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Abstract

This chapter presents a class of distributionally robust optimization problems in which a
decision-maker has to choose an action in an uncertain environment. The decision-maker
has a continuous action space and aims to learn her optimal strategy. The true distribution of
the uncertainty is unknown to the decision-maker. This chapter provides alternative ways to
select a distribution based on empirical observations of the decision-maker. This leads to a
distributionally robust optimization problem. Simple algorithms, whose dynamics are
inspired from the gradient flows, are proposed to find local optima. The method is extended
to a class of optimization problems with orthogonal constraints and coupled constraints
over the simplex set and polytopes. The designed dynamics do not use the projection
operator and are able to satisfy both upper- and lower-bound constraints. The convergence
rate of the algorithm to generalized evolutionarily stable strategy is derived using a mean
regret estimate. Illustrative examples are provided.

Keywords: distribution robustness, gradient flow, Bregman divergence, Wasserstein
metric, f-divergence

1. Introduction

Robust optimization can be defined as the process of determining the best or most effective
result, utilizing a quantitative measurement system under worst case uncertain functions or
parameters. The optimization may occur in terms of best robust design, net cash flows, profits,
costs, benefit/cost ratio, quality-of-experience, satisfaction, end-to-end delay, completion time,
etc. Other measurement units may be used, such as units of production or production time, and
optimization may occur in terms of maximizing production units, minimizing processing time,
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production time, maximizing profits, or minimizing costs under uncertain parameters. There are
numerous techniques of robust optimization methods such as robust linear programming,
robust dynamic programming, robust geometric programming, queuing theory, risk analysis,
etc. One of the main drawbacks of the robust optimization is that the worst scenario may be too
conservative. The bounds provided by the worst case scenarios may not be useful in many
interesting problems (see the wireless communication example provided below). However,
distributionally robust optimization is not based on the worst case parameters. The distribu-
tional robustness method is based the probability distribution instead of worst parameters. The
worse case distribution within a certain carefully designed distributional uncertainty set may
provide interesting features. Distributionally robust programming can be used not only to
provide a distributionally robust solution to a problem when the true distribution is unknown,
but it also can, in many instances, give a general solution taking into account some risk. The
presented methodology is simple and reduces significantly the dimensionality of the distribu-
tionally robust optimization. We hope that the designs of distributionally robust programming
presented here can help designers, engineers, cost–benefit analyst, managers to solve concrete
problems under unknown distribution.

The rest of the chapter is organized as follows. Section 2 presents some preliminary concepts of
distributionally robust optimization. A class of constrained distributionally robust optimiza-
tion problems are presented in Section 3. Section 4 focuses on distributed distributionally
robust optimization. Afterwards, illustrative examples in distributed power networks and in
wireless communication networks are provided to evaluate the performance of the method.
Finally, prior works and concluding remarks are drawn in Section 5.

Notation: Let R, Rþ, denote the set of real and non-negative real numbers, respectively, Ω; dð Þ
be a separable completely metrizable topological space with d : Ω�Ω! Rþ a metric (dis-
tance). Let P Ωð Þ be the set of all probability measures over Ω:

2. Distributionally robust optimization

This section introduces distributionally robust optimization models. We will first present a
generic formulation of the problem. Then, individual components of the optimization and
their solvability issues via equivalent formulations will be discussed.

2.1. Model

Consider a decision-maker who wants to select an action a∈A⊂Rn in order to optimize her
objective r a;ωð Þ, where ω is an uncertain parameter. The information structure is the following:

• The true distribution of ω is not known to the decision-maker.

• The upper/lower bound (if any) of ω are unknown to the decision-maker.

• The decision-maker can measure/observe realization of the random variable ω:

Optimization Algorithms - Examples2

The decision-maker chooses to experiment several trials and obtains statistical realizations of ω
from measurements. The measurement data can be noisy, imperfect and erroneous. Then, an
empirical distribution (or histogram) m is built from the realizations of ω: However, m is not
the true distribution of the random variable ω, and m may not be a reliable measure due to
statistical, bias, measurement, observation or computational errors. Therefore, the decision-
maker is facing a risk. The risk-sensitive decision-maker should decide action that improves
the performance of E~mr a;ωð Þ among alternative distributions ~m within a certain level of
deviation r > 0 from the distribution m: The distributionally robust optimization problem is
therefore formulated as

supa∈Ainf ~m ∈Br mð ÞEω�~mr a;ωð Þ: (1)

where Br mð Þ is the uncertainty set of alternative admissible distributions from m within a
certain radius r > 0: Different distributional uncertainty sets are presented: the f -divergence
and the Wasserstein metric, defined below.

2.1.1. f -divergence

We introduce the notion of f� divergence which will be used to compute the discrepancy
between probability distributions.

Definition 1. Let m and ~m be two probability measures over Ω such that m is absolutely continuous
with respect to ~m: Let f be a convex function. Then, the f -divergence between m and ~m is defined as
follows:

Df m∥~mð Þ �
ð

Ω
f

dm
d~m

� �
d~m � f 1ð Þ,

where dm
d~m is the Radon-Nikodym derivative of the measure m with the respect the measure ~m:

By Jensen’s inequality:

Df m∥~mð Þ ¼
ð

Ω
f

dm
d~m

� �
d~m � f 1ð Þ

≥ f
ð

Ω

dm
d~m

d~m
� �

� f 1ð Þ

¼ f
ð

Ω
dm

� �
� f 1ð Þ

¼ f 1ð Þ � f 1ð Þ ¼ 0:

(2)

Thus, Df m∥~mð Þ ≥ 0 for any convex function f : Note however that, the f� divergence Df m∥~mð Þ
is not a distance (for example, it does not satisfy the symmetry property). Here the distribu-
tional uncertainty set imposed to the alternative distribution ~m is given by

Distributionally Robust Optimization
http://dx.doi.org/10.5772/intechopen.76686

3



production time, maximizing profits, or minimizing costs under uncertain parameters. There are
numerous techniques of robust optimization methods such as robust linear programming,
robust dynamic programming, robust geometric programming, queuing theory, risk analysis,
etc. One of the main drawbacks of the robust optimization is that the worst scenario may be too
conservative. The bounds provided by the worst case scenarios may not be useful in many
interesting problems (see the wireless communication example provided below). However,
distributionally robust optimization is not based on the worst case parameters. The distribu-
tional robustness method is based the probability distribution instead of worst parameters. The
worse case distribution within a certain carefully designed distributional uncertainty set may
provide interesting features. Distributionally robust programming can be used not only to
provide a distributionally robust solution to a problem when the true distribution is unknown,
but it also can, in many instances, give a general solution taking into account some risk. The
presented methodology is simple and reduces significantly the dimensionality of the distribu-
tionally robust optimization. We hope that the designs of distributionally robust programming
presented here can help designers, engineers, cost–benefit analyst, managers to solve concrete
problems under unknown distribution.

The rest of the chapter is organized as follows. Section 2 presents some preliminary concepts of
distributionally robust optimization. A class of constrained distributionally robust optimiza-
tion problems are presented in Section 3. Section 4 focuses on distributed distributionally
robust optimization. Afterwards, illustrative examples in distributed power networks and in
wireless communication networks are provided to evaluate the performance of the method.
Finally, prior works and concluding remarks are drawn in Section 5.

Notation: Let R, Rþ, denote the set of real and non-negative real numbers, respectively, Ω; dð Þ
be a separable completely metrizable topological space with d : Ω�Ω! Rþ a metric (dis-
tance). Let P Ωð Þ be the set of all probability measures over Ω:

2. Distributionally robust optimization

This section introduces distributionally robust optimization models. We will first present a
generic formulation of the problem. Then, individual components of the optimization and
their solvability issues via equivalent formulations will be discussed.

2.1. Model

Consider a decision-maker who wants to select an action a∈A⊂Rn in order to optimize her
objective r a;ωð Þ, where ω is an uncertain parameter. The information structure is the following:

• The true distribution of ω is not known to the decision-maker.

• The upper/lower bound (if any) of ω are unknown to the decision-maker.

• The decision-maker can measure/observe realization of the random variable ω:

Optimization Algorithms - Examples2

The decision-maker chooses to experiment several trials and obtains statistical realizations of ω
from measurements. The measurement data can be noisy, imperfect and erroneous. Then, an
empirical distribution (or histogram) m is built from the realizations of ω: However, m is not
the true distribution of the random variable ω, and m may not be a reliable measure due to
statistical, bias, measurement, observation or computational errors. Therefore, the decision-
maker is facing a risk. The risk-sensitive decision-maker should decide action that improves
the performance of E~mr a;ωð Þ among alternative distributions ~m within a certain level of
deviation r > 0 from the distribution m: The distributionally robust optimization problem is
therefore formulated as

supa∈Ainf ~m ∈Br mð ÞEω�~mr a;ωð Þ: (1)

where Br mð Þ is the uncertainty set of alternative admissible distributions from m within a
certain radius r > 0: Different distributional uncertainty sets are presented: the f -divergence
and the Wasserstein metric, defined below.

2.1.1. f -divergence

We introduce the notion of f� divergence which will be used to compute the discrepancy
between probability distributions.

Definition 1. Let m and ~m be two probability measures over Ω such that m is absolutely continuous
with respect to ~m: Let f be a convex function. Then, the f -divergence between m and ~m is defined as
follows:

Df m∥~mð Þ �
ð

Ω
f

dm
d~m

� �
d~m � f 1ð Þ,

where dm
d~m is the Radon-Nikodym derivative of the measure m with the respect the measure ~m:

By Jensen’s inequality:

Df m∥~mð Þ ¼
ð

Ω
f

dm
d~m

� �
d~m � f 1ð Þ

≥ f
ð

Ω

dm
d~m

d~m
� �

� f 1ð Þ

¼ f
ð

Ω
dm

� �
� f 1ð Þ

¼ f 1ð Þ � f 1ð Þ ¼ 0:

(2)

Thus, Df m∥~mð Þ ≥ 0 for any convex function f : Note however that, the f� divergence Df m∥~mð Þ
is not a distance (for example, it does not satisfy the symmetry property). Here the distribu-
tional uncertainty set imposed to the alternative distribution ~m is given by

Distributionally Robust Optimization
http://dx.doi.org/10.5772/intechopen.76686

3



Br mð Þ ¼ ~mj~m :ð Þ ≥ 0;
ð

Ω
d~m ¼ ~m Ωð Þ ¼ 1; Df ~mkmð Þ ≤ r

� �
:

Example 1. From the notion of f� divergence one can derive the following important concept:

• α-divergence for

f að Þ ¼

4
αþ 1ð Þ 1� αð Þ 1� a

αþ1
2

� �
if α∉ �1;þ1f g,

a log a if α ¼ 1,
� log a if α ¼ �1,

8>>><
>>>:

• In particular, Kullback–Leibler divergence (or relative entropy) is retrieved as α goes to 1:

2.1.2. Wasserstein metric

The Wasserstein metric between two probability distributions ~m and m is defined as follows:

Definition 2. For m, ~m ∈P Ωð Þ, let Π ~m;mð Þ be the set of all couplings between m and ~m: That is,

π∈P Ω�Ωð Þ j π A�Ωð Þ ¼ m Að Þ; π Ω� Bð Þ ¼ ~m Bð Þ; A;Bð Þ∈B2 Ωð Þ� �
:

B Ωð Þ denotes the measurable sets of Ω: Let θ∈ 1;∞½ �: The Wasserstein metric between ~m and m is
defined as

Wθ ~m;mð Þ ¼ inf
π∈Π ~m;mð Þ

∥d∥Lθπ ¼ inf
π∈Π ~m;mð Þ

ð

a;bð Þ
dθ a; bð Þπ da; dbð Þ,

It is well-known that for every θ ≥ 1, Wθ ~m;mð Þ is a true distance in the sense that it satisfies the
following three axioms:

• positive-definiteness,

• the symmetry property,

• the triangle inequality.

Note that ~m is not necessarily absolutely continuous with respect to m: Now the distributional
uncertainty/constraint set is the set of all possible probability distributions within a Lθ-Wasser-
stein distance below r:

~Br mð Þ ¼ ~mj
ð

Ω
d~m ¼ ~m Ωð Þ ¼ 1; Wθ ~m;mð Þ ≤ r

� �
,

Note that, if m is a random measure (obtained from a sampled realization), we use the
expected value of the Wasserstein metric.
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Example 2. The Lθ-Wasserstein distance between two Dirac measures δω0 and δ~ω0 is Wθ δω0 ; δ ~ω0ð Þ ¼
d ω0; ~ωoð Þ: More generally, for K ≥ 2, the L2-Wasserstein distance between empirical measures

μK ¼ 1
K

PK
k¼1 δωk and νK ¼ 1

K

PK
k¼1 δ~ωk is W

2
2 μK; νK
� �

≤ 1
K

PK
i¼1 ωk � ~ωk½ �2:

We have defined Br mð Þ and ~Br mð Þ: The goal now is to solve (1) under both f� divergence and
Wasserstein metric. One of the difficulties of the problem is the curse of dimensionality. The
distributionally robust optimization problem (1) of the decision-maker is an infinite-
dimensional robust optimization problem because Br is of infinite dimensions. Below we will
show that (1) can be transformed into an optimization in the form of supinfsup: The latter
problem has three alternating terms. Solving this problem requires a triality theory.

2.2. Triality theory

We first present the duality gap and develop a triality theory to solve equivalent formulations
of (1). Consider uncoupled domains Ai, i∈ 1; 2; 3f g: For a general function r2,one has

sup
a2 ∈A2

inf
a1 ∈A1

r2 a1; a2ð Þ ≤ inf
a1 ∈A1

sup
a2 ∈A2

r2 a1; a2ð Þ

and the difference

min
a1 ∈A1

max
a2 ∈A2

r2 a1; a2ð Þ � max
a2 ∈A2

min
a1 ∈A1

r2 a1; a2ð Þ,

is called duality gap. As it is widely known in duality theory from Sion’s Theorem [1] (which is
an extension of von Neumann minimax Theorem) the duality gap vanishes, for example for
convex-concave function, and the value is achieved by a saddle point in the case of non-empty
convex compact domain.

Triality theory focuses on optimization problems of the forms: sup infsup or infsup inf: The
term triality is used here because there are three key alternating terms in these optimizations.

Proposition 1. Let a1; a2; a3ð Þ↦ r3 a1; a2; a3ð Þ∈R be a function defined on the product space
Q3

i¼1 Ai:

Then, the following inequalities hold:

supa2 ∈A2
infa1 ∈A1, a3 ∈A3r3 a1; a2; a3ð Þ ≤

infa3 ∈A3 supa2 ∈A2
infa1 ∈A1r3 a1; a2; a3ð Þ ≤

infa1 ∈A1, a3 ∈A3 supa2 ∈A2
r3 a1; a2; a3ð Þ,

(3)

and similarly

supa1 ∈A1, a3 ∈A3
infa2 ∈A2r3 a1; a2; a3ð Þ ≤

supa3 ∈A3
infa2 ∈A2 supa1 ∈A1

r3 a1; a2; a3ð Þ ≤
infa2 ∈A2 supa1 ∈A1, a3 ∈A3

r3 a1; a2; a3ð Þ:
(4)
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a log a if α ¼ 1,
� log a if α ¼ �1,

8>>><
>>>:
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Definition 2. For m, ~m ∈P Ωð Þ, let Π ~m;mð Þ be the set of all couplings between m and ~m: That is,

π∈P Ω�Ωð Þ j π A�Ωð Þ ¼ m Að Þ; π Ω� Bð Þ ¼ ~m Bð Þ; A;Bð Þ∈B2 Ωð Þ� �
:
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π∈Π ~m;mð Þ
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ð

a;bð Þ
dθ a; bð Þπ da; dbð Þ,
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ð

Ω
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� �
,

Note that, if m is a random measure (obtained from a sampled realization), we use the
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Example 2. The Lθ-Wasserstein distance between two Dirac measures δω0 and δ~ω0 is Wθ δω0 ; δ ~ω0ð Þ ¼
d ω0; ~ωoð Þ: More generally, for K ≥ 2, the L2-Wasserstein distance between empirical measures

μK ¼ 1
K

PK
k¼1 δωk and νK ¼ 1

K

PK
k¼1 δ~ωk is W

2
2 μK; νK
� �

≤ 1
K

PK
i¼1 ωk � ~ωk½ �2:

We have defined Br mð Þ and ~Br mð Þ: The goal now is to solve (1) under both f� divergence and
Wasserstein metric. One of the difficulties of the problem is the curse of dimensionality. The
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2.2. Triality theory
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sup
a2 ∈A2

inf
a1 ∈A1

r2 a1; a2ð Þ ≤ inf
a1 ∈A1

sup
a2 ∈A2

r2 a1; a2ð Þ

and the difference

min
a1 ∈A1

max
a2 ∈A2

r2 a1; a2ð Þ � max
a2 ∈A2

min
a1 ∈A1

r2 a1; a2ð Þ,

is called duality gap. As it is widely known in duality theory from Sion’s Theorem [1] (which is
an extension of von Neumann minimax Theorem) the duality gap vanishes, for example for
convex-concave function, and the value is achieved by a saddle point in the case of non-empty
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Proposition 1. Let a1; a2; a3ð Þ↦ r3 a1; a2; a3ð Þ∈R be a function defined on the product space
Q3

i¼1 Ai:

Then, the following inequalities hold:

supa2 ∈A2
infa1 ∈A1, a3 ∈A3r3 a1; a2; a3ð Þ ≤

infa3 ∈A3 supa2 ∈A2
infa1 ∈A1r3 a1; a2; a3ð Þ ≤

infa1 ∈A1, a3 ∈A3 supa2 ∈A2
r3 a1; a2; a3ð Þ,

(3)

and similarly

supa1 ∈A1, a3 ∈A3
infa2 ∈A2r3 a1; a2; a3ð Þ ≤

supa3 ∈A3
infa2 ∈A2 supa1 ∈A1

r3 a1; a2; a3ð Þ ≤
infa2 ∈A2 supa1 ∈A1, a3 ∈A3

r3 a1; a2; a3ð Þ:
(4)
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Proof. Define

ĝ a2; a3ð Þ≔ inf
a1 ∈A1

r3 a1; a2; a3ð Þ:

Thus, for all a2, a3, one has ĝ a2; a3ð Þ ≤ r3 a1; a2; a3ð Þ: It follows that, for any a1, a3,

sup
a2 ∈A2

ĝ a2; a3ð Þ ≤ sup
a2 ∈A2

r3 a1; a2; a3ð Þ:

Using the definition of ĝ, one obtains

sup
a2 ∈A2

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ sup
a2 ∈A2

r3 a1; a2; a3ð Þ, ∀a1, a3:

Taking the infimum in a1 yields:

sup
a2 ∈A2

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ inf
a1 ∈A1

sup
a2 ∈A2

r3 a1; a2; a3ð Þ, ∀a3 (5)

Now, we use two operations for the variable a3:

• Taking the infimum in the inequality (5) in a3 yields

inf
a3 ∈A3

sup
a2 ∈A2

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ inf
a3 ∈A3

inf
a1 ∈A1

sup
a2 ∈A2

r3 a1; a2; a3ð Þ

¼ inf
a1;a3ð Þ∈A1�A3

sup
a2 ∈A2

r3 a1; a2; a3ð Þ,

which proves the second part of the inequalities (3). The first part of the inequalities (3) follows
immediately from (5).

• Taking the supremum in inequality (5) in a3 yields

sup
a2;a3ð Þ∈A2�A3

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ sup
a3 ∈A3

inf
a1 ∈A1

sup
a2 ∈A2

r3 a1; a2; a3ð Þ,

which proves the first part of the inequalities (4). The second part of the inequalities (4) follows
immediately from (5).

This completes the proof.

2.3. Equivalent formulations

Below we explain how the dimensionality of problem (1) can be significantly reduced using a
representation by means of the triality theory inequalities of Proposition 1.

2.3.1. f -divergence

Interestingly, the distributionally robust optimization problem (1) under f -divergence is equiv-
alent to the finite dimensional stochastic optimization problem (when A are of finite
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dimensions). To see this, the original problem need to be transformed. Let us introduce the
likelihood functional L ~ωð Þ ¼ d~m

dm ~ωð Þ, and set

Lr mð Þ ¼ Lj
ð
~ω
f L ~ωð Þð Þdm� f 1ð Þ ≤ r;

ð
~ω
L ~ωð Þdm ~ωð Þ ¼ 1

� �
:

Then, the Lagrangian of the problem is

~r a; L;λ;μ
� � ¼

ð
~ω
r a; ~ωð ÞL ~ωð Þdm ~ωð Þ

� λ r þ f 1ð Þ �
ð
~ω
f L ~ωð Þð Þdm ~ωð Þ

� �

� μ 1�
ð
~ω
L ~ωð Þdm ~ωð Þ

� �
,

where λ ≥ 0 and μ∈R: The problem becomes

supainfL∈ Lr mð Þsupλ ≥ 0,μ∈R~r a; L;λ;μ
� �

:
n

(6)

A full understanding of problem 6ð Þ requires a triality theory (not a duality theory). The use of
triality theory leads to the following equation:

supa∈Ainf ~m ∈Br mð ÞE~m r½ � ¼ supa∈A,λ ≥ 0,μ∈REmh,
n

(7)

where h is the integrand function �λ r þ f 1ð Þð Þ � μ� λf ∗ rþμ
�λ
� �

, where f ∗ is Legendre-Fenchel
transform of f defined by

f ∗ ξð Þ ¼ sup
L

L; ξh i � f Lð Þ½ � ¼ � inf
L

f Lð Þ � L; ξh i½ �: (8)

Note that the righthand side of (7) is of dimension nþ 2, which reduces considerably the
dimensionality of the original problem (1).

2.3.2. Wasserstein metric

Similarly, the distributionally robust optimization problem under Wasserstein metric is equiv-
alent to the finite dimensional stochastic optimization problem (when A is a set of finite
dimension). If the function ω↦ r a;ωð Þ is upper semi-continuous and Ω; dð Þ is a Polish space
then the Wasserstein distributionally robust optimization problem is equivalent to

supa∈Ainf ~m ∈ ~Br
mð ÞE~m r½ � ¼ supa∈Asupλ ≥ 0Em

~h
h i

,

~h ¼ λrθ þ μþ supω̂ ∈Ω r a;ωð Þ � μ� λdθ ω; ω̂ð Þ� �
;

8<
: (9)

The next subsection presents algorithms for computing a distributionally robust solution from
the equivalent formulations above.
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2.4. Learning algorithms

Learning algorithms are crucial for finding approximate solutions to optimization and control
problems. They are widely used for seeking roots/kernel of a function and for finding feasible
solutions to variational inequalities. Practically, a learning algorithm generates a certain trajec-
tory (or a set of trajectories) toward a potential approximate solution. Selecting a learning
algorithm that has specific properties such as better accuracy, more stability, less-oscillatory
and quick convergence is a challenging task [2–5]. From the calculus of variations point of
view, however, a learning algorithm generates curves. Therefore, selecting an algorithm
among the others leads to an optimal control problem on the spaces of curves. Hence, it is
natural to use optimal control theory to derive faster algorithms for a family of curves.
Bergman-based algorithms and risk-aware version of it are introduced below to meet specific
properties. We start by introducing the Bregman divergence.

Definition 3. The Bregman divergence dg : A�A! R is defined on a differentiable strictly convex
function g : A! R: For two points a; bð Þ∈A2, it measures the gap between g að Þ and the first-order
Taylor expansion of g around a evaluated at b

dg a; bð Þ≔ g að Þ � g bð Þ � ∇g bð Þ; a� bh i:

Example 3. From the Bregman divergence one gets other features by choosing specific functions g :

• If g að Þ ¼Pn
i¼1 a

2
i then the Bregman divergence dg a; bð Þ ¼Pn

i¼1 ai � bið Þ2 is the squared standard
Euclidean distance.

• If g að Þ ¼Pn
i¼1 ai log ai is defined on the relative interior of the simplex, i.e., a∈ b j b∈f

0; 1ð Þn; Pn
i¼1 bi ¼ 1g then the Bregman divergence dg a; bð Þ ¼Pn

i¼1 ai log
ai
bi

� �
, is the

Kullback–Leibler divergence.

We are now ready to define algorithms for solving the righthand side of (7) and (9). One of the
key approaches for error quantification of the algorithm with respect to the distributionally
robust optimum is the so-called average regret. When the regret vanishes one gets close to a
distributionally robust optimum.

Definition 4. The average regret of an algorithm which generates the trajectory a tð Þ ¼ ~a tð Þ;λ tð Þ;ð
μ tð ÞÞ within t0;T½ �, t0 > 0 is

regretT ≔
1

T � t0

ðT
t0

max
b∈A�Rþ�R

Emh b;ωð Þ
� �

� Emh a tð Þ;ωð Þdt

2.4.1. Armijo gradient flow

Algorithm 1. The Armijo’s gradient pseudocode is as follows:

1: Procedure ARMIJO GRADIENT a 0ð Þ; e;T; g;m; hð Þ⊳ The Armijo’s gradient starting from a 0ð Þ within
0;T½ �

Optimization Algorithms - Examples8

2: a a 0ð Þ
3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (10)

5: Compute regrett

6: end while

7: return a tð Þ, regrett ⊳ get a(t) and the regret

8: end procedure

Proposition 2. Let a↦Emh a;ωð Þ : Rnþ2 ! R be a concave function that has a unique global
maximizer a∗: Assume that a∗ be a feasible action profile, i.e., a∗ ∈A: Consider the continuous time
analogue of the Armijo gradient flow [6], which is given by

d
dt
a tð Þ ¼ ∇2g

� ��1
:∇aEmh a tð Þ;ωð Þ,

a 0ð Þ ¼ a0 ∈Rnþ2,
(10)

where a 0ð Þ ¼ a0 is the initial point of the algorithm and g is a strictly convex function on a: Let
a tð Þ be the solution to (10).

Then the average regret within t0;T½ �, t0 > 0 is bounded above by

regretT ≔
1

T � t0

ðT
t0
Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ �dt ≤ dg a∗; a0ð Þ log

T
t0

T � t0
:

Proof. Let

W a tð Þð Þ ¼ tEm h a∗;ωð Þ � h a tð Þ;ωð Þ½ � þ dg a∗; a tð Þð Þ,

where a is solution to (10). The function W is positive and d
dtW ¼ Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ ��

t Em∇ah a;ωð Þ; g�1aa Em∇ah a tð Þ;ωð Þ� �þ d
dt dg a∗; a tð Þð Þ: By concavity of Emh a;ωð Þ one has

Em∇ah a;ωð Þ; a∗ � að Þh i ≥Em h a∗;ωð Þ � h a;ωð Þ½ �, ∀ a:

On the other hand,
d
dt
dg a∗; a tð Þð Þ ¼ � _aga að Þ � gaa _a; a� a∗

� �þ ga _a

¼ � gaa _a; a� a∗
� � ¼ � Em∇ah a;ωð Þ; a∗ � ah i:

(11)

Hence,
d
dt
W ≤ Em∇ah a;ωð Þ; a∗ � að Þh i
�t Em∇ah a;ωð Þ; g�1aa Em∇ah a;ωð Þ� �

� Em∇ah a;ωð Þ; a∗ � ah i
¼ �t Em∇ah a;ωð Þ; g�1aa Em∇ah a;ωð Þ� �

≤ 0,

(12)
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where the last inequality is by convexity of g: It follows that d
dtW a tð Þð Þ ≤ 0 along the path of the

gradient flow. This decreasing property implies 0 ≤W a tð Þð Þ ≤W a 0ð Þð Þ ¼ dg a∗; a 0ð Þð Þ: In particu-
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bounded by

0 ≤Em h a∗;ωð Þ � h a;ωð Þ½ � ≤ W a 0ð Þð Þ
t

:

The announced result on the regret follows by integration over t0;T½ � and by averaging. This
completes the proof.

Note that the above regret-bound is established without assuming strong convexity of
a↦ � Emh a;ωð Þ: Also no Lipschitz continuity bound of the gradient is assumed.

2.4.2. Bregman learning algorithms

Algorithm 2. The Bregman learning pseudocode is as follows:

1: procedure BREGMAN a 0ð Þ; e;T; g;α; β;m; h
� �

⊳ The Bregman learning starting from a 0ð Þ within
0;T½ �

2: a a 0ð Þ
3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (13)

5: Compute regrett

6: end while

7: return a tð Þ, regrett ⊳ get a tð Þ and the regret

8: end procedure

Proposition 3. Let a↦Emh a;ωð Þ : Rnþ2 ! R be a concave function that has a unique global
maximizer a∗: Assume that a∗ be a feasible action profile, i.e., a∗ ∈A: Let α and β be two functions such

that _β tð Þ ≤ eα tð Þ: Consider the following Bregman learning algorithm

d
dt

ga a tð Þ þ e�α tð Þ _a tð Þ
� �h i

¼ eα tð Þþβ tð Þ∇aEmh a tð Þ;ωð Þ,
a 0ð Þ∈Rnþ2, _a 0ð Þ∈Rnþ2,

(13)

where a 0ð Þ is the initial point of the algorithm and g is a strictly convex function on a: Let a tð Þ
be the solution to (13). Then the average regret within t0;T½ �, t0 > 0 is bounded above by

regretT ≤
c0

T � t0

ðT
t0
e�β sð Þds, (14)

where c0 ≔ dg a∗; a 0ð Þð Þ þ e�α 0ð Þ _a 0ð ÞÞ þ eβ 0ð ÞEm h a∗;ωð Þ � h a 0ð Þ;ωð Þ½ � > 0:
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Proof. Let W a; _a; t; a∗ð Þ ¼ dg a∗; a tð Þ þ e�α tð Þ _a tð Þ� �þ eβ tð ÞEm h a∗;ωð Þ � h a tð Þ;ωð Þ½ �: It is clear thatW
is positive. Moreover, d
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In particular, for β sð Þ ¼ �sþ es, one obtains an error bound to the minimum value as
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e�β sð Þds ¼ c0

t

ðt
0
ese�e

s
ds ¼ c0 1

e � e�e
t� �

t
,

and for β sð Þ ¼ s, the regret bound becomes

c0
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ðt
0
e�β sð Þds ¼ c0 1� e�tð Þ

t
:

Figure 1 illustrates the advantage of algorithm (13) compared with the gradient flow (10). It

plots the regret bound c0
T�t0

Ð T
t0
e�β sð Þds for β ¼ s and dg a∗; a0ð Þ log

T
t0

T�t0 with an initial gap of c0 ¼ 25:

The advantage of algorithms (10) and (13) is that it is not required to compute the Hessian of
Emh a;ωð Þ as it is the case in the Newton scheme. As a corollary of Proposition 2 the regret
vanishes as T grows. Thus, it is a no-regret algorithm. However, Algorithm (10) may not be
sufficiently fast. Algorithm (13) provides a higher order convergence rate by carefully design-
ing α; β

� �
: The average regret decays very quickly to zero [7]. However, it may generate an

Figure 1. Global regret bound under Bregman vs. gradient. The initial gap is c0 ¼ 25:
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oscillatory trajectory with a big magnitude. The next subsection presents risk-aware algo-
rithms that reduce the oscillatory phase of the trajectory.

2.4.3. Risk-aware Bregman learning algorithm

In order to reduce the oscillatory phase, we introduce a risk-aware Bregman learning algo-
rithm [7] which is a speed-up-and-average version of (13) called mean dynamics m of a given by

m⃛ ¼ �
3
t
€m� eα � _αð Þ €mþ 2

t
_m

� �

þ e2αþβ

t
g�1mm mþ tþ 2e�α½ � _mþ te�α €m

� �
Ehm t _mþm;ω

� �
,

(15)

with starting vector m 0ð Þ ¼ a 0ð Þ, _m 0ð Þ, €m 0ð Þ:

Algorithm 3. The risk-aware Bregman learning pseudocode is as follows:

1: procedure RISK-AWARE BREGMAN m 0ð Þ; e;T; g;α; β;m; h
� �

⊳ The risk-aware Bregman learning
starting from m 0ð Þ within 0;T½ �

2: m m 0ð Þ ¼ a 0ð Þ, _m 0ð Þ, €m 0ð Þ
3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute m tð Þ solution of (15)

5: Compute regret

6: end while

7: return m tð Þ, regrett ⊳ get m tð Þ and the regret

8: end procedure

Proposition 4. The time-average trajectory of the learning algorithm (13) generates the mean dynamics
(15).

Proof.We use the average relation m tð Þ ¼ 1
t

Ð t
0 a sð Þ ds where a solves Eq. (13). From the definition

of m, and by Hopital’s rule, m 0ð Þ ¼ a 0ð Þ: Moreover, m tð Þ and a tð Þ share the following equations:

a tð Þ ¼ m tð Þ þ t _m tð Þ,
_a tð Þ ¼ 2 _m tð Þ þ t €m tð Þ,
€a tð Þ ¼ 3 €m tð Þ þ tm⃛ tð Þ:

(16)

Substituting these values in Eq. (13) yields the mean dynamics (15). This completes the proof.
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The risk-aware Bregman dynamics (15) generates a less oscillatory trajectory due to its averag-
ing nature. The next result provides an accuracy bound for (15).

Proposition 5. The risk-aware Bregman dynamics (15) satisfies

0 ≤Em h a∗;ωð Þ � h m tð Þ;ωð Þ½ � ≤ c0
t

ðt
0
e�β sð Þds:

Proof. Let m tð Þ ¼ 1
t

Ð t
0 a sð Þds: Then, m tð Þ ¼ ÐRa sð Þ 1

t 1l 0;t½ � sð Þ
� �

ds: Thus, m tð Þ ¼ Eμ tð Þa where μ tð Þ is
the measure with density dμ tð Þ s½ � ¼ 1

t 1l 0;t½ � dsð Þ: By convexity of �Emh a;ωð Þ we apply the
Jensen’s inequality:

Emh
1
t

ðt
0
a sð Þds;ω

� �
¼ Emh m tð Þ;ωð Þ ¼ Emh Eμ tð Þa;ω

� �

≥Eμ tð ÞEmh a;ωð Þ ¼ 1
t

ðt
0
Emh a sð Þ;ωð Þds:

In view of (14) one has

0 ≤Emh a∗;ωð Þ � Emh
1
t

ðt
0
a sð Þds;ω

� �

≤
1
t

ðt
0
Emh a∗;ωð Þ � Emh a sð Þ;ωð Þ½ �ds

≤ c0
1
t

ðt
0
e�β sð Þds,

0 ≤Emh a∗;ωð Þ � Emh m tð Þ;ωð Þ ≤ c0
t

ðt
0
e�β sð Þds:

This completes the proof.

Definition 5. (Convergence time). Let δ > 0 and a tð Þ be the trajectory generated by Bregman
algorithm starting from a0 at time t0: The convergence time to be within a ball B Emh a∗;ωð Þ; δð Þ of
radius δ > 0 from the center r a∗ð Þ is given by

Tδ ¼ inf t j Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ � ≤ δ; t > t0f g:

Proposition 6. Under the assumptions above, the error generated by the algorithm is at most (14)
which means that it takes at most Tδ ¼ β�1 log c0

δ

� �
time units to the algorithm to be within a ball

B r a∗ð Þ; δð Þ of radius δ > 0 from the center Emh a∗;ωð Þ.

Proof. The proof is immediate. For δ > 0 the average regret bound of Proposition 5,
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regretT ≤
c0

T � t0

ðT
t0
e�β sð Þds ≤ δ, (17)

provides the announced convergence time bound. This completes the proof.

See Table 1 for detailed parametric functions on the bound Tδ:

Convergence Error bound Time-to-reach Tδ

Triple exponential e�e
et

c0 log log log c0
δ

� �� �

α tð Þ ¼ tþ et, β tð Þ ¼ ee
t

Double exponential rate e�e
t
c0 log log c0

δ

� �

α tð Þ ¼ t, β tð Þ ¼ et

Exponential rate e�tc0 log c0
δ

α tð Þ ¼ 0, β tð Þ ¼ t

Polynomial order k c0
tk

c1=k0

δ1=k

α tð Þ ¼ log k� log t, β tð Þ ¼ k log t

Table 1. Convergence rate under different set of functions.

Figure 2. Gradient ascent vs. risk-aware Bregman dynamics for r ¼ � 1þP2
k¼1 ω

2
k a

2
k

� �
:
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Example 4. Let f yð Þ ¼ y log y defined on R∗
þ: Then, f 1ð Þ ¼ 0, and derivatives of f are

f 0 yð Þ ¼ 1þ log y, f 0 0 yð Þ ¼ 1
y > 0: The Legendre-Fenchel transform of f is f ∗ ξð Þ ¼ y∗ ¼ eξ�1: Let

a1; a2ð Þ↦ g að Þ ¼ ∥a∥22, and a1; a2;ωð Þ↦ r a1; a2;ωð Þ ¼ � 1þP2
k¼1 ω

2
ika

2
k

� �
: The coefficient ω distri-

bution is unknown but a sampled empirical measure m is considered to be similar to uniform distribu-
tion in 0; 1ð � with 104 samples. We illustrate the quick convergence rate of the algorithm in a basic
example and plot in Figure 2 the trajectories under standard gradient, Bregman dynamics and risk-
aware Bregman dynamics (15). In particular, we observe that risk-aware Bregman dynamics (15)
provides very quickly a satisfactory value. In this particular setup, we observe that the accuracy of the
risk-aware Bregman algorithm (15) at t ¼ 0:5 will need four times (t ¼ 2) less than the standard
Bregman algorithm to reach a similar level of error. It takes 40 times more t ¼ 20ð Þ than the gradient
ascent to reach that level. Also, we observe that the risk-aware Bregman algorithm is less oscillatory and
the amplitude decays very fast compared to the risk-neutral algorithm.

3. Constrained distributionally robust optimization

In the constrained case i.e., when A is a strict subset of Rnþ2, algorithms (10) and (13) present
some drawbacks: The trajectory a tð Þ may not be feasible, i.e., a tð Þ∉A� Rþ � R even when it
starts in A: In order to design feasible trajectories, projected gradient has been widely studied
in the literature. However, a projection into A at each time t involves additional optimization
problems and the computation of the projected gradient adds extra complexity to the algo-
rithm. We restrict our attention to the following constraints:

A ¼ a∈Rn j al ∈ al; al
� �

; l∈ 1;…; nf g;
Xn

l¼1
clal ≤ b

( )
:

We impose the following feasibility condition: al < al, l∈ 1;…; nf g, cl > 0,
Pn

l¼1 clal < b:
Under this setting, the constraint set A is non-empty, convex and compact.

We propose a method to compute a constrained solution that has a full support (whenever
it exists). We do not use the projection operator. Indeed we transform the domain
al; al
� � ¼ ξ 0; 1½ �ð Þ where ξ xlð Þ ¼ alxl þ al 1� xlð Þ ¼ al: ξ is a one-to-one mapping and

xl ¼ ξ�1 alð Þ ¼ al � al
al � al

∈ 0; 1½ �:

Xn

l¼1
cl al � al
� �

xl ≤ b�
Xn

l¼1
clal≕b̂:

The algorithm (18)
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Under this setting, the constraint set A is non-empty, convex and compact.

We propose a method to compute a constrained solution that has a full support (whenever
it exists). We do not use the projection operator. Indeed we transform the domain
al; al
� � ¼ ξ 0; 1½ �ð Þ where ξ xlð Þ ¼ alxl þ al 1� xlð Þ ¼ al: ξ is a one-to-one mapping and

xl ¼ ξ�1 alð Þ ¼ al � al
al � al

∈ 0; 1½ �:

Xn

l¼1
cl al � al
� �

xl ≤ b�
Xn

l¼1
clal≕b̂:

The algorithm (18)
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_y ¼ ∇2g
� ��1∇aEmh a;ωð Þ≕f̂ að Þ,

al ≔ alxl þ al 1� xlð Þ,

xl ¼ min 1;
eylPn
k¼1 e

yk

b̂
cl al � al
� �� �

 !
,

l∈ 1;…; nf g,

8>>>>>>><
>>>>>>>:

(18)

generates a trajectory a tð Þ that satisfies the constraint.

Algorithm 4. The constrained learning pseudocode is as follows:

1: procedure CONSTRAINED GRADIENT a 0ð Þ; e;T; g;m; hð Þ⊳ The constrained learning algorithm starting
from a 0ð Þ within 0;T½ �

2: a a 0ð Þ
3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (18)

5: Compute regret

6: end while

7: return a tð Þ, regrett ⊳ get a(t) and the regret

8: end procedure

Proposition 7. If b̂ ≤minlcl al � al
� �

then Algorithm (18) reduces to

al ≔ alxl þ al 1� xlð Þ,

_xl ¼ xl el; f̂ að Þ
D E

� 1b̂
X
l

el; f̂ að Þ
D E

xl cl al � al
� �� �

" #
,

l∈ 1;…; nf g

8>>>><
>>>>:

(19)

Proof. It suffices to check that for b̂ ≤minlcl al � al
� �

, the vector z defined by zl ¼ eylPn

k¼1 e
yk
solves

the replicator equation,

_zl ¼ zl _yl � z; _yh i� �
:

Thus, xl ¼ eylPn

k¼1 e
yk

b̂
cl al�alð Þ½ � solves _xl ¼ xl el; f̂ að Þ

D E
� 1b̂

P
l el; f̂ að Þ
D E

xl cl al � al
� �� �h i

: This com-

pletes the proof.

Note that the dynamics of x in Eq. (19) is a constrained replicator dynamics [8] which is widely
used in evolutionary game dynamics. This observation establishes a relationship between
optimization and game dynamics and explains that the replicator dynamics is the gradient
flow of the (expected payoff) under simplex constraint.
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The next example illustrates a constrained distributionally robust optimization in wireless
communication networks.

Example 5 (Wireless communication). Consider a power allocation problem over n medium access
channels. The signal-to-interference-plus-noise ratio (SINR) is

SINRl ¼
al ωllj j2

d2 sr lð Þ;st lð Þð Þþε2ð Þo2
N0 sr lð Þð Þ þ Il sr lð Þð Þ ,

where

• N0 > 0 is the background noise.

• The interference on channel l is denoted Il ≥ 0: One typical model for Il is

Il ¼
P

k6¼l
ak ωklj j2

d2 sr lð Þ;st kð Þð Þþε2ð Þo2 :

• e > 0 is the height of the transmitter antenna.

• ωll is the channel state at l: The channel state is unknown. Its true distribution is also
unknown.

• sr lð Þ is the location of the receiver of l

• st lð Þ is the location of the transmitter of l

• o∈ 2; 3; 4f g is the pathloss exponent.
• al is the power allocated to channel l: It is assumed to be between al ≥ 0 and al with

0 ≤ al < al < þ∞: Moreover, a total power budget constraint is imposed
Pn

l¼1 al ≤ a where
a >

Pn
l¼1 al ≥ 0:

It is worth mentioning that the action constraint of the power allocation problem are similar to the ones
analyzed in Section 3. The admissible action space is

A≔ a∈Rn
þ : al ≤ al ≤ al;

Xn

l¼1
al ≤ a

( )
:

Clearly, A is a non-empty convex compact set. The payoff function is the sum-rate r a;ωð Þ ¼Pn
l¼1 Wl log 1þ SINRlð Þ where Wl > 0: The mapping a;ωð Þ↦ r a;ωð Þ is continuously differentiable.

• Robust optimization is too conservative: Part of the robust optimization problem [9, 7] consists of

choosing the channel gain ωllj j2 ∈ 0;ωll½ � were the bound ω need to be carefully designed. However
the worst case is achieved when the channel gain is zero: infω∈

Q
l
0;ωll½ �r a;ωð Þ ¼ 0: Hence the

robust performance is zero. This is too conservative as several realizations of the channel may give
better performance than zero. Another way is to re-design the bounds ωll and ωll: But if ωll > 0 it
means that very low channel gains are not allowed, which may be too optimistic. Below we use the
distributional robust optimization approach which eliminates this design issue.

• Distributional robust optimization: By means of the training sequence or channel estimation
method, a certain (statistical) distribution m is derived. However m cannot be considered as the

Distributionally Robust Optimization
http://dx.doi.org/10.5772/intechopen.76686

17



_y ¼ ∇2g
� ��1∇aEmh a;ωð Þ≕f̂ að Þ,

al ≔ alxl þ al 1� xlð Þ,

xl ¼ min 1;
eylPn
k¼1 e

yk

b̂
cl al � al
� �� �

 !
,

l∈ 1;…; nf g,

8>>>>>>><
>>>>>>>:

(18)

generates a trajectory a tð Þ that satisfies the constraint.

Algorithm 4. The constrained learning pseudocode is as follows:

1: procedure CONSTRAINED GRADIENT a 0ð Þ; e;T; g;m; hð Þ⊳ The constrained learning algorithm starting
from a 0ð Þ within 0;T½ �

2: a a 0ð Þ
3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (18)

5: Compute regret

6: end while

7: return a tð Þ, regrett ⊳ get a(t) and the regret

8: end procedure

Proposition 7. If b̂ ≤minlcl al � al
� �

then Algorithm (18) reduces to

al ≔ alxl þ al 1� xlð Þ,

_xl ¼ xl el; f̂ að Þ
D E

� 1b̂
X
l

el; f̂ að Þ
D E

xl cl al � al
� �� �

" #
,

l∈ 1;…; nf g

8>>>><
>>>>:

(19)

Proof. It suffices to check that for b̂ ≤minlcl al � al
� �

, the vector z defined by zl ¼ eylPn

k¼1 e
yk
solves
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pletes the proof.

Note that the dynamics of x in Eq. (19) is a constrained replicator dynamics [8] which is widely
used in evolutionary game dynamics. This observation establishes a relationship between
optimization and game dynamics and explains that the replicator dynamics is the gradient
flow of the (expected payoff) under simplex constraint.
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The next example illustrates a constrained distributionally robust optimization in wireless
communication networks.

Example 5 (Wireless communication). Consider a power allocation problem over n medium access
channels. The signal-to-interference-plus-noise ratio (SINR) is
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where

• N0 > 0 is the background noise.

