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Preface

During the nineteenth century, mechanics was mainly considered to be a part of
applied mathematics. At the beginning of the twentieth century, all topics under
the subject of mechanics, “solid mechanics” and “fluid mechanics,” were defined 
with an index notation, and by re-explanation of these issues according to their
coordinate systems, continuum mechanics has been created. With the gathering 
of all subjects in a single title, a new area has been opened in macroscopic (large-
scale) mechanics. The exact solutions to linear/nonlinear elasticity problems have
been discovered by applying analytical, numerical, and experimental methods
and techniques to the new generation of computers and experimental equipment. 
Numerical solutions such as finite differences and finite elements methods have
been extensively used to approximate the exact results.

The purpose of writing this book has been summarized in three main concepts. 
The first objective was to provide the basic information and principles about the
history and theory of elasticity. The second was to explain the fundamental equa-
tions. The third was to present the recent engineering application studies that
have been collected under the following basic headings: “FEA and Experimental 
Determination of Applied Elasticity Problems for Fabricating Aspheric Surfaces,” 
“Repair Inspection Technique based on Elastic-Wave Tomography Applied for
Deteriorated Concrete Structures,” and “Concept of Phase Transition Based on
Elastic Systematics.”

The main subject of this book is engineering elasticity and consists of five chapters
in two sections. The title of the first section is “General Theorems in Elasticity” 
and the first chapter of this section belongs to the editor and is entitled “Analytical 
and Numerical Approaches in Engineering Elasticity.” In this chapter, the histori-
cal development of “elasticity theory” is presented briefly, and recent studies
performed regarding the elasticity concept are categorized and listed according to
their basic engineering problem groups. A literature survey has been performed and 
categorized between the years 2014 and 2018 and represented in a statistical plot.

The second chapter in the first section is entitled “A General Overview of Stress-
Strain Analysis for the Elasticity Equations” and explains the results of elasticity
equations and the analysis of stress, strain, and stress–strain relationships through
particular sections. In this section the concept of normal and shear stresses, 
principal stresses, plane stress, Mohr’s circle, stress invariants, stress equilibrium
equations, linear elasticity, generalized Hooke’s law, and stress–strain relationships
for triclinic, monoclinic, orthotropic, transversely isotropic, fibre-reinforced, and 
isotropic materials are discussed by researchers P. Kumar, M. Mahanty, and A. 
Chattopadhyay.

The title of the second section is “Engineering Applications in Theory of Elasticity” 
and consists of three chapters on engineering applications on elasticity.

The first chapter of the second section is entitled “FEA and Experimental 
Determination of Applied Elasticity Problems for Fabricating Aspheric Surfaces” 
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and is written by Dr. D.N. Nguyen. In this chapter, the elastic deformation machin-
ing method is explained in two cases “Elastic deformation machining method with 
mold” and “Elastic deformation machining method without mold.” When the 
vacuum pressure was used in the construction of complex aspherical surfaces, the 
differential equations of an appropriate plate theory were solved and the amount of 
deviation of the circular plate was determined and the test results were presented 
comparatively. Finite element analysis results for “Elastic deformation machin-
ing process with mold” were presented by curves. The finite element model was 
designed for establishing the spherical surface through a simulation of contact 
processing between workpiece and mold surface. In conclusion it was clarified that 
the experimental results agreed greatly with FEA results.

The second chapter is entitled “Concept of Phase Transition Based on Elastic 
Systematics” and is presented by Dr. P.S. Nnamchi and Dr. C.S. Obayi. In this chap-
ter, the authors present the actual scaling of phase transition-driven considerations, 
such as martensitic transformation and transformable shape memory formation via 
elastic constant systematics in terms of continuum mechanics. According to this 
chapter, the results of the scaling procedure and acoustic anisotropy with respect to 
the mechanical stability criteria of the polycrystals based on the elastic modulus are 
compatible with the new experimental data obtained from the literature.

The third chapter is entitled “Repair Inspection Technique Based on Elastic-Wave 
Tomography Applied for Deteriorated Concrete Structures” and was written by Dr. 
K. Hashimoto, Dr. T. Shiotani, Dr. T. Nishida, and Dr. N. Okude. In this research,
the testing results based on the internal damage assessment for the repair condi-
tion by applying elastic wave tomography and acoustic emission tomography are 
presented from a concrete pier, concrete wall, and slab obtained form. Determining
the 3D velocity distribution, the repair effects of the epoxy injection method and
the patch repair method are quantitatively evaluated and results are explained.

The first section of this book includes the recently published literature on elastic-
ity concepts and basic theoretical knowledge. In the second section, researchers 
have focused on the engineering applications and on the use of elasticity theory by 
experimental, numerical, and analytical studies.
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Chapter 1

Introductory Chapter: Analytical 
and Numerical Approaches in 
Engineering Elasticity
Ezgi Günay

1. Introduction

In this section, the historical development of the “elasticity theory” was pre-
sented briefly, and recent studies performed about the elasticity concept were 
categorized and listed according to their basic engineering problem groups. The 
mentioned literature survey has been performed by searching the keywords 
“elasticity,” “analytic,” and “solution” between the years 2014 and 2018. The most 
important general aspects of the “elasticity theory” were described in four groups 
as “the unknowns,” “the used equations,” “the modeling procedures,” and “solu-
tion methods.” In the future, in the consideration of these explained theoretical, 
numerical, and experimental properties, the researchers can be concentrating on 
the origin of the problem and new solution methods in deciding the exact nature of 
the material.

The elasticity concept of solid materials is the deformation with the external 
force application and recovery to its original shape after the forces removed. In the 
strength measurement of the material, stress (force per area) and strain (deforma-
tion per unit length) criteria have been used. The elasticity theory was presented in 
order to explain the basic theoretical concepts and their analytical solution methods, 
the deformations that were assumed to be very small and corresponding stress 
distributions. The classical elasticity theory was explained by theorems of “unique-
ness of solution” and “existence of solution” as they have been declared in the basic 
mathematical concepts. The “uniqueness of solution” theorem was restricted to a 
single solution space by satisfying the related boundary or the initial conditions. If 
there were no any boundary or initial conditions, the solution space would have to be 
infinity. The “existence of solution” theorem was created by explaining the default 
displacement functions, checking the equilibrium equations for stress definitions, 
and satisfying the partial differential equations with the infrastructure of the default 
solutions. The purpose of the elasticity theory was the determination of this unique 
and exact solution in elastic region of the material. In linear elastic region, superpo-
sition method and combined loading applications are widely used in engineering.

2. Historical development in elasticity

The historical development of the concept of “elasticity” by considering math-
ematics, physics, and engineering mechanics was summarized in Figure 1 [1, 2]. 
The scientific studies performed on engineering problems have been grouped as 
analytical, numerical, and experimental. The main solution techniques listed below 
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form the first step aspects in performing the experiments and obtaining the numeri-
cal solutions by considering innovations: (i) characteristics of the solution methods, 
(ii) learning the mathematical theories, (iii) the physics of the problem, and (iv) 
learning the problem-solving methodologies. The second step aspects have been 
listed as “solving problems by mathematical techniques” and “obtaining new for-
mulas.” The scientific progress has been continued thanks to the studies done since 
the sixteenth century. The development in scientific area occurred in the elasticity 
concept has been summarized and visualized in the consideration of the scientists 
who have lived between the sixteenth and twentieth centuries and their studies 
[1, 2]. These famous scientists were Galilei (1564–1642), Mariotte (1620–1684), 
Hooke (1635–1703), Leibniz (1646–1716), Bernoulli (1700–1782), Baumgarten 
(1706–1757), Euler (1707–1783), Coulomb (1736–1806), Young (1773–1829), Poisson 
(1781–1840), Navier (1785–1836), Cauchy (1789–1857), Saint-Venant (1797–1886), 
Borchardt (1817–1880), Rankine (1820–1872), Kirchhoff (1824–1887), Maxwell 
(1831–1879), Clebsch (1833–1872), Kohlrausch (1840–1910), Amagat (1841–1915), 
Voigt (1850–1919), Mallock (1851–1933), Lamme (1864–1924), Röntgen (1872,1919), 
Synge (1897–1995), and Everett (1930–1982) (Figure 1).

3. Classification of engineering problems in the context of elasticity

In this section, the results of the literature review on elasticity were evaluated 
by referring to the articles (total number of articles, 157) between 2014 and 2018. 
Important information has gained from the literature survey about the elasticity 
theory and its related recent engineering solutions, as well as information about 

Figure 1. 
Development of elasticity between the sixteenth and twentieth centuries.

5
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the theoretical, numerical, and experimental scientific researches and scientific 
innovations. The brief classification of the main engineering problems was sum-
marized in Figure 2.

The studies evaluated in the literature review were listed below in 10 main head-
ings. The distribution of articles corresponding to research concepts is presented 
in Figure 3. These are (1) historical development, (2) analytical and experimental 
studies related to the finite element method (FEM), (3) experimental studies, 
(4) analytical studies and finite element analysis (FEA), (5) analytical studies, 

Figure 2. 
Classification of the basic elasticity problems and their solution techniques.
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(6) analytical and FEA studies related to the specified boundary conditions, (7) 
continuum mechanics problems and solutions, (8) analytical and numerical 
analysis solutions, (9) typical engineering application problems, and (10) solution 
techniques. The types of elasticity problems have been grouped according to the sci-
ence innovations and related industrial applications. The numerical problems have 
been solved in three basic steps. The first step was to check the basic differential 
equations in terms of satisfaction with the placement of the estimated displacement 
functions. The second step was to check the “initial values” or the “boundary condi-
tions” of the problem [3–5]. Values were substituted into the differential equations 
in order to satisfy the conditions at these defined coordinates or at time domains. 
The boundary conditions have been classified in two groups as “the essential” 
(displacement) and “the natural” (force) boundary conditions. The initial condi-
tions were the first-stage variations named initiative and time-dependent variables. 
The third step was the satisfaction of the continuity conditions on the compat-
ibility equations by means of assumed displacement functions. The basic elasticity 
problems were grouped into 26 subtitles as described in Figure 2. In this figure, the 
number of generally used proposed solution techniques analytically and numeri-
cally was equal to eight.

4. General principles in the elasticity theory

Elasticity concept is explainable by the natural elastic behavior of the materials. 
In elastic region, material deformed in a nonpermanent form up to the elastic limit 
was reached. The relationship between stress (σ) and strain (ε) under loading and 
unloading cases was explained by the linear and nonlinear equations. The slopes of 
the linear curves developed in linear elastic region were known as Young’s modulus 
E, and shear modulus G, of the materials under tensile/compression and torsion 
tests. During these tests, total calculated area under the linear curves was defined as 
the total potential energy stored in the material. Proportionally, stress development 

Figure 3. 
The results of the literature review on elasticity were evaluated by referring to the 157 articles between 2014 and 
2018.
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and strains occurred in the structure according to the applied load. Principally, 
application of the stress distributions should be very slowly; on the other hand, at 
each incremental loading step, the equilibrium state and its equilibrium equations 
of the specimen should be satisfied. This controlled operation and action-reaction 
principle have worked under the control mechanism of the testing machine. The 
total work done by incremental external forces “dW” was equal to total potential 
energy stored incrementally “dU” in the structure of linear elastic region. Using 
this principle, the governing equations were satisfied by  dW − dU = 0 . Otherwise, 
in the case which used high strain rates   ε   ̇  , the material behavior would have been 
examined in the material nonlinearity concept. In the nonlinear elastic material 
experimental tests, the resulting stress-strain curves represented the combination 
of the behavior of nonlinear continuous or multiple nonlinear continuous forms. 
In nonlinear curves, the stored potential energy “U” developed in the elastic limit 
range was calculated in the consideration of two areas: the first area under the  
σ − ε  nonlinear curve described as the stored potential energy by strain increments  
ε + d𝜀𝜀  and the second area above the curve, known as the complementary potential 
energy by stress increments  σ + d𝜎𝜎  stored in the material. Both linear and nonlinear 
elasticity equations were derived according to the assumption that during loading 
and unloading stages of the experiments, the material stores its potential energy 
within the molecules and there was no loss of energy. As known in the molecular 
concept, the binding energy keeps the molecules together at any instant of time, 
and in the lack of energy loss such as heat or light, there will be no loss in the total 
mass of the molecular system. This phenomenon shows us that the system, which 
has no energy loss, does not combine (no binding status) with another solid object 
or with atoms that oscillates at short distances. Otherwise, in the case of the material 
decreases in amount as losing its mass as energy in the form of heat or light during 
the binding process, the removed energy corresponding to the removed mass can 
be explained by Einstein’s equation E = mc2. Here, E is the binding energy, m is the 
mass change in the system, and c is the speed of light, respectively. The elasticity 
solutions were grouped in terms of a variety of the material, geometry, and load-
ing types. Generally, the used geometries were selected as bar-, beam-, plate-, and 
shell-type isotropic or composite-type structures. In order to obtain analytical and 
numerical solutions, the three-dimensional elasticity problems can be reduced into 
two-dimensional problems in the consideration of the plane stress and plane strain 
concepts of the elasticity. By these methods the total number of unknowns will be 
equal to total numbers of equations. Otherwise, some unknown values will stay in 
unsolvable or undefined forms. Geometrical, material, and loading symmetries 
reduce problem-solving difficulties in the analytical and numerical models. On the 
other hand, continuity conditions in geometries automatically satisfies the continu-
ity conditions in the analytical and numerical solutions of elasticity. For example, 
the existence of the fourth-order partial derivatives of the assumed solution 
approximation functions is checking the continuity and compatibility equations. 
Singularity problems may be discarded by omitting the very small holes, empty 
spaces, gaps in macroscale, or dislocations and beside these the distances between 
small particles in microscale. In the case of a three-dimensional problem in elasticity, 
15 unknowns were defined as mentioned below. These were six stress components, 
six strain components, and three displacement components. These unknown values 
were to be calculated by using 15 elasticity equations, three equilibrium equations, 
six stress-strain relationships, and six strain-displacement relationships. Continuity 
conditions were satisfied by considering the six compatibility equations which were 
derived from 15 elasticity equations in three-dimensional problems. Boundary 
conditions and the initial conditions were both defined on the boundaries and at 
the starting time domains, respectively, in order to obtain the solutions under the 
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Figure 3. 
The results of the literature review on elasticity were evaluated by referring to the 157 articles between 2014 and 
2018.
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limitation of approximate and true percentage minimum error calculations. In the 
case of three-dimensional elasticity problem, 15 unknown values have to be solved 
by 15 governing equations (the list of the unknowns were six stress components  
  [ σ  x    σ  y    σ  z    τ  xy    τ  yz    τ  xz  ]   and six strain components   [  ε  x     ε  y     ε  z     γ  xy     γ  yz     γ  xz   ]  , and additionally 
the three displacement components [u v w]) [3, 4]. In solid mechanics and elasticity 
theory, the governing partial differential equations, the constitutive and kinematics 
equations, and the initial and boundary conditions have been all defined. However, 
if at least one of the above conditions has remained partially or entirely unknown, 
then one has a so-called inverse problem (Figure 2) [5]. On the other hand, the 
elasticity “inverse problem” has been defined for the problems in which they consist 
of recovering the missing displacements to the solution space corresponding to the 
applied force data by using the iterative calculation steps. Obviously, lost or uncalcu-
lated data developing on one part of a whole domain boundary have directly affected 
the final configuration of the stress-strain and displacement components and their 
resultant solution spaces at the other part of this boundary. The proposed solutions 
were both numerical and analytical (Figure 2). Inverse problem of elasticity in other 
words Cauchy problem (Cauchy-Navier equations of elasticity) has been defined 
on the accessible outer boundary of the structure. The Cauchy stress tensor compo-
nents were related with the infinitesimal (incremental calculations) strain tensor 
components which have been identified in deformed configuration with successive 
iterations.

The stress-strain relationship in terms of indicial notation is given below:

   σ  ij   = 2  𝜇𝜇𝜇𝜇  ij   +  𝜆𝜆𝜆𝜆  ij    ε  kk    (1)

Here,  μ, λ  are the Lamé constants. The Cauchy strain components represent the 
geometrical nonlinearity of the material according to the deformed configuration.

The inverse problem solution depends on the stepwise calculated and so 
updated Cauchy stress and strain distributions, over the whole boundary of the 
geometry. Experimentally, tractions and displacements have been measured by 
nondestructive tests. In isotropic, fiber, and particulate composite material con-
cepts, the stress-strain distributions  σ − ε  have been examined according to the 
defined total number of elastic constants in stiffness [C] matrix. The inverse of 
the stiffness matrix named as the compliance matrix   [S]  =   [C]    −1   includes the elastic 
constants in  ε − σ  strain versus stress equations. In the generalized Hook’s law, 
anisotropic crystalline materials have been defined with 36 constants. Strain energy 
function has to be used to show that the number of independent material constants 
can be reduced from 36 to 21. The solution techniques as iterative methods, inverse 
method, semi-inverse method, variational formulation, finite element method, 
finite volume method, and meshless method have been listed in Figure 2. The 
experimental solution techniques have been explained by tensile, compression, 
torsion, impact, and bending mechanical tests. Nondestructive tests (NDT) have 
been used to obtain informational data from the surfaces of the materials (nanoin-
dentation-hardness testing).

5. Conclusion

In this introduction chapter, the historical development of the elasticity concept 
and its engineering properties were presented briefly. According to Newton’s action 
and reaction principle, the materials behave linear or nonlinear elastically under 
typical loading. Elasticity theory provides necessarily required equations and solu-
tion techniques. The action-response principle defined between the work done by 
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the forces and the potential energy stored has been explained by the material elastic 
constants. The mechanical response of a homogeneous isotropic linearly elastic 
material can be explained by two physical constants, Young’s modulus and Poisson’s 
ratio. The elastic properties of particle composites, consisting in a dispersion of 
nonlinear (spherical or cylindrical) nonhomogeneities into a linear solid matrix, 
were explained by homogenization procedure. The linear elastic constants of fiber 
composite materials have been defined according to their three principle directions 
[6]. These principle directions coincided with the fiber orientations located in each 
layer. By contrast, the physical-mechanical properties of nonlinear elastic materials 
have generally been described by parameters which have formations as the scalar 
functions of the deformation, and their material properties have been determined 
by selecting the suitable solution techniques.
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Abstract

The present chapter contains the analysis of stress, analysis of strain and
stress-strain relationship through particular sections. The theory of elasticity
contains equilibrium equations relating to stresses, kinematic equations relating to
the strains and displacements and the constitutive equations relating to the stresses
and strains. Concept of normal and shear stresses, principal stress, plane stress,
Mohr’s circle, stress invariants and stress equilibrium relations are discussed in
analysis of stress section while strain-displacement relationship for normal and
shear strain, compatibility of strains are discussed in analysis of strain section
through geometrical representations. Linear elasticity, generalized Hooke’s law and
stress-strain relations for triclinic, monoclinic, orthotropic, transversely isotropic,
fiber-reinforced and isotropic materials with some important relations for elasticity
are discussed.

Keywords: analysis of stress, analysis of strain, Mohr’s circle, compatibility of
strain, stress-strain relation, generalized Hooke’s law

1. Introduction

If the external forces producing deformation do not exceed a certain limit, the
deformation disappears with the removal of the forces. Thus the elastic behavior
implies the absence of any permanent deformation. Every engineering material/
composite possesses a certain extent of elasticity. The common materials of
construction would remain elastic only for very small strains before exhibiting
either plastic straining or brittle failure. However, natural polymeric composites
show elasticity over a wider range and the widespread use of natural rubber and
similar composites motivated the development of finite elasticity. The mathema-
tical theory of elasticity is possessed with an endeavor to decrease the computation
for condition of strain, or relative displacement inside a solid body which is liable to
the activity of an equilibrating arrangement of forces, or is in a condition of little
inward relative motion and with tries to obtain results which might have been
basically essential applications to design, building, and all other helpful expressions
in which the material of development is solid.

