IntechOpen

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment

Authored by Eduardo Salvador Banuelos- Cabral, Jose Alberto Gutierrez-Robles and Bjorn Gustavsen

RATIONAL FITTING TECHNIQUES FOR THE MODELING OF ELECTRIC POWER COMPONENTS AND SYSTEMS USING MATLAB ENVIRONMENT

Authored by Eduardo Salvador Bañuelos-Cabral, José Alberto Gutiérrez-Robles and Bjørn Gustavsen

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment

http://dx.doi.org/10.5772/intechopen.71692 Edited by Eduardo Salvador Banuelos- Cabral, Jose Alberto Gutierrez-Robles and Bjorn Gustavsen

Contributors

Eduardo-Salvador Bañuelos-Cabral, Jose Alberto Gutierrez-Robles, Bjørn Gustavsen

© The Editor(s) and the Author(s) 2017

The moral rights of the and the author(s) have been asserted.

All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without INTECH's written permission. Enquiries concerning the use of the book should be directed to INTECH rights and permissions department (permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.

CC BY-NC

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not be included under the Creative Commons license. In such cases users will need to obtain permission from the license holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2017 by INTECH d.o.o. eBook (PDF) Published by IN TECH d.o.o. Place and year of publication of eBook (PDF): Rijeka, 2019. IntechOpen is the global imprint of IN TECH d.o.o. Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment Edited by Eduardo Salvador Banuelos- Cabral, Jose Alberto Gutierrez-Robles and Bjorn Gustavsen

p. cm. Print ISBN 978-953-51-3673-6 Online ISBN 978-953-51-3674-3 eBook (PDF) ISBN 978-953-51-4583-7

We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

3,800+

116,000+

International authors and editors

120M+

151 Countries delivered to Our authors are among the Top 1%

most cited scientists

6 12.2% Contributors from top 500 universities

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

Contents

Preface IX

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 1 Eduardo Salvador Bañuelos-Cabral, José Alberto Gutiérrez-Robles and Bjørn Gustavsen

Preface

An electric power system (EPS) is a network of electrical components used to supply and transfer energy between the system components in efficient and reliable manner. This supply must have features that allow the system to operate safely; otherwise, contingency situations could arise that would lead to serious socio-economic problems. The size and cost of the equipment in an EPS are highly dependent on the stresses that occur during transient periods. Excessive currents or voltage variations can result from internal switching events and system disturbances, subjecting the system components to higher stresses. Electromagnetic transients in an EPS can be very fast, and peak values may occur within microseconds. The study and prediction of this behaviour is the main objective of electromagnetic transient analysis. Commonly, one manner to perform this type of studies is representing the system components in a wide range of frequencies. This estimation process is known as rational fitting, which consists of parameter identification of a complex function. In practice, these effects are obtained via calculations or measurements as discrete functions of frequency.

Since the 1950s, efforts have been made to develop methods for the synthesis of frequency response data. One of the first techniques introduced was the method of Levy. Many other methods were developed taking the Levy method as a reference, e.g., the Sanathanan-Koerner method or the Lawrence and Rogers technique. J. Marti in 1981 developed a transmission line model that accounts for the frequency dependence of the line parameters. Marti implemented a numerical technique for the rational approximation based on a direct location and relocation of poles and zeros. This model, known as Fd-Line, quickly became one of the most used for the modelling of overhead transmission lines. In 1999, an important method was presented by Gustavsen and Semlyen, which has gained much popularity over the last few years. The called vector fitting (VF) technique provides an effective, robust, and reliable system identification tool. Different formulations have been proposed in order to improve the characteristics of VF. In 2006, Gustavsen proposed a modification of his algorithm in order to improve the ability of VF to relocate poles to better positions. This is achieved by replacing the high-frequency asymptotic requirement of the VF scaling function with a more relaxed condition. He called this method relaxed VF (RVF). The VF method is closely related to the universal line model (ULM). The ULM is formulated in terms of rational approximation of the line parameters through VF.

Due to the above, the study of rational fitting processes has become an essential component of electric power components and systems modelling. These techniques allow the inclusion of frequency-dependent effects in electric power systems modelling.

This book provides a detailed description of some of the most widely used rational fitting techniques for approximation of frequency domain responses. The techniques are Bode's

asymptotic approximation, the Levy method, iteratively reweighted least squares, the Sanathanan-Koerner method, the Noda method, vector fitting, the Levenberg-Marquardt method and the damped Gauss-Newton method. Such models permit the inclusion of frequency dependence in the modelling of overhead transmission lines and underground cables, in power transformers at high frequencies and in frequency-dependent network equivalents (FDNE). A MATLAB routine for each technique is presented.

Eduardo Salvador Bañuelos Cabral

University of Guadalajara, Guadalajara, Mexico

José A. Gutiérrez-Robles University of Guadalajara, Guadalajara, Mexico

Bjørn Gustavsen SINTEF Energy Research, Trondheim, Norway

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment

Eduardo Salvador Bañuelos-Cabral, José Alberto Gutiérrez-Robles and Bjørn Gustavsen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71358

Abstract

This book provides a detailed description of some of the most widely used rational fitting techniques for approximation of frequency domain responses. The techniques are: Bode's asymptotic approximation, the Levy method, iteratively reweighted least squares, the Sanathanan-Koerner method, the Noda method, Vector Fitting, the Levenberg-Marquardt method, and the Damped Gauss-Newton method. A MATLAB routine for each technique is presented. These techniques are tested by approximating synthetic frequency domain responses. Then, they are applied to the rational approximation of the frequency-dependent parameters corresponding to a single-phase transmission line. The effect of the rational function-based models is evaluated, considering transients in three cases: Open-ended, short-circuited, and perfectly matched lines. The error levels obtained in time domain simulations are consistent with the fitting deviations of the frequency-dependent parameters. The book concludes by showing main advantages and disadvantages for each technique.

Keywords: rational approximation, least squares, weighted least squares, Bode's asymptotic approximation, vector fitting

1. Introduction

One of the main problems encountered in the modeling of power system components is the inclusion of frequency-dependent effects in a time domain simulation [1]. In practice, these effects are described by discrete frequency domain responses that are obtained via calculations or measurements [1]. For the time domain simulation, implementation of numerical convolutions

© 2017 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited. is possible but is computationally inefficient. The frequency-dependent effects are usually performed in the frequency domain via complex-curve fitting processes, leading to rational function-based models which can be expressed in pole-zero form, pole-residue form, and polynomial form [2]. Once obtained, these models must be converted into a form suitable for representation in an electromagnetic Transient Program (EMTP-type) circuit simulator [3]. Commonly, such representations can be in the form of network synthesis or in ordinary differential equations (ODEs). Some methods have been adapted to particular problems due to the difficulty present in the development of a general methodology. These rational fitting techniques have been developed since the 1950s for model synthesis based on frequency response data. Some antecedents are presented below.

In 1959, Levy [4] presented a mathematical procedure of linearized Least Squares (LS) for model synthesis based on a polynomial form. Some years later, in 1963, Sanathanan and Koerner [5] improved the Levy method by introducing an iterative weighted method to reduce the biasing in the approximation caused by the linearization. Also, based on the Levy method, Lawrence and Rogers [6] presented in 1979 a sequential algorithm that allows the fitting progress of a transfer function point-to-point without matrix inversion.

In addition, a technique based on pole-zero form that quickly became popular for the modeling of overhead lines was presented by Marti [7] in 1982. This method is a numerical implementation of the well-known Bode diagrams technique. Recently, in 2017, Marti and Tavighi [8] presented an investigation based in the same rational approximation technique for the modeling of transmission lines. In this work, this fitting technique will be referred to as Asymptotic Approximation or Bode.

In 1993, Soysal and Semlyen [9] used the Gauss–Seidel optimization method to improve the results given by Levy and, 6 years later Gustavsen and Semlyen [1] developed the Vector Fitting method which has become one of the most widely used techniques.

In 2006, Gustavsen [10] proposed a modification of his algorithm in order to improve the ability of VF to relocate poles to better positions. This is achieved by replacing the high-frequency asymptotic requirement of the VF scaling function with a more relaxed condition. He called this method Relaxed VF (RVF).

The VF method is closely related to the Universal Line Model (ULM) [11]. The ULM is formulated in terms of rational approximation of the line parameters through VF. A recent publication, in 2016, [12] Bañuelos et al. propose the use of only real poles and zeroes in the ULM to improve its numerical efficiency.

In 2005, Noda [13] presented an iterative algorithm that partitions the entire frequency range in order to avoid ill-conditioning of the system when Levy method is used. Recently, in 2015, Bañuelos-Cabral et al. [2] propose the implementation of Damped Gauss-Newton (DGN) to increase the accuracy of this technique.

The aim of this book is to provide a MATLAB algorithm and a detailed description of the rational approximation techniques that are most commonly used to approximate functions in

frequency domain. These techniques are: Bode's Asymptotic Approximation (Bode), the Levy (Levy or LS) method, Iteratively Reweighted Least Squares (IRLS), the Sanathanan-Koerner (SK) method, the Noda (Noda) method, Vector Fitting (VF), the Levenberg–Marquardt (LM) method and the Damped Gauss-Newton (DGN) method.

In this chapter, the methodology for determining the state-space (SS) representation in concordance with the model used in the approximation is presented first. Next, the abovementioned fitting techniques are described in detail. Then, the techniques are tested by approximating a synthetic frequency domain response. The techniques are implemented in MATLAB environment. Finally, advantages of the methods are demonstrated in the rational approximation of the frequency-dependent parameters corresponding to a single-phase transmission line.

2. State-space model from a transfer function

The SS representation of a given system can be determined from its frequency response on rational form. Basically, there are three different rational forms (models) that can represent a measured or calculated frequency response: pole-zero form, polynomial form, and pole-residue form. In this section, a methodology is presented for determining the SS representation according to the given model type.

2.1. Pole-zero form

Usage of pole-zero form or series realization leads to a rational function-based model of nthorder given by (1), which is a ratio between products of first-order transfer functions,

$$F(s) \cong k \frac{(s-z_1)(s-z_2)\cdots(s-z_n)}{(s-p_1)(s-p_2)\cdots(s-p_m)}.$$
(1)

The generalized graphic representation of pole-zero form with n = m is shown in **Figure 1** [14]. From **Figure 1**, it is possible to obtain the state equations and the output equation as

Figure 1. Pole-zero form realization for *n*th-order system.

$$\begin{aligned} \dot{x}_{1} &= -p_{1}x_{1} + u \\ \dot{x}_{2} &= -p_{2}x_{2} + z_{1}x_{1} + \dot{x}_{1} \\ \dot{x}_{3} &= -p_{3}x_{3} + z_{2}x_{2} + \dot{x}_{2} \\ \vdots \\ \dot{x}_{n-1} &= -p_{n-1}x_{n-1} + z_{n-2}x_{n-2} + \dot{x}_{n-2} \\ \dot{x}_{n} &= -p_{n}x_{n} + z_{n-1}x_{n-1} + \dot{x}_{n-1} \\ y &= k(z_{n}x_{n} + \dot{x}_{n}). \end{aligned}$$
(2)

Using algebraic manipulation in (2) and (3) to remove \dot{x}_n from the right side, the state equations and output equation in matrix form are

$$\begin{vmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_{n} \end{vmatrix} = \begin{bmatrix} -p_{1} & 0 & \cdots & 0 & 0 \\ \hat{c}_{1} & -p_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \hat{c}_{1} & \hat{c}_{2} & \cdots & -p_{n-1} & 0 \\ \hat{c}_{1} & \hat{c}_{2} & \cdots & \hat{c}_{n-1} & -p_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix} u$$

$$(4)$$

$$y = [\hat{c}_{1} & \hat{c}_{2} & \cdots & \hat{c}_{n-1} & \hat{c}_{n}] \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + ku$$

$$(5)$$

where $\hat{c}_n = k(z_n - p_n)$. There is a direct relation between the SS coefficients in (4) and (5) with the transfer function coefficients in (1) for pole-zero form realization. Thus, the SS description can be obtained directly from the transfer function by inspection.