• The interference on channel l is denoted Il ≥ 0: One typical model for Il is

Il ¼
P
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ak ωklj j2

d2 sr lð Þ;st kð Þð Þþε2ð Þo2 :

• e > 0 is the height of the transmitter antenna.

• ωll is the channel state at l: The channel state is unknown. Its true distribution is also
unknown.

• sr lð Þ is the location of the receiver of l

• st lð Þ is the location of the transmitter of l

• o∈ 2; 3; 4f g is the pathloss exponent.
• al is the power allocated to channel l: It is assumed to be between al ≥ 0 and al with

0 ≤ al < al < þ∞: Moreover, a total power budget constraint is imposed
Pn

l¼1 al ≤ a where
a >

Pn
l¼1 al ≥ 0:

It is worth mentioning that the action constraint of the power allocation problem are similar to the ones
analyzed in Section 3. The admissible action space is

A≔ a∈Rn
þ : al ≤ al ≤ al;

Xn

l¼1
al ≤ a

( )
:

Clearly, A is a non-empty convex compact set. The payoff function is the sum-rate r a;ωð Þ ¼Pn
l¼1 Wl log 1þ SINRlð Þ where Wl > 0: The mapping a;ωð Þ↦ r a;ωð Þ is continuously differentiable.

• Robust optimization is too conservative: Part of the robust optimization problem [9, 7] consists of

choosing the channel gain ωllj j2 ∈ 0;ωll½ � were the bound ω need to be carefully designed. However
the worst case is achieved when the channel gain is zero: infω∈

Q
l
0;ωll½ �r a;ωð Þ ¼ 0: Hence the

robust performance is zero. This is too conservative as several realizations of the channel may give
better performance than zero. Another way is to re-design the bounds ωll and ωll: But if ωll > 0 it
means that very low channel gains are not allowed, which may be too optimistic. Below we use the
distributional robust optimization approach which eliminates this design issue.

• Distributional robust optimization: By means of the training sequence or channel estimation
method, a certain (statistical) distribution m is derived. However m cannot be considered as the
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true distribution of the channel state due to estimation error. The true distribution of ω is unknown.
Based on this observation, an uncertainty set Br mð Þ with radius r ≥ 0 is constructed for alternative
distribution candidates. Note that r ¼ 0 means that B0 mð Þ ¼ mf g: The distributional robust opti-
mization problem is supainf ~m ∈Br mð Þ E~mr a;ωð Þ: In presence of interference, the function r a;ωð Þ is
not necessarily concave in a: In absence of interference, the problem becomes concave.

4. Distributed optimization

This section presents distributed distributionally robust optimization problems over a direct
graph. A large number of virtual agents can potentially choose a node (vertex) subject to
constraint. The vector a represents the population state. Since a has n components, the graph
has n vertices. The interactions between virtual agents are interpreted as possible connections
of the graph. Let us suppose that the current interactions are represented by a directed graph
G ¼ L; Eð Þ, where E ⊆L2 is the set of links representing the possible interaction among the
proportion of agents, i.e., if l; kð Þ∈ E, then the component l of a can interact with the k�th
component of a. In other words, l; kð Þ∈ E means that virtual agents selecting the strategy l∈L

could migrate to strategy k∈L:Moreover, Λ∈ 0; 1f gn�n is the adjacency matrix of the graph G,
and whose entries are λlk ¼ 1, if l; kð Þ∈ E; and λlk ¼ 0, otherwise.

Definition 6. The distributionally robust fitness function is the marginal distributionally robust
payoff function. If a↦Emh a;ωð Þ is continuously differentiable, the distributionally robust fitness
function is Em∇ah a;ωð Þ:

Definition 7. The virtual population state a is an equilibrium if a∈A and it solves the variational
inequality

a� b,Em∇ah a;ωð Þ ≥ 0, ∀b∈A:h

Proposition 8. Let the set of virtual population state A be non-empty convex compact and
b↦Em∇h b;ωð Þ be continuous. Then the following conditions are equivalent:

• a� b,Em∇h a;ωð Þ ≥ 0, ∀b∈A:h
• the action a satisfies a ¼ projA aþ ηEm∇h a;ωð Þ½ �
Proof. Let a be a feasible action that solves the variational inequality:

a� b,Em∇h a;ωð Þ ≥ 0, ∀b∈A:h

Let η > 0: By multiplying both sides by η, we obtain

a� b, ηEm∇h a;ωð Þ ≥ 0, ∀b∈A:h
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We add the term a; b� ah i to both sides to obtain the following relationships:

a� b; ηEm∇h a;ωð Þh i ≥ 0 ∀b∈A,
⇔ a� b; ηEm∇h a;ωð Þh i þ a� b;�ah i ≥ a; b� ah i ∀b∈A,
⇔ b� a;� aþ ηEm∇h a;ωð Þ½ �h i þ a� b;�ah i ≥ 0 ∀b∈A,
⇔ b� a; a� aþ ηEm∇h a;ωð Þ½ �h i ≥ 0 ∀b∈A,

(20)

Recall that the projection operator on a convex and closed set A is uniquely determined by

z∈Rn, z0 ¼ projA z½ �⇔ z0 � z; b� z0h i ≥ 0, ∀b∈A:

Thus

b� a; a� aþ ηEm∇h a;ωð Þ½ �h i ≥ 0, ∀b∈A

⇔ a ¼ projA aþ ηEm∇h a;ωð Þ½ �: (21)

This completes the proof.

As a consequence we can derive the following existence result.

Proposition 9. Let the set of virtual population states A be a non-empty convex compact and the
mapping b↦Em∇h b;ωð Þ be continuous. Then, there exists at least one equilibrium in A:

Proof. A direct application of the Brouwer-Schauder’s fixed-point theorem which states that if
ϕ : A! A is continuous and A non-empty convex compact then ϕ has at least one fixed-
point in A: Here we choose ϕ að Þ ¼ projA aþ ηEm∇h a;ωð Þ½ �: Clearly ϕ Að Þ⊆A and ϕ is continu-
ous on A as the mapping b↦Em∇h b;ωð Þ and the projection operator b↦ projA b½ � are both
continuous. Then the announced result follows. This completes the proof.

Note that we do not need sophisticated set-valued fixed-point theory to obtain this result.

Definition 8. The virtual population state a is evolutionarily stable if a∈A and for any alternative
deviant state b 6¼ a there is an invasion barrier eb > 0 such that

a� b,Em∇h aþ e b� að Þ;ωð Þ > 0, ∀e∈ 0; ebð Þ:h

The function ϱ : A� Rn � Rn�n
þ ! Rn�n is the revision protocol, which describes how virtual

agents are making decisions. The revision protocol ϱ takes a population state a, the
corresponding fitness ∇Emh, the adjacency matrix Λ and returns a matrix. Therefore, let

ϱlk a; h;Λð Þ be the switching rate from the lth to kth component. Then, the virtual agents selecting
the strategy l∈L have incentives to migrate to the strategy l∈L only if ϱlk a; h;Λð Þ > 0, and it is
also possible to design switch rates depending on the topology describing the migration
constraints, i.e., λlk ¼ 0) ϱlk a; h;Λð Þ ¼ 0: The distributed distributionally robust optimization
consists to perform the optimization problem above over the distributed network that is
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true distribution of the channel state due to estimation error. The true distribution of ω is unknown.
Based on this observation, an uncertainty set Br mð Þ with radius r ≥ 0 is constructed for alternative
distribution candidates. Note that r ¼ 0 means that B0 mð Þ ¼ mf g: The distributional robust opti-
mization problem is supainf ~m ∈Br mð Þ E~mr a;ωð Þ: In presence of interference, the function r a;ωð Þ is
not necessarily concave in a: In absence of interference, the problem becomes concave.

4. Distributed optimization

This section presents distributed distributionally robust optimization problems over a direct
graph. A large number of virtual agents can potentially choose a node (vertex) subject to
constraint. The vector a represents the population state. Since a has n components, the graph
has n vertices. The interactions between virtual agents are interpreted as possible connections
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and whose entries are λlk ¼ 1, if l; kð Þ∈ E; and λlk ¼ 0, otherwise.

Definition 6. The distributionally robust fitness function is the marginal distributionally robust
payoff function. If a↦Emh a;ωð Þ is continuously differentiable, the distributionally robust fitness
function is Em∇ah a;ωð Þ:

Definition 7. The virtual population state a is an equilibrium if a∈A and it solves the variational
inequality

a� b,Em∇ah a;ωð Þ ≥ 0, ∀b∈A:h

Proposition 8. Let the set of virtual population state A be non-empty convex compact and
b↦Em∇h b;ωð Þ be continuous. Then the following conditions are equivalent:
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Proof. Let a be a feasible action that solves the variational inequality:
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Let η > 0: By multiplying both sides by η, we obtain

a� b, ηEm∇h a;ωð Þ ≥ 0, ∀b∈A:h
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We add the term a; b� ah i to both sides to obtain the following relationships:
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As a consequence we can derive the following existence result.
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mapping b↦Em∇h b;ωð Þ be continuous. Then, there exists at least one equilibrium in A:
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point in A: Here we choose ϕ að Þ ¼ projA aþ ηEm∇h a;ωð Þ½ �: Clearly ϕ Að Þ⊆A and ϕ is continu-
ous on A as the mapping b↦Em∇h b;ωð Þ and the projection operator b↦ projA b½ � are both
continuous. Then the announced result follows. This completes the proof.

Note that we do not need sophisticated set-valued fixed-point theory to obtain this result.

Definition 8. The virtual population state a is evolutionarily stable if a∈A and for any alternative
deviant state b 6¼ a there is an invasion barrier eb > 0 such that
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The function ϱ : A� Rn � Rn�n
þ ! Rn�n is the revision protocol, which describes how virtual

agents are making decisions. The revision protocol ϱ takes a population state a, the
corresponding fitness ∇Emh, the adjacency matrix Λ and returns a matrix. Therefore, let

ϱlk a; h;Λð Þ be the switching rate from the lth to kth component. Then, the virtual agents selecting
the strategy l∈L have incentives to migrate to the strategy l∈L only if ϱlk a; h;Λð Þ > 0, and it is
also possible to design switch rates depending on the topology describing the migration
constraints, i.e., λlk ¼ 0) ϱlk a; h;Λð Þ ¼ 0: The distributed distributionally robust optimization
consists to perform the optimization problem above over the distributed network that is
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subject to communication restriction. We construct a distributed distributionally robust game
dynamics to perform such a task. The distributed distributionally robust evolutionary game
dynamics emerge from the combination of the (robust) fitness h and the constrained switching
rates ϱ: The evolution of the portion al is given by the distributed distributional robust mean
dynamics

_al ¼
X
k∈L

akϱkl a; h;Λð Þ � al
X
k∈L

ϱlk a; h;Λð Þ, l∈L, (22)

Since the distributionally robust function h is obtained after the transformation from payoff
function r by means of triality theory, the dynamics (22) is seeking for distributed distribu-
tionally robust solution.

Algorithm 5. The distributed distributional robust mean dynamics pseudocode is as follows:

1: procedure POPULATION-INSPIRED ALGORITHM a 0ð Þ; e;T; ϱ; g;m; h;Λð Þ⊳ The population-inspired
learning starting from a 0ð Þ within 0;T½ �

2: a a 0ð Þ
3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (22)

5: Compute regrett

6: end while

7: return a tð Þ, regrett ⊳ get a tð Þ and the regret

8: end procedure

The next example establishes evolutionarily stable state, equilibria and rest-point of the
dynamics (22) by designing ϱ:

Example 6. Let us consider a power system that is composed of 10 generators, i.e., let L ¼ 1;…; 10f g.
Let al ∈Rþ be the power generated by the generator l∈L. Each power generation should satisfy the
physical and/or operation constraints al ∈ al; al

� �
, for all l∈L. It is desired to satisfy the power demand

given by d∈R, i.e., it is necessary to guarantee that
P

l∈Lal ¼ d, i.e., the supply meets the demand.
The objective is to minimize the generation quadratic costs for all the generators, i.e.,

Maximize r a;ωð Þ ¼
X
l∈L

rl alð Þ ¼ �
X
l∈L

c0l þ c1lal þ c2la2l
� �

,

s:t:
X
l∈L

al ¼ d, al ≤ al ≤ al, l∈L,

where r : Rn ! R is concave, and the parameters are possibly uncertain and selected as
c0l ¼ 25þ 6l, c1l ¼ 15þ 4lþ ω1l, c2l ¼ 5þ lþ ω2l, and d ¼ 20þ ω3l. Therefore, the fitness
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functions for the corresponding full potential game are given by f l að Þ ¼ �2alc2l � c1l, for all
l∈L, and action space is given by

A ¼ a∈Rn
þ :
X
l∈L

al ¼ d; al ∈ al; al
� �

( )
:

The distributed revision protocol is set to

ϱlk a; h;Λð Þ ¼ λlk

al
max 0; ak � akð Þmax 0; al � al

� �
max 0;Em hk � hlð Þð Þ,

for al 6¼ 0: We evaluate four different scenarios, i.e.,

1. a ¼ 0n and a ¼ d1ln,

2. al ¼ 0, for all l∈L 9; 10f g, a9 ¼ 1:1, and a10 ¼ 1; and al ¼ d, for all l∈L 1; 2f g, a1 ¼ 3, and
a2 ¼ 2:5,

3. Case 1 constraints and with interaction restricted to the cycle graph G ¼ L; Eð Þ with set of links
E ¼ ∪l∈L nf g l; lþ 1ð Þ� �

∪ n; 1ð Þf g,
4. Case 2 constraints and with interaction restricted as in Case 3.

Figure 3 presents the evolution of the generated power, the fitness functions corresponding to
the marginal costs and the total cost. For the first scenario, the evolutionary game dynamics

converge to a standard evolutionarily stable state in which f̂ a⋆ð Þ ¼ c1n. In contrast, for the
second scenario, the dynamics converge to a constrained evolutionarily stable state.

4.1. Extension to multiple decision-makers

Consider a constrained game G in strategic-form given by

• P ¼ 1;…;Pf g is the set of players. The cardinality of P is P ≥ 2:

• Player p has a decision space Ap ⊂Rnp , np ≥ 1: Players are coupled through their actions
and their payoffs. The set of all feasible action profiles isA⊂Rn, with n ¼Pp∈Pnp: Player

p can choose an action ap in the set Ap a�p
� � ¼ ap ∈Ap : ap; a�p

� �
∈A

� �
:

• Player p has a payoff function rp : A! R:

We restrict our attention to the following constraints:

Ap ¼ ap ∈Rnp j apl ∈ apl; apl
h i

; l∈ 1;…; np
� �

;
Xnp

l¼1
cplapl ≤ bp

( )

The coupled constraint is

A ¼ a∈
Y
p
Ap;

X
p∈P

cp; ap
� �

≤ b

( )
:
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subject to communication restriction. We construct a distributed distributionally robust game
dynamics to perform such a task. The distributed distributionally robust evolutionary game
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1: procedure POPULATION-INSPIRED ALGORITHM a 0ð Þ; e;T; ϱ; g;m; h;Λð Þ⊳ The population-inspired
learning starting from a 0ð Þ within 0;T½ �

2: a a 0ð Þ
3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (22)

5: Compute regrett

6: end while

7: return a tð Þ, regrett ⊳ get a tð Þ and the regret

8: end procedure

The next example establishes evolutionarily stable state, equilibria and rest-point of the
dynamics (22) by designing ϱ:

Example 6. Let us consider a power system that is composed of 10 generators, i.e., let L ¼ 1;…; 10f g.
Let al ∈Rþ be the power generated by the generator l∈L. Each power generation should satisfy the
physical and/or operation constraints al ∈ al; al

� �
, for all l∈L. It is desired to satisfy the power demand

given by d∈R, i.e., it is necessary to guarantee that
P

l∈Lal ¼ d, i.e., the supply meets the demand.
The objective is to minimize the generation quadratic costs for all the generators, i.e.,

Maximize r a;ωð Þ ¼
X
l∈L

rl alð Þ ¼ �
X
l∈L

c0l þ c1lal þ c2la2l
� �

,

s:t:
X
l∈L

al ¼ d, al ≤ al ≤ al, l∈L,

where r : Rn ! R is concave, and the parameters are possibly uncertain and selected as
c0l ¼ 25þ 6l, c1l ¼ 15þ 4lþ ω1l, c2l ¼ 5þ lþ ω2l, and d ¼ 20þ ω3l. Therefore, the fitness
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functions for the corresponding full potential game are given by f l að Þ ¼ �2alc2l � c1l, for all
l∈L, and action space is given by

A ¼ a∈Rn
þ :
X
l∈L

al ¼ d; al ∈ al; al
� �

( )
:

The distributed revision protocol is set to

ϱlk a; h;Λð Þ ¼ λlk

al
max 0; ak � akð Þmax 0; al � al

� �
max 0;Em hk � hlð Þð Þ,

for al 6¼ 0: We evaluate four different scenarios, i.e.,

1. a ¼ 0n and a ¼ d1ln,

2. al ¼ 0, for all l∈L 9; 10f g, a9 ¼ 1:1, and a10 ¼ 1; and al ¼ d, for all l∈L 1; 2f g, a1 ¼ 3, and
a2 ¼ 2:5,

3. Case 1 constraints and with interaction restricted to the cycle graph G ¼ L; Eð Þ with set of links
E ¼ ∪l∈L nf g l; lþ 1ð Þ� �

∪ n; 1ð Þf g,
4. Case 2 constraints and with interaction restricted as in Case 3.

Figure 3 presents the evolution of the generated power, the fitness functions corresponding to
the marginal costs and the total cost. For the first scenario, the evolutionary game dynamics

converge to a standard evolutionarily stable state in which f̂ a⋆ð Þ ¼ c1n. In contrast, for the
second scenario, the dynamics converge to a constrained evolutionarily stable state.

4.1. Extension to multiple decision-makers

Consider a constrained game G in strategic-form given by

• P ¼ 1;…;Pf g is the set of players. The cardinality of P is P ≥ 2:

• Player p has a decision space Ap ⊂Rnp , np ≥ 1: Players are coupled through their actions
and their payoffs. The set of all feasible action profiles isA⊂Rn, with n ¼Pp∈Pnp: Player

p can choose an action ap in the set Ap a�p
� � ¼ ap ∈Ap : ap; a�p

� �
∈A

� �
:

• Player p has a payoff function rp : A! R:

We restrict our attention to the following constraints:

Ap ¼ ap ∈Rnp j apl ∈ apl; apl
h i

; l∈ 1;…; np
� �

;
Xnp

l¼1
cplapl ≤ bp

( )

The coupled constraint is

A ¼ a∈
Y
p
Ap;

X
p∈P

cp; ap
� �

≤ b

( )
:
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Feasibility condition: If apl < apl, l∈ 1;…; np
� �

, cpl > 0,
Pnp

l¼1 cplapl < bp, cp ∈Rnp
>0 and

P
p∈P

cp; ap
D E

< b, the constraint set A is non-empty, convex and compact.

We propose a method to compute a constrained equilibrium that has a full support (whenever
it exists). We do not use the projection operator. Indeed we transform the domain

apl; apl
h i

¼ ξ 0; 1½ �ð Þ where ξ xpl
� � ¼ aplxpl þ apl 1� xpl

� � ¼ apl: ξ is a one-to-one mapping and

Figure 3. Economic power dispatch. Evolution of the population states (generated power), fitness functions

f̂ að Þ ¼ ∇Eh a;ωð Þ, and the costs �Er a;ωð Þ. Figures (a)-(c) for case 1, (d)-(f) for case 2, (g)-(i) for case 3, and (j)-(l) for case 4.
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xpl ¼ ξ�1 apl
� � ¼ apl � apl

apl � apl
∈ 0; 1½ �:

Xnp

l¼1
cpl apl � apl
� �

xpl ≤ bp �
Xnp

l¼1
cplapl≕b̂p:

The learning algorithm (23) is

_yp ¼ ∇2
pg

h i�1
∇ap rp a;ωð Þ,

apl ≔ aplxpl þ apl 1� xpl
� �

,

xpl ¼ min 1;
eyplPnp
k¼1 e

ypk

b̂p

cpl apl � apl
� �h i

0
@

1
A,

l∈ 1;…; np
� �

,

8>>>>>>>>>><
>>>>>>>>>>:

(23)

generates a trajectory ap tð Þ ¼ apl tð Þ
� �

l that satisfies the constraint of player p at any time t:

5. Notes

The work in [10] provides a nice intuitive introduction to robust optimization emphasizing the
parallel with static optimization. Another nice treatment [11], focusing on robust empirical risk
minimization problem, is designed to give calibrated confidence intervals on performance and
provide optimal tradeoffs between bias and variance [12, 13]. f -divergence based performance
evaluations are conducted in [11, 14, 15]. The connection between risk-sensitivity measures
such as the exponentiated payoff and distributionally robustness can be found in [16].
Distributionally robust optimization and learning are extended to multiple strategic decision-
making problems i.e., distributionally robust games in [17, 18].
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Abstract

New development of original approach to the equilibrium problem in a linear exchange
model and its variations is presented. The conceptual base of this approach is the scheme
of polyhedral complementarity. The idea is fundamentally different from the well-known
reduction to a linear complementarity problem. It may be treated as a realization of the
main idea of the linear and quadratic programming methods. In this way, the finite
algorithms for finding the equilibrium prices are obtained. The whole process is a succes-
sive consideration of different structures of possible solution. They are analogous to basic
sets in the simplex method. The approach reveals a decreasing property of the associated
mapping whose fixed point yields the equilibrium of the model. The basic methods were
generalized for some variations of the linear exchange model.

Keywords: exchange model, economic equilibrium, fixed point, polyhedral
complementarity, optimization problem, conjugate function, algorithm

1. Introduction

It is known that the problem of finding an equilibrium in a linear exchange model can be
reduced to the linear complementarity problem [1]. Proposed by the author in [2], a polyhedral
complementarity approach is based on a fundamentally different idea that reflects more the
character of economic equilibrium as a concordance the consumers’ preferences with financial
balances. In algorithmic aspect, it may be treated as a realization of the main idea of linear and
quadratic programming. It has no analogues and makes it possible to obtain the finite algo-
rithms not only for the general case of classical linear exchange model [3], but also for more
complicate linear models, in which there are two sets of participants: consumers and firms
producing goods [4] (more references one can find in [5]). The simplest algorithms are those for
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a model with fixed budgets, known more as Fisher’s problem. The convex programming
reduction of it, given by Eisenberg and Gale [6], is well known. This result has been used by
many authors to study computational aspects of the problem. Some reviews of that can be
found in [7]. The polyhedral complementarity approach gives an alternative reduction of the
Fisher’s problem to a convex program [2, 8]. Only the well-known elements of transportation
problem algorithms are used in the procedures obtained by this way [9]. These simple pro-
cedures can be used for getting iterative methods for more complicate models [5, 10].

The mathematical fundamental base of the approach is a special class of piecewise constant
multivalued mappings on the simplex in Rn, which possesses some monotonicity property
(decreasing mappings). The problem is to find a fixed point of the mapping. The mappings in
the Fisher’s model proved to be potential ones. This makes it possible to reduce a fixed point
problem to two optimization problems which are in duality similarly to dual linear program-
ming problems. The obtained algorithms are based on the ideas of suboptimization [11]. The
mapping for the general exchange model is not potential. The proposed finite algorithm can be
considered as an analogue of the Lemke’s method for linear complementarity problem with
positive principal minors of the restriction matrix (class P) [12].

2. Polyhedral complementarity problem

The basic scheme of the considered approach is the polyhedral complementarity. We consider
polyhedrons in Rn. Let two polyhedral complexes ω and ξ with the same number of cells r be
given. Let R⊂ω� ξ be a one-to-one correspondence: R ¼ Ωi;Ξið Þf gri¼1 with Ωi ∈ω, Ξi ∈ ξ.

We say that the complexes ω and ξ are in duality by R if the subordination of cells in ω and the
subordination of the corresponding cells in ξ are opposite to each other:

Ωi ≺Ωj () Ξi ≻Ξj:

The polyhedral complementarity problem is to find a point that belongs to both cells of some
pair Ωi;Ξið Þ:

p∗ is the solution () p∗ ∈Ωi ∩Ξi for some i:

This is natural generalization of linear complementarity, where (in nonsingular case) the
complexes are formed by all faces of two simplex cones.

Figure 1 shows an example of the polyhedral complementarity problem. Each of two complexes
has seven cells. There is a unique solution of the problem—the point x∗ that belongs toΩ6 and Ξ6.

The polyhedral complementarity problem can be reformulated as a fixed point one. To do this
the associated mapping is introduced as follows:

G pð Þ ¼ Ξi ∀p∈Ω ∘
i ,

where Ω ∘
i is the relative interior of Ωi.

Now p∗ is the solution of complementarity problem if p∗ ∈G p∗ð Þ.

Optimization Algorithms - Examples28

3. Classical linear exchange model

We demonstrate the main idea of the approach on the classical linear exchange model in the
well-known description [13].

Consider a model with n commodities (goods) and m consumers. Let J ¼ 1;…; nf g and
I ¼ 1;…;mf g be the index sets of commodities and consumers.

Each consumer i∈ I possesses a vector of initial endowments wi ∈Rn
þ. The exchange of com-

modities is realized with respect to some nonnegative prices pj, forming a price vector p∈Rn
þ.

The consumer i∈ I has to choose a consumption vector xi ∈Rn
þ maximizing his linear utility

function ci; xi
� �

under budget restriction:

ci; xi
� �! max,
p; xi
� �

⩽ p;wi
� �

,
xi ⩾ 0:

�������
¼) The problem of consumer i:

Let ~xi be a vector xi that solves this program.

A price vector ~p 6¼ 0 is an equilibrium price vector if there exist solutions ~xi, i ¼ 1,…, m, for the
individual optimization problems such that

Figure 1. Polyhedral complementarity.
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The consumer i∈ I has to choose a consumption vector xi ∈Rn
þ maximizing his linear utility

function ci; xi
� �

under budget restriction:

ci; xi
� �! max,
p; xi
� �

⩽ p;wi
� �

,
xi ⩾ 0:

�������
¼) The problem of consumer i:

Let ~xi be a vector xi that solves this program.

A price vector ~p 6¼ 0 is an equilibrium price vector if there exist solutions ~xi, i ¼ 1,…, m, for the
individual optimization problems such that

Figure 1. Polyhedral complementarity.

Polyhedral Complementarity Approach to Equilibrium Problem in Linear Exchange Models
http://dx.doi.org/10.5772/intechopen.77206

29



X
i∈ I

~xi ¼
X
i∈ I

wi:

In what follows, we normalize the initial endowment of each commodity to 1, that is,P
iw

i ¼ 1;…; 1ð Þ∈Rn. The sum of pj is also normalized to 1, restricting the price vector p to lie

in the unit simplex

σ ¼ p∈Rn
þj
X
j∈ J

pj ¼ 1

8<
:

9=
;:

For the sake of simplicity assume ci > 0, ∀i∈ I. It is sufficient for existence of equilibrium [13].

4. The main idea of the approach

The equilibrium problem can be considered in two different ways.

1 ∘ : The traditional point of view: supply–demand balance.

Given a price vector p, the economy reacts by supply and demand vectors:

p
↗ demand D pð Þ
↘ supply S pð Þ :

The goods’ balance is the condition of equilibrium:

bp is equilibrium price vector () S bpð Þ ¼ D bpð Þ:

2 ∘ : Another point of view.

The presented consideration is based on the new notion of consumption structure.

Definition. A set B⊂ I � J is named a structure, if for each i∈ I there exists i; jð Þ∈B.

Say that a consumption prescribed by xi
� �

is consistent with structure B if

i; jð Þ∉B ¼) xij ¼ 0:

This notion is analogous to the basic index set in linear programming.

Two sets of the price vectors can be considered for each structure B.

We name them zones:

B
↗ the preference zone Ξ Bð Þ
↘ the balance zone Ω Bð Þ:
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Ξ Bð Þ is the set of prices by which the consumers prefer the connections of the structure,
ignoring the budget conditions and balances of goods. Ω Bð Þ is the set of prices by which the
budget conditions and balances of goods are possible when the connections of the structure are
respected, but the participants’ preferences are ignored.

Now, it is clear that

p is an equlibrium price vector () ∃Bð Þp∈Ω Bð Þ ∩Ξ Bð Þ:

We show that in this way the equilibrium problem is reduced to polyhedral complementarity
one.

The question is as follows: What kind of the structures B∈B should be considered and what should
be the collection B?

3 ∘ : The parametric transportation problem of the model.

Given a price vector p consider the following transportation problem of the model:
X
i∈ I

X
j∈ J

zij ln cij ! max

under conditions

zij
� �

∈Z pð Þ

X
j∈ J

zij ¼ p;wi� �
, i∈ I,

X
i∈ I

zij ¼ pj, j∈ J,

zij ⩾ 0, i; jð Þ∈ I � J:

�����������

The equations of this problem represent the financial balances for the consumers and com-
modities. The variables zij are introduced by zij ¼ pjx

i
j.

This is the classical transportation problem. The price vector p is a parameter of the problem.
Under the assumption about wi

� �
this problem is solvable for each p∈σ.

The answer on the question about B reads: B is the collection of all dual feasible basic index sets of
the transportation problem and of all their subsets being structures.

4 ∘ : Polyhedral complexes of the model.

For B∈B, we obtain the description of zones Ω Bð Þ and Ξ Bð Þ in the following way.

B∈B)

aÞ Ω Bð Þ⊂σ is the balance zone of the structure :

Ω Bð Þ ¼ p∈σj∃z∈Z pð Þ; zij ¼ 0; i; jð Þ∉B
� �

;
bÞ Ξ Bð Þ⊂ σ ∘ is the preferance zone of the structure :

Ξ Bð Þ ¼ q∈σ ∘ max
k

cik
qk
¼

cij
qj
; ∀ i; jð Þ∈B

�����

)
:

(

������������
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Here, σ ∘ is the relative interior of σ.

It is easy to give these descriptions in more detail.

For q∈Ξ Bð Þ, we have the linear system

qk
cik
¼

qj
cij

i; kð Þ∈B, i; jð Þ∈B, (1)

ql
cil

⩾
qj
cij

i; lð Þ∉B, i; jð Þ∈B: (2)

Thus, Ξ Bð Þ is the intersection of a polyhedron with σ ∘ .

To obtain the description of Ω Bð Þ, we should use the well-known tools of transportation
problems theory. Given B∈B, introduce a graph Γ Bð Þ with the set of vertices
V ¼ 1; 2;…;mþ nf g and the set of edges i;mþ jð Þj i; jð Þ∈Bf g. Let τ be the number of compo-
nents of this graph, let Vν be the set of vertices of ν th component, Iν ¼ I ∩Vν and
Jν ¼ j∈ Jj mþ jð Þ∈Vνf g:. It is not difficult to show that the following system of linear equa-
tions must hold for p∈Ω Bð Þ:

X
j∈ Jν

pj ¼
X
i∈ Iν

p;wi� �
, ν ¼ 1,…, τ: (3)

Under these conditions, the values zij can be obtained from the conditions z∈Z pð Þ and

zij ¼ 0, i; jð Þ∉B,

presenting linear functions of p: zij ¼ zij pð Þ. Now, for p∈Ω Bð Þ, we have in addition the system
of linear inequalities

zij pð Þ⩾ 0, i; jð Þ∈B:

Thus, Ω Bð Þ is described by a linear system of equalities and inequalities. Therefore, it is also a
polyhedron.

It is easy to see that each face of the polyhedronΩ Bð Þ is also a polyhedronΩ B
0� �

with B
0
⊂B .

Therefore, we have on the simplex σ a polyhedral complex ω ¼ Ω Bð ÞjB∈Bf g. The polyhedrons
Ξ Bð Þ form on σ another polyhedral complex ξ ¼ Ξ Bð ÞjB∈Bf g. It is clear that

Ω B1ð Þ⊂Ω B2ð Þ ¼) Ξ B1ð Þ⊃Ξ B2ð Þ:

Thus, the complexes ω, ξ are in duality, and we obtain the reduction of the equilibrium
problem to a polyhedral complementarity one.

Example. In the model, there are 3 commodities and 2 consumers:
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c1 ¼ 1; 2; 3ð Þ, w1 ¼ 1=2; 1=2; 1=2ð Þ,

c2 ¼ 3; 2; 1ð Þ, w2 ¼ 1=2; 1=2; 1=2ð Þ:

We need c1 and c2 only up to positive multipliers:

c1 � 1=6; 2=6; 3=6ð Þ, c2 � 3=6; 2=6; 1=6ð Þ:

Thus, c1 and c2 can be considered as points of the unit price simplex σ.

Figure 2 illustrates the polyhedral complexes of the model. Each of both complexes has 17 cells.
Figure 3 illustrates the arising complementarity problem. The point c12 is its solution: c12 ∈Ω12.
Thus, the corresponding vector p∗ ¼ 3=8; 2=8; 3=8ð Þ is the equilibrium price vector of the model.

Figure 2. Polyhedral complexes in exchange model.

Figure 3. Complementarity problem: c12 is the solution.
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5. The Fisher’s model

1 ∘ : Reduction to optimization problem

A special class of the models is formed by the models with fixed budgets. This is the case when
each consumer has all commodities in equal quantities: wi

j ¼ λi for all j∈ J, and thus,

p;wi
� � ¼ λi for all p∈σ. Such a model is known as the Fisher’s model. Note that we have this
case in the abovementioned example.

The main feature of these models is the potentiality of the mappings G associated with the
arising polyhedral complementarity problems.

Let f be the function on Rn that f pð Þ for p∈ σ is the optimal value in the transportation problem
of the model, and f pð Þ ¼ �∞ for p∉ σ. This function is piecewise linear and concave. It is
natural to define its subdifferential using the subdifferential of convex function �fð Þ:
∂f pð Þ ¼ �∂ �fð Þ pð Þ.
Let G be the mentioned associated mapping.

Theorem 1. The subdifferential of the function f has the representation:

∂f pð Þ ¼ ln qþ tejq∈G pð Þ; t∈Rf g,

where e ¼ 1;…; 1ð Þ and ln q ¼ ln q1;…; ln qn
� �

. (The addend te in this formula arises because it
holds

P
j∈ J pj ¼ 1 for p∈σ.)

Consider the convex function h, defining it as follows:

h pð Þ ¼
p; ln pð Þ, for p∈ σ ∘ ,

0, for p∈ ∂σ,
�∞, for p∉ σ:

8><
>:

9>=
>;

Introduce the function

φ pð Þ ¼ h pð Þ � f pð Þ (4)

Theorem 2. The fixed point of G coincides with the minimum point of the convex function φ pð Þ on σ ∘ .

Another theorem for the problem can be obtained if we take into account that the mapping G
and the inverse mapping G�1 have the same fixed points. For the introduced concave function
f , we can consider the conjugate function:

f ∗ yð Þ ¼ inf
z

y; zð Þ � f zð Þf g

(see [14]) With this function, we associate the function ψ qð Þ ¼ f ∗ ln qð Þ, which is defined on σ ∘ .
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Proposition 1. For the Fisher’s model, the following formula is valid:

f ∗ ln qð Þ ¼ �
X
i∈ I

λi max
j∈ J

ln
cij
qj

(5)

Theorem 3. The fixed point of G is the maximum point of the concave function ψ qð Þ on σ ∘ .

For the functions φ pð Þ and ψ qð Þ, there is a duality relation as for dual programs of linear
programming:

Proposition 2. For all p, q∈σ ∘ the inequality

φ pð Þ ≥ψ qð Þ

holds. This inequality turns into equality only if p ¼ q.

Corollary. φ rð Þ ¼ ψ rð Þ if and only if the point r is the fixed point of the mapping G.

Thus, the equilibrium problem for the Fisher’s model is reduced to the optimization one on the
price simplex. It should be noted that this reduction is different from well-known one given by
Eisenberg and Gale [6].

2 ∘ : Algorithms

The mentioned theorems allow us to propose two finite algorithms for searching fixed points.

Algorithmically, they are based on the ideas of suboptimization [11], which were used for
minimization quasiconvex functions on a polyhedron. In considered case, we exploit the fact
that the complexes ω and ξ define the cells structure on σ ∘ similarly to the faces structure of a
polyhedron.

For implementation of the algorithms, we need to get the optimum point of the function φ pð Þ
or ψ qð Þ on the affine hull of the current cell.

Consider a couple of two cells Ω∈ω, Ξ∈ ξ corresponding to each other.

Let L⊃Ω, M⊃Ξ be their affine hulls. It will be shown that L ∩M is singleton.

Let be rf g ¼ L ∩M.

Lemma. The point r is the minimum point of the function φ pð Þ on L and the maximum point of the
function ψ qð Þ on M.

Now, we describe the general scheme of the algorithm [8] that is based on Theorem 2. The
other one using the Theorem 1 is quite similar [9].

On the current k-step of the process, there is a structure Bk ∈B. We consider the cells
Ωk ¼ Ω Bkð Þ,Ξk ¼ Ξ Bkð Þ and have the point qk ∈Ξk. Let Lk ⊃Ωk, Mk ⊃Ξk be the affine hulls of
these cells. We need to obtain the point of their intersection rk.
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Return to the transportation problem of the model and to the descriptions of cells. Consider the
graph Γ Bkð Þ. This graph can have more than one connected components. Let τ be number of
connected components, and i∈ Iν, mþ jð Þ for j∈ Jν be the vertices of ν-th component. It is easy
to verify that the linear system (3) for Lk is going to be equivalent to this one:

X
j∈ Jν

pj ¼
X
i∈ Iν

λi, ν ¼ 1,…, τ: (6)

The linear system (1) for the cell Ξk defines coordinates qj on each connected component up to

a positive multiplier:

qj ¼ tνqkj , j∈ Jν:

To obtain the coordinates of the point rk, we need to put pj ¼ qj in corresponding Eq. (6), which

gives the multiplier tν.

For the obtained point, rk can be realized in two cases.

(i) rk ∉Ξk. Since rk is a maximum point onMk for the strictly concave function ψ qð Þ, the value of
the function will increase for the moving point q tð Þ ¼ 1� tð Þqk þ trkÞ when t increases in [0,1].
In considered case, this point reaches a face of Ξk at some t ¼ t∗ < 1. Some of corresponding
inequalities (2) for p ¼ q t∗ð Þ is fulfilled as equality. Choose one of them. Corresponding edge
l;mþ jð Þ will be added to graph. It unites two of connected components. We obtain
Bkþ1 ¼ Bk∪ l; jð Þf g, accept qkþ1 ¼ q t∗ð Þ and pass to the next step.

It should be noted that the dimension of the cell Ξ reduces. It will certainly be rk ∈Ξk when the
current cell Ξk degenerates into a point, and we have rk ¼ qk. But it can occur earlier.

(ii) rk ∈Ξk. In this case, we can assume qk ¼ rk. Otherwise, we can simply replace qk by rk with
an increase of the function’s ψ qð Þ value. We verify qk ∈Ωk? For this, we obtain from the
equations of the transportation problem the variables zij, i; jð Þ∈Bk, as linear functions zij pð Þ
and check zij qk

� �
≥ 0. If it is true, the point qk is the required fixed point. Otherwise, we have

zsl qk
� �

< 0. We accept Bkþ1 ¼ Bk s; lð Þf g, qkþ1 ¼ qk and pass to the next step.

Figure 4. Illustration of one step of the algorithm.
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Theorem 4. If the transportation problem of the model is dually nondegenerate, the described
suboptimization method leads to an equilibrium price vector in a finite number of steps.

Figure 4 illustrates two described cases on one step of the algorithm. The point q∈Ξ is the
current point of the step.

6. Illustrative example

We show how the described method works on the Fisher’s model example of Section 3.

For the start, we need a structure B1 ∈B and a point q1 ∈Ξ B1� �
: We depict the structures as

matrices m� n with elements from �; �f g, and � corresponds to an element of B. For example,
the structure B12 ¼ 1; 2ð Þ; 1; 3ð Þ; 2; 1ð Þ; 2; 2ð Þf g will be depicted as the matrix

B12 ¼
� � �
� � �

� �

(this is the structure for the cell Ω12). Let us start with the structure

B1 ¼
� � �
� � �

 !

It means that both consumers prefer only first good. Let us choose as q1 the price vector

q1 ¼ 0:05; 0:35; 0:6ð Þ. It is easy to verify that B1 ∈B and q1 ∈Ξ B1� �
.

Step 1. The graph Γ B1� �
has three connected components and the system (6) has the form

p1 ¼ 1, p2 ¼ 0, p3 ¼ 0:

Thus, we have r1 ¼ 1; 0; 0ð Þ. The cell Ξ B1� �
is given by the system

q1
1

≤
q2
2
, (7)

q1
1

≤
q3
3
, (8)

We have q1 ∈Ξ B1� �
and r1 ∉Ξ B1� �

. It is the case (i) in the description of algorithm. We have to

move the point q1 to the point r1. For the moving point q tð Þ it will be:

q1 tð Þ ¼ 0:05þ 0:95t, q2 tð Þ ¼ 1� tð Þ0:35, q3 tð Þ ¼ 1� tð Þ0:6:

This point reaches a face of Ξ B1� �
at t ¼ t∗ ¼ 0:1111: the inequality (7) for q ¼ q t∗ð Þ is fulfilled

as equality. We obtain B2 ¼ B1∪ 1; 2ð Þf g and q2 ¼ q t∗ð Þ.
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Return to the transportation problem of the model and to the descriptions of cells. Consider the
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X
j∈ Jν

pj ¼
X
i∈ Iν

λi, ν ¼ 1,…, τ: (6)

The linear system (1) for the cell Ξk defines coordinates qj on each connected component up to

a positive multiplier:

qj ¼ tνqkj , j∈ Jν:
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and check zij qk

� �
≥ 0. If it is true, the point qk is the required fixed point. Otherwise, we have

zsl qk
� �

< 0. We accept Bkþ1 ¼ Bk s; lð Þf g, qkþ1 ¼ qk and pass to the next step.

Figure 4. Illustration of one step of the algorithm.
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Theorem 4. If the transportation problem of the model is dually nondegenerate, the described
suboptimization method leads to an equilibrium price vector in a finite number of steps.
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.
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. It is the case (i) in the description of algorithm. We have to

move the point q1 to the point r1. For the moving point q tð Þ it will be:

q1 tð Þ ¼ 0:05þ 0:95t, q2 tð Þ ¼ 1� tð Þ0:35, q3 tð Þ ¼ 1� tð Þ0:6:

This point reaches a face of Ξ B1� �
at t ¼ t∗ ¼ 0:1111: the inequality (7) for q ¼ q t∗ð Þ is fulfilled

as equality. We obtain B2 ¼ B1∪ 1; 2ð Þf g and q2 ¼ q t∗ð Þ.
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B2 ¼
� � �
� � �

 !

q2 ¼ 0:1556; 0:3111; 0:5333ð Þ:

Step 2. The graph Γ B2� �
has two connected components and the system (6) has the form

p1 þ p2 ¼ 1, p3 ¼ 0:

For the point r2, we have to consider this system with the additional equation

p1
1
¼ p2

2
,

corresponding to (7), this gives r2 ¼ 0:3333; 0:6667; 0ð Þ. We have r2 ∉Ξ B2� �
since the inequality

(8) is violated. The new moving point q tð Þ ¼ 1� tð Þq2 þ tr2 has the coordinates:

q1 tð Þ ¼ 0:1556þ 0:1777t, q2 tð Þ ¼ 0:3111þ 0:3556t, q3 tð Þ ¼ 0:5333� 0:5333t:

At t∗ ¼ 0:0625 this point reaches the boundary of the cell Ξ B2� �
. It is the point c1 in the simplex

σ. The inequality (8) for q ¼ q t∗ð Þ is fulfilled as equality. Thus, we obtain:

B3 ¼
� � �
� � �

 !

q3 ¼ 0:1667; 0:3333; 0:5ð Þ:

Step 3. Now, we have the case (ii) in the description of algorithm: the cell Ξ B3� �
contains

unique point q3 and thus r3 ¼ q3. We have to verify r3 ∈Ω B3� �
? For this, we obtain from the

equations of the transportation problem the variables zij, i; jð Þ∈B3, and check zij q3
� �

≥ 0. For
these variables, we have the system:

z12 ¼ q32, z13 ¼ q33, z21 ¼ 0:5, z11 ¼ q31 � 0:5

We obtain z11 = 0.1667–0.5 = �0.3333 < 0. Thus the element 1; 1ð Þ should be removed from the
structure B3:

B4 ¼
� � �
� � �

 !

q4 ¼ q3:

Step 4. We have to obtain the point r4. The graph Γ B4� �
has two connected components and the

system for this point has the form:

p1 ¼ 0:5, p2 þ p3 ¼ 0:5,
p2
2
¼ p3

3
:
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Hence,

r4 ¼ 0:5; 0:2; 0:3ð Þ:

It is easy to see that the description of the cell Ξ B4� �
has the form:

q2
2
¼ q3

3
,

q1
1

≥
q3
3
,

q1
3

≥
q2
2
:

(9)

For q ¼ r4, the inequality (9) is violated, so r4 ∉Ξ B4� �
. For the new moving point q tð Þ we have:

q1 tð Þ ¼ 0:1667þ 0:3333t, q2 tð Þ ¼ 0:3333� 0:1333t, q3 ¼ 0:5� 0:2t:

At t∗ ¼ 0:625 the inequality (9) becomes equality, the point q tð Þ attains to the point

c12 ¼ 0:375; 0:25; 0:375ð Þ that is the boundary of Ξ B4� �
. We obtain the new structure:

B5 ¼
� � �
� � �

 !

and new point q5 ¼ c12. It is easy to verify that we obtain the equilibrium of the model.

