
Recent Applications in
Data Clustering

Edited by Harun Pirim

Edited by Harun Pirim

Clustering has emerged as one of the more fertile fields within data analytics, widely
adopted by companies, research institutions, and educational entities as a tool to

describe similar/different groups.

The book Recent Applications in Data Clustering aims to provide an outlook of recent
contributions to the vast clustering literature that offers useful insights within the

context of modern applications for professionals, academics, and students. The book
spans the domains of clustering in image analysis, lexical analysis of texts, replacement
of missing values in data, temporal clustering in smart cities, comparison of artificial

neural network variations, graph theoretical approaches, spectral clustering,
multiview clustering, and model-based clustering in an R package. Applications

of image, text, face recognition, speech (synthetic and simulated), and smart city
datasets are presented.

Published in London, UK

© 2018 IntechOpen
© oleksii arseniuk / iStock

ISBN 978-1-78923-526-5

Recent A
pplications in D

ata C
lustering

RECENT APPLICATIONS IN
DATA CLUSTERING

Edited by Harun Pirim

RECENT APPLICATIONS IN
DATA CLUSTERING

Edited by Harun Pirim

Recent Applications in Data Clustering
http://dx.doi.org/10.5772/intechopen.71315
Edited by Harun Pirim

Contributors

Reda Gharieb, Khaled Abdalgader, Hadeel Aljobouri, Hussain A. Jaber, Ilyas Çankaya, Xiaodong Feng, Vladimir
Ryazanov, Masafumi Nakagawa, Milan Vukicevic, Vladimir Urosevic, Ana Kovacevic, Firas Kaddachi, Loai Abdallah, F.
Marta L. Di Lascio, Uğurhan Kutbay, Chuan Chen, Zibin Zheng, Fanghua Ye, Zitai Chen, Hui Qian, Rui Li, Fred Glover,
Yang Wang

© The Editor(s) and the Author(s) 2018
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and
Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole
(compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without
INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to
INTECHOPEN LIMITED rights and permissions department (permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in London, United Kingdom, 2018 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number:
11086078, The Shard, 25th floor, 32 London Bridge Street
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Recent Applications in Data Clustering
Edited by Harun Pirim

p. cm.

Print ISBN 978-1-78923-526-5

Online ISBN 978-1-78923-527-2

eBook (PDF) ISBN 978-1-83881-560-8

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,650+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

114,000+
International authors and editors

118M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editor

Harun Pirim received his PhD degree in Industrial and
Systems Engineering (ISE) from the Mississippi State
University since 2011. He received his MA degree in
Operations Research and his BSc degree in Industrial
Engineering from the Dokuz Eylul University, Turkey.
He worked on microarray data analysis in collabora-
tion with computer science and forestry departments.

He recently developed a minimum spanning tree-based algorithm and a
mixed-integer linear programming model for clustering applications. His
research interests include mathematical programming, discrete optimi-
zation, and graph mining applications in biology, sociology, and supply
chain fields. He has published several conference papers, journal papers,
and book chapters. He is funded by internal projects from the King Fahd
University of Petroleum and Minerals (KFUPM) as a principal investigator
and a coinvestigator. He served as a reviewer of many reputable journals.

Contents

Preface VII

Chapter 1 Clustering Algorithms for Incomplete Datasets 1
Loai AbdAllah and Ilan Shimshoni

Chapter 2 Partitional Clustering 19
Uğurhan Kutbay

Chapter 3 Incorporating Local Data and KL Membership Divergence into
Hard C-Means Clustering for Fuzzy and Noise-Robust Data
Segmentation 35
Reda R. Gharieb

Chapter 4 Centroid-Based Lexical Clustering 55
Khaled Abdalgader

Chapter 5 Point Cloud Clustering Using Panoramic Layered
Range Image 75
Masafumi Nakagawa

Chapter 6 CoClust: An R Package for Copula-Based Cluster Analysis 93
Francesca Marta Lilja Di Lascio

Chapter 7 Temporal Clustering for Behavior Variation and Anomaly
Detection from Data Acquired Through IoT in Smart Cities 115
Vladimir Urosevic, Ana Kovacevic, Firas Kaddachi and Milan
Vukicevic

Chapter 8 A Class of Parametric Tree-Based Clustering Methods 135
Fred Glover and Yang Wang

Chapter 9 Robust Spectral Clustering via Sparse Representation 155
Xiaodong Feng

Contents

Preface XI

Chapter 1 Clustering Algorithms for Incomplete Datasets 1
Loai AbdAllah and Ilan Shimshoni

Chapter 2 Partitional Clustering 19
Uğurhan Kutbay

Chapter 3 Incorporating Local Data and KL Membership Divergence into
Hard C-Means Clustering for Fuzzy and Noise-Robust Data
Segmentation 35
Reda R. Gharieb

Chapter 4 Centroid-Based Lexical Clustering 55
Khaled Abdalgader

Chapter 5 Point Cloud Clustering Using Panoramic Layered
Range Image 75
Masafumi Nakagawa

Chapter 6 CoClust: An R Package for Copula-Based Cluster Analysis 93
Francesca Marta Lilja Di Lascio

Chapter 7 Temporal Clustering for Behavior Variation and Anomaly
Detection from Data Acquired Through IoT in Smart Cities 115
Vladimir Urosevic, Ana Kovacevic, Firas Kaddachi and Milan
Vukicevic

Chapter 8 A Class of Parametric Tree-Based Clustering Methods 135
Fred Glover and Yang Wang

Chapter 9 Robust Spectral Clustering via Sparse Representation 155
Xiaodong Feng

Chapter 10 Performance Assessment of Unsupervised Clustering
Algorithms Combined MDL Index 175
Hadeel K. Aljobouri, Hussain A. Jaber and Ilyas Çankaya

Chapter 11 New Approaches in Multi-View Clustering 195
Fanghua Ye, Zitai Chen, Hui Qian, Rui Li, Chuan Chen and Zibin
Zheng

Chapter 12 Collective Solutions on Sets of Stable Clusterings 221
Vladimir Vasilevich Ryazanov

X Contents

Preface

We are experiencing a transition from an information age to a wisdom age driven by an
explosion in data available for analysis. A major consequence of this transition is an evolu‐
tion of data mining to become data analytics, a discipline involving engineers, statisticians,
and computer scientists together with the diverse realms they serve. The potential value that
resides in data is suggested in the famous saying “data is the oil of the age,” but suitable
theories and tools are needed to tease this value into the open.

Clustering has emerged as one of the more fertile fields within data analytics, widely adopt‐
ed by companies, research institutions, and educational entities as a tool to describe similar/
different groups, communities, patterns, modules, and objects and broadly to predict assign‐
ment of certain members to unlabeled groups in an unsupervised fashion. Often classed as
an instance of machine learning, clustering has found applications to generate groups con‐
sisting of market segments, genes, constellations of stars, movies to recommend, facilities to
serve critical functions, and remarkable communities within a society.

The history of clustering dates back to ancient times, manifest in Aristotles’ taxonomy of
living things, and quite possibly can be traced even earlier. Just as counting is essential to
computation, clustering is essential for learning and predicting. Hence, clustering algo‐
rithms have been developed in rich abundance.

This book is intended to provide a view of recent contributions to the vast clustering litera‐
ture that offers useful insights within the context of modern applications for professionals,
academics, and students. The book spans the domains of clustering in image analysis, lexical
analysis of texts, replacement of missing values in data, temporal clustering in smart cities,
comparison of artificial neural network variations, graph theoretical approaches, spectral
clustering, multiview clustering, and model-based clustering in an R package. Image, text,
face recognition, speech (synthetic and simulated), and smart city datasets are used. The ta‐
ble below is a summary of chapters according to the types of theory and applications they
represent:

Chapter Theory Applications
1 Missing values, K-means, mean shift Six datasets, speech and image

processing unit
2 K-means, C-means, colored C-means, genetic

algorithm
İmage clustering

3 KL divergence C-means İmage clustering
4 K-means, semantic similarity Text fragmentation

Chapter 10 Performance Assessment of Unsupervised Clustering
Algorithms Combined MDL Index 175
Hadeel K. Aljobouri, Hussain A. Jaber and Ilyas Çankaya

Chapter 11 New Approaches in Multi-View Clustering 195
Fanghua Ye, Zitai Chen, Hui Qian, Rui Li, Chuan Chen and Zibin
Zheng

Chapter 12 Collective Solutions on Sets of Stable Clusterings 221
Vladimir Vasilevich Ryazanov

ContentsVI

Preface

We are experiencing a transition from an information age to a wisdom age driven by an
explosion in data available for analysis. A major consequence of this transition is an evolu‐
tion of data mining to become data analytics, a discipline involving engineers, statisticians,
and computer scientists together with the diverse realms they serve. The potential value that
resides in data is suggested in the famous saying “data is the oil of the age,” but suitable
theories and tools are needed to tease this value into the open.

Clustering has emerged as one of the more fertile fields within data analytics, widely adopt‐
ed by companies, research institutions, and educational entities as a tool to describe similar/
different groups, communities, patterns, modules, and objects and broadly to predict assign‐
ment of certain members to unlabeled groups in an unsupervised fashion. Often classed as
an instance of machine learning, clustering has found applications to generate groups con‐
sisting of market segments, genes, constellations of stars, movies to recommend, facilities to
serve critical functions, and remarkable communities within a society.

The history of clustering dates back to ancient times, manifest in Aristotles’ taxonomy of
living things, and quite possibly can be traced even earlier. Just as counting is essential to
computation, clustering is essential for learning and predicting. Hence, clustering algo‐
rithms have been developed in rich abundance.

This book is intended to provide a view of recent contributions to the vast clustering litera‐
ture that offers useful insights within the context of modern applications for professionals,
academics, and students. The book spans the domains of clustering in image analysis, lexical
analysis of texts, replacement of missing values in data, temporal clustering in smart cities,
comparison of artificial neural network variations, graph theoretical approaches, spectral
clustering, multiview clustering, and model-based clustering in an R package. Image, text,
face recognition, speech (synthetic and simulated), and smart city datasets are used. The ta‐
ble below is a summary of chapters according to the types of theory and applications they
represent:

Chapter Theory Applications
1 Missing values, K-means, mean shift Six datasets, speech and image

processing unit
2 K-means, C-means, colored C-means, genetic

algorithm
İmage clustering

3 KL divergence C-means İmage clustering
4 K-means, semantic similarity Text fragmentation

Chapter Theory Applications
5 Point cloud clustering, surface, terrestrial la‐

ser scanning
Three laser scanner datasets

6 Model-based clustering R package, simulated examples
7 Hidden Markov temporal clustering models Smart cities, IoT, anomaly detec‐

tion, City4Age pilot sites
8 Tree-based clustering, spanning forest
9 Spectral clustering, weight matrix construc‐

tion
Three datasets from UCI, three face
recognition datasets

10 ANNs, neural gas, and two variations MatlabGUI, six synthetic datasets
11 Multiview clustering methods K-means, spectral, matrix factoriza‐

tion, tensor decomposition, deep
learning

12 Ensemble clustering, stability

Some of the distinguishing features of these contributions are as follows:

Loai AbdAllah and Ilan Shimshoni develop a new distance function that computes distances
over incomplete datasets. The distances are employed in K-means and mean shift algorithms.
The procedure is compared with mean imputation (MI), mean attribute (MA), and most com‐
mon value (MCA) replacements. Experiments are run on six standard numerical datasets.

