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Preface

An electric power system (EPS) is a network of electrical components used to supply and
transfer energy between the system components in efficient and reliable manner. This sup‐
ply must have features that allow the system to operate safely; otherwise, contingency situa‐
tions could arise that would lead to serious socio-economic problems. The size and cost of
the equipment in an EPS are highly dependent on the stresses that occur during transient
periods. Excessive currents or voltage variations can result from internal switching events
and system disturbances, subjecting the system components to higher stresses. Electromag‐
netic transients in an EPS can be very fast, and peak values may occur within microseconds.
The study and prediction of this behaviour is the main objective of electromagnetic transient
analysis. Commonly, one manner to perform this type of studies is representing the system
components in a wide range of frequencies. This estimation process is known as rational
fitting, which consists of parameter identification of a complex function. In practice, these
effects are obtained via calculations or measurements as discrete functions of frequency.

Since the 1950s, efforts have been made to develop methods for the synthesis of frequency
response data. One of the first techniques introduced was the method of Levy. Many other
methods were developed taking the Levy method as a reference, e.g., the Sanathanan-
Koerner method or the Lawrence and Rogers technique. J. Marti in 1981 developed a trans‐
mission line model that accounts for the frequency dependence of the line parameters. Marti
implemented a numerical technique for the rational approximation based on a direct loca‐
tion and relocation of poles and zeros. This model, known as Fd-Line, quickly became one of
the most used for the modelling of overhead transmission lines. In 1999, an important meth‐
od was presented by Gustavsen and Semlyen, which has gained much popularity over the
last few years. The called vector fitting (VF) technique provides an effective, robust, and reli‐
able system identification tool. Different formulations have been proposed in order to im‐
prove the characteristics of VF. In 2006, Gustavsen proposed a modification of his algorithm
in order to improve the ability of VF to relocate poles to better positions. This is achieved by
replacing the high-frequency asymptotic requirement of the VF scaling function with a more
relaxed condition. He called this method relaxed VF (RVF). The VF method is closely related
to the universal line model (ULM). The ULM is formulated in terms of rational approxima‐
tion of the line parameters through VF.

Due to the above, the study of rational fitting processes has become an essential component
of electric power components and systems modelling. These techniques allow the inclusion
of frequency-dependent effects in electric power systems modelling.

This book provides a detailed description of some of the most widely used rational fitting
techniques for approximation of frequency domain responses. The techniques are Bode’s



asymptotic approximation, the Levy method, iteratively reweighted least squares, the Sana‐
thanan-Koerner method, the Noda method, vector fitting, the Levenberg-Marquardt method
and the damped Gauss-Newton method. Such models permit the inclusion of frequency de‐
pendence in the modelling of overhead transmission lines and underground cables, in pow‐
er transformers at high frequencies and in frequency-dependent network equivalents
(FDNE). A MATLAB routine for each technique is presented.
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Abstract

This book provides a detailed description of some of the most widely used rational fitting
techniques for approximation of frequency domain responses. The techniques are: Bode’s
asymptotic approximation, the Levy method, iteratively reweighted least squares, the
Sanathanan-Koerner method, the Nodamethod, Vector Fitting, the Levenberg-Marquardt
method, and the Damped Gauss-Newton method. A MATLAB routine for each technique
is presented. These techniques are tested by approximating synthetic frequency domain
responses. Then, they are applied to the rational approximation of the frequency-
dependent parameters corresponding to a single-phase transmission line. The effect of
the rational function-based models is evaluated, considering transients in three cases:
Open-ended, short-circuited, and perfectly matched lines. The error levels obtained in
time domain simulations are consistent with the fitting deviations of the frequency-
dependent parameters. The book concludes by showing main advantages and disadvan-
tages for each technique.

Keywords: rational approximation, least squares, weighted least squares, Bode’s
asymptotic approximation, vector fitting

1. Introduction

One of the main problems encountered in the modeling of power system components is the
inclusion of frequency-dependent effects in a time domain simulation [1]. In practice, these
effects are described by discrete frequency domain responses that are obtained via calculations
or measurements [1]. For the time domain simulation, implementation of numerical convolutions
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is possible but is computationally inefficient. The frequency-dependent effects are usually
performed in the frequency domain via complex-curve fitting processes, leading to rational
function-based models which can be expressed in pole-zero form, pole-residue form, and
polynomial form [2]. Once obtained, these models must be converted into a form suitable for
representation in an electromagnetic Transient Program (EMTP-type) circuit simulator [3].
Commonly, such representations can be in the form of network synthesis or in ordinary
differential equations (ODEs). Some methods have been adapted to particular problems due
to the difficulty present in the development of a general methodology. These rational fitting
techniques have been developed since the 1950s for model synthesis based on frequency
response data. Some antecedents are presented below.

In 1959, Levy [4] presented a mathematical procedure of linearized Least Squares (LS) for
model synthesis based on a polynomial form. Some years later, in 1963, Sanathanan and
Koerner [5] improved the Levy method by introducing an iterative weighted method to reduce
the biasing in the approximation caused by the linearization. Also, based on the Levy method,
Lawrence and Rogers [6] presented in 1979 a sequential algorithm that allows the fitting
progress of a transfer function point-to-point without matrix inversion.

In addition, a technique based on pole-zero form that quickly became popular for the model-
ing of overhead lines was presented by Marti [7] in 1982. This method is a numerical imple-
mentation of the well-known Bode diagrams technique. Recently, in 2017, Marti and Tavighi
[8] presented an investigation based in the same rational approximation technique for the
modeling of transmission lines. In this work, this fitting technique will be referred to as
Asymptotic Approximation or Bode.

In 1993, Soysal and Semlyen [9] used the Gauss–Seidel optimization method to improve the
results given by Levy and, 6 years later Gustavsen and Semlyen [1] developed the Vector
Fitting method which has become one of the most widely used techniques.

In 2006, Gustavsen [10] proposed a modification of his algorithm in order to improve the
ability of VF to relocate poles to better positions. This is achieved by replacing the high-
frequency asymptotic requirement of the VF scaling function with a more relaxed condition.
He called this method Relaxed VF (RVF).

The VF method is closely related to the Universal Line Model (ULM) [11]. The ULM is
formulated in terms of rational approximation of the line parameters through VF. A recent
publication, in 2016, [12] Bañuelos et al. propose the use of only real poles and zeroes in the
ULM to improve its numerical efficiency.

In 2005, Noda [13] presented an iterative algorithm that partitions the entire frequency range
in order to avoid ill-conditioning of the system when Levy method is used. Recently, in 2015,
Bañuelos-Cabral et al. [2] propose the implementation of Damped Gauss-Newton (DGN) to
increase the accuracy of this technique.

The aim of this book is to provide a MATLAB algorithm and a detailed description of the
rational approximation techniques that are most commonly used to approximate functions in
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frequency domain. These techniques are: Bode’s Asymptotic Approximation (Bode), the Levy
(Levy or LS) method, Iteratively Reweighted Least Squares (IRLS), the Sanathanan-Koerner
(SK) method, the Noda (Noda) method, Vector Fitting (VF), the Levenberg–Marquardt (LM)
method and the Damped Gauss-Newton (DGN) method.

In this chapter, the methodology for determining the state-space (SS) representation in concor-
dance with the model used in the approximation is presented first. Next, the abovementioned
fitting techniques are described in detail. Then, the techniques are tested by approximating a
synthetic frequency domain response. The techniques are implemented in MATLAB environ-
ment. Finally, advantages of the methods are demonstrated in the rational approximation of
the frequency-dependent parameters corresponding to a single-phase transmission line.

2. State-space model from a transfer function

The SS representation of a given system can be determined from its frequency response on
rational form. Basically, there are three different rational forms (models) that can represent a
measured or calculated frequency response: pole-zero form, polynomial form, and pole-
residue form. In this section, a methodology is presented for determining the SS representation
according to the given model type.

2.1. Pole-zero form

Usage of pole-zero form or series realization leads to a rational function-based model of nth-
order given by (1), which is a ratio between products of first-order transfer functions,

F sð Þ ffi k
s� z1ð Þ s� z2ð Þ⋯ s� znð Þ
s� p1
� �

s� p2
� �

⋯ s� pm
� � : (1)

The generalized graphic representation of pole-zero form with n = m is shown in Figure 1 [14].

From Figure 1, it is possible to obtain the state equations and the output equation as

Figure 1. Pole-zero form realization for nth-order system.
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_x1 ¼ �p1x1 þ u

_x2 ¼ �p2x2 þ z1x1 þ _x1

_x3 ¼ �p3x3 þ z2x2 þ _x2

⋮

_xn�1 ¼ �pn�1xn�1 þ zn�2xn�2 þ _xn�2

_xn ¼ �pnxn þ zn�1xn�1 þ _xn�1

(2)

y ¼ k znxn þ _xnð Þ: (3)

Using algebraic manipulation in (2) and (3) to remove _xn from the right side, the state equa-
tions and output equation in matrix form are

_x1

_x2

⋮

_xn�1

_xn

2
666666664

3
777777775
¼

�p1 0 ⋯ 0 0

bc1 �p2 ⋯ 0 0

⋮ ⋮ ⋯ ⋮ ⋮

bc1 bc2 ⋯ �pn�1 0

bc1 bc2 ⋯ bcn�1 �pn

2
666666664

3
777777775

x1

x2

⋮

xn�1

xn

2
666666664

3
777777775
þ

1

1

⋮

1

1

2
666666664

3
777777775
u (4)

y ¼ bc1 bc2 ⋯ bcn�1 bcn½ �

x1

x2

⋮

xn�1

xn

2
666666664

3
777777775
þ ku (5)

where bcn ¼ k zn � pn
� �

. There is a direct relation between the SS coefficients in (4) and (5) with
the transfer function coefficients in (1) for pole-zero form realization. Thus, the SS description
can be obtained directly from the transfer function by inspection.

2.2. Polynomial form

In this case, polynomial form or direct form realization leads to a rational function-based
model of nth-order given by (6), which is a ratio of two polynomials,

F sð Þ ffi a0 þ a1sþ a2s2 þ⋯þ ansn

b0 þ b1sþ b2s2 þ⋯þ bmsm
: (6)

A graphical representation of the polynomial formwith bm = 1 and n =m is shown in Figure 2 [14].

From Figure 2, it is possible to obtain the state equations and output equation as
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_x1 ¼ x2

_x2 ¼ x3

⋮

_xn�1 ¼ xn

_xn ¼ �b0x1 � b1x2 �⋯� bn�1xn þ u

(7)

y ¼ a0x1 þ a1x2 þ⋯þ an�1xn þ an _xn: (8)

To remove _xn from (8) the last equation of (7) can be used. These equations can be written more
conveniently as

_x1

_x2

⋮

_xn�1

_xn

2
66666664

3
77777775
¼

0 1 0 ⋯ 0 0

0 0 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ 0 1

�b0 �b1 �b2 ⋯ �bn�2 �bn�1

2
666666664

3
777777775

x1

x2

⋮

xn�1

xn

2
666666664

3
777777775
þ

0

0

⋮

0

1

2
666666664

3
777777775
u (9)

Figure 2. Polynomial form realization for nth-order system.
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y ¼ ba0 ba1 ⋯ ban�1
� �

x1
x2
⋮
xn

2
6664

3
7775þ anu, (10)

where bai ¼ ai � anbi. Also, there is a direct relation between the SS coefficients in (9) and (10)
with the transfer function coefficients in (6). The matrices of the SS description can be obtained
directly from the transfer function through inspection.

2.3. Pole-residue form

Finally, pole-residue form or parallel realization leads to rational function-based model of nth-
order given by (11), which is a sum of partial fractions

F sð Þ ffi c1
s� p1

þ c2
s� p2

þ⋯þ cn
s� pn

þ d: (11)

The generalized graphic representation of the pole-residue form is shown in Figure 3 [14].

From this Figure 3, it is possible to obtain the state equations and output equation as

Figure 3. Pole-residue form realization for nth-order system.
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_x1 ¼ �p1x1 þ u
_x2 ¼ �p2x2 þ u
⋮

_xn ¼ �pnxn þ u

(12)

y ¼ c1x1 þ c2x2 þ⋯þ cnxn þ du: (13)

In matrix form it yields

_x1
_x2
⋮
_xn

2
6664

3
7775 ¼

�p1 0 ⋯ 0
0 �p2 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ �pn

2
6664

3
7775

x1
x2
⋮
xn

2
6664

3
7775þ

1
1
⋮
1

2
6664

3
7775u (14)

y ¼ c1 c2 ⋯ cn½ �

x1
x2
⋮
xn

2
6664

3
7775þ du: (15)

Similarly to the pole-zero form and the polynomial form, the SS representation can be obtained
through inspection. It should be mentioned that the pole-residue form produces an uncoupled
SS system.