2.2. Polynomial form

In this case, polynomial form or direct form realization leads to a rational function-based model of nth-order given by (6), which is a ratio of two polynomials,

$$F(s) \simeq \frac{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}{b_0 + b_1 s + b_2 s^2 + \dots + b_m s^m}.$$
(6)

A graphical representation of the polynomial form with $b_m = 1$ and n = m is shown in **Figure 2** [14]. From **Figure 2**, it is possible to obtain the state equations and output equation as Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 5 http://dx.doi.org/10.5772/intechopen.71358

Figure 2. Polynomial form realization for *n*th-order system.

$$\dot{x}_{1} = x_{2}
\dot{x}_{2} = x_{3}
\vdots
\dot{x}_{n-1} = x_{n}
\dot{x}_{n} = -b_{0}x_{1} - b_{1}x_{2} - \dots - b_{n-1}x_{n} + u
y = a_{0}x_{1} + a_{1}x_{2} + \dots + a_{n-1}x_{n} + a_{n}\dot{x}_{n}.$$
(8)

To remove \dot{x}_n from (8) the last equation of (7) can be used. These equations can be written more conveniently as

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_{n} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -b_{0} & -b_{1} & -b_{2} & \cdots & -b_{n-2} & -b_{n-1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$
(9)

$$y = \begin{bmatrix} \hat{a}_0 & \hat{a}_1 & \cdots & \hat{a}_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + a_n u, \tag{10}$$

where $\hat{a}_i = a_i - a_n b_i$. Also, there is a direct relation between the SS coefficients in (9) and (10) with the transfer function coefficients in (6). The matrices of the SS description can be obtained directly from the transfer function through inspection.

2.3. Pole-residue form

Finally, pole-residue form or parallel realization leads to rational function-based model of nthorder given by (11), which is a sum of partial fractions

$$F(s) \cong \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2} + \dots + \frac{c_n}{s - p_n} + d.$$
(11)

The generalized graphic representation of the pole-residue form is shown in Figure 3 [14].

From this Figure 3, it is possible to obtain the state equations and output equation as

Figure 3. Pole-residue form realization for *n*th-order system.

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 7 http://dx.doi.org/10.5772/intechopen.71358

$$\dot{x}_{1} = -p_{1}x_{1} + u
\dot{x}_{2} = -p_{2}x_{2} + u
\vdots
\dot{x}_{n} = -p_{n}x_{n} + u$$
(12)

$$y = c_1 x_1 + c_2 x_2 + \dots + c_n x_n + du.$$
(13)

In matrix form it yields

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n} \end{bmatrix} = \begin{bmatrix} -p_{1} & 0 & \cdots & 0 \\ 0 & -p_{2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & -p_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u$$
(14)
$$y = \begin{bmatrix} c_{1} & c_{2} & \cdots & c_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} + du.$$
(15)

Similarly to the pole-zero form and the polynomial form, the SS representation can be obtained through inspection. It should be mentioned that the pole-residue form produces an uncoupled SS system.

3. Fitting methods

This section provides a description of the most widely used techniques for rational approximation of frequency domain responses within the power systems area.

3.1. Asymptotic approximation (Bode) technique

The Asymptotic Approximation technique consists of a numerical implementation of the graphical technique known as Bode diagrams [15]. The Asymptotic Approximation was first implemented by Marti [7] to include the frequency dependence in transmission line modeling. This technique considers the pole-zero form with real poles and zeros only,

$$F(s) = k \frac{(s-z_1)(s-z_2)\cdots(s-z_n)}{(s-p_1)(s-p_2)\cdots(s-p_m)}.$$
(16)

Considering $s = j\omega$, we get

$$F(s) = k \frac{(j\omega - z_1)(j\omega - z_2)\cdots(j\omega - z_n)}{(j\omega - p_1)(j\omega - p_2)\cdots(j\omega - p_m)}.$$
(17)

Eq. (17) can be expressed in a standard form as

8 Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment

$$F(j\omega) = k \frac{\binom{j\omega}{z_1} - 1}{\binom{j\omega}{p_1} - 1} \frac{\binom{j\omega}{z_2} - 1}{\cdots \binom{j\omega}{p_m} - 1} \frac{jz_1 z_2 \cdots z_n}{z_1 - 1} \frac{j\omega}{p_2} \frac{j\omega}{p_1} \frac{j\omega}{p_2} \frac{j\omega}{p_m} \frac$$

and in polar form

$$F(j\omega) = K_0 \frac{\left|\frac{j\omega}{z_1} - 1\right| \angle \alpha_1 \left|\frac{j\omega}{z_2} - 1\right| \angle \alpha_2 \cdots \left|\frac{j\omega}{z_n} - 1\right| \angle \alpha_n}{\left|\frac{j\omega}{p_1} - 1\right| \angle \beta_1 \left|\frac{j\omega}{p_2} - 1\right| \angle \beta_2 \cdots \left|\frac{j\omega}{p_m} - 1\right| \angle \beta_m}$$
(19)

where $K_0 = kz_1z_2\cdots z_n/p_1p_2\cdots p_m$. The Asymptotic Approximation technique approximates only the magnitude of the frequency response, which can be expressed as

$$|F(j\omega)| = K_0 \frac{\left|\frac{j\omega}{z_1} - 1\right| \left|\frac{j\omega}{z_2} - 1\right| \cdots \left|\frac{j\omega}{z_n} - 1\right|}{\left|\frac{j\omega}{p_1} - 1\right| \left|\frac{j\omega}{p_2} - 1\right| \cdots \left|\frac{j\omega}{p_m} - 1\right|}.$$
(20)

Finally, by using logarithmic properties in Eq. (20), it is obtained:

$$\log_{10}|F(j\omega)| = \log_{10}|K_0| + \log_{10}|j\omega/z_1 - 1| + \cdots + \log_{10}|j\omega/z_n - 1| - \log_{10}|j\omega/p_1 - 1| - \cdots - \log_{10}|j\omega/p_m - 1|.$$
(21)

In Bode diagrams, each term of (21) is plotted individually in accordance with its already known asymptotic behavior and combined in order to obtain the desired diagram.

In the numerical implementation, the function to be fitted is compared with the sum of the line segments given by the addition of a pole or a zero in the model (21); the precision of the fitting depends on the sensitivity to locate these poles and zeros into the model.

3.2. Levy (Levy) method

This method was introduced by Levy [4] for complex-curve fitting. The Levy method makes the identification of the polynomial coefficients (22) in a LS sense. It is also known simply as Lest Squares (LS).

$$F(s) \cong \frac{N(s)}{D(s)} = \frac{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}{1 + b_1 s + b_2 s^2 + \dots + b_m s^m}.$$
(22)

The numerical difference between the frequency response to be fitted and the model represents the error in the approximation, that is,

$$\varepsilon(s) = F(s) - \frac{N(s)}{D(s)}.$$
(23)

Multiplying both sides of Eq. (23) by D(s), we obtain

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 9 http://dx.doi.org/10.5772/intechopen.71358

$$\varepsilon'(s) = \varepsilon(s)D(s) = F(s)D(s) - N(s).$$
(24)

Considering that ε' tends to zero, (24) can be expressed as

$$F(s)(1+b_1s+b_2s^2+\dots+b_ms^m) - (a_0+a_1s+a_2s^2+\dots+a_ns^n) = 0.$$
 (25)

The unknown coefficients in (22) can now be solved by formulating (25) as a LS problem (Ax = b). Frequently, the sample size of the frequency response is greater than the number of polynomial coefficients to be calculated, so an overdetermined system is obtained, as follows:

$$\mathbf{A}_{k} = \begin{bmatrix} 1 & s_{k} & \cdots & s_{k}^{n} & -s_{k}F(s_{k}) & \cdots & -s_{k}^{m}F(s_{k}) \end{bmatrix}$$
(26)

$$\mathbf{x} = \begin{bmatrix} a_0 & a_1 & \cdots & a_n & b_1 & b_2 & \cdots & b_m \end{bmatrix}^T$$
(27)

$$\mathbf{b} = \begin{bmatrix} F(s_1) & \cdots & F(s_k) \end{bmatrix}^T, \tag{28}$$

where *k* denotes the *k*-th data sample. The objective function to be minimized is

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2. \tag{29}$$

This is called a linear least squares problem. The solution x satisfies the normal equations [16]:

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}.$$
 (30)

Finally, the LS solution is obtained by

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}.$$
 (31)

3.3. Weighted least squares (WLS)

The LS solution of a given system equation assumes that each equation (row in **A**) is equally important. However, the system equation itself may be biased, e. g. in the Levy method which is biased due to the multiplication of F(s) with D(s) in (24). In the rational approximation of frequency domain responses, Weighted Least Squares (WLS) is used to mitigate the biasing by giving more weight to specific equations in order to overcome the own deficiency of the used technique. Iteratively Reweighted Least Squares (IRLS), the Sanathanan-Koerner (SK) method and the Noda (Noda) method are techniques that implement the concept of WLS. These techniques are described below.

3.3.1. Iteratively reweighted least squares (IRLS) iteration

A robust regression procedure is an alternative to LS solution when data are contaminated with outliers or influential observations (measurement and/or computation errors) [16, 17]. The idea of robust regression is to weight (less) these observations differently based on the proposal of weighting functions. IRLS can be considered as a robust regression procedure.

It is proposed to use IRLS for the rational approximation of frequency domain responses by using the weighting functions in inverse form, namely, data are not considered to be contaminated with outliers or influential observations; the error in the fitting in each iteration is used to weight (more) the frequency response data that have not been approximated correctly.

In WLS, the objective function to be minimized is

$$\min_{\mathbf{x}} \|\mathbf{W}(\mathbf{b} - \mathbf{A}\mathbf{x})\|_2 \tag{32}$$

where **W** is a diagonal weighting matrix. Eq. (32) is called a linear weighted least squares problem and **x** the linear weighted least squares solution of the system. This solution satisfies the normal equations [16]:

$$\mathbf{A}^T \mathbf{W} \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{W} \mathbf{b}. \tag{33}$$

Then, the WLS solution is given by

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{W} \mathbf{b}.$$
 (34)

It is possible to solve (34) through an iterative process (35), where i is the iteration number.

$$\mathbf{x}^{(i+1)} = \left(\mathbf{A}^T \mathbf{W}^{(i)} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{W}^{(i)} \mathbf{b}.$$
 (35)

Eq. (35) is the IRLS method. According to (35), **W** must be updated iteratively; the error in the approximation is used for this purpose, which can be expressed as

$$\varepsilon(s, \mathbf{x}) = F(s) - \widehat{F}(s, \mathbf{x}), \tag{36}$$

where $\hat{F}(s, \mathbf{x})$ is the model to be fitted. Each element of **W** is updated according to

$$w_k^{(i)} = w_k^{(i-1)} \psi(\varepsilon_k)^{(i-1)}, \tag{37}$$

with $\psi(\varepsilon)$ being the weighting function. In the beginning of the process, **W** is an identity matrix.

Table 1 shows a list of weighting functions proposed to use in the implementation of IRLS. Weighting functions 1, 2, and 3 are the inverse of the functions used in robust regression [16, 17], and functions 4, 5, and 6 are proposed in this work.

Ultimately, in **Figure 4** the behavior of the weighting functions with $\varepsilon = [-2, 2]$ is shown.

3.3.2. Sanathanan-Koerner (SK) iteration

This method is based on the polynomial form:

$$F(s) \cong \frac{N(s)}{D(s)} = \frac{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}{1 + b_1 s + b_2 s^2 + \dots + b_m s^m}.$$
(38)

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 11 http://dx.doi.org/10.5772/intechopen.71358

Number	ψ(ε)
1	ε
2	$\sqrt{1+\varepsilon^2}-1$
3	$rac{1}{ert arepsilon ert arepsilon^{-2}}$, $p=1.2$
4	$\frac{\epsilon^2}{1+\epsilon^2}$
5	$\frac{\varepsilon^2}{\sqrt{1+\varepsilon^2}}$
6	$\frac{ \varepsilon ^p}{p}, p = 1.2$

Table 1. Weighting functions.

Figure 4. Behavior of the weighting functions.

The objective is to identify the coefficients for the polynomials N(s) and D(s) in (38) that minimize the error function

$$\varepsilon(s) = F(s)D(s) - N(s). \tag{39}$$

Sanathanan and Koerner [5] proposed an iterative procedure where (39) is divided by the denominator from the previous iteration; thus, (39) can be expressed as

$$\varepsilon(s) = \frac{1}{D(s)_{l-1}} \left(F(s)D(s)_l - N(s)_l \right). \tag{40}$$

The subscript *l* denotes the iteration number, and D(s) is considered 1 in the first iteration.