Uğurhan Kutbay reviews partitional clustering focusing on K-means, fuzzy C-means, colored
fuzzy C-means, and a genetic algorithm. Algorithms are applied on the same image data.

Reda R. Gharieb incorporates the influence of an object’s neighborhood employing two
Kullback-Leibler (KL) membership divergences for clustering image data. A local member‐
ship function is embedded into the objective function of hard C-means, which prevents ad‐
ditive noise. Partition coefficient and partition entropy measures are adopted to evaluate the
performance of fuzzy clustering algorithms. A synthetic image, a simulated MRI image, and
the standard Lena image are used to compare conventional C-means algorithms with two
different KL divergence fuzzy C-means algorithms.

Khaled Abdalgader presents a new version of the original K-means algorithm to cluster
small-sized text fragments. This new variation measures the semantic similarity between
sentences based on the idea of generating a synonym expansion set to be used in the com‐
pared semantic vectors. The algorithm is compared with Spectral Clustering Affinity Propa‐
gation, K-medoids, STC-LE, and K-means (TF-IDF) using Reuters-21578, Aural Sonar,
Protein, Voting, SearchSnippets, StackOverflow and Biomedical datasets, and Purity, Entro‐
py, V-measure, Rand Index, and F-measure validation metrics.

Masafumi Nakagawa focuses on region-based point cloud clustering to improve 3D visuali‐
zation and modeling using massive point clouds, based on a combined point cloud cluster‐
ing methodology and point cloud filtering on a multilayered panoramic range image.
Indoor MMS data and two terrestrial laser scanner data are used to test the approach.

Marta presents a clustering algorithm based on the copula function and the R package Co‐
Clust. The range (or set) of clusters from which the procedure automatically selects the best
one and the sample size to be used to select it can be varied. The algorithm is able to find

XII Preface

clusters according to the complex multivariate dependence structure of the data-generating
process. The main R commands are used to perform a fully developed clustering of multi‐
variate-dependent data through numerical examples.

Milan Vukicevic et al. propose a methodology for behavior variation and anomaly detection
from acquired sensory data, based on hidden Markov temporal clustering models (HMMs).
Data are collected from five prominent European smart cities and Singapore, which aim to
become fully “elderly friendly.”

Glover and Wang introduce a class of tree-based clustering methods based on a single pa‐
rameter W and show how to generate the full collection of cluster sets C(W), without dupli‐
cation, by varying W according to conditions identified automatically during the
algorithm’s execution. The number of clusters within C(W) for a given W is also determined
automatically and provides a wide range of clusters with different structures from the same
dataset.

Xiaodong Feng presents robust spectral clustering via sparse representation proposing two
approaches of weight matrix construction according to the similarity of the sparse coeffi‐
cient vectors. The method is compared with K-means and spectral clustering approaches us‐
ing Gaussian RBF, SIS, l1 -Directed Graph Construction, and Nonnegative SIS using external
metrics clustering accuracy (CA) and normalized mutual information (NMI).

Hadeel K. Aljobouri et al. compare the performances of three artificial neural network
(ANN) applications: neural gas (NG), growing neural gas (GNG), and robust growing neu‐
ral gas (RGNG) algorithms.

Chuan Chen et al. summarize K-means, spectral clustering, matrix factorization, tensor de‐
composition, and deep learning with their multiview learning versions.

Ryazanov V.V. addresses the problem of finding the best committee synthesis of ensemble
clustering formulated as a discrete optimization problem.

I express my sincere congratulations to all the contributing authors for their outstanding in‐
novations and insights. Special thanks go to Fred W. Glover for our fertile interactions and
discussions of shared research interests.

Harun Pirim, Ph.D.
Assistant Professor

Systems Engineering
King Fahd University of Petroleum and Minerals

Saudi Arabia

Preface IX

Chapter Theory Applications
5 Point cloud clustering, surface, terrestrial la‐

ser scanning
Three laser scanner datasets

6 Model-based clustering R package, simulated examples
7 Hidden Markov temporal clustering models Smart cities, IoT, anomaly detec‐

tion, City4Age pilot sites
8 Tree-based clustering, spanning forest
9 Spectral clustering, weight matrix construc‐

tion
Three datasets from UCI, three face
recognition datasets

10 ANNs, neural gas, and two variations MatlabGUI, six synthetic datasets
11 Multiview clustering methods K-means, spectral, matrix factoriza‐

tion, tensor decomposition, deep
learning

12 Ensemble clustering, stability

Some of the distinguishing features of these contributions are as follows:

Loai AbdAllah and Ilan Shimshoni develop a new distance function that computes distances
over incomplete datasets. The distances are employed in K-means and mean shift algorithms.
The procedure is compared with mean imputation (MI), mean attribute (MA), and most com‐
mon value (MCA) replacements. Experiments are run on six standard numerical datasets.

Uğurhan Kutbay reviews partitional clustering focusing on K-means, fuzzy C-means, colored
fuzzy C-means, and a genetic algorithm. Algorithms are applied on the same image data.

Reda R. Gharieb incorporates the influence of an object’s neighborhood employing two
Kullback-Leibler (KL) membership divergences for clustering image data. A local member‐
ship function is embedded into the objective function of hard C-means, which prevents ad‐
ditive noise. Partition coefficient and partition entropy measures are adopted to evaluate the
performance of fuzzy clustering algorithms. A synthetic image, a simulated MRI image, and
the standard Lena image are used to compare conventional C-means algorithms with two
different KL divergence fuzzy C-means algorithms.

Khaled Abdalgader presents a new version of the original K-means algorithm to cluster
small-sized text fragments. This new variation measures the semantic similarity between
sentences based on the idea of generating a synonym expansion set to be used in the com‐
pared semantic vectors. The algorithm is compared with Spectral Clustering Affinity Propa‐
gation, K-medoids, STC-LE, and K-means (TF-IDF) using Reuters-21578, Aural Sonar,
Protein, Voting, SearchSnippets, StackOverflow and Biomedical datasets, and Purity, Entro‐
py, V-measure, Rand Index, and F-measure validation metrics.

Masafumi Nakagawa focuses on region-based point cloud clustering to improve 3D visuali‐
zation and modeling using massive point clouds, based on a combined point cloud cluster‐
ing methodology and point cloud filtering on a multilayered panoramic range image.
Indoor MMS data and two terrestrial laser scanner data are used to test the approach.

Marta presents a clustering algorithm based on the copula function and the R package Co‐
Clust. The range (or set) of clusters from which the procedure automatically selects the best
one and the sample size to be used to select it can be varied. The algorithm is able to find

PrefaceVIII

clusters according to the complex multivariate dependence structure of the data-generating
process. The main R commands are used to perform a fully developed clustering of multi‐
variate-dependent data through numerical examples.

Milan Vukicevic et al. propose a methodology for behavior variation and anomaly detection
from acquired sensory data, based on hidden Markov temporal clustering models (HMMs).
Data are collected from five prominent European smart cities and Singapore, which aim to
become fully “elderly friendly.”

Glover and Wang introduce a class of tree-based clustering methods based on a single pa‐
rameter W and show how to generate the full collection of cluster sets C(W), without dupli‐
cation, by varying W according to conditions identified automatically during the
algorithm’s execution. The number of clusters within C(W) for a given W is also determined
automatically and provides a wide range of clusters with different structures from the same
dataset.

Xiaodong Feng presents robust spectral clustering via sparse representation proposing two
approaches of weight matrix construction according to the similarity of the sparse coeffi‐
cient vectors. The method is compared with K-means and spectral clustering approaches us‐
ing Gaussian RBF, SIS, l1 -Directed Graph Construction, and Nonnegative SIS using external
metrics clustering accuracy (CA) and normalized mutual information (NMI).

Hadeel K. Aljobouri et al. compare the performances of three artificial neural network
(ANN) applications: neural gas (NG), growing neural gas (GNG), and robust growing neu‐
ral gas (RGNG) algorithms.

Chuan Chen et al. summarize K-means, spectral clustering, matrix factorization, tensor de‐
composition, and deep learning with their multiview learning versions.

Ryazanov V.V. addresses the problem of finding the best committee synthesis of ensemble
clustering formulated as a discrete optimization problem.

I express my sincere congratulations to all the contributing authors for their outstanding in‐
novations and insights. Special thanks go to Fred W. Glover for our fertile interactions and
discussions of shared research interests.

Harun Pirim, Ph.D.
Assistant Professor

Systems Engineering
King Fahd University of Petroleum and Minerals

Saudi Arabia

Preface XIII

Chapter 1

Clustering Algorithms for Incomplete Datasets

Loai AbdAllah and Ilan Shimshoni

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78272

Provisional chapter

Clustering Algorithms for Incomplete Datasets

Loai AbdAllah and Ilan Shimshoni

Additional information is available at the end of the chapter

Abstract

Many real-world dataset suffers from the problem of missing values. Several methods
were developed to deal with this problem. Many of them filled the missing values within
fixed value based on statistical computation. In this research, we developed a new ver-
sions of the k-means and the mean shift clustering algorithms that deal with datasets with
missing values without filling their values. We developed a new distance function that is
able to compute distances over incomplete datasets. The distance was computed based
only on the mean and variance of the data for each attribute. As a result, the runtime
complexity of our computation was O 1ð Þ. We experimented on six standard numerical
datasets from different fields. On these datasets, we simulated missing values and com-
pared the performance of the developed algorithms using our distance and the suggested
mean computations to other three basic methods. Our experiments show that the devel-
oped algorithms using our distance function outperform the existing k-means and mean
shift using other methods for dealing with missing values.

Keywords: missing values, distance metric, weighted Euclidean distance, clustering,
mean shift, k-means

1. Introduction

Missing values in data are common in real-world applications. They can be caused by human
error, equipment failure, system-generated errors, and so on.

In this research, we developed two popular clustering algorithms to run over incomplete
datasets: (1) k-means clustering algorithm [1] and (2) mean shift clustering algorithms [2].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.78272

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 1

Clustering Algorithms for Incomplete Datasets

Loai AbdAllah and Ilan Shimshoni

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78272

Provisional chapter

Clustering Algorithms for Incomplete Datasets

Loai AbdAllah and Ilan Shimshoni

Additional information is available at the end of the chapter

Abstract

Many real-world dataset suffers from the problem of missing values. Several methods
were developed to deal with this problem. Many of them filled the missing values within
fixed value based on statistical computation. In this research, we developed a new ver-
sions of the k-means and the mean shift clustering algorithms that deal with datasets with
missing values without filling their values. We developed a new distance function that is
able to compute distances over incomplete datasets. The distance was computed based
only on the mean and variance of the data for each attribute. As a result, the runtime
complexity of our computation was O 1ð Þ. We experimented on six standard numerical
datasets from different fields. On these datasets, we simulated missing values and com-
pared the performance of the developed algorithms using our distance and the suggested
mean computations to other three basic methods. Our experiments show that the devel-
oped algorithms using our distance function outperform the existing k-means and mean
shift using other methods for dealing with missing values.

