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Preface

Technological development and innovation development are increasing challenges that in‐
volve well-planned public policies in partnership with the private industrial sector. Ena‐
bling this development implies stimulating the concomitant development of increasingly
sophisticated characterization techniques. This is particularly noteworthy with regard to the
use of sources such as x-rays and neutrons in characterization techniques. The use of these
techniques has become more frequent due to its potentiality and particularities. It is possibly
observed that industries apply more and more efficient characterization techniques that al‐
low them not only to improve the quality of their products but also to predict their durabili‐
ty.

The large number of characterization techniques available is intriguing, but we observe that
many publications using tools such as diffraction and small-angle scattering using x-ray and
neutron as a probe of investigation do not exploit these techniques to their fullest extent. It is
important to emphasize that the recent advances in scattering techniques allow to map the
structure and the microstructure of architected and natural materials in spatial scale. The
techniques that use the scattering setup can successfully be applied in the fields of basic
knowledge like physics, biology, and chemistry, as well as in technological applications
such as medicine, pharmacology, and the aeronautic industry.

Emphasizing practical applications and real-world case studies, this book presents the prin‐
ciples of widely used, advanced surface and structural characterization techniques for quali‐
ty assurance, contamination control, and process improvement.

This book covers the following:

• It explores scientific processes to characterize materials using SAXS and diffraction.
• It presents performance analysis of some materials under specific conditions of use.
• The interdependence between processing, structure, properties, and performance is

presented to illustrate the wealth of information.
• It presents the fundamentals of x-ray diffraction principles as well as small-angle x-

ray scattering.

The authors of the subsequent chapters chose to omit long derivations and formulations,
exposing only the appropriate uses and technical requirements related to characterization
techniques. In fact, they emphasize useful basic principles and modern technology applica‐
tions used to characterize engineering materials, helping readers understand the micro- and
nanoscale properties. This book will serve as a valuable reference for researchers and engi‐
neers involved in characterization and also as an introduction to the field for advanced un‐
dergraduate and graduate students.
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Although the subject of x-ray scattering is extremely wide, we synthesized the book into five
chapters that outline the application of SAXS and diffraction techniques.

In Chapter 1, “Calculation of Small-Angle Scattering Patterns,” the authors present an over‐
view of current available simulation/modeling methods for small-angle scattering (SAS) for
systems composed of oriented or for random-oriented particles. The use of the finite element
method as well as a newly developed method for calculating scattering intensity for orient‐
ed particles is presented as illustrative example. We highlight that the authors show that
small-angle scattering (SAS) experiments can be applied to nano-scaled systems, allowing
the investigation of the constituent’s overall shape, size, internal structure, and arrange‐
ment.

In Chapter 2, “X-Ray Diffraction Analysis of Structural Changes Induced by Overrolling,”
the aim is to propose a new method of x-ray diffraction analysis to evaluate structural
changes in rolling element-bearing components. Applied to the basics of residual stress
measurement by x-ray diffraction, the authors aim to perform microstructural analysis on
bearing components after rig testing and after use in the field, focusing on the aeroengine
industry. The results shown in this chapter are mostly derived from rolling element-bearing
applications in aeroengines. The authors show how an estimation of a rolling contact fatigue
life can be derived from microstructural analysis besides showing that near-surface-induced
residual stresses can improve rolling contact fatigue life. Nevertheless, they also demon‐
strated that the basic results from rig testing can be transferred to use in the field.

In Chapter 3, “Cavitation Behavior of Semicrystalline Polymers during Uniaxial Stretching
Studied by Synchrotron Small-Angle X-Ray Scattering,” the authors show that small-angle
x-ray scattering (SAXS) can be used as a powerful method to in situ monitor the evolution of
voids with high time and spatial resolution. Recent reports about the cavitation behavior of
semicrystalline polymers studied by SAXS are also reviewed in this chapter. In addition to
presenting an introduction to theoretical background related to the SAXS technique, they
show some exemplary results about the cavitation behavior of microinjection-molded isotac‐
tic polypropylene, studied by synchrotron SAXS measurements.

Hazardous waste, for which there is no definitive disposal solution, is generated in diverse
activities such as fundamental and applied research, medicine, industry, energy, etc. Burned
fuels from nuclear research reactors, sealed radioactive sources used in cancer treatment and
discarded at the end of their useful life, and lees and incrustation containing natural radia‐
tive substances extracted from oil platforms are other examples of waste that need to be
properly treated. One of the greatest challenges facing our generation is the sustainable stor‐
age of environmental waste. The immobilization of these wastes is necessary to comply with
the regulations of the nuclear area and to comply with the acceptance criteria for rejects in
repositories, which require that the wastes are in solid form in a durable and resistant mono‐
lithic matrix. Convinced to ensure the environmentally benign storage of these by-products
in a solid form, it is essential to understand the chemical and morphological features of the
materials in which these by-products are immobilized.

In Chapter 4, “Multiscale X-Ray Scattering for Probing Chemomorphological Coupling in
Pore-to-Field and Process Scale Energy and Environmental Applications,” the authors show
the chemical and morphological features of the materials in which these by-products are im‐
mobilized. The authors show application of the x-ray scattering techniques to investigate
systems able to store harmful wastes like nuclear elements and CO2, in order to protect the

XII Preface

environment. The authors use two examples to discuss about multiscale x-ray scattering,
which encompasses ultrasmall-, small-, and wide-angle x-ray scattering (USAXS/SAXS/
WAXS). The first example involves determination of the changes in the porosity and the
structure of beidellite, and the second example illustrates the changes in the nanoscale po‐
rosity of heat-treated serpentine after reacting with CO2 to form magnesium carbonate.

In Chapter 5, “Small-Angle Scattering Analysis of Fractals Generated by Additive Cellular
Automata,” structural analysis of fractals generated using one-dimensional additive cellular
automata (ACA) is presented. The authors view additive cellular automata as discrete dy‐
namical system, in which the set of possible configurations of ACA forms a fractal set. The
aim of this study is to show how the scattering data from ACA can provide information
about the overall size of the system, the number of total units, the number of rows, the size
of the basic fractal units, the scaling factor, and the fractal dimension. They provide some
useful relations between structural parameters of ACA that can be obtained experimentally
from small-angle scattering (SAS). This chapter will show how to extract structural informa‐
tion and fractal properties of ACA from SAS data.

In light of this, the purpose of this book is to show the great applicability of scattering char‐
acterization techniques. The topics covered are current and of interest to the entire scientific
community. We believe that this work will contribute to all those who need to characterize
their materials.

Margareth K.K.D. Franco
Nuclear and Energy Research Institute

Cidade Universitária
São Paulo (SP), Brazil

Fabiano Yokaichiya
Institut Quantenphänomene in neuen Materialien (EM-IQM)

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Berlin, Germany
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Abstract

Small-angle scattering (SAS) experiments applied to nano-scaled systems allow the inves-
tigation of the constituents’ overall shape, size, internal structure and arrangement. A
standard scattering experiment requires a relatively simple setup and is often applied to
investigate a system of particles. In these cases, the measured scattering intensity repre-
sents an average over a large number of particles illuminated by the incoming beam. The
calculation and modeling of the scattering intensity can be performed by the use of
analytical/semi-analytical expressions or by the use of numerical methods. In this book
chapter, an overview of current available simulation/modeling methods for SAS will be
shown either for systems composed of oriented or for randomly oriented particles. Exam-
ples demonstrating the use of the finite element method are presented as well as a newly
developed method for calculating scattering intensity for oriented particles.

Keywords: small-angle scattering, nanoparticles, finite element method, oriented
particles, simulation, numerical methods

1. Introduction

The investigation of internal structure of system at nanoscale permits the comprehension and
correlation of its microstructure to its macro properties. Theoretical and experimental methods
are widely used to predict and characterize the properties of these systems [1]. Density
functional theory (DFT), molecular dynamics (MD) simulations, and Monte Carlo (MC) simu-
lations are just few examples of theoretical methods used for these investigations [2, 3].
However, all these theoretical methods have always to be checked and confirmed by the use
of experimental results, in a large number of available experimental methods. Imaging tech-
niques, when applicable, are very useful since they can provide a direct indication of the shape
and size of the investigated system. Electron microscopy (EM) methods like transmission

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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electron microscopy (TEM) and scanning electron microscopy (SEM) give important informa-
tion on the structures in high resolution [4–6]. However, these methods demand the use of
special experimental conditions like measurements in vacuum and the use of coating agents.
Therefore, the obtained results can be affected by the experimental technique itself [7]. Scatter-
ing/diffraction methods, on the other hand, can be used for systems directly in solution or in
the amorphous matrix, with minimum interaction of the radiation with the matter [7, 8]. These
methods, namely, small-angle scattering (SAS) either with neutrons (SANS) or X-rays (SAXS),
static light scattering (SAS), etc., can provide useful information about the structure of the
investigated system. However, scattering methods give information in the Fourier space
(reciprocal space/scattering space) which can difficult its interpretation and modeling [8–10].

In this book chapter, a review about the calculation of scattering patterns from system composed
of particles will be presented. First, an overall discussion about the basic scattering theory and the
inverse scattering problem is shown. Later, several analysis and modelingmethods are described
and discussed. Finally, state-of-the-art methods with advanced applications are shown, demon-
strating the use of possibility of simulating scattering patterns for oriented particles.

2. Overall aspects of small-angle scattering

There are several approaches for describing the interaction of electromagnetic radiation with
matter. In this chapter, the scattering of an incident beam of radiation by a scattering potential
will be assumed [7, 11–14]. A schematic view of the scattering process is shown in Figure 1.

The potential is assumed to be weak (first Born approximation), and therefore the scattering is
considered to be elastic; it is also assumed that the radiation does not destroy the internal
structures. The target is considered to be sufficiently thin in order to disregard multiple
scattering events. In this description a plane monochromatic wave (far-field approximation) is

scattered by a finite potential field V r!
� �

, and the wave function that expresses this phenom-

enon is a superposition of the transmitted plane wave eikz and scattered wave [7, 12–14].

ψ r!
� �

� eikz þAk
eikz

r
(1)

If the scattering potential is weak, the function V r!
� �

is equal to the scattering length distribu-

tion function r r!
� �

, which is directly related to the particle shape. This information is con-

tained in the scattering amplitude Ak, as shown below [7, 12–14]:

Ak q!
� �

¼ f q!
� �

A0 q!
� �

(2)

where q!¼ ks
! �ki

!
is the momentum transfer vector, with modulus q ¼ 4π

λ sinθ (λ is the radiation
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I q!
� �

¼ A q!
� �

� A q!
� ��

¼ A q!
� �� �2

¼
ð

V

ð

V
r r!
� �

r r!0
� �

e�i q! r!� r!
0� �
d r!d r!0 (5)

Or, by using the self-correlation function [7, 12–14],

γ r!
� �

¼
ð

V
r r!
� �

r r!0� r!
� �

d r!0 (6)

the scattering intensity can be rewritten,

I q!
� �

¼
ð

V
γ r!
� �

e�i q! r!d r! (7)

If there is no preferential orientation in the system, it is necessary to perform averages over the
particle orientation. In Eq. (7) this average gives rise to the calculation of the average correla-
tion function γ rð Þ or the pair distances distribution function p rð Þ ¼ r2γ rð Þ, which is widely used
in SAS analysis [7, 12–14].

An interesting approach is to consider that the particle, or system, is composed by n scatters

with scattering length contrast Δrj r!
� �

. Each scatter will contribute with the scattering ampli-

tude f j q!
� �

(Eq. (4)), and the resulting scattering amplitude is the composition of the scattering

amplitudes and its phase factors,

A q!
� �

¼
Xn

l
f j q!
� �

eiq
! r! (8)

Therefore, the total scattering intensity from the group of n scatters at relative positions

rj
! � r!l

� �
is given by [7, 12–14].

I q!
� �

¼
Xn

j

Xn

l

f j q!
� �

f l q!
� �

e�i q! rj
!�rl

!Þð (9)

It is interesting to mention that Eq. (9) can represent a single particle composed by n subunits
or a system composed of particles dispersed in a matrix. Both situations are described by this
equation, and several simulation methods are based on it.

By assuming no preferential orientation, from Eq. (9), one obtains the resulting average scat-
tering intensity,

I q!
� �D E

¼
Xn
j¼1

f j q!
� �� �2

� �
þ 2

Xn

j 6¼l¼1

Xn
f j q!
� �

f l q!
� �

e�i q! rj
!� r!lð Þ

* +
(10)

For a system composed of particles at very low concentration, the interference term (second
part of Eq. (10)) goes to zero, and the resulting average scattering intensity is [7, 12–14].
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I q!
� �D E

¼
Xn
j¼1

f j q!
� �� �2

� �
¼ n f q!

� �� �2
� �

¼ n f 0ð Þð Þ2
D E

P qð Þ ¼ nI1 qð Þ (11)

where P qð Þ ¼ f q!
� �� �2

�
f 0ð Þð Þ2 is the so-called averaged normalized form factor of the particle.

Eq. (11) is very important because it demonstrates that the scattering intensity from a system of
particles at very low concentration is proportional to the scattering of a single particle.

If the system is concentrated, the second term in Eq. (10) cannot be neglected. Depending on
the system characteristics, several approximations can be performed. It is beyond this chapter
to consider all possible approaches for the calculation of this interference term on concentrated
systems; good reviews can be found in the literature [14, 16–22]. A usual approach is to
decouple the particle shape and interparticle interactions. In this way, the particle form factor

P q!
� �

and system structure factor S q!
� �

are introduced:

I q!
� �

¼ nI0P q!
� �

S q!
� �

(12)

In a typical scattering experiment, after interacting with the sample, the scattered radiation is
detected, generally, in a two-dimensional detector. In this case, the obtained image is,
depending on sample, isotropic or anisotropic, and these patterns are related to the particle
shape and size and possible interparticle interactions. The collected scattering intensity is a
direct representation of the data in reciprocal space. Therefore, the analysis of SAXS experi-
ment consists in the interpretation of this data in order to retrieve structural information in real
space. Even though the real space is three-dimensional, the collected scattering data are two-
dimensional (projection on a specific plane) or one-dimensional (particles randomly oriented

or a specific q! direction). Several modeling methods will be discussed for the calculation of
scattering intensities from oriented and randomly oriented particles dispersed in a homoge-
neous matrix. Examples of these methods are the use of analytical and semi-analytical expres-
sions, cube and sphere method, spherical harmonics, optimized Debye formula to systems
oriented and randomly oriented, and fast Fourier transformation [12, 14, 23, 24].

3. Modeling methods for SAS data

After the scattering data is collected, it is necessary to perform several procedures to have the
scattering intensity ready to be analyzed. The data treatment of the scattering data includes
normalization of the intensity, background subtraction, and normalization to absolute scale
among several steps, which depends on the specific characteristics of the experimental setup.
The overall data treatment process and necessary procedure for proper reduction of the
scattering data are described in many articles and books in the literature and will not be
presented here [7, 12, 14, 15, 23–29]. In this chapter we will focus on methods for calculation
of the SAS intensity, either for oriented or randomly oriented particles.
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The calculated intensity can be compared with experimental scattering data, and the model
parameters can be optimized in order to improve the agreement between the theoretical and
experimental data. The χ2 (chi-square) test is widely used for scattering experiments because the
basic assumption of this test, Gaussian distribution of uncertainties around a certain value, is
fulfilled in SAS data. In this test the sum of squares of the differences between experimental and
theoretical intensities is divided by the variance on each point, as shown below [7, 17, 30]:

χ2 ¼
XN

i¼1

I exp qi
� �� Isimu qi

� �� �2
σ2 qi
� � (19)

If the χ2 (chi-square) test is normalized by the difference between the number of experimental
data points and the number of independent parameters, a good fitting is obtained when the
normalized χ2 approaches 1. This means that the differences between experimental and theo-
retical data are of the order of standard deviations.

3.1. Analytical and semi-analytical methods

For the cases where the particle has a simple shape, it is possible to have analytical or semi-
analytical expressions for the scattering intensity. There are a large number of examples in the
literature [30], and some examples are shown in Table 1.

Form factor amplitude

Sphere

fs q;Rð Þ ¼ 3 sin qRð Þ�qRcos qRð Þ½ �
qRð Þ3

(13)

R is the radius of the sphere.

Spherical shell

fss q;Rð Þ ¼ V Routð Þfs q;Routð Þ�V Rinð Þfs q;Rinð Þ
V Routð Þ�V Rinð Þ

(14)

Rin and Rout are the inner and outer radius of the shell and V is spherical volume.

Tri-axial ellipsoid

fer q;Rð Þ ¼ fs q;R R1,R2,R3ð Þð Þ
(15)

R R1,R2,R3ð Þ ¼ R2
1 sin

2βþ R2
2 cos

2β
� �

sin 2 þ R2
3 cos

2α
� �

(16)

R1, R2 and R3 are the semi-axes of the ellipsoid.

Cylinder

fc q;Rð Þ ¼ 2J1 qRsinαð Þ
qRsinα

sin qLcosαð Þ=2½ �
qLcosαð Þ=2

(17)

R is the radius, L is the length of the cylinder and J1(x) is the first-order Bessel function
of the first kind.

Rectangular prism

fp q;Rð Þ ¼ sin qasinα cosβð Þ
qasinα cosβ

sin qbsinα sinβð Þ
qb sinα sinβ

sin qccosαð Þ
qccosα

(18)

a, b and c are the edge lengths.

Table 1. Analytical and semi-analytical expressions for simple shapes.
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The use of the analytical and semi-analytical equations has the advantage of calculating the
scattering intensities with a good precision, low computational cost, and very low number of
model parameters. If the particles are randomly oriented, it is necessary to perform angular
averages on the equations shown in Table 1. Also, if the system is diluted but has polydisper-
sity in size, it is possible to calculate the resulting average scattering intensity by the use of
appropriate equations, which are described in the literature [30].

The calculation of the scattering intensity is reasonably fast and can be performed with high
precision. However, analytical or semi-analytical expressions are only available for simple
shapes [13, 14, 16, 30]. There are several programs available in the literature with a large
database of equations for modeling scattering data as the SASfit program [31], among many
others. In the webpage smallangle.org, there is an updated list of available programs.

3.2. Cube method

Fedorov et al. [32–34] and Ninio et al. [35] proposed the so-called cube method, where the
models of macromolecules in solution are surrounded by the solvent (or by the matrix where
the particles are immersed), and the cube method permits a correct calculation of the volume
inaccessible to the solvent. The theoretical intensity is given by

I q!
� �

¼ f q!
� �

� ϕ q!
� �� �2

(20)

where f q!
� �

is the scattering amplitude of the macromolecule in vacuum and ϕ q!
� �

has the

same volume of the molecule but with homogeneous electron density r0 [32, 33]. The calcula-
tion of the scattering amplitude of a protein macromolecule with known atomic coordinates
can be done with the equation,

f q!
� �

¼
X
k

f k qð Þeiq!rk! (21)

where f k qð Þ is the scattering factor of the kth atom and rk
! is its coordinate. The determination of

ϕk q!
� �

, the scattering amplitude of the homogeneous substance filling themacromolecule and its

excluded volume, is not trivial, and several authors proposed solutions for it [21, 32, 33, 35, 36].

The idea is to put the macromolecule coordinates in a cubic grid composed of small cubes with

edges of 0.5–1.5 Å. The calculated intensity depends on a specific q! direction. In order to
perform random orientation over direction Z, one can take N directions, in reciprocal space,
on an sphere of radius q, so the average scattering intensity is given by [32, 33]

I qð Þ ¼ 1
N

XN
j¼1

I q!
� �

(22)

Virtanen and collaborators presented in 2011 an adaptation of the cube method [37, 38], using
a procedure, known as HyPred. Basically, these authors were inspired in cube method, to
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simulate scattering intensities, and also in molecular dynamics (MD) simulations, to find the
hydration layer of a protein. In this procedure, with atomic resolution precision, the
nonuniform solvent density around a protein is calculated [38]. With this information one can
calculate both small- and wide-angle X-ray scattering (SAXS/WAXS) intensities. In 2014,
Nguyen and collaborators presented another adaptation of the cube method [39], using RISM
(reference interaction site model) theory. In this application the cube method is used to calcu-
late the contribution from the solvent at amplitude scattering, and in 2016 Nguyen and
collaborators [40] proposed a procedure to extract information about water and ion distribu-
tions from analysis of SAXS experiments. This method allows to compute the solvent distribu-
tion around the solute allowing to calculate scattering intensities at small- and wide-angle
X-ray (SAXS/WAXS) and with less computational time than MD [39, 40]. One example [39] of
these applications, using RISM-SAXS andHyPred, is shown in Figure 2 for lysozyme and shows
a good agreement with experimental data to both applications. The results from other applica-
tions were also shown just for comparison. There is a good agreement between the experimental
data and the simulation performed by HyPred and RISM. CRYSOL obtained a good fit with the
experiment up to 1.5 Å�1. The program CRYSOL [41] has been used as standard program for
such calculations and uses the multipole expansion to calculate scattering intensities; this
approach will be discussed at Section 3.4. The web server FoXS is based on the Debye formula,
and this formula will be discussed in the next section. The web server program AXES calculates
the scattering amplitudes of the surface of solvent using a sum of the six elementary scattering
functions averaged [42]. The web server AquaSAXS [43] computes SAXS/WAXS profile of a
given structure, and PDB or PQR file is necessary to perform the calculation.

