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Preface

This book proves the need for BCI to adjust its therapeutic role to accommodate the distinct
syntactic and semantic levels of dynamical coding architectures that characterize the more
complex circumstances of motor cognition. In doing so, the book draws from up-to-date and
forward looking imaging technologies, including advances in classification methods using
artificial intelligence and feature element recognition, as well as a cross-fertilization from
methodologically related technologies, novel frequency configurations, in situ and interfa‐
cial implanting technology, output driven therapy based on dynamical language architec‐
tures, perceptual imaging therapy based on form reconstruction, and neurorehabilitation
that links form imaging to cognitive and sensorial feedback.

The book begins with a thematic chapter discussing the pertinence of the brain’s operational
dynamics for BCI and how this entails shifting the needs of syntax, semantics, and resulting in
construction related to the performance demands of the body. Their impact on modifying the
current BCI therapeutic model is then discussed. Subsequent chapters show how these novel
aspects will require new analytical approaches that can respond to the motive and modular
meaning of dynamical elements, now being developed in the classification technologies, and
even more distant information and intelligence disciplines. In this vein, Chapter 2 discusses
the use of deep learning intelligence schemes that can be applied to decompose wavelets,
information bearing, deconstructed forms that promise improved data extraction over fourier
analysis. Chapter 3 then takes the eclectic tack of improving classification parcellation by bor‐
rowing from technologies that detect false from real signal content in forgery detection.

A critical feature for BCI administered therapy is that, at deeper dynamical levels, the brain
is not merely attempting to communicate completed imagery with defined semantic content,
but is instead investing meaning to the perceptual form. This can be seen in BCI rehabilita‐
tion approaches that seek to elicit motor imagery in the attempt to repair central events, as
presented in Chapter 4. Chapter 5 furthers this use of BCI beyond motor image generation
to the processes involved in assembling the motor image. This entails the use of realistic sen‐
sorial feedback that generates an embodied sense, akin to what happens in normal cogni‐
tion, that is, through a recreation of the dynamical elements used to generate the form image
on an online-updated basis.

While the primary intent of any therapy is the restoration of the endogenous physiology,
BCI therapy has frequently resorted to a replace and restore strategy, meaning the substitu‐
tion of normal performance with implant devices, a concession to the inherent difficulty in
fully healing these nerve processes. In such instances, BCI will need to advance technology
so as to interface with dynamical elements in order to not only convey formulated action
intentions but also to assist in their construction.
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Three final chapters consider this dimension in their discussion of the advantages and per‐
formance constraints of mediating brain-based output. Chapter 6 discusses a cue related po‐
tential, the SSVEP, as an interpretive element that conveys intended actions. Such potentials
are proposed to engage synchronous oscillatory activity; hence, they are promising for ex‐
ploring mechanisms of oscillatory transfer that lead to new behavioral states. Chapter 7 ex‐
plores the evolution of single mode BCI to multimode hybrid configurations that combine
the advantages of multi-classification and multi-command modes.

Chapter 8 considers an entirely new form of interfacial elements, magnetic nanoparticles,
that are capable of frequency modulation. Because these are subject to navigational control,
they can be mobilized to any region of the brain; hence, they are potentially capable of dy‐
namically interacting with resonating neural ensembles throughout the brain.

It is my hope that this text will generate a thoughtful discussion about how these challenges
lead BCI to undertake new therapeutic roles and administer new strategic responses to the
motor impaired patient.

I am grateful to Loyola University Chicago for their kindness in supporting this project and
for ready access to their informational facilities.

Prof. Denis Larrivee
Loyola University Chicago

Chicago, USA

XII Preface

Section 1

New Conceptions in BCI Therapy: Syntax and
Semantics in Rehabilitation



Three final chapters consider this dimension in their discussion of the advantages and per‐
formance constraints of mediating brain-based output. Chapter 6 discusses a cue related po‐
tential, the SSVEP, as an interpretive element that conveys intended actions. Such potentials
are proposed to engage synchronous oscillatory activity; hence, they are promising for ex‐
ploring mechanisms of oscillatory transfer that lead to new behavioral states. Chapter 7 ex‐
plores the evolution of single mode BCI to multimode hybrid configurations that combine
the advantages of multi-classification and multi-command modes.

Chapter 8 considers an entirely new form of interfacial elements, magnetic nanoparticles,
that are capable of frequency modulation. Because these are subject to navigational control,
they can be mobilized to any region of the brain; hence, they are potentially capable of dy‐
namically interacting with resonating neural ensembles throughout the brain.

It is my hope that this text will generate a thoughtful discussion about how these challenges
lead BCI to undertake new therapeutic roles and administer new strategic responses to the
motor impaired patient.

I am grateful to Loyola University Chicago for their kindness in supporting this project and
for ready access to their informational facilities.

Prof. Denis Larrivee
Loyola University Chicago

Chicago, USA

PrefaceVIII

Section 1

New Conceptions in BCI Therapy: Syntax and
Semantics in Rehabilitation



Chapter 1

Introductory Chapter: Multilevel Representational
Content in BCI Therapy - Extending Syntactic and
Semantic Architectures

Denis Larrivee

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80232

Provisional chapter
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1. Introduction

The often expressed, but usually trite cliché about history duplicating fiction, nonetheless, reflects
a deeper reality, about the human penchant for mystery behind modern technological marvels
like brain-computer interfacing (BCI). Indeed, by combining the elusiveness of mental represen-
tations with unseen links to motor movements, BCI seemingly appealed to fictional accounts of
unlimited mobility and teleportation. This mystique behind the mechanism has lessened some-
what since Jacque Vidal first coined the term in the 1970s [1]. Nevertheless, there remains
ongoing excitement over therapeutic prospects that continue to drive interest in advancing BCI
applications. Recent domains for example have included the rehabilitation of stroke victims,
improved learning with artificial sensory feedback, and real-time control over fine motor move-
ments, as well as the traditional mobilization of external devices usually associated with BCI.

As a strategic response to cognitive and CNS impairments, BCI is a theoretical outgrowth of
several generations of endogenous devices that have as a prime strategy the direct replacement
of lost neural function. Devices like pacemakers, cochlear implants, and vagal stimulators for
example have all been successfully deployed in the relatively simpler anatomical substrate of
sensorial and motor nerves where nerve transmission is largely unidirectional and composed
of sequences of transmitting signals [2, 3]. In these applications the premise of administering
therapy by replacing lost function has been limited to the restoration of signal-generating
capacity [4]. Cochlear implants, for instance, transduce pitch vibrations that occur outside
the ear to coded electrical signals within the cochlea in order to elicit action potentials in the
frequency to place receptors that form the auditory nerve. Implants sited more internally are
similarly designed but require the presence of a bidirectional interface for nerve signals, that is,
one that can both receive electrical impulses from the intact nerve tissue and yield an

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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equivalently spaced temporal output beyond the point of lesion. For these devices the replace-
ment of action potentials is akin to the restoration of language syntax, here linearly related to
temporal spiking sequences.

In building on these earlier devices, BCI has appropriated not only a similar premise but also a
similar design and has, therefore, been largely sequence based and output driven. One conse-
quence of this approach, for example, has been the search for an electrical feature that can be
used in a fashion analogous to that of spiking in implant devices for peripheral nerves, such as
the local field potential [5]. The premise of a temporally defined syntax is increasingly chal-
lenged, however, as knowledge of the anatomical recurrency of the brain is made manifest and
the need to distinguish transmitted signals from a dominant background of noise becomes
evident [6–8]. How the brain resolves the challenges posed by its complex operation is now
thought to occur through the structuring of temporally independent and cyclically repetitive
activity, that is, nonlinear dynamical elements that, while using spiking activity as a funda-
mental mechanistic feature, nonetheless relate only indirectly to it for communication. This is
to say that the brain employs a very different type of coding syntax from that of the peripheral
nerves. Such fundamentally distinct conditions for communicating information in turn require
a different premise on which to base BCI therapy.

Qualitatively different premises for technology, in fact, are hardly new in science, often exerting
profound influences on the subsequent course a field may take. The difference in the way
information content is represented, when transitioning from peripheral to central nervous tissue
resembles, for example, the transition made in computational programming architectures before
and after the introduction of autonomous robotic design [9]. Attempts to endow field-situated
robotic agents with autonomous mobility initially employed basic program planning formats
where decision-making points were encoded in a series of steps telling the robot how to respond.
In the field however, it became apparent that programmed contingencies were incapable of
responding to the vast array of circumstances that could act as input variables. The need to
accommodate this nearly unlimited variability resulted in a new approach to program planning
that adopted a more interactive format where plans comprised only one among several input
resources that autonomous robots could call upon [10]. In their formatting, these plans adopted a
parallel architecture to accommodate multiple and simultaneous inputs. World information was
thus assimilated and assembled as blocks of knowledge rather than temporally consecutive
incidents.

An analogous shift is now needed for conceiving of BCI as a therapeutic medium, that is, as one
that no longer entails only the restoring of signal transmission capacity but also the repairing of
processes that structure basic functions. The direction in which this shift will need to evolve,
therefore, is not merely in duplicating how the brain transmits information but also in a larger
grasp of organismal design that is mediated globally. This becomes apparent when analogized to
a linguistic hierarchy, which is used to structure multilevel representational content.

2. Syntactical generation for cognitive representations

In the distinct circumstances of brain cognition, this is apparent, first, at a syntactical level.
Given a prevailing background of noise, signal preservation is prioritized, by use of recurrent
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connectivities that possess reciprocal inhibitory and excitatory contributions [11–13]. The
emphasis of this anatomical architecture is to create circumstances of signal stability, to enable
information-bearing signals to persist, thereby minimizing any corruption of information
content. Hence, the physical architecture of the brain is anatomically configured to create
patterns of cyclical flow, where the pattern of the cycle contains the information representation.
Current estimates indicate that nearly 95% of brain neurons exhibit some form of feedback,
with some zones noted for especially dense innervation [14, 15]. The physiological conse-
quence of this arrangement is the generation of energetically favored zones where signal
propagation is retained. Such persistent activity is a necessity to enable the brain to monitor
ongoing bodily activity. However, persistent activity also makes brain operation susceptible to
the pervasive influence of a noisy background. This susceptibility is overcome by structuring
flow within energetically favorable zones, which minimizes the influence of noise and maxi-
mizes signal retention.

The dynamical motifs that are generated adapt spiking activity to exhibit a periodicity that
frees syntactical expression from its temporal dependence. This periodicity fundamentally
restructures the representation of information content. Hence, basic elements of syntax in the
brain are not pulsed sequences, but blocked patterns.

Critically, these stabilized patterns are unique outcomes determined by the resolution of numer-
ous physical forces; that is, they emerge from a high-dimensional state space within the global
activity of the brain. They can therefore potentially assume an indefinite number of mathematical
configurations that are defined by these physical circumstances. In a simple model, like a fixed
point attractor, the rate of change of the attractor back to its original configuration is linearly
related to the brain state, which is typically represented by a signal feature related to that state.
More complex models entail the continuous and repetitive traversal of brain states by the
attractor, which are described mathematically by a second derivative function, while still other
models are complex and multiparameterized [16, 17]. The result of this variation is a significant
expansion of syntactical range that is likely to substantially differ from that in peripheral nerves.

For BCI therapy the use of a different syntactical expression can be expected to have several
consequences. The transposition of one syntax for another means, first, that an interfacial
medium relying only on the original syntax introduces gaps in syntactical interpretation, with
the immediate consequence of interpretive redundancy [18, 19]. That is, the mapping from one
coding structure to the second is not one to one, but instead elicits multiple readouts. For a
therapy premised on signal restoration, this overextends the intended output range and
diminishes if not obviates therapeutic effectiveness. Hence, bidirectional interfacing premised
on duplicating spiking sequences alone is likely to be inadequate for information transfer.

By acquiring temporal independence additionally, the manner in which syntactical elements
are assembled is also altered. As cyclical patterns it is only through their modular assembly
into larger architectures that they can yield representational variation, a feature that is seen, for
instance, in cases of stable heteroclinic channels [20, 21]. Such variation is potentially amenable
to exploitation for constructing extended symbolical architectures [22]. Rodrigues et al., for
example, have shown that simple combinations of dynamical elements can be exploited to
significantly expand the range of syntactical elements [23]. Using an attractor and repellor,
they were able to demonstrate that networks generating these elements not only variably
combine in specific ratios but also generalize from external inputs; that is, they learned to
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http://dx.doi.org/10.5772/intechopen.80232

5



equivalently spaced temporal output beyond the point of lesion. For these devices the replace-
ment of action potentials is akin to the restoration of language syntax, here linearly related to
temporal spiking sequences.

In building on these earlier devices, BCI has appropriated not only a similar premise but also a
similar design and has, therefore, been largely sequence based and output driven. One conse-
quence of this approach, for example, has been the search for an electrical feature that can be
used in a fashion analogous to that of spiking in implant devices for peripheral nerves, such as
the local field potential [5]. The premise of a temporally defined syntax is increasingly chal-
lenged, however, as knowledge of the anatomical recurrency of the brain is made manifest and
the need to distinguish transmitted signals from a dominant background of noise becomes
evident [6–8]. How the brain resolves the challenges posed by its complex operation is now
thought to occur through the structuring of temporally independent and cyclically repetitive
activity, that is, nonlinear dynamical elements that, while using spiking activity as a funda-
mental mechanistic feature, nonetheless relate only indirectly to it for communication. This is
to say that the brain employs a very different type of coding syntax from that of the peripheral
nerves. Such fundamentally distinct conditions for communicating information in turn require
a different premise on which to base BCI therapy.

Qualitatively different premises for technology, in fact, are hardly new in science, often exerting
profound influences on the subsequent course a field may take. The difference in the way
information content is represented, when transitioning from peripheral to central nervous tissue
resembles, for example, the transition made in computational programming architectures before
and after the introduction of autonomous robotic design [9]. Attempts to endow field-situated
robotic agents with autonomous mobility initially employed basic program planning formats
where decision-making points were encoded in a series of steps telling the robot how to respond.
In the field however, it became apparent that programmed contingencies were incapable of
responding to the vast array of circumstances that could act as input variables. The need to
accommodate this nearly unlimited variability resulted in a new approach to program planning
that adopted a more interactive format where plans comprised only one among several input
resources that autonomous robots could call upon [10]. In their formatting, these plans adopted a
parallel architecture to accommodate multiple and simultaneous inputs. World information was
thus assimilated and assembled as blocks of knowledge rather than temporally consecutive
incidents.

An analogous shift is now needed for conceiving of BCI as a therapeutic medium, that is, as one
that no longer entails only the restoring of signal transmission capacity but also the repairing of
processes that structure basic functions. The direction in which this shift will need to evolve,
therefore, is not merely in duplicating how the brain transmits information but also in a larger
grasp of organismal design that is mediated globally. This becomes apparent when analogized to
a linguistic hierarchy, which is used to structure multilevel representational content.

2. Syntactical generation for cognitive representations

In the distinct circumstances of brain cognition, this is apparent, first, at a syntactical level.
Given a prevailing background of noise, signal preservation is prioritized, by use of recurrent

Evolving BCI Therapy - Engaging Brain State Dynamics4

connectivities that possess reciprocal inhibitory and excitatory contributions [11–13]. The
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represent external input information. This is significant for relating the structure of the net-
work in its connectivity features to a dynamical generation of symbolical structures that
establish equivalency with external representation, that is, as codes that map content.

3. Feature-specific representation and semantic construction in BCI
therapy

Yet, the generation of symbolical content is not the only consequence of acquiring temporal
independence. The manner in which syntactical elements are assembled is also altered. As
cyclical patterns it is only through their modular assemble into larger architectures that they
can yield representational variation. Significantly, this change offers the immediacy of parallel-
based representation. Hence, the role of syntax as representational sign, that is, as in a symbol-
ical, Peircean coding, is itself transformed, linked instead to semantic elements that duplicate
through self-organization feature-specific content of the external world [24]. For BCI, informa-
tion extraction premised on symbolical articulation alone and not accounting for such modular
assembly reduces structural content, diminishing the capacity for representation.

The complexity and magnitude of dynamical variation encountered in the state space of the
brain, moreover, is a capacity amenable to environmental exigencies, in much the manner that
field-situated robotic artifacts become amenable to local input by transferring responsivity
from programmatic architectures to distributed processing. Here, sensorial input can elicit
motor responsivity directly, structuring forms that directly respond to molding stimuli [25].

Some of the essence of this process of feature-specific duplication can be seen in the motor image,
a covert action that is a representation of a non-executed action. The concept of the motor image
itself evolved from several experimental legacies. Classical observations made by Lashley [26, 27]
in a subject with a deafferented limb showed that humans, and animals, were able to generate
actions without sensorial input, in contrast to the broadly assumed hypothesis prevalent in the
nineteenth century. Later, experiments in monkeys showed that with deafferentation of spinal
dorsal motor roots the animals nonetheless could execute pointing movements in all the phases
of motion [28]. This indicated that the movement was predetermined centrally. How this was
done and how executed became apparent in studies of ongoing motion. Held [29] observed that
limb movements in such circumstances usually do not correspond to their expected trajectories,
but entail a misreaching followed by progressive compensatory movements. To explain his
finding he proposed Von Holst and Mittelstaedt [30] hypothesis that the command for the
executed movement was stored as an efference copy, sent to the sensory cortex, where it was
then compared with the actual movement undertaken so as to correct the misaligned motions.
The experimental observation of misalignment and correction seen experimentally served as
evidence of the memorized storage. A corollary of this hypothesis was that self-made motions
could be contextualized to the individual who initiated the actions, a conclusion drawn by Frith
in his comparator model [31, 32]. This is to say that the comprehension of the actions as those of
one’s own was a necessary feature of movement; while the actions could be initiated without
afferences, they nonetheless required them for motor cognitions in order to be understood as
self-executed functions.
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In continuous motions the sensory cues are coupled to motor execution in a mutually reciprocal
and sustained process [33]. This is necessary, since as the body undergoes motion, its spatiotem-
poral position is continually changing and so also the sensory cues that reference it. While these
cues entail contributions from all the senses, those having the greatest influence are of
somatotopic origin due to their capacity to delimit the three-dimensional topological perimeter
of the body [34]; this is also to say that it is necessary to knowwhere the body is situated in space
and time in order to know where next to move it. Linda Smith has described this as a point of
criticality, analogous to a phase transition in a material substance, where the body is framed as a
stable reference that is transitioning to a fluid and behaviorally flexible state [35].

The validity of this observation, and also as a demonstration of the need to frame the whole
body, is well documented in the Piaget A not B error where a young infant continues to
perseverate toward an object goal despite having been informed of its prior displacement. This
error is explained by the delay in development of maturational processes of the brain needed to
formulate and execute goal-directed actions [36]. From these, and other experimental studies, it
is intuitive to see why the observed events and processes hypothesized by Von Holst and
Mittelstaedt and by Frith require a “predictive processing” to engage motion [37]. Predictions
are needed if one is to engage in actions, that is, actions that are intended to be carried out by the
self, and are not merely passive responses to external events. Since all external contingencies
cannot be known beforehand, like the field-situated autonomous artifact, neither can all conse-
quences of the intended actions. The expectation of the action, its prediction, affords a first
approximation that is open to correction that can structure the sequence that follows and that is
energetically efficient.

This interplay between predictive actions, goals, and a holistic bodily sense point, further, to
the presence, indeed need of mechanisms that involve a simulation of intended actions. Covert
actions are thus a motor planning stage needed for subsequent motor execution. In this, the
motor image is the key element. The construction of the image, its contextualization to the
whole, and its traversal of stability flexibility bifurcations are all basic elements that entail
feature duplications of the projected events. That is, they constitute semantic representation of
objective events directly and not coded symbols of what is intended.

Hence, at deeper levels, linguistic primitives function as determinants for assimilating seman-
tic content. That is, the assembly of these elements creates the semantic content of what is
communicated through the action. For BCI therapy, this expands the role of therapy from
interpretive assessment to the construction of semantic form, like that occurring when cou-
pling sensorial input to the elicitation of motor imagery [25]. Here, semantic content is added
by combining the specific motions that are undertaken to their semantic representation in the
whole form of the individual, a process likely to the precision of motor processing primitives of
the cerebellum [38, 39].

4. BCI therapy and biological design

Taken together, what is made apparent in analogizing from a linguistic perspective is the
strategical implementation of multilevel representational content to structure goal-oriented
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motor actions. By extension, there is thus also the implicit subordination of this strategy to
ontological demands, that is, actions undertaken for the good of the organism. Hence, they
entail more than the execution of actions, a traditional objective performed in BCI, and so also
include the formulation of organismal goals. For BCI therapy, accordingly, this formulation of
representational content will be a critical objective for therapeutic strategy, encompassing
diagnosis and therapy, and dictated at syntactic and semantic levels.

For the motor image, notably, it is apparent that representational content is articulated at
multiple levels, built upon a dynamical syntax that acquires semantic content by binding
representational, feature-specific, i.e., simulated, forms together. Distinguishing the level of
functional disturbance therefore is an objective needed in order to administer therapy ade-
quately. Yet, in decoding approaches that have evolved to date, the central technical concern is
that of classification, that is, the mapping of a brain state in its activity patterns to an external
object or event. Older techniques like mass univariate analysis sequentially evaluate brain
regions for a specific activity at a specific location. Measuring covariance between multiple
single units is thereby taken as a diagnostic feature of how select images are encoded, like the
activation of long regions of the occipital cortex on presentation of a single object. Discerning
the underlying structure of the representational content, therefore, remains unknown and an
obstacle to focal BCI therapy [40].

In more recently developed multivariate classification approaches, previously determined
activity patterns are linked to specific object features that can assess or predict the content of
a specific activity. While this approach can be employed without the presentation of an object,
many potential representations are left unclassifiable. These limitations have led to current
model-based classification approaches that use models to predict patterns not elicited by
training data. Such promising efforts seek to extract greater information content from pat-
terned activity than obtained from linear mapping strategies alone. These latter strategies are
likely to be strengthened by expanding the capacity to extract information content by combin-
ing deep neural learning with wavelet analysis, like that seen in Chapter 2. Hence, they can be
expected to extrapolate from syntactical structure to simulated actions; that is, they will be
better capable of extracting how meaning is formulated in the assembly of simulated execut-
able sequences. Enlisting technological methods that can optimize distinctions between signal
and noise, like that of Chapter 3, can be expected to further this capacity and particularly
evident where discerning the syntactical expression of dynamical architectures is key, in order
to communicate the motor image, as in Chapters 6, 7, and 8 of this text.

Crucially, issues of deciphering multilevel representational content and formulating semantic
architectures for action-oriented goal seeking enter into primitive motor assembly levels, where,
for example, the capacity for assimilatingmeaningful content is impaired. These will require new
therapeutic paradigms where BCI may be one among several adjunct approaches used together
to restore the functional modalities needed for simulated motor articulation. In practice, these
paradigms will need to recreate the multilevel, brain-based operation that occurs in motor
planning, like that used in sensory motor coupling. Models of such therapy, for example, are
presented in Chapters 4 and 5 of the current volume.
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5. Conclusion

Novel insights into the multilevel construction of representational content promise a new
phase of BCI therapy, embracing not only the restoration of executable actions but also the
formulation of the motor image and motor planning sequences. Built upon the fundamentally
distinct syntactic and semantic architecture of dynamic cognition, new forms of therapy will
undertake to simulate the brain’s approach to information transfer and to attain goal-directed
planning. These will likely entail enhanced information extraction in classification and predic-
tive technology, dynamically structured command and communication methodologies, and
integrative, mixed-mode BCI approaches that can restructure motor semantics.
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Abstract

Motor imagery brain-computer interface (BCI) by using of deep-learning models is pro-
posed in this paper. In which, we used the electroencephalogram (EEG) signals of motor 
imagery (MI-EEG) to identify different imagery activities. The brain dynamics of motor 
imagery are usually measured by EEG as non-stationary time series of low signal-to-noise 
ratio. However, a variety of methods have been previously developed to classify MI-EEG 
signals getting not satisfactory results owing to lack of characteristics in time-frequency 
features. In this paper, discrete wavelet transform (DWT) was applied to transform MIEEG 
signals and extract their effective coefficients as the time-frequency features. Then two deep 
learning (DL) models named Long-short term memory (LSTM) and gated recurrent neu-
ral networks (GRNN) are used to classify MI-EEG data. LSTM is designed to fight against 
vanishing gradients. GRNN makes each recurrent unit to capture dependencies of differ-
ent time scales adaptively. Similar scheme of the LSTM unit, GRNN has gating units that 
modulate the flow of information inside the unit, but without having a separate memory 
cells. Experimental results show that GRNN and LSTM yield higher classification accura-
cies compared to the existing approaches that is helpful for the further research and applica-
tion of relative RNN in processing of MI-EEG.

Keywords: motor imagery, brain-computer interface (BCI), recurrent neural network 
(RNN), long-short-term memory (LSTM), gated recurrent neural network (GRNN)

1. Introduction

Brain-computer interface (BCI) system provides one of the most important aspects, which is an 
alternative way of communication through brain signals. It is just to translate electroencephalogram 
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(EEG) signals from a reflection of brain activity into user action through system’s hardware and 
software. A BCI system provides a communication channel not based on nerves and muscles that 
allow users to communicate by electrodes contacting on scalp. It has attracted increasing attention 
of a variety of research fields including neuroscience, machine learning, pattern recognition, reha-
bilitation medicine, and so on.

Motor imagery (MI) is an important research topic in the field of BCI that mentally simulates 
a given action, e.g., imaging the motions of the limbs [1]. It refers to visualization of a limbic 
activity, or any other movement, without the actual execution of the motion imagined. It leads 
to various changes in the connectivity between the neurons present in the cortex. This results 
in either an event-related desynchronization (ERD) or event-related synchronization (ERS) of 
mu rhythms. These effects are due to the changes in the chemical synapses of the neurons, 
the change in strength between the interconnections or the change of intrinsic membrane 
properties of local neurons. Since extracted from scalp EEG, MI-EEG has the characteristics of 
nonlinear, nonstationary, and time-varying.

In the research field of MI-EEG-based BCI, several researchers have proposed different strat-
egies. Tomida et al. [2] presented an active data selection method for MI-EEG classification 
in 2015. Rejecting or selecting data from multiple trials of EEG recordings is crucial in the 
selection method. To aim at brain machine interfaces (BMIs), they proposed a sparsity-aware 
method to select data from a set of multiple EEG recordings during MI tasks. An extraction 
approach with transform-based feature for MI tasks classification was proposed by Baali et al. 
[3]. A signal-dependent orthogonal transform was used, referred to as linear prediction sin-
gular value decomposition (LP-SVD), for feature extraction. They used a logistic tree-based 
model classifier to classify the extracted features into one of four motor imagery movements. 
In 2016, Wu et al. [4] used the fuzzy integral with particle swarm optimization (PSO), which 
can regulate subject-specific parameters for the assignment of optimal confidence levels for 
classifiers. Lin and Lo [5] constructed a MI-based BCI system to control an electric wheelchair. 
They used discrete wavelet transform (DWT) to transform EEG signals into frequency domain 
and applied SVM to classify them into different commands. Chatterjee and Bandyopadhyay [6] 
used SVM and multilayered perceptron (MLP) for MI-EEG classification in 2016. They showed 
that both SVM and MLP were suitable for such MI classifications with the accuracy of 85 and 
85.71%, respectively. The symmetric positive-definite (SPD) covariance matrices of EEG sig-
nals carry important discriminative information proposed by Xie et al. [7] for MI BCI system 
in 2016. Chatterjeel et al. [8] examined the quality of feature sets obtained from wavelet-based 
energy entropy with variation of scale and wavelet type for MI classification in 2016. They have 
verified their study with three classifiers—Naive Bayes, MLP and SVM. Jois et al. [9] compared 
several classification techniques for motor imagery-based BCI in 2015. They indicated that 
common features, e.g., band power values, present that the single EEG trials can be extracted 
by suitable methods for classification using SVM, neural networks, or ensemble classifiers. 
The classifiers yield different efficiencies and are compared to find the optimal technique for 
same number of features. They believed the neural net techniques were proved to be the most 
efficient. One obstacle of the traditional neural networks for their broader application is the 
initial weights need to be chosen carefully. Generally, small values could make the multilayer 
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network untrainable owing to weight diffusion, while large initial values of the weights could 
result in poor local minima [10]. In order to resolve this problem and construct high descrip-
tive-ability neural networks, a new model of strategies and algorithms, called deep learning 
(DL), has been successfully developed and becomes prevailing in several fields [11].

There are many ways in machine learning for data classification. The most popular and 
proven method in recent decades is “Artificial Neural Network (ANN).” We know how arti-
ficial neural networks adjust weights so that the error between output and input becomes 
smaller. But even so, this is far from the “artificial intelligence” that we want. If the computer 
can analyze the data to find the features, then it is closer to the artificial intelligence we want, 
that is to say, the created computer can think. DL allows computers to analyze their own data 
to find “features,” rather than decided by human beings with features, just as computers can 
have deep thinking to learn. DL uses not only a multilayer neural network but also an auto-
encoder for unsupervised learning.

Recurrent neural networks (RNN), one of the models in DL, have proved promising results in 
many field [12–15] recently, especially when input and/or output are of variable length. In the 
application of EEG signals classification, Petrosian et al. [16] first applied RNN and wavelet 
transform to classify EEG signals. RNN is not satisfied in scalp EEG owing to the scalp EEG 
containing interference resulted from external noises. Besides, the input of the RNN does not 
have a special signal preprocessing, the RNN network has some problems such as gradient 
explosion and gradient vanish. Fully using characteristics in time-frequency features of sig-
nals, RNN with LSTM [17], have recently emerged as an effective deep learning model in a 
wide variety of applications that involve sequential data. The LSTM-based RNN can not only 
solve the problems in RNN but also store the long time information. In 2016, Li et al. [18] 
proposed an LSTM-based RNN integrated with DWT to classify the EEG signals. The LSTM 
is designed to fight against vanishing gradients through a gating mechanism. Gated recurrent 
neural network (GRNN), proposed by Cho et al. [19] in 2014, makes each recurrent unit to cap-
ture variable-length sequences adaptively. Similar scheme of the LSTM unit, GRNN has gat-
ing units that modulate the flow of information inside the unit, but without having a separate 
memory cell. In GRNN, the parameters at each level are shared through the whole network.

In this chapter, LSTM and GRNN combined with the DWT to classify the EEG signals were 
proposed. The average power spectrum of MI-EEG signals was calculated and the effective 
time segment was also determined. Then, DWT is applied to each channel of MI-EEG to 
extract the effective time-frequency characteristics. Finally, LSTM and GRNN were used as 
classifiers to recognize the MI-EEG signals. The experimental results showed that GRNN and 
LSTM methods can make full use of the time-frequency information of MI-EEG, as well as 
time sequence information, and can get better recognition performance.

The rest of this chapter is organized as follows: Section 2 describes the system architecture; 
wavelet transform is described in Section 3; Section 4 presents the LSTM-based recurrent net-
work; the GRNN is discussed in Section 5; Section 6 shows the experimental results; the appli-
cation to control an electric wheelchair is shown in Section 7; and finally, the discussions are 
given in Section 8.
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Figure 2. Locations C3, C4, and Cz are used in the 10–20 system.

2. System architecture

The proposed BCI system is integrated as EEG signals extracting subsystem through the 
Emotiv EPOC chip, g.SAHARAbox system, and g.SAHARA electrodes. The g.SAHARAbox 
system and g.SAHARA electrodes are shown in Figure 1. The system’s electrodes are dry man-
ner and nonintrusive conductive system that allows 16 EEG channels to be embedded into the 
input of EPOC chip at the same time. The electrode locations C3, C4, and Cz based on the inter-
national 10–20 system, shown in Figure 2, were used to extract EEG signals, while locations A1 
and A2 were used as reference points. For the MI-EEG signals, two motion-imagination brain 
signals were recognized, respectively. One is “imagining right-hand action” and the other is 
“imagining left-hand action.” In order to establish a sampling model, we captured 9-s EEG 
signals for every imagining action from every channel. And, the extracted brainwave signal is 
transformed through DWT to obtain the spectrums in frequency domain. Then, the frequency 
feature was calculated and classified into different categories by using LSTM and GRNN.

Figure 1. The subsystems in the proposed BCI: (a) g.SAHARAbox system and (b) g.SAHARA electrodes.
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In order to speed up the processing of DWT and update the classification performance in 
the deep learning algorithms, the NVIDIA Jetson TK1 is used in the proposed system. In the 
platform, NVIDIA Tegra K1 SoC is embedded with a super computing core NVIDIA Kepler. 
So that it is a high-speed computing system for rapid development and deployment in com-
puter vision, robotics, medical applications, and more. Additionally, an FPGA module named 
Xilinx Virtex4 XC4VFX12 is also applied to control external system such as electric wheelchair.

3. Discrete wavelet transform

The concept of wavelet was proposed by Jean Morlet in 1981. In this chapter, The Daubechies 
wavelet, proposed by Dr Daubechies in 1988 [20], was used to extract the features from EEG 
signals. It is often used in signal compression, digital signal analysis and noise filtering, 
and so on. In Daubechies wavelet, several series db wavelets can get better performance in 
signal analysis. In this chapter, db4 wavelets were used to extract main features from EEG 
signals. Multiresolution analysis in the WT algorithm was proposed by Mallat [21] in 1989. 
When a signal resolution has a high-degree variation in a proper area, it is difficult to get 
detailed features while the multiresolution strategy can decompose the lower layer signal to 
get more information. Therefore, the decomposed low-frequency signal can be decomposed 
continuously to display more features. However, the decomposed iterations of the signal are 
so many to make the number of samples so few that results in less obvious characteristics 
of the signal.

Therefore, the number of signal decomposition layer is limited. In the wavelet decomposi-
tion, the original signal is input to a low-pass filter g[k] and a high-pass filter h[k], respec-
tively. The low-pass filter retains the consistency of the original signal, and the high-pass 
filter reserves the variability of the original data. Discrete wavelet transform can be com-
bined with wavelet function and scale function. In the low-frequency part, it has a high 
frequency resolution and low temporal resolution, while there was a lower frequency resolu-
tion and a higher time resolution in the high-frequency part. The discrete wavelet transform 
decomposition and recombination is shown in Figure 3 and the multiresolution analysis in 
the WT is shown in Figure 4.

The left half is wavelet decomposition, after the high-pass and low-pass decomposition and 
then downsampling to get two groups of detailed signal and the approximate signal. The right 
half in Figure 3, the decomposition of the series for the rise of sampling, and then through 
the high-frequency synthesis filter and low-frequency synthesis filter can be reconstructed.

Figure 3. Discrete wavelet decomposition and reconstruction.
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ner and nonintrusive conductive system that allows 16 EEG channels to be embedded into the 
input of EPOC chip at the same time. The electrode locations C3, C4, and Cz based on the inter-
national 10–20 system, shown in Figure 2, were used to extract EEG signals, while locations A1 
and A2 were used as reference points. For the MI-EEG signals, two motion-imagination brain 
signals were recognized, respectively. One is “imagining right-hand action” and the other is 
“imagining left-hand action.” In order to establish a sampling model, we captured 9-s EEG 
signals for every imagining action from every channel. And, the extracted brainwave signal is 
transformed through DWT to obtain the spectrums in frequency domain. Then, the frequency 
feature was calculated and classified into different categories by using LSTM and GRNN.

Figure 1. The subsystems in the proposed BCI: (a) g.SAHARAbox system and (b) g.SAHARA electrodes.
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In order to speed up the processing of DWT and update the classification performance in 
the deep learning algorithms, the NVIDIA Jetson TK1 is used in the proposed system. In the 
platform, NVIDIA Tegra K1 SoC is embedded with a super computing core NVIDIA Kepler. 
So that it is a high-speed computing system for rapid development and deployment in com-
puter vision, robotics, medical applications, and more. Additionally, an FPGA module named 
Xilinx Virtex4 XC4VFX12 is also applied to control external system such as electric wheelchair.

3. Discrete wavelet transform

The concept of wavelet was proposed by Jean Morlet in 1981. In this chapter, The Daubechies 
wavelet, proposed by Dr Daubechies in 1988 [20], was used to extract the features from EEG 
signals. It is often used in signal compression, digital signal analysis and noise filtering, 
and so on. In Daubechies wavelet, several series db wavelets can get better performance in 
signal analysis. In this chapter, db4 wavelets were used to extract main features from EEG 
signals. Multiresolution analysis in the WT algorithm was proposed by Mallat [21] in 1989. 
When a signal resolution has a high-degree variation in a proper area, it is difficult to get 
detailed features while the multiresolution strategy can decompose the lower layer signal to 
get more information. Therefore, the decomposed low-frequency signal can be decomposed 
continuously to display more features. However, the decomposed iterations of the signal are 
so many to make the number of samples so few that results in less obvious characteristics 
of the signal.

Therefore, the number of signal decomposition layer is limited. In the wavelet decomposi-
tion, the original signal is input to a low-pass filter g[k] and a high-pass filter h[k], respec-
tively. The low-pass filter retains the consistency of the original signal, and the high-pass 
filter reserves the variability of the original data. Discrete wavelet transform can be com-
bined with wavelet function and scale function. In the low-frequency part, it has a high 
frequency resolution and low temporal resolution, while there was a lower frequency resolu-
tion and a higher time resolution in the high-frequency part. The discrete wavelet transform 
decomposition and recombination is shown in Figure 3 and the multiresolution analysis in 
the WT is shown in Figure 4.

The left half is wavelet decomposition, after the high-pass and low-pass decomposition and 
then downsampling to get two groups of detailed signal and the approximate signal. The right 
half in Figure 3, the decomposition of the series for the rise of sampling, and then through 
the high-frequency synthesis filter and low-frequency synthesis filter can be reconstructed.

Figure 3. Discrete wavelet decomposition and reconstruction.
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Figure 5. The block diagram of LSTM.

4. LSTM-based recurrent network

RNNs are popular networks that have shown great promise in many sequential tasks. RNNs 
are called recurrent because they perform the same task for every element of a sequence, with 
the output being depended on the previous states. Recently, several researchers have developed 
more sophisticated types of RNNs to deal with some of the shortcomings of the vanilla RNN 
model. Training an RNN is similar to training a traditional neural network (TNN). Because RNNs 
trained by TNN’s style have difficulties in learning long-term dependencies due to the vanish-
ing and exploding gradient problem. LSTMs do not have a fundamentally different architecture 
from RNNs, but they use a different function to calculate the states in hidden layer. The memory 
in LSTMs is called cells and can be thought as black boxes that take as input the previous state 
and current input. Internally, these cells decide what to be kept in (and what to be erased from) 
memory. They then combine the previous state, the current memory, and the input. It turns out 
that these types of units are very efficient at capturing long-term dependencies. In this chapter, 
a peephole-connection LSTM, proposed by Gers and Schmidhuber [22], is applied and shown in 
Figure 5. In Figure 5, the state of forget gate  f (t)  , shown as in Eq. (1), is decided by a sigmoid func-
tion from the previous cell state   C  

t−1
   , the previous hidden layer state   h  

t−i
   , and input data   x  

t
   .

   f  t   = σ ( w  c,f    C  t−1   +  w  x,f    x  t   +  w  h,f    h  t−i  )  +  b  f    (1)

Figure 4. Discrete wavelet multiresolution decomposition.

Evolving BCI Therapy - Engaging Brain State Dynamics20

From Figure 6, we can find the cell state shown as Eq. (2), calculated with the previous cell 
state   C  

t−1
   , forget-gate state   f  

t
   , and   i  

t
   ∗   C ˜    

t
   .

   C  t   =  f  t   ∗  C  t−1   +  i  t     C ˜    t    (2)

where

   i  t   = σ ( W  c,i   ∗  C  t−1   +  w  x,i   ∗  x  t   +  w  h,i   ∗  h  t−1   +  b  i  )   (3)

and

    C ˜    t   = tanh  ( w  x,c   ∗  x  t   +  w  h,c   ∗  h  t−1   +  b  c  )   (4)

Finally, the output-gate state   O  
t
    and hidden-layer state   h  

t
    are computed by Eq. (5) and Eq. (6), 

respectively.

   o  t   = σ ( w  c,o   ∗  C  t   +  w  x,o   ∗  x  t   +  w  h,o   ∗  h  t−1   +  b  o  )   (5)

   h  t   = o  t   t    anh ( C  t  )   (6)

5. Gated recurrent neural network (GRNN)

The GRNN was proposed by Cho et al. [19] in order to make each recurrent unit to extract 
dependencies of different timescales adaptively. The GRNN, shown in Figure 7, has gating 
units that modulate the flow of information inside the unit like the LSTM unit but without 
having a separate memory cell. The parameters in the GRNN are updated as follows:

Figure 6. The proposed BCI control system.
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units that modulate the flow of information inside the unit like the LSTM unit but without 
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Figure 6. The proposed BCI control system.
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   z  t   = σ ( w  x,z   ∗  x  t   +  w  h,z   ∗  h  t−1   +  b  z  )   (7)

   r  t   = σ ( w  x,r   ∗  x  t   +  w  h,r   ∗  h  t−1   +  b  r  )   (8)

    h ˜    t   = tanh  ( w  x,h   ∗  x  t   +  w  h,r   ∗  ( r  t   ∗  h  t−1  )  +  b  h  )   (9)

   h  t   =  z  t   ∗  h  t−1   +  (1 −  z  t  )  ∗   h ˜    t    (10)

where   x  
t
    is the input vector,   h  

t
    is the output vector in hidden layer,   z  

t
    is the vector of update 

gate, and   r  
t
    is the vector of reset gate, respectively.