Keywords: missing values, distance metric, weighted Euclidean distance, clustering,
mean shift, k-means

1. Introduction

Missing values in data are common in real-world applications. They can be caused by human
error, equipment failure, system-generated errors, and so on.

In this research, we developed two popular clustering algorithms to run over incomplete
datasets: (1) k-means clustering algorithm [1] and (2) mean shift clustering algorithms [2].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.78272

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Based on [3–6], there are three main types of missing data:

1. Missing completely at random (MCAR): when the missing value is not related to any other
sample;

2. Missing at random (MAR): when the probability that a value is missing may depend on
some known values but it does not depend on the other missing values;

3. Not missing at random (NMAR): when the probability that a known value is missing
depends on the value that would have been observed.

There are two basic types of methods to deal with the problem of incomplete datasets. (1)
Deletion: methods from this category ignore all the incomplete instances. These methods may
change the distribution of the data by decreasing the volume of the dataset [7]. (2) Imputation: in
these methods, the missing values were replaced with known value according to statistical
computation. Based on these methods, we convert then incomplete data to complete data, and
as a result, the existing machine learning algorithms can be run as they deal with complete data.

One of the most common approaches in this domain is the mean imputation (MI) method that
replaces each incomplete data point with the mean of the data. There are several obvious
disadvantages to this method: (a) using a fixed instance to replace all the incomplete instances
will change the distribution of the original dataset and (b) ignoring the relationship among
attributes will bias the performance of subsequent data mining algorithms. These problems
were caused since we replace all the incomplete instances with a fixed one. On the other hand,
a variant of this method is to replace the missing values only based on the distribution of the
attributes. It means that the algorithm will replace each missing value with the mean of the of
its attribute (MA) and the whole instance [8]. And in a case that the values were discrete, the
missing value will be replaced by the most common (MCA) value in the attribute [9] (i.e.,
filling the unknown values of the attribute with the value that occurs most often for the same
attribute). All those methods ignore the other possible values of the attribute and their distri-
bution and represent the missing value with one value, that is, wrong in real-world datasets.

Finally, the k-Nearest Neighbor Imputation method [10, 11] estimates the values that should
be replaced based on the k nearest neighbors based only on the known values. The main
obstacle of this method is the runtime complexity.

We can summarize the main drawbacks of each suggested method as: (1) inability to approx-
imate the missing value and (2) inefficiency to compute the suggested value. Based on our
suggested method [12], the distance between two points, that they may include missing value,
is not only efficient but also takes into account the distribution of each attribute.

To do that in the computation procedure, we take into account all the possible values of the
missing value with their probabilities, which are derived from the attribute’s distribution. This
is in contrast to the MCA and the MA methods, which replace each missing value only with
the mode or the mean of each attribute.

There are three possible cases between the values: (a) both of them are known: in this case, the
distance will be computed as the Euclidean distance; (b) both of them are missing; and (c) one

Recent Applications in Data Clustering2

value is missing. In the last two cases, the distance will be computed based only on the mean
and the variance of the attribute. As a result, the runtime of the developed distance is O 1ð Þ as
the Euclidean distance.

In this research, we integrated this distance function in order to develop the k-means and the
mean shift clustering algorithms. To this end, we derived more two formulas to compute the
mean (for k-means algorithm) and for computing the gradient function of the local estimated
density (for mean shift clustering algorithm).

The developed algorithms yield better results than the other methods and preserve the
runtime of the algorithms which deals with complete data as can be seen in the experiments.
We experimented on six standard numerical datasets from different fields from the Speech and
Image Processing Unit [13]. Our experiments show that the performance of the developed
algorithms using our distance function was superior to using other methods.

This chapter is organized as follows. A review of our distance function (MDE) is described in
Section 2. The mean computation is presented in Section 3. Section 3 describes several direc-
tions for integrating the (MDE) distance and the computed mean within the k-means clustering
algorithm. The mean shift clustering algorithm is presented in Section 4. Section 4.1 describes
how to integrate the (MDE) distance and the derived mean shift vector within the mean shift
clustering algorithm. Experimental results of running the developed clustering algorithms are
presented in Section 5. Finally, our conclusions and future work are presented in Section 6.

2. Our distance measure

Firstly, we will give a short preview to basic distance function that is able to compute distances
between points with missing values developed by [2].

Let A⊆RK be a set of points. For the ith attribute Ai, the conditional probability for Ai will be

computed according to the known values for this attribute from A (i.e., P Ai� � � χi), where χi is
the distribution of the ith coordinate.

Given two sample points X,Y⊆RK, the goal is to compute the distance between them. Let xi

and yi be the ith coordinate values from points X,Y, respectively. There are three possible cases
for the values of xi and yi:

1. Two values are known: the distance between themwill be defined as the Euclidean distance.

2. One value is missing: Suppose that xi is missing and the value yi is given. Since the value of
xi is unknown, we cannot compute the distance using the Euclidean distance equation.
Instead, we compute the expectation of all the distances between the given value yi and all
the possible values from attribute i according to its distribution χi.

Therefore, we approximate the mean Euclidean distance (MDE) between yi and the miss-
ing value mi as:

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

3

Based on [3–6], there are three main types of missing data:

1. Missing completely at random (MCAR): when the missing value is not related to any other
sample;

2. Missing at random (MAR): when the probability that a value is missing may depend on
some known values but it does not depend on the other missing values;

3. Not missing at random (NMAR): when the probability that a known value is missing
depends on the value that would have been observed.

There are two basic types of methods to deal with the problem of incomplete datasets. (1)
Deletion: methods from this category ignore all the incomplete instances. These methods may
change the distribution of the data by decreasing the volume of the dataset [7]. (2) Imputation: in
these methods, the missing values were replaced with known value according to statistical
computation. Based on these methods, we convert then incomplete data to complete data, and
as a result, the existing machine learning algorithms can be run as they deal with complete data.

One of the most common approaches in this domain is the mean imputation (MI) method that
replaces each incomplete data point with the mean of the data. There are several obvious
disadvantages to this method: (a) using a fixed instance to replace all the incomplete instances
will change the distribution of the original dataset and (b) ignoring the relationship among
attributes will bias the performance of subsequent data mining algorithms. These problems
were caused since we replace all the incomplete instances with a fixed one. On the other hand,
a variant of this method is to replace the missing values only based on the distribution of the
attributes. It means that the algorithm will replace each missing value with the mean of the of
its attribute (MA) and the whole instance [8]. And in a case that the values were discrete, the
missing value will be replaced by the most common (MCA) value in the attribute [9] (i.e.,
filling the unknown values of the attribute with the value that occurs most often for the same
attribute). All those methods ignore the other possible values of the attribute and their distri-
bution and represent the missing value with one value, that is, wrong in real-world datasets.

Finally, the k-Nearest Neighbor Imputation method [10, 11] estimates the values that should
be replaced based on the k nearest neighbors based only on the known values. The main
obstacle of this method is the runtime complexity.

We can summarize the main drawbacks of each suggested method as: (1) inability to approx-
imate the missing value and (2) inefficiency to compute the suggested value. Based on our
suggested method [12], the distance between two points, that they may include missing value,
is not only efficient but also takes into account the distribution of each attribute.

To do that in the computation procedure, we take into account all the possible values of the
missing value with their probabilities, which are derived from the attribute’s distribution. This
is in contrast to the MCA and the MA methods, which replace each missing value only with
the mode or the mean of each attribute.

There are three possible cases between the values: (a) both of them are known: in this case, the
distance will be computed as the Euclidean distance; (b) both of them are missing; and (c) one

Recent Applications in Data Clustering2

value is missing. In the last two cases, the distance will be computed based only on the mean
and the variance of the attribute. As a result, the runtime of the developed distance is O 1ð Þ as
the Euclidean distance.

In this research, we integrated this distance function in order to develop the k-means and the
mean shift clustering algorithms. To this end, we derived more two formulas to compute the
mean (for k-means algorithm) and for computing the gradient function of the local estimated
density (for mean shift clustering algorithm).

The developed algorithms yield better results than the other methods and preserve the
runtime of the algorithms which deals with complete data as can be seen in the experiments.
We experimented on six standard numerical datasets from different fields from the Speech and
Image Processing Unit [13]. Our experiments show that the performance of the developed
algorithms using our distance function was superior to using other methods.

This chapter is organized as follows. A review of our distance function (MDE) is described in
Section 2. The mean computation is presented in Section 3. Section 3 describes several direc-
tions for integrating the (MDE) distance and the computed mean within the k-means clustering
algorithm. The mean shift clustering algorithm is presented in Section 4. Section 4.1 describes
how to integrate the (MDE) distance and the derived mean shift vector within the mean shift
clustering algorithm. Experimental results of running the developed clustering algorithms are
presented in Section 5. Finally, our conclusions and future work are presented in Section 6.

2. Our distance measure

Firstly, we will give a short preview to basic distance function that is able to compute distances
between points with missing values developed by [2].

Let A⊆RK be a set of points. For the ith attribute Ai, the conditional probability for Ai will be

computed according to the known values for this attribute from A (i.e., P Ai� � � χi), where χi is
the distribution of the ith coordinate.

Given two sample points X,Y⊆RK, the goal is to compute the distance between them. Let xi

and yi be the ith coordinate values from points X,Y, respectively. There are three possible cases
for the values of xi and yi:

1. Two values are known: the distance between themwill be defined as the Euclidean distance.

2. One value is missing: Suppose that xi is missing and the value yi is given. Since the value of
xi is unknown, we cannot compute the distance using the Euclidean distance equation.
Instead, we compute the expectation of all the distances between the given value yi and all
the possible values from attribute i according to its distribution χi.

Therefore, we approximate the mean Euclidean distance (MDE) between yi and the miss-
ing value mi as:

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

3

MDE mi; yi
� � ¼ E x� yi

� �2h i
¼
ð
p xð Þ x� yi

� �2
dx ¼ yi � μi� �2 þ σi

� �2� �
:

That means, to measure the distance between known value yi and unknown value, the algo-
rithm will compute the expectation distance for all the distances between yi and all the possible
values of the missing value. These computations did not take into account the possible corre-
lations between the missing values and the other known values (missing completely at random
—MCAR) and the probability was computed according to the whole dataset. The resulting
mean Euclidean distance will be:

MDE mi; yi
� � ¼ yi � μi� �2 þ σi

� �2� �
, (1)

where μi and σi
� �2 are the mean and the variance for all the known values of the attribute.

3. Both values are missing: In this case, in order to measure the distance, we should compute
all the distances between each possible pair of values one for each missing value xi and yi.
Both these values are selected from distribution χi.