The HyPred method is very useful for the determination of excluded volumes and contrasts.
However, it requires the numeric calculation of the intensities, and if the cubic grid is very
small, the computational time for the calculation of intensity is very long. Approaches using
spherical harmonics proved to be more efficient and precise for the calculation of scattering
intensities for usual investigations of macromolecules in solution [36, 41].
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and calculating the average over all possible orientations,

e�i q! rj
!� r!lð ÞD E

Ω
¼

sin q r!jl

� �� �

q r!jl

� � (24)

it is possible to obtain the Debye equation [12, 44],
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where f q!
� �

is the scattering amplitude of a sphere (Eq. (13)).

The Debye equation is very useful because it is possible to compose the volume of the particle
by a sum of small spherical volumes. This modeling method, also known as finite element (FE)
method, allows the description of the particle shape by the use of small subunits.

The main advantage of this method is that one can easily model very complex objects. How-
ever, it has the disadvantage that the calculation is proportional to n2, where n is the number of
the small objects used in the model. The subunit size defines the precision of the method: the
maximum q value that can be calculated without the influence of the subunits’ form factor is
limited to q ≤π=rs (rs is radius of spherical subunits) [14]. Therefore the precision of the method
increases with the number of subunits used to represent the particle.

Oliveira and collaborators [45, 46] used this kind of procedure to show the first analysis of
nanocage structures using scattering radiation techniques. The authors were interested in
discovering the influence in the stability and yield to build experimental DNA octahedron
nanocages in solutions, using double and single DNA strands [45]. Then, to perform the
modeling and compare with experimental data, the double DNA helix models are positioned
in the edge, in octahedron geometry, that was truncated by single DNA strands that perform
linkers between the helices. Altogether, there are 12 double-stranded B-DNA helices with 18
base pairs each (positioned in the edges) and 24 single-stranded (making truncation proce-
dure). The stability and yield of nanocages were tested varying the length of single strands,
with three, four, five, six, or seven nucleotides (to build the linker).
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maximum q value that can be calculated without the influence of the subunits’ form factor is
limited to q ≤π=rs (rs is radius of spherical subunits) [14]. Therefore the precision of the method
increases with the number of subunits used to represent the particle.

Oliveira and collaborators [45, 46] used this kind of procedure to show the first analysis of
nanocage structures using scattering radiation techniques. The authors were interested in
discovering the influence in the stability and yield to build experimental DNA octahedron
nanocages in solutions, using double and single DNA strands [45]. Then, to perform the
modeling and compare with experimental data, the double DNA helix models are positioned
in the edge, in octahedron geometry, that was truncated by single DNA strands that perform
linkers between the helices. Altogether, there are 12 double-stranded B-DNA helices with 18
base pairs each (positioned in the edges) and 24 single-stranded (making truncation proce-
dure). The stability and yield of nanocages were tested varying the length of single strands,
with three, four, five, six, or seven nucleotides (to build the linker).
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The SAXS models are built using bead atoms, representing DNA in the edge and in linkers of
the cages. These DNA models are rigid, and each bead atom is spherical, representing a
nucleotide positioned in atom of C2* (PDB format [47]). The scattering intensities were simu-
lated using Debye equation, Eq. (25). The results are shown in Figure 3, where the simulated
theoretical intensity was adjusted to each experimental SAXS data, for the five kinds of
nanocage. From this analysis it was possible to obtain the relations between the cage size and
the linker size and also the presence of high-order agglomerates (dimers and trimers of cages).

Even with the increase of performance of the new computer processors, the use of the Debye
equation is limited to few dozens of subunits, since it involves a double sum. In the next
sections, some procedures to speed up the calculation decreasing the computational costs will
be shown.

3.4. Spherical harmonics and multipole expansion

In the late 1960s, Harrison [48] and later Stuhrmann and Svergun [36, 49] proposed an
alternative procedure to compute scattering intensities for particles. The main idea is to

express the scattering length distribution function distribution r r!
� �

as a series of spherical

harmonics [14], which describes an angular envelope function F ωð Þ,

r r!
� �

¼ 1, 0 ≤ r ≤F ωð Þ
0, r ≤F ωð Þ

�
(26)

Figure 3. Fitting of the experimental data with the truncated octahedron model. Left: Fits of the experimental data for the
samples with different thymidine linker lengths using the geometrical model. The data sets were shifted for clarity. Right:
Resulting three-dimensional structures obtained from the modeling of the experimental data. Figure reprinted (adapted)
with permission from [45]. Copyright (2018) American Chemical Society.
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The envelope function F ωð Þ is parameterized using multipole expansion
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where Ylm ωð Þ ¼ Y θ;ωð Þ are spherical harmonics and the multipole [14] coefficients f lm are
complex numbers,
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lm ωð Þdω: (28)

The scattering amplitude A q!
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is given by,
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The spatial resolution of the shape representation (Eq. (27)) is defined by the truncation value

L. Thus the particle shape is parameterized by Lþ 1ð Þ2 members. Also, the accuracy of its
representation increases with L [14, 36, 50].

The shape scattering intensity is expressed as
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where the partial amplitudes Alm are represented by the power series,
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The use of spherical harmonics permits the description of low-resolution shapes with a relatively
low number of parameters, and it was the first approach capable to obtain the particle shape
directly from the scattering intensity, without any a priori information. This is the first of the so-
called ab initio modeling methods for SAS data analysis. This method was implemented in a
program, namely, by SASHA [50], and provides the angular envelope function that gives the best
fit of the scattering data. This application is a good option in determination of low-resolution
structure without internal cavities and without sharp edges or corners, limited to smooth shapes.

One example of application is shown in Figure 4. In this work, Arndt and collaborators inves-
tigated extracellular proteins [51]. By using SAXS investigations, in particular the spherical
harmonics approach (program SASHA), it was possible to obtain low-resolution models for
the protein Biomphalaria glabrata in pH 7 and pH 5.

The description of particle shape using the envelope function F ωð Þ was a major step for the
calculation of the scattering from macromolecules in solution [41]. Given the atomic coordi-
nates for the macromolecule, it is possible to calculate the scattering intensity and excluded
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low number of parameters, and it was the first approach capable to obtain the particle shape
directly from the scattering intensity, without any a priori information. This is the first of the so-
called ab initio modeling methods for SAS data analysis. This method was implemented in a
program, namely, by SASHA [50], and provides the angular envelope function that gives the best
fit of the scattering data. This application is a good option in determination of low-resolution
structure without internal cavities and without sharp edges or corners, limited to smooth shapes.

One example of application is shown in Figure 4. In this work, Arndt and collaborators inves-
tigated extracellular proteins [51]. By using SAXS investigations, in particular the spherical
harmonics approach (program SASHA), it was possible to obtain low-resolution models for
the protein Biomphalaria glabrata in pH 7 and pH 5.

The description of particle shape using the envelope function F ωð Þ was a major step for the
calculation of the scattering from macromolecules in solution [41]. Given the atomic coordi-
nates for the macromolecule, it is possible to calculate the scattering intensity and excluded
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volume for the macromolecule. This was implemented in the program CRYSOL and readily
demonstrates the presence of a hydration shell around macromolecules in solution. The use of
spherical harmonics permits a very fast calculation of the scattering intensity and opened new
research lines and opportunities for the use of SAS data.

In the late 1990s, Svergun’s group proposed a set of tools combining the use of spherical
harmonics to calculate scattering amplitudes and variation of the Debye equation. In the
program called DAMMIN [52], a search space filled with spherical beads is created, and by
the use of a heuristic optimization based on Monte Carlo approach (simulated annealing, SA
[53]), a subset of this set of spheres is selected in order to provide the best fitting of the
scattering data. The expression used for the calculation of the scattering intensity is [52]

Figure 4. External envelope of the hemoglobin from B. glabrata calculated using the multipolar expansion method.
(A) Fitting of the low-angle part of the scattering curve (qmax� 0.07 Å�1) by the multipolar expansion method for the
hemoglobin at pH 5. (B) Solid surface views of the hemoglobin at pH 5. Figure adapted and reproduced from [51], with
permission of the John Wiley & Sons, Inc.
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The use of spherical harmonics speeds up the calculation process, which is the main drawback
of the original Debye equation (Eq. (25)).

Other ab initio methods using the dummy atom approach were proposed by many other
authors but using optimized implementations of the Debye equation (see the next section).
Chacon [54, 55] proposed ab initio methods using genetic algorithm procedures for the model
optimization. A modified procedure was proposed by Doniach and collaborators [56] chang-
ing the genetic algorithm by the so-called “Give‘n’Take” algorithm. Due to its functionality
and special features (inclusion of symmetry constraints, multiple curve fitting, etc.), the pro-
gram DAMMIN is the most used and cited in the literature.

Further implementations performed for the use of ab initio methods applied to the study of
macromolecules in solution took advantage of the known atomic resolution information for
proteins, available in the protein data bank (https://www.wwpdb.org/) [47], and composes the
ATSAS program suite [17, 41, 57–69]. Several good reviews can be found in the literature for
this subject [14, 17, 36, 50, 60, 65, 67–69].

3.5. Optimized Debye equation

The Debye equation assumes that the subunits are identical and the arrangement of the sub-
units defines the particle shape. As mentioned before, the double sum involved in the calcula-
tion limits the number of subunits since the computational time increases with O(n2). In order
to decrease the computational time, Glatter proposed the use of histograms of distances
inside the particle [70]. With this procedure the double sum, Eq. (25), is converted in a single
sum [70, 71],
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(33)

by the use of the histogram of distance between the subunits h(rk) that compose the model. In
this new equation, optimized Debye equation, the construction of the histogram still involves a
double sum, but it is performed only once. All the further calculations are done in a single sum,
over the histogram bins. If the subunits in the model are randomly distributed, the intensity
calculation can be again optimized, dividing the histogram into blocks. So, the computational
time cost decreases to O[n/numblocks], where numblocks is the number of blocks [8, 72, 73].

In Figure 5A the comparison between analytical equations, Table 1, and the same models built
with the FE method and the intensities calculated with the optimized Debye equation is
illustrated. The very good agreement between the theoretical analytical intensities and the
calculated intensities with the optimized Debye equation demonstrates the precision of the
method for its use in calculating complex shapes.
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double sum, but it is performed only once. All the further calculations are done in a single sum,
over the histogram bins. If the subunits in the model are randomly distributed, the intensity
calculation can be again optimized, dividing the histogram into blocks. So, the computational
time cost decreases to O[n/numblocks], where numblocks is the number of blocks [8, 72, 73].

In Figure 5A the comparison between analytical equations, Table 1, and the same models built
with the FE method and the intensities calculated with the optimized Debye equation is
illustrated. The very good agreement between the theoretical analytical intensities and the
calculated intensities with the optimized Debye equation demonstrates the precision of the
method for its use in calculating complex shapes.
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In Figure 5B two models were built using FE method. The red (internal) model is a DNA cage.
The DNA molecule was modeled using coarse-grained approach, so each nucleotide corre-
sponds to one spherical subunit place in positions of C2*. The blue model is an icosahedral
shell-like structure. The composed model is an icosahedral shell-like with a DNA cage in its
interior. The calculation of the scattering intensity was performed using the optimized Debye
equation in a slightly different implementation in order to include different contrasts and dem-
onstrate the potential use of this approach. In the figure of the original article is possible see that
the histogram approach also permits an easy computation of affine polydispersities [8, 73].

3.6. Fast Fourier transformation

Schmidt-Rohr [74] proposed the use of a direct method, based on the use of Fourier trans-
form (FT) of a three-dimensional model, to calculate the intensity scattering. Basically, the

Figure 5. Computation of test examples for simple and composition models. (A) (left) Models assumed. (right) The
calculation for solid spheres, spherical shells, and spherical core-shell structures, compared with theoretical expressions.
(B) Composition of a shell-like structure with a DNA cage in its interior. (left) Models assumed. (right) Calculated
scattering intensities. The assumed sizes and relative electron densities for each object are given on the figure. Figure
adapted from [8], reproduced with permission of the International Union of Crystallography.
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three-dimensional model is defined, a priori, on a cubic discrete lattice of dimension Na, with

N3 points spaced by a value a and with a scattering density rlatt x!
� �

. So, using the 3D discrete

(fast) FT (FFT), it is possible to find the scattering amplitude [74],
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To obtain the intensity for a subunit, one can use the equation below,

I q!
� �

¼ DFT rlatt x!
� �h i���

���
2

Q3
m¼1

sin qma
2

� �

qma
2

8>><
>>:

9>>=
>>;

2

(35)

where m is the number of the dimensions. The orientation averaging is performed in the final
stage, where the sum of the intensity correspondents to each small (discrete) subunit of the
lattice is realized (using a procedure developed by author called “channel sharing”) followed
by a normalization procedure by q2. This procedure has a low computational cost of O(N.lnN),
and, according to this author, the FFT could be applied to obtain two-dimensional diffraction
patterns [74, 75].

For a system of identical particles, the total intensity is represented by the convolution of the

spatial points of the particles’ center of mass
P

n δ x! �xn
!� �

together with the density distribu-

tion of one particle r x!
� �

[74],
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Schmidt-Rohr and Chen [74, 76] showed an application of this method to quantitatively
simulate small-angle scattering data of hydrated Nafion and were capable to explain the
“ionomer peak” visualized in SAXS patterns has been related to the randomly packed water
channels internal to cylindrical inverted micelles. These results demonstrated the good trans-
port properties of hydrated Nafion and have given details about its internal structure like
diameters of water channels, cluster sizes, the shape of channels, and crystallinity levels [76].

An advantage of this method is the order of computational cost, O(NlogN), but on the other
hand, it does not present the good results when used to systems where the SAS features are of
the order of size of systems. For this kind of systems, Monte Carlo distribution function
method (MC-DFM) gives better results [75] (the MC-DFM uses optimized Debye equation,
Eq. (33), to simulate scattering intensities). Olds and collaborators [75] compared the efficiency
of these two methods and suggest that the use of FFT method is more efficient for dense
systems and complex dense-packed particle systems such as high-density polydisperse hard-
sphere models. In this last case, systems of dense arrays of monodisperse spheres, the FFT
method can be at least three times more efficient. However, for systems of low density such as
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In Figure 5B two models were built using FE method. The red (internal) model is a DNA cage.
The DNA molecule was modeled using coarse-grained approach, so each nucleotide corre-
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interior. The calculation of the scattering intensity was performed using the optimized Debye
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form (FT) of a three-dimensional model, to calculate the intensity scattering. Basically, the

Figure 5. Computation of test examples for simple and composition models. (A) (left) Models assumed. (right) The
calculation for solid spheres, spherical shells, and spherical core-shell structures, compared with theoretical expressions.
(B) Composition of a shell-like structure with a DNA cage in its interior. (left) Models assumed. (right) Calculated
scattering intensities. The assumed sizes and relative electron densities for each object are given on the figure. Figure
adapted from [8], reproduced with permission of the International Union of Crystallography.
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three-dimensional model is defined, a priori, on a cubic discrete lattice of dimension Na, with

N3 points spaced by a value a and with a scattering density rlatt x!
� �

. So, using the 3D discrete

(fast) FT (FFT), it is possible to find the scattering amplitude [74],
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� �h i���

��� (34)

To obtain the intensity for a subunit, one can use the equation below,
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where m is the number of the dimensions. The orientation averaging is performed in the final
stage, where the sum of the intensity correspondents to each small (discrete) subunit of the
lattice is realized (using a procedure developed by author called “channel sharing”) followed
by a normalization procedure by q2. This procedure has a low computational cost of O(N.lnN),
and, according to this author, the FFT could be applied to obtain two-dimensional diffraction
patterns [74, 75].

For a system of identical particles, the total intensity is represented by the convolution of the

spatial points of the particles’ center of mass
P

n δ x! �xn
!� �

together with the density distribu-

tion of one particle r x!
� �

[74],
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Schmidt-Rohr and Chen [74, 76] showed an application of this method to quantitatively
simulate small-angle scattering data of hydrated Nafion and were capable to explain the
“ionomer peak” visualized in SAXS patterns has been related to the randomly packed water
channels internal to cylindrical inverted micelles. These results demonstrated the good trans-
port properties of hydrated Nafion and have given details about its internal structure like
diameters of water channels, cluster sizes, the shape of channels, and crystallinity levels [76].
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hand, it does not present the good results when used to systems where the SAS features are of
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systems and complex dense-packed particle systems such as high-density polydisperse hard-
sphere models. In this last case, systems of dense arrays of monodisperse spheres, the FFT
method can be at least three times more efficient. However, for systems of low density such as
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extended polymers and dilute systems, FFT is inefficient and is also less useful for systems
where it is possible to use the diffuse character of the model and use the atomic coordinates.
So, to large model particle systems, dilute particle arrays, polymers, and proteins, the MC-
DFM can be a more efficient procedure [75].

3.7. Optimized Debye equation for oriented particles

The FE method can also be used to calculate the scattering intensities for oriented systems or
particles. The calculation can be performed by the use of Eq. (9), but the practical application of
this formula is limited since it involves a double sum and vectorial arguments, which makes
the computational costs very high. Since the particles are oriented, the scattering intensity is
anisotropic and therefore is necessary to compute the two-dimensional scattering pattern. A
possible approach was proposed in the seminal Guinier-Fournet book [12] and consists in
applying the equation below

I q!
� �

I0
¼

Xn

i¼1

f i q!
� �

cos q! R
!origin

i

� �" #2

(37)

to calculate the scattered intensities in a specific direction. However, this equation can only be
used to centrosymmetric particles, which largely limits its application.

Sjöberg [77] proposed an approach to investigate the effects of interparticle correlations. In this
approach the particles or molecules have known form factor, and the correlations can be
obtained by the use of single sums, as shown below,
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!origin

i

� �" #2
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!origin

i
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(38)

One of the main difficulties on simulating anisotropic two-dimensional scattering pattern is the
computational time required to perform the calculation. For example, to make a scattering
image with side of m = 512 pixels (a total of 262,144 pixels), it is necessary to perform the

calculation for each pixel (which defines a specific q! value) and for each scatter (n scatters). The
calculation is impractical for small models (low number of scatters) even in the nowadays
computers. These were the main difficulties presented by McAlister and Grady in their first
approach to this problem [25, 26].

In order to overcome these limitations, Alves and collaborators [15] recently proposed an
innovative procedure to solve this problem. Inspired by the histogram approach used in the
optimized Debye equation Eq. (33), it is possible to convert the double sum in Eq. (9) into a
single sum over the bins of the histogram. This new equation

I q!
� �

I0
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� ����
���
2
nþ 2

Xn q!
bins

k¼1
h bq � rjl!
� �

k
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� �
k

h i" #
(39)
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Figure 6. Calculation of 2D scattering patterns for oriented lysozyme (6lyz.pdb). The orientations are indicated in the
figure. Figure adapted from [15], reproduced with permission of the International Union of Crystallography.
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extended polymers and dilute systems, FFT is inefficient and is also less useful for systems
where it is possible to use the diffuse character of the model and use the atomic coordinates.
So, to large model particle systems, dilute particle arrays, polymers, and proteins, the MC-
DFM can be a more efficient procedure [75].

3.7. Optimized Debye equation for oriented particles

The FE method can also be used to calculate the scattering intensities for oriented systems or
particles. The calculation can be performed by the use of Eq. (9), but the practical application of
this formula is limited since it involves a double sum and vectorial arguments, which makes
the computational costs very high. Since the particles are oriented, the scattering intensity is
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possible approach was proposed in the seminal Guinier-Fournet book [12] and consists in
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approach the particles or molecules have known form factor, and the correlations can be
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One of the main difficulties on simulating anisotropic two-dimensional scattering pattern is the
computational time required to perform the calculation. For example, to make a scattering
image with side of m = 512 pixels (a total of 262,144 pixels), it is necessary to perform the

calculation for each pixel (which defines a specific q! value) and for each scatter (n scatters). The
calculation is impractical for small models (low number of scatters) even in the nowadays
computers. These were the main difficulties presented by McAlister and Grady in their first
approach to this problem [25, 26].

In order to overcome these limitations, Alves and collaborators [15] recently proposed an
innovative procedure to solve this problem. Inspired by the histogram approach used in the
optimized Debye equation Eq. (33), it is possible to convert the double sum in Eq. (9) into a
single sum over the bins of the histogram. This new equation
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Figure 6. Calculation of 2D scattering patterns for oriented lysozyme (6lyz.pdb). The orientations are indicated in the
figure. Figure adapted from [15], reproduced with permission of the International Union of Crystallography.
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permits the fast calculation of the scattering intensity in a given q! direction. nbinsq! is the

number of channels of histogram, bq is a unitary scattering vector, and rjl
! is the distance vector

between the subunits composing the model.

The values for the dot product of bq � rjl! are used to create the histogram of the projection

distances h bq � rjl!
� �

k
, in a specific direction. The construction of the histograms still involves a

double sum but is performed only once. Having the histograms, the intensities are easily
calculated. One strategy proposed by Alves et al. [15] is to divide the 2D scattering image in
angular slices and compute the histograms for each direction. As shown by the authors, the
calculation can be further optimized by the use of parallel computing.

The precision of the method is demonstrated by the use of known analytical equations for
simple shapes, as the ones shown in Table 1. Several examples demonstrating the precision of
the method are described in the original article [15]. This new method opens a large number of
possibilities for the calculation of scattering intensity for oriented particles.

Recent applications using X-ray free-electron lasers (FEL) are capable to produce intense
ultrashort pulses (femtoseconds), in nanometer-sized coherent beams, irradiating particles in
solution. Due to the special properties of these experiments, it is possible to irradiate single
particles. Since the pulse durations are shorter than the characteristic rotational diffusion time
of the particle, the obtained scattering intensity corresponds to particle oriented in a given
direction. Therefore, if the system is composed of identical particles, multiple scattering images
correspond to the scattering intensities from multiple orientations of the particles.

