points, for which v0 6¼ 0, obviously coincides with

one of the IR-points of the first kind, namely with the point 1
v0
; 0

� �
,

while v0 ¼ 0 is not a root of the polynomial X(x, 1), because X(0, 1) = p36¼ 0 for the Eq. (1)
system. Consequently, the following corollary is correct.

Corollary 3. The infinitely remote singular points of any Eq. (1) system are only IR-points of
the first kind.

With the orthogonal projection of a closed lower semi-sphere H of a Poincare sphere ∑ onto a
plane x, y, its open part H one-to-one maps onto an open Poincare circle Ω, while its boundary
E (an equator of the Poincare sphere ∑) maps onto the boundary of the Poincare circle Γ¼∂Ω,
which implies the following. 1) Trajectories of any Eq.(– (including its singular point O (0, 0))
are displayed in a circle Ω, filling it.

2) Such a system’s infinitely remote trajectories (including IR points) are displayed on the
boundary Γ of a circle Ω, filling it.

Following Poincare, we call the first trajectories of the Eq. (1) system in Ω, and the second, we
call trajectories of the Eq. (1) system on Γ.

As it follows from the aforementioned conclusions, to each IR point Oi ui; 0ð Þ, of the Eq. (1)
system, i∈ 1;…;mg,f correspond two diametrically opposite points situated on the Γ circle.

O�
i ui; 0ð Þ : Oþ

i O�
i

� �
∈ Γþ �ð Þ ≔ Γ

��
x>0 x<0ð Þ:

∀i∈ 1;…;mg for the point Oþ
i O�

i

� �
,

�
we shall introduce the following notation.

1. Let a Oþ
i O�

i

� �
—curve be a semi-trajectory of the Eq. (1) system in Ω, starting in an

ordinary point p∈Ω and adjacent to a point Oþ �ð Þ
i :

2. A notation for bundles N, S, adjacent to a point Oþ
i O�

i

� �
from the circle Ω, similar to the

notation introduced for the point O (0, 0).
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3. A notation of a word Aþ
i (A

�
i Þ consisting of letters N,S, which fixes an order of bundles of

Oþ
i O�

i

� �
-curves at a semi-circumvention of the point Oþ

i O�
i

� �
in the circle Ω in the direc-

tion of increasing u.

We shall describe a T-type of a point Oþ
i O�

i

� �
with a word Aþ

i (A
�
i Þ, and a T-type of a point

Oi with words A�
i .

T-types of IR points O�
0 0; 0ð Þ of Eq. (1) systems are described in the following theorem.

Theorem 2. Let a number u ¼ 0 be the multiplicity k∈ 0;…; 3f g of the root of a polynomial
P uð Þ of the Eq. (1) system. Then, words A�

0 ,which determine the topological types (T-types) of

IR points O�
0 0; 0ð Þ of this system, depending on the value of k and a sign of a number apk

(where a and pk are coefficients of the system), have the forms as shown in Table 3 [5].

Corollary 4. IR points O�
0 of any Eq: 1ð Þ—system do not have separatrices.

T-types of IR points Oi ui; 0ð Þ 6¼ Oo 0; 0ð Þ, i ¼ 1, m,of Eq. (1) systems are described in the follow-
ing theorem.

Theorem 3. Let a real number ui(6¼ 0) be a multiplicity ki∈ 1; 2; 3gf of the root of a polynomial
P uð Þ of an Eq. (1) system. Then for this system, a value gi = P (ki)(ui)Q(ui) 6¼0 and words
A�

i ,which determine topological types (T-types) of IR points O�
i ui; 0ð Þ of this system,

depending on the value of ki and signs of numbers ui and gi, have forms as shown in Table 4 [5].

Corollary 5. As can be seen from Theorems 2 and 3, for the IR points of Eq. (1) systems, only a
finite number (13) of different T-types are possible. The investigation of these T-types shows
that IR-points of each Eq. (1) system have only m separatrices: one separatrice for every
singular point Oi ui; 0ð Þ, i ¼ 1, m:

Note 3. In Tables 3 and 4, the lower sign index “ + ” or “–” on every bundle N or S, indicates
whether the bundle adjusts to the point Oþ

i or to the point O�
i

� �
from the side u > ui or from

the side u < ui of the isocline u ¼ ui.

In Table 3, row 1, a bundle N does not have a lower sign index because as the detailed study of
this case shows, it contains Oþ

i -curves (O
�
i -curves) in every domain uj j> 0 [5].

k apk Aþ
0 A�

0

0 0 N N

0, 2 + (�) Nþ N�ð Þ N� Nþð Þ
1, 3 + (�) N�Nþ ∅ð Þ ∅ N�Nþð Þ

Table 3. T-types of IR points O�
0 0; 0ð Þ.
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5. Systems containing 3 and 2 multipliers in their right parts

In this section, we present a solution to the main assigned problem for those Eq. (1) systems
whose decompositions of forms X (x, y), Y (x, y) into real forms of lower degrees contain 3 and
2 multipliers, respectively:

X x; yð Þ ¼ p3 y� u1xð Þ y� u2xð Þ y� u3xð Þ,Y x; yð Þ ¼ c y� q1x
� �

y� q2x
� �

(2)

where p3 > 0, c > 0, u1 < u2 < u3, q1 < q2, ui 6¼ qj for each i and j.

The solution process contains the follows steps.

5.1. Basic concepts and notation

The following notations are introduced for the arbitrary system under consideration in the
Section 5.

P(u), Q(u) – the system’s polynomials P, Q:

PðuÞ∶ ¼ X 1; uð Þ � p3 u� u1ð Þ u� u2ð Þ u� u3ð Þ, Q uð Þ∶ ¼ Y 1; uð Þ � c u� q1
� �

u� q2
� �

RSP (RSQ) – an ascending sequence of all real roots of then system’s polynomial P(u) (Q(u)),
RSPQ – an ascending sequence of all real roots of both the system’s polynomials P(u), Q(u).

5.2. The double change (DC) transformation

Let us call a double change of variables in this dynamic system: (t, y) ! (�t, �y). The double
change transformation transforms the system under consideration into another such system,
for which numberings and signs of roots of polynomials P(u), Q(u), as well as the direction of
motion upon trajectories with the increasing of t are reversed. Let us agree to call a pair of
different Eq. (2) systems mutually inversed in relation to the DC transformation, if this trans-
formation appears to convert one into another, and call them independent of a DC transfor-
mation in the opposite case.

Clearly, 10 different types of RSPQ are possible for an arbitrary Eq. (2) system, as C2
5 ¼ 5!

3!2! = 10.

ui ki gi Aþ
i A�

i

+(�) 1, 3 + Nþ N�ð Þ S� Sþð Þ
+(�) 1, 3 _ S� Sþð Þ Nþ N�ð Þ
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+(�) 2 _ ∅ N�Sþð Þ S�Nþ ∅ð Þ

Table 4. T-types of IR points O�
i ui; 0ð Þ, i∈ 1;…;mgf .
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i ,which determine topological types (T-types) of IR points O�
i ui; 0ð Þ of this system,

depending on the value of ki and signs of numbers ui and gi, have forms as shown in Table 4 [5].

Corollary 5. As can be seen from Theorems 2 and 3, for the IR points of Eq. (1) systems, only a
finite number (13) of different T-types are possible. The investigation of these T-types shows
that IR-points of each Eq. (1) system have only m separatrices: one separatrice for every
singular point Oi ui; 0ð Þ, i ¼ 1, m:

Note 3. In Tables 3 and 4, the lower sign index “ + ” or “–” on every bundle N or S, indicates
whether the bundle adjusts to the point Oþ
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the side u < ui of the isocline u ¼ ui.

In Table 3, row 1, a bundle N does not have a lower sign index because as the detailed study of
this case shows, it contains Oþ
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where p3 > 0, c > 0, u1 < u2 < u3, q1 < q2, ui 6¼ qj for each i and j.

The solution process contains the follows steps.
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The following notations are introduced for the arbitrary system under consideration in the
Section 5.
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5.2. The double change (DC) transformation

Let us call a double change of variables in this dynamic system: (t, y) ! (�t, �y). The double
change transformation transforms the system under consideration into another such system,
for which numberings and signs of roots of polynomials P(u), Q(u), as well as the direction of
motion upon trajectories with the increasing of t are reversed. Let us agree to call a pair of
different Eq. (2) systems mutually inversed in relation to the DC transformation, if this trans-
formation appears to convert one into another, and call them independent of a DC transfor-
mation in the opposite case.

Clearly, 10 different types of RSPQ are possible for an arbitrary Eq. (2) system, as C2
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As we can conclude using the DC transformation of Eq. (2) systems, six of the RSPQs appear to
be independent in pairs. Similarly, each of the remaining four systems has the mutually
inversed one among the first six Eq. (2)-systems.

Let us assign a specific number r∈ 1;…; 10f g to each one of the different RSPQs of the Eq. (2)
system in such a manner that RSPQr = 1, 6 are independent in pairs, while RSPQ sequences
with numbers r = 7, 10 are mutually inversed to RSPQ`s which have numbers r = 1, 4:

It is time to introduce the important notion of a family number r of Eq. (2) systems.

An r family of Eq. (2) systems ∶ ¼ the totality of systems (belonging to Eq. (2) family) having
the RSPQ number r:

Now following a single plan, we consistently investigate the families of Eq. (2)systems that
have numbers r = 1, 6: For families having numbers r = 7, 10, we obtain data through the DC-
transformation of families, r = 1, 4.

A plan of the investigation of each selected Eq. (2) family contains the follows items.

1. We determine a list of singular points of systems of the fixed family in a Poincare circle Ω:

They appear to be a point O (0, 0)∈Ω and points O�
i (ui, 0) ∈ Г, i = 0, 3, u0= 0. For every

point in the list, we use the notions of a saddle (S) and node (N) bundles adjacent to this
point’s semi-trajectories, of a separatrix of the singular point, and of a topodynamical type
of the singular point (TD type).

2. Further, we split the family under consideration to subfamilies with numbers s = 1, 7: For
every subfamily, we reveal topodynamical types of singular points and separatrices of them.

3. We investigate the separatrices’ behavior for all singular points of systems belonging to the
chosen subfamily ∀ s∈ {1,…, 7}. Very important are the following questions: a question of
a uniqueness of a continuation of every given separatrix from a small neighborhood of a
singular point to all the lengths of this separatrix, as well as a question about a mutual
arrangement of all separatrices in a Poincare circle Ω. We answer these questions for all
families of systems under consideration.

4. As a result of all previous studies, we depict phase portraits of dynamic systems of a given
family and outline the criteria of every portrait appearance [5, 6].

From this section, we can conclude the following:

Systems of the family number r = 1 have 25 different types of phase portraits.

Systems of families number 2 and 3: there are 9 types of phase portraits per family.

Systems of families 4 and 5: there exist 7 types of phase portraits per family.

Systems belonging to the family number r = 6 show 36 different types of phase portraits.

Hence, we have obtained 93 different types in total for the systems described in this section—a
lot of possible types at first glance. However, it is important to keep this in mind: every given
family includes an uncountable number of differential systems.
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6. Two classes of systems containing various combinations of two
different multipliers in both right parts: an A-class

In Sections 6 and 7, the problem has been solved for an Eq. (3) family. The Eq. (3) family of
Eq. (1) systems is as follows—the family consists of a totality of all Eq. (1) systems; for each of
them, decompositions of forms X (x, y), Y (x, y) into real multipliers of the lowest degrees
contain two multipliers each:

X x; yð Þ ¼ p y� u1xð Þk1 y� u2xð Þk2 ,Y x; yð Þ ¼ q y� q1x
� �

y� q2x
� �

(3)

where p, q, u1, u2, q1, q2 ∈R, p > 0, q > 0, u1 < u2, q1 < q2, ui 6¼ qj for each i,j ∈ 1; 2f g,
k1, k2 ∈N, k1 þ k2 =3.

It is natural to distinguish two classes of Eq. (3) systems. The A class contains systems with
k1 ¼ 1, k2 ¼ 2; and the B class contains systems with k1 ¼ 2, k2 ¼ 1:

In this section, we give a full solution of the assigned task for systems belonging to the A class
of the Eq. (3) family, i.e.,

dx
dt

¼ p y� u1xð Þ y� u2xð Þ2, dy
dt

¼ q y� q1x
� �

y� q2x
� �

(4)

The process of forming the solution contains steps similar to the ones described in Section 4 of
this chapter.

For an arbitrary Eq: 4ð Þ– system, we introduce the following concepts.

Let P(u), Q(u) be the system’s polynomials P, Q:

P uð Þ∶ ¼ X 1; uð Þ � p u� u1ð Þ u� u2ð Þ2, Q uð Þ∶ ¼ Y 1; uð Þ � q u� q1
� �

u� q2
� �

,

and RSP (RSQ) be an ascending sequence of all the real roots of the system’s polynomial, while
P(u) (Q(u)),RSPQ is an ascending sequence of all the real roots of both system’s polynomials
P(u) and Q(u). There exist 6 different possible variants of RSPQ as C2

4 ¼ 4!
2!2! = 6. Let us number

them from 1 to 6 in some order.

Now let us put into use an important notion:

An r-family of Eq: 4ð Þ – systems is the totality of Eq. 4ð Þ dynamic systems with the RSPQ
number r from the list of six allowable variants.

A consistent research of families of Eq. 4ð Þ dynamic systems.

The steps of research of every fixed family belonging to Eq. 4ð Þ dynamic systems are as follows.

1. For all singular points of a given dynamic system that belongs to the family under
consideration, let us introduce notions of S (saddle) and N (node) bundles of semi-
trajectories, which are adjacent to a chosen singular point; also let us introduce a notion
for its separatrix and a notion for its topodynamical type (TD-type).
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As we can conclude using the DC transformation of Eq. (2) systems, six of the RSPQs appear to
be independent in pairs. Similarly, each of the remaining four systems has the mutually
inversed one among the first six Eq. (2)-systems.

Let us assign a specific number r∈ 1;…; 10f g to each one of the different RSPQs of the Eq. (2)
system in such a manner that RSPQr = 1, 6 are independent in pairs, while RSPQ sequences
with numbers r = 7, 10 are mutually inversed to RSPQ`s which have numbers r = 1, 4:

It is time to introduce the important notion of a family number r of Eq. (2) systems.

An r family of Eq. (2) systems ∶ ¼ the totality of systems (belonging to Eq. (2) family) having
the RSPQ number r:

Now following a single plan, we consistently investigate the families of Eq. (2)systems that
have numbers r = 1, 6: For families having numbers r = 7, 10, we obtain data through the DC-
transformation of families, r = 1, 4.

A plan of the investigation of each selected Eq. (2) family contains the follows items.

1. We determine a list of singular points of systems of the fixed family in a Poincare circle Ω:

They appear to be a point O (0, 0)∈Ω and points O�
i (ui, 0) ∈ Г, i = 0, 3, u0= 0. For every

point in the list, we use the notions of a saddle (S) and node (N) bundles adjacent to this
point’s semi-trajectories, of a separatrix of the singular point, and of a topodynamical type
of the singular point (TD type).

2. Further, we split the family under consideration to subfamilies with numbers s = 1, 7: For
every subfamily, we reveal topodynamical types of singular points and separatrices of them.

3. We investigate the separatrices’ behavior for all singular points of systems belonging to the
chosen subfamily ∀ s∈ {1,…, 7}. Very important are the following questions: a question of
a uniqueness of a continuation of every given separatrix from a small neighborhood of a
singular point to all the lengths of this separatrix, as well as a question about a mutual
arrangement of all separatrices in a Poincare circle Ω. We answer these questions for all
families of systems under consideration.

4. As a result of all previous studies, we depict phase portraits of dynamic systems of a given
family and outline the criteria of every portrait appearance [5, 6].

From this section, we can conclude the following:

Systems of the family number r = 1 have 25 different types of phase portraits.

Systems of families number 2 and 3: there are 9 types of phase portraits per family.

Systems of families 4 and 5: there exist 7 types of phase portraits per family.

Systems belonging to the family number r = 6 show 36 different types of phase portraits.

Hence, we have obtained 93 different types in total for the systems described in this section—a
lot of possible types at first glance. However, it is important to keep this in mind: every given
family includes an uncountable number of differential systems.
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6. Two classes of systems containing various combinations of two
different multipliers in both right parts: an A-class

In Sections 6 and 7, the problem has been solved for an Eq. (3) family. The Eq. (3) family of
Eq. (1) systems is as follows—the family consists of a totality of all Eq. (1) systems; for each of
them, decompositions of forms X (x, y), Y (x, y) into real multipliers of the lowest degrees
contain two multipliers each:
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(3)

where p, q, u1, u2, q1, q2 ∈R, p > 0, q > 0, u1 < u2, q1 < q2, ui 6¼ qj for each i,j ∈ 1; 2f g,
k1, k2 ∈N, k1 þ k2 =3.

It is natural to distinguish two classes of Eq. (3) systems. The A class contains systems with
k1 ¼ 1, k2 ¼ 2; and the B class contains systems with k1 ¼ 2, k2 ¼ 1:

In this section, we give a full solution of the assigned task for systems belonging to the A class
of the Eq. (3) family, i.e.,

dx
dt

¼ p y� u1xð Þ y� u2xð Þ2, dy
dt

¼ q y� q1x
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(4)

The process of forming the solution contains steps similar to the ones described in Section 4 of
this chapter.

For an arbitrary Eq: 4ð Þ– system, we introduce the following concepts.

Let P(u), Q(u) be the system’s polynomials P, Q:

P uð Þ∶ ¼ X 1; uð Þ � p u� u1ð Þ u� u2ð Þ2, Q uð Þ∶ ¼ Y 1; uð Þ � q u� q1
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,

and RSP (RSQ) be an ascending sequence of all the real roots of the system’s polynomial, while
P(u) (Q(u)),RSPQ is an ascending sequence of all the real roots of both system’s polynomials
P(u) and Q(u). There exist 6 different possible variants of RSPQ as C2

4 ¼ 4!
2!2! = 6. Let us number

them from 1 to 6 in some order.

Now let us put into use an important notion:

An r-family of Eq: 4ð Þ – systems is the totality of Eq. 4ð Þ dynamic systems with the RSPQ
number r from the list of six allowable variants.

A consistent research of families of Eq. 4ð Þ dynamic systems.

The steps of research of every fixed family belonging to Eq. 4ð Þ dynamic systems are as follows.

1. For all singular points of a given dynamic system that belongs to the family under
consideration, let us introduce notions of S (saddle) and N (node) bundles of semi-
trajectories, which are adjacent to a chosen singular point; also let us introduce a notion
for its separatrix and a notion for its topodynamical type (TD-type).
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2. Now the considered family must be divided into subfamilies numbered s∈ 1;…; 5f g:Then
it is necessary to determine the TD-types of singular points of systems belonging to the
obtained subfamilies, and separatrices of singular points ∀s ¼ 1, 5.

3. For all five subfamilies, we investigate the separatrices` of singular points behavior and
find an answer to a question concerning a uniqueness of a global continuation of every
chosen separatrix from a tiny neighborhood of a singular point to all the lengths of this
separatrix in the Poincare circle Ω, as well as an answer to a question of all separatrices`
mutual arrangement in Ω.

The mutual arrangement of all separatrices in the Poincare circle is invariable when, for a given
s, a global continuation of every separatrix of each singular point of the subfamily number s is
unique. Consequently, all systems of a chosen subfamily number s have, in a Poincare circle,
one common type of phase portrait:

But in a different situation, when, for a fixed number s, systems of such subfamily have, for
example, m separatrices with global continuations that are not unique, this subfamily is
divided into m additional subfamilies (so as to say subsubfamilies) of the next order.

As we could understand conducting their further study, for each of subsubfamilies, the global
continuation of every separatrix is unique, and the mutual arrangement of separatrices in the
Poincare circle Ω is invariable.

As a result, the topological type of phase portrait of all systems belonging to this subsubfamily
in the Ω circle is common for the chosen subsubfamily.

4. We depict phase portraits in Ω for the systems of Eq: 4ð Þ families, r = 1, 6, in the two possible
forms (the table and the graphic ones), and indicate for each portrait close to coefficient criteria
of its realization.

A conclusion for the Section 6 of our chapter is:

1. Eq. 4ð Þ–systems belonging to the number 1 family have in the Poincare circle Ω, 13
different topological types of phase portraits.

2. Eq: 4ð Þ– systems of the family number 2 have 7 types.

3. Family number 3 have 10 types.

4. Family numbers 4, 5, and 6 have 5 different types of phase portraits per number.

This means that in total, all large families of Eq: 4ð Þ dynamic systems of the A class may have 45
different topological types of phase portraits in a Poincare circle.

7. Systems with 2 different multipliers in both right parts, belonging
to a B class

In this section, the full solution of our task for Eq. (3) systems of the B class is given:
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dx
dt

¼ p y� u1xð Þ2 y� u2xð Þ, dy
dt

¼ q y� q1x
� �

y� q2x
� �

: (5)

For an arbitrary Eq: 5ð Þ– system, P(u), Q(u) are the system’s polynomials P, Q.

P uð Þ∶ ¼ X 1; uð Þ � p u� u1ð Þ2 u� u2ð Þ, Q uð Þ∶ ¼ Y 1; uð Þ � q u� q1
� �

u� q2
� �

,

RSPQ shows 6 different variants, because C2
4 ¼ 6.

We can thus conclude that all Eq. 5ð Þ family of systems is split into 52 different subfamilies, and
all systems of each chosen subfamily show in a circle Ω, one common type of a phase portrait
belonging to this particular subfamily. We have constructed all 52 topologically different phase
portraits.

8. Systems containing 3 and 1 different multipliers in right parts

In this section, we solve the problem for an Eq. (6) family, i.e., for a family of Eq. (1) systems

dx
dt

¼ p3 y� u1xð Þ y� u2xð Þ y� u3xð Þ, dy
dt

¼ c y� q1x
� �2 (6)

p3 > 0, c > 0, u1 < u2 < u3, q ∈Rð Þ 6¼ ui, i ¼ 1, 3:

The solution process includes the follows steps. Let us break the Eq. (6) family into subfamilies
numbered r = 1, 4:

Each of these is a totality of systems with an RSPQ number r,where r is the system’s number in
the list of possible RSPQs.

1. u1, u2, u3, q,

2. u1, u2, q, u3,

3. u1, q,u2, u3,

4. q,u1, u2, u3:

Applying to the Eq. (6) system, a double change of variables (DC): (t, y) ! (�t,-y), we reveal
that it transforms families of these systems having the numbers r = 1, 2, 3, 4, into their families
with numbers r = 4, 3, 2, 1 respectively, and backward. We emphasize: this fact means that
families of Eq. (6) systems having numbers 1 and 2 are not connected with the DC transforma-
tion, and that families having numbers 3 and 4 are not related to each other; at the same time,
family number 3 is mutually inversed by the DC transformation to the family number 2, and
family number 4 is mutually inversed to the family number 1 correspondingly. This conclusion
follows from the consideration of their RSPQ sequences [5, 6].

1. We study alternately the families of systems, r = 1,2, following the common program of
Eq. (1) systems study [5], i.e.:
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2. Now the considered family must be divided into subfamilies numbered s∈ 1;…; 5f g:Then
it is necessary to determine the TD-types of singular points of systems belonging to the
obtained subfamilies, and separatrices of singular points ∀s ¼ 1, 5.

3. For all five subfamilies, we investigate the separatrices` of singular points behavior and
find an answer to a question concerning a uniqueness of a global continuation of every
chosen separatrix from a tiny neighborhood of a singular point to all the lengths of this
separatrix in the Poincare circle Ω, as well as an answer to a question of all separatrices`
mutual arrangement in Ω.

The mutual arrangement of all separatrices in the Poincare circle is invariable when, for a given
s, a global continuation of every separatrix of each singular point of the subfamily number s is
unique. Consequently, all systems of a chosen subfamily number s have, in a Poincare circle,
one common type of phase portrait:

But in a different situation, when, for a fixed number s, systems of such subfamily have, for
example, m separatrices with global continuations that are not unique, this subfamily is
divided into m additional subfamilies (so as to say subsubfamilies) of the next order.

As we could understand conducting their further study, for each of subsubfamilies, the global
continuation of every separatrix is unique, and the mutual arrangement of separatrices in the
Poincare circle Ω is invariable.

As a result, the topological type of phase portrait of all systems belonging to this subsubfamily
in the Ω circle is common for the chosen subsubfamily.

4. We depict phase portraits in Ω for the systems of Eq: 4ð Þ families, r = 1, 6, in the two possible
forms (the table and the graphic ones), and indicate for each portrait close to coefficient criteria
of its realization.

A conclusion for the Section 6 of our chapter is:

1. Eq. 4ð Þ–systems belonging to the number 1 family have in the Poincare circle Ω, 13
different topological types of phase portraits.

2. Eq: 4ð Þ– systems of the family number 2 have 7 types.

3. Family number 3 have 10 types.

4. Family numbers 4, 5, and 6 have 5 different types of phase portraits per number.

This means that in total, all large families of Eq: 4ð Þ dynamic systems of the A class may have 45
different topological types of phase portraits in a Poincare circle.

7. Systems with 2 different multipliers in both right parts, belonging
to a B class

In this section, the full solution of our task for Eq. (3) systems of the B class is given:
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dx
dt

¼ p y� u1xð Þ2 y� u2xð Þ, dy
dt

¼ q y� q1x
� �

y� q2x
� �

: (5)

For an arbitrary Eq: 5ð Þ– system, P(u), Q(u) are the system’s polynomials P, Q.

P uð Þ∶ ¼ X 1; uð Þ � p u� u1ð Þ2 u� u2ð Þ, Q uð Þ∶ ¼ Y 1; uð Þ � q u� q1
� �

u� q2
� �

,

RSPQ shows 6 different variants, because C2
4 ¼ 6.

We can thus conclude that all Eq. 5ð Þ family of systems is split into 52 different subfamilies, and
all systems of each chosen subfamily show in a circle Ω, one common type of a phase portrait
belonging to this particular subfamily. We have constructed all 52 topologically different phase
portraits.

8. Systems containing 3 and 1 different multipliers in right parts

In this section, we solve the problem for an Eq. (6) family, i.e., for a family of Eq. (1) systems

dx
dt

¼ p3 y� u1xð Þ y� u2xð Þ y� u3xð Þ, dy
dt

¼ c y� q1x
� �2 (6)

p3 > 0, c > 0, u1 < u2 < u3, q ∈Rð Þ 6¼ ui, i ¼ 1, 3:

The solution process includes the follows steps. Let us break the Eq. (6) family into subfamilies
numbered r = 1, 4:

Each of these is a totality of systems with an RSPQ number r,where r is the system’s number in
the list of possible RSPQs.

1. u1, u2, u3, q,

2. u1, u2, q, u3,

3. u1, q,u2, u3,

4. q,u1, u2, u3:

Applying to the Eq. (6) system, a double change of variables (DC): (t, y) ! (�t,-y), we reveal
that it transforms families of these systems having the numbers r = 1, 2, 3, 4, into their families
with numbers r = 4, 3, 2, 1 respectively, and backward. We emphasize: this fact means that
families of Eq. (6) systems having numbers 1 and 2 are not connected with the DC transforma-
tion, and that families having numbers 3 and 4 are not related to each other; at the same time,
family number 3 is mutually inversed by the DC transformation to the family number 2, and
family number 4 is mutually inversed to the family number 1 correspondingly. This conclusion
follows from the consideration of their RSPQ sequences [5, 6].

1. We study alternately the families of systems, r = 1,2, following the common program of
Eq. (1) systems study [5], i.e.:
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1. We fix r ∈ 1; 2g, then wef break the chosen family into subfamilies numbered s [5, 6],
s = 1, 9, and find the topodynamical types (TD-types) of singular points of these systems.

2. We construct for the systems of a fixed subfamily ∀s ¼ 1, 9, the so-called off-road map
(ORM) [5–7]. The ORM helps us to find an α ωð Þ� limit set of every α ωð Þ� separatrix. It
also lets us describe the mutual arrangement of all separatrices in the Poincare circleΩ.

3. We depict all possible topologically different phase portraits for Eq. (6) systems.

2. We investigate consistently families of Eq. (6) systems, r = 3, 4, using the DC transformation
of the results obtained for families, r = 2, 1. Then, we depict all types of existing phase
portraits for the families 3 and 4.

Then, we conclude the following.

For families of Eq. (6) systems with numbers 1, 2, 3, and 4, there exist

15 + 11 + 11 + 15 = 52

different topological types of phase portraits in a Poincare circle Ω.

9. Systems containing 2 and 1 different multipliers in right parts

In this section, we give the full solution of the problem for Eq. (7) systems, i.e., for the Eq. (1)
systems of the kind

_x ¼ p0x
3 þ p1x

2yþ p2xy
2 þ p3y

3 � p3 y� u1xð Þ2 y� u2xð Þ (7)

_y ¼ x2 þ bxyþ cy2 � c y� qxð Þ2,

where p3 > 0, c > 0, u1 < u2, q ∈Rð Þ 6¼ u1,2.