Then, we compute the expectation of the Euclidean distance between each selected value
as we did for the one missing value problem. As a result, the distance is:

MDE xi; yi
� � ¼

ð ð
p xð Þp yð Þ x� yð Þ2dxdy ¼ E x½ � � E y½ �ð Þ2 þ σ2x þ σ2y

� �
:

As x and y belong to the same attribute, E x½ � ¼ E y½ �≔μi and σx ¼ σy ≔σi. Thus:

MDE xi; yi
� � ¼ 2 σi

� �2
: (2)

As we mentioned, all these computations assume that the missing data is MCAR. However, in
real-world datasets, the missing data are MAR. In this case, the probability p xð Þ depends on
the other observed values, and then, the distance will be computed as:

MDE mi; yi
� � ¼

ð
p xjxobsð Þ x� yi

� �2
dx ¼ yi � μi

x∣xobs

� �2
þ σix∣xobs

� �2� �
,

where xobs denotes the observed attributes of point X, and μi
x∣xobs and σix∣xobs

� �2
are the condi-

tional mean and variance, respectively.

On the other hand, in the case that the missing values are NMAR, the probability p xð Þ that was
used in Eq. (1) will be computed based on this information, and then, the distance will be:

MDE mi; yi
� � ¼

ð
p xjmi� �

x� yi
� �2

dx ¼ yi � μi
x∣mi

� �2
þ σix∣mi

� �2� �
,

where p xjmi
� �

is the distribution of x when x is missing.

Recent Applications in Data Clustering4

3. Mean computation

Since one of our goals is developing a k-means clustering algorithm over incomplete datasets,
we need to derive a formula to compute the mean of a given set that may contain incomplete
points. We decide to derive this equation based on our distance function MDE.

Let A⊆RK be a set of n points that may contain points with missing values. Then, the mean of
this dataset is defined as:

x ¼ argmin
x∈R

Xn

i¼1
distance x; pi

� �� �2,

for any x∈RK, where pi ∈A denotes each point from the set A, and distanceðÞ is a distance
function.

Let f xð Þ be a multidimensional function: f : RK :! R which is defined as:

f xð Þ ¼
Xn

i¼1
distance x; pi

� �� �2,

In our case, the distanceðÞ ¼MDE. Thus,

f xð Þ ¼
Xn

i¼1
distance x; pi

� �� �2 ¼
Xn

i¼1

ffi
XK

j¼1
MDE xj; pji

� �vuut
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TheMDEðÞdistance

0
BBBBB@

1
CCCCCA

2

¼
Xn

i¼1

XK

j¼1
MDE xj; pji

� �
,

where xj is the coordinate j and pji is the coordinate j in point pi. Since each point pi may contain
missing attributes, and according to the definition of theMDE distance in the previous section,
f xð Þ will be:

f xð Þ ¼
XK

j¼1

Xnj

i¼1
xj � pji
� �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
there are nj known coordinates

þ
Xmj

i¼1
xj � μj� �2 þ σj

� �2� �

|ffl{zffl}
there aremj missing coordinates

2
66664

3
77775
:

x is the solution of f 0 xð Þ ¼ 0, and in a multidimensional case: x is the solution of ∇f ¼0!, where

∇f ¼ f 0x1 ; f
0
x2 ;…; f 0xk

� � ¼ 0,

is the gradient of function f . Firstly, we will deal with one coordinate, and then, we will
generalize it for the other coordinates.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

5

MDE mi; yi
� � ¼ E x� yi

� �2h i
¼
ð
p xð Þ x� yi

� �2
dx ¼ yi � μi� �2 þ σi

� �2� �
:

That means, to measure the distance between known value yi and unknown value, the algo-
rithm will compute the expectation distance for all the distances between yi and all the possible
values of the missing value. These computations did not take into account the possible corre-
lations between the missing values and the other known values (missing completely at random
—MCAR) and the probability was computed according to the whole dataset. The resulting
mean Euclidean distance will be:

MDE mi; yi
� � ¼ yi � μi� �2 þ σi

� �2� �
, (1)

where μi and σi
� �2 are the mean and the variance for all the known values of the attribute.

3. Both values are missing: In this case, in order to measure the distance, we should compute
all the distances between each possible pair of values one for each missing value xi and yi.
Both these values are selected from distribution χi.

Then, we compute the expectation of the Euclidean distance between each selected value
as we did for the one missing value problem. As a result, the distance is:

MDE xi; yi
� � ¼

ð ð
p xð Þp yð Þ x� yð Þ2dxdy ¼ E x½ � � E y½ �ð Þ2 þ σ2x þ σ2y

� �
:

As x and y belong to the same attribute, E x½ � ¼ E y½ �≔μi and σx ¼ σy ≔σi. Thus:

MDE xi; yi
� � ¼ 2 σi

� �2
: (2)

As we mentioned, all these computations assume that the missing data is MCAR. However, in
real-world datasets, the missing data are MAR. In this case, the probability p xð Þ depends on
the other observed values, and then, the distance will be computed as:

MDE mi; yi
� � ¼

ð
p xjxobsð Þ x� yi

� �2
dx ¼ yi � μi

x∣xobs

� �2
þ σix∣xobs

� �2� �
,

where xobs denotes the observed attributes of point X, and μi
x∣xobs and σix∣xobs

� �2
are the condi-

tional mean and variance, respectively.

On the other hand, in the case that the missing values are NMAR, the probability p xð Þ that was
used in Eq. (1) will be computed based on this information, and then, the distance will be:

MDE mi; yi
� � ¼

ð
p xjmi� �

x� yi
� �2

dx ¼ yi � μi
x∣mi

� �2
þ σix∣mi

� �2� �
,

where p xjmi
� �

is the distribution of x when x is missing.

Recent Applications in Data Clustering4

3. Mean computation

Since one of our goals is developing a k-means clustering algorithm over incomplete datasets,
we need to derive a formula to compute the mean of a given set that may contain incomplete
points. We decide to derive this equation based on our distance function MDE.

Let A⊆RK be a set of n points that may contain points with missing values. Then, the mean of
this dataset is defined as:

x ¼ argmin
x∈R

Xn

i¼1
distance x; pi

� �� �2,

for any x∈RK, where pi ∈A denotes each point from the set A, and distanceðÞ is a distance
function.

Let f xð Þ be a multidimensional function: f : RK :! R which is defined as:

f xð Þ ¼
Xn

i¼1
distance x; pi

� �� �2,

In our case, the distanceðÞ ¼MDE. Thus,

f xð Þ ¼
Xn

i¼1
distance x; pi

� �� �2 ¼
Xn

i¼1

ffi
XK

j¼1
MDE xj; pji

� �vuut
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TheMDEðÞdistance

0
BBBBB@

1
CCCCCA

2

¼
Xn

i¼1

XK

j¼1
MDE xj; pji

� �
,

where xj is the coordinate j and pji is the coordinate j in point pi. Since each point pi may contain
missing attributes, and according to the definition of theMDE distance in the previous section,
f xð Þ will be:

f xð Þ ¼
XK

j¼1

Xnj

i¼1
xj � pji
� �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
there are nj known coordinates

þ
Xmj

i¼1
xj � μj� �2 þ σj

� �2� �

|ffl{zffl}
there aremj missing coordinates

2
66664

3
77775
:

x is the solution of f 0 xð Þ ¼ 0, and in a multidimensional case: x is the solution of ∇f ¼0!, where

∇f ¼ f 0x1 ; f
0
x2 ;…; f 0xk

� � ¼ 0,

is the gradient of function f . Firstly, we will deal with one coordinate, and then, we will
generalize it for the other coordinates.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

5

) f 0xl ¼ 2
Xnl
i¼1

xl � pli
� �þ 2

Xml

i¼1
xl � μl� � ¼ 0

) nxl ¼
Xnl
i¼1

pli þmlμl) xl ¼

Xnl
i¼1

pli

n
þmlμl

n

) xl ¼ nl
n

Xnl
i¼1

pli

nl
þ n� nl

n
μl ¼ μl:

Thus, we simply get:

xl ¼ μl: (3)

Repeating this for all the coordinates yields x ¼ μ1;μ2;…;μk
� �

. In other words, each coordi-
nate of the mean is the mean of the known values of that coordinate.

In the same way, we derive a formula for computing the weighted mean for each coordinate l,
yielding:

xlw ¼
Pnl

i¼1 wixli þ
Pnl

i¼1 wiμl
Pn

i¼1 wi
,

where wi is the weight of point xi. It means, in order to compute the weighted mean of a set of
numbers that some of them are unknown, we must distinguish between known and unknown
values. If the value is known, we multiply it with its weight. On the other hand, if the value is
missing, we replace it with the mean of the known values and then multiply it by the matching
weight.

4. k-Means clustering using the MDE distance

Based on the derived formulas, the MDE distance and the mean, our aim in this research is to
develop k-means clustering algorithms for incomplete datasets [1].

The MDE distance and the mean are general and can be integrated within any algorithm that
computes distances or mean computation. In this section, we describe our proposed method to
integrate those formulas within the framework of the k-means clustering algorithm.

We developed three different versions for k-means. For simplicity, we assume that all the
points are from R2. We have two way to look about incomplete points. The first one considers
each point as a single point, this version is similar to the GMM algorithm described in [14, 15].
On the other hand, the second way is to replace each incomplete point with a set of points
according to the data distribution (these are the other two methods). As will be shown in our
experiments, they outperform the first algorithm.

Recent Applications in Data Clustering6

The k-means clustering algorithm is constructed from two basic steps: (1) associate each point
with its closest centroid, and then, (2) update the centroid based on the new association from
Eq. (1). Given dataset D that may contain points with missing values. In the first step, theMDE

distance is used to compute the distances between each data point and the centroids in order to
associate each point with the closest centroid. This association is general for all the three
versions. However, there are several possible ways to then compute the new centroids of the
clusters. We use Figure 1(a) in order to illustrate those possibilities. In this example, we see two
clusters (i.e., C1 was assigned to be the yellow cluster and C2 was assigned to be the brown
cluster). Our goal is to calculate the centers of each cluster. As an example, we will deal only
with C1. If all the instances do not contain missing values, the centroid will be computed based
on the Euclidean mean formula, resulting in the magenta star.

However, when the associated points for a given cluster contain incomplete points, it is not
clear how to compute the mean. In the given example, let x0; ?ð Þ (i.e., the red star) be a point
with a missing y value and x ¼ x0. This point was associated with C1’s cluster using the MDE

distance. It is important to note that we are able to associate incomplete points with closest
centroid even though their geometric locations are unknown since we use the MDE distance.

On the other hand, using the MDE distance is similar to use the MA-method based on the

Euclidean distance, the point x0; ?ð Þwill be replaced with x0;μy

� �
. It is clear that the difference

between the two methods is only the variance of known values in coordinate y, a fixed value
that does not influence the association result.