Several authors propose methods to describe the coherent scattering pattern and recover the
three-dimensional structure of the scattering particle, based on the method proposed by Kam
[78–80]. The proposed method for calculation of oriented scattering intensities can potentially
be used to describe data from FEL experiments. To demonstrate this potentiality, in Figure 6
the two-dimensional scattering pattern simulated for the protein lysozyme in several orienta-
tions is presented. This simulation method can also describe models with variable scattering
length contrasts and interparticle interactions (structure factor). Several examples can be found
in the original article [15].

4. General conclusions and perspectives

In this chapter a general overview about several procedures to calculate scattering intensifies
for system of particles was presented. After a brief description of the general theoretical
aspects, several methods for the calculation of scattering intensities were shown, with some
typical applications. The main points and limitations of each procedure were discussed.

The analytical calculation of the scattering intensity is restricted to particles with simple geo-
metries. More complicated shapes require the use of simulation methods. The Debye equation
provided a first indication in this direction by the use of spherical subunits to build the particle
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(finite element description—FE) and calculate the scattering intensity for randomly oriented
averaging. Its variation, with the use of cubic subunits, gives the so-called cube method. This
approach permitted a better calculation of excluded volumes but requires numerical averaging
for account for the random orientation or the particles. The original Debye equation involves a
double sumwhich is very inefficient (high computational costs) and cannot be applied for a large
number of subunits. Optimized forms of the Debye equation were proposed by the use of
histograms of pair distances, which turn the double sum on the number of particles into a single
sum over the histogram bins. In this way, this method could be used for fast calculation of
scattering intensities and modeling methods. Another modeling method was the use of spherical
harmonics for the calculation of the scattering intensity. With the introduction of the envelope
function to describe the particle shape, this method proved to be very powerful for the descrip-
tion of proteins in solution and the description of hydration layers. In the last decades, this
approach and its development combined with ab initio methods promoted a revolution on the
use of scattering data for the investigation and modeling of macromolecules in solution. Fast
Fourier transformation methods have been recently applied to calculate the scattering patterns
for known shapes, with very interesting applications. Also, based on the FE method, one can use
a special development of the optimized Debye equation to compute scattering intensities for
oriented particles. This innovative approach permits the fast calculation of 2D scattering patterns
and provides new perspectives for the use and analysis of the small-angle scattering method.
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Abstract

A new method of X-ray diffraction analysis to evaluate structural changes in rolling ele-
ment bearing components is demonstrated. The basics of residual stress measurement 
by X-ray diffraction based on the sin2ψ method are explained. Microstructural analysis 
is performed on bearing components after rig testing and after use in field. The results 
shown in this chapter are mostly derived from rolling element bearing applications in 
aero engines. First it is shown how an estimation of a rolling contact fatigue life can be 
derived from microstructural analysis. Second it will be shown that surface near induced 
residual stresses can improve rolling contact fatigue life. Finally it will be demonstrated 
that basic results from rig testing can be transferred to use in field.

Keywords: X-ray diffraction, structural changes, residual stress, rolling contact fatigue 
life, stress limit

1. Introduction

X-ray analysis enables the detection of structural changes in materials. By performing this 
kind of analysis on rolling element bearing components after use structural changes caused 
by the overrolling process can be analyzed. This analysis enables the possibility to get data for 
stress limits and to compare rig testing results and field experience. In many cases it is more 
effective to get such data by X-ray analysis than by statistic evaluation of rig testing. A com-
parison of data from rig testing with data from field experience is often only possible by X-ray 
analysis of parts coming from use in field. Several work has already be done in this field [1–5]. 
The method of analysis presented here also uses data from residual stress analysis, especially 
the full width at half maximum value, also called peak width for the estimation of life data for 
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rolling element bearings. The focus of evaluation here is mainly on mainshaft bearing applica-
tions in aero engines, therefore the material analyzed is the high speed steel M50. The basics 
of X-ray analysis of residual stresses are presented, then some information about stresses due 
to rolling contact is given. Several samples of X-ray analysis performed on parts from rig test-
ing and from use in field show the possibilities of this kind of evaluation.

2. X-ray residual stress analysis

2.1. Principle of measurement

By elastic deformation the distances within the unit cells of a crystallic material become smaller 
in case of compressive stress or larger in case of tensile stress respectively. Figure 1 shows sche-
matically the variation of a lattice distance due to tensile stresses. The positions of the atoms 
are represented by small circles. The distance d′ of the atoms due to the tensile stress σ is larger 
than the distance d of the unloaded condition. The elongation of the lattice in direction of the 
stress σ is accompanied by a shortening perpendicular to the direction of σ. The ratio between 
the elongation in direction of the stress σ and the shortening perpendicular is called Poisson’s 
ratio ν. The elongation due to elastic loading by the tension σ can be calculated by Hook’s law 
with the modulus of elasticity E as characteristic parameter. X-ray diffraction analysis makes 
possible the determination of variations in interatomic distances and hence enables the calcula-
tion of macroscopic stresses.

2.2. Bragg’s law

When a beam of X-ray falls on a specimen, the X-ray photons interact with the electrons of the 
target and scattering occurs. X-ray diffraction analysis is based on the scattering with no energy 
loss, the scattered radiation will retain the same wavelength as the incident beam. When two or 
more waves trains propagate at the same location into the same direction, they interfere which 
is a kind of superposition of one wave upon the other. If wave trains are in phase, they add to 
another, if they are exactly out of phase, they annihilate each other. Figure 2 illustrates the geo-
metric condition of reinforcement on a schematic lattice. Scattering points are the atoms of the 

Figure 1. Shift of the unit cell dimensions due to a tensile stress σ. d: lattice plane distance without stress; and d′: lattice 
plane distance due to the stress σ.

Small Angle Scattering and Diffraction32

lattice. Reinforcement will occur, when the difference in the path lengths of the two interfering 
waves is equal to an integer multiple of the wavelength, the equation for this is given in Eq. (1) 
which is the statement of Bragg’s law.

Bragg’s law for constructive interference:

  nλ = 2dsinϑ  (n = 1, 2, 3…)   (1)

Only if the incident angle ϑ fits to Bragg’s law, diffraction maybe observed at the emergent 
beam at the same angel ϑ.

By known wavelength λ and measured diffraction angle ϑ the lattice plane distance d can be 
calculated:

  d = nλ / 2sinϑ  (2)

The intensity of the diffracted beam around the Bragg angle ϑB is shown schematically in 
Figure 3. The peak can be characterized by the peak position ϑB and the peak width. The peak 
position correlates width the lattice plane distance d and by this with the material stress σ. 
The peak width correlates with the density of dislocations beside other microstructural prop-
erties and therefore it is correlated to a certain extent with the strength of the material.

2.3. The ψ angle

The penetration depth of the X-radiation typically used for diffraction analysis is only a few 
micrometers in most metals. This means that only the surface near region is used for the 
measurement. Material stresses act predominately parallel to the surface of a part, especially 
close to a surface no stress component perpendicular to this surface is possible (due to the 
balance of forces). The determination of material stresses by a variation of lattice distance d 
according to Figure 2 takes place perpendicular to the surface. This means, that lattice planes 
easy to be measured (parallel to the surface) have no direct correlation to the acting material  

Figure 2. Diffraction of x-radiation at a crystal lattice.
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rolling element bearings. The focus of evaluation here is mainly on mainshaft bearing applica-
tions in aero engines, therefore the material analyzed is the high speed steel M50. The basics 
of X-ray analysis of residual stresses are presented, then some information about stresses due 
to rolling contact is given. Several samples of X-ray analysis performed on parts from rig test-
ing and from use in field show the possibilities of this kind of evaluation.

2. X-ray residual stress analysis

2.1. Principle of measurement

By elastic deformation the distances within the unit cells of a crystallic material become smaller 
in case of compressive stress or larger in case of tensile stress respectively. Figure 1 shows sche-
matically the variation of a lattice distance due to tensile stresses. The positions of the atoms 
are represented by small circles. The distance d′ of the atoms due to the tensile stress σ is larger 
than the distance d of the unloaded condition. The elongation of the lattice in direction of the 
stress σ is accompanied by a shortening perpendicular to the direction of σ. The ratio between 
the elongation in direction of the stress σ and the shortening perpendicular is called Poisson’s 
ratio ν. The elongation due to elastic loading by the tension σ can be calculated by Hook’s law 
with the modulus of elasticity E as characteristic parameter. X-ray diffraction analysis makes 
possible the determination of variations in interatomic distances and hence enables the calcula-
tion of macroscopic stresses.

2.2. Bragg’s law

When a beam of X-ray falls on a specimen, the X-ray photons interact with the electrons of the 
target and scattering occurs. X-ray diffraction analysis is based on the scattering with no energy 
loss, the scattered radiation will retain the same wavelength as the incident beam. When two or 
more waves trains propagate at the same location into the same direction, they interfere which 
is a kind of superposition of one wave upon the other. If wave trains are in phase, they add to 
another, if they are exactly out of phase, they annihilate each other. Figure 2 illustrates the geo-
metric condition of reinforcement on a schematic lattice. Scattering points are the atoms of the 

Figure 1. Shift of the unit cell dimensions due to a tensile stress σ. d: lattice plane distance without stress; and d′: lattice 
plane distance due to the stress σ.
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stress, diffraction from lattice planes having the highest correlation to the acting stress (per-
pendicular to the surface) are absorbed and cannot be measured. The way to overcome this 
problem is a measurement at an inclination angle, called tilt angel ψ to the normal of the 
plane of the surface. Figure 4 shows this principle.

A measurement according to Figure 4 is only possible when in the irradiated area enough 
lattice planes perpendicular to the adjusted tilt angle ψ are available. Metallic materials, espe-
cially construction materials, consist of an arrangement of small crystals, called grains. The 
orientation of these grains is in many cases randomly distributed (if there is a preferred ori-
entation of the grains due to the manufacturing process, called texture, e.g. due to intensive 
rolling, the method described here is not applicable at this fashion). Figure 5 shows schematic 
grains with different orientation at the surface of a part. The average size of the grains in many 
construction materials is small compared to the irradiated area (e.g. the average grain size 
in steels is app. 60–20 μm, the diameter of the irradiated area is typically 1–4 mm), therefore 
enough grains with an orientation according to the adjusted tilt angle are available and a 
measurement is possible.

The principle of an experimental setup for performing residual stress measurements is shown 
in Figure 6a, a photograph of the device used for the following investigations is shown in 
Figure 6b. The X-rays used in diffraction analysis are produced by an evacuated tube. The tar-
get (anode) is water cooled, the target material for residual stress analysis at steel is typically 
chromium. The radiation emitted consists of a continuous spectrum, called bremsstrahlung, 
with some superimposed narrow spikes. One of these spikes, the Kα spike, is used for dif-
fraction analysis, all the other radiation is absorbed by filters (for the use of Eq. (2) a nearly 
monochromatic X-radiation is necessary). For detection of the irradiated X-rays today mainly 
position sensitive solid state detectors are used. These detectors allow the analysis of the com-
plete diffracted beam around the Bragg angle.

The direction of the normal and shear stress components measured by ψ-variation is perpen-
dicular to the rotation axis for the ψ-tilts.

Figure 3. Intensity of the diffracted beam around the Bragg angle ϑB (schematic).
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Figure 4. Diffraction at a tilt angle ψ.

Figure 5. Orientation of grains at the surface (schematic). n: normal to the surface, ns: normal to the lattice, and ψ: tilt 
angle.

Figure 6. a: Schematic of an X-ray diffractometer, ω mode. b: Photograph of the device used for X-ray stress analysis.
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2.4. The sin2ψ chart

The following relation applies to describe the dependence of the lattice plane distances from 
the acting stress [6, 7]:

   (dψ −  d  0  )  /  d  0   = ½  s  2    [σ  sin   2  ψ + τ sin2ψ]  + c  (3)

where dψ is the lattice plane distances of the planes with a tilt angle ψ in relation to the sur-
face, d0 is the lattice plane distances of a stress free crystal, s2 is the X-ray elastic constant, 
material property to be known, σ is the normal stress acting parallel to the surface, and τ is 
the shear stress.

Figure 7. a: Example of a sin2ψ chart without shear stress: straight line. b: Example of a sin2ψ chart with shear stress: 
ellipsis.
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There are three unknown values in the sin2ψ formula (3), σ, τ and c. These values could be deter-
mined by the measurements of the lattice plane distances dψ for three different ψ-angles. For a 
lower uncertainty in the final values, the measurement of the lattice plane distances dψ should 
be performed for more than three ψ-angles. If no shear stress t is present, the sin2ψ formula (3) 
requires a straight line as a result of a plot of dψ against sin2ψ. If the shear stress τ is not negli-
gible, the term τ sin2ψ transforms the straight line into an ellipsis. The slope of its big main axis 
is determined by σ, its width by τ. Figure 7a shows a sin2ψ chart with no shear stress present, 
Figure 7b shows a sin2ψ chart for a steel where shear stress is present.

3. Stresses due to rolling contact

The contact stresses arising from the contact between two elastic solids can be calculated by 
the Hertzian equations (with some assumptions: pure elastic material, dimensions of the sol-
ids are big compared with the contact area, frictionless contact, these assumptions are nearly 
fulfilled in rolling element bearing applications). In case of microstructural changes, the mate-
rial behavior in the zone of maximum stress is not purely elastic. Nevertheless the Hertzian 
analysis can still be used to rationalize the observed damage accumulation. The stress field 
inside the bodies is characterized by a triaxial stress state, comprising the three principal 
stress components. In order to express the material stress beneath the contact zone and allow 
a comparison with the uniaxial yield strength, an equivalent stress can be calculated. The von 
Mises equivalent stress σvgl agrees best with many experimental results and is mostly used. 
An alternative is to calculate the maximum shear stress 2τ according to Tresca, which leads 
to results nearly the same or equivalent to von Mises equivalent stress (depending on the 

Figure 8. (a) Contact surface typical for a ball bearing, ellipsis, a: major semiaxis, b: minor semiaxis, y direction of 
overrolling. (b) Contour plot of the von Mises equivalent stress σvgl under the contact surface along the direction of 
overrolling (y direction according to Figure 8a). The stress is normalized to the Hertzian pressure p0, distances are 
normalized to the minor semiaxis of the contact ellipse b (a/b = 20).
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stress components) and is simpler in several applications (in case of a principal state of stress). 
Figure 8a shows a contact area typical for a contact in a ball bearing, Figure 8b a contour plot 
of the von Mises equivalent stress σvgl under the contact surface. The maximum pressure 
occurs in the center of the contact surface and is called Hertzian pressure. Below the contact 
area a complex stress state develops. A micrograph taken in the subsurface zone of a bearing 
ring after intensive overrolling shows microstructural changes, “white ribbons” in about the 
depth of the maximum equivalent stress, see Figure 9. Figure 10 shows the course of the three 
principal stress components along the axis of contact (z-axis) and the von Mises equivalent 
stress together with the max. shear stress (Tresca) for an elongated contact ellipse [2].

Figure 10. Stress distribution below the raceway surface (away from the axis of contact) for a Hertzian contact (a/b = 20), 
stress parameters are normalized to the Hertzian pressure p0, the depth coordinate is normalized to the minor semiaxis 
of the contact ellipse b.

Figure 9. Micrograph showing microstructural changes below the surface of a ball (section perpendicular to the rolling 
track), after testing for 100 h at a Hertzian pressure of 3000 MPa, many white bands (“white ribbons”) are visible in the 
subsurface zone.
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Away from the axis of contact the principal axes of the stress at a given position are not longer 
aligned with the sample coordinate system.

4. Analysis of bearing components

4.1. Details of the performed analysis

All analysis of the investigated components was done by position dispersive, monochromatic 
X-ray diffraction using a conventional diffractometer operated in iso-inclination. More sophis-
ticated methods like the use of a synchrotron as X-ray source or the application of neutron 
diffraction was not necessary to achieve the pursued goals. The X-ray diffraction analysis was 
performed according to common standards (EN 13925, EN15305), Cr-Kα radiation was used, 
LPA (Lorenz/Polarization/Absorption)-correction was applied. The stress component parallel 
to the surface in direction of overrolling was measured. Depth profiles of residual stress and 
peak width were measured by a successive local electro chemical removal of surface layers. 
This procedure is necessary because the penetration depth of the Cr-Kα radiation in steel is 
only a few micrometers and a mechanical removal of material would create additional resid-
ual stresses. No correction of the stress redistribution due to the material removal was applied.

Comprehensive work in this field has already be done [1–5], here the evaluation is based more 
on the peak width and the analyzed material is the high speed steel M50.

4.2. Bearing steel M50

M50 is a high speed steel which exhibits high hardness and high compressive strength also at 
elevated temperatures. The chemical composition is (weight-percent):

  0.85 % C / 4.1 % Cr / 4.2 % Mo / 1 % V.  

M50 is widely used for aeroengine bearings (VIMVAR quality corresponding to AMS 6491). 
The heat treating comprises an austenitizing at a temperature of approximately 1100°C, 
quenching in salt or in pressurized nitrogen gas and tempered several times at temperature 
of around 540°C. The resulting hardness is typically in the range of 61–64 HRC, the content of 
retained austenite is usually below 3%.

4.3. Experimental setup

The test rig used for performing overrolling tests is the so called “single ball test rig”. The prin-
ciple of this test rig is shown in Figure 11. The test component is a ball which rolls between 
two rings having curved races. One ring is driven by a motor, the load is applied by a hydrau-
lic system. The ball is fixed by a retainer such that the overrolling of the ball occurs along in 
one rolling track. The lubrication of the contact zone is done by oil jets, the inlet temperature 
is approximately 140°C in order to be comparable to an application in an aeroengine, more 
details about rig testing can be found in [2].
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The procedure to get structural changes is to run the single ball test rig with several balls 
for a fixed time (before visible failure) at different levels of pressure. Afterwards an X-ray 
based evaluation is performed on these balls. Figure 12 shows calculated profiles of von Mises 
equivalent stress under the contact surface of a ball in the single ball test rig.

4.4. Evaluation results

4.4.1. Estimation of rolling contact fatigue life

Single ball rig tests were performed at different contact pressures. Figure 13a and b shows 
depth profiles of measured residual stress and peak width (see also Figure 3) after 100 h test 
run at Hertzian pressures of 1900 and 3000 MPa, respectively. The difference in peak width 
before and after testing, called “integral change in peak width,” can be used to obtain an esti-
mate of the endurance limit, see also [2, 3]. Figure 14 shows the principle of the evaluation of 
the integral change in peak width. By plotting the so evaluated integral change in peak width 

Figure 12. Calculated von Mises equivalent stress below the raceway for a ball (diameter 41 mm) in the single ball test 
rig at two different levels of Hertzian pressure.

Figure 11. Schematic of the single ball test rig, ball diameter is app. 20–40 mm, speed of the rings is typically 7500 min−1, 
race diameter of the rings is 175 mm.
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versus the applied maximum Hertzian contact pressures and fitting a straight line through 
these data points, an endurance limit in terms of an allowed maximum contact pressure 
(below which no fatigue damage will be accumulated) can be determined by extrapolation to 
zero peak width change. This procedure is shown in Figure 15. The estimated value for the 
endurance limit S0 of app. 1800 MPa according to Figure 15 agrees well with experience from 
comprehensive testing and field experience.

4.4.2. Influence of residual compressive stresses

Residual stresses caused by heat treating (e.g. case hardening, nitriding) or mechanical 
induced residual stresses mostly act in directions parallel to the surface (in x- and y-direction 
according to the set of axis used here, see also Figure 8a). Residual stresses in the material will 
be superimposed on the stresses induced by the contact between the rolling element and the 
raceway surface and may then influence the equivalent stress [2, 3, 8, 9]. As residual stresses 

Figure 13. Measured distribution of residual stress (solid line) and peak width (dotted line) below the raceway surface 
in M50 balls after 100 h test in single ball test rig at a Hertzian pressure of (a) 1900 MPa and (b) 3000 MPa respectively, at 
an oil temperature of 140°C, zmax: calculated depth of maximum von Mises equivalent stress.

Figure 14. Distribution of peak width according to Figure 13b. Hatched area: integral change in peak width.
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typically act predominately in x- and y-direction, a shift of the principal stresses in x- and 
y-direction occurs whereas the principal stress in z-direction is less influenced. Compressive 
residual stresses (in a certain range) typically result in a reduction of the equivalent stress 
level. Figure 16 shows the influence of compressive residual stresses on the von Mises equiva-
lent stress in case of an axisymmetric contact (ball-ball).

Figure 16. Stress distribution below the raceway surface for a Hertzian point contact (a/b = 1, σxx = σyy) without (solid 
curves) and with (dashed curves) compressive residual stress (the residual stress profile σres is here simplified as a 
constant compressive). The von Mises equivalent stress without consideration of residual stress (solid line) and with 
consideration of residual stress (dashed line), resulting in a reduction in the equivalent stress Δσvgl. The stress parameters 
are normalized to the Hertzian pressure p0, the depth coordinate is normalized to the radius of the contact surface.