The process of study of these systems is quite similar to that previously described for other
families of Eq. (1) systems. For an arbitrary Eq. (7) system, P(u), Q(u) are the system’s poly-
nomials P, Q:

P uð Þ∶ ¼ X 1; uð Þ � p3 u� u1ð Þ2 u� u2ð Þ, Q uð Þ∶ ¼ Y 1; uð Þ � c u� qð Þ2,

and there exists 3 different variants for their RSPQs.

A conclusion from our research for this particular type of systems is the following.

We`ve revealed, that for every possible family of Eq. (7) systems, 7 different topological types
of their phase portraits are being implemented. This means that for all three existing families of
such systems, r = 1, 3, the number of different phase portraits is 21 [8, 9].
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10. Conclusions

The presented work is devoted to the original study.

The main task of the work was to depict and describe all the different, in the topological
meaning, phase portraits in a Poincare circle, possible for the dynamical differential systems
belonging to a broad family of Eq. (1) systems, and to its numerical subfamilies. The authors
have constructed all such phase portraits in two ways—in a descriptive (table) and in a graphic
form. Each table contains 5–6 rows. Every row describes one invariant cell of the phase portrait in
detail—it describes its boundary, source, and sink of its phase flow. The table was the descriptive
phase portrait.

The second objective of this work was to develop, outline, and successfully apply some new
effective methods of investigation [8–10].

This was a theoretical work, but due to aforementioned new methods, the chapter may be
useful for applied studies of dynamic systems of the second order with polynomial right parts.
The authors hope that this work may be interesting and useful for researchers and for both
students and postgraduates.
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Abstract

In this paper, we study differential equations arising from the generating functions of the
3-variable Hermite polynomials. We give explicit identities for the 3-variable Hermite
polynomials. Finally, we investigate the zeros of the 3-variable Hermite polynomials by
using computer.

Keywords: differential equations, heat equation, Hermite polynomials, the 3-variable
Hermite polynomials, generating functions, complex zeros

1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers, Euler numbers,
Genocchi numbers, and tangent numbers see [1–15]. The special polynomials of two variables
provided new means of analysis for the solution of a wide class of differential equations often
encountered in physical problems. Most of the special function of mathematical physics and
their generalization have been suggested by physical problems.

In [1], the Hermite polynomials are given by the exponential generating function

X∞
n¼0

Hn xð Þ t
n

n!
¼ e2xt�t2 :

We can also have the generating function by using Cauchy’s integral formula to write the
Hermite polynomials as
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Hn xð Þ ¼ �1ð Þnex2 dn

dxn
e�x2 ¼ n!

2πi
∮ C

e2tx�t2

tnþ1 dt

with the contour encircling the origin. It follows that the Hermite polynomials also satisfy the
recurrence relation

Hnþ1 xð Þ ¼ 2xHn xð Þ � 2nHn�1 xð Þ:

Further, the two variables Hermite Kampé de Fériet polynomials Hn x; yð Þ defined by the
generating function (see [3])

X∞
n¼0

Hn x; yð Þ t
n

n!
¼ extþyt2 (1)

are the solution of heat equation

∂
∂y

Hn x; yð Þ ¼ ∂2

∂x2
Hn x; yð Þ, Hn x; 0ð Þ ¼ xn:

We note that

Hn 2x;�1ð Þ ¼ Hn xð Þ:

The 3-variable Hermite polynomials Hn x; y; zð Þ are introduced [4].

Hn x; y; zð Þ ¼ n!
Xn

3½ �

k¼0

zkHn�3k x; yð Þ
k! n� 3kð Þ! :

The differential equation and he generating function for Hn x; y; zð Þ are given by

3z
∂3

∂x3
þ 2y

∂2

∂x2
þ x

∂
∂x

� n
� �

Hn x; y; zð Þ ¼ 0

and

extþyt2þzt3 ¼
X∞
n¼0

Hn x; y; zð Þ t
n

n!
, (2)

respectively.

By (2), we get
X∞
n¼0

Hn x1 þ x2; y; zð Þ t
n

n!
¼ e x1þx2ð Þtþyt2þzt3

¼
X∞
n¼0

xn2
tn

n!

X∞
n¼0

Hn x1; y; zð Þ t
n

n!

¼
X∞
n¼0

Xn

l¼0

n

l

 !
Hl x1; y; zð Þxn�l

2

 !
tn

n!
:

(3)
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By comparing the coefficients on both sides of (3), we have the following theorem.

Theorem 1. For any positive integer n, we have

Hn x1 þ x2; y; zð Þ ¼
Xn

l¼0

n
l

� �
Hl x1; y; zð Þxn�l

2 :

Applying Eq. (2), we obtain

X∞
n¼0

Hn x; y; z1 þ z2ð Þ t
n

n!
¼ extþyt2þ z1þz2ð Þt3

¼
X∞

k¼0

zn2
t3k

k!

X∞

l¼0

Hl x; y; z1ð Þ t
l

l!

¼
X∞
n¼0

Xn
3½ �

k¼0

Hn�3k x; y; z1ð Þzk2n!
k! n� 3kð Þ! :

0
@

1
A tn

n!
:

On equating the coefficients of the like power of t in the above, we obtain the following
theorem.

Theorem 2. For any positive integer n, we have

Hn x; y; z1 þ z2ð Þ ¼ n!
Xn

3½ �

k¼0

Hn�3k x; y; z1ð Þzk2
k! n� 3kð Þ! :

Also, the 3-variable Hermite polynomials Hn x; y; zð Þ satisfy the following relations

∂
∂y

Hn x; y; zð Þ ¼ ∂2

∂x2
Hn x; y; zð Þ,

and

∂
∂z

Hn x; y; zð Þ ¼ ∂3

∂x3
Hn x; y; zð Þ:

The following elementary properties of the 3-variable Hermite polynomials Hn x; y; zð Þ are
readily derived form (2). We, therefore, choose to omit the details involved.

Theorem 3. For any positive integer n, we have

1 Hn 2x;�1; 0ð Þ ¼ Hn xð Þ:

2 Hn x; y1 þ y2; z
� � ¼ n!

Pn2½ �
k¼0

Hn�2k x;y1 ;zð Þyk2
k! n�2kð Þ! :

3 Hn x; y; zð Þ ¼P
n

l¼0

n
l

� �
Hl xð ÞHn�l �x; yþ 1; zð Þ:
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By comparing the coefficients on both sides of (3), we have the following theorem.
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On equating the coefficients of the like power of t in the above, we obtain the following
theorem.

Theorem 2. For any positive integer n, we have
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Theorem 4. For any positive integer n, we have

1 Hn x1 þ x2; y1 þ y2; z
� � ¼P

n

l¼0

n
l

� �
Hl x1; y1; z
� �

Hn�l x2; y2
� �

:

2 Hn x1 þ x2; y1 þ y2; z1 þ z2
� � ¼P

n

l¼0

n
l

� �
Hl x1; y1; z
� �

Hn�l x2; y2; z2
� �

:

The 3-variable Hermite polynomials can be determined explicitly. A few of them are

H0 x; y; zð Þ ¼ 1,
H1 x; y; zð Þ ¼ x,
H2 x; y; zð Þ ¼ x2 þ 2y,
H3 x; y; zð Þ ¼ x3 þ 6xyþ 6z,
H4 x; y; zð Þ ¼ x4 þ 12x2yþ 12y2 þ 24xz,
H5 x; y; zð Þ ¼ x5 þ 20x3yþ 60xy2 þ 60x2zþ 120yz,
H6 x; y; zð Þ ¼ x6 þ 30x4yþ 180x2y2 þ 120y3 þ 120x3zþ 720xyzþ 360z2,
H7 x; y; zð Þ ¼ x7 þ 42x5yþ 420x3y2 þ 840xy3 þ 210x4zþ 2520x2yzþ 2520y2zþ 2520xz2,
H8 x; y; zð Þ ¼ x8 þ 56x6yþ 840x4y2 þ 3360x2y3 þ 1680y4 þ 336x5zþ 6720x3yz

þ 20160xy2zþ 10080x2z2 þ 20160yz2:
H9 x; y; zð Þ ¼ x9 þ 72x7yþ 1512x5y2 þ 10080x3y3 þ 15120xy4 þ 504x6zþ 15120x4yz

þ 90720x2y2zþ 60480y3zþ 30240x3z2 þ 181440xyz2 þ 60480z3,
H10 x; y; zð Þ ¼ x10 þ 90x8yþ 2520x6y2 þ 25200x4y3 þ 75600x2y4 þ 30240y5 þ 720x7z

þ 30240x5yzþ 302400x3y2zþ 604800xy3zþ 75600x4z2

þ 907200x2yz2 þ 907200y2z2 þ 604800xz3:

Recently, many mathematicians have studied the differential equations arising from the gener-
ating functions of special polynomials (see [7, 8, 12, 16–19]). In this paper, we study differential
equations arising from the generating functions of the 3-variable Hermite polynomials. We give
explicit identities for the 3-variable Hermite polynomials. In addition, we investigate the zeros
of the 3-variable Hermite polynomials using numerical methods. Using computer, a realistic
study for the zeros of the 3-variable Hermite polynomials is very interesting. Finally, we observe
an interesting phenomenon of ‘scattering’ of the zeros of the 3-variable Hermite polynomials.

2. Differential equations associated with the 3-variable Hermite
polynomials

In this section, we study differential equations arising from the generating functions of the 3-
variable Hermite polynomials.

Let

F ¼ F t; x; y; zð Þ ¼ extþyt2þzt3 ¼
X∞
n¼0

Hn x; y; zð Þ t
n

n!
, x, y, z, t∈ℂ: (4)
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Then, by (4), we have

F 1ð Þ ¼ ∂
∂t
F t; x; y; zð Þ ¼ ∂

∂t
extþyt2þzt3
� �

¼ extþyt2þzt3 xþ 2ytþ 3zt2
� �

¼ xþ 2ytþ 3zt2
� �

F t; x; y; zð Þ,
(5)

F 2ð Þ ¼ ∂
∂t
F 1ð Þ t; x; y; zð Þ ¼ 2yþ 6ztð ÞF t; x; y; zð Þ þ xþ 2ytþ 3zt2

� �
F 1ð Þ t; x; y; zð Þ

¼ x2 þ 2y
� �þ 6zþ 4xyð Þtþ 4y2 þ 6xz

� �
t2 þ 12yzð Þt3 þ 9z2

� �
t4

� �
F t; x; y; zð Þ:

(6)

Continuing this process, we can guess that

F Nð Þ ¼ ∂
∂t

� �N

F t; x; y; zð Þ ¼
X2N

i¼0

ai N; x; y; zð ÞtiF t; x; y; zð Þ, N ¼ 0; 1; 2;…ð Þ: (7)

Differentiating (7) with respect to t, we have

F Nþ1ð Þ ¼ ∂F Nð Þ

∂t
¼
X2N

i¼0

ai N; x; y; zð Þiti�1F t; x; y; zð Þ þ
X2N

i¼0

ai N; x; y; zð ÞtiF 1ð Þ t; x; y; zð Þ

¼
X2N

i¼0

ai N; x; y; zð Þiti�1F t; x; y; zð Þ þ
X2N

i¼0

ai N; x; y; zð Þti xþ 2ytþ 3zt2
� �

F t; x; y; zð Þ

¼
X2N

i¼0

iai N; x; y; zð Þti�1F t; x; y; zð Þ þ
X2N

i¼0

xai N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X2N

i¼0

2yai N; x; y; zð Þtiþ1F t; x; y; zð Þ þ
X2N

i¼0

3zai N; x; y; zð Þtiþ2F t; x; y; zð Þ

¼
X2N�1

i¼0

iþ 1ð Þaiþ1 N; x; y; zð ÞtiF t; x; y; zð Þ þ
X2N

i¼0

xai N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X2Nþ1

i¼1

2yai�1 N; x; y; zð ÞtiF t; x; y; zð Þ þ
X2Nþ2

i¼2

3zai�2 N; x; y; zð ÞtiF t; x; y; zð Þ

Hence we have

F Nþ1ð Þ ¼
X2N�1

i¼0

iþ 1ð Þaiþ1 N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X2N

i¼0

xai N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X2Nþ1

i¼1

2yai�1 N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X2Nþ2

i¼2

3zai�2 N; x; y; zð ÞtiF t; x; y; zð Þ:

(8)
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ating functions of special polynomials (see [7, 8, 12, 16–19]). In this paper, we study differential
equations arising from the generating functions of the 3-variable Hermite polynomials. We give
explicit identities for the 3-variable Hermite polynomials. In addition, we investigate the zeros
of the 3-variable Hermite polynomials using numerical methods. Using computer, a realistic
study for the zeros of the 3-variable Hermite polynomials is very interesting. Finally, we observe
an interesting phenomenon of ‘scattering’ of the zeros of the 3-variable Hermite polynomials.
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Now replacing N by N þ 1 in (7), we find

F Nþ1ð Þ ¼
X2Nþ2

i¼0

ai N þ 1; x; y; zð ÞtiF t; x; y; zð Þ: (9)

Comparing the coefficients on both sides of (8) and (9), we obtain

a0 N þ 1; x; y; zð Þ ¼ a1 N; x; y; zð Þ þ xa0 N; x; y; zð Þ,
a1 N þ 1; x; y; zð Þ ¼ 2a2 N; x; y; zð Þ þ xa1 N; x; y; zð Þ þ 2ya0 N; x; y; zð Þ,
a2N N þ 1; x; y; zð Þ ¼ xa2N N; x; y; zð Þ þ 2ya2N�1 N; x; y; zð Þ þ 3za2N�2 N; x; y; zð Þ,
a2Nþ1 N þ 1; x; y; zð Þ ¼ 2ya2N N; x; y; zð Þ þ 3za2N�1 N; x; y; zð Þ,
a2Nþ2 N þ 1; x; y; zð Þ ¼ 3za2N N; x; y; zð Þ,

(10)

and

ai N þ 1; x; y; zð Þ ¼ iþ 1ð Þaiþ1 N; x; y; zð Þ þ xai N; x; y; zð Þ
þ 2yai�1 N; x; y; zð Þ þ 3zai�2 N; x; y; zð Þ, 2 ≤ i ≤ 2N � 1ð Þ: (11)

In addition, by (7), we have

F t; x; y; zð Þ ¼ F 0ð Þ t; x; y; zð Þ ¼ a0 0; x; y; zð ÞF t; x; y; zð Þ, (12)

which gives

a0 0; x; y; zð Þ ¼ 1: (13)

It is not difficult to show that

xF t; x; yð Þ þ 2ytF t; x; y; zð Þ þ 3zt2F t; x; y; zð Þ
¼ F 1ð Þ t; x; y; zð Þ

¼
X2

i¼0

ai 1; x; y; zð ÞF t; x; y; zð Þ

¼ a0 1; x; y; zð Þ þ a1ð1; x; y; zÞtþ a2ð1; x; y; zÞt2
� �

F t; x; y; zð Þ:

(14)

Thus, by (14), we also find

a0 1; x; y; zð Þ ¼ x, a1 1; x; y; zð Þ ¼ 2y, a2 1; x; y; zð Þ ¼ 3z: (15)

From (10), we note that

a0 N þ 1; x; y; zð Þ ¼ a1 N; x; y; zð Þ þ xa0 N; x; y; zð Þ,
a0 N; x; y; zð Þ ¼ a1 N � 1; x; y; zð Þ þ xa0 N � 1; x; y; zð Þ,…

a0 N þ 1; x; y; zð Þ ¼
XN

i¼0

xia1 N � i; x; y; zð Þ þ xNþ1,
(16)

and
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a2Nþ2 N þ 1; x; y; zð Þ ¼ 3za2N N; x; y; zð Þ,
a2N N; x; y; zð Þ ¼ 3za2N�2 N � 1; x; y; zð Þ,…
a2Nþ2 N þ 1; x; y; zð Þ ¼ 3zð ÞNþ1:

(17)

Note that, here the matrix ai j; x; yð Þ0 ≤ i ≤ 2Nþ2,0 ≤ j ≤Nþ1 is given by

1 x 2yþ x2 � ⋯ �

0 2y 4xyþ 6z � ⋯ �

0 3z 6xzþ 4y2 � ⋯ �

0 0 12yz � ⋯ �

0 0 3zð Þ2 � ⋯ �

0 0 0 � ⋯ �

0 0 0 3zð Þ3 ⋯ �

⋮ ⋮ ⋮ ⋮ ⋱ �

0 0 0 0 ⋯ 3zð ÞNþ1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Therefore, we obtain the following theorem.

Theorem 5. For N ¼ 0; 1; 2,…, the differential equation

F Nð Þ ¼ ∂
∂t

� �N

F t; x; y; zð Þ ¼
XN

i¼0

ai N; x; y; zð Þti
 !

F t; x; y; zð Þ

has a solution

F ¼ F t; x; y; zð Þ ¼ extþyt2þzt3 ,

where

a0 N þ 1; x; y; zð Þ ¼
XN

i¼0

xia1 N � i; x; y; zð Þ þ xNþ1,

a1 N þ 1; x; y; zð Þ ¼ 2a2 N; x; y; zð Þ þ xa1 N; x; y; zð Þ þ 2ya0 N; x; y; zð Þ,
a2N N þ 1; x; y; zð Þ ¼ xa2N N; x; y; zð Þ þ 2ya2N�1 N; x; y; zð Þ þ 3za2N�2 N; x; y; zð Þ,
a2Nþ1 N þ 1; x; y; zð Þ ¼ 2ya2N N; x; y; zð Þ þ 3za2N�1 N; x; y; zð Þ,
a2Nþ2 N þ 1; x; y; zð Þ ¼ 3zð ÞNþ1,
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Therefore, we obtain the following theorem.

Theorem 5. For N ¼ 0; 1; 2,…, the differential equation

F Nð Þ ¼ ∂
∂t

� �N

F t; x; y; zð Þ ¼
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i¼0
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 !
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has a solution
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where
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and

ai N þ 1; x; y; zð Þ ¼ iþ 1ð Þaiþ1 N; x; y; zð Þ þ xai N; x; y; zð Þ
þ 2yai�1 N; x; y; zð Þ þ 3zai�2 N; x; y; zð Þ, 2 ≤ i ≤ 2N � 1ð Þ:

From (4), we note that

F Nð Þ ¼ ∂
∂t

� �N

F t; x; y; zð Þ ¼
X∞

k¼0

HkþN x; y; zð Þ t
k

k!
: (18)

By (4) and (18), we get

e�nt ∂
∂t

� �N

F t; x; y; zð Þ ¼
X∞
m¼0

�nð Þm tm

m!

 ! X∞
m¼0

HmþN x; y; zð Þ t
m

m!

 !

¼
X∞
m¼0

Xm

k¼0

m

k

 !
�nð Þm�kHNþkðx; y; zÞ

 !
tm

m!
:

(19)

By the Leibniz rule and the inverse relation, we have

e�nt ∂
∂t

� �N

F t; x; y; zð Þ ¼
XN

k¼0

N

k

 !
nN�k ∂

∂t

� �k

e�ntF t; x; y; zð Þ� �

¼
X∞
m¼0

XN

k¼0

N

k

 !
nN�kHmþk x� n; y; zð Þ

 !
tm

m!
:

(20)

Hence, by (19) and (20), and comparing the coefficients of tm
m! gives the following theorem.

Theorem 6. Let m, n,N be nonnegative integers. Then

Xm

k¼0

m
k

� �
�nð Þm�kHNþk x; y; zð Þ ¼

XN

k¼0

N
k

� �
nN�kHmþk x� n; y; zð Þ: (21)

If we take m ¼ 0 in (21), then we have the following corollary.

Corollary 7. For N ¼ 0; 1; 2,…, we have

HN x; y; zð Þ ¼
XN

k¼0

N
k

� �
nN�kHk x� n; y; zð Þ:

For N ¼ 0; 1; 2,…, the differential equation

F Nð Þ ¼ ∂
∂t

� �N

F t; x; y; zð Þ ¼
XN

i¼0

ai N; x; y; zð Þti
 !

F t; x; y; zð Þ

has a solution
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F ¼ F t; x; y; zð Þ ¼ extþyt2þzt3 :

Here is a plot of the surface for this solution. In Figure 1(left), we choose �2 ≤ z ≤ 2, �1 ≤ t ≤ 1,
x ¼ 2, and y ¼ �4. In Figure 1(right), we choose �5 ≤ x ≤ 5, � 1 ≤ t ≤ 1, y ¼ �3, and z ¼ �1.

3. Distribution of zeros of the 3-variable Hermite polynomials

This section aims to demonstrate the benefit of using numerical investigation to support
theoretical prediction and to discover new interesting pattern of the zeros of the 3-variable
Hermite polynomials Hn x; y; zð Þ. By using computer, the 3-variable Hermite polynomials
Hn x; y; zð Þ can be determined explicitly. We display the shapes of the 3-variable Hermite poly-
nomials Hn x; y; zð Þ and investigate the zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ.
We investigate the beautiful zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ by
using a computer. We plot the zeros of the Hn x; y; zð Þ for n ¼ 20, y ¼ 1, � 1, 1þ i, � 1� i,
z ¼ 3, � 3, 3þ i, � 3� i and x∈C (Figure 2). In Figure 2(top-left), we choose n ¼ 20, y ¼ 1,
and z ¼ 3. In Figure 2(top-right), we choose n ¼ 20, y ¼ �1, and z ¼ �3. In Figure 2(bottom-
left), we choose n ¼ 20, y ¼ 1þ i, and z ¼ 3þ i. In Figure 2(bottom-right), we choose n ¼ 20,
y ¼ �1� i, and z ¼ �3� i.

In Figure 3(top-left), we choose n ¼ 20, x ¼ 1, and y ¼ 1. In Figure 3(top-right), we choose
n ¼ 20, x ¼ �1, and y ¼ �1. In Figure 3(bottom-left), we choose n ¼ 20, x ¼ 1þ i, and
y ¼ 1þ i. In Figure 3(bottom-right), we choose n ¼ 20, x ¼ �1� i, and y ¼ �1� i.

Stacks of zeros of the 3-variable Hermite polynomialsHn x; y; zð Þ for 1 ≤n ≤ 20 from a 3-D structure
are presented (Figure 3). In Figure 4(top-left), we choose n ¼ 20, y ¼ 1, and z ¼ 3. In Figure 4
(top-right), we choose n ¼ 20, y ¼ �1, and z ¼ �3. In Figure 4(bottom-left), we choose n ¼ 20,
y ¼ 1þ i, and z ¼ 3þ i. In Figure 4(bottom-right), we choose n ¼ 20, y ¼ �1� i, and z ¼ �3� i.

Figure 1. The surface for the solution F t; x; y; zð Þ.
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Our numerical results for approximate solutions of real zeros of the 3-variable Hermite poly-
nomials Hn x; y; zð Þ are displayed (Tables 1–3).

The plot of real zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ for 1 ≤n ≤ 20 structure
are presented (Figure 5).

In Figure 5(left), we choose y ¼ 1 and z ¼ 3. In Figure 5(right), we choose y ¼ �1 and z ¼ �3.

Stacks of zeros of Hn x;�2; 4ð Þ for 1 ≤ n ≤ 40, forming a 3D structure are presented (Figure 6). In
Figure 6(top-left), we plot stacks of zeros of Hn x;�2; 4ð Þ for 1 ≤ n ≤ 20. In Figure 6(top-right),
we draw x and y axes but no z axis in three dimensions. In Figure 6(bottom-left), we draw y

Figure 2. Zeros of Hn x; y; zð Þ.
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and z axes but no x axis in three dimensions. In Figure 6(bottom-right), we draw x and z axes
but no y axis in three dimensions.

It is expected that Hn x; y; zð Þ, x∈C, y, z∈R, has Im xð Þ ¼ 0 reflection symmetry analytic com-
plex functions (see Figures 2–7). We observe a remarkable regular structure of the complex
roots of the 3-variable Hermite polynomials Hn x; y; zð Þ for y, z∈R. We also hope to verify a
remarkable regular structure of the complex roots of the 3-variable Hermite polynomials
Hn x; y; zð Þ for y, z∈R (Tables 1 and 2). Next, we calculated an approximate solution satisfying
Hn x; y; zð Þ ¼ 0, x∈C. The results are given in Tables 3 and 4.

Figure 3. Zeros of Hn x; y; zð Þ.
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The plot of real zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ for 1 ≤n ≤ 20 structure
are presented (Figure 7).

In Figure 7(left), we choose x ¼ 1 and y ¼ 2. In Figure 7(right), we choose x ¼ �1 and y ¼ �2.

Finally, we consider the more general problems. How many zeros does Hn x; y; zð Þ have?
We are not able to decide if Hn x; y; zð Þ ¼ 0 has n distinct solutions. We would also like to know
the number of complex zeros CHn x;y;zð Þ of Hn x; y; zð Þ, Im xð Þ 6¼ 0: Since n is the degree of the
polynomial Hn x; y; zð Þ, the number of real zeros RHn x;y;zð Þ lying on the real line Im xð Þ ¼ 0 is
then RHn x;y;zð Þ ¼ n� CHn x;y;zð Þ, where CHn x;y;zð Þ denotes complex zeros. See Tables 1 and 2 for

Figure 4. Stacks of zeros of Hn x; y; zð Þ, 1 ≤ n ≤ 20.
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Degree n Real zeros Complex zeros

1 1 0

2 0 2

3 1 2

4 2 2

5 1 4

6 2 4

7 3 4

8 2 6

9 3 6

10 4 6

11 3 8

12 4 8

13 3 10

14 4 10

Table 1. Numbers of real and complex zeros of Hn x; 1; 3ð Þ.

Degree n Real zeros Complex zeros

1 1 0

2 2 0

3 1 2

4 2 2

5 3 2

6 2 4

7 3 4

8 4 4

9 3 6

10 4 6

11 5 6

12 6 6

13 5 8

14 6 8

Table 2. Numbers of real and complex zeros of Hn x;�1;�3ð Þ.
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tabulated values of RHn x;y;zð Þ and CHn x;y;zð Þ. The author has no doubt that investigations along
these lines will lead to a new approach employing numerical method in the research field of
the 3-variable Hermite polynomials Hn x; y; zð Þ which appear in mathematics and physics. The
reader may refer to [2, 11, 13, 20] for the details.

Degree n x

1 0

2 —

3 � 1.8845

4 3.1286, �0.17159

5 �4.5385

6 �5.8490, �1.3476

7 �7.1098, �2.1887, �0.36350

8 �8.3241, �3.4645

9 �9.4984, � 4.6021, � 1.1118

10 �10.637, � 5.7212, � 1.5785, �0.61919

11 �11.745, � 6.8105, � 2.8680

12 �12.824, � 7.8743, � 3.8894, � 0.99513

Table 3. Approximate solutions of Hn x; 1; 3ð Þ ¼ 0, x∈R.

Figure 5. Real zeros of Hn x; y; zð Þ, 1 ≤ n ≤ 20.
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Figure 6. Stacks of zeros of Hn x;�2; 4ð Þ for 1 ≤ n ≤ 20.

degree n x

1 0

2 �1.4142, 1.4142

3 3.3681

4 0.16229, 5.0723

5 �1.3404, 1.4745, 6.6661

6 2.9754, 8.1678

7 0.31213, 4.3783, 9.5946
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In this chapter, we obtain some reproducing kernel spaces. We obtain reproducing kernel
functions in these spaces. These reproducing kernel functions are very important for
solving ordinary and partial differential equations.
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1. Introduction

Reproducing kernel spaces are special Hilbert spaces. These spaces satisfy the reproducing
property. There is an important relation between the order of the problems and the
reproducing kernel spaces.

2. Reproducing kernel spaces

In this section, we define some useful reproducing kernel functions [1–23].