The naïve method to compute the new centroid is by replacing the point with the missing
value with all the possible points

x0ð Þpossible ¼ x0; yp
� �

jyp ∈Ypossible

n o
,

the set of all the possible points that satisfy x ¼ x0. And

Figure 1. An example for computing the centroids for two clusters in a dataset with missing values. (a) shows the results
of the different methods of computing the mean. (b) shows the Voronoi diagram.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

7

) f 0xl ¼ 2
Xnl
i¼1

xl � pli
� �þ 2

Xml

i¼1
xl � μl� � ¼ 0

) nxl ¼
Xnl
i¼1

pli þmlμl) xl ¼

Xnl
i¼1

pli

n
þmlμl

n

) xl ¼ nl
n

Xnl
i¼1

pli

nl
þ n� nl

n
μl ¼ μl:

Thus, we simply get:

xl ¼ μl: (3)

Repeating this for all the coordinates yields x ¼ μ1;μ2;…;μk
� �

. In other words, each coordi-
nate of the mean is the mean of the known values of that coordinate.

In the same way, we derive a formula for computing the weighted mean for each coordinate l,
yielding:

xlw ¼
Pnl

i¼1 wixli þ
Pnl

i¼1 wiμl
Pn

i¼1 wi
,

where wi is the weight of point xi. It means, in order to compute the weighted mean of a set of
numbers that some of them are unknown, we must distinguish between known and unknown
values. If the value is known, we multiply it with its weight. On the other hand, if the value is
missing, we replace it with the mean of the known values and then multiply it by the matching
weight.

4. k-Means clustering using the MDE distance

Based on the derived formulas, the MDE distance and the mean, our aim in this research is to
develop k-means clustering algorithms for incomplete datasets [1].

The MDE distance and the mean are general and can be integrated within any algorithm that
computes distances or mean computation. In this section, we describe our proposed method to
integrate those formulas within the framework of the k-means clustering algorithm.

We developed three different versions for k-means. For simplicity, we assume that all the
points are from R2. We have two way to look about incomplete points. The first one considers
each point as a single point, this version is similar to the GMM algorithm described in [14, 15].
On the other hand, the second way is to replace each incomplete point with a set of points
according to the data distribution (these are the other two methods). As will be shown in our
experiments, they outperform the first algorithm.

Recent Applications in Data Clustering6

The k-means clustering algorithm is constructed from two basic steps: (1) associate each point
with its closest centroid, and then, (2) update the centroid based on the new association from
Eq. (1). Given dataset D that may contain points with missing values. In the first step, theMDE

distance is used to compute the distances between each data point and the centroids in order to
associate each point with the closest centroid. This association is general for all the three
versions. However, there are several possible ways to then compute the new centroids of the
clusters. We use Figure 1(a) in order to illustrate those possibilities. In this example, we see two
clusters (i.e., C1 was assigned to be the yellow cluster and C2 was assigned to be the brown
cluster). Our goal is to calculate the centers of each cluster. As an example, we will deal only
with C1. If all the instances do not contain missing values, the centroid will be computed based
on the Euclidean mean formula, resulting in the magenta star.

However, when the associated points for a given cluster contain incomplete points, it is not
clear how to compute the mean. In the given example, let x0; ?ð Þ (i.e., the red star) be a point
with a missing y value and x ¼ x0. This point was associated with C1’s cluster using the MDE

distance. It is important to note that we are able to associate incomplete points with closest
centroid even though their geometric locations are unknown since we use the MDE distance.

On the other hand, using the MDE distance is similar to use the MA-method based on the

Euclidean distance, the point x0; ?ð Þwill be replaced with x0;μy

� �
. It is clear that the difference

between the two methods is only the variance of known values in coordinate y, a fixed value
that does not influence the association result.

The naïve method to compute the new centroid is by replacing the point with the missing
value with all the possible points

x0ð Þpossible ¼ x0; yp
� �

jyp ∈Ypossible

n o
,

the set of all the possible points that satisfy x ¼ x0. And

Figure 1. An example for computing the centroids for two clusters in a dataset with missing values. (a) shows the results
of the different methods of computing the mean. (b) shows the Voronoi diagram.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

7

Ypossible ¼ y∈Rj∃ x; yð Þ∈Df g,

denote all the possible values for attribute Y. And then computing the mean according to these
points (C1real and x0ð Þpossible), where each point from C1real has weight one and each point from

x0ð Þpossible has weight 1
∣Ypossible ∣

. Where

C1real ¼ x; yð Þ∈Dj x; yð Þ∈C1f g

be the set of all the data points without missing values that are associated with the C1 cluster.
As a result, the weighted mean of C1 is:

mean C1ð Þ ¼
P

x;yð Þ∈C1real x; yð Þ þ x0;μy

� �

∣C1real∣þ
P 1

∣Ypossible ∣
: (4)

This is identical to the Euclidean mean when the missing point is replaced with x0;μy

� �
and is

equivalent to the MAmethod when x0;μy

� �
is associated with C1. As a result, the real centroid

of the cluster (the magenta star) moves to the green star as described in Figure 1(b), where not
all the blue “+” marks are belonging to C1.

As a result, the mean computation must distinguish between two possible methods. The first
method (which we call k-mean-MDE) takes into account all the possible points that their y
coordinates are the y coordinates of the real data points from the yellow cluster in addition to
the real points within the yellow circle. As a result, the mean of this set will be computed based
on all the real points C1real and C1 x0ð Þpossible where,

C1 x0ð Þpossible ¼ x0; yp
� �

∈ x0ð Þpossiblej∃ x; yð Þ∈C1real ∧ y ¼ yp
n o

:

Computing the new centroid using Eq. (3) yields not only the same centroid as using the
Euclidean distance, but also preserves the runtime of the standard k-means using the Euclid-
ean distance.

The second method (which we called k-mean-HistMDE): In this case, we first associate each of
the points from x0ð ÞYpossible with its nearest center, and after that compute a weighted mean. It

means that to compute the mean, we will take into account all the real points C1real, in addition
to PC1possible where

PC1possible ¼ x0; yp
� �

∈ x0ð Þpossiblej x0; yp
� �

∈C1
n o

:

According to this method, use all the points from x0ð Þpossible that are associated with the C1 cluster

and not only the points from x0ð Þpossible whose y coordinates are from the real points associated

with that cluster. Since the weights are computed using the entire dataset, we cannot use Eq. (3).
To this end, our suggested method for implementing the mean computation is simply to replace
each point with a missing value with the ∣Ypossible∣ points, each with a weight 1

∣Ypossible∣
, and run

Recent Applications in Data Clustering8

weighted k-means on the new dataset. This method, in one hand, is simple to implement, but in
the other hand, its runtime is high, since each point with, for example, a missing y value will be
replaced with all ∣Ypossible∣ points. As a result, the size of the dataset will be:

∣Dreal∣þ jDj � jDrealjð Þ � ∣Attpossible∣,

where Dreal is the set of each data points that do not contain missing values. In order to reduce
the runtime complexity, we turn to use Voronoi diagram. Based on Voronoi diagram, the data
space is partitioned to k subspaces (as can be seen in Figure 1(b)). Each point is associated with
the subspace of the cluster in which it lies.

The third possibility is to divide the y value space to several disjoint intervals. Where, each
interval will be represented by its mean, and the weight of each interval will be the ratio
between the number of points in the interval to the number of all possible points. This method
we called k-mean-HistMDE. k-mean-HistMDE method approximates the two methods men-
tioned before that compute the weighted mean.

In conclusion, we have three methods:

• The naïve method which is equivalent to the MA method.

• k-means-MDE

• k-mean-HistMDE

These methods differ in their performance, efficiency, and the way they work.

5. Mean shift algorithm

In this section, we will describe another use case that integrates the derived distance function
MDE within the framework of mean shift clustering algorithm. Firstly, we will give a short
overview of the mean shift algorithm, and then, we will describe how we use MDE distance in
this algorithm. Here, we only review some of the results described in [16, 17] which should be
consulted for the details. Let xi ∈Rd, i ¼ 1,…, n is associated with a bandwidth value h > 0.
The sample point density estimator at point x is

bf xð Þ ¼ 1
nhd

Xn

i¼1
K

x� xi
h

� �
: (5)

Based on a symmetric kernel K with bounded support satisfying

K xð Þ ¼ ck,dk ∥x∥2
� �

∥x∥ ≤ 1 (6)

is a nonparametric estimator of the density at x in the feature space. Where k xð Þ, 0 ≤ x ≤ 1 is the
profile of the kernel and the normalization constant ck,d assures that K xð Þ integrates to one. As a
result, the density estimator Eq. (5) can be rewritten as

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

9

Ypossible ¼ y∈Rj∃ x; yð Þ∈Df g,

denote all the possible values for attribute Y. And then computing the mean according to these
points (C1real and x0ð Þpossible), where each point from C1real has weight one and each point from

x0ð Þpossible has weight 1
∣Ypossible ∣

. Where

C1real ¼ x; yð Þ∈Dj x; yð Þ∈C1f g

be the set of all the data points without missing values that are associated with the C1 cluster.
As a result, the weighted mean of C1 is:

mean C1ð Þ ¼
P

x;yð Þ∈C1real x; yð Þ þ x0;μy

� �

∣C1real∣þ
P 1

∣Ypossible ∣
: (4)

This is identical to the Euclidean mean when the missing point is replaced with x0;μy

� �
and is

equivalent to the MAmethod when x0;μy

� �
is associated with C1. As a result, the real centroid

of the cluster (the magenta star) moves to the green star as described in Figure 1(b), where not
all the blue “+” marks are belonging to C1.

As a result, the mean computation must distinguish between two possible methods. The first
method (which we call k-mean-MDE) takes into account all the possible points that their y
coordinates are the y coordinates of the real data points from the yellow cluster in addition to
the real points within the yellow circle. As a result, the mean of this set will be computed based
on all the real points C1real and C1 x0ð Þpossible where,

C1 x0ð Þpossible ¼ x0; yp
� �

∈ x0ð Þpossiblej∃ x; yð Þ∈C1real ∧ y ¼ yp
n o

:

Computing the new centroid using Eq. (3) yields not only the same centroid as using the
Euclidean distance, but also preserves the runtime of the standard k-means using the Euclid-
ean distance.

The second method (which we called k-mean-HistMDE): In this case, we first associate each of
the points from x0ð ÞYpossible with its nearest center, and after that compute a weighted mean. It

means that to compute the mean, we will take into account all the real points C1real, in addition
to PC1possible where

PC1possible ¼ x0; yp
� �

∈ x0ð Þpossiblej x0; yp
� �

∈C1
n o

:

According to this method, use all the points from x0ð Þpossible that are associated with the C1 cluster

and not only the points from x0ð Þpossible whose y coordinates are from the real points associated

with that cluster. Since the weights are computed using the entire dataset, we cannot use Eq. (3).
To this end, our suggested method for implementing the mean computation is simply to replace
each point with a missing value with the ∣Ypossible∣ points, each with a weight 1

∣Ypossible∣
, and run

Recent Applications in Data Clustering8

weighted k-means on the new dataset. This method, in one hand, is simple to implement, but in
the other hand, its runtime is high, since each point with, for example, a missing y value will be
replaced with all ∣Ypossible∣ points. As a result, the size of the dataset will be:

∣Dreal∣þ jDj � jDrealjð Þ � ∣Attpossible∣,

where Dreal is the set of each data points that do not contain missing values. In order to reduce
the runtime complexity, we turn to use Voronoi diagram. Based on Voronoi diagram, the data
space is partitioned to k subspaces (as can be seen in Figure 1(b)). Each point is associated with
the subspace of the cluster in which it lies.