Figure 15. Estimation of an endurance limit S0 in terms of an allowed maximum contact pressure (oil temperature 
140°C), y-axis arbitrary units.
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By performing the single ball test procedure with balls which were tumbled (also called scoured 
in case of an intensive tumbling) after heat treating to induce compressive residual stresses 
the beneficial influence of compressive residual stresses on the overrolling performance can 
be shown. Figure 17 shows residual stress and peak width distributions of tumbled balls after 
testing at two different contact pressure levels. Figure 18 shows the evaluation of the endur-
ance limit for both tumbled and not tumbled balls. As can be seen, the evaluated endurance 
limit of the tumbled balls is significantly higher.

The evaluation of several balls exposed to rolling contact fatigue in rig testing showed the 
following results:

• There seems to exist a stress (or maximum contact pressure) limit for the development of 
structural changes.

• Compressive residual stresses can raise the stress limit for the development of structural 
changes.

In rig testing the test conditions are well known and typically are maintained constant during 
the whole test run. In field use the operating conditions (load, temperature, etc.) are mostly 
not constant and not fully known. An evaluation of bearings after field use by X-ray methods 
offers the possibility to compare the test results with results from use in the field.

4.5. Field experience

Unlike as many rig tests, the load during a flight cycle is not constant. Maximum load typi-
cally occurs during take-off, while during normal flight conditions the load generally is lower. 
Also, different and variable temperatures and vibrations occur during the different parts of 
the flight cycle. Therefore, structural changes after field use are the result of a more or less 
periodic and complex load history. Since the full load history of an aero engine bearing as well 

Figure 17. Measured distribution of residual stress and peak width below the raceway surface in tumbled M50 balls 
after 100 h test in the single ball test rig at the Hertzian pressure: (a) 2500 MPa and (b) 3000 MPa respectively, at an oil 
temperature of 140°C, zmax: calculated depth of maximum equivalent stress.
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as its temperature, vibration level etc. are not fully known, a direct comparison between rig 
test results and evaluation results from use in the field is not fully possible. However, based 
on the techniques discussed here, general experiences from laboratory testing can still, as will 
be shown, successfully transferred to field applications, see also [2].

The following evaluation results are taken from bearing parts after considerably time in field 
use. Two measures are handled for the characterization of the duration in field use:

TSN: Time Since New [h]

CSN: Cycles Since New.

4.5.1. Limit stress for structural changes

In order to check whether a stress limit for microstructural changes exists for field use, an 
inner ring of an used roller bearing was investigated. The stress acting in the subsurface zone 
of roller bearings are generally lower than for ball bearings, therefore even after long time 
in field use, no structural changes are expected. Figure 19 shows measured distribution of 
residual stress and peak width for the inner ring of a roller bearing from a V2500 aero engine 
after TSN 37,380 h. This bearing did not show any indication of spalling or wear. The X-ray 
evaluation shows no indication of any structural changes. Although the stress history is not 
fully known in detail, the absence of any indication of structural changes suggests, that also 
in field use for a long time, a limit stress for structural changes may exist.

4.5.2. Influence of residual stress

A possibility of investigation the influence of residual stresses on the formation of structural 
changes in field use was given in case of a ball bearing of a GE90 aero engine with a TSN 
of 20,492 h. The rings and the balls were made from M50, while the balls were additionally 
tumbled to induce compressive residual stresses. This bearing showed slight indications of 

Figure 18. Estimated endurance limits in terms of allowed maximum contact pressure (below which no fatigue damage 
will be accumulated). S* of tumbled and S0 of not tumbled M50 balls (oil in temp. 140°C), y axis arbitrary units.
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spalling on all components and was therefore taken out of service. Figure 20 shows the mea-
sured distribution of residual stress and peak width versus the depth below the raceways, for 
a ball and an inner ring, respectively.

5. Conclusions

The microstructural evaluation of bearing components after rig testing shows that induced 
surface-near compressive residual stresses can improve the rolling contact fatigue life. It is  
further possible to derive approximate values for the endurance limit using X-ray based 

Figure 19. Measured distribution of residual stress and peak width below the raceway surface in a roller bearing inner 
ring, TSN 37,380 h, there are no indications of structural changes (only the typical peaks close to the surface due to hard 
machining), the Hertzian pressure is assumed to be at most 1200 MPa.

Figure 20. Measured distribution of residual stress and peak with from components of a GE90 aero engine, TSN 20,492 h 
(a) below the surface in a ball (tumbled) showing no indication of structural changes and (b) below the raceway surface 
in an inner ring, showing marked difference between the initial condition and the condition after use in field, suggesting 
considerably microstructural changes. Hertzian pressure assumed to be maximum 2000 MPa.
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microstructural analysis. A comparison of microstructural evaluation results on components 
taken from engine bearings after use in the field with results from parts after rig testing 
shows, that basic causes and effects are similar in both cases. These results therefore provide 
a confirmation that results from rig testing can be used for bearing design also in demanding 
applications.
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Abstract

Cavitation appears in many semi-crystalline polymers when they are subjected to uniaxial
stretching above their glass transition temperatures. Generally, the formation of voids is
influenced by the morphology of semi-crystalline polymers, including their lamellae
thickness, lamellae orientation, as well as the arrangement of the amorphous phase. Upon
stretching, the size of the voids changes as a function of the local strain. Synchrotron
small-angle X-ray scattering (SAXS) can be used as a powerful method to in-situ monitor
the evolution of voids with high time and spatial resolution. In this chapter, recent reports
about the cavitation behavior of semi-crystalline polymers studied by SAXS are reviewed.
Afterwards, the theoretical background related to the SAXS technique is introduced.
Lastly, some exemplary results about the cavitation behavior of microinjection-molded
isotactic-polypropylene, studied by synchrotron SAXS measurements, are presented.

Keywords: cavitation, synchrotron, small-angle X-ray scattering, semi-crystalline
polymer, stretching

1. Introduction

1.1. Cavitation behavior of semi-crystalline polymers

Cavitation behavior has been found in many semi-crystalline polymers, including isotactic-
polypropylene (iPP) [1, 2], polyethylene (PE) [3, 4], poly(1-butene) (P1B) [5], and so on, when
these polymers are stretched above their glass transition temperature. Stress whitening can be
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regarded as the scattering of visible light by voids detected by naked eye. As the size of the
voids exceeds 0.5 μm, most of the visible light shed on the sample will be scattered,
transforming the sample from a transparent one to an opaque one. In the pioneering work of
Peterlin [6] randomly distributed cracks were found in the neck region of PP specimen. In
addition, the formation of small cracks was reported to arise earlier than macroscopic stress
whitening [7, 8].

Cavitation behavior can be influenced by many factors, which can be divided into two groups.
One of them is attributed to experimental factors such as stretching temperature and stretching
speed. Generally, a lower stretching temperature or a larger stretching speed favors voids
formation. Another group is attributed to the microstructure of polymers, for instance the
crystal form, the thickness of lamellae, as well as the state of the amorphous phase. By polymer
processing, various microstructures and morphologies can be created in the product
depending on the individual processing conditions they used [9–11]. Therefore, understanding
the influence of microstructure on the void formation will be helpful for the establishment of a
structure-properties relationship.

1.2. Role of crystal form

iPP is a kind of polymorphic polymer owning four crystal forms: monoclinic α-iPP, hexagonal
β-iPP, triclinic γ-iPP, and smectic form [12]. By applying shear flow or adding special nucleat-
ing agents, the crystal form of iPP could be adjusted. Aboulfaraj et al. [13] found that under
tensile deformation, α-iPP spherulites exhibited a brittle failure. The cavitation appeared at
boundaries of spherulites or at their equatorial regions perpendicular to the tensile direction.
However, no cavitation could be observed in the sample comprising β-iPP spherulites. The β-
iPP spherulites were deformed plastically up to large deformation. Chu [14] prepared iPP films
containing more than 90% β-iPP. These samples crystallized under either isothermal or
nonisothermal conditions. The porosity of the stretched films, which is caused by the existence
of voids, increased with the drawing ratio. The voids observed by scanning electron micros-
copy (SEM) were elongated along the stretching direction and confined by the fibrillary
structures. The formation of numerous voids was proposed to be caused by the volume
contraction of the film. β-iPP belongs to a metastable phase, so a β-α phase transformation
was induced during deformation. The density of α-iPP is higher than that of β-iPP. Therefore, a
volume contraction can led to a formation of voids in the sample. The more pronounced stress
whitening behavior in β-iPP rich iPP samples was also confirmed by Pawlak [2].

1.3. Role of lamellae arrangement

In α-iPP, the lamellae are arranged in a unique “cross-hatched” structure, where daughter
lamellae grow 80� inclined to the mother lamellae [15]. Nitta et al. [16] observed that cavitation
appears earlier if there were more tangential lamellae in a single spherulite. Otherwise, Pawlak
found that the reduction of tangential daughter lamellae would advance the formation of
voids [17].
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1.4. Role of crystallinity

By annealing, Na et al. prepared PP samples with crystallinity ranging from 48 to 56%. The
cavitation behavior of the sample was investigated by measuring the volume increase. The
results show that in annealed samples, the cavitation behavior was significantly intensified
due to the increased stress concentration sites [18]. Boger et al. [19] examined the cavitation
behavior of metallocene PP with crystallinity ranging from 0 to 62%. For the sample with
crystallinity higher than 36%, the scattering signal originated from a fibrillary structure
showed up on the SAXS pattern as the elongation ratio is larger than 3. In case of β-iPP, Bai
et al. [20] found that annealing could advance the appearance of cavitation.

1.5. Role of the thickness of lamellae

Generally, thinner lamellae would prevent the formation of voids. The reason responsible for
that was proposed by Seguela et al. [21]: a thinner lamella bears larger tie chain density, which
transfers the load to lamellae in a better way and leads to the plastic deformation of lamellae
instead to cavitation in the amorphous phase.

1.6. Role of lamellae orientation

The cavitation behavior of oriented β-iPP was investigated by Bao et al. [22]. The samples were
cut from extruded sheets, and the deformation direction was parallel to the orientation of β-iPP
lamellae. Their results proved that at temperatures lower than 110�C, the orientation of β-iPP
remains almost unchanged during deformation, and void forms before fragmentation and
reorientation of β-iPP. As the deformation temperature risen to 130 and 140�C, β-iPP reorients
gradually upon stretching, and the size of voids decreases because at high stretching temper-
ature less β crystal fragmentation takes place.

1.7. Role of the state of amorphous phase

Pawlak and Galeski [23] compared the cavitation behavior of PP with similar crystallinity
and crystal thickness but different molecular masses of 400 and 250 kg/mol. They found that
the samples having lower molecular weight showed stronger cavitation as a result of
reduced number of entanglements in the amorphous phase. Rozanski and Galeski extracted
the additives in the amorphous phase by critical CO2 and also by a mixture of nonsolvents.
They found that purified PP exhibited more intense cavitation than pristine PP [24]. The
intensified cavitation process in the purified samples was caused by the change in free
volume by eliminating low molecular weight fractions and soluble additives in the amor-
phous phase, indicating that the nucleation of voids is not heterogeneous. In their later work,
they proved that only partial filling of the free volume pores of the amorphous phase with
low molecular weight modifier leads to a decrease of intensity or complete elimination of the
cavitation phenomenon. [25]
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contraction of the film. β-iPP belongs to a metastable phase, so a β-α phase transformation
was induced during deformation. The density of α-iPP is higher than that of β-iPP. Therefore, a
volume contraction can led to a formation of voids in the sample. The more pronounced stress
whitening behavior in β-iPP rich iPP samples was also confirmed by Pawlak [2].

1.3. Role of lamellae arrangement

In α-iPP, the lamellae are arranged in a unique “cross-hatched” structure, where daughter
lamellae grow 80� inclined to the mother lamellae [15]. Nitta et al. [16] observed that cavitation
appears earlier if there were more tangential lamellae in a single spherulite. Otherwise, Pawlak
found that the reduction of tangential daughter lamellae would advance the formation of
voids [17].
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1.4. Role of crystallinity

By annealing, Na et al. prepared PP samples with crystallinity ranging from 48 to 56%. The
cavitation behavior of the sample was investigated by measuring the volume increase. The
results show that in annealed samples, the cavitation behavior was significantly intensified
due to the increased stress concentration sites [18]. Boger et al. [19] examined the cavitation
behavior of metallocene PP with crystallinity ranging from 0 to 62%. For the sample with
crystallinity higher than 36%, the scattering signal originated from a fibrillary structure
showed up on the SAXS pattern as the elongation ratio is larger than 3. In case of β-iPP, Bai
et al. [20] found that annealing could advance the appearance of cavitation.

1.5. Role of the thickness of lamellae

Generally, thinner lamellae would prevent the formation of voids. The reason responsible for
that was proposed by Seguela et al. [21]: a thinner lamella bears larger tie chain density, which
transfers the load to lamellae in a better way and leads to the plastic deformation of lamellae
instead to cavitation in the amorphous phase.

1.6. Role of lamellae orientation

The cavitation behavior of oriented β-iPP was investigated by Bao et al. [22]. The samples were
cut from extruded sheets, and the deformation direction was parallel to the orientation of β-iPP
lamellae. Their results proved that at temperatures lower than 110�C, the orientation of β-iPP
remains almost unchanged during deformation, and void forms before fragmentation and
reorientation of β-iPP. As the deformation temperature risen to 130 and 140�C, β-iPP reorients
gradually upon stretching, and the size of voids decreases because at high stretching temper-
ature less β crystal fragmentation takes place.

1.7. Role of the state of amorphous phase

Pawlak and Galeski [23] compared the cavitation behavior of PP with similar crystallinity
and crystal thickness but different molecular masses of 400 and 250 kg/mol. They found that
the samples having lower molecular weight showed stronger cavitation as a result of
reduced number of entanglements in the amorphous phase. Rozanski and Galeski extracted
the additives in the amorphous phase by critical CO2 and also by a mixture of nonsolvents.
They found that purified PP exhibited more intense cavitation than pristine PP [24]. The
intensified cavitation process in the purified samples was caused by the change in free
volume by eliminating low molecular weight fractions and soluble additives in the amor-
phous phase, indicating that the nucleation of voids is not heterogeneous. In their later work,
they proved that only partial filling of the free volume pores of the amorphous phase with
low molecular weight modifier leads to a decrease of intensity or complete elimination of the
cavitation phenomenon. [25]
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2. Synchrotron X-ray scattering

2.1. X-ray and its sources

X-ray, a kind of electromagnetic radiation (see Figure 1), is also named as Röntgen radiation,
after Wilhelm Röntgen, who discovered X-rays in 1895 [26]. Since that time, X-rays have been
employed in the field of materials science as a nondestructive analytical technique. Tradition-
ally, X-rays are produced by X-ray tubes. In X-ray tubes, the electrons emitted from cathode
wire are accelerated by an electric voltage before they hit the target. The wavelength of X-rays
produced by X-ray tubes depends on the target material. For instance, the characteristic
wavelength of the X-ray produced is 1.54 Å by Cu target and 1.79 Å by Co target.

The main disadvantages of X-ray tubes are its low energy, broad focus (around 2 � 12 mm),
and long exposure time (around 60 s) [27]. In the mid-1970s, the limitation of X-ray tube was
overcome by the establishment of the synchrotron radiation, where electrons orbiting in a
magnetic field loose energy continually in the form of electromagnetic radiation. The first
synchrotron light source was the Stanford Synchrotron Radiation Laboratory (SSRL) build in
1977 [28]. Nowadays, a few synchrotron radiations have been set up all over the world, and
the synchrotron radiation has been developed into the third generation, to name a few, Euro-
pean Synchrotron Radiation Facility (ESRF) in France [3], Deutsches Elektronen-Synchrotron
(DESY) in Germany (see Figure 2) [29], Shanghai Synchrotron Radiation Facility (SSRF) [30] in
China, and so on. At PETRA III of DESY, the size of the X-ray beam could reach a few
micrometers and the exposure time could be milliseconds. The high spatial and temporal
resolution of synchrotron X-ray source enables to perform in-situ X-ray scattering measure-
ments combining, for example, thermal/mechanical environment.

As X-rays interact with an object, they can be absorbed or scattered. For the scattering of X-
rays by a single free electron, assuming elastic scattering the wavelength of the scattered wave
is the same with that of the incident one. The relation between the scattered wave E2 and
incident wave E1 is given as follows:

E2 ¼ E1
e02

m0c2r
exp �iqrð Þ (1)

Figure 1. Categories of electromagnetic radiation.
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where e02
m0c2

¼ 3:54� 10�4 Å [32]. r is the position of the electron and q is the scattering vector,

the magnitude of the scattering vector is

q ¼ 4π
λ

sinθ (2)

θ is the scattering angle. In addition to q, another scattering vector s is used in the field of
scattering,

q ¼ 2πs (3)

The interference of all the scattered X-ray waves gives the final scattering signal. The efficiency
of the scattering process could be described by the differential scattering cross-section (dσ=dΩ)
[32], which is given by

dσ
dΩ

� �
¼ Im

Φ0ΔΩ
¼ E2j j2

E1j j2 R
2 (4)

Φ0 defines the strength of the incident beam, Im is measured scattering intensity, that is, the
number of scattered photons recorded per second by the detector, ΔΩ is the solid angle, and
the distance between the object and the detector is R.

Depending on the distance between the object and the detector, the scattering experiments can
be divided into four subareas, which are wide-angle X-ray scattering (WAXS) containing the
classical X-ray diffraction, middle angle X-ray scattering (MAXS) covering the characteristic
scattering of liquid-crystalline structure and rigid-rod polymers, small-angle X-ray scattering
(SAXS) comprising the typical nanostructure in semi-crystalline polymers and thermoplastic
elastomers, and ultra-small-angle X-ray scattering (USAXS) extending the detection range to
micrometer scale [27]. Considering the scope of this chapter, SAXS will be emphasized espe-
cially. SAXS comprises the scattering angle range 2θ < 2

�
. With the help of SAXS, structures

with the size of 1–500 nm can be detected, covering the size of lamellae and small voids.

Figure 2. PETRA III, the third generation of synchrotron light source at DESY Germany [31].
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2. Synchrotron X-ray scattering

2.1. X-ray and its sources

X-ray, a kind of electromagnetic radiation (see Figure 1), is also named as Röntgen radiation,
after Wilhelm Röntgen, who discovered X-rays in 1895 [26]. Since that time, X-rays have been
employed in the field of materials science as a nondestructive analytical technique. Tradition-
ally, X-rays are produced by X-ray tubes. In X-ray tubes, the electrons emitted from cathode
wire are accelerated by an electric voltage before they hit the target. The wavelength of X-rays
produced by X-ray tubes depends on the target material. For instance, the characteristic
wavelength of the X-ray produced is 1.54 Å by Cu target and 1.79 Å by Co target.

The main disadvantages of X-ray tubes are its low energy, broad focus (around 2 � 12 mm),
and long exposure time (around 60 s) [27]. In the mid-1970s, the limitation of X-ray tube was
overcome by the establishment of the synchrotron radiation, where electrons orbiting in a
magnetic field loose energy continually in the form of electromagnetic radiation. The first
synchrotron light source was the Stanford Synchrotron Radiation Laboratory (SSRL) build in
1977 [28]. Nowadays, a few synchrotron radiations have been set up all over the world, and
the synchrotron radiation has been developed into the third generation, to name a few, Euro-
pean Synchrotron Radiation Facility (ESRF) in France [3], Deutsches Elektronen-Synchrotron
(DESY) in Germany (see Figure 2) [29], Shanghai Synchrotron Radiation Facility (SSRF) [30] in
China, and so on. At PETRA III of DESY, the size of the X-ray beam could reach a few
micrometers and the exposure time could be milliseconds. The high spatial and temporal
resolution of synchrotron X-ray source enables to perform in-situ X-ray scattering measure-
ments combining, for example, thermal/mechanical environment.

As X-rays interact with an object, they can be absorbed or scattered. For the scattering of X-
rays by a single free electron, assuming elastic scattering the wavelength of the scattered wave
is the same with that of the incident one. The relation between the scattered wave E2 and
incident wave E1 is given as follows:

E2 ¼ E1
e02

m0c2r
exp �iqrð Þ (1)

Figure 1. Categories of electromagnetic radiation.
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where e02
m0c2

¼ 3:54� 10�4 Å [32]. r is the position of the electron and q is the scattering vector,

the magnitude of the scattering vector is

q ¼ 4π
λ

sinθ (2)

θ is the scattering angle. In addition to q, another scattering vector s is used in the field of
scattering,

q ¼ 2πs (3)

The interference of all the scattered X-ray waves gives the final scattering signal. The efficiency
of the scattering process could be described by the differential scattering cross-section (dσ=dΩ)
[32], which is given by

dσ
dΩ

� �
¼ Im

Φ0ΔΩ
¼ E2j j2

E1j j2 R
2 (4)

Φ0 defines the strength of the incident beam, Im is measured scattering intensity, that is, the
number of scattered photons recorded per second by the detector, ΔΩ is the solid angle, and
the distance between the object and the detector is R.

Depending on the distance between the object and the detector, the scattering experiments can
be divided into four subareas, which are wide-angle X-ray scattering (WAXS) containing the
classical X-ray diffraction, middle angle X-ray scattering (MAXS) covering the characteristic
scattering of liquid-crystalline structure and rigid-rod polymers, small-angle X-ray scattering
(SAXS) comprising the typical nanostructure in semi-crystalline polymers and thermoplastic
elastomers, and ultra-small-angle X-ray scattering (USAXS) extending the detection range to
micrometer scale [27]. Considering the scope of this chapter, SAXS will be emphasized espe-
cially. SAXS comprises the scattering angle range 2θ < 2

�
. With the help of SAXS, structures

with the size of 1–500 nm can be detected, covering the size of lamellae and small voids.