The elastic properties of continuous materials are determined by the underlying
molecular structure, but the relation between material properties and the molecular
structure and arrangement in materials is complicated. There are wide classes of
materials that might be portrayed by a couple of material constants which can be
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materials that might be portrayed by a couple of material constants which can be
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determined by macroscopic experiments. The quantity of such constants relies
upon the nature of the crystalline structure of the material. In this section, we give a
short but then entire composition of the basic highlights of applied elasticity having
pertinence to our topics. This praiseworthy theory, likely the most successful and
best surely understood theory of elasticity, has been given numerous excellent and
comprehensive compositions. Among the textbooks including an ample coverage of
the problems, we deal with in this chapter which are discussed earlier by Love [1],
Sokolnikoff [2], Malvern [3], Gladwell [4], Gurtin [5], Brillouin [6], Pujol [7],
Ewing, Jardetsky and Press [8], Achenbach [9], Eringen and Suhubi [10], Jeffreys
and Jeffreys [11], Capriz and Podio-Guidugli [12], Truesdell and Noll [13] whose
use of direct notation and we find appropriate to avoid encumbering conceptual
developments with component-wise expressions. Meriam and Kraige [14] gave an
overview of engineering mechanics in theirs book and Podio-Guidugli [15, 16]
discussed the strain and examples of concentrated contact interactions in simple
bodies in the primer of elasticity. Interestingly, no matter how early in the history of
elasticity the consequences of concentrated loads were studied, some of those went
overlooked until recently [17–22]. The problem of the determination of stress and
strain fields in the elastic solids are discussed by many researchers [23–33]. Belfield
et al. [34] discussed the stresses in elastic plates reinforced by fibers lying in
concentric circles. Biot [35–38] gave the theory for the propagation of elastic waves
in an initially stressed and fluid saturated transversely isotropic media. Borcherdt
and Brekhovskikh [39–41] studied the propagation of surface waves in viscoelastic
layered media. The fundamental study of seismic surface waves due to the theory of
linear viscoelasticity and stress-strain relationship is elaborated by some notable
researchers [42–46]. The stress intensity factor is computed due to diffraction of
plane dilatational waves by a finite crack by Chang [47], magnetoelastic shear
waves in an infinite self-reinforced plate by Chattopadhyay and Choudhury [48].
The propagation of edge wave under initial stress is discussed by Das and Dey [49]
and existence and uniqueness of edge waves in a generally anisotropic laminated
elastic plates by Fu and Brookes [50, 51]. The basic and historical literature about
the stress-strain relationship for propagation of elastic waves in kinds of medium
is given by some eminent researchers [52–57]. Kaplunov, Pichugin and Rogersion
[58–60] have discussed the propagation of extensional edge waves in in
semi-infinite isotropic plates, shells and incompressible plates under the influence
of initial stresses. The theory of boundary layers in highly anisotropic and/or
reinforced elasticity is studied by Hool, Kinne and Spencer [61, 62].

This chapter addresses the analysis of stress, analysis of strain and stress-strain
relationship through particular sections. Concept of normal and shear stress,
principal stress, plane stress, Mohr’s circle, stress invariants and stress equilibrium
relations are discussed in analysis of stress section while strain-displacement
relationship for normal and shear strain, compatibility of strains are discussed in
analysis of strain section through geometrical representations too. Linear elasticity
generalized Hooke’s law and stress-strain relation for triclinic, monoclinic,
orthotropic, transversely isotropic and isotropic materials are discussed and some
important relations for elasticity are deliberated.

2. Analysis of stress

A body consists of huge number of grains or molecules. The internal forces act
within a body, representing the interaction between the grains or molecules of the
body. In general, if a body is in statically equilibrium, then the internal forces are
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equilibrated on the basis of Newton’s third law. The internal forces are always
present even though the external forces are not active.

To examine these internal forces at a point O in Figure 1(a), inside the body,
consider a plane MN passing through the point O. If the plane is divided into a
number of small areas, as in the Figure 1(b), and the forces acting on each of
these are measured, it will be observed that these forces vary from one small area
to the next. On the small area ΔA at point O, a force ΔF will be acting as shown in
Figure 1(b). From this the concept of stress as the internal force per unit area can
be understood. Assuming that the material is continuous, the term “stress” at any
point across a small area ΔA can be defined by the limiting equation as below.

Stress σð Þ ¼ lim
ΔA!0

ΔF
ΔA

(1)

where ΔF is the internal force on the area ΔA surrounding the given point.
Forces which act on an element of material may be of two types:

i. body forces and

ii. surface forces.

Body forces always act on every molecule of a body and are proportional to the
volume whereas surface force acts over the surface of the body and is measure in
terms of force per unit area. The force acting on a surface may resolve into normal
stress and shear stress. Normal stress may be tensile or compressive in nature. Positive
side of normal stress is for tensile stress whilst negative side is for compressive.

2.1 Concept of normal stress and shear stress

Figure 2(a) shows the rectangular components of the force vector ΔF referred
to corresponding axes. Taking the ratios ΔFx=ΔAx,ΔFy=ΔAx,ΔFz=ΔAx, three
quantities that set up the average intensity of the force on the area ΔAx When the
limit ΔA ! 0, the above ratios are characterized as the force intensity acting on
X-face at point O. These values associated with three intensities are defined as the
“Stress components” related with the X‐face at point O. The stress component
parallel to the surface are called “Shear stress component,” is indicated by τ: The

a) b)

Figure 1.
Forces acting on a (a) body, (b) cross-section of the body.
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Ewing, Jardetsky and Press [8], Achenbach [9], Eringen and Suhubi [10], Jeffreys
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waves in an infinite self-reinforced plate by Chattopadhyay and Choudhury [48].
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2. Analysis of stress

A body consists of huge number of grains or molecules. The internal forces act
within a body, representing the interaction between the grains or molecules of the
body. In general, if a body is in statically equilibrium, then the internal forces are
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equilibrated on the basis of Newton’s third law. The internal forces are always
present even though the external forces are not active.

To examine these internal forces at a point O in Figure 1(a), inside the body,
consider a plane MN passing through the point O. If the plane is divided into a
number of small areas, as in the Figure 1(b), and the forces acting on each of
these are measured, it will be observed that these forces vary from one small area
to the next. On the small area ΔA at point O, a force ΔF will be acting as shown in
Figure 1(b). From this the concept of stress as the internal force per unit area can
be understood. Assuming that the material is continuous, the term “stress” at any
point across a small area ΔA can be defined by the limiting equation as below.

Stress σð Þ ¼ lim
ΔA!0

ΔF
ΔA

(1)

where ΔF is the internal force on the area ΔA surrounding the given point.
Forces which act on an element of material may be of two types:

i. body forces and

ii. surface forces.

Body forces always act on every molecule of a body and are proportional to the
volume whereas surface force acts over the surface of the body and is measure in
terms of force per unit area. The force acting on a surface may resolve into normal
stress and shear stress. Normal stress may be tensile or compressive in nature. Positive
side of normal stress is for tensile stress whilst negative side is for compressive.

2.1 Concept of normal stress and shear stress

Figure 2(a) shows the rectangular components of the force vector ΔF referred
to corresponding axes. Taking the ratios ΔFx=ΔAx,ΔFy=ΔAx,ΔFz=ΔAx, three
quantities that set up the average intensity of the force on the area ΔAx When the
limit ΔA ! 0, the above ratios are characterized as the force intensity acting on
X-face at point O. These values associated with three intensities are defined as the
“Stress components” related with the X‐face at point O. The stress component
parallel to the surface are called “Shear stress component,” is indicated by τ: The

a) b)

Figure 1.
Forces acting on a (a) body, (b) cross-section of the body.
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shear stress component acting on the X‐face in the Y-direction is identified as τxy:
The stress component perpendicular to the face is called “Normal Stress” or “Direct
stress” component and is denoted by σ.

From the above discussions, the stress components on the X‐face at point O are
defined as follows in terms of force intensity ratios

σx ¼ lim
ΔAx!0

ΔFx

ΔAx

τxy ¼ lim
ΔAx!0

ΔFy

ΔAx

τxz ¼ lim
ΔAx!0

ΔFz

ΔAx

9>>>>>>=
>>>>>>;

(2)

and the above stress components are illustrated in Figure 2(b).

2.2 Stress components

Threemutually perpendicular coordinate axes x, y, z are taken.We consider the
stresses act on the surface of the cubic element of the substance.When a force is applied,
as mean that the state of stress is perfectly homogeneous throughout the element and
that the body is in equilibrium as shown inFigure 3. There are nine quantitieswhich are
acting on the faces of the cubic and are known as the stress components.

In matrix notation, the stress components can be written as

σx τxy τxz

τyx σy τyz

τzx τzy σz

0
B@

1
CA (3)

which completely define the state of stress in the elemental cube. The first suffix
of the shear stress refers to the normal to the plane on which the stress acts and the
second suffix refer to the direction of shear stress on this plane. The nine stress
components which are derived in matrix form are not all independent quantities.

2.3 Principal stress and stress invariants

Let us consider three mutually perpendicular planes in which shear stress is zero
and on these planes the normal stresses have maximum or minimum values. These

a) b)

Figure 2.
(a) Force components of ΔF acting on small area centered at point O and (b) stress components at point O.
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normal stresses are referred to as principal stresses and the plane in which these
normal stresses act is called principal plane.

Invariants mean those amounts that are unexchangeable and do not differ under
various conditions. With regards to stress components, invariants are such quanti-
ties that don’t change with rotation of axes or which stay unaffected under trans-
formation, from one set of axes to another. Subsequently, the combination of
stresses at a point that don’t change with the introduction of co-ordinate axis is
called stress invariants.

2.4 Plane stress

Numerous metal shaping procedures include biaxial condition of stress. On the
off chance that one of the three normal and shear stresses acting on a body is zero,
the state of stress is called plane stress condition. All stresses act parallel to x and y
axes. Plane pressure condition is gone over in numerous engineering and forming
applications. Regularly, slip can be simple if the shear stress following up on the slip
planes is adequately high and acts along favored slip direction. Slip planes may be
inclined with respect to the external stress acting on solids. It becomes necessary to
transform the stresses acting along the original axes into the inclined planes. Stress
change ends up essential in such cases.

2.4.1 Stress transformation in plane stress

Consider the plane stress condition acting on a plane as shown in Figure 4. Let
us investigate the state of stresses onto a transformed plane which is inclined at an
angle θ with respect to x, y axes.

Let by rotating of the x and y axes through the angle θ, a new set of axes X’ and Y0

will be formed. The stresses acting on the plane along the new axes are obtained
when the plane has been rotated about the z axis. In order to obtain these
transformed stresses, we take equilibrium of forces on the inclined plane both
perpendicular to and parallel to the inclined plane.

Thus, the expression for transformed stress using the direction cosines can be
written as

Figure 3.
Stress components acting on cube.
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σx0 ¼ l2x0xσx þ l2x0yσy þ 2lx0xlx0yτxy

¼ 2 cos 2θσx þ 2sin2θσy þ 2 cos θ sin θτxy
(4)

Similarly, write for the y’ normal stress and shear stress.
The transformed stresses are given as

σx0 ¼
σx þ σy

2
þ σx � σy

2
cos 2θ þ τxy sin 2θ

σy0 ¼
σx þ σy

2
� σx � σy

2
cos 2θ � τxy sin 2θ

and

τx0y0 ¼
σy � σx

2
sin 2θ þ τxy cos 2θ

(5)

where σx0 and τx0y0 are respectively the normal and shear stress acting on the
inclined plane. The above three equations are known as transformation equations
for plane stress.

In order to design components against failure the maximum and minimum
normal and shear stresses acting on the inclined plane must be derived. The maxi-
mum normal stress and shear stress can be found when we differentiate the stress
transformation equations with respect to θ and equate to zero. The maximum and
minimum stresses are known as principal stresses and the plane of acting is named
as principal planes.

Maximum normal stress is given by

σ1, σ2 ¼
σx þ σy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx � σy

2

� �2
þ τ2xy

r
(6)

and maximum shear stress is

τmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx � σy

2

� �2
þ τ2xy

r
(7)

with τmax ¼ σ1 � σ2
2

: (8)

Figure 4.
Representation of stresses on inclined plane.
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The plane on which the principal normal stress acts, the shear stress is zero and
vice versa. The angle corresponding to the principal planes can be obtained from
tan 2θ ¼ τxy

σx�σy
2

for the principal normal planes and tan 2θ ¼ τxy
σx�σy

2
is for the principal

shear plane.

2.4.2 Mohr’s circle for plane stress

The transformation equations of plane stress which are given by Eq. (5) can be
represented in a graphical form (Figure 5) by Mohr’s circle. The transformation
equations are sufficient to get the normal and shear stresses on any plane at a point,
with Mohr's circle one can easily visualize their variation with respect to plane
orientation θ.

2.4.2.1 Equations of Mohr’s circle

Rearranging the terms of Eq. (5), we get

σx0 �
σx þ σy

2
¼ σx � σy

2
cos 2θ þ τxy sin 2θ

and
(9.1)

τx0y0 ¼ � σx � σy
2

� �
sin 2θ þ τxy cos 2θ (9.2)

Figure 5.
Mohr’s circle diagram.

17

An Overview of Stress-Strain Analysis for Elasticity Equations
DOI: http://dx.doi.org/10.5772/intechopen.82066



σx0 ¼ l2x0xσx þ l2x0yσy þ 2lx0xlx0yτxy

¼ 2 cos 2θσx þ 2sin2θσy þ 2 cos θ sin θτxy
(4)

Similarly, write for the y’ normal stress and shear stress.
The transformed stresses are given as

σx0 ¼
σx þ σy

2
þ σx � σy

2
cos 2θ þ τxy sin 2θ

σy0 ¼
σx þ σy

2
� σx � σy

2
cos 2θ � τxy sin 2θ

and

τx0y0 ¼
σy � σx

2
sin 2θ þ τxy cos 2θ

(5)

where σx0 and τx0y0 are respectively the normal and shear stress acting on the
inclined plane. The above three equations are known as transformation equations
for plane stress.

In order to design components against failure the maximum and minimum
normal and shear stresses acting on the inclined plane must be derived. The maxi-
mum normal stress and shear stress can be found when we differentiate the stress
transformation equations with respect to θ and equate to zero. The maximum and
minimum stresses are known as principal stresses and the plane of acting is named
as principal planes.

Maximum normal stress is given by

σ1, σ2 ¼
σx þ σy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx � σy

2

� �2
þ τ2xy

r
(6)

and maximum shear stress is

τmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx � σy

2

� �2
þ τ2xy

r
(7)

with τmax ¼ σ1 � σ2
2

: (8)

Figure 4.
Representation of stresses on inclined plane.

16

Elasticity of Materials ‐ Basic Principles and Design of Structures

The plane on which the principal normal stress acts, the shear stress is zero and
vice versa. The angle corresponding to the principal planes can be obtained from
tan 2θ ¼ τxy

σx�σy
2

for the principal normal planes and tan 2θ ¼ τxy
σx�σy

2
is for the principal

shear plane.

2.4.2 Mohr’s circle for plane stress

The transformation equations of plane stress which are given by Eq. (5) can be
represented in a graphical form (Figure 5) by Mohr’s circle. The transformation
equations are sufficient to get the normal and shear stresses on any plane at a point,
with Mohr's circle one can easily visualize their variation with respect to plane
orientation θ.

2.4.2.1 Equations of Mohr’s circle

Rearranging the terms of Eq. (5), we get

σx0 �
σx þ σy

2
¼ σx � σy

2
cos 2θ þ τxy sin 2θ

and
(9.1)

τx0y0 ¼ � σx � σy
2

� �
sin 2θ þ τxy cos 2θ (9.2)

Figure 5.
Mohr’s circle diagram.

17

An Overview of Stress-Strain Analysis for Elasticity Equations
DOI: http://dx.doi.org/10.5772/intechopen.82066



Squaring and adding the Eqs. (9.1) and (9.2), result in

σx0 �
σx þ σy

2

� �2

þ τ2x0y0 ¼
σx � σy

2

� �2
þ τ2xy (10)

For simple representation of Eq. (10), the following notations are used

σav ¼
σx þ σy

2
, r ¼ σx � σy

2

� �2
þ τ2xy

� �1=2
(11)

Thus, the simplified form of Eq. (10) can be written as

σx0 � σavð Þ2 þ τ2x0y0 ¼ r2 (12)

Eq. (12) represents the equation of a circle in a standard form. This circle has σx0
as its abscissa and τx0y0 as its ordinate with radius r. The coordinate for the center of
the circle is σav;0ð Þ.

Mohr’s circle is drawn by considering the stress coordinates σx as its abscissa and
τxy as its ordinate, and this plane is known as the stress plane. The plane on the
element bounded with xy coordinates in the material is named as physical plane.
Stresses on the physical plane M is represented by the point M on the stress plane
with σx and τxy coordinates.

Stresses on the physical plane which is normal to i.e. N, is given by the point N
on the stress plane with σy and τyx: O is the intersecting point of line MN and which
is at the center of the circle and radius of the circle is OM. Now, the stresses on a
plane, making θ inclination with x axis in physical plane can be determined as
follows.

An important point to be noted here is that a plane which has a θ inclination in
physical plane will make 2θ inclination in stress plane M. Hence, rotate the line OM
in stress plane by 2θ counter clockwise to obtain the planeM0. The coordinates ofM0

in stress plane define the stresses acting on plane M0 in physical plane and it can be
easily verified.

σx0 ¼ POþ r cos 2θp � 2θ
� �

(13)

where PO ¼ σxþσy
2 , r ¼ σx�σy

2

� �2 þ τ2xy

h i1=2
, cos 2θp ¼ σx�σy

2r , sin 2θp ¼ τxy
2r .

On simplifying Eq. (13)

σx0 ¼
σx þ σy

2
þ σx � σy

2
cos 2θ þ τxy sin 2θ (14)

Eq. (14) is same as the first equation of Eq. (5).
This way it can be proved for shear stress τx0y0 on plane M0 (do yourself).

2.4.3 Stress equilibrium relation

Let σx, τyx, τzx are the stress components acting along the x-direction, τxy, σy, τzy
are the stress components acting along the y-direction and τxz, τyz, σz are the stress
components acting along the z-direction. The body forces Fx, Fy, Fz acting along x,
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y, z direction respectively. Then the stress equilibrium relation or equation of
motion in terms of stress components are given by

∂σx
∂x

þ ∂τyx
∂y

þ ∂τzx
∂z

þ Fx ¼ 0,

∂τxy
∂x

þ ∂σy
∂y

þ ∂τzy
∂z

þ Fy ¼ 0,

∂τxz
∂x

þ ∂τyz
∂y

þ ∂σz
∂z

þ Fz ¼ 0:

9>>>>>>>=
>>>>>>>;

(15)

3. Analysis of strain

While defining a stress it was pointed out that stress is an abstract quantity which
cannot be seen and is generally measured indirectly. Strain differs in this respect from
stress. It is a complete quantity that can be seen and generally measured directly as a
relative change of length or shape. In generally, stress is the ratio of change in original
dimension and the original dimension. It is the dimensionless constant quantity.

3.1 Types of strain

Strain may be classified into three types; normal strain, shear strain and volu-
metric strain.

The normal strain is the relative change in length whether shearing strain relative
change in shape. The volumetric strain is defined by the relative change in volume.

3.2 Strain-displacement relationship

3.2.1 Normal strain

Consider a line element of length Δx emanating from position (x, y) and lying in
the x-direction, denoted by AB in Figure 6. After deformation the line element
occupies A0B0, having undergone a translation, extension and rotation.

The particle that was originally at x has undergone a displacement ux x; yð Þ and
the other end of the line element has undergone a displacement ux xþ Δx; yð Þ: By
the definition of normal strain

εxx ¼ A0B∗ � AB
AB

¼ ux xþ Δx; yð Þ � ux x; yð Þ
Δx

: (16)

In the limit Δx ! 0, Eq. (16) becomes

εxx ¼ ∂ux
∂x

(17)

This partial derivative is a displacement gradient, a measure of how rapid the
displacement changes through the material, and is the strain at (x, y). Physically, it
represents the (approximate) unit change in length of a line element.

Similarly, by considering a line element initially lying in the y-direction, the
strain in the y-direction can be expressed as

εyy ¼
∂uy
∂y

: (18)
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y, z direction respectively. Then the stress equilibrium relation or equation of
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the definition of normal strain

εxx ¼ A0B∗ � AB
AB

¼ ux xþ Δx; yð Þ � ux x; yð Þ
Δx

: (16)

In the limit Δx ! 0, Eq. (16) becomes

εxx ¼ ∂ux
∂x

(17)

This partial derivative is a displacement gradient, a measure of how rapid the
displacement changes through the material, and is the strain at (x, y). Physically, it
represents the (approximate) unit change in length of a line element.

Similarly, by considering a line element initially lying in the y-direction, the
strain in the y-direction can be expressed as

εyy ¼
∂uy
∂y

: (18)
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3.2.2 Shear strain

The particles A and B in Figure 6 also undergo displacements in the y-direction
and this is shown in Figure 7(a). In this case, we have

B∗B0 ¼ ∂uy
∂x

Δx: (19)

A similar relation can be derived by considering a line element initially lying in
the y-direction. From the Figure 7(b), we have

θ ≈ tan θ ¼ ∂uy=∂x
1þ ∂ux=∂x

≈
∂uy
∂x

(20)

provided that (i) θ is small and (ii) the displacement gradient ∂ux=∂x is small. A
similar expression for the angle λ can be derived as

λ ≈
∂ux
∂y

(21)

Figure 6.
Deformation of a line element.