Definition 2.1 (reproducing kernel). Let E be a nonempty set. A function K : E� E ! ℂ is
called a reproducing kernel of the Hilbert space H if and only if

a. K �; tð Þ∈H for all t∈E,

b. φ;K �; tð Þh i ¼ φ tð Þ for all t∈E and all φ∈H:

The last condition is called the reproducing property as the value of the function φ at the point
t is reproduced by the inner product of φ with K �; tð Þ:
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Then, we need some notation that we use in the development of this chapter. Next, we define
several spaces with inner product over those spaces. Thus, the space defined as

W3
2 0; 1½ � ¼ vjv; v0; v0 0 : 0; 1½ � ! R areabsolutely continuous; v 3ð Þ ∈ L2 0; 1½ �

n o
(1)

is a Hilbert space. The inner product and the norm in W3
2 0; 1½ � are defined by

v;ɡh iW3
2
¼
X2

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ð1
0
v 3ð Þ xð Þɡ 3ð Þ xð Þdx, v,ɡ∈W3

2 0; 1½ �,

∥v∥W3
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW3

2

q
, v∈W3

2 0; 1½ �,
(2)

respectively. Thus, the space W3
2 0; 1½ � is a reproducing kernel space, that is, for each fixed

y∈ 0; 1½ � and any v∈W3
2 0; 1½ �, there exists a function Ry such that

v yð Þ ¼ v xð Þ;Ry xð Þ� �
W3

2
, (3)

and similarly, we define the space

T3
2 0; 1½ � ¼

v∣v, v0, v0 0 : 0; 1½ � ! R areabsolutely continuous,

v00 ∈L2 0; 1½ �, v 0ð Þ ¼ 0, v0 0ð Þ ¼ 0

8><
>:

9>=
>;

(4)

The inner product and the norm in T3
2 0; 1½ � are defined by

v;ɡh iT3
2
¼
X2

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ð1
0
v000 tð Þɡ000 tð Þdt, v,ɡ∈T3

2 0; 1½ �,

∥v∥T3
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iT3

2

q
, v∈T3

2 0; 1½ �,
(5)

respectively. The space T3
2 0; 1½ � is a reproducing kernel Hilbert space, and its reproducing

kernel function rs is given by [1] as

rs ¼

1
4
s2t2 þ 1

12
s2t3 � 1

24
st4 þ 1

120
t5, t ≤ s,

1
4
s2t2 þ 1

12
s3t2 � 1

24
ts4 þ 1

120
s5, t > s,

8>>><
>>>:

(6)

and the space

G1
2 0; 1½ � ¼ vjv : 0; 1½ � ! R is absolutely continuous; v0 xð Þ∈ L2 0; 1½ �� �

, (7)

is a Hilbert space, where the inner product and the norm in G1
2 0; 1½ � are defined by
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v;ɡh iG1
2
¼ v ið Þ 0ð Þɡ ið Þ 0ð Þ þ

ð1
0
v0 xð Þɡ0 xð Þdx, v,ɡ∈G1

2 0; 1½ �,

∥v∥G1
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iG1

2

q
, v∈G1

2 0; 1½ �,
(8)

respectively. The space G1
2 0; 1½ � is a reproducing kernel space, and its reproducing kernel

function Qy is given by [1] as

Qy ¼
1þ x, x⩽ y
1þ y, x > y:

�
(9)

Theorem 1.1. The space W3
2 0; 1½ � is a complete reproducing kernel space whose reproducing kernel Ry

is given by

Ry xð Þ ¼

X6

i¼1

ci yð Þxi�1, x ≤ y,

X6

i¼1

di yð Þxi�1, x > y,

8>>>>><
>>>>>:

(10)

where

c1 yð Þ ¼ 1, c2 yð Þ ¼ y, c3 yð Þ ¼ y2

4
, c4 yð Þ ¼ y2

12
, c5 yð Þ ¼ � 1

24y
, c6 yð Þ ¼ 1

120
,

d1 yð Þ ¼ 1þ y5

120
, d2 yð Þ ¼ �y4

24
þ y, d3 yð Þ ¼ y2

4
þ y3

12
, d4 yð Þ ¼ d5 yð Þ ¼ d6 yð Þ ¼ 0:

Proof. Since

v;Ry
� �

W3
2
¼
X2

i¼0

v ið Þ 0ð ÞR ið Þ
y 0ð Þ þ

ð1
0
v 3ð Þ xð ÞR 3ð Þ

y xð Þdx, v, Ry ∈W3
2 0; 1½ ��

(11)

through iterative integrations by parts for (11), we have

v xð Þ;Ry xð Þ� �
W4

2
¼
X2

i¼0

v ið Þ 0ð Þ R ið Þ
y 0ð Þ � �1ð Þ 2�ið ÞR 5�ið Þ

y 0ð Þ
h i

þ
X2

i¼0

�1ð Þ 2�ið Þv ið Þ 1ð ÞR 5�ið Þ
y 1ð Þ þ

ð1
0
v xð ÞR 6ð Þ

y xð Þdx:
(12)

Note, the property of the reproducing kernel as

v xð Þ;Ry xð Þ� �
W3

2
¼ v yð Þ: (13)

If
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Ry 0ð Þ � R 5ð Þ
y 0ð Þ ¼ 0,

R0
y 0ð Þ þ R 4ð Þ

y 0ð Þ ¼ 0,

R00
y 0ð Þ � R‴

y 0ð Þ ¼ 0,

R 3ð Þ
y 1ð Þ ¼ 0,

R 4ð Þ
y 1ð Þ ¼ 0,

R 5ð Þ
y 1ð Þ ¼ 0,

(14)

Then by (11), we obtain

R 6ð Þ
y xð Þ ¼ δ x� yð Þ, (15)

when x 6¼ y,

R 6ð Þ
y xð Þ ¼ 0, (16)

therefore,

Ry xð Þ ¼

X6

i¼1

ci yð Þxi�1, x ≤ y,

X6

i¼1

di yð Þxi�1, x > y,

8>>>>><
>>>>>:

(17)

Since

R 6ð Þ
y xð Þ ¼ δ x� yð Þ, (18)

we have

∂kRyþ yð Þ ¼ ∂kRy� yð Þ, k ¼ 0; 1; 2; 3; 4,

∂5Ryþ yð Þ � ∂5Ry� yð Þ ¼ �1:
(19)

From (14) and (19), the unknown coefficients ci yð Þ and di yð Þ i ¼ 1; 2;…; 6ð Þ can be obtained.
Thus, Ry is given by

Ry ¼
1þ yxþ 1

4
y2x2 þ 1

12
y2x3 � 1

24
yx4 þ 1

120
x5, x ≤ y

1þ yxþ 1
4
y2x2 þ 1

12
y3x2 � 1

24
xy4 þ 1

120
y5, x > y:

8>><
>>:

(20)
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Now, we note that the space given in [1] as

W Ωð Þ ¼
v x; tð Þ∣ ∂4v

∂x2∂t2
, is completely continuous in Ω ¼ 0; 1½ � � 0; 1½ �,

∂6v
∂x3∂t3

∈ L2 Ωð Þ, v x; 0ð Þ ¼ 0,
∂v x; 0ð Þ

∂t
¼ 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(21)

is a binary reproducing kernel Hilbert space. The inner product and the norm in W Ωð Þ are
defined by

v x; tð Þ;ɡ x; tð Þh iW ¼
X2

i¼0

ð1
0

∂3

∂t3
∂i

∂xi
v 0; tð Þ ∂

3

∂t3
∂i

∂xi
ɡð0; tÞ

" #
dt

þ
X2

j¼0

∂j

∂tj
v x; 0ð Þ; ∂

j

∂tj
ɡðx; 0Þ

* +

W3
2

þ
ð1
0

ð1
0

∂3

∂x3
∂3

∂t3
v x; tð Þ ∂3

∂x3
∂3

∂t3
ɡðx; tÞ

� �
dxdt,

∥v∥w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW

q
, v∈W Ωð Þ,

(22)

respectively.

Theorem 1.2. The W Ωð Þ is a reproducing kernel space, and its reproducing kernel function is

K y;sð Þ ¼ Ryrs (23)

such that for any v∈W Ωð Þ,

v y; sð Þ ¼ v x; tð Þ;K y;sð Þ x; tð Þ� �
W 0

K y;sð Þ x; tð Þ ¼ K x;tð Þ y; sð Þ: (24)

Similarly, the space

cW Ωð Þ ¼ v x; tð Þjv x; tð Þ is completely continuous in Ω ¼ 0; 1½ � � 0; 1½ �; ∂
2v

∂x∂t
∈L2 Ωð Þ

� �
(25)

is a binary reproducing kernel Hilbert space. The inner product and the norm incW Ωð Þ are defined by
[1] as
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is a binary reproducing kernel Hilbert space. The inner product and the norm incW Ωð Þ are defined by
[1] as
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v x; tð Þ;ɡ x; tð Þh icW ¼
ð1
0

∂
∂t
v 0; tð Þ ∂

∂t
ɡð0; tÞ

� �
dtþ v x; 0ð Þ;ɡ x; 0ð Þh iW1

2

þ
ð1
0

ð1
0

∂
∂x

∂
∂t
v x; tð Þ ∂

∂x
∂
∂t
ɡðx; tÞ

� �
dxdt,

∥v∥cW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh icW

q
, v∈cW Ωð Þ,

(26)

respectively.cW Ωð Þ is a reproducing kernel space, and its reproducing kernel function G y;sð Þ is

G y;sð Þ ¼ QyQs: (27)

Definition 1.3.

W3
2 0; 1½ � ¼

u xð Þ∣u xð Þ, u0 xð Þ, u0 0 xð Þ, areabsolutely continuous in 0; 1½ �

u 3ð Þ xð Þ∈L2 0; 1½ �, x∈ 0; 1½ �, u 0ð Þ ¼ 0, u 1ð Þ ¼ 0:

8><
>:

9>=
>;

The inner product and the norm in W3
2 0; 1½ � are defined, respectively, by

u xð Þ;ɡ xð Þh iW3
2
¼
X2

i¼0

u ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ð1
0
u 3ð Þ xð Þɡ 3ð Þ xð Þdx, u xð Þ,ɡ xð Þ∈W3

2 0; 1½ �

and

∥u∥W3
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; uh iW3

2

q
, u∈W3

2 0; 1½ �:

The space W3
2 0; 1½ � is a reproducing kernel space, that is, for each fixed y∈ 0; 1½ � and any

u xð Þ∈W3
2 0; 1½ �, there exists a function Ry xð Þ such that

u yð Þ ¼ u xð Þ;Ry xð Þ� �
W3

2
:

Definition 1.4.

W1
2 0; 1½ � ¼

u xð Þ∣u xð Þ, is absolutely continuous in 0; 1½ �

u0 xð Þ∈L2 0; 1½ �, x∈ 0; 1½ �,

8><
>:

9>=
>;

The inner product and the norm in W1
2 0; 1½ � are defined, respectively, by
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u xð Þ;ɡ xð Þh iW1
2
¼ u 0ð Þɡ 0ð Þ þ

ð1
0
u0 xð Þɡ0 xð Þdx, u xð Þ,ɡ xð Þ∈W1

2 0; 1½ �, (28)

and

∥u∥W1
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; uh iW1

2

q
, u∈W1

2 0; 1½ �: (29)

The space W1
2 0; 1½ � is a reproducing kernel space, and its reproducing kernel function Tx yð Þ is

given by

Tx yð Þ ¼ 1þ x, x ≤ y,
1þ y, x > y:

�
(30)

Theorem 1.5. The space W3
2 0; 1½ � is a complete reproducing kernel space, and its reproducing kernel

function Ry xð Þ can be denoted by

Ry xð Þ ¼

X6

i¼1

ci yð Þxi�1, x ≤ y,

X6

i¼1

di yð Þxi�1, x > y,

8>>>>><
>>>>>:

where

c1 yð Þ ¼ 0,

c2 yð Þ ¼ 5
516

y4 � 1
156

y5 � 5
26

y2 � 5
78

y3 þ 3
13

y,

c3 yð Þ ¼ 5
624

y4 � 1
624

y5 þ 21
104

y2 � 5
312

y3 � 5
26

y,

c4 yð Þ ¼ 5
1872

y4 � 1
1872

y5 þ 7
104

y2 � 5
936

y3 � 5
78

y,

c5 yð Þ ¼ � 5
3744

y4 þ 1
3744

y5 þ 5
624

y2 þ 5
1872

y3 � 1
104

y,

c6 yð Þ ¼ 1
120

þ 1
3744

y4 � 1
18720

y5 � 1
624

y2 � 1
1872

y3 � 1
156

y,

d1 yð Þ ¼ 1
120

y5,

d2 yð Þ ¼ � 1
104

y4 � 1
156

y5 � 5
26

y2 � 5
78

y3 þ 3
13

y,

d3 yð Þ ¼ 5
624

y4 � 1
624

y5 þ 21
104

y2 þ 7
104

y3 � 5
26

y,

d4 yð Þ ¼ 5
1872

y4 � 1
1872

y5 � 5
312

y2 � 5
936

y3 � 5
78

y,

d5 yð Þ ¼ � 5
3744

y4 þ 1
3744

y5 þ 5
624

y2 þ 5
1872

y3 þ 5
156

y,

d6 yð Þ ¼ � 1
156

yþ 1
3744

y4 � 1
18720

y5 � 1
624

y2 � 1
1872

y3:
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v x; tð Þ;ɡ x; tð Þh icW ¼
ð1
0

∂
∂t
v 0; tð Þ ∂

∂t
ɡð0; tÞ

� �
dtþ v x; 0ð Þ;ɡ x; 0ð Þh iW1

2

þ
ð1
0

ð1
0

∂
∂x

∂
∂t
v x; tð Þ ∂

∂x
∂
∂t
ɡðx; tÞ

� �
dxdt,

∥v∥cW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh icW

q
, v∈cW Ωð Þ,

(26)

respectively.cW Ωð Þ is a reproducing kernel space, and its reproducing kernel function G y;sð Þ is

G y;sð Þ ¼ QyQs: (27)

Definition 1.3.

W3
2 0; 1½ � ¼

u xð Þ∣u xð Þ, u0 xð Þ, u0 0 xð Þ, areabsolutely continuous in 0; 1½ �

u 3ð Þ xð Þ∈L2 0; 1½ �, x∈ 0; 1½ �, u 0ð Þ ¼ 0, u 1ð Þ ¼ 0:

8><
>:

9>=
>;

The inner product and the norm in W3
2 0; 1½ � are defined, respectively, by

u xð Þ;ɡ xð Þh iW3
2
¼
X2

i¼0

u ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ð1
0
u 3ð Þ xð Þɡ 3ð Þ xð Þdx, u xð Þ,ɡ xð Þ∈W3

2 0; 1½ �

and

∥u∥W3
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; uh iW3

2

q
, u∈W3

2 0; 1½ �:

The space W3
2 0; 1½ � is a reproducing kernel space, that is, for each fixed y∈ 0; 1½ � and any

u xð Þ∈W3
2 0; 1½ �, there exists a function Ry xð Þ such that

u yð Þ ¼ u xð Þ;Ry xð Þ� �
W3

2
:

Definition 1.4.

W1
2 0; 1½ � ¼

u xð Þ∣u xð Þ, is absolutely continuous in 0; 1½ �

u0 xð Þ∈L2 0; 1½ �, x∈ 0; 1½ �,

8><
>:

9>=
>;

The inner product and the norm in W1
2 0; 1½ � are defined, respectively, by
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u xð Þ;ɡ xð Þh iW1
2
¼ u 0ð Þɡ 0ð Þ þ

ð1
0
u0 xð Þɡ0 xð Þdx, u xð Þ,ɡ xð Þ∈W1

2 0; 1½ �, (28)

and

∥u∥W1
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; uh iW1

2

q
, u∈W1

2 0; 1½ �: (29)

The space W1
2 0; 1½ � is a reproducing kernel space, and its reproducing kernel function Tx yð Þ is

given by

Tx yð Þ ¼ 1þ x, x ≤ y,
1þ y, x > y:

�
(30)

Theorem 1.5. The space W3
2 0; 1½ � is a complete reproducing kernel space, and its reproducing kernel

function Ry xð Þ can be denoted by

Ry xð Þ ¼

X6

i¼1

ci yð Þxi�1, x ≤ y,

X6

i¼1

di yð Þxi�1, x > y,

8>>>>><
>>>>>:

where

c1 yð Þ ¼ 0,

c2 yð Þ ¼ 5
516

y4 � 1
156

y5 � 5
26

y2 � 5
78

y3 þ 3
13

y,

c3 yð Þ ¼ 5
624

y4 � 1
624

y5 þ 21
104

y2 � 5
312

y3 � 5
26

y,

c4 yð Þ ¼ 5
1872

y4 � 1
1872

y5 þ 7
104

y2 � 5
936

y3 � 5
78

y,

c5 yð Þ ¼ � 5
3744

y4 þ 1
3744

y5 þ 5
624

y2 þ 5
1872

y3 � 1
104

y,

c6 yð Þ ¼ 1
120

þ 1
3744

y4 � 1
18720

y5 � 1
624

y2 � 1
1872

y3 � 1
156

y,

d1 yð Þ ¼ 1
120

y5,

d2 yð Þ ¼ � 1
104

y4 � 1
156

y5 � 5
26

y2 � 5
78

y3 þ 3
13

y,

d3 yð Þ ¼ 5
624

y4 � 1
624

y5 þ 21
104

y2 þ 7
104

y3 � 5
26

y,

d4 yð Þ ¼ 5
1872

y4 � 1
1872

y5 � 5
312

y2 � 5
936

y3 � 5
78

y,

d5 yð Þ ¼ � 5
3744

y4 þ 1
3744

y5 þ 5
624

y2 þ 5
1872

y3 þ 5
156

y,

d6 yð Þ ¼ � 1
156

yþ 1
3744

y4 � 1
18720

y5 � 1
624

y2 � 1
1872

y3:
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Proof. We have

u xð Þ;Ry xð Þ� �
W3

2
¼

X2

i¼0

u ið Þ 0ð ÞR ið Þ
y 0ð Þ

þ Ð 10 u 3ð Þ xð ÞR 3ð Þ
y xð Þdx:

(31)

Through several integrations by parts for (31), we have

u xð Þ;Ry xð Þ� �
W6

2
¼

X2

i¼0

u ið Þ 0ð Þ R ið Þ
y 0ð Þ � �1ð Þ 2�ið ÞR 5�ið Þ

y 0ð Þ
h i

þ
X2

i¼0

�1ð Þ 2�ið Þu ið Þ 1ð ÞR 5�ið Þ
y 1ð Þ

� Ð 10 u xð ÞR 6ð Þ
y xð Þdx:

(32)

Note that property of the reproducing kernel

u xð Þ;Ry xð Þ� �
W3

2
¼ u yð Þ,

If

R
00
y 0ð Þ � R 3ð Þ

y 0ð Þ ¼ 0,

R
0
y 0ð Þ þ R 4ð Þ

y 0ð Þ ¼ 0,

R 3ð Þ
y 1ð Þ ¼ 0,

R 4ð Þ
y 1ð Þ ¼ 0,

8>>>>>>><
>>>>>>>:

(33)

then by (31), we have the following equation:

�R 6ð Þ
y xð Þ ¼ δ x� yð Þ,

when x 6¼ y,

R 6ð Þ
y xð Þ ¼ 0,

therefore,

Ry xð Þ ¼

X6

i¼1

ci yð Þxi�1, x ≤ y,

X6

i¼1

di yð Þxi�1, x > y,

8>>>>>><
>>>>>>:

Differential Equations - Theory and Current Research106

Since

�R 6ð Þ
y xð Þ ¼ δ x� yð Þ,

we have

∂kRyþ yð Þ ¼ ∂kRy� yð Þ, k ¼ 0; 1; 2; 3; 4, (34)

and

∂5Ryþ yð Þ � ∂5Ry� yð Þ ¼ �1: (35)

Since Ry xð Þ∈W3
2 0; 1½ �, it follows that

Ry 0ð Þ ¼ 0, Ry 1ð Þ ¼ 0, (36)

From (33)–(36), the unknown coefficients ci yð Þ and di yð Þ i ¼ 1; 2;…; 6ð Þ can be obtained. Thus
Ry xð Þ is given by

Ry xð Þ ¼

5
516

xy4 � 1
156

xy5 � 5
26

xy2 � 5
78

xy3 þ 3
13

xyþ 5
624

x2y4 � 1
624

x2y5 þ 21
104

x2y2

� 5
312

x2y3 � 5
26

x2yþ 5
1872

x3y4 � 1
1872

x3y5 þ 7
104

x3y2 � 5
936

x3y3 � 5
78

x3y

� 5
3744

x4y4 þ 1
3744

x4y5 þ 5
624

x4y2 þ 5
1872

x4y3 � 1
104

x4y� 1
156

x5yþ 1
3744

x5y4

� 1
18720

x5y5 � 1
624

x5y2 � 1
1872

x5y3, x ≤ y

5
516

yx4 � 1
156

yx5 � 5
26

yx2 � 5
78

yx3 þ 3
13

xyþ 5
624

y2x4 � 1
624

y2x5 þ 21
104

x2y2

� 5
312

y2x3 � 5
26

y2xþ 5
1872

y3x4 � 1
1872

y3x5 þ 7
104

y3x2 � 5
936

x3y3 � 5
78

y3x

� 5
3744

x4y4 þ 1
3744

y4x5 þ 5
624

y4x2 þ 5
1872

y4x3 � 1
104

y4x� 1
156

y5xþ 1
3744

y5x4

� 1
18720

x5y5 � 1
624

y5x2 � 1
1872

y5x3, x > y

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

W4
2 0; 1½ � ¼

v xð Þ∣v xð Þ, v0 xð Þ, v00 xð Þ, v000 xð Þ

areabsolutely continuous in 0; 1½ �,

v 4ð Þ xð Þ∈ L2 0; 1½ �, x∈ 0; 1½ �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(37)

The inner product and the norm in W4
2 0; 1½ � are defined, respectively, by
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Proof. We have

u xð Þ;Ry xð Þ� �
W3

2
¼

X2

i¼0

u ið Þ 0ð ÞR ið Þ
y 0ð Þ

þ Ð 10 u 3ð Þ xð ÞR 3ð Þ
y xð Þdx:

(31)

Through several integrations by parts for (31), we have

u xð Þ;Ry xð Þ� �
W6

2
¼

X2

i¼0

u ið Þ 0ð Þ R ið Þ
y 0ð Þ � �1ð Þ 2�ið ÞR 5�ið Þ

y 0ð Þ
h i

þ
X2

i¼0

�1ð Þ 2�ið Þu ið Þ 1ð ÞR 5�ið Þ
y 1ð Þ

� Ð 10 u xð ÞR 6ð Þ
y xð Þdx:

(32)

Note that property of the reproducing kernel

u xð Þ;Ry xð Þ� �
W3

2
¼ u yð Þ,

If

R
00
y 0ð Þ � R 3ð Þ

y 0ð Þ ¼ 0,

R
0
y 0ð Þ þ R 4ð Þ

y 0ð Þ ¼ 0,

R 3ð Þ
y 1ð Þ ¼ 0,

R 4ð Þ
y 1ð Þ ¼ 0,

8>>>>>>><
>>>>>>>:

(33)

then by (31), we have the following equation:

�R 6ð Þ
y xð Þ ¼ δ x� yð Þ,

when x 6¼ y,

R 6ð Þ
y xð Þ ¼ 0,

therefore,

Ry xð Þ ¼

X6

i¼1

ci yð Þxi�1, x ≤ y,

X6

i¼1

di yð Þxi�1, x > y,

8>>>>>><
>>>>>>:
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Since

�R 6ð Þ
y xð Þ ¼ δ x� yð Þ,

we have

∂kRyþ yð Þ ¼ ∂kRy� yð Þ, k ¼ 0; 1; 2; 3; 4, (34)

and

∂5Ryþ yð Þ � ∂5Ry� yð Þ ¼ �1: (35)

Since Ry xð Þ∈W3
2 0; 1½ �, it follows that

Ry 0ð Þ ¼ 0, Ry 1ð Þ ¼ 0, (36)

From (33)–(36), the unknown coefficients ci yð Þ and di yð Þ i ¼ 1; 2;…; 6ð Þ can be obtained. Thus
Ry xð Þ is given by

Ry xð Þ ¼

5
516

xy4 � 1
156

xy5 � 5
26

xy2 � 5
78

xy3 þ 3
13

xyþ 5
624

x2y4 � 1
624

x2y5 þ 21
104

x2y2

� 5
312

x2y3 � 5
26

x2yþ 5
1872

x3y4 � 1
1872

x3y5 þ 7
104

x3y2 � 5
936

x3y3 � 5
78

x3y

� 5
3744

x4y4 þ 1
3744

x4y5 þ 5
624

x4y2 þ 5
1872

x4y3 � 1
104

x4y� 1
156

x5yþ 1
3744

x5y4

� 1
18720

x5y5 � 1
624

x5y2 � 1
1872

x5y3, x ≤ y

5
516

yx4 � 1
156

yx5 � 5
26

yx2 � 5
78

yx3 þ 3
13

xyþ 5
624

y2x4 � 1
624

y2x5 þ 21
104

x2y2

� 5
312

y2x3 � 5
26

y2xþ 5
1872

y3x4 � 1
1872

y3x5 þ 7
104

y3x2 � 5
936

x3y3 � 5
78

y3x

� 5
3744

x4y4 þ 1
3744

y4x5 þ 5
624

y4x2 þ 5
1872

y4x3 � 1
104

y4x� 1
156

y5xþ 1
3744

y5x4

� 1
18720

x5y5 � 1
624

y5x2 � 1
1872

y5x3, x > y

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

W4
2 0; 1½ � ¼

v xð Þ∣v xð Þ, v0 xð Þ, v00 xð Þ, v000 xð Þ

areabsolutely continuous in 0; 1½ �,

v 4ð Þ xð Þ∈ L2 0; 1½ �, x∈ 0; 1½ �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(37)

The inner product and the norm in W4
2 0; 1½ � are defined, respectively, by
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v xð Þ;ɡ xð Þh iW4
2
¼
X3

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ð1
0
v 4ð Þ xð Þɡ 4ð Þ xð Þdx, v xð Þ,ɡ xð Þ∈W4

2 0; 1½ �,

∥v∥W4
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW4

2

q
, v∈W4

2 0; 1½ �:
(38)

The space W4
2 0; 1½ � is a reproducing kernel space, that is, for each fixed.

y∈ 0; 1½ � and any v xð Þ∈W4
2 0; 1½ �, there exists a function Ry xð Þ such that

v yð Þ ¼ v xð Þ;Ry xð Þ� �
W4

2
(39)

Similarly, we define the space

W2
2 0;T½ � ¼

v tð Þ∣v tð Þ, v0 tð Þ

areabsolutely continuous in 0;T½ �,

v00 tð Þ∈L2 0;T½ �, t∈ 0;T½ �, v 0ð Þ ¼ 0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(40)

The inner product and the norm in W2
2 0;T½ � are defined, respectively, by

v tð Þ;ɡ tð Þh iW2
2
¼
X1

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ðT
0
v00 tð Þɡ00 tð Þdt, v tð Þ,ɡ tð Þ∈W2

2 0;T½ �,

∥v∥W1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW2

2

q
, v∈W2

2 0;T½ �:
(41)

Thus, the spaceW2
2 0;T½ � is also a reproducing kernel space, and its reproducing kernel function

rs tð Þ can be given by

rs tð Þ ¼
stþ s

2
t2 � 1

6
t3, t ≤ s,

stþ t
2
s2 � 1

6
s3, t > s,

8><
>:

(42)

and the space

W2
2 0; 1½ � ¼

v xð Þ∣v xð Þ, v0 xð Þ

areabsolutely continuous in 0; 1½ �,

v00 xð Þ∈ L2 0; 1½ �, x∈ 0; 1½ �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(43)
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where the inner product and the norm in W2
2 0; 1½ � are defined, respectively, by

v tð Þ;ɡ tð Þh iW2
2
¼
X1

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ðT
0
v00 tð Þɡ00 tð Þdt, v tð Þ,ɡ tð Þ∈W2

2 0; 1½ �,

∥v∥W2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW2

2

q
, v∈W2

2 0; 1½ �:
(44)

The space W2
2 0; 1½ � is a reproducing kernel space, and its reproducing kernel function Qy xð Þ is

given by

Qy xð Þ ¼
1þ xyþ y

2
x2 � 1

6
x3, x ≤ y,

1þ xyþ x
2
y2 � 1

6
y3, x > y:

8><
>:

(45)

Similarly, the space W1
2 0;T½ � is defined by

W1
2 0;T½ � ¼

v tð Þ∣v tð Þ is absolutely continuous in 0;T½ �,

v tð Þ∈ L2 0;T½ �, t∈ 0;T½ �

8><
>:

9>=
>;

(46)

The inner product and the norm in W1
2 0;T½ � are defined, respectively, by

v tð Þ;ɡ tð Þh iW1
2
¼ v 0ð Þɡ 0ð Þ þ Ð T0 v0 tð Þɡ0 tð Þdt, v tð Þ,ɡ tð Þ∈W1

2 0;T½ �,
∥v∥W1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW1

2

q
, v∈W1

2 0;T½ �:
(47)

The space W1
2 0;T½ � is a reproducing kernel space, and its reproducing kernel function qs tð Þ is

given by

qs tð Þ ¼
1þ t, t ≤ s,
1þ s, t > s:

�
(48)

Further, we define the space W Ωð Þ as

W Ωð Þ ¼

v x; tð Þ∣ ∂4v
∂x3∂t

, is completely continuous,

inΩ ¼ 0; 1½ � � 0;T½ �,

∂6v
∂x4∂t2

∈ L2 Ωð Þ, v x; 0ð Þ ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(49)

and the inner product and the norm in W Ωð Þ are defined, respectively, by
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v xð Þ;ɡ xð Þh iW4
2
¼
X3

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ð1
0
v 4ð Þ xð Þɡ 4ð Þ xð Þdx, v xð Þ,ɡ xð Þ∈W4