Figure 2. PETRA III, the third generation of synchrotron light source at DESY Germany [31].
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2.2. Small-angle X-ray scattering

In SAXS measurement, X-rays detect the difference in electron density Δr, and the scattering
intensity (Im) is

Im sð Þ ¼ Δr2V2
p F sð Þj j2 (5)

F sð Þ is the form factor and Vp is the volume fraction of particles (for instance, the lamella in
semi-crystalline polymers, the voids during deformation, and “shish” structure during shear
induced crystallization). Rg is the radius of gyration of the particle. In the extremely small
scattering angle range, sRg ! 0,

F sð Þ ≈ 1� s2R2
g

10
(6)

The detailed deduction of Eq. (6) can be found elsewhere [33]. The initial intensity decay is
approximated by Guinier approximation

Im sð Þ ≈Δr2V2
p 1� s2R2

g

10

" #2

≈Δr2V2
p 1� s2R2

g

5

" #
≈ Im 0ð Þexp �4π2R2

gs
2

� �
(7)

The absolute scattering intensity Q which is independent of the shape of the scatters,

Q ¼ ∭s!∞
s!0 I sð Þds∝Δr2Vp 1� Vp

� �
(8)

The pattern of SAXS measurement depends on the microstructure of the material. For the
material with the periodically stacked structure (lamellae in semi-crystalline polymers) inside,
the pattern exhibits a homogeneous ring or “two-spots” depending on the orientation of
lamellae. The long period Lp, which comprise a layer of crystalline phase and a layer of
amorphous phase in the two-phase model, can be evaluated by Bragg’s law,

Lp ¼ 2π=qmax
(9)

qmax represents the position of the scattering ring or spots on the pattern in the reciprocal space.
For a material with an oriented elongated structure, for instance an extended chain structure
(shishs induced by flow) as well as voids, a streak scattering will show up in the pattern.
Considering a perfect orientation of the elongated structures, Ruland [34] described the inte-
gral breadth Bobs s12ð Þ of the elongated structure, measured as a function of s12, as follows:

Bobs s12ð Þ ¼
ð∞
�∞

I s12; s3ð Þds3=I s12; 0ð Þ (10)

The average length Lh i of the elongated structure is the inverse of the integral breath:

Bobs s12ð Þ ¼ 1
Lh i (11)
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If misorientation has to be taken into account, the orientation distribution of the streak g φð Þ
must be considered, then the apparent azimuthal integral breadth becomes

Bobs s12ð Þ ¼ 1
I s;π=2ð Þ

ðπ=2
�π=2

I s;φð Þdφ (12)

which depends on the width of the peak in the azimuthal direction. The evolution of Bobs as a
function of s follows Eq. (13),

B2
obs sð Þ ¼ B2

p

s2
þ 1

s2 Lh i2 þ B2
g, (13)

if a Gaussian can describe the orientation distribution. Bp describes the inevitable instrumental
broadening and Bg is the true integral breadth of the orientation distribution. If a Lorentzian
fits the orientation distribution [27], one obtains

Bops ¼
Bp

s
þ 1

Lh i þ sBg (14)

3. In-situ synchrotron SAXS investigation about the cavitation behavior
of microinjection-molded iPP

3.1. Microinjection molding

Microinjection molding is one of the most efficient methods for the large-scale production
of thermoplastic polymer microparts. Depending on the area of interest, the definition of
microparts comprises three categories [35]:

• parts processing a weight in the range of few milligrams,

• parts processing features where dimensions are in the micrometer range,

• parts exhibiting dimensional tolerances in the micrometer range but without dimensional
limit.

In common injection molding, because of the flow and thermal field gradient, a “skin-core”
structure can be found. In the skin layer, lamellae are oriented along the flow direction because
of flow-induced crystallization. In the core layer, randomly distributed lamellae could be
found due to the weak flow field. As to microinjection molding, the flow field in the cavity is
quite strong due to the small cavity size especially for the first two cases. Therefore, a larger
fraction of the skin layer is formed compared to common injection molding part [36], which
means that a larger fraction of oriented structures exists in the microinjection-molded sample
compared to the macroinjection-molded one.

In this chapter, the cavitation behavior of microinjection-molded iPP will be reported, studied
by synchrotron SAXS, which serves as an exemplary result for the understanding of the topic
in this chapter.
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2.2. Small-angle X-ray scattering

In SAXS measurement, X-rays detect the difference in electron density Δr, and the scattering
intensity (Im) is

Im sð Þ ¼ Δr2V2
p F sð Þj j2 (5)

F sð Þ is the form factor and Vp is the volume fraction of particles (for instance, the lamella in
semi-crystalline polymers, the voids during deformation, and “shish” structure during shear
induced crystallization). Rg is the radius of gyration of the particle. In the extremely small
scattering angle range, sRg ! 0,

F sð Þ ≈ 1� s2R2
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(6)

The detailed deduction of Eq. (6) can be found elsewhere [33]. The initial intensity decay is
approximated by Guinier approximation
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" #
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The absolute scattering intensity Q which is independent of the shape of the scatters,

Q ¼ ∭s!∞
s!0 I sð Þds∝Δr2Vp 1� Vp

� �
(8)

The pattern of SAXS measurement depends on the microstructure of the material. For the
material with the periodically stacked structure (lamellae in semi-crystalline polymers) inside,
the pattern exhibits a homogeneous ring or “two-spots” depending on the orientation of
lamellae. The long period Lp, which comprise a layer of crystalline phase and a layer of
amorphous phase in the two-phase model, can be evaluated by Bragg’s law,

Lp ¼ 2π=qmax
(9)

qmax represents the position of the scattering ring or spots on the pattern in the reciprocal space.
For a material with an oriented elongated structure, for instance an extended chain structure
(shishs induced by flow) as well as voids, a streak scattering will show up in the pattern.
Considering a perfect orientation of the elongated structures, Ruland [34] described the inte-
gral breadth Bobs s12ð Þ of the elongated structure, measured as a function of s12, as follows:

Bobs s12ð Þ ¼
ð∞
�∞

I s12; s3ð Þds3=I s12; 0ð Þ (10)

The average length Lh i of the elongated structure is the inverse of the integral breath:

Bobs s12ð Þ ¼ 1
Lh i (11)

Small Angle Scattering and Diffraction56

If misorientation has to be taken into account, the orientation distribution of the streak g φð Þ
must be considered, then the apparent azimuthal integral breadth becomes

Bobs s12ð Þ ¼ 1
I s;π=2ð Þ

ðπ=2
�π=2

I s;φð Þdφ (12)

which depends on the width of the peak in the azimuthal direction. The evolution of Bobs as a
function of s follows Eq. (13),

B2
obs sð Þ ¼ B2

p

s2
þ 1

s2 Lh i2 þ B2
g, (13)

if a Gaussian can describe the orientation distribution. Bp describes the inevitable instrumental
broadening and Bg is the true integral breadth of the orientation distribution. If a Lorentzian
fits the orientation distribution [27], one obtains

Bops ¼
Bp

s
þ 1

Lh i þ sBg (14)

3. In-situ synchrotron SAXS investigation about the cavitation behavior
of microinjection-molded iPP

3.1. Microinjection molding

Microinjection molding is one of the most efficient methods for the large-scale production
of thermoplastic polymer microparts. Depending on the area of interest, the definition of
microparts comprises three categories [35]:

• parts processing a weight in the range of few milligrams,

• parts processing features where dimensions are in the micrometer range,

• parts exhibiting dimensional tolerances in the micrometer range but without dimensional
limit.

In common injection molding, because of the flow and thermal field gradient, a “skin-core”
structure can be found. In the skin layer, lamellae are oriented along the flow direction because
of flow-induced crystallization. In the core layer, randomly distributed lamellae could be
found due to the weak flow field. As to microinjection molding, the flow field in the cavity is
quite strong due to the small cavity size especially for the first two cases. Therefore, a larger
fraction of the skin layer is formed compared to common injection molding part [36], which
means that a larger fraction of oriented structures exists in the microinjection-molded sample
compared to the macroinjection-molded one.

In this chapter, the cavitation behavior of microinjection-molded iPP will be reported, studied
by synchrotron SAXS, which serves as an exemplary result for the understanding of the topic
in this chapter.
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3.2. Experimental part

3.2.1. Materials and sample preparation

iPP used in this study was manufactured by Borealis (Linz, Austria) with the trademark of
HD120MO. The weight average and number average molecular weights are 365 kg/mol and
67.6 kg/mol, and the melt flow index is 8 g/10 min (at 230�C and 2.16 kg). NJS (trade mark NJ-
StarTR NU100), which is one kind of β-iPP nucleating agent, was kindly provided by Rika
International Limited (Oldham, UK). NJS with a weight content of 0.3% was mixed with iPP
granules by a twin screw extruder. Then the materials were microinjection molded with the
following parameters: the barrel temperature is 280�C, the mold temperature is 25�C, and the
injection molding speed is 25 cm3/s.

3.2.2. In-situ synchrotron X-ray scattering

In-situ synchrotron SAXS measurements were carried out at the MiNaXS beamline at
Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany. The wavelength of the X-ray
was 0.106917 nm. An exposure time of 0.1 s and a time interval for the individual measure-
ments of 0.15 s were used to realize the high time resolution without burning the specimens by
X-ray in the meantime. The patterns were recorded by a Pilatus 1 M detector (981 � 1043
pixels, pixel size 172 � 172 μm2) with a detector distance of 4961 mm. Pattern preprocessing
including masking and reconstruction of blind areas was performed by self-written subrou-
tines on PV-Wave from Visual Numerics.

The uniaxial stretching was performed on a custom-made miniature tensile machine, as has
been described elsewhere, for example, in Ref [37]. During measurements, to keep the X-ray
beam at a fixed position on the specimen, both grips were moved simultaneously in opposite
directions. The cross-head speed was 0.02 mm/s, and the stretching temperature was 75�C. The
displacement during stretching was captured by a camera with a frame rate of 1 Hz. Figure 3
presents a schematic and a photograph of the experiment. The schematic can be also found in
Ref. [38]. Hencky strain [39] was used to measure the local strain where the X-ray beam passed
the specimen,

εH ¼ ln
ΔLþ L0

L0
(15)

L0 and ΔL are the initial length and displacement of the grid pattern painted on the specimen
during stretching.

The true stress σ can be estimated by

σ ¼ F
A0

ΔLþ L0
L0

(16)

F is the load, and A0 is the initial cross-sectional area.
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4. Results and discussion

4.1. Microstructure of the microinjection-molded iPP before stretching

The 2D-SAXS and 2D wide-angle X-ray scattering (WAXS) patterns of the microinjection-
molded sample are given in Figure 4. In the 2D-SAXS pattern, two scattering spots can be
found on the meridian, indicating the orientation of lamellae as a result of shear induced
crystallization during the injection molding process. In the 2D-WAXS pattern, from inner to
the outer side, a few reflexes could be observed, which are the (110), (300), (040), (130), and
(041)/(111)/(�131) crystalline reflexes. Among these reflexes, (300) and (041) belong to β-iPP
and the others are originated from α-iPP. The intensity of the reflexes is focused at a specified
angle with respect to the flow direction. The azimuthal angle deviation is decided by the lattice
plane. The intensity of (110) reflex could be found both on the equator and in the meridian.
This is caused by the unique “cross-hatched” structure of α-iPP. In the “cross-hatched” struc-
ture, daughter lamellae grow on the mother lamellae with an angle of 80� [15]. Mother lamellae
grow directly on the shear-induced nuclei, resulting in the orientation of mother lamellae in the
flow direction. Consequently, the daughter lamellae are 80� inclined to the flow direction.

Figure 3. A schematic and a photograph of the experiment. The schematic can be also found in Ref. [38].
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3.2. Experimental part

3.2.1. Materials and sample preparation
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67.6 kg/mol, and the melt flow index is 8 g/10 min (at 230�C and 2.16 kg). NJS (trade mark NJ-
StarTR NU100), which is one kind of β-iPP nucleating agent, was kindly provided by Rika
International Limited (Oldham, UK). NJS with a weight content of 0.3% was mixed with iPP
granules by a twin screw extruder. Then the materials were microinjection molded with the
following parameters: the barrel temperature is 280�C, the mold temperature is 25�C, and the
injection molding speed is 25 cm3/s.

3.2.2. In-situ synchrotron X-ray scattering

In-situ synchrotron SAXS measurements were carried out at the MiNaXS beamline at
Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany. The wavelength of the X-ray
was 0.106917 nm. An exposure time of 0.1 s and a time interval for the individual measure-
ments of 0.15 s were used to realize the high time resolution without burning the specimens by
X-ray in the meantime. The patterns were recorded by a Pilatus 1 M detector (981 � 1043
pixels, pixel size 172 � 172 μm2) with a detector distance of 4961 mm. Pattern preprocessing
including masking and reconstruction of blind areas was performed by self-written subrou-
tines on PV-Wave from Visual Numerics.

The uniaxial stretching was performed on a custom-made miniature tensile machine, as has
been described elsewhere, for example, in Ref [37]. During measurements, to keep the X-ray
beam at a fixed position on the specimen, both grips were moved simultaneously in opposite
directions. The cross-head speed was 0.02 mm/s, and the stretching temperature was 75�C. The
displacement during stretching was captured by a camera with a frame rate of 1 Hz. Figure 3
presents a schematic and a photograph of the experiment. The schematic can be also found in
Ref. [38]. Hencky strain [39] was used to measure the local strain where the X-ray beam passed
the specimen,

εH ¼ ln
ΔLþ L0

L0
(15)

L0 and ΔL are the initial length and displacement of the grid pattern painted on the specimen
during stretching.

The true stress σ can be estimated by

σ ¼ F
A0

ΔLþ L0
L0

(16)

F is the load, and A0 is the initial cross-sectional area.
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4. Results and discussion

4.1. Microstructure of the microinjection-molded iPP before stretching

The 2D-SAXS and 2D wide-angle X-ray scattering (WAXS) patterns of the microinjection-
molded sample are given in Figure 4. In the 2D-SAXS pattern, two scattering spots can be
found on the meridian, indicating the orientation of lamellae as a result of shear induced
crystallization during the injection molding process. In the 2D-WAXS pattern, from inner to
the outer side, a few reflexes could be observed, which are the (110), (300), (040), (130), and
(041)/(111)/(�131) crystalline reflexes. Among these reflexes, (300) and (041) belong to β-iPP
and the others are originated from α-iPP. The intensity of the reflexes is focused at a specified
angle with respect to the flow direction. The azimuthal angle deviation is decided by the lattice
plane. The intensity of (110) reflex could be found both on the equator and in the meridian.
This is caused by the unique “cross-hatched” structure of α-iPP. In the “cross-hatched” struc-
ture, daughter lamellae grow on the mother lamellae with an angle of 80� [15]. Mother lamellae
grow directly on the shear-induced nuclei, resulting in the orientation of mother lamellae in the
flow direction. Consequently, the daughter lamellae are 80� inclined to the flow direction.

Figure 3. A schematic and a photograph of the experiment. The schematic can be also found in Ref. [38].
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4.2. Representative 2D-SAXS patterns during stretching

The true stress-Hencky strain curves of pure iPP and iPP/NJS composites stretched at room
temperature are provided in Figure 5. Obviously, the composite shows a higher true stress at
the same Hencky strain. The higher true stress is caused by the nucleation effect of NJS on iPP.
Although the crystallinity of pure iPP and iPP/NJS composite is nearly the same, a larger long
period of iPP/NJS composite indicates that less imperfect lamellae exist in the nucleated
sample.

Some representative 2D-SAXS patterns of pure iPP and iPP/NJS composite during stretching
are shown in Figure 6. The stretching direction is vertical in Figure 6. Without deformation, the
scattering on the meridian is spherulite-like for iPP/NJS composite and droplike for pure iPP,
indicating a more homogeneous distribution of long periods in the composite. Upon
stretching, the amorphous phases constrained by the lamellae are stretched along the loading
direction, leading to a slight shift of the scattering position on the pattern [40]. In the center

Figure 4. 2D small-angle (SAXS) and wide-angle (WAXS) X-ray scattering pattern of the microinjection-molded sample.
The flow direction is vertical.

Figure 5. True stress-Hencky strain curves of pure iPP and iPP/NJS composite stretched under room temperature. The
crosshead speed is 0.02 mm/s.

Small Angle Scattering and Diffraction60

region of the pattern, a streak can be found, which is aligned along the meridian. The appear-
ance of the streak is an indication of the void formation [1]. The direction of the streak with
respect to the stretching direction suggests that the elongated voids are perpendicular to the
streak direction. As the Hencky strain is further enlarged, the scattering of the streak continues
to grow in the vertical direction, which is probably caused by the growth of the void. At an
even larger strain (εH = 0.641), the scattering of lamellae is covered by the scattering of the void.
In addition, a streak on the equator shows up indicating the formation of the second group of
voids. This group of voids is aligned along the stretching direction. The formation of the
second group of voids can be triggered by the first group of voids coalesces [41]. With the
further increase of Hencky strain, the scattering grows mainly in the meridian, and the scatter-
ing intensity on the equator is narrowed.

4.3. The evolution of the scattering invariant

The scattering invariant (Q) of pure iPP and the iPP/NJS composite as a function of Hencky
strain during stretching is given in Figure 7. As shown in Eq. (8), Q is proportional to
Vv 1� Vvð Þ, where Vv is the volume fraction of the void. As Vv is smaller than 0.5, Q
increases with Vv. However, if Vv is higher than 0.5, Q will decrease. In Figure 7, one can
see that at the beginning, Q keeps unchanged until a Hencky strain of 0.1. As the Hencky
strain exceeds 0.1, Q increases gradually indicating the formation of voids. As the Hencky
strain is larger than 0.2, Q reaches an plateau for pure iPP, but continues to increase for iPP/
NJS composite. The larger Q of the composite at the same strain means that more voids are
formed in iPP/NJS composite. When the Hencky strain is larger than 0.6, a drastic drop of Q
can be found for iPP/NJS composite. Two possible reasons can be proposed to be responsible
for the decrease trend: the first one is that the size of the void exceeds the detection range of
SAXS, and the second one is that the volume fraction of the voids is larger than 0.5 as discussed
above. The first reason seems to be the dominant one.

Figure 6. Representative 2D-SAXS of pure iPP and iPP/NJS composite during stretching. The stretching direction is
vertical.
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region of the pattern, a streak can be found, which is aligned along the meridian. The appear-
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respect to the stretching direction suggests that the elongated voids are perpendicular to the
streak direction. As the Hencky strain is further enlarged, the scattering of the streak continues
to grow in the vertical direction, which is probably caused by the growth of the void. At an
even larger strain (εH = 0.641), the scattering of lamellae is covered by the scattering of the void.
In addition, a streak on the equator shows up indicating the formation of the second group of
voids. This group of voids is aligned along the stretching direction. The formation of the
second group of voids can be triggered by the first group of voids coalesces [41]. With the
further increase of Hencky strain, the scattering grows mainly in the meridian, and the scatter-
ing intensity on the equator is narrowed.

4.3. The evolution of the scattering invariant

The scattering invariant (Q) of pure iPP and the iPP/NJS composite as a function of Hencky
strain during stretching is given in Figure 7. As shown in Eq. (8), Q is proportional to
Vv 1� Vvð Þ, where Vv is the volume fraction of the void. As Vv is smaller than 0.5, Q
increases with Vv. However, if Vv is higher than 0.5, Q will decrease. In Figure 7, one can
see that at the beginning, Q keeps unchanged until a Hencky strain of 0.1. As the Hencky
strain exceeds 0.1, Q increases gradually indicating the formation of voids. As the Hencky
strain is larger than 0.2, Q reaches an plateau for pure iPP, but continues to increase for iPP/
NJS composite. The larger Q of the composite at the same strain means that more voids are
formed in iPP/NJS composite. When the Hencky strain is larger than 0.6, a drastic drop of Q
can be found for iPP/NJS composite. Two possible reasons can be proposed to be responsible
for the decrease trend: the first one is that the size of the void exceeds the detection range of
SAXS, and the second one is that the volume fraction of the voids is larger than 0.5 as discussed
above. The first reason seems to be the dominant one.
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4.4. The evolution of the void size

As introduced in the first part, the size of the void can be evaluated by Ruland’s streak method,
if the shape of the void is regarded as cylindrical [27, 42]. To avoid the burning of the detector
during the measurement, the center region of the beam is covered by a beamstop. To get
information about the void size, the 2D-SAXS patterns in Figure 6 are fitted by a sum of two
2D-Gaussian functions

I sð Þ ¼ pv0 exp �pv1s
2 � pv2 cos 2ϕ

� �
s2

� �þ pm0 exp �pm1s
2 � pm2 cos 2ϕ

� �
s2

� �
(17)

ϕ ¼ arctan
i
j

(18)

i and j define the position of the pixel in the pattern. The voids are described by the first
Gaussian curve by parameters pv0, pv1, and pv2. The scattering of the matrix is described by
the second Gaussian curve. The fitting process is carried out by a self-written subroutine. A
representative application of the fitting procedure is provided in Figure 8.