3. Fitting methods

This section provides a description of the most widely used techniques for rational approxi-
mation of frequency domain responses within the power systems area.

3.1. Asymptotic approximation (Bode) technique

The Asymptotic Approximation technique consists of a numerical implementation of the
graphical technique known as Bode diagrams [15]. The Asymptotic Approximation was first
implemented by Marti [7] to include the frequency dependence in transmission line modeling.
This technique considers the pole-zero form with real poles and zeros only,

F sð Þ ¼ k
s� z1ð Þ s� z2ð Þ⋯ s� znð Þ
s� p1
� �

s� p2
� �

⋯ s� pm
� � : (16)

Considering s = jω, we get

F sð Þ ¼ k
jω� z1ð Þ jω� z2ð Þ⋯ jω� znð Þ
jω� p1
� �

jω� p2
� �

⋯ jω� pm
� � : (17)

Eq. (17) can be expressed in a standard form as
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F jωð Þ ¼ k

jω
z1
� 1

� �
jω
z2
� 1

� �
⋯ jω

zn
� 1

� �
z1z2⋯zn

jω
p1
� 1

� �
jω
p2
� 1

� �
⋯ jω

pm
� 1

� �
p1p2⋯pm

(18)

and in polar form

F jωð Þ ¼ K0

jω
z1
� 1

���
���∠α1

jω
z2
� 1

���
���∠α2⋯ jω

zn
� 1

���
���∠αn

jω
p1
� 1

���
���∠β1 jω

p2
� 1

���
���∠β2⋯ jω

pm
� 1

���
���∠βm

(19)

where K0 = kz1z2⋯zn/p1p2⋯pm. The Asymptotic Approximation technique approximates only
the magnitude of the frequency response, which can be expressed as

F jωð Þj j ¼ K0

jω
z1
� 1

���
��� jω
z2
� 1

���
���⋯ jω

zn
� 1

���
���

jω
p1
� 1

���
��� jω
p2
� 1

���
���⋯ jω

pm
� 1

���
���
: (20)

Finally, by using logarithmic properties in Eq. (20), it is obtained:

log 10 F jωð Þj j ¼ log 10 K0j j þ log 10 jω=z1 � 1j jþ
⋯þ log 10 jω=zn � 1j j � log 10 jω=p1 � 1

�� ���⋯� log 10 jω=pm � 1
�� ��: (21)

In Bode diagrams, each term of (21) is plotted individually in accordance with its already
known asymptotic behavior and combined in order to obtain the desired diagram.

In the numerical implementation, the function to be fitted is compared with the sum of the line
segments given by the addition of a pole or a zero in the model (21); the precision of the fitting
depends on the sensitivity to locate these poles and zeros into the model.

3.2. Levy (Levy) method

This method was introduced by Levy [4] for complex-curve fitting. The Levy method makes
the identification of the polynomial coefficients (22) in a LS sense. It is also known simply as
Lest Squares (LS).

F sð Þ ffi N sð Þ
D sð Þ ¼

a0 þ a1sþ a2s2 þ⋯þ ansn

1þ b1sþ b2s2 þ⋯þ bmsm
: (22)

The numerical difference between the frequency response to be fitted and the model represents
the error in the approximation, that is,

ε sð Þ ¼ F sð Þ �N sð Þ
D sð Þ : (23)

Multiplying both sides of Eq. (23) by D(s), we obtain
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ε0 sð Þ ¼ ε sð ÞD sð Þ ¼ F sð ÞD sð Þ �N sð Þ: (24)

Considering that ε0 tends to zero, (24) can be expressed as

F sð Þ 1þ b1sþ b2s2 þ⋯þ bmsm
� �� a0 þ a1sþ a2s2 þ⋯þ ansn

� � ¼ 0: (25)

The unknown coefficients in (22) can now be solved by formulating (25) as a LS problem
(Ax = b). Frequently, the sample size of the frequency response is greater than the number of
polynomial coefficients to be calculated, so an overdetermined system is obtained, as follows:

Ak ¼ 1 sk ⋯ snk �skF skð Þ ⋯ �smk F skð Þ� �
(26)

x ¼ a0 a1 ⋯ an b1 b2 ⋯ bm½ �T (27)

b ¼ F s1ð Þ ⋯ F skð Þ½ �T, (28)

where k denotes the k-th data sample. The objective function to be minimized is

min
x

Ax� bk k2: (29)

This is called a linear least squares problem. The solution x satisfies the normal equations [16]:

ATAx ¼ ATb: (30)

Finally, the LS solution is obtained by

x ¼ ATA
� ��1

ATb: (31)

3.3. Weighted least squares (WLS)

The LS solution of a given system equation assumes that each equation (row in A) is equally
important. However, the system equation itself may be biased, e. g. in the Levy method which
is biased due to the multiplication of F(s) with D(s) in (24). In the rational approximation of
frequency domain responses, Weighted Least Squares (WLS) is used to mitigate the biasing by
giving more weight to specific equations in order to overcome the own deficiency of the used
technique. Iteratively Reweighted Least Squares (IRLS), the Sanathanan-Koerner (SK) method
and the Noda (Noda) method are techniques that implement the concept of WLS. These
techniques are described below.

3.3.1. Iteratively reweighted least squares (IRLS) iteration

A robust regression procedure is an alternative to LS solution when data are contaminated
with outliers or influential observations (measurement and/or computation errors) [16, 17].
The idea of robust regression is to weight (less) these observations differently based on the
proposal of weighting functions. IRLS can be considered as a robust regression procedure.
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It is proposed to use IRLS for the rational approximation of frequency domain responses by
using the weighting functions in inverse form, namely, data are not considered to be contam-
inated with outliers or influential observations; the error in the fitting in each iteration is used
to weight (more) the frequency response data that have not been approximated correctly.

In WLS, the objective function to be minimized is

min
x

W b�Axð Þk k2 (32)

where W is a diagonal weighting matrix. Eq. (32) is called a linear weighted least squares
problem and x the linear weighted least squares solution of the system. This solution satisfies
the normal equations [16]:

ATWAx ¼ ATWb: (33)

Then, the WLS solution is given by

x ¼ ATWA
� ��1

ATWb: (34)

It is possible to solve (34) through an iterative process (35), where i is the iteration number.

x iþ1ð Þ ¼ ATW ið ÞA
� ��1

ATW ið Þb: (35)

Eq. (35) is the IRLS method. According to (35), W must be updated iteratively; the error in the
approximation is used for this purpose, which can be expressed as

ε s; xð Þ ¼ F sð Þ � bF s; xð Þ, (36)

where bF s; xð Þ is the model to be fitted. Each element of W is updated according to

wk
ið Þ ¼ wk

i�1ð Þψ εkð Þ i�1ð Þ, (37)

with ψ(ε) being the weighting function. In the beginning of the process,W is an identity matrix.

Table 1 shows a list of weighting functions proposed to use in the implementation of IRLS.
Weighting functions 1, 2, and 3 are the inverse of the functions used in robust regression [16,
17], and functions 4, 5, and 6 are proposed in this work.

Ultimately, in Figure 4 the behavior of the weighting functions with ε = [�2, 2] is shown.

3.3.2. Sanathanan-Koerner (SK) iteration

This method is based on the polynomial form:

F sð Þ ffi N sð Þ
D sð Þ ¼

a0 þ a1sþ a2s2 þ⋯þ ansn

1þ b1sþ b2s2 þ⋯þ bmsm
: (38)
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The objective is to identify the coefficients for the polynomials N(s) and D(s) in (38) that
minimize the error function

ε sð Þ ¼ F sð ÞD sð Þ �N sð Þ: (39)

Sanathanan and Koerner [5] proposed an iterative procedure where (39) is divided by the
denominator from the previous iteration; thus, (39) can be expressed as

Number ψ(ε)

1 |ε|

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p � 1

3 1
εj jp�2 , p ¼ 1:2

4 ε2
1þε2

5 ε2ffiffiffiffiffiffiffiffi
1þε2

p

6 εj jp
p , p ¼ 1:2

Table 1. Weighting functions.

Figure 4. Behavior of the weighting functions.
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ε sð Þ ¼ 1
D sð Þl�1

F sð ÞD sð Þl �N sð Þl
� �

: (40)

The subscript l denotes the iteration number, and D(s) is considered 1 in the first iteration.

3.3.3. Noda (Noda) iteration

This algorithm proposed by Noda [13] for the rational fitting identification is based on the
function:

F sð Þ ffi N sð Þ
D sð Þ ¼

a0 þ a1sþ a2s2 þ⋯þ ansn

1þ b1sþ b2s2 þ⋯þ bmsm
: (41)

This technique corresponds to IRLS using the weighting function number 1 in Table 1. Addition-
ally, Noda also proposed a procedure to prevent the ill-conditioning of the system by partitioning
the given frequency response data into sections along the frequency axis. The technique is then
applied to each section of the frequency response in order to identify the poles, and finally, the
corresponding residues are obtained by means of a standard LS procedure, using the entire
frequency response.

3.4. Vector Fitting (VF) method

Vector Fitting performs the fitting by replacing a set of heuristically calculated initial poles
with a set of relocated ones through an iterative procedure [1]. VF works in two stages: First, it
improves the position of the initial poles iteratively. Second, it calculates the residues in one
step. This method is based on the pole-zero form

F sð Þ ffi
XN
n¼1

cn
s� pn

þ dþ sh, (42)

where cn are the residues, pn are the poles, d is the constant term and h the proportional part.

3.4.1. Pole identification

Considering the initial poles as an, and multiplying F(s) by an auxiliary function σ(s) gives

σ sð ÞF sð Þ ffi σFfit sð Þ ¼
XN
n¼1

cn
s� an

þ dþ sh (43)

where σ(s) is defined as

σ sð Þ ffi σfit sð Þ ¼
XN
n¼1

~cn
s� an

þ 1, (44)
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with σFfit(s) being the fitting of σ(s)F(s) and σfit(s) being the fitting of σ(s). From (43) one can
obtain,

F sð Þ ffi σFfit sð Þ
σ sð Þ : (45)

Substituting (43) and (44) into (45) we obtain,

F sð Þ ffi h

QNþ1

n¼1
s� zn

� QN
n¼1

s� an

� �

QN
n¼1

s� ~zn

� QN
n¼1

s� an

� � ¼ h

QNþ1

n¼1
s� zn

QN
n¼1

s� ~zn

: (46)

Eq. (46) indicates that the zeros of σ(s) are an approximation of the poles of F(s). To obtain the
zeros one multiplies (44) by F(s) which results in

σ sð ÞF sð Þ ffi
XN
n¼1

~cn
s� an

þ 1

 !
F sð Þ: (47)

Equating Eqs. (43) and (47) yields

XN
n¼1

cn
s� an

þ dþ sh ¼
XN
n¼1

~cn
s� an

þ 1

 !
F sð Þ: (48)

Algebraic manipulation in (48) gives

XN
n¼1

cn
s� an

þ dþ sh�
XN
n¼1

~cnF sð Þ
s� an

¼ F sð Þ: (49)

Eq. (49) can now be formulated as a LS problem (Ax = b). Usually, the sample size of the
frequency response is greater than the number of coefficients to be calculated, so an overdeter-
mined system is obtained:

Ak ¼ 1
sk � a1

⋯
1

sk � aN
1 sk � F skð Þ

sk � a1
⋯ � F skð Þ

sk � aN

� �
(50)

x ¼ c1 ⋯ cN d h ~c1 ⋯ ~cN½ �T (51)

b ¼ F s1ð Þ ⋯ F skð Þ½ �T (52)

The LS solution of the system (Ax = b) delivers the residues of σfit(s); the zeros of this function
are the poles an for the next iteration, which correspond to the eigenvalues of [1],
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H ¼ G� k~cT, (53)

where G is a diagonal matrix containing the poles and k is a unit column vector.