The equilibrium price vector is

~p ¼ 0:375; 0:25; 0:375ð Þ

Figure 5. Movement to equilibrium in the example model.
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σ. The inequality (8) for q ¼ q t∗ð Þ is fulfilled as equality. Thus, we obtain:

B3 ¼
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q3 ¼ 0:1667; 0:3333; 0:5ð Þ:

Step 3. Now, we have the case (ii) in the description of algorithm: the cell Ξ B3� �
contains

unique point q3 and thus r3 ¼ q3. We have to verify r3 ∈Ω B3� �
? For this, we obtain from the

equations of the transportation problem the variables zij, i; jð Þ∈B3, and check zij q3
� �

≥ 0. For
these variables, we have the system:

z12 ¼ q32, z13 ¼ q33, z21 ¼ 0:5, z11 ¼ q31 � 0:5

We obtain z11 = 0.1667–0.5 = �0.3333 < 0. Thus the element 1; 1ð Þ should be removed from the
structure B3:

B4 ¼
� � �
� � �

 !

q4 ¼ q3:

Step 4. We have to obtain the point r4. The graph Γ B4� �
has two connected components and the

system for this point has the form:

p1 ¼ 0:5, p2 þ p3 ¼ 0:5,
p2
2
¼ p3

3
:
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Hence,

r4 ¼ 0:5; 0:2; 0:3ð Þ:

It is easy to see that the description of the cell Ξ B4� �
has the form:

q2
2
¼ q3

3
,

q1
1

≥
q3
3
,

q1
3

≥
q2
2
:

(9)

For q ¼ r4, the inequality (9) is violated, so r4 ∉Ξ B4� �
. For the new moving point q tð Þ we have:

q1 tð Þ ¼ 0:1667þ 0:3333t, q2 tð Þ ¼ 0:3333� 0:1333t, q3 ¼ 0:5� 0:2t:

At t∗ ¼ 0:625 the inequality (9) becomes equality, the point q tð Þ attains to the point

c12 ¼ 0:375; 0:25; 0:375ð Þ that is the boundary of Ξ B4� �
. We obtain the new structure:

B5 ¼
� � �
� � �

 !

and new point q5 ¼ c12. It is easy to verify that we obtain the equilibrium of the model.

The equilibrium price vector is

~p ¼ 0:375; 0:25; 0:375ð Þ

Figure 5. Movement to equilibrium in the example model.
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The optimal solutions of the consumer’s problems are:

~x1 ¼ 0; 0:5; 1ð Þ, ~x2 ¼ 1; 0:5; 0ð Þ:

Figure 5 shows the moving of the point q tð Þ to the equilibrium.

7. Method of meeting paths

The described algorithms are nonapplicable for the general linear exchange model, when the
budgets of consumers are not fixed. In this case, the associating mapping G no longer has the
property of potentiality. But, the complementarity approach makes possible to propose a
modification of the proses [3]. We name it a method of meeting paths.

As mentioned earlier, on the current k-step of the process, we have a structure Bk ∈B. We
consider two cells Ωk ¼ Ω Bkð Þ,Ξk ¼ Ξ Bkð Þ and two points pk ∈Ωk, qk ∈Ξk. Let Lk ⊃Ωk, Mk ⊃Ξk

be the affine hulls of these cells. For the points of their intersection Lk ∩Mk, we obtain from (1),
(3) the common system:

pk
cik
¼

pj
cij

i; kð Þ, i; jð Þ∈Bk, (10)

X
j∈ Jν

pj ¼
X
i∈ Iν

p;wi� �
, ν ¼ 1,…, τ, (11)

where the sets Jν, Jν correspond to ν-th connected component of the graph Γ Bkð Þ.
Under some assumption about starting structure this system has rank n� 1ð Þ and under
additional condition

P
j∈ J pj ¼ 1 the system defines uniquely the solution rk ¼ r Bkð Þ. This is

the intersection point of the affine hulls of the cells Ω Bð Þ and Ξ Bð Þ: It can be shown that rk ∈σ.

If rk ∈Ω Bkð Þ, rk ∈Ξ Bkð Þ, we have an equilibrium price vector.

Otherwise, we consider for t∈ 0; 1½ Þ two moving points:

p tð Þ ¼ pk þ t rk � pk
� �

, q tð Þ ¼ qk þ t rk � qk
� �

It can be shown that in consequence of the assumption ci > 0, ∀i∈ I, there exists t∗ ¼ max t
under the conditions p tð Þ∈Ω Bkð Þ, q tð Þ∈Ξ Bkð Þ:
It is the case when t∗ < 1. The two variants may occur:

(i) t∗ is limited by someof the inequalities zij p tð Þð Þ ≥ 0, i; jð Þ∈Bk. Corresponding pair i; jð Þ should be

removed fromBk:Bkþ1 ¼ Bk\ i; jð Þf g.We accept qkþ1 ¼ q t∗ð Þ, pkþ1 ¼ p t∗ð Þ andpass to thenext step.
(ii) t∗ is limited by some of the inequalities (2) in description of the cell Ξ Bkð Þ. Corresponding
pair i; lð Þ should be added to Bk: Bkþ1 ¼ Bk∪ i; lð Þf g. We accept qkþ1 ¼ q t∗ð Þ, pkþ1 ¼ p t∗ð Þ and
pass to the next step.
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We consider the situation when t∗ is limited by both above conditions as degenerate.

Nondegeneracy condition. Only one of the above two cases can occur.

This condition will be satisfied if a bit to move the starting points p0, q0.

Under this condition, it holds t∗ > 0. To justify this, the following lemma was proved [3].

Lemma Let A be a nonnegative and indecomposed matrix, and x is its positive eigenvector, λ is the
corresponding eigenvalue. If for a positive vector ~x the vector ~z ¼ λ~x � A~x has all components equal
zero except ~zi1 , ~zi2 , then the following two conditions are equivalent:

~zi1 ≥ 0()
~xi1
~xi2

≥
xi1
xi2

:

Theorem 5. Under nondegeneracy condition, the process of meeting paths is always finite.

Figure 6 illustrates one step of this method. In the figure, the point p tð Þ reaches the face of its
cell earlier than the point q tð Þ does. For the next step the cell Ω will be reduced, the cell Ξ will
be extended.

It should be noted that for the model with variable budgets, an iterative method was
proposed [10] that uses the developed simple algorithm for Fisher’s model in each step of
the process.

8. Generalizations

1. The models with upper bounds: the considered approach permits to develop the algo-
rithms for deferent variations of the classical exchange model. The simplest of those
models is the model in which the costs are limited for certain goods (the spending

Figure 6. Illustration of a meeting paths step.
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The optimal solutions of the consumer’s problems are:

~x1 ¼ 0; 0:5; 1ð Þ, ~x2 ¼ 1; 0:5; 0ð Þ:

Figure 5 shows the moving of the point q tð Þ to the equilibrium.

7. Method of meeting paths

The described algorithms are nonapplicable for the general linear exchange model, when the
budgets of consumers are not fixed. In this case, the associating mapping G no longer has the
property of potentiality. But, the complementarity approach makes possible to propose a
modification of the proses [3]. We name it a method of meeting paths.
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pass to the next step.

Optimization Algorithms - Examples40

We consider the situation when t∗ is limited by both above conditions as degenerate.

Nondegeneracy condition. Only one of the above two cases can occur.

This condition will be satisfied if a bit to move the starting points p0, q0.

Under this condition, it holds t∗ > 0. To justify this, the following lemma was proved [3].

Lemma Let A be a nonnegative and indecomposed matrix, and x is its positive eigenvector, λ is the
corresponding eigenvalue. If for a positive vector ~x the vector ~z ¼ λ~x � A~x has all components equal
zero except ~zi1 , ~zi2 , then the following two conditions are equivalent:
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:
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Figure 6 illustrates one step of this method. In the figure, the point p tð Þ reaches the face of its
cell earlier than the point q tð Þ does. For the next step the cell Ω will be reduced, the cell Ξ will
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It should be noted that for the model with variable budgets, an iterative method was
proposed [10] that uses the developed simple algorithm for Fisher’s model in each step of
the process.
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1. The models with upper bounds: the considered approach permits to develop the algo-
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constraints model [7]): pjx
i
j ≤ βij. In this case, the mappings G associated with the arising

polyhedral complementarity problem are potential too. Some modifications of the devel-
oped algorithms are needed. More difficult is the model with upper on the purchase
volumes of goods. In this case, the mappings G are not potential and algorithm becomes
more complicated. Such a model arises if the functions of participants are not linear, but
piecewise linear concave separable [5].

2. The generalized linear exchange model: the polyhedral complementarity approach is
applicable to models with the production sector too. Some firms are added, those supply
goods to the market. Describe more in detail one of those models.

The model with n products, m participants-consumers, and l participants-firms is considered.
Let J ¼ 1;…; nf g, I ¼ 1;…;mf g, and K ¼ mþ 1;…;mþ lf g be the sets of the numbers of prod-
ucts, consumers, and firms. Thus, S ¼ I∪K is the set of numbers of all participants.

The consumer i∈ I has the initial endowments wi ∈Rn
þ and also the initial money stock αi. His

total budget after selling the initial endowments is equal to αi þ p;wi
� �

. Thus, the i th consumer

will choose the purchase vector xi looking for an optimal solution to the following problem:

ci; xi
� � ! max

under the conditions

p; xi
� �

≤αi þ p;wi� �
,

xi ≥ 0:

The firm k∈K plans to deliver to the market the products to a total sum of at least λk. If
xk ¼ xk1;…; xkn

� �
denotes a plan of k th firm then the total cost of such a supply at the prices pj

equals p; xk
� �

. The quality of the plan is estimated by the firm in tending to minimize the

function ck; ; xk
� �

. Here, ck ¼ ck1;…; ckn
� �

is a fixed nonnegative vector whose components
determine a comparative scale of the “undesirability” of various products for the firm (e.g.,
their relative production costs).

Thus, the k th firm makes its choice according to a solution of the optimization problem:

ck; xk
� �! min

under the conditions

p; xk
� �

≥λk,

xk ≥ 0:

An equilibrium is defined by a price vector ~p and a collection of vectors ~xi and ~xk i∈ I and
k∈K, representing some solutions to optimization problems of the participants for p ¼ ~p and
satisfying the balance of products:
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X
i∈ I

~xi ¼
X
k∈K

~xk þ
X
i∈ I

wi:

From this follows that we have to suppose
P

i∈ I αi ¼
P

k∈K λk. As before, we suppose also thatP
j∈ J pj ¼ 1 and

P
i∈ I w

i ¼ e with e ¼ 1;…; 1ð Þ. Thus, in the equilibrium, we have

X
i∈ I

~xi ¼
X
k∈K

~xk þ e: (12)

The polyhedral complementarity approach can be used for this generalized model as well. The
main results remain valid [4], but the consideration becomes more complicated. Some features
are discussed.

The structure notion is generalized:

Definition. A set B⊂ S� J is named a structure, if for each s∈ S there exists s; jð Þ∈B.

As before, we suppose that all vectors cs, s∈S are positive. The parametric transportation
problem of the model is changed and becomes a net problem:

X
i∈ I

X
j∈ J

zij ln cij �
X
k∈K

X
j∈ J

zkj ln ckj ! max

�
X
j∈ J

zij ¼ �αi � p;wi� �
, i∈ I,

X
i∈ I

zij �
X
k∈K

zkj ¼ pj, j∈ J,

X
j∈ J

zkj ¼ λk, k∈K,

zij ≥ 0, zkj ≥ 0, i∈ I, j∈ J, k∈K:

It can be shown that this problem is solvable for all p∈σ.

As mentioned before, we consider the family B of structures B: it is the collection of all dual
feasible basic index sets of the transportation problem and of all their subsets being structures.

For each B∈B, we define the balance zoneΩ Bð Þ and the preference zone Ξ Bð Þ. The description
of these sets is quite similar to those of the classical case. Thus, in this way, we again obtain two
polyhedral complexes.

Theorem 6. A vector ~p ∈σ ∘ is an equilibrium price vector of generalized linear exchange model if and
only if ~p ∈Ω Bð Þ ∩ Ξ Bð Þ for some B∈B.

The generalized model can be considered with fixed budgets, and in this way, we obtain the
generalization of the Fisher’s model. The budget condition of the consumer i remains the same:
p; xi
� �

≤λi. But for the λi, i∈ I and λk, k∈K, we obtain the condition
P

i∈ I λi ¼ 1þPk∈K λk.
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constraints model [7]): pjx
i
j ≤ βij. In this case, the mappings G associated with the arising

polyhedral complementarity problem are potential too. Some modifications of the devel-
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total budget after selling the initial endowments is equal to αi þ p;wi
� �

. Thus, the i th consumer

will choose the purchase vector xi looking for an optimal solution to the following problem:

ci; xi
� � ! max

under the conditions

p; xi
� �

≤αi þ p;wi� �
,

xi ≥ 0:

The firm k∈K plans to deliver to the market the products to a total sum of at least λk. If
xk ¼ xk1;…; xkn

� �
denotes a plan of k th firm then the total cost of such a supply at the prices pj

equals p; xk
� �

. The quality of the plan is estimated by the firm in tending to minimize the

function ck; ; xk
� �

. Here, ck ¼ ck1;…; ckn
� �

is a fixed nonnegative vector whose components
determine a comparative scale of the “undesirability” of various products for the firm (e.g.,
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ck; xk
� �! min

under the conditions

p; xk
� �

≥λk,

xk ≥ 0:
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k∈K, representing some solutions to optimization problems of the participants for p ¼ ~p and
satisfying the balance of products:
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X
i∈ I

~xi ¼
X
k∈K

~xk þ
X
i∈ I

wi:
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P

i∈ I αi ¼
P

k∈K λk. As before, we suppose also thatP
j∈ J pj ¼ 1 and

P
i∈ I w

i ¼ e with e ¼ 1;…; 1ð Þ. Thus, in the equilibrium, we have

X
i∈ I

~xi ¼
X
k∈K

~xk þ e: (12)
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X
i∈ I

X
j∈ J

zij ln cij �
X
k∈K

X
j∈ J

zkj ln ckj ! max

�
X
j∈ J

zij ¼ �αi � p;wi� �
, i∈ I,

X
i∈ I

zij �
X
k∈K

zkj ¼ pj, j∈ J,

X
j∈ J

zkj ¼ λk, k∈K,

zij ≥ 0, zkj ≥ 0, i∈ I, j∈ J, k∈K:
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For this variant of model, we have the reduction to optimization problems as well. To do this,
we consider the function f pð Þ, which gives the optimal value of the transportation problem by
given price vector p. Having this function, we introduce as before the functions φ pð Þ ¼
p; ln pð Þ � f pð Þ and ψ qð Þ ¼ f ∗ ln qð Þ. For these functions, the main results of classical case
remain valid.

Theorem 7. A vector ~p is an equilibrium price vector if and only if ~p is a minimum point of the function
φ on σ ∘ .

Theorem 8. A vector ~p is an equilibrium price vector if and only if ~p is a maximum point of the function
ψ on σ ∘ .

The finite algorithms developed for Fischer’s model do not require any significant changes and
are applicable for this generalized model.

3. The production-exchange models Arrow-Debreu type: these are modifications of previous
model. Describe the simplest variant of the model. On the market, there is one unit of each
good. The firms produce additional goods, spending some resource that is limited and seek
to maximize revenue from the sale of manufactured goods. Thus, the k th firm solves the
following problem:

X
j∈ J

pjx
k
j ! max

X
j∈ J

dkj x
k
j ≤ ζk,

xkj ≥ 0, j∈ J:

Here, ζk is allowable resource and dkj indicate the resource cost per unit of product j.

Let λk pð Þ be the optimal value of this problem. The consumer i∈ I has the initial money stock
αi,
P

i∈ I αi ¼ 1. The revenues of the firms are divided between consumers in some propor-
tions, those are given by θik. The total budget of i th consumers becomes αi þ

P
k∈K θikλk pð Þ.

Thus, the i th consumer has the following problem:

ci; xi
� � ! max

under the conditions

p; xi
� �

≤αi þ
X
k∈K

θikλk pð Þ,

xi ≥ 0:

The condition of good balances in equilibrium is given as before by the equality (12).

The polyhedral complementarity approach is applicable for this model too, but the consider-
ation becomes much more complicated. An iterative method can be developed that uses the
abovementioned generalized linear exchange model as an auxiliary in each step of the process.
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Abstract

This chapter presents the support method for group decision making. A group decision is
when a group of people has to make one joint decision. Each member of the group has his
own assessment of a joint decision. The decision making of a group decision is modeled as
a multicriteria optimization problem where the respective evaluation functions are the
assessment of a joint decision by each member. The interactive analysis that is based on
the reference point method applied to the multicriteria problems allows to find effective
solutions matching the group’s preferences. Each member of the group is able to verify
results of every decision. The chapter presents an example of an application of the support
method in the selection of the group decision.

Keywords: multicriteria optimization problem, equitably efficient decision, scalarizing
function, decision support systems

1. Introduction

The chapter presents the support method for group decision making—when a group of people
who have different preferences want to make one joint decision.

The selection process of a group decision can be modeled with the use of game theory [1–3].

In this chapter, the choice of the group decision is modeled as a multicriteria problem. The
individual coordinates of this optimization problem are functions to evaluate a joint decision
by each person in the group. This allows one to take into account preferences of all members in
the group. Decision support is an interactive process of proposals for subsequent decisions, by
each member in the group and his evaluations. These proposals are parameters of the
multicriteria optimization problem. The solution of this problem is assessed by members in
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the group. Each member can accept or refuse the solution. In the second case, a member gives
his new proposal and the problem is resolved again.

2. Modeling of group decision making

The problem of choosing a group decision is as follows. There is a group of kmembers. There is
given a set X0—the feasible set. For each member i, i ¼ 1, 2,…, k, a decision evaluation function
f i is defined, which is an assessment of a joint decision. The assessment of the joint decision is
to be made by all members in the group.

The problem of group decision making is modeled as multicriteria optimization problem:

max
x

f 1 xð Þ;…; f k xð Þ� �
: x∈X0

� �
, (1)

where 1, 2,…, k are particular members, X0 ⊂Rn is the feasible set, x ¼ x1; x2;…; xnð Þ∈X0 is a
group decision, f ¼ f 1; f 2;…; f k

� �
is the vector function that maps the decision space X0 ¼ Rn

into the criteria space Y0 ¼ Rk, and specific coordinates yi ¼ f i xð Þ, i ¼ 1, 2, ::, m represent the
scalar evaluation functions—the result of a decision x i� th member i ¼ 1, 2,…, k.

The purpose of the problem (1) is to support the decision process to make a decision that will
be the most satisfactory for all members in the group.

Functions f 1,…, f k introduce a certain order in the set of decision variables—preference relations:

x1 ≻ x2 ⇔ f 1 x1
� �

≥ f 2 x2
� �

,…, f k x1
� �

≥ f k x2
� �

∧ ∃j f j x
1� �

> f j x
2� �
: (2)

At point x1, all functions have values greater than or equal to the value at point x2, and at least
one is greater.

The multicriteria optimization model (1) can be rewritten in the equivalent form in the space of
evaluations. Consider the following problem:

max
x

y1;…; yk
� �

: y∈Y0g ,
�

(3)

where x∈X is a vector of decision variables, y ¼ y1;…; yk
� �

is the evaluation vector and
particular coordinates yi represent the result of a decision x i� th member i ¼ 1, 2,…, k, and
Y0 ¼ f X0ð Þ is the set of evaluation vectors.

The vector function y ¼ f xð Þ assigns to each vector of decision variables x an evaluation vector
y∈Y0 that measures the quality of decision x from the point of view of all members in the
group. The set of results achieved Y0 is given in the implicit form—through a set of feasible
decisions X0 and the mapping of a model f ¼ f 1; f 2;…; f k

� �
. To determine the value y, the

simulation of the model is necessary: y ¼ f xð Þ for x∈X0 .

Optimization Algorithms - Examples48

3. Equitably efficient decision

Group decision making is modeled as a special multicriteria optimization problem—the
solution should have the feature of anonymity—no distinction is made between the results
that differ in the orientation coordinates and the principle of transfers. This solution of the
problem is named an equitably efficient decision. It is an efficient decision that satisfies
the additional property‑the property of preference relation anonymity and the principle of
transfers.

Nondominated solutions (optimum Pareto) are defined with the use of preference relations
which answer the question: which one of the given pair of evaluation vectors y1, y2 ∈Rk is
better? This is the following relation:

y1 ≻ y2 ⇔ y1i ≥ y
2
i ∀i ¼ 1,…, m ∧ ∃ j y1j > y2j : (4)

The vector of evaluation by ∈Y0 is called the nondominated vector; if there is no such vector
y∈Y0, that by is dominated by y. Appropriate acceptable decisions are specified in the decision
space. The decision bx ∈X0 is called efficient decision (Pareto efficient) if the corresponding
vector of evaluations by ¼ f bxð Þ is a nondominated vector [4, 5].

In the multicriteria problem (1), which is used to make a group decision for a given set of the
evaluation functions, only the set of the evaluation functions is important without taking into
account which function is taking a specific value. No distinction is made between the results
that differ in the arrangement. This requirement is formulated as the property of anonymity of
preference relation.

The relation is called an anonymous (symmetric) relation if, for every vector y ¼ y1; y2;…;
�

ykÞ∈Rk and for any permutation P of the set 1;…; kf g, the following property holds:

yP 1ð Þ; yP 2ð Þ;…; yP kð Þ
� �

≈ y1; y2;…; yk
� �

(5)

The relation of preferences that would satisfy the anonymity property is called symmetrical
relation. Evaluation vectors having the same coordinates, but in a different order, are identi-
fied. A nondominated vector satisfying the anonymity property is called symmetrically
nondominated vector.

Moreover, the preference model in group decision making should satisfy the principle of
transfers. This principle states that the transfer of small amount from an evaluation vector to
any relatively worse evaluation vector results in a more preferred evaluation vector. The
relation of preferences satisfies the principle of transfers, if the following condition is satisfied:

for the evaluation vector y ¼ y1; y2;…; yk
� �

∈Rk:

yi0 > yi} ) y� ε � ei0 þ ε � ei} ≻ y for 0 < yi0 � yi00 < ε (6)
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better? This is the following relation:

y1 ≻ y2 ⇔ y1i ≥ y
2
i ∀i ¼ 1,…, m ∧ ∃ j y1j > y2j : (4)

The vector of evaluation by ∈Y0 is called the nondominated vector; if there is no such vector
y∈Y0, that by is dominated by y. Appropriate acceptable decisions are specified in the decision
space. The decision bx ∈X0 is called efficient decision (Pareto efficient) if the corresponding
vector of evaluations by ¼ f bxð Þ is a nondominated vector [4, 5].

In the multicriteria problem (1), which is used to make a group decision for a given set of the
evaluation functions, only the set of the evaluation functions is important without taking into
account which function is taking a specific value. No distinction is made between the results
that differ in the arrangement. This requirement is formulated as the property of anonymity of
preference relation.

The relation is called an anonymous (symmetric) relation if, for every vector y ¼ y1; y2;…;
�

ykÞ∈Rk and for any permutation P of the set 1;…; kf g, the following property holds:

yP 1ð Þ; yP 2ð Þ;…; yP kð Þ
� �

≈ y1; y2;…; yk
� �

(5)

The relation of preferences that would satisfy the anonymity property is called symmetrical
relation. Evaluation vectors having the same coordinates, but in a different order, are identi-
fied. A nondominated vector satisfying the anonymity property is called symmetrically
nondominated vector.

Moreover, the preference model in group decision making should satisfy the principle of
transfers. This principle states that the transfer of small amount from an evaluation vector to
any relatively worse evaluation vector results in a more preferred evaluation vector. The
relation of preferences satisfies the principle of transfers, if the following condition is satisfied:

for the evaluation vector y ¼ y1; y2;…; yk
� �

∈Rk:

yi0 > yi} ) y� ε � ei0 þ ε � ei} ≻ y for 0 < yi0 � yi00 < ε (6)
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Equalizing transfer is a slight deterioration of a better coordinate of evaluation vector and,
simultaneously, improvement of a poorer coordinate. The resulting evaluation vector is strictly
preferred in comparison to the initial evaluation vector. This is a structure of equalizing—the
evaluation vector with less diversity of coordinates is preferred in relation to the vector with
the same sum of coordinates, but with their greater diversity.

A nondominated vector satisfying the anonymity property and the principle of transfers is called

equitably nondominated vector. The set of equitably nondominated vectors is denoted by bY0E.
In the decision space, the equitably efficient decisions are specified. The decision bx ∈X0 is called
an equitably efficient decision, if the corresponding evaluation vector by ¼ f bxð Þ is an equitably

nondominated vector. The set of equitably efficient decisions is denoted by bX0E [2, 6, 7].

Equitable dominance can be expressed as the relation of inequality for cumulative, ordered
evaluation vectors. This relation can be determined with the use of mapping T : Rk ! Rk that
cumulates nonincreasing coordinates of evaluation vector.

The transformation T : Rk ! Rk is defined as follows:

Ti yð Þ ¼
Xi

l¼1
Ti yð Þ for i ¼ 1, 2,…, k: (7)

Define by T yð Þ the vector with nonincreasing ordered coordinates of the vector y, i.e.
T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þð Þ, where T1 yð Þ ≤T2 yð Þ ≤… ≤Tk yð Þ and there is a permutation P of
the set 1;…; kf g, such that Ti yð Þ ¼ yP ið Þ for i ¼ 1, ::, k.

The relation of equitable domination ≻ e is a simple vector domination for evaluation vectors
with cumulated nonincreasing coordinates of evaluation vector [6, 7].

The evaluation vector y1 equitably dominates the vector y2 if the following condition is satisfied:

y1 ≻ ey2 ⇔T y1
� �

≥T y2
� �

(8)

The solution of choosing a group decision is to find the equitably efficient decision that best
reflects the preferences of all members in the group.

4. Technique of generating equitably efficient decisions

Equitably efficient decisions for a multiple criteria problem (1) are obtained by solving a special
problem in multicriteria optimization—a problem with the vector function of the cumulative,
evaluation vectors arranged in a nonincreasing order. This is the following problem.

max
y

T1 yð Þ;T2 yð Þ;…;Tk yð Þ� �
: y∈Y0

�
(9)

where
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y ¼ y1; y2;…; yk
� �

is the evaluation vector, T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þ� �
is the cumulative,

ordered evaluation vector, and Y0 is the set of achievable evaluation vectors.

The efficient solution of multicriteria optimization problem (9) is an equitably efficient solution
of the multicriteria problem (1).

To determine the solution of a multicriteria problem (9), the scalaring of this problem with the
scalaring function s : Y0 �Ω! R1 is solved:

max
x

s y; yð Þ : x∈Xo ,f (10)

where y ¼ y1; y2;…; yk
� �

is the evaluation vector and y ¼ y1; y2;…; yk
� �

is the control parame-
ter for individual evaluations.

It is the problem of single-objective optimization with specially created scalaring function of
two variables—the evaluation vector y∈Y and control parameter y∈Ω⊂Rk; we have thus
s : Y0 �Ω! R1. The parameter y ¼ y1; y2;…; yk

� �
is available to each member in the group

that allows any member to review the set of equitably efficient solutions.

Complete and sufficient parameterization of the set of equitably efficient decision bX0E can be
achieved, using the method of the reference point for the problem (9). In this method the
aspiration levels are applied as control parameters. Aspiration level is the value of the evalua-
tion function that satisfies a given member.

The scalaring function defined in the method of reference point is as follows:

s y; yð Þ ¼ min
1 ≤ i ≤ k

Ti yð Þ � Ti yð Þi
� �þ ε �

Xk

i¼1
Ti yð Þ � Ti yð Þi
� �

, (11)

where y ¼ y1; y2;…; yk
� �

is the evaluation vector; T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þ� �
is the cumu-

lative, ordered evaluation vector; y ¼ y1; y2;…; yk
� �

is the vector of aspiration levels;
T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þð Þ is the cumulative, ordered vector of aspiration levels; and ε is
the arbitrary, small, positive adjustment parameter.

This function is called a function of achievement. Maximizing this function with respect
to y determines equitably nondominated vectors by and the equitably efficient decision bx.
For any aspiration levels y, each maximal point by of this function is an equitably nondo-
minated solution. Note, the equitably efficient solution bx depends on the aspiration levels
y. If the aspiration levels y are too high, then the maximum of this function is smaller than
zero. If the aspiration levels y are too low, then the maximum of this function is larger
than zero. This is the information for the group, whether a given aspiration level is reac-
hable or not [4, 8].

A tool for searching the set of solutions is the function (11). Maximum of this function depends
on the parameter y, which is used by the members of the group to select a solution. The method
for supporting selection of group decisions is as follows:
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Equalizing transfer is a slight deterioration of a better coordinate of evaluation vector and,
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equitably nondominated vector. The set of equitably nondominated vectors is denoted by bY0E.
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an equitably efficient decision, if the corresponding evaluation vector by ¼ f bxð Þ is an equitably

nondominated vector. The set of equitably efficient decisions is denoted by bX0E [2, 6, 7].

Equitable dominance can be expressed as the relation of inequality for cumulative, ordered
evaluation vectors. This relation can be determined with the use of mapping T : Rk ! Rk that
cumulates nonincreasing coordinates of evaluation vector.

The transformation T : Rk ! Rk is defined as follows:

Ti yð Þ ¼
Xi

l¼1
Ti yð Þ for i ¼ 1, 2,…, k: (7)

Define by T yð Þ the vector with nonincreasing ordered coordinates of the vector y, i.e.
T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þð Þ, where T1 yð Þ ≤T2 yð Þ ≤… ≤Tk yð Þ and there is a permutation P of
the set 1;…; kf g, such that Ti yð Þ ¼ yP ið Þ for i ¼ 1, ::, k.

The relation of equitable domination ≻ e is a simple vector domination for evaluation vectors
with cumulated nonincreasing coordinates of evaluation vector [6, 7].

The evaluation vector y1 equitably dominates the vector y2 if the following condition is satisfied:

y1 ≻ ey2 ⇔T y1
� �

≥T y2
� �

(8)

The solution of choosing a group decision is to find the equitably efficient decision that best
reflects the preferences of all members in the group.

4. Technique of generating equitably efficient decisions

Equitably efficient decisions for a multiple criteria problem (1) are obtained by solving a special
problem in multicriteria optimization—a problem with the vector function of the cumulative,
evaluation vectors arranged in a nonincreasing order. This is the following problem.

max
y

T1 yð Þ;T2 yð Þ;…;Tk yð Þ� �
: y∈Y0

�
(9)

where
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y ¼ y1; y2;…; yk
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is the evaluation vector, T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þ� �
is the cumulative,

ordered evaluation vector, and Y0 is the set of achievable evaluation vectors.

The efficient solution of multicriteria optimization problem (9) is an equitably efficient solution
of the multicriteria problem (1).

To determine the solution of a multicriteria problem (9), the scalaring of this problem with the
scalaring function s : Y0 �Ω! R1 is solved:

max
x

s y; yð Þ : x∈Xo ,f (10)

where y ¼ y1; y2;…; yk
� �

is the evaluation vector and y ¼ y1; y2;…; yk
� �

is the control parame-
ter for individual evaluations.

It is the problem of single-objective optimization with specially created scalaring function of
two variables—the evaluation vector y∈Y and control parameter y∈Ω⊂Rk; we have thus
s : Y0 �Ω! R1. The parameter y ¼ y1; y2;…; yk

� �
is available to each member in the group

that allows any member to review the set of equitably efficient solutions.

Complete and sufficient parameterization of the set of equitably efficient decision bX0E can be
achieved, using the method of the reference point for the problem (9). In this method the
aspiration levels are applied as control parameters. Aspiration level is the value of the evalua-
tion function that satisfies a given member.

The scalaring function defined in the method of reference point is as follows:

s y; yð Þ ¼ min
1 ≤ i ≤ k

Ti yð Þ � Ti yð Þi
� �þ ε �

Xk

i¼1
Ti yð Þ � Ti yð Þi
� �

, (11)

where y ¼ y1; y2;…; yk
� �

is the evaluation vector; T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þ� �
is the cumu-

lative, ordered evaluation vector; y ¼ y1; y2;…; yk
� �

is the vector of aspiration levels;
T yð Þ ¼ T1 yð Þ;T2 yð Þ;…;Tk yð Þð Þ is the cumulative, ordered vector of aspiration levels; and ε is
the arbitrary, small, positive adjustment parameter.

This function is called a function of achievement. Maximizing this function with respect
to y determines equitably nondominated vectors by and the equitably efficient decision bx.
For any aspiration levels y, each maximal point by of this function is an equitably nondo-
minated solution. Note, the equitably efficient solution bx depends on the aspiration levels
y. If the aspiration levels y are too high, then the maximum of this function is smaller than
zero. If the aspiration levels y are too low, then the maximum of this function is larger
than zero. This is the information for the group, whether a given aspiration level is reac-
hable or not [4, 8].

A tool for searching the set of solutions is the function (11). Maximum of this function depends
on the parameter y, which is used by the members of the group to select a solution. The method
for supporting selection of group decisions is as follows:

Multicriteria Support for Group Decision Making
http://dx.doi.org/10.5772/intechopen.79935

51



• Calculations—giving other equitably efficient decisions

• Interaction with the system—dialog with the members of the group, which is a source of
additional information about the preferences of the group

The method of selecting group decision is presented in Figure 1.

The computer will not replace members of the group in the decision-making process; the
whole process of selecting a decision is guided by all members in the group.

5. Example

To illustrate the process of supporting group decision making, the following example is
presented—selection of group decision by three members [8].

The problem of selecting the decision is the following:

1, 2, 3 are the members in the group.

X0 ¼ x∈R2 : x1 þ 5 � x2 ≤ 75, 3 � x1 þ 5 � x2 ≤ 95, x1 þ x2 ≤ 25, 5 � x1 þ 2 � x2 ≤ 110, x1 ≥ 0, x2 ≥ 0
is the feasible set.

x ¼ x1; x2ð Þ∈X0 is a group decision, belonging to the feasible set.

f 1 xð Þ ¼ 10 � x1 þ 60 � x2 is the function of decision evaluation x by member 1.

f 1 xð Þ ¼ 40 � x1 þ 60 � x2 is the function of decision evaluation x by member 2.

f 1 xð Þ ¼ 60 � x1 þ 20 � x2 is the function of decision evaluation x by member 3.

The problem of selection of group decision is expressed in the form of multicriteria optimiza-
tion problem with three evaluation functions:

max
x

10 � x1 þ 60 � x2; 40 � x1 þ 60 � x2; 60 � x1 þ 20 � x2ð Þ x∈X0f g, (12)

where X0 is the feasible set and x ¼ x1; x2ð Þ∈X0 is a group decision.

Figure 1. The method of selecting group decision.
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A solution which is as satisfying as possible for all members in the group is searched for. All
members in the problem of decision making in a group should be treated in the same way, no
member should be favored. The decision-making model should have the anonymity properties
of preference relation and satisfy the principle of transfers. The solution of the problem should
be an equitably efficient decision of the problem (12).

For solving the problem (12) the method of reference point is used.

At the beginning of the analysis, a separate single-criterion optimization is carried out for each
member in the group. In this way, the best results for each member are obtained separately.
This is a utopia point of the multicriteria optimization problem. This also gives information
about the conflict of evaluations of group members in the decision-making problem [9, 10].

When analyzing Table 1, it might be observed that the big selection possibilities have members
2 and 3 and lower member 1.

For each iteration, the price of fairness (POF) for each member is calculated [4]. It is the quotient
of the difference between the utopia value of a solution and the value from the solution of the
multicriteria problem, in relation to the utopia value.

POF ¼ yiu� byi
yiu

, i ¼ 1, 2, 3, (13)

where yiu is the utopia value of a member i, i ¼ 1, 2, 3, and yiu is the value from the solution of
the multicriteria problems of a member, i i ¼ 1, 2, 3.

The value of the POFs is a number between 0 and 1. POF values closer to zero are preferred by
the members, as the solution is closer to a utopia solution. The more the values of the POFs of
the members get closer to each other, the better the solution.

People in the group do control the process bymeans of aspiration levels. Themulticriteria analysis
is presented in Table 2.

At the beginning of the analysis (Iteration 1), members in the group define their preferences as
aspiration levels equal to the values of utopia. The obtained effective leveling solution is ideal
for member 2, while member 1 and member 3 would like to correct their solutions. In the next
iteration, all members reduce their levels of aspiration. As a result (Iteration 2), the solution for

Optimization criterion Solution

by1 by2 by3
Member's evaluation 1 y1 900 900 300

Member's evaluation 2 y2 750 1200 1100

Member's evaluation 3 y3 220 880 1320

Utopia vector 900 1200 1320

Table 1. Matrix of goal realization with the utopia vector.
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• Calculations—giving other equitably efficient decisions

• Interaction with the system—dialog with the members of the group, which is a source of
additional information about the preferences of the group

The method of selecting group decision is presented in Figure 1.

The computer will not replace members of the group in the decision-making process; the
whole process of selecting a decision is guided by all members in the group.

5. Example

To illustrate the process of supporting group decision making, the following example is
presented—selection of group decision by three members [8].

The problem of selecting the decision is the following:

1, 2, 3 are the members in the group.

X0 ¼ x∈R2 : x1 þ 5 � x2 ≤ 75, 3 � x1 þ 5 � x2 ≤ 95, x1 þ x2 ≤ 25, 5 � x1 þ 2 � x2 ≤ 110, x1 ≥ 0, x2 ≥ 0
is the feasible set.

x ¼ x1; x2ð Þ∈X0 is a group decision, belonging to the feasible set.

f 1 xð Þ ¼ 10 � x1 þ 60 � x2 is the function of decision evaluation x by member 1.

f 1 xð Þ ¼ 40 � x1 þ 60 � x2 is the function of decision evaluation x by member 2.

f 1 xð Þ ¼ 60 � x1 þ 20 � x2 is the function of decision evaluation x by member 3.

The problem of selection of group decision is expressed in the form of multicriteria optimiza-
tion problem with three evaluation functions:

max
x

10 � x1 þ 60 � x2; 40 � x1 þ 60 � x2; 60 � x1 þ 20 � x2ð Þ x∈X0f g, (12)

where X0 is the feasible set and x ¼ x1; x2ð Þ∈X0 is a group decision.

Figure 1. The method of selecting group decision.
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A solution which is as satisfying as possible for all members in the group is searched for. All
members in the problem of decision making in a group should be treated in the same way, no
member should be favored. The decision-making model should have the anonymity properties
of preference relation and satisfy the principle of transfers. The solution of the problem should
be an equitably efficient decision of the problem (12).

For solving the problem (12) the method of reference point is used.

At the beginning of the analysis, a separate single-criterion optimization is carried out for each
member in the group. In this way, the best results for each member are obtained separately.
This is a utopia point of the multicriteria optimization problem. This also gives information
about the conflict of evaluations of group members in the decision-making problem [9, 10].

When analyzing Table 1, it might be observed that the big selection possibilities have members
2 and 3 and lower member 1.

For each iteration, the price of fairness (POF) for each member is calculated [4]. It is the quotient
of the difference between the utopia value of a solution and the value from the solution of the
multicriteria problem, in relation to the utopia value.

POF ¼ yiu� byi
yiu

, i ¼ 1, 2, 3, (13)

where yiu is the utopia value of a member i, i ¼ 1, 2, 3, and yiu is the value from the solution of
the multicriteria problems of a member, i i ¼ 1, 2, 3.

The value of the POFs is a number between 0 and 1. POF values closer to zero are preferred by
the members, as the solution is closer to a utopia solution. The more the values of the POFs of
the members get closer to each other, the better the solution.

People in the group do control the process bymeans of aspiration levels. Themulticriteria analysis
is presented in Table 2.

At the beginning of the analysis (Iteration 1), members in the group define their preferences as
aspiration levels equal to the values of utopia. The obtained effective leveling solution is ideal
for member 2, while member 1 and member 3 would like to correct their solutions. In the next
iteration, all members reduce their levels of aspiration. As a result (Iteration 2), the solution for
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by1 by2 by3
Member's evaluation 1 y1 900 900 300

Member's evaluation 2 y2 750 1200 1100

Member's evaluation 3 y3 220 880 1320
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Table 1. Matrix of goal realization with the utopia vector.
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member 1 has improved, while the solution for member 2 and member 3 has deteriorated. The
group now wishes to correct the solution for member 3 and increases the aspiration level for
member 3, but does not change the aspiration levels for members 1 and 2. As a result (Iteration
3), the solution for member 2 and member 3 has improved, while the solution for member 1
has deteriorated. The group still wishes to correct the solution for member 3 and provides a
higher value of the aspiration level for member 3, but does not change the aspiration levels for
members 1 and 2. As a result (Iteration 4), the solution for member 2 and member 3 has
improved, but the solution for member 1 has deteriorated. The group now wishes to correct
the solution for member 1 and member 3 and reduces the aspiration level for member 2, but
does not reduce the aspiration levels for members 1 and 3. As a result (Iteration 5), the solution
for member 1 has improved, while the solution for members 2 and 3 has deteriorated. A
further change to the value of the aspiration levels causes either an improvement in the
solution for member 1 and at the same time a deterioration in the solution for member 3 or
vice versa, as well as slight changes in the solution for member 2. Such a solution results from
the specific nature of the examined problem—the solution for member 2 lies between solutions
for members 1 and 3. The group decision for Iteration 5 is as follows: x5 ¼ 14:81; 10:12ð Þ.
The final choice of a specific solution depends on the preferences of the members in the group.
This example shows that the presented method allows the members to get to know their
decision-making possibilities within interactive analysis and to search for a solution that
would be satisfactory for the group.

Iteration Member 1 Member 2 Member 3

by1 by2 by2

1. Aspiration levels y 900 1200 1320

Solution by 750 1200 1100

POF 0.166 0 0.153

2. Aspiration levels y 850 1000 1200

Solution by 800 1192 1007

POF 0.111 0.006 0.224

3. Aspiration levels y 850 1000 1250

Solution by 775 1196 1053

POF 0.138 0.003 0.189

4. Aspiration levels y 850 1000 1300

Solution by 750 1200 1100

POF 0.166 0 0.153

5. Aspiration levels y 850 990 1300

Solution by 755 1199 1090

POF 0.161 0.0006 0.160

Table 2. Interactive analysis of seeking a solution.
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6. Summary

The chapter presents the method of supporting group decision making. The choice is made by
solving the problem of multicriteria optimization.

The decision support process is not a one-step act, but an iterative process, and it proceeds as
follows:

• Each member of the group participates in the decision-making process.

• Then, each member determines the aspiration levels for particular results of decisions.
These aspiration levels are determined adaptively in the learning process.

• The decision choice is not a single optimization act, but a dynamic process of searching for
solutions in which each member may change his preferences.

• This process ends when the group finds a decision that makes it possible to achieve results
meeting the member’s aspirations or closest to these aspirations in a sense.

This method allows the group to verify the effects of each decision and helps find the decision
which is the best for their aspiration levels. This procedure does not replace the group in decision-
making process. Thewhole decision-making process is controlled by all themembers in the group.
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member 1 has improved, while the solution for member 2 and member 3 has deteriorated. The
group now wishes to correct the solution for member 3 and increases the aspiration level for
member 3, but does not change the aspiration levels for members 1 and 2. As a result (Iteration
3), the solution for member 2 and member 3 has improved, while the solution for member 1
has deteriorated. The group still wishes to correct the solution for member 3 and provides a
higher value of the aspiration level for member 3, but does not change the aspiration levels for
members 1 and 2. As a result (Iteration 4), the solution for member 2 and member 3 has
improved, but the solution for member 1 has deteriorated. The group now wishes to correct
the solution for member 1 and member 3 and reduces the aspiration level for member 2, but
does not reduce the aspiration levels for members 1 and 3. As a result (Iteration 5), the solution
for member 1 has improved, while the solution for members 2 and 3 has deteriorated. A
further change to the value of the aspiration levels causes either an improvement in the
solution for member 1 and at the same time a deterioration in the solution for member 3 or
vice versa, as well as slight changes in the solution for member 2. Such a solution results from
the specific nature of the examined problem—the solution for member 2 lies between solutions
for members 1 and 3. The group decision for Iteration 5 is as follows: x5 ¼ 14:81; 10:12ð Þ.
The final choice of a specific solution depends on the preferences of the members in the group.
This example shows that the presented method allows the members to get to know their
decision-making possibilities within interactive analysis and to search for a solution that
would be satisfactory for the group.
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by1 by2 by2

1. Aspiration levels y 900 1200 1320

Solution by 750 1200 1100

POF 0.166 0 0.153

2. Aspiration levels y 850 1000 1200

Solution by 800 1192 1007
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3. Aspiration levels y 850 1000 1250

Solution by 775 1196 1053
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4. Aspiration levels y 850 1000 1300

Solution by 750 1200 1100

POF 0.166 0 0.153

5. Aspiration levels y 850 990 1300

Solution by 755 1199 1090

POF 0.161 0.0006 0.160

Table 2. Interactive analysis of seeking a solution.
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6. Summary

The chapter presents the method of supporting group decision making. The choice is made by
solving the problem of multicriteria optimization.

The decision support process is not a one-step act, but an iterative process, and it proceeds as
follows:

• Each member of the group participates in the decision-making process.

• Then, each member determines the aspiration levels for particular results of decisions.
These aspiration levels are determined adaptively in the learning process.

• The decision choice is not a single optimization act, but a dynamic process of searching for
solutions in which each member may change his preferences.

• This process ends when the group finds a decision that makes it possible to achieve results
meeting the member’s aspirations or closest to these aspirations in a sense.