6. Experimental results

In this chapter, C3, Cz, and C4 are used to capture brainwave signals. Each subject wore 
an Ultracortex helmet connected with g.tec dry electrode and Emotiv EPOC chip to record 
MI-EEG signals including to imagine right-hand and left-hand movements. Each imaginary 
action was consumed 9 s for a data set. The EEG signals were extracted 28 times and trans-
formed by wavelet transform to obtain their features. Therefore, we can obtain 140 sets for 
5 subjects and these data sets were divided into 112 groups for training and 28 groups for 
testing. The experimental data acquisition process is down to obtain a data set every 9 s with 
an interval of 2 min. The waiting time is set on the first 2 s, then a stimulus signal was sound 
indicating that the testing process is started and a cross sign “+” is displayed for 1 s. Then, the 
left or right arrow is displayed to hint a subject imaging the moving of left or right hand. The 
sampling rate is 128 Hz for the acquisition process.

In this chapter, LSTM and GRNN are used as the EEG classifiers. MI-EEG features were 
extracted for C3, Cz, and C4 and classified into two groups. Therefore, the neurons of input 
and output layers of LSTM and GRNN were set three and two, respectively. In order to obtain 

Figure 7. The block diagram of GRNN.
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better performance for classification, the hidden layer is set into 7 neurons, and therefore, we 
can obtain the length of MI-EEG characteristic sequence being 15, while the channel number of 
MI-EEG-based BCI is 3. In order to evaluate the classification results and obtain a reliable and 
stable model, this model performs 500 cross validation to calculate the classification accuracy. 
In 2009, Smith [23] indicated that the nervous system is significantly important to integration 
of information and to the range of behaviors in which the system can stably engage and among 
which the system can flexibly switch. However, the nervous system, the body, and the environ-
ment each possess their own complex intrinsic dynamics, and these are always in continuous 
interaction with each other. Human intelligence reveals both remarkable stability and nimble 
flexibility. Stability emerges from the incorporation of the past into the present. Flexibility, 
requires an abandonment of (or selection among) past ways, a shifting of responses to meet 
new circumstances. For the consideration of stability and flexibility, the proposed methods are 
compared to other strategies based on “BCI Competition 2003” [24]. The experimental results 

Figure 8. The performance competition between GRNN and LSTM.

Authors Features Classifiers Accuracy rates

Christin Schafer [24] Wavelet Bayes 89.29%

GAO Xiaorong [24] ERD LDA 86.43%

Akash Narayana [24] AR LDA 84.29%

The proposed LSTM DWT LSTM 92.83%

The proposed GRNN DWT GRNN 94.50%

Table 1. The accuracy rates of different strategies for BCI Competition 2003.
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are shown in Table 1. From Table 1, we can find that the proposed method can get better per-
formance than others. Additionally, the GRNN is better than the LSTM with 2.67% and 5 ms in 
the performances of accuracy and classification speed that is shown in Figure 8.

7. Applications to control an electric wheelchair

In this section, the proposed BCI system was applied to control an electric wheelchair. 
During the online experiment, each subject wore the EEG acquisition system with integrated 
g.SAHARAsys and EPOC chip in the proposed BCI system. Additionally, the EEG signal 
for eye blinking was added in order to easily control an electric wheelchair to go ahead or 
emergency stop. For MI-EEG signals, imagining left hand and right hand are translated into 
turning wheelchair left and right as well as the eye blinking signal is converted into going 
ahead/emergency stopping. For the purpose of speeding up the extraction and processing 
EEG signals, the sapling interval was adjusted to 1 s. But these modifications result in losing 
a few features. Therefore, the db4 wavelet is adjusted to two levels as well as additional one 
layer is added into hidden layer of LSTM and GRNN networks.

Figure 9. The accuracy rates in LSTM and GRNN with db4 wavelets and seven hidden layers. (a) LSTM. (b) GRNN.

Evolving BCI Therapy - Engaging Brain State Dynamics24

Increasing the level number of DWT can directly reduce length of the EEG signals. If the 
db4 DWT is still used, the extracted signals will lose some features. Thus, reducing the DWT 
levels can retain more features in the original EEG signals. Increasing the number of hidden 
layers is due to the increased complexity of the input EEG signals. The more hidden layers 
are conducive to processing the data with higher complexity. However, too many hidden 
layers will cause the network to be difficult to converge during the learning process. In this 
section, additional one layer is added into hidden layer for obtaining better convergence 
properties. The classification accuracy rates for db4 wavelets by LSTM and GRNN networks 
with seven layers in hidden layer are shown in Figure 9, while the classification accuracy 
rates for db2 wavelets by LSTM and GRNN networks with eight layers in hidden layer are 
shown in Figure 10. From Figures 9 and 10, we can find that the accuracy rates of test data 
are obviously increased and nearby the accuracy rates of training data for both LSTM and 
GRNN networks.

Then, two BCI systems have respectively embedded LSTM and GRNN with db2 wavelets and 
eight hidden layers are applied to control an electric wheelchair. They can smoothly control an 
electric wheelchair and the GRNN model can always get better performance than the LSTM.

Figure 10. The accuracy rates in LSTM and GRNN with db2 wavelets and eight hidden layers. (a) LSTM. (b) GRNN.
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8. Conclusions and future prospects

In this chapter, two deep-learning models named LSTM and GRNN were applied to be 
embedded into a BCI system for MI-EEG signal classification to identify two imagery move-
ments such as imagining right-hand and left-hand actions. In the proposed BCI system, the 
Emotiv EPOC IC with tg.SAHARAbox system and g.SAHARA electrodes are used to capture 
MI-EEG signals on C3, Cz, and C4. In this chapter, we use the Daubechies wavelet to get 
feature values on db4 and db2 coefficients. The GRNN can make each recurrent unit to cap-
ture variable-length sequences adaptively. Modified from LSTM, the GRNN has gating units 
that modulate the flow of information inside the unit, but without having a separate mem-
ory cell. In the GRNN, the parameters at each level are shared through the whole network. 
From the experimental results, the GRNN can get better performance than other strategies. 
Additionally, the GRNN can always obtain better performance than the LSTM in the applica-
tion to control an electric wheelchair.
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In this chapter, two deep-learning models named LSTM and GRNN were applied to be 
embedded into a BCI system for MI-EEG signal classification to identify two imagery move-
ments such as imagining right-hand and left-hand actions. In the proposed BCI system, the 
Emotiv EPOC IC with tg.SAHARAbox system and g.SAHARA electrodes are used to capture 
MI-EEG signals on C3, Cz, and C4. In this chapter, we use the Daubechies wavelet to get 
feature values on db4 and db2 coefficients. The GRNN can make each recurrent unit to cap-
ture variable-length sequences adaptively. Modified from LSTM, the GRNN has gating units 
that modulate the flow of information inside the unit, but without having a separate mem-
ory cell. In the GRNN, the parameters at each level are shared through the whole network. 
From the experimental results, the GRNN can get better performance than other strategies. 
Additionally, the GRNN can always obtain better performance than the LSTM in the applica-
tion to control an electric wheelchair.
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Abstract

Nowadays, image forgery has become common because only an editing package soft-
ware and a digital camera are required to counterfeit an image. Various fraud detection 
systems have been developed in accordance with the requirements of numerous applica-
tions and to address different types of image forgery. However, image fraud detection is 
a complicated process given that is necessary to identify the image processing tools used 
to counterfeit an image. Here, we describe recent developments in image fraud detection. 
Conventional techniques for detecting duplication forgeries have difficulty in detecting 
postprocessing falsification, such as grading and joint photographic expert group com-
pression. This study proposes an algorithm that detects image falsification on the basis 
of Hessian features.

Keywords: copy-move detecting, doubled region, Harris pursuit point

1. Introduction

Brain-computer interface (BCI) technology provides a means of communication that allows 
individuals with severely impaired movement to communicate with assistive devices using 
the electroencephalogram (EEG) or other brain signals. The practicality of a BCI has been 
made by advances in multi-disciplinary areas of research related to neuroscience, brain-
imaging techniques and human-computer interfaces. The end goal of a BCI is to enable 
monitoring of the underlying brain processes and subsequent utilization of this informa-
tion for communicating and controlling devices solely through the brain without depend-
ing on the normal output pathways of peripheral nerves and muscles. Photographs capture 
reality. However, this belief no longer holds true in the current digital era given that the 
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manufacture of counterfeit images has increased [1]. The development of powerful photo 
editing software, such as Photoshop, has simplified the production of fake digital images 
[2]. A case of image counterfeiting is shown in Figure 1. Image forgery has severe conse-
quences. For example, by modifying faces in an image, image counterfeiting can be applied 
to ruin a person’s reputation. Academic documents may also include manipulated images 
that misrepresent experimental data. In addition, image forgery can be applied to remove a 
reference object from a standard image. As a result, the validity of the image can no longer 
be accepted [3]. These multilevel protection issues have different implications in different 
fields, such as detective work.

In simple terms, a brain-computer interface (BCI) is a direct interface between the human 
brain and an artificial system. Its purpose is to control the actuation of a device, say a robotic 
system or a wheelchair, with brain activity but without the use of peripheral nerves or mus-
cles [4]. BCI in a literal sense means interfacing an individual’s electrophysiological signals 
with a computer [5]. Thus, in a true sense, the BCI only uses signals from the brain and must 
consider eye and muscle movements as artifacts1 or noise. Information from various knowl-
edge domains is necessary to create a complete BCI system. Thus, an artificial neural network 
(ANN) is an information-processing paradigm that is inspired by the way in which biological 
nervous systems, such as the brain, process information. This network is composed of a large 
number of highly interconnected processing elements referred to as neurons that work in 
unison to solve specific problems. Enhancing the noisy electroencephalogram (EEG) signal 
utilizes a layer of neurons in the spatial dimension within the neural network framework. 
The incoming noisy input signal sample is treated as a probability density function (pdf) by 
the layer of neurons and it recurrently evolves under the influence of the SWE and appropri-
ate learning rules. This approach has made possible the development of an efficient compu-
tational algorithm referred to as the recurrent quantum neural network algorithm (RQNN) 
which to some extent has solved the complex problem under consideration. In general, two 
methods can be applied to detect image fraud: active and passive certification [6]. These 
two methods are illustrated in Figure 2. Active certification is categorized into two classes. 
The first class is based on the identification of a digital watermark. A watermark is hidden 
in the image at the end of capture, the detection program checks if the image certificate 
has been edited [7, 8]. The watermark is inserted when the image is taken using a specially 
equipped photographic camera or after acquisition by an expert [1]. The successive editing 

Figure 1. Image forgery has severe consequences.
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of the original image may degrade image quality. Passive certification methods are based 
on digital signatures. These methods identify the distinguishing characteristics of an image 
as a signature after image acquisition. At the end of certification, signatures are renewed 
in accordance with a similar method, and the genuineness of the image can be identified 
by comparison. Digital signatures and watermarks have similar disadvantages. Negative 
image certification, also referred to as forensic digital image certification, is highly practi-
cal. Digital image certification does not require extra information and is independent of the 
image theme [9]. Negative methods have two parts: (1) identification of the original edit and 
(2) detection of tampering [10]. Certification for the first class is based on digital fingerprint 
certification, effects allowed by image acquisition, and storage. The methods used in this 
class use the digital fingerprint of the camera to differentiate among similar or dissimilar 
camera models. The detection methods of passive falsification can either be false or indepen-
dent. Fraud detection methods are employed in particular cases of counterfeiting, similar to 
making copies or linking images. To discover universal forgery, researchers use autonomous 
techniques and exploit three different types of artifacts: the effects of resampling, pressure, 
and contradictions [10]. The types of counterfeiting techniques can be categorized into two 
classes: copy-detecting technique (image forging) and image-binding technique (two-fold 
image-based counterfeiting).

2. Copy-move forgery detecting

The ease and effectiveness of counterfeiting facilitates its application in changing image 
content [11]. The important features, like the pallet and the active range, of replicated areas 
are compatible with the rest of the image given that these areas are obtained from the same 
image [12]. Nevertheless, in practice, counterfeiting may imply more than simple replication. 
Numerous image-editing processes may be applied in serious counterfeiting, as shown in 
Figure 3. The processes can be divided into two groups: intermediator processes and post-
processes. Intermediator processes are applied to synchronicity and homogeneity between 
a replicated region and its neighbor [13]. Intermediator processes include rotation, scaling, 

Figure 2. Detect image fraud: active and passive certification.
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Figure 4. Pipeline of a fraud detection algorithm.

reflection, lighting adjustment, or color adjustment. In serious cases, intermediator processes 
can be combined. Postprocesses, such as noise addition, joint photographic expert group 
(JPEG) compression, or blurring, can be applied to delete all retraces that can be detected in 
the copy process, such as sharp edges [2]. A broad range of easily available algorithms has 
been proposed to detect replicated images and functions, as shown in Figure 4.

To detect image forgery, an image is first selected (e.g., converted to gray scale). The image is 
divided into an auction block of nested pixels. The size of the image m_n, size of block B, and 
the number of overlapping blocks is given by:

  (1)

The vector is an extractable characteristic in each block. The vector-matching function is 
highly similar to pairing functions. Known pairing methods include the arrangement of 
miracle dictionaries on the element vectors and the identification of the nearest neighbor 
in the tree Kd. The similarity between two attributes can be determined on the basis of 
similarities between different parameters, such as Euclidean length. In the verification step, 
extreme values are suppressed and holes are filled up through a basic filtration step, such 
as morphing.

Figure 3. Image processing operations associated with image forgery.
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3. Copy-move detecting algorithm

Numerous articles on the negative detection of displacement in images have been and continue 
to be published. Existing methods for displacement detection are primarily distinguished on 
the basis of the case and sizing of the function applied to match the image block. This article 
classifies existing methods in accordance with the extracted properties applied to test block 
similarities. In the following sections, different cases or classes of detection algorithms are 
presented.

3.1. Algorithm based on invariant keypoints

In contrast to other algorithms, this algorithm does not divide the image into auction blocks 
to extract features but instead extracts features from the intact image. Feature extraction is 
performed with SIFT and speeded-up robust feature (SURF). This technique is applied to 
derive the characteristic local feature of an image and produce a keypoint in accordance with 
preset requirements. The vector sum/descry values are fixed for rotational, translational, and 
scale measurements and are partially fixed for strong illumination changes in local geometric 
distortion [14, 15]. The first attempt to exploit this algorithm was reported by [16]. In the 
algorithms, only the correspondence of the keypoint can be achieved by its maximum bin, 
including the identity of the nearest neighbor [17]. SIFT has been adopted to identify repli-
cated regions in a counterfeit image. The SIFT signifier is applied to detect copied areas by 
coping with keypoints rather than clusters. This algorithm has excellent detection accuracy 
but otherwise poor performance.

3.1.1. SIFT algorithm

He proposed the SIFT algorithm, which could be used to detect and evaluate the geometri-
cal shifts applied to forged displacement copy-and-paste images. The detection procedure 
involves three steps: In the first step, SIFT functions are extracted and main points are associ-
ated. The second step is committed to keypoint compilation and fraud detection. The third 
step estimates the engineering shifts, if any, that occurred. SIFT can be executed under the 
conditions of eminent real rate (TPR) and abject fake positive degree ratio (FRE), JPEG com-
pression, and additional noise. In addition, SIFT can accurately estimate different arguments 
for affine transmutation. Figure 5 shows different arguments for affine transmutation.

The first attempts to take advantage of SIFT have been reported in [16]. In SIFT, the correspon-
dence of the key indicator is achieved by first identifying the neighbor closest to the best bin 
[17]. SIFT has been adopted to identify a single copy in the counterfeit image. SIFT descriptors 
are usually applied to identify keypoints of copied areas instead of blocks, whereas other algo-
rithms cope with object indicators. Although SIFT exhibits excellent detection performance, 
its false–positive rate remains unknown. In [18], the main SIFT points were extracted from 
the image and were then associated to obtain the corresponding keypoints. A vote scheme 
based on vector direction was applied to distinguish between origin and direction. Then, an 
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Figure 4. Pipeline of a fraud detection algorithm.
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efficient two-fold sub-window search algorithm (EES) was used to locate duplicated areas 
within the border box. Finally, a pixelwise partition was identified. The experiment solutions 
demonstrated that the proposed algorithm remains robust even with background noise and 
engineering manipulation [19]. He suggested a SIFT algorithm that could detect and then esti-
mate the geometrical transformation applied to forge displacement copy-and-paste images. 
The detection process involves three steps. In the first step, the SIFT function is extracted 
and corresponding keypoints are identified. The second step involves the consolidation and 
detection of fraud. The third step identifies changes that occurred. SIFT has high positive 
identification rate and low false positive rate even under JPEG image compression and added 
noise conditions. In addition, it accurately estimates several affine transformation parameters. 
Refs. [20, 21] suggested a SIFT-established detecting algorithm that can be used to estimate 
the geometrical transformation applied to the copy. The algorithm begins by converting the 
suspected image into grayscale. SIFT is then applied to collect image characteristics for the 
detection of keypoint sources. In SIFT, the keypoint sources are initially adapted in accor-
dance with the characteristics of the vector sum used in the better bin-first algorithms. The 
potential geomagnetic distortion of the refined areas is estimated on the basis of the assumed 
paired keypoints by applying RANSACK. SIFT is more robust than intermediary processes 
even when JPEG compression or noise are added to the processed image. Furthermore, affine 
transformation is exactly estimated, particularly in larger duplicated areas. A different sce-
nario is to integrate SIFT into copy detection systems [22]. Instead of applying SIFT to detect 
keypoints, the Harris quicker from SIFT is applied. After all keypoints are revealed, SIFT is 
applied to generate the descriptive characteristics of extracted features. Then, the Kd trees 
algorithms are applied to match the keypoints to identify duplicated areas. The algorithms 
can effectively detect copied areas, such as unrotated scanlines or Gaussian noise conditions, 
that have undergone transformation [5, 22]. Harris detection, which is quicker than SIFT, has 
been used to detect keypoints. After keypoint detection, SIFT is applied to identify a unique 
characteristic from extracted keypoints. The Kd tree algorithm is then applied to match key-
points to determine duplicate areas. This algorithm can efficiently detect areas, such as scan-
lines, that have undergone transformation.

3.1.2. SURF algorithm

SURF has been adopted to detect image editing processes, such as rotation and gradation. 
SURF is superior to SIFT in detecting image strengths and performs as well as SIFT. The 
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complicated automatic reinstallation of duplicate areas hinders the practical applications of 
these algorithms. We propose a novel algorithm for the detection and description of scale and 
constant rotation in images. The algorithm is based on SURF and thus has powerful accel-
eration functions. SURF approximates or even exceeds the proposed thresholds for redun-
dancy, excellence, and sustainability and rapidly performs calculation and comparison. This 
operation is performed by relying on image confluence. The exit detection and prescriptive 
prescriptions are based on their strengths (if a Hessian scale is used to detect and describe 
the established distribution), and kernel methods are simplified to allow the combination of 
new detection, description, and correspondence. Correspondence between two images of the 
same view and the objective is partly achieved by using many computers. In this study, pho-
tography, three-dimensional reconstruction, image recording, and objective recoding were 
conducted. The search for a separate image match—the purpose of our research—can be 
separated into three principal steps. First, points of interest are specified in the characteristic 
locations of the image, such as angles, points, and plus T-intersections. The most important 
property of a detection method is its repeatability, that is, its reliability in finding similar 
indicators of interest under different conditions. Then, each point of interest is represented 
by a transmitter characteristic. This description must be distinct and must have similar time 
strengths under noise conditions, mistake detection, and geometrical and photometrical 
distortions. Finally, vector descriptors are adapted in different images. Correspondence is 
based on vector distance. Descriptor size directly affects computational time. Thus, fewer 
dimensions are desired. We aimed to develop an algorithm for the detection and the iden-
tification of fraud. We compared the performance of our proposed algorithm with that of a 
state-of-the-art detection algorithm. Our algorithm exhibits computational time and robust 
performance. Downsizing after description and complexity must be balanced while provid-
ing sufficient distinction. Various detection and description algorithms have been proposed 
in the literature (e.g., [1–3, 6, 7, 23]). Furthermore, detailed datasets for comparison and stan-
dard assessment have been established [8–10]. We build upon the knowledge gained from 
previous work to better understand the aspects that contribute to algorithm performance. 
When used in experiments on standard image sets, as well in the application of actual objec-
tive recognition, the algorithm exhibited rapid detection and description, as well as distinc-
tive and reproducible performance. While working with local features, stability is the first 
issue that requires resolution and depends on the expectation of geometrical and photometri-
cal distortions. This turn of events is identified by the possibility changing in conditioning. 
We concentrate on the detectors and constant descriptions of the balance and rotation of the 
image. These detectors offer better compromises among the complexity of the functionality 
and the durability of the distortions that usually occur. The discrepancy and gradient of 
anomalies and the effects of perspective are secondary to the effect covered by the overall 
durability of the description [2]. The additional complexity of affine invariance negatively 
affects sustainability, unless significant changes are anticipated. In some cases, even analog 
rotation can be abandoned with solutions in a fixed static version of our description. We refer 
to this ability as “erect SURF” (U-SURF). In fact, in some applications, such as cell robotic 
navigation or visual guidance, the camera often only revolves around the vertex. Taking 
advantage of avoidance of the exaggerated stability of rotation in similar events not only 
increases speed but also increases discriminatory force. As for the photometric, we assumed 
a simple linear accelerator example with a scaled factor and displacement. Note that our 
detection and description do not apply color.
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mate the geometrical transformation applied to forge displacement copy-and-paste images. 
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dance with the characteristics of the vector sum used in the better bin-first algorithms. The 
potential geomagnetic distortion of the refined areas is estimated on the basis of the assumed 
paired keypoints by applying RANSACK. SIFT is more robust than intermediary processes 
even when JPEG compression or noise are added to the processed image. Furthermore, affine 
transformation is exactly estimated, particularly in larger duplicated areas. A different sce-
nario is to integrate SIFT into copy detection systems [22]. Instead of applying SIFT to detect 
keypoints, the Harris quicker from SIFT is applied. After all keypoints are revealed, SIFT is 
applied to generate the descriptive characteristics of extracted features. Then, the Kd trees 
algorithms are applied to match the keypoints to identify duplicated areas. The algorithms 
can effectively detect copied areas, such as unrotated scanlines or Gaussian noise conditions, 
that have undergone transformation [5, 22]. Harris detection, which is quicker than SIFT, has 
been used to detect keypoints. After keypoint detection, SIFT is applied to identify a unique 
characteristic from extracted keypoints. The Kd tree algorithm is then applied to match key-
points to determine duplicate areas. This algorithm can efficiently detect areas, such as scan-
lines, that have undergone transformation.

3.1.2. SURF algorithm

SURF has been adopted to detect image editing processes, such as rotation and gradation. 
SURF is superior to SIFT in detecting image strengths and performs as well as SIFT. The 

Figure 5. Different arguments for affine transmutation.

Evolving BCI Therapy - Engaging Brain State Dynamics34

complicated automatic reinstallation of duplicate areas hinders the practical applications of 
these algorithms. We propose a novel algorithm for the detection and description of scale and 
constant rotation in images. The algorithm is based on SURF and thus has powerful accel-
eration functions. SURF approximates or even exceeds the proposed thresholds for redun-
dancy, excellence, and sustainability and rapidly performs calculation and comparison. This 
operation is performed by relying on image confluence. The exit detection and prescriptive 
prescriptions are based on their strengths (if a Hessian scale is used to detect and describe 
the established distribution), and kernel methods are simplified to allow the combination of 
new detection, description, and correspondence. Correspondence between two images of the 
same view and the objective is partly achieved by using many computers. In this study, pho-
tography, three-dimensional reconstruction, image recording, and objective recoding were 
conducted. The search for a separate image match—the purpose of our research—can be 
separated into three principal steps. First, points of interest are specified in the characteristic 
locations of the image, such as angles, points, and plus T-intersections. The most important 
property of a detection method is its repeatability, that is, its reliability in finding similar 
indicators of interest under different conditions. Then, each point of interest is represented 
by a transmitter characteristic. This description must be distinct and must have similar time 
strengths under noise conditions, mistake detection, and geometrical and photometrical 
distortions. Finally, vector descriptors are adapted in different images. Correspondence is 
based on vector distance. Descriptor size directly affects computational time. Thus, fewer 
dimensions are desired. We aimed to develop an algorithm for the detection and the iden-
tification of fraud. We compared the performance of our proposed algorithm with that of a 
state-of-the-art detection algorithm. Our algorithm exhibits computational time and robust 
performance. Downsizing after description and complexity must be balanced while provid-
ing sufficient distinction. Various detection and description algorithms have been proposed 
in the literature (e.g., [1–3, 6, 7, 23]). Furthermore, detailed datasets for comparison and stan-
dard assessment have been established [8–10]. We build upon the knowledge gained from 
previous work to better understand the aspects that contribute to algorithm performance. 
When used in experiments on standard image sets, as well in the application of actual objec-
tive recognition, the algorithm exhibited rapid detection and description, as well as distinc-
tive and reproducible performance. While working with local features, stability is the first 
issue that requires resolution and depends on the expectation of geometrical and photometri-
cal distortions. This turn of events is identified by the possibility changing in conditioning. 
We concentrate on the detectors and constant descriptions of the balance and rotation of the 
image. These detectors offer better compromises among the complexity of the functionality 
and the durability of the distortions that usually occur. The discrepancy and gradient of 
anomalies and the effects of perspective are secondary to the effect covered by the overall 
durability of the description [2]. The additional complexity of affine invariance negatively 
affects sustainability, unless significant changes are anticipated. In some cases, even analog 
rotation can be abandoned with solutions in a fixed static version of our description. We refer 
to this ability as “erect SURF” (U-SURF). In fact, in some applications, such as cell robotic 
navigation or visual guidance, the camera often only revolves around the vertex. Taking 
advantage of avoidance of the exaggerated stability of rotation in similar events not only 
increases speed but also increases discriminatory force. As for the photometric, we assumed 
a simple linear accelerator example with a scaled factor and displacement. Note that our 
detection and description do not apply color.
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4. Related work

The most commonly used detection method is the Harris-cornered method [24], which was 
proposed in 1988. It is based on the intrinsic values of the secondary-momentary matrix. 
However, Harris angles are not fixed. The Lindberg detection method introduces the principle 
of automatic scaled selection [1], which allows the detection of a full point of interest in an 
image together with its scope. He experimented with the Hessian matrix operation identifier 
and Laplacian (corresponding to the Hessian matrix operation effect) to detect bulb struc-
ture. The detectors, which were developed by Harris-Laplace and Hessian-Laplace, are robust 
and stable with high reproducibility [25]. The Harris (Adaptive Scale) or the Hessian Matrix 
Locator and Laplacian have been applied to determine scale. Focusing on speed, [26] estimates 
Laplace Gaussians (LoG) on the basis of the candidate Gauss (DoG). Several fixed-interest rate 
detectors that increase the entropy in the area and the edged-based zone detection have been 
proposed [11]. Nevertheless, these detectors are inflexible. Several detection methods have 
been proposed for fixed properties that can adapt to long-term changes but are not discussed 
in this article. A review of the literature [9, 12] shows that (1) Harris-based detection methods 
are stable and replicable. The use of a specific Hessian matrix addition instead of its effect (the 
Laplacians) is useful because fires occur less on elongated and nonlocal structures. In addition, 
(2) an approximation, such as DoG, has low-cost computational speed and low loss of preci-
sion. A wider set of attribute descriptions has been suggested, such as the Gaussian-derived 
function [13], a fixed moment [27], complex feature [4, 28], guiding filters [29], and phase-
localized functions [30], to represent the distribution of small features in a region of interest. 
The latter [2] has been shown to surpass the others [8] because they capture a basic quantity 
of information on the special intensity of level models when large to small deformations or 
localization mistakes occur. In [2], SIFT has been applied as a general level gradient diagram 
around the indicator of interest and is stored in boxes in a 128-dimension vector (eight routing 
boxes for each 4 × 4 box). Various improvements have been proposed on this basic scheme [3]. 
PCA has been applied to slope images. These operations (PCA, SIFT) provide a 36-dimension 
characteristic that is rapidly harmonized but is less distinct from SIFT in terms of secondary 
comparison [9]. The slow calculation function reduces the impact of quick coping. In similar 
papers [9], the authors suggested a variation on SIFT, named GLOH, which proved to be more 
distinct with the same dimensional count. However, GLOH is computationally expensive. 
SIFT is the most attractive for practical application and is currently the most widely applied 
algorithm. It is distinct and relatively quick, which is crucial for online applications. Recently, 
[31] used a field-programmable area grid to improve its order of magnitude relation. However, 
the height dimensions of the descriptions in SIFT are defective when compared with those of 
corresponding methods. For online applications on an ordinary computer, each of the three 
steps (detection, description, and correspondence) must be fast. Alternatively, best-bin-first [2] 
accelerates computation but provides inaccurate solutions. A novel detection method based 
on SURF has been proposed by [1, 25]. However, basic approximation was applied because 
DoG [2] is a basic Laplacian-based detector. Given that it depends on the embedded image 
to reduce computing time, we designated this algorithm as the “Quick Hessian” detector. 
Description, on the other hand, describes the distribution of the Haar-wavelength reactions 
in the area of interest. We operate the built-in speed images repeatedly. In addition, only 64 
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dimensions are used, thus decreasing the calculation time of the corresponding characteristic 
and simultaneously increasing durability. We again propose a new index step based on the 
Laplacian marker. This step accelerates correspondence and increases the robustness of the 
description. To illustrate the self-sufficiency of the algorithm, we briefly discussed the concep-
tion of an integrated image, as defined in [32]. It allows the quick execution of filter to wrap a 
box type. The insertion of an integrated image IΣ (z) into x = (z, y) represents the amount of all 
the pixels of the income I of a rectangularity area formed by the z and the origin.

  (2)

The calculated IΣ only requires four additions to calculate the total intensity on any vertical 
and rectangular surface, regardless of its shape.

5. Quick-Hessian detection

We based our detection method on Hessian matrix addition because of its superior calculation 
time and accuracy. Therefore, instead of using an applied range to select position and scale (as 
in the Hessian-Laplace [25]), we used a Hessian identifier for both. Given the indicators z = (z, 
y) in Figure 1, the matrix Hessian H (z, σ) in x is defined on the scale as follows.

  
(3)

where, similar to L,zy(z, σ) and L,yy(z, σ), L,zz(z, σ) is the rotation of the Gaussian second-
order differential ∂2 ∂,z2 g(σ) with the image I in indicator z. Gaussian analysis has been 
optimized for large-scale analysis, as shown in [33]. However, in practice, Gaussian analysis 
should be reduced (Figure 1 of the allowed half) because filtering Gaussians with aliases will 
result in image subsamples. In addition, a property that cannot show new structures when 
resolutions are decreased has been proven in one-dimensional images and cannot be applied 
in two-dimensional images [34]. Thus, the importance of the Gaussian filter may have been 
exaggerated in this respect, and here we test a simple alternation. Given that the Gaussian 
filter is not idealistic in any event because of the success of the LoG with the approximations of 
the newspaper, we push the rounding with the filters of the box (Figure 6 on the right). These 
approximate Gaussian second-class derivatives can be rapidly evaluated with an integrated 
image irrespective of size. It can be evaluated very quickly using embedded images regardless 
of size. The algorithm’s performance is similar to that used for esterized crops and Gaussians.

When applied to rectangular areas, SURF remains simple and arithmetically efficient. However, 
we need additional relative weight in equilibrium. This weight is specifically expressed with

  (4)
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papers [9], the authors suggested a variation on SIFT, named GLOH, which proved to be more 
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[31] used a field-programmable area grid to improve its order of magnitude relation. However, 
the height dimensions of the descriptions in SIFT are defective when compared with those of 
corresponding methods. For online applications on an ordinary computer, each of the three 
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accelerates computation but provides inaccurate solutions. A novel detection method based 
on SURF has been proposed by [1, 25]. However, basic approximation was applied because 
DoG [2] is a basic Laplacian-based detector. Given that it depends on the embedded image 
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dimensions are used, thus decreasing the calculation time of the corresponding characteristic 
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where |z|F is the Frobenius norm.

  (5)

In addition, the responses to the filters are normalized to mask size to ensure that the continu-
ous Frobenius is standard for any filter size. In an image, space generally takes the form of a 
triangle. The image is repeated with a Gaussian filter and subsamples to reach the apex of the 
triangle. Given the application of box filter and plot image, we do not duplicate the filtering to 
output a previous filter layer. Nevertheless, filters of any size can be used at the same speeds 
when applied to the original image (even parallel to the latitude, if not used here). Therefore, 
size spacing is analyzed by increasing filter size rather than decreasing image size. The output 
of the 9 × 9 filters above is considered as the primary gauge level. Thus, scaling s = 1.20 (cor-
responding to the derivate Gaussian with σ = 1.20). The following levels are obtained by filter-
ing the image with a progressively larger mask, taking into account the distinct nature of the 
integrated image and the specific structure of our filter. Specifically, this phenomenon leads to 
sizes 9 × 9, 15 × 15, 21 × 21, and 27 × 27. On a large scale, the increment in filter size must also 
vary accordingly. Thus, for each new Octavian, the volume of the filter doubles from 6 to 12 
to 24. At the same time, sampling periods can be doubled to enable the extraction of points of 
interest. Given that our filter arrangement ratios remain constant after expansion, the bypass 
scale is approximately matched. For example, 27 × 27 filters correspond to σ = 3 × 1, 2 = 3, 6 = s. 
Moreover, given that the Frobenius base remains constant in our filtering, they soon normalize 
[35]. To locate points of interest in the image and the scaling, maximizing suppression is not 
applied on the 3 × 3 × 3 neighbor. The maximum limit for the Hessian matrix is then encoun-
tered in the range and proposed spacing of the image [36]. The spatial interpolation scale is 
particularly important in our case, and the difference in size among the first levels of each 
Octavian is relatively large.

Figure 6. Left to right: (intact and trimmed) Gaussian secondary arrangement partly derived in the y-direction and zy-
direction, and our approximation of the applied box filter. Gray areas are null.
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This view clearly shows the Hessian-detecting characteristics. Medium: Warp types applied 
in SURF. Right: Image of graffiti showing the size of the window descriptors on different 
scales.

The first levels of each Octavian are relatively large. Figure 7 (left) shows the points of interest 
detected when quick-Hessian detection is applied.

6. SURF description

The superior performance of SIFT compared with that of other [9] benchmarks is remarkable. 
Their mixing with local informatics and the distribution of gradient-related characteristics 
provide fine characteristic resistance that mitigates the effect of settlement faults in terms of 
size or surface area. The application of relative resistance and gradient directions decreases 
the effect of illumination changes. The proposed SURF descriptor is based on similar prop-
erties, further complicating the process. The first step is to identify a direction that can be 
reproduced from data from a circular area surrounding the indicator of interest. Next, we 

Figure 7. Left: points of interest detected in an image of a sunflower field.
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where |z|F is the Frobenius norm.
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This view clearly shows the Hessian-detecting characteristics. Medium: Warp types applied 
in SURF. Right: Image of graffiti showing the size of the window descriptors on different 
scales.

The first levels of each Octavian are relatively large. Figure 7 (left) shows the points of interest 
detected when quick-Hessian detection is applied.
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Their mixing with local informatics and the distribution of gradient-related characteristics 
provide fine characteristic resistance that mitigates the effect of settlement faults in terms of 
size or surface area. The application of relative resistance and gradient directions decreases 
the effect of illumination changes. The proposed SURF descriptor is based on similar prop-
erties, further complicating the process. The first step is to identify a direction that can be 
reproduced from data from a circular area surrounding the indicator of interest. Next, we 

Figure 7. Left: points of interest detected in an image of a sunflower field.

Rotation Invariant on Harris Interest Points for Exposing Image Region Duplication Forgery
http://dx.doi.org/10.5772/intechopen.76332

39



construct a square area aligned with a specific orientation and extract the description from it. 
In addition, we also offer a vertical version number of our descriptor (U-SURF), which is not 
fixed for in image rotation and rapidly calculates and improves camera location.

6.1. Orientation assignments

To fix the rotation, we define a reproducibility orientation for points of interest. To this end, 
we first compute the Haars wavefunction that corresponds to the X and Y direction. It is 
located in a boundary with a radius vector 7 s surrounding the indicator of interest, with 
the image being detected as the point of interest. The sampling step depends on the scale 
and its selection is s. Wavelet responses are also computed in the current range s. Thus, the 
size of the wavelet on a large scale is also large. We therefore use the integrated image as a 
quick filter. Only seven operations are required for SURF to calculate the corresponding Z or 
Y direction at any scale. The lateral distance of the wavelength is 4 s. Once the responses are 
calculated and weighed with Gaussians (σ = 2.51 s) centered around the indicators of inter-
est, the responses are represented as vectors in range with the horizontal angle correspond-
ing to force alongside the output and the vertical angle corresponded to the force along the 
coordinate. The trend is estimated by calculating the amount of all responses in navigation 
windows with an angle of π 3.1. The horizontal and vertical angle responses are summarized 
in the windows. The synthesized questionnaires then produce new vectors. The long vectors 
of its kind are directed towards the indicator of interest. The range of the slide windows is the 
argument, which was chosen empirically. Smaller sizes focus on one dominant, maximizing 
yield size in vectorial lengths that are not expressive. Both lead to an unstable trend in the area 
of interest. Note that U-SURF skips over this step.

6.2. Description component

To extract a description, a window centered around the indicator of interest must be con-
structed. The area must be oriented in the direction specified in the previous section. This 
transformation is unnecessary for a vertical copy. The size of this window is 20 s. The area is 
regularly divided into small 4 × 4 subregions to preserve crucial data in each subregion. We 
calculate some simple characteristics in a 5 × 5 regularized subregion. For simplification, we 
designated the DEX response waveform Haars in the horizontal direction and colored the 
prepared Haars corresponding to the vertical angle direction (2S filters size). Here, the terms 
“horizontal” and “vertical” are defined with respect to the orientation of the specified point 
of interest. To increase robustness to geometrical distortions and localization faults, the DEX 
and dy responses are first weighted with a Gaussian (σ = 3.4 s) centered around the indicator 
of interest. Then, the wavelength and dz. and dy wavelet responses are summarized above 
each subregion and are the first place of inputs in the vectorial function. To provide data on 
changes in polarity density, we also extract total absolute value for the replay of |dz| and 
|dy|. Thus, each sub region has a four-dimensional descriptor for the underlying intentional 
structure that leads to a vectorial description of all 4 × 4 sub regions of distance 64. Wavelength 
response is constant to polarize the illuminated “offset.” Contrast (factor range) is obtained 
by converting the description into a vector unit. The characteristics of three different image 
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intensities in a subregion. Imaging groups of these general density models can be applied to 
produce a distinct description. To access the SURF descriptor, we experimented by subtract-
ing and adding waves, applying d2z and d2y, adding first-order waves, applying PCA, and 
identifying the intermediate and average values. From a comprehensive evaluation, the outer 
part performs best among all parts (Figure 8).

  (6)

Left: the state of a homogeneous zone. All values are relatively small. Center: in the presence 
of frequency in the direction of z, the value  increases but remains low. If the density 
increases progressively in the direction of x, the two values  increase.

We change the sampling count for indicators and subfields. A sampling subregion of 4 × 4 
provides good results. Given the fine divisions, it appears to be less powerful, significantly 
increasing the timing of correspondence. In other methods, the shortage circuit with 3 × 3 sub-
regions (SURV-35) provides poor results but allows for rapid computation e and is relatively 
acceptable compared with other descriptors in the literature. Figure 9 shows just some of the 
compared results (SURV-126 will be explained soon).

The two different match strategy tests performed on the “Graffiti” image with width changes 
of 30 points from the current description. Points of interest are calculated through the “Quick 
Hessian” detection method. Note that rates are unfixed per affine. Therefore, the results are 
not identical to those of [9]. Surf-126 corresponds to the expanded description. Left: similarity 
between threshold element and match strategy. Right: strategy for closer contact.

We test another section of the SURF descriptor by adding two similar characteristics (SURV-
126). It repeatedly uses the same quantities as before but has additional divisors. The values of 
dz and |dz| are calculated individually for dy < 0 and dy ≥ 0. Likewise, the values of dy and 
|dy| are separate and agree with the signal of dz, thereby duplicating the count of the feature. 
Description is more distinct and does not require long computation time. However, matching 
time is slow because of the high dimensions of the features. The argument choice is equated 
for the “Graffiti” sequence [9] because it contains out-of-play rotation in the rotation map, as 
well illumination changes. The general description of 4 × 4 sub regions (SURF-126) improves 

Figure 8. Descriptive entries for a subregion representing the universal base density model.
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construct a square area aligned with a specific orientation and extract the description from it. 
In addition, we also offer a vertical version number of our descriptor (U-SURF), which is not 
fixed for in image rotation and rapidly calculates and improves camera location.

6.1. Orientation assignments
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located in a boundary with a radius vector 7 s surrounding the indicator of interest, with 
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quick filter. Only seven operations are required for SURF to calculate the corresponding Z or 
Y direction at any scale. The lateral distance of the wavelength is 4 s. Once the responses are 
calculated and weighed with Gaussians (σ = 2.51 s) centered around the indicators of inter-
est, the responses are represented as vectors in range with the horizontal angle correspond-
ing to force alongside the output and the vertical angle corresponded to the force along the 
coordinate. The trend is estimated by calculating the amount of all responses in navigation 
windows with an angle of π 3.1. The horizontal and vertical angle responses are summarized 
in the windows. The synthesized questionnaires then produce new vectors. The long vectors 
of its kind are directed towards the indicator of interest. The range of the slide windows is the 
argument, which was chosen empirically. Smaller sizes focus on one dominant, maximizing 
yield size in vectorial lengths that are not expressive. Both lead to an unstable trend in the area 
of interest. Note that U-SURF skips over this step.