3.3.3. Noda (Noda) iteration

This algorithm proposed by Noda [13] for the rational fitting identification is based on the function:

$$F(s) \cong \frac{N(s)}{D(s)} = \frac{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}{1 + b_1 s + b_2 s^2 + \dots + b_m s^m}.$$
(41)

This technique corresponds to IRLS using the weighting function number 1 in **Table 1**. Additionally, Noda also proposed a procedure to prevent the ill-conditioning of the system by partitioning the given frequency response data into sections along the frequency axis. The technique is then applied to each section of the frequency response in order to identify the poles, and finally, the corresponding residues are obtained by means of a standard LS procedure, using the entire frequency response.

3.4. Vector Fitting (VF) method

Vector Fitting performs the fitting by replacing a set of heuristically calculated initial poles with a set of relocated ones through an iterative procedure [1]. VF works in two stages: First, it improves the position of the initial poles iteratively. Second, it calculates the residues in one step. This method is based on the pole-zero form

$$F(s) \cong \sum_{n=1}^{N} \frac{c_n}{s - p_n} + d + sh, \tag{42}$$

where c_n are the residues, p_n are the poles, d is the constant term and h the proportional part.

3.4.1. Pole identification

Considering the initial poles as a_{n} and multiplying F(s) by an auxiliary function $\sigma(s)$ gives

$$\sigma(s)F(s) \cong \sigma F_{fit}(s) = \sum_{n=1}^{N} \frac{c_n}{s - a_n} + d + sh$$
(43)

where $\sigma(s)$ is defined as

$$\sigma(s) \cong \sigma_{fit}(s) = \sum_{n=1}^{N} \frac{\tilde{c}_n}{s - a_n} + 1, \tag{44}$$

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 13 http://dx.doi.org/10.5772/intechopen.71358

with $\sigma F_{fit}(s)$ being the fitting of $\sigma(s)F(s)$ and $\sigma_{fit}(s)$ being the fitting of $\sigma(s)$. From (43) one can obtain,

$$F(s) \cong \frac{\sigma F_{fit}(s)}{\sigma(s)}.$$
(45)

Substituting (43) and (44) into (45) we obtain,

$$F(s) \simeq h \frac{\left(\prod_{n=1}^{N+1} s - z_n \middle/ \prod_{n=1}^{N} s - a_n\right)}{\left(\prod_{n=1}^{N} s - \tilde{z}_n \middle/ \prod_{n=1}^{N} s - a_n\right)} = h \frac{\prod_{n=1}^{N+1} s - z_n}{\prod_{n=1}^{N} s - \tilde{z}_n}.$$
(46)

Eq. (46) indicates that the zeros of $\sigma(s)$ are an approximation of the poles of F(s). To obtain the zeros one multiplies (44) by F(s) which results in

$$\sigma(s)F(s) \cong \left(\sum_{n=1}^{N} \frac{\tilde{c}_n}{s - a_n} + 1\right) F(s).$$
(47)

Equating Eqs. (43) and (47) yields

$$\sum_{n=1}^{N} \frac{c_n}{s - a_n} + d + sh = \left(\sum_{n=1}^{N} \frac{\tilde{c}_n}{s - a_n} + 1\right) F(s).$$
(48)

Algebraic manipulation in (48) gives

$$\sum_{n=1}^{N} \frac{c_n}{s - a_n} + d + sh - \sum_{n=1}^{N} \frac{\tilde{c}_n F(s)}{s - a_n} = F(s).$$
(49)

Eq. (49) can now be formulated as a LS problem (Ax = b). Usually, the sample size of the frequency response is greater than the number of coefficients to be calculated, so an overdetermined system is obtained:

$$\mathbf{A}_{k} = \begin{bmatrix} \frac{1}{s_{k} - a_{1}} & \cdots & \frac{1}{s_{k} - a_{N}} & 1 & s_{k} & -\frac{F(s_{k})}{s_{k} - a_{1}} & \cdots & -\frac{F(s_{k})}{s_{k} - a_{N}} \end{bmatrix}$$
(50)

$$\mathbf{x} = \begin{bmatrix} c_1 & \cdots & c_N & d & h & \tilde{c}_1 & \cdots & \tilde{c}_N \end{bmatrix}^T$$
(51)

$$\mathbf{b} = \begin{bmatrix} F(s_1) & \cdots & F(s_k) \end{bmatrix}^T$$
(52)

The LS solution of the system (Ax = b) delivers the residues of $\sigma_{fit}(s)$; the zeros of this function are the poles a_n for the next iteration, which correspond to the eigenvalues of [1],

$$\mathbf{H} = \mathbf{G} - \mathbf{k}\tilde{\mathbf{c}}^{T},\tag{53}$$

where **G** is a diagonal matrix containing the poles and **k** is a unit column vector.

3.4.2. Residue identification

Once the poles p_n for the rational approximation in (42) have been obtained, the residues can be found by solving (42) as a LS problem. The new overdetermined system is solved similarly as (50), (51) and (52).

3.4.3. Relaxation (RVF)

The scaling function $\sigma(s)$ (44) is observed to approach unity at high frequencies. This asymmetry with respect to the frequency gives a tendency to relocate poles in the direction of lower frequencies. In addition to this biasing, it also reduces the convergence speed and often leads to a reduced accuracy for the final model. This problem is effectively alleviated by the introduction of Relaxed Vector Fitting (RVF) [10], where the scaling function (44) is replaced by

$$\sigma(s) \cong \sigma_{fit}(s) = \sum_{n=1}^{N} \frac{\tilde{c}_n}{s - a_n} + \tilde{d}$$
(54)

with *d* as a real variable. To obtain a non-trivial solution, a single line is added to the LS problem, where the sum of the real part of $\sigma(s)$ over the frequency samples is fixed. This relaxed criterion allows $\sigma(s)$ to freely vary in shape.

3.5. Levenberg-Marquardt (LM) method

The Levenberg–Marquardt (LM) method is a technique used to improve iteratively parameter values in order to reduce the sum of the squares of the errors between the model and the calculated or measured data [18, 19]. This method is actually a combination of two minimization methods: The gradient descent (GD) method and the Gauss-Newton (GN) method.

Consider the model $\hat{F}(s, \mathbf{x})$, which is a function of *s* and *n* unknown parameters contained in vector \mathbf{x} . The model is to be fitted to a set of frequency response data F(s) as follows:

$$F(s) \cong \widetilde{F}(s, \mathbf{x}),\tag{55}$$

where $\mathbf{x} = [x_1, x_2, \dots x_n]$ is a vector that contains the coefficients to be fitted. The LS error between the fitting of the model and the frequency response data is

$$\gamma(\mathbf{x}) = \frac{1}{2} \sum_{k=1}^{N_s} \left(\widehat{F}(s_k, \mathbf{x}) - F(s_k) \right)^2$$
(56)

$$\gamma(\mathbf{x}) = \frac{1}{2} \left(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s}) \right)^T \left(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s}) \right)$$
(57)

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 15 http://dx.doi.org/10.5772/intechopen.71358

$$\gamma(\mathbf{x}) = \frac{1}{2}\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x})^{T}\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x})^{T}\mathbf{F}(\mathbf{s}) + \frac{1}{2}\mathbf{F}(\mathbf{s})^{T}\mathbf{F}(\mathbf{s}).$$
(58)

The aim of LM method is to find iteratively a perturbation **h** to modify the parameters **x** that reduces the objective function $\gamma(\mathbf{x})$ [18].

3.5.1. Gradient descent (GD) method

The gradient of a function indicates the direction of the maximum rate of change in a specific point of the function. GD updates the parameter values in the opposite direction to the gradient of the objective function. Thus, the gradient of $\gamma(\mathbf{x})$ is:

$$\frac{\partial}{\partial x}\gamma(\mathbf{x}) = \left(\widehat{\mathbf{F}}(\mathbf{s},\mathbf{x}) - \mathbf{F}(\mathbf{s})\right)^T \frac{\partial}{\partial x} \left(\widehat{\mathbf{F}}(\mathbf{s},\mathbf{x}) - \mathbf{F}(\mathbf{s})\right)$$
(59)

$$\frac{\partial}{\partial x}\gamma(\mathbf{x}) = \left(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s})\right)^T \mathbf{J},\tag{60}$$

where **J** is the Jacobian matrix which represents the local sensitivity of the model $F(s, \mathbf{x})$ to variation in the parameters \mathbf{x} . Finally, the perturbation \mathbf{h} that moves the parameters in the direction of steepest descent is given by

$$\mathbf{h}_{GD} = -\mathbf{J}^T \Big(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s}) \Big)$$
(61)

3.5.2. Gauss-Newton (GN) method

The Gauss-Newton (GN) method supposes that the objective function $\gamma(\mathbf{x})$ is approximately quadratic in the parameters near the optimal solution. Approximating the model with a first-order Taylor series,

$$\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x} + \mathbf{h}) \cong \widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) + \frac{\partial \widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x})}{\partial x} \mathbf{h} = \widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) + \mathbf{J}\mathbf{h}.$$
(62)

Substituting (62) into (57) gives

$$\gamma(\mathbf{x} + \mathbf{h}) = \frac{1}{2}\widehat{\mathbf{F}}^{T}\widehat{\mathbf{F}} - \widehat{\mathbf{F}}^{T}\mathbf{F} + \frac{1}{2}\mathbf{F}^{T}\mathbf{F} + \left(\widehat{\mathbf{F}} - \mathbf{F}\right)^{T}\mathbf{J}\mathbf{h} + \frac{1}{2}\mathbf{h}^{T}\mathbf{J}^{T}\mathbf{J}\mathbf{h}.$$
(63)

The perturbation **h** that minimizes $\gamma(\mathbf{x})$ is reached when

$$\frac{\partial \gamma(\mathbf{x} + \mathbf{h})}{\partial \mathbf{h}} = 0. \tag{64}$$

Taking the derivative for (63) gives

$$\frac{\partial \gamma(\mathbf{x} + \mathbf{h})}{\partial \mathbf{h}} = \left(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s})\right)^T \mathbf{J} + \mathbf{h}^T \mathbf{J}^T \mathbf{J}$$
(65)

and applying condition (64), we obtain the perturbation h calculated by the GN method

$$\mathbf{h}_{GN} = -\left(\mathbf{J}^T \mathbf{J}\right)^{-1} \mathbf{J}^T \left(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s})\right). \tag{66}$$

3.5.3. Levenberg-Marquardt method (LM)

LM works more like the GD method when the parameters are far from their optimal value, and more like the GN method when the parameters are close to their optimal value. Levenberg [18] and Marquardt [19] proposed this method:

$$\left(\mathbf{J}^{T}\mathbf{J}+\lambda\,\mathbf{I}\right)\mathbf{h}_{LM}=-\mathbf{J}^{T}\left(\widehat{\mathbf{F}}(\mathbf{s},\mathbf{x})-\mathbf{F}(\mathbf{s})\right),\tag{67}$$

where λ is known as the Levenberg–Marquardt parameter. Clearly, for large values of λ , the LM method results in a GD update; large distance from the function. The GD method is utilized to provide steady and convergent progress toward the solution. As the solution approaches the minimum, λ is adaptively decreased; then, the LM method approaches the GN method, and the solution typically converges rapidly to the local minimum.

The following modification has also been suggested:

$$\left(\mathbf{J}^{T}\mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{T}\mathbf{J})\right)\mathbf{h}_{LM} = -\mathbf{J}^{T}\left(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s})\right)$$
(68)

There are different methods for update the Levenberg-Marquardt parameter λ . A complete review is presented in Ref. [17]. Nevertheless, a simple method consists of reducing this parameter as the solution approaches the optimal value. The numerical implementation consists iteratively of:

- (1) Calculate the objective function $\gamma(\mathbf{x})$, (57).
- (2) Calculate the Jacobian J, taking into account the implemented model (1), (6) or (11).
- (3) Calculate the perturbation **h**, (67).
- (4) If $\gamma(\mathbf{x} + \mathbf{h}) \leq \gamma(\mathbf{x})$, then \mathbf{x} is replaced by $\mathbf{x} + \mathbf{h}$ and λ is reduced.
- (5) If $\gamma(\mathbf{x} + \mathbf{h}) > \gamma(\mathbf{x})$, then \mathbf{x} is not replaced and λ is increased.

(6) Convergence is achieved when the parameters reach a tolerance value or when the iteration count exceeds a pre-specified limit.