The third possibility is to divide the y value space to several disjoint intervals. Where, each
interval will be represented by its mean, and the weight of each interval will be the ratio
between the number of points in the interval to the number of all possible points. This method
we called k-mean-HistMDE. k-mean-HistMDE method approximates the two methods men-
tioned before that compute the weighted mean.

In conclusion, we have three methods:

• The naïve method which is equivalent to the MA method.

• k-means-MDE

• k-mean-HistMDE

These methods differ in their performance, efficiency, and the way they work.

5. Mean shift algorithm

In this section, we will describe another use case that integrates the derived distance function
MDE within the framework of mean shift clustering algorithm. Firstly, we will give a short
overview of the mean shift algorithm, and then, we will describe how we use MDE distance in
this algorithm. Here, we only review some of the results described in [16, 17] which should be
consulted for the details. Let xi ∈Rd, i ¼ 1,…, n is associated with a bandwidth value h > 0.
The sample point density estimator at point x is

bf xð Þ ¼ 1
nhd

Xn

i¼1
K

x� xi
h

� �
: (5)

Based on a symmetric kernel K with bounded support satisfying

K xð Þ ¼ ck,dk ∥x∥2
� �

∥x∥ ≤ 1 (6)

is a nonparametric estimator of the density at x in the feature space. Where k xð Þ, 0 ≤ x ≤ 1 is the
profile of the kernel and the normalization constant ck,d assures that K xð Þ integrates to one. As a
result, the density estimator Eq. (5) can be rewritten as

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

9

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

x� xi
h

���
���
2

� �
: (7)

As a first step in the analysis is to find the modes of the density which are located among the
zeros of the gradient ∇f xð Þ ¼ 0, of a feature space with the underlying density f xð Þ, and the
mean shift procedure is a way to find these zeros without the need to estimate the density.

Therefore, the density gradient estimator is obtained as the gradient of the density estimator
by capitalizing on the linearity of Eq. (7).

∇bf h,K xð Þ ¼ 2ck,d
nhdþ2

Xn

i¼1
x� xið Þk0 x� xi

h

���
���
2

� �
: (8)

Define g xð Þ ¼ �k0 xð Þ, then the kernel G xð Þ is defined as:

G xð Þ ¼ cg,dg ∥x∥2
� �

:

Introducing g xð Þ into Eq. (8) yields

∇bf h,K xð Þ ¼ 2ck,d
nhdþ2

Xn

i¼1
xi � xð Þg x� xi

h

���
���
2

� �

¼ 2ck,d
nhdþ2

Xn

i¼1
g

x� xi
h

���
���
2

� �" # Pn
i¼1 xig

x�xi
h

�� ��2� �

Pn
i¼1 g

x�xi
h

�� ��2� � � x

2
4

3
5,

(9)

where
Pn

i¼1 g
x�xi
h

�� ��2� �
is assumed to be a positive number. Both terms of the product in Eq. (9)

have special significance. The first term is proportional to the density estimate at x computed
with the kernel G. The second term

mG xð Þ ¼
Pn

i¼1 xig
x�xi
h

�� ��2� �

Pn
i¼1 g

x�xi
h

�� ��2� � � x (10)

is called the mean shift vector. The mean shift vector thus points toward the direction of
maximum increase in the density. The implication of the mean shift property is that the
iterative procedure

yjþ1 ¼
Pn

i¼1 xig
yj�xi
h

���
���

� �

Pn
i¼1 g

yj�xi
h

���
���

� � j ¼ 1, 2,… (11)

In real world, most often the convergence points of this iterative procedure are the local
maxima (modes) of the density. All the points that share the same mode are clustered within
the same cluster. Therefore, we get clusters as the number of modes.

Recent Applications in Data Clustering10

5.1. Mean shift computing using the MDE distance

This section describes the way to integrate the MDE distance within the framework of the
mean shift clustering algorithm. To achieve this mission, we will first compute the mean shift
vector using the MDE distance. And then, we will integrate the MDE and the derived mean
shift vector within the mean shift algorithm.

Using the derived MDE distance the density estimator in Eq. (7) will be written as:

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

x� xi
h

���
���
2

� �
¼ ck,d

nhd
Xn

i¼1
k

Pd
j¼1 MDE xj; xji

� �2

h2

0
B@

1
CA: (12)

Since each point xi may contain missing attributes, bf h, k xð Þ will be:

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

Pkni
j¼1 MDE xj; xji

� �2

h2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
each xi has kni known attributes

þ
Punkni

j¼1 MDE xj; xji
� �2

h2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
each xi has unkni missing attributes

0
BBB@

1
CCCA:

According to the definition of the MDE distance, we obtain:

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA: (13)

Now, we will compute the gradient of the density estimator in Eq. (13).

∇bf h, k xð Þ ¼ ck,d
nhdþ2

Xn

i¼1

Xkni
j¼1

xj � xji
� �2

þ
Xunkni
j¼1

xj � μj� �2 þ σj
� �2

2
4

3
5
0

�k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

¼ ck,d
nhdþ2

Xn

i¼1

Xkni
j¼1

xj � xji
� �2

2
4

3
5
0

� k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

þ Punkni
j¼1 xj � μj

� �2 þ σj
� �2h i0

� k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA:

In our computation, we will first deal with one coordinate l, and then, we will generate the
computation for all the other coordinates.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

11

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

x� xi
h

���
���
2

� �
: (7)

As a first step in the analysis is to find the modes of the density which are located among the
zeros of the gradient ∇f xð Þ ¼ 0, of a feature space with the underlying density f xð Þ, and the
mean shift procedure is a way to find these zeros without the need to estimate the density.

Therefore, the density gradient estimator is obtained as the gradient of the density estimator
by capitalizing on the linearity of Eq. (7).

∇bf h,K xð Þ ¼ 2ck,d
nhdþ2

Xn

i¼1
x� xið Þk0 x� xi

h

���
���
2

� �
: (8)

Define g xð Þ ¼ �k0 xð Þ, then the kernel G xð Þ is defined as:

G xð Þ ¼ cg,dg ∥x∥2
� �

:

Introducing g xð Þ into Eq. (8) yields

∇bf h,K xð Þ ¼ 2ck,d
nhdþ2

Xn

i¼1
xi � xð Þg x� xi

h

���
���
2

� �

¼ 2ck,d
nhdþ2

Xn

i¼1
g

x� xi
h

���
���
2

� �" # Pn
i¼1 xig

x�xi
h

�� ��2� �

Pn
i¼1 g

x�xi
h

�� ��2� � � x

2
4

3
5,

(9)

where
Pn

i¼1 g
x�xi
h

�� ��2� �
is assumed to be a positive number. Both terms of the product in Eq. (9)

have special significance. The first term is proportional to the density estimate at x computed
with the kernel G. The second term

mG xð Þ ¼
Pn

i¼1 xig
x�xi
h

�� ��2� �

Pn
i¼1 g

x�xi
h

�� ��2� � � x (10)

is called the mean shift vector. The mean shift vector thus points toward the direction of
maximum increase in the density. The implication of the mean shift property is that the
iterative procedure

yjþ1 ¼
Pn

i¼1 xig
yj�xi
h

���
���

� �

Pn
i¼1 g

yj�xi
h

���
���

� � j ¼ 1, 2,… (11)

In real world, most often the convergence points of this iterative procedure are the local
maxima (modes) of the density. All the points that share the same mode are clustered within
the same cluster. Therefore, we get clusters as the number of modes.

Recent Applications in Data Clustering10

5.1. Mean shift computing using the MDE distance

This section describes the way to integrate the MDE distance within the framework of the
mean shift clustering algorithm. To achieve this mission, we will first compute the mean shift
vector using the MDE distance. And then, we will integrate the MDE and the derived mean
shift vector within the mean shift algorithm.

Using the derived MDE distance the density estimator in Eq. (7) will be written as:

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

x� xi
h

���
���
2

� �
¼ ck,d

nhd
Xn

i¼1
k

Pd
j¼1 MDE xj; xji

� �2

h2

0
B@

1
CA: (12)

Since each point xi may contain missing attributes, bf h, k xð Þ will be:

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

Pkni
j¼1 MDE xj; xji

� �2

h2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
each xi has kni known attributes

þ
Punkni

j¼1 MDE xj; xji
� �2

h2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
each xi has unkni missing attributes

0
BBB@

1
CCCA:

According to the definition of the MDE distance, we obtain:

bf h, k xð Þ ¼ ck,d
nhd

Xn

i¼1
k

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA: (13)

Now, we will compute the gradient of the density estimator in Eq. (13).

∇bf h, k xð Þ ¼ ck,d
nhdþ2

Xn

i¼1

Xkni
j¼1

xj � xji
� �2

þ
Xunkni
j¼1

xj � μj� �2 þ σj
� �2

2
4

3
5
0

�k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

¼ ck,d
nhdþ2

Xn

i¼1

Xkni
j¼1

xj � xji
� �2

2
4

3
5
0

� k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

þ Punkni
j¼1 xj � μj

� �2 þ σj
� �2h i0

� k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA:

In our computation, we will first deal with one coordinate l, and then, we will generate the
computation for all the other coordinates.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

11

) f 0xl ¼
2ck,d
nhdþ2

Xnl
i¼1

xl � xli
� � � k0

Xkni
j¼1

xj � xji
� �2

h2
þ

Xunkni
j¼1

xj � μj� �2 þ σj
� �2

h2

0
BBBBB@

1
CCCCCA

þ 2ck,d
nhdþ2

Xml

i¼1
xl � μl� � � k0

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

¼ 2ck,d
nhdþ2

½xl �
Xn

i¼1
k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

�
Xnl

i¼1 x
l
i � k0

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

�
Xml

i¼1
μl � k0

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA,

where there are nl points for which the xl coordinate is known, and there are ml points where it
is missing.

f 0xl ¼
2ck,d
nhdþ2

�
Xn

i¼1
g
Xd

j¼1
MDE xj; xji

� �2
0
@

1
A

2
4

3
5

�
Pnl

i¼1 x
l
i � g

Pd
j¼1 MDE xj; xji

� �2� �
þPml

i¼1 μ
l � g Pd

j¼1 MDE xj; xji
� �2� �

Pn
i¼1 g

Pd
j¼1 MDE xj; xji

� �2� � � xl

2
664

3
775:

As a result, the mean shift vector using the MDE distance is defined as:

mMDE,G xð Þ ¼
Pnl

i¼1 x
l
i � g

Pd
j¼1 MDE xj; xji

� �2� �
þPml

j¼1 μ
l � g Pd

j¼1 MDE xj; xji
� �2� �

Pn
i¼1 g

Pd
j¼1 MDE xj; xji

� �2� � � xl:
(14)

Now, we can use this equation to run the mean shift procedure over datasets with missing values.