6.2. Description component

To extract a description, a window centered around the indicator of interest must be con-
structed. The area must be oriented in the direction specified in the previous section. This 
transformation is unnecessary for a vertical copy. The size of this window is 20 s. The area is 
regularly divided into small 4 × 4 subregions to preserve crucial data in each subregion. We 
calculate some simple characteristics in a 5 × 5 regularized subregion. For simplification, we 
designated the DEX response waveform Haars in the horizontal direction and colored the 
prepared Haars corresponding to the vertical angle direction (2S filters size). Here, the terms 
“horizontal” and “vertical” are defined with respect to the orientation of the specified point 
of interest. To increase robustness to geometrical distortions and localization faults, the DEX 
and dy responses are first weighted with a Gaussian (σ = 3.4 s) centered around the indicator 
of interest. Then, the wavelength and dz. and dy wavelet responses are summarized above 
each subregion and are the first place of inputs in the vectorial function. To provide data on 
changes in polarity density, we also extract total absolute value for the replay of |dz| and 
|dy|. Thus, each sub region has a four-dimensional descriptor for the underlying intentional 
structure that leads to a vectorial description of all 4 × 4 sub regions of distance 64. Wavelength 
response is constant to polarize the illuminated “offset.” Contrast (factor range) is obtained 
by converting the description into a vector unit. The characteristics of three different image 
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intensities in a subregion. Imaging groups of these general density models can be applied to 
produce a distinct description. To access the SURF descriptor, we experimented by subtract-
ing and adding waves, applying d2z and d2y, adding first-order waves, applying PCA, and 
identifying the intermediate and average values. From a comprehensive evaluation, the outer 
part performs best among all parts (Figure 8).
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provides good results. Given the fine divisions, it appears to be less powerful, significantly 
increasing the timing of correspondence. In other methods, the shortage circuit with 3 × 3 sub-
regions (SURV-35) provides poor results but allows for rapid computation e and is relatively 
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compared results (SURV-126 will be explained soon).
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of 30 points from the current description. Points of interest are calculated through the “Quick 
Hessian” detection method. Note that rates are unfixed per affine. Therefore, the results are 
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We test another section of the SURF descriptor by adding two similar characteristics (SURV-
126). It repeatedly uses the same quantities as before but has additional divisors. The values of 
dz and |dz| are calculated individually for dy < 0 and dy ≥ 0. Likewise, the values of dy and 
|dy| are separate and agree with the signal of dz, thereby duplicating the count of the feature. 
Description is more distinct and does not require long computation time. However, matching 
time is slow because of the high dimensions of the features. The argument choice is equated 
for the “Graffiti” sequence [9] because it contains out-of-play rotation in the rotation map, as 
well illumination changes. The general description of 4 × 4 sub regions (SURF-126) improves 
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performance. In addition, SURF has excellent performance that surpasses that of the latest 
state-of-the-art algorithm. To provide an index of the pairing phase, Laplacian signs (i.e., the 
Hessian matrix effect) are included for the basic point of interest. Typically, the points of inter-
est are in plug-type structures. The label marks luminous points on the darker background of 
the reversed situation. This functionality is available at an additional price, which has already 
been calculated throughout the detecting process. During matching, we compare the feature 
only if they have the similar contrast types. Thus, this minimum data speeds up matching and 
improves performance.

7. Experimental results

We provide solutions for a standard evaluation set without detection and description. Then, 
we discuss the solutions obtained during when applying the algorithm to apply the real 
object. All detectors and descriptions are based on comparison with the original application 
of the authorizer. In standard evaluation, we test our detectors and describe the applied 
sequence of images and software tests. The test set included images of actual, narrow, and 
structured scenes. Given the limited page count of this manuscript, we cannot provide the 
results of all sequences. To compare the performances of the detectors, we selected images 
with changes in perspective (Graffiti and Wall), magnification and rotation (Boats), and 
illumination (Leuven). Test notes for all sequences are presented in addition to the base 
sequence. We applied the degree of repetition, as described in [10], to detect the number of 
points of interest in two images relative to the indicator of interest (which is only the visible 
part of both images). The performance of the detection algorithm was compared with that 
of the Gaussian (DOG) [2], Harris, and Hessian Laplace [12] algorithms. All algorithms pro-
vided similar number of points of interest. This finding applies to all images, including the 
database used in the object recognition experiment (see Table 1 for an example). In addition, 

Figure 9. Line graphs for different methods.
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the computational speed of our Quick Hessian detector was more than three times faster 
than that of DOG and five times quicker than that of Hessian Laplace. At certain timepoints, 
the repetitions of our detector approximated (Graffiti, Leuven, Boat) or exceeded (Walls) 
that of the competition. The Graffiti and Walls sequences contained out-of-play gyration, 
and solutions in affine contortions when the detection compared only gyration and were 
scaled invariantly. Therefore, distortions must be addressed through the overall durability 
of features. The descriptors were evaluated by the applied call diagrams (1 precisely) in 
[3, 9]. In each evaluation, we applied the first and fourth images of the sequence, except 
for the Graffiti image and the Walls scenario. The corresponding perspective change was 
30 and 50 points., we compared our SURF signifier (GLOH0, SIFT, and PCA-SIFT) with 
our “Quick Hessian” detector. SURF outperformed the other signifiers in almost all tests. 
In Figure 4, we equated the solutions applied to two different corresponding techniques—
one established on the same threshold element and one founded on the closest neighbor 
proportion (see [9] for a discussion of this technique). This phenomenon affected the order 
of descriptors but SURF performance is better in both events because of limited spacing. 
However, the only solutions on likeness similar to the similarity threshold are shown in 
Figure 7 because this technique is most appropriate for representing the runner distribution 
in its advantage spacing [9] and used more routinely. SURF descriptor is systematically and 
extensively superior to other descriptors and exhibited 11% improvement. Its computational 
time is rapid (Table 2). The microprocessor (Surf-126) seems to be slightly superior to the 
general SURF system. However, its matching process was slow. Thus, it may be unsuitable 
for applications that require speed. Object recognition was performed under a similar set of 
standards and threshold element (Table 1). The moment was evaluated on a standard Unix 
computer (Pentium IV, 2.5GHZ). The objects are recognized because we experienced new 

Detecting Threshold Nb of indicators Compu. time (ms)

Quick Hessian 601 1417 119

Hessian-Laplace 900 1980 651

Harris-Laplace 2400 1665 1799

DoG Default 1521 401

Table 1. Threshold element, numbers of points detected, and computational time (the first image of the graffiti sequence, 
900 × 640).

U-SURF SURF SURF-126 SIFT

Time (ms) 254 355 390 1035

The threshold element is adjusted to detect the same number of indicators of interest for all methods. The relatively 
shorter calculation time also represents the other image.

Table 2. Calculation time for common detectors—descriptive applications, testing on the first image of the Graffiti 
sequence.
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[3, 9]. In each evaluation, we applied the first and fourth images of the sequence, except 
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However, the only solutions on likeness similar to the similarity threshold are shown in 
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Figure 10. Example images of the reference group (left) and the test group (right). Note the difference in perspective 
and colors.

Figure 11. Left to right and from top to bottom: Frequency of Walls-Graffiti (perspective change), Leuven (illumination 
change), and Boats (magnification and rotation).
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functionalities on the practical application, aiming to identify the art object in the museum. 
The data consisted of 216 images of 22 objects. The test group images comprised 116 images.

Under different conditions, including extreme illumination changes, object reflections in glass 
cabinetry, changes in perspective, magnification, and differences in camera quality, images 
are small (319 × 240) and difficult to recognize because they lose detail. To identify the objects 
in the database management, we proceed as follows: The images of the test group are com-
pared with all the images of the reference group by associating their respective indicators of 
interest. The object represented on the reference image is selected with the greatest amount 
of correspondence with respect to the test image as a recognized object. Correspondence is 
performed as follows: A perspective of interest in the test image is compared with a perspec-
tive of interest in the referenced image by computing the value of Euclidean space between 
the vector and its descriptors. A corresponding pair is detected if the vision distance is closer 
by 0.6 times than that from the closest neighbor to the second. It is the closest strategy that 
corresponds to the ratio of the neighbors [2, 8, 27]. Extra engineering restrictions reduced the 
impact of false-positive matching, and this can be performed over any situation. For compara-
tive reasoning, this does not make sense because it may be hiding the lack of the basic tables. 
On average, the rating reflection of the solutions of our performed appraisal is established. 
The leaders are SURF-126 with a recognizability rate of 85.7%, followed by U-SURF (84.8%), 
and SURF (83.7%). The other descriptors were 78.4% for GLOH, 78.2% for SIFT, and 72.3% for 
PCA-SIFT (Figures 10 and 11).

8. Discussion and conclusions

A brain-computer interface (BCI) is a direct interface between the human brain and an artifi-
cial system. Its purpose is to control the actuation of a device.

Many researchers have proposed modern algorithms to solve the problem of image authenti-
cation. This study explored and compared the application of different algorithms that detect 
common types of image forgery. The characteristics of the algorithms are shown in Table 2. The 
algorithms we examined in this study are undoubtedly important for the detection of image 
counterfeiting. Previous researchers have attempted to improve the reliability of image fraud 
detection algorithms. They have achieved this objective by (1) reducing algorithm complexity 
and computational time. This objective was achieved by using small vector dimensions, as 
shown in Refs. [18, 37–41] increasing the robustness of the algorithms. This aim was achieved by 
adopting a powerful feature that is consistent for a wide range of image processes, as shown in 
Refs. [42–48]. The algorithm based on fixed key indicators and fixed instances exhibits remark-
able performance, as shown in Table 2. However, several barriers and challenges remain. We 
summarize the defects of available algorithms in Tables 1 and 2: (1) the algorithms cannot 
handle all possible types of image processing that can be applied to forge images; (2) some 
algorithms rely heavily on several threshold elements or initial value, and the identification 
of these threshold elements and values require experimentation and improvements; and (3) 
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and SURF (83.7%). The other descriptors were 78.4% for GLOH, 78.2% for SIFT, and 72.3% for 
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cation. This study explored and compared the application of different algorithms that detect 
common types of image forgery. The characteristics of the algorithms are shown in Table 2. The 
algorithms we examined in this study are undoubtedly important for the detection of image 
counterfeiting. Previous researchers have attempted to improve the reliability of image fraud 
detection algorithms. They have achieved this objective by (1) reducing algorithm complexity 
and computational time. This objective was achieved by using small vector dimensions, as 
shown in Refs. [18, 37–41] increasing the robustness of the algorithms. This aim was achieved by 
adopting a powerful feature that is consistent for a wide range of image processes, as shown in 
Refs. [42–48]. The algorithm based on fixed key indicators and fixed instances exhibits remark-
able performance, as shown in Table 2. However, several barriers and challenges remain. We 
summarize the defects of available algorithms in Tables 1 and 2: (1) the algorithms cannot 
handle all possible types of image processing that can be applied to forge images; (2) some 
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Figure 12. Left to right and top to bottom: graphs of changes in 50 (Walls) grades, descale element 2 (Boats), image blur 
(Bikes and Trees), illumination level (Leuven), and JPEG compression (Ubc).

most current methods take time [49, 50]. The development of complex and reliable algorithms 
that quickly and rapidly detect image forgery has been proposed. However, future work must 
overcome the following challenges: (1) the lack of standardized datasets for false counterfeit-
ing limits the comparability and reproduction of existing algorithms, as well the design of 
improved algorithms and (2) the lack of common quantitative methods for measuring and 
evaluating algorithm performance prevents the comparison of different algorithms under dif-
ferent conditions. We believe that this reason accounts for the absence of studies that compare 
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the accuracy and performance of different algorithms. Given that detecting counterfeiting is 
still in its early stages, considerable work remains to be performed, and other ideas can be 
derived or borrowed from other fields, such as object recognition or image analysis (Figure 12).
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that quickly and rapidly detect image forgery has been proposed. However, future work must 
overcome the following challenges: (1) the lack of standardized datasets for false counterfeit-
ing limits the comparability and reproduction of existing algorithms, as well the design of 
improved algorithms and (2) the lack of common quantitative methods for measuring and 
evaluating algorithm performance prevents the comparison of different algorithms under dif-
ferent conditions. We believe that this reason accounts for the absence of studies that compare 
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the accuracy and performance of different algorithms. Given that detecting counterfeiting is 
still in its early stages, considerable work remains to be performed, and other ideas can be 
derived or borrowed from other fields, such as object recognition or image analysis (Figure 12).
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Abstract

We investigated the influence of the imagined muscle contraction strength on the spinal 
motor neural excitability and sympathetic nerve activity by using the F-wave and heart 
rate variability analysis. Motor imagery of isometric thenar muscle activity increased the 
spinal motor neuron excitability and sympathetic nerve activity. The imagined muscle 
contraction strength did not affect changes of the spinal motor neuron excitability and 
sympathetic nerve activity. Therefore, Motor imagery at slight imagined muscle contrac-
tion strength can facilitate the spinal motor neuron excitability without physical load. 
Motor imagery-based Brain-machine interface is widely used for neurorehabilitation. To 
achieve better outcomes in neurorehabilitation used Brain-machine interface, performing 
trained motor imagery would be required, and the F-wave may be exploited an index of 
motor imagery training effect.

Keywords: motor imagery, F-wave, imagined muscle contraction strength, autonomic 
nervous system, neurorehabilitation

1. Introduction

Motor imagery (MI) is defined as an active process during which a specific motor action is 
reproduced within working memory without any overt movement [1]. MI is considered a 
potential tool for improvement of motor function in rehabilitation. Indeed, MI has been shown 
to improve various motor functions. Yue and Cole [2] reported that muscle strength of little 
finger abduction was significantly increased after MI training for 4 weeks. Additionally, muscle 
strength of ankle dorsiflexion was significantly increased after MI training for 4 weeks [3]. Also, 
Guillot et al. [4] reported that muscle flexibility was improved after MI of stretching for 5 weeks.
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Immediate enrollment in rehabilitation programs for functional reorganization should be 
important to obtain better outcomes [5]. Specifically, Motor-evoked potentials (MEPs) ampli-
tude, an index of corticospinal excitability, was decreased in post-stroke [6]. However, MEPs 
amplitude was increased in patients who have functional motor recovery [7]. Additionally, 
spinal motor neuron excitability was significantly reduced in the post-stroke acute phase [8]. 
Thus, facilitating the corticospinal excitability, including the spinal motor neuron excitability, 
should be needed for post-stroke patients whom have motor impairment.

Numerous neurophysiological studies using positron emission tomography (PET), func-
tional magnetic resonance imaging (fMRI), and near infrared spectroscopy (NIRS) have 
demonstrated that MI and motor execution activate similar brain activation patterns [9–13]. 
Specifically, primary motor cortex, supplementary motor area, premotor area, somatosen-
sory area, prefrontal cortex, parietal lobule, cingulate area, cerebellum, and basal ganglia 
were activated during MI and motor execution. Thus, MI shares common neural substrates 
with motor execution. When transcranial magnetic stimulation (TMS) was delivered over 
the primary motor cortex during MI, MEPs amplitude obtained from corresponding muscle 
was significantly increased relative to rest level [14–16]. The increase of MEPs amplitude 
during MI indicates that MI facilitates corticospinal excitability. Thus, MI can facilitate the 
central neural function.

However, previous studies have shown various patterns in the spinal motor neuron excit-
ability during MI using the F-wave and H-reflex as indices of spinal reflex excitability [17–19]. 
Taniguchi et al. [17] reported that the F-wave amplitude was significantly decreased after voli-
tional relaxation for 3 h. When subjects did MI of thumb abduction during volitional relaxation 
simultaneously, the F-wave amplitude was maintained at before volitional relaxation level. 
Whereas, Kasai et al. [18] reported that the H-reflex amplitude was unchanged during MI of 
wrist flexion movement. Oishi et al. [19] also reported that there was decline of H-reflex ampli-
tude during MI of speed skating. Our laboratory previously investigated the spinal motor 
neuron excitability during MI of isometric thenar muscle activity at 50% maximal voluntary 
contraction (MVC) for 1 min using the F-wave [20]. The F-wave is a compound action potential 
resulting from re-excitation (“backfiring”) of an antidromic impulse following distal electrical 
stimulation of motor nerve fibers at the anterior horn cells [21–23]. The F-wave measured dur-
ing MI at 50% MVC for 1 min was significantly increased than that at rest. Thus, we concluded 
that MI of isometric thenar muscle activity can increase the spinal motor neuron excitability.

We are aiming to find the way of MI obtained most beneficial effect. In order to do that, it 
is important to assess the spinal motor neuron excitability concurrent with the central ner-
vous system. We think that facilitating the spinal motor neuron excitability will be required 
for improvement of motor function. Because, described above, the facilitation of the corti-
cospinal excitability including the spinal motor neuron excitability is needed for recovery 
of motor function. In this chapter, we would like to introduce our previous works about 
the spinal motor neuron excitability during MI of isometric thenar muscle activity. In the 
first half of this chapter, we described about the spinal motor neuron excitability during 
MI of isometric thenar muscle activity at various imagined muscle contraction strengths. 
In the second half of this chapter, we described about the autonomic nervous system dur-
ing MI. At the end of chapter, we discuss about how apply MI to neurorehabilitation using 
brain-machine interface (BMI).
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2. The spinal motor neuron excitability during MI at various 
imagined muscle contraction strengths

2.1. The spinal motor neuron excitability during MI at 10, 30, 50, and 70% MVC

2.1.1. Purpose

We previously reported that when the subject performed MI of isomeric thenar muscle activ-
ity at 50% MVC, the spinal motor neuron excitability was significantly increased than at rest 
[20]. In actual motion, Suzuki et al. [27] reported the spinal motor neuron excitability was 
increased linearly with muscle contraction strength. If MI and motor execution share common 
neural networks, the spinal motor neuron excitability will be increased linearly with imag-
ined muscle contraction strength. Then, we investigated the spinal motor neuron excitability 
during MI at various imagined muscle contraction strengths. Specifically, we adopted the 10, 
30, 50, and 70% MVC for imagined muscle contraction strength. In this research, we assessed 
the spinal motor neuron excitability during MI by using the F-wave [24–26].

2.1.2. Materials

Ten healthy volunteers were participated in this research (5 males, 5 females; mean age = 
28.7 ± 4.5 years). All participants provided informed consent before the study commenced. 
This research was approved by the Research Ethics Committee at Kansai University of Health 
Sciences. All recordings were conducted in accordance with the Declaration of Helsinki.

2.1.3. F-wave recording procedure

Participants were in supine position on a bed and instructed to fix one’s eye on a pinch meter 
(Digital indicator F304A, Unipulse Corp., Japan) display throughout the F-wave recording. A 
Viking Quest electromyography machine ver. 9.0 (Natus Medical Inc., USA) was used for the 
F-wave recordings. The room temperature was kept at 25°C. The skin was cleaned with an 
abrasive gel to keep impedance below 5 kΩ. F-waves were recorded from left thenar muscle 
after stimulating the left median nerve at the wrist. A pair of 10 mm silver EEG cup electrodes 
(Natus Medical Inc., USA) were placed over the ventral surface of the thumb and base of 
the first dorsal metacarpal bone. The simulating electrodes comprised a cathode placed over 
the left median nerve 3 cm proximal to the palmar crease and an anode was placed 2 cm 
more proximally. Before the F-wave recording, maximal intensity of electrical stimulation 
was determined by delivering 0.2-ms square-wave pulses of increasing intensity from 0 to 
50 mA until eliciting the largest compound muscle action potential (M-wave). Supramaximal 
electrical stimuli (20% above maximal stimulus intensity) were delivered at 0.5 Hz in each 
trial. The sensitivity for the F-wave was set at 200 μV/division and a sweep of 5 ms/division. 
Filter bandwidth was ranged from 20 Hz to 3 kHz.

2.1.4. Experimental protocol

For the rest trial (rest), F-waves were recorded during relaxation for 1 min. Subsequently, for 
the motor task, participants learned the isometric thenar muscle activity at 50% MVC (i.e., 
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Immediate enrollment in rehabilitation programs for functional reorganization should be 
important to obtain better outcomes [5]. Specifically, Motor-evoked potentials (MEPs) ampli-
tude, an index of corticospinal excitability, was decreased in post-stroke [6]. However, MEPs 
amplitude was increased in patients who have functional motor recovery [7]. Additionally, 
spinal motor neuron excitability was significantly reduced in the post-stroke acute phase [8]. 
Thus, facilitating the corticospinal excitability, including the spinal motor neuron excitability, 
should be needed for post-stroke patients whom have motor impairment.

Numerous neurophysiological studies using positron emission tomography (PET), func-
tional magnetic resonance imaging (fMRI), and near infrared spectroscopy (NIRS) have 
demonstrated that MI and motor execution activate similar brain activation patterns [9–13]. 
Specifically, primary motor cortex, supplementary motor area, premotor area, somatosen-
sory area, prefrontal cortex, parietal lobule, cingulate area, cerebellum, and basal ganglia 
were activated during MI and motor execution. Thus, MI shares common neural substrates 
with motor execution. When transcranial magnetic stimulation (TMS) was delivered over 
the primary motor cortex during MI, MEPs amplitude obtained from corresponding muscle 
was significantly increased relative to rest level [14–16]. The increase of MEPs amplitude 
during MI indicates that MI facilitates corticospinal excitability. Thus, MI can facilitate the 
central neural function.

However, previous studies have shown various patterns in the spinal motor neuron excit-
ability during MI using the F-wave and H-reflex as indices of spinal reflex excitability [17–19]. 
Taniguchi et al. [17] reported that the F-wave amplitude was significantly decreased after voli-
tional relaxation for 3 h. When subjects did MI of thumb abduction during volitional relaxation 
simultaneously, the F-wave amplitude was maintained at before volitional relaxation level. 
Whereas, Kasai et al. [18] reported that the H-reflex amplitude was unchanged during MI of 
wrist flexion movement. Oishi et al. [19] also reported that there was decline of H-reflex ampli-
tude during MI of speed skating. Our laboratory previously investigated the spinal motor 
neuron excitability during MI of isometric thenar muscle activity at 50% maximal voluntary 
contraction (MVC) for 1 min using the F-wave [20]. The F-wave is a compound action potential 
resulting from re-excitation (“backfiring”) of an antidromic impulse following distal electrical 
stimulation of motor nerve fibers at the anterior horn cells [21–23]. The F-wave measured dur-
ing MI at 50% MVC for 1 min was significantly increased than that at rest. Thus, we concluded 
that MI of isometric thenar muscle activity can increase the spinal motor neuron excitability.

We are aiming to find the way of MI obtained most beneficial effect. In order to do that, it 
is important to assess the spinal motor neuron excitability concurrent with the central ner-
vous system. We think that facilitating the spinal motor neuron excitability will be required 
for improvement of motor function. Because, described above, the facilitation of the corti-
cospinal excitability including the spinal motor neuron excitability is needed for recovery 
of motor function. In this chapter, we would like to introduce our previous works about 
the spinal motor neuron excitability during MI of isometric thenar muscle activity. In the 
first half of this chapter, we described about the spinal motor neuron excitability during 
MI of isometric thenar muscle activity at various imagined muscle contraction strengths. 
In the second half of this chapter, we described about the autonomic nervous system dur-
ing MI. At the end of chapter, we discuss about how apply MI to neurorehabilitation using 
brain-machine interface (BMI).
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2. The spinal motor neuron excitability during MI at various 
imagined muscle contraction strengths

2.1. The spinal motor neuron excitability during MI at 10, 30, 50, and 70% MVC

2.1.1. Purpose

We previously reported that when the subject performed MI of isomeric thenar muscle activ-
ity at 50% MVC, the spinal motor neuron excitability was significantly increased than at rest 
[20]. In actual motion, Suzuki et al. [27] reported the spinal motor neuron excitability was 
increased linearly with muscle contraction strength. If MI and motor execution share common 
neural networks, the spinal motor neuron excitability will be increased linearly with imag-
ined muscle contraction strength. Then, we investigated the spinal motor neuron excitability 
during MI at various imagined muscle contraction strengths. Specifically, we adopted the 10, 
30, 50, and 70% MVC for imagined muscle contraction strength. In this research, we assessed 
the spinal motor neuron excitability during MI by using the F-wave [24–26].

2.1.2. Materials

Ten healthy volunteers were participated in this research (5 males, 5 females; mean age = 
28.7 ± 4.5 years). All participants provided informed consent before the study commenced. 
This research was approved by the Research Ethics Committee at Kansai University of Health 
Sciences. All recordings were conducted in accordance with the Declaration of Helsinki.

2.1.3. F-wave recording procedure

Participants were in supine position on a bed and instructed to fix one’s eye on a pinch meter 
(Digital indicator F304A, Unipulse Corp., Japan) display throughout the F-wave recording. A 
Viking Quest electromyography machine ver. 9.0 (Natus Medical Inc., USA) was used for the 
F-wave recordings. The room temperature was kept at 25°C. The skin was cleaned with an 
abrasive gel to keep impedance below 5 kΩ. F-waves were recorded from left thenar muscle 
after stimulating the left median nerve at the wrist. A pair of 10 mm silver EEG cup electrodes 
(Natus Medical Inc., USA) were placed over the ventral surface of the thumb and base of 
the first dorsal metacarpal bone. The simulating electrodes comprised a cathode placed over 
the left median nerve 3 cm proximal to the palmar crease and an anode was placed 2 cm 
more proximally. Before the F-wave recording, maximal intensity of electrical stimulation 
was determined by delivering 0.2-ms square-wave pulses of increasing intensity from 0 to 
50 mA until eliciting the largest compound muscle action potential (M-wave). Supramaximal 
electrical stimuli (20% above maximal stimulus intensity) were delivered at 0.5 Hz in each 
trial. The sensitivity for the F-wave was set at 200 μV/division and a sweep of 5 ms/division. 
Filter bandwidth was ranged from 20 Hz to 3 kHz.

2.1.4. Experimental protocol

For the rest trial (rest), F-waves were recorded during relaxation for 1 min. Subsequently, for 
the motor task, participants learned the isometric thenar muscle activity at 50% MVC (i.e., 
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participants press the sensor of pinch meter by left thumb and index finger at 50% MVC) for 
1 min. They were instructed to keep the 50% MVC value (kgf) measured numerically on the 
display of pinch meter. For the MI trial, participants performed MI of isometric thenar mus-
cle activity at 50% MVC for 1 min. F-waves were recorded during MI (50% MI). Immediately 
after 50% MI trial (post), F-waves were recorded during relaxation for 1 min. The above 
process was defined as the MI at 50% MVC condition (50% MI condition). This protocol was 
repeated for 10, 30, and 70% MI conditions. Each condition was performed randomly on dif-
ferent days.

2.1.5. F-wave data analysis

All recorded F-wave data were analyzed for the persistence, F/M amplitude ratio, and latency 
in each trial. The minimum of F-wave peak-to-peak amplitude was at least 20 μV [21]. The 
persistence was defined as the number of detected F-wave responses divided by 30 supra-
maximal electrical stimuli. The F/M amplitude ratio was defined as the mean amplitude of all 
responses divided by the M-wave amplitude. The amplitude measured individually for each 
F-wave and then the mean calculated. The latency was defined as the mean latency from the 
time of electrical stimulation to onset of detected F-waves. The persistence reflects the number 
of backfiring spinal anterior horn cells [22, 23]. The F/M amplitude ratio reflects the number of 
backfiring spinal anterior horn cells and the individual cells excitability [22, 23]. Thus, these 
parameters are considered the indices of the spinal motor neuron excitability.

2.1.6. Statistical analysis

The normality of F-wave data was not confirmed by using the Kolmogorov-Smirnov and 
Shapiro-Wilk tests. We used a nonparametric method in this research. The persistence, F/M 
amplitude ratio, and latency among three trials (rest, MI, post) under each MI conditions (10% 
MI, 30% MI, 50% MI, and 70% MI conditions) were compared using the Friedman test and 
Scheffe’s post hoc test.

We also calculated the relative value obtained by dividing F-wave data during MI under four 
MI conditions by that at rest. The relative values among four MI conditions were compared 
using the Friedman test. We used SPSS statistics ver. 19 (IBM Corp., USA) for statistical analy-
sis. The threshold for statistical significance was set to p = 0.05.

2.1.7. Results

The persistence during MI under all MI conditions was significantly greater than that at rest 
(10% MI vs. Rest, 70% MI vs. Rest, **p < 0.01; 30% MI vs. Rest, 50% MI vs. Rest, *p < 0.05) 
(Tables 1–4). The persistence immediately after MI under all MI conditions was reduced to 
rest level (Tables 1–4).

The F/M amplitude ratio during MI under 10, 30, and 50% MI conditions was significantly 
greater than that at rest (10% MI vs. Rest, 50% MI vs. Rest, **p < 0.01; 30% MI vs. Rest, *p < 0.05) 
(Tables 1–3). The F/M amplitude ratio during MI under 70% MI condition was tended to be 
increased than that at rest (p ≒ 0.082) (Table 4). The F/M amplitude ratio immediately after MI 
under all MI conditions was reduced to rest level (Tables 1–4).
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No significantly differences in the latency were observed among three trials (rest, MI, post) 
under all MI conditions (Tables 1–4).

The relative values of the persistence, F/M amplitude ratio, and latency did not exhibit signifi-
cant differences among all MI conditions (Table 5).

Rest 10% MI post

Persistence (%) 61.8 ± 12.6 91.9 ± 9.70** 73.1 ± 20.7

F/M amplitude ratio (%) 0.90 ± 0.35 2.46 ± 2.61** 1.18 ± 0.67

Latency (ms) 25.3 ± 0.98 25.2 ± 1.25 25.5 ± 0.99

**p < 0.01; significant difference between rest and 10% MI trial.

Table 1. Changes in F-wave under 10% MI condition.

Rest 70% MI post

Persistence (%) 55.9 ± 17.6 88.1 ± 10.8** 65.3 ± 19.9

F/M amplitude ratio (%) 0.94 ± 0.33 1.79 ± 1.23 1.11 ± 0.44

Latency (ms) 24.4 ± 1.37 24.1 ± 1.27 24.3 ± 1.15

**p < 0.01; significant difference between rest and 70% MI trial.

Table 4. Changes in F-wave under 70% MI condition.

Rest 50% MI post

Persistence (%) 62.7 ± 22.3 94.0 ± 9.40* 65.5 ± 27.0

F/M amplitude ratio (%) 1.08 ± 0.28 2.60 ± 2.30** 0.98 ± 0.40

Latency (ms) 24.5 ± 1.61 24.3 ± 1.82 24.5 ± 1.58

*p < 0.05; significant difference between rest and 50% MI trial.
**p < 0.01; significant difference between rest and 50% MI trial.

Table 3. Changes in F-wave under 50% MI condition.

Rest 30% MI post

Persistence (%) 61.2 ± 19.5 88.0 ± 12.2** 60.0 ± 18.7

F/M amplitude ratio (%) 1.00 ± 0.94 2.92 ± 2.95** 1.11 ± 0.52

Latency (ms) 24.9 ± 1.16 24.6 ± 0.99 24.9 ± 1.14

**p < 0.05; significant difference between rest and 30% MI trial.

Table 2. Changes in F-wave under 30% MI condition.
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participants press the sensor of pinch meter by left thumb and index finger at 50% MVC) for 
1 min. They were instructed to keep the 50% MVC value (kgf) measured numerically on the 
display of pinch meter. For the MI trial, participants performed MI of isometric thenar mus-
cle activity at 50% MVC for 1 min. F-waves were recorded during MI (50% MI). Immediately 
after 50% MI trial (post), F-waves were recorded during relaxation for 1 min. The above 
process was defined as the MI at 50% MVC condition (50% MI condition). This protocol was 
repeated for 10, 30, and 70% MI conditions. Each condition was performed randomly on dif-
ferent days.

2.1.5. F-wave data analysis

All recorded F-wave data were analyzed for the persistence, F/M amplitude ratio, and latency 
in each trial. The minimum of F-wave peak-to-peak amplitude was at least 20 μV [21]. The 
persistence was defined as the number of detected F-wave responses divided by 30 supra-
maximal electrical stimuli. The F/M amplitude ratio was defined as the mean amplitude of all 
responses divided by the M-wave amplitude. The amplitude measured individually for each 
F-wave and then the mean calculated. The latency was defined as the mean latency from the 
time of electrical stimulation to onset of detected F-waves. The persistence reflects the number 
of backfiring spinal anterior horn cells [22, 23]. The F/M amplitude ratio reflects the number of 
backfiring spinal anterior horn cells and the individual cells excitability [22, 23]. Thus, these 
parameters are considered the indices of the spinal motor neuron excitability.

2.1.6. Statistical analysis

The normality of F-wave data was not confirmed by using the Kolmogorov-Smirnov and 
Shapiro-Wilk tests. We used a nonparametric method in this research. The persistence, F/M 
amplitude ratio, and latency among three trials (rest, MI, post) under each MI conditions (10% 
MI, 30% MI, 50% MI, and 70% MI conditions) were compared using the Friedman test and 
Scheffe’s post hoc test.

We also calculated the relative value obtained by dividing F-wave data during MI under four 
MI conditions by that at rest. The relative values among four MI conditions were compared 
using the Friedman test. We used SPSS statistics ver. 19 (IBM Corp., USA) for statistical analy-
sis. The threshold for statistical significance was set to p = 0.05.

2.1.7. Results

The persistence during MI under all MI conditions was significantly greater than that at rest 
(10% MI vs. Rest, 70% MI vs. Rest, **p < 0.01; 30% MI vs. Rest, 50% MI vs. Rest, *p < 0.05) 
(Tables 1–4). The persistence immediately after MI under all MI conditions was reduced to 
rest level (Tables 1–4).

The F/M amplitude ratio during MI under 10, 30, and 50% MI conditions was significantly 
greater than that at rest (10% MI vs. Rest, 50% MI vs. Rest, **p < 0.01; 30% MI vs. Rest, *p < 0.05) 
(Tables 1–3). The F/M amplitude ratio during MI under 70% MI condition was tended to be 
increased than that at rest (p ≒ 0.082) (Table 4). The F/M amplitude ratio immediately after MI 
under all MI conditions was reduced to rest level (Tables 1–4).
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No significantly differences in the latency were observed among three trials (rest, MI, post) 
under all MI conditions (Tables 1–4).

The relative values of the persistence, F/M amplitude ratio, and latency did not exhibit signifi-
cant differences among all MI conditions (Table 5).

Rest 10% MI post

Persistence (%) 61.8 ± 12.6 91.9 ± 9.70** 73.1 ± 20.7

F/M amplitude ratio (%) 0.90 ± 0.35 2.46 ± 2.61** 1.18 ± 0.67

Latency (ms) 25.3 ± 0.98 25.2 ± 1.25 25.5 ± 0.99

**p < 0.01; significant difference between rest and 10% MI trial.

Table 1. Changes in F-wave under 10% MI condition.

Rest 70% MI post

Persistence (%) 55.9 ± 17.6 88.1 ± 10.8** 65.3 ± 19.9

F/M amplitude ratio (%) 0.94 ± 0.33 1.79 ± 1.23 1.11 ± 0.44

Latency (ms) 24.4 ± 1.37 24.1 ± 1.27 24.3 ± 1.15

**p < 0.01; significant difference between rest and 70% MI trial.

Table 4. Changes in F-wave under 70% MI condition.

Rest 50% MI post

Persistence (%) 62.7 ± 22.3 94.0 ± 9.40* 65.5 ± 27.0

F/M amplitude ratio (%) 1.08 ± 0.28 2.60 ± 2.30** 0.98 ± 0.40

Latency (ms) 24.5 ± 1.61 24.3 ± 1.82 24.5 ± 1.58

*p < 0.05; significant difference between rest and 50% MI trial.
**p < 0.01; significant difference between rest and 50% MI trial.

Table 3. Changes in F-wave under 50% MI condition.

Rest 30% MI post

Persistence (%) 61.2 ± 19.5 88.0 ± 12.2** 60.0 ± 18.7

F/M amplitude ratio (%) 1.00 ± 0.94 2.92 ± 2.95** 1.11 ± 0.52

Latency (ms) 24.9 ± 1.16 24.6 ± 0.99 24.9 ± 1.14

**p < 0.05; significant difference between rest and 30% MI trial.

Table 2. Changes in F-wave under 30% MI condition.

The Application of Motor Imagery to Neurorehabilitation
http://dx.doi.org/10.5772/intechopen.75411

57



2.2. The spinal motor neuron excitability during MI at 50 and 100% MVC

2.2.1. Purpose

Our previous works [24–26] suggested that MI of isometric thenar muscle activity at 10, 30, 
50, and 70% MVC can facilitate the spinal motor neuron excitability. However, the imagined 
muscle contraction strength did not influence on change of the spinal motor neuron excitabil-
ity. Whereas, Cowley et al. [29] previously reported that the amplitude of H-reflex during MI 
of ankle plantar flexion at 100% MVC was significantly greater than that at 50% MVC. Then, 
we hypothesized the MI of isometric thenar muscle activity at 100% MVC will be greater than 
that at 50% MVC. In this research, we compared the spinal motor neuron excitability between 
50% MI and 100% MI condition [28].

2.2.2. Materials

Fifteen healthy volunteers were participated in this research (13 males, 2 females; mean age = 
25.3 ± 5.0 years). All participants provided informed consent before the study commenced. This 
research was approved by the Research Ethics Committee at Kansai University of Health Sciences. 
All recordings were conducted in accordance with the Declaration of Helsinki.

2.2.3. F-wave recording procedure

The environment and F-wave recording condition was set as previous works [24, 25].

2.2.4. Experimental protocol

For the rest trial (rest), F-waves were recorded during relaxation for 1 min. Subsequently, for 
the motor task, participants learned the isometric thenar muscle activity at 50% MVC (i.e., 
participants press the sensor of pinch meter by left thumb and index finger at 50% MVC) for 
1 min. They were instructed to keep the 50% MVC value (kgf) measured numerically on the 
display of pinch meter. For the MI trial, participants performed MI of isometric thenar muscle 
activity at 50% MVC for 1 min. F-waves were recorded during MI (50% MI) and immediately 
after 50% MI trial (post) for 1 min respectively. The above process was defined as the MI at 
50% MVC condition (50% MI condition). F-wave recording under 100% MI condition was 
performed using the same protocol as 50% MI condition. These conditions were performed 
randomly on different days.

10% MI condition 30% MI condition 50% MI condition 70% MI condition

Relative values of 
persistence

1.53 ± 0.31 1.58 ± 0.61 1.78 ± 0.93 1.69 ± 0.45

Relative values of F/M 
amplitude ratio

2.40 ± 1.38 3.31 ± 0.56 2.52 ± 1.96 2.10 ± 1.37

Relative values of latency 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.03 0.99 ± 0.02

Table 5. Comparison of F-wave among 10% MI, 30% MI, 50% MI, and 70% MI condition.
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After all F-wave recordings, F-wave data was analyzed with respect to the persistence, F/M 
amplitude ratio, and latency.

2.2.5. Statistical analysis

The normality of F-wave data was not confirmed by using the Kolmogorov-Smirnov and 
Shapiro-Wilk tests. We used a nonparametric method in this research. The persistence, F/M 
amplitude ratio, and latency among three trials (rest, MI, post) under two MI conditions (50% 
MI and 100% MI conditions) were compared using the Friedman test and Scheffe’s post hoc test.

We also calculated the relative value obtained by dividing F-wave data during MI under four 
MI conditions by that at rest. The relative values among two MI conditions were compared 
using the Wilcoxon signed rank test. We used SPSS statistics ver. 19 (IBM Corp., USA) for 
statistical analysis. The threshold for statistical significance was set to p = 0.05.

2.2.6. Results

The persistence during MI under two MI conditions was significantly greater than that at rest 
(50% MI vs. Rest, 100% MI vs. Rest, **p < 0.01) (Tables 6, 7). The persistence immediately after 
MI under two MI conditions was reduced to rest level (Tables 6, 7).

The F/M amplitude ratio during MI under two MI conditions was significantly greater than 
that at rest (50% MI vs. Rest, 100% MI vs. Rest, **p < 0.01) (Tables 6, 7). The F/M amplitude 
ratio immediately after MI under two MI conditions was reduced to rest level (Tables 6, 7).

No significantly differences in the latency were observed among three trials (rest, MI, post) 
under two MI conditions (Tables 6, 7).

The relative values of the persistence, F/M amplitude ratio, and latency did not exhibit signifi-
cant differences between two MI conditions (Table 8).

2.3. Discussion

2.3.1. The spinal motor neuron excitability during MI of isometric thenar muscle activity

From results of our previous works, it is suggested that MI of isometric thenar muscle activity 
at 10, 30, 50, 70, and 100% can facilitate the spinal motor neuron excitability. About this, it is 
considered to be influence of descending pathways corresponding to thenar muscle. Previous 
researches have demonstrated the activation of diverse brain area contribute to motor prepa-
ration and planning during MI [9–13]. The excitatory and inhibitory inputs modulate the 
spinal motor neuron excitability via the corticospinal and/or extrapyramidal tract [30]. Thus, 
it is plausibly that the activation of central nervous system contributes to motor preparation 
and planning during MI facilitated the spinal motor neuron excitability via the corticospinal 
and/or extrapyramidal tract.