This method allows the group to verify the effects of each decision and helps find the decision
which is the best for their aspiration levels. This procedure does not replace the group in decision-
making process. Thewhole decision-making process is controlled by all themembers in the group.
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Abstract

To interpret and explain the mechanism of an engineering problem, the redundant
observations are carried out by scientists and engineers. The functional relationships
between the observations and parameters defining the model are generally nonlinear.
Those relationships are constituted by a nonlinear equation system. The equations of the
system are not solved without using linearization of them on the computer. If the
linearized equations are consistent, the solution of the system is ensured for a probably
global minimum quickly by any approximated values of the parameters in the least
squares (LS). Otherwise, namely an inconsistent case, the convergence of the solution
needs to be well-determined approximate values for the global minimum solution even
if in LS. A numerical example for 3D space fixes coordinates of an artificial global
navigation satellite system (GNSS) satellite modeled by a simple combination of first-
degree polynomial and first-order trigonometric functions will be given. It will be
shown by the real example that the convergence of the solution depends on the approx-
imated values of the model parameters.
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There are two main computing classes, these are hard and soft computing. Scientists and
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If the relations are nonlinear, they should be linearized via Taylor expansion [1–7]. Therefore, the
linear models can be solved by linear algebra [8–15].

To overcome complicated real-life problems whose mathematical models are not known, the
soft computing techniques have been developed in the last decades. We can count well-known
techniques, some as artificial neural network (ANN), artificial intelligence (AI), machine learn-
ing (ML), deep learning (DP), fuzzy logic (FL) and genetic algorithms (GA) [16–18]. The
techniques inspired by the human intelligence and learning processes can be very time-
consuming according to the data given in run due to their processing based on the trial-and-
error method. If these techniques are roughly defined, data (experimental outcomes and
observations) are separated into two parts in them, learning (or training) data and test data.
Mathematical (functional and/or stochastic) relations between data and model parameters are
learned from the learning data. The handled model is tested by means of the test data. After
that, the trained and developed model, if meets expectations, is used to estimate for producing
unobserved data for the scientific (or engineering) problems [16–18].

In the soft computing techniques, the linear algebra is also a very effective tool to solve the
problem as in the hard computing ones. For this reason, we should take a short overview on
linear algebra used in science and engineering [16–18].

2. Linear algebra and objective functions

Linear algebra has two basic problems. A solution of linear equations system is one of them;
the other is the eigendecomposition. In this chapter, we will use both of them upon a linear
equation system as a combined form (Eqs. (8)–(11)) in which we will solve the linear equations
system by means of the singular value decomposition related with the eigendecomposition (or
the matrix diagonalization) [8, 9, 13, 14].

Suppose an estimated unknown vector bxu ¼ xþ bδ (in interested model) and an experimental
data (or observations which are stochastic variables) vector yn ¼ by � bε [in which an estimated
data and error (residual) vectors are in order of by and bε] by an objective function and their
covariance matrices Σx̂ ¼ Σx ¼ bσ2

0 Qx (for the unknowns) and Σy ¼ σ20 P�1 (for the data),
respectively, with a priori variance σ20 and a posteriori variance bσ2

0. Note that bx is a non-
stochastic vector before estimation, where an approximated values vector is x for bx (hat-sign
“^” shows an estimated value for interested parameter according to an objective function). In
addition, n, m and u are the observation number, the equation number and the unknown
number, respectively.

Start with a linear or nonlinear functions vector fm by;bxð Þ ¼ 0, we can have a linear mathemat-
ical model with a weight matrix (P ¼ σ20 Σy

�1) of the observations for m ¼ n:

εn ¼ An,u δu � ln, Pn,n, (1)

An,u ¼ ∂ f by;bxð Þ
∂bx

����
ŷ, x̂¼y,x

and ln ¼ f y; xð Þ:
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Mathematical model between data and unknowns can be established by Taylor expansion for
any model. However, if m pieces function vector fm by;bxð Þ ¼ 0 is not transformed into
byn � fn bxð Þ ¼ 0 (for m ¼ n), the error in variable solution as in total least squares (TLS) method
can be preferred. Therefore, fm by;bxð Þ ¼ 0 (for m 6¼ n) should be differenced as following:

Bm,n εn �Am,u δu þ lm ¼ 0 Pn,n (2)

where

Bm,n ¼ ∂ f by;bxð Þ
∂by

����
ŷ, x̂¼y,x0

:

Most of science and engineering problems can be modeled as by � f bxð Þ ¼ 0 (m ¼ n). Therefore,
the functional model named as indirect adjustment method in the adjustment literature [3–7] in
geomatics engineering has been preferred in the chapter. The weight matrix (Pn,n) of observa-
tions (stochastic variables) would be accepted as a unit matrix Pn,n ¼ In,n in here for simplicity.

2.1. Objective functions

A generalization for objective functions is Lp �Norm (p ¼ 1, 2, 3, 4…,∞) [9, 10]. The first-degree
objective function is L1-norm estimation which is accepted as a robust estimation method in just
linear models [9–11].

iT εj j↦min L1 � norm estimation Least absolute residualsð Þ, (3)

εTε↦min L2 � norm estimation Least squaresð Þ, (4)

εj jmax ↦min L∞ � norm estimation Minmax absolute residualsð Þ, (5)

i ¼ 1 1 … 1½ �T :

The second-degree objective function is L2-norm estimationwhich is known as least squares (LS)
method and widely used in hard and soft computations.

The last-degree objective function is L∞-norm estimation which is known as minmax method. In
fact, the soft computing techniques use this objective while it applies the trial-and-error
method in their learning stages. Eq. (1) under L1-norm and L∞-norm is also solved by means of
linear programming methods, for this reason; the methods may give several solutions (as
being in trial-and-error method) to any interested problem [10, 11].

2.2. Rank deficiencies in linear models

While a rank is a number that indicates a linear independent column, the number of the
coefficient matrix of unknowns in a linear equation system, a rank deficiency represents a linear
dependent column number (if it is smaller than the row number) of the coefficient matrix.
Inconsistency in the solution stage of a linear equation system results from the (rank) deficiencies.
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Defining the rank of An,u by rank Að Þ ¼ r, a condition r ≤u ≤min m; nð Þ is always satisfied. In
general, n ¼ m in well-known (or the indirect) LS used in many scientific problems.

Denoting the rank defect d letter, we can define two type defects [12].

ds ¼ n� r, Surjectivity “onto” mapping
� �

(6a)

di ¼ u� r: Injectivity “one� to� one” mapping
� �

(6b)

Objective functions are used to remove the surjectivity defect ds occurred by the redundant
observations. The injectivity defect di can consist of three reasons in the estimation problem [12].

Datum defects (d-defects) are closely related to the origin of the spatial system. The defect arises if
the data do not carry any information to cover the absolute spatial position of the problem given.

Configuration (Design) defects (c-defects) occur from weak geometric relation among data and
unknowns. To avoid the defect, we can be careful and planned when picking data (whose
interval or/and place) and choosing the consistent mathematical model (can use auxiliary
variables instead of original ones).

Ill-conditioning defects (i-defects) arise from the large intervals among the elements of the coeffi-
cient matrix of unknowns. Norming the matrix can reduce ill-conditioning defects but cannot
remove it fully. I-defects and c-defects cannot be separated from each other easily [12].

The defects lead to the failure of any given problem to be solved properly. Since the unknown
coefficient matrix cannot be inverted by regular (ordinary) inversemethods, we should use pseudo
inverse to overcome the effects of the defects [8, 9, 13–15]. Eigenvalue and singular value decom-
positions can be used effectively for the pseudoinverse. Denoting a positive definite symmetric
matrix N (that is always satisfied forN ¼ ATA orN ¼ A AT), its pseudoinverse is:

Qu,u ¼ Nþ ¼ S Λþ ST ¼ V ΣþUT, Pseudoinverse of N (7a)

Nu,u ¼ S Λ ST ¼ U Σ VT, For a positive definite symmetric matrix (7b)

Λþ ¼ Σþ ¼ Λ�1r 0r, d
0r,d 0d,d

" #
:

Since Nu,u is a positive definite symmetric matrix in the LS, S ¼ U ¼ V. If there is no defect in a
matrixN,N�1 ¼ Nþ. Therefore,we canusepseudoinverse safely in anygivenproblem [8, 9, 13–15].

2.3. Hard computing

Linearizing from nonlinear functions to their linear form by means of Taylor expansion, a
linear equation system is to be handled as Eq. (1). To avoid complicated proofs in the solution
of an equation system, the simplified mathematical model can be written in the following
(statically rotation invariant [1]) numerical computation form.
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An,u δu ¼ ln, P ¼ I: (8)

Meet two states to solve Eq. (8), n ≤u and n > u. The solution for the former state n ≤u is
achieved by means of auxiliary variables vector λn which can be defined as δu ¼ AT

u,n λn. In
fact, the auxiliary vector λn is named as a Lagrange multipliers vector or an eigenvalues vector
in a homogenous equations system in which l ¼ 0 for Eq. (8) [9]. Putting back δ ¼ AT λ into
Eq. (8), we compute λ first:

bλn ¼ Qn,n ln, Qn,n ¼ A AT� �þ
: (9)

And then δ and its variance–covariance matrix if we know the statistical uncertainty of
observations (Σl ¼ ΣyÞ are calculated by Eq. (10) and the low error propagation, respectively.
We can only calculate the variance–covariance matrix of estimations as in Eq. (10) due to
bσ2
0 ¼ 0 and taking Σy ¼ I in the chapter.

bδ ¼ AT bλ ¼ ATQ l, Σδ̂ ¼ σ20 ATQQ A, (10a)

bx ¼ xþ bδ, Σx̂ ¼ Σδ̂ , (10b)

bxTbx ↦ min: (10c)

In the state (n ≤u), A bδ � l ¼ bε ¼ 0 should be provided. If not, continue solution until

max jbδj
� �

<¼ thres ¼ 5e� 12 (or max jbεjð Þ <¼ thres ¼ 5e� 12) by taking x ¼ bx in every itera-

tion step. bxTbx will be the smallest at end of the solution.

Solution to the second state n > u is a situation encountered in many scientific and engineering
problems. Multiplying both sides of Eq. (8) by AT

u,n the normal equation system is established
and solved with Eq. (11):

bδu ¼ Q ATl, Qu,u ¼ ATA
� �þ

, (11a)

bx ¼ xþ bδ, Σx̂ ¼ bσ2
0Q, (11b)

bσ2
0 ¼

bεTbε
n� r

, A posteriori variance r ¼ rank Að Þð Þ (11c)

bε ¼ A bδ � l, (11d)

bεTbε ↦ min: L2 � norm estimation Least Squareð Þ (11e)

End the solution if the condition ensured is max jbδj
� �

<¼ thres ¼ 5e� 12; otherwise, continue

the iteration with x ¼ bx.
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Relationships between nonlinearity and LS in a multidimensional surface have been shown by
Teunissen et al. [1, 2]. The authors argued the relation on some simple examples and gave
some analytical solutions for them. But, they highlighted that those types of analytical solu-
tions have not been given for every problem and emphasized that suitable Taylor expansions
have been useful to the solution not being transformed into the analytical ones.

3. Geometry of a combination of polynomial and trigonometric functions

These type functions can be used in defining the orbits of artificial satellites (and celestial
bodies). Also, the numerical example part of this chapter, to estimate those type functions, will
be inspected and applied on a real example. To foresee a model for any problem we should
interpret the model parameter and comprehend the geometry of the model (Figure 1).

With respect to independent variable time t, a combination function of p ¼ 1 degree polyno-
mial and order q ¼ 1 trigonometric function(s) [a combination of polynomial degree and
trigonometric order (CPT)] to be estimated in the chapter is:

ϕj ¼ aϕ þ bϕ tj þ cϕ sin dϕ þ eϕ tj
� �

, (12)

ϕj ∈ Xj;Yj;Zj; Sj
� �

, j∈ 1; 2;…; nf g:

where tj;ϕj

� �
are data given. In Eq. (12), translation aϕ and slope bϕ are elements of a line

equation which is a first-order polynomial of CPT function. The other model parameters in the
trigonometric part of Eq. (12) are defined as an amplitude cϕ, and an initial phase dϕ and a
frequency (or angular velocity) eϕ ¼ 2π=Tϕ (a period Tϕ) of a wave (Figure 1).

Figure 1. The geometry of a first-degree and first-order combination of polynomial and trigonometric (CPT) function.

Optimization Algorithms - Examples62

In this chapter, the functions ϕj are the coordinate components Xj;Yj;Zj
� �

incoming from a

precise orbit file and the geometric distances Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

j þ Z2
j þ Z2

j

q
as a function of the compo-

nents. However, nonperiodic earth-fixed coordinates (GR) in the SP3 file should be
transformed to the periodic space-fixed coordinates (Υ); why is Eq. (12) is suitable for the
space-fixed coordinates, not earth-fixed ones (as seen from Figure 3 in the numerical example
part) (Figure 2)?

For this propose, an easy transformation into any epoch (e.g., it can be taken as the first epoch
t0 of the data) is carried out by:

Xγ, j ¼ R3 θj
� �

xGR, j, θj ¼ �wE tj, (13a)

xGR, j ¼ R3 �θj
� �

Xγ, j, R3 �θj
� � ¼ RT

3 θj
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where wE and R3 are in order of the angular velocity of earth and well-known orthogonal
rotation matrix around the third axis (Figure 2).

A solution of nonlinear Eq. (12) is realized in the following order. Linearizing Eq. (12) by Taylor
expansion and omitting the terms greater than or equal to quadratic ones, the linear equation
system as given by Eq. (8) is obtained. The explicit form of the Eq. (8) with respect to the
approximate values of unknowns for a CPT is:

Figure 2. Earth (GR) and space-fixed (Υ) coordinates for an artificial satellite.
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Relationships between nonlinearity and LS in a multidimensional surface have been shown by
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are data given. In Eq. (12), translation aϕ and slope bϕ are elements of a line

equation which is a first-order polynomial of CPT function. The other model parameters in the
trigonometric part of Eq. (12) are defined as an amplitude cϕ, and an initial phase dϕ and a
frequency (or angular velocity) eϕ ¼ 2π=Tϕ (a period Tϕ) of a wave (Figure 1).
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where wE and R3 are in order of the angular velocity of earth and well-known orthogonal
rotation matrix around the third axis (Figure 2).

A solution of nonlinear Eq. (12) is realized in the following order. Linearizing Eq. (12) by Taylor
expansion and omitting the terms greater than or equal to quadratic ones, the linear equation
system as given by Eq. (8) is obtained. The explicit form of the Eq. (8) with respect to the
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Aj ¼ 1 tj sin d0 þ f 0 tj
� �

c0 cos d0 þ e0 tj
� �

tj c0 cos d0 þ e0 tj
� �� �

, (14a)

lj ¼ ϕj � a0 þ b0 tj þ c0 sin d0 þ e0 tj
� �� �h i

, j∈ 1; 2;…; nf g: (14b)

We can use a recursive solution for Eq. (14) instead of the batch solution as Eq. (11) because of
its solution velocity.

bδ ¼ Q
Xn

j¼1
AT

j lj

0
@

1
A, Q ¼

Xn

j¼1
AT

j Aj

0
@

1
A
�1

¼
Xn

j¼1
AT

j Aj

0
@

1
A
þ

: (15)

Continuation of the solution of Eq. (15) can be performed according to Eq. (11). The model
given by Eq. (12) is a simple model to determine the satellite orbit motions. For more compli-
cated models, the readers can utilize [19–25] resources.

4. Numerical example

For a nonlinear estimation of CPT functions, some numerical examples are chosen from GNSS
{Global navigation satellite systems = GPS (USA) + GLONASS (RU), GALILEO (EU), COM-
PASS (CHN)} artificial satellite orbits whose coordinates are downloaded from the internet
address ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/17091/final/Sta19426.sp3 [26].

For this purpose, two estimation software have been developed in 64Bit Python (in accordance
with the 2.7 and 3.6 version) and 32Bit C++ (Code::Blocks) environments to see the conver-
gence rate of the mathematical model given in Eq. (12) [27, 28]. The computed elements of CPT
functions for the selected four satellites R01 (GLONASS), G03 (GPS), E01 (GALILEO) and C06
(COMPASS) are summarized in Table 1 in which they are ordered from the nearest satellite to
the farthest one.

The motions of the CPT functions estimated satellites (in Table 1) with respect to earth- (left
column of Figure 3) and space-fixed (right column of Figure 3) coordinate systems are demon-
strated in Figure 3. Moreover, coherence between the estimated CPT function (black solid line) of
the C06 satellite and its data points given (colorful circles) is represented in detail in Figure 4.

We know that accuracy of precise SP3 file coordinates is about σ0 ¼ �5cm. If we compare the
value with its estimations given in Table 1, we can say that our predicted model is not meet
our demands. We should expand the model by raising the degree of polynomial part or/and
order of trigonometric part of CPT functions. In fact, we can readily see that the projected
model with Eq. (12) will never cover the data. The model is only chosen for this chapter. The
more suitable model established on Keplerian orbital elements can be found in the orbit
determination literature and in [18–20].

Comparing the solution velocities (from the iteration numbers with respect to 5e� 12 thresh-
old in Table 1) in different platforms, we can say that the solution velocities in 64Bit Python are
generally better then 32Bit ones.
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If we chose the threshold as 51e-13, we can see the distinctions of solution convergences
between 64Bit and 32Bit running on the estimations of C06 satellite from 1000 (X), 8 (Y), 7 (Z),
1000 (S) in 32Bit C++ and 10 (X), 8 (Y), 6 (Z), 28 (S) in 64Bit Python in Windows. In here, 1000 is
the maximum iteration number. If the mathematical model would be more complicated and its
data number would be bigger than the number used in the example part, we would see the
state more prominently.

Sat. φ X Y Z Unit S

iter
iter++

5
5

4
4

4
5

—
—

10
9

R01
(RU)

aφ
bφ
cφ
dφ
eφ
Tφ

�11.860
0.028
25,474.503
�60�54004.3700
31�57053.9200

11h05’44.37”

2.420
0.003
11,178.453
�23�03056.9300
�31�57044.9200
11h15’47.54”

2.771
0.052
22,965.361
�30�31000.3200
�31�57056.3100
11h15’43.53”

km
km/h
km
deg
deg/h
h

25,508.091
0.001
8.127
42�41035.8700

�31�58013.5500
11h15’37.46”

� bσ0 2.902 1.266 2.653 km 0.211

iter
iter++

6
6

4
4

4
4

—
—

30
34

G03
(USA)

aφ
bφ
cφ
dφ
eφ
Tφ

�17.545
�0.132
24,800.602
66�34039.73”
30�04056.03”
11h58’01.91”

7.332
�0.045
17,959.166
�48�06043.68”
30�04052.50”
11h58’3.31”

�1.824
�0.085
21,757.547
�7�51047.16”
30�05000.02”
11h58’00.32”

km
km/h
km
deg.
deg./h
h

26,561.324
�0.003
14.211
�72�24019.52”
�30�08011.17”
11h56’44.42”

� bσ0 4.898 3.648 3.961 km 0.183

iter
iter++

4
5

5
5

4
4

—
—

32
93

E01
(EU)

aφ
bφ
cφ
dφ
eφ
Tφ

1.866
0.052
21,349.011
�35�22015.4600
�25�34013.06”
14h04’43.81”

1.358
�0.048
26,031.918
85�57022.67”
�25�34014.87”
14h04’42.81”

�4.673
0.004
24,878.432
�16�23029.47”
25�34018.57”
14h04’40.78”

km
km/h
km
deg.
deg./h
h

29,600.332
�0.000
3.720
8�29058.23”
�25�42010.68”
14h00’22.19”

� bσ0 1.796 1.428 1.058 km 0.236

iter
iter++

7
10

6
7

6
7

—
—

28
29

C06
(CHN)

aφ
bφ
cφ
dφ
eφ
Tφ

�407.495
61.945
41,716.806
�24�21036.29”
�15�07002.75”
23h48’48.86”

228.037
�6.376
24,832.649
59�24050.7300

�15�02016.41”
23h56’22.30”

266.178
�7.892
34,235.695
67�3609.4200

�15�02036.74”
23h55’49.94”

km
km/h
km
deg.
deg./h
h

42,175.353
�0.358
227.599
18�32027.85”
�14�57017.11”
24h04’21.41”

� bσ0 56.552 38.018 51.901 km 0.491

Table 1. Computed elements of the CPT functions for G03, R01, E01, C06 satellites by IterMAX = 1000 and thres = 5e-12 in
loops {iteration numbers of 64Bit Python and 32Bit C++ software in windows are denoted as iter and as iter++ respectively}.

On Non-Linearity and Convergence in Non-Linear Least Squares
http://dx.doi.org/10.5772/intechopen.76313

65



Aj ¼ 1 tj sin d0 þ f 0 tj
� �

c0 cos d0 þ e0 tj
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tj c0 cos d0 þ e0 tj
� �� �

, (14a)

lj ¼ ϕj � a0 þ b0 tj þ c0 sin d0 þ e0 tj
� �� �h i

, j∈ 1; 2;…; nf g: (14b)

We can use a recursive solution for Eq. (14) instead of the batch solution as Eq. (11) because of
its solution velocity.
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Continuation of the solution of Eq. (15) can be performed according to Eq. (11). The model
given by Eq. (12) is a simple model to determine the satellite orbit motions. For more compli-
cated models, the readers can utilize [19–25] resources.

4. Numerical example

For a nonlinear estimation of CPT functions, some numerical examples are chosen from GNSS
{Global navigation satellite systems = GPS (USA) + GLONASS (RU), GALILEO (EU), COM-
PASS (CHN)} artificial satellite orbits whose coordinates are downloaded from the internet
address ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/17091/final/Sta19426.sp3 [26].

For this purpose, two estimation software have been developed in 64Bit Python (in accordance
with the 2.7 and 3.6 version) and 32Bit C++ (Code::Blocks) environments to see the conver-
gence rate of the mathematical model given in Eq. (12) [27, 28]. The computed elements of CPT
functions for the selected four satellites R01 (GLONASS), G03 (GPS), E01 (GALILEO) and C06
(COMPASS) are summarized in Table 1 in which they are ordered from the nearest satellite to
the farthest one.

The motions of the CPT functions estimated satellites (in Table 1) with respect to earth- (left
column of Figure 3) and space-fixed (right column of Figure 3) coordinate systems are demon-
strated in Figure 3. Moreover, coherence between the estimated CPT function (black solid line) of
the C06 satellite and its data points given (colorful circles) is represented in detail in Figure 4.

We know that accuracy of precise SP3 file coordinates is about σ0 ¼ �5cm. If we compare the
value with its estimations given in Table 1, we can say that our predicted model is not meet
our demands. We should expand the model by raising the degree of polynomial part or/and
order of trigonometric part of CPT functions. In fact, we can readily see that the projected
model with Eq. (12) will never cover the data. The model is only chosen for this chapter. The
more suitable model established on Keplerian orbital elements can be found in the orbit
determination literature and in [18–20].

Comparing the solution velocities (from the iteration numbers with respect to 5e� 12 thresh-
old in Table 1) in different platforms, we can say that the solution velocities in 64Bit Python are
generally better then 32Bit ones.
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If we chose the threshold as 51e-13, we can see the distinctions of solution convergences
between 64Bit and 32Bit running on the estimations of C06 satellite from 1000 (X), 8 (Y), 7 (Z),
1000 (S) in 32Bit C++ and 10 (X), 8 (Y), 6 (Z), 28 (S) in 64Bit Python in Windows. In here, 1000 is
the maximum iteration number. If the mathematical model would be more complicated and its
data number would be bigger than the number used in the example part, we would see the
state more prominently.
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18�32027.85”
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Table 1. Computed elements of the CPT functions for G03, R01, E01, C06 satellites by IterMAX = 1000 and thres = 5e-12 in
loops {iteration numbers of 64Bit Python and 32Bit C++ software in windows are denoted as iter and as iter++ respectively}.
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Figure 3. Earth (left) and space (right) fixed orbital traces (see the appendix) with time tags of R01, G03, E02, C06 satellites
and the motion of X-coordinate axis shown as GR (XGR(t0) position on the intersection Greenwich meridian and equator)
symbol at t0 (=2017 April 01 00:00:00).
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Approximated values and the loop element for the unknowns are computed following the
order in all solutions of the satellites when running in 32Bit C++ and 64Bit Python platforms for
the estimations in Table 1.

a0 ¼ 0:0, b0 ¼ 0:0, c0 ¼ max ϕj

n o
, j∈ 1; 2;…; n ¼ 96f g

d0 ¼ arcsin ϕ1=c0
� �

, e0 ¼ arcsin ϕ2=c0
� �� arcsin ϕ1=c0

� �� �
= t2 � t1f g

x ¼ a0 b0 c0 d0 e0½ �T

Maximum iteration number and threshold loop elements are iterMAX ¼ 1000 and thres ¼ 5e� 12
to break the iteration loop.

Figure 4. Temporal changing of space fixed coordinates of C06. The circles and solid lines represent the data points and
estimated functions under LS respectively for X (red), Y (green), Z (blue), S (cyan).
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Taking the approximated values as x ¼ 0 0 thres 0 0½ �T ≈ 0T and the same loop elements
given above, the iteration numbers are handled as 138 (X), 178 (Y), 78 (Z), 16 (S) in 64Bit Python.

For x ¼ 0 0 c0 0 0½ �T they are 33 (X), 235 (Y), 96 (Z), 11 (S) in 64Bit Python. Different
approximated value selections cause different iteration numbers (namely convergence rate).

4.1. An expanded model example by an auxiliary cosine wave

Since the estimated standard deviations bσ0 = {�56.552,�38.018,�51.901,�0.491} (for X, Y, Z, S
in Table 1) of the CPT functions for the coordinates of the C06 satellite are not statically equal
to their expected values (σ0 ¼ �5cm), the CPT model should be expanded. As an example,
three more unknowns are added to the model given in Eq. (12)

ϕj ¼ aϕ þ bϕ tj þ cϕ sin dϕ þ eϕ tj
� �þ f ϕ cos gϕ þ hϕ tj

� �

The added terms represent an amplitude f ϕ, an initial phase gϕ and a frequency hϕ of a new

wave carried by first (sine) wave. After the first estimation with respect to Eq. (12),

we can choose the approximate values of the new parameters as

f 0 ¼ max abs bεð Þð Þ
g0 ¼ arcsin bε1=f 0

� �

h0 ¼ arcsin bε2=f 0
� �� arcsin bε1=f 0

� �� �
= t2 � t1f g

from bε j ¼ ϕj � ba þ bb tj þbc sin bd þbe tj
� �n oh i

, j∈ 1; 2;…; n ¼ 96f g. The approximate value

vector of the expanded model by a new wave is:

x ¼ a0 b0 c0 d0 e0 f 0 g0 h0
� �T ¼ ba bb bc bd be f 0 g0 h0

h iT

The approximate values are substituted in the following linearized model as initial values for
the loop in LS estimation.

lj ¼ ϕj � a0 þ b0 tj þ c0 sin d0 þ f 0 tj
� �þ e0 cos h0 þ g0 tj

� �� �h i

AT
j ¼

1
tj

sin d0 þ e0 tj
� �

c0 cos d0 þ e0 tj
� �

tj c0 cos d0 þ e0 tj
� �

cos g0 þ h0 tj
� �

�f 0 sin g0 þ h0 tj
� �

�tj f 0 sin g0 þ h0 tj
� �

2
66666666666664

3
77777777777775

After the evaluation, the improved solution for the C06 satellite is represented in Table 2. We
can readily see the improvements upon the downs of the standard deviations from bσ0 =
{�56.552, �38.018, �51.901, �0.491} (Table 1) into bσ0 = {�0.178, �0.137, �0.191, �0.003}
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(Table 2) in kilometers for the C06 satellite. We can develop the last model more by means of
the same manner if we want.

As another example, the expanded model has been trained on the coordinate components of
R01 GLONASS satellite by means of Python 3.6 software on Windows. We can also see the
improvements upon the downs of the standard deviations (its iteration numbers) from bσ0 =
{�2.902 (5), �1.266 (4), �2.653 (4), �0.211 (10)} (Table 1) to bσ0 = {�0.226 (76), �0.448 (32),
�0.201 (43), �0.037 (57)} in kilometers for the R01 satellite.

Condition numbers computed from a rate of maximum and minimum eigenvalues or a rate of
singular values under LS are very effective tools for determining the consistency as well.
Therefore, a larger condition number can cause larger iteration number (related to convergence
rate), We can see those states from the CPT estimations of the C06 satellite with the iteration
(iter) and condition numbers (cond). These are given for X, Y, Z, S as iter = {7, 6, 6, 28} and cond =
{3.4e + 13, 2.0e + 12, 2.8e + 12, 1.3e + 09} (Table 1), and as iter = {27, 158, 53, 19} and cond = {9.5e +
14, 2.3e + 13, 3.0e + 13, 2.6e + 10} (Table 2).

5. Conclusions

In this chapter, the least squares (LS) estimations of the artificial satellite orbital movements by
a combination of polynomial and trigonometric (CPT) functions have been given after a
general overview has been made on the hard and soft computations. In practice, the orbital
motions are modeled on Keplerian orbital elements. In contrary to this, the coordinate compo-
nents have been selected for this chapter due to the nonlinear relations of the components and
the unknowns which are the elements of CPT functions. The relations cause inconsistencies
in the LS solutions. The inconsistencies result from the two injectivity defects, c-defects and
i-defects. We can readily see the defects from the differences of the convergence rates (in other
words the iteration numbers) in different computer platforms and architectures as shown in
the chapter. The defects are not fully removed as long as not change the mathematic models.
However, we can surpass the effects of those defects in part by means of the pseudoinverse
based on the eigendecomposition or the singular value decomposition (SVD) as in here. The

Sat. φ X Y Z Unit S

iter 27 158 53 — 19

C06
(CHN)

aφ
bφ
cφ
dφ
eφ
fφ
gφ
hφ

223.514
1.515
42,064.675
�25�07054.7800
�15�02024.75”
110.710
5�08057.82”
30�10058.43”

149.296
0.224
66.183
11�15024.2300

30�04030.4400

24,808.034
30�28055.6100

15�02017.24”

182.012
0.060
91.527
3�15058.7600

30�04002.0900

34,217.994
�22�21014.6000
�15�02019.27”

km
km/h
km
deg
deg/h
km
deg.
deg./h

42,169.956
0.055
225.161
19�47037.5400

�15�02043.2600
0.838
8�56045.5000

�29�40058.52”
� bσ0 0.178 0.137 0.191 km 0.003

Table 2. The results by the expanded model for the C06 satellite in Python 3.6 in windows.
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Taking the approximated values as x ¼ 0 0 thres 0 0½ �T ≈ 0T and the same loop elements
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ϕj ¼ aϕ þ bϕ tj þ cϕ sin dϕ þ eϕ tj
� �þ f ϕ cos gϕ þ hϕ tj

� �

The added terms represent an amplitude f ϕ, an initial phase gϕ and a frequency hϕ of a new

wave carried by first (sine) wave. After the first estimation with respect to Eq. (12),

we can choose the approximate values of the new parameters as

f 0 ¼ max abs bεð Þð Þ
g0 ¼ arcsin bε1=f 0

� �

h0 ¼ arcsin bε2=f 0
� �� arcsin bε1=f 0

� �� �
= t2 � t1f g

from bε j ¼ ϕj � ba þ bb tj þbc sin bd þbe tj
� �n oh i

, j∈ 1; 2;…; n ¼ 96f g. The approximate value

vector of the expanded model by a new wave is:

x ¼ a0 b0 c0 d0 e0 f 0 g0 h0
� �T ¼ ba bb bc bd be f 0 g0 h0

h iT

The approximate values are substituted in the following linearized model as initial values for
the loop in LS estimation.

lj ¼ ϕj � a0 þ b0 tj þ c0 sin d0 þ f 0 tj
� �þ e0 cos h0 þ g0 tj

� �� �h i

AT
j ¼

1
tj

sin d0 þ e0 tj
� �

c0 cos d0 þ e0 tj
� �

tj c0 cos d0 þ e0 tj
� �

cos g0 þ h0 tj
� �

�f 0 sin g0 þ h0 tj
� �

�tj f 0 sin g0 þ h0 tj
� �

2
66666666666664

3
77777777777775

After the evaluation, the improved solution for the C06 satellite is represented in Table 2. We
can readily see the improvements upon the downs of the standard deviations from bσ0 =
{�56.552, �38.018, �51.901, �0.491} (Table 1) into bσ0 = {�0.178, �0.137, �0.191, �0.003}
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�0.201 (43), �0.037 (57)} in kilometers for the R01 satellite.

Condition numbers computed from a rate of maximum and minimum eigenvalues or a rate of
singular values under LS are very effective tools for determining the consistency as well.
Therefore, a larger condition number can cause larger iteration number (related to convergence
rate), We can see those states from the CPT estimations of the C06 satellite with the iteration
(iter) and condition numbers (cond). These are given for X, Y, Z, S as iter = {7, 6, 6, 28} and cond =
{3.4e + 13, 2.0e + 12, 2.8e + 12, 1.3e + 09} (Table 1), and as iter = {27, 158, 53, 19} and cond = {9.5e +
14, 2.3e + 13, 3.0e + 13, 2.6e + 10} (Table 2).

5. Conclusions

In this chapter, the least squares (LS) estimations of the artificial satellite orbital movements by
a combination of polynomial and trigonometric (CPT) functions have been given after a
general overview has been made on the hard and soft computations. In practice, the orbital
motions are modeled on Keplerian orbital elements. In contrary to this, the coordinate compo-
nents have been selected for this chapter due to the nonlinear relations of the components and
the unknowns which are the elements of CPT functions. The relations cause inconsistencies
in the LS solutions. The inconsistencies result from the two injectivity defects, c-defects and
i-defects. We can readily see the defects from the differences of the convergence rates (in other
words the iteration numbers) in different computer platforms and architectures as shown in
the chapter. The defects are not fully removed as long as not change the mathematic models.
However, we can surpass the effects of those defects in part by means of the pseudoinverse
based on the eigendecomposition or the singular value decomposition (SVD) as in here. The
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surjectivity defect (ds) of the CPT functions not including the datum defects (d-defects) was
eliminated by the LS objective function.

For the sake of simplicity for readers, a simple CPT function has been chosen at first. After the
initial estimation of the function, the estimated errors vector has been found. We have seen that
the errors have had a periodic characteristic in time. So, a new wave defining the error charac-
teristic and been able to carry by the first wave has been planned for expanding the CPTs. It is
shown that we can expand a CPT function until ensuring statically equivalency between a priory
and a posteriori variances. For instance, one may secure the equivalency of the variances if one
would expand more by a new wave in the last estimated model in the same manner.

The convergence rates (upon the iteration numbers) of the LS estimation have been inspected
according to the threshold (thres = 5e-12) which is a good value for the estimation of the nonlinear
CPT function. An algorithm compiled by different compilers and run in different architectures
(with 32 Bit or 64 Bit) changes the convergence rate of the estimations in such as the inconsistent
scientific problems. It is also observed that the iteration numbers change when the 64-bit Python
software is run on Linux platform which has a different framework than Windows. But, the
numbers have not been given in the example part of the chapter. Contrary to inconsistencymodel,
namely in a consistent one, the iteration numbers can take equivalence values in all circumstances.
Another way to determine the inconsistency of a model is to obtain its condition number which is
computed from a rate of maximum and minimum eigenvalues or of singular values under LS. If
the condition number is close to one, the projected model is accepted as a consistent model.

We can use the Soft Computing Methods (SCM) if not an exact mathematical relationship
between the data and unknowns. The mathematical model is established by the trial-and-error
method in training part of SCM by means of arbitrary weights and activation functions
depending on SCM expert forecasts. For the solution of the SCM model during the training,
we can use least absolute residuals (LAR) and minmax absolute residuals (MAR) objective
functions by the linear programming or the LS estimation as in hard computing method
(HCM). In the state, the inconsistency problem can erase whatever the solution method (LAR,
MAR or LS) is. The inconstancy can be removed by means of experiences gained from HCMs.

Prior information is very important to select a suitable mathematical model for a scientific
problem. For example, comparing a priori variance with a posteriori variance at the end of the
estimation is a useful warning to the user to determine the correct mathematical model as seen
from the expanded model in the example section of the chapter.

In numerical computation, there are two main phenomena which are the mathematical model
(as a combination of functional and stochastic models) and objective function. The solution
strategy is of no importance if the same mathematical model and objective function are
preferred in the same problem of hard computing. All solution strategies always give same
results, only their solution time spans can be distinct from each other (Table 3).
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Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]

0 0.00 �17531.307506 21541.792054 31834.209680 691.175390

1 0.25 �19992.147900 20678.913485 30924.464057 691.487182

2 0.50 �22367.333395 19727.437365 29882.214843 691.798804

3 0.75 �24646.589754 18691.353300 28711.797065 692.110527

4 1.00 �26820.032098 17575.021170 27418.102912 692.422088

5 1.25 �28878.208475 16383.154007 26006.563346 692.733923

6 1.50 �30812.142166 15120.799311 24483.127129 693.045689

7 1.75 �32613.372313 13793.318783 22854.237453 693.357416

8 2.00 �34273.992670 12406.366506 21126.806228 693.668853

9 2.25 �35786.688260 10965.865676 19308.186097 693.980453

10 2.50 �37144.769753 9477.983947 17406.140275 694.291853

11 2.75 �38342.205344 7949.107471 15428.810302 694.603337

12 3.00 �39373.649964 6385.813755 13384.681845 694.914789

13 3.25 �40234.471624 4794.843425 11282.548651 695.226157

14 3.50 �40920.774721 3183.071022 9131.474825 695.537828

15 3.75 �41429.420160 1557.474971 6940.755568 695.849062

16 4.00 �41758.042128 �74.893170 4719.876568 696.160359

17 4.25 �41905.061383 �1706.940006 2478.472204 696.471627

18 4.50 �41869.694990 �3331.562017 226.282782 696.782836

19 4.75 �41651.962330 �4941.677516 �2026.889008 697.094239

20 5.00 �41252.687387 �6530.258698 �4271.222183 697.405373

21 5.25 �40673.497209 �8090.363611 �6496.921900 697.716659

22 5.50 �39916.816531 �9615.167884 �8694.263981 698.028206

23 5.75 �38985.858544 �11097.996030 �10853.639319 698.339619

24 6.00 �37884.611845 �12532.352178 �12965.597898 698.651055

25 6.25 �36617.823589 �13911.950035 �15020.892223 698.962566

26 6.50 �35190.978917 �15230.741942 �17010.519896 699.273893

27 6.75 �33610.276761 �16482.946839 �18925.765115 699.585363

28 7.00 �31882.602129 �17663.077000 �20758.238873 699.896674

29 7.25 �30015.495009 �18765.963379 �22499.917620 700.208082

30 7.50 �28017.116067 �19786.779434 �24143.180195 700.519378

31 7.75 �25896.209299 �20721.063292 �25680.842806 700.830889

32 8.00 �23662.061860 �21564.738140 �27106.191889 701.142117

33 8.25 �21324.461276 �22314.130731 �28413.014646 701.453707
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surjectivity defect (ds) of the CPT functions not including the datum defects (d-defects) was
eliminated by the LS objective function.

For the sake of simplicity for readers, a simple CPT function has been chosen at first. After the
initial estimation of the function, the estimated errors vector has been found. We have seen that
the errors have had a periodic characteristic in time. So, a new wave defining the error charac-
teristic and been able to carry by the first wave has been planned for expanding the CPTs. It is
shown that we can expand a CPT function until ensuring statically equivalency between a priory
and a posteriori variances. For instance, one may secure the equivalency of the variances if one
would expand more by a new wave in the last estimated model in the same manner.

The convergence rates (upon the iteration numbers) of the LS estimation have been inspected
according to the threshold (thres = 5e-12) which is a good value for the estimation of the nonlinear
CPT function. An algorithm compiled by different compilers and run in different architectures
(with 32 Bit or 64 Bit) changes the convergence rate of the estimations in such as the inconsistent
scientific problems. It is also observed that the iteration numbers change when the 64-bit Python
software is run on Linux platform which has a different framework than Windows. But, the
numbers have not been given in the example part of the chapter. Contrary to inconsistencymodel,
namely in a consistent one, the iteration numbers can take equivalence values in all circumstances.
Another way to determine the inconsistency of a model is to obtain its condition number which is
computed from a rate of maximum and minimum eigenvalues or of singular values under LS. If
the condition number is close to one, the projected model is accepted as a consistent model.

We can use the Soft Computing Methods (SCM) if not an exact mathematical relationship
between the data and unknowns. The mathematical model is established by the trial-and-error
method in training part of SCM by means of arbitrary weights and activation functions
depending on SCM expert forecasts. For the solution of the SCM model during the training,
we can use least absolute residuals (LAR) and minmax absolute residuals (MAR) objective
functions by the linear programming or the LS estimation as in hard computing method
(HCM). In the state, the inconsistency problem can erase whatever the solution method (LAR,
MAR or LS) is. The inconstancy can be removed by means of experiences gained from HCMs.

Prior information is very important to select a suitable mathematical model for a scientific
problem. For example, comparing a priori variance with a posteriori variance at the end of the
estimation is a useful warning to the user to determine the correct mathematical model as seen
from the expanded model in the example section of the chapter.

In numerical computation, there are two main phenomena which are the mathematical model
(as a combination of functional and stochastic models) and objective function. The solution
strategy is of no importance if the same mathematical model and objective function are
preferred in the same problem of hard computing. All solution strategies always give same
results, only their solution time spans can be distinct from each other (Table 3).
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0 0.00 �17531.307506 21541.792054 31834.209680 691.175390

1 0.25 �19992.147900 20678.913485 30924.464057 691.487182

2 0.50 �22367.333395 19727.437365 29882.214843 691.798804

3 0.75 �24646.589754 18691.353300 28711.797065 692.110527

4 1.00 �26820.032098 17575.021170 27418.102912 692.422088

5 1.25 �28878.208475 16383.154007 26006.563346 692.733923

6 1.50 �30812.142166 15120.799311 24483.127129 693.045689

7 1.75 �32613.372313 13793.318783 22854.237453 693.357416

8 2.00 �34273.992670 12406.366506 21126.806228 693.668853

9 2.25 �35786.688260 10965.865676 19308.186097 693.980453

10 2.50 �37144.769753 9477.983947 17406.140275 694.291853

11 2.75 �38342.205344 7949.107471 15428.810302 694.603337

12 3.00 �39373.649964 6385.813755 13384.681845 694.914789

13 3.25 �40234.471624 4794.843425 11282.548651 695.226157

14 3.50 �40920.774721 3183.071022 9131.474825 695.537828

15 3.75 �41429.420160 1557.474971 6940.755568 695.849062

16 4.00 �41758.042128 �74.893170 4719.876568 696.160359

17 4.25 �41905.061383 �1706.940006 2478.472204 696.471627

18 4.50 �41869.694990 �3331.562017 226.282782 696.782836

19 4.75 �41651.962330 �4941.677516 �2026.889008 697.094239

20 5.00 �41252.687387 �6530.258698 �4271.222183 697.405373

21 5.25 �40673.497209 �8090.363611 �6496.921900 697.716659

22 5.50 �39916.816531 �9615.167884 �8694.263981 698.028206

23 5.75 �38985.858544 �11097.996030 �10853.639319 698.339619

24 6.00 �37884.611845 �12532.352178 �12965.597898 698.651055

25 6.25 �36617.823589 �13911.950035 �15020.892223 698.962566

26 6.50 �35190.978917 �15230.741942 �17010.519896 699.273893

27 6.75 �33610.276761 �16482.946839 �18925.765115 699.585363

28 7.00 �31882.602129 �17663.077000 �20758.238873 699.896674

29 7.25 �30015.495009 �18765.963379 �22499.917620 700.208082

30 7.50 �28017.116067 �19786.779434 �24143.180195 700.519378

31 7.75 �25896.209299 �20721.063292 �25680.842806 700.830889

32 8.00 �23662.061860 �21564.738140 �27106.191889 701.142117

33 8.25 �21324.461276 �22314.130731 �28413.014646 701.453707
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Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]

34 8.50 �18893.650283 �22965.987908 �29595.627135 701.764972

35 8.75 �16380.279535 �23517.491071 �30648.899728 702.076478

36 9.00 �13795.358449 �23966.268499 �31568.279851 702.387737

37 9.25 �11150.204459 �24310.405495 �32349.811865 702.699185

38 9.50 �8456.390949 �24548.452300 �32990.154024 703.010540

39 9.75 �5725.694161 �24679.429736 �33486.592421 703.321863

40 10.00 �2970.039352 �24702.832610 �33837.051887 703.633117

41 10.25 �201.446497 �24618.630817 �34040.103800 703.944417

42 10.50 2568.024186 �24427.268222 �34094.970801 704.255873

43 10.75 5326.326597 �24129.659289 �34001.528424 704.567076

44 11.00 8061.482740 �23727.183555 �33760.303648 704.878433

45 11.25 10761.636054 �23221.677952 �33372.470443 705.189684

46 11.50 13415.103835 �22615.427078 �32839.842340 705.501070

47 11.75 16010.428511 �21911.151470 �32164.862120 705.812547

48 12.00 18536.427516 �21111.993965 �31350.588697 706.124190

49 12.25 20982.241560 �20221.504257 �30400.681303 706.435990

50 12.50 23337.381077 �19243.621724 �29319.381091 706.747258

51 12.75 25591.770667 �18182.656653 �28111.490271 707.058650

52 13.00 27735.791345 �17043.269964 �26782.348927 707.370038

53 13.25 29760.320445 �15830.451549 �25337.809640 707.681516

54 13.50 31656.769034 �14549.497344 �23784.210083 707.992915

55 13.75 33417.116707 �13205.985271 �22128.343727 708.304435

56 14.00 35033.943650 �11805.750146 �20377.428827 708.615955

57 14.25 36500.459878 �10354.857705 �18539.075847 708.927258

58 14.50 37810.531573 �8859.577863 �16621.253481 709.238773

59 14.75 38958.704447 �7326.357314 �14632.253449 709.549980

60 15.00 39940.224086 �5761.791632 �12580.654219 709.861492

61 15.25 40751.053248 �4172.596961 �10475.283826 710.172943

62 15.50 41387.886081 �2565.581420 �8325.181952 710.484439

63 15.75 41848.159196 �947.616367 �6139.561422 710.796071

64 16.00 42130.059795 674.392412 �3927.769279 711.107495

65 16.25 42232.530676 2293.533436 �1699.247596 711.419275

66 16.50 42155.272132 3902.918094 536.505839 711.730566

67 16.75 41898.740894 5495.708947 2769.976807 712.042086

68 17.00 41464.146141 7065.147654 4991.673762 712.353663

69 17.25 40853.442432 8604.582424 7192.166646 712.665021
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Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]

70 17.50 40069.319938 10107.494927 9362.125250 712.976412

71 17.75 39115.191840 11567.526548 11492.356997 713.287987

72 18.00 37995.179006 12978.503915 13573.844046 713.599417

73 18.25 36714.092016 14334.463621 15597.779572 713.910828

74 18.50 35277.410608 15629.676058 17555.603122 714.221952

75 18.75 33691.260665 16858.668299 19439.034930 714.533584

76 19.00 31962.388796 18016.245942 21240.109087 714.845281

77 19.25 30098.134631 19097.513875 22951.205467 715.156764

78 19.50 28106.400907 20097.895874 24565.080300 715.468390

79 19.75 25995.621474 21013.152993 26074.895308 715.779824

80 20.00 23774.727299 21839.400671 27474.245306 716.091334

81 20.25 21453.110591 22573.124521 28757.184187 716.402951

82 20.50 19040.587166 23211.194732 29918.249189 716.714457

83 20.75 16547.357150 23750.879046 30952.483389 717.026029

84 21.00 13983.964160 24189.854253 31855.456321 717.337474

85 21.25 11361.253075 24526.216175 32623.282652 717.649172

86 21.50 8690.326544 24758.488074 33252.638847 717.960633

87 21.75 5982.500334 24885.627475 33740.777748 718.272113

88 22.00 3249.257698 24907.031342 34085.541002 718.583548

89 22.25 502.202871 24822.539587 34285.369282 718.895203

90 22.50 �2246.986126 24632.436884 34339.310236 719.206528

91 22.75 �4986.605239 24337.452758 34247.024111 719.518326

92 23.00 �7704.972522 23938.759921 34008.787012 719.830016

93 23.25 �10390.476491 23437.970866 33625.491749 720.141620

94 23.50 �13031.624539 22837.132665 33098.646226 720.452998

95 23.75 �15617.091194 22138.719998 32430.369356 720.764247

Table 3. Space Fixed Coordinates of C06 inclined geostationary earth orbit in COMPASS (which is Chinese Global
Positioning Satellite System) are transformed with respect to t0 from earth fixed coordinates downloaded from ftp://
ftp.glonass-iac.ru/MCC/PRODUCTS/17091/final/Sta19426.sp3 [26] {t0 = 2017.04.01–00:00:00 (Civil Calendar) = 1942–
518,400 (GPS week—week seconds)}.
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Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]

34 8.50 �18893.650283 �22965.987908 �29595.627135 701.764972

35 8.75 �16380.279535 �23517.491071 �30648.899728 702.076478

36 9.00 �13795.358449 �23966.268499 �31568.279851 702.387737

37 9.25 �11150.204459 �24310.405495 �32349.811865 702.699185

38 9.50 �8456.390949 �24548.452300 �32990.154024 703.010540

39 9.75 �5725.694161 �24679.429736 �33486.592421 703.321863

40 10.00 �2970.039352 �24702.832610 �33837.051887 703.633117

41 10.25 �201.446497 �24618.630817 �34040.103800 703.944417

42 10.50 2568.024186 �24427.268222 �34094.970801 704.255873

43 10.75 5326.326597 �24129.659289 �34001.528424 704.567076

44 11.00 8061.482740 �23727.183555 �33760.303648 704.878433

45 11.25 10761.636054 �23221.677952 �33372.470443 705.189684

46 11.50 13415.103835 �22615.427078 �32839.842340 705.501070

47 11.75 16010.428511 �21911.151470 �32164.862120 705.812547

48 12.00 18536.427516 �21111.993965 �31350.588697 706.124190
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66 16.50 42155.272132 3902.918094 536.505839 711.730566

67 16.75 41898.740894 5495.708947 2769.976807 712.042086
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Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]
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Abstract

An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm,
based on a multiobjective gradient (MOG) method, is developed to improve the compu-
tation performance. In this AGMOPSO algorithm, the MOG method is devised to update
the archive to improve the convergence speed and the local exploitation in the evolution-
ary process. Attributed to the MOGmethod, this AGMOPSO algorithm not only has faster
convergence speed and higher accuracy but also its solutions have better diversity. Addi-
tionally, the convergence is discussed to confirm the prerequisite of any successful appli-
cation of AGMOPSO. Finally, with regard to the computation performance, the proposed
AGMOPSO algorithm is compared with some other multiobjective particle swarm opti-
mization (MOPSO) algorithms and two state-of-the-art multiobjective algorithms. The
results demonstrate that the proposed AGMOPSO algorithm can find better spread of
solutions and have faster convergence to the true Pareto-optimal front.