2 0; 1½ �,

∥v∥W4
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW4

2

q
, v∈W4

2 0; 1½ �:
(38)

The space W4
2 0; 1½ � is a reproducing kernel space, that is, for each fixed.

y∈ 0; 1½ � and any v xð Þ∈W4
2 0; 1½ �, there exists a function Ry xð Þ such that

v yð Þ ¼ v xð Þ;Ry xð Þ� �
W4

2
(39)

Similarly, we define the space

W2
2 0;T½ � ¼

v tð Þ∣v tð Þ, v0 tð Þ

areabsolutely continuous in 0;T½ �,

v00 tð Þ∈L2 0;T½ �, t∈ 0;T½ �, v 0ð Þ ¼ 0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(40)

The inner product and the norm in W2
2 0;T½ � are defined, respectively, by

v tð Þ;ɡ tð Þh iW2
2
¼
X1

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ðT
0
v00 tð Þɡ00 tð Þdt, v tð Þ,ɡ tð Þ∈W2

2 0;T½ �,

∥v∥W1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW2

2

q
, v∈W2

2 0;T½ �:
(41)

Thus, the spaceW2
2 0;T½ � is also a reproducing kernel space, and its reproducing kernel function

rs tð Þ can be given by

rs tð Þ ¼
stþ s

2
t2 � 1

6
t3, t ≤ s,

stþ t
2
s2 � 1

6
s3, t > s,

8><
>:

(42)

and the space

W2
2 0; 1½ � ¼

v xð Þ∣v xð Þ, v0 xð Þ

areabsolutely continuous in 0; 1½ �,

v00 xð Þ∈ L2 0; 1½ �, x∈ 0; 1½ �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(43)
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where the inner product and the norm in W2
2 0; 1½ � are defined, respectively, by

v tð Þ;ɡ tð Þh iW2
2
¼
X1

i¼0

v ið Þ 0ð Þɡ ið Þ 0ð Þ þ
ðT
0
v00 tð Þɡ00 tð Þdt, v tð Þ,ɡ tð Þ∈W2

2 0; 1½ �,

∥v∥W2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW2

2

q
, v∈W2

2 0; 1½ �:
(44)

The space W2
2 0; 1½ � is a reproducing kernel space, and its reproducing kernel function Qy xð Þ is

given by

Qy xð Þ ¼
1þ xyþ y

2
x2 � 1

6
x3, x ≤ y,

1þ xyþ x
2
y2 � 1

6
y3, x > y:

8><
>:

(45)

Similarly, the space W1
2 0;T½ � is defined by

W1
2 0;T½ � ¼

v tð Þ∣v tð Þ is absolutely continuous in 0;T½ �,

v tð Þ∈ L2 0;T½ �, t∈ 0;T½ �

8><
>:

9>=
>;

(46)

The inner product and the norm in W1
2 0;T½ � are defined, respectively, by

v tð Þ;ɡ tð Þh iW1
2
¼ v 0ð Þɡ 0ð Þ þ Ð T0 v0 tð Þɡ0 tð Þdt, v tð Þ,ɡ tð Þ∈W1

2 0;T½ �,
∥v∥W1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW1

2

q
, v∈W1

2 0;T½ �:
(47)

The space W1
2 0;T½ � is a reproducing kernel space, and its reproducing kernel function qs tð Þ is

given by

qs tð Þ ¼
1þ t, t ≤ s,
1þ s, t > s:

�
(48)

Further, we define the space W Ωð Þ as

W Ωð Þ ¼

v x; tð Þ∣ ∂4v
∂x3∂t

, is completely continuous,

inΩ ¼ 0; 1½ � � 0;T½ �,

∂6v
∂x4∂t2

∈ L2 Ωð Þ, v x; 0ð Þ ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(49)

and the inner product and the norm in W Ωð Þ are defined, respectively, by
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v x; tð Þ;ɡ x; tð Þh iW ¼
X3

i¼0

ðT
0

∂2

∂t2
∂i

∂xi
v 0; tð Þ ∂

2

∂t2
∂i

∂xi
ɡð0; tÞ

" #
dt

þ
X1

j¼0

∂j

∂tj
v x; 0ð Þ; ∂

j

∂tj
ɡðx; 0Þ

* +

W4
2

þ
ðT
0

ð1
0

∂4

∂x4
∂2

∂t2
v x; tð Þ ∂4

∂x4
∂2

∂t2
ɡðx; tÞ

� �
dxdt,

∥v∥W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW

q
, v∈W Ωð Þ:

(50)

Now, we have the following theorem:

Theorem 1.6. The space W4
2 0; 1½ � is a complete reproducing kernel space, and its reproducing kernel

function Ry xð Þ can be denoted by

Ry xð Þ ¼

X8

i¼1

ci yð Þxi�1, x ≤ y,

X8

i¼1

di yð Þxi�1, x > y,

8>>>>><
>>>>>:

(51)

where

c1 yð Þ ¼ 1, c2 yð Þ ¼ y, c3 yð Þ ¼ 1
4
y2,

c4 yð Þ ¼ 1
36

y3, c5 yð Þ ¼ 1
144

y3, c6 yð Þ ¼ � 1
240

y2,

c7 yð Þ ¼ 1
720

y, c8 yð Þ ¼ � 1
5040

,

d1 yð Þ ¼ 1� 1
5040

y7, d2 yð Þ ¼ yþ 1
720

y6,

d3 yð Þ ¼ 1
4
y2 � 1

240
y5, d4 yð Þ ¼ 1

36
y3 þ 1

144
y4,

d5 yð Þ ¼ 0, d6 yð Þ ¼ 0, d7 yð Þ ¼ 0, d8 yð Þ ¼ 0:

(52)

Proof. Since

v xð Þ;Ry xð Þ� �
W4

2
¼
X3

i¼0

v ið Þ 0ð ÞR ið Þ
y 0ð Þ þ

ð1
0
v 4ð Þ xð ÞR 4ð Þ

y xð Þdx,

v xð Þ;Ry xð Þ∈W4
2 0; 1½ �� � (53)

through iterative integrations by parts for (53), we have
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v xð Þ;Ry xð Þ� �
W4

2
¼

X3

i¼0

v ið Þ 0ð Þ R ið Þ
y 0ð Þ � �1ð Þ 3�ið ÞR 7�ið Þ

y 0ð Þ
h i

þ
X3

i¼0

�1ð Þ 3�ið Þv ið Þ 1ð ÞR 7�ið Þ
y 1ð Þ

þ Ð 10 v xð ÞR 8ð Þ
y xð Þdx:

(54)

Note that property of the reproducing kernel

v xð Þ;Ry xð Þ� �
W4

2
¼ v yð Þ: (55)

If

Ry 0ð Þ þ R 7ð Þ
y 0ð Þ ¼ 0,

R0
y 0ð Þ � R 6ð Þ

y 0ð Þ ¼ 0,

R00
y 0ð Þ þ R 5ð Þ

y 0ð Þ ¼ 0,

R‴
y 0ð Þ � R 4ð Þ

y 0ð Þ ¼ 0,

R 4ð Þ
y 1ð Þ ¼ 0,

R 5ð Þ
y 1ð Þ ¼ 0,

R 6ð Þ
y 1ð Þ ¼ 0,

R 7ð Þ
y 1ð Þ ¼ 0,

(56)

then by (54), we obtain the following equation:

R 8ð Þ
y xð Þ ¼ δ x� yð Þ, (57)

when x 6¼ y,

R 8ð Þ
y xð Þ ¼ 0; (58)

therefore,

Ry xð Þ ¼

X8

i¼1

ci yð Þxi�1, x ≤ y,

X8

i¼1

di yð Þxi�1, x > y:

8>>>>><
>>>>>:

(59)

Since
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v x; tð Þ;ɡ x; tð Þh iW ¼
X3

i¼0

ðT
0

∂2

∂t2
∂i

∂xi
v 0; tð Þ ∂

2

∂t2
∂i

∂xi
ɡð0; tÞ

" #
dt

þ
X1

j¼0

∂j

∂tj
v x; 0ð Þ; ∂

j

∂tj
ɡðx; 0Þ

* +

W4
2

þ
ðT
0

ð1
0

∂4

∂x4
∂2

∂t2
v x; tð Þ ∂4

∂x4
∂2

∂t2
ɡðx; tÞ

� �
dxdt,

∥v∥W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v; vh iW

q
, v∈W Ωð Þ:

(50)

Now, we have the following theorem:

Theorem 1.6. The space W4
2 0; 1½ � is a complete reproducing kernel space, and its reproducing kernel

function Ry xð Þ can be denoted by

Ry xð Þ ¼

X8

i¼1

ci yð Þxi�1, x ≤ y,

X8

i¼1

di yð Þxi�1, x > y,

8>>>>><
>>>>>:

(51)

where

c1 yð Þ ¼ 1, c2 yð Þ ¼ y, c3 yð Þ ¼ 1
4
y2,

c4 yð Þ ¼ 1
36

y3, c5 yð Þ ¼ 1
144

y3, c6 yð Þ ¼ � 1
240

y2,

c7 yð Þ ¼ 1
720

y, c8 yð Þ ¼ � 1
5040

,

d1 yð Þ ¼ 1� 1
5040

y7, d2 yð Þ ¼ yþ 1
720

y6,

d3 yð Þ ¼ 1
4
y2 � 1

240
y5, d4 yð Þ ¼ 1

36
y3 þ 1

144
y4,

d5 yð Þ ¼ 0, d6 yð Þ ¼ 0, d7 yð Þ ¼ 0, d8 yð Þ ¼ 0:

(52)

Proof. Since

v xð Þ;Ry xð Þ� �
W4

2
¼
X3

i¼0

v ið Þ 0ð ÞR ið Þ
y 0ð Þ þ

ð1
0
v 4ð Þ xð ÞR 4ð Þ

y xð Þdx,

v xð Þ;Ry xð Þ∈W4
2 0; 1½ �� � (53)

through iterative integrations by parts for (53), we have
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v xð Þ;Ry xð Þ� �
W4

2
¼

X3

i¼0

v ið Þ 0ð Þ R ið Þ
y 0ð Þ � �1ð Þ 3�ið ÞR 7�ið Þ

y 0ð Þ
h i

þ
X3

i¼0

�1ð Þ 3�ið Þv ið Þ 1ð ÞR 7�ið Þ
y 1ð Þ

þ Ð 10 v xð ÞR 8ð Þ
y xð Þdx:

(54)

Note that property of the reproducing kernel

v xð Þ;Ry xð Þ� �
W4

2
¼ v yð Þ: (55)

If

Ry 0ð Þ þ R 7ð Þ
y 0ð Þ ¼ 0,

R0
y 0ð Þ � R 6ð Þ

y 0ð Þ ¼ 0,

R00
y 0ð Þ þ R 5ð Þ

y 0ð Þ ¼ 0,

R‴
y 0ð Þ � R 4ð Þ

y 0ð Þ ¼ 0,

R 4ð Þ
y 1ð Þ ¼ 0,

R 5ð Þ
y 1ð Þ ¼ 0,

R 6ð Þ
y 1ð Þ ¼ 0,

R 7ð Þ
y 1ð Þ ¼ 0,

(56)

then by (54), we obtain the following equation:

R 8ð Þ
y xð Þ ¼ δ x� yð Þ, (57)

when x 6¼ y,

R 8ð Þ
y xð Þ ¼ 0; (58)

therefore,

Ry xð Þ ¼

X8

i¼1

ci yð Þxi�1, x ≤ y,

X8

i¼1

di yð Þxi�1, x > y:

8>>>>><
>>>>>:

(59)

Since
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R 8ð Þ
y xð Þ ¼ δ x� yð Þ, (60)

we have

∂kRyþ yð Þ ¼ ∂kRy� yð Þ, k ¼ 0; 1; 2; 3; 4; 5; 6, (61)

∂7Ryþ yð Þ � ∂7Ry� yð Þ ¼ 1: (62)

From (56)–(62), the unknown coefficients ci yð Þ ve di yð Þ i ¼ 1; 2;…; 8ð Þ can be obtained. Thus,
Ry xð Þ is given by

Ry xð Þ ¼

1þ yxþ 1
4
y2x2 þ 1

36
y3x3 þ 1

144
y3x4

� 1
240

y2x5 þ 1
720

yx6 � 1
5040

x7, x ≤ y,

1þ xyþ 1
4
x2y2 þ 1

36
x3y3 þ 1

144
x3y4

� 1
240

x2y5 þ 1
720

xy6 � 1
5040

y7, x > y:

0
BBBBBBBBBBBBBB@

(63)
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Abstract

The Ginzburg-Landau equation has been applied widely in many fields. It describes the
amplitude evolution of instability waves in a large variety of dissipative systems in fluid
mechanics, which are close to criticality. In this chapter, we develop a local discontinuous
Galerkin method to solve the nonlinear Ginzburg-Landau equation. The nonlinear
Ginzburg-Landau problem has been expressed as a system of low-order differential equa-
tions. Moreover, we prove stability and optimal order of convergence O hNþ1� �

for
Ginzburg-Landau equation where h and N are the space step size and polynomial degree,
respectively. The numerical experiments confirm the theoretical results of the method.
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1. Introduction

The Ginzburg-Landau equation has arisen as a suitable model in physics community, which
describes a vast variety of phenomena from nonlinear waves to second-order phase transi-
tions, from superconductivity, superfluidity, and Bose-Einstein condensation to liquid crystals
and strings in field theory [1]. The Taylor-Couette flow, Bénard convection [1] and plane
Poiseuille flow [2] are such examples where the Ginzburg-Landau equation is derived as a
wave envelop or amplitude equation governing wave-packet solutions. In this chapter, we
develop a nodal discontinuous Galerkin method to solve the nonlinear Ginzburg-Landau
equation
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∂u
∂t

� νþ iηð ÞΔuþ κþ iζð Þ uj j2u� γu ¼ 0, (1)

and periodic boundary conditions and η, ζ,γ are real constants, ν,κ > 0. Notice that the
assumption of periodic boundary conditions is for simplicity only and is not essential: the
method as well as the analysis can be easily adapted for nonperiodic boundary conditions.

The various kinds of numerical methods can be found for simulating solutions of the nonlinear
Ginzburg-Landau problems [3–11]. The local discontinuous Galerkin (LDG) method is famous
for high accuracy properties and extreme flexibility [12–20]. To the best of our knowledge,
however, the LDG method, which is an important approach to solve partial differential equa-
tions, has not been considered for the nonlinear Ginzburg-Landau equation. Compared with
finite difference methods, it has the advantage of greatly facilitating the handling of compli-
cated geometries and elements of various shapes and types as well as the treatment of bound-
ary conditions. The higher order of convergence can be achieved without many iterations.

The outline of this chapter is as follows. In Section 2, we derive the discontinuous Galerkin
formulation for the nonlinear Ginzburg-Landau equation. In Section 3, we prove a theoretical
result of L2 stability for the nonlinear case as well as an error estimate for the linear case.
Section 4 presents some numerical examples to illustrate the efficiency of the scheme. A few
concluding remarks are given in Section 5.

2. LDG scheme for Ginzburg-Landau equation

In order to construct the LDG method, we rewrite the second derivative as first-order deriva-
tives to recover the equation to a low-order system. However, for the first-order system, central
fluxes are used. We introduce variables r, s and set

r ¼ ∂
∂x

s, s ¼ ∂
∂x

u, (2)

then, the Ginzburg-Landau problem can be rewritten as

∂u
∂t

� νþ iηð Þrþ κþ iζð Þ uj j2u� γu ¼ 0,

r ¼ ∂
∂x

s, s ¼ ∂
∂x

u:
(3)

We consider problem posed on the physical domain Ω with boundary ∂Ω and assume that a
nonoverlapping element Dk such that

Ω ¼ ∪
K

k¼1
Dk: (4)

Now we introduce the broken Sobolev space for any real number r
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Hr Ωð Þ ¼ fv∈L2 Ωð Þ : ∀k ¼ 1; 2; :…K; vjDk ∈Hr Dk� �g: (5)

We define the local inner product and L2 Dk� �
norm

u; vð ÞDk ¼
ð

Dk
uvdx, ∥u∥2Dk ¼ u; uð ÞDk , (6)

as well as the global broken inner product and norm

u; vð ÞΩ ¼
XK

k¼1

u; vð ÞDk , ∥u∥2L2 Ωð Þ ¼
XK

k¼1

u; uð ÞDk : (7)

We define the jumps along a normal, n̂, as

u½ � ¼ n̂�u� þ n̂þuþ: (8)

The numerical traces (u,s) are defined on interelement faces as the central fluxes

u∗ ¼ uf g ¼ uþ þ u�

2
, s∗ ¼ sf g ¼ sþ þ s�

2
: (9)

Let us discretize the computational domain Ω into K nonoverlapping elements, Dk ¼
xk�1

2
; xkþ1

2

h i
, Δxk ¼ xkþ1

2
� xk�1

2
and k ¼ 1,…, K. We assume uh, rh, sh ∈VN

k be the approximation

of u, r, s respectively, where the approximation space is defined as

VN
k ¼ v : vk ∈PN Dk� �

; ∀Dk ∈Ω
� �

, (10)

where PN Dk� �
denotes the set of polynomials of degree up to N defined on the element Dk. We

define local discontinuous Galerkin scheme as follows: find uh, rh, sh ∈VN
k , such that for all test

functions ϑ,ϕ,φ∈VN
k ,

∂uh
∂t ;ϑ
� �

Dk � νþ iηð Þ rh;ϑð ÞDk þ κþ iζð Þ uhj j2uh;ϑ
� �

Dk
� γ uh;ϑð ÞDk ¼ 0,

rh;ϕ
� �

Dk ¼ ∂
∂x sh;ϕ
� �

Dk ,

sh;φð ÞDk ¼ ∂
∂x uh;φ
� �

Dk :

(11)

Applying integration by parts to (11), and replacing the fluxes at the interfaces by the
corresponding numerical fluxes, we obtain

∂uh
∂t ;ϑ
� �

Dk � νþ iηð Þ rh;ϑð ÞDk þ κþ iζð Þ uhj j2uh;ϑ
� �

Dk
� γ uh;ϑð ÞDk ¼ 0,

rh;ϕ
� �

Dk ¼ � sh;ϕx

� �
Dk þ s∗hϕ

�� �
kþ1

2
� s∗hϕ

þ� �
k�1

2
,

sh;φð ÞDk ¼ � uh;φx

� �
Dk þ u∗hφ

�� �
kþ1

2
� u∗hφ

þ� �
k�1

2
,

(12)

we can rewrite (12) as
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∂uh
∂t ;ϑ
� �

Dk � νþ iηð Þ rh;ϑð ÞDk þ κþ iζð Þ uhj j2uh;ϑ
� �

Dk
� γ uh;ϑð ÞDk ¼ 0,

rh;ϕ
� �

Dk ¼ � sh;ϕx

� �
Dk þ n̂:s∗h;ϕ

� �
∂Dk ,

sh;φð ÞDk ¼ � uh;φx

� �
Dk þ n̂:u∗h;φ

� �
∂Dk :

(13)

where n̂ is simply a scalar and takes the value of +1 and �1 at the right and the left interface,
respectively.

3. Stability and error estimates

In this section, we discuss stability and accuracy of the proposed scheme, for the Ginzburg-
Landau problem.

3.1. Stability analysis

In order to carry out the analysis of the LDG scheme, we have the following results.

Theorem 3.1. (L2 stability). The solution given by the LDG method defined by (13) satisfies

∥uh x;Tð Þ∥Ω ≤ e�2γT∥u0 xð Þ∥Ω

for any T > 0.

Proof. Set ϑ;ϕ;φ
� � ¼ uh; νuh; νshð Þ in (13) and consider the integration by parts formula

u; ∂r∂x
� �

Dk þ r; ∂u∂x
� �

Dk ¼ ½ur�xkþ1
2

x
k�1

2

, we get

uhð Þt; uh
� �

Dk þ sh; shð ÞDk

¼ �ν rh; uhð ÞDk þ νþ iηð Þ rh; uhð ÞDk � κþ iζð Þ uhj j2uh; uh
� �

Dk

þγ uh; uhð ÞDk þ ν n̂:s∗h; uh
� �

∂Dk þ ν n̂:u∗h; sh
� �

∂Dk � ν n̂:sh; uhð Þ∂Dk :

(14)

Taking the real part of the resulting equation, we obtain

uhð Þt; uh
� �

Dk þ sh; shð ÞDk ¼� κ uhj j2uh; uh
� �

Dk
þ γ uh; uhð ÞDk

þ ν n̂:s∗h; uh
� �

∂Dk þ ν n̂:u∗h; sh
� �

∂Dk � ν n̂:sh; uhð Þ∂Dk :

(15)

Removing the positive term κ uhj j2uh; uh
� �

Dk
, we obtain

uhð Þt; uh
� �

Dk þ sh; shð ÞDk ≤γ∥uh∥2L2 Dkð Þ þ ν n̂:s∗h; uh
� �

∂Dk þ ν n̂:u∗h; sh
� �

∂Dk � ν n̂:sh; uhð Þ∂Dk : (16)

Summing over all elements (16), we easily obtain

Differential Equations - Theory and Current Research120

uhð Þt; uh
� �

L2 Ωð Þ þ sh; shð ÞL2 Ωð Þ ≤γ∥uh∥
2
Ω: (17)

Employing Gronwall’s inequality, we obtain

∥uh x;Tð Þ∥Ω ≤ e�2γT∥u0 xð Þ∥Ω: □

3.2. Error estimates

We consider the linear Ginzburg-Landau equation

∂u
∂t

� νþ iηð ÞΔuþ κþ iζð Þu� γu ¼ 0: (18)

It is easy to verify that the exact solution of the above (18) satisfies

ut;ϑð ÞDk � νþ iηð Þ r;ϑð ÞDk þ κþ iζð Þ u;ϑð ÞDk � γ u;ϑð ÞDk ¼ 0,
r;ϕ
� �

Dk ¼ � s;ϕx

� �
Dk þ n̂:s∗;ϕ

� �
∂Dk ,

s;φð ÞDk ¼ � u;φx

� �
Dk þ n̂:u∗;φð Þ∂Dk :

(19)

Subtracting (19) from the linear Ginzburg-Landau Eq. (13), we have the following error equation

u� uhð Þt;ϑ
� �

Dk þ s� sh;ϕx

� �
Dk þ u� uh;φx

� �
Dk þ κþ iζð Þ u� uh;ϑð ÞDk

�γ u� uh;ϑð ÞDk þ r� rh;ϕ
� �

Dk þ s� sh;φð ÞDk � n̂: s� shð Þ∗;ϕ� �
∂Dk

� νþ iηð Þ r� rh;ϑð ÞDk � n̂: u� uhð Þ∗;φð Þ∂Dk ¼ 0:

(20)

For the error estimate, we define special projections P� and Pþ into Vk
h. For all the elements,

Dk, k ¼ 1, 2,…, K are defined to satisfy

Pþu� u; vð ÞDk ¼ 0, ∀v∈Pk
N Dk� �

, Pþu xk�1
2

� �
¼ u xk�1

2

� �
,

P�u� u; vð ÞDk ¼ 0, ∀v∈Pk�1
N Dk� �

, P�u xkþ1
2

� �
¼ u xkþ1

2

� �
:

(21)

Denoting

π ¼ P�u� uh, πe ¼ P�u� u, ε ¼ Pþr� rh, εe ¼ Pþr� r,
τ ¼ Pþs� sh, τe ¼ Pþs� s:

(22)

For the abovementioned special projections, we have, by the standard approximation theory
[21], that

∥Pþu :ð Þ � u :ð Þ∥L2 Ωhð Þ ≤Ch
Nþ1,

∥P�u :ð Þ � u :ð Þ∥L2 Ωhð Þ ≤Ch
Nþ1,

(23)

where here and below C is a positive constant (which may have a different value in each
occurrence) depending solely on u and its derivatives but not of h.
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∥Pþu :ð Þ � u :ð Þ∥L2 Ωhð Þ ≤Ch
Nþ1,

∥P�u :ð Þ � u :ð Þ∥L2 Ωhð Þ ≤Ch
Nþ1,

(23)

where here and below C is a positive constant (which may have a different value in each
occurrence) depending solely on u and its derivatives but not of h.
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Theorem 3.2. Let u be the exact solution of the problem (18), and let uh be the numerical solution of the
semi-discrete LDG scheme (13). Then for small enough h, we have the following error estimates:

∥u :; tð Þ � uh :; tð Þ∥L2 Ωhð Þ ≤Ch
Nþ1, (24)

where the constant C is dependent upon T and some norms of the solutions.

Proof. From the Galerkin orthogonality (20), we get

π� πeð Þt;ϑ
� �

Dk þ τ� τe;ϕx

� �
Dk þ π� πe;φx

� �
Dk þ κþ iζð Þ π� πe;ϑð ÞDk � γ π� πe;ϑð ÞDk

þ ε� εe;ϕ
� �

Dk þ τ� τe;φð ÞDk þ ϕ� ϕe; β
� �

Dk � n̂: τ� τeð Þ∗;ϕ� �
∂Dk � νþ iηð Þ

� ε� εe;ϑð ÞDk � n̂: π� πeð Þ∗;φð Þ∂Dk ¼ 0:

(25)

Taking the real part of the resulting equation, we obtain

π� πeð Þt;ϑ
� �

Dk þ τ� τe;ϕx

� �
Dk þ π� πe;φx

� �
Dk þ κ π� πe;ϑð ÞDk

�γ π� πe;ϑð ÞDk þ ε� εe;ϕ
� �

Dk þ τ� τe;φð ÞDk � n̂: τ� τeð Þ∗;ϕ� �
∂Dk

�ν ε� εe;ϑð ÞDk � n̂: π� πeð Þ∗;φð Þ∂Dk ¼ 0:

(26)

We take the test functions

ϑ ¼ π, ϕ ¼ νπ, φ ¼ ντ, (27)

we obtain

π� πeð Þt;π
� �

Dk þ ν τ� τe;πxð ÞDk þ ν π� πe; τxð ÞDk

þκ π� πe;πð ÞDk � γ π� πe;πð ÞDk þ ν ε� εe;πð ÞDk

þν τ� τe; τð ÞDk � ν n̂: τ� τeð Þ∗;πð Þ∂Dk � ν ε� εe;πð ÞDk � ν n̂: π� πeð Þ∗; τð Þ∂Dk ¼ 0:

(28)

Summing over k, simplify by integration by parts and (9), we get

πt;πð ÞΩ þ ν τ; τð ÞΩ ¼ ν τe;πxð ÞΩ þ ν πe; τxð ÞΩ þ πe
t ;πð ÞΩ � γ πe;πð ÞΩ þ κ πe;πð ÞΩ

þν τe; τð ÞΩ þ γ π;πð ÞΩ � κ π;πð ÞΩ � ν
XK

k¼1

n̂: πeð Þ∗; τð Þ∂Dk � ν
XK

k¼1

n̂: τeð Þ∗;πð Þ∂Dk ,
(29)

we can rewrite (29) as

πt;πð ÞΩ þ ν τ; τð ÞΩ ¼ I þ II þ III, (30)

where

I ¼ ν τe;πxð ÞΩ þ ν πe; τxð ÞΩ, (31)

II ¼ πe
t ;π

� �
Ω � γ πe;πð ÞΩ þ κ πe;πð ÞΩ þ ν τe; τð ÞΩ

�ν
XK

k¼1

n̂: πeð Þ∗; τð Þ∂Dk � ν
XK

k¼1

n̂: τeð Þ∗;πð Þ∂Dk ,
(32)
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III ¼ γ π;πð ÞΩ � κ π;πð ÞΩ: (33)

Using the definitions of the projections P,S (21) in (31), we get

I ¼ 0: (34)

From the approximation results (23) and Young’s inequality in (32), we obtain

II ≤ c1∥π∥2L2 Ωð Þ þ c2∥τ∥2L2 Ωð Þ þ Ch2Nþ2: (35)

and

III ≤ c1∥π∥2L2 Ωð Þ: (36)

Combining (34), (35), (36) and (30), we obtain

πt;πð ÞΩ þ ν τ; τð ÞΩ ≤ c1∥π∥2L2 Ωð Þ þ c2∥τ∥2L2 Ωð Þ þ Ch2Nþ2, (37)

provided c2 is sufficiently small such that c2 ≤ ν, we obtain that

πt;πð ÞΩ ≤ c1∥π∥2L2 Ωð Þ þ Ch2Nþ2: (38)

From the Gronwall’s lemma and standard approximation theory, the desired result follows. ⃞.