3.4.2. Residue identification

Once the poles pn for the rational approximation in (42) have been obtained, the residues can
be found by solving (42) as a LS problem. The new overdetermined system is solved similarly
as (50), (51) and (52).

3.4.3. Relaxation (RVF)

The scaling function σ(s) (44) is observed to approach unity at high frequencies. This asymme-
try with respect to the frequency gives a tendency to relocate poles in the direction of lower
frequencies. In addition to this biasing, it also reduces the convergence speed and often leads
to a reduced accuracy for the final model. This problem is effectively alleviated by the intro-
duction of Relaxed Vector Fitting (RVF) [10], where the scaling function (44) is replaced by

σ sð Þ ffi σfit sð Þ ¼
XN
n¼1

~cn
s� an

þ ~d (54)

with ~d as a real variable. To obtain a non-trivial solution, a single line is added to the LS problem,
where the sum of the real part of σ(s) over the frequency samples is fixed. This relaxed criterion
allows σ(s) to freely vary in shape.

3.5. Levenberg-Marquardt (LM) method

The Levenberg–Marquardt (LM) method is a technique used to improve iteratively parameter
values in order to reduce the sum of the squares of the errors between the model and the
calculated or measured data [18, 19]. This method is actually a combination of two minimiza-
tion methods: The gradient descent (GD) method and the Gauss-Newton (GN) method.

Consider the model bF s; xð Þ, which is a function of s and n unknown parameters contained in
vector x. The model is to be fitted to a set of frequency response data F(s) as follows:

F sð Þ ffi bF s; xð Þ, (55)

where x = [x1, x2,⋯xn] is a vector that contains the coefficients to be fitted. The LS error between
the fitting of the model and the frequency response data is

γ xð Þ ¼ 1
2

XNs

k¼1

bF sk; xð Þ � F skð Þ
� �2

(56)

γ xð Þ ¼ 1
2
bF s; xð Þ � F sð Þ
� �T bF s; xð Þ � F sð Þ

� �
(57)
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2

XNs
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γ xð Þ ¼ 1
2
bF s; xð ÞTbF s; xð Þ � bF s; xð ÞTF sð Þ þ 1

2
F sð ÞTF sð Þ: (58)

The aim of LM method is to find iteratively a perturbation h to modify the parameters x that
reduces the objective function γ(x) [18].

3.5.1. Gradient descent (GD) method

The gradient of a function indicates the direction of the maximum rate of change in a specific
point of the function. GD updates the parameter values in the opposite direction to the
gradient of the objective function. Thus, the gradient of γ(x) is:

∂
∂x

γ xð Þ ¼ bF s; xð Þ � F sð Þ
� �T ∂

∂x
bF s; xð Þ � F sð Þ
� �

(59)

∂
∂x

γ xð Þ ¼ bF s; xð Þ � F sð Þ
� �T

J, (60)

where J is the Jacobian matrix which represents the local sensitivity of the model bF s; xð Þ to
variation in the parameters x. Finally, the perturbation h that moves the parameters in the
direction of steepest descent is given by

hGD ¼ �JT bF s; xð Þ � F sð Þ
� �

(61)

3.5.2. Gauss-Newton (GN) method

The Gauss-Newton (GN) method supposes that the objective function γ(x) is approximately
quadratic in the parameters near the optimal solution. Approximating the model with a first-
order Taylor series,

bF s; xþ hð Þ ffi bF s; xð Þ þ ∂bF s; xð Þ
∂x

h ¼ bF s; xð Þ þ Jh: (62)

Substituting (62) into (57) gives

γ xþ hð Þ ¼ 1
2
bFTbF � bFT

Fþ 1
2
FTFþ bF � F

� �T
Jhþ 1

2
hTJTJh: (63)

The perturbation h that minimizes γ(x) is reached when

∂γ xþ hð Þ
∂h

¼ 0: (64)

Taking the derivative for (63) gives

∂γ xþ hð Þ
∂h

¼ bF s; xð Þ � F sð Þ
� �T

Jþ hTJTJ (65)

and applying condition (64), we obtain the perturbation h calculated by the GN method

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment
http://dx.doi.org/10.5772/intechopen.71358

15



hGN ¼ � JTJ
� ��1

JT bF s; xð Þ � F sð Þ
� �

: (66)

3.5.3. Levenberg-Marquardt method (LM)

LMworks more like the GDmethod when the parameters are far from their optimal value, and
more like the GNmethod when the parameters are close to their optimal value. Levenberg [18]
and Marquardt [19] proposed this method:

JTJþ λ I
� �

hLM ¼ �JT bF s; xð Þ � F sð Þ
� �

, (67)

where λ is known as the Levenberg–Marquardt parameter. Clearly, for large values of λ, the
LMmethod results in a GD update; large distance from the function. The GDmethod is utilized
to provide steady and convergent progress toward the solution. As the solution approaches the
minimum, λ is adaptively decreased; then, the LM method approaches the GN method, and
the solution typically converges rapidly to the local minimum.

The following modification has also been suggested:

JTJþ λdiag JTJ
� �� �

hLM ¼ �JT bF s; xð Þ � F sð Þ
� �

(68)

There are different methods for update the Levenberg-Marquardt parameter λ. A complete
review is presented in Ref. [17]. Nevertheless, a simple method consists of reducing this
parameter as the solution approaches the optimal value. The numerical implementation con-
sists iteratively of:

(1) Calculate the objective function γ(x), (57).

(2) Calculate the Jacobian J, taking into account the implemented model (1), (6) or (11).

(3) Calculate the perturbation h, (67).

(4) If γ(x + h) ≤ γ(x), then x is replaced by x + h and λ is reduced.

(5) If γ(x + h) > γ(x), then x is not replaced and λ is increased.

(6) Convergence is achieved when the parameters reach a tolerance value or when the iteration
count exceeds a pre-specified limit.

3.5.4. Damped gauss-Newton (DGN)

The DGN method can be applied to any of the alternative function-based models: pole-zero
form (1), polynomial form (6), and pole-residue form (11). In the DGN method, a damping
factor α is introduced

hDGN ¼ �α JTJ
� ��1

JT bF s; xð Þ � F sð Þ
� �

: (69)

The DGN method (69) always takes the descendent direction that satisfies a linear search
method. It has slow convergence when the parameters to be fitted are far from the solution,
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but the method maximizes its advantages when it is close to the solution [16]. For that reason,
DGN should be used when the parameters are close to their optimal values.

Clearly, α defines a fraction of the step taken from GN to update the x parameters. In this work,
we select α by a backtracking strategy, whereby α is reduced from unity until an acceptable
value for γ(x) is found.

4. MATLAB algorithms and applications

In this section, algorithms for the rational approximation of frequency domain responses in
MATLAB environment are provided. Rational fitting of synthetics functions through Bode,
DGN, LS or Levy, IRLS, LM and VF are presented. Finally, the techniques are applied to the
rational approximation of the frequency-dependent parameters corresponding to a single-
phase transmission line.

4.1. Bode and DGN algorithms

Bode and DGN routines are presented in this section. The concept is simple, first Bode is
implemented for the curve fitting process of a synthetic function, then DGN is used to improve
the accuracy of the rational approximation given by Bode. A synthetic function is selected in
the main program “Fitting_Bode_DGN.m” presented in Table 2. After application of the Bode
routine “Bode_process.m,” shown in Table 3, a set of poles, residues and a constant term are
obtained. These results are the initial values for the DGN routine “Damped_Gauss_Newton.
m” presented in Table 4.

In Figure 5 the asymptotic behavior of the Bode routine is shown, and in Figure 6 the final
rational approximation given by Bode is presented. Following, DGN routine improves the
curve fitting process, this is presented in Figure 7. Moreover, the RMS-error on each iteration
is shown in Figure 8.

4.2. LS or Levy algorithm

In this section the LS method or Levy method routine is introduced. In the main program
“Fitting_OLS.m,” Table 5, a synthetic function can be selected by the user. Then the LS routine
“Least_Squares_Method.m,” Table 6, is implemented for the rational approximation of this
function.

Figure 9 shows the synthetic frequency response data and the approximation given by the LS
routine, additionally, the deviation in terms of absolute error is presented.

4.3. IRLS algorithm

Because in practice the Noda method and the SK method correspond to a specific weighting
function in the IRLS technique, only the latter is presented. In the beginning of the implemen-
tation a synthetic function is selected in the main program “Fitting_IRLS.m,” presented in
Table 7. Afterwards, the algorithm of the method “IRLS.m,” Table 8, is implemented for the
rational approximation of the selected function.
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%================================================
% Main program of BODE-DGN
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%===============================================
clc
clear all
close all

%% Initial Settings
Ns = 400; % Number of samples
f = logspace(-2,10,Ns); % Frequency (Hz)
w = 2.*pi.*f; % Frequency (rad/seg)
s = 1j*w; % Complex Frequency

%% Synthetic functions
choice = menu('CHOOSE A FUNCTION','Function F1(s)',…

'Function F2(s)','Function F3(s)','Function F4(s)',…
'Function F5(s)','Function F6(s)');

if choice == 1
Fs = (110.*s./((s+10).*(s+100)));
tol = 2.2; % Tolerance in decibels to set a new pole and/or new zero
ite = 40; % Number of iteration in DGN method

end
if choice == 2

Fs = ((s+10).*(s+100))./((s+14580).*(s+10355550));
tol = 2.2; % Tolerance in decibels to set a new pole and/or new zero
ite = 40; % Number of iteration in DGN method

end
if choice == 3

Fs = ((s+10655).*(s+10))./((s+148450).*(s+198545852).*(s+155222220));
tol = 2.2; % Tolerance in decibels to set a new pole and/or new zero
ite = 40; % Number of iteration in DGN method

end
if choice == 4

Fs = (10124).*s.*(s+35.7).*(s+88.9)./((s+100.5).*(s+220.7).*(s+5900).*(s+1370).*(s+21000));
tol = 2; % Tolerance in decibels to set a new pole and/or new zero
ite = 50; % Number of iteration in DGN method

end
if choice == 5

Fs = ((s+79).*(s+1045))./((s+1458).*(s+103555).*(s+127710355).*(s+1244103555));
tol = 1.8; % Tolerance in decibels to set a new pole and/or new zero
ite = 40; % Number of iteration in DGN method

end
if choice == 6

Fs = ((s+64518).*(s+8451629).*(s+312).*(s+54841216192))./((s+456).*(s+7852).*
(s+982365).*…(s+93256888).*(s+79325684588536));

tol = 2; % Tolerance in decibels to set a new pole and/or new zero
ite = 40; % Number of iteration in DGN method

end
%% Bode method
[P,Z,k] = Bode_process(Fs,f,Ns,tol); % Bode subroutine
as = k.*poly(Z); bs = poly(P); % Polynomials
[r,p,ks] = residue(as,bs); % Poles, residues and constant term
TF=isempty(ks);if(TF==1);ks=0;end
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%% Damped Gauss-Newton
Xmcp = [r; p; ks]; % Poles, residues and constant term from Bode
Np = length(p); % Number of poles
[KGN,RGN,PGN,Ff] = Damped_Gauss_Newton(Np,Ns,Fs,s,Xmcp,ite);
Fs_fitDGN = zeros(1,Ns);
for k = 1:length(PGN)

Fs_fitDGN = Fs_fitDGN + (RGN(k)./(s.' - PGN(k))).';
end
Fs_fitDGN = Fs_fitDGN + KGN;
error = abs(Fs - Fs_fitDGN);

%% Plots
figure(3)
loglog(f,abs(Fs),'k',f,abs(Fs_fitDGN),'r--',f,error,'--b','LineWidth',2);
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]');
legend('Data','DGN','Deviation',2)

figure (4)
semilogy(Ff,'--b','LineWidth',2)
xlabel('Iteration count'); ylabel('RMS-error');

Table 2. “Fitting_Bode_DGN.m”.