6. Experiments on numerical datasets

In order to measure performance of the developed clustering algorithm (i.e., k-means and
mean shift), we compare their performance on complete datasets to its performance on

Recent Applications in Data Clustering12

incomplete data using the suggested distance function and then again using the existing
methods (MCA, MA, and MI) within the standard algorithms.

To measure the similarity between two data clusterings, we decide to use the Rand index [18].
We use it in order to compare the results of the original clustering algorithms to the results of
the other derived algorithms for incomplete datasets.

Our experiments use six standard numerical datasets from the Speech and Image Processing
Unit [13]; dataset characteristics are shown in Table 1.

We produced the missing data by drawing randomly a set consisting of 10–40% of the data
from each dataset. These sets are used as samples of incomplete data, where one attribute from
each point was randomly selected to be assigned as missing value. For each dataset, we
average the results over 10 different runs.

6.1. k-Means experiments

In the k-means algorithm, we developed two versions, k-means-MDE and k-means-HistMDE;
to cluster the incomplete datasets, we compare the performance of the k-means (k is fixed for
each dataset) clustering algorithm on complete data (i.e., without missing values) to its perfor-
mance on data with missing values, using the MDE distance measure (k-means-MDE and k-
means-HistMDE) and then again using k-means-(MCA, MA, and MI).

As can be seen in Figure 2, the new algorithms that is based on theMDE distance outperformed
the other existing algorithms on all the datasets. It occurred because in the MA MCA methods,
the whole distribution of values is replaced by the mean or the mode of the distribution of
known values, that is a fixed value. In our two developed algorithms, we use the distribution of
the observed values in all the computation stages. This additional information, taking into
account not only the mean of the attribute but also the variance, is probably the reason for the
improved performance of our methods compared to the known heuristics.

6.2. Mean shift experiments

Mean shift clustering algorithm was tested using bandwidth h ¼ 4 (because we saw that the
standard mean shift worked well for this value).

Dataset Dataset size Clusters

Flame 240� 2 2

Jain 373� 2 2

Path-based 300� 2 3

Spiral 312� 2 3

Compound 399� 2 6

Aggregation 788� 2 7

Table 1. Speech and Image Processing Unit Dataset properties.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

13

) f 0xl ¼
2ck,d
nhdþ2

Xnl
i¼1

xl � xli
� � � k0

Xkni
j¼1

xj � xji
� �2

h2
þ

Xunkni
j¼1

xj � μj� �2 þ σj
� �2

h2

0
BBBBB@

1
CCCCCA

þ 2ck,d
nhdþ2

Xml

i¼1
xl � μl� � � k0

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

¼ 2ck,d
nhdþ2

½xl �
Xn

i¼1
k0
Pkni

j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

�
Xnl

i¼1 x
l
i � k0

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA

�
Xml

i¼1
μl � k0

Pkni
j¼1 xj � xji
� �2

h2
þ
Punkni

j¼1 xj � μj
� �2 þ σj

� �2

h2

0
B@

1
CA,

where there are nl points for which the xl coordinate is known, and there are ml points where it
is missing.

f 0xl ¼
2ck,d
nhdþ2

�
Xn

i¼1
g
Xd

j¼1
MDE xj; xji

� �2
0
@

1
A

2
4

3
5

�
Pnl

i¼1 x
l
i � g

Pd
j¼1 MDE xj; xji

� �2� �
þPml

i¼1 μ
l � g Pd

j¼1 MDE xj; xji
� �2� �

Pn
i¼1 g

Pd
j¼1 MDE xj; xji

� �2� � � xl

2
664

3
775:

As a result, the mean shift vector using the MDE distance is defined as:

mMDE,G xð Þ ¼
Pnl

i¼1 x
l
i � g

Pd
j¼1 MDE xj; xji

� �2� �
þPml

j¼1 μ
l � g Pd

j¼1 MDE xj; xji
� �2� �

Pn
i¼1 g

Pd
j¼1 MDE xj; xji

� �2� � � xl:
(14)

Now, we can use this equation to run the mean shift procedure over datasets with missing values.

6. Experiments on numerical datasets

In order to measure performance of the developed clustering algorithm (i.e., k-means and
mean shift), we compare their performance on complete datasets to its performance on

Recent Applications in Data Clustering12

incomplete data using the suggested distance function and then again using the existing
methods (MCA, MA, and MI) within the standard algorithms.

To measure the similarity between two data clusterings, we decide to use the Rand index [18].
We use it in order to compare the results of the original clustering algorithms to the results of
the other derived algorithms for incomplete datasets.

Our experiments use six standard numerical datasets from the Speech and Image Processing
Unit [13]; dataset characteristics are shown in Table 1.

We produced the missing data by drawing randomly a set consisting of 10–40% of the data
from each dataset. These sets are used as samples of incomplete data, where one attribute from
each point was randomly selected to be assigned as missing value. For each dataset, we
average the results over 10 different runs.

6.1. k-Means experiments

In the k-means algorithm, we developed two versions, k-means-MDE and k-means-HistMDE;
to cluster the incomplete datasets, we compare the performance of the k-means (k is fixed for
each dataset) clustering algorithm on complete data (i.e., without missing values) to its perfor-
mance on data with missing values, using the MDE distance measure (k-means-MDE and k-
means-HistMDE) and then again using k-means-(MCA, MA, and MI).

As can be seen in Figure 2, the new algorithms that is based on theMDE distance outperformed
the other existing algorithms on all the datasets. It occurred because in the MA MCA methods,
the whole distribution of values is replaced by the mean or the mode of the distribution of
known values, that is a fixed value. In our two developed algorithms, we use the distribution of
the observed values in all the computation stages. This additional information, taking into
account not only the mean of the attribute but also the variance, is probably the reason for the
improved performance of our methods compared to the known heuristics.

6.2. Mean shift experiments

Mean shift clustering algorithm was tested using bandwidth h ¼ 4 (because we saw that the
standard mean shift worked well for this value).

Dataset Dataset size Clusters

Flame 240� 2 2

Jain 373� 2 2

Path-based 300� 2 3

Spiral 312� 2 3

Compound 399� 2 6

Aggregation 788� 2 7

Table 1. Speech and Image Processing Unit Dataset properties.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

13

A resulting curve for the Rand index values was constructed for each dataset to evaluate how
well the algorithm performed.

As can be seen in Figure 3, for all the datasets except the Jain dataset, the curves show that the
new mean shift algorithm was superior and outperformed the other compared methods for all
missing value percentages, while for the Jain dataset, its superiority became apparent only
when the percent of the missing values was larger than 25%, as can be seen in Figure 3(b). In
addition, we can see that the MS�MC method outperforms the MS�MA method for the
flame and path-based datasets, and the MS�MC outperforms MS�MA for the other
datasets. As a result, we cannot decide unequivocally which algorithm is better. On the other
hand, we obviously can state that the MS�MDE outperforms the other methods especially
when the percentage of the missing values increases.

7. Conclusions

Missing values in data are common in real-world applications. They can be caused by human
error, equipment failure, system-generated errors, and so on. Several methods were developed

Figure 2. Results of k-means clustering algorithm using the different distance functions on the six datasets from the
Speech and Image Processing Unit.

Recent Applications in Data Clustering14

Figure 3. Results of mean shift clustering algorithm using the different distance functions on the six datasets from the
Speech and Image Processing Unit.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

15

A resulting curve for the Rand index values was constructed for each dataset to evaluate how
well the algorithm performed.

As can be seen in Figure 3, for all the datasets except the Jain dataset, the curves show that the
new mean shift algorithm was superior and outperformed the other compared methods for all
missing value percentages, while for the Jain dataset, its superiority became apparent only
when the percent of the missing values was larger than 25%, as can be seen in Figure 3(b). In
addition, we can see that the MS�MC method outperforms the MS�MA method for the
flame and path-based datasets, and the MS�MC outperforms MS�MA for the other
datasets. As a result, we cannot decide unequivocally which algorithm is better. On the other
hand, we obviously can state that the MS�MDE outperforms the other methods especially
when the percentage of the missing values increases.

7. Conclusions

Missing values in data are common in real-world applications. They can be caused by human
error, equipment failure, system-generated errors, and so on. Several methods were developed

Figure 2. Results of k-means clustering algorithm using the different distance functions on the six datasets from the
Speech and Image Processing Unit.

Recent Applications in Data Clustering14

Figure 3. Results of mean shift clustering algorithm using the different distance functions on the six datasets from the
Speech and Image Processing Unit.

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

15

to deal with this problem such as: filling the missing values with fixed values, ignoring sample
with missing values, or dealing with the missing values by defining a distance function.

In this work, we have proposed a new mean shift clustering algorithm and two versions of the
k-means clustering algorithm over incomplete datasets based on the developed MDE distance
that was presented in [1, 2, 12].

The computational complexities of all the developed algorithms were preserved and they are
the same as that of the standard algorithms using the Euclidean distance. The distance was
computed based only on the mean and variance of the data for each attribute.

We experimented on six standard numerical datasets from different fields. On these datasets,
we simulated missing values and compared the performance of the developed algorithms
using our distance and the suggested mean computations to other three basic methods.

From our experiments, we conclude that the developed methods are more appropriate for
measuring the mean, mean shift vector, and weighted mean for objects with missing values,
especially when the percent of missing values is large.

Author details

Loai AbdAllah1* and Ilan Shimshoni2

*Address all correspondence to: loai1984@gmail.com

1 Department of Information Systems, The Max Stern Yezreel Valley Academic College, Israel

2 Department of Information Systems, University of Haifa, Israel

References

[1] Abedallah L, Shimshoni I. K-means over incomplete datasets using mean Euclidean
distance. In: Proceedings of 12th International Conference on Machine Learning and Data
Mining; 2016

[2] Abedallah L, Shimshoni I. Mean shift clustering algorithm for data with missing values.
In: Proceedings of 14th International Conference of DaWaK; 2014. pp. 426-438

[3] DondersART, van derHeijdenGJMG, Stijnen T,MoonsKGM.Review:Agentle introduction
to imputation of missing values. Journal of Clinical Epidemiology. 2006;59(10):1087-1091

[4] Ibrahim JG, Chen M-H, Lipsitz SR, Herring AH. Missing-data methods for generalized
linear models: A comparative review. Journal of the American Statistical Association.
2005;100(469):332-346

[5] Little RJA. Missing-data adjustments in large surveys. Journal of Business & Economic
Statistics. 1988;6(3):287-296

Recent Applications in Data Clustering16

[6] Little RJA, Rubin DB. Statistical Analysis with Missing Data. Hoboken, New Jersey: John
Wiley & Sons; 2014

[7] Zhang S, Qin Z, Ling CX, Sheng S.Missing is useful:Missing values in cost-sensitive decision
trees. IEEE Transactions on Knowledge and Data Engineering. 2005;17(12):1689-1693

[8] Magnani M. Techniques for dealing with missing data in knowledge discovery tasks.
Obtido. 2004;15(01):2007. http://magnanim.web.cs.unibo.it/index.html

[9] Jerzy Grzymala-Busse, Ming Hu. A comparison of several approaches to missing attribute
values in data mining. In: Proceedings of Rough Sets and Current Trends in Computing;
Springer; 2001. pp. 378-385

[10] Zhang S. Shell-neighbor method and its application in missing data imputation. Applied
Intelligence. 2011;35(1):123-133

[11] Batista G, Monard MC. An analysis of four missing data treatment methods for super-
vised learning. Applied Artificial Intelligence. 2003;17(5–6):519-533

[12] AbdAllah L, Shimshoni I. A distance function for data with missing values and its appli-
cations on KNN and k-means algorithms. International Journal Advances in Data Analy-
sis and Classification

[13] Speech University of Eastern Finland and Image Processing Unit. Clustering dataset,
http://cs.joensuu.fi/sipu/datasets/; 2008

[14] Hunt L, Jorgensen M. Mixture model clustering for mixed data with missing information.
Computational Statistics and Data Analysis. 2003;41(3):429-440

[15] Ghahramani Z, Jordan M. Learning from incomplete data. Technical Report, MIT AI Lab
Memo, (1509), 1995

[16] Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2002;24(5):603-619

[17] Georgescu B, Shimshoni I,Meer P.Mean shift based clustering in high dimensions: A texture
classification example. In: Proceedings of the 9th International Conference on Computer
Vision; 2003. pp. 456-463

[18] Rand WM. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association. 1971;66(336):846-850

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

17

to deal with this problem such as: filling the missing values with fixed values, ignoring sample
with missing values, or dealing with the missing values by defining a distance function.