After the center fitting procedure, the void scattering can be extracted. The voids length along
the stretching direction (Lh) and the voids length perpendicular to the stretching direction (Lv)
can be calculated as

Lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pv1 þ pv2

π

r
(19)

Lv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pv1 � pv2

π

r
(20)

The evolution of the void size is presented in Figure 9. As the Hencky strain is smaller than 0.1,
no voids can be detected. At Hencky strains beyond 0.1, voids show up as evidenced in

Figure 7. The scattering invariant (Q) of pure iPP and the iPP/NJS composite as a function of Hencky strain during
stretching.
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Figures 6 and 9. Lh is around 110 nm and Lv is 200 nm for pure iPP, indicating that the
longitude of the void is perpendicular to the stretching direction. In addition, in this Hencky
strain range, the void length is similar for pure iPP and iPP/NJS composite. This suggests that
at the beginning of void formation, the addition of NJS has a negligible influence on the void
size. As the Hencky strain is increased to 0.6, it can be found that Lv decreases gradually and Lh
starts to increase, implying that the direction of the void is changed. Finally, the longitude
direction of the voids changes from transversal to parallel direction with respect to the
stretching direction. The change of the voids direction is caused by coalescence of small voids
as well as the affine deformation of the voids. In this Hencky strain range, Lh of iPP/NJS
composite reaches 550 nm, finally. This is much larger than that of pure iPP, which is only
200 nm. It should be pointed out that due to the growth as well as the direction change of the
voids, no obvious streak signal can be found on the SAXS pattern in the Hencky strain of 0.3–0.6.
So the voids size in this strain range is not provided.

Figure 8. Center fitting and modeling of the 2D-SAXS pattern by the sum of the void scattering and the matrix scattering
according to Guinier approximation. The stretching direction is along s3.

Figure 9. The plots of void length as a function of Hencky strain. Lh is the void size along the stretching direction and Lv is
the void size perpendicular to the stretching direction.
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4.4. The evolution of the void size
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Figures 6 and 9. Lh is around 110 nm and Lv is 200 nm for pure iPP, indicating that the
longitude of the void is perpendicular to the stretching direction. In addition, in this Hencky
strain range, the void length is similar for pure iPP and iPP/NJS composite. This suggests that
at the beginning of void formation, the addition of NJS has a negligible influence on the void
size. As the Hencky strain is increased to 0.6, it can be found that Lv decreases gradually and Lh
starts to increase, implying that the direction of the void is changed. Finally, the longitude
direction of the voids changes from transversal to parallel direction with respect to the
stretching direction. The change of the voids direction is caused by coalescence of small voids
as well as the affine deformation of the voids. In this Hencky strain range, Lh of iPP/NJS
composite reaches 550 nm, finally. This is much larger than that of pure iPP, which is only
200 nm. It should be pointed out that due to the growth as well as the direction change of the
voids, no obvious streak signal can be found on the SAXS pattern in the Hencky strain of 0.3–0.6.
So the voids size in this strain range is not provided.

Figure 8. Center fitting and modeling of the 2D-SAXS pattern by the sum of the void scattering and the matrix scattering
according to Guinier approximation. The stretching direction is along s3.

Figure 9. The plots of void length as a function of Hencky strain. Lh is the void size along the stretching direction and Lv is
the void size perpendicular to the stretching direction.
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5. Conclusions

In this chapter, recent reports about cavitation behavior in iPP during deformation are sum-
marized. The influence of morphological factors including crystal form, crystallinity, lamellae
thickness, state of the amorphous phase, and lamellae orientation is emphasized. In addition,
the background related to the synchrotron SAXS is introduced. Finally, as exemplary results,
the cavitation behavior of microinjection-molded iPP is presented. By center fitting, the blank
region on the SAXS pattern is fitted by extrapolation. The size of the void is calculated by an
approximation according to Guinier law. The result shows that upon stretching, the longitude
of the void is aligned perpendicular to the stretching direction in the early stages of deforma-
tion and then transfers to the stretching direction. In the early stages, the addition of NJS has a
negligible influence on the void size. The size of the voids is 210 nm perpendicular to the
stretching direction and 110 nm along the stretching direction for both pure iPP and the iPP/
NJS composites. However, in the late stages, the size of the voids along the stretching direction
increases to 550 nm for the iPP/NJS composites. This is much larger than that of pure iPP,
which is only 200 nm.
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Abstract

One of the greatest challenges of our generation is the sustainable storage of environ-
mentally harmful by-products of energy production processes. High-level nuclear wastes 
and CO2 produced from the energy sectors are examples of these by-products. To ensure 
the environmentally benign storage of these by-products in a solid form, it is essential to 
understand the chemical and morphological features of the materials in which these by-
products are immobilized. With recent advancements in X-ray scattering, it is now possi-
ble to map the structure and the microstructure of architected and natural materials across 
four decades in spatial scale. Multiscale X-ray scattering that encompasses ultrasmall-, 
small-, and wide-angle X-ray scattering (USAXS/SAXS/WAXS) allows us to probe material 
features in the spatial ranges of ~5 μm–10 nm, ~100–1 nm, and ~1 nm–0.2 Å, respectively. 
This connection is illustrated using two specific examples. The first example involves 
determination of the changes in the porosity and the structure of beidellite, a swelling 
clay used in the repository design for nuclear waste disposal, on heating to temperatures 
above 1000°C. The second example illustrates the changes in the nanoscale porosity of 
heat-treated serpentine after reacting with CO2 to form magnesium carbonate.

Keywords: X-ray scattering, porous materials, structural and microstructural changes, 
hierarchical materials, materials for acid gas storage, contaminant removal
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energy or industrial sectors. A fundamental understanding of the chemo-morphological cou-
pling in materials containing these immobilized environmentally hazardous by-products is 
essential for predicting the long-term fate of these contaminants. In this context, chemo-morpho-
logical coupling refers to the influence of structural changes in materials at the sub-nanoscale on 
the nano- and mesoscale morphological changes in materials. Understanding chemo-morpho-
logical connectivity in materials allows for establishing a fundamental basis for the bulk-scale 
properties such as the extent of contaminants immobilized in the solid matrix. The recent devel-
opment of multiscale X-ray scattering techniques presents a non-invasive, reliable, and robust 
approach for probing the changes in the structure and morphology of materials from the atomic-
to-micrometer scales.

Multiscale X-ray scattering encompasses ultrasmall-, small-, and wide-angle X-ray scattering 
(USAXS/SAXS/WAXS) measurements. USAXS, SAXS, and WAXS measurements provide a 
spatial resolution in the range of ~5 μm–10 nm, 100–1 nm, and 1 nm–0.2 Å, respectively. The 
four decades of spatial scale can be probed in a single measurement within a span of 3–4 min. 
The capability of connecting microstructural and structural changes using in-operando mea-
surements during reaction-inducing events is less than 5 years old [1]. This capability is an 
extension of the application of ex-situ SAXS measurements to determine the microstructural 
features of porous materials such as coals [2–7], sedimentary rocks [8], and igneous rocks [9–11].  
Other studies quantified the porosity in limestone and sandstone using ultra-small and small 
angle neutron scattering (USANS/SANS) measurements supported by complimentary elec-
tron microscopy imaging [12, 13]. With the recent interest in energy recovery from unconven-
tional formations, the non-invasive characterization of the porosity in shales [14–16] and its 
constituents such as clays [17–19] using USAXS/SAXS has received increased attention.

Figure 1. Sustainable energy and environmental applications probed using ultrasmall-, small-, and wide-angle X-ray 
scattering measurements.
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One of the advantages of multiscale X-ray scattering is the ability to probe, in-operando, the 
dynamic changes across the material hierarchy. This approach is illustrated by following the 
dynamic morphological and structural changes during the heat treatment of beidellite, a swell-
ing clay with a hierarchical material structure. Beidellite, a swelling clay is used in the reposi-
tory design for nuclear waste disposal and for developing catalytically active materials for 
clean energy production [20]. Beidellite is the aluminum-rich member of the montmorillonite-
beidellite series of minerals [21]. Another example illustrates the reduction in the porosity of 
heat-treated serpentine on reaction with CO2 to form magnesium carbonate for the permanent 
storage of CO2. These specific examples illustrate the application of multiscale X-ray scattering 
techniques for probing material transformations at the crystal structural and pore-scale levels 
for field and process scale applications in energy and environment, as shown in Figure 1.

2. Analyses of ultrasmall and small angle scattering data for porous 
materials

Given the multiscale nature of the applications described in the previous section, powerful 
techniques such as ultra-small, small, and wide-angle X-ray scattering (USAXS/SAXS/WAXS) 
are needed to probe the structures of materials across scales. At the angstrom scale, wide 
angle X-ray scattering (WAXS) provides detailed insights into the internal structure of crystal-
line materials by modeling the Bragg diffraction peaks. At the nanometer scale, small angle 
X-ray scattering (SAXS) provides quantitative information regarding the shape and size of the 
scattering objects including the relative roughness of pore-solid interfaces in porous materi-
als. By combining small angle X-ray scattering (SAXS) with ultra-small angle X-ray scattering 
(USAXS), it is now possible to quantify the particle and pore sizes across the material hierar-
chy in architected materials or the fractal morphology in heterogeneous materials from the 
nanometer to millimeter scale. The key relationships for quantifying the microstructures in 
materials using small angle scattering are discussed in the following paragraphs.

The measured scattering, I(Q) is related to the spatial distribution of the coherent X-ray or 
neutron scattering length density, ρ(r) over the sampling volume, VS using the following 
expression: [22–24]

  I (Q)  =   dΣ ___ dΩ   (Q)  =   1 ___  V  S  
      |   ∫ 

 V  S  
     ρ (r) exp (iQ . r)   d   3  r |     

2
   (1)

Simplification of Eq. (1) by assuming that the isotropic microstructure consists of scattering 
particles or features of number density, nP (i.e., volume fraction, ΦV = nPVP) yields Eq. (2) 
where |Δρ|2, γ0(r), VP, FP

2(Q), and SP(Q) represent the scattering contrast factor, the dimen-
sionless atomic pair correlation function, the individual scattering feature volume, feature 
form-factor, and the interparticle structure factor, respectively.
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2.1. Determination of the volume fractions using the scattering invariant

The volume fraction of a given set of scattering features is determined using the scattering 
invariant. The scattering invariant is obtained by integrating the small angle scattering inten-
sity over all Q [23]. The volume fraction, Φv and the scattering invariant are related using the 
following expression.

  Scattering invariant = 2  π   2   Φ  V   (1 −  Φ  V  )     | Δρ |     
2
  =   ∫ 

0
  
∞
    Q   2    dΣ ___ dΩ   (Q) dQ  (3)

2.2. Determination of the mean volumes and radius of gyration using the guinier 
approximation

The mean radius of gyration of narrowly dispersed and uncorrelated scattering features is 
determined using the Guinier approximation. The following expression relates the scattering 
intensity, I(Q) to the mean radius of gyration, RG, particle volume, VP, the scattering contrast 
factor, |Δρ|2 and the volume fraction, Φv.

  I(Q ) =   dΣ ___ dΩ   =  Φ  V     |  Δρ |     
2
   V  P   exp   (  −   

 Q   2   R  G  2  
 _ 3   )     (4)

2.3. Determination of the morphology or roughness of solid interfaces from the 
porod scattering regime

The Porod region is used to probe the local structure at the higher q regimes. In porous mate-
rials, the relative roughness or smoothness of the pore-solid interface is quantified using the 
Porod slope [25]. The Porod slope is determined using the following relationships where I (Q) 
and n represent the scattering intensity and the slope, respectively:

  I  (Q)  =   A ___  Q   n    + B  (5)

   log  10   [I  (Q)  − B]  =  log  10   A − n  log  10   Q   (6)

Scattering from rigid rods provides a Porod slope of 1. Porod slopes between 2 and 3 repre-
sent branched systems or networks also known as mass fractals. Porod slopes between 3 and 
4 represent rough interfaces with a fractal dimension, D where n = 6 – D and n represents a 
surface fractal. A smooth surface has a Porod slope of 4. For a smooth surface, the surface 
area, Sv can be directly related to the scattering intensity, I(Q) and the flat background scatter-
ing, bg using the following expression.

  I  (Q)  =   
2π    | 𝛥𝛥𝛥𝛥 |     

2
   S  v   ________  Q   4    + bg  (7)

2.4. Shapes and size distributions

One of the challenges with USAXS and SAXS is the need for microstructural insights prior to 
the morphological quantification of a material. Information needed a priori includes insights 
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into the polydispersity of the scatterers and shape features such as disks, sheets, laminar 
structures, cylinders, rods, or capillary pores, core-shell particles [22, 23], and spheres [26, 27]. 
Once the shape of the features is known, the size distributions can be determined by optimiz-
ing the scattering intensity from a predefined set of histogram bin sizes also known as the 
entropy maximization technique, using a least-squares fitting Fourier Transform method, or 
fitting a functional form of the size distribution and averaging the scattering over the chosen 
size distribution function. Homogeneous systems can be fitted using a single functional form. 
The morphologies of hierarchical materials, on the other hand, are better fitted by binning 
the scattering intensities corresponding to various sizes. Some of the challenges with this 
approach include the need for multiple iterations for model convergence and the generation 
of multiple fitting parameters [28, 29].

3. Brief description of USAXS/SAXS instrumentation

The ability to obtain a wide Q range that spans four decades in spatial resolution from 10−4 
to 1 Å−1 is attributed to the application of Bonse-Hart crystal optics. The flexible geometry, 
crystal optics independent of the sample apertures, source, and size of the point detector 
conferred by Bonse Hart crystals allow for the detection of a wide Q range. The constituents 
of a typical Bonse-Hart USAXS instrument include a pair of collimating crystals, ion chamber, 
guard slits, analyzer crystals, and a photodiode detector. In order to obtain a monochromatic 
beam, the pre-monochromated beam is passed through the 2-D slits and a pair of collimating 
crystals set to the angle satisfying the Bragg condition. The X-rays scattered by the sample are 
then passed through the analyzer crystals and the intensity is measured by the point detector.

4. Morphological and structural changes in beidellite on heating

4.1. Materials and methods

Beidellite procured from The Source Clay Mineral Repositories (Purdue University, West 
Lafayette, IN) are ground to a size smaller than 75 μm and compacted into a pellet with a 
thickness of about 0.5 mm. The pellet is placed in a Linkam TS1500 heating stage (Linkam 
Scientific Instruments Ltd., Tadworth, UK) in alignment with the synchrotron beamline. The 
starting and final temperatures of 30°C and 1150°C are set with a temperature ramp rate 
of 3°C/min. The X-ray scattering measurements are performed at the USAXS instrument at 
sector 9-ID at the Advanced Photon Source (APS), Argonne National Laboratory, Argonne, 
IL. Using this instrument, USAXS measurements are combined with pinhole-camera based 
SAXS measurements and with WAXS measurements. The USAXS, SAXS and WAXS data are 
represented as a function of the scattering or diffracted intensity, I (q) versus q where q = (4π/λ)
sinθ (and q = (2π/d) to determine a lattice spacing, d, from an XRD peak in the WAXS data), 
λ is the X-ray wavelength and θ is half of the scattering or diffracted angle, 2θ. Data collec-
tion times for USAXS, SAXS and WAXS are 90, 30, and 30, respectively, for a total of ≈ 3 min, 
including time for instrument stage motions. The sample configuration within the beam is not 
changed and the measurements are made within a few minutes of each other. The beam size 
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2.1. Determination of the volume fractions using the scattering invariant
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sity over all Q [23]. The volume fraction, Φv and the scattering invariant are related using the 
following expression.
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2
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2.3. Determination of the morphology or roughness of solid interfaces from the 
porod scattering regime
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Porod slope [25]. The Porod slope is determined using the following relationships where I (Q) 
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4 represent rough interfaces with a fractal dimension, D where n = 6 – D and n represents a 
surface fractal. A smooth surface has a Porod slope of 4. For a smooth surface, the surface 
area, Sv can be directly related to the scattering intensity, I(Q) and the flat background scatter-
ing, bg using the following expression.
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The ability to obtain a wide Q range that spans four decades in spatial resolution from 10−4 
to 1 Å−1 is attributed to the application of Bonse-Hart crystal optics. The flexible geometry, 
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beam, the pre-monochromated beam is passed through the 2-D slits and a pair of collimating 
crystals set to the angle satisfying the Bragg condition. The X-rays scattered by the sample are 
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4. Morphological and structural changes in beidellite on heating

4.1. Materials and methods
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Lafayette, IN) are ground to a size smaller than 75 μm and compacted into a pellet with a 
thickness of about 0.5 mm. The pellet is placed in a Linkam TS1500 heating stage (Linkam 
Scientific Instruments Ltd., Tadworth, UK) in alignment with the synchrotron beamline. The 
starting and final temperatures of 30°C and 1150°C are set with a temperature ramp rate 
of 3°C/min. The X-ray scattering measurements are performed at the USAXS instrument at 
sector 9-ID at the Advanced Photon Source (APS), Argonne National Laboratory, Argonne, 
IL. Using this instrument, USAXS measurements are combined with pinhole-camera based 
SAXS measurements and with WAXS measurements. The USAXS, SAXS and WAXS data are 
represented as a function of the scattering or diffracted intensity, I (q) versus q where q = (4π/λ)
sinθ (and q = (2π/d) to determine a lattice spacing, d, from an XRD peak in the WAXS data), 
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settings of (0.8 × 0.8) mm for USAXS and (0.8 × 0.2) mm for SAXS (pinhole SAXS or pin-SAXS) 
and WAXS are used. The sample-to-detector distances for SAXS and WAXS are set to 547 mm 
and 181 mm, respectively. The X-ray energy is to 21.0 keV. The total X-ray flux at the sample 
is ≈1013 photon s−1. Silver behenate and NIST standard reference material, SRM 660c (LaB6) are 
used for the calibration of q values and sample-to-detector distances. The collected data are 
reduced and analyzed using the Irena [31] and Nika [32] software packages written in IgorPro 
(Wavemetrics, Lake Oswego, OR).

4.2. Structural changes in beidellite on heating

One of the interesting structural features in clays is the hierarchical arrangement of the 
nanosheets and the characteristic interlayer basal distances. The interlayer water confined 
between the nanosheets contributes to the swelling behavior of these materials. In case of 
beidellite, a swelling clay, the characteristic interlayer basal spacing decreased from 12.5 
to 9.7 Å on heating from 32 to 308°C (Figure 2). This reduction in the interlayer basal 
distance corresponds to the removal of the one layer of interlayer water. A progressive 
reduction in the intensity of the peak corresponding to the interlayer basal distance of 
beidellite is also noted on heating to 1150°C. The decreasing peak intensity on heating 
suggests a reduction in the number of interlayer nanopores on heating. On the structural 
front, a significant reduction in the intensity of the characteristic beidellite peak that cor-
responds to q = 4.22 Å−1, d = 1.49 Å (h k l: (0 6 0), (3 3 0)) [21] is noted (Figure 3). The trend 
in the reduction of the peak intensity of beidellite on heating is similar to that of Na- and 
Ca-montmorillonite reported in previous studies [17]. It was interesting to note the onset 
of significant structural changes in beidellite (Figure 3) after a reduction in the interlayer 
basal distance (Figure 2).

Figure 2. Changes in the characteristic peak corresponding to the interlayer basal distance (d(001) peak) in beidellite (a) 
and the corresponding d-spacing (b) on heating from 30 to 1150°C. Vertical bars are standard deviation uncertainties 
obtained from the peak profile fitting.
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4.3. Morphological changes in beidellite on heating

The USAXS and SAXS data are collected in the range (10−4 to 1.5) Å−1 (Figure 4(a)). As the tem-
perature is increased from 32 to 1150°C, the scattering intensity increased 43, 58, and 25% at 
Q = 0.1, 0.001, and 0.0001 Å−1, respectively. While changes in the scattering contrast are noted, 
significant changes in the shape of the scattering curve are not evident. Another consider-
ation is the extent of reversibility in the morphological changes in beidellite. As discussed in 
the previous section, the changes in the interlayer basal distance coupled with the structural 
changes in beidellite produce irreversible morphological changes in beidellite.

To quantify the morphologies in beidellite on heating, the scattering contrast factor, |Δρ|2 is 
applied. The scattering contrast factor is the square of the difference in the scattering length 

Figure 3. Changes in the characteristic beidellite peak (q = 4.22 Å−1, d = 1.49 Å, hkl: 060, 330) [21] on heating to 1150°C.

Figure 4. Changes in the combined slit-smeared USAXS/SAXS data for beidellite on heating in temperature ranges of 
32–1105°C (a) and the cumulative pore volume distributions at 32°C and 1105°C (b).
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responds to q = 4.22 Å−1, d = 1.49 Å (h k l: (0 6 0), (3 3 0)) [21] is noted (Figure 3). The trend 
in the reduction of the peak intensity of beidellite on heating is similar to that of Na- and 
Ca-montmorillonite reported in previous studies [17]. It was interesting to note the onset 
of significant structural changes in beidellite (Figure 3) after a reduction in the interlayer 
basal distance (Figure 2).

Figure 2. Changes in the characteristic peak corresponding to the interlayer basal distance (d(001) peak) in beidellite (a) 
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4.3. Morphological changes in beidellite on heating

The USAXS and SAXS data are collected in the range (10−4 to 1.5) Å−1 (Figure 4(a)). As the tem-
perature is increased from 32 to 1150°C, the scattering intensity increased 43, 58, and 25% at 
Q = 0.1, 0.001, and 0.0001 Å−1, respectively. While changes in the scattering contrast are noted, 
significant changes in the shape of the scattering curve are not evident. Another consider-
ation is the extent of reversibility in the morphological changes in beidellite. As discussed in 
the previous section, the changes in the interlayer basal distance coupled with the structural 
changes in beidellite produce irreversible morphological changes in beidellite.