Keywords: multiobjective particle swarm optimization, multiobjective problem,
multiobjective gradient, convergence

1. Introduction

Most of the engineering and practical applications, such as wastewater treatment processes and
aerodynamic design problem, often have a multiobjective nature and require solving several
conflicting objectives [1–3]. Handling with these multiobjective optimization problems (MOPs),
there are always a set of possible solutions which represent the tradeoffs among the objectives
known as Pareto-optimal set [4–5]. Evolutionary multiobjective optimization (EMO) algorithms,
which are a class of stochastic optimization approaches based on population characteristic, are
widely used to solve the MOPs, because a series of Pareto-optimal solutions can be obtained in a
single run [6–9]. The multiobjective optimization algorithms are striving to acquire a Pareto-
optimal set with good diversity and convergence. The most typical EMO algorithms include the
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non-dominated sorting genetic algorithm (NSGA) [10] and NSGA-II [11], the strength Pareto
evolutionary algorithm (SPEA) [12] and SPEA2 [13], the Pareto archived evolutionary strategy
(PAES) [14], the Pareto envelope-based selection algorithm (PESA) [15] and PESA-II [16].

The notable characteristic of particle swarm optimization (PSO) is the cooperation among all
particles of a swarm which is attracted toward the global best (gBest) in the swarm and its own
personal best (pBest), so the PSO have a better global searching ability [17–19]. Among these
EMO algorithms, owing to the high convergence speed and ease of implementation,
multiobjective particle swarm optimization (MOPSO) algorithms have been widely used [20–
23]. MOPSO can also be applied to multiple difficult optimization problems such as noisy and
dynamic problems. However, apart from the archive maintenance, in MOPSO, two issues still
remain to be further addressed. The first one is the update of gBest and pBest, because the
absolute best solution cannot be selected by the relationship of the non-dominated solutions.
Then, the selection of gBest and pBest results in the different flight directions for a particle,
which has an important effect on the convergence and diversity of MOPSO [24].

Zheng et al. introduced a novel MOPSO algorithm, which can improve the diversity of the
swarm and improve the performance of the evolving particles over some advanced MOPSO
algorithms with a comprehensive learning strategy [25]. The experimental results illustrate
that the proposed approach performs better than some existing methods on the real-world fire
evacuation dataset. In [26], a multiobjective particle swarm optimization with preference-
based sort (MOPSO-PS), in which the user’s preference was incorporated into the evolutionary
process to determine the relative merits of non-dominated solutions, was developed to choose
the suitable gBest and pBest. The results indicate that the user’s preference is properly reflected
in optimized solutions without any loss of overall solution quality or diversity. Moubayed
et al. proposed a MOPSO by incorporating dominance with decomposition (D2MOPSO),
which proposes a novel archiving technique that can balance the relationship of the diversity
and convergence [27]. The analysis of the comparable experiments demonstrates that the
D2MOPSO can handle with a wide range of MOPs efficiently. And some other methods for
the update of gBest and pBest can be found in [28–31]. Although many researches have been
done, it is still a huge challenge to select the appropriate gBest and pBest with the suitable
convergence and diversity [32–33].

The second particular issue of MOPSO is how to own fast convergence speed to the Pareto
Front, well known as one of the most typical features of PSO. According to the requirement of
the fast convergence for MOPSO, many different strategies have been put forward. In [34], Hu
et al. proposed an adaptive parallel cell coordinate system (PCCS) for MOPSO. This PCCS is
able to select the gBest solutions and adjust the flight parameters based on the measurements
of parallel cell distance, potential and distribution entropy to accelerate the convergence of
MOPSO by assessing the evolutionary environment. The comparative results show that the
self-adaptive MOPSO is better than the other methods. Li et al. proposed a dynamic MOPSO,
in which the number of swarms is adaptively adjusted throughout the search process [35]. The
dynamic MOPSO algorithm allocates an appropriate number of swarms to support conver-
gence and diversity criteria. The results show that the performance of the proposed dynamic
MOPSO algorithm is competitive in comparison to the selected algorithms on some standard
benchmark problems. Daneshyari et al. introduced a cultural framework to design a flight
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parameter mechanism for updating the personalized flight parameters of the mutated particles
in [36]. The results show that this flight parameter mechanism performs efficiently in exploring
solutions close to the true Pareto front. In the above MOPSO algorithms, the improved strate-
gies are expected to achieve better performance. However, few works have been done to
examine the convergence of these MOPSO algorithms [37].

Motivated by the above review and analysis, in this chapter, an adaptive gradient multiobjective
particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (MOG)
method, is put forward. This novel AGMOPSO algorithm has faster convergence in the evolu-
tionary process and higher efficiency to deal with MOPs. The proposed AGMOPSO algorithm
contains a major contribution to solve MOPs as follows: A novel MOG method is proposed for
updating the archive to improve the convergence speed and the local exploitation in the evolu-
tionary process. Unlike some existing gradient methods for single-objective optimization prob-
lems [38–40] and MOPs [41], much less is known about the gradient information of MOPs. One
of the key feathers of theMOG strategy is that the utilization of gradient information for MOPs is
able to obtain a Pareto set of solutions to approximate the optimal Pareto set. In view of the
advantages of the MOG strategy, this AGMOPSO algorithm can obtain a good Pareto set and
reach smaller testing error with much faster speed. This characteristic makes this method ideal
for MOPs.

2. Problem formulation

2.1. Multiobjective problems

A minimize MOP contains several conflicting objectives which is defined as:

minimize F xð Þ ¼ f 1 xð Þ; f 2 xð Þ;⋯; f m xð Þ� �T,
subject to x∈Ω,

(1)

where m is the number of objectives, x is the decision variable, fi() is the ith objective function.
A decision variable y is said to dominate the decision vector z, defined as y dominates z or
y≺ z, which is indicated as:

∀i : f i yð Þ ≤ f i zð Þ and ∃j : f j yð Þ < f j zð Þ, (2)

where i = 1,2, …, m, j = 1,2, …,m. When there is no solution that can dominate one solution in
MOPs, this solution can be used as the Pareto optimal solution. This Pareto optimal solution
comprises the Pareto front.

2.2. Particle swarm optimization

PSO is a stochastic optimization algorithm, in which a swarm contains a certain number of
particles that the position of each particle can stand for one solution. The position of a particle
which is expressed by a vector:
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MOPSO algorithm is competitive in comparison to the selected algorithms on some standard
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parameter mechanism for updating the personalized flight parameters of the mutated particles
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solutions close to the true Pareto front. In the above MOPSO algorithms, the improved strate-
gies are expected to achieve better performance. However, few works have been done to
examine the convergence of these MOPSO algorithms [37].

Motivated by the above review and analysis, in this chapter, an adaptive gradient multiobjective
particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (MOG)
method, is put forward. This novel AGMOPSO algorithm has faster convergence in the evolu-
tionary process and higher efficiency to deal with MOPs. The proposed AGMOPSO algorithm
contains a major contribution to solve MOPs as follows: A novel MOG method is proposed for
updating the archive to improve the convergence speed and the local exploitation in the evolu-
tionary process. Unlike some existing gradient methods for single-objective optimization prob-
lems [38–40] and MOPs [41], much less is known about the gradient information of MOPs. One
of the key feathers of theMOG strategy is that the utilization of gradient information for MOPs is
able to obtain a Pareto set of solutions to approximate the optimal Pareto set. In view of the
advantages of the MOG strategy, this AGMOPSO algorithm can obtain a good Pareto set and
reach smaller testing error with much faster speed. This characteristic makes this method ideal
for MOPs.

2. Problem formulation

2.1. Multiobjective problems

A minimize MOP contains several conflicting objectives which is defined as:

minimize F xð Þ ¼ f 1 xð Þ; f 2 xð Þ;⋯; f m xð Þ� �T,
subject to x∈Ω,

(1)

where m is the number of objectives, x is the decision variable, fi() is the ith objective function.
A decision variable y is said to dominate the decision vector z, defined as y dominates z or
y≺ z, which is indicated as:

∀i : f i yð Þ ≤ f i zð Þ and ∃j : f j yð Þ < f j zð Þ, (2)

where i = 1,2, …, m, j = 1,2, …,m. When there is no solution that can dominate one solution in
MOPs, this solution can be used as the Pareto optimal solution. This Pareto optimal solution
comprises the Pareto front.

2.2. Particle swarm optimization

PSO is a stochastic optimization algorithm, in which a swarm contains a certain number of
particles that the position of each particle can stand for one solution. The position of a particle
which is expressed by a vector:
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xi tð Þ ¼ xi,1 tð Þ; xi,2 tð Þ;…xi,D tð Þ½ �, (3)

where D is the dimensionality of the searching space, i = 1, 2, …, s; s is the swarm size. Also
each particle has a velocity which is represented as:

vi tð Þ ¼ vi,1 tð Þ; vi,2 tð Þ;…vi,D tð Þ½ �: (4)

During the movement, the best previous position of each particle is recorded as pi (t) = [pi,1(t),
pi,2(t),…, pi,D(t)], and the best position obtained by the swarm is denoted as g(t) = [g1(t), g2(t),…,
gD(t)]. Based on pi(t) and g(t), the new velocity of each particle is updated by:

vi,d tþ 1ð Þ ¼ ωvi,d tð Þ þ c1r1 pi,d tð Þ � xi,d tð Þ
� �

þ c2r2 gd tð Þ � xi,d tð Þ� �
, (5)

where t denotes the tth iteration during the searching process; d = 1, 2,…,D is the dimension in
the searching space; ɷ is the inertia weight; c1 and c2 are the acceleration constants and r1 and
r2 are the random values uniformly distributed in [0, 1]. Then the updating formula of the new
position is expressed as:

xi,d tþ 1ð Þ ¼ xi,d tð Þ þ vi,d tþ 1ð Þ: (6)

At the beginning of the searching process, the initial position of each particle is randomly
generated. As the searching process goes on, the particle swarm may appear as an uneven
distribution phenomenon in the evolutionary space.

3. Multiobjective gradient method

The key points of AGMOPSO, compared to the original MOPSO, are that the MOG method is
taken into account. In AGMOPSO, the population withN particles intends to search for a set of
non-dominated solutions to be stored in an archive with a predefined maximal size.

In MOPSO, the position of each particle can represent the potential solution for the conflicting
objectives. The gBest and pBest can guide the evolutionary direction of the whole particle
swarm. The position xi and velocity vi of the ith particle are the D-dimensional vectors xi (0)∈
RD, vi (0)∈RD. The particle updates the velocity and position by the motion trajectory in Eqs. (5)
and (6). The external archive A(0) is initialized as a null set. Meanwhile, the best previous
position pi(t) is computed by:

pi tð Þ ¼
pi t� 1ð Þ, if xi tð Þ≺pi t� 1ð Þ,
xi tð Þ, otherwise,

�
(7)

where aj t� 1ð Þ≺ ≻pi tð Þmeans x(t) is not dominated by pi(t � 1). The process of archiveA(t) is
updated based on the previous archive A(t � 1) and the best previous position pi(t)

Optimization Algorithms - Examples80

A tð Þ ¼
A t� 1ð Þ ∪pi tð Þ, if aj t� 1ð Þ≺ ≻pi tð Þ,
A t� 1ð Þ ∪pi tð Þ, otherwise,

(
(8)

where A(t) = [a1(t), a2(t),…, aK(t)]
T, aj(t) = [a1,j(t), a2,j(t),…, aD,j(t)], A t� 1ð Þ is updated archive

which removed the solutions dominated by the best previous position pi(t), K is the dimen-
sionality of archive A(t) which will be changed in the learning process, aj t� 1ð Þ≺ ≻pi tð Þ
means aj(t-1) is not dominated by pi(t) and pi(t) is not dominated by aj(t-1). Moreover, g(t) is
found according to [24].

In AGMOPSO, to enhance the local exploitation, the archiveA(t) is further updated by the MOG
method using the gradient information to obtain a Pareto set of solutions that approximates the
optimal Pareto set. Without loss of generality, assuming all of the objective functions are differ-
entiable, the directional derivative in fi(aj(t)) in a direction ūj(t) at point aj(t) is denoted as

∇uj tð Þf i aj tð Þ
� �¼ lim

δ!0

f i aj tð Þ þ δuj tð Þ
� �� f i aj tð Þ

� �
δ

� �
, (9)

where δ > 0, ūj(t) = [ū1,j(t), ū2,j(t), …, ūD,j(t)], i = 1, 2, …, m; j = 1, 2, …, K, and the directional
derivative can be rewritten:

∇uj tð Þf i aj tð Þ
� � ¼ ∇f i aj tð Þ

� �
uj tð Þ , (10)

then, the gradient direction of MOP can be represented as:

∇uj tð ÞF aj tð Þ
� �¼ ∇uj tð Þf 1 aj tð Þ

� �
;∇uj tð Þf 2 aj tð Þ

� �
;…;∇uj tð Þf m aj tð Þ

� �h iT
, (11)

According to Eq. (11), the minimum direction of MOP is calculated as

bui tð Þ ¼
∇f i aj tð Þ
� �

∇f i aj tð Þ
� ��� �� ,

∇f i aj tð Þ
� �¼ ∂f i aj tð Þ

� �
=∂a1, j tð Þ, ∂f i aj tð Þ

� �
=∂a2, j tð Þ,…, ∂f i aj tð Þ

� �
=∂aD, j tð Þ

� �
, (12)

and bu i tð Þk k ¼ 1. In addition, the smooth criteria fi(aj(t)) are said to be Pareto-stationary at the
point aj(t) if

Xm

i¼1
αi tð Þbui tð Þ ¼ 0,

Xm

i¼1
αi tð Þ ¼ 1, αi tð Þ ≥ 0, ∀ið Þ: (13)

The weight vector can be set as

α tð Þ ¼ 1

bUTbU
���

���
2

bu1k k2; bu2k k2;…; bumk k2
h iT

, (14)

where bU tð Þ ¼ bu1 tð Þ, bu2 tð Þ;…, bum tð Þ½ �, αi tð Þ ¼ bu ik k2= bUTbU
���

���
2
, and αk k ¼ 1.

A Gradient Multiobjective Particle Swarm Optimization
http://dx.doi.org/10.5772/intechopen.76306

81
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where D is the dimensionality of the searching space, i = 1, 2, …, s; s is the swarm size. Also
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generated. As the searching process goes on, the particle swarm may appear as an uneven
distribution phenomenon in the evolutionary space.

3. Multiobjective gradient method

The key points of AGMOPSO, compared to the original MOPSO, are that the MOG method is
taken into account. In AGMOPSO, the population withN particles intends to search for a set of
non-dominated solutions to be stored in an archive with a predefined maximal size.

In MOPSO, the position of each particle can represent the potential solution for the conflicting
objectives. The gBest and pBest can guide the evolutionary direction of the whole particle
swarm. The position xi and velocity vi of the ith particle are the D-dimensional vectors xi (0)∈
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and (6). The external archive A(0) is initialized as a null set. Meanwhile, the best previous
position pi(t) is computed by:
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xi tð Þ, otherwise,
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(7)

where aj t� 1ð Þ≺ ≻pi tð Þmeans x(t) is not dominated by pi(t � 1). The process of archiveA(t) is
updated based on the previous archive A(t � 1) and the best previous position pi(t)
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To find the set of Pareto-optimal solutions of MOPs, the multi-gradient descent direction is
given as follows:

∇F aj tð Þ
� � ¼

Xm

i¼1
αi tð Þbui tð Þ,

Xm

i¼1
αi tð Þ ¼ 1, αi tð Þ ≥ 0, ∀ið Þ: (15)

This multi-gradient descent direction is utilized to evaluate the full set of unit directions. And
the archive A(t) is updated as follows:

aj tð Þ ¼ aj tð Þ þ h � ∇F aj tð Þ
� �

, (16)

where, h is the step size, aj(t) and āj(t) are the jth archive variables before and after the MOG
algorithm has been used at time t and the fitness values are updated at the same time.

Moreover, the archive A(t) can store the non-dominated solutions of AGMOPSO. But the
number of non-dominated solutions will gradually increase during the search process. There-
fore, to improve the diversity of the solutions, a fixed size archive is implemented in
AGMOPSO to record the good particles (non-dominated solutions). During each iteration, the
new solutions will be compared with the existing solutions in the archive using the dominating
relationship. When a new solution cannot be dominated by the existing solutions in the
archive, it will be reserved in the archive. On the contrary, the dominated new solutions cannot
be accepted in the archive. If the capacity of the archive reaches the limitation, a novel pruning
strategy is proposed to delete the redundant non-dominated solutions to maintain uniform
distribution among the archive members.

Assuming that there are K points which will be selected from the archive serve. The maximum
distance of the line segment between the first and the end points (namely whole Euclidean
distance Dmax) are obtained. Then, the average distance of the remained K-2 points are set

d ¼ Dmax= K � 1ð Þ, (17)

where d is the average distance of all points. The average values of d are used to guide to select
the non-dominated solutions of more uniform distribution. In addition, for the three objectives,
all of the solutions (except the first and the end) are projected to the Dmax. The points can be
reserved, the projective points and the average distance points can be found. However, most
projective distances of the adjacent points are not equal to the average distance. Thus, the next
point is likely to be selected when it has the distance more closely to the average distance. Once
the search process is terminated, the solutions in archive will become the final Pareto front.
Taking DTLZ2 as an example, Figure 1 shows this strategy with three objectives in details.

Local search is a heuristic method to improve PSO performance. It repeatedly tries to improve
the current solution by replacing it with a neighborhood solution. In the proposed MOG
algorithm, the set of unit directions is described by the normalized combination of the unit
directions that map to the intersection points as Eq. (12). Then, each single run of the algorithm
can yield a set of Pareto solutions. Experiments demonstrate that the improvements make
AGMOPSO effective.
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In MOPSO, it is desired that an algorithm maintains good spread of solutions in the non-
dominated solutions as well as the convergence to the Pareto-optimal set. In this AGMOPSO
algorithm, an estimate of density is designed to evaluate the density of solutions surrounding
it. It calculates the overall Euclidean distance values of the solutions, and then the average
distance of the solutions along each of the objectives corresponding to each objective is calcu-
lated. This method is able to get a good spread result under some situations to improve the
searching ability. And the pseudocode of AGMOPSO is presented in Table 1.

4. Simulation results and analysis

In this section, three ZDT and two DTLZ benchmark functions are employed to test the
proposed of AGMOPSO. This section compares the proposed AGMOPSO with four state-
of-the-art MOPSO algorithms—adaptive gradient MOPSO (AMOPSO) [41], crowded distance
MOPSO (cdMOPSO) [32], pdMOPSO [31] and NSGA-II [11].

Figure 1. Illustration of points selection procedure. (a) Is the original points and (b) is the selection result of the proposed
strategy.

Initializing the flight parameters, population size, the particles positions x(0) and velocity v(0)
Loop
Calculating the fitness value
Getting the non-dominated solutions % Eq. (8)
Storing the non-dominated solutions in archive A(t)
Updating the archive using MOG method % Eq. (16)
If (the number of archive solutions exceed capacity)
Pruning the archive
End
Selecting the gBest from the archive A(t)
Calculating the flight parameters
Updating the velocity xi(t) and position vi(t) % Eqs. (5–6)
End loop

Table 1. AMOPSO algorithm.
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To find the set of Pareto-optimal solutions of MOPs, the multi-gradient descent direction is
given as follows:

∇F aj tð Þ
� � ¼

Xm

i¼1
αi tð Þbui tð Þ,

Xm

i¼1
αi tð Þ ¼ 1, αi tð Þ ≥ 0, ∀ið Þ: (15)

This multi-gradient descent direction is utilized to evaluate the full set of unit directions. And
the archive A(t) is updated as follows:

aj tð Þ ¼ aj tð Þ þ h � ∇F aj tð Þ
� �

, (16)

where, h is the step size, aj(t) and āj(t) are the jth archive variables before and after the MOG
algorithm has been used at time t and the fitness values are updated at the same time.

Moreover, the archive A(t) can store the non-dominated solutions of AGMOPSO. But the
number of non-dominated solutions will gradually increase during the search process. There-
fore, to improve the diversity of the solutions, a fixed size archive is implemented in
AGMOPSO to record the good particles (non-dominated solutions). During each iteration, the
new solutions will be compared with the existing solutions in the archive using the dominating
relationship. When a new solution cannot be dominated by the existing solutions in the
archive, it will be reserved in the archive. On the contrary, the dominated new solutions cannot
be accepted in the archive. If the capacity of the archive reaches the limitation, a novel pruning
strategy is proposed to delete the redundant non-dominated solutions to maintain uniform
distribution among the archive members.

Assuming that there are K points which will be selected from the archive serve. The maximum
distance of the line segment between the first and the end points (namely whole Euclidean
distance Dmax) are obtained. Then, the average distance of the remained K-2 points are set

d ¼ Dmax= K � 1ð Þ, (17)

where d is the average distance of all points. The average values of d are used to guide to select
the non-dominated solutions of more uniform distribution. In addition, for the three objectives,
all of the solutions (except the first and the end) are projected to the Dmax. The points can be
reserved, the projective points and the average distance points can be found. However, most
projective distances of the adjacent points are not equal to the average distance. Thus, the next
point is likely to be selected when it has the distance more closely to the average distance. Once
the search process is terminated, the solutions in archive will become the final Pareto front.
Taking DTLZ2 as an example, Figure 1 shows this strategy with three objectives in details.

Local search is a heuristic method to improve PSO performance. It repeatedly tries to improve
the current solution by replacing it with a neighborhood solution. In the proposed MOG
algorithm, the set of unit directions is described by the normalized combination of the unit
directions that map to the intersection points as Eq. (12). Then, each single run of the algorithm
can yield a set of Pareto solutions. Experiments demonstrate that the improvements make
AGMOPSO effective.
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In MOPSO, it is desired that an algorithm maintains good spread of solutions in the non-
dominated solutions as well as the convergence to the Pareto-optimal set. In this AGMOPSO
algorithm, an estimate of density is designed to evaluate the density of solutions surrounding
it. It calculates the overall Euclidean distance values of the solutions, and then the average
distance of the solutions along each of the objectives corresponding to each objective is calcu-
lated. This method is able to get a good spread result under some situations to improve the
searching ability. And the pseudocode of AGMOPSO is presented in Table 1.

4. Simulation results and analysis

In this section, three ZDT and two DTLZ benchmark functions are employed to test the
proposed of AGMOPSO. This section compares the proposed AGMOPSO with four state-
of-the-art MOPSO algorithms—adaptive gradient MOPSO (AMOPSO) [41], crowded distance
MOPSO (cdMOPSO) [32], pdMOPSO [31] and NSGA-II [11].

Figure 1. Illustration of points selection procedure. (a) Is the original points and (b) is the selection result of the proposed
strategy.

Initializing the flight parameters, population size, the particles positions x(0) and velocity v(0)
Loop
Calculating the fitness value
Getting the non-dominated solutions % Eq. (8)
Storing the non-dominated solutions in archive A(t)
Updating the archive using MOG method % Eq. (16)
If (the number of archive solutions exceed capacity)
Pruning the archive
End
Selecting the gBest from the archive A(t)
Calculating the flight parameters
Updating the velocity xi(t) and position vi(t) % Eqs. (5–6)
End loop

Table 1. AMOPSO algorithm.
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4.1. Performance metrics

To demonstrate the performance of the proposed AGMOPSO algorithm, two different quanti-
tative performance metrics are employed in the experimental study.

1. Inverted generational distance (IGD):

IGD F∗; Fð Þ ¼
X
x∈F∗

mindis x; Fð Þ= F∗j j, (18)

where mindis(x, F) is the minimum Euclidean distance between the solution x and the solutions
in F. A smaller value of IGD(F*, F) demonstrates a better convergence and diversity to the
Pareto-optimal front.

2. Spacing (SP):

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K � 1

XK

i¼1
d� di
� �

vuut , (19)

where di is the minimum Euclidean distance between ith solution and other solutions, K is the
number of non-dominated solutions, d is the average distance of the all Euclidean distance di.

4.2. Parameter settings

All the algorithms have three common parameters: the population size N, the maximum
number of non-dominated solutions K and iterations T. Here, N = 100, K = 100 and T = 3000.

4.3. Experimental results

The experimental performance comparisons of the cdMOPSO algorithm on ZDTs and DTLZs
are shown in Figures 2–6. Seen from Figures 2–6, the non-dominated solutions obtained by the
proposed AGMOPSO algorithm can approach to the Pareto Front appropriately and maintain

Figure 2. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for ZDT3
function.

Optimization Algorithms - Examples84

Figure 3. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for ZDT4
function.

Figure 4. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for ZDT6
function.

Figure 5. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for DTLZ2
function.
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Figure 6. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for DTLZ7
function.

Function Index AGMOPSO AMOPSO pdMOPSO cdMOPSO NSGA-II

ZDT3 Best 0.00149 0.00425 0.2019 0.003109 0.005447

Worst 0.00697 0.00832 0.4265 0.028986 0.006105

Mean 0.00433 0.00632 0.3052 0.003063 0.005834

std 0.00297 0.00527 0.1003 0.007131 0.000202

ZDT4 Best 3.0194 2.7133 3.3980 4.9760 0.00462

Worst 5.1522 5.0543 4.9760 6.3610 0.11166

Mean 3.7933 3.8943 4.0330 5.9120 0.016547

std 1.5133 2.7401 1.6510 4.5180 0.031741

ZDT6 Best 0.2046 0.0936 2.2310 0.000897 0.01119

Worst 0.7834 0.9154 2.8790 0.003627 0.01498

Mean 0.4878 0.5433 2.4690 0.002988 0.01286

std 0.0242 0.0236 0.8169 0.0001543 0.001004

DTLZ2 Best 0.0477 0.0519 0.1330 0.0322 0.07830

Worst 0.3913 0.3425 0.3690 0.2067 0.2740

Mean 0.1058 0.1878 0.2070 0.1015 0.1059

std 0.0060 0.0132 0.0413 0.0134 0.008383

DTLZ7 Best 0.05766 0.02044 0.00796 0.00701 0.00614

Worst 0.32803 0.10295 0.07678 0.05439 0.03208

Mean 0.01985 0.04573 0.04831 0.02856 0.01799

std 0.00139 0.00312 0.00289 0.00165 0.00129

Table 2. Comparisons of different algorithms for IGD.
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a greater diversity than other compared algorithms. Experimental results in Figures 2–4 show
that the proposed AGMOPSO algorithm is superior to the cdMOPSO algorithm in diversity
performance and can approach the Pareto Front. In addition, the results in Figures 5 and 6
show that the proposed AGMOPSO algorithm can obtain a better performance on the three-
objective benchmark problems with accurate convergence and the preferable diversity.

In order to show the experimental performance in details, the experimental results, which
contain the best, worst, mean and standard deviations of IGD and SP based on the two-
objective of ZDTs and the three-objective of DTLZs are listed in Tables 2 and 3, respectively.

Moreover, the experimental results in Tables 2 and 3 include the details of the four evolution-
ary algorithms. To illustrate the significance of the findings, the comparing results for the
performance index is analyzed as follows:

1. Comparison of IGD index: From Table 2, the proposed AGMOPSO algorithm is superior
to other MOPSO algorithms in terms of the results of IGD. Firstly, in the two-objective of
ZDTs instances, the AGMOPSO can have better mean deviations of IGD than other four
evolutionary algorithms on ZDT3 and ZDT4. It is indicated that the MOG method has

Function Index AGMOPSO AMOPSO pdMOPSO cdMOPSO NSGA-II

ZDT3 Best 0.023475 0.097811 0.099654 0.10356 0.081569

Worst 0.087874 0.416626 0.487126 0.87449 0.106568

Mean 0.067451 0.245931 0.198551 0.59684 0.092216

std 0.012873 0.050937 0.079442 0.22468 0.008415

ZDT4 Best 0.030914 0.039825 0.069564 0.139577 0.031393

Worst 0.078011 0.193765 0.233794 0.300951 0.044254

Mean 0.049923 0.078821 0.186698 0.204573 0.038378

std 0.001092 0.004517 0.063757 0.095562 0.003837

ZDT6 Best 0.010981 0.008739 0.009935 0.012396 0.006851

Worst 0.100551 0.088535 0.023766 0.040205 0.010127

Mean 0.034127 0.040251 0.010683 0.034569 0.008266

std 0.009756 0.007341 0.003021 0.003884 0.000918

DTLZ2 Best 0.1438 0.0943 0.0569 0.0932 0.021456

Worst 0.6893 0.8947 0.6991 0.5897 0.7314

Mean 0.0398 0.4631 0.4721 0.3562 0.4162

std 0.00764 0.03401 0.02964 0.01772 0.03655

DTLZ7 Best 0.1958 0.1047 0.0932 0.1347 0.0632

Worst 0.9032 0.9355 0.8361 0.9307 0.7466

Mean 0.0502 0.0493 0.4459 0.5972 0.4191

std 0.01097 0.03201 0.00896 0.2133 0.00796

Table 3. Comparisons of different algorithms for SP.
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played a vital role on the algorithm. Meanwhile, compared with NSGA-II [11], the pro-
posed AGMOPSO has better IGD index performance of accuracy and stability for the two-
objective of ZDTs (except ZDT4). Second, in the three-objective of DTLZs instances, the
AGMOPSO is superior to other four algorithms in terms of the mean deviations value of
IGD. According to the comparisons between the AGMOPSO and other four evolutionary
algorithms, it is demonstrated that the proposed AGMOPSO is the closest to the true front
and nearly enclose the entire front, which means the proposed AGMOPSO algorithm
achieves the best convergence and divergence.

2. Comparison of SP index: The comparison of SP among the proposed AGMOPSO algo-
rithm and other compared algorithms was shown in Table 3. Firstly, in the two-objective of
ZDTs instances, the AGMOPSO can have better mean deviations and best deviations of SP
than other four evolutionary algorithms ZDT3 and ZDT4. Meanwhile, compared with
NSGA-II [11], the proposed AGMOPSO has better SP index performance of diversity for
the two-objective of ZDTs (except ZDT6). From the results in Table 3, the comparison of
the SP between the proposed AGMOPSO algorithm illustrate that the MOG method can
have better effect on the diversity performance than other existing methods. Secondly, in
the three-objective of DTLZs instances, the proposed AGMOPSO algorithm has the best SP
performance on the DTLZ2 and DTLZ7 than the other four compared algorithms. In
addition, to verify the effect of the MOG method, the proposed AGMOPSO can obtain a
set of non-dominated solutions with greater diversity and convergence than NSGA-II on
instances (except ZDT4 and ZDT6). Therefore, the proposed AGMOPSO algorithm can
obtain more accurate solutions with better diversity on the most ZDTs and DTLZs.

5. Conclusion

A novel method, named AGMOPSO, is proposed to solve MOPs, which underlies MOG to
accelerate the solution convergence and deletes the redundant solutions in the archive by the
equidistant partition principle. Meanwhile, the convergence analysis and convergence condi-
tions of AGMOPSO are also carefully investigated for the successful applications. Based on the
theoretical analysis and the experimental results, the proposed AGMOPSO algorithm with
the local search strategy MOG is a novel method for solving theses MOPs. The comparisons
of the different indexes also demonstrate that the proposed AGMOPSO algorithm is superior
to the other algorithms for most of ZDTs and DTLZs.
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Abstract

This chapter studies a new optimal algorithm that can be implemented in a piecewise
parallel manner onboard spacecraft, where the capacity of onboard computers is limited.
The proposed algorithm contains two phases. The predicting phase deals with the open-
loop state trajectory optimization with simplified system model and evenly discretized
time interval of the state trajectory. The tracking phase concerns the closed-loop optimal
tracking control for the optimal reference trajectory with full system model subject to real
space perturbations. The finite receding horizon control method is used in the tracking
program. The optimal control problems in both programs are solved by a direct colloca-
tion method based on the discretized Hermite–Simpson method with coincident nodes.
By considering the convergence of system error, the current closed-loop control tracking
interval and next open-loop control predicting interval are processed simultaneously. Two
cases are simulated with the proposed algorithm to validate the effectiveness of proposed
algorithm. The numerical results show that the proposed parallel optimal algorithm is
very effective in dealing with the optimal control problems for complex nonlinear
dynamic systems in aerospace engineering area.

Keywords: optimal control, parallel onboard optimal algorithm, discretizing
Hermite–Simpson method, nonlinear dynamic system, aerospace engineering

1. Introduction

Space tether system is a promising technology over decades. It has wide potential applications
in the space debris mitigation & removal, space detection, power delivery, cargo transfer and
other newly science & technic missions. Recently, there is continuous interest in the space
tether systems, in leading space agencies such as, NASA’s US National Aeronautics and Space
Administration, ESA’s European Space Agency, and JAXA’s Japan Aerospace Exploration
Agency [1]. Their interest technologies include the electrodynamic tether (EDT) propulsion
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technology, retrieval of tethered satellite system, multibody tethered system and space elevator
system. Compared with existing technologies adopted by large spacecraft such as the rocket or
thruster, the space tether technology has the advantages of fuel-efficiency (little or no propel-
lant required), compact size, low mass, and ease-of-use [2]. These advantages make it reason-
able to apply the space tethered system for deorbiting the fast-growing low-cost micro/nano-
satellites and no-fuel cargo transfer. The difficulty associated with space tether system is to
control & suppress its attitudes during a mission process for the technology to be functional
and practical. Many works have been devoted to solving this problem, and one effort is to use
the optimal control due to its good performances in the complex and unstable nonlinear
dynamic systems. In this chapter, a new piecewise onboard parallel optimal control algorithm
is proposed to control and suppress the attitudes of the space tether system. To test its validity,
two classical space tether systems, the electrodynamic tether system (EDT) and partial space
elevator (PSE) system are considered and tested.

An EDT system with constant tether length is underactuated. The electric current is the only
control input if there are no other active forces such as propulsion acting on the ends of an EDT.
The commonly adopted control strategy in the literature is the current regulation using energy-
based feedback in this underactuated control problem. Furthermore, many efforts have been
done to solve this problemwith optimal control. Stevens and Baker [3] studied the optimal control
problem of the EDT libration control and orbital maneuverer efficiency by separating the fast and
slow motions using an averaged libration state dynamics as constraints instead of instantaneous
dynamic constraints in the optimal control algorithm. The instantaneous states are propagated
from the initial conditions using the optimal control law in a piecewise fashion. Williams [4]
treated the slow orbital and fast libration motions separately with two different discretization
schemes in the optimal control of an EDT orbit transfer. The differential state equations of the
libration motion are enforced at densely allocated nodes, while the orbital motion variables are
discretized by a quadrature approach at sparsely allocated nodes. The two discretization schemes
are unified by a specially designed nodemappingmethod to reflect the coupling nature of orbital
and libration motions. The control reference, however, is assumed known in advance.

A PSE system is consisted with one main satellite and two subsatellites (climber & end body)
connected to each other by tether(s). The difficulty associated to such a system is to suppress the
libration motion of the climber and the end body. This libration is produced by the moving
climber due to the Coriolis force, which will lead the system unstable. While the climber is fast
moving along the tether, the Coriolis force will lead to the tumbling of the PSE system. Thus, the
stability control for suppressing such a system is critical for a successful climber transfer mis-
sion. To limit the fuel consuming, tension control is widely used to stable the libration motion of
the space tethered system due to it can be realized by consuming electric energy only [5]. Many
efforts have been devoted to suppressing the libration motion of space tethered system such as,
Wen et al. [6] stabled the libration of the tethered system by an analytical feedback control law
that accounts explicitly for the tension constraint. The study shows good computational effect,
and the proposed method requires small data storage ability. Ma et al. [7] used adaptive
saturated sliding mode control to suppress the attitude angle in the deployment period of the
space tethered system. Optimal control [8, 9] is also proved as a way to overcome the libration
issue. The above tension control schemes are helpful for both two-body and three-body tethered
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system. Up to data, limited devotions have been done on the libration suppression of a PSE
system using tension control only. Williams used optimal control to design the climber’s speed
function of a climber for a full space elevator [10]. Modeled by simplified dynamic equations,
an optimal control problem is solved, and the solution results in zero in-plane libration motion
of the ribbon in the ending phase of climber motion. The study shows that to eliminate the in-
plane oscillations by reversing the direction of the elevator is possible. Kojima et al. [11]
extended the mission function control method to eliminate the libration motion of a three body
tethered system. The proposed method is effective when the total tether length is fixed and the
maximum speed of the climber no more than 10 m/s. Although these efforts are useful to
suppress the libration motion of the PSE system, it still difficult to control the attitudes of such
a system in the transfer period.

To overcome the challenges in aforementioned works, we propose a parallel onboard optimal
algorithm contains two phases. Phase 1 concerns the reference state trajectory optimization
within a given time interval, where an optimal control model is formulated based on the
timescale separation concept [3, 12] to simplify the dynamic calculations of the EDT & PSE
system. An open-loop optimal state trajectory is then obtained by minimizing a cost function
subject to given constraints. The state trajectory of paired state and control input variables is
solved approximately by the direct collocation method [13] that is based on the Hermite-
Simpson method [14]. In this phase, the simplified dynamic model is by used. Phase 2 concerns
the tracking of the open-loop optimal state trajectory within the same interval. A closed-loop
optimal control problem is formulated in a quadrature form to track the optimal state trajec-
tory obtained in phase 1. Unlike phase 1, all the major perturbative forces are included, and
more realistic geomagnetic and gravitational field models are considered. While the system is
running the process in phase 2 with one CPU, the next phase 1 calculation is running in
another CPU with data modification based on the errors obtained in the last calculation
program. The simulation results demonstrate the effectiveness of the approach in fast satellite
deorbit by EDTs in equatorial orbit. Furthermore, for fast transfer period of the partial space
elevator, the propose method also shows good effect on suppression the libration angles of the
climber and the end body with tension control only.

2. Optimal control algorithm

2.1. Control scheme

Assume two CUPs are used to process the calculation. CUP-1 is used to determine the open-
loop optimal control trajectory of dynamic states employing the simple dynamic equations.
The obtained optimal state trajectory will be tracked by CPU-2 using closed-loop RHC. While
the system is tracking the i-th interval, the (i + 1)-th optimal trajectory is being calculated in
CPU-1. Once the tracking for the i-th interval is finished (implemented by CPU-2), the real
finial state Si will be stored in the memory and the (i + 1)-th optimal trajectory can be tracked.
By repeating the above process, the optimal suppression control problem is solved in a parallel
piecewise manner until the transfer period is over.
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The calculation of the optimal trajectory in CPU-1 is a prediction state trajectory whose initial

state is estimated as ~Siþ1
i ¼ ~Si

i þ 1
2 ei�1, where ~Si

i denotes the estimated finial state of the i-th
interval obtained by CUP-1, the superscript and subscript denote the internal number and the

states node number. ~Siþ1
i is the estimated initial state of the (i + 1)-th interval, and

ei�1 ¼ Si�1 � ~Si�1
i�1 is the error between the real and the estimated final state of the (i-1)-th

interval, the data used to calculate the error is picked up from the memory. For the first

interval, i = 1, S0 ¼ ~S1
0 and e0 ¼ 0. The computational diagram of the entire control strategy is

given as shown in Figure 1.

2.2. Open-loop control trajectory

The libration angles of the climber and the end body are required to be kept between the
desired upper/lower bounds in the climber transfer process. To make the calculation conve-
nient and simple. The accessing process is divided into a series of intervals, such that, the
transfer process ti; tiþ1½ � is discretized into n intervals, where ti and tiþ1 are the initial and final
time, respectively. tiþ1 can be obtained in terms of the transfer length of the climber and its
speed. To make calculation convenient to be realized in practical condition, the transfer process
is divided evenly. The optimal trajectory should be found to satisfy the desired cost functions
for each time intervals as

Ji ¼
ðtiþ1
ti

Π x; uð Þ dt (1)

subject to the simplified dynamic equations. All the errors between simple model and the
entire model are regarded as perturbations. The above cost function minimization problem is
solved by a direct solution method, which uses a discretization scheme to transform the

Figure 1. Control scheme.
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continuous problem into a discrete parameter optimization problem of nonlinear program-
ming within the interval, to avoid the difficulty usually encountered when standard
approaches are used on derivation of the required conditions for optimality [15]. There are a
number of efficient discretization schemes, such as, Hermite-Legendre-Gauss-Lobatto method
[16] and Chebyshev pseudospectral method [8], in the literature for discretizing the continuous
problem. In the current work, a direct collocation method, based on the Hermite-Simpson
scheme [14, 17], is adopted because of its simplicity and accuracy.

Assume that the time interval ti; tiþ1½ � is discretized into n subintervals with n + 1 nodes at the
discretized time τk (k ¼ 0, 1, :…, n).