3.5.4. Damped gauss-Newton (DGN)

The DGN method can be applied to any of the alternative function-based models: pole-zero form (1), polynomial form (6), and pole-residue form (11). In the DGN method, a damping factor α is introduced

$$\mathbf{h}_{DGN} = -\alpha \left(\mathbf{J}^T \mathbf{J} \right)^{-1} \mathbf{J}^T \left(\widehat{\mathbf{F}}(\mathbf{s}, \mathbf{x}) - \mathbf{F}(\mathbf{s}) \right).$$
(69)

The DGN method (69) always takes the descendent direction that satisfies a linear search method. It has slow convergence when the parameters to be fitted are far from the solution,

but the method maximizes its advantages when it is close to the solution [16]. For that reason, DGN should be used when the parameters are close to their optimal values.

Clearly, α defines a fraction of the step taken from GN to update the **x** parameters. In this work, we select α by a backtracking strategy, whereby α is reduced from unity until an acceptable value for $\gamma(\mathbf{x})$ is found.

4. MATLAB algorithms and applications

In this section, algorithms for the rational approximation of frequency domain responses in MATLAB environment are provided. Rational fitting of synthetics functions through Bode, DGN, LS or Levy, IRLS, LM and VF are presented. Finally, the techniques are applied to the rational approximation of the frequency-dependent parameters corresponding to a single-phase transmission line.

4.1. Bode and DGN algorithms

Bode and DGN routines are presented in this section. The concept is simple, first Bode is implemented for the curve fitting process of a synthetic function, then DGN is used to improve the accuracy of the rational approximation given by Bode. A synthetic function is selected in the main program "Fitting_Bode_DGN.m" presented in **Table 2**. After application of the Bode routine "Bode_process.m," shown in **Table 3**, a set of poles, residues and a constant term are obtained. These results are the initial values for the DGN routine "Damped_Gauss_Newton. m" presented in **Table 4**.

In **Figure 5** the asymptotic behavior of the Bode routine is shown, and in **Figure 6** the final rational approximation given by Bode is presented. Following, DGN routine improves the curve fitting process, this is presented in **Figure 7**. Moreover, the RMS-error on each iteration is shown in **Figure 8**.

4.2. LS or Levy algorithm

In this section the LS method or Levy method routine is introduced. In the main program "Fitting_OLS.m," **Table 5**, a synthetic function can be selected by the user. Then the LS routine "Least_Squares_Method.m," **Table 6**, is implemented for the rational approximation of this function.

Figure 9 shows the synthetic frequency response data and the approximation given by the LS routine, additionally, the deviation in terms of absolute error is presented.

4.3. IRLS algorithm

Because in practice the Noda method and the SK method correspond to a specific weighting function in the IRLS technique, only the latter is presented. In the beginning of the implementation a synthetic function is selected in the main program "Fitting_IRLS.m," presented in **Table 7**. Afterwards, the algorithm of the method "IRLS.m," **Table 8**, is implemented for the rational approximation of the selected function.

```
8_____
Ŷ
             Main program of BODE-DGN
Ŷ
    Authors: Eduardo Salvador Bañuelos Cabral
%
           José Alberto Gutiérrez Robles
%
                  Bjørn Gustavsen
8-----
clc
clear all
close all
%% Initial Settings
Ns = 400;
                       % Number of samples
f = logspace(-2,10,Ns); % Frequency (Hz)
w = 2.*pi.*f; % Frequency (rad/seg)
s = 1j*w;
                       % Complex Frequency
%% Synthetic functions
choice = menu('CHOOSE A FUNCTION', 'Function F1(s)', ...
    'Function F2(s)', 'Function F3(s)', 'Function F4(s)',...
    'Function F5(s)', 'Function F6(s)');
if choice == 1
 Fs = (110.*s./((s+10).*(s+100)));
 tol = 2.2; % Tolerance in decibels to set a new pole and/or new zero
 ite = 40; % Number of iteration in DGN method
end
if choice == 2
  Fs = ((s+10) \cdot (s+100)) \cdot ((s+14580) \cdot (s+10355550));
  tol = 2.2; % Tolerance in decibels to set a new pole and/or new zero
  ite = 40; % Number of iteration in DGN method
end
if choice == 3
  Fs = ((s+10655).*(s+10))./((s+148450).*(s+198545852).*(s+155222220));
  tol = 2.2; % Tolerance in decibels to set a new pole and/or new zero
  ite = 40; % Number of iteration in DGN method
end
if choice == 4
  Fs = (10124) * s * (s+35.7) * (s+88.9) / ((s+100.5) * (s+220.7) * (s+5900) * (s+1370) * (s+21000));
  tol = 2; % Tolerance in decibels to set a new pole and/or new zero
  ite = 50; % Number of iteration in DGN method
end
if choice == 5
  Fs = ((s+79) \cdot (s+1045)) \cdot / ((s+1458) \cdot (s+103555) \cdot (s+127710355) \cdot (s+1244103555));
  tol = 1.8; % Tolerance in decibels to set a new pole and/or new zero
  ite = 40; % Number of iteration in DGN method
end
if choice == 6
  Fs = ((s+64518).*(s+8451629).*(s+312).*(s+54841216192))./((s+456).*(s+7852).*
       (s+982365).*...(s+93256888).*(s+79325684588536));
  tol = 2; % Tolerance in decibels to set a new pole and/or new zero
  ite = 40; % Number of iteration in DGN method
end
%% Bode method
[P,Z,k] = Bode process(Fs,f,Ns,tol); % Bode subroutine
as = k.*poly(Z); bs = poly(P); % Polynomials
[r,p,ks] = residue(as,bs); % Poles, residues and constant term
TF=isempty(ks); if (TF==1); ks=0; end
```

```
%% Damped Gauss-Newton
Xmcp = [r; p; ks]; % Poles, residues and constant term from Bode
Np = length(p); % Number of poles
[KGN, RGN, PGN, Ff] = Damped Gauss Newton (Np, Ns, Fs, s, Xmcp, ite);
Fs fitDGN = zeros(1,Ns);
for k = 1:length(PGN)
   Fs fitDGN = Fs fitDGN + (RGN(k)./(s.' - PGN(k))).';
end
Fs fitDGN = Fs fitDGN + KGN;
error = abs(Fs - Fs_fitDGN);
%% Plots
figure(3)
loglog(f,abs(Fs),'k',f,abs(Fs_fitDGN),'r--',f,error,'--b','LineWidth',2);
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]');
legend('Data','DGN','Deviation',2)
figure (4)
semilogy(Ff,'--b','LineWidth',2)
xlabel('Iteration count'); ylabel('RMS-error');
```

Table 2. "Fitting_Bode_DGN.m".

```
8_____
%
            BODE PROCESS PROGRAM
%
    Authors: Eduardo Salvador Bañuelos Cabral
%
         José Alberto Gutiérrez Robles
%
                Bjørn Gustavsen
8_____
% Inputs
  % --- Fs, function to be fitted
  % --- f, frequency (Hz)
  % --- Ns, number of samples
  % --- tol, tolerance
% Outputs
  %---P, Poles
  %---Z, Zeros
  % --- k, Constant term
function [P,Z,k] = Bode_process(Fs,f,Ns,tol)
P = []; Z = []; % Initialize P and Z like empty matrices
Fsdb = 20*log10(abs(Fs)); % Function in decibels
k0db = Fsdb(1);
                % k0 in decibels
k0 = 10.^{(k0db./20)};
                       % k0 in magnitude
Fsdb1 = ones(1,Ns).*k0db; % Constant term
% Plot of the function in decibels
figure(1)
semilogx(f,Fsdb,'k',f,Fsdb1,'r--','LineWidth',2)
ylabel('Decibels'), xlabel('Frequency [Hz]'), hold on
legend('Data','Bode',2)
c = 1; h = 1; r = 0; % Counters
Fsdb2 = zeros(1,Ns); % Initialize Fsdb2
while (r < Ns) % Bode process algorithm
     Fsfitdb = Fsdb1 + Fsdb2;
     semilogx(f,Fsfitdb,'r--','LineWidth',2)
     pause(0.5)
```

```
for r = 1:1:Ns
          error = abs((Fsdb(r))-(Fsfitdb(r))); % Deviation
          if error >= (tol)
                                                 % Tolerance
             % New zero
            if (Fsfitdb(r) < Fsdb(r)); Z(h) = f(r); h=h+1; break; end
             % New pole
            if (Fsfitdb(r) > Fsdb(r)); P(c) = f(r); c = c+1; break; end
          end
     end
     % Contribution of each zero in decibels
     Arg1 = 0;
     for kp = 1:length(Z)
         Arg1 = Arg1 + 20.*log10(abs(1+1i*f/Z(kp)));
     end
     % Contribution of each pole in decibels
     Arg2 = 0;
     for kp = 1:length(P)
        Arg2 = Arg2 - 20.*log10(abs(1+1i*f/P(kp)));
     end
     Fsdb2 = Arq1 + Arq2;
end
% Poles and zeros
P = -P*2*pi;
Z = -Z*2*pi;
% Construct the constant term
Num=1; for k=1:length(P); Num=Num*P(k); end
Den=1; for k=1:length(Z); Den=Den*Z(k); end
k = abs(Num) * k0/abs(Den);
% Plots
figure(2)
semiloqx(f,Fsdb,'k',f,Fsfitdb,'--r','LineWidth',2);
xlabel('Frequency [Hz]'); ylabel('Decibels')
legend('Data', 'Bode', 2)
```

```
Table 3. "Bode_process.m".
```

```
8_____
ŝ
          DAMPED GAUSS NEWTON METHOD
Ŷ
    Authors: Eduardo Salvador Bañuelos Cabral
%
         José Alberto Gutiérrez Robles
Ŷ
               Bjørn Gustavsen
8-----
% Inputs
  % --- Np, number of poles
  % --- Ns, Number of samples
  % --- Fs, function to be fitted
  % --- s, complex frequency (rad/s)
  % ---- X, initial poles, zeros and constant term
  % --- ite, iterations
% Outputs
  %--- Ks, constant term
  % --- Rs, residues
  %---Ps, poles
  % --- Ff, objective function (deviation)
```

```
function [Ks,Rs,Ps,Ff] = Damped Gauss Newton (Np,Ns,Fs,s,X,ite)
a = ones(Ns, 1);
                           % Vector column
J1 = zeros(Ns,Np);
                           % Matrix size (J1)
J2 = zeros(Ns,Np);
                          % Matrix size (J2)
Jn = zeros(2*Ns, 2*Np+1); % Matrix size (Jn)
At = zeros(2*Np+1,2*Np+1); % Matrix size (At)
en = zeros(2*Ns, 1);
                         % Vector size (en)
epn = zeros(2*Ns,1);
                          % Vector size (epn)
                       % Vector size (Ff)
Ff = zeros(ite,1);
Euclidian = zeros(1,1+2*Np); % Vector size
for ki = 1:ite % Damped Gauss Newton methodology
   R = X(1:Np); % Residues
   P = X(Np+1:2*Np);  Poles
   K = X(2*Np+1); % Constant term
   Fa = zeros(1,Ns); % Set the approximation to the function
    for k = 1: length(P)
       Fa = Fa + (R(k) . / (s. ' - P(k))) . ';
   end
   Fa = Fa + K; % Construct the approximation to the function
   error = (Fa. ' - Fs. '); % Deviation
   for n = 1:1:Np % Loop to construct the Jacobian
       J1(1:Ns,n) = 1./(s-P(n));
       J2(1:Ns,n) = R(n) . / ((s-P(n)) . ^2);
   end
   J = [J1 J2 a];
                         %Jacobian
    [Xmax Ymax] = size(J); % Matrix size (J)
   Jr = real(J); % Real part of vector J
   Ji = imaq(J);
                        % Imaginary part of vector J
   er = real(error); % Real part of vector error
   ei = imag(error);
                        % Imaginary part of vector error
   km = 1; % Counter
    for k = 2:2:2*Xmax % Interleaved
       Jn(k-1,:) = Jr(km,:);
       Jn(k, :) = Ji(km, :);
       en(k-1,1) = er(km);
       en(k,1) = ei(km);
       km = km+1;
    end
   F = ((norm(en,2)<sup>2</sup>)); % Objective function
                        % Storage the objective function must tend to zero
   Ff(ki, 1) = F;
   [Q,R] = qr(Jn); % Matrix Q and R of Jn
   Jn = R;
                         % It updates matrix Jn
   Gf = (Jn.'*Q.')*en; % Gradient (QR decomposition)
   Hess = Jn. '*Jn;
                         % Hessian (QR decomposition)
    for col = 1:Ymax % Euclidian norm
       Euclidian(col) = norm(Hess(:,col),2);
       At(:,col) = Hess(:,col)./Euclidian(col);
    end
   h = (At) \setminus -Gf;
                     % Solution for the system (Ax = b)
   h = h./Euclidian.'; % Real solution
                      % Variable to stop the next loop
   stop = 1;
                      % Variable to weigh the approximation
   al = 1;
```

```
while (stop == 1)
       Xp = X + al*h; % New coefficients (without updating x)
Rp = Xp(1:Np); % Residues
       Pp = Xp(Np+1:2*Np); % Poles
       Kp = Xp(2*Np+1); % Constant term
       Fap = zeros(1,Ns); % Set the new approximation of the function
       for k = 1: length(P)
           Fap = Fap + (Rp(k)./(s.' - Pp(k))).';
       end
                           %New approximation of the function
       Fap = Fap + Kp;
       ep = (Fap.' - Fs.'); % Deviation
       epr = real(ep); % Real part of vector ep
       epi = imag(ep);
                          % Imaginary part of vector ep
       km = 1; % Counter
       for k = 2:2:2*Xmax % Interleaved
            epn(k-1, 1) = epr(km);
            epn(k,1) = epi(km);
            km = km + 1;
        end
        Fp = ((norm(epn, 2)<sup>2</sup>)); % Objective function
        % Updating process
        Erel = 1e-4*al*h.'*Gf; % Relative error to stop the while process
        if (Fp < F + Erel)
           X = X + al*h; % Final approximation
           stop = 0; % Go out the while
        else
            al = al*0.9; % Weigh to update X
            if (al < 1e-30)
               stop = 0;
            else
               stop = 1;
            end
        end
     end
end
Rs = X(1:Np);
                  % Residues
Ps = X(Np+1:2*Np); % Poles
Ks = X(2*Np+1); % Constant term
```