Figure 7.
(a) Deformation of a line element and (b) strains in terms of displacement gradients.
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and hence the shear strain can be written in terms of displacement gradients as

εxy ¼ 1
2

∂ux
∂y

þ ∂uy
∂x

� �
: (22)

In similar manner, the strain-displacement relation for three dimensional body
is given by

εxx ¼ ∂ux
∂x

, εyy ¼
∂uy
∂y

, εzz ¼ ∂uz
∂z

,

εxy ¼ 1
2

∂ux
∂y

þ ∂uy
∂x

� �
, εxz ¼ 1

2
∂ux
∂z

þ ∂uz
∂x

� �
, εyz ¼ 1

2
∂uy
∂z

þ ∂uz
∂y

� �
:

(23)

3.3 Compatibility of strain

As seen in the previous section, there are three strain-displacement relations
Eqs. (17), (18) and (22) but only two displacement components. This implies that
the strains are not independent but are related in some way. The relations between
the strains are called compatibility conditions.

3.3.1 Compatibility relations

Let us suppose that the point Pwhich is act (x,y) before straining and it will be at
P0 after straining on the co-ordinate plane Oxy as depicted in Figure 8. Then (u,v) is
a displacement corresponding to the point P. The variable u and v are the functions
of x and y.

Using the fundamental notation

εxx ¼ ∂ux
∂x

, εyy ¼
∂uy
∂y

, εxy ¼ 1
2

∂ux
∂y

þ ∂uy
∂x

� �
(24)

Figure 8.
Deformation of line element.
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and hence the shear strain can be written in terms of displacement gradients as

εxy ¼ 1
2

∂ux
∂y

þ ∂uy
∂x

� �
: (22)

In similar manner, the strain-displacement relation for three dimensional body
is given by

εxx ¼ ∂ux
∂x

, εyy ¼
∂uy
∂y

, εzz ¼ ∂uz
∂z

,

εxy ¼ 1
2

∂ux
∂y

þ ∂uy
∂x

� �
, εxz ¼ 1

2
∂ux
∂z

þ ∂uz
∂x

� �
, εyz ¼ 1

2
∂uy
∂z

þ ∂uz
∂y

� �
:

(23)

3.3 Compatibility of strain

As seen in the previous section, there are three strain-displacement relations
Eqs. (17), (18) and (22) but only two displacement components. This implies that
the strains are not independent but are related in some way. The relations between
the strains are called compatibility conditions.

3.3.1 Compatibility relations

Let us suppose that the point Pwhich is act (x,y) before straining and it will be at
P0 after straining on the co-ordinate plane Oxy as depicted in Figure 8. Then (u,v) is
a displacement corresponding to the point P. The variable u and v are the functions
of x and y.

Using the fundamental notation

εxx ¼ ∂ux
∂x

, εyy ¼
∂uy
∂y

, εxy ¼ 1
2

∂ux
∂y

þ ∂uy
∂x

� �
(24)

Figure 8.
Deformation of line element.

21

An Overview of Stress-Strain Analysis for Elasticity Equations
DOI: http://dx.doi.org/10.5772/intechopen.82066



we get

∂
2εxx
∂y2

¼ ∂
3ux

∂x∂y2
,
∂
2εyy
∂x2

¼ ∂
3uy

∂x2∂y
(25)

∂
2εxy
∂x∂y

¼ 1
2

∂
3uy

∂x2∂y
þ ∂

3ux
∂x∂y2

� �
: (26)

Eqs. (25) and (26) result in

∂
2εxy
∂x∂y

¼ 1
2

∂
2εxx
∂y2

þ ∂
2εyy
∂x2

� �
(27)

which is the compatibility condition in two dimension.

4. Stress-strain relation

In the previous section, the state of stress at a point was characterized by six
components of stress, and the internal stresses and the applied forces are accompa-
nied with the three equilibrium equation. These equations are applicable to all types
of materials as the relationships are independent of the deformations (strains) and
the material behavior.

Also, the state of strain at a point was defined in terms of six components of
strain. The strains and the displacements are related uniquely by the derivation of
six strain-displacement relations and compatibility equations. These equations are
also applicable to all materials as they are independent of the stresses and the
material behavior and hence.

Irrespective of the independent nature of the equilibrium equations and strain-
displacement relations, usually, it is essential to study the general behavior of
materials under applied loads including these relations. Strains will be developed in
a body due to the application of a load, stresses and deformations and hence it is
become necessary to study the behavior of different types of materials. In a general
three-dimensional system, there will be 15 unknowns namely 3 displacements, 6
strains and 6 stresses. But we have only 9 equations such as 3 equilibrium equations
and 6 strain-displacement equations to achieve these 15 unknowns. It is important
to note that the compatibility conditions are not useful for the determination of
either the displacements or strains. Hence the additional six equations relating six
stresses and six strains will be developed. These equations are known as “Constitu-
tive equations” because they describe the macroscopic behavior of a material based
on its internal constitution.

4.1 Linear elasticity generalized Hooke’s law

Hooke’s law provides the unique relationship between stress and strain, which is
independent of time and loading history. The law can be used to predict the defor-
mations used in a given material by a combination of stresses.

The linear relationship between stress and strain is given by

σx ¼ Eεxx (28)

where E is known as Young’s modulus.
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In general, each strain is dependent on each stress. For example, the strain εxx
written as a function of each stress as

εxx ¼ C11σx þ C12σy þ C13σz þ C14τxy þ C15τyz þ C16τzx þ C17τxz þ C18τzy þ C19τyx:

(29)

Similarly, stresses can be expressed in terms of strains which state that at each
point in a material, each stress component is linearly related to all the strain com-
ponents. This is known as generalized Hook’s law.

For the most general case of three-dimensional state of stress, Eq. (28) can be
written as

σij
� �

9�1 ¼ Dijkl
� �

9�9 εklð Þ9�1 (30)

where Dijkl
� �

is elasticity matrix, σij
� �

is stress components, εklð Þ is strain com-
ponents.

Since both stress σij and strain εij are second-order tensors, it follows that Dijkl is
a fourth order tensor, which consists of 34 ¼ 81 material constants if symmetry is
not assumed.

Now, from σij ¼ σji and εij ¼ εji, the number of 81 material constants is reduced
to 36 under symmetric conditions of Dijkl ¼ Djikl ¼ Dijlk ¼ Djilk which provides
stress-strain relation for most general form of anisotropic material.

4.1.1 Stress-strain relation for triclinic material

The stress-strain relation for triclinic material will consist 21 elastic constants
which is given by

σx

σy

σz

τxy

τyz

τzx

2
666666666664

3
777777777775

¼

D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66

2
666666666664

3
777777777775

εxx

εyy

εzz

εxy

εyz

εzx

2
666666666664

3
777777777775

: (31)

4.1.2 Stress-strain relation for monoclinic material

The stress-strain relation for monoclinic material will consist 13 elastic constants
which is given by

σx

σy

σz

τxy

τyz

τzx

2
666666666664

3
777777777775

¼

D11 D12 D13 0 D15 0

D12 D22 D23 0 D25 0

D13 D23 D33 0 D35 0

0 0 0 D44 0 D46

D15 D25 D35 0 D55 0

0 0 0 D46 0 D66

2
666666666664

3
777777777775

εxx

εyy

εzz

εxy

εyz

εzx

2
666666666664

3
777777777775

: (32)
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we get
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3ux

∂x∂y2
,
∂
2εyy
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¼ ∂
3uy

∂x2∂y
(25)

∂
2εxy
∂x∂y

¼ 1
2

∂
3uy

∂x2∂y
þ ∂

3ux
∂x∂y2

� �
: (26)

Eqs. (25) and (26) result in

∂
2εxy
∂x∂y

¼ 1
2

∂
2εxx
∂y2

þ ∂
2εyy
∂x2

� �
(27)

which is the compatibility condition in two dimension.

4. Stress-strain relation

In the previous section, the state of stress at a point was characterized by six
components of stress, and the internal stresses and the applied forces are accompa-
nied with the three equilibrium equation. These equations are applicable to all types
of materials as the relationships are independent of the deformations (strains) and
the material behavior.

Also, the state of strain at a point was defined in terms of six components of
strain. The strains and the displacements are related uniquely by the derivation of
six strain-displacement relations and compatibility equations. These equations are
also applicable to all materials as they are independent of the stresses and the
material behavior and hence.

Irrespective of the independent nature of the equilibrium equations and strain-
displacement relations, usually, it is essential to study the general behavior of
materials under applied loads including these relations. Strains will be developed in
a body due to the application of a load, stresses and deformations and hence it is
become necessary to study the behavior of different types of materials. In a general
three-dimensional system, there will be 15 unknowns namely 3 displacements, 6
strains and 6 stresses. But we have only 9 equations such as 3 equilibrium equations
and 6 strain-displacement equations to achieve these 15 unknowns. It is important
to note that the compatibility conditions are not useful for the determination of
either the displacements or strains. Hence the additional six equations relating six
stresses and six strains will be developed. These equations are known as “Constitu-
tive equations” because they describe the macroscopic behavior of a material based
on its internal constitution.

4.1 Linear elasticity generalized Hooke’s law

Hooke’s law provides the unique relationship between stress and strain, which is
independent of time and loading history. The law can be used to predict the defor-
mations used in a given material by a combination of stresses.

The linear relationship between stress and strain is given by

σx ¼ Eεxx (28)

where E is known as Young’s modulus.
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In general, each strain is dependent on each stress. For example, the strain εxx
written as a function of each stress as

εxx ¼ C11σx þ C12σy þ C13σz þ C14τxy þ C15τyz þ C16τzx þ C17τxz þ C18τzy þ C19τyx:

(29)

Similarly, stresses can be expressed in terms of strains which state that at each
point in a material, each stress component is linearly related to all the strain com-
ponents. This is known as generalized Hook’s law.

For the most general case of three-dimensional state of stress, Eq. (28) can be
written as

σij
� �

9�1 ¼ Dijkl
� �

9�9 εklð Þ9�1 (30)

where Dijkl
� �

is elasticity matrix, σij
� �

is stress components, εklð Þ is strain com-
ponents.

Since both stress σij and strain εij are second-order tensors, it follows that Dijkl is
a fourth order tensor, which consists of 34 ¼ 81 material constants if symmetry is
not assumed.

Now, from σij ¼ σji and εij ¼ εji, the number of 81 material constants is reduced
to 36 under symmetric conditions of Dijkl ¼ Djikl ¼ Dijlk ¼ Djilk which provides
stress-strain relation for most general form of anisotropic material.

4.1.1 Stress-strain relation for triclinic material

The stress-strain relation for triclinic material will consist 21 elastic constants
which is given by

σx

σy

σz

τxy

τyz

τzx

2
666666666664

3
777777777775

¼

D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66

2
666666666664

3
777777777775

εxx

εyy

εzz

εxy

εyz

εzx

2
666666666664

3
777777777775

: (31)

4.1.2 Stress-strain relation for monoclinic material

The stress-strain relation for monoclinic material will consist 13 elastic constants
which is given by

σx

σy

σz

τxy

τyz

τzx

2
666666666664

3
777777777775

¼

D11 D12 D13 0 D15 0

D12 D22 D23 0 D25 0

D13 D23 D33 0 D35 0

0 0 0 D44 0 D46

D15 D25 D35 0 D55 0

0 0 0 D46 0 D66

2
666666666664

3
777777777775

εxx

εyy

εzz

εxy

εyz

εzx

2
666666666664

3
777777777775

: (32)
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4.1.3 Stress-strain relation for orthotropic material

A material that exhibits symmetry with respect to three mutually orthogonal
planes is called an orthotropic material. The stress-strain relation for orthotropic
material will consist 9 elastic constants which is given by

σx

σy

σz

τxy

τyz

τzx

2
666666666664

3
777777777775

¼

D11 D12 D13 0 0 0

D12 D22 D23 0 0 0

D13 D23 D33 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

2
666666666664

3
777777777775

εxx

εyy

εzz

εxy

εyz

εzx

2
666666666664

3
777777777775

: (33)

4.1.4 Stress-strain relation for transversely isotropic material

Transversely isotropic material exhibits a rationally elastic symmetry about one
of the coordinate axes x, y and z. In such case, the material constants reduce to 5 as
shown below

σx

σy

σz

τxy

τyz

τzx

2
666666666664

3
777777777775

¼

D11 D12 D13 0 0 0

D12 D11 D13 0 0 0

D13 D13 D33 0 0 0

0 0 0 D11 �D12ð Þ=2 0 0

0 0 0 0 D44 0

0 0 0 0 0 D44

2
666666666664

3
777777777775

εxx

εyy

εzz

εxy

εyz

εzx

2
666666666664

3
777777777775

: (34)

4.1.5 Stress-strain relation for fiber-reinforced material

The constitutive equation for a fiber-reinforced material whose preferred direc-
tion is that of a unit vector a! is

τij ¼ λekkδij þ 2μTeij þ α akamekmδij þ ekkaiaj
� �þ 2 μL � μTð Þ aiakekj þ ajakeki

� �

þ βakamekmaiaj; i, j, k,m ¼ 1, 2, 3
(35)

where τij are components of stress, eij are components of infinitesimal strain, and

ai the components of a! , which are referred to rectangular Cartesian co-ordinates
xi. The vector a

! may be a function of position. Indices take the value 1, 2 and 3, and
the repeated suffix summation convention is adopted. The coefficients λ, μL, μT, α
and β are all elastic constant with the dimension of stress.

4.1.6 Stress-strain relation for isotropic material

For a material whose elastic properties are not a function of direction at all, only
two independent elastic material constants are sufficient to describe its behavior
completely. This material is called isotropic linear elastic. The stress-strain relation-
ship for this material is written as
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σx

σy

σz

τxy

τyz

τzx

2
666666666664

3
777777777775

¼

D11 D12 D12 0 0 0

D12 D11 D12 0 0 0

D12 D12 D11 0 0 0

0 0 0 D11 �D12ð Þ=2 0 0

0 0 0 0 D11 �D12ð Þ=2 0

0 0 0 0 0 D11 �D12ð Þ=2

2
666666666664

3
777777777775

εxx

εyy

εzz

εxy

εyz

εzx

2
666666666664

3
777777777775

(36)

which consists only two independent elastic constants. Replacing D12 and
D12 D11 �D12ð Þ=2 by λ and μ which are called Lame’s constants and in particular μ is
also called shear modulus of elasticity, we get

σx ¼ 2μþ λð Þεxx þ λ εyy þ εzz
� �

,
σy ¼ 2μþ λð Þεyy þ λ εxx þ εzzð Þ,
σz ¼ 2μþ λð Þεzz þ λ εyy þ εxx

� �
,

τxy ¼ μεxy, τyz ¼ μεyz, τzx ¼ μεzx:

9>>>>=
>>>>;

(37)

Also, from the above relation some important terms are induced which are as
follow

(1) Bulk modulus: Bulk modulus is the relative change in the volume of a body
produced by a unit compressive or tensile stress acting uniformly over its
surface. Symbolically

K ¼ λþ 2
3
μ: (38)

(2) Young’s modulus:Young’s modulus is a measure of the ability of a material
to withstand changes in length when under lengthwise tension or
compression. Symbolically

E ¼ μ 3λþ 2μð Þ
λþ μ

: (39)

(3) Poisson’s ratio: The ratio of transverse strain and longitudinal strain is
called Poisson’s ratio. Symbolically

ν ¼ λ

2 λþ μð Þ : (40)

5. Conclusions

This chapter dealt the analysis of stress, analysis of strain and stress-strain
relationship through particular sections. Concept of normal and shear stress, prin-
cipal stress, plane stress, Mohr’s circle, stress invariants and stress equilibrium
relations are discussed in analysis of stress section while strain-displacement
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4.1.3 Stress-strain relation for orthotropic material

A material that exhibits symmetry with respect to three mutually orthogonal
planes is called an orthotropic material. The stress-strain relation for orthotropic
material will consist 9 elastic constants which is given by
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4.1.4 Stress-strain relation for transversely isotropic material

Transversely isotropic material exhibits a rationally elastic symmetry about one
of the coordinate axes x, y and z. In such case, the material constants reduce to 5 as
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4.1.5 Stress-strain relation for fiber-reinforced material
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� �þ 2 μL � μTð Þ aiakekj þ ajakeki
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þ βakamekmaiaj; i, j, k,m ¼ 1, 2, 3
(35)

where τij are components of stress, eij are components of infinitesimal strain, and

ai the components of a! , which are referred to rectangular Cartesian co-ordinates
xi. The vector a

! may be a function of position. Indices take the value 1, 2 and 3, and
the repeated suffix summation convention is adopted. The coefficients λ, μL, μT, α
and β are all elastic constant with the dimension of stress.

4.1.6 Stress-strain relation for isotropic material

For a material whose elastic properties are not a function of direction at all, only
two independent elastic material constants are sufficient to describe its behavior
completely. This material is called isotropic linear elastic. The stress-strain relation-
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D12 D11 �D12ð Þ=2 by λ and μ which are called Lame’s constants and in particular μ is
also called shear modulus of elasticity, we get
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,
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,

τxy ¼ μεxy, τyz ¼ μεyz, τzx ¼ μεzx:

9>>>>=
>>>>;
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Also, from the above relation some important terms are induced which are as
follow

(1) Bulk modulus: Bulk modulus is the relative change in the volume of a body
produced by a unit compressive or tensile stress acting uniformly over its
surface. Symbolically

K ¼ λþ 2
3
μ: (38)

(2) Young’s modulus:Young’s modulus is a measure of the ability of a material
to withstand changes in length when under lengthwise tension or
compression. Symbolically

E ¼ μ 3λþ 2μð Þ
λþ μ

: (39)

(3) Poisson’s ratio: The ratio of transverse strain and longitudinal strain is
called Poisson’s ratio. Symbolically

ν ¼ λ

2 λþ μð Þ : (40)

5. Conclusions

This chapter dealt the analysis of stress, analysis of strain and stress-strain
relationship through particular sections. Concept of normal and shear stress, prin-
cipal stress, plane stress, Mohr’s circle, stress invariants and stress equilibrium
relations are discussed in analysis of stress section while strain-displacement
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relationship for normal and shear strain, compatibility of strains are discussed in
analysis of strain section through geometrical representations. Linear elasticity,
generalized Hooke’s law and stress-strain relation for triclinic, monoclinic,
orthotropic, transversely-isotropic, fiber-reinforced and isotropic materials with
some important relations for elasticity are discussed mathematically.
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relationship for normal and shear strain, compatibility of strains are discussed in
analysis of strain section through geometrical representations. Linear elasticity,
generalized Hooke’s law and stress-strain relation for triclinic, monoclinic,
orthotropic, transversely-isotropic, fiber-reinforced and isotropic materials with
some important relations for elasticity are discussed mathematically.
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Chapter 3

FEA and Experimentally
Determination of Applied
Elasticity Problem for Fabricating
Aspheric Surfaces
Duc-Nam Nguyen

Abstract

The elastic deformation machining method is suitable for fabricating aspheric
surfaces that have excellent physical properties of elastic materials. The machining
process is carried out with the deformation model without mold. When vacuum
pressure is supplied to the workpiece, the top surfaces of workpiece are deformed
into aspheric shape. After machining process, the bottom surface will be formed
into the aspheric shape and the top surface returns to its original flat surface form
due to internal force and bending moments of the material. However, the accuracy
will decrease due to the reduced thickness while the vacuum pressure keeps
unchanged during machining process. Therefore, it is necessary to carry out the
finite element analysis (FEA) to determine the vacuum pressure with
corresponding to the reduced thickness. In addition, the mold with its surface
approximates and the desired surface form of the lens is also presented. When
uniform vacuum pressure is supplied to the workpiece through small holes of the
mold, the workpiece will be deformed into aspheric profile as similar to the mold
surfaces. In order to improving the form accuracy, the FEA and the experiment are
studied for modifying the mold profile to correspond with bending strength of
workpiece material.

Keywords: elastic deformation, aspheric surface, glass lapping, glass molding,
vacuum pressure, experimental study, finite element analysis

1. Introduction

Nowadays, for managing laser light in sophisticated and compact laser systems,
aspheric lenses are the most powerful lenses. In these systems, it is generally
accepted that spherical aberration is the most common performance detractor.
From the use of spherical surfaces, it is found that they artificially limit focusing
and collimating accuracy. In spite of the fact that spherical geometry is not optimal
for refracting light that has been known for centuries, the high cost and difficulty of
fabricating nonspherical (aspheric) surfaces has inhibited them from a wider use.

Because aspheric surfaces offer advantages such as high resolution, light weight,
and low cost, they are widely used in the opto-electronics industry. As aspheric
surfaces are more effective in shaping the light than spherical surfaces, they have
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recently been used in measurement instruments, astronomy, and optical lens [1, 2].
Figure 1 shows some applications which employ aspheric surfaces.

In most general terms, an optical lens can be determined as a refracting device
that reconfigures the light wave front incident upon it. The phase, direction of
propagation, intensity, and polarization state are the properties of the incident light
beam which are influenced by a lens. Surface form and roughness, diameter, sub-
surface defects generated during the fabrication process, shape accuracy, physical
and mechanical properties of the optical material, and other optical conditions, such
as the angle of incidence of light beam, absorption, reflection, and environmental
influences, are some of the major characteristics that govern the performance of an
optical lens [3].