%================================================
% BODE PROCESS PROGRAM
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%================================================
% Inputs

% --- Fs, function to be fitted
% --- f, frequency (Hz)
% --- Ns, number of samples
% --- tol, tolerance

% Outputs
% --- P, Poles
% --- Z, Zeros
% --- k, Constant term

function [P,Z,k] = Bode_process(Fs,f,Ns,tol)
P = []; Z = []; % Initialize P and Z like empty matrices
Fsdb = 20*log10(abs(Fs)); % Function in decibels
k0db = Fsdb(1); % k0 in decibels
k0 = 10.^(k0db./20); % k0 in magnitude
Fsdb1 = ones(1,Ns).*k0db; % Constant term
% Plot of the function in decibels
figure(1)
semilogx(f,Fsdb,'k',f,Fsdb1,'r--','LineWidth',2)
ylabel('Decibels'), xlabel('Frequency [Hz]'), hold on
legend('Data','Bode',2)

c = 1; h = 1; r = 0; % Counters
Fsdb2 = zeros(1,Ns); % Initialize Fsdb2
while (r < Ns) % Bode process algorithm

Fsfitdb = Fsdb1 + Fsdb2;
semilogx(f,Fsfitdb,'r--','LineWidth',2)
pause(0.5)
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for r = 1:1:Ns
error = abs((Fsdb(r))-(Fsfitdb(r))); % Deviation
if error >= (tol) % Tolerance

% New zero
if (Fsfitdb(r)< Fsdb(r)); Z(h)=f(r); h=h+1; break; end
% New pole
if (Fsfitdb(r)> Fsdb(r)); P(c)=f(r); c=c+1; break; end

end
end
% Contribution of each zero in decibels
Arg1 = 0;
for kp = 1:length(Z)

Arg1 = Arg1 + 20.*log10(abs(1+1i*f/Z(kp)));
end
% Contribution of each pole in decibels
Arg2 = 0;
for kp = 1:length(P)

Arg2 = Arg2 - 20.*log10(abs(1+1i*f/P(kp)));
end
Fsdb2 = Arg1 + Arg2;

end

% Poles and zeros
P = -P*2*pi;
Z = -Z*2*pi;

% Construct the constant term
Num=1;for k=1:length(P);Num=Num*P(k);end
Den=1;for k=1:length(Z);Den=Den*Z(k);end
k = abs(Num)*k0/abs(Den);

% Plots
figure(2)
semilogx(f,Fsdb,'k',f,Fsfitdb,'--r','LineWidth',2);
xlabel('Frequency [Hz]'); ylabel('Decibels')
legend('Data','Bode',2)

Table 3. “Bode_process.m”.

%================================================
% DAMPED GAUSS NEWTON METHOD
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%===============================================
% Inputs

% --- Np, number of poles
% --- Ns, Number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)
% --- X, initial poles, zeros and constant term
% --- ite,iterations

% Outputs
% --- Ks, constant term
% --- Rs, residues
% --- Ps, poles
% --- Ff, objective function (deviation)
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for r = 1:1:Ns
error = abs((Fsdb(r))-(Fsfitdb(r))); % Deviation
if error >= (tol) % Tolerance

% New zero
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end
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% Plots
figure(2)
semilogx(f,Fsdb,'k',f,Fsfitdb,'--r','LineWidth',2);
xlabel('Frequency [Hz]'); ylabel('Decibels')
legend('Data','Bode',2)

Table 3. “Bode_process.m”.

%================================================
% DAMPED GAUSS NEWTON METHOD
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%===============================================
% Inputs

% --- Np, number of poles
% --- Ns, Number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)
% --- X, initial poles, zeros and constant term
% --- ite,iterations

% Outputs
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% --- Ff, objective function (deviation)
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function [Ks,Rs,Ps,Ff] = Damped_Gauss_Newton(Np,Ns,Fs,s,X,ite)
a = ones(Ns,1); % Vector column
J1 = zeros(Ns,Np); % Matrix size (J1)
J2 = zeros(Ns,Np); % Matrix size (J2)
Jn = zeros(2*Ns,2*Np+1); % Matrix size (Jn)
At = zeros(2*Np+1,2*Np+1); % Matrix size (At)
en = zeros(2*Ns,1); % Vector size (en)
epn = zeros(2*Ns,1); % Vector size (epn)
Ff = zeros(ite,1); % Vector size (Ff)
Euclidian = zeros(1,1+2*Np); % Vector size

for ki = 1:ite % Damped Gauss Newton methodology
R = X(1:Np); % Residues
P = X(Np+1:2*Np); % Poles
K = X(2*Np+1); % Constant term

Fa = zeros(1,Ns); % Set the approximation to the function
for k = 1:length(P)

Fa = Fa + (R(k)./(s.' - P(k))).';
end
Fa = Fa + K; % Construct the approximation to the function
error = (Fa.' - Fs.'); % Deviation

for n = 1:1:Np % Loop to construct the Jacobian
J1(1:Ns,n) = 1./(s-P(n));
J2(1:Ns,n) = R(n)./((s-P(n)).^2);

end
J = [J1 J2 a]; % Jacobian
[Xmax Ymax] = size(J); % Matrix size (J)
Jr = real(J); % Real part of vector J
Ji = imag(J); % Imaginary part of vector J
er = real(error); % Real part of vector error
ei = imag(error); % Imaginary part of vector error

km = 1; % Counter
for k = 2:2:2*Xmax % Interleaved

Jn(k-1,:) = Jr(km,:);
Jn(k,:) = Ji(km,:);
en(k-1,1) = er(km);
en(k,1) = ei(km);
km = km+1;

end
F = ((norm(en,2)^2)); % Objective function
Ff(ki,1) = F; % Storage the objective function must tend to zero

[Q,R] = qr(Jn); % Matrix Q and R of Jn
Jn = R; % It updates matrix Jn
Gf = (Jn.'*Q.')*en; % Gradient (QR decomposition)
Hess = Jn.'*Jn; % Hessian (QR decomposition)

for col = 1:Ymax % Euclidian norm
Euclidian(col) = norm(Hess(:,col),2);
At(:,col) = Hess(:,col)./Euclidian(col);

end
h = (At)\-Gf; % Solution for the system (Ax = b)
h = h./Euclidian.'; % Real solution

stop = 1; % Variable to stop the next loop
al = 1; % Variable to weigh the approximation
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In Figure 10 the synthetic frequency response behavior and the rational approximation given
by IRLS is presented, together with its deviation in terms of absolute error. Moreover, the
RMS-error on each iteration is shown in Figure 11.

4.4. LM algorithm

In this section the LM routine is introduced. First, a synthetic function can be selected in the
main program “Fitting_LM_Polynomials.m,” presented in Table 9. Afterwards, the algorithm
of the method “LM_method.m,” Table 10, is implemented for the rational approximation of
the selected function.

while (stop == 1)
Xp = X + al*h; % New coefficients (without updating x)
Rp = Xp(1:Np); % Residues
Pp = Xp(Np+1:2*Np); % Poles
Kp = Xp(2*Np+1); % Constant term

Fap = zeros(1,Ns); % Set the new approximation of the function
for k = 1:length(P)

Fap = Fap + (Rp(k)./(s.' - Pp(k))).';
end
Fap = Fap + Kp; %New approximation of the function
ep = (Fap.' - Fs.'); % Deviation
epr = real(ep); % Real part of vector ep
epi = imag(ep); % Imaginary part of vector ep

km = 1; % Counter
for k = 2:2:2*Xmax % Interleaved

epn(k-1,1) = epr(km);
epn(k,1) = epi(km);
km = km+1;

end
Fp = ((norm(epn,2)^2)); % Objective function

% Updating process
Erel = 1e-4*al*h.'*Gf; % Relative error to stop the while process
if (Fp < F + Erel)

X = X + al*h; % Final approximation
stop = 0; % Go out the while

else
al = al*0.9; % Weigh to update X
if (al < 1e-30)

stop = 0;
else

stop = 1;
end

end
end

end
Rs = X(1:Np); % Residues
Ps = X(Np+1:2*Np); % Poles
Ks = X(2*Np+1); % Constant term

Table 4. “Damped_Gauss_Newton.m”.
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Table 4. “Damped_Gauss_Newton.m”.
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Figure 5. Asymptotic behavior of the Bode routine.

Figure 6. Final rational approximation of the synthetic function given by Bode.

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment
http://dx.doi.org/10.5772/intechopen.71358

23



Figure 7. Fitting deviation of the approximation given by DGN.

Figure 8. RMS-error on each iteration of the approximation given by DGN.
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Figure 7. Fitting deviation of the approximation given by DGN.

Figure 8. RMS-error on each iteration of the approximation given by DGN.
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In Figure 12 the synthetic frequency response behavior and the rational approximation given
by IRLS is presented, together with its deviation in terms of absolute error. Moreover, the
RMS-error on each iteration is shown in Figure 13.

%====================================================
% Main program of ORDINARY LEAST SQUARES
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%====================================================
clc
clear all
close all

%% Initial Settings
Ns = 400; % Number of samples
f = logspace(-2,6,Ns); % Frequency "Hertz"
w = 2.*pi.*f; % Frequency "rad/seg"
s = 1i*w; % Complex Frequency

%% Synthetic functions
choice = menu('CHOOSE A FUNCTION','Function F1(s)','Function F2(s)','Function F3(s)');
if choice == 1
Np = 2;
Fs = 0.01+(210*(s)./((s+10).*(s+100)));
end
if choice == 2

Np = 5;
Fs = (-81+18e6*s+27e6*s.^2+62e3*s.^3+42*s.^4+5e-7*s.^5)./…

(1+54e5*s+36e7*s.^2+83e4*s.^3+90*s.^4+36e-3*s.^5);
end
if choice == 3

Np = 6;
Fs =(100./(s+200))+(250./(s+2000))+(1500./(s+(10-1j*100)))+(1500./(s+(10+1j*100)))+…

(800./(s+(1000+1j*30000)))+(800./(s+(1000-1j*30000)));
end

%% Ordinary Least Squares
[Ks,Rs,Ps,x,A1,an,bn] = Least_Squares_Method(Np,Ns,Fs,s);

% Fitting using partial fractions
Fs_fit = zeros(1,Ns);
for i = 1:Np

Fs_fit = Fs_fit + (Rs(i)./(s.' - Ps(i))).';
end
Fs_fit = Fs_fit + Ks;
error = abs((Fs.' - Fs_fit.' ));

%% Plots
figure(1)
loglog(f,abs(Fs),'-k',f,abs(Fs_fit),'--r',f,error,'-.b','LineWidth',2);
legend('Data','Ordinary Least Squares','Deviation',3);
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]')

Table 5. “Fitting_OLS.m”.
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%==========================================================
% Function to implement ORDINARY LEAST SQUARES
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%==========================================================
% Inputs

% --- Np, number of poles
% --- Ns, number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)

% Outputs
% --- Ks, constant term
% --- Rs, residues
% --- Ps, poles
% --- x, vector of coefficients (polynomials)
% --- A1, matrix to evaluate the fitting
% --- an, coefficients of the numerator
% --- bn, coefficients of the denominator

function [Ks,Rs,Ps,x,A1,an,bn] = Least_Squares_Method(Np,Ns,Fs,s)
a = ones(Ns,1); % Column vector
a1 = zeros(Ns,Np); % Matrix size (s^n)
a2 = zeros(Ns,Np); % Matrix size (Fs*s^n)
An = zeros(2*Ns,1+2*Np); % Matrix size (real and imaginary part)
Bn = zeros(2*Ns,1); % Vector size (real and imaginary part)
Euclidian = zeros(1,1+2*Np); % Vector size

% Construction of vector b.
b = Fs.';
% Construction of matrix A.
for n = 1:1:Np

a1(1:Ns,n) = s.^((Np+1)-n);
a2(1:Ns,n) = -b.*a1(1:Ns,n);

end
A1 = [a1 a]; % Matrix to evaluate the fitting
A = [a1 a a2]; % Matriz of the system

[Xmax Ymax] = size(A); % Size for matrix A
Ar = real(A); % Real part of matrix A
Ai = imag(A); % Imaginary part of matrix A
br = real(b); % Real part of vector B
bi = imag(b); % Imaginary part of vector B

km = 1; % Construction of matrix An and vector Bn (interleaved)
for k = 2:2:2*Xmax

An(k-1,:) = Ar(km,:);
An(k,:) = Ai(km,:);
Bn(k-1,1) = br(km);
Bn(k,1) = bi(km);
km = km+1;

end

[Q,R] = qr(An,0); % QR decomposition - Matrix Q and R of An
At = R; % It updates the matrix An
B = Q.'*Bn; % It updates the vector Bn
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%==========================================================
% Function to implement ORDINARY LEAST SQUARES
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%==========================================================
% Inputs