γk ¼ τkþ1 � τk,
Xn

k¼1
γk ¼ tiþ1 � ti (2)

The state vectors and control inputs are discretized at n + 1 nodes, x0, x1, x2, …, xn and υ0, υ1,
υ2, …, υn. Further, denote the state vectors and the control inputs at mid-points between
adjacent nodes by x0:5, x1:5, x2:5, …, xn�0:5 and υ0:5, υ1:5, υ2:5, …, υn�0:5 and the mid-point state
vectors, xkþ0:5, can be derived by the Hermite interpolation scheme,

xkþ0:5 ¼ 1
2

xk þ xkþ1ð Þ þ γ
8
Γ xk; υk; τkð Þ � Γ xkþ1; υkþ1; τkþ1ð Þ½ � (3)

Accordingly, the cost function in Eq. (1) can be discretized by the Simpson integration formula as

J ffi γ
6

Xn�1

k¼0
Π xk; υk; τkð Þ þ 4Π xkþ0:5; υkþ0:5; τkþ0:5ð Þ þΠ xkþ1; υkþ1; τkþ1ð Þ½ � (4)

The nonlinear constraints based on the tether libration dynamics, the first-order states, can also
be denoted by discretized equations using the Simpson integration formula, such that

γ
6
Π xk; υk; tkð Þ þ 4Π xkþ0:5; υkþ0:5; τkþ0:5ð Þ þΠ xkþ1; υkþ1; τkþ1ð Þ½ � þ xk � xkþ1 ¼ 0 (5)

The left-hand side of Eq. (5) is also named as the Hermite-Simpson Defect vector in the
literature. Finally, the discretization process is completed by replacing the constraints for the
initial states and the continuous box constraints with the discretized constraints,

x0 ¼ xstart, xmin ≤ xk ≤ xmax, υmin ≤ υk ≤ υmax, υmin ≤ υkþ0:5 ≤ υmax (6)

The minimization problem of a continuous cost function is now transformed to a nonlinear
programming problem. It searches optimal values for the programming variables that mini-
mize the discretized form of cost function shown in Eq. (4) while satisfying the constraints of
Eqs. (5) and (6). The subscript index “k” will be refreshed in the next time interval.

2.3. Closed-loop optimal control for tracking open-loop optimal state trajectory

The RHC is implemented by converting the continuous optimal control problem into a discrete
parameter optimization problem that can be solved analytically. Like the open-loop trajectory
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transfer process ti; tiþ1½ � is discretized into n intervals, where ti and tiþ1 are the initial and final
time, respectively. tiþ1 can be obtained in terms of the transfer length of the climber and its
speed. To make calculation convenient to be realized in practical condition, the transfer process
is divided evenly. The optimal trajectory should be found to satisfy the desired cost functions
for each time intervals as

Ji ¼
ðtiþ1
ti

Π x; uð Þ dt (1)

subject to the simplified dynamic equations. All the errors between simple model and the
entire model are regarded as perturbations. The above cost function minimization problem is
solved by a direct solution method, which uses a discretization scheme to transform the

Figure 1. Control scheme.
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continuous problem into a discrete parameter optimization problem of nonlinear program-
ming within the interval, to avoid the difficulty usually encountered when standard
approaches are used on derivation of the required conditions for optimality [15]. There are a
number of efficient discretization schemes, such as, Hermite-Legendre-Gauss-Lobatto method
[16] and Chebyshev pseudospectral method [8], in the literature for discretizing the continuous
problem. In the current work, a direct collocation method, based on the Hermite-Simpson
scheme [14, 17], is adopted because of its simplicity and accuracy.

Assume that the time interval ti; tiþ1½ � is discretized into n subintervals with n + 1 nodes at the
discretized time τk (k ¼ 0, 1, :…, n).
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The state vectors and control inputs are discretized at n + 1 nodes, x0, x1, x2, …, xn and υ0, υ1,
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vectors, xkþ0:5, can be derived by the Hermite interpolation scheme,

xkþ0:5 ¼ 1
2

xk þ xkþ1ð Þ þ γ
8
Γ xk; υk; τkð Þ � Γ xkþ1; υkþ1; τkþ1ð Þ½ � (3)

Accordingly, the cost function in Eq. (1) can be discretized by the Simpson integration formula as
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The nonlinear constraints based on the tether libration dynamics, the first-order states, can also
be denoted by discretized equations using the Simpson integration formula, such that
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The left-hand side of Eq. (5) is also named as the Hermite-Simpson Defect vector in the
literature. Finally, the discretization process is completed by replacing the constraints for the
initial states and the continuous box constraints with the discretized constraints,

x0 ¼ xstart, xmin ≤ xk ≤ xmax, υmin ≤ υk ≤ υmax, υmin ≤ υkþ0:5 ≤ υmax (6)

The minimization problem of a continuous cost function is now transformed to a nonlinear
programming problem. It searches optimal values for the programming variables that mini-
mize the discretized form of cost function shown in Eq. (4) while satisfying the constraints of
Eqs. (5) and (6). The subscript index “k” will be refreshed in the next time interval.

2.3. Closed-loop optimal control for tracking open-loop optimal state trajectory

The RHC is implemented by converting the continuous optimal control problem into a discrete
parameter optimization problem that can be solved analytically. Like the open-loop trajectory
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optimization problem, the same direct collocation based on the Hermite-Simpson method is
used to discretize the RHC problem.

By using the similar notations of discretization above, the cost function is discretized using the
Simpson integration formula as

G ¼ 1
2
δxTiþ1Sδxiþ1

þ γ
12

Xn�1

k¼0
δxTk Qδxk þ 4δxTkþ0:5Qδxkþ0:5 þ δxTkþ1Qδxkþ1 þ R δυ2

k þ 4δυ2
kþ0:5 þ δυ2

kþ1
� �� � (7)

and the constraints are discretized into

δxk � δxkþ1 þ γ
6
AkδxkþBkδυk þ 4Akþ0:5δxkþ0:5 þ 4Bkþ0:5δυkþ0:5 þ Akþ1δxkþ1þBkþ1δυkþ1½ � ¼ 0

(8)

δxk ¼ x τkð Þ � xopt τkð Þ (9)

δxkþ0:5 ¼ 1
2

δxk þ δxkþ1ð Þ þ γ
8

Akδxk þ Bkδυk � Akþ1δxkþ1 � Bkþ1δυkþ1ð Þ (10)

where, Ak ¼ A τkð Þ, Akþ0:5 ¼ A τkþ0:5ð Þ, Bk ¼ B τkð Þ, Bkþ0:5 ¼ B τkþ0:5ð Þ.
The derivation of Eq. (8a) finally leads to a quadratic programming problem to find a pro-

gramming vector Z ¼ δxT0 δxT1 … δxTn δυ0 δυ1 … δυn δυ0:5 δυ1:5 … δυn�0:5
� �T, which mini-

mizes the cost function:

G ¼ 1
2
ZTMZ (11)

subject to.

CZ¼X X ¼ δxT0 0 0 … 0
� �T

(12)

where the matrices C and M are given in the Appendix.

It is easy to find the solution analytically to this standardquadratic programmingproblemby [24].

Z∗¼M�1CT CM�1CT� ��1
X (13)

and the control correction at the current time can be obtained as

δυ tið Þ¼VZ∗¼VM�1CT CM�1CT� ��1
X ≜K ti; n; thð Þ x tið Þ � xopt tið Þ

� �
(14)

where the row vector V is defined to “choose” the target value from the optimal solution, and
the position of “1” in the row vector V is the same as the position of δυ0 in the column vector Z.
Finally, the control input of the closed-loop control, υ tið Þ, is
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υ tið Þ ¼ υopt tið Þ þ δυ tið Þ ¼ υopt tið Þ þ K ti; n; thð Þ x tið Þ � xopt tið Þ
� �

(15)

It is apparent that the closed-loop control law derived here is a linear proportional feedback
control law, and the feedback gain matrix K is a function of time. Without any explicit
integration of differential equations, K can either be determined offline or online depending
on the computation and restoration ability onboard the satellite.

It is worth to point out some advantages of this approach. Firstly, the matricesM and C are both
formulated by the influence matrices at certain discretization notes (Ak, Bk, Ak + 0.5, Bk + 0.5). If ti
and ti are both set to be coincident with the discretization nodes used in the open-loop control
problem, then most of the influence matrices calculated previously can be used directly in the
tracking control process to reduce computational efforts. This is the advantage of using the same
discretization method in the current two-phased optimal control approach. Secondly, the matrix
M is unchanged if treating the terminal horizon time ti þ th as the time-to-go and keep the future
horizon interval ti; tiþ1½ � unchanged. This means the inverse of M could be calculated only once
in the same interval. It is attractive for the online implementation of HRC, where the computa-
tional effort is critical. As the entire interval can be discretized into small intervals, if these
intervals are sufficiently small relative to the computing power of the satellite, then the calcula-
tion process can be carried by the onboard computer. Furthermore, for small intervals, the
computation for the open-loop optimal trajectory of the next interval can be done by CPU-1
while the tracking is still in process, see Figure 1. This makes of the proposed optimal suppres-
sion control a parallel online implementation, which is another advantage of this control scheme.

3. Cases study

3.1. Parallel optimal algorithm in attitudes control of EDT system

In order to test the validity of the proposed optimal algorithm, a case study of the attitudes
control of EDT system in aerospace engineering is used. The obtained results are compared
with some existing control methods.

3.1.1. Problem formulation

The EDT system’s orbital motion is generally described in an Earth geocentric inertial frame
(OXYZ) with the origin O at the Earth’s centre, see Figure 2(a). The X-axis directs to the point
of vernal equinox, the Z-axis aligns with the Earth’s rotational axis, and the Y-axis completes a
right-hand coordinate system, respectively. The equation of orbital dynamic motion can be
written in the form of Gaussian perturbation [18], which is a set of ordinary differential
equations of six independent orbital elements (a, Ω, i, ex, ey, φ)

da
dt
¼ 2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p σze sin νþ σx

p
r

� �
(16)

dΩ
dt
¼ σyr sin u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin i
(17)
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optimization problem, the same direct collocation based on the Hermite-Simpson method is
used to discretize the RHC problem.

By using the similar notations of discretization above, the cost function is discretized using the
Simpson integration formula as
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where, Ak ¼ A τkð Þ, Akþ0:5 ¼ A τkþ0:5ð Þ, Bk ¼ B τkð Þ, Bkþ0:5 ¼ B τkþ0:5ð Þ.
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where the matrices C and M are given in the Appendix.
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where the row vector V is defined to “choose” the target value from the optimal solution, and
the position of “1” in the row vector V is the same as the position of δυ0 in the column vector Z.
Finally, the control input of the closed-loop control, υ tið Þ, is
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It is apparent that the closed-loop control law derived here is a linear proportional feedback
control law, and the feedback gain matrix K is a function of time. Without any explicit
integration of differential equations, K can either be determined offline or online depending
on the computation and restoration ability onboard the satellite.
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horizon interval ti; tiþ1½ � unchanged. This means the inverse of M could be calculated only once
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tional effort is critical. As the entire interval can be discretized into small intervals, if these
intervals are sufficiently small relative to the computing power of the satellite, then the calcula-
tion process can be carried by the onboard computer. Furthermore, for small intervals, the
computation for the open-loop optimal trajectory of the next interval can be done by CPU-1
while the tracking is still in process, see Figure 1. This makes of the proposed optimal suppres-
sion control a parallel online implementation, which is another advantage of this control scheme.

3. Cases study

3.1. Parallel optimal algorithm in attitudes control of EDT system

In order to test the validity of the proposed optimal algorithm, a case study of the attitudes
control of EDT system in aerospace engineering is used. The obtained results are compared
with some existing control methods.

3.1.1. Problem formulation

The EDT system’s orbital motion is generally described in an Earth geocentric inertial frame
(OXYZ) with the origin O at the Earth’s centre, see Figure 2(a). The X-axis directs to the point
of vernal equinox, the Z-axis aligns with the Earth’s rotational axis, and the Y-axis completes a
right-hand coordinate system, respectively. The equation of orbital dynamic motion can be
written in the form of Gaussian perturbation [18], which is a set of ordinary differential
equations of six independent orbital elements (a, Ω, i, ex, ey, φ)

da
dt
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p σze sin νþ σx
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(16)
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di
dt
¼ σyr cos u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p (18)

dex
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

na
σz sin uþ σx 1þ r

p

� �
cos uþ r

p
ex

� �� �
þ dΩ

dt
ey cos i (19)

dey
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

na
�σz cos uþ σx 1þ r

p

� �
sin uþ r

p
ey

� �� �
� dΩ

dt
ex cos i (20)

dφ
dt
¼ n� 1

na
σz

2r
a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p e cos ν

 !
� σx 1þ r

p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p e sin ν

" #
� σyr cos i sin u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin i

(21)

The components of perturbative accelerations are defined in a local frame. The components σx
and σz are in the orbital plane, and σz is the radial component pointing outwards. The out-of-
plane component σy completes a right-hand coordinate system. The components of perturbative
accelerations depend on the tether attitude and the EDT’ orbital dynamics is coupled with the
tether libration motion.

The libration motion of a rigid EDT system is described in an orbital coordinate system shown
in Figure 2(b). The z-axis of the orbital coordinate system points from the Earth’s center to the
CM of the EDT system, the x-axis lies in the orbital plane and points to the direction of the EDT
orbital motion, perpendicular to the z-axis. The y-axis completes a right-hand coordinate

system. The unit vectors along each axis are expressed as eox
!
, eoy
!
, and eoz

!
, respectively. Then,

the instantaneous attitudes of the EDT system are described by an in-plane angle α (pitch
angle, rotating about the y-axis) followed by an out-of-plane angle β (roll angle, rotating about
the x’-axis, the x-axis after first rotating about the y-axis). Thus, the equations of libration
motion of the EDT system can be derived as,

€α þ €ν � 2 _α þ _νð Þ _β tan βþ 3μr�3 sinα cosα ¼ Qα

~mL2 cos 2β
(22)

Figure 2. Illustration of coordinate system for the EDT’s orbital (a) and libration (b) motion.
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€β þ _α þ _νð Þ2 sin β cos βþ 3μr�3 cos 2α sin β cos β ¼ Qβ

~mL2
(23)

where ~m ¼ m1m2 þ m1 þm2ð Þmt=3þm2
t =12

� �
m�1EDT is the equivalent mass, (Qα, Qβ) are the

corresponding perturbative torques by the perturbative forces to be discussed below.

The perturbative accelerations (σx, σy, σz) and torques (Qα, Qβ) in Eq. (15) are induced by

multiple orbital perturbative effects, namely, (i) the electrodynamic force exerting on a
current-carrying EDT due to the electromagnetic interaction with the geomagnetic field, (ii)
the Earth’s atmospheric drag, (iii) the Earth’s non-homogeneity and oblateness, (iv) the luniso-
lar gravitational perturbations, and (v) the solar radiation pressure, respectively. The EDT
system is assumed thrust-less during the deorbit process, while the atmosphere, geomagnetic
and ambient plasma fields are assumed to rotate with the Earth at the same rate. The geodetic
altitude, instead of geocentric altitude, should be used in the evaluation of the environmental
parameters, such as, atmospheric and plasma densities, to realistically account for the Earth’s
ellipsoidal surface, such that,

hg ¼ r� rpo 1� e2E cos
2θ

� ��1=2
(24)

where the polar radius rpo and the Earth’s eccentricity eE are provided by NASA [19].

Moreover, the local strength of geomagnetic field is described by the IGRF2000 model [20–22]
in a body-fixed spherical coordinates of the Earth, such that

Bϕ ¼ 1
sinθ

X∞
n¼1

r0
r

� �nþ2Xn
m¼0

m gmn sin mϕ
� �� hmn cos mϕ

� �� �
Pm
n θcð Þ

Bθ ¼
X∞
n¼1

r0
r

� �nþ2Xn
m¼0

gmn cos mϕ
� �þ hmn sin mϕ

� �� � ∂Pm
n θcð Þ
∂θc

Br ¼
X∞
n¼1

r0
r

� �nþ2
nþ 1ð Þ

Xn
m¼0

gmn cos mϕ
� �þ hmn sin mϕ

� �� �
Pm
n θcð Þ

(25)

where r0 = 6371.2 � 103 km is the reference radius of the Earth, respectively.

The average current in the EDT is defined as

Iave ¼ 1
L

ðL
0
I sð Þds (26)

The open-loop optimal control problem for EDTdeorbit can be stated as finding a state-control
pair x tð Þ; υ tð Þf g over each time interval ti; tiþ1½ � to minimize a cost function of the negative work
done by the electrodynamic force

J ¼
ðtiþ1
ti

Fe
! � v! dt≜

ðtiþ1
tt

Π x; υ; tð Þdt (27)

subject to the nonlinear state equations of libration motion
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The components of perturbative accelerations are defined in a local frame. The components σx
and σz are in the orbital plane, and σz is the radial component pointing outwards. The out-of-
plane component σy completes a right-hand coordinate system. The components of perturbative
accelerations depend on the tether attitude and the EDT’ orbital dynamics is coupled with the
tether libration motion.

The libration motion of a rigid EDT system is described in an orbital coordinate system shown
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system. The unit vectors along each axis are expressed as eox
!
, eoy
!
, and eoz

!
, respectively. Then,

the instantaneous attitudes of the EDT system are described by an in-plane angle α (pitch
angle, rotating about the y-axis) followed by an out-of-plane angle β (roll angle, rotating about
the x’-axis, the x-axis after first rotating about the y-axis). Thus, the equations of libration
motion of the EDT system can be derived as,

€α þ €ν � 2 _α þ _νð Þ _β tan βþ 3μr�3 sinα cosα ¼ Qα

~mL2 cos 2β
(22)

Figure 2. Illustration of coordinate system for the EDT’s orbital (a) and libration (b) motion.

Optimization Algorithms - Examples100

€β þ _α þ _νð Þ2 sin β cos βþ 3μr�3 cos 2α sin β cos β ¼ Qβ

~mL2
(23)

where ~m ¼ m1m2 þ m1 þm2ð Þmt=3þm2
t =12

� �
m�1EDT is the equivalent mass, (Qα, Qβ) are the

corresponding perturbative torques by the perturbative forces to be discussed below.

The perturbative accelerations (σx, σy, σz) and torques (Qα, Qβ) in Eq. (15) are induced by

multiple orbital perturbative effects, namely, (i) the electrodynamic force exerting on a
current-carrying EDT due to the electromagnetic interaction with the geomagnetic field, (ii)
the Earth’s atmospheric drag, (iii) the Earth’s non-homogeneity and oblateness, (iv) the luniso-
lar gravitational perturbations, and (v) the solar radiation pressure, respectively. The EDT
system is assumed thrust-less during the deorbit process, while the atmosphere, geomagnetic
and ambient plasma fields are assumed to rotate with the Earth at the same rate. The geodetic
altitude, instead of geocentric altitude, should be used in the evaluation of the environmental
parameters, such as, atmospheric and plasma densities, to realistically account for the Earth’s
ellipsoidal surface, such that,

hg ¼ r� rpo 1� e2E cos
2θ

� ��1=2
(24)

where the polar radius rpo and the Earth’s eccentricity eE are provided by NASA [19].

Moreover, the local strength of geomagnetic field is described by the IGRF2000 model [20–22]
in a body-fixed spherical coordinates of the Earth, such that
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Pm
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n¼1

r0
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� �nþ2
nþ 1ð Þ

Xn
m¼0

gmn cos mϕ
� �þ hmn sin mϕ

� �� �
Pm
n θcð Þ

(25)

where r0 = 6371.2 � 103 km is the reference radius of the Earth, respectively.

The average current in the EDT is defined as

Iave ¼ 1
L

ðL
0
I sð Þds (26)

The open-loop optimal control problem for EDTdeorbit can be stated as finding a state-control
pair x tð Þ; υ tð Þf g over each time interval ti; tiþ1½ � to minimize a cost function of the negative work
done by the electrodynamic force

J ¼
ðtiþ1
ti

Fe
! � v! dt≜

ðtiþ1
tt

Π x; υ; tð Þdt (27)

subject to the nonlinear state equations of libration motion
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x01 ¼ x2

x02 ¼ 2η3e sin νþ 2 x2 þ η2
� �

x4 tan x3 � 3η3 sin x1 cos x1

þ sin i tan x3 2 sin u cos x1 � cos u sin x1ð Þ � cos i½ � ς� λð ÞIave μm

μ~m
η3

(28)

x03 ¼ x4

x04 ¼ � x2 þ η2
� �2

sin x3 cos x3 � 3η3 cos 2x1 sin x3 cos x3

� sin i 2 sin u sin x1 þ cos u cos x1ð Þ ς� λð ÞIave
μm

μ~m
η3

(29)

where x1; x2; x3; x4ð Þ ¼ α;α0; β; ; β0
� �

, η ¼ 1þ e cos ν, _ν ¼ μ=p3
� �0:5 1þ e cos νð Þ2, r ¼ p 1þ eð

cos νÞ�1, λ ¼ m1 þ 0:5mtð Þ=mEDT is determined by the mass ratio between the end-bodies, and

ς is determined by the distribution of current along the EDT, such that, ς ¼ I�1aveL
�2 Ð L

0 sI sð Þds.
Accordingly, ς ¼ 0:5 is used for the assumption of a constant current in the EDT. The initial
conditions x tið Þ ¼ xstart and the box constraint αj j ≤αmax, β

�� �� ≤ βmax, Imin ≤ Iave ≤ Imax. The envi-
ronmental perturbations are simplified by considering only the electrodynamic force with a
simple non-tilted dipole model of geomagnetic field, such that,

B
!¼ μm

r3
cos u sin i e

⇀
ox þ μm

r3
cos i e

⇀
oy � 2μm

r3
sin u sin i e

⇀
oz (30)

Accordingly, the electrodynamic force Fe
!

exerting on the EDT can be obtained as,

Fe
!¼ �

ðL
0
B
⇀ �I l

⇀
ds ¼ �IaveL B

⇀ � l
⇀

(31)

3.1.2. Results and discussion

The initial and boundary conditions of box constraints of the case are shown in Tables 1 and 2.

Parameters Values

Mass of the main satellite 5 kg

Mass of subsatellite 1.75 kg

Mass of the tether 0.25 kg

Dimensions of main satellite 0.2 � 0.2 � 0.2 m

Dimensions of subsatellite 0.1 � 0.17 � 0.1 m

Tether length 500 m

Tether diameter 0.0005 m

Tether conductivity (aluminum) 3.4014 � 107 Ω�1 m�1

Tether current lower/upper limits 0 ~ 0.8 A for the equatorial orbit

Orbital altitudes 700 ~ 800 km

Table 1. Parameters of an EDT system.
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Firstly, the validity of the proposed optimal control scheme in the equatorial orbit where the
EDT system gets the highest efficiency is demonstrated. The solid line in Figure 4 shows the
time history of the EDT’s average current control trajectory obtained from the open-loop
optimal control problem. It is clearly shown that the average current in the open-loop case
reaches the upper limit most of the time, which indicates the electrodynamic force being
maximized for the fast deorbit. As expected, the current is not always at the upper limit in
order to avoid the tumbling of the EDT system. This is evident that the timing of current
reductions coincides with the peaks of pitch angles shown in Figure 5. The effectiveness of
the proposed control scheme in terms of keeping libration stability is further demonstrated by
the solid lines in Figure 5, where the trajectory of libration angles is no more than 45 degrees. It
is also found that the amplitude of the pitch angle nearly reaches 45 degrees, the maximum
allowed value, whereas the roll angle is very small in the whole deorbit process. As a compar-
ison, tracking optimal control with the non-tilted dipole model and the IGRF 2000 model of the
geomagnetic fields are conducted respectively.

The dashed lines in Figures 3 and 4 show the tracking control simulations where all perturba-
tions mentioned before are included with the non-tilted dipole geomagnetic field model. As

Parameters Values

Imax (equatorial) 0.4 A

Imax (inclined) 0:1 � sin i sin βB sin ΩG þ αB �Ωð Þ þ cos i cos βB
� �

cos �1 i� βB
� �

A

Imin (equatorial & inclined) 0 A

αmax (equatorial & inclined) 45 degrees

βmax (equatorial & inclined) 45 degrees

Table 2. Boundary Values of Box Constraints in the Open-Loop Trajectory Optimization.

Figure 3. Time history of average current in the equatorial orbit (non-tilted dipole geomagnetic model). Solid line: Open-
loop state trajectory. Dashed line: Close-loop tracking trajectory.

Piecewise Parallel Optimal Algorithm
http://dx.doi.org/10.5772/intechopen.76625

103



x01 ¼ x2

x02 ¼ 2η3e sin νþ 2 x2 þ η2
� �

x4 tan x3 � 3η3 sin x1 cos x1

þ sin i tan x3 2 sin u cos x1 � cos u sin x1ð Þ � cos i½ � ς� λð ÞIave μm

μ~m
η3

(28)

x03 ¼ x4

x04 ¼ � x2 þ η2
� �2

sin x3 cos x3 � 3η3 cos 2x1 sin x3 cos x3

� sin i 2 sin u sin x1 þ cos u cos x1ð Þ ς� λð ÞIave
μm

μ~m
η3

(29)

where x1; x2; x3; x4ð Þ ¼ α;α0; β; ; β0
� �

, η ¼ 1þ e cos ν, _ν ¼ μ=p3
� �0:5 1þ e cos νð Þ2, r ¼ p 1þ eð

cos νÞ�1, λ ¼ m1 þ 0:5mtð Þ=mEDT is determined by the mass ratio between the end-bodies, and

ς is determined by the distribution of current along the EDT, such that, ς ¼ I�1aveL
�2 Ð L

0 sI sð Þds.
Accordingly, ς ¼ 0:5 is used for the assumption of a constant current in the EDT. The initial
conditions x tið Þ ¼ xstart and the box constraint αj j ≤αmax, β

�� �� ≤ βmax, Imin ≤ Iave ≤ Imax. The envi-
ronmental perturbations are simplified by considering only the electrodynamic force with a
simple non-tilted dipole model of geomagnetic field, such that,

B
!¼ μm

r3
cos u sin i e

⇀
ox þ μm

r3
cos i e

⇀
oy � 2μm

r3
sin u sin i e

⇀
oz (30)

Accordingly, the electrodynamic force Fe
!

exerting on the EDT can be obtained as,

Fe
!¼ �

ðL
0
B
⇀ �I l

⇀
ds ¼ �IaveL B

⇀ � l
⇀

(31)

3.1.2. Results and discussion

The initial and boundary conditions of box constraints of the case are shown in Tables 1 and 2.

Parameters Values

Mass of the main satellite 5 kg

Mass of subsatellite 1.75 kg

Mass of the tether 0.25 kg

Dimensions of main satellite 0.2 � 0.2 � 0.2 m

Dimensions of subsatellite 0.1 � 0.17 � 0.1 m

Tether length 500 m

Tether diameter 0.0005 m

Tether conductivity (aluminum) 3.4014 � 107 Ω�1 m�1

Tether current lower/upper limits 0 ~ 0.8 A for the equatorial orbit

Orbital altitudes 700 ~ 800 km

Table 1. Parameters of an EDT system.

Optimization Algorithms - Examples102

Firstly, the validity of the proposed optimal control scheme in the equatorial orbit where the
EDT system gets the highest efficiency is demonstrated. The solid line in Figure 4 shows the
time history of the EDT’s average current control trajectory obtained from the open-loop
optimal control problem. It is clearly shown that the average current in the open-loop case
reaches the upper limit most of the time, which indicates the electrodynamic force being
maximized for the fast deorbit. As expected, the current is not always at the upper limit in
order to avoid the tumbling of the EDT system. This is evident that the timing of current
reductions coincides with the peaks of pitch angles shown in Figure 5. The effectiveness of
the proposed control scheme in terms of keeping libration stability is further demonstrated by
the solid lines in Figure 5, where the trajectory of libration angles is no more than 45 degrees. It
is also found that the amplitude of the pitch angle nearly reaches 45 degrees, the maximum
allowed value, whereas the roll angle is very small in the whole deorbit process. As a compar-
ison, tracking optimal control with the non-tilted dipole model and the IGRF 2000 model of the
geomagnetic fields are conducted respectively.

The dashed lines in Figures 3 and 4 show the tracking control simulations where all perturba-
tions mentioned before are included with the non-tilted dipole geomagnetic field model. As
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Figure 3. Time history of average current in the equatorial orbit (non-tilted dipole geomagnetic model). Solid line: Open-
loop state trajectory. Dashed line: Close-loop tracking trajectory.
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expected, the closed-loop tracking control works well in this case since the primary electrody-
namic force perturbation is the same as the one used in the open-loop trajectory optimization.
It is shown clearly in Figure 4 that the pitch angle under the proposed closed-loop control
tracks the open-loop optimal trajectory very closely with this simple environment model.
Figure 4 also shows the roll angle is almost zero even if it is not tracked. At the same time,
Figure 3 shows that the current control modification to the optimal current trajectory is relative
small, i.e., 12% above the maximum current, for the same reason. Now the same cases are
analyzed again using a more accurate geomagnetic field model – the IGRF 2000 model with up
to 7th order terms (Figures 5 and 6). The solid line in Figure 5 is the open-loop current control
trajectory while the dashed line is the modified current control input obtained by the receding
horizon control. Compared with Figure 3, it shows more current control modifications are

Figure 5. Time history of average current in the equatorial orbit (IGRF 2000 model). Solid line: Open-loop state trajectory.
Dashed line: Close-loop tracking trajectory.

Figure 4. Time history of pitch and roll angles in the equatorial orbit (non-tilted dipole geomagnetic model). Solid line:
Open-loop state trajectory. Dashed line: Close-loop tracking trajectory.
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needed to track the open-loop control trajectory because of larger differences in dynamic
models between the open-loop and closed-loop optimal controls, primarily due to the different
geomagnetic field models. Because of the same reason, it is noticeable in Figure 6 that the
instantaneous states of the EDT system, controlled by the closed-loop optimal control law, are
different from the open-loop reference state trajectory at the end of the interval. The instanta-
neous states are used for the next interval as initial conditions for the open-loop optimal
control problem to derive the optimal control trajectory in that interval. This is reflected in
Figure 6 that the solid lines are discontinuous at the beginning of each interval. The dashed
line in Figure 7 shows that the pitch and roll angle under the closed-loop control has been
controlled to the open-loop control trajectory, indicating the effectiveness of the proposed
optimal control law. The roll angle is not controlled in this case as mentioned before. Com-
pared Figure 4 with Figure 6, it shows that the roll angle increases significantly since there is
an out-of-plane component of the electrodynamic force resulting from the IGRF 2000 geomag-
netic model. However, the amplitude of the roll angle is acceptable within the limits and will
not lead to a tumbling of the EDT system.

Figure 6. Time history of pitch and roll angles in the equatorial orbit (IGRF 2000 model). Solid line: Open-loop control
trajectory. Dashed line: Close-loop tracking trajectory.

Figure 7. Comparison of EDT deorbit rates using different control laws and geomagnetic field models.

Piecewise Parallel Optimal Algorithm
http://dx.doi.org/10.5772/intechopen.76625

105



expected, the closed-loop tracking control works well in this case since the primary electrody-
namic force perturbation is the same as the one used in the open-loop trajectory optimization.
It is shown clearly in Figure 4 that the pitch angle under the proposed closed-loop control
tracks the open-loop optimal trajectory very closely with this simple environment model.
Figure 4 also shows the roll angle is almost zero even if it is not tracked. At the same time,
Figure 3 shows that the current control modification to the optimal current trajectory is relative
small, i.e., 12% above the maximum current, for the same reason. Now the same cases are
analyzed again using a more accurate geomagnetic field model – the IGRF 2000 model with up
to 7th order terms (Figures 5 and 6). The solid line in Figure 5 is the open-loop current control
trajectory while the dashed line is the modified current control input obtained by the receding
horizon control. Compared with Figure 3, it shows more current control modifications are

Figure 5. Time history of average current in the equatorial orbit (IGRF 2000 model). Solid line: Open-loop state trajectory.
Dashed line: Close-loop tracking trajectory.

Figure 4. Time history of pitch and roll angles in the equatorial orbit (non-tilted dipole geomagnetic model). Solid line:
Open-loop state trajectory. Dashed line: Close-loop tracking trajectory.

Optimization Algorithms - Examples104

needed to track the open-loop control trajectory because of larger differences in dynamic
models between the open-loop and closed-loop optimal controls, primarily due to the different
geomagnetic field models. Because of the same reason, it is noticeable in Figure 6 that the
instantaneous states of the EDT system, controlled by the closed-loop optimal control law, are
different from the open-loop reference state trajectory at the end of the interval. The instanta-
neous states are used for the next interval as initial conditions for the open-loop optimal
control problem to derive the optimal control trajectory in that interval. This is reflected in
Figure 6 that the solid lines are discontinuous at the beginning of each interval. The dashed
line in Figure 7 shows that the pitch and roll angle under the closed-loop control has been
controlled to the open-loop control trajectory, indicating the effectiveness of the proposed
optimal control law. The roll angle is not controlled in this case as mentioned before. Com-
pared Figure 4 with Figure 6, it shows that the roll angle increases significantly since there is
an out-of-plane component of the electrodynamic force resulting from the IGRF 2000 geomag-
netic model. However, the amplitude of the roll angle is acceptable within the limits and will
not lead to a tumbling of the EDT system.

Figure 6. Time history of pitch and roll angles in the equatorial orbit (IGRF 2000 model). Solid line: Open-loop control
trajectory. Dashed line: Close-loop tracking trajectory.

Figure 7. Comparison of EDT deorbit rates using different control laws and geomagnetic field models.

Piecewise Parallel Optimal Algorithm
http://dx.doi.org/10.5772/intechopen.76625

105



Finally, we make a comparison to show the performance of the proposed onboard parallel
optimal control law from the aspect of deorbit rate. A simple current on–off control law from a
previous work of Zhong and Zhu [21] is used here as baselines for the comparison of EDT
deorbit efficiency. The current on–off control becomes active only if the libration angles exceed
the maximum allowed values. Furthermore, it will turn on the current only in the condition
that the electrodynamic force does negative work in both pitch and roll directions. In this
paper, the maximum allowed amplitude for pitch and roll angles was set to 20� and the
turned-on current was assumed to be 0.4 A, roughly the average value of the current control
input into the closed-loop optimal control. Besides, a minimum interval of 10 minutes for the
switching was imposed to avoid equipment failure that might happen due to the frequent
switching. Figure 8 shows the comparisons of the deorbit rates in different cases (the present
optimal control and the current switching control with the non-tilted dipole or the IGRF 2000
model of geomagnetic field). It is shown that the EDT deorbit under the proposed optimal
control scheme is faster than the current on–off control regardless which geomagnetic field
model is used. The deorbit time of proposed optimal control based on the IGRF2000 model is
about 25 hours, which equals approximately 15 orbits, whereas the deorbit time of simple
current on–off control based on the same geomagnetic field model is about 55 hours, which
equals approximately 33 orbits. The results also indicate that in the optimal control scheme, the
effect is mostly shown in the current control input, instead of the deorbit rate, where Figure 6
shows much more current control effort is required due to the different magnetic field models
were used in the open-loop control trajectory optimization and the closed-loop optimal track-
ing control.

Figure 8. PSE system.
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3.2. Parallel optimal algorithm in libration suppression of partial space elevator

For further test of the effect of the onboard parallel algorithm, the proposed control method is
used to suppress the libration motions of the partial space elevator system. As studied in [24],
this system is a non-equilibrium nonlinear dynamic system. It is difficult to suppress such a
system in the mission period by using the common control design methods. In this case, we
mainly concern obtaining the local time optimization.

3.2.1. Problem formulation

Consider an in-plane PSE system in a circular orbit is shown in Figure 8, where the main
satellite, climber and the end body are connected by two inelastic tethers L1 and L2, respec-
tively. The masses of the tethers are neglected. Assuming the system is subject to a central
gravitational field and orbiting in the orbital plane. All other external perturbations are
neglected. The main satellite, climber and end body are modeled as three point masses (M, m1

and m2) since the tether length is much greater than tethered bodies [5, 23]. Thus, the libration
motions can be expressed in an Earth inertial coordinate system OXY with its origin at the
centre of Earth. Denoting the position of the main satellite (M) by a vector rmeasuring from the
centre of Earth. The climberm1 is connected to the main satelliteM by a tether 1 with the length
of L1 and a libration angle θ1 measured from the vector r. The distance between them is
controlled by reeling in/out tether 1 at main satellite. The end body m2 is connected to m1 by a
tether 2 with the length of L2 and a libration angle θ2 measured from the vector r. The length of
tether 2 L2 is controlled by reeling in or out tether 2 at end body. The mass of the main satellite
is assumed much greater than the masses of the climber and the end body. Therefore, the CM
of the PSE system can be assumed residing in the main satellite that moves in a circular orbit.
Based on the aforementioned assumptions, the dynamic equations can be written as.

€θ1 ¼ � 3ω2 sin 2θ1

2
� 2 ωþ _θ1
� �

_L1

L1
� sin θ1 � θ2ð ÞT2

L1m1
(32)

€θ2 ¼ �3ω
2 sin 2θ2

2
� 2 ωþ _θ2
� �

_Lc � _L1
� �

L0 � L1 þ Lc
þ sin θ1 � θ2ð ÞT1

L0 � L1 þ Lcð Þm1
(33)

€L1 ¼ 3ω2L1 cos 2θ1 þ 2ωL1 _θ1 þ L1 _θ1
2 � T1

m1
þ cos θ1 � θ2ð ÞT2

m1
(34)

€Lc ¼ 3ω2 L0 � L1 þ Lcð Þ cos 2θ2 þ 3ω2L1 cos 2θ1 þ 2ωþ _θ2
� �

L0 � L1 þ Lcð Þ _θ2

þ 2ωþ _θ1
� �

L1 _θ1 þ cos θ1 � θ2ð Þ � 1½ �T1

m1
� m1 �m2 cos θ1 � θ2ð Þ þm2½ �T2

m1m2

(35)

where L0 is the initial total length of two pieces of the tethers and Lc is the length increment
relates to L0.

The libration angles are required to be kept between the desired upper/lower bounds in the
climber transfer process. The accessing process is divided into a series of intervals. In this case,
we modified the aforementioned parallel optimal algorithm. The total transfer length L10 � L1f
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climber transfer process. The accessing process is divided into a series of intervals. In this case,
we modified the aforementioned parallel optimal algorithm. The total transfer length L10 � L1f
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of the climber is discretized evenly. The optimal trajectory should be found to make the
transfer time minimize in each equal tether transferring length. Then the cost function can be
rewritten as

Ji ¼ tf (36)

subject to the simplified dynamic equations

€θ1 ¼ �3ω2θ1 �
2 ωþ _θ1
� �

_L1

L1
� θ1 � θ2ð ÞT2

L1m1
(37)

€θ2 ¼ �3ω2θ2 �
2 ωþ _θ2
� �

_Lc � _L1
� �

L0 � L1 þ Lc
þ θ1 � θ2ð ÞT1

L0 � L1 þ Lcð Þm1
(38)

€L1 ¼ 3ω2L1 þ 2ωL1 _θ1 þ L1 _θ1
2 þ T2 � T1

m1
(39)

€Lc ¼ 3ω2 L0 þ Lcð Þ þ 2ωþ _θ2
� �

L0 � L1 þ Lcð Þ _θ2 þ 2ωþ _θ1
� �

L1 _θ1 � T2

m2
(40)

where u ¼ T1; T2ð Þ, x ¼ θ1; _θ1;θ2; _θ2; L1; _L1
� �

and i denotes the interval number. In (26) the
gravitational perturbations and the trigonometric functions are ignored, then they can be
simplified following the assumptions: sinθj � θj, cosθj � 1 j ¼ 1; 2ð Þ. All the errors
between simple model and the entire model are regarded as perturbations.

To ensure the availability and the suppression of the libration angles, following constrains are
also required to be subjected 0 ≤T1 ≤T1max, 0 ≤T2 ≤T2max, θ1j j ≤θ1max, θ2j j ≤θ2max, Lcj j ≤ LcLimit

_L1m ≤ _L1 ≤ _L1M, _Lcm ≤ _Lc ≤ _LcM, where T1max and T2max are the upper bounds of the tension control
inputs T1 and T2, respectively. θ1max, θ2max and LcLimit are the magnitudes of libration angles θ1,
θ2 and the maximum available length scale of Lc, respectively. _L1m and _L1M are the lower and

upper bounds of climber’s moving speed _L1, respectively. _Lcm and _LcM are the lower and upper
bounds of end-bodies’ moving speed _Lc, respectively. It should be noting that, to avoid the
tether slacking, the control tensions are not allowed smaller than zero. Dividing the time
interval ti; tiþ1½ � evenly into n subintervals. The cost function minimization problem for each
time interval can be solved by Hermite–Simpson method, due its simplicity and accuracy [17].
Then nonlinear programming problem is to search optimal values for the programming vari-
ables that minimize the cost function for each interval shown in (25). The closed-loop optimal
tracking control method, is same as that in case 1. Direct transcription methods are routinely
implemented with standard nonlinear programming (NLP) software. The sparse sequential
quadratic programming software SNOPT is used via a MATLAB-executable file interface.

3.2.2. Results and discussion

The proposed control scheme is used to suppress the libration angles of the PSE system in the
ascending process with following system parameters and initial conditions: r = 7100 km,
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m1 = 500 kg, m2 = 1000 kg, θ1(0) = θ2(0) = 0, L0 = 20 km, L1(0) = 19,500 m, Lc (0) = 0,
_θ1 0ð Þ ¼ _θ2 0ð Þ ¼ 0, _L1 0ð Þ ¼ �20 m=s, and _Lc 0ð Þ ¼ 0 for the ascending process. The whole
transfer trajectory is divided into 50 intervals. The climber’s ascending speed along tether 1 is
allowed to be controlled to help suppress the libration angles and keep the states of the system
in an acceptable area. The constrains are set as T1max ¼ T2max ¼ 200N, θ1max ¼ θ2max ¼ 0:3 rad,
_L1m ¼ �15 m=s, _L1M ¼ �25 m=s, _Lcm ¼ �10 m=s and _LcM ¼ 10 m=s.

The simulation results of this case are shown in Figures 9–11. The climber’s open-loop libra-
tion angle approaches its upper bound at 850 s. After 850 s θ1 is kept at 0.3 rad by the end of the
ascending period, see the dashed line in Figure 10. Using the closed-loop control, the tracking
trajectory of θ1 matches the open-loop trajectory very well overall, see solid line in Figure 9. A
short gap appears between 875 s – 880 s, this is caused by the errors of the model and
computation. Figure 9 also shows the changes of the trajectories of θ2.The trajectory of θ2

obtained by closed-loop control tracks the open-loop trajectory well and reaches 0.1 rad by the
end of the ascending period. The closed-loop trajectories of L1 and Lc are shown in Figure 10.
They are the reflections of the control inputs. Both L1 and Lc show smooth fluctuations

between 40s and 350 s. Figure 10 shows the time history of trajectories of _L1 and _Lc,

Figure 9. Libration angle of θ1 and θ2 with variable climber speed.

Figure 10. Length and its changing ratio of L1, Lc with variable climber speed.
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between simple model and the entire model are regarded as perturbations.
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_L1m ≤ _L1 ≤ _L1M, _Lcm ≤ _Lc ≤ _LcM, where T1max and T2max are the upper bounds of the tension control
inputs T1 and T2, respectively. θ1max, θ2max and LcLimit are the magnitudes of libration angles θ1,
θ2 and the maximum available length scale of Lc, respectively. _L1m and _L1M are the lower and

upper bounds of climber’s moving speed _L1, respectively. _Lcm and _LcM are the lower and upper
bounds of end-bodies’ moving speed _Lc, respectively. It should be noting that, to avoid the
tether slacking, the control tensions are not allowed smaller than zero. Dividing the time
interval ti; tiþ1½ � evenly into n subintervals. The cost function minimization problem for each
time interval can be solved by Hermite–Simpson method, due its simplicity and accuracy [17].
Then nonlinear programming problem is to search optimal values for the programming vari-
ables that minimize the cost function for each interval shown in (25). The closed-loop optimal
tracking control method, is same as that in case 1. Direct transcription methods are routinely
implemented with standard nonlinear programming (NLP) software. The sparse sequential
quadratic programming software SNOPT is used via a MATLAB-executable file interface.

3.2.2. Results and discussion

The proposed control scheme is used to suppress the libration angles of the PSE system in the
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obtained by closed-loop control tracks the open-loop trajectory well and reaches 0.1 rad by the
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respectively. In the first 140 s the trajectory of _Lc increases continuously until reaches its upper
bound. Then, it keeps at 10 m/s by 270 s with some slight fluctuations. From 270 s to 355 s, it
reduces continuously to �3 m/s. After that, _Lc fluctuates around �3 m/s by the end of the
transfer period. As a reflection of the control input, _L1 also shows fluctuation during the
transfer phase with obvious small-scale fluctuations appear in the period of 120 s – 260 s and
360 s – 750 s. This impacts during the whole transfer period, the changeable speed of the
climber has the ability to help the suppression of the libration angles and states trajectory
tracking. This time history of the control inputs is shown in Figure 11 with frequent changes
between its lower bound and upper bound.