To overcome the aberration problems of spherical lenses, a number of spherical
surfaces with different signs of aberrations have to be utilized to balance and
minimize the final aberration to obtain high quality images. In principle, the optical
system designer can always use enough spherical lenses to simultaneously correct
for all of the common optical aberrations in a lens system if the number of elements
used in an optical system is not limited. The number of surfaces required to do this
may be so large that the resulting lens assembly is excessively large in size and
weight, and expensive to produce. In addition, the transmission of the assembly
lens may be unduly reduced due to the residual reflections from each surface, and
the bulk absorption in each lens.

The usage of aspheric surfaces, both with and without the incorporation of
diffractive elements, allows the design and construction of assembly lens with the
same or even better optical performance than an equivalent all-spherical system.
However, in most cases, with a significant reduction in the number of elements
required, there is a significant improvement in the overall lens assembly size,
weight, cost, and optical transmission. In many cases, in an optical system, each
aspheric surface can be applied to replace at least two other spherical surfaces.
Hence, aspheric lenses are more efficient because additional error-correcting lenses
are not required. Figure 2 is an illustration of spherical and aspheric lens systems.

Cutting techniques such as turning and milling processes are usually utilized for
the production of aspheric glass lenses as shown in Figure 3.

The machining processes, which usually consist of computer numerically con-
trolled (CNC) generators, are employed to machine an aspheric shape on a lens to
generate the desired shape. In glass machining, the roughness on a cutting edge has
a larger effect on surface finish than that of metal machining. Glass workpiece can
be machined without brittle fractures with an undeformed chip thickness less than
1 μm in milling and turning processes [4–7].

Figure 1.
Application of aspheric surfaces: (a) measurement instruments, (b) astronomy, and (c) optical lens.
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Thereafter, the optical lenses are fine machined by grinding, and then followed
by polishing to achieve the good surfaces. In the grinding process, if the depth of cut
is below a certain value, the material removal mode is ductile flow which is charac-
terized by low surface roughness and subsurface damage [8–12]. Figure 4 is an
illustration of a precision grinding process.

“Precessions” polishing is an automated polishing method that uses a 7-axis CNC
machine tool for polishing spherical and aspheric surfaces [13, 14]. Based on contact
between the workpiece surface and polishing tool, the polishing spot of desired size
is generated by controlling the load cell in polishing process. The polishing tool then
moves in angular steps around the local normal to the part surface during machin-
ing process. The 7-axis CNC capability of the machine also makes the generation of
free-form surfaces possible. Figure 5 shows a schematic illustration of a “Preces-
sions” polishing process.

Figure 2.
Spherical vs. aspheric lens systems.

Figure 3.
Schematic illustration of milling and turning processes.
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that reconfigures the light wave front incident upon it. The phase, direction of
propagation, intensity, and polarization state are the properties of the incident light
beam which are influenced by a lens. Surface form and roughness, diameter, sub-
surface defects generated during the fabrication process, shape accuracy, physical
and mechanical properties of the optical material, and other optical conditions, such
as the angle of incidence of light beam, absorption, reflection, and environmental
influences, are some of the major characteristics that govern the performance of an
optical lens [3].

To overcome the aberration problems of spherical lenses, a number of spherical
surfaces with different signs of aberrations have to be utilized to balance and
minimize the final aberration to obtain high quality images. In principle, the optical
system designer can always use enough spherical lenses to simultaneously correct
for all of the common optical aberrations in a lens system if the number of elements
used in an optical system is not limited. The number of surfaces required to do this
may be so large that the resulting lens assembly is excessively large in size and
weight, and expensive to produce. In addition, the transmission of the assembly
lens may be unduly reduced due to the residual reflections from each surface, and
the bulk absorption in each lens.

The usage of aspheric surfaces, both with and without the incorporation of
diffractive elements, allows the design and construction of assembly lens with the
same or even better optical performance than an equivalent all-spherical system.
However, in most cases, with a significant reduction in the number of elements
required, there is a significant improvement in the overall lens assembly size,
weight, cost, and optical transmission. In many cases, in an optical system, each
aspheric surface can be applied to replace at least two other spherical surfaces.
Hence, aspheric lenses are more efficient because additional error-correcting lenses
are not required. Figure 2 is an illustration of spherical and aspheric lens systems.

Cutting techniques such as turning and milling processes are usually utilized for
the production of aspheric glass lenses as shown in Figure 3.

The machining processes, which usually consist of computer numerically con-
trolled (CNC) generators, are employed to machine an aspheric shape on a lens to
generate the desired shape. In glass machining, the roughness on a cutting edge has
a larger effect on surface finish than that of metal machining. Glass workpiece can
be machined without brittle fractures with an undeformed chip thickness less than
1 μm in milling and turning processes [4–7].

Figure 1.
Application of aspheric surfaces: (a) measurement instruments, (b) astronomy, and (c) optical lens.
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Thereafter, the optical lenses are fine machined by grinding, and then followed
by polishing to achieve the good surfaces. In the grinding process, if the depth of cut
is below a certain value, the material removal mode is ductile flow which is charac-
terized by low surface roughness and subsurface damage [8–12]. Figure 4 is an
illustration of a precision grinding process.

“Precessions” polishing is an automated polishing method that uses a 7-axis CNC
machine tool for polishing spherical and aspheric surfaces [13, 14]. Based on contact
between the workpiece surface and polishing tool, the polishing spot of desired size
is generated by controlling the load cell in polishing process. The polishing tool then
moves in angular steps around the local normal to the part surface during machin-
ing process. The 7-axis CNC capability of the machine also makes the generation of
free-form surfaces possible. Figure 5 shows a schematic illustration of a “Preces-
sions” polishing process.

Figure 2.
Spherical vs. aspheric lens systems.

Figure 3.
Schematic illustration of milling and turning processes.
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To fabricate aspheric surfaces, the movement of the tool must be constrained in
the machining process. A sub-aperture tool (smaller in size than the lens) on a
modified polishing machine is then utilized, and by controlling the amount of time
the tool spends working at a given lens location, a desired aspheric surface can be
fabricated. In addition to the complexity of the machining processes, conventional
aspheric fabrication is highly sensitive to the manufacturing conditions, which
strongly depend on the positioning accuracy of the machine, the condition of the
grinding wheel, and the vibrations in the system. These factors result in an expen-
sive manufacturing cost and a low production yield.

Compared to traditional cold-working methods, glass molding and precision
injection molding have greatly advanced the fabrication technologies for aspheric
lens industry because of their unique advantages such as excellent compatibility,
high efficiency, great flexibility, and high consistency [15–17]. The mass production
of aspheric glass lenses is fabricated by applying the technologies. In the glass
molding technique, a glass lens is fabricated by compressing glass melting at a high
temperature and replicating the shapes of the mold without any need of further
machining. Figure 6a shows the process begins by putting a glass gob on top of a
lower mold. Both the glass gob and the mold are heated to a molding temperature
above the transition temperature of glass (Figure 6b). After the glass and the mold
temperature have reached a steady state molding temperature, the mold is closed by
moving the lower mold (Figure 6c). The temperature is maintained during the
molding step. All steps are performed in vacuum environment. Then, by holding

Figure 4.
Schematic illustration of a precision grinding process.

Figure 5.
Schematic illustration of a “Precessions” polishing process.
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the pressed load for a short time at a slow cooling rate, the stress in the glass lens is
relaxed. Lastly, the formed glass lens is rapidly cooled to ambient temperature and
released from the molds (Figure 6d). A BK7 glass fabricated using this molding
process has surface roughness of approximately 5 nm Ra, and form accuracy of
0.2 μm P-V.

In spite of the obvious advantages, there are serious drawbacks that currently
limit the application of injection molding and glass molding technologies to smaller
size aspheric lens fabrications. A typical drawback is the altering of optical properties
such as refractive index, due to heating and annealing of the glass material, and the
uneven shrinking due to the cooling process that causes error in lens profile [18].

In contrast, the elastic deformation machining method is a good technique that
the workpiece will be deformed into aspheric shape prior to the lapping process
under vacuum pressure. While the vacuum pressure is remained, the opposite side
is polished to optical flatness by the lapping wheel. When the vacuum pressure is
released, the bottom surface of the workpiece will be shaped into an aspheric shape
and the top surface will restore to its flat surface form by internal force and bending
moments. Consequently, for machining materials which have excellent physical
properties due to their perfect crystal structures, the elastic deformation method is
appropriate [19].

2. Theory of elastic deformation

Based on the elasticity of the material, the circular flat plate is deformed to an
aspheric surface by applying the pressure in the elastic deformation machining
method. The deflection of the circular plate can be calculated by using appropriate
plate theory. There are two types of edge support for circular plate, such as fixed (or
clamped) edge and simply supported edge which are considered in this section.

Figure 6.
Schematic illustration of a lens molding process: (a) Molds and glass gob, (b) Heating, (c) Heating and
pressing, and (d) Cooling and release.
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the pressed load for a short time at a slow cooling rate, the stress in the glass lens is
relaxed. Lastly, the formed glass lens is rapidly cooled to ambient temperature and
released from the molds (Figure 6d). A BK7 glass fabricated using this molding
process has surface roughness of approximately 5 nm Ra, and form accuracy of
0.2 μm P-V.

In spite of the obvious advantages, there are serious drawbacks that currently
limit the application of injection molding and glass molding technologies to smaller
size aspheric lens fabrications. A typical drawback is the altering of optical properties
such as refractive index, due to heating and annealing of the glass material, and the
uneven shrinking due to the cooling process that causes error in lens profile [18].
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under vacuum pressure. While the vacuum pressure is remained, the opposite side
is polished to optical flatness by the lapping wheel. When the vacuum pressure is
released, the bottom surface of the workpiece will be shaped into an aspheric shape
and the top surface will restore to its flat surface form by internal force and bending
moments. Consequently, for machining materials which have excellent physical
properties due to their perfect crystal structures, the elastic deformation method is
appropriate [19].

2. Theory of elastic deformation

Based on the elasticity of the material, the circular flat plate is deformed to an
aspheric surface by applying the pressure in the elastic deformation machining
method. The deflection of the circular plate can be calculated by using appropriate
plate theory. There are two types of edge support for circular plate, such as fixed (or
clamped) edge and simply supported edge which are considered in this section.
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2.1 Basic equations for circular plate in elastic deformation

The amount of deflection of circular plate can be determined by solving the
differential equations of an appropriate plate theory [20]. Two types of edge sup-
port include clamped and simply supported edge which are used in the elastic
deformation method. In the case of simple bending of circular plate, the amount of
deflection w is assumed to be very small in comparison with plate thickness.
According to the small deflection theory of thin homogenous elastic plates, the
deformation in the middle plane of the plate can be neglected and the straight line
initially normal to the middle surface to the plate remains straight. In addition, the
stress (i.e., transverse normal stress) is small when compared to other stress com-
ponents and should be neglected in stress-strain relationship. Under these condi-
tions, the three dimensional plate problem can be reduced to two dimensions. The
linear theory of elasticity can be used to derive the governing differential equation
for a plate subject to uniform transverse loads. The equation for small deformation
w of a thin circular plate of constant thickness h is:

D:∇2 ∇2w
� �� p ¼ 0; D ¼ Eh3=12 1� ν2

� �
(1)

E and v are the Young’s modulus and Poisson’s coefficient. D is the rigidity
constant of the plate, and p is the load on the plate. Because of the rotational
symmetry, the Laplacian operator ∇2 in polar coordinates r and θ can be written as:
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where Mr and Mt are radial moment and tangential moment.
If the load acting on the plate is symmetrically distributed about the axis per-

pendicular to the middle plane of the plate, the deflection w is independent of θ,
when Eqs. (3) and (4) becomes:
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Multiply both sides of Eq. (6) by r and then integrate to obtain,
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By successive integrations, the deflection can arrive finally at

wr ¼ pr4
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The shears for the symmetrically loaded plate can be given as follow,

d
dr

d2w
dr2

þ 1
r
dw
dr

 !
¼ �Q

D
(11)

and from Eq. (9),
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This equation indicates that Q would approach infinity as r approaches zero. To
prevent this from happening, we make C1 = 0. From Eq. (10), it can be seen that w
becomes infinity at r = 0. To avoid this, the constant C3 must be zero. Thus,

wr ¼ pr4

64D
þ C2r2 þ C4 (13)

From Eq. (13), the amount of deflection wr is the function of r in cylindrical
coordinate system.

2.2 Circular plate with simply supported edge

The boundary conditions are w ¼ 0 and Mr ¼ 0 at r = a.
Eq. (13) can be written,
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so that the deflection of every radial location can be calculated using,
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The maximum deflection which occurs at r = 0, is given by,
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Substitute D = Eh3/12(1 � v2) into Eq. (18), we have:
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From Eq. (19), we can see that the maximum deflection of the circular plate is
relative of the diameter a and the ratio between diameter a and thickness h.

3. Elastic deformation machining method without mold

Figure 7 shows a schematic illustration of a lens elastic deformation process
without mold.

Two surfaces of the workpiece are polished to certain flatness before fabricating
as shown in Figure 7a. When vacuum pressure is supplied to the workpiece through

Figure 7.
(a–f) Schematic illustration of an aspheric surface elastic deformation process.
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a hole, the workpiece is deformed in the middle. The edge of the workpiece is
supported by the holder; therefore, it will be not moved. This makes the workpiece
become a formed aspheric shape as presented in Figure 7b. The deflection of the
workpiece can be calculated by using theoretical equation in boundary conditions of
circular plate with simply supported edge. While the vacuum pressure is still
remained, the workpiece and the holder start rotating and moving downward in
contact with the lapping plate. Its opposite side will be polished to optical flatness as
illustrated in Figure 7c and d. Then, the vacuum pressure is not supplied and the
workpiece is also released from the holder as shown in Figure 7e. According to the
Figure 7f, the bottom surface will be formed into the aspheric shape and the top
surface returns to its original flat surface form due to material elasticity. It can be
seen that the deformed workpiece surfaces can be restored by internal force and
bending moments which are created from the vacuum pressure during machining
process.

3.1 Finite element analysis for elastic deformation machining process

The vacuum pressure affects an amount of elastic deformation of the workpiece;
hence, the accuracy of manufactured profile will also be highly dependent on the
vacuum pressure as well. Figure 8a and b illustrates that the workpiece is lapped
and polished to a flat surface while the vacuum pressure stays it at the initial
deformed state.

The manufactured workpiece accuracy can be improved by adjusting the vac-
uum pressure during the machining process because of the changed workpiece
thickness [21]. The vacuum pressure is defined by finite element analysis (FEA)
results because theoretical calculation for complex surface is more difficult. In
simulation process, a circular plate B270 optical glass with the edge supported by
the holding device is listed in Table 1.

All elements of modeling were created by meshing with A20-node quadratic
brick elements in reduced integration (C3D20R). Figure 9 demonstrates the finite
element model as follows.

Figure 8.
(a and b) The deforming and lapping processes of glass plate. (a) The glass plate is deformed before lapping and
(b) the glass plate is deformed in lapping.

Density (kg/m3) Young’s modulus (GPa) Knoop hardness HK100 (kg/mm2) Poisson ratio

2550 71.5 542 0.22

Table 1.
Material properties of B270 optical glass [22].
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When the vacuum pressure keeps unchanged, the workpiece thickness is
reduced during the lapping process. Therefore, the surface form of a glass plate will
have some errors compared to desired surface form at the end of the machining
process. The results of the FEA indicate that the deflection of workpiece is greater
than desired curve. In order to enhance its accuracy, the vacuum pressure should be
fixed at 42 kPa as shown in Figure 10.

3.2 Experimental setup

The B270 optical glass which is a clear, high transmission and high purity raw
materials is chosen in this experiment. The workpiece sides are lapped and polished
to flat surfaces. The lapping process is through the relative motion between the
lapping plate and the workpiece, affected by abrasive slurry under distribution load.
The silicon carbide (SiC) and cerium oxide (CeO2) abrasive grain slurry are used in
the experiment. The principle of lapping process can be seen in Figure 11.

In lapping process, a rigid iron surface covered by a flannelette plate is moved
under the load on the glass surface, with abrasive particles suspended in water
between them. Table 2 demonstrates parameters for the machining process. To
remove microcrack layer and trace after the lapping process, a polishing step is
required. This step is also carried out with the Nanopoli-100 precision polishing
machine. The polishing parameters fixed unchanged as that in the initial lapping
step, except that the abrasive is changed from SiC to CeO2 as a fine polishing step.

Figure 9.
Simulation model of workpiece.

Figure 10.
Finite element analysis results and analytical results: (a) P = 50 kPa and (b) P = 42 kPa.
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3.3 Experimental results

The component accuracy can be improved by adjusting the vacuum pressure
values to compensate for its lost thickness during the lapping step. The vacuum
pressure is defined through FEA results. Figure 10 shows that the deformation
curve of the workpiece is close to the desired curve when the vacuum pressure is
fixed at 42 kPa. Therefore, the vacuum pressure should be reduced from 50 to 42
kPa in the experiment. Figure 12 illustrates the deflection and deviation results of
the experimental results and the theoretical calculations.

Depending on reducing pressure from 50 to 42 kPa and keeping stable through
the entire lapping step, the experimental results agree greatly with theoretical
calculations. The peak-valley value is reached at 1.6 μm.

Figure 11.
Principle of lapping and polishing process.

Items Lapping Polishing

Abrasive #1000 SiC #10,000 CeO2

Abrasive concentration in slurry (wt%) 10% 10%
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Lapping and polishing conditions.
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Figure 9.
Simulation model of workpiece.

Figure 10.
Finite element analysis results and analytical results: (a) P = 50 kPa and (b) P = 42 kPa.
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4. Elastic deformation machining method with mold

In the elastic deformation machining process without mold, the thickness of the
plate is reduced while the vacuum pressure remains unchanged. Thus, the work-
piece deformation to increase as lapping progresses. This will cause large deviation
in surface form between finished workpiece and theoretical calculation. The mold
with its surface approximates the desired surface form of the lens which is used for
improving the machining precision. When vacuum pressure is supplied, the top
surface of the workpiece will be deformed and then contacts the molded surface.
Figure 13 shows the basic concept of elastic deformation molding process [23].

The mold and workpiece surfaces are polished to flatness before fabricating as
shown in Figure 13a. When uniform vacuum pressure is supplied to the workpiece
through small holes of the mold, the workpiece will be deformed and then
contacted with the aspheric surface of the mold as presented in Figure 13b. While
deformed workpiece is kept stable under vacuum pressure, the bottom side of the
workpiece is polished to flatness as illustrated in Figure 13c and d. Then, the
vacuum pressure is not supplied; hence, the lapped side of workpiece will be
formed into the mold surface while the opposite surface returns to its original
flatness surface due to material elasticity as shown in Figure 13e.

4.1 Finite element analysis for elastic deformation machining process with
mold

The standard aspheric formula is:

Z ¼ cr2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ kð Þc2r2p þ ∑

n

i¼2
A2ir2i (20)

Figure 13.
Basic principle of elastic deformation molding process.
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where Z, depth or “Sag” of the curve; r, distance from the center; c, curvature (=1/
radius); K, conic constant; and A2i, higher order terms.

The radius (R) is used for determining the aspheric terms such as their shallow
or depth. The closest spherical surface is the radius which reaches the aspheric sag at
the largest useful diameter [24]. Figure 14 illustrates the aspheric lens sag.

An aspherical surface is built by using spherical surface combined with the
higher order terms. Most optical designers use only the even-order terms from A2 to
A20. The conic constant K has been used to design the initial aspheric, simple
paraboloid and hyperboloid (as shown in Table 3).

In elastic deformation machining method, the accuracy of aspheric lens depends
on the ability of elastic deformation and completely contacting the mold surfaces.
The mold surface is defined by choosing the closest spherical surface (as shown in
Figure 15). The FEA is designed for establishing the spherical surface through a
simulation of contacting process between workpiece and mold surface.

Figure 14.
The sag of aspheric lens.

Conic constant Surface type

K = 0 Spherical

K = �1 Paraboloid

K < �1 Hyperboloid

�1 < K < 0 Ellipsoid

K > 0 Oblate ellipsoid

Table 3.
The relationship between conic constants and surface types.

Figure 15.
The aspheric surface from best fit sphere.
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where Z, depth or “Sag” of the curve; r, distance from the center; c, curvature (=1/
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In the simulation process, the thickness (h = 1.0 mm) and diameter (D = 50 mm)
of the workpiece are suggested. In addition, the radius (R = 2500 mm) of spherical
surface is chosen. The parameters of FEA model can be seen in Figure 16a.