Table 4. "Damped_Gauss_Newton.m".

In **Figure 10** the synthetic frequency response behavior and the rational approximation given by IRLS is presented, together with its deviation in terms of absolute error. Moreover, the RMS-error on each iteration is shown in **Figure 11**.

4.4. LM algorithm

In this section the LM routine is introduced. First, a synthetic function can be selected in the main program "Fitting_LM_Polynomials.m," presented in **Table 9**. Afterwards, the algorithm of the method "LM_method.m," **Table 10**, is implemented for the rational approximation of the selected function.

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 23 http://dx.doi.org/10.5772/intechopen.71358

Figure 5. Asymptotic behavior of the Bode routine.

Figure 6. Final rational approximation of the synthetic function given by Bode.

Figure 7. Fitting deviation of the approximation given by DGN.

Figure 8. RMS-error on each iteration of the approximation given by DGN.

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 25 http://dx.doi.org/10.5772/intechopen.71358

```
8_____
8
      Main program of ORDINARY LEAST SQUARES
Ŷ
      Authors: Eduardo Salvador Bañuelos Cabral
Ŷ
           José Alberto Gutiérrez Robles
8
                Bjørn Gustavsen
8-----
clc
clear all
close all
%% Initial Settings
                     % Number of samples
Ns = 400;
f = logspace(-2,6,Ns); % Frequency "Hertz"
w = 2.*pi.*f; % Frequency "rad/seg"
                     % Complex Frequency
s = li*w;
%% Synthetic functions
choice = menu('CHOOSE A FUNCTION', 'Function F1(s)', 'Function F2(s)', 'Function F3(s)');
if choice == 1
Np = 2;
Fs = 0.01 + (210 * (s) . / ((s+10) . * (s+100)));
end
if choice == 2
  Np = 5;
  Fs = (-81+18e6*s+27e6*s.^2+62e3*s.^3+42*s.^4+5e-7*s.^5)./...
       (1+54e5*s+36e7*s.<sup>2</sup>+83e4*s.<sup>3</sup>+90*s.<sup>4</sup>+36e-3*s.<sup>5</sup>);
end
if choice == 3
  Np = 6;
  Fs = (100./(s+200))+(250./(s+2000))+(1500./(s+(10-1j*100)))+(1500./(s+(10+1j*100)))+...
      (800./(s+(1000+1j*30000)))+(800./(s+(1000-1j*30000)));
end
%% Ordinary Least Squares
[Ks,Rs,Ps,x,A1,an,bn] = Least Squares Method(Np,Ns,Fs,s);
% Fitting using partial fractions
Fs fit = zeros(1,Ns);
for i = 1:Np
   Fs_fit = Fs_fit + (Rs(i)./(s.' - Ps(i))).';
end
Fs fit = Fs fit + Ks;
error = abs((Fs.' - Fs fit.'));
%% Plots
figure(1)
loglog(f,abs(Fs),'-k',f,abs(Fs fit),'--r',f,error,'-.b','LineWidth',2);
legend('Data', 'Ordinary Least Squares', 'Deviation', 3);
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]')
```


In **Figure 12** the synthetic frequency response behavior and the rational approximation given by IRLS is presented, together with its deviation in terms of absolute error. Moreover, the RMS-error on each iteration is shown in **Figure 13**.

```
8_____
8
       Function to implement ORDINARY LEAST SQUARES
Ŷ
         Authors: Eduardo Salvador Bañuelos Cabral
Ŷ
              José Alberto Gutiérrez Robles
Ŷ
                     Bjørn Gustavsen
8_____
% Inputs
  % --- Np, number of poles
  % --- Ns, number of samples
  % --- Fs, function to be fitted
  % --- s, complex frequency (rad/s)
% Outputs
  % --- Ks, constant term
  % --- Rs, residues
  %---Ps, poles
  % --- x, vector of coefficients (polynomials)
  % --- A1, matrix to evaluate the fitting
  % --- an, coefficients of the numerator
  % --- bn, coefficients of the denominator
function [Ks,Rs,Ps,x,A1,an,bn] = Least Squares Method(Np,Ns,Fs,s)
a = ones(Ns, 1);
                             % Column vector
a1 = zeros(Ns,Np);
                             % Matrix size (s^n)
a2 = zeros(Ns,Np);
                            % Matrix size (Fs*s^n)
An = zeros(2*Ns,1+2*Np); % Matrix size (real and imaginary part)
Bn = zeros(2*Ns,1); % Vector size (real and imaginary part)
Euclidian = zeros(1,1+2*Np); % Vector size
% Construction of vector b.
b = Fs.';
% Construction of matrix A.
for n = 1:1:Np
   al(1:Ns,n) = s.^((Np+1)-n);
   a2(1:Ns,n) = -b.*a1(1:Ns,n);
end
A1 = [a1 a]; % Matrix to evaluate the fitting
A = [a1 a a2]; % Matriz of the system
[Xmax Ymax] = size(A); % Size for matrix A
Ar = real(A); % Real part of matrix A
Ai = imag(A);
                    % Imaginary part of matrix A
br = real(b);
                    % Real part of vector B
bi = imag(b);
                    % Imaginary part of vector B
km = 1; % Construction of matrix An and vector Bn (interleaved)
for k = 2:2:2*Xmax
   An(k-1,:) = Ar(km,:);
   An(k,:) = Ai(km,:);
   Bn(k-1,1) = br(km);
   Bn(k,1) = bi(km);
   km = km+1:
end
[Q,R] = qr(An,0); % QR decomposition - Matrix Q and R of An
At = R; % It updates the matrix An
B = Q.'*Bn; % It updates the vector Bn
```

```
for col = 1:Ymax
  Euclidian(col) = norm(At(:,col),2); % Euclidian norm
  At(:,col) = At(:,col)./Euclidian(col);
end
x = At \setminus B;
                    % Solution for the system (Ax = b)
x = x./Euclidian.'; % Real solution
an = x(1:Np+1);
                         % Numerator coefficients
bn = [x(Np+2:2*Np+1);1]; % Denominator coefficients
% Poles, residues and constant term
[Rs,Ps,Ks] = residue(an,bn);
TF = isempty(Ks);
if (TF==1)
   Ks = 0;
end
```

Table 6. "Least_Squares_Method.m".

Figure 9. Synthetic frequency response data and the approximation given by the LS routine.

4.5. VF algorithm

VF has become one of the main methodologies for the rational approximation of frequency domain responses, the MATLAB routine is available online [20], "vectfit3.m." Here, we present an example of its application to the rational approximation of a synthetic function.

In the beginning of the implementation a synthetic function is selected in the main program "Fitting_VF.m," presented in **Table 11**. Afterwards, initial poles for the fitting must be established

```
%_____
% Main program of ITERATIVELY REWEIGHTED LEAST SQUARES
        Authors: Eduardo Salvador Bañuelos Cabral
%
%
              José Alberto Gutiérrez Robles
%
                   Bjørn Gustavsen
8_____
clc
clear all
close all
%% Initial Settings
                     % Number of samples
Ns = 500;
f = logspace(-2,6,Ns); % Frequency(Hz)
w=2.*pi.*f;
                     % Frequency (rad/seg)
s = 1i*w;
                     % Complex Frequency
%% Synthetic functions
choice = menu('CHOOSE A FUNCTION', 'Function F1(s)', ...
    'Function F2(s)', 'Function F3(s)', 'Function F4(s)',...
    'Function F5(s)', 'Function F6(s)');
if choice == 1
  Np = 12;
  Fs = (0.83*s.^12-0.35*s.^11+0.32*s.^10+60000*s.^9+600.36*s.^8+650.23*s.^7+...
       54.5*s.^6+45.6*s.^5+0.1*s.^4-1240*s.^3+80025*s.^2+5547.*s+5008)./...
      (s.^12-0.89*s.^11-0.23*s.^10-4565.*s.^9+34569.02*s.^8-55450*s.^7+...
      60*s.^6+1005*s.^5+8050*s.^4+7502*s.^3+10*s.^2+1014.*s-50);
end
if choice == 2
  Np = 9;
  Fs = (6000*s.^9+600*s.^8+650*s.^7+54*s.^6+457*s.^5+100*s.^4+1240*s.^3+8000*s.^2+...
       55400.*s+5000)./(450*s.^9+3500*s.^8+500*s.^7-600*s.^6+1000*s.^5+700*s.^4-...
      7500*s.^3+1000*s.^2+500.*s);
end
if choice == 3
  Np = 7;
Fs = (514*s.^7-364.25*s.^6-0.35*s.^5+635*s.^4-20802*s.^3+5304*s.^2+4520.*s-...
   18020.025)./(241*s.^7-32.02*s.^6+538.23*s.^5-2588*s.^4-22560*s.^3-...
   604*s.<sup>2</sup>+4150.*(s)-21052.31);
end
if choice == 4
  Np = 3;
  Ps = [-0.52; -0.12; -0.04];
  Rs = [-2.18; -7192.25; 20.58];
  Ks = 5:
  Fs = zeros(1, Ns);
for k = 1:length(Ps)
   Fs = Fs + (Rs(k) . / (s.' - Ps(k))) . ';
end
Fs = Fs + Ks;
end
if choice == 5
  Np = 11;
  Ps = 1.0e+004.*[-.88; -5.42; - 27.28; 0.88; -9665; 235.7; ...
                  -0.26; -3.87; 46.32; -0.13; -3756];
  Rs = 1.0e+005.*[834; 22593; 893; 2653; 654; 32; ...
                 44.14; 6405; 136.79; 0.12; 125];
```

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 29 http://dx.doi.org/10.5772/intechopen.71358

```
Ks = 0;
  Fs = zeros(1, Ns);
  for k = 1:length(Ps)
      Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
   end
  Fs = Fs + Ks;
end
if choice == 6
  Np = 18;
  Ps = [-4500; -41000; -100+1i*5000; -100-1i*5000; -120+1i*15000; -120-1i*15000; ...
      -3000+1i*35000; -3000-1i*35000; -200+1i*45000; -200-1i*45000; -1500+1i*45000;...
      -1500-1i*45000; -500+1i*70000; -500-1i*70000; -1000+1i*73000; -1000-1i*73000;...
      -2000+1i*90000; -2000-1i*90000];
  Rs = [-3000; -83000; -5+1i*7000; -5-1i*7000; -20+1i*18000; -20-1i*18000;...
      6000 + 1i*45000; 6000-1i*45000; 40+1i*60000; 40-1i*60000; 90+1i*10000;...
      90-1i*10000; 50000+1i*80000; 50000-1i*80000; 1000+1i*45000; 1000-1i*45000;...
      -5000+1i*92000; -5000-1i*92000];
  K_{S} = 0.2:
  Fs = zeros(1, Ns);
  for k = 1:length(Ps)
      Fs = Fs + (Rs(k) . / (s.' - Ps(k))) . ';
end
Fs = Fs + Ks;
end
%% Iteratively Reweighted Least Squares
fw = 1; % weighting function (1-6)
[Ks,Rs,Ps,x,A1,an,bn,k1,Err] = IRLS(Np,Ns,Fs,s,fw);
% Fitting using partial fractions
Fs fit = zeros(1,Ns);
for i = 1:Np
   Fs_fit = Fs_fit + (Rs(i)./(s.' - Ps(i))).';
end
Fs fit = Fs fit + Ks;
e = abs((Fs.' - Fs fit.')); % Deviation of the fitting process
%% Plots
figure(1)
semilogy(Err(1:length(Err)),'-b','LineWidth',2)
xlabel('Itetation count');ylabel('RMS-error')
figure(2)
loglog(f, abs(Fs), '-k', f, abs(Fs fit), '--r', f, e, '--b', 'LineWidth', 2),
legend('Data','IRLS','Deviation')
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]');
```

Table 7. "Fitting_IRLS.m".