4. Conclusions

This chapter investigated a piecewise parallel onboard optimal control algorithm to solve the
optimal control issues in complex nonlinear dynamic systems in aerospace engineering. To test
the validity of the proposed two-phase optimal control scheme, the long-term tether libration
stability and fast nano-satellite deorbit under complex environmental perturbations and the
libration suppression for PSE system are considered. For EDT system, instead of optimizing
the control of fast and stable nano-satellite deorbit over the complete process, the current
approach divides the deorbit process into a set of intervals. For the PSE system, each time
interval is set depends on the minimize transfer time for equal transfer length interval. Within
each interval, the predicting phase simplifies significantly the optimal control problem. The
dynamic equations of libration motion are further simplified to reduce computational loads
using the simple dynamic models. The trajectory of the stable libration states and current
control input is then optimized for the fast deorbit within the interval based on the simplified
dynamic equations. The tracking optimizes the trajectory tracking control using the finite
receding horizon control theory within the time interval corresponding to the open-loop
control state trajectory with the same interval number. By applying the close-loop control
modification, the system motions are integrated without any simplification of the dynamics
or environmental perturbations and the instantaneous states of the orbital and libration
motions. The i-th time interval’s closed-loop tracking is processed in tracking phase while the

Figure 11. Control inputs for the closed-loop control with changing climber speed.
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(i + 1)-th time interval’s optimal state trajectory is predicted in the predicting phase. This
prediction is based on the error between the real state and the predicting state in the (i-1)-th
time interval. By repeating the process, the optimal control problem can be achieved in a
piecewise way with dramatically reduced computation effort. Compared with the current
on–off control where the stable libration motion is the only control target, numerical results
show that the proposed optimal control scheme works well in keeping the libration angles
within an allowed limit.
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where E is the unit matrix which has the same dimension as Aj, and j = 0,1,2,…,n-1.
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where E is the unit matrix which has the same dimension as Aj, and j = 0,1,2,…,n-1.
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Bilevel optimization is a special kind of optimization where one problem is embedded
within another. The outer optimization task is commonly referred to as the upper-level
optimization task, and the inner optimization task is commonly referred to as the lower-
level optimization task. These problems involve two kinds of variables: upper-level variables
and lower-level variables. Bilevel optimization was first realized in the field of game theory
by a German economist von Stackelberg who published a book (1934) that described this
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neering, and so on. In this chapter, we provide a general formulation for bilevel disjunctive
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tion tasks where one optimization task is nested within the other. The outer optimization
problem is commonly referred to as the leaders (upper level) optimization problem and the
inner optimization problem is known as the followers (or lower level) optimization problem.
The two levels have their own objectives and constraints. Topics affine convex functions,
optimizations with auto-parallel restrictions, affine convexity of posynomial functions,
bilevel disjunctive problem and algorithm, models of bilevel disjunctive programming prob-
lems, and properties of minimum functions.

Keywords: convex programming, affine manifolds, optimization along curves, bilevel
disjunctive optimization, minimum functions

Mathematics Subject Classification 2010: 90C25 90C29, 90C30

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75643

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[15] Bryson AE, Ho YC. Chapter 2. In: Applied Optimal Control. New York: Hemisphere; 1975

[16] Herman AL, Conway BA. Direct optimization using collocation based on high-order
gauss-Lobatto Quadrature rules. Journal of Guidance Control and Dynamics. 1996;19:
592-599. DOI: 10.2514/3.21662

[17] Hargraves CR, Paris SW. Direct trajectory optimization using nonlinear programming and
collocation. Journal of Guidance, Control, and Dynamics. 1987;10:338-342. DOI: 10.2514/
3.20223

[18] Vallado DA. Fundamentals of Astrodynamics and Applications. New York, Springer:
Microcosm Press; 2007

[19] NASA, Earth Fact Sheet, http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html,
[retrieved March 16, 2012]

[20] Davis J. Technical note. In: Mathematical Modeling of Earth's Magnetic Field. Blacksburg:
Virginia Tech; 2004

[21] Zhong R, Zhu ZH. Long-term libration dynamics and stability analysis of Electrodynamic
tethers in spacecraft Deorbit. Journal of Aerospace Engineering. 2012. DOI: 10.1061/
(ASCE)AS.1943-5525.0000310

[22] Shi G, Zhu Z, Zhu ZH. Libration suppression of tethered space system with a moving
climber in circular orbit. Nonlinear Dynamics. 2017:1-15. DOI: 10.1007/s11071-017-3919-x

[23] WenH, Zhu ZH, Jin DP, HuH. Constrained tension control of a tethered space-tug system
with only length measurement. Acta Astronautica. 2016;119:110-117. DOI: doi.org/
10.1016/j.actaastro.2015.11.011

[24] Fletcher R. Chapter 10. In: Practical Methods of Optimization. 2nd ed. New York: Wiley;
1989

Optimization Algorithms - Examples114

Chapter 7

Bilevel Disjunctive Optimization on Affine Manifolds

Constantin Udriste, Henri Bonnel, Ionel Tevy and
Ali Sapeeh Rasheed

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75643

Provisional chapter

Bilevel Disjunctive Optimization on Affine Manifolds

Constantin Udriste, Henri Bonnel, Ionel Tevy and
Ali Sapeeh Rasheed

Additional information is available at the end of the chapter

Abstract

Bilevel optimization is a special kind of optimization where one problem is embedded
within another. The outer optimization task is commonly referred to as the upper-level
optimization task, and the inner optimization task is commonly referred to as the lower-
level optimization task. These problems involve two kinds of variables: upper-level variables
and lower-level variables. Bilevel optimization was first realized in the field of game theory
by a German economist von Stackelberg who published a book (1934) that described this
hierarchical problem. Now the bilevel optimization problems are commonly found in a
number of real-world problems: transportation, economics, decision science, business, engi-
neering, and so on. In this chapter, we provide a general formulation for bilevel disjunctive
optimization problem on affine manifolds. These problems contain two levels of optimiza-
tion tasks where one optimization task is nested within the other. The outer optimization
problem is commonly referred to as the leaders (upper level) optimization problem and the
inner optimization problem is known as the followers (or lower level) optimization problem.
The two levels have their own objectives and constraints. Topics affine convex functions,
optimizations with auto-parallel restrictions, affine convexity of posynomial functions,
bilevel disjunctive problem and algorithm, models of bilevel disjunctive programming prob-
lems, and properties of minimum functions.

Keywords: convex programming, affine manifolds, optimization along curves, bilevel
disjunctive optimization, minimum functions

Mathematics Subject Classification 2010: 90C25 90C29, 90C30

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75643

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Affine convex functions

In optimization problems [16, 17, 19, 23–27], one can use an affine manifold as a pair M;Γð Þ,
where M is a smooth real n-dimensional manifold, and Γ is an affine symmetric connection on
M. The connection Γ produces auto-parallel curves x tð Þ via ODE system

€xh tð Þ þ Γh
ij x tð Þð Þ _xi tð Þ _xj tð Þ ¼ 0:

They are used for defining the convexity of subsets in M and convexity of functions f : D⊂
M! R (see also [3, 6]).

Definition 1.1 An affine manifold M; Γð Þ is called autoparallely complete if any auto-parallel x tð Þ
starting at p∈M is defined for all values of the parameter t∈R.

Theorem 1.1 [1] Let M be a (Hausdorff, connected, smooth) compact n-manifold endowed with an
affine connection Γ and let p∈M. If the holonomy group Holp Γð Þ (regarded as a subgroup of the group

Gl TpM
� �

of all the linear automorphisms of the tangent space TpM) has compact closure, then M;Γð Þ is
autoparallely complete.

Let M; Γð Þ be an auto-parallely complete affine manifold. For a C2 function f : M! R, we
define the tensor HessΓf of components

HessΓfð Þij ¼
∂2f

∂xi∂xj
� Γhij

∂f
∂xh

:

Definition 1.2 A C2 function f : M! R is called:

(1) linear affine with respect to Γ if HessΓf ¼ 0, throughout;

(2) affine convex (convex with respect to Γ) if HessΓ f ≽ 0 (positive semidefinite), throughout.

The function f is: (1) linear affine if its restriction f x tð Þð Þ on each autoparallel x tð Þ satisfies
f x tð Þð Þ ¼ atþ b, for some numbers a, b that may depend on x tð Þ; (2) affine convex if its restric-
tion f x tð Þð Þ is convex on each auto-parallel x tð Þ.

Theorem 1.2 If there exists a linear affine nonconstant function f on M;Γð Þ, then the curvature tensor
field Rh

ikj is in Ker df .

Proof. For given Γ, if we consider

∂2f
∂xi∂xj

¼ Γhij
∂f
∂xh
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as a PDEs system (a particular case of a Frobenius-Mayer system of PDEs) with 1
2 n nþ 1ð Þ

equations and the unknown function f , then we need the complete integrability conditions

∂3f
∂xi∂xj∂xk

¼ ∂3f
∂xk∂xi∂xj

:

Since,

∂3f
∂xi∂xj∂xk

¼ ∂Γh
ij

∂xk
þ ΓlijΓ

h
kl

 !
∂f
∂xh

,

it follows

∂f
∂xh

Rh
ikj ¼ 0, Rh

ikj ¼
∂Γh

ij

∂xk
� ∂Γh

ki

∂xj
þ ΓlijΓ

h
kl � ΓlkiΓ

h
jl:

Corollary 1.1 If there exists n linear affine functions f l, l ¼ 1,…, n on M; Γð Þ, whose df l are linearly
independent, then Γ is flat, that is, Rh

ikj ¼ 0.

Of course this only means the curvature tensor is zero on the topologically trivial region we
used to set up our co-vector fields df l xð Þ. But we can always cover any manifold by an atlas of
topologically trivial regions, so this allows us to deduce that the curvature tensor vanishes
throughout the manifold.

Remark 1.1 There is actually no need to extend df l xð Þ to the entire manifold. If this could be done, then
df l xð Þ would now be everywhere nonzero co-vector fields; but there are topologies, for example, S2, for
which we know such things do not exist. Therefore, there are topological manifolds for which we are
forced to work on topologically trivial regions.

The following theorem is well-known [16, 17, 19, 23]. Due to its importance, now we offer new
proofs (based on catastrophe theory, decomposing a tensor into a specific product, and using
slackness variables).

Theorem 1.3 Let f : M! R be a C2 function.

(1) If f is regular or has only one minimum point, then there exists a connection Γ such that f is affine
convex.

(2) If f has a maximum point x0, then there is no connection Γ making f affine convex throughout.

Proof. For the Hessian HessΓfð Þij be positive semidefinite, we need n conditions like inequalities

and equalities. The number of unknowns Γh
ij is

1
2 n

2 nþ 1ð Þ: The inequalities can be replaced by

equalities using slackness variables.
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The first central idea for the proof is to use the catastrophe theory, since almost all families
f x; cð Þ, x ¼ x1;…; ; xn

� �
∈Rn, c ¼ c1;…; cmð Þ∈Rm, of real differentiable functions, with m ≤ 4

parameters, are structurally stable and are equivalent, in the vicinity of any point, with one of
the following forms [15]:

We eliminate the case with maximum point, that is., Morse 0-saddle and the saddle point.
Around each critical point (in a chart), the canonical form f x; cð Þ is affine convex, with respect
to appropriate locally defined linear connections that can be found easily. Using change of
coordinates and the partition of unity, we glue all these connections to a global one, making
f x; cð Þ affine convex on M.

At any critical point x0, the affine Hessian HessΓf is reduced to Euclidean Hessian, ∂2f
∂xi∂xj x0ð Þ.

Then the maximum point condition or the saddle condition is contradictory to affine convexity
condition.

A direct proof based on decomposition of a tensor: Let M; Γð Þ be an affine manifold and
f : M! R be a C2 function.

Suppose f has no critical points (is regular). If the function f is not convex with respect to Γ, we

look to find a new connection Γ
h
ij ¼ Γhij þ Th

ij, with the unknown a tensor field Th
ij, such that

∂2f
∂xi∂xj

xð Þ � Γ
h
ij xð Þ

∂f
∂xh

xð Þ ¼ σij xð Þ, x∈M,

where σij xð Þ is a positive semi-definite tensor. A very particular solution is the decomposition

Th
ij xð Þ ¼ ah xð Þbij xð Þ, where the vector field a has the property

Daf ¼ ah xð Þ ∂f
∂xh

xð Þ 6¼ 0, x∈M

and the tensor bij is

bij xð Þ ¼ 1
Daf

∂2f
∂xi∂xj

xð Þ � Γhij xð Þ
∂f
∂xh

xð Þ � σij xð Þ
� �

, x∈M:

Remark 1.2 The connection Γ
h
ij is strongly dependent on both the function f and the tensor field σij.

Suppose f has a minimum point x0. In this case, observe that we must have the condition

σij x0ð Þ ¼ ∂2f
∂xi∂xj x0ð Þ. Can we make the previous reason for x 6¼ x0 and then extend the obtained

connection by continuity? The answer is generally negative. Indeed, let us compute

bij x0ð Þ ¼ lim
x!x0

1
Daf

∂2f
∂xi∂xj

xð Þ � Γh
ij xð Þ

∂f
∂xh

xð Þ � σij xð Þ
� �

:

Here we cannot plug in the point x0 because we get 0
0 , an indeterminate form.
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To contradict, we fix an auto-parallel γ tð Þ, t∈ 0; e½ Þ, starting from minimum point x0 ¼ γ 0ð Þ,
tangent to _γ 0ð Þ ¼ v and we compute (via l’Hôpital rule)

bij x0; vð Þ ¼ lim
t!0

bij γ tð Þð Þ ¼
∂3f

∂xi∂xj∂xk x0ð Þ � Γh
ij x0ð Þ ∂2f

∂xh∂xk x0ð Þ � ∂σij
∂xk x0ð Þ

� �
vk

ah x0ð Þ ∂2f
∂xh∂xk x0ð Þvk

:

But this result depends on the direction v (different values along two different auto-parallels).

In some particular cases, we can eliminate the dependence on the vector v. For example, the
conditions

∂3f
∂xi∂xj∂xl

x0ð Þ � Γhij x0ð Þ
∂2f

∂xh∂xl
x0ð Þ �

∂σij
∂xl

x0ð Þ

¼ r
∂3f

∂xi∂xj∂xk
x0ð Þ � Γhij x0ð Þ

∂2f
∂xh∂xk

x0ð Þ �
∂σij
∂xk

x0ð Þ
� �

,

ah x0ð Þ ∂2f
∂xh∂xl

x0ð Þ ¼ r ah x0ð Þ ∂2f
∂xh∂xk

x0ð Þ
� �

are sufficient to do this.

A particular condition for independence on v is

∂3f
∂xi∂xj∂xk

x0ð Þ � Γhij x0ð Þ
∂2f

∂xh∂xk
x0ð Þ �

∂σij
∂xk

x0ð Þ ¼ 0:

In this particular condition, we can show that we can build connections of previous type good
everywhere.

1.1. Lightning through examples

Let us lightning our previous statements by the following examples.

Example 1.1 (for the first part of the theorem) Let us consider the function f : R2 ! R, f x; yð Þ ¼
x3 þ y3 þ 3xþ 3y and Γhij ¼ 0, i, j, h ¼ 1, 2. Then ∂f

∂x ¼ 3x2 þ 3, ∂f
∂y ¼ 3y2 þ 3 and f has no critical

point. Moreover, the Euclidean Hessian of f is not positive semi-definite overall. Let us make the above
construction for σij x; yð Þ ¼ δij. Taking a1 ¼ a2 ¼ 1, we obtain the connection

Γ
h
11 ¼

6x� 1
3x2 þ 3y2 þ 2

,Γ
h
22 ¼

6y� 1
3x2 þ 3y2 þ 2

,Γ
h
12 ¼ Γ

h
21 ¼ 0, h ¼ 1, 2,

that is not unique.

Example 1.2 (for one minimum point) Let us consider the function f : R2 ! R, f x; yð Þ ¼ 1� e�

x2 þ y2
� �

and Γh
ij ¼ 0, i, j, h ¼ 1, 2. Then ∂f

∂x ¼ 2xe� x2þy2ð Þ, ∂f
∂y ¼ 2ye� x2þy2ð Þ and f has a unique critical
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The first central idea for the proof is to use the catastrophe theory, since almost all families
f x; cð Þ, x ¼ x1;…; ; xn

� �
∈Rn, c ¼ c1;…; cmð Þ∈Rm, of real differentiable functions, with m ≤ 4

parameters, are structurally stable and are equivalent, in the vicinity of any point, with one of
the following forms [15]:

We eliminate the case with maximum point, that is., Morse 0-saddle and the saddle point.
Around each critical point (in a chart), the canonical form f x; cð Þ is affine convex, with respect
to appropriate locally defined linear connections that can be found easily. Using change of
coordinates and the partition of unity, we glue all these connections to a global one, making
f x; cð Þ affine convex on M.

At any critical point x0, the affine Hessian HessΓf is reduced to Euclidean Hessian, ∂2f
∂xi∂xj x0ð Þ.

Then the maximum point condition or the saddle condition is contradictory to affine convexity
condition.

A direct proof based on decomposition of a tensor: Let M; Γð Þ be an affine manifold and
f : M! R be a C2 function.

Suppose f has no critical points (is regular). If the function f is not convex with respect to Γ, we

look to find a new connection Γ
h
ij ¼ Γhij þ Th

ij, with the unknown a tensor field Th
ij, such that

∂2f
∂xi∂xj

xð Þ � Γ
h
ij xð Þ

∂f
∂xh

xð Þ ¼ σij xð Þ, x∈M,

where σij xð Þ is a positive semi-definite tensor. A very particular solution is the decomposition

Th
ij xð Þ ¼ ah xð Þbij xð Þ, where the vector field a has the property

Daf ¼ ah xð Þ ∂f
∂xh

xð Þ 6¼ 0, x∈M

and the tensor bij is

bij xð Þ ¼ 1
Daf

∂2f
∂xi∂xj

xð Þ � Γhij xð Þ
∂f
∂xh

xð Þ � σij xð Þ
� �

, x∈M:

Remark 1.2 The connection Γ
h
ij is strongly dependent on both the function f and the tensor field σij.

Suppose f has a minimum point x0. In this case, observe that we must have the condition

σij x0ð Þ ¼ ∂2f
∂xi∂xj x0ð Þ. Can we make the previous reason for x 6¼ x0 and then extend the obtained

connection by continuity? The answer is generally negative. Indeed, let us compute

bij x0ð Þ ¼ lim
x!x0

1
Daf

∂2f
∂xi∂xj

xð Þ � Γh
ij xð Þ

∂f
∂xh

xð Þ � σij xð Þ
� �

:

Here we cannot plug in the point x0 because we get 0
0 , an indeterminate form.
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To contradict, we fix an auto-parallel γ tð Þ, t∈ 0; e½ Þ, starting from minimum point x0 ¼ γ 0ð Þ,
tangent to _γ 0ð Þ ¼ v and we compute (via l’Hôpital rule)

bij x0; vð Þ ¼ lim
t!0

bij γ tð Þð Þ ¼
∂3f

∂xi∂xj∂xk x0ð Þ � Γh
ij x0ð Þ ∂2f

∂xh∂xk x0ð Þ � ∂σij
∂xk x0ð Þ

� �
vk

ah x0ð Þ ∂2f
∂xh∂xk x0ð Þvk

:

But this result depends on the direction v (different values along two different auto-parallels).

In some particular cases, we can eliminate the dependence on the vector v. For example, the
conditions

∂3f
∂xi∂xj∂xl

x0ð Þ � Γhij x0ð Þ
∂2f

∂xh∂xl
x0ð Þ �

∂σij
∂xl

x0ð Þ

¼ r
∂3f

∂xi∂xj∂xk
x0ð Þ � Γhij x0ð Þ

∂2f
∂xh∂xk

x0ð Þ �
∂σij
∂xk

x0ð Þ
� �

,

ah x0ð Þ ∂2f
∂xh∂xl

x0ð Þ ¼ r ah x0ð Þ ∂2f
∂xh∂xk

x0ð Þ
� �

are sufficient to do this.

A particular condition for independence on v is

∂3f
∂xi∂xj∂xk

x0ð Þ � Γhij x0ð Þ
∂2f

∂xh∂xk
x0ð Þ �

∂σij
∂xk

x0ð Þ ¼ 0:

In this particular condition, we can show that we can build connections of previous type good
everywhere.

1.1. Lightning through examples

Let us lightning our previous statements by the following examples.

Example 1.1 (for the first part of the theorem) Let us consider the function f : R2 ! R, f x; yð Þ ¼
x3 þ y3 þ 3xþ 3y and Γhij ¼ 0, i, j, h ¼ 1, 2. Then ∂f

∂x ¼ 3x2 þ 3, ∂f
∂y ¼ 3y2 þ 3 and f has no critical

point. Moreover, the Euclidean Hessian of f is not positive semi-definite overall. Let us make the above
construction for σij x; yð Þ ¼ δij. Taking a1 ¼ a2 ¼ 1, we obtain the connection

Γ
h
11 ¼

6x� 1
3x2 þ 3y2 þ 2

,Γ
h
22 ¼

6y� 1
3x2 þ 3y2 þ 2

,Γ
h
12 ¼ Γ

h
21 ¼ 0, h ¼ 1, 2,

that is not unique.

Example 1.2 (for one minimum point) Let us consider the function f : R2 ! R, f x; yð Þ ¼ 1� e�

x2 þ y2
� �

and Γh
ij ¼ 0, i, j, h ¼ 1, 2. Then ∂f

∂x ¼ 2xe� x2þy2ð Þ, ∂f
∂y ¼ 2ye� x2þy2ð Þ and f has a unique critical
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minimum point 0; 0ð Þ. However, the Euclidean Hessian of f is not positive semi-definite overall. We

make previous reason for σij ¼ 2e� x2þy2ð Þδij, a1 ¼ ∂f
∂x , a

2 ¼ ∂f
∂y. Hence we obtain Γ

h
ij ¼ Th

ij,

Γ
1
11 ¼ �

2x3

x2 þ y2
,Γ

1
12 ¼ Γ

1
21 ¼ �

2x2y
x2 þ y2

,Γ
1
22 ¼ �

2xy2

x2 þ y2
,

Γ
2
11 ¼ �

2x2y
x2 þ y2

,Γ
2
12 ¼ Γ

2
21 ¼ �

2xy2

x2 þ y2
,Γ

2
22 ¼ �

2y3

x2 þ y2
:

Observe that lim x;yð Þ! 0;0ð ÞTh
ij x; yð Þ ¼ 0. Hence take Γ

h
ij 0; 0ð Þ ¼ 0.

The next example shows what happens if we come out of the conditions of the previous
theorem.

Example 1.3 Let us take the function f : R! R, f xð Þ ¼ x3, where the critical point x ¼ 0 is an
inflection point. We take Γ xð Þ ¼ �1� 2

x2 , which is not defined at the critical point x ¼ 0, but the
relation of convexity is realized by prolongation,

σ xð Þ ¼ f 00 xð Þ � Γ xð Þf 0 xð Þ ¼ 3 x2 þ 2xþ 2
� �

> 0, ∀x∈R:

Let us consider the ODE of auto-parallels

x00 tð Þ � 1þ 2
t2

� �
x0 tð Þ2 ¼ 0, t 6¼ 0:

The solutions

x tð Þ ¼ � 1
2
ln ∣� 2þ t2 � ct∣þ cffiffiffiffiffiffiffiffiffiffiffiffiffi

8þ c2
p arctanh

2t� cffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ c2
p þ c1

are auto-parallels on R\ 0; t1; t2f g;Γð Þ, where t1, t2 are real solutions of �2þ t2 � ct ¼ 0. These curves
are extended at t ¼ 0 by continuity. The manifold R;Γð Þ is not auto-parallely complete. Since the image
x Rð Þ is not a “segment”, the function f : R! R, f xð Þ ¼ x3 is not globally convex.

Remark 1.3 For n ≥ 2, there exists C1 functions φ : Rn ! R which have two minimum points without
having another extremum point. As example,

φ x1; x2
� � ¼ x1

2 � 1
� �2

þ x1
2
x2 � x1 � 1

� �2

has two (global) minimum points p ¼ �1; 0ð Þ, q ¼ 1; 2ð Þ.
The restriction

φ x1; x2
� � ¼ x1

4 þ x1
4
x2

2 þ 2x1 þ 2
� �

� x1
2 þ 2x1

3
x2 þ 2x1

2
x2

� �
, x1 > 0, x2 > 0

is difference of two affine convex functions (see Section 2).
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Our chapter is based also on some ideas in: [3] (convex mappings between Riemannian mani-
folds), [7] (geometric modeling in probability and statistics), [13] (arc length in metric and
Finsler manifolds), [14] (applications of Hahn-Banach principle to moment and optimization
problems), [21] (geodesic connectedness of semi-Riemannian manifolds), and [28] (tangent and
cotangent bundles). For algorithms, we recommend the paper [20] (sequential and parallel
algorithms).

2. Optimizations with autoparallel restrictions

2.1. Direct theory

The auto-parallel curves x tð Þ on the affine manifold M;Γð Þ are solutions of the second order
ODE system

€xh tð Þ þ Γhij x tð Þð Þ _xi tð Þ _xj tð Þ ¼ 0, x t0ð Þ ¼ x0, _x t0ð Þ ¼ ξ0:

Obviously, the complete notation is x t; x0; ξ0ð Þ, with

x t0; x0; ξ0ð Þ ¼ x0, _x t0; x0; ξ0ð Þ ¼ ξ0:

Definition 2.1 Let D⊂M be open and connected and f : D! R a C2 function. The point x0 ∈D is
called minimum (maximum) point of f conditioned by the auto-parallel system, together with initial
conditions, if for the maximal solution x t; x0; ξ0ð Þ : I ! D, there exists a neighborhood It0 of t0 such that

f x t; x0; ξ0ð Þð Þ ≥ ≤ð Þ f x0ð Þ, ∀t∈ It0 ⊂ I:

Theorem 2.1 If x0 ∈D is an extremum point of f conditioned by the previous second order system,
then df x0ð Þ ξ0ð Þ ¼ 0.

Definition 2.2 The points x∈D which are solutions of the equation df xð Þ ξð Þ ¼ 0 are called critical
points of f conditioned by the previous spray.

Theorem 2.2 If x0 ∈D is a conditioned critical point of the function f : D! R of class C2 constrained
by the previous auto-parallel system and if the number

Hess fð Þij ξi0ξj0 ¼
∂2f

∂xi∂xj
� ∂f
∂xh

Γhij

� �
x0ð Þ ξi0ξj0

is strictly positive (negative), then x0 is a minimum (maximum) point of f constrained by the auto-
parallel system.
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minimum point 0; 0ð Þ. However, the Euclidean Hessian of f is not positive semi-definite overall. We

make previous reason for σij ¼ 2e� x2þy2ð Þδij, a1 ¼ ∂f
∂x , a

2 ¼ ∂f
∂y. Hence we obtain Γ

h
ij ¼ Th

ij,

Γ
1
11 ¼ �

2x3

x2 þ y2
,Γ

1
12 ¼ Γ

1
21 ¼ �

2x2y
x2 þ y2

,Γ
1
22 ¼ �

2xy2

x2 þ y2
,

Γ
2
11 ¼ �

2x2y
x2 þ y2

,Γ
2
12 ¼ Γ

2
21 ¼ �

2xy2

x2 þ y2
,Γ

2
22 ¼ �

2y3

x2 þ y2
:

Observe that lim x;yð Þ! 0;0ð ÞTh
ij x; yð Þ ¼ 0. Hence take Γ

h
ij 0; 0ð Þ ¼ 0.

The next example shows what happens if we come out of the conditions of the previous
theorem.

Example 1.3 Let us take the function f : R! R, f xð Þ ¼ x3, where the critical point x ¼ 0 is an
inflection point. We take Γ xð Þ ¼ �1� 2

x2 , which is not defined at the critical point x ¼ 0, but the
relation of convexity is realized by prolongation,

σ xð Þ ¼ f 00 xð Þ � Γ xð Þf 0 xð Þ ¼ 3 x2 þ 2xþ 2
� �

> 0, ∀x∈R:

Let us consider the ODE of auto-parallels

x00 tð Þ � 1þ 2
t2

� �
x0 tð Þ2 ¼ 0, t 6¼ 0:

The solutions

x tð Þ ¼ � 1
2
ln ∣� 2þ t2 � ct∣þ cffiffiffiffiffiffiffiffiffiffiffiffiffi

8þ c2
p arctanh

2t� cffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ c2
p þ c1

are auto-parallels on R\ 0; t1; t2f g;Γð Þ, where t1, t2 are real solutions of �2þ t2 � ct ¼ 0. These curves
are extended at t ¼ 0 by continuity. The manifold R;Γð Þ is not auto-parallely complete. Since the image
x Rð Þ is not a “segment”, the function f : R! R, f xð Þ ¼ x3 is not globally convex.

Remark 1.3 For n ≥ 2, there exists C1 functions φ : Rn ! R which have two minimum points without
having another extremum point. As example,

φ x1; x2
� � ¼ x1

2 � 1
� �2

þ x1
2
x2 � x1 � 1

� �2

has two (global) minimum points p ¼ �1; 0ð Þ, q ¼ 1; 2ð Þ.
The restriction

φ x1; x2
� � ¼ x1

4 þ x1
4
x2

2 þ 2x1 þ 2
� �

� x1
2 þ 2x1

3
x2 þ 2x1

2
x2

� �
, x1 > 0, x2 > 0

is difference of two affine convex functions (see Section 2).

Optimization Algorithms - Examples120

Our chapter is based also on some ideas in: [3] (convex mappings between Riemannian mani-
folds), [7] (geometric modeling in probability and statistics), [13] (arc length in metric and
Finsler manifolds), [14] (applications of Hahn-Banach principle to moment and optimization
problems), [21] (geodesic connectedness of semi-Riemannian manifolds), and [28] (tangent and
cotangent bundles). For algorithms, we recommend the paper [20] (sequential and parallel
algorithms).

2. Optimizations with autoparallel restrictions

2.1. Direct theory

The auto-parallel curves x tð Þ on the affine manifold M;Γð Þ are solutions of the second order
ODE system

€xh tð Þ þ Γhij x tð Þð Þ _xi tð Þ _xj tð Þ ¼ 0, x t0ð Þ ¼ x0, _x t0ð Þ ¼ ξ0:

Obviously, the complete notation is x t; x0; ξ0ð Þ, with

x t0; x0; ξ0ð Þ ¼ x0, _x t0; x0; ξ0ð Þ ¼ ξ0:

Definition 2.1 Let D⊂M be open and connected and f : D! R a C2 function. The point x0 ∈D is
called minimum (maximum) point of f conditioned by the auto-parallel system, together with initial
conditions, if for the maximal solution x t; x0; ξ0ð Þ : I ! D, there exists a neighborhood It0 of t0 such that

f x t; x0; ξ0ð Þð Þ ≥ ≤ð Þ f x0ð Þ, ∀t∈ It0 ⊂ I:

Theorem 2.1 If x0 ∈D is an extremum point of f conditioned by the previous second order system,
then df x0ð Þ ξ0ð Þ ¼ 0.

Definition 2.2 The points x∈D which are solutions of the equation df xð Þ ξð Þ ¼ 0 are called critical
points of f conditioned by the previous spray.

Theorem 2.2 If x0 ∈D is a conditioned critical point of the function f : D! R of class C2 constrained
by the previous auto-parallel system and if the number

Hess fð Þij ξi0ξj0 ¼
∂2f

∂xi∂xj
� ∂f
∂xh

Γhij

� �
x0ð Þ ξi0ξj0

is strictly positive (negative), then x0 is a minimum (maximum) point of f constrained by the auto-
parallel system.
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Example 2.1 We compute the Christoffel symbols on the unit sphere S2, using spherical coordinates
θ;φð Þ and the Riemannian metric

gθθ ¼ 1, gθφ ¼ gφθ ¼ 0, gφφ ¼ sin 2θ:

When θ 6¼ 0,π, we find

Γθφφ ¼ �
1
2
sin 2θ,Γφ

φθ ¼ Γφθφ ¼ cotθ,

and all the other Γs are equal to zero. We can show that the apparent singularity at θ ¼ 0,π can be
removed by a better choice of coordinates at the poles of the sphere. Thus, the above affine connection
extends to the whole sphere.

The second order system defining auto-parallel curves (geodesics) on S2 are

€θ tð Þ � 1
2
sin 2θ tð Þ _φ tð Þ _φ tð Þ ¼ 0, €φ tð Þ � 2 cotθ tð Þ _φ tð Þ _θ tð Þ ¼ 0:

The solutions are great circles on the sphere. For example, θ ¼ α tþ β and φ = const.

We compute the curvature tensor R of the unit sphere S2. Since there are only two independent
coordinates, all the non-zero components of curvature tensor R are given by Ri

j ¼ Ri
jθφ ¼ �Ri

jφθ, where

i, j ¼ θ,φ. We get Rθ
φ ¼ sin 2θ, Rφ

θ ¼ �1 and the other components are 0.

Let θ t; θ0;φ0

� �
; ξ

� �
,φ t; θ0;φ0

� �
; ξ

� �
, t∈R

�
be the maximal auto-parallel which satisfies

θ t0; θ0;φ0

� �
; ξ

� � ¼ θ0, _θ t0; θ0;φ0

� �
; ξ

� � ¼ ξ1; φ t0; θ0;φ0

� �
; ξ

� � ¼ φ0, _φ t0; θ0;φ0

� �
; ξ

� � ¼ ξ2.

We wish to compute min f θ;φð Þ ¼ Rθ
φ ¼ sin 2θ with the restriction θ t; θ0;φ0

� �
; ξ

� �
;φ t, θ0;φ0

� �
;

��

ξÞÞ, t∈R.

Since df ¼ 2 sinθ cosθ; 0ð Þ, the critical point condition df θ;φð Þ ξð Þ ¼ 0 becomes sinθ cosθ ξ1 ¼ 0.

Consequently, the critical points are either θ0 ¼ kπ; k∈ℤ;φð Þ, ξ1; ξ2
� � 6¼ 0; 0ð Þ, or θ1 ¼ 2kþ 1ð Þ π2 ;

�

k∈ℤ;φÞ, ξ1; ξ2
� � 6¼ 0; 0ð Þ, or θ;φð Þ, ξ1 ¼ 0; ξ2 6¼ 0

� �
.

The components of the Hessian of f are

Hess fð Þθθ ¼
∂2f
∂θ∂θ

¼ 2 cos 2θ, Hess fð Þθφ ¼ 0, Hessfð Þφφ ¼
1
2
sin 2 2θ:

At the critical points θ0;φð Þ or θ1;φð Þ, the Hessian of f is positive or negative semi-definite. On the

other hand, along ξ1 ¼ 0; ξ2 6¼ 0
� �

, we find Hessfð Þij ξiξj ¼ 1
2 sin

2 2θ ξ2
� �2

> 0, ξ2 6¼ 0: Conse-

quently, each point θ 6¼ kπ
2 ;φ

� �
, is a minimum point of f along each auto-parallel, starting from given

point and tangent to ξ1 ¼ 0; ξ2 6¼ 0
� �

.
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2.2. Theory via the associated spray

This point of view regarding extrema comes from paper [22].

The second order system of auto-parallels induces a spray (special vector field) Y x; yð Þ ¼
yh;Γh

ij xð Þyiyj
� �

on the tangent bundle TM, that is,

_xh tð Þ ¼ yh tð Þ, _yh tð Þ þ Γhij x tð Þð Þyi tð Þyj tð Þ ¼ 0:

The solutions γ tð Þ ¼ x tð Þ; y tð Þð Þ : I ! D of class C2 are called field lines of Y. They depend on
the initial condition γ tð Þjt¼t0 ¼ x0; y0

� �
, and therefore the notation γ t; x0; y0

� �
is more sugges-

tive.

Definition 2.3 Let D⊂TM be open and connected and f : D! R a C2 function. The point
x0; y0
� �

∈D is called minimum (maximum) point of f conditioned by the previous spray, if for the

maximal field line γ t; x0; y0
� �

, t∈ I, there exists a neighborhood It0 of t0 such that

f γ t; x0; y0
� �� �

≥ ≤ð Þ f x0; y0
� �

, ∀t∈ It0 ⊂ I:

Theorem 2.3 If x0; y0
� �

∈D is an extremum point of f conditioned by the previous spray, then
x0; y0
� �

is a point where Y is in Ker df .

Definition 2.4 The points x; yð Þ∈D which are solutions of the equation

DYf x; yð Þ ¼ df Yð Þ x; yð Þ ¼ 0

are called critical points of f conditioned by the previous spray.

Theorem 2.4 If x0; y0
� �

∈D is a conditioned critical point of the function f : D! R of class C2

constrained by the previous spray and if the number

d2f Y;Yð Þ þ df DYYð Þ� �
x0; y0
� �

is strictly positive (negative), then x0; y0
� �

is a minimum (maximum) point of f constrained by the
spray.

Example 2.2 We consider the Volterra-Hamilton ODE system [2].

dx1

dt
tð Þ ¼ y1 tð Þ, dx

2

dt
tð Þ ¼ y2 tð Þ,
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Example 2.1 We compute the Christoffel symbols on the unit sphere S2, using spherical coordinates
θ;φð Þ and the Riemannian metric

gθθ ¼ 1, gθφ ¼ gφθ ¼ 0, gφφ ¼ sin 2θ:

When θ 6¼ 0,π, we find

Γθφφ ¼ �
1
2
sin 2θ,Γφ

φθ ¼ Γφθφ ¼ cotθ,

and all the other Γs are equal to zero. We can show that the apparent singularity at θ ¼ 0,π can be
removed by a better choice of coordinates at the poles of the sphere. Thus, the above affine connection
extends to the whole sphere.

The second order system defining auto-parallel curves (geodesics) on S2 are

€θ tð Þ � 1
2
sin 2θ tð Þ _φ tð Þ _φ tð Þ ¼ 0, €φ tð Þ � 2 cotθ tð Þ _φ tð Þ _θ tð Þ ¼ 0:

The solutions are great circles on the sphere. For example, θ ¼ α tþ β and φ = const.

We compute the curvature tensor R of the unit sphere S2. Since there are only two independent
coordinates, all the non-zero components of curvature tensor R are given by Ri

j ¼ Ri
jθφ ¼ �Ri

jφθ, where

i, j ¼ θ,φ. We get Rθ
φ ¼ sin 2θ, Rφ

θ ¼ �1 and the other components are 0.

Let θ t; θ0;φ0

� �
; ξ

� �
,φ t; θ0;φ0

� �
; ξ

� �
, t∈R

�
be the maximal auto-parallel which satisfies

θ t0; θ0;φ0

� �
; ξ

� � ¼ θ0, _θ t0; θ0;φ0

� �
; ξ

� � ¼ ξ1; φ t0; θ0;φ0

� �
; ξ

� � ¼ φ0, _φ t0; θ0;φ0

� �
; ξ

� � ¼ ξ2.

We wish to compute min f θ;φð Þ ¼ Rθ
φ ¼ sin 2θ with the restriction θ t; θ0;φ0

� �
; ξ

� �
;φ t, θ0;φ0

� �
;

��

ξÞÞ, t∈R.

Since df ¼ 2 sinθ cosθ; 0ð Þ, the critical point condition df θ;φð Þ ξð Þ ¼ 0 becomes sinθ cosθ ξ1 ¼ 0.

Consequently, the critical points are either θ0 ¼ kπ; k∈ℤ;φð Þ, ξ1; ξ2
� � 6¼ 0; 0ð Þ, or θ1 ¼ 2kþ 1ð Þ π2 ;

�

k∈ℤ;φÞ, ξ1; ξ2
� � 6¼ 0; 0ð Þ, or θ;φð Þ, ξ1 ¼ 0; ξ2 6¼ 0

� �
.

The components of the Hessian of f are

Hess fð Þθθ ¼
∂2f
∂θ∂θ

¼ 2 cos 2θ, Hess fð Þθφ ¼ 0, Hessfð Þφφ ¼
1
2
sin 2 2θ:

At the critical points θ0;φð Þ or θ1;φð Þ, the Hessian of f is positive or negative semi-definite. On the

other hand, along ξ1 ¼ 0; ξ2 6¼ 0
� �

, we find Hessfð Þij ξiξj ¼ 1
2 sin

2 2θ ξ2
� �2

> 0, ξ2 6¼ 0: Conse-

quently, each point θ 6¼ kπ
2 ;φ

� �
, is a minimum point of f along each auto-parallel, starting from given

point and tangent to ξ1 ¼ 0; ξ2 6¼ 0
� �

.
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2.2. Theory via the associated spray

This point of view regarding extrema comes from paper [22].

The second order system of auto-parallels induces a spray (special vector field) Y x; yð Þ ¼
yh;Γh

ij xð Þyiyj
� �

on the tangent bundle TM, that is,

_xh tð Þ ¼ yh tð Þ, _yh tð Þ þ Γhij x tð Þð Þyi tð Þyj tð Þ ¼ 0:

The solutions γ tð Þ ¼ x tð Þ; y tð Þð Þ : I ! D of class C2 are called field lines of Y. They depend on
the initial condition γ tð Þjt¼t0 ¼ x0; y0

� �
, and therefore the notation γ t; x0; y0

� �
is more sugges-

tive.

Definition 2.3 Let D⊂TM be open and connected and f : D! R a C2 function. The point
x0; y0
� �

∈D is called minimum (maximum) point of f conditioned by the previous spray, if for the

maximal field line γ t; x0; y0
� �

, t∈ I, there exists a neighborhood It0 of t0 such that

f γ t; x0; y0
� �� �

≥ ≤ð Þ f x0; y0
� �

, ∀t∈ It0 ⊂ I:

Theorem 2.3 If x0; y0
� �

∈D is an extremum point of f conditioned by the previous spray, then
x0; y0
� �

is a point where Y is in Ker df .

Definition 2.4 The points x; yð Þ∈D which are solutions of the equation

DYf x; yð Þ ¼ df Yð Þ x; yð Þ ¼ 0

are called critical points of f conditioned by the previous spray.

Theorem 2.4 If x0; y0
� �

∈D is a conditioned critical point of the function f : D! R of class C2

constrained by the previous spray and if the number

d2f Y;Yð Þ þ df DYYð Þ� �
x0; y0
� �

is strictly positive (negative), then x0; y0
� �

is a minimum (maximum) point of f constrained by the
spray.

Example 2.2 We consider the Volterra-Hamilton ODE system [2].

dx1

dt
tð Þ ¼ y1 tð Þ, dx

2

dt
tð Þ ¼ y2 tð Þ,
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dy1

dt
tð Þ ¼ λy1 tð Þ � α1y1

2
tð Þ � 2α2y1 tð Þy2 tð Þ,

dy2

dt
tð Þ ¼ λy1 tð Þ � β1y

22 tð Þ � 2β2y
1 tð Þy2 tð Þ,

which models production in a Gause-Witt 2-species evolving in R4: (1) competition if α1 > 0, α2 > 0,
β1 > 0, β2 > 0 and (2) parasitism if α1 > 0, α2 < 0, β1 > 0, β2 > 0.

Changing the real parameter t into an affine parameter s, we find the connection with constant coefficients

Γ1
11 ¼

1
3

α1 � 2β2
� �

,Γ2
22 ¼

1
3

β1 � 2α2
� �

,

Γ1
12 ¼

1
3

2α2 � β1
� �

,Γ212 ¼
1
3

2β2 � α1
� �

:

Let x t; x0; y0
� �

, t∈ I be the maximal field line which satisfies x t0; x0; y0
� � ¼ x0; y0

� �
. We wish to

compute max f x1; x2; y1; y2
� � ¼ y2 with the restriction x ¼ x t; x0; y0

� �
.

We apply the previous theory. Introduce the vector field

Y ¼ y1; y2;λy1 � α1y1
2 � 2α2y1y2;λy1 � β1y

22 � 2β2y
1y2

� �
:

We set the critical point condition df Yð Þ ¼ 0. Since df ¼ 0; 0; 0; 1ð Þ, it follows the relation λy1 � β1y
22

�2β2y1y2 ¼ 0, that is, the critical point set is a conic in y1Oy2.

Since d2f ¼ 0, the sufficiency condition is reduced to df DYYð Þ x0; y0
� �

< 0, that is,

λ� α1β1y
22

λ� 2β2y
2 � 2α2y2

� �
y0
� �

< 0:

This last relation is equivalent either to

λ� 2α2y20
� �

λ� 2β2y
2
0

� �� α1β1y
2
02 < 0,λ� 2β2y

2
0 > 0

or to
λ� 2α2y20
� �

λ� 2β2y
2
0

� �� α1β1y
2
02 > 0,λ� 2β2y

2
0 < 0:

Each critical point satisfying one of the last two conditions is a maximum point.

3. Affine convexity of posynomial functions

For the general theory regarding geometric programming (based on posynomial, signomial
functions, etc.), see [11].
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Theorem 3.1 Each posynomial function is affine convex, with respect to some affine connection.

Proof. A posynomial function has the form

f : Rn
þþ ! R, f xð Þ ¼

XK

k¼1
ck
Yn

i¼1
xi
� �aik ,

where all the coefficients ck are positive real numbers, and the exponents aik are real numbers.
Let us consider the auto-parallel curves of the form

γ tð Þ ¼ a1
� �1�t

b1
� �t

; a2
� �1�t

b2
� �t

;…; anð Þ1�t bnð Þt
� �

, t∈ 0; 1½ �,

joining the points a ¼ a1;…; an
� �

and b ¼ b1;…; bn
� �

, which fix, as example, the affine connec-
tion

Γh
hj ¼ Γhjh ¼ �

1
2

μh

μj xj
, and otherwise Γh

ij ¼ 0:

It follows

f γ tð Þð Þ ¼
XK

k¼1
ck
Yn

i¼1
ai
� �aik� �1�t

bi
� �aik� �t

¼
XK

k¼1
ck
Yn

i¼1
ai
� �aik

 !1�t Yn

i¼1
bi
� �aik

 !t

:

One term in this sum is of the formψk tð Þ ¼ A1�t
k Bt

k, and hence €ψk tð Þ ¼ A1�t
k Bt

k lnAk � lnBkð Þ2 > 0:

Remark 3.1 Posynomial functions belong to the class of functions satisfying the statement “product of
two convex function is convex”.

Corollary 3.1 Each signomial function is difference of two affine convex posynomials, with respect to
some affine connection.

Proof. A signomial function has the form

f : Rn
þþ ! R, f xð Þ ¼

XK

k¼1
ck
Yn

i¼1
xi
� �aik ,

where all the exponents aik are real numbers and the coefficients ck are either positive or
negative. Without loss of generality, suppose that for k ¼ 1,…, k0 we have ck > 0 and for
k ¼ k0 þ 1,…, K we have ck < 0. We use the decomposition
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dy1

dt
tð Þ ¼ λy1 tð Þ � α1y1

2
tð Þ � 2α2y1 tð Þy2 tð Þ,

dy2

dt
tð Þ ¼ λy1 tð Þ � β1y

22 tð Þ � 2β2y
1 tð Þy2 tð Þ,

which models production in a Gause-Witt 2-species evolving in R4: (1) competition if α1 > 0, α2 > 0,
β1 > 0, β2 > 0 and (2) parasitism if α1 > 0, α2 < 0, β1 > 0, β2 > 0.