% --- Np, number of poles
% --- Ns, number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)

% Outputs
% --- Ks, constant term
% --- Rs, residues
% --- Ps, poles
% --- x, vector of coefficients (polynomials)
% --- A1, matrix to evaluate the fitting
% --- an, coefficients of the numerator
% --- bn, coefficients of the denominator

function [Ks,Rs,Ps,x,A1,an,bn] = Least_Squares_Method(Np,Ns,Fs,s)
a = ones(Ns,1); % Column vector
a1 = zeros(Ns,Np); % Matrix size (s^n)
a2 = zeros(Ns,Np); % Matrix size (Fs*s^n)
An = zeros(2*Ns,1+2*Np); % Matrix size (real and imaginary part)
Bn = zeros(2*Ns,1); % Vector size (real and imaginary part)
Euclidian = zeros(1,1+2*Np); % Vector size

% Construction of vector b.
b = Fs.';
% Construction of matrix A.
for n = 1:1:Np

a1(1:Ns,n) = s.^((Np+1)-n);
a2(1:Ns,n) = -b.*a1(1:Ns,n);

end
A1 = [a1 a]; % Matrix to evaluate the fitting
A = [a1 a a2]; % Matriz of the system

[Xmax Ymax] = size(A); % Size for matrix A
Ar = real(A); % Real part of matrix A
Ai = imag(A); % Imaginary part of matrix A
br = real(b); % Real part of vector B
bi = imag(b); % Imaginary part of vector B

km = 1; % Construction of matrix An and vector Bn (interleaved)
for k = 2:2:2*Xmax

An(k-1,:) = Ar(km,:);
An(k,:) = Ai(km,:);
Bn(k-1,1) = br(km);
Bn(k,1) = bi(km);
km = km+1;

end

[Q,R] = qr(An,0); % QR decomposition - Matrix Q and R of An
At = R; % It updates the matrix An
B = Q.'*Bn; % It updates the vector Bn
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4.5. VF algorithm

VF has become one of the main methodologies for the rational approximation of frequency
domain responses, the MATLAB routine is available online [20], “vectfit3.m.”Here, we present
an example of its application to the rational approximation of a synthetic function.

In the beginning of the implementation a synthetic function is selected in the main program
“Fitting_VF.m,” presented in Table 11. Afterwards, initial poles for the fitting must be established

for col = 1:Ymax
Euclidian(col) = norm(At(:,col),2); % Euclidian norm
At(:,col) = At(:,col)./Euclidian(col);

end
x = At\B; % Solution for the system (Ax = b)
x = x./Euclidian.'; % Real solution
an = x(1:Np+1); % Numerator coefficients
bn = [x(Np+2:2*Np+1);1]; % Denominator coefficients

% Poles, residues and constant term
[Rs,Ps,Ks] = residue(an,bn);
TF = isempty(Ks);
if (TF==1)

Ks = 0;
end

Table 6. “Least_Squares_Method.m”.

Figure 9. Synthetic frequency response data and the approximation given by the LS routine.
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%=======================================================
% Main program of ITERATIVELY REWEIGHTED LEAST SQUARES
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%=======================================================
clc
clear all
close all
%% Initial Settings
Ns = 500; % Number of samples
f = logspace(-2,6,Ns); % Frequency (Hz)
w = 2.*pi.*f; % Frequency (rad/seg)
s = 1i*w; % Complex Frequency

%% Synthetic functions
choice = menu('CHOOSE A FUNCTION','Function F1(s)',…

'Function F2(s)','Function F3(s)','Function F4(s)',…
'Function F5(s)','Function F6(s)');

if choice == 1
Np = 12;
Fs =(0.83*s.^12-0.35*s.^11+0.32*s.^10+60000*s.^9+600.36*s.^8+650.23*s.^7+…

54.5*s.^6+45.6*s.^5 +0.1*s.^4-1240*s.^3+80025*s.^2+5547.*s+5008)./…
(s.^12-0.89*s.^11-0.23*s.^10-4565.*s.^9+34569.02*s.^8-55450*s.^7+…
60*s.^6+1005*s.^5+8050*s.^4+7502*s.^3+10*s.^2+1014.*s-50);

end
if choice == 2

Np = 9;
Fs = (6000*s.^9+600*s.^8+650*s.^7+54*s.^6+457*s.^5+100*s.^4+1240*s.^3+8000*s.^2+…

55400.*s+5000)./(450*s.^9+3500*s.^8+500*s.^7-600*s.^6+1000*s.^5+700*s.^4-…
7500*s.^3+1000*s.^2+500.*s);

end
if choice == 3

Np = 7;
Fs =(514*s.^7-364.25*s.^6-0.35*s.^5+635*s.^4-20802*s.^3+5304*s.^2+4520.*s-…

18020.025 )./(241*s.^7-32.02*s.^6+538.23*s.^5-2588*s.^4-22560*s.^3-…
604*s.^2+4150.*(s)-21052.31 );

end
if choice == 4

Np = 3;
Ps = [-0.52; -0.12; -0.04];
Rs = [-2.18; -7192.25; 20.58];
Ks = 5;
Fs = zeros(1,Ns);

for k = 1:length(Ps)
Fs = Fs + (Rs(k)./(s.' - Ps(k))).';

end
Fs = Fs + Ks;
end
if choice == 5

Np = 11;
Ps = 1.0e+004.*[-.88; -5.42; - 27.28; 0.88; -9665; 235.7; …

-0.26; -3.87; 46.32; -0.13; -3756 ];
Rs = 1.0e+005.*[834; 22593; 893; 2653; 654; 32; …

44.14; 6405; 136.79; 0.12; 125];
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%=======================================================
% Main program of ITERATIVELY REWEIGHTED LEAST SQUARES
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%=======================================================
clc
clear all
close all
%% Initial Settings
Ns = 500; % Number of samples
f = logspace(-2,6,Ns); % Frequency (Hz)
w = 2.*pi.*f; % Frequency (rad/seg)
s = 1i*w; % Complex Frequency

%% Synthetic functions
choice = menu('CHOOSE A FUNCTION','Function F1(s)',…

'Function F2(s)','Function F3(s)','Function F4(s)',…
'Function F5(s)','Function F6(s)');

if choice == 1
Np = 12;
Fs =(0.83*s.^12-0.35*s.^11+0.32*s.^10+60000*s.^9+600.36*s.^8+650.23*s.^7+…

54.5*s.^6+45.6*s.^5 +0.1*s.^4-1240*s.^3+80025*s.^2+5547.*s+5008)./…
(s.^12-0.89*s.^11-0.23*s.^10-4565.*s.^9+34569.02*s.^8-55450*s.^7+…
60*s.^6+1005*s.^5+8050*s.^4+7502*s.^3+10*s.^2+1014.*s-50);

end
if choice == 2

Np = 9;
Fs = (6000*s.^9+600*s.^8+650*s.^7+54*s.^6+457*s.^5+100*s.^4+1240*s.^3+8000*s.^2+…

55400.*s+5000)./(450*s.^9+3500*s.^8+500*s.^7-600*s.^6+1000*s.^5+700*s.^4-…
7500*s.^3+1000*s.^2+500.*s);

end
if choice == 3

Np = 7;
Fs =(514*s.^7-364.25*s.^6-0.35*s.^5+635*s.^4-20802*s.^3+5304*s.^2+4520.*s-…

18020.025 )./(241*s.^7-32.02*s.^6+538.23*s.^5-2588*s.^4-22560*s.^3-…
604*s.^2+4150.*(s)-21052.31 );

end
if choice == 4

Np = 3;
Ps = [-0.52; -0.12; -0.04];
Rs = [-2.18; -7192.25; 20.58];
Ks = 5;
Fs = zeros(1,Ns);

for k = 1:length(Ps)
Fs = Fs + (Rs(k)./(s.' - Ps(k))).';

end
Fs = Fs + Ks;
end
if choice == 5

Np = 11;
Ps = 1.0e+004.*[-.88; -5.42; - 27.28; 0.88; -9665; 235.7; …

-0.26; -3.87; 46.32; -0.13; -3756 ];
Rs = 1.0e+005.*[834; 22593; 893; 2653; 654; 32; …

44.14; 6405; 136.79; 0.12; 125];
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“InitialPoles.m,” Table 12, for the VF routine. Finally in “VF.m,” VF is used (via vectfit3.m)
to perform the rational approximation of the selected function. In VF.m routine, Table 13, the
parameter opts.relax is set to 1. This implies that “relaxation” is being used.

Figure 14 shows the synthetic frequency response behavior and the rational approximation
given by VF, together with its deviation in terms of absolute error.

Ks = 0;
Fs = zeros(1,Ns);
for k = 1:length(Ps)

Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
end
Fs = Fs + Ks;

end
if choice == 6

Np = 18;
Ps = [-4500; -41000; -100+1i*5000; -100-1i*5000; -120+1i*15000; -120-1i*15000; …

-3000+1i*35000; -3000-1i*35000; -200+1i*45000; -200-1i*45000; -1500+1i*45000;…
-1500-1i*45000; -500+1i*70000; -500-1i*70000; -1000+1i*73000; -1000-1i*73000;…
-2000+1i*90000; -2000-1i*90000];

Rs = [-3000; -83000; -5+1i*7000; -5-1i*7000; -20+1i*18000; -20-1i*18000;…
6000 + 1i*45000; 6000-1i*45000; 40+1i*60000; 40-1i*60000; 90+1i*10000;…
90-1i*10000; 50000+1i*80000; 50000-1i*80000; 1000+1i*45000; 1000-1i*45000;…
-5000+1i*92000; -5000-1i*92000];

Ks = 0.2;
Fs = zeros(1,Ns);
for k = 1:length(Ps)

Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
end
Fs = Fs + Ks;
end

%% Iteratively Reweighted Least Squares
fw = 1; % weighting function (1-6)
[Ks,Rs,Ps,x,A1,an,bn,k1,Err] = IRLS(Np,Ns,Fs,s,fw);
% Fitting using partial fractions
Fs_fit = zeros(1,Ns);
for i = 1:Np

Fs_fit = Fs_fit + (Rs(i)./(s.' - Ps(i))).';
end
Fs_fit = Fs_fit + Ks ;
e = abs((Fs.' - Fs_fit.')); % Deviation of the fitting process

%% Plots
figure(1)
semilogy(Err(1:length(Err)),'-b','LineWidth',2)
xlabel('Itetation count');ylabel('RMS-error')

figure(2)
loglog(f,abs(Fs),'-k',f,abs(Fs_fit),'--r',f,e,'--b','LineWidth',2),
legend('Data','IRLS','Deviation')
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]');

Table 7. “Fitting_IRLS.m”.
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%=====================================================
% ITERATIVELY REWEIGHTED LEAST SQUARES METHOD
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%=====================================================
% Inputs

% --- Np, number of poles
% --- Ns, number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)
% --- fw, weighting function

% Outputs
% --- Ks, constant term
% --- Rs, residues
% --- Ps, poles
% --- x, coefficients vector (polynomials)
% --- A1, matrix to evaluate the fitting
% --- an, numerator coefficients
% --- bn, denominator coefficients
% --- k1, minimum error
% --- Error, RMS-error

function [Ks,Rs,Ps,x,A1,an,bn,k1,Error] = IRLS(Np,Ns,Fs,s,fw)
a = ones(Ns,1); % Vector column
a1 = zeros(Ns,Np); % Matrix size (s^n)
a2 = zeros(Ns,Np); % Matrix size (Fs*s^n)
An = zeros(2*Ns,1+2*Np); % Matrix size considering real and imaginary part
Bn = zeros(2*Ns,1); % Vector size considering real and imaginary part
Euclidian = zeros(1,1+2*Np); % Vector size
W = eye(length(Ns*2)); % Weighting matrix

b = Fs.'; % Construction of vector b.
for n = 1:1:Np % Construction of matrix A.

a1(1:Ns,n) = s.^((Np+1)-n);
a2(1:Ns,n) = -b.*a1(1:Ns,n);

end
A1 = [a1 a]; % Matrix to evaluate the fitting
A = [a1 a a2]; % Matriz of the system

[Xmax Ymax] = size(A); % Size for matrix A
Ar = real(A); % Real part of matrix A
Ai = imag(A); % Imaginary part of matrix A
br = real(b); % Real part of vector B
bi = imag(b); % Imaginary part of vector B