"InitialPoles.m," **Table 12**, for the VF routine. Finally in "VF.m," VF is used (via vectfit3.m) to perform the rational approximation of the selected function. In VF.m routine, **Table 13**, the parameter opts.relax is set to 1. This implies that "relaxation" is being used.

Figure 14 shows the synthetic frequency response behavior and the rational approximation given by VF, together with its deviation in terms of absolute error.

```
8_____
8
      ITERATIVELY REWEIGHTED LEAST SQUARES METHOD
Ŷ
       Authors: Eduardo Salvador Bañuelos Cabral
Ŷ
            José Alberto Gutiérrez Robles
Ŷ
                  Bjørn Gustavsen
8_____
% Inputs
  % --- Np, number of poles
  % --- Ns, number of samples
  % --- Fs, function to be fitted
  % --- s, complex frequency (rad/s)
   % --- fw, weighting function
% Outputs
  % --- Ks, constant term
  % --- Rs, residues
  % --- Ps, poles
  % --- x, coefficients vector (polynomials)
  % --- A1, matrix to evaluate the fitting
  % --- an, numerator coefficients
  % --- bn, denominator coefficients
   % --- k1, minimum error
  % --- Error, RMS-error
function [Ks,Rs,Ps,x,A1,an,bn,k1,Error] = IRLS(Np,Ns,Fs,s,fw)
a = ones(Ns,1);
                            % Vector column
                            % Matrix size (s^n)
a1 = zeros(Ns,Np);
                            % Matrix size (Fs*s^n)
a2 = zeros(Ns,Np);
An = zeros(2*Ns,1+2*Np);% Matrix size considering real and imaginary partBn = zeros(2*Ns,1);% Vector size considering real and imaginary part
Euclidian = zeros(1,1+2*Np); % Vector size
W = eye(length(Ns*2));
                            % Weighting matrix
b = Fs.'; % Construction of vector b.
for n = 1:1:Np % Construction of matrix A.
   al(1:Ns,n) = s.^{(Np+1)-n};
   a2(1:Ns,n) = -b.*a1(1:Ns,n);
end
A1 = [a1 a]; % Matrix to evaluate the fitting
A = [a1 a a2]; % Matriz of the system
[Xmax Ymax] = size(A); % Size for matrix A
Ar = real(A); % Real part of matrix A
Ai = imag(A);
                    % Imaginary part of matrix A
                    % Real part of vector B
br = real(b);
                     % Imaginary part of vector B
bi = imaq(b);
% Construction of matrix An and vector Bn (interleaved)
km = 1;
for k = 2:2:2*Xmax
   An(k-1,:) = Ar(km,:);
   An(k,:) = Ai(km,:);
   Bn(k-1, 1) = br(km);
   Bn(k, 1) = bi(km);
   km = km+1;
end
[Q,R] = qr(An,0);% Matrix Q and R of An
           % It updates vector Bn
               % It updates matrix An
At = R;
B = Q. '*Bn;
```

```
for col = 1:Ymax % Applying the Euclidian norm to At
  Euclidian(col) = norm(At(:,col),2);
  At(:,col) = At(:,col)./Euclidian(col);
end
xn(:,1) = At \setminus B;
                                 % Solution for the system (Ax = B)
xn(:,1) = xn(:,1)./Euclidian.'; % Real solution
% weighting iterative
Error(1) = 1e2; % Initial error
Disc = 1e2; % Discriminating
n=1; % Counter to storage de error
k0=1; % Counter of iterations
while Disc < 0 \mid \mid Error(n) > 1e-3 \mid \mid k0 < 13
    an = xn(1:Np+1,k0);
                                  % Numerator coefficients
    bn = [xn(Np+2:2*Np+1,k0);1]; % Denominator coefficients
    Fsfit = (A1*an)./(A1*bn); % Fitting evaluation
    vres = (Fsfit - b);
                                  % Direct error
    n=n+1;
                                   % Counter to storage de error
    Error(n) = sum(abs(vres));
                                   % Error
    Disc = Error(n) - Error(n-1); % Discriminating
    vres_r = real(vres);
                                  % Real part of the vector vres
    vres_i = imag(vres);
                                 % Imaginary part of the vector vres
    km = 1; % (interleaved
     for k = 2:2:2*Xmax
        res(k-1,1) = vres r(km);
        res(k,1) = vres_i(km);
        km = km + 1;
     end
    Ds = std(res); % Standard deviation
    res = res./Ds; % Vector "res" with standard deviation
     % WEIGHING FUNCTIONS
     if fw ==1, w = diag(W).*abs(res) + 1e-130; end
     if fw ==2, w = diag(W) .* (sqrt(1+((res.^2)))-1) + 1e-130; end
     if fw ==3, w = diag(W).*1./(abs(res).^(1.2-2)) + 1e-130; end
     if fw ==4, w = diag(W).*((res).^2)./(1+(res).^2) + 1e-130; end
     if fw ==5, w = diag(W).*((res).^2)./sqrt(1+(res).^2)+1e-130; end
     if fw ==6, w = diag(W) .* (abs(res).^(1.2))./1.2 + 1e-130; end
    W = diag(w);
                        % It updates the matrix W whit weighting functions
    Bn_p = W*Bn;
                        % Weighting An
    An_p = W*An;
                        % Weighting Bn
     [Q,R] = qr(An_p,0); % Matrix Q and R of An p
    At = R;
                         % It updates the matrix An_p
    B = Q.' * Bn p;
                         % It updates the matrix Bn p
     for col = 1:Ymax % Euclidian norm
        Euclidian(col) = norm(At(:,col),2);
        At(:,col) = At(:,col)./Euclidian(col);
     end
     k_{0=k_{0+1}};
                                         % Number of iterations
                                        Solution for the system (Ax = b)
    xn(:,k0) = At \setminus B;
     xn(:,k0) = xn(:,k0)./Euclidian.'; % Real solution
     if k0 > 20, break, end % End the while, if k0 > 20
end
```

```
[k1,k2] =min(Error); % Position of the minimum error
x=xn(:,k2); % Coefficients with minimum error
% Poles, residues and constant term
an = x(1:Np+1); % Numerator coefficients
bn = [x(Np+2:2*Np+1);1]; % Denominator coefficients
[Rs,Ps,Ks] = residue(an,bn);
TF = isempty(Ks);
if (TF==1)
Ks = 0;
end
```

```
Table 8. "IRLS.m".
```


Figure 10. Rational approximation given by the IRLS method for the synthetic function.

4.6. Single-phase transmission line modeling

Bode, Levy or LS, IRLS, VF, and LM are applied to the rational approximation of the frequencydependent parameters corresponding to a single-phase transmission line. In **Figure 15a**, the diagram of the equivalent circuit for the test with L = 70 mH and $Ri = 1.058 \Omega$ is shown. The current source is considered as an ideal 60 Hz. The line length (*l*) is 100 km, with a diameter of 2.7 cm. The conductor is placed horizontally at a height of 20 m, with a 100 Ω m resistivity. The termination impedance at the end of line (R_l) is placed as 1e6 Ω , 1e-6 Ω , and 462 Ω for evaluation of the different line end cases. Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 33 http://dx.doi.org/10.5772/intechopen.71358