Furthermore, all subjects participated in our previous works were instructed to perform MI 
with holding the sensor of a pinch meter. Mizuguchi et al. [31] reported that corticospinal excit-
ability during MI utilizing an object was modulated by a combination of tactile and proprio-
ceptive inputs while holding an object. We previously reported that the spinal motor neuron 
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2.2. The spinal motor neuron excitability during MI at 50 and 100% MVC

2.2.1. Purpose

Our previous works [24–26] suggested that MI of isometric thenar muscle activity at 10, 30, 
50, and 70% MVC can facilitate the spinal motor neuron excitability. However, the imagined 
muscle contraction strength did not influence on change of the spinal motor neuron excitabil-
ity. Whereas, Cowley et al. [29] previously reported that the amplitude of H-reflex during MI 
of ankle plantar flexion at 100% MVC was significantly greater than that at 50% MVC. Then, 
we hypothesized the MI of isometric thenar muscle activity at 100% MVC will be greater than 
that at 50% MVC. In this research, we compared the spinal motor neuron excitability between 
50% MI and 100% MI condition [28].

2.2.2. Materials

Fifteen healthy volunteers were participated in this research (13 males, 2 females; mean age = 
25.3 ± 5.0 years). All participants provided informed consent before the study commenced. This 
research was approved by the Research Ethics Committee at Kansai University of Health Sciences. 
All recordings were conducted in accordance with the Declaration of Helsinki.

2.2.3. F-wave recording procedure

The environment and F-wave recording condition was set as previous works [24, 25].

2.2.4. Experimental protocol

For the rest trial (rest), F-waves were recorded during relaxation for 1 min. Subsequently, for 
the motor task, participants learned the isometric thenar muscle activity at 50% MVC (i.e., 
participants press the sensor of pinch meter by left thumb and index finger at 50% MVC) for 
1 min. They were instructed to keep the 50% MVC value (kgf) measured numerically on the 
display of pinch meter. For the MI trial, participants performed MI of isometric thenar muscle 
activity at 50% MVC for 1 min. F-waves were recorded during MI (50% MI) and immediately 
after 50% MI trial (post) for 1 min respectively. The above process was defined as the MI at 
50% MVC condition (50% MI condition). F-wave recording under 100% MI condition was 
performed using the same protocol as 50% MI condition. These conditions were performed 
randomly on different days.

10% MI condition 30% MI condition 50% MI condition 70% MI condition

Relative values of 
persistence

1.53 ± 0.31 1.58 ± 0.61 1.78 ± 0.93 1.69 ± 0.45

Relative values of F/M 
amplitude ratio

2.40 ± 1.38 3.31 ± 0.56 2.52 ± 1.96 2.10 ± 1.37

Relative values of latency 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.03 0.99 ± 0.02

Table 5. Comparison of F-wave among 10% MI, 30% MI, 50% MI, and 70% MI condition.

Evolving BCI Therapy - Engaging Brain State Dynamics58

After all F-wave recordings, F-wave data was analyzed with respect to the persistence, F/M 
amplitude ratio, and latency.

2.2.5. Statistical analysis

The normality of F-wave data was not confirmed by using the Kolmogorov-Smirnov and 
Shapiro-Wilk tests. We used a nonparametric method in this research. The persistence, F/M 
amplitude ratio, and latency among three trials (rest, MI, post) under two MI conditions (50% 
MI and 100% MI conditions) were compared using the Friedman test and Scheffe’s post hoc test.

We also calculated the relative value obtained by dividing F-wave data during MI under four 
MI conditions by that at rest. The relative values among two MI conditions were compared 
using the Wilcoxon signed rank test. We used SPSS statistics ver. 19 (IBM Corp., USA) for 
statistical analysis. The threshold for statistical significance was set to p = 0.05.

2.2.6. Results

The persistence during MI under two MI conditions was significantly greater than that at rest 
(50% MI vs. Rest, 100% MI vs. Rest, **p < 0.01) (Tables 6, 7). The persistence immediately after 
MI under two MI conditions was reduced to rest level (Tables 6, 7).

The F/M amplitude ratio during MI under two MI conditions was significantly greater than 
that at rest (50% MI vs. Rest, 100% MI vs. Rest, **p < 0.01) (Tables 6, 7). The F/M amplitude 
ratio immediately after MI under two MI conditions was reduced to rest level (Tables 6, 7).

No significantly differences in the latency were observed among three trials (rest, MI, post) 
under two MI conditions (Tables 6, 7).

The relative values of the persistence, F/M amplitude ratio, and latency did not exhibit signifi-
cant differences between two MI conditions (Table 8).

2.3. Discussion

2.3.1. The spinal motor neuron excitability during MI of isometric thenar muscle activity

From results of our previous works, it is suggested that MI of isometric thenar muscle activity 
at 10, 30, 50, 70, and 100% can facilitate the spinal motor neuron excitability. About this, it is 
considered to be influence of descending pathways corresponding to thenar muscle. Previous 
researches have demonstrated the activation of diverse brain area contribute to motor prepa-
ration and planning during MI [9–13]. The excitatory and inhibitory inputs modulate the 
spinal motor neuron excitability via the corticospinal and/or extrapyramidal tract [30]. Thus, 
it is plausibly that the activation of central nervous system contributes to motor preparation 
and planning during MI facilitated the spinal motor neuron excitability via the corticospinal 
and/or extrapyramidal tract.

Furthermore, all subjects participated in our previous works were instructed to perform MI 
with holding the sensor of a pinch meter. Mizuguchi et al. [31] reported that corticospinal excit-
ability during MI utilizing an object was modulated by a combination of tactile and proprio-
ceptive inputs while holding an object. We previously reported that the spinal motor neuron 
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Rest 50% MI post

Persistence (%) 50.8 ± 21.7 88.2 ± 13.2** 48.3 ± 19.9

F/M amplitude ratio (%) 1.71 ± 0.89 3.96 ± 4.56** 1.29 ± 0.56

Latency (ms) 25.5 ± 1.40 24.9 ± 1.91 25.3 ± 1.29

**p < 0.01; significant difference between rest and 50% MI trial.

Table 6. Changes in F-wave parameters under 50% MI condition.

excitability during MI with holding the sensor of a pinch meter was significantly greater than 
that during MI without holding the sensor [20]. Consequently, it is suggested that tactile and 
proprioceptive perceptions during MI while holding the sensor facilitated the spinal motor 
neuron excitability cooperatively with MI-activated pathways.

2.3.2. Influence of the imagined muscle contraction strength on the spinal motor neuron 
excitability

In our previous works, the relative value of the persistence, F/M amplitude, and latency 
were similar among all MI conditions. It is suggested that the imagined muscle contrac-
tion strength may not affect the spinal motor neuron excitability. There are several previous 
researches investigated the spinal motor neuron excitability during MI at different imag-
ined muscle contraction strengths. Bonnet et al. [32] reported that the amplitude of H-reflex 
was significantly greater during MI of ankle plantar flexion at 2 and 10% than that at rest. 
Additionally, the amplitude of H-reflex during MI was similar between 2% MI and 10% MI 
condition. Hale et al. [33] also reported that the amplitude of H-reflex during MI of ankle 
plantar flexion was similar among five (i.e., 20, 40, 60, 80, and 100% MVC) MI conditions. 

Rest 100% MI post

Persistence (%) 60.8 ± 24.9 91.9 ± 7.58** 60.7 ± 21.5

F/M amplitude ratio (%) 1.32 ± 1.12 3.57 ± 4.67** 1.39 ± 1.25

Latency (ms) 25.2 ± 1.32 24.8 ± 1.31 25.2 ± 1.40

**p < 0.01; significant difference between rest and 100% MI trial.

Table 7. Changes in F-wave parameters under 100% MI condition.

50% MI condition 100% MI condition

Relative values of persistence 2.04 ± 1.17 2.06 ± 1.71

Relative values of F/M amplitude ratio 2.75 ± 2.04 2.53 ± 1.76

Relative values of latency 0.98 ± 0.06 0.99 ± 0.03

Table 8. Comparison of F-wave parameters between 50% MI and 100% MI condition.
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Similarly, Aoyama and Kaneko [34] reported that the amplitude of H-reflex during MI was 
similar between 50% MI and 100% MI condition. In actual motion, the spinal motor neuron 
excitability was increased linearly with the muscle contraction strength [27]. Described in 
the introduction, MI is the mental rehearsal of a movement without any overt movement [1]. 
One possibility is the contribution of neural mechanism which inhibits actual movement and 
muscle contraction during MI. Park and Li [35] reported that the amplitude of MEPs during 
MI of finger flexion and extension at 10, 20, 30, 40, 50, and 60% MVC was significantly greater 
than that at rest. However, the amplitude of MEPs during MI was similar among all six MI 
conditions. Further, in an event-related potential study, the magnitude of primary motor 
cortex activity during MI did not correlate with the imagined muscle contraction strength, 
although activities of the supplementary motor and premotor area during MI were strongly 
correlated with it [36]. The supplementary motor and premotor area have crucial roles in 
larger force generation [37], motor planning, preparation, and inhibition [38, 39]. Thus, the 
supplementary motor and premotor area may inhibit the actual muscle activity depend-
ing on the muscle contraction strength. Because these areas also are connected directly to 
primary motor cortex, inhibitory inputs from the supplementary motor and premotor area 
may suppress any additional excitation of primary motor cortex conferred by MI with high 
imagined contraction strength. Furthermore, the spinal motor neuron excitability during MI 
is thought to be affected by central nervous system via the corticospinal and/or extrapyrami-
dal tract. The degree of the spinal motor neuron excitability during MI at various imagined 
muscle contraction strengths may be modulated by both excitatory and inhibitory inputs 
from the central nervous system.

2.4. Conclusion

Our previous woks showed significant increase of the spinal motor neuron excitability during 
MI of isometric thenar muscle activity. However, the imagined muscle contraction strength 
was not involved in change of the spinal motor neuron excitability.

3. The autonomic nervous system during MI of isometric thenar 
muscle activity

3.1. The autonomic nervous system during MI of isometric thenar muscle activity at 
10 and 50% MVC

3.1.1. Purpose

We previously suggested that MI can facilitate the spinal motor neuron excitability. 
Sympathetic nerve activity was increased during actual isometric muscle contraction [41]. If 
MI shares common neural substrates with motor execution, it would be expected to observe 
the similar pattern in autonomic nervous system (ANS) activity during MI would be observed. 
In previous research, the heart rate during MI was significantly increased than that at rest [42]. 
Thus, MI can regulate sympathetic nerve activity without any overt movement. However, 
whether the imagined muscle contraction strength affects the ANS activity is still unclear. 
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Then, this research aimed to investigate the ANS activity during MI of isometric thenar activ-
ity at 10 and 50% MVC [40].

3.1.2. Materials

Nine healthy volunteers were participated in this research (7 males, 2 females; mean age = 
25.3 ± 5.3 years). All participants provided informed consent before the study commenced. 
This research was approved by the Research Ethics Committee at Kansai University of Health 
Sciences. All recordings were conducted in accordance with the Declaration of Helsinki.

3.1.3. The ANS activity recording procedure

The ANS activity was recorded using a heart rhythm scanner PE (Biocom Technologies, USA). 
The pulse wave from the photoplethysmography sensor attached on earlobe was measured. The 
low frequency/high frequency (LF/HF) ratio was calculated by analyzing measured the pulse 
wave. The LF/HF ratio is considered to be an index of the sympathetic nerve activity.

3.1.4. Experimental protocol

For the rest trial (rest), the ANS activity was recorded during relaxation for 5 min. The European 
Society of Cardiology and the North American Society of Pacing and Electrophysiology recommend 
5 min recordings for heart rate variability analysis [43]. Subsequently, for the motor task, participants 
learned the isometric thenar muscle activity at 50% MVC (i.e., participants press the sensor of pinch 
meter by left thumb and index finger at 50% MVC) for 1 min. They were instructed to keep the 50% 
MVC value (kgf) measured numerically on the display of pinch meter. For the MI trial, participants 
performed MI of isometric thenar muscle activity at 10% MVC for 5 min. The ANS activity was 
recorded during MI (10% MI) and immediately after 10% MI trial (post) for 5 min respectively. The 
above process was defined as the MI at 10% MVC condition (10% MI condition). The ANS activity 
recording under 50% MI condition was performed using the same protocol as 10% MI condition. 
These conditions were performed randomly on different days.

3.1.5. Statistical analysis

The normality of the ANS activity data was not confirmed by using the Kolmogorov-Smirnov 
and Shapiro-Wilk tests. We used a nonparametric method in this research. The LF/HF ratio 
among three trials (rest, MI, post) under two MI conditions (10% MI and 50% MI conditions) 
were compared using the Friedman test and Scheffe’s post hoc test.

We also calculated the relative value obtained by dividing the LF/HF ratio during MI under 
four MI conditions by that at rest. The relative values among two MI conditions were com-
pared using the Wilcoxon signed rank test. We used SPSS statistics ver. 19 (IBM Corp., USA) 
for statistical analysis. The threshold for statistical significance was set to p = 0.05.

3.1.6. Results

The LF/HF ratio during MI under two MI conditions was greater than that at rest (50% MI vs. 
Rest, *p < 0.05) (Tables 9, 10). The LF/HF ratio immediately after MI under two MI conditions 
was reduced to rest level (Tables 9, 10).
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The relative values of the LF/HF ratio did not exhibit significant differences between two MI 
conditions (Table 11).

3.2. The autonomic nervous system during MI of isometric thenar muscle activity at 
50 and 100% MVC

Firstly, about purpose, the ANS recording procedure, experimental protocol, and statistical 
analysis, please refer to our previous research [40].

3.2.1. Materials

Ten healthy volunteers were participated in this research (8 males, 2 females; mean age = 
25.3 ± 5.3 years). All participants provided informed consent before the study commenced. 
This research was approved by the Research Ethics Committee at Kansai University of Health 
Sciences. All recordings were conducted in accordance with the Declaration of Helsinki.

3.2.2. Results

The LF/HF ratio during MI under two MI conditions was significantly greater than that at rest 
(50% MI vs. Rest, 100% MI vs. Rest, *p < 0.05) (Tables 12, 13). The LF/HF ratio immediately 
after MI under two MI conditions was reduced to rest level (Tables 12, 13).

The relative values of the LF/HF ratio did not exhibit significant differences between two MI 
conditions (Table 14).

3.3. Discussion

Our previous works demonstrated significant increase of the LF/HF ratio during MI at various 
imagined muscle contraction strengths (i.e., 10% MVC, 50% MVC, and 100% MVC) [40, 44]. 
Thus, MI of isometric thenar muscle activity can increase the sympathetic nerve activity as 
with previous researches [42]. The central command is defined as a feed-forward mechanism 
by which activation of cardiovascular and respiratory centers is accomplished by descend-
ing signals from central nervous system [45]. TMS delivered over the primary motor cortex 

Rest 10% MI post

LF/HF ratio (%) 1.23 ± 0.75 2.73 ± 3.68 1.54 ± 0.52

Table 9. Changes in ANS activity under 10% MI condition.

Rest 50% MI post

LF/HF ratio (%) 1.74 ± 1.16 2.92 ± 2.17* 2.07 ± 1.42

*p < 0.05; significant difference between rest and 50% MI trial.

Table 10. Changes in ANS activity under 50% MI condition.
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increased the skin sympathetic nerve activity [46]. Furthermore, transcranial direct current 
stimulation (tDCS) delivered over the primary motor cortex increased the LF/HF ratio [47]. 
Thus, the corticospinal pathway including the primary motor cortex may affect the sympa-
thetic nerve activity. The rostral ventromedial medulla is also part of the reticulospinal tract 
[48]. The activation of central nervous system during MI may increase the sympathetic nerve 
activity via the corticospinal and reticulospinal tracts.

The imagined muscle contraction did not affect the change of the sympathetic nerve activity. This 
is very similar with the result of the spinal motor neuron excitability during MI at various imag-
ined muscle contraction strengths [24–26, 28]. If central command during MI affects the sympa-
thetic nerve activity via the corticospinal pathway, the imagined muscle contraction strength may 
affect the sympathetic nerve activity. Park and Li [35] reported that the imagined muscle contrac-
tion strength did not affect the corticospinal excitability. Thus, it considered that the imagined 
muscle contraction strength might not be involved in change of the sympathetic nerve activity.

3.4. Conclusion

Our previous woks showed significant increase of the sympathetic nerve activity during MI 
of isometric thenar muscle activity. However, the imagined muscle contraction strength was 
not involved in change of the sympathetic nerve activity.

50% MI condition 10% MI condition

Relative value of LF/HF ratio 2.64 ± 3.35 1.75 ± 1.14

Table 11. Comparison of ANS activity between 10% MI and 50% MI condition.

Rest 50% MI post

LF/HF ratio (%) 2.04 ± 1.44 3.40 ± 2.55* 2.33 ± 1.58

*p < 0.05; significant difference between rest and 50% MI trial.

Table 12. Changes in LF/HF ratio under 50% MI condition.

rest 100% MI post

LF/HF ratio (%) 1.86 ± 1.21 4.60 ± 5.48* 2.29 ± 1.12

*p < 0.05; significant difference between rest and 50% MI trial.

Table 13. Changes in LF/HF ratio under 100% MI condition.

50% MI condition 100% MI condition

Relative value of LF/HF ratio 2.69 ± 3.32 2.14 ± 1.15

Table 14. Comparison of ANS activity between 50% MI and 100% MI condition.
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4. The application of MI to neurorehabilitation

30–60% of patients have difficulty in using their affected upper limb after stroke [49]. Nakayama 
et al. [50] reported that recovery of upper limb function related activity of daily living mainly 
took place within the first 2 months after stroke. Further they reported that 79% of patients 
with mild upper limb paresis could achieve full upper limb function, whereas, in case with 
severe upper limb paresis, only 18% of patients who could achieve full upper limb function.

Depending on alteration of peripheral and central inputs, cortical connections and responses 
are continuously reorganized [51]. Motor cortex excitability will be decreased in post-stroke due 
to the damage of neural substrates, loss of sensory inputs, and disuse of the affected limb [52]. 
Described in introduction of this chapter, various brain areas including primary motor cortex 
corresponding to motor planning, preparation and execution were activated during MI [9–13]. 
Pascual-Leon et al. [53] employed TMS in the healthy subjects to map the primary motor cortex 
targeting the contralateral hand muscles pre- and post-MI training. Cortical representation of 
hand muscles in contralateral the primary motor cortex increased after MI training. Similarly, 
MI induced an enhancement of hand muscle cortical representation in post-stroke [54]. Thus, 
MI can induce the cortical plasticity after neural damage. Additionally, Wrigley et al. [55] 
reported that the corticospinal excitability was decreased following the significant decline of 
both size and number of the corticospinal neurons. Also, the spinal motor neuron excitability 
was significantly reduced in the post-stroke acute phase [8]. Ruffino et al. [56] indicated that 
neural adaptation following MI training, such as cortical reorganization, the reinforcement of 
synapse conductivity, and the decline of pre-synaptic inhibition, would be occurred at cortical 
and spinal level. Thus, in post-stroke patients, facilitating the corticospinal excitability, includ-
ing the spinal motor neuron excitability should be important for improvement motor function. 
MI can increase the corticospinal excitability [14–16]. Further, Grosprêtre et al. [57] reported 
that during MI, the amplitude of cervico-medullar-evoked potentials (CMEPs) can measure 
directly pyramido-motoneuronal junction was significantly increased. The H-reflex amplitude, 
however, was unchanged. Conversely, the H-reflex amplitude was increased during MI [29]. 
Further, we showed significant increase the F-wave during MI [24–26, 28]. In regard to differ-
ence between two techniques, the H-reflex size can be influenced by pre-synaptic interneuron, 
whereas the F-wave is solely dependent on the spinal motor neuron excitability [58]. Although 
effect of MI on the spinal motor neuron excitability is still under debate, MI can be considered 
to be an effective method for improvement upper limb function in post-stroke.

Brain-machine interface (BMI) is thought to be a potentially useful technology in neuroreha-
bilitation. BMI can supplement for the lost motor function by bypassing disabled neuromus-
cular system, and improve brain plasticity and restoration of motor function by using external 
feedback [59, 60]. Various neurophysiological technologies, such as electroencephalography 
(EEG), magnetencephalography (MEG), and NIRS, have been used to measure and analyze 
brain activities. Among, the mu (μ) rhythm (ranged from 10-12 Hz) has been commonly used 
to monitor brain activities [61]. The event-related desynchronization (ERD) of the μ-rhythm 
was observed during MI. MI plays an important role in neurorehabilitation using EEG trig-
gered-BMI. However, many people have difficulty in performing MI. Especially MI ability 
was significantly decreased in post-stroke patients [62]. They have no feedback about whether 
MI did perform correctly, because MI is a mental rehearsal of movement without any overt 
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increased the skin sympathetic nerve activity [46]. Furthermore, transcranial direct current 
stimulation (tDCS) delivered over the primary motor cortex increased the LF/HF ratio [47]. 
Thus, the corticospinal pathway including the primary motor cortex may affect the sympa-
thetic nerve activity. The rostral ventromedial medulla is also part of the reticulospinal tract 
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muscle contraction strength might not be involved in change of the sympathetic nerve activity.

3.4. Conclusion
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of isometric thenar muscle activity. However, the imagined muscle contraction strength was 
not involved in change of the sympathetic nerve activity.
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MI induced an enhancement of hand muscle cortical representation in post-stroke [54]. Thus, 
MI can induce the cortical plasticity after neural damage. Additionally, Wrigley et al. [55] 
reported that the corticospinal excitability was decreased following the significant decline of 
both size and number of the corticospinal neurons. Also, the spinal motor neuron excitability 
was significantly reduced in the post-stroke acute phase [8]. Ruffino et al. [56] indicated that 
neural adaptation following MI training, such as cortical reorganization, the reinforcement of 
synapse conductivity, and the decline of pre-synaptic inhibition, would be occurred at cortical 
and spinal level. Thus, in post-stroke patients, facilitating the corticospinal excitability, includ-
ing the spinal motor neuron excitability should be important for improvement motor function. 
MI can increase the corticospinal excitability [14–16]. Further, Grosprêtre et al. [57] reported 
that during MI, the amplitude of cervico-medullar-evoked potentials (CMEPs) can measure 
directly pyramido-motoneuronal junction was significantly increased. The H-reflex amplitude, 
however, was unchanged. Conversely, the H-reflex amplitude was increased during MI [29]. 
Further, we showed significant increase the F-wave during MI [24–26, 28]. In regard to differ-
ence between two techniques, the H-reflex size can be influenced by pre-synaptic interneuron, 
whereas the F-wave is solely dependent on the spinal motor neuron excitability [58]. Although 
effect of MI on the spinal motor neuron excitability is still under debate, MI can be considered 
to be an effective method for improvement upper limb function in post-stroke.

Brain-machine interface (BMI) is thought to be a potentially useful technology in neuroreha-
bilitation. BMI can supplement for the lost motor function by bypassing disabled neuromus-
cular system, and improve brain plasticity and restoration of motor function by using external 
feedback [59, 60]. Various neurophysiological technologies, such as electroencephalography 
(EEG), magnetencephalography (MEG), and NIRS, have been used to measure and analyze 
brain activities. Among, the mu (μ) rhythm (ranged from 10-12 Hz) has been commonly used 
to monitor brain activities [61]. The event-related desynchronization (ERD) of the μ-rhythm 
was observed during MI. MI plays an important role in neurorehabilitation using EEG trig-
gered-BMI. However, many people have difficulty in performing MI. Especially MI ability 
was significantly decreased in post-stroke patients [62]. They have no feedback about whether 
MI did perform correctly, because MI is a mental rehearsal of movement without any overt 
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motor outputs [1]. Thus, MI training should be needed with providing appropriate feedback. 
Actually, kinesthetic feedback provided better hand motor recovery in MI-based BCI com-
bined with exoskeleton [63].

From the result of our previous works [24–26, 28], we propose the spinal motor neuron excit-
ability may be one of useful index of MI training effect, because Takemi et al. [64] suggested 
that the degree of ERD was significantly correlated with the spinal motor neuron excitabil-
ity. Actually, Hale et al. [33] reported that the spinal motor neuron excitability was more 
facilitated with each MI practice. Thus, the spinal motor neuron excitability during MI may 
be altered depending on MI learning status. However, Oishi et al. [19] also reported that the 
spinal motor neuron excitability was decreased during MI in athlete of speed skating. About 
alteration of the spinal motor neuron excitability during MI in various learning status, further 
research will be required.
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Abstract

Controlling a brain-computer interface (BCI) is a difficult task that requires extensive 
training. Particularly in the case of motor imagery BCIs, users may need several training 
sessions before they learn how to generate desired brain activity and reach an acceptable 
performance. A typical training protocol for such BCIs includes execution of a motor 
imagery task by the user, followed by presentation of an extending bar or a moving object 
on a computer screen. In this chapter, we discuss the importance of a visual feedback that 
resembles human actions, the effect of human factors such as confidence and motivation, 
and the role of embodiment in the learning process of a motor imagery task. Our results 
from a series of experiments in which users BCI-operated a humanlike android robot 
confirm that realistic visual feedback can induce a sense of embodiment, which promotes 
a significant learning of the motor imagery task in a short amount of time. We review the 
impact of humanlike visual feedback in optimized modulation of brain activity by the 
BCI users.

Keywords: motor imagery, BCI training, visual feedback, android robot, positive bias, 
embodiment, performance, neurorehabilitation

1. Introduction

Brain-computer interfaces (BCIs) have been considered for years as a new method of con-
trol and communication with the outside world not only for disabled patients who have lost 
motor control [1, 2] or speech abilities [3], but also for healthy users who are seeking new 
ways of interaction with virtual reality (VR) environments [4] and gaming applications [5]. 
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However, despite their popularity and potentials, BCIs still remain mostly used inside labo-
ratories and barely commercialized for real-world applications. The main reason behind this 
slow progress is the lack of reliability and poor performance of the BCI systems [6]. Even 
the finest BCI classifiers developed to date are not yet able to extract the relevant features 
from brain activity with high accuracy and robustness, particularly if the activity is recorded 
with electroencephalography (EEG) and contains noise. Many BCI researchers have made it a 
quest of their life to develop systems and algorithms that can decode EEG activity with high 
accuracy [7]. However, beside the algorithms, there is another element in the BCI loop that 
often gets neglected and that is the human user who is the source of the input signals [6, 8]. 
Although it has been previously shown that not every user is capable of controlling a BCI, the 
so-called BCI illiteracy [9], most users can obtain a decent level of “skill” with a few sessions 
of training.

Motor imagery-based BCIs demand particularly longer training time compared to ERP-based 
BCIs (such as P300 speller) or BCIs that use steady-state visual-evoked potentials (SSVEPs). 
This is due to the fact that motor imagery task, the mental rehearsal of a movement without 
actually performing it, is a counterintuitive task for the majority of individuals. Most users 
cannot visualize a vivid picture of the movement and its kinesthetic experience. Hwang et al. 
refer to this as the unknown “feel of motor imagery” [10]. An imaginary action can range from 
the visualization of a self-performed movement from a first-person perspective, to a third-
person view of the self-body movement, to the manipulation of an external object that is either 
physical or imaginary [11]. Although these types of motor imagery all involve voluntary 
actions, they may not involve similar cognitive processes. For novice BCI users, the instruc-
tion about a motor imagery task is normally given verbally by an experimenter, and it is up 
to the user to find the optimum image, by trial and error, that leads to a high performance.

On the other hand, similar to any other interface, BCI users should receive feedback of their 
performance in order to close the control loop between them and the interface. Over years, 
various feedback paradigms for motor imagery training have been proposed, most of which 
are based on visual and auditory feedback [12, 13]. One of the main issues in the design of 
visual feedback in most of motor imagery-based BCIs is that the feedback presentation is not 
congruent with the subject’s image of a bodily movement. For example, in the training para-
digm introduced by Pfurtscheller and Neuper, subjects imagined either a right- or a left-hand 
movement and watched a horizontal feedback bar on a computer screen that was extended 
to the right or to the left based on the classifier output [12]. Blankertz et al. presented a falling 
ball on the screen that could be horizontally displaced either to the left or right side if the 
user’s left- or right-hand imagery was successfully detected by the classifier [13]. In another 
study, Nijboer et al. employed two feedback designs: a visual feedback with a cursor on a 
screen that moved up and down based on the subject’s sensorimotor rhythm and an auditory 
feedback that presented different types of sound in existence or the absence of motor imagery 
activation [14]. In all of the given examples, the feedback design that was employed had no 
congruity with the type of image that the subjects held (image of a bodily hand or a foot). Not 
only the disparity between the visual feedback and the type of image can confuse the subjects 
during the task, but it also prevents them from obtaining “the feel of motor imagery” and 
correcting their imagery strategy.

Evolving BCI Therapy - Engaging Brain State Dynamics74

To overcome such a deficiency, some studies have employed a double-modality design. For 
instance, Chatterjee et al. introduced a vibrotactile feedback paradigm that delivered haptic 
information during BCI control [15]. Every time subjects imagined a hand movement, the 
classifier result was presented to them in the form of a cursor movement (visual feedback) and 
a vibration on their corresponding arm (tactile feedback). A design like this can enormously 
change the interaction a clinical BCI user has with a neuroprosthesis and may facilitate the 
decoding of sensorimotor rhythm during neurorehabilitation therapy with BCIs [16]; how-
ever, in the case of a healthy user, the application of vibration on a part of body that is not 
involved in the imagination of movement (arm instead of the hand) can again disturb the 
conduct of the motor imagery task by the user.

Another commonly faced problem in the BCI training protocols is the lack of motivation for 
novice users. Motor imagery BCI takes a very long training that is often accompanied with 
unsuccessful and unsatisfying results in the beginning. It has been shown that motivation 
[17, 18] along with other mental states such as fatigue and frustration [19] can substantially 
influence BCI performance. To alleviate this problem, some of the previous studies have given 
their attention to the design of a more interactive feedback environment by means of virtual 
reality techniques [18, 20]. A few others have tried to improve users’ level of confidence and 
perception of control over the BCI system by intentionally biasing the presented feedback 
accuracy [21, 22].

What is important, and often neglected in the BCI research, is that the interaction between a 
user and the interface is the most critical component in the BCI loop, and therefore an inappro-
priate training design can hinder the user’s learning of the task and BCI skills. In this chapter, 
we address the importance of training and feedback design in the production and control of 
the EEG components that are required for a motor imagery-based BCI. We first review research 
on the compatibility of the feedback appearance with a real human body and its impact on 
learning of the motor imagery task. We then discuss works that have tried to improve the 
motivation level of a user either by making the environment playful or by positively faking the 
performance of the user. In the following, we investigate the role of embodiment, the feeling 
of owning a controlled body, which has long been disregarded in the BCI research. In the final 
part of this chapter, we introduce our android-based training paradigm that has exhibited a 
promising potential for improving motor imagery learning in novice BCI users.

2. Motor imagery and action observation

It has been shown that mental imagery of a motor action can produce cortical activation simi-
lar to that of the same action executed [23, 24]. For instance, the execution of a hand movement 
results in the suppression of mu rhythm (8–12 Hz) in sensorimotor regions and so does the 
motor imagery of the corresponding hand [25]. By monitoring single-trial EEG signals and 
measuring event-related desynchronization (ERD), it is even possible to detect whether the 
imagined hand was the right or the left one [26]. However, previous studies suggest that the 
detection of hand imagery can only achieve a high rate when the user has employed a kin-
esthetic motor imagery strategy (first-person process) [27]. In the same study, Neuper et al. 
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Another commonly faced problem in the BCI training protocols is the lack of motivation for 
novice users. Motor imagery BCI takes a very long training that is often accompanied with 
unsuccessful and unsatisfying results in the beginning. It has been shown that motivation 
[17, 18] along with other mental states such as fatigue and frustration [19] can substantially 
influence BCI performance. To alleviate this problem, some of the previous studies have given 
their attention to the design of a more interactive feedback environment by means of virtual 
reality techniques [18, 20]. A few others have tried to improve users’ level of confidence and 
perception of control over the BCI system by intentionally biasing the presented feedback 
accuracy [21, 22].

What is important, and often neglected in the BCI research, is that the interaction between a 
user and the interface is the most critical component in the BCI loop, and therefore an inappro-
priate training design can hinder the user’s learning of the task and BCI skills. In this chapter, 
we address the importance of training and feedback design in the production and control of 
the EEG components that are required for a motor imagery-based BCI. We first review research 
on the compatibility of the feedback appearance with a real human body and its impact on 
learning of the motor imagery task. We then discuss works that have tried to improve the 
motivation level of a user either by making the environment playful or by positively faking the 
performance of the user. In the following, we investigate the role of embodiment, the feeling 
of owning a controlled body, which has long been disregarded in the BCI research. In the final 
part of this chapter, we introduce our android-based training paradigm that has exhibited a 
promising potential for improving motor imagery learning in novice BCI users.

2. Motor imagery and action observation

It has been shown that mental imagery of a motor action can produce cortical activation simi-
lar to that of the same action executed [23, 24]. For instance, the execution of a hand movement 
results in the suppression of mu rhythm (8–12 Hz) in sensorimotor regions and so does the 
motor imagery of the corresponding hand [25]. By monitoring single-trial EEG signals and 
measuring event-related desynchronization (ERD), it is even possible to detect whether the 
imagined hand was the right or the left one [26]. However, previous studies suggest that the 
detection of hand imagery can only achieve a high rate when the user has employed a kin-
esthetic motor imagery strategy (first-person process) [27]. In the same study, Neuper et al. 
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report that the observation of a left- or a right-hand movement could also lead to high clas-
sification accuracies at parieto-occipital regions [27]. Many neuroimaging studies have found 
empirical evidences that combining motor imagery with action observation could induce a 
stronger cortical activation compared to either condition alone [28]. This has been associated 
with the firing of mirror neurons [29] that become active during the observation of a motion 
and represent high-level information about goals and intentions [28]. It also indicates a shared 
neurocognitive process between motor imagery and action observation that could be utilized 
in BCI training and control. Particularly, if the action is congruent with the motor imagery, the 
observed image is a simulation of one’s own action, the combination of the two conditions can 
lead to a “sense of effort,” a sense of agency, and imagined kinesthetic sensations that would 
arise during one’s own motor execution [30].

Ono et al. examined the effect of visual feedback on ERD during a motor imagery task [31]. In a 
series of training sessions, they hired different groups of subjects and trained them on different 
types of visual feedback, including a conventional feedback bar, a human hand that was shown 
on a screen in front of the subject and a human hand that was shown on a screen as the exten-
sion of one’s own arm. They found that by the end of the training, the group that was presented 
anatomically congruent feedback produced the highest ERD value and classification accuracy. 
Neuper et al. have also investigated the impact of a visual feedback presentation on sensorimo-
tor EEG rhythms and BCI performance [32]. They trained two groups of subjects on a motor 
imagery-based BCI using two feedback designs: a realistic feedback (a video of a moving hand 
that grasped a glass) and an abstract feedback (a moving bar that extended horizontally). Their 
results, however, showed no difference between the two feedback groups in terms of motor 
imagery learning and ERD changes. An explanation for this, as authors have indicated in their 
discussion, could be the short training period and few number of feedback sessions.

With recent advancement in videogames and VR technology, a more rich, realistic, and engag-
ing visual presentation of the BCI output has become possible. Pineda et al. designed a three-
dimensional first-person shooter game that enabled BCI users to make navigational movements 
by left and right motor imageries [33]. Their results indicated that subjects could learn to control 
levels of mu rhythm very quickly, within approximately 3–10 hours of training that was sched-
uled over a course of five weeks. Leeb et al. also reported a case study with a tetraplegic patient 
who was able to navigate through VR by imagination of his feet movements that was translated 
into movements of an avatar [34]. The most obvious benefits of VR in the construction of visual 
feedback are the richness of details that could be incorporated, the sense of embodiment it 
induces (see Section 4), and a relatively low cost. Particularly, in terms of detailed feedback, it 
can involve different types of movement and inclusion of goal-oriented tasks. Past studies have 
shown that motor cortex is sensitive to different forms of observed motor behavior [35] and 
subjective perspective [30, 36]. Muthukumaraswamy et al. have shown that the observation of 
an object-directed precision grip produces more mu suppression than the observation of a non-
object-directed grip [35]. In our previous study, we compared motor imagery learning between 
two groups of BCI users who operated either a pair of robotic gripper or a pair of humanlike 
robotic hands [8]. We found a more robust learning of the BCI task for the second group who 
were trained with a pair of humanlike robotic hands. This result provides evidence that visual 
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feedback with a more detailed appearance and compatible action to one’s real hand can extend 
larger effect on neural plasticity and reinforcement of motor imagery learning.

It is worth noting that BCI training along with visual feedback of a body movement (action 
observation) has been employed in neurorehabilitation studies and with stroke patients as well 
[37–42]. It is suggested that providing anthropomorphic feedback during motor imagery works 
in a similar way as does mirror therapy for phantom limb patients [39]. That is, providing 
feedback of a bodily movement can activate neural networks associated with action observa-
tion system and induce a “motor resonance” [40]. Thereby by directly matching the observed 
or imagined action onto the internal simulation of that action, motor resonance can further 
facilitate the relearning of the impaired motor functions [41]. For instance, Foldes et al. trained 
spinal cord injury patients with hand paralysis on a motor imagery-based BCI combined with a 
virtual hand feedback. Results showed that all patients could successfully modulate their brain 
activity in order to grasp the virtual hand and two of three participants could improve their 
sensorimotor rhythms in only one session of feedback training [39]. Kim et al. also combined 
an action observation training with a motor imagery-based BCI and found promising results 
in terms of actual functional improvements in the upper arm movement of stroke patients [42].

The above review shows that a neurofeedback paradigm that merges motor imagery with the 
observation of a bodily action has the potential to promote plastic changes in somatosensory 
activation, the recovery of motor functions, and the improvement of motor performance [43]. 
In a very similar way, such combination can bring significant benefits to BCI training, by help-
ing the user to activate motor-related cortical areas and generate brain signals that are easily 
detectable by the BCI classifier.

3. Human factors and BCI learning

To control a BCI, the user has to perform a mental imagery task and generate distinguishable 
brain activity for signal-processing algorithms. Modulation of one’s own brain signals is not 
an intuitive task, and therefore the user needs to practice and learn the BCI “skill.” However, 
an efficient learning of a skill requires optimized training protocols that consider the user’s 
psychological states (such as motivation, attention, confidence, and satisfaction) in order to 
ensure more effort and better performance from the user’s side [44]. Kleih et al. have shown 
that in the control of a P300 BCI, the level of P300 amplitude was significantly correlated with 
the level of self-rated motivation, that is, highly motivated subjects were able to communicate 
through BCI faster than less motivated subjects [45]. In another BCI study with ALS patients, 
Nijboer et al. reported that motivational factors, specifically challenge and confidence, were 
positively correlated with BCI performance, whereas fear had a negative influence [46]. It 
is suggested that even with highly motivated subjects, users can experience a low level of 
satisfaction if they do not succeed in accomplishing the BCI-control task [47].

In order to overcome such issues, many researchers have explored alternative BCI training 
protocols. Leeb et al. suggested employment of VR environments in designing attractive BCI 
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report that the observation of a left- or a right-hand movement could also lead to high clas-
sification accuracies at parieto-occipital regions [27]. Many neuroimaging studies have found 
empirical evidences that combining motor imagery with action observation could induce a 
stronger cortical activation compared to either condition alone [28]. This has been associated 
with the firing of mirror neurons [29] that become active during the observation of a motion 
and represent high-level information about goals and intentions [28]. It also indicates a shared 
neurocognitive process between motor imagery and action observation that could be utilized 
in BCI training and control. Particularly, if the action is congruent with the motor imagery, the 
observed image is a simulation of one’s own action, the combination of the two conditions can 
lead to a “sense of effort,” a sense of agency, and imagined kinesthetic sensations that would 
arise during one’s own motor execution [30].

Ono et al. examined the effect of visual feedback on ERD during a motor imagery task [31]. In a 
series of training sessions, they hired different groups of subjects and trained them on different 
types of visual feedback, including a conventional feedback bar, a human hand that was shown 
on a screen in front of the subject and a human hand that was shown on a screen as the exten-
sion of one’s own arm. They found that by the end of the training, the group that was presented 
anatomically congruent feedback produced the highest ERD value and classification accuracy. 
Neuper et al. have also investigated the impact of a visual feedback presentation on sensorimo-
tor EEG rhythms and BCI performance [32]. They trained two groups of subjects on a motor 
imagery-based BCI using two feedback designs: a realistic feedback (a video of a moving hand 
that grasped a glass) and an abstract feedback (a moving bar that extended horizontally). Their 
results, however, showed no difference between the two feedback groups in terms of motor 
imagery learning and ERD changes. An explanation for this, as authors have indicated in their 
discussion, could be the short training period and few number of feedback sessions.

With recent advancement in videogames and VR technology, a more rich, realistic, and engag-
ing visual presentation of the BCI output has become possible. Pineda et al. designed a three-
dimensional first-person shooter game that enabled BCI users to make navigational movements 
by left and right motor imageries [33]. Their results indicated that subjects could learn to control 
levels of mu rhythm very quickly, within approximately 3–10 hours of training that was sched-
uled over a course of five weeks. Leeb et al. also reported a case study with a tetraplegic patient 
who was able to navigate through VR by imagination of his feet movements that was translated 
into movements of an avatar [34]. The most obvious benefits of VR in the construction of visual 
feedback are the richness of details that could be incorporated, the sense of embodiment it 
induces (see Section 4), and a relatively low cost. Particularly, in terms of detailed feedback, it 
can involve different types of movement and inclusion of goal-oriented tasks. Past studies have 
shown that motor cortex is sensitive to different forms of observed motor behavior [35] and 
subjective perspective [30, 36]. Muthukumaraswamy et al. have shown that the observation of 
an object-directed precision grip produces more mu suppression than the observation of a non-
object-directed grip [35]. In our previous study, we compared motor imagery learning between 
two groups of BCI users who operated either a pair of robotic gripper or a pair of humanlike 
robotic hands [8]. We found a more robust learning of the BCI task for the second group who 
were trained with a pair of humanlike robotic hands. This result provides evidence that visual 
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feedback with a more detailed appearance and compatible action to one’s real hand can extend 
larger effect on neural plasticity and reinforcement of motor imagery learning.