The axisymmetric model is selected in this simulation process. The mold is
chosen as an analytical rigid shell and the workpiece is a deformable shell. The
analytical step of model is “Dynamic, Explicit”. The interaction and the contact
property are “Surface to surface contact” and “Penalty contact method,” respec-
tively. All elements of the workpiece are divided in meshing with A4-node bilinear
axisymmetric quadrilateral elements in reduced integration. The workpiece mesh
and boundary conditions are described in Figure 16b. The values of uniform vac-
uum pressure are opted in range of �80 to �100 kPa. The conic constant K = 0.25 is
selected for the simulation process.

It is clear to see that Figure 17 shows the deflection and deviation of workpiece
under different vacuum pressures with the conic constant K = �3.

According to the results, the model with the conic constant K = �3, gives the
best one and the deviation between the workpiece and the mold is the smallest. The
workpiece and the mold can reach the best when the vacuum pressure approxi-
mates �95 kPa. However, when the vacuum pressure is larger than �95 kPa, the
deviation results are still stable. Therefore, the conic constant K = �3 recommends
for defining the aspheric surface of the mold.

The accuracy one can be innovated by modifying the mold profile to adopt with
bending stress of workpiece material. This mold profile is redesigned by using the
profile of workpiece after the deformed stage. An axisymmetric FEM model is
established, and it consists of the new mold and workpiece. The uniform vacuum
pressure is chosen as �95 kPa. The mold surface is redesigned with the conic
constant K = �3 as displayed in Figure 18.

It can be noted that Figure 19a and b presents the deflection and deviation
results between the workpiece and the new mold under supplied vacuum pressures,
P = �95 kPa and K = �3.

Figure 16.
(a) The simulation model and (b) FEM simulation model.

Figure 17.
(a and b) Deflection and deviation under different vacuum pressures (K = �3).
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The form accuracy of workpiece is enhanced by using the newmold surface. The
maximum deviation is less than P-V 0.35 μm while the former mold is about
15.02 μm.

4.2 Experimental setup

Figure 20 presents that the experiment was conducted to a precision polishing
machine Preci-Polish 300. The B270 glass with a diameter of 50 mm and a thickness

Figure 18.
The modified mold is chosen.

Figure 19.
(a and b) Deflection and deviation results between the workpiece and modified mold.

Figure 20.
Experimental set-up in the lapping processes. 1-Lapping machine; 2-digital pressure switch; 3-regulator; 4-
vacuum pump. 5-accumulator; 6-vacuum pipeline; 7-condition ring; 8-load; 9-mold; 10-lapping plate; and
11-slurry pipeline.
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The form accuracy of workpiece is enhanced by using the newmold surface. The
maximum deviation is less than P-V 0.35 μm while the former mold is about
15.02 μm.

4.2 Experimental setup

Figure 20 presents that the experiment was conducted to a precision polishing
machine Preci-Polish 300. The B270 glass with a diameter of 50 mm and a thickness
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The modified mold is chosen.
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Experimental set-up in the lapping processes. 1-Lapping machine; 2-digital pressure switch; 3-regulator; 4-
vacuum pump. 5-accumulator; 6-vacuum pipeline; 7-condition ring; 8-load; 9-mold; 10-lapping plate; and
11-slurry pipeline.
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of 1.0 mm is utilized in the experiment process. In addition, Table 4 points the
parameters for the machining process, in which the vacuum pressure is fixed as
�95 kPa.

According to the simulation results, the new mold surface with the conic con-
stant K = �3 is chosen. The multi-small holes of the modified mold surface are
fabricated to fix the workpiece during the machining process. The new mold is
machined on a precision CNC machining center.

4.3 Experimental results

Figure 21a and b shows that experimental results are compared to FEA with
new mold surface under applied vacuum pressure P = �95 kPa.

Based on the experimental and FEA results, the deviation of workpiece is less
than P-V 0.01 μmwithin the radius of about 12 mm. The maximum deviation is P-V
0.6 μm; however, the former mold is about 18.93 μm. It is clear to see that the
experimental results agree greatly with FEA results. Therefore, the form accuracy of
the workpiece is significantly improved when the new mold profile is redesigned
according to the FEA results with P = �95 kPa and K = �3.

5. Conclusions

Based on the elasticity of the material, the elastic deformation machining is a
method in which the vacuum pressure is used for fabricating complex aspheric
surfaces. The amount of deflection of circular plate can be determined by solving
the differential equations of an appropriate plate theory. The workpiece will be
deformed into aspheric shape prior to the lapping process under the vacuum pres-
sure. While the vacuum pressure is remained, the opposite side is polished to optical

Items Lapping Polishing

Abrasive #1000 SiC #10,000 CeO2

Abrasive concentration in slurry (wt%) 10% 10%

Machining load (N) 30 20

Rotating speed of lapping plate (rpm) 60 40

Machining time (min) 120 30

Table 4.
Lapping and polishing parameters.

Figure 21.
(a and b) Experimental and FEA results with modified mold surface.
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flatness by the lapping wheel. Then, the vacuum pressure is not supplied and hence,
the bottom surface will be formed into the aspheric shape and the top surface will
be restored to its flat surface form. Therefore, the method is suitable for
manufacturing of optical lens with large aperture and low thickness glass materials.

In the elastic deformation machining process without mold, the manufactured
workpiece accuracy can be increased by adjusting the vacuum pressure during the
machining process because of the changed workpiece thickness. The vacuum pres-
sure is defined through FEA results. According to the FEA, the deformation curve
of the workpiece is reached to the desired curve when the vacuum pressure is fixed
at 42 kPa. Depending on reducing the vacuum pressure from 50 to 42 kPa and
keeping stable through the entire machining process, the experimental results agree
greatly with theoretical calculations. The best peak-valley value P-V 1.6 μm was
achieved in this method.

In order to achieve form accuracy of the workpiece in the elastic deformation
machining process with mold, the mold with its surface approximates the desired
surface form of the lens which is used for improving the machining precision. The
accuracy one can be innovated by modifying the mold profile to adopt with bending
stress of workpiece material. This mold profile is redesigned by using the profile of
workpiece after the deformed stage. According to the simulation results, the new
mold surface with the conic constant K = �3 and vacuum pressure P = �95 kPa are
used for the experimental process. In this case, the deviation of workpiece is less
than P-V 0.01 μmwithin the radius of about 12 mm. The maximum deviation is P-V
0.6 μm; however, the former mold is about 18.93 μm. It is clear to see that the
experimental results agree greatly with FEA results.
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Chapter 4

Concept of Phase Transition Based
on Elastic Systematics
Paul S. Nnamchi and Camillus S. Obayi

Abstract

The use of elastic constants systematics to describe fundamental properties of
engineering materials has made materials science education and its related subjects
increasingly important not only for manufacturing engineers but also for mankind
at large. In this chapter, we present actual scaling of phase transition-driven con-
siderations, such as martensitic transformation and transformable shape memory
formation via elastic constant systematics. The scaling in terms of the simple and
polycrystals mechanical stability criteria based on the elastic moduli and an acoustic
anisotropy is in good agreement with novel experimental data from the literatures,
and further, a long-standing concern in predicting polycrystalline elastic constants
was considered beyond the commonly encountered criteria.

Keywords: elastic, elastic modulus, martensitic transformation, shape memory
effect, elastic constant, ductility criterion, mechanical properties

1. Introduction

The ingenuity and the art required to tailor precisely the desired physical and
structural properties in materials have been the main goal of the material scientists
and engineers. Elastic response (i.e. elastic constant) to an applied load is one of
such basic properties of all solids and originates from the distortion of atomic bonds.
Simply put, elastic constants are a reflection of the fundamental thermodynamic
properties that take place in the crystal lattice of solids. Complementary to this, the
otherwise inaccessible essential information can be revealed from their temperature
and stress dependencies of these important constants. For instance, the crystal
structures of the three long periods of transition elements change more or less
systematically from hcp through bcc to fcc as their group numbers increase from IV
to VIII as does their elastic properties. Thus, the knowledge of microscopic elasticity
can provide a fruitful ground for the exploration of the material behaviour yet
uncommon to our knowledge about the relationship between crystal structure and
bonding.

The earliest foundation of elastic theory dates back to seventeenth century
(around 1821), when Navier first gave the equation for the equilibrium and
motion of elastic solids [1], but modern foundation of microscopic elastic theory
was established by the work of Born and Huang [2], followed by other excellent
treatments [3]. It is well known that crystalline solids are by no means ideal and
invariably contain some lattice defects such as vacancies, solute atoms or some
extent of disorder. These point defects strongly affect almost all properties of
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materials, including elastic behaviours. In effect, the early investigators of these
phenomena were motivated by the response of naturally occurring anisotropic
materials such as wood and other crystalline solids. On that premise, of interest
here is the relationship between crystal structure and elastic properties, mainly
because of the important information they provide about nature of binding forces
in solids.

Over the past three decades, elastic constants of some simple crystals have
been a subject of numerous researches and have been investigated both theo-
retically and experimentally. Some of the outcomes have revealed that funda-
mental elastic properties of a martensitic crystal are fully determined by the
elastic constants Cij. All macroscopic elastic moduli (Young’s and shear modu-
lus, Poisson ratio, etc.) can be derived from the Cij at least within certain upper
and lower bounds [4]. There is considerable evidence that the magnitude of
C‘ ¼ C11 � C12ð Þ=2 elastic shear modulus in metallic bcc structures is closely
related to the occurrence of martensitic phase transformations and is thus a
useful parameter for estimating bcc structures [5]. Similarly, whether a struc-
tural material shows plastic flow or brittle fracture on loading is of clear prac-
tical significance. Brittleness in polycrystalline metals can be intrinsic or
induced. The basic question is: Do these two general properties (i.e. phase
stability and elastic properties) of crystals correlate to each other?

2. Analytical criterion of elastic constants of perfect crystals

The elastic properties are among the most important physical properties of
materials and the importance of studying elastic properties of materials cannot
be overemphasised. The knowledge of elastic properties is essential for both
structural design and experimental mechanics [6]. It also enables the assessment
of the sufficiency of strength, stiffness and stability of newly developed mate-
rials. Although the crystals are assumed to free from lattice imperfections and
difficult to produce, their study had always been the building block for a better
understanding of the behaviour of bulk materials. Usually, the determination of
elastic properties of crystalline solids is based on its single or perfect crystal
configuration under special loading conditions. The elastic moduli are the
material constants that connect stress with strain and are therefore crucial to
engineering applications. A crystal subjected to external load undergoes dimen-
sional change. If the eternal load is a stress tensor denoted by σij, then the
deformation per unit length in three-dimensional space, can be described by a
strain tensor, eij. Within the elastic limit or for sufficiently small deformations,
the stress tensor is a linear function of the strain tensor and the generalised
delta notation of Hooke’s law can be used to express the relationship between
these two quantities [7] as:

σij ¼ Cijklekl (1)

where Cijkl is the proportionality constant that characterises the crystal’s resis-
tance to elastic shape change; often referred to as the elastic coefficients or elastic
constants or elastic moduli or stress-strain coefficients [8].

The inverse relation between the strain and the stress can be determined by
taking the inverse of stress-strain relation to get:

ð2Þ
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Here, Sijkl represents the elastic compliance of the crystal. From symmetry or
equilibrium principles, the state of stress in an elastic body can be approximated by
six independent stress and strain components. And as such the stress and strain
components in Eq. (1) can be expressed in three orthogonal axes as:

ð3Þ

Here, exx, eyy and ezz are tensile strains, exy, eyz and ezx are shear strains. The
experimental values of elastic constants, Cijkl, were originally determined by con-
sidering the response of crystals to small strains or unstressed lattice using Eq. (1).
Beyond using Eq. (1) based on measured stress-strain relations, there are now
methods of determining elastic constants from the first principles often referred to
as ab initio methods. There are many methods of evaluating elastic coefficients such
as the one based on expanding the internal strain energy of the crystal [7]. Thus, we
may write as Eq. (4),

U ¼ U0 þ V0∑σiei þ 1
2
V∑

i
∑
i
Cijeiej þ :… (4)

where U is the energy of the crystal, is a quadratic function of the strains, in the
approximation of Hooke’s law (recall the expression for the energy of a stretched
spring). V0 is its equilibrium volume and e denotes an elastic strain. If the material
is a crystal, the number of independent elastic constants is reduced further
depending on the crystal system.

Elastic coefficients and elastic moduli have significant effect of mechanical
response of crystals. Elastic constants, Cij(C11, C12, C44) and elastic moduli such
as bulk modulus (B), shear modulus (G), Young’s modulus (E) influence mechani-
cal response of crystals. For instance, the bulk modulus (B) is associated with the
hardness of materials which is of extreme importance in high-temperature and
pressure applications, while elastic constants could provide essential information
about bonding between adjacent atomic planes, anisotropic character of bonding
and structural stability [7]. By far, the most widely reported elastic properties are
E, G and B, corresponding to tensile, shear and hydrostatic loading, respectively.
Since B signifies the compressibility of a substance, it can be calculated from the
partial derivative of volume (V) and pressure (P) at constant temperature (T), as
per Eq. (5).

B ¼ δV δP=ð ÞT (5)

It is worth pointing out that other definitions of elastic constant are possible.
Elastic modulus Emeasures the resistance to a change in atomic separation distance
within the plane of the bond and so can be determined from the linear portion of the
interatomic potential. G quantifies the resistance to shear loading and B, since it
corresponds to a volumetric dilatation, is dependent on the electronic properties of
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a solid, i.e. the compressibility of the electron gas. Elastic moduli are therefore
controlled by interatomic interactions and so may be considered a fundamental
property of condensed matter. By excitation of longitudinal and transverse phone
modes, E and G can, respectively, be calculated if the density (ρ) of the material is
known. This is done via an ultrasonic probe which emits and measures the longitu-
dinal (vl) and transverse (vt) sound wave velocities, from which E and G can be
calculated via Eqs. (6) and (7):

E ¼ ρv2l (6)

G ¼ ρv2t (7)

E, G and B can also be calculated from Cij elastic constants. For a material with
cubic structure, the number of Cij in the elastic tensor can be reduced from 36 to
just 9, due to Cij = Cji and there being strong symmetry in a cubic lattice. The
resulting relevant Cij are C11, C12 and C44.

C12 ¼ Bþ 4G
3

(8)

C11 ¼ 3B� C11

2
(9)

C11 ¼ G (10)

Cʼ ¼ C11 � C12

2
(11)

The tetragonal shear modulus, Cʼ, corresponds to a specific phonon vibration
mode in the atomic structure, and is thus directional in nature. In comparison, B is
non-directional as it relates to a volumetric effect.

B ¼ C11 þ 2C12

3
(12)

ð13Þ

3. Elastic and lattice stability criteria

3.1 Lattice stability in perfect crystal

Elastic properties of a material are very important because they check the
mechanical stability, ductile or brittle behaviour based on the analysis of elastic
constants, Cij, bulk modulus B and shear modulus G. For example, the bulk modulus
measures the resistance of the volume variation in a solid and provides an estima-
tion of the elastic response of the materials under hydrostatic pressure. The shear
modulus describes the resistance of a material to shape change.

The fundamental understanding of the conditions of mechanical stability of
unstressed crystal structure was laid by the work of Max-Born and co-authors in
the 1940s [3], and consolidated later in 1954 [3]. This and other text books gave
the generic requirements for elastic stability of crystal lattices in terms of elastic
constants [3] and offers simplified equivalents of the generic conditions for
some high-symmetry classes. The general stability condition can be stated by
considering the second-order elastic matrix and the elastic energy of the crystal

56

Elasticity of Materials ‐ Basic Principles and Design of Structures

deformed homogeneously by infinitesimal strain as shown in Eqs. (14) and (15)
[3], respectively:

Cij ¼ 1
V0

∂
2U

∂
2ei∂2ej

 !
(14)

U ¼ 1
2
V0 ∑

6

i, j¼1
Cijeiej þO e3

� �
(15)

where U is the elastic energy, VO is the volume of unstressed sample,Cij (I, j = 1–6)
is the elastic constant and ei and ej are the applied strains [2]. In Eq. (15), O (e3)
denotes the terms of numerical error in the order e3 or higher. A crystal lattice is
dynamically said to be stable only if elastic energy U is positive for any small defor-
mation [9], which implies that principal minors of the determinant with elements Cij
are all positive [3].

Most real materials (cubic and non-cubic polycrystalline structures) have some
types of symmetry, which further reduces the required number of independent
elastic moduli. In the case of cubic systems, such as bcc, fcc, NaCl type, or CsCl
type) structures, in particular, number of independent elastic moduli is reduced
from 36 to 9, as Cij = Cji and there being strong symmetry in the two lattices.
Therefore, the conditions for stability reduced to a very simple form using three
different elastic constants: C11, C22 and C44. The mechanical stability criteria are
given by [10]:

C11 � C12;j j>0
C11 þ 2 C12>0

C44>0

C12>C11

(16)

The condition when B <0 is referred to as spinodal instability.
Although hexagonal and tetragonal systems have the same form for the elastic

matrix, the hexagonal has five, while tetragonal has six independent elastic con-
stants. By direct calculation of the Eigen values of the stiffness matrix, according to
[11], four conditions can be derived for elastic stability in both classes:

C11> C12;j j;2C2
13 <C33 C11 þ C12ð Þ

C44>0;C66>0
(17)

Similarly, for the orthorhombic system, there are nine independent elastic con-
stants: C11, C22, C33, C44, C12C55,C66,C23 and C13. The mechanical stability of the
structure at each concentration can be judged by calculated elastic stiffness.
According to Born’s criteria [3], the requirement of mechanical stability in an
orthorhombic system leads to the following equations [12].

C11>0;C22>0;C44>0;C33>0;C55>0;C66>0;

C11 þ C22>2 C12;C11 þ C33>2 C13;

C11 þ C22 C33 þ 2 C12 þ 2 C23 þ 2 C13>0;

(18)

Further to this, conditions for stability for some high-symmetry crystal classes
have been studied. However, there is still some confusion about the form of stability
criteria for other crystal systems and classes [8].
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types of symmetry, which further reduces the required number of independent
elastic moduli. In the case of cubic systems, such as bcc, fcc, NaCl type, or CsCl
type) structures, in particular, number of independent elastic moduli is reduced
from 36 to 9, as Cij = Cji and there being strong symmetry in the two lattices.
Therefore, the conditions for stability reduced to a very simple form using three
different elastic constants: C11, C22 and C44. The mechanical stability criteria are
given by [10]:

C11 � C12;j j>0
C11 þ 2 C12>0

C44>0

C12>C11

(16)

The condition when B <0 is referred to as spinodal instability.
Although hexagonal and tetragonal systems have the same form for the elastic

matrix, the hexagonal has five, while tetragonal has six independent elastic con-
stants. By direct calculation of the Eigen values of the stiffness matrix, according to
[11], four conditions can be derived for elastic stability in both classes:

C11> C12;j j;2C2
13 <C33 C11 þ C12ð Þ

C44>0;C66>0
(17)

Similarly, for the orthorhombic system, there are nine independent elastic con-
stants: C11, C22, C33, C44, C12C55,C66,C23 and C13. The mechanical stability of the
structure at each concentration can be judged by calculated elastic stiffness.
According to Born’s criteria [3], the requirement of mechanical stability in an
orthorhombic system leads to the following equations [12].

C11>0;C22>0;C44>0;C33>0;C55>0;C66>0;

C11 þ C22>2 C12;C11 þ C33>2 C13;

C11 þ C22 C33 þ 2 C12 þ 2 C23 þ 2 C13>0;

(18)

Further to this, conditions for stability for some high-symmetry crystal classes
have been studied. However, there is still some confusion about the form of stability
criteria for other crystal systems and classes [8].
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A crystal lattice is said to be stable in the absence of external load (unstressed
condition) and in the harmonic approximation [13] if and only if it has both
dynamic and elastic stability. Dynamic stability implies that its phonon modes have
positive frequencies for all wave vectors, while its elastic stability is dependent on
elastic energy given by Eq. (15) being always positive (U > 0,∀ε 6¼ 0). Elastic
stability criterion is mathematically equivalent to the following necessary and suf-
ficient conditions: the elastic matrix C is definite exactly positive and all Eigen
values of matrix C are positive; all the leading principal and arbitrary minors of
matrix C are all positive. The closed form expressions for necessary and sufficient
elastic stability criteria for other crystal lattices have been studied. While the sta-
bility criterion is linear for some crystal lattices, it is quadratic and even polynomial
for others. Thus, the mechanical stability of a crystal is combination of the elastic
constant and Born’s stability criteria. The elastic constant of a stable crystal must
satisfy the Born’s criteria to prove its mechanical stability.