Changing the real parameter t into an affine parameter s, we find the connection with constant coefficients

Γ1
11 ¼

1
3

α1 � 2β2
� �

,Γ2
22 ¼

1
3

β1 � 2α2
� �

,

Γ1
12 ¼

1
3

2α2 � β1
� �

,Γ212 ¼
1
3

2β2 � α1
� �

:

Let x t; x0; y0
� �

, t∈ I be the maximal field line which satisfies x t0; x0; y0
� � ¼ x0; y0

� �
. We wish to

compute max f x1; x2; y1; y2
� � ¼ y2 with the restriction x ¼ x t; x0; y0

� �
.

We apply the previous theory. Introduce the vector field

Y ¼ y1; y2;λy1 � α1y1
2 � 2α2y1y2;λy1 � β1y

22 � 2β2y
1y2

� �
:

We set the critical point condition df Yð Þ ¼ 0. Since df ¼ 0; 0; 0; 1ð Þ, it follows the relation λy1 � β1y
22

�2β2y1y2 ¼ 0, that is, the critical point set is a conic in y1Oy2.

Since d2f ¼ 0, the sufficiency condition is reduced to df DYYð Þ x0; y0
� �

< 0, that is,

λ� α1β1y
22

λ� 2β2y
2 � 2α2y2

� �
y0
� �

< 0:

This last relation is equivalent either to

λ� 2α2y20
� �

λ� 2β2y
2
0

� �� α1β1y
2
02 < 0,λ� 2β2y

2
0 > 0

or to
λ� 2α2y20
� �

λ� 2β2y
2
0

� �� α1β1y
2
02 > 0,λ� 2β2y

2
0 < 0:

Each critical point satisfying one of the last two conditions is a maximum point.

3. Affine convexity of posynomial functions

For the general theory regarding geometric programming (based on posynomial, signomial
functions, etc.), see [11].
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Theorem 3.1 Each posynomial function is affine convex, with respect to some affine connection.

Proof. A posynomial function has the form

f : Rn
þþ ! R, f xð Þ ¼

XK

k¼1
ck
Yn

i¼1
xi
� �aik ,

where all the coefficients ck are positive real numbers, and the exponents aik are real numbers.
Let us consider the auto-parallel curves of the form

γ tð Þ ¼ a1
� �1�t

b1
� �t

; a2
� �1�t

b2
� �t

;…; anð Þ1�t bnð Þt
� �

, t∈ 0; 1½ �,

joining the points a ¼ a1;…; an
� �

and b ¼ b1;…; bn
� �

, which fix, as example, the affine connec-
tion

Γh
hj ¼ Γhjh ¼ �

1
2

μh

μj xj
, and otherwise Γh

ij ¼ 0:

It follows

f γ tð Þð Þ ¼
XK

k¼1
ck
Yn

i¼1
ai
� �aik� �1�t

bi
� �aik� �t

¼
XK

k¼1
ck
Yn

i¼1
ai
� �aik

 !1�t Yn

i¼1
bi
� �aik

 !t

:

One term in this sum is of the formψk tð Þ ¼ A1�t
k Bt

k, and hence €ψk tð Þ ¼ A1�t
k Bt

k lnAk � lnBkð Þ2 > 0:

Remark 3.1 Posynomial functions belong to the class of functions satisfying the statement “product of
two convex function is convex”.

Corollary 3.1 Each signomial function is difference of two affine convex posynomials, with respect to
some affine connection.

Proof. A signomial function has the form

f : Rn
þþ ! R, f xð Þ ¼

XK

k¼1
ck
Yn

i¼1
xi
� �aik ,

where all the exponents aik are real numbers and the coefficients ck are either positive or
negative. Without loss of generality, suppose that for k ¼ 1,…, k0 we have ck > 0 and for
k ¼ k0 þ 1,…, K we have ck < 0. We use the decomposition
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f xð Þ ¼
Xk0
k¼1

ck
Yn

i¼1
xi
� �aik �

XK

k¼k0þ1
∣ck∣
Yn

i¼1
xi
� �aik ,

we apply the Theorem and the implication u00 tð Þ ≥ v00 tð Þ ) u� v convex. □

Corollary 3.2 (1) The polynomial functions with positive coefficients, restricted to Rn
þþ, are affine

convex functions.

(2) The polynomial functions with positive and negative terms, restricted to Rn
þþ, are differences of two

affine convex functions.

Proudnikov [18] gives the necessary and sufficient conditions for representing Lipschitz mul-
tivariable function as a difference of two convex functions. An algorithm and a geometric
interpretation of this representation are also given. The outcome of this algorithm is a sequence
of pairs of convex functions that converge uniformly to a pair of convex functions if the
conditions of the formulated theorems are satisfied.

4. Bilevel disjunctive problem

Let M1,
1Γ

� �
, the leader decision affine manifold, and M2,

2Γ
� �

, the follower decision affine manifold,

be two connected affine manifolds of dimension n1 and n2, respectively. Moreover, M2,
2Γ

� �
is

supposed to be complete. Let also f : M1 �M2 ! R be the leader objective function, and let
F ¼ F1;…; Frð Þ : M1 �M2 ! Rr be the follower multiobjective function.

The components Fi : M1 �M2 ! R are (possibly) conflicting objective functions.

A bilevel optimization problem means a decision of leader with regard to a multi-objective
optimum of the follower (in fact, a constrained optimization problem whose constraints are
obtained from optimization problems). For details, see [5, 10, 12].

Let x∈M1, y∈M2 be the generic points. In this chapter, the disjunctive solution set of a follower
multiobjective optimization problem is defined by

(1) the set-valued function

ψ : M1 ⇉M2,ψ xð Þ ¼ Argminy∈M2
F x; yð Þ,

where

Argminy∈M2
F x; yð Þ≔ ∪ri¼1Argminy∈M2

Fi x; yð Þ

or

(2) the set-valued function
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ψ : M1⇉M2,ψ xð Þ ¼ Argmaxy∈M2
F x; yð Þ,

where

Argmaxy∈M2
F x; yð Þ≔∪ri¼1Argmaxy∈M2

Fi x; yð Þ:

We deal with two bilevel problems:

(1) The optimistic bilevel disjunctive problem

OBDPð Þ min
x∈M1

min
y∈ψ xð Þ

f x; yð Þ:

In this case, the follower cooperates with the leader; that is, for each x∈M1, the follower
chooses among all its disjunctive solutions (his best responses) one which is the best for the
leader (assuming that such a solution exists).

(2) The pessimistic bilevel disjunctive problem

PBDPð Þ min
x∈M1

max
y∈ψ xð Þ

f x; yð Þ:

In this case, there is no cooperation between the leader and the follower, and the leader expects
the worst scenario; that is, for each x∈M1, the follower may choose among all its disjunctive
solutions (his best responses) one which is unfavorable for the leader.

So, a general optimization problem becomes a pessimistic bilevel problem.

Theorem 4.1 The value
min
x

f x; yð Þ : y∈ψ xð Þ½ �

exists if and only if, for an index i, the minimum minx f x; yð Þ : y∈ψi xð Þ
� �

exists and, for each j 6¼ i,

either minx f x; yð Þ : y∈ψj xð Þ
h i

exists or ψj ¼ Ø. In this case,

min
x

f x; yð Þ : y∈ψ xð Þ½ �

coincides to the minimum of minima that exist.

Proof. Let us consider the multi-functions ϕi xð Þ ¼ f x;ψi xð Þ
� �

and ϕ xð Þ ¼ f x;ψ xð Þð Þ. Then

ϕ xð Þ ¼ ∪ki¼1ϕi xð Þ. It follows that minxϕ xð Þ exists if and only if either minxϕi xð Þ exists or
ψi ¼ ∅, and at least one minimum exists.

Taking minimum of minima that exist, we find

min
x

f x; yð Þ : y∈ψ xð Þ½ �: □
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f xð Þ ¼
Xk0
k¼1

ck
Yn

i¼1
xi
� �aik �

XK

k¼k0þ1
∣ck∣
Yn

i¼1
xi
� �aik ,

we apply the Theorem and the implication u00 tð Þ ≥ v00 tð Þ ) u� v convex. □

Corollary 3.2 (1) The polynomial functions with positive coefficients, restricted to Rn
þþ, are affine

convex functions.

(2) The polynomial functions with positive and negative terms, restricted to Rn
þþ, are differences of two

affine convex functions.

Proudnikov [18] gives the necessary and sufficient conditions for representing Lipschitz mul-
tivariable function as a difference of two convex functions. An algorithm and a geometric
interpretation of this representation are also given. The outcome of this algorithm is a sequence
of pairs of convex functions that converge uniformly to a pair of convex functions if the
conditions of the formulated theorems are satisfied.

4. Bilevel disjunctive problem

Let M1,
1Γ

� �
, the leader decision affine manifold, and M2,

2Γ
� �

, the follower decision affine manifold,

be two connected affine manifolds of dimension n1 and n2, respectively. Moreover, M2,
2Γ

� �
is

supposed to be complete. Let also f : M1 �M2 ! R be the leader objective function, and let
F ¼ F1;…; Frð Þ : M1 �M2 ! Rr be the follower multiobjective function.

The components Fi : M1 �M2 ! R are (possibly) conflicting objective functions.

A bilevel optimization problem means a decision of leader with regard to a multi-objective
optimum of the follower (in fact, a constrained optimization problem whose constraints are
obtained from optimization problems). For details, see [5, 10, 12].

Let x∈M1, y∈M2 be the generic points. In this chapter, the disjunctive solution set of a follower
multiobjective optimization problem is defined by

(1) the set-valued function

ψ : M1 ⇉M2,ψ xð Þ ¼ Argminy∈M2
F x; yð Þ,

where

Argminy∈M2
F x; yð Þ≔ ∪ri¼1Argminy∈M2

Fi x; yð Þ

or

(2) the set-valued function
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ψ : M1⇉M2,ψ xð Þ ¼ Argmaxy∈M2
F x; yð Þ,

where

Argmaxy∈M2
F x; yð Þ≔∪ri¼1Argmaxy∈M2

Fi x; yð Þ:

We deal with two bilevel problems:

(1) The optimistic bilevel disjunctive problem

OBDPð Þ min
x∈M1

min
y∈ψ xð Þ

f x; yð Þ:

In this case, the follower cooperates with the leader; that is, for each x∈M1, the follower
chooses among all its disjunctive solutions (his best responses) one which is the best for the
leader (assuming that such a solution exists).

(2) The pessimistic bilevel disjunctive problem

PBDPð Þ min
x∈M1

max
y∈ψ xð Þ

f x; yð Þ:

In this case, there is no cooperation between the leader and the follower, and the leader expects
the worst scenario; that is, for each x∈M1, the follower may choose among all its disjunctive
solutions (his best responses) one which is unfavorable for the leader.

So, a general optimization problem becomes a pessimistic bilevel problem.

Theorem 4.1 The value
min
x

f x; yð Þ : y∈ψ xð Þ½ �

exists if and only if, for an index i, the minimum minx f x; yð Þ : y∈ψi xð Þ
� �

exists and, for each j 6¼ i,

either minx f x; yð Þ : y∈ψj xð Þ
h i

exists or ψj ¼ Ø. In this case,

min
x

f x; yð Þ : y∈ψ xð Þ½ �

coincides to the minimum of minima that exist.

Proof. Let us consider the multi-functions ϕi xð Þ ¼ f x;ψi xð Þ
� �

and ϕ xð Þ ¼ f x;ψ xð Þð Þ. Then

ϕ xð Þ ¼ ∪ki¼1ϕi xð Þ. It follows that minxϕ xð Þ exists if and only if either minxϕi xð Þ exists or
ψi ¼ ∅, and at least one minimum exists.

Taking minimum of minima that exist, we find

min
x

f x; yð Þ : y∈ψ xð Þ½ �: □
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Theorem 4.2 Suppose M1 is a compact manifold. If for each x∈M1, at least one partial function
y! Fi x; yð Þ is affine convex and has a critical point, then the problem OBDPð Þ has a solution.

Proof. In our hypothesis, the set ψ xð Þ is nonvoid, for any x, and the compacity assures the
existence of minxf x;ψ xð Þð Þ.
In the next Theorem, we shall use the Value Function Method or Utility Function Method. □

Theorem 4.3 If a C1 increasing scalarization partial function

y! L x; yð Þ ¼ u F1 x; yð Þ;…; Fk x; yð Þð Þ

has a minimum, then there exists an index i such that ψi xð Þ 6¼ ∅. Moreover, if f x; yð Þ is bounded, then
the bilevel problem

min
x

f x; yð Þ : y∈ψ xð Þ½ �

has solution.

Proof. Let minyL x; yð Þ ¼ L x; y∗ð Þ. Suppose that for each i ¼ 1,…, k, minyFi x; yð Þ < Fi x; y∗ð Þ.
Then y∗ would not be minimum point for the partial function y! L x; yð Þ. Hence, there exists
an index i such that y∗ ∈ψi xð Þ. □
Boundedness of f implies that the bilevel problem has solution once it is well-posed, but the
fact that the problem is well-posed is shown in the first part of the proof.

4.1. Bilevel disjunctive programming algorithm

An important concept for making wise tradeoffs among competing objectives is bilevel dis-
junctive programming optimality, on affine manifolds, introduced in this chapter.

We present an exact algorithm for obtaining the bilevel disjunctive solutions to the multi-
objective optimization in the following section.

Step 1: Solve

ψi xð Þ ¼ Argminy∈M2
Fi x; yð Þ, i ¼ 1,…, m:

Let ψ xð Þ ¼ ∪ri¼1ψi xð Þ be a subset in M2 representing the mapping of optimal solutions for the
follower multi-objective function.

Step 2: Build the mapping f x,ψ xð Þð .

Step 3: Solve the leader’s following program

min
x

f x; yð Þ; y∈ψ xð Þ½ �:

From numerical point of view, we can use the Newton algorithm for optimization on affine
manifolds, which is given in [19].
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5. Models of bilevel disjunctive programming problems

The manifoldM is understood from the context. The connection Γh
ij can be realized in each case,

imposing convexity conditions.

Example 5.1 Let us solve the problem (cite [7], p. 7; [9]):

min
x1;x2ð Þ

F x1; x2; yð Þ ¼ x1 � y; x2ð Þ

subject to

x1; x2ð Þ∈Argmin x1;x2ð Þ x1; x2ð Þ jy2 � x21 � x22 ≥ 0
� �

,

1þ x1 þ x2 ≥ 0, � 1 ≤ x1, x2 ≤ 1, 0 ≤ y ≤ 1:

Both the lower and the upper level optimization tasks have two objectives each. For a fixed y value, the
feasible region of the lower-level problem is the area inside a circle with center at origin x1 ¼ x2 ¼ 0ð Þ
and radius equal to y. The Pareto-optimal set for the lower-level optimization task, preserving a fixed y,
is the bottom-left quarter of the circle,

x1; x2ð Þ∈R2 jx21 þ x22 ¼ y2; x1 ≤ 0; x2 ≤ 0
� �

:

The linear constraint in the upper level optimization task does not allow the entire quarter circle to be
feasible for some y. Thus, at most a couple of points from the quarter circle belongs to the Pareto-optimal
set of the overall problem. Eichfelder [8] reported the following Pareto-optimal set of solutions

A ¼ x1; x2; yð Þ∈R3 jx1 ¼ �1� x2; x2 ¼ � 1
2
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2 � 1

q
; y∈

1ffiffiffi
2
p ; 1
� �� �

:

The Pareto-optimal front in F1 � F2 space can be written in parametric form

F1; F2ð Þ∈R2 jF1 ¼ �1� F2 � t; F2 ¼ � 1
2
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t2 � 1

p
; t∈

1ffiffiffi
2
p ; 1
� �� �

:

Example 5.2 Consider the bilevel programming problem

min
x

x� yð Þ2 þ x2 : �20 ≤ x ≤ 20; y∈ψ xð Þ
h i

,

where the set-valued function is
ψ xð Þ ¼ Argminy xy : �x� 1⩽ y⩽ � xþ 1½ �:

Explicitly,

ψ xð Þ ¼
�1; 1½ � if x ¼ 0
�x� 1 if x > 0
�xþ 1 if x < 0:

8><
>:
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Theorem 4.2 Suppose M1 is a compact manifold. If for each x∈M1, at least one partial function
y! Fi x; yð Þ is affine convex and has a critical point, then the problem OBDPð Þ has a solution.

Proof. In our hypothesis, the set ψ xð Þ is nonvoid, for any x, and the compacity assures the
existence of minxf x;ψ xð Þð Þ.
In the next Theorem, we shall use the Value Function Method or Utility Function Method. □

Theorem 4.3 If a C1 increasing scalarization partial function

y! L x; yð Þ ¼ u F1 x; yð Þ;…; Fk x; yð Þð Þ

has a minimum, then there exists an index i such that ψi xð Þ 6¼ ∅. Moreover, if f x; yð Þ is bounded, then
the bilevel problem

min
x

f x; yð Þ : y∈ψ xð Þ½ �

has solution.

Proof. Let minyL x; yð Þ ¼ L x; y∗ð Þ. Suppose that for each i ¼ 1,…, k, minyFi x; yð Þ < Fi x; y∗ð Þ.
Then y∗ would not be minimum point for the partial function y! L x; yð Þ. Hence, there exists
an index i such that y∗ ∈ψi xð Þ. □
Boundedness of f implies that the bilevel problem has solution once it is well-posed, but the
fact that the problem is well-posed is shown in the first part of the proof.

4.1. Bilevel disjunctive programming algorithm

An important concept for making wise tradeoffs among competing objectives is bilevel dis-
junctive programming optimality, on affine manifolds, introduced in this chapter.

We present an exact algorithm for obtaining the bilevel disjunctive solutions to the multi-
objective optimization in the following section.

Step 1: Solve

ψi xð Þ ¼ Argminy∈M2
Fi x; yð Þ, i ¼ 1,…, m:

Let ψ xð Þ ¼ ∪ri¼1ψi xð Þ be a subset in M2 representing the mapping of optimal solutions for the
follower multi-objective function.

Step 2: Build the mapping f x,ψ xð Þð .

Step 3: Solve the leader’s following program

min
x

f x; yð Þ; y∈ψ xð Þ½ �:

From numerical point of view, we can use the Newton algorithm for optimization on affine
manifolds, which is given in [19].
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5. Models of bilevel disjunctive programming problems

The manifoldM is understood from the context. The connection Γh
ij can be realized in each case,

imposing convexity conditions.

Example 5.1 Let us solve the problem (cite [7], p. 7; [9]):

min
x1;x2ð Þ

F x1; x2; yð Þ ¼ x1 � y; x2ð Þ

subject to

x1; x2ð Þ∈Argmin x1;x2ð Þ x1; x2ð Þ jy2 � x21 � x22 ≥ 0
� �

,

1þ x1 þ x2 ≥ 0, � 1 ≤ x1, x2 ≤ 1, 0 ≤ y ≤ 1:

Both the lower and the upper level optimization tasks have two objectives each. For a fixed y value, the
feasible region of the lower-level problem is the area inside a circle with center at origin x1 ¼ x2 ¼ 0ð Þ
and radius equal to y. The Pareto-optimal set for the lower-level optimization task, preserving a fixed y,
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x1; x2ð Þ∈R2 jx21 þ x22 ¼ y2; x1 ≤ 0; x2 ≤ 0
� �

:

The linear constraint in the upper level optimization task does not allow the entire quarter circle to be
feasible for some y. Thus, at most a couple of points from the quarter circle belongs to the Pareto-optimal
set of the overall problem. Eichfelder [8] reported the following Pareto-optimal set of solutions

A ¼ x1; x2; yð Þ∈R3 jx1 ¼ �1� x2; x2 ¼ � 1
2
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2 � 1

q
; y∈

1ffiffiffi
2
p ; 1
� �� �

:

The Pareto-optimal front in F1 � F2 space can be written in parametric form

F1; F2ð Þ∈R2 jF1 ¼ �1� F2 � t; F2 ¼ � 1
2
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t2 � 1

p
; t∈

1ffiffiffi
2
p ; 1
� �� �

:

Example 5.2 Consider the bilevel programming problem

min
x

x� yð Þ2 þ x2 : �20 ≤ x ≤ 20; y∈ψ xð Þ
h i

,

where the set-valued function is
ψ xð Þ ¼ Argminy xy : �x� 1⩽ y⩽ � xþ 1½ �:

Explicitly,

ψ xð Þ ¼
�1; 1½ � if x ¼ 0
�x� 1 if x > 0
�xþ 1 if x < 0:

8><
>:
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Since F x; yð Þ ¼ x� yð Þ2 þ x2, we get

F x;ψ xð Þð Þ ¼
0; 1½ � if x ¼ 0

�2x� 1ð Þ2 þ x2 if x > 0

�2xþ 1ð Þ2 þ x2 if x < 0:

8><
>:

on the regions where the functions are defined.

Taking into account �2x� 1ð Þ2 þ x2 > 0 and �2xþ 1ð Þ2 þ x2 > 0, it follows that x ∘ ; y ∘ð Þ ¼ 0; 0ð Þ is
the unique optimistic optimal solution of the problem. Now, if the leader is not exactly enough in
choosing his solution, then the real outcome of the problem has an objective function value above 1
which is far away from the optimistic optimal value zero.

Example 5.3 Let F x; yð Þ ¼ F1 x; yð Þ; F2 x; yð Þð Þ and a Pareto disjunctive problem

ψ xð Þ ¼ Argminy F x; yð Þ ¼ Argminy F1 x; yð Þ ∪Argminy F2 x; yð Þ:

Then it appears a bilevel disjunctive programming problem of the form

min
x

f x; yð Þ; y∈ψ xð Þ½ �:

This problem is interesting excepting the case ψ xð Þ ¼ Ø, ∀x. If y! F1 x; yð Þ and y! F2 x; yð Þ are
convex functions, then ψ xð Þ 6¼ Ø.

To write an example, we use

F1 x; yð Þ ¼ xy : �x� 1⩽ y⩽ � xþ 1½ �, F2 x; yð Þ ¼ x2 þ y2 : y⩾ � xþ 1
� �

and we consider a bilevel disjunctive programming problem of the form

min
x

x� yð Þ2 þ x2 : �20 ≤ x ≤ 20; y∈ψ xð Þ
h i

,

with
ψ xð Þ ¼ ψ1 xð Þ∪ψ2 xð Þ,

where

ψ1 xð Þ ¼ Argminy xy : �x� 1⩽ y⩽ � xþ 1½ � ¼
�1; 1½ � if x ¼ 0
�x� 1 if x > 0
�xþ 1 if x < 0,

8><
>:

ψ2 xð Þ ¼ Argminy x2 þ y2 : y⩾ � xþ 1
� � ¼ �xþ 1 if x ≤ 1

0 if x > 1,

�

ψ xð Þ ¼

�1; 1½ � if x ¼ 0
�x� 1;�xþ 1f g if 0 < x ≤ 1
�x� 1; 0f g if x > 1
�xþ 1 if x < 0:

8>>><
>>>:
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The objective f x; yð Þ ¼ x� yð Þ2 þ x2 and the multi-function ψ xð Þ produce a multi-function

f x;ψ xð Þð Þ ¼

0; 1½ � if x ¼ 0

2xþ 1ð Þ2 þ x2; 2x� 1ð Þ2 þ x2
n o

if 0 < x ≤ 1

2xþ 1ð Þ2 þ x2; 2x2
n o

if x > 1

2x� 1ð Þ2 þ x2 if x < 0:

8>>>>>><
>>>>>>:

In context, we find the inferior envelope

y xð Þ ¼

0 if x ¼ 0
�xþ 1 if 0 < x ≤ 1

0 if x > 1
�xþ 1 if x < 0

8>>><
>>>:

and then

f x; y xð Þð Þ ¼
0 if x ¼ 0

2x� 1ð Þ2 þ x2 if x∈ �∞; 0ð Þ∪ 0; 1ð �
2x2 if x > 1:

8><
>:

Since 2x� 1ð Þ2 þ x2 > 0, the unique optimal solution is x ∘ ; y ∘ð Þ ¼ 0; 0ð Þ.
If we consider only ψ1 xð Þ as active, then the unique optimal solution 0; 0ð Þ is maintained. If ψ2 xð Þ is
active, then the optimal solution is 0; 1ð Þ.

6. Properties of minimum functions

Let M1,
1Γ

� �
, the leader decision affine manifold, and M2,

2Γ
� �

, the follower decision affine manifold,
be two connected affine manifolds of dimension n1 and n2, respectively. Starting from a
function with two vector variables

φ : M1 �M2 ! R, x; yð Þ ! φ x; yð Þ,

and taking the infimum after one variable, let say y, we build a function

f xð Þ ¼ inf
y

φ x; yð Þ : y∈ a xð Þf g,

which is called minimum function.

A minimum function is usually specified by a pointwise mapping a of the manifold M1 in the
subsets of a manifold M2 and by a functional φ x; yð Þ on M1 �M2. In this context, some differ-
ential properties of such functions were previously examined in [4]. Now we add new proper-
ties related to increase and convexity ideas.

First we give a new proof to BrianWhite Theorem (see Mean Curvature Flow, p. 7, Internet 2017).
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Since F x; yð Þ ¼ x� yð Þ2 þ x2, we get

F x;ψ xð Þð Þ ¼
0; 1½ � if x ¼ 0

�2x� 1ð Þ2 þ x2 if x > 0

�2xþ 1ð Þ2 þ x2 if x < 0:

8><
>:

on the regions where the functions are defined.

Taking into account �2x� 1ð Þ2 þ x2 > 0 and �2xþ 1ð Þ2 þ x2 > 0, it follows that x ∘ ; y ∘ð Þ ¼ 0; 0ð Þ is
the unique optimistic optimal solution of the problem. Now, if the leader is not exactly enough in
choosing his solution, then the real outcome of the problem has an objective function value above 1
which is far away from the optimistic optimal value zero.

Example 5.3 Let F x; yð Þ ¼ F1 x; yð Þ; F2 x; yð Þð Þ and a Pareto disjunctive problem

ψ xð Þ ¼ Argminy F x; yð Þ ¼ Argminy F1 x; yð Þ ∪Argminy F2 x; yð Þ:

Then it appears a bilevel disjunctive programming problem of the form

min
x

f x; yð Þ; y∈ψ xð Þ½ �:

This problem is interesting excepting the case ψ xð Þ ¼ Ø, ∀x. If y! F1 x; yð Þ and y! F2 x; yð Þ are
convex functions, then ψ xð Þ 6¼ Ø.

To write an example, we use

F1 x; yð Þ ¼ xy : �x� 1⩽ y⩽ � xþ 1½ �, F2 x; yð Þ ¼ x2 þ y2 : y⩾ � xþ 1
� �

and we consider a bilevel disjunctive programming problem of the form

min
x

x� yð Þ2 þ x2 : �20 ≤ x ≤ 20; y∈ψ xð Þ
h i

,

with
ψ xð Þ ¼ ψ1 xð Þ∪ψ2 xð Þ,

where

ψ1 xð Þ ¼ Argminy xy : �x� 1⩽ y⩽ � xþ 1½ � ¼
�1; 1½ � if x ¼ 0
�x� 1 if x > 0
�xþ 1 if x < 0,

8><
>:

ψ2 xð Þ ¼ Argminy x2 þ y2 : y⩾ � xþ 1
� � ¼ �xþ 1 if x ≤ 1

0 if x > 1,

�

ψ xð Þ ¼

�1; 1½ � if x ¼ 0
�x� 1;�xþ 1f g if 0 < x ≤ 1
�x� 1; 0f g if x > 1
�xþ 1 if x < 0:

8>>><
>>>:
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The objective f x; yð Þ ¼ x� yð Þ2 þ x2 and the multi-function ψ xð Þ produce a multi-function

f x;ψ xð Þð Þ ¼

0; 1½ � if x ¼ 0

2xþ 1ð Þ2 þ x2; 2x� 1ð Þ2 þ x2
n o

if 0 < x ≤ 1

2xþ 1ð Þ2 þ x2; 2x2
n o

if x > 1

2x� 1ð Þ2 þ x2 if x < 0:

8>>>>>><
>>>>>>:

In context, we find the inferior envelope

y xð Þ ¼

0 if x ¼ 0
�xþ 1 if 0 < x ≤ 1

0 if x > 1
�xþ 1 if x < 0

8>>><
>>>:

and then

f x; y xð Þð Þ ¼
0 if x ¼ 0

2x� 1ð Þ2 þ x2 if x∈ �∞; 0ð Þ∪ 0; 1ð �
2x2 if x > 1:

8><
>:

Since 2x� 1ð Þ2 þ x2 > 0, the unique optimal solution is x ∘ ; y ∘ð Þ ¼ 0; 0ð Þ.
If we consider only ψ1 xð Þ as active, then the unique optimal solution 0; 0ð Þ is maintained. If ψ2 xð Þ is
active, then the optimal solution is 0; 1ð Þ.

6. Properties of minimum functions

Let M1,
1Γ

� �
, the leader decision affine manifold, and M2,

2Γ
� �

, the follower decision affine manifold,
be two connected affine manifolds of dimension n1 and n2, respectively. Starting from a
function with two vector variables

φ : M1 �M2 ! R, x; yð Þ ! φ x; yð Þ,

and taking the infimum after one variable, let say y, we build a function

f xð Þ ¼ inf
y

φ x; yð Þ : y∈ a xð Þf g,

which is called minimum function.

A minimum function is usually specified by a pointwise mapping a of the manifold M1 in the
subsets of a manifold M2 and by a functional φ x; yð Þ on M1 �M2. In this context, some differ-
ential properties of such functions were previously examined in [4]. Now we add new proper-
ties related to increase and convexity ideas.

First we give a new proof to BrianWhite Theorem (see Mean Curvature Flow, p. 7, Internet 2017).
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Theorem 6.1 Suppose that M1 is compact, M2 ¼ 0;T½ � and f :M1 � 0;T½ � ! R. Let ϕ tð Þ ¼minxf x; tð Þ.
If, for each x with ϕ tð Þ ¼ f x; tð Þ, we have ∂f

∂t x; tð Þ ≥ 0, then ϕ is an increasing function.

Proof. We shall prove the statement in three steps.

(1) If f is continuous, then ϕ is (uniformly) continuous.

Indeed, f is continuous on the compactM1 � 0; 1½ �, hence uniformly continuous. So, for ε > 0 it
exists δ > 0 such that if ∣t1 � t2∣ < δ, then ∣f x; t1ð Þ � f x; t2ð Þ∣ < ε, for any x∈M1, or

�ε < f x; t1ð Þ � f x; t2ð Þ < ε

On one hand, if we put ϕ t1ð Þ ¼ f x1; t1ð Þ and ϕ t2ð Þ ¼ f x2; t2ð Þ, then we have

f x; t1ð Þ > f x; t2ð Þ � ε ≥ f x2; t2ð Þ � ε:

Hence minxf x; t1ð Þ ≥ f x2; t2ð Þ � ε, so is ϕ t1ð Þ � ϕ t2ð Þ ≥ � ε.

On the other hand,

f x; t2ð Þ þ ε > f x; t1ð Þ ≥ f x1; t1ð Þ:

Hence minxf x; t2ð Þ þ ε ≥ f x1; t1ð Þ, so is ϕ t1ð Þ � ϕ t2ð Þ ≤ ε.
Finally, ∣ϕ t1ð Þ � ϕ t2ð Þ∣ ≤ ε, for ∣t1 � t2∣ < δ, that is, ϕ is (uniformly) continuous.

(2) Let us fix t0 ∈ 0;Tð �. If ϕ t0ð Þ ¼ f x0; t0ð Þ and ∂f
∂t x0; t0ð Þ ≥ 0, then it exists δ > 0 such that

ϕ tð Þ ≤ϕ t0ð Þ, for any t∈ t0 � δ; t0ð Þ.

Suppose ∂f
∂t x0; t0ð Þ > 0, it exists δ > 0 such that f x0; tð Þ ≤ f x0; t0ð Þ, for each t∈ t0 � δ; t0ð Þ. It

follows minxf x; tð Þ ≤ f x0; tð Þ ≤ f x0; t0ð Þ, and so is ϕ tð Þ ≤ϕ t0ð Þ.

If ∂f
∂t x0; t0ð Þ ¼ 0, then we use f x; tð Þ ¼ f x; tð Þ þ εt, ε > 0. For f , the above proof holds, and we

take ε! 0.

(3) ϕ is an increasing function.

Let 0 ≤ a < b ≤T and note A ¼ t∈ a; b½ � jϕ tð Þ ≤ϕ bð Þ� �
. A is not empty. If α ¼ infA, then, by the

step (2), α < b and, by the step (1), α∈A. If α > a, we can use the step (2) for t0 ¼ α and it
would result that α was not the lower bound of A. Hence α ¼ a and ϕ að Þ ≤ϕ bð Þ.
Remark The third step shows that a function having the properties (1) and (2) is increasing. For
this the continuity is essential. Only property (2) is not enough. For example, the function
defined by ϕ tð Þ ¼ t on 0; 1½ � and ϕ tð Þ ¼ 1� t on 1; 2ð � has only the property (2), but it is not
increasing on 0; 2½ �.
Remark Suppose that f is a C2 function and minxf x; tð Þ ¼ f x0 tð Þ; tð Þ, where x0 tð Þ is an interior
point of M. Since x0 tð Þ is a critical point, we have
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ϕ
0
tð Þ ¼ ∂f

∂t
x0 tð Þ; tð Þþ <

∂f
∂x

x0 tð Þ; tð Þ, x00 tð Þ >¼ ∂f
∂t

x0 tð Þ; tð Þ ≥ 0:

Consequently, ϕ tð Þ is an increasing function. IfM1 has a nonvoid boundary, then the monotony
extends by continuity (see also the evolution of an extremum problem).

□

Example 6.1 The single-time perspective of a function f : Rn ! R is the function g : Rn � Rþ ! R,
g x; tð Þ ¼ tf x=tð Þ, dom g ¼ x; tð Þ jx=t∈ dom f ; t > 0f g. The single-time perspective g is convex if f
is convex.

The single-time perspective is an example verifying Theorem 7.1. Indeed, the critical point condition for

g, in x, ∂g
∂x ¼ 0, gives x ¼ tx0, where x0 is a critical point of f . Consequently, ϕ tð Þ ¼ minxg x; tð Þ ¼

tf x0ð Þ. On the other hand, in the minimum point, we have ∂g
∂t x; tð Þ ¼ f x0ð Þ. Then ϕ tð Þ is increasing if

f x0ð Þ ≥ 0, as in Theorem 4.1.

Theorem 6.2 Suppose that M1 is compact and f : M1 �M2 ! R. Let ϕ yð Þ ¼ minxf x; yð Þ. If, for each
x with ϕ yð Þ ¼ f x; yð Þ, we have ∂f

∂yα x; yð Þ ≥ 0, then ϕ yð Þ is a partially increasing function.

Proof. Suppose that f is a C2 function and minxf x; yð Þ ¼ f x0 yð Þ; yð Þ, where x0 yð Þ is an interior
point of M1. Since x0 yð Þ is a critical point, we have

∂ϕ
∂yα
¼ ∂f

∂yα
x0 yð Þ; yð Þþ <

∂f
∂x

x0 yð Þ; yð Þ, ∂x0
∂yα

>¼ ∂f
∂yα

x0 yð Þ; yð Þ ≥ 0:

Consequently, ϕ yð Þ is a partially increasing function. If M has a non-void boundary, then the
monotony extends by continuity. □

Theorem 6.3 Suppose that M1 is compact and f : M1 �M2 ! R. Let ϕ yð Þ ¼ minxf x; yð Þ. If, for each
x with ϕ yð Þ ¼ f x; yð Þ, we have d2y f x; yð Þ ≤ 0, then ϕ yð Þ is an affine concave function.

Proof. Without loss of generality, we work on Euclidean case. Suppose that f is a C2 function
and minxf x; yð Þ ¼ f x yð Þ; yð Þ, where x yð Þ is an interior point of M1. Since x yð Þ is a critical point,
we must have

∂f
∂xi

x yð Þ; yð Þ ¼ 0:

Taking the partial derivative with respect to yα and the scalar product with ∂xi
∂yβ it follows

∂2f
∂xi∂xj

∂xj

∂yα
∂xi

∂yβ
þ ∂2f
∂yα∂xi

∂xi

∂yβ
¼ 0:
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Theorem 6.1 Suppose that M1 is compact, M2 ¼ 0;T½ � and f :M1 � 0;T½ � ! R. Let ϕ tð Þ ¼minxf x; tð Þ.
If, for each x with ϕ tð Þ ¼ f x; tð Þ, we have ∂f

∂t x; tð Þ ≥ 0, then ϕ is an increasing function.

Proof. We shall prove the statement in three steps.

(1) If f is continuous, then ϕ is (uniformly) continuous.

Indeed, f is continuous on the compactM1 � 0; 1½ �, hence uniformly continuous. So, for ε > 0 it
exists δ > 0 such that if ∣t1 � t2∣ < δ, then ∣f x; t1ð Þ � f x; t2ð Þ∣ < ε, for any x∈M1, or

�ε < f x; t1ð Þ � f x; t2ð Þ < ε

On one hand, if we put ϕ t1ð Þ ¼ f x1; t1ð Þ and ϕ t2ð Þ ¼ f x2; t2ð Þ, then we have

f x; t1ð Þ > f x; t2ð Þ � ε ≥ f x2; t2ð Þ � ε:

Hence minxf x; t1ð Þ ≥ f x2; t2ð Þ � ε, so is ϕ t1ð Þ � ϕ t2ð Þ ≥ � ε.

On the other hand,

f x; t2ð Þ þ ε > f x; t1ð Þ ≥ f x1; t1ð Þ:

Hence minxf x; t2ð Þ þ ε ≥ f x1; t1ð Þ, so is ϕ t1ð Þ � ϕ t2ð Þ ≤ ε.
Finally, ∣ϕ t1ð Þ � ϕ t2ð Þ∣ ≤ ε, for ∣t1 � t2∣ < δ, that is, ϕ is (uniformly) continuous.

(2) Let us fix t0 ∈ 0;Tð �. If ϕ t0ð Þ ¼ f x0; t0ð Þ and ∂f
∂t x0; t0ð Þ ≥ 0, then it exists δ > 0 such that

ϕ tð Þ ≤ϕ t0ð Þ, for any t∈ t0 � δ; t0ð Þ.

Suppose ∂f
∂t x0; t0ð Þ > 0, it exists δ > 0 such that f x0; tð Þ ≤ f x0; t0ð Þ, for each t∈ t0 � δ; t0ð Þ. It

follows minxf x; tð Þ ≤ f x0; tð Þ ≤ f x0; t0ð Þ, and so is ϕ tð Þ ≤ϕ t0ð Þ.

If ∂f
∂t x0; t0ð Þ ¼ 0, then we use f x; tð Þ ¼ f x; tð Þ þ εt, ε > 0. For f , the above proof holds, and we

take ε! 0.

(3) ϕ is an increasing function.

Let 0 ≤ a < b ≤T and note A ¼ t∈ a; b½ � jϕ tð Þ ≤ϕ bð Þ� �
. A is not empty. If α ¼ infA, then, by the

step (2), α < b and, by the step (1), α∈A. If α > a, we can use the step (2) for t0 ¼ α and it
would result that α was not the lower bound of A. Hence α ¼ a and ϕ að Þ ≤ϕ bð Þ.
Remark The third step shows that a function having the properties (1) and (2) is increasing. For
this the continuity is essential. Only property (2) is not enough. For example, the function
defined by ϕ tð Þ ¼ t on 0; 1½ � and ϕ tð Þ ¼ 1� t on 1; 2ð � has only the property (2), but it is not
increasing on 0; 2½ �.
Remark Suppose that f is a C2 function and minxf x; tð Þ ¼ f x0 tð Þ; tð Þ, where x0 tð Þ is an interior
point of M. Since x0 tð Þ is a critical point, we have
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0
tð Þ ¼ ∂f
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x0 tð Þ; tð Þþ <

∂f
∂x

x0 tð Þ; tð Þ, x00 tð Þ >¼ ∂f
∂t

x0 tð Þ; tð Þ ≥ 0:

Consequently, ϕ tð Þ is an increasing function. IfM1 has a nonvoid boundary, then the monotony
extends by continuity (see also the evolution of an extremum problem).

□

Example 6.1 The single-time perspective of a function f : Rn ! R is the function g : Rn � Rþ ! R,
g x; tð Þ ¼ tf x=tð Þ, dom g ¼ x; tð Þ jx=t∈ dom f ; t > 0f g. The single-time perspective g is convex if f
is convex.

The single-time perspective is an example verifying Theorem 7.1. Indeed, the critical point condition for

g, in x, ∂g
∂x ¼ 0, gives x ¼ tx0, where x0 is a critical point of f . Consequently, ϕ tð Þ ¼ minxg x; tð Þ ¼

tf x0ð Þ. On the other hand, in the minimum point, we have ∂g
∂t x; tð Þ ¼ f x0ð Þ. Then ϕ tð Þ is increasing if

f x0ð Þ ≥ 0, as in Theorem 4.1.

Theorem 6.2 Suppose that M1 is compact and f : M1 �M2 ! R. Let ϕ yð Þ ¼ minxf x; yð Þ. If, for each
x with ϕ yð Þ ¼ f x; yð Þ, we have ∂f

∂yα x; yð Þ ≥ 0, then ϕ yð Þ is a partially increasing function.

Proof. Suppose that f is a C2 function and minxf x; yð Þ ¼ f x0 yð Þ; yð Þ, where x0 yð Þ is an interior
point of M1. Since x0 yð Þ is a critical point, we have

∂ϕ
∂yα
¼ ∂f

∂yα
x0 yð Þ; yð Þþ <

∂f
∂x

x0 yð Þ; yð Þ, ∂x0
∂yα

>¼ ∂f
∂yα

x0 yð Þ; yð Þ ≥ 0:

Consequently, ϕ yð Þ is a partially increasing function. If M has a non-void boundary, then the
monotony extends by continuity. □

Theorem 6.3 Suppose that M1 is compact and f : M1 �M2 ! R. Let ϕ yð Þ ¼ minxf x; yð Þ. If, for each
x with ϕ yð Þ ¼ f x; yð Þ, we have d2y f x; yð Þ ≤ 0, then ϕ yð Þ is an affine concave function.

Proof. Without loss of generality, we work on Euclidean case. Suppose that f is a C2 function
and minxf x; yð Þ ¼ f x yð Þ; yð Þ, where x yð Þ is an interior point of M1. Since x yð Þ is a critical point,
we must have

∂f
∂xi

x yð Þ; yð Þ ¼ 0:

Taking the partial derivative with respect to yα and the scalar product with ∂xi
∂yβ it follows

∂2f
∂xi∂xj

∂xj

∂yα
∂xi

∂yβ
þ ∂2f
∂yα∂xi

∂xi

∂yβ
¼ 0:
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On the other hand

dyϕ yð Þ ¼ dyf x yð Þ; yð Þ ¼ ∂f
∂xi

∂xi

∂yα
þ ∂f
∂yα

� �
dyα ¼ ∂f

∂yα
dyα

d2yϕ yð Þ ¼ ∂2f
∂yα∂xi

∂xi

∂yβ
þ ∂2f
∂yα∂yβ

� �
dyαdyβ

¼ � ∂2f
∂xj∂xi

∂xi

∂yβ
∂xj

∂yα
þ ∂2f
∂yα∂yβ

� �
dyαdyβ ≤ 0:

□

Theorem 6.4 Let f : M1 �M2 ! R be a C2 function and

ϕ yð Þ ¼ min
x

f x; yð Þ ¼ f x yð Þ; yð Þ:

If the set A ¼ x yð Þ; yð Þ : y∈M2f g is affine convex and f jA is affine convex, then ϕ yð Þ is affine convex.

Proof. Suppose f is a C2 function. At points x yð Þ; yð Þ, we have

0 ≤ d2f x yð Þ; yð Þ ¼ ∂2f
∂xi∂xj

∂xi

∂yα
∂xj

∂yβ
þ 2

∂2f
∂xi∂yα

∂xi

∂yβ
þ ∂2f
∂yα∂yβ

� �
dyαdyβ

¼ ∂2f
∂xi∂yα

∂xi

∂yβ
þ ∂2f
∂yα∂yβ

� �
dyαdyβ ¼ d2ϕ yð Þ:
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On the other hand

dyϕ yð Þ ¼ dyf x yð Þ; yð Þ ¼ ∂f
∂xi

∂xi

∂yα
þ ∂f
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� �
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dyα

d2yϕ yð Þ ¼ ∂2f
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∂xi
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þ ∂2f
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� �
dyαdyβ

¼ � ∂2f
∂xj∂xi

∂xi

∂yβ
∂xj

∂yα
þ ∂2f
∂yα∂yβ

� �
dyαdyβ ≤ 0:

□

Theorem 6.4 Let f : M1 �M2 ! R be a C2 function and

ϕ yð Þ ¼ min
x

f x; yð Þ ¼ f x yð Þ; yð Þ:

If the set A ¼ x yð Þ; yð Þ : y∈M2f g is affine convex and f jA is affine convex, then ϕ yð Þ is affine convex.

Proof. Suppose f is a C2 function. At points x yð Þ; yð Þ, we have

0 ≤ d2f x yð Þ; yð Þ ¼ ∂2f
∂xi∂xj

∂xi
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∂xj

∂yβ
þ 2

∂2f
∂xi∂yα

∂xi
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� �
dyαdyβ
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� �
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