It is worth noting that BCI training along with visual feedback of a body movement (action 
observation) has been employed in neurorehabilitation studies and with stroke patients as well 
[37–42]. It is suggested that providing anthropomorphic feedback during motor imagery works 
in a similar way as does mirror therapy for phantom limb patients [39]. That is, providing 
feedback of a bodily movement can activate neural networks associated with action observa-
tion system and induce a “motor resonance” [40]. Thereby by directly matching the observed 
or imagined action onto the internal simulation of that action, motor resonance can further 
facilitate the relearning of the impaired motor functions [41]. For instance, Foldes et al. trained 
spinal cord injury patients with hand paralysis on a motor imagery-based BCI combined with a 
virtual hand feedback. Results showed that all patients could successfully modulate their brain 
activity in order to grasp the virtual hand and two of three participants could improve their 
sensorimotor rhythms in only one session of feedback training [39]. Kim et al. also combined 
an action observation training with a motor imagery-based BCI and found promising results 
in terms of actual functional improvements in the upper arm movement of stroke patients [42].

The above review shows that a neurofeedback paradigm that merges motor imagery with the 
observation of a bodily action has the potential to promote plastic changes in somatosensory 
activation, the recovery of motor functions, and the improvement of motor performance [43]. 
In a very similar way, such combination can bring significant benefits to BCI training, by help-
ing the user to activate motor-related cortical areas and generate brain signals that are easily 
detectable by the BCI classifier.

3. Human factors and BCI learning

To control a BCI, the user has to perform a mental imagery task and generate distinguishable 
brain activity for signal-processing algorithms. Modulation of one’s own brain signals is not 
an intuitive task, and therefore the user needs to practice and learn the BCI “skill.” However, 
an efficient learning of a skill requires optimized training protocols that consider the user’s 
psychological states (such as motivation, attention, confidence, and satisfaction) in order to 
ensure more effort and better performance from the user’s side [44]. Kleih et al. have shown 
that in the control of a P300 BCI, the level of P300 amplitude was significantly correlated with 
the level of self-rated motivation, that is, highly motivated subjects were able to communicate 
through BCI faster than less motivated subjects [45]. In another BCI study with ALS patients, 
Nijboer et al. reported that motivational factors, specifically challenge and confidence, were 
positively correlated with BCI performance, whereas fear had a negative influence [46]. It 
is suggested that even with highly motivated subjects, users can experience a low level of 
satisfaction if they do not succeed in accomplishing the BCI-control task [47].

In order to overcome such issues, many researchers have explored alternative BCI training 
protocols. Leeb et al. suggested employment of VR environments in designing attractive BCI 
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training paradigms that increase user’s engagement [18]. Their results show that users are 
likely to perform better in a VR navigation task compared to the conventional training with 
cue-based feedback. Lotte et al. proposed improvement of engagement and motivation in a 
social context by the application of a BCI game between two users [44]. Users could either 
participate in a collaborative game, where the sum of the BCI outputs from both users was 
used to direct a ball on a screen, or in a competitive version, where the users had to push the 
ball toward the opposite direction. They observed that multiplayer version of the games could 
effectively improve BCI performance compared to its single player version.

Multimodality and closing the sensorimotor loop has also been suggested as another method 
to increase user’s engagement and performance. Jeunet et al. compared users’ performances 
in a motor imagery-based multi-task BCI with different feedback modalities (visual vs. tac-
tile) and found a significant improvement when subjects received continuous tactile feedback 
compared to an equivalent visual feedback [48]. This is consistent with the study in [16] where 
haptic feedback, provided in a synchronized manner with the subject’s execution of a motor 
imagery task, could facilitate decoding of movement intentions and increase classification 
accuracy for both healthy and stroke patients.

In addition to the above strategies, some studies have proposed manipulation of the feedback 
either by biasing the feedback accuracy (i.e., giving the user a perception that he/she did bet-
ter/worse than what he/she actually did) or by error-ignoring (i.e., presenting feedback only 
when the user performed the task correctly) [21, 22, 49, 50]. Barbero et al. investigated the 
influence of a biased feedback on BCI performance when subjects navigated a falling ball on 
a screen by right- and left-hand imageries. They found that subjects with a poor performance 
benefitted from positive biasing of their performance level, whereas for those already capable 
of the BCI task, the bias of feedback impeded the results [21]. This is while Gonzalez-Franco 
et al. found larger learning effects for negative feedback than for positive feedback [49]. In 
our previous studies with BCI operation of a pair of humanlike robotic hands, we found a 
general improving effect, both when subjects received a positively biased feedback of their BCI 
performance and when their mistakes were not presented to them, that is, error ignoring [22]. 
This improvement could have been associated with the higher sense of embodiment that users 
experienced during operation of the hands (see Section 4).

Overall, previous research demonstrates that human psychological factors play a significant 
role in the process of BCI training. It is even suggested that parameters such as personal-
ity, motivation, and attention span could predict performance in a single session of motor 
imagery-based BCI control [51]. Future training environments should take these parameters 
into account in order to enhance learning of the BCI task as well as to address the problem of 
“BCI inefficiency” that concerns users who are unable to learn BCI control.

4. The role of embodiment

Recent view of cognitive development suggests that our cognitive skills are dynami-
cally shaped through our bodily interaction with the environment and thus are grounded in 
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sensory and motor experiences [52, 53]. Under this view, the mind (mental images, thoughts, 
representation) is created from processes that are closely related to brain representations of 
the body and the way it interacts with the real world [54]. This fosters the notion of neural 
plasticity during the learning of new motor skills and tool use that might lead to temporary 
or long-term incorporation of new objects and augmented cognition [55]. When extended 
to external body parts (dummy limbs), the experience of embodiment is often described 
by the two senses of body ownership (to what extent the seen body part was perceived as 
one’s own body) and agency (to what extent the motions of the seen body were attributed to 
one’s own movements) [56]. Although there are some counter arguments [57], embodiment 
is generally conceived as an important component in establishing interaction between a 
patient and medical BCIs (such as neural prostheses) for better incorporation of the artificial 
limb [58]. However, with the recent advancements in VR and robotic technology, the con-
cept of embodiment has also been proposed as a reinforcing factor for immersive experience 
of healthy users.

The first question, however, is whether BCI control of a non-body object would evoke a 
sense of embodiment for the operator. Here, we mainly focus on the sense of embodiment 
that is induced over a humanlike body shape rather than embodiment in physical space 
and for general objects as it is reported in [59]. Perez-Marcos et al. combined virtual reality 
and a motor imagery-based BCI in order to induce a sense of ownership for a virtual hand 
[60]. Although they did not assess motor-related features of the collected EEG signals in 
this study, they showed that BCI control of a virtual hand could induce an illusion of body 
ownership and trigger an electromyogram (EMG) response when the virtual hand suddenly 
fell down. Using a real-time fMRI setup, Cohen et al. also proposed a robotic embodiment 
for a humanoid robot in France that was remotely controlled by subjects performing motor 
imagery in Israel [61]. While they did not perform a systematic evaluation of the sense of 
embodiment and the number of subjects was limited, post-experiment interviews indicated 
a high level of tele-presence and embodiment for at least two of the four subjects who par-
ticipated in this study.

In a similar direction, the authors of this chapter have reported an illusion of body owner-
ship for a pair of humanlike robotic hands that were controlled by a BCI system [62]. In 
this experiment, subjects watched robot’s hands from a first-person perspective in a head-
mounted display and performed a right or a left motor imagery in order to grasp a lighted 
ball inside the robot’s hands (Figure 1). Our subjective (questionnaire) and physiological 
measurements (skin conductance response) revealed that the subjects experienced a feeling 
of owning the robot’s hands, and this feeling had a significant correlation with their BCI 
performance [22].

In addition to the enhancement of the immersive experience, the feeling of embodiment has 
been shown to have a positive impact on neurofeedback training and motor imagery learning 
at the neural level. Braun et al. reported a sense of ownership for an anthropomorphic robotic 
hand that was placed in front of the subjects and was controlled by a right motor imagery 
task [63]. Interestingly, their results indicated a stronger ERD in alpha and beta frequency 
bands when the robotic hand was in a congruent position (higher embodiment) compared to 
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training paradigms that increase user’s engagement [18]. Their results show that users are 
likely to perform better in a VR navigation task compared to the conventional training with 
cue-based feedback. Lotte et al. proposed improvement of engagement and motivation in a 
social context by the application of a BCI game between two users [44]. Users could either 
participate in a collaborative game, where the sum of the BCI outputs from both users was 
used to direct a ball on a screen, or in a competitive version, where the users had to push the 
ball toward the opposite direction. They observed that multiplayer version of the games could 
effectively improve BCI performance compared to its single player version.

Multimodality and closing the sensorimotor loop has also been suggested as another method 
to increase user’s engagement and performance. Jeunet et al. compared users’ performances 
in a motor imagery-based multi-task BCI with different feedback modalities (visual vs. tac-
tile) and found a significant improvement when subjects received continuous tactile feedback 
compared to an equivalent visual feedback [48]. This is consistent with the study in [16] where 
haptic feedback, provided in a synchronized manner with the subject’s execution of a motor 
imagery task, could facilitate decoding of movement intentions and increase classification 
accuracy for both healthy and stroke patients.

In addition to the above strategies, some studies have proposed manipulation of the feedback 
either by biasing the feedback accuracy (i.e., giving the user a perception that he/she did bet-
ter/worse than what he/she actually did) or by error-ignoring (i.e., presenting feedback only 
when the user performed the task correctly) [21, 22, 49, 50]. Barbero et al. investigated the 
influence of a biased feedback on BCI performance when subjects navigated a falling ball on 
a screen by right- and left-hand imageries. They found that subjects with a poor performance 
benefitted from positive biasing of their performance level, whereas for those already capable 
of the BCI task, the bias of feedback impeded the results [21]. This is while Gonzalez-Franco 
et al. found larger learning effects for negative feedback than for positive feedback [49]. In 
our previous studies with BCI operation of a pair of humanlike robotic hands, we found a 
general improving effect, both when subjects received a positively biased feedback of their BCI 
performance and when their mistakes were not presented to them, that is, error ignoring [22]. 
This improvement could have been associated with the higher sense of embodiment that users 
experienced during operation of the hands (see Section 4).

Overall, previous research demonstrates that human psychological factors play a significant 
role in the process of BCI training. It is even suggested that parameters such as personal-
ity, motivation, and attention span could predict performance in a single session of motor 
imagery-based BCI control [51]. Future training environments should take these parameters 
into account in order to enhance learning of the BCI task as well as to address the problem of 
“BCI inefficiency” that concerns users who are unable to learn BCI control.

4. The role of embodiment

Recent view of cognitive development suggests that our cognitive skills are dynami-
cally shaped through our bodily interaction with the environment and thus are grounded in 
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sensory and motor experiences [52, 53]. Under this view, the mind (mental images, thoughts, 
representation) is created from processes that are closely related to brain representations of 
the body and the way it interacts with the real world [54]. This fosters the notion of neural 
plasticity during the learning of new motor skills and tool use that might lead to temporary 
or long-term incorporation of new objects and augmented cognition [55]. When extended 
to external body parts (dummy limbs), the experience of embodiment is often described 
by the two senses of body ownership (to what extent the seen body part was perceived as 
one’s own body) and agency (to what extent the motions of the seen body were attributed to 
one’s own movements) [56]. Although there are some counter arguments [57], embodiment 
is generally conceived as an important component in establishing interaction between a 
patient and medical BCIs (such as neural prostheses) for better incorporation of the artificial 
limb [58]. However, with the recent advancements in VR and robotic technology, the con-
cept of embodiment has also been proposed as a reinforcing factor for immersive experience 
of healthy users.

The first question, however, is whether BCI control of a non-body object would evoke a 
sense of embodiment for the operator. Here, we mainly focus on the sense of embodiment 
that is induced over a humanlike body shape rather than embodiment in physical space 
and for general objects as it is reported in [59]. Perez-Marcos et al. combined virtual reality 
and a motor imagery-based BCI in order to induce a sense of ownership for a virtual hand 
[60]. Although they did not assess motor-related features of the collected EEG signals in 
this study, they showed that BCI control of a virtual hand could induce an illusion of body 
ownership and trigger an electromyogram (EMG) response when the virtual hand suddenly 
fell down. Using a real-time fMRI setup, Cohen et al. also proposed a robotic embodiment 
for a humanoid robot in France that was remotely controlled by subjects performing motor 
imagery in Israel [61]. While they did not perform a systematic evaluation of the sense of 
embodiment and the number of subjects was limited, post-experiment interviews indicated 
a high level of tele-presence and embodiment for at least two of the four subjects who par-
ticipated in this study.

In a similar direction, the authors of this chapter have reported an illusion of body owner-
ship for a pair of humanlike robotic hands that were controlled by a BCI system [62]. In 
this experiment, subjects watched robot’s hands from a first-person perspective in a head-
mounted display and performed a right or a left motor imagery in order to grasp a lighted 
ball inside the robot’s hands (Figure 1). Our subjective (questionnaire) and physiological 
measurements (skin conductance response) revealed that the subjects experienced a feeling 
of owning the robot’s hands, and this feeling had a significant correlation with their BCI 
performance [22].

In addition to the enhancement of the immersive experience, the feeling of embodiment has 
been shown to have a positive impact on neurofeedback training and motor imagery learning 
at the neural level. Braun et al. reported a sense of ownership for an anthropomorphic robotic 
hand that was placed in front of the subjects and was controlled by a right motor imagery 
task [63]. Interestingly, their results indicated a stronger ERD in alpha and beta frequency 
bands when the robotic hand was in a congruent position (higher embodiment) compared to 
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an incongruent condition. Leeb et al. also compared the influence of feedback types on the 
motor imagery performance and BCI classification accuracy. They found that an immersive 
feedback (walking inside a VR environment) resulted in a better task performance by the 
subjects than a simple BCI feedback (bar presented on a computer screen), although this did 
not seem to affect the BCI classification accuracy [64].

The results obtained from the above studies are all consistent with our previously reported 
findings in [8] where subjects practiced motor imagery task in a BCI-control session with 
two types of feedback (Figure 2A). As mentioned earlier in this chapter, subjects who 
were trained with a more humanlike android robot could perform better on the motor 
imagery task in the final BCI-control session than those who were trained with a pair of 
metallic gripper (Figure 2B). In this study, “motor imagery performance” was defined as 
how well subjects could generate discriminant brain patterns for the two classes of right 
and left motor imageries and it was obtained by the Fisher’s discriminant criterion in a lin-
ear discriminant analysis that observed the distribution of EEG features [8]. The ΔMotor 
imagery performance in Figure 2B represents the ratio of this criterion between the two 
evaluations and training sessions (for more details, refer to [8]). In another study, we also 
reported that in comparison with a classical feedback bar, motor imagery training with a 
humanlike android feedback that induces a sense of embodiment could lead to a stronger 
mu suppression in the sensorimotor areas and eventually improved subjects’ online BCI 
performance [65].

Research suggests that cortical connections mediating motor activation are formed through 
experience [66], making perception-action coupling an important functional factor in the 
learning of new motor skills [67]. Under this view, a procedural memory of motor programs 
together with their sensory concomitants is stored during motor learning which gives rise to 
anticipatory mechanisms that predict sensorimotor outcomes of planned actions in real time 

Figure 1. Users controlled a pair of humanlike robotic hands by performing right- and left-hand imageries while 
watching first-person perspective images of the robot’s body.
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[11]. The usage of a humanlike android in our studies could have influenced motor imagery 
learning twofold. First, it is speculated that the visual feedback provided from the android’s 
body resembled a self-body action—as we experience it in our daily activities—and therefore 
matched with the visual anticipations of the motor intentions. Second, a more detailed and 
compatible visual feedback from the android’s body (in terms of appearance and motion) 
could have excited motor memories more intensely, and therefore subjects trained with a 
humanlike android recalled more vivid and explicit images of the movement during the 
imagery task [8].

Not only that embodiment can reinforce learning of the motor imagery and BCI task, it has 
also been shown that the two share spectral and anatomical mechanisms [68]. In the study of 
[68], subjects watched either a pair of virtual arms or a pair of non-body objects projecting out 
from their body inside a head-mounted display. For both visual feedbacks, they first received 
a visuotactile stimulation to experience a body ownership illusion similar to rubber hand illu-
sion (RHI) [69], and then they were instructed to perform a motor imagery for either their 
right or left hand. Their overall results demonstrated that both illusory hand ownership and 
motor imagery were associated with a mu-band modulation, and more importantly, there was 
an overlap between the areas that were activated during illusory hand ownership and motor 
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an incongruent condition. Leeb et al. also compared the influence of feedback types on the 
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imagery conditions. This finding suggests that multisensory mechanisms related to the sense 
of body ownership and embodiment share neural processes with motor imagery and thus 
could be used in the activation and classification of EEG patterns in BCIs. Indeed, the two pro-
cesses have been shown to go hand in hand as in [70], we demonstrated that the BCI control of 
a pair of humanlike robotic hands by means of motor imagery induces a higher sense of body 
ownership and agency compared to a direct control by means of motor execution. It could be 
speculated that because of the shared mechanism between embodiment and motor imagery, 
there is a positive loop effect: motor imagery of the hands induces a strong sense of embodi-
ment and embodiment activates more motor-related neurons detectable by the BCI classifier.

5. Our proposed model

Based on our review in this chapter, we summarize three elements that should be considered 
in the design of a BCI training protocol:

• Feedback should be realistic and compatible with the task content. Particularly, in a motor 
imagery-based BCI, users would benefit from observation of movements that are consistent 
with their mental images.

• Human factors such as motivation, confidence, and fatigue can significantly affect user’s 
interaction with the BCI system and subsequently influence their performance in the BCI 
task. Employment of interactive environments such as VR and providing positively biased 
feedback are two techniques that can enhance motor imagery learning particularly for nov-
ice BCI users.

• The sense of embodiment and body ownership establishes a positive interaction with sub-
jects’ motor imagery performance, and therefore, it is important to provide a realistic visual 
feedback that resembles a human body in terms of appearance, movement, and perspective.

By integrating the knowledge we obtained in our previous experiments [8, 22, 62] and the 
abovementioned points, we proposed an android-based training protocol in [65]. In this 
study, two groups of novice participants practiced hand grasp imagery either by a classi-
cal cue-based feedback (arrow and feedback bar) or by watching first-person perspective 
images of a humanlike android robot that made hand grasps based on the subject’s EEG 
patterns (Figure 3). In addition, subjects’ performance was positively biased during the 
training phase in order to boost their confidence and motivation for the motor imagery 
task. More importantly, we added a pre-training phase for the android group, where 
subjects could practice motor imagery, followed by kinesthetic motor actions. Results 
from this study revealed that participants who were trained with an android-based BCI 
achieved a significantly higher mu suppression in the sensorimotor areas (C3/C4 scalp 
positions) as well as a significantly better online BCI performance in the final evaluation 
phase compared to the participants who were trained with a classical training paradigm. 
We believe that the improved modulation of the sensorimotor rhythms in the proposed 
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training protocol is highly influenced by the sense of embodiment that participants per-
ceived during BCI control of the robot’s hands.

6. Conclusion

In this chapter, we highlighted the importance of a human user in the BCI loop and addressed 
some of the deficiencies in the training and feedback design of the classical motor imagery-based 
BCI systems. We provided empirical evidence that a careful training design that views BCI 
experience from the user’s perspective and considers such factors as task-feedback compatibil-
ity, motivation, and embodiment could reinforce users’ learning of the motor imagery task and 
consequently improve their BCI performance in a very short amount of time. We believe that 
our results are of importance to the BCI community and should be taken into account for future 
design of BCI systems that are employed in real-world applications outside of laboratories.
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who were trained with a classical feedback bar.

Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment
http://dx.doi.org/10.5772/intechopen.78695

83



imagery conditions. This finding suggests that multisensory mechanisms related to the sense 
of body ownership and embodiment share neural processes with motor imagery and thus 
could be used in the activation and classification of EEG patterns in BCIs. Indeed, the two pro-
cesses have been shown to go hand in hand as in [70], we demonstrated that the BCI control of 
a pair of humanlike robotic hands by means of motor imagery induces a higher sense of body 
ownership and agency compared to a direct control by means of motor execution. It could be 
speculated that because of the shared mechanism between embodiment and motor imagery, 
there is a positive loop effect: motor imagery of the hands induces a strong sense of embodi-
ment and embodiment activates more motor-related neurons detectable by the BCI classifier.

5. Our proposed model

Based on our review in this chapter, we summarize three elements that should be considered 
in the design of a BCI training protocol:

• Feedback should be realistic and compatible with the task content. Particularly, in a motor 
imagery-based BCI, users would benefit from observation of movements that are consistent 
with their mental images.

• Human factors such as motivation, confidence, and fatigue can significantly affect user’s 
interaction with the BCI system and subsequently influence their performance in the BCI 
task. Employment of interactive environments such as VR and providing positively biased 
feedback are two techniques that can enhance motor imagery learning particularly for nov-
ice BCI users.

• The sense of embodiment and body ownership establishes a positive interaction with sub-
jects’ motor imagery performance, and therefore, it is important to provide a realistic visual 
feedback that resembles a human body in terms of appearance, movement, and perspective.

By integrating the knowledge we obtained in our previous experiments [8, 22, 62] and the 
abovementioned points, we proposed an android-based training protocol in [65]. In this 
study, two groups of novice participants practiced hand grasp imagery either by a classi-
cal cue-based feedback (arrow and feedback bar) or by watching first-person perspective 
images of a humanlike android robot that made hand grasps based on the subject’s EEG 
patterns (Figure 3). In addition, subjects’ performance was positively biased during the 
training phase in order to boost their confidence and motivation for the motor imagery 
task. More importantly, we added a pre-training phase for the android group, where 
subjects could practice motor imagery, followed by kinesthetic motor actions. Results 
from this study revealed that participants who were trained with an android-based BCI 
achieved a significantly higher mu suppression in the sensorimotor areas (C3/C4 scalp 
positions) as well as a significantly better online BCI performance in the final evaluation 
phase compared to the participants who were trained with a classical training paradigm. 
We believe that the improved modulation of the sensorimotor rhythms in the proposed 

Evolving BCI Therapy - Engaging Brain State Dynamics82

training protocol is highly influenced by the sense of embodiment that participants per-
ceived during BCI control of the robot’s hands.

6. Conclusion

In this chapter, we highlighted the importance of a human user in the BCI loop and addressed 
some of the deficiencies in the training and feedback design of the classical motor imagery-based 
BCI systems. We provided empirical evidence that a careful training design that views BCI 
experience from the user’s perspective and considers such factors as task-feedback compatibil-
ity, motivation, and embodiment could reinforce users’ learning of the motor imagery task and 
consequently improve their BCI performance in a very short amount of time. We believe that 
our results are of importance to the BCI community and should be taken into account for future 
design of BCI systems that are employed in real-world applications outside of laboratories.

Acknowledgements

This research was supported by Grants-in-Aid for Scientific Research 25220004, 26540109, and 
15F15046.

Conflict of interest

The authors declare no conflicts of interest.

Figure 3. Subjects who were trained with a humanlike android robot and experienced a high sense of embodiment 
revealed a stronger mu suppression in the sensorimotor areas and showed better BCI performance compared to subjects 
who were trained with a classical feedback bar.

Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment
http://dx.doi.org/10.5772/intechopen.78695

83



Author details

Maryam Alimardani1,2*, Shuichi Nishio2 and Hiroshi Ishiguro2,3

*Address all correspondence to: m.alimardani@uvt.nl

1 Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, 
The Netherlands

2 Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan

3 Department of Systems Innovation, Osaka University, Osaka, Japan

References

[1] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer 
interfaces for communication and control. Clinical Neurophysiology. 2002;113(6):767-791

[2] Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G. Clinical application of 
an EEG-based brain-computer interface: A case study in a patient with severe motor 
impairment. Clinical Neurophysiology. 2003;114(3):399-409

[3] Brumberg JS, Nieto-Castanon A, Kennedy PR, Guenther FH. Brain-computer interfaces 
for speech communication. Speech Communication. 2010;52(4):367-379

[4] Lécuyer A, Lotte F, Reilly RB, Leeb R, Hirose M, Slater M. Brain-computer interfaces, 
virtual reality, and videogames. Computer. 2008;41(10):66-72

[5] Nijholt A, Bos DPO, Reuderink B. Turning shortcomings into challenges: Brain-computer 
interfaces for games. Entertainment Computing. 2009;1(2):85-94

[6] Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for spontane-
ous brain-computer interfaces: Lessons learned from instructional design. Frontiers in 
Human Neuroscience. 2013;7:568

[7] Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification 
algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering. 
2007;4(2):R1

[8] Alimardani M, Nishio S, Ishiguro H. The importance of visual feedback design in BCIs: 
From embodiment to motor imagery learning. PLoS One. 2016;11(9):e0161945

[9] Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. How many people 
are able to operate an EEG-based brain-computer interface (BCI)? IEEE Transactions on 
Neural Systems and Rehabilitation Engineering. 2003;11(2):145-147

[10] Hwang HJ, Kwon K, Im CH. Neurofeedback-based motor imagery training for brain-
computer interface (BCI). Journal of Neuroscience Methods. 2009;179(1):150-156

Evolving BCI Therapy - Engaging Brain State Dynamics84

[11] Annett J. Motor imagery: Perception or action? Neuropsychologia. 1995;33(11):1395-1417

[12] Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. 
Proceedings of the IEEE. 2001;89(7):1123-1134

[13] Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G. The non-invasive Berlin 
brain-computer interface: Fast acquisition of effective performance in untrained sub-
jects. NeuroImage. 2007;37(2):539-550

[14] Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A. An audi-
tory brain-computer interface (BCI). Journal of Neuroscience Methods. 2008;167(1):43-50

[15] Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain-computer interface 
with vibrotactile biofeedback for haptic information. Journal of Neuroengineering and 
Rehabilitation. 2007;4(1):40

[16] Gomez-Rodriguez M, Peters J, Hill J, Schölkopf B, Gharabaghi A, Grosse-Wentrup 
M. Closing the sensorimotor loop: Haptic feedback facilitates decoding of motor imag-
ery. Journal of Neural Engineering. 2011;8(3):036005

[17] Kleih SC, Riccio A, Mattia D, Kaiser V, Friedrich EVC, Scherer R, Kübler A. et al. Motivation 
influences performance in SMR-BCI. na. In: Proceeding of the 5th International Brain-
Computer Interface Conference. 2011:108-111

[18] Leeb R, Lee F, Keinrath C, Scherer R, Bischof H, Pfurtscheller G. Brain-computer 
communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE 
Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(4):473-482

[19] Myrden A, Chau T. Effects of user mental state on EEG-BCI performance. Frontiers in 
Human Neuroscience. 2015;9:308

[20] Ron-Angevin R, Díaz-Estrella A. Brain-computer interface: Changes in performance 
using virtual reality techniques. Neuroscience Letters. 2009;449(2):123-127

[21] Barbero Á, Grosse-Wentrup M. Biased feedback in brain-computer interfaces. Journal of 
Neuroengineering and Rehabilitation. 2010;7(1):34

[22] Alimardani M, Nishio S, Ishiguro H. Effect of biased feedback on motor imagery learn-
ing in BCI-teleoperation system. Frontiers in Systems Neuroscience. 2014;8:52

[23] Jeannerod M, Frak V. Mental imaging of motor activity in humans. Current Opinion in 
Neurobiology. 1999;9(6):735-739

[24] Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. 
Behavioral and Brain Sciences. 1994;17(2):187-202

[25] Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in 
humans. Neuroscience Letters. 1997;239(2-3):65-68

[26] Pfurtscheller G, Brunner C, Schlögl A, Da Silva FL. Mu rhythm (de) synchronization 
and EEG single-trial classification of different motor imagery tasks. NeuroImage. 
2006;31(1):153-159

Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment
http://dx.doi.org/10.5772/intechopen.78695

85



Author details

Maryam Alimardani1,2*, Shuichi Nishio2 and Hiroshi Ishiguro2,3

*Address all correspondence to: m.alimardani@uvt.nl

1 Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, 
The Netherlands

2 Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan

3 Department of Systems Innovation, Osaka University, Osaka, Japan

References

[1] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer 
interfaces for communication and control. Clinical Neurophysiology. 2002;113(6):767-791

[2] Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G. Clinical application of 
an EEG-based brain-computer interface: A case study in a patient with severe motor 
impairment. Clinical Neurophysiology. 2003;114(3):399-409

[3] Brumberg JS, Nieto-Castanon A, Kennedy PR, Guenther FH. Brain-computer interfaces 
for speech communication. Speech Communication. 2010;52(4):367-379

[4] Lécuyer A, Lotte F, Reilly RB, Leeb R, Hirose M, Slater M. Brain-computer interfaces, 
virtual reality, and videogames. Computer. 2008;41(10):66-72

[5] Nijholt A, Bos DPO, Reuderink B. Turning shortcomings into challenges: Brain-computer 
interfaces for games. Entertainment Computing. 2009;1(2):85-94

[6] Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for spontane-
ous brain-computer interfaces: Lessons learned from instructional design. Frontiers in 
Human Neuroscience. 2013;7:568

[7] Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification 
algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering. 
2007;4(2):R1

[8] Alimardani M, Nishio S, Ishiguro H. The importance of visual feedback design in BCIs: 
From embodiment to motor imagery learning. PLoS One. 2016;11(9):e0161945

[9] Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. How many people 
are able to operate an EEG-based brain-computer interface (BCI)? IEEE Transactions on 
Neural Systems and Rehabilitation Engineering. 2003;11(2):145-147

[10] Hwang HJ, Kwon K, Im CH. Neurofeedback-based motor imagery training for brain-
computer interface (BCI). Journal of Neuroscience Methods. 2009;179(1):150-156

Evolving BCI Therapy - Engaging Brain State Dynamics84

[11] Annett J. Motor imagery: Perception or action? Neuropsychologia. 1995;33(11):1395-1417

[12] Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. 
Proceedings of the IEEE. 2001;89(7):1123-1134

[13] Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G. The non-invasive Berlin 
brain-computer interface: Fast acquisition of effective performance in untrained sub-
jects. NeuroImage. 2007;37(2):539-550

[14] Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A. An audi-
tory brain-computer interface (BCI). Journal of Neuroscience Methods. 2008;167(1):43-50

[15] Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain-computer interface 
with vibrotactile biofeedback for haptic information. Journal of Neuroengineering and 
Rehabilitation. 2007;4(1):40

[16] Gomez-Rodriguez M, Peters J, Hill J, Schölkopf B, Gharabaghi A, Grosse-Wentrup 
M. Closing the sensorimotor loop: Haptic feedback facilitates decoding of motor imag-
ery. Journal of Neural Engineering. 2011;8(3):036005

[17] Kleih SC, Riccio A, Mattia D, Kaiser V, Friedrich EVC, Scherer R, Kübler A. et al. Motivation 
influences performance in SMR-BCI. na. In: Proceeding of the 5th International Brain-
Computer Interface Conference. 2011:108-111

[18] Leeb R, Lee F, Keinrath C, Scherer R, Bischof H, Pfurtscheller G. Brain-computer 
communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE 
Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(4):473-482

[19] Myrden A, Chau T. Effects of user mental state on EEG-BCI performance. Frontiers in 
Human Neuroscience. 2015;9:308

[20] Ron-Angevin R, Díaz-Estrella A. Brain-computer interface: Changes in performance 
using virtual reality techniques. Neuroscience Letters. 2009;449(2):123-127

[21] Barbero Á, Grosse-Wentrup M. Biased feedback in brain-computer interfaces. Journal of 
Neuroengineering and Rehabilitation. 2010;7(1):34

[22] Alimardani M, Nishio S, Ishiguro H. Effect of biased feedback on motor imagery learn-
ing in BCI-teleoperation system. Frontiers in Systems Neuroscience. 2014;8:52

[23] Jeannerod M, Frak V. Mental imaging of motor activity in humans. Current Opinion in 
Neurobiology. 1999;9(6):735-739

[24] Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. 
Behavioral and Brain Sciences. 1994;17(2):187-202

[25] Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in 
humans. Neuroscience Letters. 1997;239(2-3):65-68

[26] Pfurtscheller G, Brunner C, Schlögl A, Da Silva FL. Mu rhythm (de) synchronization 
and EEG single-trial classification of different motor imagery tasks. NeuroImage. 
2006;31(1):153-159

Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment
http://dx.doi.org/10.5772/intechopen.78695

85



[27] Neuper C, Scherer R, Reiner M, Pfurtscheller G. Imagery of motor actions: Differential 
effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cognitive 
Brain Research. 2005;25(3):668-677

[28] Sale P, Franceschini M. Action observation and mirror neuron network: A tool for 
motor stroke rehabilitation. European Journal of Physical and Rehabilitation Medicine. 
2012;48(2):313-318

[29] Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of 
motor actions. Cognitive Brain Research. 1996;3(2):131-141

[30] Vogt S, Di Rienzo F, Collet C, Collins A, Guillot A. Multiple roles of motor imagery dur-
ing action observation. Frontiers in Human Neuroscience. 2013;7:807

[31] Ono T, Kimura A, Ushiba J. Daily training with realistic visual feedback improves repro-
ducibility of event-related desynchronisation following hand motor imagery. Clinical 
Neurophysiology. 2013;124(9):1779-1786

[32] Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Motor imagery and action obser-
vation: Modulation of sensorimotor brain rhythms during mental control of a brain-
computer interface. Clinical Neurophysiology. 2009;120(2):239-247

[33] Pineda JA, Silverman DS, Vankov A, Hestenes J. Learning to control brain rhythms: 
Making a brain-computer interface possible. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering. 2003;11(2):181-184

[34] Leeb R, Friedman D, Müller-Putz GR, Scherer R, Slater M, Pfurtscheller G. Self-paced 
(asynchronous) BCI control of a wheelchair in virtual environments: A case study with a 
tetraplegic. Computational Intelligence and Neuroscience. 2007;2007:7

[35] Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during 
observation of an object-directed grasp. Cognitive Brain Research. 2004;19(2):195-201

[36] Ruby P, Decety J. Effect of subjective perspective taking during simulation of action: A 
PET investigation of agency. Nature Neuroscience. 2001;4(5):546

[37] i Badia SB, Morgade AG, Samaha H, Verschure PFMJ. Using a hybrid brain computer 
interface and virtual reality system to monitor and promote cortical reorganization 
through motor activity and motor imagery training. IEEE Transactions on Neural 
Systems and Rehabilitation Engineering. 2013;21(2):174-181

[38] Machado S, Araújo F, Paes F, Velasques B, Cunha M, Budde H, Piedade R, et al. EEG-
based brain-computer interfaces: An overview of basic concepts and clinical applica-
tions in neurorehabilitation. Reviews in the Neurosciences. 2010;21(6):451-468

[39] Foldes ST, Weber DJ, Collinger JL. MEG-based neurofeedback for hand rehabilitation. 
Journal of Neuroengineering and Rehabilitation. 2015;12(1):85

[40] Van Dokkum LEH, Ward T, Laffont I. Brain computer interfaces for neurorehabilita-
tion—Its current status as a rehabilitation strategy post-stroke. Annals of Physical and 
Rehabilitation Medicine. 2015;58(1):3-8

[41] Holper L, Muehlemann T, Scholkmann F, Eng K, Kiper D, Wolf M. Testing the poten-
tial of a virtual reality neurorehabilitation system during performance of observation, 

Evolving BCI Therapy - Engaging Brain State Dynamics86

imagery and imitation of motor actions recorded by wireless functional near-infrared 
spectroscopy (fNIRS). Journal of Neuroengineering and Rehabilitation. 2010;7(1):57

[42] Kim T, Kim S, Lee B. Effects of action observational training plus brain-computer 
interface-based functional electrical stimulation on paretic arm motor recovery in 
patient with stroke: A randomized controlled trial. Occupational Therapy International. 
2016;23(1):39-47

[43] Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N, Weber DJ, 
et al. Neural interface technology for rehabilitation: Exploiting and promoting neuro-
plasticity. Physical Medicine and Rehabilitation Clinics. 2010;21(1):157-178

[44] Lotte F, Jeunet C. Towards improved BCI based on human learning principles. In: 2015 
3rd International Winter Conference on Brain-Computer Interface (BCI). Sabuk, South 
Korea: IEEE; January 2015. pp. 1-4

[45] Kleih SC, Nijboer F, Halder S, Kübler A. Motivation modulates the P300 amplitude dur-
ing brain-computer interface use. Clinical Neurophysiology. 2010;121(7):1023-1031

[46] Nijboer F, Birbaumer N, Kubler A. The influence of psychological state and motivation 
on brain-computer interface performance in patients with amyotrophic lateral sclerosis 
– A longitudinal study. Frontiers in Neuroscience. 2010;4:55

[47] Spataro R, Chella A, Allison B, Giardina M, Sorbello R, Tramonte S, La Bella V, et al. 
Reaching and grasping a glass of water by locked-In ALS patients through a BCI-
controlled humanoid robot. Frontiers in Human Neuroscience. 2017;11:68

[48] Jeunet C, Vi C, Spelmezan D, N’Kaoua B, Lotte F, Subramanian S. Continuous tactile 
feedback for motor-imagery based brain-computer interaction in a multitasking context. 
In: Human-Computer Interaction. Cham: Springer; September 2015. pp. 488-505

[49] Gonzalez-Franco M, Yuan P, Zhang D, Hong B, Gao S. Motor imagery based brain-com-
puter interface: A study of the effect of positive and negative feedback. In: Engineering 
in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the 
IEEE; Boston, MA, USA: IEEE; August 2011. pp. 6323-6326

[50] Yu T, Xiao J, Wang F, Zhang R, Gu Z, Cichocki A, Li Y. Enhanced motor imagery train-
ing using a hybrid BCI with feedback. IEEE Transactions on Biomedical Engineering. 
2015;62(7):1706-1717

[51] Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, Kübler A, et al. 
Psychological predictors of SMR-BCI performance. Biological Psychology. 2012;89(1): 
80-86

[52] Schöner G. Dynamical systems approaches to cognition. In: Cambridge Handbook 
of Computational Psychology (Cambridge Handbooks in Psychology). Cambridge: 
Cambridge University Press; 2008. pp. 101-126

[53] Smith LB. Movement matters: The contributions of Esther Thelen. Biological Theory. 
2006;1(1):87-89

Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment
http://dx.doi.org/10.5772/intechopen.78695

87



[27] Neuper C, Scherer R, Reiner M, Pfurtscheller G. Imagery of motor actions: Differential 
effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cognitive 
Brain Research. 2005;25(3):668-677

[28] Sale P, Franceschini M. Action observation and mirror neuron network: A tool for 
motor stroke rehabilitation. European Journal of Physical and Rehabilitation Medicine. 
2012;48(2):313-318

[29] Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of 
motor actions. Cognitive Brain Research. 1996;3(2):131-141

[30] Vogt S, Di Rienzo F, Collet C, Collins A, Guillot A. Multiple roles of motor imagery dur-
ing action observation. Frontiers in Human Neuroscience. 2013;7:807

[31] Ono T, Kimura A, Ushiba J. Daily training with realistic visual feedback improves repro-
ducibility of event-related desynchronisation following hand motor imagery. Clinical 
Neurophysiology. 2013;124(9):1779-1786

[32] Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Motor imagery and action obser-
vation: Modulation of sensorimotor brain rhythms during mental control of a brain-
computer interface. Clinical Neurophysiology. 2009;120(2):239-247

[33] Pineda JA, Silverman DS, Vankov A, Hestenes J. Learning to control brain rhythms: 
Making a brain-computer interface possible. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering. 2003;11(2):181-184

[34] Leeb R, Friedman D, Müller-Putz GR, Scherer R, Slater M, Pfurtscheller G. Self-paced 
(asynchronous) BCI control of a wheelchair in virtual environments: A case study with a 
tetraplegic. Computational Intelligence and Neuroscience. 2007;2007:7

[35] Muthukumaraswamy SD, Johnson BW, McNair NA. Mu rhythm modulation during 
observation of an object-directed grasp. Cognitive Brain Research. 2004;19(2):195-201

[36] Ruby P, Decety J. Effect of subjective perspective taking during simulation of action: A 
PET investigation of agency. Nature Neuroscience. 2001;4(5):546

[37] i Badia SB, Morgade AG, Samaha H, Verschure PFMJ. Using a hybrid brain computer 
interface and virtual reality system to monitor and promote cortical reorganization 
through motor activity and motor imagery training. IEEE Transactions on Neural 
Systems and Rehabilitation Engineering. 2013;21(2):174-181

[38] Machado S, Araújo F, Paes F, Velasques B, Cunha M, Budde H, Piedade R, et al. EEG-
based brain-computer interfaces: An overview of basic concepts and clinical applica-
tions in neurorehabilitation. Reviews in the Neurosciences. 2010;21(6):451-468

[39] Foldes ST, Weber DJ, Collinger JL. MEG-based neurofeedback for hand rehabilitation. 
Journal of Neuroengineering and Rehabilitation. 2015;12(1):85

[40] Van Dokkum LEH, Ward T, Laffont I. Brain computer interfaces for neurorehabilita-
tion—Its current status as a rehabilitation strategy post-stroke. Annals of Physical and 
Rehabilitation Medicine. 2015;58(1):3-8

[41] Holper L, Muehlemann T, Scholkmann F, Eng K, Kiper D, Wolf M. Testing the poten-
tial of a virtual reality neurorehabilitation system during performance of observation, 