% Construction of matrix An and vector Bn (interleaved)
km = 1;
for k = 2:2:2*Xmax

An(k-1,:) = Ar(km,:);
An(k,:) = Ai(km,:);
Bn(k-1,1) = br(km);
Bn(k,1) = bi(km);
km = km+1;

end
[Q,R] = qr(An,0);% Matrix Q and R of An
At = R; % It updates matrix An
B = Q.'*Bn; % It updates vector Bn
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%=====================================================
% ITERATIVELY REWEIGHTED LEAST SQUARES METHOD
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%=====================================================
% Inputs

% --- Np, number of poles
% --- Ns, number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)
% --- fw, weighting function

% Outputs
% --- Ks, constant term
% --- Rs, residues
% --- Ps, poles
% --- x, coefficients vector (polynomials)
% --- A1, matrix to evaluate the fitting
% --- an, numerator coefficients
% --- bn, denominator coefficients
% --- k1, minimum error
% --- Error, RMS-error

function [Ks,Rs,Ps,x,A1,an,bn,k1,Error] = IRLS(Np,Ns,Fs,s,fw)
a = ones(Ns,1); % Vector column
a1 = zeros(Ns,Np); % Matrix size (s^n)
a2 = zeros(Ns,Np); % Matrix size (Fs*s^n)
An = zeros(2*Ns,1+2*Np); % Matrix size considering real and imaginary part
Bn = zeros(2*Ns,1); % Vector size considering real and imaginary part
Euclidian = zeros(1,1+2*Np); % Vector size
W = eye(length(Ns*2)); % Weighting matrix

b = Fs.'; % Construction of vector b.
for n = 1:1:Np % Construction of matrix A.

a1(1:Ns,n) = s.^((Np+1)-n);
a2(1:Ns,n) = -b.*a1(1:Ns,n);

end
A1 = [a1 a]; % Matrix to evaluate the fitting
A = [a1 a a2]; % Matriz of the system

[Xmax Ymax] = size(A); % Size for matrix A
Ar = real(A); % Real part of matrix A
Ai = imag(A); % Imaginary part of matrix A
br = real(b); % Real part of vector B
bi = imag(b); % Imaginary part of vector B

% Construction of matrix An and vector Bn (interleaved)
km = 1;
for k = 2:2:2*Xmax

An(k-1,:) = Ar(km,:);
An(k,:) = Ai(km,:);
Bn(k-1,1) = br(km);
Bn(k,1) = bi(km);
km = km+1;

end
[Q,R] = qr(An,0);% Matrix Q and R of An
At = R; % It updates matrix An
B = Q.'*Bn; % It updates vector Bn
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for col = 1:Ymax % Applying the Euclidian norm to At
Euclidian(col) = norm(At(:,col),2);
At(:,col) = At(:,col)./Euclidian(col);

end
xn(:,1) = At\B; % Solution for the system (Ax = B)
xn(:,1) = xn(:,1)./Euclidian.'; % Real solution

% weighting iterative
Error(1) = 1e2; % Initial error
Disc = 1e2; % Discriminating
n=1; % Counter to storage de error
k0=1; % Counter of iterations
while Disc < 0 || Error(n) > 1e-3 || k0 < 13

an = xn(1:Np+1,k0); % Numerator coefficients
bn = [xn(Np+2:2*Np+1,k0);1]; % Denominator coefficients
Fsfit = (A1*an)./(A1*bn); % Fitting evaluation
vres = (Fsfit - b); % Direct error
n=n+1; % Counter to storage de error
Error(n)=sum(abs(vres)); % Error
Disc = Error(n)-Error(n-1); % Discriminating
vres_r = real(vres); % Real part of the vector vres
vres_i = imag(vres); % Imaginary part of the vector vres

km = 1; %(interleaved
for k = 2:2:2*Xmax

res(k-1,1) = vres_r(km);
res(k,1) = vres_i(km);
km = km+1;

end

Ds = std(res); % Standard deviation
res = res./Ds; % Vector "res" with standard deviation

% WEIGHING FUNCTIONS
if fw ==1, w = diag(W).*abs(res) + 1e-130; end
if fw ==2, w = diag(W).*(sqrt(1+((res.^2)))-1) + 1e-130; end
if fw ==3, w = diag(W).*1./(abs(res).^(1.2-2)) + 1e-130; end
if fw ==4, w = diag(W).*((res).^2)./(1+(res).^2) + 1e-130; end
if fw ==5, w = diag(W).*((res).^2)./sqrt(1+(res).^2)+ 1e-130; end
if fw ==6, w = diag(W).*(abs(res).^(1.2))./1.2 + 1e-130; end

W = diag(w); % It updates the matrix W whit weighting functions
Bn_p = W*Bn; % Weighting An
An_p = W*An; % Weighting Bn
[Q,R] = qr(An_p,0); % Matrix Q and R of An_p
At = R; % It updates the matrix An_p
B = Q.'*Bn_p; % It updates the matrix Bn_p

for col = 1:Ymax % Euclidian norm
Euclidian(col) = norm(At(:,col),2);
At(:,col) = At(:,col)./Euclidian(col);

end
k0=k0+1; % Number of iterations
xn(:,k0) = At\B; % Solution for the system (Ax = b)
xn(:,k0) = xn(:,k0)./Euclidian.'; % Real solution
if k0 > 20, break, end % End the while, if k0 > 20

end
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4.6. Single-phase transmission line modeling

Bode, Levy or LS, IRLS, VF, and LM are applied to the rational approximation of the frequency-
dependent parameters corresponding to a single-phase transmission line. In Figure 15a, the dia-
gram of the equivalent circuit for the test with L = 70 mH and Ri = 1.058 Ω is shown. The current
source is considered as an ideal 60 Hz. The line length (l) is 100 km, with a diameter of 2.7 cm. The
conductor is placed horizontally at a height of 20 m, with a 100 Ωm resistivity. The termination
impedance at the end of line (Rl) is placed as 1e6 Ω, 1e-6 Ω, and 462 Ω for evaluation of the
different line end cases.

[k1,k2]=min(Error); % Position of the minimum error
x=xn(:,k2); % Coefficients with minimum error

% Poles, residues and constant term
an = x(1:Np+1); % Numerator coefficients
bn = [x(Np+2:2*Np+1);1]; % Denominator coefficients
[Rs,Ps,Ks] = residue(an,bn);
TF = isempty(Ks);
if (TF==1)

Ks = 0;
end

Table 8. “IRLS.m”.

Figure 10. Rational approximation given by the IRLS method for the synthetic function.
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4.6. Single-phase transmission line modeling

Bode, Levy or LS, IRLS, VF, and LM are applied to the rational approximation of the frequency-
dependent parameters corresponding to a single-phase transmission line. In Figure 15a, the dia-
gram of the equivalent circuit for the test with L = 70 mH and Ri = 1.058 Ω is shown. The current
source is considered as an ideal 60 Hz. The line length (l) is 100 km, with a diameter of 2.7 cm. The
conductor is placed horizontally at a height of 20 m, with a 100 Ωm resistivity. The termination
impedance at the end of line (Rl) is placed as 1e6 Ω, 1e-6 Ω, and 462 Ω for evaluation of the
different line end cases.

[k1,k2]=min(Error); % Position of the minimum error
x=xn(:,k2); % Coefficients with minimum error

% Poles, residues and constant term
an = x(1:Np+1); % Numerator coefficients
bn = [x(Np+2:2*Np+1);1]; % Denominator coefficients
[Rs,Ps,Ks] = residue(an,bn);
TF = isempty(Ks);
if (TF==1)

Ks = 0;
end

Table 8. “IRLS.m”.

Figure 10. Rational approximation given by the IRLS method for the synthetic function.
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Figure 11. RMS-error on each iteration given by the IRLS method.

%=======================================================
% Main program of LEVENBERG-MARQUARDT (Polynomials)
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%=======================================================
clc
clear all
close all

%% Initial Settings
Ns = 500; % Number of samples
f = logspace(-2,8,Ns); % Frequency "Hertz"
w = 2.*pi.*f; % Frequency "rad/seg"
s = 1i*w; % Complex Frequency

%% Synthetic functions
choice = menu('CHOOSE A FUNCTION','Function F1(s)','Function F2(s)',…
'Function F3(s)','Function F4(s)','Function F5(s)');

if choice == 1
ite = 150; % Number of iterations
Np = 7; % Order of the proposed function
Fs = (-364*s.^6-s.^5+635*s.^4-20802*s.^3+5304*s.^2+4520.*s-18020)./…

(241*s.^7-32*s.^6+538*s.^5-2588*s.^4-22560*s.^3-604*s.^2+4150.*s-21052);
end
if choice == 2
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ite = 50; % Number of iterations
Np = 12; % Order of the proposed function
Fs = (s.^12-0.4*s.^11+0.3*s.^10+60003*s.^9+600*s.^8+650*s.^7+54*s.^6+45*s.^5+…

0.1*s.^4-1240*s.^3+80025*s.^2+5547*s+5008)./(s.^12-0.9*s.^11-0.2*s.^10-…
4565*s.^9+34569*s.^8-55450*s.^7+60*s.^6+1005*s.^5+8050*s.^4+7502*s.^3+…
10*s.^2+1014*s-50);

end
if choice == 3

ite = 50; % Number of iterations
Np = 14; % Order of the proposed function
Fs = 2.*pi*(652*s.^14-0.8*s.^13-0.8*s.^12-0.4*s.^11+25487*s.^10+600003*s.^9+…

6040*s.^8-60050*s.^7+54*s.^6+45*s.^5+0.1*s.^4-1240*s.^3+8025*s.^2+5547*s+508)./…
(2365*s.^14-8362*s.^13-8*s.^12-0.9*s.^11-65547*s.^10-4565*s.^9+34569*s.^8-…
55450*s.^7+60*s.^6-1005*s.^5+850*s.^4-7502*s.^3-10*s.^2-1014*s+75230);

end
if choice == 4

ite = 50; % Number of iterations
Np = 3; % Order of the proposed function
Ps = [-0.5; -0.1; -0.05];
Rs = [-2.2; -7192; 20];
% Process to obtain Fs from poles and residues
Ks = 5;
Fs = zeros(1,Ns);
for k = 1:length(Ps)

Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
end
Fs = Fs + Ks;

end
if choice == 5

ite = 100; % Number of iterations
Np = 11; % Order of the proposed function
Ps = 1.0e4*[-0.9;-5.4;-27.3;0.9;-9665;235;-0.3;-3.9;46.3;-0.1;-3756];
Rs = 1.0e5*[834;22593;893;2653;654;32;44;6405;136;0.1;125];
% Process to obtain Fs from poles and residues
Ks = 0;
Fs = zeros(1,Ns);
for k = 1:length(Ps)

Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
end
Fs = Fs + Ks;

end

%% Levenberg Marquardt
[Ks,Rs,Ps,x,A1,an,bn,Ff] = LM_method(Np,Ns,Fs,s,ite);

% Fitting using partial fractions
Fs_fit = zeros(1,Ns);
for i = 1:Np

Fs_fit = Fs_fit + (Rs(i)./(s.' - Ps(i))).';
end
Fs_fit = Fs_fit + Ks ;

% Deviation in the fitted process
error = abs((Fs.' - Fs_fit.' ));

%% Plots
figure(1)
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ite = 50; % Number of iterations
Np = 12; % Order of the proposed function
Fs = (s.^12-0.4*s.^11+0.3*s.^10+60003*s.^9+600*s.^8+650*s.^7+54*s.^6+45*s.^5+…

0.1*s.^4-1240*s.^3+80025*s.^2+5547*s+5008)./(s.^12-0.9*s.^11-0.2*s.^10-…
4565*s.^9+34569*s.^8-55450*s.^7+60*s.^6+1005*s.^5+8050*s.^4+7502*s.^3+…
10*s.^2+1014*s-50);

end
if choice == 3

ite = 50; % Number of iterations
Np = 14; % Order of the proposed function
Fs = 2.*pi*(652*s.^14-0.8*s.^13-0.8*s.^12-0.4*s.^11+25487*s.^10+600003*s.^9+…