3.2 Relative stability of polycrystalline materials

In the case of multi-phase stability, multi-phase composites can be obtained
based on multiple scattering theory. For example, polycrystalline materials
consisting of two phases, namely cubic and orthorhombic phases can be obtained by
homogenising the integral elastic response of the multi-phase polycrystalline sam-
ples, following the effective medium approach originally applied by Zeller and
Dederichs [13] to determine elastic properties of single-phase polycrystals with
cubic symmetry. This type of concept was generalised by Middya and Basu [14] and
further extended by Middya [15] and by Raabe et al. [16] to multi-phase composites
to determine: (i) the elastic single constants and (ii) the volume fraction of the
components within a self-consistent T-matrix solution for the effective medium
elastic properties of hexagonal, and orthorhombic polycrystals.

The subset of supercells or cubic and orthorhombic symmetries consisting of
three (C11, C12, C44) and nine (C11, C12, C13, C22, C23, C33, C44, C55, C66) elastic
constants, respectively, was calculated by employing the methodology explained in
[16–18] for the elastic properties of the multi-component alloys. This can be viewed
as a macroscopic homogeneous effective medium consisting of microscopic fluctu-
ations and characterised by an effective stiffness of Cijkl defined by:

σij rð Þ� � ¼ Cijkl ϵkl rð Þh i (19)

Here, Cijkl is the local elastic constant tensor with σij rð Þ� �
and ϵkl rð Þh i as the local

stress and strain field at a point r, respectively, and the angular brackets denoting
ensemble averages. A repeated index implies the usual summation convention. The
effective stiffness of Cijkl is defined by:

σij rð Þ� � ¼ C∗
ijkl ϵkl rð Þh i (20)

Since the aggregate represents a body in equilibrium, σij rð Þ∣j ¼ 0, where
∣j ¼ ∂=∂rj and the local elastic constant tensor can now be decomposed into an
arbitrary constants part (Co

ijkl) and a fluctuating part—δC rð Þ.

Cijkl rð Þ ¼ Co
ijkl þ δCijkl rð Þ (21)

As shown in [16], an integral part of Eq. (19) is the interactive equivalent
solution representing the resulting local strain ϵ distribution (in a short notation) as:
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ϵ ¼ ϵ0 þGTϵ0, (22)

Here, ϵ0 and G are the strain and modified Green’s function of the medium
defined by CO, and the T-matrix given by:

T ¼ δC 1�GδCð Þ�1 (23)

Here, І is equivalent to the unit tensor. Combining Eqs. (21) and (22), we get:

C∗ ¼ C0 þ Th i= 1þ GTh ið Þ�1 (24)

Although Eq. (21) constitutes an exact solution for C∗, finding the exact solution
of Th i and GTh i for realistic cases is impossible. By neglecting the intergranular
scattering that may occur in some cases in the form of a grain-to-grain position-
orientation correlation function however, the T-matrix can be written in terms of
single-grain T-matrix (tα) for each grain α

T ≈∑
α
tα ¼ τ: (25)

where

tα ¼ δCα þ δCαGtα ¼ δCα 1�GδCαð Þ�1 (26)

∑
α
δCα ¼ δC ¼ C� C0 (27)

Inserting Eq. (21) into (22) leads to:

C∗ ¼ C0 þ τh i 1þ Gτh ið Þ�1 (28)

For single-phase polycrystal, the self-consistent solution of Eq. (11) can be
obtained by choosing a C∗ that satisfies:

τh i ¼ 0 (29)

For a multi-phase polycrystals, a solution to Eq. (4) can be found by evaluating
the volume fraction and τ of each phase i u2 and τ2ð Þ, respectively [19], via:

∑
i
v2τ2

� �
¼ 0 (30)

The application of the method to both single-phase aggregates and multi-phase
composites is relevant to many multi-component alloys. For a single-phase poly-
crystal with cubic symmetry [16, 20] to the following expression for B∗ and
μ∗ : B∗ ¼ Bo

8μ∗3 þ 9B0 þ 4C
00 0

� �
μ∗2 � 3C44 BO þ 4C

0 0
� �

μ∗ � 6BOC44C
0 0 ¼ 0 (31)

In Eq. (31), three independent single-crystal elastic constants
(C11, C12, C44Þ define the single-crystal bulk modulus Bo ¼ C0

11 þ 2CO
12

� �
=3, the

tetragonal shear modulus C0 ¼ C11�C12ð Þ=2 and trigonal shear modulus, C44,
μ∗ ¼ C∗

44 ¼ μ0 þ τ44h i
1þG44τ44

.
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positive frequencies for all wave vectors, while its elastic stability is dependent on
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for others. Thus, the mechanical stability of a crystal is combination of the elastic
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satisfy the Born’s criteria to prove its mechanical stability.

3.2 Relative stability of polycrystalline materials

In the case of multi-phase stability, multi-phase composites can be obtained
based on multiple scattering theory. For example, polycrystalline materials
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homogenising the integral elastic response of the multi-phase polycrystalline sam-
ples, following the effective medium approach originally applied by Zeller and
Dederichs [13] to determine elastic properties of single-phase polycrystals with
cubic symmetry. This type of concept was generalised by Middya and Basu [14] and
further extended by Middya [15] and by Raabe et al. [16] to multi-phase composites
to determine: (i) the elastic single constants and (ii) the volume fraction of the
components within a self-consistent T-matrix solution for the effective medium
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constants, respectively, was calculated by employing the methodology explained in
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as a macroscopic homogeneous effective medium consisting of microscopic fluctu-
ations and characterised by an effective stiffness of Cijkl defined by:
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Here, Cijkl is the local elastic constant tensor with σij rð Þ� �
and ϵkl rð Þh i as the local

stress and strain field at a point r, respectively, and the angular brackets denoting
ensemble averages. A repeated index implies the usual summation convention. The
effective stiffness of Cijkl is defined by:

σij rð Þ� � ¼ C∗
ijkl ϵkl rð Þh i (20)

Since the aggregate represents a body in equilibrium, σij rð Þ∣j ¼ 0, where
∣j ¼ ∂=∂rj and the local elastic constant tensor can now be decomposed into an
arbitrary constants part (Co

ijkl) and a fluctuating part—δC rð Þ.

Cijkl rð Þ ¼ Co
ijkl þ δCijkl rð Þ (21)

As shown in [16], an integral part of Eq. (19) is the interactive equivalent
solution representing the resulting local strain ϵ distribution (in a short notation) as:
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ϵ ¼ ϵ0 þGTϵ0, (22)

Here, ϵ0 and G are the strain and modified Green’s function of the medium
defined by CO, and the T-matrix given by:

T ¼ δC 1�GδCð Þ�1 (23)

Here, І is equivalent to the unit tensor. Combining Eqs. (21) and (22), we get:

C∗ ¼ C0 þ Th i= 1þ GTh ið Þ�1 (24)

Although Eq. (21) constitutes an exact solution for C∗, finding the exact solution
of Th i and GTh i for realistic cases is impossible. By neglecting the intergranular
scattering that may occur in some cases in the form of a grain-to-grain position-
orientation correlation function however, the T-matrix can be written in terms of
single-grain T-matrix (tα) for each grain α

T ≈∑
α
tα ¼ τ: (25)

where

tα ¼ δCα þ δCαGtα ¼ δCα 1�GδCαð Þ�1 (26)

∑
α
δCα ¼ δC ¼ C� C0 (27)

Inserting Eq. (21) into (22) leads to:

C∗ ¼ C0 þ τh i 1þ Gτh ið Þ�1 (28)

For single-phase polycrystal, the self-consistent solution of Eq. (11) can be
obtained by choosing a C∗ that satisfies:

τh i ¼ 0 (29)

For a multi-phase polycrystals, a solution to Eq. (4) can be found by evaluating
the volume fraction and τ of each phase i u2 and τ2ð Þ, respectively [19], via:

∑
i
v2τ2

� �
¼ 0 (30)

The application of the method to both single-phase aggregates and multi-phase
composites is relevant to many multi-component alloys. For a single-phase poly-
crystal with cubic symmetry [16, 20] to the following expression for B∗ and
μ∗ : B∗ ¼ Bo

8μ∗3 þ 9B0 þ 4C
00 0

� �
μ∗2 � 3C44 BO þ 4C

0 0
� �

μ∗ � 6BOC44C
0 0 ¼ 0 (31)

In Eq. (31), three independent single-crystal elastic constants
(C11, C12, C44Þ define the single-crystal bulk modulus Bo ¼ C0

11 þ 2CO
12

� �
=3, the

tetragonal shear modulus C0 ¼ C11�C12ð Þ=2 and trigonal shear modulus, C44,
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Here, C∗
44 is the homogenised bulk modulus. The details of the equation for

calculating the elastic constants of polycrystals alloy with hexagonal symmetry have
been explained elsewhere by [20], and the details here concern polycrystals with
orthorhombic symmetry. Eqs. (29) and (30) are reduced to a set of coupled equa-
tions for B∗ and μ∗:

0 ¼ 9 KV � B∗ð Þ þ 2β d� cþ eð Þ þ 3β2Δ0 (32)

0 ¼ a� bþ β 2d� 2c� eð Þ þ 3γ d� cþ eð Þ þ ηβΔ0

1� αβ � 9γ kv � B0ð Þ þ β β þ 2γð Þ c� dð Þ � 2eβγ � 1
3
ηβ2Δ

0 0
þ

3
C44 � μO

1� 2β C44 � μOð Þ þ
C55 � μO

1� 2β C55 � μOð Þ þ
C66 � μO

1� 2β C66 � μOð Þ
� � (33)

where

9Kv ¼ C11 þ C22 þ C33 þ 2 C12 þ C13 þ C23ð Þ, (34)

B ¼ 1=3 C11 þ 2C12ð Þμ∗ ¼ C44 (35)

γ ¼ 1=9 η� 3βð Þ (36)

a ¼ δC11 þ δC22 þ δC33;b ¼ δC12 þ δC13 þ δC23 (37)

c ¼ δC11δC22 þ δC11δC33 þ δC22δC33;d ¼ δC2
12 þ δC2

13 þ δC2
23 (38)

e ¼ δC12δC13 þ δC12δC23 þ δC13δC23 � δC11δC23 � δC22δC13 � δC33δC12 (39)

Δ0 ¼ δC11δC22δC33 þ 2δC12δC13δC23 � δC11δC2
23 � δC22δC2

13 � δC33δC2
12 (40)

δC11 ¼ C11 � CO
11 ¼ C11 � K0 � 4

3
μ0;δC22 ¼ C22 ¼ C22 � K0 � 4

3
μ0 (41)

δC33 ¼ C33 � K0 � 4
3
μ0;δC12 ¼ C12 � CO

12 ¼ C12 � K0 þ 4
3
μ0 (42)

δC13 ¼ C13 � K0 þ 4
3
μ0;δC23 ¼ C23 � K0 þ 4

3
μ0 (43)

β ¼ �3 B∗ þ 2μ∗ð Þ
5μ∗ 3B∗ þ 4μ∗ð Þ , (44)

η=3 ¼ �1=3B∗ þ 4μ∗, (45)

C66 ¼ 1=2ð Þ C11 � C12ð Þ (46)

and orthorhombic symmetry has nine of the single crystal elastic constants,
namely: C11,C22,C33,C44C55,C66,C12,C23 and C13.

The elastic constants of a multi-phase polycrystals were determined directly by
coupling Eq. (13) for τ44 and the τ11 þ 2τ12ð Þ components of the T-matrix. For
materials with cubic symmetry, the equation is defined as:

5τ44 ¼ 1

C11 � C12 � eG∗

�β
 !�1

þ 3
1

C44 � eG∗

�2β
 !�1

(47)

τ11 þ 2τ12 ¼ 3 C11 þ 2C12ð Þ � 9eB∗

3� C11 þ 2C12ð Þ � 3eB∗ (48)

This is where β is defined in Eq. (31) with eG∗
and eB∗

replacing G∗ and B∗. For
materials with orthorhombic symmetry, the equation reads:
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15τ44 ¼ a� bþ β 2d� 2c� eð Þ þ 3γ d� cþ eð Þ þ υβΔ0

1� αβ � 9γ Kv � eB0

� �
þ β β þ 2γð Þ c� dð Þ � 2eβγ � 1

3
υβ2Δ

0 0

þ3
C44 � eGO

1� 2k C44 � eGO� �þ C55 � eGO

1� 2k C55 � eGO� �þ C66 � eμO

1� 2β C66 � eGO� �
0
B@

1
CA

(49)

τ11 þ 2τ12 ¼
9 Kv � eB0� �

þ 2β d� cþ eð Þ þ 3β2Δ0

3 1� αβ � 9γ KV � eB0� �
þ β β þ 2γð Þ c� dð Þ � 2eβγ � 1ηβ2Δ0

3

h i (50)

Here, β is defined in Eq. (28), η is defined in Eq. (29), and Δ0 in Eq. (23). Here,
again G∗ and eB∗

replaces G∗ and B∗ in the equations for β, υ and Δ0. As soon as G∗

and eB∗
have been determined, the homogenised Young’s modulus eE

� �∗
and

Poisson’s ratio υð Þ∗ for (an elastically isotropic) polycrystal can be determined using
standard elasticity relationships. The homogenised polycrystalline Young’s modulus
is calculated using:

E∗ ¼ 9eB∗
G∗

3eB∗ þG∗
(51)

G∗ ¼ 3eE∗eB∗

9eB∗ � eE∗ (52)

4. Correlation of elastic constants with properties of polycrystalline
materials

Inmany problem relating to polycrystalline or anisotropic materials, it is customary
to make use of the properties in an elastically isotropic materials. Most of the common
metals and engineering alloys, however, exhibit a marked degree of anisotropy in their
single-crystal elastic behaviour and it is therefore more desirable to obtain same on the
bases of anisotropic elastic property. The fundamental factors determining the intrin-
sic plasticity or brittleness behaviour in solids have great link with interatomic poten-
tials, for instance, there is a correlation with the ratio of the elastic shear modulus μ to
the bulk modulus B. It is evident, elastic moduli show trends with a range of proper-
ties, including hardness, yield strength, toughness and fragility [21, 22]. In this section,
for limitation of space, we will, in particular, consider elastic aspect of polycrystals
materials with respect to their dependency on specific crystal structure.

4.1 Elasticity and ductility criteria

Strength and ductility have always been one of the crucial issues to study for
metal materials. The tendency of materials to be ductile or brittle is being predicted
using models based on elastic constants. Some of these include that of Pugh crite-
rion [23] and Cauchy pressure as defined by Pettifor [24]. Pugh proposed an
empirical relationship between the plasticity and fracture properties showing the
ratio G/B indicates the intrinsic ability of a crystalline metal to resist fracture and
deform plastically [25]. This represents a competition between plasticity and frac-
ture considering that B and G represent resistance to fracture and plastic deforma-
tion, respectively. Thus, the force required to propagate a dislocation is proportional
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Here, C∗
44 is the homogenised bulk modulus. The details of the equation for
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bases of anisotropic elastic property. The fundamental factors determining the intrin-
sic plasticity or brittleness behaviour in solids have great link with interatomic poten-
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the bulk modulus B. It is evident, elastic moduli show trends with a range of proper-
ties, including hardness, yield strength, toughness and fragility [21, 22]. In this section,
for limitation of space, we will, in particular, consider elastic aspect of polycrystals
materials with respect to their dependency on specific crystal structure.

4.1 Elasticity and ductility criteria

Strength and ductility have always been one of the crucial issues to study for
metal materials. The tendency of materials to be ductile or brittle is being predicted
using models based on elastic constants. Some of these include that of Pugh crite-
rion [23] and Cauchy pressure as defined by Pettifor [24]. Pugh proposed an
empirical relationship between the plasticity and fracture properties showing the
ratio G/B indicates the intrinsic ability of a crystalline metal to resist fracture and
deform plastically [25]. This represents a competition between plasticity and frac-
ture considering that B and G represent resistance to fracture and plastic deforma-
tion, respectively. Thus, the force required to propagate a dislocation is proportional

61

Concept of Phase Transition Based on Elastic Systematics
DOI: http://dx.doi.org/10.5772/intechopen.81340



to Gb where b is the Burgers vector. This implies that a material with high value of
the ratio tends to be brittle (fracture is easier and plasticity is much less), while a
low value indicates ductility (plasticity is easier and fracture is not). Fracture
strength is also proportional to Ba (a, is the lattice constant) since B is related to
surface energy, which indicates brittle fracture strength.

These empirical observations implicate G/B as explaining well brittle or tough
behaviour [19, 26]. Pugh’s criterion is the most widely used model to predict plastic
behaviour of materials [27]. Since yield strength and fracture stress scale with shear
modulus and elastic constant, respectively, the Pugh’s ratio determines the likelihood
of material’s failure. If the effect of crystal structure is neglected, high value of Pugh’s
ratio indicates that a material is prone to brittle failure, while low value of G/B implies
ductile failure. The large data on polycrystalline pure metals collected by Pugh [2],
when he provided a qualitative ranking from ductile (e.g. Ag, Au, Cd, Cu) to brittle
(e.g. Be, Ir) behaviour as G/B increases. For cubic close-packed (ccp) metals, the
critical ratio G=Bð Þcrit dividing the two regimes is in the range 0.43–0.56, and for
hexagonal close-packed metals, it is 0.60–0.63. Cottrell [28] has estimated G=Bð Þcrit for
transgranular fracture from measured surface energies: 0.32–0.57 for ccp metals and
0.35–0.68 for body-centred cubic metals. The spread in values for each structure type
largely indicates the interrelationship between crystal structure and elastic constant.
Each structure type, however, includes metals with widely differing degrees of elastic
anisotropy. Detailed analysis requires knowledge of the relevant elastic constants.

On the other hand, the Cauchy pressure ductility criterion is associated with
elastic constants of single cubic crystals such as C12–C44 and is useful in describing
the nature of bonding in a material [27]. When a material has high resistance to
bond bending as found in covalently bonded solids, it will have a negative Cauchy
pressure (C44 > C12). This is in contrast with materials with metallic bonding which
exhibit positive Cauchy pressure. When compared with Pugh’s ductility criterion,
ductile and brittle behaviours are considered to be indicated by a positive and a
negative Cauchy pressure, respectively. Although Pugh’s and Cauchy pressure
criteria are adjured to be based on easily measurable properties of materials such as
elastic constants, they do not give the critical value dividing brittle and ductile
materials. It is proven in certain materials, including metallic glasses and compos-
ites, which religiously respect this dividing line [21]. The behaviour is shown
graphically in Figure 1. A summary of the correlation between C12–C44 and G=Bð Þcrit

Figure 1.
Ductile and brittle phase fields in metallic glasses, where G* is the local modulus and ‘G’ the global modulus.
Decreasing the fraction of low G sites reduces the need for a globally low ν (culled from [28]).
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for a wide variety of aluminide group of materials is displayed in Figure 2. As can be
seen, it is evident that an intrinsic correlation between strength and ductility of Al-
based materials. It has been observed the criteria indicate a trend in a class of
materials with similar deformation mechanism, but is limited by the effects of
specimen sizes and crystal structures on deformation processes.

Several authors have studied elastic softening behaviour and recent evidence
suggests elastic moduli manifest array of trends with a range of properties including
mechanical such as hardness, yield strength, toughness and fragility [22, 30]. In
early 1950s, Gilman and Cohen [31] made a historic revelations when they observed
that there is a linear correlation between the hardness and elasticity in polycrystal-
line materials. Nevertheless, successive studies demonstrated that an uniformed
linear correlation between hardness and bulk modulus does not really hold for a
variety of materials [29] as illustrated in Figure 3(a). Following this, Tester [32]
proposed a better empirical link between hardness and shear modulus (G), as
illustrated in Figure 3(b). Although, the link between hardness and elastic shear
modulus can be arguable, it is certain that he had demonstrated that the shear
modulus, the resistance to reversible deformation under shear strain, can correctly
provide a key assessment of hardness or ductility criteria for some materials. It is
well known that some phase exhibits more hardness or ductility properties than
others. Accordingly, it is fair to say that such descriptions could lead to further
outlandish discovery in connections with regards to phase components in poly-
crystalline solids.