Evolving BCI Therapy - Engaging Brain State Dynamics86

imagery and imitation of motor actions recorded by wireless functional near-infrared 
spectroscopy (fNIRS). Journal of Neuroengineering and Rehabilitation. 2010;7(1):57

[42] Kim T, Kim S, Lee B. Effects of action observational training plus brain-computer 
interface-based functional electrical stimulation on paretic arm motor recovery in 
patient with stroke: A randomized controlled trial. Occupational Therapy International. 
2016;23(1):39-47

[43] Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N, Weber DJ, 
et al. Neural interface technology for rehabilitation: Exploiting and promoting neuro-
plasticity. Physical Medicine and Rehabilitation Clinics. 2010;21(1):157-178

[44] Lotte F, Jeunet C. Towards improved BCI based on human learning principles. In: 2015 
3rd International Winter Conference on Brain-Computer Interface (BCI). Sabuk, South 
Korea: IEEE; January 2015. pp. 1-4

[45] Kleih SC, Nijboer F, Halder S, Kübler A. Motivation modulates the P300 amplitude dur-
ing brain-computer interface use. Clinical Neurophysiology. 2010;121(7):1023-1031

[46] Nijboer F, Birbaumer N, Kubler A. The influence of psychological state and motivation 
on brain-computer interface performance in patients with amyotrophic lateral sclerosis 
– A longitudinal study. Frontiers in Neuroscience. 2010;4:55

[47] Spataro R, Chella A, Allison B, Giardina M, Sorbello R, Tramonte S, La Bella V, et al. 
Reaching and grasping a glass of water by locked-In ALS patients through a BCI-
controlled humanoid robot. Frontiers in Human Neuroscience. 2017;11:68

[48] Jeunet C, Vi C, Spelmezan D, N’Kaoua B, Lotte F, Subramanian S. Continuous tactile 
feedback for motor-imagery based brain-computer interaction in a multitasking context. 
In: Human-Computer Interaction. Cham: Springer; September 2015. pp. 488-505

[49] Gonzalez-Franco M, Yuan P, Zhang D, Hong B, Gao S. Motor imagery based brain-com-
puter interface: A study of the effect of positive and negative feedback. In: Engineering 
in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the 
IEEE; Boston, MA, USA: IEEE; August 2011. pp. 6323-6326

[50] Yu T, Xiao J, Wang F, Zhang R, Gu Z, Cichocki A, Li Y. Enhanced motor imagery train-
ing using a hybrid BCI with feedback. IEEE Transactions on Biomedical Engineering. 
2015;62(7):1706-1717

[51] Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, Kübler A, et al. 
Psychological predictors of SMR-BCI performance. Biological Psychology. 2012;89(1): 
80-86

[52] Schöner G. Dynamical systems approaches to cognition. In: Cambridge Handbook 
of Computational Psychology (Cambridge Handbooks in Psychology). Cambridge: 
Cambridge University Press; 2008. pp. 101-126

[53] Smith LB. Movement matters: The contributions of Esther Thelen. Biological Theory. 
2006;1(1):87-89

Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment
http://dx.doi.org/10.5772/intechopen.78695

87



[54] Gibbs RW Jr. Embodiment and Cognitive Science. Cambridge: Cambridge University 
Press; 2005

[55] Clark A. Re-inventing ourselves: The plasticity of embodiment, sensing, and mind. 
Journal of Medicine and Philosophy. 2007;32(3):263-282

[56] Tsakiris M. My body in the brain: A neurocognitive model of body-ownership. Neuropsy-
chologia. 2010;48(3):703-712

[57] Aas S, Wasserman D. Brain-computer interfaces and disability: Extending embodiment, 
reducing stigma? Journal of Medical Ethics. 2016;42(1):37-40

[58] Tyler DJ. Neural interfaces for somatosensory feedback: Bringing life to a prosthesis. 
Current Opinion in Neurology. 2015;28(6):574

[59] LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B. Quadcopter control in three-
dimensional space using a noninvasive motor imagery-based brain-computer interface. 
Journal of Neural Engineering. 2013;10(4):046003

[60] Perez-Marcos D, Slater M, Sanchez-Vives MV. Inducing a virtual hand ownership illu-
sion through a brain-computer interface. Neuroreport. 2009;20(6):589-594

[61] Cohen O, Druon S, Lengagne S, Mendelsohn A, Malach R, Kheddar A, Friedman D. 
fMRI-based robotic embodiment: Controlling a humanoid robot by thought using real-
time fMRI. Presence Teleoperators and Virtual Environments. 2014;23(3):229-241

[62] Alimardani M, Nishio S, Ishiguro H. Humanlike robot hands controlled by brain activity 
arouse illusion of ownership in operators. Scientific Reports. 2013;3:2396

[63] Braun N, Emkes R, Thorne JD, Debener S. Embodied neurofeedback with an anthropo-
morphic robotic hand. Scientific Reports. 2016;6:37696

[64] Leeb R, Keinrath C, Friedman D, Guger C, Scherer R, Neuper C, Pfurtscheller G, et al. 
Walking by thinking: The brainwaves are crucial, not the muscles! Presence Teleoperators 
and Virtual Environments. 2006;15(5):500-514

[65] Penaloza CI, Alimardani M, Nishio S. Android feedback-based training modulates sen-
sorimotor rhythms during motor imagery. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering. 2018;26(3):666-674

[66] Heyes C, Bird G, Johnson H, Haggard P. Experience modulates automatic imitation. 
Cognitive Brain Research. 2005;22(2):233-240

[67] Thelen E. Motor development: A new synthesis. American Psychologist. 1995;50(2):79

[68] Evans N, Blanke O. Shared electrophysiology mechanisms of body ownership and 
motor imagery. NeuroImage. 2013;64:216-228

[69] Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature. 1998;391(6669):756

[70] Alimardani M, Nishio S, Ishiguro H. Removal of proprioception by BCI raises a stronger 
body ownership illusion in control of a humanlike robot. Scientific Reports. 2016;6:33514

Evolving BCI Therapy - Engaging Brain State Dynamics88

Section 4

Advancing Syntactical Options in BCI Therapy



[54] Gibbs RW Jr. Embodiment and Cognitive Science. Cambridge: Cambridge University 
Press; 2005

[55] Clark A. Re-inventing ourselves: The plasticity of embodiment, sensing, and mind. 
Journal of Medicine and Philosophy. 2007;32(3):263-282

[56] Tsakiris M. My body in the brain: A neurocognitive model of body-ownership. Neuropsy-
chologia. 2010;48(3):703-712

[57] Aas S, Wasserman D. Brain-computer interfaces and disability: Extending embodiment, 
reducing stigma? Journal of Medical Ethics. 2016;42(1):37-40

[58] Tyler DJ. Neural interfaces for somatosensory feedback: Bringing life to a prosthesis. 
Current Opinion in Neurology. 2015;28(6):574

[59] LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B. Quadcopter control in three-
dimensional space using a noninvasive motor imagery-based brain-computer interface. 
Journal of Neural Engineering. 2013;10(4):046003

[60] Perez-Marcos D, Slater M, Sanchez-Vives MV. Inducing a virtual hand ownership illu-
sion through a brain-computer interface. Neuroreport. 2009;20(6):589-594

[61] Cohen O, Druon S, Lengagne S, Mendelsohn A, Malach R, Kheddar A, Friedman D. 
fMRI-based robotic embodiment: Controlling a humanoid robot by thought using real-
time fMRI. Presence Teleoperators and Virtual Environments. 2014;23(3):229-241

[62] Alimardani M, Nishio S, Ishiguro H. Humanlike robot hands controlled by brain activity 
arouse illusion of ownership in operators. Scientific Reports. 2013;3:2396

[63] Braun N, Emkes R, Thorne JD, Debener S. Embodied neurofeedback with an anthropo-
morphic robotic hand. Scientific Reports. 2016;6:37696

[64] Leeb R, Keinrath C, Friedman D, Guger C, Scherer R, Neuper C, Pfurtscheller G, et al. 
Walking by thinking: The brainwaves are crucial, not the muscles! Presence Teleoperators 
and Virtual Environments. 2006;15(5):500-514

[65] Penaloza CI, Alimardani M, Nishio S. Android feedback-based training modulates sen-
sorimotor rhythms during motor imagery. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering. 2018;26(3):666-674

[66] Heyes C, Bird G, Johnson H, Haggard P. Experience modulates automatic imitation. 
Cognitive Brain Research. 2005;22(2):233-240

[67] Thelen E. Motor development: A new synthesis. American Psychologist. 1995;50(2):79

[68] Evans N, Blanke O. Shared electrophysiology mechanisms of body ownership and 
motor imagery. NeuroImage. 2013;64:216-228

[69] Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature. 1998;391(6669):756

[70] Alimardani M, Nishio S, Ishiguro H. Removal of proprioception by BCI raises a stronger 
body ownership illusion in control of a humanlike robot. Scientific Reports. 2016;6:33514

Evolving BCI Therapy - Engaging Brain State Dynamics88

Section 4

Advancing Syntactical Options in BCI Therapy



Chapter 6

SSVEP-Based BCIs

Rajesh Singla

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75693

Provisional chapter

DOI: 10.5772/intechopen.75693

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

SSVEP-Based BCIs

Rajesh Singla

Additional information is available at the end of the chapter

Abstract

This chapter describes the method of flickering targets, eliciting fundamental frequency 
changes in the EEG signal of the subject, used to drive machine commands after interpre-
tation of user’s intentions. The steady-state response of the changes in the EEG caused 
by events such as visual stimulus applied to the subject via a computer screen is called 
steady-state visually evoked potential (SSVEP). This feature of the EEG signal can be 
used to form a basis of input to assistive devices for locked in patients to improve their 
quality of life, as well as for performance enhancing devices for healthy subjects. The 
contents of this chapter describe the SSVEP stimuli; feature extraction techniques, feature 
classification techniques and a few applications based on SSVEP based BCI.

Keywords: EEG, SSVEP, BCI, BCI-wheelchair, ITR, evoked potential, EEG assistive 
devices

1. Introduction

1.1. Evoked potential

Evoked potentials (EP) are the electrical signals measured from the scalp after the stimulation 
rendered by some external stimulus. Corresponding to various stimuli, evoked potentials are 
distinguished as visual, auditory and somatosensory evoked potentials.

Event related potential (ERP) implies both EP and brain responses prompted by cognitive 
processes evolved by external stimuli or precursory mechanisms for motor action [1, 2].
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1.2. Visual evoked potential

Visual evoked potentials (VEPs) are the brain activity modulations occurring in the visual 
cortex after encountering visual stimulus [3]. They are easy to detect as the movement of 
stimulus closer to the central visual field immensely enhances the amplitude of VEPs [4].

Based on following criteria, VEPs are classified into different categories [5]:

i. Morphology of the optical stimuli

a. VEPs caused by flash stimulation

b. VEPs caused by graphic patterns like checkerboard lattice, gate

ii. Frequency of visual stimulation

a. Transient VEPs (TVEPs): VEPs with visual stimulation frequency below 6 Hz

b. Steady-state VEPs (SSVEPs): VEPs with visual stimulation frequency above 6 Hz [3, 6]

iii. Field stimulation

a. Whole field VEPs

b. Half field VEPs

c. Part field VEPs

While the user needs to gaze at the screen and keep his eyes fixed on one particular point. 
These exogenous signals are not suitable while dealing with advanced level amyotrophic lat-
eral sclerosis (ALS) patients or users with uncontrollable eye or neck movements [7].

1.3. Steady-state visual evoked potential

Regan experimented with long trains of stimuli that comprised of sinusoidally modulated 
monochromatic light [8]. Small amplitude stable VEP were generated which were entitled 
“steady-state” visually evoked potentials (SSVEPs) of the human visionary system. There 
hence, steady-state visual evoked potentials (SSVEPs) are defined as the potential elicited by 
the change in the visual field with the frequency higher than 6 Hz.

When a user is presented with some periodic stimuli, SSVEP is generated strongly at the 
occipital areas of the brain [10]. SSVEP is usually acquired from various electrode sites like 
Oz, O1, O2, Pz, P3, P4, and some surrounding locations to occipital region. While the most 
commonly used SSVEP frequency range is 4–60 Hz, the resonance phenomenon is generally 
observed around 10, 20, 40 and 80 Hz [11].

1.4. Feature extraction

Various features are procured from the properties of the brain signals that have discriminative 
information embedded in them. Various feature extraction techniques are used to extract such 
features when overlapped in time and space by several brain signals.

Evolving BCI Therapy - Engaging Brain State Dynamics92

The feature extraction in SSVEP signals was often done with the study of amplitude in the 
target frequency [12–14], followed by independent component analysis (ICA) [16], the fast 
Fourier transform (FFT) [15], continuous wavelet transform (CWT) [17, 18], Hilbert-Huang 
transform (HHT) [19, 20] or the PSD [21] can be used.

1.4.1. Independent component analysis (ICA)

ICA follows a statistical procedure for separating a set of mixed signals into its sources with-
out any presumptuous information regarding the nature of the signal. The only criteria that 
need to be followed are that the unspecified underlying sources must be statistically mutually 
independent. ICA can express an EEG signal as following:

 x(t) = f(s(t)) + n(t) (1)

where, f is some unknown mixer function, s(t) is the source vector, n(t) is the additive arbi-
trary noisy vector and x(t) is the resultant EEG signal. ICA mainly follows two approaches: 
spatial ICA that extricates out independent spatial maps and temporal ICA that extricates out 
independent time courses.

EEG over the visual cortex was fragmented into SSVEP signals and background noise using 
ICA in the study by Wang et al. [16].

1.4.2. Fast Fourier transform (FFT)

Fourier transform (FT) comprises fast Fourier transform (FFT) and fiscrete Fourier transform 
(DFT). Wang et al. used 256-point FFT for transforming EEG signals to corresponding frequency 
domain representation. This was represented in terms of five frequencies: 9, 11, 13, 15 and 17 Hz 
[21]. Mouli et al. considered the maximum amplitudes of the FFT as the prime parameter for 
differentiating various target stimuli of 7, 8, 9 and 10 Hz [22].

1.4.3. Spatial filtering

The most commonly endorsed EEG recording methods emanated monopolar signals or 
Laplacian filtered signals. For example, channel Oz consisted as follows:

 Monopolar:   y  Ox  M   =  y  Ox   −  y  A2    

 Laplacian:   y  Ox  L   =  y  Ox  M   −   
 y  O1  M   +  y  O2  M  

 ______ 2    

Laplacian signals are extracted considering both the sides (like Cz utilizes C3 and C4) [23].

1.4.4. Continuous wavelet transform (CWT)

Wavelet transform (WT) is best suited to extract information from nonstationary signals as it 
extends a versatile method for representation of time-frequency of a signal [24]. CWT is basi-
cally the convolution of signal with the wavelet function [25]:
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  w (s, τ)  =   ∫ 
−∞

  
∞
   x (t) ψ ∗  (t) dt  (2)

where, ψ*(t) is the complex conjugate wavelet function, x(t) is the particular function and 
w(s,τ) is the wavelet coefficient corresponding to frequency related with scale s and time τ 
of the involved wavelet function. CWT works like template matching just like matched filter 
where cross variance is calculated for the signal and some predefined waveform [26].

Zhang et al. established the use of CWT technique for extracting features and classifying them 
in SSVEP-based BCI [16]. Kumari et al. transformed the CWT coefficients into feature vectors 
for tracing out the site of high frequency SSVEP components [17].

1.4.5. Hilbert-Huang transform (HHT)

HHT is a self-adaptive data analysis technique comprising empirical mode decomposition 
(EMD) and Hilbert spectral analysis (HAS) [27]. It can opt stationary and non-stationary sig-
nals analysis. An intrinsic mode function (IMF) is an oscillator function with time-varying 
frequencies capable of depicting the local properties of non-stationary signals [28].

Huang et al. identified high frequency SSVEP signals using HHT in SSVEP-based BCI [18]. 
HHT remodeled the original signals into 11-order IMF with the help of EMD.

1.5. Feature classification

The classification algorithms designate boundaries between various targets in the feature 
space on the basis of feature vectors involved considering the as independent variables.

The classification methods for SSVEP signals are heterogeneous in nature, like Bayesian clas-
sifier [14], linear discriminant classifier (LDA) [29–31], support vector machine (SVM) [32–35], 
k-nearest neighbor (k-NNC) [31, 36].

1.5.1. Bayesian classifier

Bayesian statistical classifier obtains the posterior probability P(y|x) as per prior probability 
of a feature vector for belonging to some particular class. The class that has got the maximum 
probability is the one to which the particular feature vector belongs.

  P (y | x)  =   
P (y) P (x | y) 

 _________ P (x)     (3)

1.5.2. Linear discriminant classifier (LDA)

LDA or Fisher’s LDA (FLDA) classifies the data into various classes using hyper planes [36]. 
This classifier is successfully applied in BCI community despite of high computational time 
involvement. This classifier traces out an optimal projection that maximizes the distance 

Evolving BCI Therapy - Engaging Brain State Dynamics94

between the classes. The decision hyper plane that divides the feature space into various 
classes is perpendicular to the projection direction [37]. The hyper plane is expressed as:

 m(x) = wTx + wo (4)

where, w, x and wo implies the weight vector, the input feature vector and the threshold, 
respectively.

1.5.3. Support vector machine (SVM)

SVM classifies the feature vectors into various classes by the concept of construction of one 
or more hyper planes. This classifier differs from LDA, as in this, the decision boundary or 
hyper plane escalates the margins that implies, the distance between the decision bound-
ary and the training sample nearest to it [38]. While the hyper plane separates the training 
data set with maximal margin, it also maps them to a higher dimensional space [39]. The 
decision boundary followed up in SVM may be linear as well as non-linear depending 
upon the choice of kernel function (linear, cubic, polynomial, Gaussian or radial basis 
(RBF)) [40].

1.6. k-Nearest neighbor (k-NNC)

The classification principle of k-NNC is that the features belonging to different classes 
get flocked up in different clusters while keeping the adjacent neighbors in one clus-
ter. It considers k metric distances between the testing dataset features and those of the 
nearest classes for classifying a test feature vector. Although classification with k-NNC 
reduces the error probability in the decision but still it is not so commonly used in BCI 
community [41].

2. SSVEP in BCIs

A BCI is an artificial intelligence system that has the ability to identify particular set of pat-
terns in the brain signals to provide an additional output channel for the control of artifi-
cial devices like restoring motor function, robot arm, communication program, etc. [43, 44].
SSVEPs based BCIs are classified into following categories:

i. Time modulated VEP (t-VEP) BCI: In this BCI, the follow up of flash sequences of various 
stimuli are orthogonal in time, that is, they are strictly non overlapping or stochastic in 
nature.

ii. Frequency modulated VEP (f-VEP) BCI: In this BCI, stimuli are made to flash at some ex-
clusive frequency and the potential evoked is generated with the fundamental frequency 
same as that of the stimuli as it harmonics.
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iii. Pseudorandom code modulated (c-VEP) BCI: In this BCI, a pseudorandom sequence de-
fines the duration of ON and OFF states of each stimulus. This mode yields highest com-
munication speed.

2.1. Stimulus types

In SSVEP-based experiments, the user is asked to identify the target with eye-gaze. The atten-
tion of the user is supposed to be visually fixed on the target and the target is identified by 
feature extraction and its analysis [42]. In case of single graphic stimuli, stimulus appears and 
disappears at some particular rate just like displayed in Figure 1. In case of pattern reversal 
stimuli, at least two graphical patterns are displayed by alternative oscillations like shown in 
Figure 2. Such stimulus maybe of checkerboard or grating type.

With flashing stimulus, SSVEP appears as a sinusoidal-like waveform with fundamental fre-
quency as that of blinking frequency of the stimulus. With graphic pattern stimulus, SSVEP 
appears at the reversal rate and their harmonics [8]. The SSVEP discrete frequency compo-
nents stay intently constant in terms of amplitude and phase for long time [9].

2.2. Applications of SSVEP in BCI’s

2.2.1. SSVEP for BCI based wheelchair

Singla in 2014 spearheaded the research on the effects of stimuli color, of the flickering targets, 
on the accuracy of decision making to drive a wheelchair. In the study, SSVEPs were selected 
as compared to VEP because they are less vulnerable to artifacts produced by the eye blinks, 
eye movements as well as EMG noise [44].

SSVEP data was acquired, which originated due to four different flickering target frequen-
cies, from the occipital region of the brain. The frequency features of the data were extracted 
using fast Fourier transform (FFT) and wavelet transform (WT). Three different classification 
methods were tried, two based on ANN with back propagation algorithm and one based on 

Figure 1. Single graphic stimuli.

Evolving BCI Therapy - Engaging Brain State Dynamics96

SVM with One against All (OAA) strategy. The control signals were assigned for each of the 
five classes detected (7, 9, 11, 13 and rest signal). Corresponding to five classes, five movement 
positions such as forward (F), backward (B), left (L), right (R) and stop (S) were obtained.

The SSVEP stimulus produces a response in the EEG signal, which is characterized by oscilla-
tions of the order of the stimulation frequency and sometimes at harmonics or sub harmonics 
of it. The visual system can be divided into three subsystems [45].

(i) Low frequency subsystem (near 10 Hz). It gives the greatest SSVEP amplitudes.

(ii) Medium frequency subsystem (16–18 Hz). It gives medium amplitude.

(iii) High frequency subsystem (40–50 Hz). It shows the smallest response.

The ability of the human eye to distinguish colors is based upon the varying sensitivity of cone 
cells to the light of different wavelengths [46]. There are three kinds of cone cells and are con-
ventionally labeled as short (S), medium (M), and long (L) cones according to the wavelengths 
of the peaks of their spectral sensitivities. S, M and L cone cells are therefore sensitive to blue 
(short-wavelength), green (medium-wavelength) and red (long-wavelength) light respectively. 
The brain combines the information from each cone cells to give different perceptions for differ-
ent colors and as a result the SSVEP strength elicited with different colors of the stimuli will be 
different [46]. In this work blue, green, red and violet were selected as stimuli colors to explore 
how different colors influence the elicited SSVEPs and the performance of SSVEP based system.

The research used, repetitive visual stimuli (RVS) with four different flickering frequencies 
was designed by using LabVIEW software (National Instrument Inc., USA). The front panel of 
RVS is shown in Figure 3. RVS with violet, red, green and blue flickering bars were designed 
as four different sets. The back ground color of the RVS was selected as black. The visual 
stimuli were square (4 × 4 cm) in shape and were placed on the four corners of the LCD screen. 
Four frequencies 7, 9, 11 and 13 Hz, i.e., in the low frequency range were selected by consider-
ing 60 Hz refreshing rate of LCD monitor [45]. In order to select any particular stimuli the four 
visual stimuli were separated in pair of two each, i.e., 7, 11 and 9, 13. Further in an interval of 

Figure 2. Pattern reversal stimuli.
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2 s if eye blink once then first pair is selected, i.e., 7, 11 and if eye is blinked twice then the next 
pair is selected, i.e., 9, 13. Once a pair of stimuli is selected then again in next interval of 2 s if 
eye blink once then upper stimuli is selected and if it is blinked twice then the lower stimuli 
is selected in that pair of stimuli.

The research used, repetitive visual stimuli (RVS) with four different flickering frequencies 
was designed by using LabVIEW software (National Instrument Inc., USA). The front panel of 
RVS is shown in Figure 3. RVS with violet, red, green and blue flickering bars were designed 
as four different sets. The back ground color of the RVS was selected as black. The visual 
stimuli were square (4 × 4 cm) in shape and were placed on the four corners of the LCD screen. 
Four frequencies 7, 9, 11 and 13 Hz, i.e., in the low frequency range were selected by consider-
ing 60 Hz refreshing rate of LCD monitor [45].

In order to select any particular stimuli the four visual stimuli were separated in pair of two 
each, i.e., 7, 11 and 9, 13. Further in an interval of 2 s if eye blink once then first pair is selected, 
i.e., 7, 11 and if eye is blinked twice then the next pair is selected, i.e., 9, 13. Once a pair of 
stimuli is selected then again in next interval of 2 s if eye blink once then upper stimuli is 
selected and if it is blinked twice then the lower stimuli is selected in that pair of stimuli.

The EEG signals recorded from each channel were digitized and segmented into 1-s time win-
dow in every 0.25 s. The coefficients of first (fundamental frequency) and second harmonic of 
all the four target frequencies were considered as the feature vector for classification. It can 
be seen from Table 1 that for SSVEP input of 7 Hz, maximum values of amplitude exists at 7, 
followed by 14.

In case of ANN, there were total eight parameters (first and second harmonics of all the four 
frequencies) so the input vector contains eight rows. Another set of Q target vectors (the cor-
rect output vectors in four digits for each of the input vectors) formed a second matrix. They 
developed wheelchair prototype to control in forward, backward, left, right and stop posi-
tions. The schematic representation of the BCI wheelchair control is shown in Figure 4. The 
wheelchair prototype is shown in Figure 5. Motor driver IC, L293D (www.instructables.com) 

Figure 3. Visual stimuli with four different flickering frequencies.
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was used. By changing the polarity of the signal given to the motors, it moves each of the 
motors in both forward and backward directions [32].

2.2.2. SSVEP based BCI as independent application for locked-in syndrome

Lesenfants et al. in [47] conducted studies with a basic aim of developing independent SSVEP 
based BCI applications for locked in patients. Lesenfants et al. used the covert attention of 
healthy as well as locked-in patients by developing an independent, covert two-class para-
digm of flashing targets. The study was divided over two groups of subjects. Group A con-
sisted of 12 healthy subjects and Group B consisted of 12 healthy and 6 Locked-in Syndrome 
(LIS) patients. For both the groups 12 channels of EEG were recorded (P3, P1, P2, P4, PO7, 
PO3, POz, PO4, PO8, O1, Oz, and O2).

The visual stimulation was delivered via a custom made stimulus device, which had two 
subsystems: a control unit and a stimulation panel, based on the paradigm introduced in [48]. 

7 14 9 18 11 22 13 26 Stimulus frequency (Hz)

27.62 8.01 9.2 5.25 5.50 1.81 4.61 1.40 7

18.21 7.40 6.97 1.42 7.92 2.34 0.99 2.38 7

2.65 4.17 23.02 9.91 9.2 1.15 1.00 2.22 9

3.57 6.02 20.4 7.83 4.04 2.52 0.70 1.13 9

11.72 3.62 2.25 2.92 19.91 5.20 3.91 2.24 11

6.83 4.60 4.7 2.40 14.22 3.40 1.42 1.40 11

3.27 6.82 11.83 4.85 9.19 2.02 16.63 4.83 13

8.81 3.82 12.7 5.25 3.62 0.91 14.22 5.66 13

4.75 6.60 5.00 1.09 2.55 1.42 6.48 1.53 Relax

2.44 3.14 5.06 2.34 3.62 1.65 6.36 3.11 Relax

Table 1. Samples of extracted feature components of different frequencies and relax state for two subjects.

Figure 4. Schematic representation of BCI-based wheelchair control.
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The panel, placed at 30 cm from subject’s head, was a 7 × 7 cm2 “interlaced square” made of 
red and yellow 1 × 1 cm2 light emitting diode (LED) - squares with a white fixation cross in 
the middle (Figure 6).

The yellow squares (represented by white squares here) flicker at the frequency of 10 Hz. The 
red squares (represented by grey squares here) flash at 14 Hz.

The interlaced square pattern showed a 10% improvement in accuracy in comparison with 
a “line” pattern [49]. The control unit was designed to precisely control the red and yellow 
flickering frequencies independently between 1 and 99 Hz by microcontroller based circuit. 

Figure 6. Electronic visual stimulation unit.

Figure 5. Wheelchair prototype for SSVEP-based BCI control.
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Figure 7. Overt block pattern.

The yellow and red squares were programmed to flicker at 10 and 14 Hz, respectively. The 
pattern was composed of two 2 × 2 cm2 blocks made of 1 × 1 cm2 LED squares separated by 
12 cm with a white fixation cross in between (Figure 7).

The subjects were asked 33 yes/no questions (e.g., “is your name Paul?”). To answer “yes,” the 
subjects had to focus their attention over yellow flashes for 7 s or over the red for “no.” Epochs 
of 7 s were used as a unique window, where after four different feature extraction algorithms 
like DFT, multitaper spectral analysis (PMTM) [53, 54], CCA, lock-in analyser system (LAS) 
[49–51]. A automatic channel selection algorithm (ACSA) based on distinction sensitive learn-
ing vector quantization (DSLVQ) [52] selected an optimal channel set specific to each subject 
out of the 12 available channels. Classification was performed using LDA or a SVM (linear 
kernel), and assessed with a 10 × 10 fold cross validation.

PMTM obtained maximum accuracy of 77.0 ± 3.4% averaged over subject population, while 
LAS produced a similar mean accuracy of 74.4 ± 3.2% (Tables 2 and 3). DFT and CCA gave 
worse results as compared to PMTM and LAS (respectively, 69.4 ± 3.4% and 58.4 ± 3.9%).

Another comparison was done with the results obtained from the feature extraction methods 
using the ACSA as well as a single harmonic. PMTM and LAS produced significantly greater 
accuracy than DFT and CCA, with an accuracy of 84.7 ± 2.0 and 83.1 ± 2.3%, respectively. DFT 
obtained a 79.3 ± 2.7% accuracy and CCA was able to attain 72.4 ± 1.6% but in only five out of 
the 10 subjects. The performance with and without ACSA could therefore not be compared 
with CCA. For a single harmonic, a significant mean accuracy increase of 7.8% for PMTM, 
7.9% for LAS and 7.6% for DFT was obtained.

2.2.3. SSVEP based virtual gaming application

Martišius and Damaševičius in 2016 [55] proposed an SSVEP based BCI gaming system. The 
researchers developed a 3-class BCI system based on SSVEP and emotive EPOC Headset. 
The game involved target shooting developed in the OpenVIBE environment which provided 
the user feedback. Emotive EPOC, a 16 electrode based gaming headset, was used in combina-
tion with the SSVEP paradigm. Raw EEG data from the head set was acquired with internal 
sampling of 2048 Hz. Signals from the O1, O2, P7, and P8 were taken.

At first, data was split into three groups, according to their corresponding class labels, LEFT, 
RIGHT, and CENTER. Each group of signals was subjected to band-pass filter centered on the 
target frequency of interest: for the LEFT class, 29.5–30.5 Hz; CENTER, 19.5–20.5 Hz; RIGHT, 
11.5–12.5 Hz.
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of 7 s were used as a unique window, where after four different feature extraction algorithms 
like DFT, multitaper spectral analysis (PMTM) [53, 54], CCA, lock-in analyser system (LAS) 
[49–51]. A automatic channel selection algorithm (ACSA) based on distinction sensitive learn-
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obtained a 79.3 ± 2.7% accuracy and CCA was able to attain 72.4 ± 1.6% but in only five out of 
the 10 subjects. The performance with and without ACSA could therefore not be compared 
with CCA. For a single harmonic, a significant mean accuracy increase of 7.8% for PMTM, 
7.9% for LAS and 7.6% for DFT was obtained.

2.2.3. SSVEP based virtual gaming application

Martišius and Damaševičius in 2016 [55] proposed an SSVEP based BCI gaming system. The 
researchers developed a 3-class BCI system based on SSVEP and emotive EPOC Headset. 
The game involved target shooting developed in the OpenVIBE environment which provided 
the user feedback. Emotive EPOC, a 16 electrode based gaming headset, was used in combina-
tion with the SSVEP paradigm. Raw EEG data from the head set was acquired with internal 
sampling of 2048 Hz. Signals from the O1, O2, P7, and P8 were taken.

At first, data was split into three groups, according to their corresponding class labels, LEFT, 
RIGHT, and CENTER. Each group of signals was subjected to band-pass filter centered on the 
target frequency of interest: for the LEFT class, 29.5–30.5 Hz; CENTER, 19.5–20.5 Hz; RIGHT, 
11.5–12.5 Hz.

SSVEP-Based BCIs
http://dx.doi.org/10.5772/intechopen.75693

101



There have been studies [46] that analyzed how different colors of the targets influence clas-
sification quality. The user was presented with an LCD display, containing three blinking tar-
gets on a black background and a yellow arrow. On cue, the targets start blinking at different 
frequencies as shown in Figure 8(a).

After classifier training, subjects were invited to participate in the game experiment. During 
the game, the subjects were presented with an interface from Figure 8(b). The “spaceship” 
with two “engines,” represented by two rectangles, and a “cannon,” represented by the tri-
angle. The subject could rotate the spaceship by focusing his/her attention on one of the rect-
angular targets.

By focusing attention on the middle triangle, the user was able to fire the spaceship cannon. 
The aim of the game is to rotate the spaceship and fire its canon to hit the red target. Once the 
target was hit, it disappeared to reappear in another position.

An evaluation of the system was performed using two subjects, named S1 and S2, unfamiliar 
with the BCI technology. The first algorithm used was wave atom transform (WAT) coef-
ficients and the second algorithm used the band power (BP) in the stimulation frequency 
bands.

The accuracy was measured for each subject, while performing classification with 4 different 
classifiers (LDA, sparse LDA (sLDA), SVM with linear kernel, and SVM with RBF kernel (with 
parameter values, gamma = 10)). The results are depicted in Table 4.

Subject (Group A) Nharm = 1 Nharm = 2 Nharm = 3

AC ACSA AC ACSA AC ACSA

Subject 1 78.4 ± 3.4 85.7 ± 1.8 73.9 ± 4.7 94.3 ± 1.8 — 94.4 ± 2.2

Subject 2 92.3 ± 2.4 94.8 ± 1.0 76.5 ± 4.9 91.3 ± 1.6 — 92.6 ± 1.1

Subject 3 78.4 ± 3.4 84.4 ± 2.1 73.9 ± 4.7 84.9 ± 2.6 — 80.6 ± 3.0

Subject 4 67.8 ± 3.5 76.0 ± 2.3 51.7 ± 4.7 76.7 ± 3.7 — 78.6 ± 3.2

Subject 5 62.4 ± 3.9 78.9 ± 2.3 51.6 ± 4.8 77.4 ± 2.4 — 70.5 ± 3.2

Subject 6 71.6 ± 3.8 85.8 ± 2.6 62.6 ± 5.0 81.9 ± 3.3 — 85.6 ± 2.9

Subject 7 89.5 ± 2.4 94.5 ± 1.4 76.0 ± 3.9 92.8 ± 2.4 — 92.6 ± 1.9

Subject 8 82.7 ± 3.3 89.2 ± 2.3 77.3 ± 4.3 94.4 ± 1.9 — 87.2 ± 1.7

Subject 9 91.1 ± 2.3 94.6 ± 1.6 84.0 ± 4.3 91.7 ± 1.1 — 91.8 ± 1.3

Subject 10 56.6 ± 4.4 63.5 ± 1.8 58.3 ± 4.7 67.5 ± 3.0 — 68.4 ± 2.4

Subject 11 57.0 ± 3.8 — 43.1 ± 5.0 — — —

Subject 12 44.5 ± 3.8 — 43.2 ± 5.8 — — —

Total 77.0 ± 3.4 84.7 ± 2.0 68.6 ± 4.6 85.3 ± 2.5 — 84.2 ± 2.4

Table 2. Mean and standard deviation of classification accuracy (in percent) obtained with the Thomson multitaper 
method (PMTM) for different numbers of harmonics with (ACSA) and without (AC) the use of automatic channel 
selection algorithm.
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2.2.4. SSVEP based communicator/speller enhancement

Nakanishi et al. in [56] designed a high speed speller based on SSVEP stimulus. The study was 
aimed at exploring the feasibility of mixed frequency and phase coding to form a high speed 
speller using a TFT monitor. A frequency and phase approximation approach was deployed 
to remove the limitation of the number of targets caused by the monitor refresh rate, result-
ing in a speller comprising 32 flickers specified by eight frequencies (8–15 Hz at an interval of 
1 Hz) and four phases (0, 90, 180, and 270°).

Wang et al. [57] proposed an approach that generates visual flickers at a flexible frequency 
by approximating the frequency with variable number of frames in a stimulation cycle. For 
instance, a flicker at 11 Hz under a 60 Hz refresh rate can be realized by bridging five and 
six frames in a stimulation cycle as “1110001110011100011100111…” Based on this technique 
we can generate flicker frequencies up to 50% of the screen refresh rate, hence increasing the 
number of stimuli that can be presented. Generally, to render a visual flicker at frequency f 
with an initial phase φ, a stimulus sequence s(f, φ,i) can be generated by:

  s (f, φ, i)  = square [2πf (  i _________ refesh rate  )  + φ]   (5)

where the function square [] generates a square wave of 50% duty cycle with levels 0 and 1, 
and i indicates the frame index. Nakanishi et al. used quad-phase coded flickering signals at 

Subject (Group A) Nharm = 1 Nharm = 2 Nharm = 3

AC ACSA AC ACSA AC ACSA

Subject 1 76.7 ± 3.1 85.0 ± 1.9 73.2 ± 4.9 93.9 ± 1.8 — 94.7 ± 1.2

Subject 2 86.5 ± 2.1 93.5 ± 0.8 74.8 ± 5.2 95.4 ± 0.9 — 95.0 ± 1.7

Subject 3 76.7 ± 3.1 82.5 ± 2.7 73.2 ± 4.9 79.4 ± 2.7 — 74.6 ± 2.6

Subject 4 61.0 ± 4.2 73.6 ± 3.5 58.3 ± 4.5 73.6 ± 2.2 — 77.6 ± 1.9

Subject 5 69.7 ± 2.9 80.2 ± 2.4 54.2 ± 4.6 76.1 ± 2.8 — 72.8 ± 1.9

Subject 6 61.4 ± 3.6 76.2 ± 2.0 60.8 ± 4.7 79.0 ± 2.2 — 77.7 ± 3.3

Subject 7 85.2 ± 2.8 90.0 ± 2.2 76.5 ± 4.7 91.2 ± 2.4 — 94.0 ± 2.4

Subject 8 83.0 ± 2.9 87.4 ± 2.2 75.9 ± 4.4 94.3 ± 2.2 — 91.5 ± 2.6

Subject 9 90.5 ± 2.4 92.9 ± 1.7 75.9 ± 4.2 90.9 ± 2.1 — 91.5 ± 1.8

Subject 10 53.7 ± 3.8 70.1 ± 2.4 61.7 ± 4.7 70.9 ± 3.0 — 71.4 ± 2.9

Subject 11 57.8 ± 4.3 — 48.5 ± 5.1 — — —

Subject 12 49.7 ± 4.3 — 54.0 ± 5.0 — — —

Total 74.4 ± 3.2 83.1 ± 2.8 68.4 ± 4.7 84.5 ± 2.3 — 84.1 ± 2.3

Table 3. Mean and standard deviation of classification accuracy (in per cent) obtained with the lock-in analyzer system 
(LAS) for different numbers of harmonics with (ACSA) and without (AC) the use of automatic channel selection 
algorithm.
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phases or 0, 90, 180, and 270, for frequencies 8–15 Hz with an interval of 1 Hz, hence providing 
32 unique targets instead of just 8 as indicated in Figure 8.

The subjects were instructed to gaze at one out of the 32 visual stimuli (a target stimulus) 
for 4 s, and the other 31 targets were indicated in a random order in a run. At the beginning 
of each trial, a red rectangle marker (Figure 9) appeared for half a second highlighting 
the target stimulus. Subjects were asked to shift their gaze to the target within the same 
duration. After which, all the stimuli started to flicker simultaneously for 4 seconds. Seven 
runs were carried out for each subject EEG data were recorded by 16 electrodes over the 

Figure 8. SSVEP BCI game interface: (a) training and (b) playing.

Classifier Features Accuracy, % F1 Score

S1 S2 S1 S2

LDA WAT 71.5 78.2 0.64 0.67

BP 66.2 73.2 0.56 0.62

sLDA WAT 70.6 77.4 0.64 0.68

BP 68.4 73.5 0.59 0.61

SVM, linear kernel WAT 75.5 79.3 0.64 0.68

BP 74.3 75.1 0.64 071

SVM, RBF kernel WAT 78.7 82.2 0.68 0.71

BP 74.0 77.4 0.63 0.67

S1: subject number 1, S2: subject number 2, LDA: linear discriminant analysis, sLDA: sparse LDA, SVM: support vector 
machine, RBF: radial basis function, WAT: wave atom transform, and BP: band power.

Table 4. Comparison of classification accuracy.
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parietal and occipital areas (FPz, F3, F4, Fz, Cz, P1, P2, Pz, PO3, PO4, PO7, PO8, POz, O1, 
O2, and Oz).

The entire data epochs were correlated using common average reference (CAR) and then sub-
jected to a band-pass filter with cut off frequencies 7–50 Hz with an infinite impulse response 
(IIR) filter. Zero-phase forward and reverse IIR filtering were implemented.

Canonical correlation analysis (CCA) was used for target identification which used the refer-
ence from the SSVEP training data (    X ̂    

k
   )     to identify the user’s intention. The study developed 

an ensemble classifier that correlates the test (X) and training (    X ̂    
k
   )     set signals with sine-cosine 

reference signals Y. A correlation vector ρ is defined as follows:
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To validate the efficiency of the combined method, this study compared classification perfor-
mance of the following five methods: (M1) a standard CCA-based method; (M2) a correlation 
analysis using a spatial filter derived from test set and training reference signals; (M3) a correlation 
analysis using a spatial filter derived from test set and since-cosine reference signals; (M4) a cor-
relation analysis using a spatial filter derived from training reference signals and sine-cosine ref-
erence signals; and (M5) the combined method using the ensemble classifier described in Eq. (6).