Figure 11. RMS-error on each iteration given by the IRLS method.

```
8_____
   Main program of LEVENBERG-MARQUARDT (Polynomials)
÷
÷
       Authors: Eduardo Salvador Bañuelos Cabral
÷
            José Alberto Gutiérrez Robles
Ŷ
                  Bjørn Gustavsen
8_____
clc
clear all
close all
%% Initial Settings
Ns = 500;
                    % Number of samples
f = logspace(-2,8,Ns); % Frequency "Hertz"
                   % Frequency "rad/seg"
w=2.*pi.*f;
s = li*w;
                    % Complex Frequency
%% Synthetic functions
choice = menu('CHOOSE A FUNCTION', 'Function F1(s)', 'Function F2(s)', ...
'Function F3(s)', 'Function F4(s)', 'Function F5(s)');
if choice == 1
  ite = 150; % Number of iterations
  Np = 7; % Order of the proposed function
  Fs = (-364*s.^6-s.^5+635*s.^4-20802*s.^3+5304*s.^2+4520.*s-18020)./...
      (241*s.^7-32*s.^6+538*s.^5-2588*s.^4-22560*s.^3-604*s.^2+4150.*s-21052);
end
if choice == 2
```

```
ite = 50; % Number of iterations
   Np = 12; % Order of the proposed function
   Fs = (s.^12-0.4*s.^11+0.3*s.^10+60003*s.^9+600*s.^8+650*s.^7+54*s.^6+45*s.^5+...
        0.1*s.<sup>4</sup>-1240*s.<sup>3</sup>+80025*s.<sup>2</sup>+5547*s+5008)./(s.<sup>12-0.9*s.<sup>11-0.2*s.</sup>10-...</sup>
       4565*s.^9+34569*s.^8-55450*s.^7+60*s.^6+1005*s.^5+8050*s.^4+7502*s.^3+...
       10*s.^2+1014*s-50);
end
if choice == 3
   ite = 50; % Number of iterations
   Np = 14; % Order of the proposed function
   Fs = 2.*pi*(652*s.^14-0.8*s.^13-0.8*s.^12-0.4*s.^11+25487*s.^10+600003*s.^9+...
       6040*s.<sup>8</sup>-60050*s.<sup>7</sup>+54*s.<sup>6</sup>+45*s.<sup>5</sup>+0.1*s.<sup>4</sup>-1240*s.<sup>3</sup>+8025*s.<sup>2</sup>+5547*s+508)./...
       (2365*s.<sup>1</sup>4-8362*s.<sup>1</sup>3-8*s.<sup>1</sup>2-0.9*s.<sup>1</sup>1-65547*s.<sup>1</sup>0-4565*s.<sup>9</sup>+34569*s.<sup>8</sup>-...
       55450*s.^7+60*s.^6-1005*s.^5+850*s.^4-7502*s.^3-10*s.^2-1014*s+75230);
end
if choice == 4
   ite = 50; % Number of iterations
   Np = 3; % Order of the proposed function
   Ps = [-0.5; -0.1; -0.05];
   Rs = [-2.2; -7192; 20];
   % Process to obtain Fs from poles and residues
   Ks = 5;
   Fs = zeros(1,Ns);
   for k = 1:length(Ps)
      Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
   end
   Fs = Fs + Ks;
end
if choice == 5
   ite = 100; % Number of iterations
   Np = 11; % Order of the proposed function
   Ps = 1.0e4*[-0.9;-5.4;-27.3;0.9;-9665;235;-0.3;-3.9;46.3;-0.1;-3756];
   Rs = 1.0e5*[834;22593;893;2653;654;32;44;6405;136;0.1;125];
   % Process to obtain Fs from poles and residues
   Ks = 0;
   Fs = zeros(1, Ns);
   for k = 1:length(Ps)
       Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
   end
   Fs = Fs + Ks;
end
%% Levenberg Marquardt
[Ks,Rs,Ps,x,A1,an,bn,Ff] = LM_method(Np,Ns,Fs,s,ite);
% Fitting using partial fractions
Fs fit = zeros(1,Ns);
for i = 1:Np
    Fs fit = Fs fit + (Rs(i)./(s.' - Ps(i))).';
end
Fs fit = Fs fit + Ks;
% Deviation in the fitted process
error = abs((Fs.' - Fs fit.'));
%% Plots
figure(1)
```

```
loglog(f,abs(Fs),'-k',f,abs(Fs_fit),'-.r',f,error,'-.b','LineWidth',2);
legend('Data','LM (Polynomials)','Deviation');
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]');
figure(2)
semilogy(Ff,'--b','LineWidth',2);
xlabel('Iteration count'); ylabel('RMS-error');
```



```
8_____
% Function to implement LEVENBERG-MARQUARDT (Polynomials)
        Authors: Eduardo Salvador Bañuelos Cabral
%
%
             José Alberto Gutiérrez Robles
%
                   Bjørn Gustavsen
8_____
% Inputs
  % --- Np, number of poles
  % --- Ns, number of samples
  % --- Fs, function to be fitted
  % --- s, complex frequency (rad/s)
  % --- ite, number of iterations
% Outputs
  % --- Ks, constant term
  % --- Rs, residues
  % --- Ps, poles
  % --- x, vector of coefficients (polynomials)
  % --- A1, matrix to evaluate the fitting
  % --- an, coefficients of the numerator
  % --- bn, coefficients of the denominator
  % --- Ff, objective function (deviation)
function [Ks,Rs,Ps,x,A1,an,bn,Ff] = LM method(Np,Ns,Fs,s,ite)
x = ones((2*Np)+1,1); % Initial values
a = ones(Ns, 1);
                          % Vector column
                       %Matrix size (s^n)
al = zeros(Ns,Np);
J1 = zeros (Ns, Np+1);
                         % Matrix size (J1)
J2 = zeros(Ns,Np);
                          % Matrix size (J1)
At = zeros(2*Np+1,2*Np+1); % Matrix size (At)
en = zeros(2*Ns,1); % Vector size (en)
epn = zeros(2*Ns,1);
                          % Vector size (enp)
Ff = zeros(ite,1);
                          % Vector size (Ff)
Euclidian = zeros(1,1+2*Np); % Euclidian norm
% Construction of the matrix A1
for n = 1:1:Np
   al(1:Ns,n) = s.^((Np+1)-n);
end
A1 = [a1 a]
v = 2; % LM coefficient (m = m*v)
u = 5; % LM coefficient (m = m/u)
% Levenberg-Marguardt method
for ki = 1:ite % Main loop
```

```
x1 = x(1:Np+1); % Coefficients of the numerator
x2 = [x(Np+2:2*Np+1);1]; % Coefficients of the denominator
Yg = (A1*x1)./(A1*x2); % Fitting evaluation
error = (Yg - Fs.'); % Deviation
% Process to obtain the Jacobian (J)
for k = 1:1:Np
  J1(:,k) = (s.^{(Np+1)-k)}./((A1*x2).');
   J2(:,k) = (-(A1*x1).'.*s.^{(Np+1)-k})./((A1*x2).^{2}).';
end
J1(:,Np+1) = 1./((A1*x2).');
J = [J1 J2];
[Xmax Ymax] = size(J); % Matrix size (J)
Jr = real(J); % Real part of vector J
                     % Imaginary part of vector J
Ji = imag(J);
er = real(error); % Real part of vector e
ei = imag(error);
                      % Imaginary part of vector e
km = 1; % Interleaved
for k = 2:2:2*Xmax
   Jn(k-1,:) = Jr(km,:);
  Jn(k,:) = Ji(km,:);
  en(k-1,1) = er(km);
   en(k,1) = ei(km);
  km = km + 1;
end
F = ((norm(en,2)<sup>2</sup>)); % Objective function tends to zero to converge
Ff(ki,1) = F; % Storage the RMS-error (objective function)
                  % Matrix Q and R of Jn
[Q,R] = qr(Jn);
                  % It updates matrix Jn
Jn = R
Gf = (Jn.'*Q.')*en; % Gradient (QR decomposition)
Hess = Jn. '*Jn;
                  % Hessian (QR decomposition)
if ki == 1
                   % Inicial value for m
m = max(diag(Hess));
end
paro = 0; % Variable to enter into the while
while (paro==0)
    I = diag(diag(Hess)); % Construction of matrix I, diagonal of Hessian
    Hess mod = (Hess + m*I); % Modified Hessian
    for col = 1: Ymax % Loop to normalize At
        Euclidian(col) = norm(Hess_mod(:,col),2); % Euclidian norm
        At(:,col) = Hess_mod(:,col)./Euclidian(col);
    end
    h = (At) \-Gf; % Solution for the system (Ax = b)
    h = h./Euclidian.'; % Real solution
    xnew = x + h;
                        % New coefficients (without updating x)
    % == Updated coefficients are evaluated, if it meets the assessment then x is updated == %
                                     % Coefficients of the numerator
    x1new = xnew(1:Np+1);
    x2new = [xnew(Np+2:2*Np+1);1]; % Coefficients of the denominator
    Ygnew = (A1*x1new)./(A1*x2new); % Fitting evaluation
    ep = (Ygnew - Fs.');
                                      % Deviation
    epr = real(ep);
                                      % Real part of vector ep
    epi = imag(ep);
                                      % Imaginary part of vector ep
```

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 37 http://dx.doi.org/10.5772/intechopen.71358

```
km = 1; % Interleaved
        for k = 2:2:2*Xmax
            epn(k-1, 1) = epr(km);
            epn(k,1) = epi(km);
            km = km + 1;
        end
        Fp = ((norm(epn,2)<sup>2</sup>)); % Objective function
        % Updating of m
        if (F < Fp)
            m = m * v;
        end
        if (F >= Fp) % Condition to go out the while
            x = x + h;
            m = m/u;
            break;
        end
    end
end
an = x(1:Np+1); % Coefficients of the numerator
bn = [x(Np+2:2*Np+1);1]; % Coefficients of the denominator
% Poles, residues and constant term
[Rs,Ps,Ks] = residue(an,bn);
TF = isempty(Ks);
if (TF==1)
   Ks = 0;
end
```

Table 10. "LM_method.m".

Figure 12. Synthetic frequency response behavior and the rational approximation given by LM.

Figure 13. RMS-error on each iteration given by LM.

```
8_____
                   Main program of VECTOR FITTING
÷
÷
   (vectfit3 available in: https://www.sintef.no/projectweb/vectfit/
                     Author: Bjørn Gustavsen)
÷
÷
             Authors: Eduardo Salvador Bañuelos Cabral
÷
                  José Alberto Gutiérrez Robles
÷
                        Bjørn Gustavsen
8-----
clc
clear all
close all
%% Initial Settings
Ns = 500;
                   % Number of samples
f = logspace(-2,6,Ns); % Frequency (Hz)
                   % Frequency (rad/seg)
w=2.*pi.*f;
s = li*w;
                   % Complex Frequency
%% Synthetic functions
choice = menu('CHOOSE A FUNCTION', 'Function F1(s)',...
    'Function F2(s)', 'Function F3(s)', 'Function F4(s)');
if choice == 1
  Np = 12;
  Fs = (0.83*s.^12-0.35*s.^11+0.32*s.^10+60000*s.^9+600.36*s.^8+650.23*s.^7+...
      54.5*s.^6+45.6*s.^5+0.1*s.^4-1240*s.^3+80025*s.^2+5547.*s+5008)./...
      (s.^12-0.89*s.^11-0.23*s.^10-4565.*s.^9+34569.02*s.^8-55450*s.^7+60*s.^6+...
```

```
1005*s.^5+8050*s.^4+7502*s.^3+10*s.^2+1014.*s-50);
end
if choice == 2
  Np = 9;
  Fs = (6000*s.^9+600*s.^8+650*s.^7+54*s.^6+457*s.^5+100*s.^4+1240*s.^3+8000*s.^2+...
       55400.*s+5000)./(450*s.<sup>9</sup>+3500*s.<sup>8</sup>+500*s.<sup>7</sup>-600*s.<sup>6</sup>+1000*s.<sup>5</sup>+...
       700*s.^4-7500*s.^3+1000*s.^2+500.*s);
end
if choice == 3
  Np = 7;
  Fs = (514*s.^7-364.25*s.^6-0.35*s.^5+635*s.^4-20802*s.^3+5304*s.^2+4520.*s-...
      18020.025)./(241*s.^7-32.02*s.^6+538.23*s.^5-2588*s.^4-22560*s.^3-...
      604*s.<sup>2</sup>+4150.*(s)-21052.31);
end
if choice == 4
  Np = 18;
  Ps = 2*pi*[-4500; -41000; -100+1i*5000; -100-1i*5000; -120+1i*15000; ...
      -120-1i*15000; -3000+1i*35000; -3000-1i*35000; -200+1i*45000; -200-1i*45000;...
      -1500+1i*45000; -1500-1i*45000; -500+1i*70000; -500-1i*70000; -1000+1i*73000;...
       -1000-1i*73000; -2000+1i*90000; -2000-1i*90000];
  Rs = [-3000; -83000; -5+1i*7000; -5-1i*7000; -20+1i*18000; -20-1i*18000;...
      6000+li*45000; 6000-li*45000; 40+li*60000; 40-li*60000; 90+li*10000; ...
       90-1i*10000; 50000+1i*80000; 50000-1i*80000; 1000+1i*45000; 1000-1i*45000;...
       -5000+1i*92000; -5000-1i*92000];
   Ks = 0.2:
   Fs = zeros(1, Ns);
   for k = 1:length(Ps)
      Fs = Fs + (Rs(k)./(s.' - Ps(k))).';
   end
   Fs = Fs + Ks ;
end
%% Vector Fitting Method
[Ps]=InitialPoles(f,Np); %Initial poles subroutine
[P,C,D,E,fVF] = VF(Ps,Ns,Fs,s,20,3); % Vector Fitting Method
Fsfit = zeros(1,Ns);
for k = 1: length (P)
   Fsfit = Fsfit + (C(k)./(s.' - P(k))).';
end
Fsfit = Fsfit + D+ E.*s; % Fitting result
eVF = abs(Fs - Fsfit); % Deviation
figure(1)
loglog(f, abs(Fs), '-k', f, abs(Fsfit), '--r', f, abs(eVF), 'b', 'LineWidth', 2);
xlabel('Frequency [Hz]'); ylabel('Magnitude [p.u.]')
legend('Data','VF','Deviation')
```


The modeling consists of calculating rational approximations for the line series impedance Z and line shunt admittance Y by applying the aforementioned rational fitting techniques. **Figure 15b** shows the behavior of Z and Y as a function of frequency, calculated with 16,384 linearly spaced samples and **Figure 16** shows a flowchart for the implementation of this test case.

```
8_____
°
  Function to implement INITIAL POLES for Vector Fitting
°
      Authors: Eduardo Salvador Bañuelos Cabral
Ŷ
           José Alberto Gutiérrez Robles
8
                 Bjørn Gustavsen
8_____
% Inputs
  % --- f, frequency
  % --- Npol, number of poles
%Outputs
  % --- Ps, poles
function [Ps] = InitialPoles(f,Npol)
% Set the initial poles (even, odd)
even = fix(Npol/2);
p odd = Npol/2 - even;
disc = p_odd ~= 0;
% Set a real pole in case of disc == 1
if disc == 0 % Even initial poles
 pols = [];
else % Odd initial poles
 pols = [(max(f) - min(f))/2];
end
% Initial complex poles
bet = linspace(min(f), max(f), even);
for n=1:length(bet)
   alf=-bet(n)*1e-2;
   pols=[pols (alf-1j*bet(n)) (alf+1j*bet(n))];
end
Ps = pols.'; % Column vector of initial poles
```

Table 12. "InitialPoles.m".

Figure 17a shows the results for the fitting of **Y** with Np = 3, in terms of model deviations (relative error) by Bode, Levy, IRLS, VF, and LM. It can be observed that the best approximations are obtained with Levy, IRLS, LM and VF which converge to practically the same deviation.

Figure 17b shows the results for the fitting of **Z** with Np = 14, in terms of the model deviations (relative error) by Bode, Levy, IRLS, VF, and LM. It can be seen that the best approximation is obtained with VF, IRLS, and LM.