To quantify the morphologies in beidellite on heating, the scattering contrast factor, |Δρ|2 is 
applied. The scattering contrast factor is the square of the difference in the scattering length 

Figure 3. Changes in the characteristic beidellite peak (q = 4.22 Å−1, d = 1.49 Å, hkl: 060, 330) [21] on heating to 1150°C.

Figure 4. Changes in the combined slit-smeared USAXS/SAXS data for beidellite on heating in temperature ranges of 
32–1105°C (a) and the cumulative pore volume distributions at 32°C and 1105°C (b).
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density (SLD or ρ) between the two phases. The scattering length density is a function of the 
chemical composition and density of the phase. In case of beidellite, the scattering contrast 
factor at the beginning of the experiment emerges from the contrast between the solid and 
interlayer water. This scattering contrast factor is determined to be 100 × 1028 m−4. On heat-
ing to 1105°C, the beidellite structure undergoes significant structural changes as evident in 
Figure 3. The loss of water and densification of the material increase the scattering contrast 
factor to 500 × 1028 m−4.

To quantify the changes in the morphology of beidellite, the void size distributions are mod-
eled as spheroids with an aspect ratio of 0.2, which allows us to account for the layered mor-
phology of clays. The size distributions are determined using the entropy maximization 
routine, MaxEnt [28, 30]. These results are shown in Figure 4(b). On heating to 1105°C, the 
porosity in the range of 1–10 nm is reduced by nearly two orders of magnitude. These results 
are consistent with the reduction in the intensity of the interlayer basal distance corresponding 
to the porosity between the clay nanosheets as shown in Figure 2. This example illustrates one 
approach to quantify the changes in the nanoscale porosity corresponding to the interlayer 
basal spacing using USAXS measurements, the interlayer basal spacing in the SAXS regime, 
and the structure in the beidellite nanosheet in the WAXS regime in a single measurement.

5. Morphological and structural changes in heat-treated serpentine 
on carbon mineralization

One of the approaches for permanent carbon storage is to use highly reactive Ca- and 
Mg-bearing substrates that can react with CO2 to form thermodynamically stable and envi-
ronmentally benign calcium or magnesium carbonates [33–37]. Examples of reactive Ca- 
and Mg-bearing materials include wollastonite (CaSiO3), olivine (Mg2SiO4), and serpentine 
(Mg3Si2O5(OH)4). Serpentine is widely mined for extracting nickel and the use of serpentine 
mine tailings for accelerated carbon mineralization has been proposed [38]. However, the 
kinetics of CO2 interactions with serpentine are slow. To accelerate these kinetic interac-
tions, the heat treatment of serpentine is proposed. Heat treating serpentine to temperatures 
of 625°C dehydroxylates the lattice enabling its conversion to an amorphous state [39]. This 
amorphous material has a higher reactivity with CO2 compared to the unreacted material. 
Recent studies have shown that heat-treated serpentine is effective in capturing and convert-
ing CO2 from flue gas streams to magnesium carbonate [40]. However, the change in the pore 
size as the heat-treated serpentine is converted to magnesite is not well understood.

A reduction in the porosity of heat-treated serpentine as it is converted to magnesite may 
potentially limit the reactivity of the material by preventing the migration of Mg. In this context, 
quantification of the extent of reduction in the porosity of heat-treated serpentine on conversion 
to magnesium carbonate is useful. Combined ultrasmall, small, and wide angle X-ray scattering 
(USAXS/SAXS/WAXS) is particularly useful in linking changes in the porosity of heat-treated 
serpentine to the formation of magnesite. In this study, serpentine was heat-treated to 625°C and 
the resulting material was reacted at 185°C, PCO2 = 139 bar in 1.0 M NaCl and 0.64 M NaHCO3 
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for 3 h while stirring at 300 rpm in a pressurized batch process. The extent of carbonation of 
heat-treated serpentine to magnesium carbonate is 48%. The particle sizes of these materials 
before and after carbon mineralization were determined to be in the range of 3–100 μm.

WAXS measurements of the heat-treated serpentine before and after the carbonation reac-
tion showed the formation of magnesite. The characteristic magnesite peak corresponding to 
q = 2.99 Å−1, d = 2.10 Å and hkl: 113 is shown in Figure 5. At the lower Q regions, a reduction 
in the scattering intensity is noted (Figure 6(a)). The scattering contrast factors are applied to 
determine changes in the morphology of the materials. The scattering contrast factor of the 

Figure 5. Evidence of the formation of magnesite on the carbon mineralization of heat-treated serpentine (q = 2.99 Å−1, 
d = 2.10 Å, hkl: 113) [41] on heating to 1150°C.

Figure 6. Changes in combined slit-smeared USAXS/SAXS data of heat treated serpentine to form magnesium carbonate 
(a) and the reduction in the porosity as determined from the scattering data (b).
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and the structure in the beidellite nanosheet in the WAXS regime in a single measurement.
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kinetics of CO2 interactions with serpentine are slow. To accelerate these kinetic interac-
tions, the heat treatment of serpentine is proposed. Heat treating serpentine to temperatures 
of 625°C dehydroxylates the lattice enabling its conversion to an amorphous state [39]. This 
amorphous material has a higher reactivity with CO2 compared to the unreacted material. 
Recent studies have shown that heat-treated serpentine is effective in capturing and convert-
ing CO2 from flue gas streams to magnesium carbonate [40]. However, the change in the pore 
size as the heat-treated serpentine is converted to magnesite is not well understood.

A reduction in the porosity of heat-treated serpentine as it is converted to magnesite may 
potentially limit the reactivity of the material by preventing the migration of Mg. In this context, 
quantification of the extent of reduction in the porosity of heat-treated serpentine on conversion 
to magnesium carbonate is useful. Combined ultrasmall, small, and wide angle X-ray scattering 
(USAXS/SAXS/WAXS) is particularly useful in linking changes in the porosity of heat-treated 
serpentine to the formation of magnesite. In this study, serpentine was heat-treated to 625°C and 
the resulting material was reacted at 185°C, PCO2 = 139 bar in 1.0 M NaCl and 0.64 M NaHCO3 
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for 3 h while stirring at 300 rpm in a pressurized batch process. The extent of carbonation of 
heat-treated serpentine to magnesium carbonate is 48%. The particle sizes of these materials 
before and after carbon mineralization were determined to be in the range of 3–100 μm.

WAXS measurements of the heat-treated serpentine before and after the carbonation reac-
tion showed the formation of magnesite. The characteristic magnesite peak corresponding to 
q = 2.99 Å−1, d = 2.10 Å and hkl: 113 is shown in Figure 5. At the lower Q regions, a reduction 
in the scattering intensity is noted (Figure 6(a)). The scattering contrast factors are applied to 
determine changes in the morphology of the materials. The scattering contrast factor of the 

Figure 5. Evidence of the formation of magnesite on the carbon mineralization of heat-treated serpentine (q = 2.99 Å−1, 
d = 2.10 Å, hkl: 113) [41] on heating to 1150°C.
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(a) and the reduction in the porosity as determined from the scattering data (b).
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unreacted and reacted heat-treated serpentine are 446 × 1028 m−4 and 574 × 1028 m−4, respec-
tively. The scattering contrast factors and the void size distributions with an aspect ratio of 1 
are the important inputs to determine the morphological changes in these materials using the 
entropy maximization routine, MaxEnt [28, 30]. The changes in the cumulative pore volume 
distributions of heat-treated serpentine before and after carbon mineralization are shown in 
Figure 6(b). A significant reduction in the void spaces corresponding to sizes in the range 
of 2–6 nm is noted. These findings are consistent with the previous observations of reduced 
porosity due to magnesite growth on olivine grains [35].

6. Conclusions

In this chapter, we have illustrated the use of combined USAXS, SAXS, and WAXS measure-
ments to quantify reaction-driven microstructural and structural changes involving complex 
architected and natural materials. These materials include beidellite, a swelling clay from the 
smectite family of minerals, and serpentine, a layered sheet silicate that belongs to the family 
of phyllosilicates. The combined USAXS, SAXS, and WAXS techniques available at Sector 9-ID 
at the Advanced Photon Source in Argonne National Laboratory allows for measurements 
that span nearly four decades in spatial scale. This chapter also illustrates the need for prior 
knowledge about the morphological arrangement in materials to quantify the key features 
such as the changes in the porosity or surface area of porous materials on reaction. In this 
context, recent advancements in electron microscopy and X-ray tomography have aided the 
quantitative interpretation of the X-ray scattering measurements discussed in this chapter.
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unreacted and reacted heat-treated serpentine are 446 × 1028 m−4 and 574 × 1028 m−4, respec-
tively. The scattering contrast factors and the void size distributions with an aspect ratio of 1 
are the important inputs to determine the morphological changes in these materials using the 
entropy maximization routine, MaxEnt [28, 30]. The changes in the cumulative pore volume 
distributions of heat-treated serpentine before and after carbon mineralization are shown in 
Figure 6(b). A significant reduction in the void spaces corresponding to sizes in the range 
of 2–6 nm is noted. These findings are consistent with the previous observations of reduced 
porosity due to magnesite growth on olivine grains [35].

6. Conclusions

In this chapter, we have illustrated the use of combined USAXS, SAXS, and WAXS measure-
ments to quantify reaction-driven microstructural and structural changes involving complex 
architected and natural materials. These materials include beidellite, a swelling clay from the 
smectite family of minerals, and serpentine, a layered sheet silicate that belongs to the family 
of phyllosilicates. The combined USAXS, SAXS, and WAXS techniques available at Sector 9-ID 
at the Advanced Photon Source in Argonne National Laboratory allows for measurements 
that span nearly four decades in spatial scale. This chapter also illustrates the need for prior 
knowledge about the morphological arrangement in materials to quantify the key features 
such as the changes in the porosity or surface area of porous materials on reaction. In this 
context, recent advancements in electron microscopy and X-ray tomography have aided the 
quantitative interpretation of the X-ray scattering measurements discussed in this chapter.
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Abstract

Structural analysis of fractals generated using one-dimensional additive cellular automata
(ACA) is presented in this chapter. ACA is a dynamical system that evolves in discrete
steps and generates two-dimensional self-similar structures. We investigate the structure
of M-state ACA Rule 90 and Rule 150 using small-angle scattering (SAS; X-rays, neutrons,
light) technique and multi-fractal analysis. We show how the scattering data from ACA
can provide information about the overall size of the system, the number of total units, the
number of rows, the size of the basic fractal units, the scaling factor, and the fractal
dimension. In this case, when a particular row number reproduces a complete structure
of the fractals, we can also obtain the fractal iteration number. We show that subsets of
different states of M-state ACA can manifest both mono- and multi-fractal properties. We
provide some useful relations between structural parameters of ACA that can be obtained
experimentally from SAS.

Keywords: small-angle scattering, multi-fractals, fractals, cellular automata

1. Introduction

Morphology of many systems at nano- and microscales appears to exhibit properties of scaling
and self-similarity [1], meaning that they completely or partially preserve their structure on
different scales of observation. Such structures are referred as fractals and are the objects of the
fractal geometry [2]. The main parameter of the fractal is the fractal (Hausdorff) dimension D
that is defined by the minimal number of spheres N rð Þ of the size r that can penetrate each
other and are needed to cover all points containing the object, as [3]
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N rð Þ ¼ N0r�D, (1)

where N0 is a constant. Usually, fractal objects have non-integer value of D, whereas regular
shapes have fractal dimension equal to the dimension of the space into which they are embed-
ded. Thus, fractal dimensions of point, line, and regular surface are 0, 1, and 2, respectively.

One of the most efficient ways to investigate structures at nanoscale that exhibit fractal properties
is a small-angle scattering (SAS) of X-ray (SAXS), neutron (SANS), and light (SALS) [4]. SAS
gives an information about the structure of the sample from the spatial variations of its electron
density, providing the differential cross section as a function of transferred momentum. When
neutrons are used, the scattering is given by the interaction of the incident beam with the atomic
nuclei and with the magnetic moments [5]. For X-rays, the scattering is mainly determined by
their interaction with the electrons. Then, the obtained cross section represents the spatial
density-density correlations in the investigated volume. Generally, data analysis and model
development procedures can be interchanged between SANS and SAXS since the wavelength
of X-rays is of the same order of magnitude as those of thermal neutrons [6]. The SAS technique
has the net advantage that is noninvasive, the investigated samples do not require additional
preparation, and physical quantities are averaged over a macroscopic volume.

The main advantage of the SAS in the investigations of the fractals is the power-law behavior
of the scattering exponent of the scattering intensity I qð Þ that reveals one of the main features
of the fractal, the fractal dimension, as [7]

I qð Þ � q�D, (2)

where q ¼ 4π sin 2θð Þ=λ, θ is the scattering angle, and λ is the wavelength of incident radia-
tion. The exponent D is the fractal dimension. For fractal structures, SAS can also differentiate
between mass [4] and surface fractals [8, 9]. It was shown, recently, that SAS can be applied in
structural investigations of various types of fractals [10], as fat fractals [11, 12] and chaos-game
representation of fractals [13].

Many algorithms of the fractal construction exist, and most of them require either contraction
or expansion mappings of the object onto itself, in order to obtain scaled and self-similar
pattern [2, 14]. In the case of deterministic fractals, self-similarity is exact, meaning that the
fractal is identical at all scales. Usually, natural systems do not have deterministic structure,
and self-similarity they exhibit is stochastic. One can model them by introducing some ran-
domness, assigning probabilities to generating rules. In addition, some systems can be multi-
fractals, so they have more than one fractal dimension or scaling rule. The processes of
generating all these fractals are performed separately, depending on which of particular type
of fractal is needed to model and investigate. However, there is a mathematical model called
cellular automata (CA) that can show a very diverse and complex behavior and manifests the
properties of all different types of fractals [15–17].

Cellular automaton (CA) is a simple model of locally interacting dynamical systems that
evolve in discrete steps. Single cellular automaton represents the site that has a finite number
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of states and changes each step, depending on the states of the neighboring sites. Although
each site of the CA evolves according to the same rule, interactions between neighboring sites
can lead to fairly complex patterns. CA can generate a large diversity of structures using
simple initial conditions and their transition rules. CAs are often used as a model of physical
systems with many degrees of freedom as biological systems, percolation clusters, diffusion-
limited aggregates, and others. A particular type of CA, called additive cellular automata, can
generate self-similar fractals [18, 19, 22].

In the case of CA consisting of a line of sites (one-dimensional CA), it is known that they fall
into four distinct universality classes [15, 16]:

a. Spatially homogeneous state, yielding behavior similar to limit points.

b. Sequence of simple stable or periodic structures, yielding behavior similar to limit cycles.

c. Chaotic aperiodic behavior, similar to “strange” attractors.

d. Complicated localized structures, where properties are undecidable.

In the approach used here, we view additive cellular automata (ACA) as discrete dynamical
systems, in which the set of possible configurations ACA forms a fractal set [18, 19]. We
provide characterization of structural properties of the fractals generated by additive cellular
automata using small-angle scattering technique and multi-fractal analysis. We consider each
site as a scattering unit. Scattering structure factors are calculated using efficient optimization
of Debye formula [20, 21]. We show here how to extract structural information and fractal
properties of ACA from SAS data, such as the fractal dimension, the overall size of the sample,
the sizes of basic units, the scaling factor, and the number of generated steps.

2. Theoretical background

The following section presents the theoretical basics of used models and methods. We briefly
explain the mathematical description of the cellular automata and the theoretical foundations
of the small-angle scattering technique. We also discuss the transition matrix method as an
algorithm for calculating the fractal dimension of ACA.

2.1. Cellular automata

In general, an arbitrary site of the M ¼ pt-state CA, where p is a prime and t is a natural
number, with the value aki at position i and step k is determined by a transition rule and
depends on the state of the site itself and states of its neighbors iþ r1, iþ r2,⋯iþ rl at step
k� 1; thus

aki ¼ ϕ ak�1
iþr1 ; a

k�1
iþr2 ;⋯; ak�1

iþrl

� �
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N rð Þ ¼ N0r�D, (1)
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of Debye formula [20, 21]. We show here how to extract structural information and fractal
properties of ACA from SAS data, such as the fractal dimension, the overall size of the sample,
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The following section presents the theoretical basics of used models and methods. We briefly
explain the mathematical description of the cellular automata and the theoretical foundations
of the small-angle scattering technique. We also discuss the transition matrix method as an
algorithm for calculating the fractal dimension of ACA.

2.1. Cellular automata

In general, an arbitrary site of the M ¼ pt-state CA, where p is a prime and t is a natural
number, with the value aki at position i and step k is determined by a transition rule and
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where r1; r2;⋯; rlð Þ∈ Zd� �l
is called a neighborhood index and d∈N is the dimensionality of

the lattice. A particular type of CA called additive cellular automata is described by an
additive (linear) rule of the type:

aki ¼ c1ak�1
iþr1 þ c2ak�1

iþr2 þ⋯þ cmak�1
iþrl modM, (4)

where ci ∈N are coefficients with i ¼ 1,⋯, l. The initial state contains a single element that
is considered as a non-zero site. For other initial conditions with multiple non-zero sites, due
to linearity property, we shall obtain a superposition of structures generated from a single
site [22].

There are two unique and distinct nontrivial one-dimensional ACA rules that can be obtained
by using Eq. (4). In the first case, we have r1 ¼ �1, r2 ¼ 1, and all other terms equal to zero; the
obtained relation will be given by

aki ¼ c1ak�1
i�1 þ c2ak�1

iþ1 modM: (5)

The structure generated by such rule for 2-state ACA when ci ¼ 1 is shown in Figure 1
(left part). In the limit of the high number of generated steps, this structure will be
nothing but the well-known Sierpinski triangle fractal. In the second case, we choose
r1 ¼ �1, r2 ¼ 0, r3 ¼ 1, and all other terms equal to zero. Therefore, the recurrence relation
becomes

aki ¼ c1ak�1
i�1 þ c2ak�1

i þ c3ak�1
iþ1 modM: (6)

The structure generated by this rule for M ¼ 2 and ci ¼ 1 is shown in Figure 1 (right part).
Unlike the previous case, when the whole structure is self-similar, this structure has self-
similar parts [22]. Since the structure generated by ACA is self-similar, then one can determine
its fractal dimension [23]. It was shown that the growth rate dimension of ACA is equal to the
fractal dimension [18, 19] and given by

D ¼ lim
k!∞

logNk

log k
, (7)

where Nk is the total number of non-zero state sites.

Figure 1. Cellular automata generated by Rule 90 (left part) and Rule 150 (right part).
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A more general case of fractal structure can be obtained by considering that the states M and
coefficients ci of each site can take arbitrary values. For arbitrary M, we name these patterns
“M-state Rule 90” and “M-state Rule 150” in order to underline that the recurrence relations
are the same for each number of possible states. For M ¼ 2 and ci ¼ 1, Eqs. (5) and (6) give the
well-known ACA Rule 90 and Rule 150, respectively.

2.2. Transition matrix method

One additional effective approach to compute the fractal dimension of ACA is the TM method
[18] which analyzes only the transition rule. Let us suppose a set of one-dimensional blocks of
length m with all possible configurations of M states. The length of the blocks should not be
less than the difference in positions of the first and the last terms (neighbors) in Eq. (4), i.e.,
rl � r1 ≤m. Omitting the trivial block with all zero elements, there are u ¼ 2m � 1 of nontrivial
blocks left. We can define a configuration of u th block of length m by inserting zeros, as
0 aki 0 a

k
iþ1 0⋯0 akm 0

� �
. Then, applying an ACA transition function (see Eq. (4)) on this configu-

ration, we obtain akþ1
i akþ1

iþ1⋯akþ1
m

� �
. The transition matrix shows how many blocks of a certain

type are generated by the transition function from the configuration of uth block. The largest
eigenvalue λ of the transition matrix gives the fractal dimension D of the ACA by using the
relation [18]

D ¼ logMλ: (8)

For Rule 90 the length of the block m ¼ 2 and the number of states M ¼ 2, so the number of
distinct nontrivial blocks u ¼ 3, and they are [0 1], [1 0], and [1 1]. Now, inserting zeros
between elements of the blocks and applying Eq. (5), we obtain

0 0 0 1 0½ �
0 0 1 0 1½ �

0 1 0 0 0½ �
1 0 1 0 0½ �

0 1 0 1 0½ �
1 0 0 0 1½ � ,

for the purpose of finding the transition matrix, we reduce upper configurations to three middle
elements in the row [18]:

0 0 1½ �
0 1 0½ �

1 0 0½ �
0 1 0½ �

1 0 1½ �
0 0 0½ � :

Calculating the number of different blocks in each obtained reduced two-row configura-
tions, the transition matrix can be derived. In the first configuration, block [0 1] appears
twice and [1 0] once; in the second [1 0] once and [0 1] twice; and in the third both [1 0] and [0
1] once. In all configurations block [1 1] does not occur. The final form of the transition
matrix for Rule 90 is

2 1 1
1 2 1
0 0 0

2
64

3
75:
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where Nk is the total number of non-zero state sites.

Figure 1. Cellular automata generated by Rule 90 (left part) and Rule 150 (right part).
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A more general case of fractal structure can be obtained by considering that the states M and
coefficients ci of each site can take arbitrary values. For arbitrary M, we name these patterns
“M-state Rule 90” and “M-state Rule 150” in order to underline that the recurrence relations
are the same for each number of possible states. For M ¼ 2 and ci ¼ 1, Eqs. (5) and (6) give the
well-known ACA Rule 90 and Rule 150, respectively.