4.2 Elastic moduli and martensitic transformation

Martensitic transformation (MT) is a first-order phase type of transforma-
tion from a high-symmetry phase (austenite) at high temperature to a crystal-
lographically low-symmetry phase (martensite) at low temperature. Martensitic
behaviour has been extensively studied for decades because of its importance

Figure 2.
Correlation between C12–C44 and G/B for 35 aluminides (culled from [29]).
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in metallurgy and its key role in shape memory phenomenon. Shape memory
alloys (SMA) are materials such as TiNi and TiNi-based alloys [33], Ti-Nb [34],
Ti-Mo [20, 31] etc. that exhibit diffusion-less first-order martensitic phase
transitions induced by the change of temperature and/or stress. The relation
between softening of elastic constants and martensitic transformation has
attracted considerable attention for many years and has been discussed by
many researchers [35, 36]. This interesting feature of martensitic transformation
in shape memory alloys is the existence of precursor phenomena [1, 2]. The
relations between MT temperature and elastic constants were investigated by
Ren et al. [36]. Experiments [37] indicate that martensitic transition occurs at
almost constant values of C‘. Slight change in composition would cause strong
deviation in the critical temperature at which C‘ softens to a critical value
and martensitic transition occurs. In some alloys exhibiting martensitic trans-
formation, softening of elastic constants C‘ ¼ C11 � C12ð Þ=2 and large elastic
anisotropy, A ¼ C44ð Þ=C‘ was observed in the parent phase, but the
significance of the softening is largely different between the alloys. For exam-
ple, Earlier Takashi Fukuda and co-workers [34] observed the value of C‘ near
the transformation start temperature is approximately 0.01 GPa in In-27Ti
(at %) alloy [38], 1 GPa in Au-30Cu-47Zn (at %) alloy [37], 5 GPa in Fe-30Pd
(at %) alloy [39], 8 GPa in Cu-14Al-4Ni (at %) alloy [9], and 14 GPa in
Ti-50.8Ni (at %) [33] and Al-63.2Ni (at %) alloys [40]. Because of such a
large distribution of C‘ at the Ms temperature, the influence of softening of C‘

on martensitic transformation is expected to be significantly different
between these alloys. Martensitic transformation in some alloys is probably
strongly related to the softening of C‘, while that in others is weakly related
despite the fact that the softening appears before the transformation.

Previously, Zener [5] established a correlation between the magnitudes of
C‘ ¼ C11 � C12ð Þ=2 elastic shear modulus in metallic bcc structures with the
occurrence of martensitic phase transformations suggesting links with phase
stability, via the atomic interactions. He observed that the large value suggests
that C‘ is much smaller than C44 and that MT temperature is dominated by C‘

[5]. Thus, independent elastic constants are needed to characterize the
material response, such as Martensitic transformations (MTs), Shape memory
etc. Martensitic transformations (MTs) are often accompanied by elastic modu-
lus softening (acoustic phonon softening) [5]. This explains the strong

Figure 3.
Correlation of experimental Vickers hardness (HvÞ with (a) bulk modulus (B) and with (b) shear modulus
(G) for 39 compounds [29].
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composition-dependence of MT temperature. As a result, the modulus softens
abruptly within a narrow temperature window around martensitic start tem-
perature, Ms. However, this is unsurprising since it is well known that they are
a consequence of weak restoring forces in specific crystallographic directions
that announce the possibility of a dynamical instability. The elastic constants
are closely related to the acoustic lattice vibrations or even atomic bondings in
crystals, and accordingly will be related to the transformation mechanism for
not only the Martensitic alloys but also any other compounds which accompany
shear-like or displacive transitions.

Following the above, Nnamchi et al. [41] in a recent study considered the
link between different groups of shape memory materials with elastic system-
atics found a clear delineated in a 2D plot of two dimensionless ratios of elastic
constants or reduced elastic-stiffness coefficients, C12ð Þ= C11ð Þ vs. C44ð Þ= C11ð Þ for-
mally popularised earlier by Blackman [42], It is only one table with different
sections. (see Figure 4 and Tables 1 and 2). This reveals among others the
elastic anisotropy, proximity to Born mechanical instability, elastic-constants
(interatomic-bonding) changes caused by alloying, pressure, temperature, phase
transformations and similarities in types of interatomic bonding. The significance
of the softening is largely different between the alloys. Inspecting the diagram, we
notice materials with similar chemical bonding tend to fall in the same region of
the diagrams. Such diagrams provide many uses.

Figure 4.
Correlations between parameters reduced elastic-stiffness coefficients C12ð Þ= C11ð Þ vs. C44ð Þ= C11ð Þ for several
classes of shape memory materials (culled from [34]).

This work C11 C12 C12/C11 C44/C11 Ref.

1 Ti-3Mo 159.3 115 0.72 1.21 [34]

2 Ti-6Mo 111.3 69.07 0.62 0.93 [34]

3 Ti-10Mo 167 19.6 0.12 0.081 [34]

4 Ti-14Mo 179.2 17.9 0.10 0.074 [34]
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This work C11 C12 C12/C11 C44/C11 Ref.

5 Ti-18Mo 192.6 16.3 0.085 0.066 [34]

6 Ti-23Mo 197.5 16 0.081 0.051 [34]

Non-SIM (BCC)alloys

1 Ti50Ni30Cu20 209 183 0.88 0.17 [43]

2 Ti-50Ni 165 140 0.85 0.21 [44]

3 Ti-29Nb-13Ta-4.6Zr 67.1 39.9 0.87 0.19 [45]

4 Ti-30Nb-10Ta-5Zr 128 92 0.86 0.24 [46]

5 Ti-35Nb 163.5 142 0.87 0.22 [47]

6 Ti-30Nb-5Ta-5Zr 70 30 0.87 0.185 [48]

7 Ti-32.7Nb-11.6Ta-4.49Zr-0.066O-0.052N 137 91.1 0.86 0.12 [49]

Non-SIM (FCC) alloys

1 Ag-75Au 230 161.5 0.702 0.33 [43]

2 Cu-4.17Si 117 85.2 0.73 0.64 [43]

3 α-Ag-2.4Zn 190 162 0.85 0.43 [43]

4 α-Cu-9.98Al 199 179 0.89 0.50 [43]

5 α-Cu-22.7Zn 158.9 136.2 0.86 0.43 [43]

SIM (BCC) alloys

1 Ti-35.37Nb 130.2 52 0.40 0.078 [50]

2 Ti-35Nb-2Zr-0.7Ta 183 31.4 0.17 0.15 [49]

3 Ti-35.4Nb-1.9Ta-2.8Zr-0.37O 122 27 0.22 0.11 [49]

4 Ti-24.1Nb-4Zr-8.06Sn-0.15O 140 26.3 0.19 0.16 [49]

5 Ti-35Nb-10Ta-4.6Zr-0.16O 102.5 36 0.16 0.12 [51]

6 Ti-23.9Nb-3.75Zr-8.01Sn-0.04O 157.2 36 0.26 0.127 [51]

7 Ti-24Nb-4Zr-7.9Sn-0.17O 0.23 0.22 [51]

8 Ti-24Nb-4Zr-7.6Sn-0.07O 122 31.4 0.26 0.21 [49]

9 Ti-35.2Nb-10.5Ta-4.97Zr-0.091O-0.014N 140 27 0.19 0.1 [51]

10 Ti-23.9Nb-3.8Zr-7.61Sn-0.08O 102.5 26.3 0.12 0.13 [51]

11 Ti-24Nb-4Zr-7.9Sn 157.2 46 0.29 0.27 [52]

SIM (FCC) alloys

1 Cu44.9- 50Zn 125 80 0.64 0.6 [43]

2 Au47.5-50Cd 142 96.77 0.68 0.53 [43]

3 Ag45-50Zn 132.8 83.16 0.63 0.57 [43]

4 γ-FeNi 209 183 0.65 0.54 [53]

5 CuAlNi 142.8 93.7 0.66 0.59 [54]

6 B2-NiTi 162 104 0.64 0.52 [55]

7 Cu2.726A11.122Ni 0.152 137 89.2 0.65 0.59 [56]

8 Cu2.742Al1.105Ni0.152 136 81.763 0.65 0.61 [56]

Table 1.
Elastic constant of some bcc and fcc metals and alloys.
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5. Summary and future challenges

The following bullet points summarise some of the main challenges facing the
community.

• Some empirical elastic relationship such as a low G/B ratio (or high ν)
favours toughness but also indicates a fragility in polycrystalline materials,
though they can be typically difficult to vitrify in some polycrystalline
materials.

• Some empirical correlations exist in most of the metallic elements in the
periodic table have been found, and alloy development has moved beyond the
bucket chemistry type approach used in the early days of elastic properties
research. While a number of general guidelines exist for explaining elastic
systematics property formation (such as Zener, and Burger’s rules), Pugh and
Pettifor’s criterion [16, 17] in addition to Blackmans have gone beyond simply
stating the chemical species that should be present, and their rough
proportions, and instead gives exact elastic relationship. However, a more
rigorous that delineated the phase stability using systematics could be
envisaged in new future.

BCC elements C12/C11 C44/C114 Ref.

1 V 0.52 0.19 [53]

2 Nb 0.59 0.13 [53]

3 Ta 0.60 0.31 [53]

4 Mo 0.38 0.28 [53]

5 W 0.5 0.43 [53]

6 Li 0.83 0.78 [53]

7 Na 0.82 0.75 [53]

8 K 0.79 0.73 [53]

9 Ba 0.43 0.7 [53]

FCC elements [53]

1 Au 0.83 0.22 [53]

2 Pd 0.79 0.3 [53]

3 Pt 0.74 0.2 [53]

4 Ag 0.76 0.39 [53]

5 Cu 0.76 0.43 [53]

6 β-Co 0.69 0.6 [53]

7 α-Sr 0.65 0.39 [53]

8 γ-Fe 0.68 0.5 [53]

9 Ni 0.62 0.51 [53]

10 δ-Pu 0.78 0.96 [53]

Table 2.
Elastic constant of some bcc and fcc metals and alloys.
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4 Ag 0.76 0.39 [53]

5 Cu 0.76 0.43 [53]

6 β-Co 0.69 0.6 [53]

7 α-Sr 0.65 0.39 [53]

8 γ-Fe 0.68 0.5 [53]

9 Ni 0.62 0.51 [53]

10 δ-Pu 0.78 0.96 [53]

Table 2.
Elastic constant of some bcc and fcc metals and alloys.
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Glossary of symbols

Symbols used symbols derived from disambiguation (e.g. d for
Cijkl the local elastic constant tensor with σij rð Þ� �

and
ϵkl rð Þh i as the local stress and strain field at a point
r, respectively, and the angular brackets denote
ensemble averages

C44 single crystal bulk modulus; Bo ¼ C0
11 þ 2CO

12

� �
=3

C0 ¼ C11� C12ð Þ=2 tetragonal shear modulus

C44, μ∗ ¼ C∗
44 ¼ μ0 þ τ44h i

1þG44τ44
trigonal shear modulus

G the ratio of shearing stress τ to shearing strain γ
within the proportional limit of a material

B bulk modulus, ratio between the fluid pressure
and the Volumetric Strain

E modulus of elasticity or Young’s modulus
G modulus of rigidity or shear modulus
VL and VS the ultrasonic longitudinal and shear wave veloci-

ties respectively
ρ the density of the material
A ¼ C44ð Þ=C‘ elastic anisotropy
U the energy of the crystal, and quadratic function

of the strains
V0 equilibrium volume
e an elastic strain
σij rð Þ� �

effective stiffness of Cijkl

ϵ ¼ ϵ0 þGTϵ0 ϵ0 and GT are the strain and modify Green’s
function

T T-matrix is given by T ¼ δC 1� GδCð Þ�1

І equivalent to the unit tensor
eY∗ the homogenised polycrystalline Young’s modulus
eμ∗ homogenised polycrystalline Poisson’s ratio
MS martensite formation start temperature
MF martensite finish temperature
SME shape memory effect
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Chapter 5

Repair Inspection Technique
Based on Elastic-Wave
Tomography Applied for
Deteriorated Concrete Structures
Katsufumi Hashimoto,Tomoki Shiotani,Takahiro Nishida
and Nobuhiro Okude

Abstract

Applying elastic wave tomography as an innovative NDTmethod, the evaluation
of velocity distribution in three-dimensional (3D) before and after the repair is
introduced in this study. The increase in the velocity with penetration of the repair
material according to the repair effect is identified visually and quantitatively. The
3D tomography technique is newly proposed for one-side access inspection, using
drill hammering to generate an elastic wave. Accordingly, the elastic wave velocity
distribution result enables to visualize the internal quality of concrete after patch
repair is successfully done. In addition, an attempt for reinforced concrete (RC) slab
panels is made to confirm the effectiveness of the repair by comparing the velocity
distribution of elastic waves obtained from acoustic emission (AE) tomography
analysis, before and after the repair. Thus, the velocity recoveries due to injection
are found in all the slab panels, and it is confirmed that the elastic wave velocities
obtained using this technique can serve as an indicator for examining the state of
crack and void filling with injected material. Further, a good correlation is found
between the low-velocity region before repair and the amount of injection. These
results show the potential of the AE tomography technique to be used as a method
for estimating the effect of injection repair.

Keywords: elastic wave, acoustic emission, wave velocity distribution,
tomography, repair method

1. Introduction

It is highly demanded to establish sufficient management systems for the
inspection of existing concrete infrastructures in order to manage and extend their
service lives. As for aging infrastructure, severe deterioration is currently reported,
where it is known as a critical issue in our society, and large budgets are required to
repair damaged structures. Since budgetary restrictions are often imposed, preven-
tive and proactive maintenance techniques of infrastructure are sufficiently needed
with nondestructive testing (NDT) methods. In addition to conventional NDT,
innovative methods must be established to appropriately assess and evaluate

73



[52] Hao Y, Li S, Sun B, Sui M, Yang R.
Physical Review Letters. 2008;98:1-4

[53] Paszkiewicz, Wolski. Journal de
Physique(Conference series). 2008;104:
012038

[54] Mañosa L et al. Physical Review B.
1994;49:9969-9972

[55] Zhou L, Cornely P, Trivisonno J,
Lahrman D. An ultrasonic study of the
martensitic phase transformation in
NiAl alloys. Honolulu, HI, USA: IEEE
Symposium on Ultrasonics; 1990;
3:1389-1329

[56] Sedlak P, Seiner H, Landa M, Novak
V, Sittner P, Li M. Acta Materialia. 2005;
53:3643-3661

72

Elasticity of Materials ‐ Basic Principles and Design of Structures

Chapter 5

Repair Inspection Technique
Based on Elastic-Wave
Tomography Applied for
Deteriorated Concrete Structures
Katsufumi Hashimoto,Tomoki Shiotani,Takahiro Nishida
and Nobuhiro Okude

Abstract

Applying elastic wave tomography as an innovative NDTmethod, the evaluation
of velocity distribution in three-dimensional (3D) before and after the repair is
introduced in this study. The increase in the velocity with penetration of the repair
material according to the repair effect is identified visually and quantitatively. The
3D tomography technique is newly proposed for one-side access inspection, using
drill hammering to generate an elastic wave. Accordingly, the elastic wave velocity
distribution result enables to visualize the internal quality of concrete after patch
repair is successfully done. In addition, an attempt for reinforced concrete (RC) slab
panels is made to confirm the effectiveness of the repair by comparing the velocity
distribution of elastic waves obtained from acoustic emission (AE) tomography
analysis, before and after the repair. Thus, the velocity recoveries due to injection
are found in all the slab panels, and it is confirmed that the elastic wave velocities
obtained using this technique can serve as an indicator for examining the state of
crack and void filling with injected material. Further, a good correlation is found
between the low-velocity region before repair and the amount of injection. These
results show the potential of the AE tomography technique to be used as a method
for estimating the effect of injection repair.

Keywords: elastic wave, acoustic emission, wave velocity distribution,
tomography, repair method

1. Introduction

It is highly demanded to establish sufficient management systems for the
inspection of existing concrete infrastructures in order to manage and extend their
service lives. As for aging infrastructure, severe deterioration is currently reported,
where it is known as a critical issue in our society, and large budgets are required to
repair damaged structures. Since budgetary restrictions are often imposed, preven-
tive and proactive maintenance techniques of infrastructure are sufficiently needed
with nondestructive testing (NDT) methods. In addition to conventional NDT,
innovative methods must be established to appropriately assess and evaluate

73



damage and repair and retrofit recovery in concrete structures. Inspection tech-
niques after crack repair methods application for existing structures to assess repair
installations have not yet been practically developed, meanwhile improper repair
efforts have resulted in re-deterioration. Refilling internal cracks with repair mate-
rials from the concrete surface, epoxy injection, and patch repair methods are
widely implemented. In most cases, re-deterioration could be led by the unknown
and remained internal defects. Consequently, it is very important to implement and
establish inspection techniques which can visualize internal defects as a counter-
measure with repair works.

For such infrastructure as bridges and tunnels, it is generally recognized that
appropriate maintenance works are necessary. Prior to extensive damage and fail-
ure in existing structures, essential issues include establishing a maintenance system
for reinforced concrete (RC) members with the sufficient measures. Epoxy injec-
tion and patch repair methods have been widely and practically introduced to repair
and re-strengthen RC members. However, insufficient repair works are unfortu-
nately often reported, and these works have potentially resulted in re-deterioration
because more improvement is needed for inspection techniques to estimate the
quality of repair and recovery.

Developing nondestructive testing and evaluation methods is strongly
demanded for concrete structures to quantify or assure the repair and retrofit
recovery. The International Union of Laboratories and Experts in Construction
Materials, Systems, and Structures (RILEM) launched a technical committee on
innovative NDT for repair and retrofit recovery [1]. Tomography techniques are
studied based on elastic wave and acoustic emission (AE) to visualize, internal
defects in three-dimension concrete with the committee’s activities. These tech-
niques applicability has already been published in terms of elastic wave tomography
[2, 3] and AE tomography [4, 5].

Using parameters of elastic wave such as amplitudes and elastic wave velocities,
internal distributions are obtained by the tomography technique. Elastic wave veloc-
ity is specifically used as the parameter in this study. Both the location of the excita-
tion and the excitation time are known in the mentioned elastic wave tomography.
On the other hand, they are unknown for AE tomography. The elastic wave velocity
in each set-element over the structure can be calculated. Elastic wave velocity is
theoretically associated with elastic modulus of material. The values would vary as
low-velocity zones with the presence of such internal defects as cracks and voids.

In a theory of elastic wave propagation inside media, the waves are reflected,
diffracted, and scattered where it has voids and cracks. Elastic wave velocity is
known to be decreased by the phase divergence. The zones of lower elastic wave
velocity corresponding to those of heavier deterioration can be reasonable assumed.
The distribution of wave velocities can be accordingly referred to as a good indica-
tor of the internal condition of a concrete structure. Moreover, in order to guarantee
whether the injected material is properly filled into cracks by using the crack
injection method, the velocity distributions of elastic waves in the applicable
regions of RC structures are estimated, before and after the repair, by employing AE
tomography method [6].

The repair effects in concrete were evaluated with 3D elastic wave tomography
in the present study by means of innovative NDT, which can visually identify the
outcome from the repair condition provided by the epoxy injection and patch repair
methods. 3D tomography was employed for a 50-year-old concrete pier, which was
repaired by epoxy injection method, as well as to a 53-year-old concrete wall, which
was repaired by the patch repair method. And, AE tomography was applied to a
46-year-old RC slabs, in which epoxy-based resin was used as the injected material
to repair the internal cracks.
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As described here, although the epoxy injection and patch repair methods are
major repair methods even without the corrosion of the reinforcing bars, there are
many reports indicating re-deterioration with insufficient repairs. This study aims
to validate the 3D elastic wave tomography and AE tomography technique for
inspection of the internal quality of concrete after repair.

2. Examples of existing concrete structures for repair inspection

2.1 Pier

Concrete pier specimen, 600 mm width, 1200 mm height, and 300 mm thick-
ness, is shown in Figure 1. About 93 components of syringe-type caulking guns
were set into pots for injection and 50 kHz resonance AE sensors were arrayed to
receive elastic waves before the injection and 7 days after injection, which is
corresponding to the epoxy resin hardening period.

Attached AE sensors to four sides of the pier, as shown in Figures 2 and 12
sensors were arranged on sides A and B in a 600 � 1200 mm area and 4 sensors
were installed on the other sides. About 25 mm diameter steel ball was used for the
excitation of elastic wave. In order to identify the impact excitation time, at the
closest sensor location, each excitation point was selected.

2.2 Wall

Figure 3 shows concrete wall, 600 � 600 mm, where the patch repair method
was applied, following V-shaped concrete removal was conducted for 80 mm depth
and 120 mm width since surface cracks with water leakage were observed on the

Figure 1.
Overview of concrete pier.
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damage and repair and retrofit recovery in concrete structures. Inspection tech-
niques after crack repair methods application for existing structures to assess repair
installations have not yet been practically developed, meanwhile improper repair
efforts have resulted in re-deterioration. Refilling internal cracks with repair mate-
rials from the concrete surface, epoxy injection, and patch repair methods are
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The repair effects in concrete were evaluated with 3D elastic wave tomography
in the present study by means of innovative NDT, which can visually identify the
outcome from the repair condition provided by the epoxy injection and patch repair
methods. 3D tomography was employed for a 50-year-old concrete pier, which was
repaired by epoxy injection method, as well as to a 53-year-old concrete wall, which
was repaired by the patch repair method. And, AE tomography was applied to a
46-year-old RC slabs, in which epoxy-based resin was used as the injected material
to repair the internal cracks.
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As described here, although the epoxy injection and patch repair methods are
major repair methods even without the corrosion of the reinforcing bars, there are
many reports indicating re-deterioration with insufficient repairs. This study aims
to validate the 3D elastic wave tomography and AE tomography technique for
inspection of the internal quality of concrete after repair.