4. Numerical examples

In this section, we present several numerical examples to illustrate the previous theoretical
results. We use the high-order Runge-Kutta time discretizations [22], when the polynomials
are of degree N, a higher order accurate Runge-Kutta (RK) method must be used in order to
guarantee that the scheme is stable. In this chapter, we use a fourth-order non-total variation
diminishing (TVD) Runge-Kutta scheme [23]. Numerical experiments demonstrate its numerical
stability

∂uh

∂t
¼ F uh; tð Þ, (39)

where uh is the vector of unknowns, we can use the standard fourth-order four-stage explicit
RK method (ERK)

k1 ¼ F un
h ; t

n
� �

,

k2 ¼ F un
h þ

1
2
Δtk1; tn þ 1

2
Δt

� �
,

k3 ¼ F un
h þ

1
2
Δtk2; tn þ 1

2
Δt

� �
,

k4 ¼ F un
h þ Δtk3; tn þ Δt

� �
,

unþ1
h ¼ un

h þ
1
6

k1 þ 2k2 þ 2k3 þ k4� �
,

(40)
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where
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II ¼ πe
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� �
Ω � γ πe;πð ÞΩ þ κ πe;πð ÞΩ þ ν τe; τð ÞΩ

�ν
XK

k¼1
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XK

k¼1

n̂: τeð Þ∗;πð Þ∂Dk ,
(32)
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are of degree N, a higher order accurate Runge-Kutta (RK) method must be used in order to
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stability
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to advance from un
h to unþ1

h , separated by the time step, Δt. In our examples, the condition
Δt ≤CΔxαmin 0 < C < 1ð Þ is used to ensure stability.

Example 4.1 We consider the following linear Ginzburg-Landau equation

∂u
∂t

� νþ iηð ÞΔuþ κþ iζð Þu ¼ 0, x∈ �20; 20½ �, t∈ 0; 0:5ð �, u x; 0ð Þ ¼ u0 xð Þ, (41)

with

η ¼ 1
2
,κ ¼ � ν 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ν2

p � 1
� �

2 2þ 9ν2ð Þ , ζ ¼ �1,γ ¼ 0: (42)

The exact solution u x; tð Þ ¼ a xð Þeidln a xð Þð Þ�iωt where

a xð Þ ¼ Fsech xð Þ, F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ν2

p

�2κ

s
, d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ν2

p � 1
2ν

,ω ¼ � d 1þ 4ν2
� �

2ν
: (43)

The convergence rates and the numerical L2 error are listed in Figure 1 for several different
values of ν, confirming optimal O hNþ1� �

order of convergence across.

Figure 1. The rate of convergence for the solving the nonlinear Ginzburg-Landau equation in Example 4.2.
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Example 4.2 We consider the nonlinear Ginzburg-Landau Eq. (1) with initial condition,

u x; 0ð Þ ¼ e�x2 , (44)

with parameters ν ¼ 1,κ ¼ 1, η ¼ 1, ζ ¼ 2, x∈ �10; 10½ �. We consider cases with N = 2 and
K = 40 and solve the equation for several different values of γ. The numerical solution uh x; tð Þ
for γ ¼ 2, 1, 0, � 1, � 2 is shown in Figures 2 and 3. The parameter γ will affect the wave
shape. From these figures, it is obvious that the solution decays rapidly with time evolution
especially for γ < 0 and the parameter γ dramatically affects the wave shape.

Figure 2. Numerical results for the nonlinear Ginzburg-Landau equation in Example 4.2.
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5. Conclusions

In this chapter, we developed and analyzed a local discontinuous Galerkin method for solving
the nonlinear Ginzburg-Landau equation and have proven the stability of this method.
Numerical experiments confirm that the optimal order of convergence is recovered. As a last
example, the Ginzburg-Landau equation with initial condition is solved for different values of
γ and results show that the parameter γ dramatically affects the wave shape. In addition, the
solution decays rapidly with time evolution especially for γ<0.
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Figure 3. Numerical results for the nonlinear Ginzburg-Landau equation with γ = �2 in Example 4.2.
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Abstract

The Lame system describing the dynamics of an isotropic elastic medium affected by a
steady transport load moving at subsonic, transonic, and supersonic speed is considered.
Its fundamental and generalized solutions in a moving frame of reference tied to the
transport load are analyzed. Shock waves arising in the medium at supersonic speeds are
studied. Conditions on the jump in the stress, displacement rate, and energy across the
shock front are obtained using distribution theory. Transport boundary value problem for
an elastic medium bounded by a cylindrical surface of arbitrary cross section and
subjected to transport loads is considered in the subsonic and supersonic case with regard
to shock waves. To solve problems, the generalized functions method is developed. In the
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velocities of dilatational and shear waves propagation. This has a large effect on the type of
equations and leads to systems of elliptic, hyperbolic, or mixed equations. For transport
problems, typical factors are shock effects generated by supersonic loading. At shock fronts,
the stresses, displacement rates, and energy density are discontinuous. A convenient research
method for such problems is provided by the theory of generalized functions (distributions),
which makes it possible to significantly expand the class of processes amenable to study by
using singular generalized functions in the simulation of observed phenomena. In this chapter,
methods of this theory are used to solve boundary value problems using motion equations of
the theory of elasticity in cylindrical domains under the action of transport loads, moving at
supersonic and supersonic speeds.

2. Motion equation of elastic medium

We consider an isotropic elastic medium with Lame’s parameters λ,μ, and a density r. Let us
denote x = xjej, ej as the unit vectors of Cartesian coordinate system in the space R3; displace-
ments vector u(x,t) = ujej; stress tensors σij deformation tensor εij. These tensors are connected
by Hook’s law [1]:

εij ¼ 0, 5 ui, j þ uj, i
� �

, i, j, k ¼ 1, 2, 3: (1)

ð2Þ

The elastic constant tensor has the symmetry properties.

In the case of an isotropic medium, it is equal to

and Hook’s law has the form

σij ¼ λdivuδij þ µ ui, j þ uj, i
� �

Here δij ¼ δji is the Kronecker symbol. Everywhere, there are tensor convolutions over of the

same name indexes from 1 to 3, ui, j ≜ ∂ui
∂xj
.

Motion equations for material continuum

ð3Þ

for elastic medium by using Eqs. (1) and (2) have the form:
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ð4Þ

Here L is the matrix Lame’s operator:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2µ
� �

=r,
q

c2 ¼
ffiffiffiffiffiffiffiffi
µ=r

p
are the velocities of dilatational and shear waves (c1 > c2), G(x,t)

is the mass force, Δ is the Laplace operator.

The system shown in Eq. (4) was fairly well studied by Petrashen [2]. Since the elastic potential
of the medium is positive definite, this system is strictly hyperbolic. Such systems can have
solutions with discontinuous derivatives. The discontinuity surface F in R4 = R3 � t(�∞ < t < ∞)
coincides with a characteristic surface of the system. It corresponds to a wave front Ft moving
in R3 at the velocity V:

ð5Þ

We note that ν(x,t) = (ν1,ν2,ν3,νt) is a normal vector to F in R4, satisfying the characteristic
equation

ð6Þ

This equation has the roots:

νt ¼ �cj∥ν∥3, j ¼ 1, 2: (7)

From Eqs. (5) and (7), we get that Ft moves in R3 at the sound velocity V = c1 or V = c2.

We introduce a wave vector m = (m1, m2, m3). It is a unit normal vector to Ft in R3 for fixed t in
the direction of wave propagation. By virtue of Eq. (7),

ð8Þ

Let νt = ν4. The requirement that the displacements be continuous across the wave front, i.e.,

u x; tð Þ½ �Ft ¼ 0 (9)

which is associated with the preservation of the continuity of the medium, leads to kinematic
consistency conditions for solutions at the wave front:

ð10Þ
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(the continuity of the tangent derivatives on Ft). Additionally, Eq. (4) implies dynamical
consistency conditions for solutions at the wave front, which are equivalent to the momentum
conservation law in its neighborhood:

ð11Þ

Definition. A wave is called a shock wave if the jump in the stresses across the wave front is
finite: eimj[σij]Ft = 0̸. If mj[σij]Ft = 0, then this is a weak shock wave. If mj[σij]Ft = ∞, then this is a
strong shock wave.

Velocity suffers a jump discontinuity across a shock front. At fronts of weak shock waves, the
velocities are continuous, but the second derivatives of solutions are not. Strong shock waves
(in the sense of the aforementioned definition) do not occur in actual media, since, at large
stress jumps, the medium is destroyed and ceases to be elastic. However, strong shock waves
in elastic media play an important theoretical role in the construction of solutions, specifically,
fundamental solutions of Eq. (4).

3. Lame transport equations and Mach numbers

Suppose that the force affecting the medium moves at a constant velocity c along the X3

axis (for convenience, in its negative direction) and, in a moving coordinate system
x0 ¼ x1; x2; z ¼ x3 þ ctð Þ it does not depend on t:

G x; zð Þ ¼ Gj x1; x2; x3 þ ctð Þ ej (12)

Transport solutions are solutions of Eq. (4) with the same structure:

u ¼ u x1; x2; x3 þ ctð Þ ¼ u x; zð Þ (13)

The speed of transport loads is called subsonic if c < c2,transonic if c2 < c < c1, and supersonic if
c > c1. A speed is called the first or second sound speed if c = cj, j = 1, 2, respectively.

In the new variables, the equations of motion are brought to the form

ð14Þ

Here gj ¼ rc2
� ��1Gj; Mj ¼ c=cj are Mach numbers: (M1 < M2).

As Mj < 1(j = 1, 2) the load is subsonic and the system of equations is elliptic. If the load is
supersonic, i.e., Mj > l, j = 1, 2, then the system becomes hyperbolic. In the case of transonic
speeds, i.e., M1 < 1 and M2 > 1, the equations are hyperbolic-elliptic. In the case of sound
speeds, the equations are parabolic-elliptic if M2 = 1 and parabolic-hyperbolic if M1 = 1. We
will show this later when considering fundamental solutions of Eq. (14).
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Since the original system is hyperbolic, Eq. (14) can also have discontinuous solutions. Let F be
a discontinuity surface in the space of variables x

0
such that it is stationary in this space and

moves at one of the sound velocities V = c1,c2 in the space of (x1,x2,x3). It follows from Eq. (7)
that V = cn3, where n = (n1,n2,n3) is the unit normal to F in R3. Therefore, since c = cj/n3 and
|n3| ≤ 1, such surfaces can arise only at supersonic speeds: c ≥ cj.

It follows from Eqs. (9) to (11) and Eq. (13) that the kinematic and dynamical consistency
conditions for solutions at discontinuities in the mobile coordinate system have the form:

u x; zð Þ½ �F ¼ 0 ) nzui, j � njui, z
� �

F ¼ 0; (15)

σij
� �

nj ¼ �rckc ui, z½ �F; nz ¼ �ck=c, for c ≥ ck; (16)

n ¼ n1; n2; nz ¼ n3f g is a wave vector, k = 1 for shock dilatational waves, k = 2 for shock shear
waves. Here and hereafter, the derivative with respect to xj is denoted by the index j after a
comma in the function notation or by the variable itself.

Definition. If c > c2, the solution of the system in Eq. (14) is called classical if it is continuous and
twice differentiable everywhere, except for, possibly, wave fronts. The number of fronts is
finite at any fixed t and the conditions on the gaps, Eqs. (15) and (16), are satisfied on the wave
fronts.

At first, we construct the solutions of the transport Lame equation using methods of general-
ized functions theory.

4. Shock waves as generalized solutions of transport Lame equations:
conditions on wave front

Consider Eq. (14) and its solutions on the space of generalized vector functions D’3 (R
3) with

components being generalized functions from D
0
(R3) (see [3]). Obviously, if u is a solution of

Eq. (14) that is twice differentiable, then it is also a generalized solution of Eq. (14). If a vector
function u satisfies Eq. (14) in the classical sense almost everywhere, except for some surfaces,
on which its derivatives are discontinuous, then, generally speaking, u is not a generalized
solution of Eq. (14).

Let u(x,z) be a shock wave (x = (x1,x2)), i.e., a classical solution of the Lame transport equations,
Eq. (14), that satisfies conditions Eqs. (15) and (16) at the front F. Let bu x; zð Þ denote the
corresponding regular generalized function.

Theorem 4.1. The shock wave bu x; zð Þ is a generalized solution of the Lame equation in D’3 (R
3).

Proof. Using the rules for differentiating generalized functions with derivatives having jump
discontinuities across some surfaces (see [3]), for the equations of motion in D’3 (R

3), we obtain
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∂bσij
∂x0j

� rc2
∂2bui

∂x2z
þ Gi ¼ σijhj � r c2 hz

∂ui
∂z

� �

F
δFþ

þ ∂
∂x0j

λ ukhkδij þ μðuihj þ ujhi
� �

FδF
� �� ∂

∂z
ui½ �FhzδF

� �
,

(17)

Here, the right-hand side involves singular generalized functions, namely, single layers δF (x,z)
and double layers on F. By virtue of conditions Eqs. (15) and (16), the densities of these layers
are equal to zero, so the right-hand side of Eq. (17) vanishes; i.e., the shock wave satisfies the
same equations, Eq. (14), but in the generalized sense.

As a result, we obtain a simple formal method for deriving conditions at jumps in solutions
and their derivatives across the shock fronts in hyperbolic equations. Namely, these equations
are written in the space of generalized functions and the densities of the singular functions
corresponding to single, double, etc., layers are set to zero.

Define as follows the kinetic energy density

K ¼ 0:5r u, tk k2 ¼ 0:5rc2 u, zk k2 (18)

and elastic potential

W ¼ 0:5σijui, j ¼ 0:5σijεij (19)

Consider the following functions: the energy density E = K + W of elastic deformations and the
Lagrangian Λ = K � W.

Theorem 4.2. If G is continuous, then the Lagrangian Λ is continuous at the shock waves fronts.

( Λ½ �F ¼ 0) and the jump in the energy density satisfies the relation

hz E½ �F ¼ σijhj
� �

ui, z
� �

F, (20)

First formula is equivalent to the equality:

E½ �Fck ¼ � ck
c
hkj σijui, z
� �

Fck
, k ¼ 1, 2

where ck is the sound velocity corresponding to front F, hkj is the components of the wave

vector to F.

The last formula may be easy to get if we write the equation for E in D0
3 R3� �

in the form

bE, z ¼ E, z þ E½ �FhzδF ¼ σijui, z
� �

, j þ r G; u, zð Þ þ σijui, z
� �

FδFhj þ r G; u½ �F
� �

hzδF )

E½ �Fhz ¼ σijui, z
� �

Fhj
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as u½ �F ¼ 0: For the gaps of these functions, the theorem has been proved on the basis of classic
methods (see [4, 5]). For full proof of this theorem, see [6].

5. Fundamental Green’s tensors and generalized solutions of transport
Lame equations

The matrix of fundamental solutions bU x; zð Þ satisfies Eq. (14) with a delta function in the mass
force:

ð21Þ

This matrix is called Green’s tensor for the transport Lame equations if it satisfies the decay
conditions at infinity

ð22Þ

For a fixed k, its components describe the displacements of the elastic medium under a
concentrated force moving at the velocity c along the axis Z = X3 and acting in the Xk direction.

Green’s tensor can be obtained by taking the Fourier transform of Eq. (17) and solving the
corresponding system of linear algebraic equations for the Fourier transforms U(ξ1,ξ2,ξ3). It is
reduced to the form (see [4]).

ð23Þ

It can be seen that bU x; zð Þ has no classical inverse Fourier transform since it has non-integrable
singularities in its denominators. This is associated with the fact that the matrix of fundamen-
tal solutions is defined, generally speaking, up to solutions of the homogeneous system of
equations. The functions

are of crucial importance in the construction of the original Green’s tensor. It is easy to see that
f¯0m is the Fourier transform of the fundamental solution to the equation

ð24Þ

This equation is similar to the elliptic Laplace equation at subsonic speeds if Mk < 1 and to the
wave equation at supersonic speeds if Mk > 1. At the sound speed (Mk ¼ 1), the variable z
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and elastic potential

W ¼ 0:5σijui, j ¼ 0:5σijεij (19)

Consider the following functions: the energy density E = K + W of elastic deformations and the
Lagrangian Λ = K � W.

Theorem 4.2. If G is continuous, then the Lagrangian Λ is continuous at the shock waves fronts.

( Λ½ �F ¼ 0) and the jump in the energy density satisfies the relation

hz E½ �F ¼ σijhj
� �

ui, z
� �

F, (20)

First formula is equivalent to the equality:

E½ �Fck ¼ � ck
c
hkj σijui, z
� �

Fck
, k ¼ 1, 2

where ck is the sound velocity corresponding to front F, hkj is the components of the wave

vector to F.

The last formula may be easy to get if we write the equation for E in D0
3 R3� �

in the form

bE, z ¼ E, z þ E½ �FhzδF ¼ σijui, z
� �

, j þ r G; u, zð Þ þ σijui, z
� �

FδFhj þ r G; u½ �F
� �

hzδF )

E½ �Fhz ¼ σijui, z
� �

Fhj

Differential Equations - Theory and Current Research134

as u½ �F ¼ 0: For the gaps of these functions, the theorem has been proved on the basis of classic
methods (see [4, 5]). For full proof of this theorem, see [6].

5. Fundamental Green’s tensors and generalized solutions of transport
Lame equations

The matrix of fundamental solutions bU x; zð Þ satisfies Eq. (14) with a delta function in the mass
force:

ð21Þ

This matrix is called Green’s tensor for the transport Lame equations if it satisfies the decay
conditions at infinity

ð22Þ

For a fixed k, its components describe the displacements of the elastic medium under a
concentrated force moving at the velocity c along the axis Z = X3 and acting in the Xk direction.

Green’s tensor can be obtained by taking the Fourier transform of Eq. (17) and solving the
corresponding system of linear algebraic equations for the Fourier transforms U(ξ1,ξ2,ξ3). It is
reduced to the form (see [4]).

ð23Þ

It can be seen that bU x; zð Þ has no classical inverse Fourier transform since it has non-integrable
singularities in its denominators. This is associated with the fact that the matrix of fundamen-
tal solutions is defined, generally speaking, up to solutions of the homogeneous system of
equations. The functions

are of crucial importance in the construction of the original Green’s tensor. It is easy to see that
f¯0m is the Fourier transform of the fundamental solution to the equation

ð24Þ

This equation is similar to the elliptic Laplace equation at subsonic speeds if Mk < 1 and to the
wave equation at supersonic speeds if Mk > 1. At the sound speed (Mk ¼ 1), the variable z
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disappears from the equation and the equation becomes parabolic, since the space dimension
is higher by one, which determines the type of Eq. (14), as noted earlier, since the solutions
contain waves of two types. Green’s tensor for the Lame transport equation was constructed
by Alekseyeva [4] by applying fundamental solutions of the Laplace and wave equations and
regularization functions f¯km, which depends on the speed of transport load. Green’s tensor has
the regular form:

Uj
i x; zð Þ ¼ c�2

2 δjif 02 xk k; zð Þ þ c�2 f 21 , ij xk k; zð Þ � f 22 , ij xk k; zð Þ� �
, (25)

where the type of basic function depends on velocity c.

In subsonic case (Mk < 1):

4πf oj r; zð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

j r2
q , 4πf 1j ¼ sgn zj j ln

zj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

j r2
q

mjr

0
@

1
A,

4πf 2j ¼ zj j ln
zj j þ Vj

mjr

� �
� Vj þmj xk k,

In sonic case (Mk = 1):

f ok xj j; zð Þ ¼ �0:5 δ zð Þ xj j, f 1k ¼ 0:5 θ zð Þ xj j, f 2k ¼ 0:5 zθ zð Þ xj j:

In supersonic case (Mk > 1):

f oj r; zð Þ ¼ θ z�mjr
� �

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �m2

j r2
q , f 1j ¼

θ z�mjr
� �

2π
ln

zþ V�
j

mjr

� �
, f 2j ¼

θ z�mjr
� �

2π
z ln

zþ V�
j

mjr

� �
� V�

j

� �
,

Here and hereafter, we use the following notation: θ zð Þ is the Heaviside step function,

mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

k

q
, Vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

kr2
q

, V�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �m2

kr2
q

, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
¼ xk k,

The dilatational and shear components of bU x; zð Þ are easy to write out

Uj
i x; zð Þ ¼ Uj

i1 x; zð Þ þUj
i2 x; zð Þ

Uj
i1 ¼ c�2f 21, ij xk k; zð Þ, Uj

i2 x; zð Þ ¼ c�2
2 δjif 02 xk k; zð Þ � f 22, ij xk k; zð Þ

(26)

In the supersonic case, the support of the functions is the cone z > mk∥x∥. This determines a
radiation condition as physical considerations imply that there are no displacements of the
elastic medium outside this cone since the perturbations have a finite propagation velocity,
which cannot be higher than the corresponding sound velocity for a particular type of defor-
mation. At the fronts of shock waves (z = mk∥x∥), Green’s tensor grows to infinity.
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If the following convolution exists,

bui ¼ bUj
i∗Gj x; zð Þ=rc2 (27)

it is easy to prove that it is the generalized solution of the transport Lame equations, Eq. (14).

If mass forces are regular, then Eq. (28) has an integral presentation:

ui x; zð Þ ¼
ð

D�

Uj
i x� y; z� τð Þgj y; τð Þdy1dy2dτ ¼ ui x; zð Þ (28)

If mass forces are concentrated on surface D and described by singular generalized functions
of the type of single layers g ¼ gj y; τð ÞejδD y; τð Þ, then

bui x; zð Þ ¼
ð

D

Uj
i x� y; z� τð Þgj y; τð ÞdD y; τð Þ ¼ ui x; zð Þ

�
(29)

Moreover, by the Du Bois-Reymond lemma [3], these solutions are classical. For other types of
singular mass forces, to calculate Eq. (28), we use the definition of convolution of a generalized
function [3].

It is easy to see from Eqs. (23) to (25) that the solution is represented as a composition of
fundamental solutions distributed over the support of the function f(x,z); their intensities are
determined by its value.

In Alexeyeva and Kayshibayeva’s paper [5], there are some numerical examples of calculation
of the dynamic of elastic medium at subsonic, transonic, and supersonic speed of transport
loads moving along the strip in an elastic medium.

6. Subsonic Green’s tensor, fundamental stress tensors, and their
properties

In the subsonic case from Eq. (25), we obtain the components of Green’s tensor in the form:
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In the supersonic case, the support of the functions is the cone z > mk∥x∥. This determines a
radiation condition as physical considerations imply that there are no displacements of the
elastic medium outside this cone since the perturbations have a finite propagation velocity,
which cannot be higher than the corresponding sound velocity for a particular type of defor-
mation. At the fronts of shock waves (z = mk∥x∥), Green’s tensor grows to infinity.
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Moreover, by the Du Bois-Reymond lemma [3], these solutions are classical. For other types of
singular mass forces, to calculate Eq. (28), we use the definition of convolution of a generalized
function [3].

It is easy to see from Eqs. (23) to (25) that the solution is represented as a composition of
fundamental solutions distributed over the support of the function f(x,z); their intensities are
determined by its value.

In Alexeyeva and Kayshibayeva’s paper [5], there are some numerical examples of calculation
of the dynamic of elastic medium at subsonic, transonic, and supersonic speed of transport
loads moving along the strip in an elastic medium.

6. Subsonic Green’s tensor, fundamental stress tensors, and their
properties

In the subsonic case from Eq. (25), we obtain the components of Green’s tensor in the form:
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They are regular functions. Since by x
0 ! 0 [6]:

ð30Þ

these components are bounded for x; zð Þ 6¼ 0; 0; 0ð Þ. At the point x; zð Þ ¼ 0; 0; 0ð Þ, they have a

weak singularity of order R�1, R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2

p
. It has a similar asymptotic at infinity. Accord-

ingly, R�2 is the order of the tensor derivatives asymptotic and the behavior of at ∞.

Tensor bU generates next fundamental stress tensors if we use Hook’s law (Eq. (2)):

Σi
jk x; zð Þ ¼ λUi

l, l δjk þ μ Ui
j, k þUi

k, j

� �
, Γij x; z; nð Þ ¼ Σi

jk x; zð Þnk

bTi
j x; z; nð Þ ¼ � rc2

� ��1
Γj
i x; z; nð Þ

(31)

Then the elastic constant tensor is presented in the form

bTj
i x; z; nð Þ ¼ ~Cjl

km
bUk

i , mnl, ~Cjl
km ¼ Cjl

km= rc2
� �

(32)

Tensor Γi
j x; z; nð Þ describes the stresses at the plate with normal n in a point x

0
= (x,z). Tensor bT

have some remarkable properties.

Theorem 6.1. Fundamental stress tensor bT is the generalized solution of the transport Lame equation
with singular mass forces of the multipole type:

rc2Lji ∂x0ð ÞbTk
j þ Ki

k ∂x0 ; nð Þδ x
0

� �
¼ 0 (33)

where

Kl
i ∂x0 ; nð Þ ¼ λni∂l þ μтj δli∂j þ δlj∂i

� �
:

For any closed Lyapunov’s surface D, bounding a domain D� ⊂R3

δjiH
�
D x; zð Þ ¼ V:P:

ð

D

Tj
i x� y; τ� z; n y; τð Þð Þ þUj

i, z x� y; τ� zð Þnz y; τð Þ
� �

dS y; τð Þ (34)

where H�
D x; zð Þ is the characteristic function of D�, which is equal to 0.5 at D; n y; τð Þ is a unit normal

vector to D. The integrals are regular for x; zð Þ∉D and are taken in value principle sense for x; zð Þ∈D.

These formulas have been proved by Alexeyeva [6]. The formula in Eq. (35) can be referred to
as a dynamic analog of the well-known Gauss formula for a double-layer potential of the
fundamental solution of Laplace’s equation ([3]: 403). It plays a fundamental role in the
solution of transport boundary value problems (BVP).
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7. Statement of subsonic transport boundary value problems. Uniqueness
of solution

Let D� be an elastic medium bounded by a cylindrical surface D with generator parallel to the
axis X3; let S

� be the cross-section of the cylindrical domain; let S be its boundary, and let n be
the unit outward normal ofD. Obviously, n = n(x) and n3 = 0. We assume that G is an integrable
vector function and ∃ε > 0 such that

∥G x; zð Þ∥ ≤O ∥x0∥� 3þεð Þ
� �

for∥x0∥ ! ∞, x0 ∈D� þD: (35)

There is the subsonic transport load P(x,z) moving along the boundary D (c < c2):

σij x; zð Þnj xð Þ ¼ P x; zð Þ ¼ rc2pi x; zð Þ, x; zð Þ∈D (36)

We assume that ∃εi > 0:

ð37Þ

∥p x; zð Þ∥ ≤O zj j�1�ε2
� �

for ∣z∣ ! ∞, x∈S: (38)

A vector function u(x,z) satisfying the aforementioned conditions is referred to as a classical
solution of the BVP. Let Cab

� = {(x,z): x ∈D�, a < z < b}. The two useful energetic equalities have
been proved by Alexeyeva [6].

Theorem 7.1. Classic solution of transport BVP satisfying to the equalities:
ð

Dab

P; uð ÞdD x; zð Þ �
ð

D�
ab

W � 0:5rc2 u, zk k2 � G; uð Þ
� �

dx1dx2dzþ

þ
ð

S�

rc2ui, z � σi3
� �

x;að Þui x; að Þ � rc2ui, z � σi3 x; bð Þ� �
x;bð Þui x; bð Þ�� �

dx1dx2dz ¼ 0
���

ð

S�

W þ 0; 5rc2 u, zk k2 � σi3ui, z
� �

�∞
z dx1dx2 ¼

ð

Dz,�∞

P; ui, zð Þdx1dx2dzþ
ð

D�
z,�∞

G; u, zð Þdx1dx2dz

�������
ð

D

P x; zð Þ; u x; zð Þð ÞdD x; zð Þ ¼
ð

D�

0:5rc2∥u, z∥2 �W � G; uð Þ� �
dx1dx2dz

ð

S�

W þ 0; 5rc2∥u, z∥2
� �

dV xð Þ ¼
ð

D

P; u, zð ÞdD x; zð Þ þ
ð

D�

G; u, zð ÞdV x; zð Þ (39)

Dab ¼ x; zð Þ : x∈D; a ≤ z ≤ bf g, D�
ab ¼ x; zð Þ : x∈D�; a < z < bf g:
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The following assertion is its corollary.

Theorem 7.2. The solution of the subsonic transport boundary value problem is unique.

Proof. Since the problem is linear, it suffices to prove the uniqueness of the zero solution. Let u
(x,z) satisfy the zero boundary conditions P(x,z) = 0 onD and be a solution of the homogeneous
Lame equations ((Eq. (14)) by G(x,z) = 0.

Then for ∀z
ð

S�

W þ rc2∥u, z∥2
� �

dV xð Þ ¼ 0 (40)

It follows from the formula (Eq. (40)) of Theorem 7.1. The integrand is a positive quadratic
form in ui,j, since the elastic potential satisfies the relationW ≥ 0 ([1]: 589, 591); moreover,W = 0
only for displacements of the medium treated as an absolutely rigid body. Therefore, Eq. (40) is
true only if ui,j = 0 for all i, j. This, together with the decay of solutions at infinity and the
arbitrary choice of z, implies that u = 0.