6040*s.^8-60050*s.^7+54*s.^6+45*s.^5+0.1*s.^4-1240*s.^3+8025*s.^2+5547*s+508)./…
(2365*s.^14-8362*s.^13-8*s.^12-0.9*s.^11-65547*s.^10-4565*s.^9+34569*s.^8-…
55450*s.^7+60*s.^6-1005*s.^5+850*s.^4-7502*s.^3-10*s.^2-1014*s+75230);

end
if choice == 4

ite = 50; % Number of iterations
Np = 3; % Order of the proposed function
Ps = [-0.5; -0.1; -0.05];
Rs = [-2.2; -7192; 20];
% Process to obtain Fs from poles and residues
Ks = 5;
Fs = zeros(1,Ns);
for k = 1:length(Ps)

Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
end
Fs = Fs + Ks;

end
if choice == 5

ite = 100; % Number of iterations
Np = 11; % Order of the proposed function
Ps = 1.0e4*[-0.9;-5.4;-27.3;0.9;-9665;235;-0.3;-3.9;46.3;-0.1;-3756];
Rs = 1.0e5*[834;22593;893;2653;654;32;44;6405;136;0.1;125];
% Process to obtain Fs from poles and residues
Ks = 0;
Fs = zeros(1,Ns);
for k = 1:length(Ps)

Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
end
Fs = Fs + Ks;

end

%% Levenberg Marquardt
[Ks,Rs,Ps,x,A1,an,bn,Ff] = LM_method(Np,Ns,Fs,s,ite);

% Fitting using partial fractions
Fs_fit = zeros(1,Ns);
for i = 1:Np

Fs_fit = Fs_fit + (Rs(i)./(s.' - Ps(i))).';
end
Fs_fit = Fs_fit + Ks ;

% Deviation in the fitted process
error = abs((Fs.' - Fs_fit.' ));

%% Plots
figure(1)
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loglog(f,abs(Fs),'-k',f,abs(Fs_fit),'-.r',f,error,'-.b','LineWidth',2);
legend('Data','LM (Polynomials)','Deviation');
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]');
figure(2)
semilogy(Ff,'--b','LineWidth',2);
xlabel('Iteration count');ylabel('RMS-error');

Table 9. “Fitting_LM_Polynomials.m”.

%==========================================================
% Function to implement LEVENBERG-MARQUARDT (Polynomials)
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%==========================================================
% Inputs

% --- Np, number of poles
% --- Ns, number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)
% --- ite, number of iterations

% Outputs
% --- Ks, constant term
% --- Rs, residues
% --- Ps, poles
% --- x, vector of coefficients (polynomials)
% --- A1, matrix to evaluate the fitting
% --- an, coefficients of the numerator
% --- bn, coefficients of the denominator
% --- Ff, objective function (deviation)

function [Ks,Rs,Ps,x,A1,an,bn,Ff] = LM_method(Np,Ns,Fs,s,ite)
x = ones((2*Np)+1,1); % Initial values
a = ones(Ns,1); % Vector column
a1 = zeros(Ns,Np); % Matrix size (s^n)
J1 = zeros(Ns,Np+1); % Matrix size (J1)
J2 = zeros(Ns,Np); % Matrix size (J1)
At = zeros(2*Np+1,2*Np+1); % Matrix size (At)
en = zeros(2*Ns,1); % Vector size (en)
epn = zeros(2*Ns,1); % Vector size (enp)
Ff = zeros(ite,1); % Vector size (Ff)
Euclidian = zeros(1,1+2*Np); % Euclidian norm

% Construction of the matrix A1
for n = 1:1:Np

a1(1:Ns,n) = s.^((Np+1)-n);
end
A1 = [a1 a]
;
v = 2; % LM coefficient (m = m*v)
u = 5; % LM coefficient (m = m/u)

% Levenberg-Marquardt method
for ki = 1:ite % Main loop

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment
http://dx.doi.org/10.5772/intechopen.71358

35



x1 = x(1:Np+1); % Coefficients of the numerator
x2 = [x(Np+2:2*Np+1);1]; % Coefficients of the denominator
Yg = (A1*x1)./(A1*x2); % Fitting evaluation
error = (Yg - Fs.'); % Deviation
% Process to obtain the Jacobian (J)
for k = 1:1:Np

J1(:,k) = (s.^((Np+1)-k))./((A1*x2).');
J2(:,k) = (-(A1*x1).'.*s.^((Np+1)-k))./((A1*x2).^2).';

end
J1(:,Np+1) = 1./((A1*x2).');
J = [J1 J2];

[Xmax Ymax] = size(J); % Matrix size (J)
Jr = real(J); % Real part of vector J
Ji = imag(J); % Imaginary part of vector J
er = real(error); % Real part of vector e
ei = imag(error); % Imaginary part of vector e
km = 1; % Interleaved
for k = 2:2:2*Xmax

Jn(k-1,:) = Jr(km,:);
Jn(k,:) = Ji(km,:);
en(k-1,1) = er(km);
en(k,1) = ei(km);
km = km+1;

end
F = ((norm(en,2)^2)); % Objective function tends to zero to converge
Ff(ki,1) = F; % Storage the RMS-error (objective function)

[Q,R] = qr(Jn); % Matrix Q and R of Jn
Jn = R; % It updates matrix Jn
Gf = (Jn.'*Q.')*en; % Gradient (QR decomposition)
Hess = Jn.'*Jn; % Hessian (QR decomposition)

if ki == 1 % Inicial value for m
m = max(diag(Hess));
end

paro = 0; % Variable to enter into the while
while (paro==0)

I = diag(diag(Hess)); % Construction of matrix I, diagonal of Hessian
Hess_mod = (Hess + m*I); % Modified Hessian
for col = 1:Ymax % Loop to normalize At

Euclidian(col) = norm(Hess_mod(:,col),2); % Euclidian norm
At(:,col) = Hess_mod(:,col)./Euclidian(col);

end

h = (At)\-Gf; % Solution for the system (Ax = b)
h = h./Euclidian.'; % Real solution
xnew = x + h; % New coefficients (without updating x)

% == Updated coefficients are evaluated, if it meets the assessment then x is updated == %
x1new = xnew(1:Np+1); % Coefficients of the numerator
x2new = [xnew(Np+2:2*Np+1);1]; % Coefficients of the denominator
Ygnew = (A1*x1new)./(A1*x2new); % Fitting evaluation
ep = (Ygnew - Fs.'); % Deviation
epr = real(ep); % Real part of vector ep
epi = imag(ep); % Imaginary part of vector ep
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x1 = x(1:Np+1); % Coefficients of the numerator
x2 = [x(Np+2:2*Np+1);1]; % Coefficients of the denominator
Yg = (A1*x1)./(A1*x2); % Fitting evaluation
error = (Yg - Fs.'); % Deviation
% Process to obtain the Jacobian (J)
for k = 1:1:Np

J1(:,k) = (s.^((Np+1)-k))./((A1*x2).');
J2(:,k) = (-(A1*x1).'.*s.^((Np+1)-k))./((A1*x2).^2).';

end
J1(:,Np+1) = 1./((A1*x2).');
J = [J1 J2];

[Xmax Ymax] = size(J); % Matrix size (J)
Jr = real(J); % Real part of vector J
Ji = imag(J); % Imaginary part of vector J
er = real(error); % Real part of vector e
ei = imag(error); % Imaginary part of vector e
km = 1; % Interleaved
for k = 2:2:2*Xmax

Jn(k-1,:) = Jr(km,:);
Jn(k,:) = Ji(km,:);
en(k-1,1) = er(km);
en(k,1) = ei(km);
km = km+1;

end
F = ((norm(en,2)^2)); % Objective function tends to zero to converge
Ff(ki,1) = F; % Storage the RMS-error (objective function)

[Q,R] = qr(Jn); % Matrix Q and R of Jn
Jn = R; % It updates matrix Jn
Gf = (Jn.'*Q.')*en; % Gradient (QR decomposition)
Hess = Jn.'*Jn; % Hessian (QR decomposition)

if ki == 1 % Inicial value for m
m = max(diag(Hess));
end

paro = 0; % Variable to enter into the while
while (paro==0)

I = diag(diag(Hess)); % Construction of matrix I, diagonal of Hessian
Hess_mod = (Hess + m*I); % Modified Hessian
for col = 1:Ymax % Loop to normalize At

Euclidian(col) = norm(Hess_mod(:,col),2); % Euclidian norm
At(:,col) = Hess_mod(:,col)./Euclidian(col);

end

h = (At)\-Gf; % Solution for the system (Ax = b)
h = h./Euclidian.'; % Real solution
xnew = x + h; % New coefficients (without updating x)

% == Updated coefficients are evaluated, if it meets the assessment then x is updated == %
x1new = xnew(1:Np+1); % Coefficients of the numerator
x2new = [xnew(Np+2:2*Np+1);1]; % Coefficients of the denominator
Ygnew = (A1*x1new)./(A1*x2new); % Fitting evaluation
ep = (Ygnew - Fs.'); % Deviation
epr = real(ep); % Real part of vector ep
epi = imag(ep); % Imaginary part of vector ep
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km = 1; % Interleaved
for k = 2:2:2*Xmax

epn(k-1,1) = epr(km);
epn(k,1) = epi(km);
km = km+1;

end
Fp = ((norm(epn,2)^2)); % Objective function

% Updating of m
if (F < Fp)

m = m*v;
end
if (F >= Fp) % Condition to go out the while

x = x + h;
m = m/u;
break;

end
end

end
an = x(1:Np+1); % Coefficients of the numerator
bn = [x(Np+2:2*Np+1);1]; % Coefficients of the denominator

% Poles, residues and constant term
[Rs,Ps,Ks] = residue(an,bn);
TF = isempty(Ks);
if (TF==1)

Ks = 0;
end

Table 10. “LM_method.m”.

Figure 12. Synthetic frequency response behavior and the rational approximation given by LM.
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Figure 13. RMS-error on each iteration given by LM.

%=====================================================================
% Main program of VECTOR FITTING
% (vectfit3 available in: https://www.sintef.no/projectweb/vectfit/
% Author: Bjørn Gustavsen)
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%====================================================================
clc
clear all
close all

%% Initial Settings
Ns = 500; % Number of samples
f = logspace(-2,6,Ns); % Frequency (Hz)
w = 2.*pi.*f; % Frequency (rad/seg)
s = 1i*w; % Complex Frequency

%% Synthetic functions
choice = menu('CHOOSE A FUNCTION','Function F1(s)',…

'Function F2(s)','Function F3(s)','Function F4(s)');

if choice == 1
Np = 12;
Fs =(0.83*s.^12-0.35*s.^11+0.32*s.^10+60000*s.^9+600.36*s.^8+650.23*s.^7+…

54.5*s.^6+45.6*s.^5 +0.1*s.^4-1240*s.^3+80025*s.^2+5547.*s+5008)./…
(s.^12-0.89*s.^11-0.23*s.^10-4565.*s.^9+34569.02*s.^8-55450*s.^7+60*s.^6+…
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Figure 13. RMS-error on each iteration given by LM.

%=====================================================================
% Main program of VECTOR FITTING
% (vectfit3 available in: https://www.sintef.no/projectweb/vectfit/
% Author: Bjørn Gustavsen)
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%====================================================================
clc
clear all
close all

%% Initial Settings
Ns = 500; % Number of samples
f = logspace(-2,6,Ns); % Frequency (Hz)
w = 2.*pi.*f; % Frequency (rad/seg)
s = 1i*w; % Complex Frequency

%% Synthetic functions
choice = menu('CHOOSE A FUNCTION','Function F1(s)',…

'Function F2(s)','Function F3(s)','Function F4(s)');

if choice == 1
Np = 12;
Fs =(0.83*s.^12-0.35*s.^11+0.32*s.^10+60000*s.^9+600.36*s.^8+650.23*s.^7+…

54.5*s.^6+45.6*s.^5 +0.1*s.^4-1240*s.^3+80025*s.^2+5547.*s+5008)./…
(s.^12-0.89*s.^11-0.23*s.^10-4565.*s.^9+34569.02*s.^8-55450*s.^7+60*s.^6+…
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The modeling consists of calculating rational approximations for the line series impedance Z
and line shunt admittance Y by applying the aforementioned rational fitting techniques.
Figure 15b shows the behavior of Z and Y as a function of frequency, calculated with 16,384
linearly spaced samples and Figure 16 shows a flowchart for the implementation of this test case.