Figure 10 shows the averaged accuracy (Figure 10(a)) and ITR (Figure 10(b)) across all sub-
jects for the offline experiments. Results for different CCA-based methods were calculated 
with different data lengths from 1 to 4 s. It is evident that the four methods (M2, M3, M4, and 
M5) outperformed M1 under all conditions with different data lengths.

Figure 9. Presentation of the 32-target visual stimuli using mixed frequency and phase coding.
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2.3. Information transfer rate (ITR)

The dynamic performance of any BCI can be evaluated by the information transfer rate (ITR) 
as introduced in [58]. This parameter depends upon three factors regarding the BCI

• Speed

• Accuracy

• Number of unique commands

ITR (B) is defined as

  B = V [ log  2   N + P  log  2   P +  (1 − P)   log  2   (  1 − P ____ N − 1  ) ]   (7)

where, V = application speed in trials per second.

P = classifier accuracy, i.e., how accurately the thoughts are translated into command.

N = number of mental tasks used in the BCI application under consideration.

3. Conclusion

SSVEP proves to be the most widely used paradigm for BCI used for various different application 
for healthy as well as locked in patients due to the fact that SSVEP-BCI’s require minimum user 
training. This is because the subject does not have to regulate his/her own brain activity to provide 
controlling input for the task at hand. The subjects have to merely focus their attention towards 
the flickering targets which is then converted to machine command by a trained classifier.

Figure 10. (a) Target identification accuracy, (b) ITRs as functions of data length (from 1 to 4 s) calculated by different 
methods.
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The accuracy of SSVEP based BCI’s is fairly high for most subjects with substantial amount of 
visual capabilities. However some subjects were not able to produce a significant change in the 
EEG with respect to the SSVEP stimuli. This condition is termed as BCI illiteracy [59]. This phe-
nomena cause the failure of BCI for such subjects as the task is not performed due to minimal 
EEG activity. To counter this problem a novel approach of hybrid brain computer interfacing 
(hBCI) was proposed [60, 61]. The hBCI combines a standard BCI paradigm (SSVEP, P300, 
slow cortical potential (SCP) or event related synchronisation/de-synchronisation (ERS/ERD)), 
with another BCI signal or some other physiological signal. hBCI’s are an emerging area of 
research where all possible combinations are being explored to increase system accuracy as 
well as eliminate the phenomena of BCI illiteracy. The hBCI’s also address the problem of sub-
ject fatigue due to fixing of gaze at flickering targets for a longer duration, this fatigue is known 
to reduce the accuracy of the BCI due increase in the number of False Positive (FP) outcomes.
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2.3. Information transfer rate (ITR)

The dynamic performance of any BCI can be evaluated by the information transfer rate (ITR) 
as introduced in [58]. This parameter depends upon three factors regarding the BCI

• Speed

• Accuracy

• Number of unique commands

ITR (B) is defined as

  B = V [ log  2   N + P  log  2   P +  (1 − P)   log  2   (  1 − P ____ N − 1  ) ]   (7)

where, V = application speed in trials per second.

P = classifier accuracy, i.e., how accurately the thoughts are translated into command.

N = number of mental tasks used in the BCI application under consideration.

3. Conclusion

SSVEP proves to be the most widely used paradigm for BCI used for various different application 
for healthy as well as locked in patients due to the fact that SSVEP-BCI’s require minimum user 
training. This is because the subject does not have to regulate his/her own brain activity to provide 
controlling input for the task at hand. The subjects have to merely focus their attention towards 
the flickering targets which is then converted to machine command by a trained classifier.

Figure 10. (a) Target identification accuracy, (b) ITRs as functions of data length (from 1 to 4 s) calculated by different 
methods.
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The accuracy of SSVEP based BCI’s is fairly high for most subjects with substantial amount of 
visual capabilities. However some subjects were not able to produce a significant change in the 
EEG with respect to the SSVEP stimuli. This condition is termed as BCI illiteracy [59]. This phe-
nomena cause the failure of BCI for such subjects as the task is not performed due to minimal 
EEG activity. To counter this problem a novel approach of hybrid brain computer interfacing 
(hBCI) was proposed [60, 61]. The hBCI combines a standard BCI paradigm (SSVEP, P300, 
slow cortical potential (SCP) or event related synchronisation/de-synchronisation (ERS/ERD)), 
with another BCI signal or some other physiological signal. hBCI’s are an emerging area of 
research where all possible combinations are being explored to increase system accuracy as 
well as eliminate the phenomena of BCI illiteracy. The hBCI’s also address the problem of sub-
ject fatigue due to fixing of gaze at flickering targets for a longer duration, this fatigue is known 
to reduce the accuracy of the BCI due increase in the number of False Positive (FP) outcomes.
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Abstract

Brain-computer interface (BCI) is an emerging field, and an increasing number of BCI 
research projects are being carried globally to interface computer with human using EEG 
for useful operations in both healthy and locked persons. Although several methods have 
been used to enhance the BCI performance in terms of signal processing, noise reduction, 
accuracy, information transfer rate, and user acceptability, the effective BCI system is 
still in the verge of development. So far, various modifications on single BCI systems as 
well as hybrid are done and the hybrid BCIs have shown increased but insufficient per-
formance. Therefore, more efficient hybrid BCI models are still under the investigation 
by different research groups. In this review chapter, single BCI systems are briefly dis-
cussed and more detail discussions on hybrid BCIs, their modifications, operations, and 
performances with comparisons in terms of signal processing approaches, applications, 
limitations, and future scopes are presented.
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1. Introduction

The spontaneous electrical currents in mammalian brain (rabbit and monkey) were first dem-
onstrated by English Physiologist Richard Caton in 1870s, but the human electroencepha-
logram (EEG) was discovered in 1924 by German Psychiatrist Hans Berger [1]. The brain 
waves (neural oscillations) can be considered as biomarkers for wide range of applications 
from therapeutic to cognitive disorders [2]. The neural activities in brain generate voltages 
in response to external events or stimuli called event potential (EP). However, event-related 
desynchronization/synchronization (ERD/ERS) does not require such external stimulation. 
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Interestingly, EP components can be subdivided into steady-state evoked potential (SSEP) 
and event-related potential (ERP), and ERD/ERS from motor imagination. Eventually, there 
are three main approaches employed by researchers to study electric signals generated from 
the brain activities. Following sections will elaborate discussion about these approaches.

1.1. P300 event-related potential

This event-related potential is a function of uncertainty of the external stimuli, and major 
changes in the positive amplitude of the EEG waveform appears at about 300 ms after the 
stimulus which is called P300 component of ERP, first used by Sutton et al. [3]. The P300 com-
ponent of ERP was tested in human by Farwell and Donchin, and their experiment revealed 
that the rare event elicits P300 which can be used to develop mental prosthesis [4]. Farwell and 
Donchin proposed alphanumeric BCI speller consisting of 26 alphabets and 10 numbers (0–9) 
arranged in 6×6 matrix of rows and columns as shown in Figure 1a [4]. In this row-column 
(RC) paradigm, rows and columns are flashed randomly and the subject is asked to count the 
number of flashings of rows and columns corresponding to the target character. Flashed row/
column containing target stimulus elicits P300 from parietal, occipital, and temporal regions 
(majorly in parietal) of the brain based on Oddball Paradigm, i.e., occurrence of rare (odd 
ball) event. The higher amplitude P300 is evoked from stimulus with higher strength and low 
probability (rare event). However, this paradigm suffers from low information transfer rate 
(ITR) due to multiple trials.

Various changes in visual aspects of RC paradigm in terms of background color, character 
distance, and character size is done [5] to test the system performance. In this experiment, 
various visual protocols such as black background, white background, large symbol size, 
small symbol size, larger inter-symbol distance, and smaller inter-symbol distance are tested 
to observe the performance in RC BCI speller. Visual protocol with white background outper-
formed all the other protocols, while small symbol size resulted in poor performance.

A region-based (RB) BCI paradigm was designed by [6] to reduce human perpetual errors 
such as attentional blink, repetition blindness, habituation, and other spatial errors such as 
crowding effect and adjacency problems. Human perpetual errors in P300 speller was demon-
strated by [7] to show the effect of adjacency problems. RB paradigm shown in Figure 1b and c  
uses seven regions flash at two levels instead of rows and columns. The region containing 

Figure 1. (a) RC paradigm with second row flashing [4]. (b) and (c) RB paradigm where seven sets of characters in level 
1 (b) is expanded in level 2 (c) to spell a character “B” [6].
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target character is selected at first level and the target is selected at second level which elicits 
P300. The number of characters in the RB speller is 49 and the probability of hitting a target 
is 1/7 which evokes higher amplitude of P300. Thus, accuracy, user acceptability, and ITR are 
enhanced in RB paradigm than traditional RC paradigm [6].

Only one character flashes in single character (SC) paradigm rather than all the six characters 
in row or column in RC paradigm [8]. In [9], SC paradigm was compared with RC paradigm 
for 19 subjects and observed that the classification accuracy was better for RC (85.3%) than SC 
(77.90%). Further, in [10], four P300 BCI spellers: RC, SC and two RB paradigms were com-
pared, in which characters were based on alphabetical order in one and frequency of use in 
another. It was observed that accuracy of RB with characters in alphabetical order was high-
est and SC, the least for six subjects to spell two words WATER and LUCAS in three trials. In 
addition, whereas, user acceptability was highest for both RB paradigms than RC and SC, and 
region accuracy was least for central character on seven regions [6].

A checker board (CB) paradigm was proposed in [11], having 8×9 matrix of alphanumeric 
characters and keyboard commands, and compared the performance with traditional RC par-
adigm. Eighteen healthy subjects were used for the experiment and it was found that mean 
online accuracy, mean bit rate, and user acceptability were significantly higher for CB than RC 
but it suffers from adjacency errors. Other various modifications on standard RC paradigm 
have been done like a constant character flashing and shape changing which enhances the 
performances of P300 to some extent [12].

1.2. Steady-state visual evoked potential

The concept of visual evoked potential (VEP) was given by [13] using flash light and calcu-
lated evoked EEG signal by averaging to measure visual evoked responses from four pari-
etal and occipital regions of scalp with bipolar electrodes. A clear high amplitude plot after 
80 and 145 ms of the stimulus was found. VEPs, due to low stimulus rates, are classified 
as transient VEPs (TVEPs) and the repetitive high stimulations are under steady-state VEPs 
(SSVEPs). TVEP responses are during brain resting stage and if visual stimuli duration is 
shorter, evoked responses by each stimulus overlap each other and SSVEP is generated at 
steady state of brain excitation [14, 15].

SSVEP based on gaze detection falls into dependent BCI and is not suitable for ALS patients 
who cannot move their eyes. Gaze-independent SSVEP using LED interlaced square pattern 
for stimulation has been designed by [16]. People can shift attention among visual stimuli 
without shifting gaze, called as covert attention and overlapping stimuli can evoke changes 
in SSVEP which is sufficient to control BCI without gaze shifting like two overlapped images. 
Training for selective attention like playing certain types of computer games can improve 
SSVEP performance, and SSVEP systems are suitable to operate in challenging environments 
with distractions and noises like in homes and hospitals [17].

SSVEP visual stimuli are three main types as categorized below among which LED stimu-
lation results in highest bit rate. All visual stimuli have properties like frequency, color, 
and contrast which affect SSVEP. Stimuli frequency can be divided into low (1–12 Hz), 
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(SSVEPs). TVEP responses are during brain resting stage and if visual stimuli duration is 
shorter, evoked responses by each stimulus overlap each other and SSVEP is generated at 
steady state of brain excitation [14, 15].

SSVEP based on gaze detection falls into dependent BCI and is not suitable for ALS patients 
who cannot move their eyes. Gaze-independent SSVEP using LED interlaced square pattern 
for stimulation has been designed by [16]. People can shift attention among visual stimuli 
without shifting gaze, called as covert attention and overlapping stimuli can evoke changes 
in SSVEP which is sufficient to control BCI without gaze shifting like two overlapped images. 
Training for selective attention like playing certain types of computer games can improve 
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SSVEP visual stimuli are three main types as categorized below among which LED stimu-
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medium (12–30 Hz), and high (30–60 Hz) bands. Visual fatigues and false positives can 
occur at low frequency bands, whereas flash and pattern reversal stimuli can provoke 
epileptic seizures above low frequency bands. Red light has strong SSVEP response at 
11 Hz but decreases at other frequency levels. However, the response decreases further for 
blue and yellow light. The three major types of visual stimuli for SSVEP are categorized 
as follows [18].

• Light stimuli: light sources are LEDs, fluorescent lamps, Xe lights, etc., and their intensity 
is measured in candela per sq. meter.

• Single graphics stimuli: rectangle, square, or arrow on computer screen that appear and 
disappear at specific rate and stimulation rate are the number of full cycles per second 
called frequency of stimulus.

• Pattern reversal stimuli: periodic alternation of graphical patterns are usually black and 
white such as line boxes, checkerboards, etc., on computer screen.

The effect of visual distractions in SSVEP is dependent on the level of attention require-
ment during the task and the nature of distractions. SSVEP amplitude and identification 
accuracy decreases in dynamic screen condition compared to static condition [19]. Visual 
stimuli with a frequency resolution of 0.1 Hz were classified with high accuracy sufficient 
for practical BCI and the factors affecting the SSVEP speller are distance between adjacent 
stimuli, light source arrangements, stimulating frequencies, electrode arrangements, and 
visual angles [20].

The frequency response of SSVEP is experimented in [21] using visual stimulation at 14 differ-
ent frequencies within the range of 5–60 Hz and found that the primary visual cortex follows 
an activation pattern similar to SSVEP and the SSVEP amplitude peaks at 15 Hz stimulation 
shown in Figure 2.

Figure 2. Variation of SSVEP amplitude with respect to stimulus frequency [21].
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SSVEP response not only has the same fundamental frequency as stimulus but also includes 
higher harmonics and use of three SSVEP harmonics has resulted higher classification 
 accuracy than for one or two harmonics [22]. SSVEP-based BCI has many advantages over 
other EEG-based BCI systems due to the following reasons [16].

• high signal-to-noise ratio

• high information transfer rate

• less susceptibility to eye movements and blink artifacts

• require very little or no training

Asynchronous SSVEP-based BCI using flickering lights was used to control neuro-prosthetic 
devices for restoration of grasp function in spinal cord injured people [23] and as a functional 
electrical stimulation for abdominal stimulation to augment respiration in tetraplegia [24]. An 
emergency call system using SSVEP-based brain switch was developed for ALS patients and 
they successfully called their guardians by simply starring at stimulus in about 6.56 s, starting 
the experiment by themselves. This system had fairly good performance when experimented 
up to 4 weeks. A chromatic visual stimulus with isoluminant red color is used to reduce inten-
sity of the stimulus [25]. SSVEP-based BCI using single flicker stimulus is coded spatially to 
control four channels for navigation of 2-D computer games. Control channels are coded by 
their spatial position rather than flickering frequency or phase which may provide alternative 
route toward a practical SSVEP BCI with reduced visual strain [26]. To reduce visual fatigue 
from traditional SSVEP using flickering lights, an equal-luminance, ring-shaped, red-green 
colored checkerboard paradigm is used which produces high SSVEP power around 15 Hz 
[27]. Most people, despite no prior BCI experience, can use SSVEP BCI system even in a very 
noisy environment and better performances is observed in young and female subjects [28].

1.3. Motor imagery

Sensorimotor rhythms (SMRs) are synchronized brain waves over sensorimotor cortex in 
three different frequency bands: μ (8–12 Hz), β (18–30 Hz), and γ (30–200 Hz). EEG record-
ing is mostly limited to μ and β bands. SMR amplitude is higher during idle stage called 
as event-related synchronization (ERS) and the amplitude decreases when the sensorimotor 
areas are active due to a certain motor task or even during motor imagery (MI). This decrease 
in SMR amplitude is called event-related desynchronization (ERD). The ERD signal is used 
for MI-related BCI. ERS immediately occurs after ERD [29]. For MI tasks, the subjects are 
instructed to imagine themselves performing a specific motor action without actual motor 
output and there exists contralateral lateralization of left-hand/right-hand/foot [30].

A novel typewriter “Hex-O-Spell” was presented in [31] using imagined right-hand and right 
foot movements shown in Figure 3. Five letters or symbols are inside six hexagons surround-
ing a circle having center arrow. Imagination of right-hand movement turns arrow clockwise 
and imagination of right foot movement stops the rotation and arrow extends to select a char-
acter if the imagination persists longer. A synchronous MI-based “Oct-O-Spell” paradigm 
is designed by [32] using 2-D cursor control with simultaneous MI tasks and claimed to be 
feasible with higher efficiency.
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MI detection is challenging due to low signal-to-noise ratio, but development of advance sig-
nal processing enables MI-based BCI to implement various tasks [33]. MI-based BCI was used 
first time by [34] for stroke rehabilitation in a tetraplegic patient using imagination of foot 
movement where the patient was able to grasp cylinder with the paralyzed hand.

MI-based BCI is a system that is subject specific and requires data recording and a system 
training for each new user. Subject-independent MI was developed by training the data 
acquired from several subjects [35] and a conscious target strengthens ERD in β frequency 
band [36]. ERD amplitude was higher due to body ownership illusion like moving rubber 
hand than other visual targets [37].

MI activity acts as a neurofeedback and a feasible part of stroke rehabilitation but may increase 
moderate fatigue due to external factors like long hours of training session [38]. Neural plasticity 
can be achieved through neurofeedback [38, 39]. MI-based BCI uses a neurofeedback strategy in 
poststroke rehabilitation using functional electrical stimulation (FES), robot, and orthosis [40].  
Majority of stroke patients can use EEG-based MI [41, 42] for limb rehabilitation [43]  
and was extended to imagination of tongue movement [44]. MI can be used for a reliable and 
high performance BCI for both healthy subjects and ALS patients where the user requires 
less trainings [45]. MI-based BCI can be used for stroke rehabilitation to perform various 
functions such as controlling computer cursor, processing word, accessing Internet, and con-
trolling environment and entertainment [33]. Without any muscular activities, MI tasks were 
employed in an experiment to drive a car in 3-D virtual environment [46] and to play video 
game on virtual ground [47].

There are other methods apart from EEG to measure brain activities such as magneto- 
encephalography (MEG), electro-corticography (ECoG), functional magnetic resonance imag-
ing (fMRI), and functional near-infrared imaging (fNIR). However, due to noninvasive method, 
easy experimental setup, low cost, and high efficiency, EEG is most widely used. Although 
P300, SSVEP, and ERD/ERS are most widely used EEG signals, there are also other brain signals 
such as slow cortical potentials (SCP) and electrooculogram (EOG) in BCI [29]. Each of these 
brain signals do not work same for all users. So, a novel approach has been used to combine 
two or more conventional BCIs to form a hybrid BCI to enhance the overall performance [48].

Figure 3. Two states of “Hex-O-Spell” paradigm selecting a character using MI [31].
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2. Hybrid BCI and modes of operation

The initial concept of hybrid BCI was used in [49] to incorporate electrocardiogram (ECG) with 
EEG for autonomous BCI switch ON and OFF operation to analyze whether heart bit rate can be 
used as an additional communication channel in BCI. P300 was combined to μ and β rhythms 
from sensorimotor cortex to operate a brain-controlled wheelchair [50]. In [51], hybrid P300/
SSVEP system was compared with conventional P300 and SSVEP BCI from 10 healthy subjects 
and observed improved performance relative to single SSVEP system and the user acceptabil-
ity was higher for the hybrid which suggested the need for efficient future protocols. A con-
tinuous simultaneous hybrid BCI for two dimensional cursor control was introduced in [52]  
using ERD and SSVEP activity, in which vertical position of the cursor was controlled via ERD 
with imagined movement and the horizontal position with SSVEP from visual attention, and 
the overall result suggested that further research is needed to optimize hybrid BCI.

In [53], hybrid BCI systems were reviewed and different possibilities to combine their advan-
tages and disadvantages were discussed. Hybrid P300/SSVEP was used by [54] for GO/STOP 
command in wheelchair control at simultaneous asynchronous mode and obtained improved 
performance in terms of detection accuracy and response time. A novel hybrid P300/SSVEP 
was designed by [55] integrating random flashing and periodic flickering to reduce adjacency 
problem and habitual repetition, and obtained an online classification accuracy of 93.85% 
and information transfer rate of 56.44 bit/min from 12 healthy subjects in a single trial. A new 
hybrid P300/SSVEP was proposed in [56] based on visual approach of shape changing instead 
of existing color changing and compared the performances with traditional P300, SSVEP, and 
normal P300/SSVEP hybrid. The new hybrid BCI was compared with normal hybrid and each 
traditional BCIs, and found better performance with 100% accuracy and 30 bit/min ITR for 
eight trials with 10 healthy subjects.

A systematic review of hybrid BCI was done by [57] in terms of taxonomy and usability. This 
review discussed two modes of operation: simultaneous and sequential modes. In simulta-
neous mode, any two BCI systems (e.g., P300 and SSVEP) work simultaneously controlling 
two functions at a time and this combined system might achieve higher accuracy and ITR. As 
explained previously in [52], the hybrid BCI used simultaneous mode which includes ERD 
(imagined movement) to control the cursor in vertical position and SSVEP to control the cur-
sor in horizontal position. In sequential mode, output of one BCI system is used as the input 
for another to control various functions of the second BCI system or as a switch in asynchro-
nous mode [57]. These two modes are depicted in Figure 4a and b.

Among all other EEG signals, SSVEP possess a better suitability to combine with P300 [58] for 
constructing efficient hybrid BCI due to the following reasons [55]:

• SSVEP and P300 both are elicited by visual stimuli, so subjects only need visual attention.

• Both are noninvasive so reduction in experimental setup time, complexity, effort, and cost.

• No mental count is required for SSVEP thus reducing the mind workload.
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MI detection is challenging due to low signal-to-noise ratio, but development of advance sig-
nal processing enables MI-based BCI to implement various tasks [33]. MI-based BCI was used 
first time by [34] for stroke rehabilitation in a tetraplegic patient using imagination of foot 
movement where the patient was able to grasp cylinder with the paralyzed hand.

MI-based BCI is a system that is subject specific and requires data recording and a system 
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acquired from several subjects [35] and a conscious target strengthens ERD in β frequency 
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high performance BCI for both healthy subjects and ALS patients where the user requires 
less trainings [45]. MI-based BCI can be used for stroke rehabilitation to perform various 
functions such as controlling computer cursor, processing word, accessing Internet, and con-
trolling environment and entertainment [33]. Without any muscular activities, MI tasks were 
employed in an experiment to drive a car in 3-D virtual environment [46] and to play video 
game on virtual ground [47].

There are other methods apart from EEG to measure brain activities such as magneto- 
encephalography (MEG), electro-corticography (ECoG), functional magnetic resonance imag-
ing (fMRI), and functional near-infrared imaging (fNIR). However, due to noninvasive method, 
easy experimental setup, low cost, and high efficiency, EEG is most widely used. Although 
P300, SSVEP, and ERD/ERS are most widely used EEG signals, there are also other brain signals 
such as slow cortical potentials (SCP) and electrooculogram (EOG) in BCI [29]. Each of these 
brain signals do not work same for all users. So, a novel approach has been used to combine 
two or more conventional BCIs to form a hybrid BCI to enhance the overall performance [48].

Figure 3. Two states of “Hex-O-Spell” paradigm selecting a character using MI [31].
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2. Hybrid BCI and modes of operation
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A systematic review of hybrid BCI was done by [57] in terms of taxonomy and usability. This 
review discussed two modes of operation: simultaneous and sequential modes. In simulta-
neous mode, any two BCI systems (e.g., P300 and SSVEP) work simultaneously controlling 
two functions at a time and this combined system might achieve higher accuracy and ITR. As 
explained previously in [52], the hybrid BCI used simultaneous mode which includes ERD 
(imagined movement) to control the cursor in vertical position and SSVEP to control the cur-
sor in horizontal position. In sequential mode, output of one BCI system is used as the input 
for another to control various functions of the second BCI system or as a switch in asynchro-
nous mode [57]. These two modes are depicted in Figure 4a and b.

Among all other EEG signals, SSVEP possess a better suitability to combine with P300 [58] for 
constructing efficient hybrid BCI due to the following reasons [55]:

• SSVEP and P300 both are elicited by visual stimuli, so subjects only need visual attention.

• Both are noninvasive so reduction in experimental setup time, complexity, effort, and cost.

• No mental count is required for SSVEP thus reducing the mind workload.
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• Both are measured in different domains (time domain for P300 and frequency domain for 
SSVEP).

• Both are detected from almost different cranial regions with independency enabling higher 
accuracy.

The research on hybrid BCI is growing and Figures 5 and 6 illustrate number of publica-
tions in this field. The two figures are based on searches at IEEE Xplore [59] and PubMed 
[60] with keywords: “BCI,” “Hybrid BCI,” “SSVEP and MI,“ “P300 and SSVEP,” and “P300 
and MI “published in Conference, Journals, Magazines, Books, and e-books in the fields of 
“Engineering,” “Psychology,” “Neuroscience,” “Medicine,” and “Computer Science.”

Figures 5 and 6 illustrate the number of published articles in IEEE Xplore and PubMed which are 
added together. They depict the growing numbers of research in hybrid BCI and among hybrid 
BCIs, number of P300 and SSVEP hybrid is comparatively higher as illustrated in Figure 6.

Figure 4. Hybrid BCI modes of operation [57].

Figure 5. BCI and hybrid BCI papers in IEEE and PubMed.
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3. Hybrid BCI classification

The most common signals for BCI are P300, SSVEP, and ERD, and there are various approaches 
used to combine two or more these signals to make a hybrid to enhance performance. The 
most common methods for hybrid BCI are discussed below and their classifications based on 
various parameters are illustrated in Table 1.

3.1. SSVEP-MI hybrid

SSVEP and ERD signals are used to form a BCI hybrid that combines visual attention and 
motor imagination. In [61], 14 healthy subjects (six women and eight men of ages 17–31 years) 
were chosen to perform three different tasks: MI only (ERD signals generated from left-hand 
or right-hand movement), SSVEP only (visual signals generated from two flickering LEDs at 
8 Hz and 13 Hz), and simultaneous hybrid SSVEP-MI. Linear discriminant classifier was used 
and the classification accuracy was higher for SSVEP than MI and was highest for the hybrid.

An artificial upper limb was controlled by [62] combining SSVEP and MI in two degrees of 
freedom (DoF) in which MI controlled grasp function and SSVEP controlled elbow function 
(flexion and extension) of the limb. The experiment was conducted with 12 healthy subjects (7 
male and 5 female) in offline and 7 healthy subjects (4 male and 3 female) in online. In offline 
experiment, 4 runs each with 40 trials were taken and the subjects were instructed to imagine 
feet dorsiflexion from two to four runs focusing the two flickering lights 7 and 13 Hz. The 
online experiment consisted a 2 DoF artificial upper limb and subjects controlled grasp and 
elbow functions as per instructions.

In [63], SSVEP-MI hybrid was proposed to control the speed (accelerate or deaccelerate the 
wheelchair based on flashing stimuli of 7, 8, 9, and 11 Hz) and direction (left- and right-
hand imageries to control the direction) of a wheelchair in real time. Both virtual and real-
time tests were conducted to observe the performance. Three options: straight driving, left 
and right turns were provided for direction, and accelerate, deaccelerate, or drive options for 
speed control using eight separate commands: turn left, turn right, drive forward,  accelerate, 

Figure 6. Hybrid BCI papers in IEEE and PubMed together.
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3.1. SSVEP-MI hybrid
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were chosen to perform three different tasks: MI only (ERD signals generated from left-hand 
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8 Hz and 13 Hz), and simultaneous hybrid SSVEP-MI. Linear discriminant classifier was used 
and the classification accuracy was higher for SSVEP than MI and was highest for the hybrid.

An artificial upper limb was controlled by [62] combining SSVEP and MI in two degrees of 
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experiment, 4 runs each with 40 trials were taken and the subjects were instructed to imagine 
feet dorsiflexion from two to four runs focusing the two flickering lights 7 and 13 Hz. The 
online experiment consisted a 2 DoF artificial upper limb and subjects controlled grasp and 
elbow functions as per instructions.

In [63], SSVEP-MI hybrid was proposed to control the speed (accelerate or deaccelerate the 
wheelchair based on flashing stimuli of 7, 8, 9, and 11 Hz) and direction (left- and right-
hand imageries to control the direction) of a wheelchair in real time. Both virtual and real-
time tests were conducted to observe the performance. Three options: straight driving, left 
and right turns were provided for direction, and accelerate, deaccelerate, or drive options for 
speed control using eight separate commands: turn left, turn right, drive forward,  accelerate, 

Figure 6. Hybrid BCI papers in IEEE and PubMed together.

Hybrid Brain-Computer Interface Systems: Approaches, Features, and Trends
http://dx.doi.org/10.5772/intechopen.75132

121



Hybrid type Subj. Modes of 
operation

Classifiers Acc. 
(%)

ITR (bits/
min)

Improvements Reference

P300 + SSVEP 8 Simultaneous SVM and 
DFT

90 22 “Go/stop” control 
signal with higher 
accuracy

[54]

P300 + SSVEP 12 Simultaneous SWLDA and 
CCA

93 56 Classification 
accuracy and ITR

[55]

SSVEP + MI 14 Simultaneous LDA 81 — Reduction in BCI 
illiteracy

[61]

SSVEP + MI 12 Simultaneous CCA 80 15 False activations 
reduction with 
binary decision

[62]

SSVEP + MI 3 Simultaneous SVM & CCA 90 295 Time reduction 
with higher 
reliability

[63]

SSVEP + MI 6 Sequential Filter and 
Threshold

78 — Improved 
performance over 
conventional FET

[64]

SSVEP + MI 24 Sequential CSP & CCA 87 — Enhanced MI 
performance

[65]

SSVEP + MI 17 Simultaneous LDA 85 — Improved 
performances with 
single channel

[66]

P300 + SSVEP 10 Simultaneous BLDA and 
CCA

90 22 Improved 
performance and 
easiness for users

[56]

P300 + SSVEP 10 Simultaneous SWLDA and 
CCA

93 31 Reduced 
stimulation time 
for P300 and 
improved ITR

[67]

P300 + SSVEP 10 Sequential FLDA and 
BLDA

88 19 Improved 
classification 
accuracy and ITR

[68]

P300 + SSVEP 12 Simultaneous SWLDA 93 34 Transformed 
frequency locked 
SSVEP to time 
locked in a single 
speller

[69]

P300 + SSVEP 10 Simultaneous BLDA and 
CCA

83 12 Improved SSVEP 
but not P300

[51]

P300 + MI 4 Sequential SVM and 
FLDA

82 — Finished more 
complex tasks 
in virtual 
environment

[70]

P300 + MI 4 Sequential FLDA 82 — Less exhaustive 
and reliable control 
of robotic devices

[71]
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 deaccelerate, drive at uniform speed, and turn on or off the switch. Three healthy male sub-
jects (21–30 years old) were participated in the experiment and the classification accuracy 
was more than 90% using Support Vector Machine (SVM) for MI and canonical correlation 
analysis (CCA) for SSVEP.

The sequential operation of SSVEP and ERD signals was used in [64] for advanced functional 
electrical therapy (FET) in which six right-handed healthy subjects (5 males and 1 female, 
mean age around 25 years) were selected. SSVEP signals from flickering LEDs of frequencies 
15, 17, 19, and 21 Hz were used to select the types of grasp: palmar, lateral, and pinch followed 
by MI which was used as a brain switch that activated the intention of grasp.

In [65], hybrid BCI paradigm was proposed to enhance MI tasks using SSVEP. Twenty-four 
right-handed healthy subjects aged 23–30 years (19 males and 5 females) were used for the 
experiment to perform MI focusing on flickering SSVEP, where SSVEP was used initially to 
train the subjects for MI tasks providing accurate feedback, and afterward, the weight was 
shifted to MI gradually keeping SSVEP at less weights. Common spatial pattern (CSP) was 
used for MI and CCA for SSVEP classifications. This paradigm hypothesized that accurate 
feedback enhances MI.

The multiple channels hybrid was replaced in [66] combining SSVEP and MI in a single chan-
nel C3 or C4 improving performance. Seventeen healthy subjects (12 male and 5 female sub-
jects with an average age around 23 years) were preinformed about the experiment to focus 
simultaneously on flickering visual stimuli of frequencies 15 and 20 Hz, and perform right- 
and left-hand MI, respectively. The average classification accuracy was around 85% for both 
channels.

3.2. P300-SSVEP hybrid

An asynchronous control of wheelchair was proposed by [54] combining SSVEP and P300 in 
which four groups of buttons were displayed, each group having one large central button sur-
rounding eight small buttons with 45° spacing in a circumference of 60 mm radius. The four 

Hybrid type Subj. Modes of 
operation

Classifiers Acc. 
(%)

ITR (bits/
min)

Improvements Reference

P300 + MI 11 Sequential SVM 93 — Enhanced accuracy 
and lowers trial 
duration

[72]

P300 + MI 11 Sequential SWLDA and 
CSP

92 41 Control 
applications

[73]

P300 + MI 12 Simultaneous LDA and 
CSP

92 — Enhanced 
discriminating 
performances

[74]

Table 1. Different hybrid BCI systems’ descriptions based on a number of subjects, modes of operation, classifiers used, 
accuracy, ITR, and improvements in the model.
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Classifiers Acc. 
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min)
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in virtual 
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 deaccelerate, drive at uniform speed, and turn on or off the switch. Three healthy male sub-
jects (21–30 years old) were participated in the experiment and the classification accuracy 
was more than 90% using Support Vector Machine (SVM) for MI and canonical correlation 
analysis (CCA) for SSVEP.

The sequential operation of SSVEP and ERD signals was used in [64] for advanced functional 
electrical therapy (FET) in which six right-handed healthy subjects (5 males and 1 female, 
mean age around 25 years) were selected. SSVEP signals from flickering LEDs of frequencies 
15, 17, 19, and 21 Hz were used to select the types of grasp: palmar, lateral, and pinch followed 
by MI which was used as a brain switch that activated the intention of grasp.

In [65], hybrid BCI paradigm was proposed to enhance MI tasks using SSVEP. Twenty-four 
right-handed healthy subjects aged 23–30 years (19 males and 5 females) were used for the 
experiment to perform MI focusing on flickering SSVEP, where SSVEP was used initially to 
train the subjects for MI tasks providing accurate feedback, and afterward, the weight was 
shifted to MI gradually keeping SSVEP at less weights. Common spatial pattern (CSP) was 
used for MI and CCA for SSVEP classifications. This paradigm hypothesized that accurate 
feedback enhances MI.

The multiple channels hybrid was replaced in [66] combining SSVEP and MI in a single chan-
nel C3 or C4 improving performance. Seventeen healthy subjects (12 male and 5 female sub-
jects with an average age around 23 years) were preinformed about the experiment to focus 
simultaneously on flickering visual stimuli of frequencies 15 and 20 Hz, and perform right- 
and left-hand MI, respectively. The average classification accuracy was around 85% for both 
channels.

3.2. P300-SSVEP hybrid

An asynchronous control of wheelchair was proposed by [54] combining SSVEP and P300 in 
which four groups of buttons were displayed, each group having one large central button sur-
rounding eight small buttons with 45° spacing in a circumference of 60 mm radius. The four 
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groups flickered at frequencies 6, 6.67, 7.5, and 8.57 Hz to evoke SSVEP, while 100 ms interval 
was used to intensify and change the color of large central button to elicit P300. SVM and 
discrete Fourier transform (DFT) were used for classification of P300 and SSVEP, respectively, 
with an overall classification accuracy of about 90% from eight healthy subjects (20–31 years) 
performing “go/stop” control task using a real wheelchair.

A hybrid SSVEP-P300 BCI was proposed by [55] as mentioned earlier to improve spelling 
accuracy combining random flashing and periodic flickering to evoke P300 and SSVEP, 
respectively. All the cells of 6x6 matrix were flickered on black background with six frequen-
cies 8.18, 8.97, 9.98, 11.23, 12.85, and 14.99 Hz, and selection of these frequencies were based 
on the higher SSVEP amplitude and easier target detection while orange crosses were flashed 
for 120 ms in random manner. Twelve healthy subjects (5 male and 7 female subjects, age 
21–29 years) with good visions were used and the performance of the hybrid system was 
evaluated online using single trial. This experiment claimed to have the best performance.

In [56], a BCI with shape changing and flickering speller was designed, rather than tradi-
tional color changing as in [67], combining SSVEP and P300 in which the classification accu-
racy was improved in each of the individual systems. Shape changing of red boxes to arrows 
was used for P300 and flickering of those four boxes with frequencies 6, 8, 9, and 10 Hz for 
SSVEP. Ten healthy right-handed subjects with normal vision (9 male and 1 female subjects, 
age 22–27 years) were used for five offline experimental sessions having 20 runs of each ses-
sions lasting for 4 s so the one session was 40 min including 10 min rest. The subjects found 
the new hybrid less annoying.

An asynchronous hybrid BCI combining P300 and SSVEP was proposed by [68] where the 
information transfer and control state (CS) detection was accomplished using P300 and 
SSVEP, respectively. This system operated in sequential manner in both offline and online 
experiments. Ten healthy subjects (7 males and 3 females aged 19–28 years) were participated 
in both experiments where P300 was elicited from flashing of a 6x6 matrix of 36 characters 
(A-Z and 0–9), and SSVEP was obtained from flickering of the characters black and white 
alternatively with frequency around 17.7 Hz. Two classifiers: Fisher’s linear discriminant 
analysis (FLDA) for first three subjects and Bayesian linear discriminant analysis (BLDA) for 
remaining subjects were used for P300 classification. Inclusion of SSVEP into P300 improved 
the classification accuracy.

In [69], same target stimulus was used to elicit P300 and SSVEP blocking (SSVEP-B). A new 
speller of 3x3 matrix with characters 1–9 was proposed while all the characters flickered at a 
constant repetitive rate, and each character stopped flickering randomly within a short time. 
The repetitive flickering elicited SSVEP and the interrupted flickering of a character would 
elicit SSVEP-B and P300, a rare event at the same time which was detected simultaneously. 
Twelve right-handed healthy subjects (7 male and 5 female subjects, age 23–36 years) were 
participated in the experiment. The size and font of characters were changed with a variance 
of 0.49 ms for event-related potential, and brightness altered between light and dark with 
about 14.96 Hz for evoked potential. Stepwise linear discriminant analysis (SWLDA) was used 
for classification and the hybrid system produced better result than the individual systems.
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In [51], SSVEP and P300 were combinedly evoked to improve accuracy using four red boxes 
with black background participating 10 healthy male subjects of age 21–25 years for three 
runs of 80 trials each in pseudorandom order. P300 was elicited by counting 32 flashings of 
the four red boxes for 8 times in each trial in the order: top, down, left, and right, and box 
changed from red to white for 100 ms during each flash while SSVEP was evoked by focusing 
on the target box which flickered at particular frequencies 9, 6, 10, and 8 Hz for 4 sec in the 
same order as of flashing, and the subjects needed to count the flashes and focus on flickering 
simultaneously for the hybrid paradigm. The P300 and SSVEP signals were analyzed sepa-
rately and the average performances are mentioned in Table 1. This experiment highlighted 
the need for efficient hybrid as the hybrid performances improved relative to SSVEP but not 
to P300, and the subjects were comfortable with the hybrid.

A hybrid SSVEP-P300 BCI generating dual-frequency SSVEP was proposed by [67] using 9 
panels speller, each panel with 4 characters flickering at different frequencies, and flickering 
panel and periodically updating characters evoked dual-frequency SSVEP. Ten graduate stu-
dents (8 male, 2 female subjects, and average age 26 years) participated in both the offline and 
online experiments and there were improvements in stimulation time and ITR.

3.3. P300-MI hybrid

A hybrid P300-MI was used in [70] to control appliances in a virtual environment, in which 
P300 was used as a device control to operate control panel of virtual devices and MI as a 
navigation tool to turn left/right in the virtual environment, and the detection was sequential 
based on the activation of either MI or P300. Four healthy adults (1 male, 3 female subjects, 
age 23–25 years) participated and P300 was elicited using oddball paradigm, and MI using 
left-hand/right-hand movement imagination. The average online classification accuracy was 
achieved around 82% and authors claimed that more complex tasks in virtual environment 
could be performed compared to single pattern BCI.

The possibility of combining various brain signals for hybrid BCI was discussed by [71] merg-
ing P300 and ERD to control a robotic device such that additional features of one system 
could be used to improve classification accuracy of another. In this case, object selection from 
various options, called discrete decision, was done using P300 and movement control of the 
robot was done using ERD from motor imagination. EEG was filtered to a band 0–10 Hz 
for P300 classification. Optimum filter band varied with subject for ERD and the filter band 
was obtained from training data. Principal component analysis (PCA) and CSP was used in 
feature extraction for P300 and MI, respectively, and the discriminant classification was done 
by FLDA. Four healthy subjects were experimented with at least three MI trainings before 
the experiment by each subject with tasks: one out of five P300 symbols (1–5) and one out 
of two MI hand movements (left/right). Each subject performed one experimental session 
consisting of 60 trials, 30 trials for P300 in which targets were 1–5 numbers random flashings, 
and remaining 30 trials for MI where subjects needed to focus only one either on P300 or MI 
during each trial. Hybrid classification accuracy achieved was about 82% with average MI 
classification accuracy of 71%.
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groups flickered at frequencies 6, 6.67, 7.5, and 8.57 Hz to evoke SSVEP, while 100 ms interval 
was used to intensify and change the color of large central button to elicit P300. SVM and 
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feature extraction for P300 and MI, respectively, and the discriminant classification was done 
by FLDA. Four healthy subjects were experimented with at least three MI trainings before 
the experiment by each subject with tasks: one out of five P300 symbols (1–5) and one out 
of two MI hand movements (left/right). Each subject performed one experimental session 
consisting of 60 trials, 30 trials for P300 in which targets were 1–5 numbers random flashings, 
and remaining 30 trials for MI where subjects needed to focus only one either on P300 or MI 
during each trial. Hybrid classification accuracy achieved was about 82% with average MI 
classification accuracy of 71%.
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The selection of a target based on hybrid P300-MI BCI was developed by [72] on 1166×721 
pixels monitor using two sequential tasks: cursor movement with the help of ERD from 
left-/right-hand movement imaginations and selection/rejection of the target from focused 
attention on flashing to evoke P300 keeping one system passive when other is active. Eleven 
healthy subjects (10 male, 1 female subjects, and age 22–32 years) were used in both online 
and offline analysis and each experiment was performed within 2 s with each trial duration 
for about 18 s. Two targets such as Green Square for selection and Blue Square for rejection 
were randomly appeared on the screen and the classification accuracy was about 93% in real 
time.