The proof of the theorem is complete. It is valid both for the internal and external boundary
value problem. The asymptotic requirements on G and the boundary functions may be
weakened.

8. General functions method: statement of subsonic transport BVP in
D

0
3 R3� �

Our aim is to construct the solution of BVP by using boundary integral equations (BIE) for
u(x,z). The construction of an analog of Green’s formula for solutions of elliptic equations ([3]:
366), which permits one to determine the values of the desired function inside the domain on
the basis of the boundary values of the function and its normal derivative, is the key point in
the construction of BIE of boundary value problems. An analog of this formula for equations of
the static theory of elasticity is referred to as the Somigliana formula [1]. It determines the
function u(x,z) in the domain D�, if the boundary values of displacements uD(x,z) and stresses
p(x,z) are given. We construct a dynamic analog of that formula in the case of transport
solutions. To this end, we use the method of generalized functions (GFM).

We introduce the regular generalized solution of BVP

bu x; zð Þ ¼ u x; zð ÞH�
D xð Þ ¼ u x; zð ÞH�

S xð Þ1 zð Þ, (41)

which defines it as a regular vector function on all space R3. Here H�
D x; zð Þ is the characteristic

function of the set D: 1(z) � 1, H�
S xð Þ is the characteristic function of S�, which is equal to 0.5 at

S: ∂jHS
� xð Þ ¼ �nj xð ÞδS xð Þ, where nj(x)δS(x) is a simple layer at S.
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By using the properties of the differentiation of regular generalized functions with jumps on D,
we obtain the equation for bu x; zð Þ:

rc2Lji ∂x; ∂z;ð Þbuj x; zð Þ ¼ bGiþ

ð42Þ

bG ¼ GH�
D x; zð Þ, δD x; zð Þ ¼ δS xð Þ1 zð Þ, 1 zð Þ � 1, is a simple layer on D. Since n3 = 0 on D, it

follows from the properties of the Green tensor that an analog of the Somigliana formula holds
in the space of generalized functions:

rc2bui ¼ bUj
i∗PjδD þ λuknkδ

j
l þ μ njul þ nluj

� �� �
δD∗ bUl

i

� �
, j þ bUj

i∗GjH�
D,

which we write in a form more suitable for transformation as:

bui ¼ bUj
i∗pjδD x; zð Þ þ bUj

i, m
∗ ~Ckl

jmuknlδD x; zð Þ (43)

If we write out this convolution in integral form with regard to the notation introduced here
and Eqs. (1) and (2), then we obtain a formula, whose form coincides with the Somigliana
formula for problems of elastostatics ([1]: 605):

uiH�
D x; zð Þ ¼

ð

D

Uj
i x; y; z; τð Þ pjðy; τÞ � Tj

iðx; y; z; τ; nðy; τÞÞujðy; τÞ
� �

dD y; τð Þ,

i, j ¼ 1, 2, 3

(44)

where we introduce the shift tensors:

Uj
i x; y; z; τð Þ ¼ Uj

i x� y; z� τð Þ, Tj
i x; y; z; τ; nð Þ ¼ Tj

i x� y; z� τ; nð Þ:

This formula permits one to determine displacements in the medium on the basis of known
boundary values of displacements and stresses. But the integrals are regular only for x; zð Þ∉D
and do not exist for x; zð Þ∈D.

9. Singular boundary integral equations of subsonic transport BVP

The following assertion provides a solution for the aforementioned boundary value problems.

Theorem 9.1. If the solution u(x;z) of subsonic transport BVP satisfies the Holder condition on D;
namely,

kujðx, zÞ � ujðy, tÞk ≤Ckðx, zÞ � ðy, tÞkβ, x∈S, y∈S,
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The following assertion is its corollary.
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ð

S�

W þ rc2∥u, z∥2
� �

dV xð Þ ¼ 0 (40)
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D

0
3 R3� �
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which we write in a form more suitable for transformation as:
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i, m
∗ ~Ckl

jmuknlδD x; zð Þ (43)

If we write out this convolution in integral form with regard to the notation introduced here
and Eqs. (1) and (2), then we obtain a formula, whose form coincides with the Somigliana
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� �
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This formula permits one to determine displacements in the medium on the basis of known
boundary values of displacements and stresses. But the integrals are regular only for x; zð Þ∉D
and do not exist for x; zð Þ∈D.

9. Singular boundary integral equations of subsonic transport BVP

The following assertion provides a solution for the aforementioned boundary value problems.

Theorem 9.1. If the solution u(x;z) of subsonic transport BVP satisfies the Holder condition on D;
namely,
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then u(x;z) satisfies the singular boundary integral equation

0, 5ui x; zð Þ ¼ bgj∗ bU
j

i
x; zð Þ þ

ð

D

Uj
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:
ð

D

Tj
i x; y; z; τ; n y; τð Þð Þuj y; τð ÞdD y; τð Þ � i, j ¼ 1, 2, 3

(45)

Proof. Let consider Eq. (45) for x; zð Þ∈D�. Let (x∗,z∗) ∈ D, x
0 ! (x∗,z∗). Then, using Theorem

6.1, we have

lim
x;zð Þ! x∗;;z∗ð Þ

ui x; zð Þ ¼ ui x∗; z∗ð Þ ¼ bgj∗ bU
j

i
x∗; z∗ð Þ þ lim

x;zð Þ! x∗;z∗ð Þ

ð

D

Uj
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

� lim
x;zð Þ! x∗;z∗ð Þ

ð

D

Tj
i x; y; z; τ; n y; τð Þð Þ uj y; τð Þ � ujðx∗; z∗Þ

� �
dD y; τð Þþ

þuj x∗; z∗ð Þ lim
x;zð Þ! x∗;z∗ð Þ

ð

D

Tj
i x; y; z; τ; n y; τð Þð ÞdD y; τð Þ ¼

¼ bgj∗ bU
j

i
x∗; z∗ð Þ þ

ð

D

Uj
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:
ð

D

Tj
i x; y; z; τ; n y; τð Þð Þ uj y; τð Þ � ujðx∗; z∗Þ

� �
dD y; τð Þþ

þuj x∗; z∗ð Þ lim
x;zð Þ! x∗;z∗ð Þ

δji �
ð

D

Uj
i, z x; y; z; τð ÞÞnz yð ÞdDðy; τÞ

0
@

1
A ¼

¼ bgj∗ bU
j

i
x∗; z∗ð Þ þ

ð

D

Uj
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:
ð

D

Tj
i x; y; z; τ; n y; τð Þð Þ uj y; τð Þ � ujðx∗; z∗Þ

� �
dD y; τð Þþ

þuj x∗; z∗ð Þδji ¼ bgj
∗ bUj

i
x∗; z∗ð Þ þ

ð

D

Uj
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:
ð

D

Tj
i x; y; z; τ; n y; τð Þð Þuj y; τð ÞdD y; τð Þ � 0, 5ui x∗; z∗ð Þ þ ui x∗; z∗ð Þ:

In the last relation, we have used the obvious properties: integrals withUj
i exist by virtue of the

Holder property of u on D and weak singularity Uj
i at D. Then if the surface integral exists, its

value coincides with the principal value; the principal value of the integral containing the
difference of integrated functions is equal to the difference of the principal values of integrals
corresponding to each of these functions if they exist.
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By transposing the last two terms to the left-hand side of the relation, we obtain the formula of
the theorem for the boundary points. The proof of the theorem is complete.

This theorem gives us resolving system of integral equations for defining unknown values of
boundary displacements.

Note also that the subsonic analog of the Somigliana formula was obtained for generalized
functions. But since they are regular, from the Dubois-Reymond lemma ([3]: 97), the solution is
classical. However, if the acting loads are described by singular generalized functions, which
often takes place in physical problems, then one should use a representation of a generalized
solution in the convolution form (Eq. (43)) with the evaluation of convolutions by the defini-
tion (see [3]: 133).

10. Supersonic green’s tensor and its antiderivative with respect to z

From Eq. (25), we get the regular representation of bUj
i in the supersonic case which has the

form

2πU1
1 ¼

θ2

V2
þ z2x21
r4M2

2

θ1

V1
� θ2

V2

� �
� x22
r4M2

2
θ1V1 � θ2V2ð Þ,

2πU2
2 ¼

θ2

V2
þ z2x22
r4M2

2

θ1

V1
� θ2

V2

� �
� x21
r4M2

2

θ1V1 � θ2V2ð Þ,
(46)

2πU2
1 ¼

x1x2
r4

z2
θ1

V1
� θ2

V2

� �
þ θ1V1 � θ2V2ð Þ

� �
, 2πU3

3 ¼
θ1

V1
þ θ2m2

2

V2

� �
,

2πU3
1 ¼ � x1z

r2
θ1

V1
� θ2

V2

� �
, 2πU3

2 ¼ � x2z
r2

θ1

V1
� θ2

V2

� �

Here θj ¼ θ z�mj∥x∥
� �

, Vj
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �m2

j ∥x∥
2

q
, mj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj

2 � 1:
q

It satisfies the radiation condi-

tions:

supp
z

U x; zð Þ∈ z > 0f g, Uk
i ! 0, Uk

i0j ! 0 by x0 ! ∞: (47)

One can readily see that its components are zero outside the sonic cones:

Kl
þ ¼ x; zð Þ : z > ml∥x∥f g, l ¼ 1, 2:

On the surfaces of the cones, the components U3
1 have singularities of the type (z

2 � m2
jr
2)�1/2.

For solution of supersonic problems, we introduce the tensor cWi
j x; zð Þ, which is the antideriv-

ative of bUi
j with respect to z:
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then u(x;z) satisfies the singular boundary integral equation
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D
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�V:P:
ð

D

Tj
i x; y; z; τ; n y; τð Þð Þuj y; τð ÞdD y; τð Þ � i, j ¼ 1, 2, 3

(45)

Proof. Let consider Eq. (45) for x; zð Þ∈D�. Let (x∗,z∗) ∈ D, x
0 ! (x∗,z∗). Then, using Theorem

6.1, we have

lim
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ui x; zð Þ ¼ ui x∗; z∗ð Þ ¼ bgj∗ bU
j

i
x∗; z∗ð Þ þ lim

x;zð Þ! x∗;z∗ð Þ

ð

D

Uj
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

� lim
x;zð Þ! x∗;z∗ð Þ
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D
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� �
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� �
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D
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0
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1
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ð

D
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D
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�V:P:
ð

D
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i exist by virtue of the

Holder property of u on D and weak singularity Uj
i at D. Then if the surface integral exists, its

value coincides with the principal value; the principal value of the integral containing the
difference of integrated functions is equal to the difference of the principal values of integrals
corresponding to each of these functions if they exist.
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By transposing the last two terms to the left-hand side of the relation, we obtain the formula of
the theorem for the boundary points. The proof of the theorem is complete.

This theorem gives us resolving system of integral equations for defining unknown values of
boundary displacements.

Note also that the subsonic analog of the Somigliana formula was obtained for generalized
functions. But since they are regular, from the Dubois-Reymond lemma ([3]: 97), the solution is
classical. However, if the acting loads are described by singular generalized functions, which
often takes place in physical problems, then one should use a representation of a generalized
solution in the convolution form (Eq. (43)) with the evaluation of convolutions by the defini-
tion (see [3]: 133).

10. Supersonic green’s tensor and its antiderivative with respect to z

From Eq. (25), we get the regular representation of bUj
i in the supersonic case which has the

form
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2
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θ1
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� θ2
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� �
þ θ1V1 � θ2V2ð Þ

� �
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3 ¼
θ1

V1
þ θ2m2

2
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� �
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� �
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� �
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� ¼
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2

q
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Mj

2 � 1:
q

It satisfies the radiation condi-

tions:

supp
z

U x; zð Þ∈ z > 0f g, Uk
i ! 0, Uk

i0j ! 0 by x0 ! ∞: (47)

One can readily see that its components are zero outside the sonic cones:

Kl
þ ¼ x; zð Þ : z > ml∥x∥f g, l ¼ 1, 2:

On the surfaces of the cones, the components U3
1 have singularities of the type (z
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jr
2)�1/2.

For solution of supersonic problems, we introduce the tensor cWi
j x; zð Þ, which is the antideriv-

ative of bUi
j with respect to z:
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cWi
j ¼

X2

k¼1

cWi
jk ¼ bUi

j∗δ x1ð Þδ x2ð Þθ zð Þ ¼ bUi
j ∗z θ zð Þ, cWi

j, z ¼ bUi
j (48)

They are also fundamental solutions of Eq. (14) for the mass forces of the corresponding
Fj ∗z θ zð Þ. After calculation, we define its components as:

2πW1
1 ¼

z
r4

x21 � x22
� �

θ1V1 � θ2V2ð Þ þ 0, 5m2
1θ1ln

zþ V1

m1r
þ M2

2 � 0; 5m2
2

� �
θ2ln

zþ V2

m2r

2πW2
2 ¼ � z

r4
x21 � x22
� �

θ1V1 � θ2V2ð Þ þ 0, 5m2
1θ1ln

zþ V1

m1r
þ M2

2 � 0; 5m2
2

� �
θ2ln

zþ V2

m2r

(49)

2πW3
3 ¼ θ1ln

zþ V1

m1r
þm2

2θ2ln
zþ V2

m2r
, 2πW3

2 ¼ �x2r�2 θ1V1 � θ2V2ð Þ

2πW2
1 ¼ zx1x2r�4 θ1V1 � θ2V2ð Þ, 2πW3

1 ¼ �x1r�2 θ1V1 � θ2V2ð Þ

TensorcWi
j has the same support as bUi

j but as at the cone Kj

ð50Þ

it continues on fronts Kj. Wj
i x; zð Þ has weak singularity by x’ = 0 and weak logarithmic

singularity on Z with respect to ∥x∥ by x = 0. To single out these singularities, we decompose
it into the terms:

Wi
j x; zð Þ ¼ Wis

j x; zð Þ þWid
j x; zð Þ ¼

X2

k¼1

θk z�mkrð Þ Wis
jk xð Þ þWid

j x; zð Þ,

2πc2Wis
j1 xð Þ ¼ � δi3δj3 þ 0; 5m2

1 1� δi3ð Þδij
� �

lnm1r,

2πc2Wis
j2 xð Þ ¼ ðδi3δj3 þ δij 0; 5m2

1 1� δi3ð Þ �M2
2

� �
lnm2r

(51)

The tensors Wis
j of diagonal form are independent of z inside the sonic cones Kl(l = 1, 2)

and have a logarithmic singularity with respect to ∥x∥ on the Z-axis. Unlike the generat-
ing tensor Wis

j , W
id
j has bounded jumps on the Kl. One can readily see that the tensor

shifts

Uj
i x; y; zð Þ ¼ bUj

i x� y; zð Þ,Wj
i x; y; zð Þ ¼ cWj

i x� y; zð Þ

have the following symmetry properties around the Z-axis:

Uj
i x; y; zð Þ ¼ Uj

i y; x; zð Þ ¼ Ui
j x; y; zð Þ, Wj

i x; y; zð Þ ¼ Wj
i y; x; zð Þ ¼ Wi

j x; y; zð Þ, i, j ¼ 1, 2 (52)

But for the components with indices (i,j) = (1,3), (3,1), (2,3), (3,2)
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Uj
i x; y; zð Þ ¼ �Uj

i y; x; zð Þ, Wj
i x; y; zð Þ ¼ �Wj

i y; x; zð Þ (53)

11. Fundamental supersonic antiderivative stress tensor bH and its
properties

We introduce antiderivative stress tensor

~Σ
j
i3 ¼ bΣ i

j∗θ zð Þδ xð Þ
bHi

j ¼ bTi
j∗θ zð Þδ xð Þ ¼ bTi

j ∗z θ zð Þ, bHi
j, z ¼ bTi

j

(54)

This tensor can be obtained in a different way, by analogy with T, using Hooke’s law, except
that the Green tensor should be replaced with its antiderivativeW. By using the presentation of
the basic functions of Green’s tensor construction (Eq. (25)) in the supersonic case, it can be
presented in the following form:

Obviously, for z < τ, all the introduced shifted tensors are zero. It has the following symmetry
properties around the Z-axis:

Hj
i x; y; z;mð Þ ¼ �Hj

i y; x; z;mð Þ ¼ �Hj
i x; y; z;�mð Þ

except for (i,j) = (1,3), (2,3), (3,1):

H3
i x; y; zð Þ ¼ H3

i y; x; zð Þ, H3
i x; y; zð Þ ¼ H3

i y; x; zð Þ, i ¼ 1, 2:

Components Hi
j x; zð Þ have weak singularities on the fronts of the type z2 �m2

j∥x∥2
� ��1=2

, but

more stronger singularity of the type of ∥x∥�1 on the axis Z. If we put Eq. (51) in Hook’s law,
then we can again single out two terms in Hi

j x; zð Þ:

Hi
j x; zð Þ ¼ His

j x; zð Þ þHid
j x; zð Þ ¼

X2

k¼1

θk z�mkrð Þ His
jk xð Þ þHid

jk x; zð Þ
� �

(55)
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cWi
j ¼

X2

k¼1

cWi
jk ¼ bUi

j∗δ x1ð Þδ x2ð Þθ zð Þ ¼ bUi
j ∗z θ zð Þ, cWi

j, z ¼ bUi
j (48)

They are also fundamental solutions of Eq. (14) for the mass forces of the corresponding
Fj ∗z θ zð Þ. After calculation, we define its components as:

2πW1
1 ¼

z
r4

x21 � x22
� �

θ1V1 � θ2V2ð Þ þ 0, 5m2
1θ1ln

zþ V1

m1r
þ M2

2 � 0; 5m2
2

� �
θ2ln

zþ V2

m2r

2πW2
2 ¼ � z

r4
x21 � x22
� �

θ1V1 � θ2V2ð Þ þ 0, 5m2
1θ1ln

zþ V1

m1r
þ M2

2 � 0; 5m2
2

� �
θ2ln

zþ V2

m2r

(49)

2πW3
3 ¼ θ1ln

zþ V1

m1r
þm2

2θ2ln
zþ V2

m2r
, 2πW3

2 ¼ �x2r�2 θ1V1 � θ2V2ð Þ

2πW2
1 ¼ zx1x2r�4 θ1V1 � θ2V2ð Þ, 2πW3

1 ¼ �x1r�2 θ1V1 � θ2V2ð Þ

TensorcWi
j has the same support as bUi

j but as at the cone Kj

ð50Þ

it continues on fronts Kj. Wj
i x; zð Þ has weak singularity by x’ = 0 and weak logarithmic

singularity on Z with respect to ∥x∥ by x = 0. To single out these singularities, we decompose
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Wi
j x; zð Þ ¼ Wis

j x; zð Þ þWid
j x; zð Þ ¼

X2

k¼1

θk z�mkrð Þ Wis
jk xð Þ þWid

j x; zð Þ,

2πc2Wis
j1 xð Þ ¼ � δi3δj3 þ 0; 5m2

1 1� δi3ð Þδij
� �

lnm1r,

2πc2Wis
j2 xð Þ ¼ ðδi3δj3 þ δij 0; 5m2

1 1� δi3ð Þ �M2
2

� �
lnm2r

(51)

The tensors Wis
j of diagonal form are independent of z inside the sonic cones Kl(l = 1, 2)

and have a logarithmic singularity with respect to ∥x∥ on the Z-axis. Unlike the generat-
ing tensor Wis

j , W
id
j has bounded jumps on the Kl. One can readily see that the tensor

shifts

Uj
i x; y; zð Þ ¼ bUj

i x� y; zð Þ,Wj
i x; y; zð Þ ¼ cWj

i x� y; zð Þ

have the following symmetry properties around the Z-axis:

Uj
i x; y; zð Þ ¼ Uj

i y; x; zð Þ ¼ Ui
j x; y; zð Þ, Wj

i x; y; zð Þ ¼ Wj
i y; x; zð Þ ¼ Wi

j x; y; zð Þ, i, j ¼ 1, 2 (52)

But for the components with indices (i,j) = (1,3), (3,1), (2,3), (3,2)
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Uj
i x; y; zð Þ ¼ �Uj

i y; x; zð Þ, Wj
i x; y; zð Þ ¼ �Wj

i y; x; zð Þ (53)

11. Fundamental supersonic antiderivative stress tensor bH and its
properties

We introduce antiderivative stress tensor

~Σ
j
i3 ¼ bΣ i

j∗θ zð Þδ xð Þ
bHi

j ¼ bTi
j∗θ zð Þδ xð Þ ¼ bTi

j ∗z θ zð Þ, bHi
j, z ¼ bTi

j

(54)
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Hj
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i x; y; z;�mð Þ

except for (i,j) = (1,3), (2,3), (3,1):

H3
i x; y; zð Þ ¼ H3

i y; x; zð Þ, H3
i x; y; zð Þ ¼ H3

i y; x; zð Þ, i ¼ 1, 2:

Components Hi
j x; zð Þ have weak singularities on the fronts of the type z2 �m2

j∥x∥2
� ��1=2

, but

more stronger singularity of the type of ∥x∥�1 on the axis Z. If we put Eq. (51) in Hook’s law,
then we can again single out two terms in Hi

j x; zð Þ:

Hi
j x; zð Þ ¼ His

j x; zð Þ þHid
j x; zð Þ ¼

X2

k¼1

θk z�mkrð Þ His
jk xð Þ þHid

jk x; zð Þ
� �

(55)
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Since the tensors His
jk xð Þ independent of z inside the sonic cones Kl (l = 1,2), we conventionally

say that they are stationary. Accordingly, the tensors Hid
j x; zð Þ are said to be dynamic, because

they depend essentially on z, although they are regular functions. The aforementioned sym-
metry properties hold for both stationary and dynamic terms in the tensors.

For this type of tensors, the next theorem was proved (see [7]).

Theorem 11.1. The fundamental stress tensor H satisfies the relation

δjiH
�
S xð Þθ zð Þ ¼

ðz

0

dτ
ð

S

Hj
i y� x; τ; n yð Þð Þ dS yð Þþ

þ
ð

S

rc2
� ��1 ~Σ

j

i3ðx� y; zÞ �Uj
i, zðy� x; zÞ

� �
dy1dy2

For x∉D all integrals are regular; for x ∈ D the first integral is singular, calculated in value principle
sense.

This theorem enables us to obtain solvable singular boundary integral equations for a super-
sonic transport boundary value problem.

12. Statement of supersonic transport BVP: uniqueness of solutions

We suppose here that supersonic transport loads, moving at supersonic velocity c > c1, are
known on the boundary D:

P ¼ σijniej ¼ rc2pj x; zð Þejθ zð Þ, x ¼ x1; x2ð Þ∈S, i, j ¼ 1, 2, 3 (56)

Functions pj(x,z) are integrable on D+. We assume here G = 0 and

u x; zð Þ ¼ 0, ui, z x; zð Þ ¼ 0, z ≤ 0, x∈ S� (57)

For ∥(x,z)∥ ! ∞

uj ! 0, ∃ε > 0 : ∥∂ju∥ < O ∥ x; zð Þ∥1þε� �
, j ¼ 1, 2, z (58)

The jump conditions, Eqs. (15) and (16) are satisfied on the shock wave fronts.

Theorem 12.1. The solution of the supersonic transport boundary value problem is unique.

Proof. Suppose that there exist two solutions. Since the problem is linear, it follows that their
difference u(x,z) satisfies the zero boundary conditions, i.e., P(x;z) = 0, and is a solution of the
homogeneous equations of motion (G = 0). We note, that Lemma 8.1 is also true in the
supersonic case for shock waves as there is Theorem 3.2 for the gaps of energy on their fronts
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(see full proof). Then together with conditions given in Eq. (59) of decay of the solutions at
infinity and the zero conditions for z = 0,

ð

S�

E x; zð Þdx1dx2 ¼
ð

S�

σi3ui, z x; zð Þdx1dx2 ! 0 by z ! ∞

The energy density E is a positive definite quadratic form of ui,j by construction. Therefore, by
virtue of the decay of the solution at infinity, the relation only holds if ui,j = 0 for all i and j.
Hence, we obtain u = 0; i.e., the solutions coincide. The proof of the theorem is complete.

Theorem 12.1 holds for both exterior and interior boundary value problems.

13. Statement of supersonic BVP in D
0
3 R3� �

and its generalized solution

To solve the problem, we also use the method of generalized functions. We introduce here the
regular generalized function with support on D�

þ:

buj x; zð Þ ¼ uj x; zð ÞH�
S xð Þθ zð Þ (59)

Also using the properties of differentiation of regular generalized functions with gaps at D,
and taking into account the boundary conditions and the conditions on the fronts, we obtain
the transport Lame equations (Eq. (14)) on the space of distributions with singular mass forces:

bgj ¼ pjδS xð Þθ zð Þ þ λuknkδij þ μ uinj þ ujni
� �� �

δS xð Þθ zð Þ� �
, i (60)

By using the properties of convolutions with the Green tensor and the boundary conditions,
we obtain the generalized solution of BVP in the form:

rc2buk ¼ bUj
k∗PjδS xð Þθ zð Þ þ bUj

k, i
∗ λumnmδij þ μ uinj þ ujni

� �� �
δS xð Þθ zð Þ (61)

By analog with the subsonic case, if we use fundamental stress tensor, then the right-hand side
of Eq. (61) may be represented in the form of a surface integral over the boundary of the
domain. In our notation, on the boundary, it acquires the form

uiH�
S xð Þθ zð Þ ¼

ð

Dþ

Uj
i x; y; z� τð Þ pj y; τð Þ � Tj

i x; y; z� τ; n y; τð Þð Þuj y; τð Þ
� �

dD y; τð Þ (62)

This formula is similar to the Somigliana formula in the static theory of elasticity ([1]: 146), but
it is impossible to use this formula to determine the solution of the boundary value problem in
the case of supersonic loads, because the second term contains strong non-integrable singular-
ities of the tensor T on the shock wave fronts of fundamental solutions; therefore, the integrals
are divergent. To construct a regular integral representation of the formula, we must regularize
it. For this, we use the tensor H.
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Since the tensors His
jk xð Þ independent of z inside the sonic cones Kl (l = 1,2), we conventionally

say that they are stationary. Accordingly, the tensors Hid
j x; zð Þ are said to be dynamic, because

they depend essentially on z, although they are regular functions. The aforementioned sym-
metry properties hold for both stationary and dynamic terms in the tensors.
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� �
dy1dy2

For x∉D all integrals are regular; for x ∈ D the first integral is singular, calculated in value principle
sense.

This theorem enables us to obtain solvable singular boundary integral equations for a super-
sonic transport boundary value problem.

12. Statement of supersonic transport BVP: uniqueness of solutions

We suppose here that supersonic transport loads, moving at supersonic velocity c > c1, are
known on the boundary D:

P ¼ σijniej ¼ rc2pj x; zð Þejθ zð Þ, x ¼ x1; x2ð Þ∈S, i, j ¼ 1, 2, 3 (56)

Functions pj(x,z) are integrable on D+. We assume here G = 0 and

u x; zð Þ ¼ 0, ui, z x; zð Þ ¼ 0, z ≤ 0, x∈ S� (57)

For ∥(x,z)∥ ! ∞

uj ! 0, ∃ε > 0 : ∥∂ju∥ < O ∥ x; zð Þ∥1þε� �
, j ¼ 1, 2, z (58)

The jump conditions, Eqs. (15) and (16) are satisfied on the shock wave fronts.

Theorem 12.1. The solution of the supersonic transport boundary value problem is unique.

Proof. Suppose that there exist two solutions. Since the problem is linear, it follows that their
difference u(x,z) satisfies the zero boundary conditions, i.e., P(x;z) = 0, and is a solution of the
homogeneous equations of motion (G = 0). We note, that Lemma 8.1 is also true in the
supersonic case for shock waves as there is Theorem 3.2 for the gaps of energy on their fronts
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(see full proof). Then together with conditions given in Eq. (59) of decay of the solutions at
infinity and the zero conditions for z = 0,

ð
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σi3ui, z x; zð Þdx1dx2 ! 0 by z ! ∞

The energy density E is a positive definite quadratic form of ui,j by construction. Therefore, by
virtue of the decay of the solution at infinity, the relation only holds if ui,j = 0 for all i and j.
Hence, we obtain u = 0; i.e., the solutions coincide. The proof of the theorem is complete.

Theorem 12.1 holds for both exterior and interior boundary value problems.