1005*s.^5+8050*s.^4+7502*s.^3+10*s.^2+1014.*s-50);
end
if choice == 2

Np = 9;
Fs = (6000*s.^9+600*s.^8+650*s.^7+54*s.^6+457*s.^5+100*s.^4+1240*s.^3+8000*s.^2+…

55400.*s+5000 )./(450*s.^9+3500*s.^8+500*s.^7-600*s.^6+1000*s.^5+…
700*s.^4-7500*s.^3+1000*s.^2+500.*s);

end
if choice == 3

Np = 7;
Fs =(514*s.^7-364.25*s.^6-0.35*s.^5+635*s.^4-20802*s.^3+5304*s.^2+4520.*s-…

18020.025 )./(241*s.^7-32.02*s.^6+538.23*s.^5-2588*s.^4-22560*s.^3-…
604*s.^2+4150.*(s)-21052.31 );

end
if choice == 4

Np = 18;
Ps = 2*pi*[-4500; -41000; -100+1i*5000; -100-1i*5000; -120+1i*15000; …

-120-1i*15000; -3000+1i*35000; -3000-1i*35000; -200+1i*45000; -200-1i*45000;…
-1500+1i*45000; -1500-1i*45000;-500+1i*70000; -500-1i*70000; -1000+1i*73000;…
-1000-1i*73000; -2000+1i*90000; -2000-1i*90000];

Rs = [-3000; -83000; -5+1i*7000; -5-1i*7000; -20+1i*18000; -20-1i*18000;…
6000+1i*45000; 6000-1i*45000; 40+1i*60000; 40-1i*60000; 90+1i*10000; …

90-1i*10000; 50000+1i*80000; 50000-1i*80000; 1000+1i*45000; 1000-1i*45000;…
-5000+1i*92000; -5000-1i*92000];

Ks = 0.2;
Fs = zeros(1,Ns);
for k = 1:length(Ps)

Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
end
Fs = Fs + Ks ;

end

%% Vector Fitting Method
[Ps]=InitialPoles(f,Np); %Initial poles subroutine
[P,C,D,E,fVF] = VF(Ps,Ns,Fs,s,20,3); % Vector Fitting Method

Fsfit = zeros(1,Ns);
for k = 1:length(P)

Fsfit = Fsfit + (C(k)./(s.' - P(k))).';
end
Fsfit = Fsfit + D+ E.*s; % Fitting result
eVF = abs(Fs - Fsfit); % Deviation

figure(1)
loglog(f,abs(Fs),'-k',f,abs(Fsfit),'--r',f,abs(eVF),'b','LineWidth',2);
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]')
legend('Data','VF','Deviation')

Table 11. “Fitting_VF.m”.
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Figure 17a shows the results for the fitting ofYwithNp = 3, in terms ofmodel deviations (relative
error) by Bode, Levy, IRLS, VF, and LM. It can be observed that the best approximations are
obtained with Levy, IRLS, LM and VF which converge to practically the same deviation.

Figure 17b shows the results for the fitting of Z with Np = 14, in terms of the model deviations
(relative error) by Bode, Levy, IRLS, VF, and LM. It can be seen that the best approximation is
obtained with VF, IRLS, and LM.

Then, the effect of the modeling errors in Y and Z on a time domain response is evaluated. The
line terminal nodal admittance matrix Yn is established with respect to the two line ends 2 and
3 of Figure 15a as

I2
I3

� �
¼ Yn

V2

V3

� �
(70)

where Yn is given by

%==========================================================
% Function to implement INITIAL POLES for Vector Fitting
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%==========================================================
% Inputs

% --- f, frequency
% --- Npol, number of poles

% Outputs
% --- Ps, poles

function [Ps] = InitialPoles(f,Npol)
% Set the initial poles (even, odd)
even = fix(Npol/2);
p_odd = Npol/2 - even;
disc = p_odd ~= 0;

% Set a real pole in case of disc == 1
if disc == 0 % Even initial poles

pols = [];
else % Odd initial poles

pols = [(max(f)-min(f))/2];
end

% Initial complex poles
bet = linspace(min(f),max(f),even);
for n=1:length(bet)

alf=-bet(n)*1e-2;
pols=[pols (alf-1j*bet(n)) (alf+1j*bet(n)) ];

end

Ps = pols.'; % Column vector of initial poles

Table 12. “InitialPoles.m”.
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Figure 17a shows the results for the fitting ofYwithNp = 3, in terms ofmodel deviations (relative
error) by Bode, Levy, IRLS, VF, and LM. It can be observed that the best approximations are
obtained with Levy, IRLS, LM and VF which converge to practically the same deviation.

Figure 17b shows the results for the fitting of Z with Np = 14, in terms of the model deviations
(relative error) by Bode, Levy, IRLS, VF, and LM. It can be seen that the best approximation is
obtained with VF, IRLS, and LM.

Then, the effect of the modeling errors in Y and Z on a time domain response is evaluated. The
line terminal nodal admittance matrix Yn is established with respect to the two line ends 2 and
3 of Figure 15a as

I2
I3

� �
¼ Yn

V2

V3

� �
(70)

where Yn is given by

%==========================================================
% Function to implement INITIAL POLES for Vector Fitting
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%==========================================================
% Inputs

% --- f, frequency
% --- Npol, number of poles

% Outputs
% --- Ps, poles

function [Ps] = InitialPoles(f,Npol)
% Set the initial poles (even, odd)
even = fix(Npol/2);
p_odd = Npol/2 - even;
disc = p_odd ~= 0;

% Set a real pole in case of disc == 1
if disc == 0 % Even initial poles

pols = [];
else % Odd initial poles

pols = [(max(f)-min(f))/2];
end

% Initial complex poles
bet = linspace(min(f),max(f),even);
for n=1:length(bet)

alf=-bet(n)*1e-2;
pols=[pols (alf-1j*bet(n)) (alf+1j*bet(n)) ];

end

Ps = pols.'; % Column vector of initial poles

Table 12. “InitialPoles.m”.
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Yn ¼ YcA �YcB
�YcB YcA

� �
(71)

and Yc, A and B by

Yc ωð Þ ¼ Z ωð Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z ωð ÞY ωð Þ

p
(72)

%=====================================================================
% Function to use VECTOR FITTING
% (vectfit3.m available in: https://www.sintef.no/projectweb/vectfit/
% Author: Bjørn Gustavsen)
% Authors: Eduardo Salvador Bañuelos Cabral
% José Alberto Gutiérrez Robles
% Bjørn Gustavsen
%=====================================================================
% Inputs

% --- Ps, initial poles
% --- Ns, number of samples
% --- Fs, function to be fitted
% --- s, complex frequency (rad/s)
% --- ite, iterations
% --- Ka, kind of fitting

% Outputs
% --- P, poles
% --- C, residues
% --- D, constant term
% --- E.
% --- RMS.

function [P,C,D,E,RMS] = VF(Ps,Ns,Fs,s,Ni,Ka)
weight=ones(1,Ns); % Vector of weights
opts.relax=1; % Use vector fitting with relaxed non-triviality constraint
opts.stable=0; % Enforce stable poles
opts.asymp=Ka; % Include both D, E in fitting
opts.skip_pole=0; % Do NOT skip pole identification
opts.skip_res=0; % DO skip identification of residues (C,D,E)
opts.cmplx_ss=1; % Create real-only state space model
opts.spy1=0; % No plotting for first stage of vector fitting
opts.spy2=0; % Create magnitude plot for fitting of f(s)
opts.logx=1; % Use linear abscissa axis
opts.logy=1; % Use logarithmic ordinate axis
opts.errplot=1; % Include deviation in magnitude plot
opts.phaseplot=0; % Do NOT produce plot of phase angle
opts.legend=1; % Include legends in plots

for k = 1:Ni % Loop to make N-iterations
[SER,Ps,rmserr,fit] = vectfit3(Fs,s,Ps,weight,opts);
RMS(k) = rmserr;

end

P = Ps; % Poles
C = SER.C; % Residues
D = SER.D; % Constant term
E = SER.E; % Proportional term

Table 13. “VF.m”.
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A ωð Þ ¼ coth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z ωð ÞY ωð Þ

p
l

� �
and B ωð Þ ¼ csch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z ωð ÞY ωð Þ

p
l

� �
(73)

By using the Numerical inversion of Laplace Transform (NLT) [2, 12], the voltage responses on
time domain (v1, v2 and v3) are calculated for the cases of open-ended, short-circuited, and
perfectly matched lines end. These results are considered as a reference solution.

Figure 14. Synthetic frequency response data and the rational approximation given by VF.

Figure 15. (a) Diagram of the equivalent circuit for the test, (b) behavior of Z(ω) and Y(ω).
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time domain (v1, v2 and v3) are calculated for the cases of open-ended, short-circuited, and
perfectly matched lines end. These results are considered as a reference solution.

Figure 14. Synthetic frequency response data and the rational approximation given by VF.

Figure 15. (a) Diagram of the equivalent circuit for the test, (b) behavior of Z(ω) and Y(ω).
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The rational function-based models obtained with Bode, Levy, IRLS, VF, and LM are used to
calculate Z and Y. Using a similar procedure as mentioned for each technique, the voltage
responses (v1, v2 and v3) are calculated through the NLT.

The objective is to calculate the error in the time domain introduced by the rational approxi-
mations of Z and Y in frequency domain, taking into account the reference solution.

The comparative results are shown in Figures 18–20 for the cases of short-circuited, perfectly
matched, and open-ended lines end, respectively. The absolute errors are consistent with the
deviations for the rational approximation of Z.

Figure 16. Flowchart for the implementation of single-phase transmission line modeling.

Figure 17. (a) Relative errors for the rational approximations of Y(ω) and (b) relative errors for the rational approxima-
tions of Z(ω).
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Figure 18. (a) Time domain simulation of the voltage response at the short-circuited line end, (b) absolute error with
respect to the reference solution (v3).

Figure 19. (a) Time domain simulation of the voltage response at the matched line end, (b) absolute error with respect to
the reference solution (v3).

Figure 20. (a) Time domain simulation of the voltage response at the open line end, (b) absolute error with respect to the
reference solution (v3).
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Figure 18. (a) Time domain simulation of the voltage response at the short-circuited line end, (b) absolute error with
respect to the reference solution (v3).

Figure 19. (a) Time domain simulation of the voltage response at the matched line end, (b) absolute error with respect to
the reference solution (v3).

Figure 20. (a) Time domain simulation of the voltage response at the open line end, (b) absolute error with respect to the
reference solution (v3).
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5. Conclusions

In this book, Bode, Levy, Noda, SK, IRLS, VF, LM, and DGN methods have been described in
detail for complex-curve fitting, and a routine implemented in MATLAB environment
presented for each technique. Rational approximation of synthetic frequency responses have
used to show the operation of the programs. Moreover, the techniques are used to approxi-
mate the series line impedance (Z) and the shunt line admittance (Y) corresponding to a single-
phase transmission line. The main conclusions are:

1. Asymptotic Approximation or Bode has proved to be a reliable technique for the model-
ing of overhead transmission lines. Also, this method can realize the fitting on the magni-
tude of the function and uses only real poles and zeros. However, the error level in the
approximation can be substantial and it depends on the sensitivity criterion used when
inserting new poles and zeros in the fitting.

2. The Levy method is pioneered for complex-curve fitting. Many techniques have been
developed based on this methodology. Nevertheless, the method is biased, because it
weights the fitting on high frequencies too much; this fact is demonstrated in the test cases.

3. The IRLS method is an accurate technique for the rational fitting of frequency responses.
This method permits the implementation of different weighting functions in order to
improve the level error in the approximation. Its disadvantage lies in the numerical ill-
conditioning encountered in approximations with a wide frequency range.

4. The VF method is a robust and accurate technique. This fact has positioned this method-
ology as one of the most important in this field.

5. The LMmethod is a technique that shows good results in terms of level error. An advantage
is that it can be implemented in pole-zero form, pole-residue form, and polynomial form.

6. The main disadvantage for the optimization techniques like LM and DGN is that they can
get stuck in a local minimum.

7. The rational approximation for Z and Y in the single-phase transmission line modeling
shows that the same technique does not always deliver the same result. Levy, LM and
IRLS delivers more accurate result for the fitting of Ywhile VF reach the best result for the
fitting of Z. The error levels obtained in time domain simulations are consistent with the
fitting of Z, because in the modeling of overhead transmission lines, these parameters are
more relevant, therefore VF reach the best level error.
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