2.2. Transition matrix method

One additional effective approach to compute the fractal dimension of ACA is the TM method
[18] which analyzes only the transition rule. Let us suppose a set of one-dimensional blocks of
length m with all possible configurations of M states. The length of the blocks should not be
less than the difference in positions of the first and the last terms (neighbors) in Eq. (4), i.e.,
rl � r1 ≤m. Omitting the trivial block with all zero elements, there are u ¼ 2m � 1 of nontrivial
blocks left. We can define a configuration of u th block of length m by inserting zeros, as
0 aki 0 a

k
iþ1 0⋯0 akm 0
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. Then, applying an ACA transition function (see Eq. (4)) on this configu-

ration, we obtain akþ1
i akþ1

iþ1⋯akþ1
m

� �
. The transition matrix shows how many blocks of a certain

type are generated by the transition function from the configuration of uth block. The largest
eigenvalue λ of the transition matrix gives the fractal dimension D of the ACA by using the
relation [18]

D ¼ logMλ: (8)

For Rule 90 the length of the block m ¼ 2 and the number of states M ¼ 2, so the number of
distinct nontrivial blocks u ¼ 3, and they are [0 1], [1 0], and [1 1]. Now, inserting zeros
between elements of the blocks and applying Eq. (5), we obtain

0 0 0 1 0½ �
0 0 1 0 1½ �

0 1 0 0 0½ �
1 0 1 0 0½ �

0 1 0 1 0½ �
1 0 0 0 1½ � ,

for the purpose of finding the transition matrix, we reduce upper configurations to three middle
elements in the row [18]:

0 0 1½ �
0 1 0½ �

1 0 0½ �
0 1 0½ �

1 0 1½ �
0 0 0½ � :

Calculating the number of different blocks in each obtained reduced two-row configura-
tions, the transition matrix can be derived. In the first configuration, block [0 1] appears
twice and [1 0] once; in the second [1 0] once and [0 1] twice; and in the third both [1 0] and [0
1] once. In all configurations block [1 1] does not occur. The final form of the transition
matrix for Rule 90 is

2 1 1
1 2 1
0 0 0

2
64

3
75:

Small-Angle Scattering Analysis of Fractals Generated by Additive Cellular Automata
http://dx.doi.org/10.5772/intechopen.74498

91



From Table 1 one can see that at M ¼ 2, 4, 8 and M ¼ 3, 9 all the fractal dimensions are
equal both for M-state Rule 90 and Rule 150. The same results hold for any M ¼ pt-state ACA
at constant p and arbitrary t. It is known that if a fractal consists of two or more different sub-
fractals, then the fractal dimension of the fractal is equal to the biggest value among fractal
dimensions of the sub-fractals [24].

The most natural way is to consider an M-state ACA as a composition of sub-fractals formed
by different values of the ACA sites. Since an M-state ACA has M� 1 non-zero distinct states,
4-state ACA can be presented as a decomposition into three subsets of different states. Figure 2
shows the decomposition of 4-state Rule 90 and Rule 150 into the corresponding sets of state-1,
state-2, and state-3. Thereafter, we refer to “set of state-i” simply as “state-i.” All three subsets
have nonuniform distribution of points and, thus, may have properties of multi-fractals.

To characterize such nonuniform fractals, one needs to weight the well-known box-counting
method according to the number of points inside a box. Then, one can define a generalized
dimension spectrum as

Ds ¼ 1
s� 1

lim
r!0

log
P

iP
s
i

log r
, (9)

where Pi � μ Bið Þ=μ Að Þð Þ is the normalized measure of the ith box Bi. We use here the
barycentric fixed-mass (BFM) method to estimate the dimension spectra, both for ACA and
their subsets [25]. In order to perform such analysis, as for the SAS, we consider occupied sites
of ACA as points. In the BFM method, the boxes grow by reaching their nearest neighbor that
covers the same mass. At large scales when leveling effect occurs, an effective way to reduce it
can be accomplished by a pivot point selection and usage of a non-overlapping criteria for
reduction of the edge effects, for computational time and for precision improvements [25].

2.3. Small-angle scattering

In this chapter we provide a structural analysis of 2-state ACA and 4-state ACA. The latter
ones presented in Figure 2 is considered as a 2-state system, regardless of the value of each
occupied site, meaning that there are only two possible values of the site, “occupied” and “not
occupied,” as shown in Figure 3. In the similar manner, all subsets of different states in 4-state
ACA are also considered as 2-state system.

Generally, a typical small-angle scattering experiment performed using beams of neutrons,
X-rays, or light. Experimental setup consists of a source of monochromatic beam of particles,
an irradiated sample, and a detector. The incident beam with wave vector ki scatters the

M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9

Rule 90 1.58496 1.63093 1.58496 1.68261 1.61315 1.71241 1.58496 1.63093

Rule 150 1.69424 1.63093 1.69424 1.82948 1.70622 1.84558 1.69424 1.63093

Table 1. Fractal dimension D of M-state Rule 90 and Rule 150.
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Figure 2. Decomposition of 4-state CA into subsets of state-1, state-2, and state-3. Upper part: Rule 90; lower part:
Rule 150.

Figure 3. Representation of 4-state ACA as 2-state system. Left part: Rule 90; right part: Rule 150.
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sample with the wave vector kf at the angle 2θ. The quantity measured is the differential cross
section per unit volume as a function of the scattering vector q ¼ ki � kf .

Let us suppose an ensemble of objects with scattering length bj and the scattering length density

SLD r rð Þ ¼ P
jbj r � rj
� �

[5], where rj is the position of the scattering units. The total scattering

amplitude is defined by the Fourier transform of r rð Þ by A qð Þ � Ð
vr rð Þe�iq�rd3r, where v is the

total irradiated volume. If we consider scattering from the system where particles of density rm
are immersed in a uniform solid matrix of density rp, then the scattering contrast will be given as

Δr ¼ r � r0, and the intensity from the entire sample can be obtained according to

I qð Þ ¼ c Δrj j2V2 F qð Þj j2
D E

, (10)

where c is the concentration of objects, V is the volume of each object, and F qð Þ ¼ 1
V

Ð
Ve

�iq�rd3r is
the normalized form factor with F 0ð Þ ¼ 1. The symbol ⋯h i stands for ensemble averaging over
all orientations.

Real fractal samples usually have polydisperse distribution of the sizes of composing units.
Thus, the corresponding scattering intensity from polydisperse fractals can be regarded as the
sum of each individual form factor weighted with the corresponding volume V and contrast
Δr. We choose here a continuous distribution DNk lð Þ of fractals with different sizes l that gives
the probability of finding a fractal of the size l lying in the range l; lþ dlð Þ. We consider here a
lognormal distribution of fractal sizes, such as

DNk lð Þ ¼ 1

σl 2πð Þ1=2
e�

log l=μ0ð Þþσ2=2ð Þ2
2σ2 , (11)

where σ ¼ log 1þ σ2r
� �� �1=2, μ0 ¼ lh iD is the mean length, σr ¼ l2

� �� μ2
0

� �1=2
=μ0 is the relative

variance, and ⋯h iD ¼ Ð∞
0 ⋯DNk lð Þdl. Since for a polydisperse fractal dispersion the volume of

each fractal has a continuous variation with its size, we have

I qð Þ ¼ c Δrj j2
ð∞
0

F q!
� ����

���
2

� �
V2 lð ÞDNk lð Þdl, (12)

where F qð Þ is the normalized form factor. Since in our investigations we use cellular automata
(CA) to generate the Nk sites that are considered as scattering points, we shall compute the
scattering intensity using the Debye formula [20]:

I qð Þ ¼ NkIs qð Þ þ 2Fs qð Þ2
XNk�1

i¼1

XNk

j¼iþ1

sin qrij
qrij

, (13)

where Is qð Þ is the intensity scattered by each fractal unit and rij is the distance between units i and

j. When the number of units exceeds few thousands, the computation of the term sin qrij
� �

= qrij
� �

is very time-consuming and can be handled via a pair-distance histogram g rð Þ, with a bin-width
commensurate with the experimental resolution [21]. Thus, Eq. (13) becomes
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I qð Þ ¼ NkIs qð Þ þ 2F2s qð Þ
XNbins

i¼1

g rið Þ sin qri
qri

, (14)

where g rið Þ is the pair-distance histogram at pair distance ri. For determining fractal properties, we
can neglect the form factor and consider Is qð Þ ¼ F2s qð Þ ¼ 1. Thus, Eq. (14) gives the structure factor:

S qð Þ ¼ Nk þ 2
XNbins

i¼1

g rið Þ sin qri
qri

: (15)

3. Results and discussion

3.1. 2-state ACA

Results of numerical calculations for mono- and polydisperse scattering structure factors of
2-state ACA Rule 90 and Rule 150 with ci ¼ 1 at different steps k are shown in Figure 4.

Figure 4. Monodisperse (left part) and polydisperse (right part) structure factors of 2-state ACA. Upper part: Rule 90;
lower part: Rule 150.
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lognormal distribution of fractal sizes, such as

DNk lð Þ ¼ 1

σl 2πð Þ1=2
e�

log l=μ0ð Þþσ2=2ð Þ2
2σ2 , (11)

where σ ¼ log 1þ σ2r
� �� �1=2, μ0 ¼ lh iD is the mean length, σr ¼ l2

� �� μ2
0

� �1=2
=μ0 is the relative

variance, and ⋯h iD ¼ Ð∞
0 ⋯DNk lð Þdl. Since for a polydisperse fractal dispersion the volume of

each fractal has a continuous variation with its size, we have

I qð Þ ¼ c Δrj j2
ð∞
0

F q!
� ����

���
2

� �
V2 lð ÞDNk lð Þdl, (12)

where F qð Þ is the normalized form factor. Since in our investigations we use cellular automata
(CA) to generate the Nk sites that are considered as scattering points, we shall compute the
scattering intensity using the Debye formula [20]:

I qð Þ ¼ NkIs qð Þ þ 2Fs qð Þ2
XNk�1

i¼1

XNk

j¼iþ1

sin qrij
qrij

, (13)

where Is qð Þ is the intensity scattered by each fractal unit and rij is the distance between units i and

j. When the number of units exceeds few thousands, the computation of the term sin qrij
� �

= qrij
� �

is very time-consuming and can be handled via a pair-distance histogram g rð Þ, with a bin-width
commensurate with the experimental resolution [21]. Thus, Eq. (13) becomes
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I qð Þ ¼ NkIs qð Þ þ 2F2s qð Þ
XNbins

i¼1

g rið Þ sin qri
qri

, (14)

where g rið Þ is the pair-distance histogram at pair distance ri. For determining fractal properties, we
can neglect the form factor and consider Is qð Þ ¼ F2s qð Þ ¼ 1. Thus, Eq. (14) gives the structure factor:

S qð Þ ¼ Nk þ 2
XNbins

i¼1

g rið Þ sin qri
qri

: (15)

3. Results and discussion

3.1. 2-state ACA

Results of numerical calculations for mono- and polydisperse scattering structure factors of
2-state ACA Rule 90 and Rule 150 with ci ¼ 1 at different steps k are shown in Figure 4.

Figure 4. Monodisperse (left part) and polydisperse (right part) structure factors of 2-state ACA. Upper part: Rule 90;
lower part: Rule 150.
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Usually, scattering structure factor spectra consist of three main regions. The first one, Guinier
region, is characterized by constant intensity at low q range and indicates the overall size of the
irradiated sample by the rightmost part of the plateau as q ≈ 2π=H, where H is the height of the
ACA. The following region is called fractal and provides information about fractal properties
of the sample from the power-law behavior of the scattering curve. The slope of the curve
reveals the fractal dimension of the sample, and the rightmost part of the fractal region is
related with the sizes of basic units, as q ≈ 2π=l, where l is the side length of the basic unit. The
presence of the most pronounced minima and their periodicity in this region can say about the
fractal iteration number and the scaling factor. The third characteristic region is asymptote at
high values of q that gives the number of units composing the fractal sample. Note that for the
purposes of our investigations we normalized the size of all ACA at different steps k, in order
to compare only their structural and fractal properties; thus, at low q all scattering curves are
approximately equal.

From monodisperse scattering data (Figure 4, left part), one can find that at steps k ¼ 32 and
k ¼ 64 curves almost completely overlap each other in Guinier and fractal regions, except the
asymptotic region due to different numbers of composing units. While behavior of the curve at
k ¼ 48 is different, which arises from the fact that for M ¼ pt-state (t∈N) ACA the number of
steps which generates a complete fractal structure is k ¼ pn [18, 22], where n∈N is the fractal
iteration number. In the case of 2-state ACA, the only possible prime p ¼ 2 and complete
fractal structures appear when k ¼ 2n. At steps k ¼ 32 and k ¼ 64, the structure is a complete
fractal at two consecutive iterations n ¼ 5, 6 as shown in Figure 5.

The fractal iteration number n can be obtained from SAS data as the number of the most
pronounced minima in fractal region. Fractal dimension can be better determined from poly-
disperse scattering structure factor and coincide with theoretical results from Table 1. In
polydisperse case minima in fractal regions are smoothened due to different distributions of
the sizes of basic units; thus, the iteration number and the scaling factor can no longer be
determined.

The normalization we used in our calculations is performed in such a way that asymptotes of
scattering curves tend to the value 1=Nk, where Nk is the number of units composing the

Figure 5. Structure of 2-state ACA at steps k ¼ 32; 48; 64. Left part: Rule 90; Right part: Rule 150.
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fractal; in the case of ACA, it is the number of occupied sites at step k. For 2-state ACA Rule 90
and Rule 150, one can find analytical relations between the number of occupied sites and the
fractal iteration number:

Nk ¼
3n, for 2-state Rule 90
Fnþ2 � 2n, for 2-state Rule 150

,
�

(16)

where n ¼ log 2k is the fractal iteration number and Fj is the jth element of the Fibonacci series.

3.2. 4-state ACA

Results of numerical calculations for mono- and polydisperse scattering structure factors of
4-state ACA Rule 90 and Rule 150 with ci ¼ 1 and their subsets of different states are shown in
Figure 6.

One can see that the scattering curves of both Rule 90 and Rule 150 in the Guinier region do not
coincide. This is due to different distributions of sites in total 4-state and subsets of different
states. To analyze this difference, we can compare a radius of gyration of these four structures.

Figure 6. Monodisperse (left part) and polydisperse (right part) structure factors of 4-state ACA. Upper part: Rule 90;
lower part: Rule 150.
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fractal; in the case of ACA, it is the number of occupied sites at step k. For 2-state ACA Rule 90
and Rule 150, one can find analytical relations between the number of occupied sites and the
fractal iteration number:
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3n, for 2-state Rule 90
Fnþ2 � 2n, for 2-state Rule 150
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where n ¼ log 2k is the fractal iteration number and Fj is the jth element of the Fibonacci series.

3.2. 4-state ACA

Results of numerical calculations for mono- and polydisperse scattering structure factors of
4-state ACA Rule 90 and Rule 150 with ci ¼ 1 and their subsets of different states are shown in
Figure 6.

One can see that the scattering curves of both Rule 90 and Rule 150 in the Guinier region do not
coincide. This is due to different distributions of sites in total 4-state and subsets of different
states. To analyze this difference, we can compare a radius of gyration of these four structures.

Figure 6. Monodisperse (left part) and polydisperse (right part) structure factors of 4-state ACA. Upper part: Rule 90;
lower part: Rule 150.
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The radius of gyration Rg of ACA can be obtained from Guinier region by performing a series
expansion of the scattering intensity (Eq. (15)):

I qð Þ ¼ I 0ð Þ 1� q2R2
g=3þ⋯

� �
: (17)

Thus, by representing the data from Figure 6 (left part) in a Guinier plot logSvs: qHð Þ2
� �

, the

previous expansion gives a linear region of slope, from which the radius of gyration can be
obtained through Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3∣slope∣

p
.

Numerical values for the slopes of scattering data for 4-state Rule 90 and Rule 150 for the
corresponding state-i, i ¼ 1; 2; 3, are shown in Figure 7. For both rules one can see that state-1
has the biggest radius of gyration. As shown in Figure 2, this can be explained by the fact that
in state-1 a higher density of sites is found at the edges of ACA, for state-2 regions of higher
density are spread inside, and for state-3 and total 4-state, there are little differences between
regions of different densities.

Nonuniform distribution of sites of the subsets is the reason of their multi-fractal properties. To
proof this fact, we provide a multi-fractal analysis using barycentric fixed-mass method
according to Eq. (9) to the subset states of total 4-state ACA Rule 90 and Rule 150. Figure 8
shows the dimension spectra of the subsets, and the value Ds is changing along s range,
meaning that they are multi-fractals. By definition of generalized dimensions, s ¼ 0 gives the
box-counting dimension, which is obtained from SAS simulations.

SAS spectra from Figure 6 show that the fractal dimension of the subsets of different states
does not coincide with the fractal dimension of total 4-state. In fact, that occurs due to
inappropriate choice of the decomposition, presented in Figure 2. From Table 1 we know that
2-state and 4-state ACA have the same value of fractal dimension; thus, it is expected to have
one structure being the part of other. In fact, such pattern appears when state-1 and state-3 of
total 4-state ACA are superimposed and form 2-state ACA, as shown in Figure 9. 2-State ACA
has a bigger value of the fractal dimension than state-2; thus, it equals to the fractal dimension
of the total 4-state.

Figure 7. Guinier plot of 4-state ACA. Left part: Rule 90; right part: Rule 150.
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3.3. ACAwith different coefficients in transition rule

In previous sections we dealt only with ACA transition rules where all coefficients ci ¼ 1. More
general cases of ACA may be obtained varying these coefficients. For an M-state ACA, there
are Mi different distinct combinations of ci exist, where i is the number of terms in transition
rule (neighborhood). Most of these combinations generate structures that are trivial and/or are

Figure 8. Multi-fractal spectra of the subsets of 4-state ACA. Left part: Rule 90; right part: Rule 150.

Figure 9. Decomposition of 4-state ACA into 2-state ACA and subset state-2. Left part: Rule 90; right part: Rule 150.
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mirror reflection of each other. However, some of them give quite intricate patterns with the
same overall structure as if ci ¼ 1 but with different arrangements of the subsets, presented in
Figure 10.

In the case of 4-state ACA, we set ci ¼ 3 and calculated corresponding SAS and multi-fractal
spectra. Unlike the arrangement presented in Figure 2, in this case subsets state-1 and state-3
have more uniform and similar arrangement of the sites. From SAS data (Figure 11, left
part), one can find that scattering curves of state-1 and state-3 almost completely overlap.
The difference appears only in transition between fractal and asymptotic regions. The
dimension spectrum (Figure 11, right part) shows that there is a little difference in the fractal
dimensions of state-1 and state-2, and due to uniform distribution of the sites, the spectra are
almost constant along s range, meaning that state-1 and state-2 are mono-fractals. The
arrangement of the sites of state-2 is the same as in Figure 2, meaning that superposition of

Figure 10. Decomposition of 4-state ACA with ci ¼ 3 into subsets of state-1, state-2, and state-3. Left part: Rule 90; right
part: Rule 150.

Small Angle Scattering and Diffraction100

the state-1 and state-2 gives the 2-state ACA. It is confirmed by the slope of the scattering
curve in fractal region.

For large values of k, Eq. (7) can be approximated by

k ¼ N�D
k : (18)

Thus, using the value of the fractal dimension obtained from SAS data (Figure 4) and the
asymptotic values, we can find a good approximation of the number of rows k generated
by ACA. Using Eq. (18) one can find connection between the number of rows generated
by ACA, the fractal iteration number, and the scaling factor of the corresponding fractal
structure:

k ¼ β�n
s : (19)

For self-similar fractals, the total number of scattering units at nth iteration is given by [26]

Nn ¼ 1=βs
� �nD

: (20)

From Eqs. (8) and (7), one can find that Nk ¼ pn�D. The last expression shows that Eq. (20) can
be extended for fractals generated byM ¼ pt-state cellular automata. Thus, the scaling factor of
such fractals is the inverse of this prime p:

βs ¼ p�1: (21)

4. Conclusions

In this chapter we investigated the structural properties of the fractals generated by additive
cellular automata. The small-angle scattering technique and multi-fractal analysis are consid-
ered to characterize the structure of the nano- and microscale models of ACA fractals. We

Figure 11. (Left part) Monodisperse structure factor of 4-state ACA Rule 90 with ci ¼ 3. (Right part) Dimension spectra of
subset states of 4-state ACA Rule 90 with ci ¼ 3.
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present the theoretical foundations of the methods of ACA characterization, such as the
transition matrix method, the small-angle scattering, and the multi-fractal analysis. We show
how they can be implemented in the structural investigations of the fractals generated by
ACA. The analysis is performed using an efficient and optimized version of Pantos and
barycentric fixed-mass method for calculating the small-angle scattering and the dimension
spectra, respectively.

The mathematical description of the general algorithm for the construction of the fractals using
additive cellular automata (ACA) is explained. We show how to obtain the well-known Rule
90 and Rule 150 that generate self-similar fractals using deterministic algorithm. We explain
how to construct generalization of these rules for arbitrary M state. The comparison of the
structural characteristics of the 2-state and 4-state ACA is presented. We showed cases when
subsets of different states of 4-state ACA are mono- and multi-fractals.

For each introduced M-state ACA, we calculate the scattering and the multi-fractal spectrum,
and we explain how to extract the main fractal and structural properties such as the fractal
dimension, the number of steps generated by ACA, the fractal iteration number, the scaling
factor, the overall size, the sizes of the basic units, and the number of units in the system.

The obtained results can be applied for structural investigations of the nano-/microscale sys-
tems, modeled by cellular automata.
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