13. Statement of supersonic BVP in D
0
3 R3� �

and its generalized solution

To solve the problem, we also use the method of generalized functions. We introduce here the
regular generalized function with support on D�

þ:

buj x; zð Þ ¼ uj x; zð ÞH�
S xð Þθ zð Þ (59)

Also using the properties of differentiation of regular generalized functions with gaps at D,
and taking into account the boundary conditions and the conditions on the fronts, we obtain
the transport Lame equations (Eq. (14)) on the space of distributions with singular mass forces:

bgj ¼ pjδS xð Þθ zð Þ þ λuknkδij þ μ uinj þ ujni
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δS xð Þθ zð Þ� �
, i (60)

By using the properties of convolutions with the Green tensor and the boundary conditions,
we obtain the generalized solution of BVP in the form:

rc2buk ¼ bUj
k∗PjδS xð Þθ zð Þ þ bUj

k, i
∗ λumnmδij þ μ uinj þ ujni

� �� �
δS xð Þθ zð Þ (61)

By analog with the subsonic case, if we use fundamental stress tensor, then the right-hand side
of Eq. (61) may be represented in the form of a surface integral over the boundary of the
domain. In our notation, on the boundary, it acquires the form

uiH�
S xð Þθ zð Þ ¼

ð

Dþ

Uj
i x; y; z� τð Þ pj y; τð Þ � Tj

i x; y; z� τ; n y; τð Þð Þuj y; τð Þ
� �

dD y; τð Þ (62)

This formula is similar to the Somigliana formula in the static theory of elasticity ([1]: 146), but
it is impossible to use this formula to determine the solution of the boundary value problem in
the case of supersonic loads, because the second term contains strong non-integrable singular-
ities of the tensor T on the shock wave fronts of fundamental solutions; therefore, the integrals
are divergent. To construct a regular integral representation of the formula, we must regularize
it. For this, we use the tensor H.

General Functions Method in Transport Boundary Value Problems of Elasticity Theory
http://dx.doi.org/10.5772/intechopen.74538

147



14. Dynamic analog of the Somigliana formula in supersonic case

For regularization of Eq. (61), we put W,z instead of U in the second term and use the property
of differentiation of convolution:

rc2buk ¼ bUj
k∗PjδS xð Þθ zð Þ þcW

j

k, iz
∗ λumnmδij þ μ uinj þ ujni

� �� �
δS xð Þθ zð Þ ¼

¼ bUj
k∗PjδS xð Þθ zð Þþ W

↼ j

k, i
∗ λum, znmδij þ μ ui, znj þ uj, zni

� �� �
δS xð Þθ zð Þþ

þcWj
k, i

∗ λumnmδij þ μ uinj þ ujni
� �� �

δS xð Þδ zð Þ ¼
¼ bUj

k∗PjδS xð Þθ zð Þ þcWj
k,m

∗Cil
jmui, znl xð ÞδS xð Þθ zð Þ þ Cil

jm
cWj

k,m ∗
x
ui x:0ð Þnl xð ÞδS xð Þ

(63)

From here on, we use Eq. (57) we get the formula which can be written in integral form.

Theorem 14.1. The generalized solution of supersonic transport BVP can be presented in the form:

buk ¼ bUj
k∗pjδS xð Þθ zð Þ þ ~Cil

jm
cWj

k,m
∗ui, znl xð ÞδS xð Þθ zð Þ (64)

which for x∉S has the next integral presentation

uiH�
S xð Þθ zð Þ ¼

X2

k¼1

ð

S

θ z�mkrð ÞdS yð Þ
ðz�mkr

0

Uj
i x� y; z� τð Þ pjðy; τÞ�

n

�Hjd
i ðx� y; z� τ; n yð ÞÞuj, zðy; τÞ

o
dτ�

ð

S

Hjs
i x� y; z; n yð Þð Þuj y; z�mkrð ÞdS yð Þ

(65)

r ¼ x� yk k

Proof. Formula (65) follows from Eq. (64) in virtue of Eqs. (61) and (32). Its integral form is

uiH�
S xð Þθ zð Þ ¼

ðz

0

Uj
i x; y; z� τð Þ pj y; τð Þ �Hj

i x; y; z� τ; n yð Þð Þuj, z y; τð Þ
o
dτ

n

If we use Eq. (55) for Hi
j x; zð Þ as the support of His

j x; zð Þ, Hid
j x; zð Þ, we get

uiH�
S xð Þθ zð Þ ¼

X2

k¼1

ð

S

θ z�mkrð ÞdS yð Þ
ðz�mkr

0

Uj
i x� y; z� τð Þ pjðy; τÞ�

n

� ðHjd
ikðx� y; z� τ; n yð Þ þHjs

ikðx� y; n yð ÞÞÞuj, zðy; τÞ
o
dτ

(66)
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Note that

ðz�mkr

0

Hjs
ik x� y; n yð Þð Þuj, τ y; τð Þdτ ¼ Hjs

ik x� y; n yð Þð ÞÞðuj y; z�mkrð Þ � uj y; 0ð Þ ¼

¼ Hjs
ik x� y; n yð Þð ÞÞuj y; z�mkrð Þ

In virtue of this equity, we get from Eq. (66) the last formula of the theorem.

All integrals exist; indeed, the integrands are integrable everywhere, including the fronts of
fundamental solutions, because the kernels of the integrands have weak singularities on the

fronts of the form z2 �m2
j∥x∥2

� ��1=2
in virtue of the properties of kernelsU andH. The proof is

completed.

This formula is a dynamic analog of Somigliana formula for supersonic loads. It defines the
displacement in elastic medium by using boundary values of stresses and velocity of displace-
ments of boundary surface.

This formula also preserves its form for x; zð Þ∈D with regard to the definition of HS
� xð Þθ zð Þ

on D.

15. Singular boundary integral equations of supersonic transport BVP

Тheorem15.1. If the classical solution of BVP satisfies the Holder’s conditions at D+, i.e., ∃ C > 0, β > 0
that

uj x; zð Þ � uj y; zð Þ�� �� < C x� yk kβ, x, y∈S:

then it satisfies the singular boundary integral equation at D+

0, 5ui x; zð Þ ¼
X2

k¼1

ð

Skz x0ð Þ

θ z�mkrð ÞdS yð Þ
ðz�mkr

0

Uj
i x� y; z� τð Þ pj y; τð Þ�

n

�Hjd
i x� y; z� τ; n yð Þð Þuj, z y; τð Þ

o
dτ�

�V:P:
ð

Skz xð Þ

Hjs
i x� y; z; n yð Þð Þuj y; z�mkrð ÞdS yð Þ, r ¼ x� yk k

Proof. The desired assertion follows from Theorem 14.1 and Theorem 11.1 for tensor H by
analogy of the proof of Theorem 12.1 about singular boundary integral equations in the
subsonic case. Full proofs of these theorems can be found in [7].
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14. Dynamic analog of the Somigliana formula in supersonic case

For regularization of Eq. (61), we put W,z instead of U in the second term and use the property
of differentiation of convolution:

rc2buk ¼ bUj
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j
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δS xð Þθ zð Þ ¼
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k,m

∗Cil
jmui, znl xð ÞδS xð Þθ zð Þ þ Cil

jm
cWj
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ui x:0ð Þnl xð ÞδS xð Þ

(63)

From here on, we use Eq. (57) we get the formula which can be written in integral form.
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In virtue of this equity, we get from Eq. (66) the last formula of the theorem.
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fundamental solutions, because the kernels of the integrands have weak singularities on the

fronts of the form z2 �m2
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in virtue of the properties of kernelsU andH. The proof is

completed.

This formula is a dynamic analog of Somigliana formula for supersonic loads. It defines the
displacement in elastic medium by using boundary values of stresses and velocity of displace-
ments of boundary surface.

This formula also preserves its form for x; zð Þ∈D with regard to the definition of HS
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on D.

15. Singular boundary integral equations of supersonic transport BVP

Тheorem15.1. If the classical solution of BVP satisfies the Holder’s conditions at D+, i.e., ∃ C > 0, β > 0
that
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then it satisfies the singular boundary integral equation at D+

0, 5ui x; zð Þ ¼
X2

k¼1

ð

Skz x0ð Þ

θ z�mkrð ÞdS yð Þ
ðz�mkr

0

Uj
i x� y; z� τð Þ pj y; τð Þ�

n

�Hjd
i x� y; z� τ; n yð Þð Þuj, z y; τð Þ

o
dτ�

�V:P:
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Skz xð Þ

Hjs
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Proof. The desired assertion follows from Theorem 14.1 and Theorem 11.1 for tensor H by
analogy of the proof of Theorem 12.1 about singular boundary integral equations in the
subsonic case. Full proofs of these theorems can be found in [7].
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This theorem gives us a resolving system of integral equations for definition of unknown
values of boundary displacements in the supersonic case.

Moreover, the Somigliana formula for displacements was obtained for generalized functions.
But since they are regular, from the Dubois-Reymond lemma ([3]: 97), this solution is classical.
However, if the acting loads are described by singular generalized functions, which often
takes place in physical problems, then one should use a representation of a generalized
solution in the convolution form (Eq. (65)) with the evaluation of convolutions by the defini-
tion (see [3]: 133).

16. Conclusion

The constructed singular boundary integral equations in the supersonic case are not classical
equations because the solution inside a domain is determined by the boundary values of
stresses and displacement rates rather than displacements themselves, unlike the Somigliana
formula. In addition, the domain of integration over a boundary surface substantially depends
on z, which is specific for hyperbolic equations. This complicates finding solutions of such
problems by the successive approximation method. However, for the numerical discretization
of singular boundary integral equations, the method of boundary elements makes it possible to
use standard methods of computational mathematics for a computer implementation of the
solution of such problems. The aforementioned boundary value problems model the dynamics
of underground structures like transport tunnels and extended excavations subjected to the
dynamic influence of moving vehicles and seismic loads. They permit one to study the dynam-
ics of a rock mass in a neighborhood of underground structures depending on its physical-
mechanical properties, the velocity of moving transport, specific features of the transport load,
and the geometric properties of structures in technical computations of displacements and the
stress-strain state of the mass away from the tunnel.
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Abstract

Nonlinear equations are of great importance to our contemporary world. Nonlinear phe-
nomena have important applications in applied mathematics, physics, and issues related
to engineering. Despite the importance of obtaining the exact solution of nonlinear partial
differential equations in physics and applied mathematics, there is still the daunting
problem of finding new methods to discover new exact or approximate solutions. The
purpose of this chapter is to impart a safe strategy for solving some linear and nonlinear
partial differential equations in applied science and physics fields, by combining Laplace
transform and the modified variational iteration method (VIM). This method is founded
on the variational iteration method, Laplace transforms and convolution integral, such
that, we put in an alternative Laplace correction functional and express the integral as a
convolution. Some examples in physical engineering are provided to illustrate the sim-
plicity and reliability of this method. The solutions of these examples are contingent only
on the initial conditions.

Keywords: nonlinear partial differential equations, Laplace transform, modified
variational iteration method

1. Introduction

In the recent years, many authors have devoted their attention to study solutions of nonlinear
partial differential equations using various methods. Among these attempts are the Adomian
decomposition method, homotopy perturbation method, variational iteration method (VIM)
[1–5], Laplace variational iteration method [6–8], differential transform method and projected
differential transform method.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.73291

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 9

Solution of Nonlinear Partial Differential Equations by
New Laplace Variational Iteration Method

Tarig M. Elzaki

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.73291

Provisional chapter

Solution of Nonlinear Partial Differential Equations by
New Laplace Variational Iteration Method

Tarig M. Elzaki

Additional information is available at the end of the chapter

Abstract

Nonlinear equations are of great importance to our contemporary world. Nonlinear phe-
nomena have important applications in applied mathematics, physics, and issues related
to engineering. Despite the importance of obtaining the exact solution of nonlinear partial
differential equations in physics and applied mathematics, there is still the daunting
problem of finding new methods to discover new exact or approximate solutions. The
purpose of this chapter is to impart a safe strategy for solving some linear and nonlinear
partial differential equations in applied science and physics fields, by combining Laplace
transform and the modified variational iteration method (VIM). This method is founded
on the variational iteration method, Laplace transforms and convolution integral, such
that, we put in an alternative Laplace correction functional and express the integral as a
convolution. Some examples in physical engineering are provided to illustrate the sim-
plicity and reliability of this method. The solutions of these examples are contingent only
on the initial conditions.

Keywords: nonlinear partial differential equations, Laplace transform, modified
variational iteration method

1. Introduction

In the recent years, many authors have devoted their attention to study solutions of nonlinear
partial differential equations using various methods. Among these attempts are the Adomian
decomposition method, homotopy perturbation method, variational iteration method (VIM)
[1–5], Laplace variational iteration method [6–8], differential transform method and projected
differential transform method.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.73291

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Many analytical and numerical methods have been proposed to obtain solutions for nonlinear
PDEs with fractional derivatives such as local fractional variational iteration method [9], local
fractional Fourier method, Yang-Fourier transform and Yang-Laplace transform and other
methods. Two Laplace variational iteration methods are currently suggested by Wu in
[10–13]. In this chapter, we use the new method termed He’s variational iteration method,
and it is employed in a straightforward manner.

Also, the main aim of this chapter is to introduce an alternative Laplace correction functional
and express the integral as a convolution. This approach can tackle functions with discontinu-
ities as well as impulse functions effectively. The estimation of the VIM is to build an iteration
method based on a correction functional that includes a generalized Lagrange multiplier. The
value of the multiplier is chosen using variational theory so that each iteration improves the
accuracy of the result.

In this chapter, we have applied the modified variational iteration method (VIM) and Laplace
transform to solve convolution differential equations.

2. Combine Laplace transform and variational iteration method to solve
convolution differential equations

In this section, we combine Laplace transform and modified variational iteration method to
figure out a new case of differential equation called convolution differential equations; it is
possible to obtain the exact solutions or better approximate solutions of these equivalences. This
method is utilized for solving a convolution differential equation with given initial conditions.
The results obtained by this method show the accuracy and efficiency of the method.

Definition (2.1)

Let f xð Þ, g xð Þ be integrable functions, then the convolution of f xð Þ, g xð Þ is defined as:

f xð Þ∗g xð Þ ¼
ðx

0

f x� tð Þg tð Þdt

and the Laplace transform is defined as:

ℓ f xð Þ½ � ¼ F sð Þ ¼
ð∞

0

e�sxf xð Þdx

where Re s > 0, where s is complex valued and ℓ is the Laplace operator.

Further, the Laplace transform of first and second derivatives are given by:

ið Þℓ f0 xð Þ� � ¼ sℓ f xð Þ½ � � f 0ð Þ
iið Þℓ f00 xð Þ� � ¼ s2ℓ f xð Þ½ � � sf 0ð Þ � f0 0ð Þ
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More generally:

ℓ f nð Þ xð Þ
h i

¼ snℓ f xð Þ½ � � sn�1f 0ð Þ � sn�2f0 0ð Þ �…� sf n�2ð Þ 0ð Þ � f n�1ð Þ 0ð Þ

and the one-sided inverse Laplace transform is defined by:

ℓ
�1 F sð Þ½ � ¼ f xð Þ ¼ 1

2πi

ðαþi∞

α�i∞

F sð Þesxds

where the integration is within the regions of convergence. The region of convergence is half-
plane α < Re sf g.
Theorem (2.2) (Convolution Theorem)

If

ℓ f xð Þ½ � ¼ F sð Þ, ℓ g xð Þ½ � ¼ G sð Þ,

then:

ℓ f xð Þ∗g xð Þ½ � ¼ ℓ f xð Þg xð Þ½ � ¼ f sð Þg sð Þ

or equivalently,

ℓ
�1 F sð ÞG sð Þ½ � ¼ f xð Þ∗g xð Þ

Consider the differential equation,

L y xð Þ� �þ R y xð Þ� �þN y xð Þ� �þN∗ y xð Þ� � ¼ 0 (1)

With the initial conditions

y 0ð Þ ¼ h xð Þ, y0 0ð Þ ¼ k xð Þ (2)

where L is a linear second-order operator, R is a linear first-order operator, N is the nonlinear
operator and N∗ y xð Þ½ � is the nonlinear convolution term which is defined by:

N∗ y xð Þ� � ¼ f y; y0; y00; ::…; y nð Þ
� �

∗g y; y0; y00; :…; y nð Þ
� �

According to the variational iteration method, we can construct a correction functional as
follows:

ynþ1 xð Þ ¼ yn xð Þ þ
ðx

0

λ ξð Þ Lyn ξð Þ þ R~yn ξð Þ þN~yn ξð Þ þN∗~yn ξð Þ� �
dξ (3)

Ryn ξð Þ,N~yn ξð Þ and N∗~yn ξð Þ are considered as restricted variations, that is,
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δR~yn ¼ 0, δN~yn ¼ 0 and δN∗~yn ¼ 0, λ ¼ �1

Then, the variational iteration formula can be obtained as:

ynþ1 xð Þ ¼ yn xð Þ �
ðx

0

Lyn ξð Þ þ Ryn ξð Þ þNyn ξð Þ þN∗~yn ξð Þ� �
dξ (4)

Eq. (4) can be solved iteratively using y0 xð Þ as the initial approximation.

Then, the solution is y xð Þ ¼ lim
n!∞

yn xð Þ.

Now, we assume that L ¼ d2

dx2
in Eq. (1).

Take Laplace transform (ℓ) of both sides of Eq. (1) to find:

ℓ Ly xð Þ� �þ ℓ Ry xð Þ� �þ ℓ Ny xð Þ� �þ ℓ N∗y xð Þ� � ¼ 0 (5)

s2ℓy� sy 0ð Þ � y0 0ð Þ ¼ �ℓ Ry xð Þ þNy xð Þ þN∗y xð Þ� � ¼ 0 (6)

By using the initial conditions and taking the inverse Laplace transform, we have:

y xð Þ ¼ p xð Þ � ℓ
�1 1

s2
Ry xð Þ þNy xð Þ þN∗y xð Þ

� �
¼ 0 (7)

where p xð Þ represents the terms arising from the source term and the prescribed initial conditions.

Now, the first derivative of Eq. (7) is given by:

dy xð Þ
dx

¼ dp xð Þ
dx

� d
dx

ℓ
�1 1

s2
ℓ Ry xð Þ þNy xð Þ þN∗y xð Þ� �� �

¼ 0 (8)

By the correction functional of the irrational method, we have:

ynþ1 xð Þ ¼ yn xð Þ �
ðx

0

yn ξð Þ� �
ξ �

d
dξ

p ξð Þ � d
dξ

ℓ
�1 1

s2
ℓ Ry ξð Þ þNy ξð Þ þN∗y ξð Þ� �� �� �

dξ

Then, the new correction functional (new modified VIM) is given by:

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s2
ℓ Ryn xð Þ þNyn xð Þ þN∗yn xð Þ

�
, n ≥ 0

��
(9)

Finally, we find the answer in the strain; if inverse Laplace transforms exist, Laplace transforms
exist.

In particular, consider the nonlinear ordinary differential equations with convolution terms,
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1� y00 xð Þ-2þ 2y0∗y00-y0∗ y00
� �2 ¼ 0, y 0ð Þ ¼ y0 0ð Þ ¼ 0 (10)

Take Laplace transform of Eq. (10), and making use of initial conditions, we have:

s2ℓy xð Þ � 2
s
¼ ℓ y0∗ y00

� �2 � 2y0∗y00
h i

The inverse Laplace transform of the above equation gives that:

y xð Þ ¼ x2 þ ℓ
�1 1

s2
ℓ y0∗ y00

� �2 � 2y0∗y00
h i� �

By using the new modified (Eq. (9)), we have the new correction functional,

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s2
ℓ y0∗ y00

� �2 � 2y0∗y00
h i� �

or

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s2
ℓ y0
� �∗

ℓ y00
� �2 � 2ℓ y0

� �∗
ℓ y00
� �h i� �

(11)

Then, we have:

y0 xð Þ ¼ x2

y1 xð Þ ¼ x2 þ ℓ
�1 1

s2
ℓ 4ð Þℓ 2xð Þ � 2ℓ 2xð Þℓ 2ð Þ

#)
¼ x2

"(

y2 xð Þ ¼ x2, y3 xð Þ ¼ x2, :………,yn xð Þ ¼ x2

This means that:

y0 xð Þ ¼ y1 xð Þ ¼ y2 xð Þ ¼ :…… ¼ yn xð Þ ¼ x2

Then, the exact solution of Eq. (10) is y xð Þ ¼ x2.

2� y0 � y0
� �2 � 2xþ y0∗ y00

� �2 ¼ 0,y 0ð Þ ¼ 1 (12)

Take Laplace transform of Eq. (12), and using the initial condition, we obtain:

sℓy� 1� 2
s2

¼ ℓ y0
� �2 � y0∗ y00

� �2h i

Take the inverse Laplace transform to obtain
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y xð Þ ¼ x2 þ ℓ
�1 1

s2
ℓ y0∗ y00

� �2 � 2y0∗y00
h i� �

By using the new modified (Eq. (9)), we have the new correction functional,

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s2
ℓ y0∗ y00

� �2 � 2y0∗y00
h i� �

or

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s2
ℓ y0
� �∗

ℓ y00
� �2 � 2ℓ y0

� �∗
ℓ y00
� �h i� �

(11)

Then, we have:

y0 xð Þ ¼ x2

y1 xð Þ ¼ x2 þ ℓ
�1 1

s2
ℓ 4ð Þℓ 2xð Þ � 2ℓ 2xð Þℓ 2ð Þ

#)
¼ x2

"(

y2 xð Þ ¼ x2, y3 xð Þ ¼ x2, :………,yn xð Þ ¼ x2

This means that:

y0 xð Þ ¼ y1 xð Þ ¼ y2 xð Þ ¼ :…… ¼ yn xð Þ ¼ x2

Then, the exact solution of Eq. (10) is y xð Þ ¼ x2.

2� y0 � y0
� �2 � 2xþ y0∗ y00

� �2 ¼ 0,y 0ð Þ ¼ 1 (12)

Take Laplace transform of Eq. (12), and using the initial condition, we obtain:

sℓy� 1� 2
s2

¼ ℓ y0
� �2 � y0∗ y00

� �2h i

Take the inverse Laplace transform to obtain
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y xð Þ ¼ 1þ x2 þ ℓ
�1 1

s
ℓ y0
� �2 � y0∗ y00

� �2h i� �

Using Eq. (9) to find the new correction functional in the form

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s
ℓ y0
� �2 � y0n

∗ y00n
� �2h i� �

or

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s
ℓ y0
� �2h i

� ℓ y0n
� �

ℓ y00n
� �2h ih i� �

(13)

Then, we have:

y0 xð Þ ¼ 1þ x2

y1 xð Þ ¼ 1þ x2 þ ℓ
�1 1

s
ℓ 4x2
� �� ℓ 2xð Þℓ 4ð Þ� � ¼ 1þ x2 þ ℓ

�1 1
s

8
s3

� 2
s2

� �
4
s

� �� �
¼ 1þ x2

y0 xð Þ ¼ y1 xð Þ ¼ y2 xð Þ ¼ :…… ¼ yn xð Þ ¼ 1þ x2

Then, the exact solution of Eq. (12) is:

y xð Þ ¼ 1þ x2

3. Solution of nonlinear partial differential equations by the combined
Laplace transform and the new modified variational iteration method

In this section, we present a reliable combined Laplace transform and the new modified varia-
tional iteration method to solve some nonlinear partial differential equations. The analytical
results of these equations have been obtained in terms of convergent series with easily comput-
able components. The nonlinear terms in these equations can be handled by using the new
modified variational iteration method. This method is more efficient and easy to handle such
nonlinear partial differential equations.

In this section, we combined Laplace transform and variational iteration method to solve the
nonlinear partial differential equations.

To obtain the Laplace transform of partial derivative, we use integration by parts, and then, we
have:

ℓ
∂f x; tð Þ

∂t

� �
¼ sF x; sð Þ � f x; 0ð Þ, (14)

ℓ
∂2f x; tð Þ

∂t2

� �
¼ s2F x; sð Þ � sf x; 0ð Þ � ∂f x; 0ð Þ

∂t
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ℓ
∂f x; tð Þ

∂t

� �
¼ d

dx
F x; sð Þ½ �,

ℓ
∂2f x; tð Þ

∂t2

� �
¼ d2

dx2
F x; sð Þ½ �:

where f x; sð Þ is the Laplace transform of x; tð Þ.
We can easily extend this result to the nth partial derivative by using mathematical induction.

To illustrate the basic concept ofHe’sVIM,we consider the followinggeneral differential equations,

ℓ Lu x; tð Þ½ � þ ℓ Nu x; tð Þ½ � ¼ ℓ g x; tð Þ½ � (15)

with the initial condition

u x; 0ð Þ ¼ h xð Þ (16)

where L is a linear operator of the first-order, N is a nonlinear operator and g x; tð Þ is inhomo-
geneous term. According to variational iteration method, we can construct a correction func-
tional as follows:

unþ1 ¼ un þ
ðt

0

λ Lun x; sð Þ þN~un x; sð Þ � g x; sð Þ½ �ds (17)

where λ is a Lagrange multiplier λ ¼ �1ð Þ, the subscripts n denotes the nth approximation, ~un

is considered as a restricted variation, that is, δ~un ¼ 0.

Eq. (17) is called a correction functional.

The successive approximation unþ1 of the solution u will be readily obtained by using the
determined Lagrange multiplier and any selective function u0; consequently, the solution is
given by:

u ¼ lim
u!∞

un

In this section, we assume that L is an operator of the first-order ∂
∂t in Eq. (15).

Taking Laplace transform on both sides of Eq. (15), we get:

ℓ Lu x; tð Þ½ � þ ℓ Nu x; tð Þ½ � ¼ ℓ g x; tð Þ½ � (18)

Using the differentiation property of Laplace transform and initial condition (16), we have:

sℓ u x; tð Þ½ � � h xð Þ ¼ ℓ g x; tð Þ½ � � ℓ Nu x; tð Þ½ � (19)

Applying the inverse Laplace transform on both sides of Eq. (19), we find:
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4
s

� �� �
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In this section, we present a reliable combined Laplace transform and the new modified varia-
tional iteration method to solve some nonlinear partial differential equations. The analytical
results of these equations have been obtained in terms of convergent series with easily comput-
able components. The nonlinear terms in these equations can be handled by using the new
modified variational iteration method. This method is more efficient and easy to handle such
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In this section, we combined Laplace transform and variational iteration method to solve the
nonlinear partial differential equations.

To obtain the Laplace transform of partial derivative, we use integration by parts, and then, we
have:
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¼ d

dx
F x; sð Þ½ �,

ℓ
∂2f x; tð Þ

∂t2

� �
¼ d2

dx2
F x; sð Þ½ �:

where f x; sð Þ is the Laplace transform of x; tð Þ.
We can easily extend this result to the nth partial derivative by using mathematical induction.

To illustrate the basic concept ofHe’sVIM,we consider the followinggeneral differential equations,

ℓ Lu x; tð Þ½ � þ ℓ Nu x; tð Þ½ � ¼ ℓ g x; tð Þ½ � (15)

with the initial condition

u x; 0ð Þ ¼ h xð Þ (16)

where L is a linear operator of the first-order, N is a nonlinear operator and g x; tð Þ is inhomo-
geneous term. According to variational iteration method, we can construct a correction func-
tional as follows:

unþ1 ¼ un þ
ðt

0

λ Lun x; sð Þ þN~un x; sð Þ � g x; sð Þ½ �ds (17)

where λ is a Lagrange multiplier λ ¼ �1ð Þ, the subscripts n denotes the nth approximation, ~un

is considered as a restricted variation, that is, δ~un ¼ 0.

Eq. (17) is called a correction functional.

The successive approximation unþ1 of the solution u will be readily obtained by using the
determined Lagrange multiplier and any selective function u0; consequently, the solution is
given by:

u ¼ lim
u!∞

un

In this section, we assume that L is an operator of the first-order ∂
∂t in Eq. (15).

Taking Laplace transform on both sides of Eq. (15), we get:

ℓ Lu x; tð Þ½ � þ ℓ Nu x; tð Þ½ � ¼ ℓ g x; tð Þ½ � (18)

Using the differentiation property of Laplace transform and initial condition (16), we have:

sℓ u x; tð Þ½ � � h xð Þ ¼ ℓ g x; tð Þ½ � � ℓ Nu x; tð Þ½ � (19)

Applying the inverse Laplace transform on both sides of Eq. (19), we find:
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u x; tð Þ ¼ G x; tð Þ � ℓ
�1 1

s
Nu x; t½ �

� �
, (20)

where G x; tð Þ represents the terms arising from the source term and the prescribed initial
condition.