Then, the effect of the modeling errors in **Y** and **Z** on a time domain response is evaluated. The line terminal nodal admittance matrix \mathbf{Y}_n is established with respect to the two line ends 2 and 3 of **Figure 15a** as

$$\begin{bmatrix} \mathbf{I}_2 \\ \mathbf{I}_3 \end{bmatrix} = \mathbf{Y}_n \begin{bmatrix} \mathbf{V}_2 \\ \mathbf{V}_3 \end{bmatrix}$$
(70)

where \mathbf{Y}_n is given by

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 41 http://dx.doi.org/10.5772/intechopen.71358

```
8-----
°
                  Function to use VECTOR FITTING
°
 (vectfit3.mavailable in: https://www.sintef.no/projectweb/vectfit/
Ŷ
                     Author: Bjørn Gustavsen)
Ŷ
             Authors: Eduardo Salvador Bañuelos Cabral
Ŷ
                  José Alberto Gutiérrez Robles
Ŷ
                         Bjørn Gustavsen
8_____
% Inputs
  % --- Ps, initial poles
  % --- Ns, number of samples
  % --- Fs, function to be fitted
  % --- s, complex frequency (rad/s)
  % --- ite, iterations
  % --- Ka, kind of fitting
%Outputs
  %---P, poles
  % --- C, residues
  % --- D, constant term
  % --- E.
  % --- RMS.
function [P,C,D,E,RMS] = VF(Ps,Ns,Fs,s,Ni,Ka)
weight=ones(1,Ns); % Vector of weights
opts.relax=1; % Use vector fitting with relaxed non-triviality constraint
                  % Enforce stable poles
opts.stable=0;
                  % Include both D, E in fitting
opts.asymp=Ka;
opts.skip_pole=0; % Do NOT skip pole identification
                 % DO skip identification of residues (C,D,E)
opts.skip res=0;
opts.cmplx_ss=1; % Create real-only state space model
opts.spy1=0;
                 % No plotting for first stage of vector fitting
opts.spy2=0;
                 % Create magnitude plot for fitting of f(s)
             % Use linear abscissa and
% Use logarithmic ordinate axis
opts.logx=1;
opts.logy=1;
opts.errplot=1; % Include deviation in magnitude plot
opts.phaseplot=0; % Do NOT produce plot of phase angle
opts.legend=1;
                 % Include legends in plots
for k = 1:Ni % Loop to make N-iterations
   [SER, Ps, rmserr, fit] = vectfit3 (Fs, s, Ps, weight, opts);
   RMS(k) = rmserr;
end
P = Ps; % Poles
C = SER.C; % Residues
D = SER.D; % Constant term
E = SER.E; % Proportional term
```

Table 13. "VF.m".

$$\mathbf{Y}_{n} = \begin{bmatrix} \mathbf{Y}_{c}\mathbf{A} & -\mathbf{Y}_{c}\mathbf{B} \\ -\mathbf{Y}_{c}\mathbf{B} & \mathbf{Y}_{c}\mathbf{A} \end{bmatrix}$$
(71)

and Yc, A and B by

$$\mathbf{Y}_{c}(\omega) = \mathbf{Z}(\omega)^{-1} \sqrt{\mathbf{Z}(\omega) \mathbf{Y}(\omega)}$$
(72)

Figure 14. Synthetic frequency response data and the rational approximation given by VF.

Figure 15. (a) Diagram of the equivalent circuit for the test, (b) behavior of $Z(\omega)$ and $Y(\omega)$.

$$\mathbf{A}(\omega) = \operatorname{coth}\left(\sqrt{\mathbf{Z}(\omega)\mathbf{Y}(\omega)l}\right) \quad \text{and} \quad \mathbf{B}(\omega) = \operatorname{csch}\left(\sqrt{\mathbf{Z}(\omega)\mathbf{Y}(\omega)l}\right)$$
(73)

By using the Numerical inversion of Laplace Transform (NLT) [2, 12], the voltage responses on time domain (v_1 , v_2 and v_3) are calculated for the cases of open-ended, short-circuited, and perfectly matched lines end. These results are considered as a reference solution.

Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment 43 http://dx.doi.org/10.5772/intechopen.71358

Figure 16. Flowchart for the implementation of single-phase transmission line modeling.

Figure 17. (a) Relative errors for the rational approximations of $\mathbf{Y}(\omega)$ and (b) relative errors for the rational approximations of $\mathbf{Z}(\omega)$.

The rational function-based models obtained with Bode, Levy, IRLS, VF, and LM are used to calculate **Z** and **Y**. Using a similar procedure as mentioned for each technique, the voltage responses (v_1 , v_2 and v_3) are calculated through the NLT.

The objective is to calculate the error in the time domain introduced by the rational approximations of Z and Y in frequency domain, taking into account the reference solution.

The comparative results are shown in **Figures 18–20** for the cases of short-circuited, perfectly matched, and open-ended lines end, respectively. The absolute errors are consistent with the deviations for the rational approximation of **Z**.

Figure 18. (a) Time domain simulation of the voltage response at the short-circuited line end, (b) absolute error with respect to the reference solution (v_3).

Figure 19. (a) Time domain simulation of the voltage response at the matched line end, (b) absolute error with respect to the reference solution (v_3).

Figure 20. (a) Time domain simulation of the voltage response at the open line end, (b) absolute error with respect to the reference solution (v_3).

5. Conclusions

In this book, Bode, Levy, Noda, SK, IRLS, VF, LM, and DGN methods have been described in detail for complex-curve fitting, and a routine implemented in MATLAB environment presented for each technique. Rational approximation of synthetic frequency responses have used to show the operation of the programs. Moreover, the techniques are used to approximate the series line impedance (Z) and the shunt line admittance (Y) corresponding to a single-phase transmission line. The main conclusions are:

- 1. Asymptotic Approximation or Bode has proved to be a reliable technique for the modeling of overhead transmission lines. Also, this method can realize the fitting on the magnitude of the function and uses only real poles and zeros. However, the error level in the approximation can be substantial and it depends on the sensitivity criterion used when inserting new poles and zeros in the fitting.
- **2.** The Levy method is pioneered for complex-curve fitting. Many techniques have been developed based on this methodology. Nevertheless, the method is biased, because it weights the fitting on high frequencies too much; this fact is demonstrated in the test cases.
- **3.** The IRLS method is an accurate technique for the rational fitting of frequency responses. This method permits the implementation of different weighting functions in order to improve the level error in the approximation. Its disadvantage lies in the numerical ill-conditioning encountered in approximations with a wide frequency range.
- **4.** The VF method is a robust and accurate technique. This fact has positioned this methodology as one of the most important in this field.
- 5. The LM method is a technique that shows good results in terms of level error. An advantage is that it can be implemented in pole-zero form, pole-residue form, and polynomial form.
- **6.** The main disadvantage for the optimization techniques like LM and DGN is that they can get stuck in a local minimum.
- 7. The rational approximation for **Z** and **Y** in the single-phase transmission line modeling shows that the same technique does not always deliver the same result. Levy, LM and IRLS delivers more accurate result for the fitting of **Y** while VF reach the best result for the fitting of **Z**. The error levels obtained in time domain simulations are consistent with the fitting of **Z**, because in the modeling of overhead transmission lines, these parameters are more relevant, therefore VF reach the best level error.

Author details

Eduardo Salvador Bañuelos-Cabral¹*, José Alberto Gutiérrez-Robles¹ and Bjørn Gustavsen²

*Address all correspondence to: ebanuelos@gdl.cinvestav.mx

- 1 University of Guadalajara, Guadalajara, Mexico
- 2 SINTEF Energy Research, Trondheim, Norway

References

- Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery. 1999;14(3):1052-1061. DOI: 10.1109/ 61.772353
- [2] Bañuelos-Cabral ES, Gutiérrez-Robles JA, Gustavsen B, Naredo JL, García-Sánchez JL, Sotelo-Castañón J, Galván-Sánchez VA. Enhancing the accuracy of rational function-based models using optimization. Electric Power Systems Research. 2015;125:83-90. DOI: 10.1016/ j.epsr.2015.04.001
- [3] Dommel HW. EMTP Theory Book. Portland, Oregon: Bonneville Power Administration; 1986
- [4] Levy EC. Complex curve fitting. IRE Transactions on Automatic Control. 1959;AC-4(1): 37-44. DOI: 10.1109/TAC.1959.6429401
- [5] Sanathanan CK, Koerner J. Transfer function synthesis as a ratio of two complex polynomials. IEEE Transactions on Automatic Control. 1963;8(1):56-58. DOI: 10.1109/TAC. 1963.1105517
- [6] Lawrence PJ, Rogers GJ. Sequential transfer-function synthesis from measured data. Proceedings of the Institution of Electrical Engineers. 1979;126(1):104-106. DOI: 10.1049/piee. 1979.0020
- Marti JR. Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Transactions on Power Apparatus and Systems. 1982; PAS-101(1):147-157. DOI: 10.1109/TPAS.1982.317332
- [8] Marti JR, Tavighi A. Frequency dependent multiconductor transmission line model with collocated voltage and current propagation. IEEE Transactions on Power Delivery. 2017; PP(99):1-10. DOI: 10.1109/TPWRD.2017.2691343
- [9] Soysal AO, Semlyen A. Practical transfer function estimation and its application to wide frequency range representation of transformers. IEEE Transactions on Power Delivery. 1993;8(3):1627-1637. DOI: 10.1109/61.252689
- [10] Gustavsen B. Improving the pole relocating properties of vector fitting. IEEE Transactions on Power Delivery. 2006;21(3):1587-1592. DOI: 10.1109/TPWRD.2005.860281
- [11] Morched A, Gustavsen B, Tartibi M. A universal model for accurate calculation of electromagnetic transient on overhead lines and underground cables. IEEE Transactions on Power Delivery. 1999;14(3):1032-1038. DOI: 10.1109/61.772350 ISSN: 0885-8977
- [12] Bañuelos-Cabral ES, Gustavsen B, Gutiérrez-Robles JA, Høidalen HK, Naredo JL. Computational efficiency improvement of the universal line model by use of rational approximations with real poles. Electric Power Systems Research. 2016;140:424-434. DOI: 10.1016/j.epsr. 2016.05.033

- [13] Noda T. Identification of a multiphase network equivalent for electromagnetic transient calculations using partitioned frequency response. IEEE Transactions on Power Delivery. 2005;20(2):1134-1142. DOI: 10.1109/TPWRD.2004.834347
- [14] Lathi P. Linear Systems and Signals. 2nd ed. New York: Oxford University Press; 2005. 973 p 978-0195158335
- [15] Bode H. Network Analysis and Feedback Amplifier Design. New York: Van Nostrand; 1945 978-0882752426
- [16] Björck A. Numerical Methods for Least Squares Problems. 1st ed. Philadelphia: SIAM; 1996 978-0898713602
- [17] Dennis JE Jr, Schnabel R. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. 1st ed. Philadelphia: SIAM; 1996. ISBN: 978-0898713640
- [18] Levenberg K. A method for the solution of certain problems in least squares. Quarterly of Applied Mathematics. 1944;2:164-168
- [19] Marquardt D. An algorithm for least squares estimation on nonlinear parameters. SIAM Journal on Applied Mathematics. 1963;11:431-441
- [20] SINTEF Energy Research. The Vector Fitting Web Site [Internet]. Available from: https:// www.sintef.no/projectweb/vectfit/

Authored by Eduardo Salvador Banuelos- Cabral, Jose Alberto Gutierrez-Robles and Bjorn Gustavsen

The rational fitting processes have become an essential component of electric power components and systems modelling. These techniques allow the inclusion of frequencydependent effects in electric power systems modelling. There are several methods for carrying out this model synthesis. This book provides a detailed description of some of the most widely used rational fitting techniques for approximation of frequency domain responses. The techniques are Bode's asymptotic approximation, the Levy method, iteratively reweighted least squares, the Sanathanan-Koerner method, the Noda method, vector fitting, the Levenberg-Marquardt method and the damped Gauss-Newton method. Such models permit the inclusion of frequency dependence in the modelling of overhead transmission lines and underground cables, in power transformers at high frequencies and in frequency-dependent network equivalents (FDNE). A MATLAB routine for each technique is presented.

IntechOpen

Photo by krusunshiro / iStock