MI-based brain switch was merged with P300 sequentially by [73] in which right-/left-hand 
movement imaginations was used for control signal acting as a brain switch to turn ON/OFF 
P300 speller. Eleven healthy subjects (8 male, 3 female subjects, and age 23–30 years), with a 
few subjects having previous experience to P300 or MI, were experimented. Offline training 
was done for P300 and MI before real tests in a 22″ LED monitor containing 6×7 matrix of 26 
English letters, 10 numbers, a few special characters, and commands. SWLDA was used for 
P300 classification and filtration in the alpha-beta rhythm range with two bands discrimina-
tion using CSP for MI and the classification accuracy achieved was about 92% for P300.

An efficient approach was proposed by [74] combining MI with P300 in a block diagonal 
matrix form to improve classification accuracy concatenating features of each paradigm 
where first-order information was used for P300 and second order for MI. Twelve volunteers 
(10 male, 2 female subjects, age 22–35 years) were experimented provided with eight flash-
ing buttons and an arrow cue such that screen remained blank for initial 2.25 s and a cross 
appeared on the screen from 2.25 to 4 s to attract subject’s visual attention. Arrow cue was 
displayed from 4 to 8 s such that up arrow was for P300 task to focus on the random flashing 
buttons without MI tasks and right arrow for MI task to make left-/right-hand imaginations. 
Test data was obtained from second experimental session and the classification accuracy was 
about 92%.

4. Signal processing approaches

The signal processing steps in BCI are signal acquisition, preprocessing, feature extrac-
tion, feature selection, feature classification, and postprocessing. The common classification 
approaches in hybrid BCI are briefly discussed here.

4.1. Fast Fourier transform (FFT)

FFT is an efficient algorithm for calculation of DFT reducing order of   N   2   operations to  N  log  
2
   N  

that decomposes signal from time domain to its individual frequency components whose 
pairs are given as [75]:

  X (k)  =   ∑ 
n=0

  
N−1

  x (n)   W  N  kn   (1)
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where   W  
N
   =  e   −j (  2π ___ N  )    and N = length [x(n)].

Amplitude vs. frequency is plotted and the dominant amplitude at a particular frequency is 
obtained for SSVEP signal analysis in BCI. FFT classifier has been replaced by other better 
classifiers in BCI research.

4.2. Linear discriminant analysis (LDA)

LDA, also known as Fisher’s LDA (FLDA), is a useful classification technique that transforms 
features into a low-dimensional space with high degree of separation. Suppose, there are a 
certain set of samples belonging to classes “A” and “B” whose mean and scatterings within 
each classes are represented as   μ  

A
   ,   μ  

B
    and   S  

A
  2   ,   S  

B
  2  , respectively, and LDA is calculated as [76].

  LDA =   
  ( μ  A   −  μ  B  )    2 

 _______  S  A  2   +  S  B  2     (3)

This method is simple to use, has low computational cost with high accuracy, and is widely 
used in number of BCI applications for P300 and MI-related tasks [77]; but, it also suffers 
from small sample size and linearity problems [78]. BLDA, a Bayesian version of LDA, is use-
ful for P300 in which parameters are estimated with Bayesian regression whose probabilistic 
output value lies between zero and one. It gives good results for small number of train sets 
or noise contaminated data and may give poor result for a complex nonlinear EEG data [78, 
79]. SWLDA is a stepwise LDA that performs space reduction by selecting suitable features 
and stepwise analysis to remove least significant features which is an effective classification 
technique for online classification of P300 [80].

4.3. Support vector machine (SVM)

SVM is used for classification of linearly separable binary data sets that uses a discriminant 
hyperplane to identify classes and the best choice is the hyperplane that leaves maximum 
margin from both classes. The kernel generally used in P300 BCI is the Gaussian kernel and 
the corresponding SVM is Gaussian SVM which is given as:

  K (x, y)  = exp (  
−    |   | x − y |   |     

2
 
 _______ 2  σ   2   )   (4)

where K(x, y) is kernel function and σ is kernel width.

SVM is simple and stable, and has a low variance which may be a key for low classification error 
for unstable and noisy P300 signals. SVM produces good results with high-dimension feature 
vectors and a small training set, thus outperforming LDA, but are generally slower than other 
classifiers [79]. BLDA is most robust for P300 application compared with LDA and SVM [81].
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English letters, 10 numbers, a few special characters, and commands. SWLDA was used for 
P300 classification and filtration in the alpha-beta rhythm range with two bands discrimina-
tion using CSP for MI and the classification accuracy achieved was about 92% for P300.

An efficient approach was proposed by [74] combining MI with P300 in a block diagonal 
matrix form to improve classification accuracy concatenating features of each paradigm 
where first-order information was used for P300 and second order for MI. Twelve volunteers 
(10 male, 2 female subjects, age 22–35 years) were experimented provided with eight flash-
ing buttons and an arrow cue such that screen remained blank for initial 2.25 s and a cross 
appeared on the screen from 2.25 to 4 s to attract subject’s visual attention. Arrow cue was 
displayed from 4 to 8 s such that up arrow was for P300 task to focus on the random flashing 
buttons without MI tasks and right arrow for MI task to make left-/right-hand imaginations. 
Test data was obtained from second experimental session and the classification accuracy was 
about 92%.

4. Signal processing approaches

The signal processing steps in BCI are signal acquisition, preprocessing, feature extrac-
tion, feature selection, feature classification, and postprocessing. The common classification 
approaches in hybrid BCI are briefly discussed here.

4.1. Fast Fourier transform (FFT)

FFT is an efficient algorithm for calculation of DFT reducing order of   N   2   operations to  N  log  
2
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that decomposes signal from time domain to its individual frequency components whose 
pairs are given as [75]:
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This method is simple to use, has low computational cost with high accuracy, and is widely 
used in number of BCI applications for P300 and MI-related tasks [77]; but, it also suffers 
from small sample size and linearity problems [78]. BLDA, a Bayesian version of LDA, is use-
ful for P300 in which parameters are estimated with Bayesian regression whose probabilistic 
output value lies between zero and one. It gives good results for small number of train sets 
or noise contaminated data and may give poor result for a complex nonlinear EEG data [78, 
79]. SWLDA is a stepwise LDA that performs space reduction by selecting suitable features 
and stepwise analysis to remove least significant features which is an effective classification 
technique for online classification of P300 [80].

4.3. Support vector machine (SVM)

SVM is used for classification of linearly separable binary data sets that uses a discriminant 
hyperplane to identify classes and the best choice is the hyperplane that leaves maximum 
margin from both classes. The kernel generally used in P300 BCI is the Gaussian kernel and 
the corresponding SVM is Gaussian SVM which is given as:
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where K(x, y) is kernel function and σ is kernel width.

SVM is simple and stable, and has a low variance which may be a key for low classification error 
for unstable and noisy P300 signals. SVM produces good results with high-dimension feature 
vectors and a small training set, thus outperforming LDA, but are generally slower than other 
classifiers [79]. BLDA is most robust for P300 application compared with LDA and SVM [81].
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4.4. Canonical correlation analysis (CCA)

CCA is a multivariate statistical method to analyze frequency components of SSVEP in 
EEG [82]. It extracts narrowband frequency components of SSVEP in EEG using maximum 
correlation between reference stimulus signals and EEG signals. Suppose X be the EEG all 
channels data and   Y  

f
    be the reference signals at f Hz stimulus frequency with N number of 

harmonics, the reference signals   Y  
f
    are given as:

   Y  f   =  
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The maximum correlation among X and   Y  
f
    is obtained as:

   ⍴  max   = max [correlation coefficient  (X,  Y  f  ) ]   (6)

CCA is more common method for analysis of SSVEP signals in frequency domain that 
improves SNR, classification accuracy, and ITR [81, 83].

4.5. Common spatial patterns (CSPs)

CSP is used to analyze spatial patterns of MI calculating spatial filters to find optimum vari-
ances for two different classes of EEG data. It uses simultaneous diagonalization of two cova-
riance matrices, and the spatially filtered signal Z of a single-trial EEG data is obtained as:

  Z = WE  (7)

where E is  N × T  matrix of single-trial raw EEG data, N is the number of channels, T is the num-
ber of measurement samples per channel, and W is CSP projection matrix. The rows of W are 
stationary spatial filters and the columns of   W   −1   are common spatial patterns. Spatial patterns 
of motor action are dependent on the specific region of brain like left-hand movement on right 
cerebral hemisphere [84]. A higher classification accuracy for multitask learning with very 
few training samples among 19 healthy subjects was achieved by [85] in which spatial filter 
was replaced by Laplacian filter in CSP algorithm.

5. Applications

Hybrid BCI is in the state of development and various BCI signals are combined to form a 
hybrid enhancing performance for numerous experimental-related applications which are 
summarized in Table 2. Most of the applications are based on wheelchair control. Other 
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applications include use of computer and communication, prosthetics using artificial limbs, 
advanced functional electrical therapy, monitoring ALS patients, entertainment and care 
in virtual smart home where MI is used mostly in prosthetics. Although BCI application is 
potentially safe, it needs regulatory approval before the experiment.

6. Limitations

Phenomenon of acquiring and processing information by human brain is still unknown. A 
very few hybrid BCI are experimented with target users and most of the subjects are healthy 
with small sample size. Rehabilitation using BCI is still not used in clinical practice [97]. 
Various methods have been incorporated to improve accuracy and ITR, and some hybrid 
with different classifiers combination have shown some improved results, but mostly sub-
ject’s specific. Type and design of electrodes have impact on subject’s head which influence 
EEG signals and demands for high compatible systems. These systems are not free from 
physical and mental fatigue that challenges their adaptability. Moreover, there are  obstacles 

Application type Specific control Hybrid type References

Wheelchair Direction P300 + MI [50]

“Go” and “Stop” movement P300 + SSVEP [54]

Speed SSVEP + MI [65]

Multi-degree SSVEP + MI [86]

Speed and direction SSVEP + MI [63]

P300 + MI [87, 88]

Autonomous navigation P300 + MI [89]

Computer cursor 2-D SSVEP + MI [52, 90]

P300 + MI [72]

Speller Spelling accuracy P300 + SSVEP [55, 68]

P300 + MI [71, 73]

Artificial limb Upper limb SSVEP + MI [62, 64]

Multidimensional robotic arm [91]

Functional electrical therapy Advanced SSVEP + MI [66]

ALS patients Communication P300 + MI [92]

Awareness P300 + SSVEP [93]

Virtual environment Smart home P300 + SSVEP [94, 95]

Intelligent nursing bed [96]

Table 2. Hybrid BCI applications.
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advanced functional electrical therapy, monitoring ALS patients, entertainment and care 
in virtual smart home where MI is used mostly in prosthetics. Although BCI application is 
potentially safe, it needs regulatory approval before the experiment.

6. Limitations

Phenomenon of acquiring and processing information by human brain is still unknown. A 
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with small sample size. Rehabilitation using BCI is still not used in clinical practice [97]. 
Various methods have been incorporated to improve accuracy and ITR, and some hybrid 
with different classifiers combination have shown some improved results, but mostly sub-
ject’s specific. Type and design of electrodes have impact on subject’s head which influence 
EEG signals and demands for high compatible systems. These systems are not free from 
physical and mental fatigue that challenges their adaptability. Moreover, there are  obstacles 
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in EEG acquisition due to electrodes placement, skull muscle movement, environment 
noises, limitations in hardware, and their calibrations. Two or more tasks need to be per-
formed simultaneously in hybrid that might increase mental workload and cause discomfort 
to some users. Due to complexity, prior knowledge is required to use hybrid systems for 
target users. This demands for further research and hybrid BCI is still under development 
inside  laboratory [57, 70].

7. Future scopes

Hybrid BCI has wider future scope and combining three or more signals may result bet-
ter performances. Optimum combination of signals with high degree of compatibility may 
be obtained which is accessible to all [98]. Virtual environment-controlled applications [72] 
may turn to a real one which may provide easy access to target as well as healthy users. 
These applications may be broadened to people without disabilities too. Various researches 
are going on to calculate mental workload of armed soldiers, and brain automation control of 
wheelchair may be extended to control automobiles and airplanes [99]. Efficient algorithms 
need to be developed in future to make BCI practical with high accuracy and speed which act 
as a neurorehabilitation for stroke patients suffering from movement and language deficits. 
Human’s intentions, emotions, and behaviors might be predicted in future using EEG which 
will ease for identifying fatigue in soldiers during war. It might be used in children to study 
various psychological measures such as behavior and learning tendency relative to age, and 
can be extended to animals besides human [97]. The laboratory experiment may be extended 
to the real world to ease our daily lives. Eventually, these might attract stakeholders to invest 
in BCI industry to produce commercialized BCI products in future.

8. Discussion and conclusion

Brain is a self-sustained oscillator where individual neurons oscillate at certain harmonics. 
Major rhythms of motor outputs generate through bifurcation. Several linear (spectral coher-
ence and cross-correlation) and nonlinear (phase synchronization, mutual information and 
entropy) measures have been adopted to measure the oscillations [100]. Structural and func-
tional connectivity of the brain works in coherence to perform a common action. Structural 
connectivity relates to the physical connection between different regions of the brain, while 
functional connectivity is the correlation between various regions over time that shows 
dynamic behavior [101].

During cognitive tasks requiring attention, certain brain regions become more active while 
the other regions activity decreases. A flashing or flickering visual stimulus eliciting event 
or evoked potential (P300 or SSVEP) increases activity in frontal and visual cortex. Due to 
more repetitive mental tasks, brain activity increases in the specific region, whereas activity 
in the other regions is reduced. The reason for reduction may be due to unrelated or difficult 
tasks [102]. This increase in brain activity corroborates growth in working memory of brain 
illustrating brain dynamic states. Brain changes its state according to the environment similar 
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to an artificially intelligent machine which adapts to learn from the input attributes without 
being explicitly programmed. So, a BCI illiterate at one point of time may adapt to learn with 
continuous trials due to dynamic brain states [103].

Human brain is a nonlinear dynamic system behaving as a chaotic and fractal system [104]. 
Therefore, EEG is a complex, nonlinear, and nonstationary signal. However, EEG signals have 
been analyzed based on linear/nonlinear and stationary/nonstationary techniques for feature 
extraction and classification. Fourier transforms, wavelet decomposition, power spectral den-
sity, autoregression, CCA, LDA, SVM, and CSP are some of the linear methods for EEG clas-
sification. However, only commonly used linear classifiers in hybrid BCI are discussed here. 
Due to the dynamical nature of the brain and the associated EEG signal, widely used linear 
approaches are not enough to obtain promising results. Therefore, the nonlinear dynamical 
behavior of EEG should be carefully considered during brain signal analysis. EEG signals 
need to be analyzed along with the dynamic states to reveal additional features that cannot be 
assessed with the linear methods.

EEG signals were analyzed dynamically in [105] to identify and code the attractors related to 
mental states using artificial neural network. It was shown that binary patterns of attractors 
resulting from neural firing of identical cognitive or sensory stimuli are similar, but they might 
appear as distinct features with different stimuli. The chaotic behavior of attractors highlights 
the fact that the neural signals are coherent. Indeed, brain dynamics has unveiled an emerg-
ing area of research to quantify information using attractors and fractals from EEG signals for 
useful operations applying hybrid BCI. It should be noted that attractors and fractals are the 
dynamic variables to measure complexity (correlation dimension and Hurst exponent) and 
stability (Lyapunov exponent and entropy) of EEG data [106–108]. The phenomenon of brain 
receiving the sensory inputs, storing the information, and processing output is still unknown. 
Hybrid BCI can be an efficient tool to transform the interesting brain dynamics into actions.

In this chapter, hybrid BCI is reviewed, and advancements from single BCI system to hybrid 
BCI systems, associated signal processing methods, usages, shortcomings and future scopes 
are discussed. The common hybrid systems based on signal combinations as well as operation 
methods, their performances, and improvements are mentioned. Statistical analysis of BCI 
and hybrid BCI related to P300 and SSVEP are illustrated based on publications. Transitioning 
from laboratory to the possible commercial applications is well discussed along with the limi-
tations onward. This review illustrates P300, SSVEP, and MI which are mostly used EEG sig-
nals for BCI. Simultaneous operation is very common in P300-SSVEP hybrid and sequential 
operations are incorporated mostly in MI-related hybrid experiments. Average accuracy and 
ITR among reviewed hybrid BCI papers are 90% and 28 bits/min, respectively, which demand 
the need for a more efficient hybrid BCI system.
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Abstract

We are developing methods of noninvasively delivering magnetic neuroparticles™ via 
intranasal administration followed by image-guided magnetic propulsion to selected 
locations in the brain. Once placed, the particles can activate neurons via vibrational 
motion or magnetoelectric stimulation. Similar particles might be used to read out neuro-
nal electrical pulses via spintronic or liquid-crystal magnetic interactions, for fast bidirec-
tional brain-machine interface. We have shown that particles containing liquid crystals 
can be read out with magnetic resonance imaging (MRI) using embedded magnetic 
nanoparticles and that the signal is visible even for voltages comparable to physiological 
characteristics. Such particles can be moved within the brain (e.g., across midline) with-
out causing changes to neurological firing.
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Abstract

We are developing methods of noninvasively delivering magnetic neuroparticles™ via 
intranasal administration followed by image-guided magnetic propulsion to selected 
locations in the brain. Once placed, the particles can activate neurons via vibrational 
motion or magnetoelectric stimulation. Similar particles might be used to read out neuro-
nal electrical pulses via spintronic or liquid-crystal magnetic interactions, for fast bidirec-
tional brain-machine interface. We have shown that particles containing liquid crystals 
can be read out with magnetic resonance imaging (MRI) using embedded magnetic 
nanoparticles and that the signal is visible even for voltages comparable to physiological 
characteristics. Such particles can be moved within the brain (e.g., across midline) with-
out causing changes to neurological firing.
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1. Introduction

Brain-machine interfaces (BMIs) have made great progress as prostheses (e.g., for vision-
impaired individuals). Those patients were willing to undergo major surgery, expense, and 
to have centimeter-scale electrical devices implanted in their nervous systems. The scope of 
influence of BMI of the future is clearly large, potentially including cognitive enhancement 
and memory storage, and quite likely with ramifications beyond anybody’s present imagina-
tion [1, 2]. To fully exploit the power of BMI, some big steps need to be taken. For wide and 
long-term public use, the invasiveness of the implant procedure and toxicity of the implant 
materials need to be eliminated. The number of neuronal channels an implanted device must 
address needs to be increased by many orders of magnitude, and the entire nervous system 
must be accessible. The spatial resolution should be smaller or equal to the diameter of small 
groups of neurons (i.e., micron-sized), and the temporal resolution should be faster than or 
comparable to neurons in the native brain (i.e., sub-millisecond response time).

Most medical researchers attempt to translate therapeutic approaches from animal mod-
els to human use. Unfortunately, there are significant barriers to taking this approach to 
BMI. Optical dyes that are the mainstay of animal research do not work for animals larger 
than a few centimeters because of light scattering and the photon-stopping power of tissue. 
The multi-decade-long history of failure to bring optical mammography into clinical practice 
suggests that light scatter is not a problem that is easily solved [3]. Implanted tethered elec-
trodes and high-intensity-focused ultrasound can only address one section of the nervous 
system at a time. Genetic manipulation of brain circuitry (e.g., with optogenetic or sonoge-
netic techniques) has significantly increased our understanding of preclinical neurosciences, 
but would still require invasive focal delivery of gene vectors, optical fibers, or ultrasonic 
transducers that would limit wide use in humans [4, 5].

Oscillating magnetic fields do not interact much with tissue, especially below several giga-
hertz in frequency, and therefore penetrate the human head readily. Magnetic resonance 
imaging methods that examine blood oxygen-level dependency (BOLD) rely on vascular 
changes that have a poor spatial and temporal resolution. Magnetic resonance imaging (MRI) 
pulse sequences that read out electrical current (e.g., from Lorentz forces causing neuronal 
displacement) can detect micro-amp levels (far from the nanoampere currents generated from 
individual or small neuronal bundles) although technical improvements such as fast magnetic 
gradients may improve performance in the future [6]. Imaging of electrical currents (magne-
toencephalography) is limited to millimeter spatial resolution due to the variable impedance 
of the brain and the detector resolution [7].

In this chapter, we summarize contrast-enhancement approaches to BMI that could yield 
readout and writing of the entire brain with high spatial and temporal resolution. Contrast 
enhancement from radioactive and other materials has been used in radiology practices for 
the past century to explore and diagnose diseases of the nervous system. The contrast mate-
rials that appear the most promising are based on magnetic nanoparticles, which we attempt 
to describe more fully in this chapter.
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2. Brain access

To date, developers of the smart-dust [8] concept have constructed millimeter-sized particles 
using wafer-based lithographic methods typically employed for electronic circuitry (e.g., 
CMOS). Traditional electronic particles below a millimeter in size are difficult to power with-
out a tether to the outside world, because of poor electromagnetic coupling to small antennas. 
In order to implant or remove electronic particles of these sizes, practitioners need millimeter-
sized holes, requiring either surgery or interventional procedures to go through the vessels 
or subarachnoid spaces. Because of the potential for damage to eloquent nervous structures, 
such procedures carry risks and expensive and are therefore inappropriate for wide (e.g., 
consumer) applications.

As will be discussed below, we and others have formulated contrast solutions containing high 
concentrations of nano-sized particles with magnetic properties (e.g., spintronic, magnetoelec-
tric) that do not need to rely on traditional approaches to enter or interact with the brain. As 
in drug delivery, we have shown that nanoscale particles can be delivered intranasally, which 
is considered a noninvasive administration mode in the clinical literature [9, 10]. The cribri-
form plate separates the nasal from the cranial cavities, with foramina that decline slightly 
in size with age, with an overall area of 6 mm2 at age 25 and 4 mm2 at age 66 [11]. Our group 
and others have demonstrated that magnetic particles with diameters of up to 250 nm readily 
enter the cranium with the assistance of a 20-mT magnetic gradient, with no appreciable intra-
cranial entry in the absence of an imposed magnetic field (Figure 1). Minimally invasive routes 
other than intranasal are possible, for example, via lumbar puncture or via intravenous admin-
istration. However, both of these routes require overcoming countervailing current flows (of 
cerebrospinal fluid and blood, respectively) that make them less attractive.

Once in the intracranial cavity, magnetic particles can be manipulated using magnetic gradi-
ents for delivery to specific brain foci. The tracks that such particles make are micron-sized, 
unlike the millimeter scale holes made during conventional deep-brain stimulation surgery. 
Magnetic particle manipulation is difficult with a conventional MRI, since it is very hard 
to create magnetic gradients that can overcome the static MRI field strength. However, our 
group and others have constructed MRI systems where the static field can be temporarily 

Figure 1. Transport into brain. Rat olfactory bulb before (left) and after (right) intra-nasal administration of particles 
under magnetic gradient.
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eliminated in order to apply magnetic gradients without interference [12]. The MRI’s static 
magnetic field can then be reapplied to assist in real-time image-guided manipulation.

In the past, it was believed that it was impossible to propel magnetic particles deep within tis-
sues because of the particles’ tendency to realign and become attracted to the propelling mag-
nets and because particles tend to dissipate instead of aggregate when being pushed through 
tissue. With appropriate magnetic pulse sequences, it is possible to transiently polarize the 
particles in the direction opposite to the propelling magnets (“dynamic inversion”), so that the 
particles can be delivered deep into tissue [13]. With appropriate particle design choices, it is 
also possible to twist the particles during propulsion, which assists in penetrating tissues with-
out increasing the particle track diameter [14]. Particles transported interstitially through the 
brain do not rely on vascular transport and therefore effectively bypass the blood-brain barrier.

Once the particles have been delivered to the intended location in the brain, the average dis-
tance between particles and neurons is inversely related to the local particle concentration. The 
distance between particles and neurons is critical to reading out or writing to the brain, since 
the electrical field decreases rapidly from kilovolts/meter (across the neuronal membrane) to 
tens of volts per meter (10 μm from the neuron). It may be possible to decrease the effective 
particle-neuron distance by coating the particle with materials in configurations that promote 
penetration of the neural membrane, as has been done with experimental brain electrodes [15].

3. Particle toxicity

For magnetic particles to become widely used, the particles must have a negligible potential for 
toxicity [16]. This very high bar is reflected in the Food and Drug Administration’s (FDA) classi-
fication of devices for the brain as class III, requiring a premarket approval (PMA) application. In 
comparison, devices for the peripheral nervous system are often treated as class II devices. Note 
that particles are often treated by the FDA as drugs, although in Europe, they may be treated as 
devices. Studies of ex vivo vital rodent brain slices have shown that the presence of magnetic 
particles does not cause a measurable disruption of function [17]. In fact, it is not unusual for 
humans living in industrial cities to have magnetic particles in their brains, with no known 
related diseases [18]. It is also very common for humans over 50 years of age to have radio-dense 
“calcifications” in the basal ganglia, again with no definite disease association [19]. Small animal 
studies have examined the toxicity of magnetoelectric particles with no adverse effects [20].

4. Particle fabrication

Traditionally, implantable medical devices for neurostimulation have been built with CMOS 
processes (like other electronic devices). This approach is not scalable to nano-sized products 
that are needed for noninvasive access. Most of the magnetic particle literature was contributed 
in the field of bioassays, where particle uniformity is not critical. However, for medical applica-
tions (e.g., magnetic particle imaging), lack of particle uniformity is often a limiting factor [21].
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We have used template-guided methods to build shape-engineered highly uniform magne-
tizable particles with features important for transport and effectiveness [22] (Figure 2). For 
example, different sections of the particles can be built with aspect ratios that favor a particu-
lar magnetization direction. With appropriate use of precessing magnetic fields, the particles 
can be drilled through tissue [14]. The template-guided methods are also economical: it is 
possible to fabricate micromolar quantities of particles for less than $20 in raw materials. We 
have evaluated nanoscale spintronic devices for voltage sensing and stimulation, which have 
very tight tolerances. Transitioning these devices in their current morphologies to template-
guided manufacturing (with tolerances of a few nm) may be challenging and may require 
device redesign.

5. Neuronal readout

Although neurons affect each other over nanoscale distances through chemical means (e.g., 
neurotransmitters), longer neuronal transmissions are electrical in nature. Noninvasive 
neuronal sensing in humans has generally employed either electrical methods to detect 
electrical fields or magnetic methods to detect electrical currents. Noninvasive external 
measurements of electrical fields from deep in the brain (e.g., with electroencephalogra-
phy) yield centimeter-scale resolution because of the complicated impedance of the brain 
and surrounding tissues. Direct measurements of magnetic fields can be obtained with 
magnetoencephalography, but the resolution is limited to millimeter scales because of 
detector-size limitations.

Figure 2. Example of template-guided shape-engineered synthesis of magnetic particles. Particles are made via 
sequential processing of polycarbonate track etched (PCTE) membrane films. PCTE films have pores extending through 
the thickness of the film. Templates (A) are first partially sealed on one surface with a conductive layer (B), followed 
by deposition of a polymer (e.g. poly-lactic-co-glycolic acid) shell inside the pores of the PCTE (C). Selectively etching 
the partially sealing conductive layer (D) and replacing it with a completely sealing conductive layer (E) allows for 
deposition of a conformal gold layer (F), after which a payload (e.g. liquid-crystal-magnetic composite) can be deposited 
by vacuum impregnation into the sealed pores of the PCTE film (G). Deposition of a final sealing layer (H), followed by 
selective etching of the conductive sealing layer (I) and removal of PCTE film (J) results in free-floating particles.
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Our working hypothesis is that the magnetic readout of contrast materials with magnetic 
resonance imaging (or the related field of magnetic particle imaging) is the way to go. With 
fast high magnetic gradients, magnetic resonance imaging (MRI) can achieve 30 μm spatial 
resolution (Figure 3) and kHz temporal resolution. In the past, it was believed that such rapid 
changes of magnetic fields would induce unwanted neurological stimulation, but we have 
shown in a prospective human study that if the frequency is high enough, such effects do not 
occur [23]. Magnetic particle imaging should theoretically be able to detect a single particle; 
however, experimentally, this has been difficult to achieve because of prior limits on gradi-
ent strength and particle uniformity [21, 24]. We have found that with very fast MRI pulse 
sequences that directly measure the reduction in local proton signal decay time, it is possible 
to detect as few as 1000 particles.

5.1. Readout with magnetic particle/liquid-crystal composites

There are several ways that magnetic particles can report on local electrical fields. The most 
promising in terms of field sensitivity takes advantage of liquid crystals, whose orientation 
can be used to detect low local electrical fields, for example, at a few volts per meter [25]. For 
purposes of comparison, voltage-sensitive dyes report on changes on the orders of kilovolts 
per meters (e.g., tens of millivolts across a 5-nm membrane) [26]. The high spatial and electri-
cal field resolution of liquid crystals enables mapping of electronic layers with a sub-micron 
resolution [27]. Magnetic nanoparticles have been used to make the liquid crystals more sen-
sitive to electric fields (dielectric permittivity) [28]. The liquid crystals’ change in orientation 
(due to changes in local electric fields) can be transferred to magnetic particles, as validated 
with X-ray scattering methods (Figure 4) [29]. This orientation changes the local magnetic 
susceptibility, which can be detected with proton MRI (Figure 5) [30]. With MRI, we have 
detected electric fields as low as 20 V/m with this method.

5.2. Readout with piezoelectric magnetic particles

Particles have been built with magnetic cores and piezoelectric shells, where the magnetic 
moment of the core changes in response to an applied electric field. These magnetic moment 

Figure 3. Spatial resolution of low-field MRI with high magnetic gradient strength. Left: spin echo sequence of a water 
phantom with 7-μm pixels in 2D projection. Right: calculation of spatial resolution of 30 μm.
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changes can be read out with proton MRI (Figure 6). The same particles can be used to 
generate electric fields in response to an applied magnetic field (discussed subsequently in 
Section 6) [20, 31, 32].

5.3. Readout with spintronic particles

Spintronic devices act as nano-valves that convert electrical currents into radiofrequency (RF) 
waves. The devices are also sensitive to applied magnetic fields, which is important since the 
particles can thereby be localized by applying magnetic gradients (as in MRI). We have shown 
that a single nano-sized on-chip spintronic device can convert electrical currents in the micro-
amp range into radio waves that can be detected centimeters away [33]. Spintronic devices 
can be ganged synchronously to amplify signals [34]. The micro-amp range is probably too 
low to detect the state of single neurons, but might be appropriate for tracts. Work needs to be 
done (e.g., with template-guided synthesis) on freeing the spintronic devices from substrates 

Figure 4. X-ray diffraction experiments with liquid crystal/magnetic particle composites (LC-MNP). Top: LC-MNP films 
placed in X-ray beam. Bottom: X-ray scattering measurements reveal changes in liquid crystal layer-to-layer spacings 
based on applied voltage.

Figure 5. MRI of novel contrast agent. MRI results with no voltage applied (A) and with voltage applied (B). A 5% 
change in MRI signal is observed with electric fields of 20 V/m (comparable to the field within 10 μm of neurons).
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that a single nano-sized on-chip spintronic device can convert electrical currents in the micro-
amp range into radio waves that can be detected centimeters away [33]. Spintronic devices 
can be ganged synchronously to amplify signals [34]. The micro-amp range is probably too 
low to detect the state of single neurons, but might be appropriate for tracts. Work needs to be 
done (e.g., with template-guided synthesis) on freeing the spintronic devices from substrates 

Figure 4. X-ray diffraction experiments with liquid crystal/magnetic particle composites (LC-MNP). Top: LC-MNP films 
placed in X-ray beam. Bottom: X-ray scattering measurements reveal changes in liquid crystal layer-to-layer spacings 
based on applied voltage.

Figure 5. MRI of novel contrast agent. MRI results with no voltage applied (A) and with voltage applied (B). A 5% 
change in MRI signal is observed with electric fields of 20 V/m (comparable to the field within 10 μm of neurons).
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for deployment as a contrast agent. The spintronic particles can be used in a reverse mode for 
stimulation (with radio-frequency energy converted to low-frequency currents) again with 
the possibility of localization with applied magnetic gradients [35].

6. Writing to the brain

The brain can be stimulated electrically, chemically and even mechanically. Most brain-machine 
interface work has been performed with electrical stimulation from invasive focal electrodes, 
which have advantages of high speed and spatial precision, but can only access a small por-
tion of the brain. Noninvasive electrical stimulation has been performed with transcranial 
magnetic stimulation, where externally applied changing magnetic fields are used to induce 
electrical fields and currents in the brain. This technique yields relatively poor spatial resolu-
tion (e.g., centimeter scale) at the brain surface, with spatial resolution worsening appreciably 
in deeper parts of the brain. Externally applied electrical currents have even worse spatial local-
ization capability, since the impedance of various tissues in the head is highly nonuniform. 
Theoretically, radio-frequency energy could be focused in small regions with high-field MRI, 
but this technique has not been intentionally used for stimulation [36]. Externally Administered 
chemical brain modulation is an ancient technique, practiced in pubs daily by millions of peo-
ple. In a few rare cases, the focal concentration of receptors in certain sections of the brain 
allows chemical stimulants to target specific regions (e.g., substantia nigra by 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridin) [37]. Microinfusions of chemicals via brain-implanted catheters 
have been applied in animal studies for research. Catheters have been implanted in the neuro-
nal sections of human brains to deliver cancer treatment (i.e., convection-enhanced delivery). 
Externally applied high-intensity-focused ultrasound (HIFU) has been used experimentally to 
stimulate the brain, although the exact mechanism is not well understood [38]. We hypothesize 
that magnetic particles may be useful in focal brain stimulation, with focality realized either 
through noninvasive selective placement of particles (e.g., after magnetically-assisted intranasal 

Figure 6. Voltage-sensitive MRI signal from piezo-magnetic particle.
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administration) in desired locations or with diffusely delivered particles that can be addressed 
selectively. In the next sections, we list various candidate magnetic particles for brain stimula-
tion, some of which overlap the prior section for brain readout.

6.1. Mechanical stimulation with magnetic particles

Anecdotal surgical data from the placement of deep-brain stimulation leads have shown that 
mechanical vibration can stimulate neurons [39, 40]. Cultured neuron studies have demon-
strated mechanoreceptors that react by opening calcium channels [41]. Invertebrate experi-
ments suggest that externally applied magnetic gradients can wiggle magnetic particles 
enough to cause nerve stimulation (Figure 7) [42].

6.2. Composite piezoelectric/magnetic particles

With appropriately designed piezomagnetic particles, externally applied magnetic fields can 
be applied to the particles in order to generate powerful electric fields focally (e.g., strong 
enough to electroporate cells) [32]. Indirect evidence of global brain stimulation has been col-
lected through electroencephalography of animals [20].

6.3. Electret-based magnetic particles

Recent innovations in harvesting harvesting from mechanical motion have been driven 
because of the proliferation of wearable devices. Some of the principles of energy harvesting 
can be reversed in order to generate electrical currents and voltages. Electrets, which rely on 
changes in capacitance to generate power, are very efficient vibrational energy harvesters. 
Liquid crystals have been used as electrets for energy harvesting [43]. Typically, liquid crys-
tals require very high magnetic fields to change their capacitance, but the addition of magnetic 

Figure 7. Magnetic particle neurostim-ulation visualized with manganese-enhanced MRI (MEMRI). Particles were 
injected behind the left eye of crawfish and stimulated for 3 min using magnetic wiggling of particles. Increased MEMRI 
signal is seen in the left brain.
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administration) in desired locations or with diffusely delivered particles that can be addressed 
selectively. In the next sections, we list various candidate magnetic particles for brain stimula-
tion, some of which overlap the prior section for brain readout.

6.1. Mechanical stimulation with magnetic particles

Anecdotal surgical data from the placement of deep-brain stimulation leads have shown that 
mechanical vibration can stimulate neurons [39, 40]. Cultured neuron studies have demon-
strated mechanoreceptors that react by opening calcium channels [41]. Invertebrate experi-
ments suggest that externally applied magnetic gradients can wiggle magnetic particles 
enough to cause nerve stimulation (Figure 7) [42].

6.2. Composite piezoelectric/magnetic particles

With appropriately designed piezomagnetic particles, externally applied magnetic fields can 
be applied to the particles in order to generate powerful electric fields focally (e.g., strong 
enough to electroporate cells) [32]. Indirect evidence of global brain stimulation has been col-
lected through electroencephalography of animals [20].

6.3. Electret-based magnetic particles

Recent innovations in harvesting harvesting from mechanical motion have been driven 
because of the proliferation of wearable devices. Some of the principles of energy harvesting 
can be reversed in order to generate electrical currents and voltages. Electrets, which rely on 
changes in capacitance to generate power, are very efficient vibrational energy harvesters. 
Liquid crystals have been used as electrets for energy harvesting [43]. Typically, liquid crys-
tals require very high magnetic fields to change their capacitance, but the addition of magnetic 

Figure 7. Magnetic particle neurostim-ulation visualized with manganese-enhanced MRI (MEMRI). Particles were 
injected behind the left eye of crawfish and stimulated for 3 min using magnetic wiggling of particles. Increased MEMRI 
signal is seen in the left brain.
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dopants dramatically reduces the magnetic field strength required to alter capacitance [28]. 
Therefore, a composite of magnetic particles and liquid crystals (as discussed above) might be 
able to convert a changing externally applied magnetic field into local electrical stimulation.

6.4. Spintronic particles

As discussed above, spintronic particles have been used to convert low-frequency electrical 
currents into high-frequency radio-frequency emissions. Our group successfully reversed this 
process, to convert applied radio-frequency (RF) radiation into low-frequency electrical cur-
rents that were able to affect the firing frequency of a single neuron (Figure 8) [35]. An attractive 
potential application of this technology is that the efficiency of conversion of the RF radiation 
exhibits frequency dependence that is also a function of the ambient magnetic field. This mech-
anism would permit spintronic devices to be addressed with micron-level spatial resolution.

7. Conclusion

Magnetic neuroparticle solutions to brain-machine interface were predicted a long time ago 
and are under development today. As shown above, animal data show that nontoxic mag-
netic particles could be noninvasively directed to specific locations in the brain under real-
time imaging guidance. Particles could be placed with high spatial resolution in focal regions 
for specific clinical indications (addiction, Parkinson’s disease). Alternatively, the particles 
could be globally spread in the brain and selectively addressed for local stimulation and/

Figure 8. Spintronic particle writing to single neuron. Top: neuro-modulation in vital mouse brain slice (red) when 
spintronic nano-oscillator (STNO) particle is triggered by RF signal. Bottom: neuronal frequency changes in as a function 
of applied RF pulse.
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or readout with appropriate RF or magnetic tuning. Many of the particles listed above (e.g., 
magnetoelectric, electret-based particles) can both read and write electrically and therefore 
potentially fit the bill for high-speed bidirectionality. Building on the work of deep-brain 
stimulation, one might expect that the focal stimulation of specific brain nuclei would be 
the first clinical target for noninvasive or minimally invasive bidirectional BMI. The high 
temporal and spatial resolution of voltage-sensitive contrast media would likely shed addi-
tional light on large-scale brain processes (e.g., attractors [44]) that would be useful in build-
ing more eloquent BMIs. System architectures for reading from and writing to the brain 
would be similar to conventional MRI systems, preferably with the ability to rapidly turn 
off the static magnetic field in order to manipulate the magnetic particles with high flex-
ibility [12]. Once the particles were placed in the appropriate location, stimulation could be 
implemented with a wearable coil. Readout with voltage-sensitive contrast media could be 
performed with conventional MRI systems.
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dopants dramatically reduces the magnetic field strength required to alter capacitance [28]. 
Therefore, a composite of magnetic particles and liquid crystals (as discussed above) might be 
able to convert a changing externally applied magnetic field into local electrical stimulation.

6.4. Spintronic particles

As discussed above, spintronic particles have been used to convert low-frequency electrical 
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or readout with appropriate RF or magnetic tuning. Many of the particles listed above (e.g., 
magnetoelectric, electret-based particles) can both read and write electrically and therefore 
potentially fit the bill for high-speed bidirectionality. Building on the work of deep-brain 
stimulation, one might expect that the focal stimulation of specific brain nuclei would be 
the first clinical target for noninvasive or minimally invasive bidirectional BMI. The high 
temporal and spatial resolution of voltage-sensitive contrast media would likely shed addi-
tional light on large-scale brain processes (e.g., attractors [44]) that would be useful in build-
ing more eloquent BMIs. System architectures for reading from and writing to the brain 
would be similar to conventional MRI systems, preferably with the ability to rapidly turn 
off the static magnetic field in order to manipulate the magnetic particles with high flex-
ibility [12]. Once the particles were placed in the appropriate location, stimulation could be 
implemented with a wearable coil. Readout with voltage-sensitive contrast media could be 
performed with conventional MRI systems.
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