Take the first partial derivative with respect to t of Eq. (20) to obtain:

∂
∂t
u x; tð Þ � ∂

∂t
G x; tð Þ þ ∂

∂t
ℓ
�1 1

s
ℓ Nu x; tð Þ½ �

� �
(21)

By the correction functional of the variational iteration method

unþ1 ¼ un �
ðt

0

unð Þξ x; ξð Þ � ∂
∂ξ

G x; ξð Þ þ ∂
∂ξ

ℓ
�1 1

ξ
ℓ Nu ξ; tð Þ½ �

� �� �
dξ

or

unþ1 ¼ G x; tð Þ � ℓ
�1 1

s
ℓ Nun x; tð Þ½ �

� �
(22)

Eq. (22) is the new modified correction functional of Laplace transform and the variational
iteration method, and the solution u is given by:

u x; tð Þ ¼ lim
u!∞

un x; tð Þ

In this section, we solve some nonlinear partial differential equations by using the new mod-
ified variational iteration Laplace transform method; therefore, we have:

Example (3.1)

Consider the following nonlinear partial differential equation:

ut þ uux ¼ 0 , u x; 0ð Þ ¼ �x (23)

Taking Laplace transform of Eq. (23), subject to the initial condition, we have:

ℓ u x; tð Þ½ � ¼ � x
s
� 1

s
ℓ uux½ �

The inverse Laplace transform implies that:

u x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ uux½ �

� �

By the new correction functional, we find:
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unþ1 x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ un unð Þx
� �� �

Now, we apply the new modified variational iteration Laplace transform method:

u0 x; tð Þ ¼ �x

u1 x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ x½ �

� �
¼ �x� ℓ

�1 x
s2
h i

¼ �x� xt

u2 x; tð Þ ¼ �x� ℓ
�1 x

1
s2

þ 2
s3

þ 2
s4

� �� �
¼ �x� xt� xt2 � 1

3
xt3

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

Therefore, we deduce the series solution to be:

u x; tð Þ ¼ �x 1þ tþ t2 þ t3 þ…
� � ¼ x

t� 1
,

which is the exact solution.

Example (3.2)

Consider the following nonlinear partial differential equation:

∂u
∂t

¼ ∂u
∂x

� �2

þ u
∂2u
∂x2

, u x:0ð Þ ¼ x2 (24)

Taking Laplace transform of Eq. (24), subject to the initial condition, we have:

ℓ u x; tð Þ½ � ¼ x2

s
þ 1

s
ℓ

∂u
∂x

� �2

þ u
∂2u
∂x2

" #

Take the inverse Laplace transform to find that:

u x; tð Þ ¼ x2 þ ℓ
�1 1

s
ℓ

∂u
∂x

� �2

þ u
∂2u
∂x2

" #( )

The new correction functional is given as

unþ1 x; tð Þ ¼ x2 þ ℓ
�1 1

s
ℓ

∂un
∂x

� �2

þ un
∂2un
∂x2

" #( )

This is the new modified variational iteration Laplace transform method.

The solution in series form is given by:
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u x; tð Þ ¼ G x; tð Þ � ℓ
�1 1

s
Nu x; t½ �

� �
, (20)
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∂
∂t
u x; tð Þ � ∂

∂t
G x; tð Þ þ ∂

∂t
ℓ
�1 1

s
ℓ Nu x; tð Þ½ �

� �
(21)

By the correction functional of the variational iteration method

unþ1 ¼ un �
ðt

0

unð Þξ x; ξð Þ � ∂
∂ξ

G x; ξð Þ þ ∂
∂ξ

ℓ
�1 1

ξ
ℓ Nu ξ; tð Þ½ �

� �� �
dξ

or

unþ1 ¼ G x; tð Þ � ℓ
�1 1

s
ℓ Nun x; tð Þ½ �

� �
(22)

Eq. (22) is the new modified correction functional of Laplace transform and the variational
iteration method, and the solution u is given by:

u x; tð Þ ¼ lim
u!∞

un x; tð Þ

In this section, we solve some nonlinear partial differential equations by using the new mod-
ified variational iteration Laplace transform method; therefore, we have:

Example (3.1)

Consider the following nonlinear partial differential equation:

ut þ uux ¼ 0 , u x; 0ð Þ ¼ �x (23)

Taking Laplace transform of Eq. (23), subject to the initial condition, we have:

ℓ u x; tð Þ½ � ¼ � x
s
� 1

s
ℓ uux½ �

The inverse Laplace transform implies that:

u x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ uux½ �

� �

By the new correction functional, we find:
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unþ1 x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ un unð Þx
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Now, we apply the new modified variational iteration Laplace transform method:

u0 x; tð Þ ¼ �x

u1 x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ x½ �

� �
¼ �x� ℓ

�1 x
s2
h i

¼ �x� xt

u2 x; tð Þ ¼ �x� ℓ
�1 x

1
s2

þ 2
s3

þ 2
s4

� �� �
¼ �x� xt� xt2 � 1

3
xt3

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

Therefore, we deduce the series solution to be:

u x; tð Þ ¼ �x 1þ tþ t2 þ t3 þ…
� � ¼ x

t� 1
,

which is the exact solution.

Example (3.2)

Consider the following nonlinear partial differential equation:

∂u
∂t

¼ ∂u
∂x

� �2

þ u
∂2u
∂x2

, u x:0ð Þ ¼ x2 (24)

Taking Laplace transform of Eq. (24), subject to the initial condition, we have:

ℓ u x; tð Þ½ � ¼ x2

s
þ 1

s
ℓ

∂u
∂x

� �2

þ u
∂2u
∂x2

" #

Take the inverse Laplace transform to find that:

u x; tð Þ ¼ x2 þ ℓ
�1 1

s
ℓ

∂u
∂x

� �2

þ u
∂2u
∂x2

" #( )

The new correction functional is given as

unþ1 x; tð Þ ¼ x2 þ ℓ
�1 1

s
ℓ

∂un
∂x

� �2

þ un
∂2un
∂x2

" #( )

This is the new modified variational iteration Laplace transform method.

The solution in series form is given by:
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u0 x; tð Þ ¼ x2

u1 x; tð Þ ¼ x2 þ ℓ
�1 6x2

s2

� �
¼ x2 þ 6x2t

u2 x; tð Þ ¼ x2 1þ 6tþ 36t2 þ 72t3
� �

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

The series solution is given by:

u x; tð Þ ¼ x2 1þ 6tþ 36t2 þ 72t3 þ…
� � ¼ x2

1� 6t

Example (3.3)

Consider the following nonlinear partial differential equation:

∂u
∂t

¼ 2u
∂u
∂x

� �2

þ u2
∂2u
∂x2

, u x:0ð Þ ¼ xþ 1
2

(25)

Using the same method in the above examples to find the new correction functional in the form:

unþ1 x; tð Þ ¼ xþ 1
2

þ ℓ
�1 1

s
ℓ 2un

∂un
∂x

� �2

þ u2n
∂2un
∂x2

" #( )

Then, we have:

u0 x; tð Þ ¼ xþ 1
2

u1 x; tð Þ ¼ xþ 1
2

þ ℓ
�1 xþ 1

4
1
s2

� �
¼ xþ 1

2
1þ t

2

� �

u2 x; tð Þ ¼ xþ 1
2

1þ t
2
þ 3
8
t2 þ 1

8
t3 þ 1

64
t4

� �

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

The series solution is given by:

u x; tð Þ ¼ xþ 1
2

1þ t
2
þ

1
2 :

3
2

2!
t2 þ…

� �
¼ xþ 1

2
1� tð Þ�1

2,

which is the exact solution of Eq. (25).
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Example (3.4)

Consider the following nonlinear partial differential equation:

∂2u
∂t2

þ ∂u
∂x

� �2

þ u� u2 ¼ te�x , u x:0ð Þ ¼ 0,
∂u
∂t

¼ e�x (26)

Taking the Laplace transform of the Eq. (26), subject to the initial conditions, we have:

s2ℓ u x; tð Þ½ � � e�x ¼ ℓ te�x þ u2 � ∂u
∂x

� �2

� u

" #

Take the inverse Laplace transform to find that:

u x; tð Þ ¼ te�x þ ℓ
�1 1

s2
ℓ te�x þ u2 � ∂u

∂x

� �2

� u

" #( )

The new correct functional is given as:

unþ1 x; tð Þ ¼ te�x þ ℓ
�1 1

s2
ℓ te�x þ un2 � ∂un

∂x

� �2

� un

" #( )

This is the new modified variational iteration Laplace transform method.

The solution in series form is given by:

u0 x; tð Þ ¼ te�x

u1 x; tð Þ ¼ te�x

u2 x; tð Þ ¼ te�x

(27)

˙

˙

The series solution is given by:

u x; tð Þ ¼ te�x

4. New Laplace Variational iteration method

To illustrate the idea of new Laplace variational iteration method, we consider the following
general differential equations in physics.

ð28Þ

where L is a linear partial differential operator given by ,N is nonlinear operator and

is a known analytical function. According to the variational iteration method, we can construct
a correction functional for Eq. (28) as follows:

Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method
http://dx.doi.org/10.5772/intechopen.73291

163



u0 x; tð Þ ¼ x2

u1 x; tð Þ ¼ x2 þ ℓ
�1 6x2

s2

� �
¼ x2 þ 6x2t

u2 x; tð Þ ¼ x2 1þ 6tþ 36t2 þ 72t3
� �

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

The series solution is given by:

u x; tð Þ ¼ x2 1þ 6tþ 36t2 þ 72t3 þ…
� � ¼ x2

1� 6t

Example (3.3)

Consider the following nonlinear partial differential equation:

∂u
∂t

¼ 2u
∂u
∂x

� �2

þ u2
∂2u
∂x2

, u x:0ð Þ ¼ xþ 1
2

(25)

Using the same method in the above examples to find the new correction functional in the form:

unþ1 x; tð Þ ¼ xþ 1
2

þ ℓ
�1 1
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" #( )
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� �
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˙ ˙ ˙

The series solution is given by:
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2
þ

1
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3
2
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which is the exact solution of Eq. (25).
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Example (3.4)
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þ u� u2 ¼ te�x , u x:0ð Þ ¼ 0,
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Take the inverse Laplace transform to find that:
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� u
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" #( )

This is the new modified variational iteration Laplace transform method.

The solution in series form is given by:
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˙

˙

The series solution is given by:
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To illustrate the idea of new Laplace variational iteration method, we consider the following
general differential equations in physics.

ð28Þ

where L is a linear partial differential operator given by ,N is nonlinear operator and

is a known analytical function. According to the variational iteration method, we can construct
a correction functional for Eq. (28) as follows:
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unþ1 x; tð Þ ¼ un x; tð Þ þ
ðt

0

λ x; ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς,

n ≥ 0,

(29)

where is a general Lagrange multiplier, which can be identified optimally via the variational
theory, the subscript denotes the nth approximation, is considered as a restricted

variation, that is, .

Also, we can find the Lagrange multipliers, by using integration by parts of Eq. (28), but in this

chapter, the Lagrange multipliers are found to be of the form , and in such a

case, the integration is basically the single convolution with respect to t, and hence, Laplace
transform is appropriate to use.

Take Laplace transform of Eq. (29); then the correction functional will be constructed in the form:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ðt

0

λ x; ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς
2
4

3
5, n ≥ 0, (30)

Therefore

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �
þℓ λ x; tð Þ∗ Lun x; tð Þ þN~unðx; tÞ � hðx; tÞ½ �� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� �
ℓ Lun x; tð Þ þN~unðx; tÞ � hðx; tÞ½ �

(31)

where * is a single convolution with respect to t.

To find the optimal value of , we first take the variation with respect to .

Thus:

δ
δun

ℓ unþ1 x; tð Þ½ � ¼ δ
δun

ℓ un x; tð Þ½ �þ

δ
δun

ℓ λ x; tð Þ� �
ℓ Lun x; tð Þ þN~unðx; tÞ � hðx; tÞ½ �

(32)

Then, Eq. (32) becomes

ð33Þ

In this chapter, we assume that L is a linear partial differential operator given by , then,

Eq. (33) can be written in the form:
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ð34Þ

The extreme condition of requires that . This means that the right
hand side of Eq. (34) should be set to zero; then, we have the following condition:

ð35Þ

Then, we have the following iteration formula

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

�ℓ

ðt

0

t� ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς
2
4

3
5, n ≥ 0, (36)

5. Applications

In this section, we apply the Laplace variational iteration method to solve some linear and
nonlinear partial differential equations in physics.

Example (5.1)

Consider the initial linear partial differential equation

ð37Þ

The Laplace variational iteration correction functional will be constructed in the following
manner:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ðt

0

λ x; t� ςð Þ unð Þttðx; ςÞ � unð Þxxðx; ςÞ þ unðx; ςÞ
� �

dς

2
4

3
5 (38)

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ λ x; tð Þ∗ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� �
ℓ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� � s2ℓun x; tð Þ � sun x; 0ð Þ � ∂un
∂t

x; 0ð Þ

�ℓ unð Þxx x; tð Þ þ ℓun x; tð Þ

2
64

3
75

(39)
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where is a general Lagrange multiplier, which can be identified optimally via the variational
theory, the subscript denotes the nth approximation, is considered as a restricted

variation, that is, .

Also, we can find the Lagrange multipliers, by using integration by parts of Eq. (28), but in this

chapter, the Lagrange multipliers are found to be of the form , and in such a

case, the integration is basically the single convolution with respect to t, and hence, Laplace
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Take Laplace transform of Eq. (29); then the correction functional will be constructed in the form:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ðt

0

λ x; ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς
2
4

3
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(31)

where * is a single convolution with respect to t.

To find the optimal value of , we first take the variation with respect to .

Thus:

δ
δun

ℓ unþ1 x; tð Þ½ � ¼ δ
δun

ℓ un x; tð Þ½ �þ

δ
δun

ℓ λ x; tð Þ� �
ℓ Lun x; tð Þ þN~unðx; tÞ � hðx; tÞ½ �

(32)

Then, Eq. (32) becomes

ð33Þ

In this chapter, we assume that L is a linear partial differential operator given by , then,

Eq. (33) can be written in the form:
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ð34Þ

The extreme condition of requires that . This means that the right
hand side of Eq. (34) should be set to zero; then, we have the following condition:

ð35Þ

Then, we have the following iteration formula

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

�ℓ

ðt

0

t� ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς
2
4

3
5, n ≥ 0, (36)

5. Applications

In this section, we apply the Laplace variational iteration method to solve some linear and
nonlinear partial differential equations in physics.

Example (5.1)

Consider the initial linear partial differential equation

ð37Þ

The Laplace variational iteration correction functional will be constructed in the following
manner:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ðt

0

λ x; t� ςð Þ unð Þttðx; ςÞ � unð Þxxðx; ςÞ þ unðx; ςÞ
� �

dς

2
4

3
5 (38)

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ λ x; tð Þ∗ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� �
ℓ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� � s2ℓun x; tð Þ � sun x; 0ð Þ � ∂un
∂t

x; 0ð Þ

�ℓ unð Þxx x; tð Þ þ ℓun x; tð Þ

2
64

3
75

(39)
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Taking the variation with respect to of Eq. (39), we obtain:

δ
δun

ℓ unþ1 x; tð Þ½ � ¼ δ
δun

ℓ un x; tð Þ½ �

þ δ
δun

ℓ λ x; tð Þ� � s2ℓun x; tð Þ � sun x; 0ð Þ � ∂un
∂t

x; 0ð Þ

�ℓ unð Þxx x; tð Þ þ ℓun x; tð Þ

2
64

3
75

(40)

Then, we have.

The extreme condition of requires that . Hence, we have:

ð41Þ

Substituting Eq. (41) into Eq. (38), we obtain:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

�ℓ

ðt

0

sin t� ςð Þ unð Þttðx; ςÞ � unð Þxxðx; ςÞ þ unðx; ςÞ
� �

dς

2
4

3
5

¼ ℓ un x; tð Þ½ � � ℓ sin t½ �ℓ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �

(42)

Let , then, from Eq. (42), we have:

The inverse Laplace transforms yields:

ð43Þ

Substituting Eq. (43) into Eq. (38), we obtain:

Then, the exact solution of Eq. (37) is:

ð44Þ
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Example (4.2)

Consider the nonlinear partial differential equation:

ð45Þ

The Laplace variational iteration correction functional will be constructed as follows:

ð46Þ

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ∗
unð Þtt x; tð Þ � unð Þxx x; tð Þ
þu2n x; tð Þ � x2t2

" #" #

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� �
ℓ unð Þttðx; tÞ � unð Þxxðx; tÞ þ u2nðx; tÞ � x2t2
� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� � s2ℓun x; tð Þ � sun x; 0ð Þ � ∂un
∂t

x; 0ð Þ

�ℓ unð Þxx x; tð Þ þ ℓu2n x; tð Þ � ℓ x2t2
� �

2
64

3
75

(47)

Taking the variation with respect to of Eq. (47) and making the correction functional
stationary we obtain:

This implies that:

ð48Þ

Substituting Eq. (21) into Eq. (19), we obtain:

ð49Þ

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ �t½ �ℓ unð Þtt x; tð Þ � unð Þxx x; tð Þ
þu2n x; tð Þ � x2t2

� �
(50)

Let , then, from Eq. (50), we have:
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Taking the variation with respect to of Eq. (39), we obtain:

δ
δun

ℓ unþ1 x; tð Þ½ � ¼ δ
δun

ℓ un x; tð Þ½ �

þ δ
δun

ℓ λ x; tð Þ� � s2ℓun x; tð Þ � sun x; 0ð Þ � ∂un
∂t

x; 0ð Þ

�ℓ unð Þxx x; tð Þ þ ℓun x; tð Þ

2
64

3
75

(40)

Then, we have.

The extreme condition of requires that . Hence, we have:

ð41Þ

Substituting Eq. (41) into Eq. (38), we obtain:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

�ℓ

ðt

0

sin t� ςð Þ unð Þttðx; ςÞ � unð Þxxðx; ςÞ þ unðx; ςÞ
� �

dς

2
4

3
5

¼ ℓ un x; tð Þ½ � � ℓ sin t½ �ℓ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �

(42)

Let , then, from Eq. (42), we have:

The inverse Laplace transforms yields:

ð43Þ

Substituting Eq. (43) into Eq. (38), we obtain:

Then, the exact solution of Eq. (37) is:

ð44Þ
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Example (4.2)

Consider the nonlinear partial differential equation:

ð45Þ

The Laplace variational iteration correction functional will be constructed as follows:

ð46Þ

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ∗
unð Þtt x; tð Þ � unð Þxx x; tð Þ
þu2n x; tð Þ � x2t2

" #" #

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� �
ℓ unð Þttðx; tÞ � unð Þxxðx; tÞ þ u2nðx; tÞ � x2t2
� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� � s2ℓun x; tð Þ � sun x; 0ð Þ � ∂un
∂t

x; 0ð Þ

�ℓ unð Þxx x; tð Þ þ ℓu2n x; tð Þ � ℓ x2t2
� �

2
64

3
75

(47)

Taking the variation with respect to of Eq. (47) and making the correction functional
stationary we obtain:

This implies that:

ð48Þ

Substituting Eq. (21) into Eq. (19), we obtain:

ð49Þ

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ �t½ �ℓ unð Þtt x; tð Þ � unð Þxx x; tð Þ
þu2n x; tð Þ � x2t2

� �
(50)

Let , then, from Eq. (50), we have:
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Then, the exact solution of Eq. (45) is:

Again, the exact solution is obtained by using only few steps of the iterative scheme.

Example (4.3)

Consider the physics nonlinear boundary value problem,

The Laplace variational iteration correction functional is

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ðt

0

λ x; t� ςð Þ
unð Þt x; ςð Þ � 6un x; ςð Þ unð Þx x; ςð Þ
þ unð Þxxx x; ςð Þ

" #
dς

2
4

3
5 (52)

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ∗ unð Þtðx; tÞ � 6 unð Þðx; tÞ unð Þxðx; tÞ þ unð Þxxxðx; tÞ
� �� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� �
ℓ unð Þtðx; tÞ � 6 unð Þðx; tÞ unð Þxðx; tÞ þ unð Þxxxðx; tÞ
� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ� �
sℓun x; tð Þ � unðx; 0Þ � ℓ 6 unð Þðx; tÞ unð Þxðx; tÞ � unð Þxxxðx; tÞ

� �� �

Taking the variation with respect to of the last equation and making the correction
functional stationary we obtain:

This implies that:

ð53Þ

Substituting Eq. (53) into Eq. (52), we obtain:

or

ð54Þ

Let then, from Eq. (54), we have:
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Then, the exact solution of Eq. (51) is:

Exercises

Solve the following nonlinear partial differential equations by new Laplace variational itera-
tion method:

1Þut þ uux ¼ 1� e�x tþ e�xð Þ, u x; 0ð Þ ¼ e�x

2Þut þ uux ¼ 2tþ xþ t3 þ xt2, u x; 0ð Þ ¼ 0

3Þut þ uux ¼ 2x2tþ 2xt2 þ 2x3t4, u x; 0ð Þ ¼ 1

4Þut þ uux ¼ 1þ t cos xþ 1
2
sin 2x, u x; 0ð Þ ¼ sin x

5Þut þ uux ¼ 0, u x; 0ð Þ ¼ �x

6Þut þ uux � u ¼ et, u x; 0ð Þ ¼ 1þ x

7Þutt � uxx � uþ u2 ¼ xtþ x2t2, u x; 0ð Þ ¼ 1,ut x; 0ð Þ ¼ x

8Þutt � uxx þ u2 ¼ 1þ 2xtþ x2t2, u x; 0ð Þ ¼ 1,ut x; 0ð Þ ¼ x

9Þutt � uxx þ u2 ¼ 6xt x2 � t2
� �þ x6t6, u x; 0ð Þ ¼ 0,ut x; 0ð Þ ¼ 0

10Þutt � uxx þ u2 ¼ x2 þ t2
� �2, u x; 0ð Þ ¼ x2,ut x; 0ð Þ ¼ 0

11Þutt � uxx þ uþ u2 ¼ x2 cos 2t, u x; 0ð Þ ¼ x,ut x; 0ð Þ ¼ 0

12Þut þ uux ¼ 0, u x; 0ð Þ ¼ x

13Þut þ uux ¼ 0, u x; 0ð Þ ¼ �x

14Þut þ uux ¼ 0, u x; 0ð Þ ¼ 2x

15Þut þ uux ¼ uxx, u x; 0ð Þ ¼ �x

16Þut þ uux ¼ uxx, u x; 0ð Þ ¼ 2x

17Þut þ uux ¼ uxx, u x; 0ð Þ ¼ 4 tan 2x

6. Conclusions

The method of combining Laplace transforms and variational iteration method is proposed for
the solution of linear and nonlinear partial differential equations. This method is applied in a
direct way without employing linearization and is successfully implemented by using the
initial conditions and convolution integral. But this method failed to solve the singular differ-
ential equations.
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Then, the exact solution of Eq. (45) is:
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4

3
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� �
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� �� �

Taking the variation with respect to of the last equation and making the correction
functional stationary we obtain:

This implies that:
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or
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Let then, from Eq. (54), we have:
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Answers

1Þu x; tð Þ ¼ tþ e�x, 2Þu x; tð Þ ¼ t2 þ xt, 3Þ u x; tð Þ ¼ 1þ x2t2, 4Þu x; tð Þ ¼ tþ sin x

5Þu x; tð Þ ¼ x
t� 1

, 6Þu x; tð Þ ¼ xþ et, 7Þu x; tð Þ ¼ 1þ xt, 8Þu x; tð Þ ¼ 1þ xt

9Þu x; tð Þ ¼ x3t3, 10Þu x; tð Þ ¼ t2 þ x2 , 11Þu x; tð Þ ¼ xcost, 12Þu x; tð Þ ¼ x
1þ t

13Þu x; tð Þ ¼ x
t� 1

, 14Þu x; tð Þ ¼ 2x
1þ 2t

, 15Þu x; tð Þ ¼ x
t� 1

, 16Þu x; tð Þ ¼ 2x
1þ 2t

17Þu x; tð Þ ¼ 4 tan 2x
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Answers

1Þu x; tð Þ ¼ tþ e�x, 2Þu x; tð Þ ¼ t2 þ xt, 3Þ u x; tð Þ ¼ 1þ x2t2, 4Þu x; tð Þ ¼ tþ sin x

5Þu x; tð Þ ¼ x
t� 1

, 6Þu x; tð Þ ¼ xþ et, 7Þu x; tð Þ ¼ 1þ xt, 8Þu x; tð Þ ¼ 1þ xt

9Þu x; tð Þ ¼ x3t3, 10Þu x; tð Þ ¼ t2 þ x2 , 11Þu x; tð Þ ¼ xcost, 12Þu x; tð Þ ¼ x
1þ t

13Þu x; tð Þ ¼ x
t� 1

, 14Þu x; tð Þ ¼ 2x
1þ 2t

, 15Þu x; tð Þ ¼ x
t� 1

, 16Þu x; tð Þ ¼ 2x
1þ 2t

17Þu x; tð Þ ¼ 4 tan 2x

Author details

Tarig M. Elzaki

Address all correspondence to: tarig.alzaki@gmail.com

Mathematics Department, Faculty of Sciences and Arts-Alkamil, University of Jeddah, Jeddah,
Saudi Arabia

References

[1] Biazar J, Ghazvini H. He’s a variational iteration method for solving linear and non-linear
systems of ordinary differential equations. Applied Mathematics and Computation. 2007;
191:287-297

[2] He JH. Variational iteration method for delay differential equations. Communications in
Nonlinear Science and Numerical Simulation. 1997;2(4):235-236

[3] He JH. Variational iteration method—A kind of non-linear analytical technique: Some
examples. International Journal of Nonlinear Mechanics. 1999;34:699-708

[4] He JH. Variational iteration method for autonomous ordinary differential systems.
Applied Mathematics and Computation. 2000;114:115-123

[5] He JH, Wu XH. Variational iteration method: New development and applications. Com-
puters & Mathematcs with Applications. 2007;54:881-894

Differential Equations - Theory and Current Research170

[6] Khuri SA, Sayfy A. A Laplace variational iteration strategy for the solution of differential
equations. Applied Mathematics Letters. 2012;25:2298-2305

[7] Hesameddini E, Latifizadeh H. Reconstruction of variational iteration algorithms using
the Laplace transform. International Journal of Nonlinear Sciences and Numerical Simu-
lation. 2009;10(11–12):1377-1382

[8] Wu GC, Baleanu D. Variational iteration method for fractional calculus - a universal
approach by Laplace transform. Advances in Difference Equations. 2013;2013:18-27

[9] Yang XJ, Baleanu D. Fractal heat conduction problem solved by local fractional variation
iteration method. Thermal Science; 2012. DOI: 10.2298/TSCI121124216Y

[10] Wu GC. Variational iteration method for solving the time-fractional diffusion equations in
porous medium. Chinese Physics B. 2012;21:120504

[11] Wu GC, Baleanu D. Variational iteration method for the Burgers' flow with fractional
derivatives-new Lagrange multipliers. AppliedMathematical Modelling. 2012;37:6183-6190

[12] Wu GC. Challenge in the variational iteration method-a new approach to identification of
the Lagrange mutipliers. Journal of King Saud University-Science. 2013;25:175-178

[13] Wu GC. Laplace transform overcoming principle drawbacks in application of the varia-
tional iteration method to fractional heat equations. Thermal Science. 2012;16(4):1257-
1261

Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method
http://dx.doi.org/10.5772/intechopen.73291

171



Differential Equations 
Theory and Current Research

Edited by Terry E. Moschandreou

Edited by Terry E. Moschandreou

The editor has incorporated contributions from a diverse group of leading researchers in 
the field of differential equations. This book aims to provide an overview of the current 
knowledge in the field of differential equations. The main subject areas are divided into 

general theory and applications. These include fixed point approach to solution existence 
of differential equations, existence theory of differential equations of arbitrary order, 

topological methods in the theory of ordinary differential equations, impulsive fractional 
differential equations with finite delay and integral boundary conditions, an extension 

of Massera’s theorem for n-dimensional stochastic differential equations, phase portraits 
of cubic dynamic systems in a Poincare circle, differential equations arising from the 
three-variable Hermite polynomials and computation of their zeros and reproducing 

kernel method for differential equations. Applications include local discontinuous 
Galerkin method for nonlinear Ginzburg-Landau equation, general function method in 

transport boundary value problems of theory of elasticity and solution of nonlinear partial 
differential equations by new Laplace variational iteration method.

Existence/uniqueness theory of differential equations is presented in this book with 
applications that will be of benefit to mathematicians, applied mathematicians and 

researchers in the field. The book is written primarily for those who have some knowledge 
of differential equations and mathematical analysis. The authors of each section bring a 

strong emphasis on theoretical foundations to the book.

Published in London, UK 

©  2018 IntechOpen 
©  STILLFX / iStock

ISBN 978-1-78923-156-4

D
ifferential Equations - Th

eory and Current Research

ISBN 978-1-83881-607-0


	Differential Equations - Theory and Current Research
	Contents
	Preface
	Section 1
Theory of Differential Equations
	Chapter 1
Fixed Point Theory Approach to Existence of Solutions with Differential Equations
	Chapter 2
Existence Theory of Differential Equations of Arbitrary Order
	Chapter 3
An Extension of Massera’s Theorem for N-Dimensional Stochastic Differential Equations
	Chapter 4
Phase Portraits of Cubic Dynamic Systems in a Poincare Circle
	Chapter 5
Differential Equations Arising from the 3-Variable Hermite Polynomials and Computation of Their Zeros
	Chapter 6
Reproducing Kernel Functions

	Section 2
Applications of Differential Equations
	Chapter 7
Local Discontinuous Galerkin Method for Nonlinear Ginzburg- Landau Equation
	Chapter 8
General Functions Method in Transport Boundary Value Problems of Elasticity Theory
	Chapter 9
Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method