2. Examples of existing concrete structures for repair inspection
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corresponding to the epoxy resin hardening period.
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sensors were arranged on sides A and B in a 600 � 1200 mm area and 4 sensors
were installed on the other sides. About 25 mm diameter steel ball was used for the
excitation of elastic wave. In order to identify the impact excitation time, at the
closest sensor location, each excitation point was selected.

2.2 Wall

Figure 3 shows concrete wall, 600 � 600 mm, where the patch repair method
was applied, following V-shaped concrete removal was conducted for 80 mm depth
and 120 mm width since surface cracks with water leakage were observed on the
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surface of the tunnel-lining concrete. Then, polymer cement mortar with a water-
to-cement ratio W/C = 25% was used to fill the crack. Employing micro-core drilling
and hammering as one-sided access measurement, the wave signals generated
inside the concrete were detected. A 12 mm diameter micro-coring was performed
up to 200 mm depth. A curved edge 6 mm diameter steel bar was inserted into the
bit hole. The head of steel bar was hit by 25 mm diameter spherical steel ball.
Hammering the steel bar without touching the hole wall, elastic waves could only be
generated at the hole end in the depth direction. About 60 kHz resonance AE
sensors were installed to detect the elastic waves. The sensor arrangements and
excitation points are shown in Figure 4.

Figure 2.
Sensor arrangement.

Figure 3.
Overview of concrete wall.
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2.3 Slab

Figure 5 and Table 1 show a top view of an RC bridge, and specifications for the
measured deck panels. This bridge is a municipal road bridge located in the
Hokuriku region, Japan and it has been in service in the last 46 years. Three panels

Figure 4.
Locations of drilling and sensor arrangement.

Figure 5.
A top side view of subject bridge.

Type RC bridge (3 span composite girder bridge)

Length 88.0 m

Age 46 years

Thickness Slab: 250 mm and asphalt: 50 mm

Condition Web-shaped cracks were sporadically evident on the concrete surface.

Table 1.
Bridge specifications.
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highlighted in the figure are selected for the measurement. On all of the slab panels,
web-shaped cracks were sporadically evident on the concrete surface. These cracks
are thought to be caused primarily by the alkali-silica reaction in concrete. Figure 6
shows a sketch of cracks obtained through visual inspection from the bottom side of
the slab. This figure also shows the area of the tomography analysis for obtaining
the velocity distribution. Crack widths are not indicated in figure, but in all the slab
panels, the cracks width was smaller than 0.2 mm, and over almost the entire range,
the widths were in the range of 0.10–0.15 mm.

3. Data analysis

3.1 Wave detection and computation of elastic wave arrival time

In order to determine the velocity distributions by tomography, the following
analytical steps are taken.

First, the arrival time at each sensor was determined with an Akaike Information
Criterion (AIC) picker [7, 8]. For the digitized wave record xk of length N, the AIC
value is defined as

AIC kð Þ ¼ k� log var x 1; k½ �ð Þf g
þ N � k� 1ð Þ∗ log var x kþ 1;N½ �ð Þf g (1)

where var(x[1, k]) indicates the variance between x1 and xk, and var(x[k, N]) is
the variance between xk and xN.

The point where AIC value minimizes, applying the least-square method, corre-
sponds to the most suitable separation point of two series of stationary time, the
arrival time as the phase onset is thus reasonably determined by the AIC picker.
Lower AIC values suggest noise and higher AIC values show the arrival of wave
signals. Following the determination of arrival time, the elastic wave velocity is
calculated. The observed time of wave propagation Tobs is obtained by [9].

Tobs ¼ To � Ts (2)

where Ts is the time of excitation and To is the arrival time.

3.2 Elastic wave tomography

The reciprocal of the velocity is referred in the elastic wave tomography algo-
rithm to as the “slowness.” As shown in Figure 7, slowness as the initial parameter

Figure 6.
Sketch of cracking.
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is provided into each element. Travel time of elastic wave can be computed as
elastic velocity is constant in individual element on this ray path. The total of the
propagation time calculated by the slowness and the distance in each element (refer
to Eq. (3)) derives the propagation time Tcal. The difference between the observed
propagation time (Tobs) and the theoretical propagation time (Tcal) is obtained
by Eq. (4).

where lj is the length crossing each element and sj is the slowness of each
element.

Tcal ¼ ∑
j
sj∗lj (3)

ΔT ¼ Tobs � Tcal (4)

si is slowness of element i, li is length of the ray path in element i. Thus, it is
revealed that li is essential for the calculation of the travel time.

In order to reduce the difference between the observed propagation time and the
theoretical propagation time, the slowness in each element is re-calculated and
renewed. The total slowness correction is determined by Eq. (5) and the revised
slowness is consequently calculated by Eq. (6).
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s0j ¼ sjþ Δsj (6)

where Li is the total distance of wave propagation through the i-element.
Proceeding the iteration based on Eqs. (5) and (6) as shown in Figure 8, the

optimal slowness, eventually the velocity, in each element corresponding to the
observed propagation times of multiple paths over the interested area is determined
as well as the velocity distribution.

In order to determine the ray path more accurately, the ray trace algorithm is
applied, taking into account detours of elastic waves due to the reflection and
diffraction. Following 3D ray trace algorithm, which was proposed in previous
research [3], the arrival time of each wave is obtained. Correction of the slowness in
each element is carried out according to the error between the observed first travel
time and computed value in the element, using 3D finite elements for meshing of
target space in the present algorithm. Wave velocities between 2000 and 4500 m/s
are given for the tomography results as the range of wave velocities in concrete.

Figure 7.
Slowness for calculation of propagation time.
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3.3 Acoustic emission (AE) tomography

AE tomography is a method for obtaining a velocity distribution by finding the
travel time from an AE source to each sensor. Thus, it is necessary to obtain the
position of the transmission source as accurately as possible. With the conventional
ranging technique, which assumes that the propagation velocity is fixed, consider-
able errors are expected in the case that the tomography technique is applied to such
a heterogeneous material as concrete. Consequently, a new ranging technique
incorporating with the ray tracing concept has been developed as a pre-processing
technique for AE tomography [6]. The ranging technique using ray tracing is
illustrated in Figure 9. As shown in the diagram, ray tracing is performed from the
received point j to all other nodes i, and the theoretical travel time Tji to each node is
calculated. The shortest transmission time is determined from the differences
between Tji and the initial travel time Tj at the received point j. The procedure is
repeated for the number of received points N, and finally the node, where the
variance of estimated arrival times estimated from Eqs. (7) and (8) becomes the
minimal, is taken to be the transmission point. In Eq. (7),Tmi is the mean value of
the estimated transmission times at each node i, and in Eq. (8), σi is the variance of
the estimated transmission times at each node i.

Figure 8.
Analytical procedure for 3D tomography.
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Tmi ¼
∑jðTji � TjÞ

N
(7)

σi ¼
∑j Tji � Tj � Tmi
� �2

N
(8)

3.4 Excitation method of elastic waves and analysis model

Figure 10 shows the model of AE tomography analysis and the positions of
receiving sensors. The shaded part at the top of the model indicates the asphalt layer
(thickness: 50 mm). Analyzed regions for slab panels 1 and 3 were set to be
3600 � 1900 mm. Concerning slab panel 2, there were limitations on the sensor
positions, and thus the region was set to be 3600 � 1500 mm. As elements for AE
tomography analysis, the applicable region was divided by 16 � 8 in total of 128
elements. In AE tomography, elastic waves were excited by the steel ball drop. A
steel ball of 5 mm diameter was dropped at several locations for 12 minutes from the
asphalt surface, consciously ensuring that the distribution of impact points was as
uniform as possible at the target area. The steel ball dropping is illustrated in

Figure 10.
Analysis model for AE tomography.

Figure 9.
Overview of transmission source estimation using ray tracing.
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Figure 11. In AE tomography, the measurements were performed using an acceler-
ation measurement system (TEAC). About 15 piezoelectric accelerometers with the
frequency response from 3 Hz to 15 kHz were employed as receiving sensors. The
point at which AIC is the minimum is determined as the arrival time of the wave.
However, when the S/N ratio is low, it is difficult to identify the minimum value of
AIC. Thus, a reliability parameter is developed for reading the initial travel time.
The index is proposed as a measure for the identification of the rising edge of the
wave [10]. It is found that readings of the initial travel times reasonably converge if
the index is 0.05 or higher. In the present chapter, elastic waves with the index of
0.1 or higher are analyzed. AIC (kmin) indicates the minimum value of AIC, that is,
corresponding to the initial travel time.

4. Results and discussion

4.1 Pire

4.1.1 Wave detection and computation of elastic wave arrival time

In order to investigate the epoxy-injected situation in damaged concrete, black
light (ultraviolet light) was irradiated on the cored sample so that the injected
material (epoxy resin) was colored in blue as shown in Figure 12. It is confirmed
that epoxy resin was successfully injected into the concrete cover (up to 10 cm) and
over the depth of the reinforcing bars (from 10 to 15 cm). The injected material can
penetrate cracks even smaller than 0.1 mm in width [11].

4.1.2 3D elastic wave tomography

Figure 12 shows elastic wave tomography results before and after epoxy injec-
tion. The overview of injection repair method is shown in Figure 13. The wave
velocities after the repair indicate clearly higher values than those before. The
velocities are mostly higher than approximately 3000 m/s. This result implies that
the epoxy injected from the surface of the pier could be filled and hardened suffi-
ciently inside the media via cracks. However, at the central portions of the concrete
pier, wave velocities are still lower than 2500 m/s, namely, the epoxy injection only
guarantees the shallow zone repair from the concrete surface. The velocity

Figure 11.
Steel ball dropping.
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distribution given by 3D elastic wave tomography shows the conditions inside the
concrete, in particular, whether the epoxy is fully penetrated into the interior, while
it is noted that the tomography technique could assess the repair level, which is not
visually clarified on the exterior.

Figure 13.
Repair by epoxy injection.

Figure 12.
Results of elastic wave tomography in 3D (left: before injection and right: after injection).
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Figure 14 shows wave velocity histogram before and after the repair conse-
quences. The mean value after the repair is higher than that before, and the varia-
tion decreases. Since the velocities lower than 2500 m/s are rarely observed in the
histogram, concrete of the pier is repaired after the injection.

4.1.3 Amount of epoxy injection and alteration of wave velocities

Figures 15 and 16 respectively show the tomography results the injected epoxy
amount at Side A (referred as the front surface in Figure 12) and those at Side B
(referred as the back surface in Figure 12). They are only the tomograms of wave
velocities at the surface layer, comparing with the amount of epoxy injection. The
injection pots which added syringe refilling are colored in red because the caulking
guns were replaced and refilled with epoxy until the spring-loaded gun automati-
cally stopped the injection.

The velocity distribution alteration reasonably correlates with the epoxy injec-
tion amount. Concrete property improvement suggested by the velocity recovery is
also roughly confirmed with the epoxy injection amount.

Velocity-improved areas in Figures 15 and 16 are relatively observed in the
areas, where additional injection was installed because of their porous media due to
heavy deterioration (red colored in Figures 15(d) and 16(d)). Less improvement of
the velocity are observed even after the repair at the bottom-right corner of side A
(see Figure 15), where the method did not enable to penetrate the resin sufficiently
into the concrete because of their lower connectivity of internal cracks.

4.2 Wall

3D elastic wave tomography technique mentioned above was challengingly
applied to confirm patch repair effect for concrete wall of an existing structure. In
this study, the technique was introduced as a method to evaluate the retrofit recov-
ery. There is currently no NDT technique applicable in terms of in-situ measurement.

Figure 14.
Histogram of wave velocities.
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4.2.1 Procedures of drilling and excitation

Introducing micro-core drilling, excitation of elastic waves was driven.
The technique is proposed and applied usefully for one-side access inspection
works. Figure 17 shows the illustration of test procedure schematically.

On the surface of concrete wall with a surface crack (a), a V-cut concrete
removal is performed (b), followed by a patch repair method with polymer cement
mortar grouting (c), 12 mm diameter bit hole of 200 mm depth is drilled by micro-
coring (d), at each concrete surface point. With the sensor array on the surface (e),
6 mm diameter a steel bar is inserted into the hole and the steel bar head is hit by a
25 mm diameter steel sphere ball.

Figure 15.
Results of wave velocities and amount of epoxy injection (Side A).
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velocities at the surface layer, comparing with the amount of epoxy injection. The
injection pots which added syringe refilling are colored in red because the caulking
guns were replaced and refilled with epoxy until the spring-loaded gun automati-
cally stopped the injection.

The velocity distribution alteration reasonably correlates with the epoxy injec-
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the velocity are observed even after the repair at the bottom-right corner of side A
(see Figure 15), where the method did not enable to penetrate the resin sufficiently
into the concrete because of their lower connectivity of internal cracks.

4.2 Wall

3D elastic wave tomography technique mentioned above was challengingly
applied to confirm patch repair effect for concrete wall of an existing structure. In
this study, the technique was introduced as a method to evaluate the retrofit recov-
ery. There is currently no NDT technique applicable in terms of in-situ measurement.

Figure 14.
Histogram of wave velocities.
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4.2.1 Procedures of drilling and excitation

Introducing micro-core drilling, excitation of elastic waves was driven.
The technique is proposed and applied usefully for one-side access inspection
works. Figure 17 shows the illustration of test procedure schematically.

On the surface of concrete wall with a surface crack (a), a V-cut concrete
removal is performed (b), followed by a patch repair method with polymer cement
mortar grouting (c), 12 mm diameter bit hole of 200 mm depth is drilled by micro-
coring (d), at each concrete surface point. With the sensor array on the surface (e),
6 mm diameter a steel bar is inserted into the hole and the steel bar head is hit by a
25 mm diameter steel sphere ball.

Figure 15.
Results of wave velocities and amount of epoxy injection (Side A).
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Careful hammering at the steel bar head to prevent contacting the hole wall, the
excited elastic waves were generated only from the bit hole bottom into the lining
concrete, so that the excited signals were detected finally at sensors located on the
concrete surface.

4.2.2 Propagation of waves in steel bar

The travel time along the steel bar was measured by two sensors as shown in
Figure 18. AE sensor A records the excitation time at the head by using a steel ball
of 15 mm diameter and the elastic wave travel time in the bar is calculated by

Figure 16.
Wave velocity and epoxy injection result (Side B).
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detecting the arrival time of the wave at AE sensor B. The arrival time difference is
69 μs as shown in Figure 19.

The dominant frequency of elastic wave excited by a 15 mm diameter steel ball is
known as 19.4 kHz according to [12]. Considering a steel bar is used as wave guide,
a frequency analysis was conducted for the waveforms observed at A and B.

Figure 17.
Procedures of drilling and excitation.

Figure 18.
Measurement method of travel time in the steel bar.
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Figure 20 shows the frequency spectra. Each guided wave is detected via the 38 mm
length steel bar. The dominant frequency was observed at A for 22.5 kHz and the
dominant frequency was 16.6 kHz at B. Since these detected frequencies are higher
than the resonant frequencies of the steel bar, first flexural mode (1.1 kHz), second
flexural mode (3.2 kHz), and third flexural mode (5.4 kHz), respectively, as a
cantilever, the principal components of the waveform were assumed to be gener-
ated as compression wave excited by the tapping at steel bar head.

4.2.3 3D elastic wave tomography

The computation for wave velocity distribution in the targeted concrete wall was
implemented by the tomography technique mentioned previously. Figure 21 shows
the 3D distribution of wave velocities and Figure 22 shows them at cross section A.

Although the triangle-shaped (dashed line) repair area has high velocity on the
surface, the V-shaped low-velocity area is observed toward the bottom, whereas
high-velocity zones exist at the left side of the specimen. The high velocity may

Figure 19.
Waveforms at excitation and receiver.

Figure 20.
Frequency spectra of waveforms at A and B.
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indicate the intact condition of the original concrete quality, because the interested
area is enough far from the repaired area.

The repaired part is denoted by high velocity, in Figure 22, meanwhile the
original concrete surrounding the patched area remarkably shows low velocity. The
V-shaped area with low velocity underneath the repaired part could be potentially
damaged by the chipping work for concrete removal. This is generally known and
described in concrete surface treatment guideline prior to repairs and overlays
[13, 14]. Further investigation is needed for the consideration in the influence of the
hammer drill impact on damage to the concrete behind the removal zone.

4.3 Slab

4.3.1 Velocity distribution of AE tomography

Figure 23 shows the results of AE tomography, before and after repair by means
of the crack injection. Results show that in all the slab panels, the velocity after

Figure 21.
Distribution of wave velocities in 3D.

Figure 22.
Distribution of wave velocities at cross section A.
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repair exhibits increase compared to that before repair. Further quantitatively, the
histograms of velocities obtained in all the elements are shown on the right side of
the figure. For all slab panels, it is evident that the velocities at the elements clearly
shift to the higher regions after repair. Due to the effectiveness of injected material
in filling cracks and defects, detours and dispersions in the propagation paths of
elastic waves are so eliminated that apparent velocities are increased.

All results imply that the velocity distribution obtained by the AE tomography
method has a good potential to be an indicator for ascertaining the filled situation of
injected material in a concrete slab. It is confirmed that the velocity for concrete
which is not damaged shows about 3500 m/s to 4000 m/s. In some areas, however,
velocities of about 2600 m/s are observed even after repair. This is because injected
material might not be injected well into continuous cracks, independent air bubbles
could be present due to the use of the air-entraining agent, and fine cracks at the
interface between coarse aggregate are nucleated due to the alkali-silica reaction. As
a result, there exists a possibility that the velocity recovery does not reach to the
satisfactory level even after injection. On this issue, we plan to carry out a material
test in the laboratory for confirmation.

Figure 23.
Results of velocity distribution before and after repair.
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4.3.2 Relationship between velocity and injection amounts

Design of the injection amount for the crack injection method could be based on
the estimation of the crack widths, the depths, and the length measured. It is
recognized that there exists no reasonable relationship between the amounts of
designed injection and actual injection. Thus, an attempt to examine the amount of
injected material is made from the results of AE tomography before repair.

It is considered that the amount of injection should increase, depending on the
extent of damage. Namely, if the degree of damage is small, the amount should
decrease. In addition, if the damage is less than a certain degree, the injected
material may not work well on the damage. On the other hand, if the elastic wave
velocity could reflect the degree of damage, a correlation should be evident between

VP (m/s) Quality

>4570 Excellent

3660–4570 Fine

3050–3660 Acceptable

2130–3050 Unacceptable

<2130 Poor

Table 2.
Quality indicator (Whitehurst).

Figure 24.
Area ratio by quality before and after repair.
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the amount of injection and the values of velocities. Thus, the velocities are classi-
fied into grades, as given in Table 2. These quality indicators are proposed by
Whitehurst [15]. They were determined from the relationship between mechanical
properties and P-wave velocity in concrete. Following these indicators, the qualities
before and after repair of the panels are classified as shown in Figure 24. It is found
that the number of elements with Poor decreases, while that of Unacceptable keeps
almost the same from before to after repair. As discussed before, due to the pres-
ence of air bubbles and the damaged interface with aggregates by alkali-aggregate
reaction, the recovery of the velocities may not be apparent. These results imply
that the region where the injected material could improve the quality of concrete is
mostly that of Poor. It suggests that the repair by means of injection is effective for
comparatively major damage. Figure 25 shows the relationship between total area
of Poor estimated by AE tomography before repair and the actual amount of injec-
tion. As the Poor area increases, the increase in the actual amount of injection is
clearly observed. Thus, it is possible to estimate the amount of injection before
repair by carrying out the analysis using AE tomography.

5. Conclusion

Concrete pier, concrete wall, and slab were tested on the investigation on the
internal damage assessment for the repair condition by applying elastic wave
tomography and AE tomography. Determining the 3D velocity distribution, the
repair effects of the epoxy injection method and the patch repair method were
quantitatively evaluated. From the results, the following conclusions can be drawn
in this study:

1. 3D elastic wave tomography technique can evaluate the penetration of repair
epoxy injection material and qualify the repair effect with the amount of
injected rexin. 3D tomography technique installed with single-side access drill
hammering successfully visualizes the internal quality of concrete after the
patch repair method based on the elastic wave velocity distribution.

2. The velocity distribution obtained by AE tomography can serve as an indicator
for ascertaining the state of crack and void filling with injected material. A
good correlation is found between the low velocity region before repair and the

Figure 25.
Total area (Poor) vs. injection amount.

92

Elasticity of Materials ‐ Basic Principles and Design of Structures

amount of injected material. The results clearly show the potential for the AE
tomography technique to be used as a method for estimating the performance
of the crack injection method.

As mentioned previously, the RILEM committee was launched because innova-
tive nondestructive inspection testing to qualify repair works is strongly required
worldwide. We plan to continue studies based on the evaluation method using
elastic wave tomography and accelerate its standardization.
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