In this work, we have proposed a new mean shift clustering algorithm and two versions of the
k-means clustering algorithm over incomplete datasets based on the developed MDE distance
that was presented in [1, 2, 12].

The computational complexities of all the developed algorithms were preserved and they are
the same as that of the standard algorithms using the Euclidean distance. The distance was
computed based only on the mean and variance of the data for each attribute.

We experimented on six standard numerical datasets from different fields. On these datasets,
we simulated missing values and compared the performance of the developed algorithms
using our distance and the suggested mean computations to other three basic methods.

From our experiments, we conclude that the developed methods are more appropriate for
measuring the mean, mean shift vector, and weighted mean for objects with missing values,
especially when the percent of missing values is large.

Author details

Loai AbdAllah1* and Ilan Shimshoni2

*Address all correspondence to: loai1984@gmail.com

1 Department of Information Systems, The Max Stern Yezreel Valley Academic College, Israel

2 Department of Information Systems, University of Haifa, Israel

References

[1] Abedallah L, Shimshoni I. K-means over incomplete datasets using mean Euclidean
distance. In: Proceedings of 12th International Conference on Machine Learning and Data
Mining; 2016

[2] Abedallah L, Shimshoni I. Mean shift clustering algorithm for data with missing values.
In: Proceedings of 14th International Conference of DaWaK; 2014. pp. 426-438

[3] DondersART, van derHeijdenGJMG, Stijnen T,MoonsKGM.Review:Agentle introduction
to imputation of missing values. Journal of Clinical Epidemiology. 2006;59(10):1087-1091

[4] Ibrahim JG, Chen M-H, Lipsitz SR, Herring AH. Missing-data methods for generalized
linear models: A comparative review. Journal of the American Statistical Association.
2005;100(469):332-346

[5] Little RJA. Missing-data adjustments in large surveys. Journal of Business & Economic
Statistics. 1988;6(3):287-296

Recent Applications in Data Clustering16

[6] Little RJA, Rubin DB. Statistical Analysis with Missing Data. Hoboken, New Jersey: John
Wiley & Sons; 2014

[7] Zhang S, Qin Z, Ling CX, Sheng S.Missing is useful:Missing values in cost-sensitive decision
trees. IEEE Transactions on Knowledge and Data Engineering. 2005;17(12):1689-1693

[8] Magnani M. Techniques for dealing with missing data in knowledge discovery tasks.
Obtido. 2004;15(01):2007. http://magnanim.web.cs.unibo.it/index.html

[9] Jerzy Grzymala-Busse, Ming Hu. A comparison of several approaches to missing attribute
values in data mining. In: Proceedings of Rough Sets and Current Trends in Computing;
Springer; 2001. pp. 378-385

[10] Zhang S. Shell-neighbor method and its application in missing data imputation. Applied
Intelligence. 2011;35(1):123-133

[11] Batista G, Monard MC. An analysis of four missing data treatment methods for super-
vised learning. Applied Artificial Intelligence. 2003;17(5–6):519-533

[12] AbdAllah L, Shimshoni I. A distance function for data with missing values and its appli-
cations on KNN and k-means algorithms. International Journal Advances in Data Analy-
sis and Classification

[13] Speech University of Eastern Finland and Image Processing Unit. Clustering dataset,
http://cs.joensuu.fi/sipu/datasets/; 2008

[14] Hunt L, Jorgensen M. Mixture model clustering for mixed data with missing information.
Computational Statistics and Data Analysis. 2003;41(3):429-440

[15] Ghahramani Z, Jordan M. Learning from incomplete data. Technical Report, MIT AI Lab
Memo, (1509), 1995

[16] Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2002;24(5):603-619

[17] Georgescu B, Shimshoni I,Meer P.Mean shift based clustering in high dimensions: A texture
classification example. In: Proceedings of the 9th International Conference on Computer
Vision; 2003. pp. 456-463

[18] Rand WM. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association. 1971;66(336):846-850

Clustering Algorithms for Incomplete Datasets
http://dx.doi.org/10.5772/intechopen.78272

17

Chapter 2

Partitional Clustering

Uğurhan Kutbay

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75836

Provisional chapter

Partitional Clustering

Uğurhan Kutbay

Additional information is available at the end of the chapter

Abstract

People are living in a world full of data. Humans are collecting data from many measure-
ments and observations in their daily works. The sorting of these numerous data is
important and necessary in terms of analyzing, reasoning, and decision-making processes.
For this reason, clustering has been used in many areas and has become very important in
recent years. Feature selection and classifying the data in subsets can be changed data to
data. As a result of these feature selection methods, some clustering methods have been
revealed. Hierarchical clustering, partitional clustering, artificial system clustering, kernel-
based clustering, and sequential data clustering are determined for different clustering
strategies. This chapter examines some popular partitional clustering techniques and
algorithms. Partitional clustering assigns a set of data points into k-clusters by using
iterative processes. The predefined criterion function (J) assigns the datum into kth num-
ber set. As a result of this criterion function value in k sets (maximization and minimiza-
tion calculation), clustering can be done. This chapter starts with criterion function for
clustering process. In addition, some applications will be done for each algorithm in this
chapter.

Keywords: partitional clustering, K-means, fuzzy clustering, C-FCM, genetic algorithm

1. Introduction

The choice of feature types and measurement levels depends on data type. For this reason,
many clustering methods have been developed. According to clustering strategies, these
methods can be classified as hierarchical clustering [1–3], partitional clustering [4, 5], artificial
system clustering [6], kernel-based clustering and sequential data clustering. This chapter
examines some popular partitional clustering techniques and algorithms.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75836

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 2

Partitional Clustering

Uğurhan Kutbay

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75836

Provisional chapter

Partitional Clustering

Uğurhan Kutbay

Additional information is available at the end of the chapter

Abstract

People are living in a world full of data. Humans are collecting data from many measure-
ments and observations in their daily works. The sorting of these numerous data is
important and necessary in terms of analyzing, reasoning, and decision-making processes.
For this reason, clustering has been used in many areas and has become very important in
recent years. Feature selection and classifying the data in subsets can be changed data to
data. As a result of these feature selection methods, some clustering methods have been
revealed. Hierarchical clustering, partitional clustering, artificial system clustering, kernel-
based clustering, and sequential data clustering are determined for different clustering
strategies. This chapter examines some popular partitional clustering techniques and
algorithms. Partitional clustering assigns a set of data points into k-clusters by using
iterative processes. The predefined criterion function (J) assigns the datum into kth num-
ber set. As a result of this criterion function value in k sets (maximization and minimiza-
tion calculation), clustering can be done. This chapter starts with criterion function for
clustering process. In addition, some applications will be done for each algorithm in this
chapter.

Keywords: partitional clustering, K-means, fuzzy clustering, C-FCM, genetic algorithm

1. Introduction

The choice of feature types and measurement levels depends on data type. For this reason,
many clustering methods have been developed. According to clustering strategies, these
methods can be classified as hierarchical clustering [1–3], partitional clustering [4, 5], artificial
system clustering [6], kernel-based clustering and sequential data clustering. This chapter
examines some popular partitional clustering techniques and algorithms.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75836

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

In contrast to hierarchical clustering methods, partitional clustering aims successive clusters
using some iterative processes. Partitional clustering assigns a set of data points into k-clusters
by using iterative processes. In these processes, n data are classified into k-clusters. The predef-
ined criterion function J assigns the datum into kth number set according to the maximization
and minimization calculation in k sets.

Figure 1 represents the hierarchical clustering and partitional clustering. In addition, hierar-
chical clustering, all sub-clusters defined in another sub-cluster shown in Figure 1. Figure 1a
represents the raw data, Figure 1b shows the partitional clustering and Figure 1c represents
the hierarchical clustering. In hierarchical clustering, raw data are firstly clustered in some
subgroups (three-clustered shape). After that procedure, subgroups hierarchically defined
in two green clusters. Last procedure includes all these clusters which are defined in the
union set.

This chapter starts with an introduction to clustering criteria and continues with K-Means
algorithm, different fuzzy clustering techniques and genetic algorithm-based clustering.

2. Clustering criteria

Clustering aims to seek a partition of the data in the same homogenous clusters [7]. This
homogeneity and finding the exact clustering are evaluated only by using criterion functions.
One of the most popular techniques of the criterion function is the summing of squared-error
(SSE) criterion and similar methods are used such as mean-square-error (MSE), normalized
mean-square-error (NMSE), and so on. Sum of squared error criterion can be defined as:

Figure 1. Clustering techniques: (a) data set; (b) partitional clustering; and (c) hierarchical clustering.

Recent Applications in Data Clustering20

J Γ;Μð Þ ¼
XK

i¼1

XN

j¼1
γij xj �mi
�� ��2 ¼

XK

i¼1

XN

j¼1
γij xj �mi
� �T xj �mi

� �
(1)

where Γ is a partition matrix of γij and defined as;

γij ¼
1 if xj ∈ cluster i
0 otherwise

�
(2)

M is the cluster prototype or centroid matrix and mi defined as;

mi ¼ 1
Ni

PN
i¼1

γijxj is the sample mean for the ith number cluster corresponding to Ni objects.

The partition minimizes the sum-square-error (SSE). When the SSE regarded is minimum,
minimum variance partition will be achieved. As a result of this calculation, optimum cluster
is determined.

3. K-means algorithm

The K-Means clusters were first developed by Mac Queen [8]. In the K-Means clusters, clusters
are formed using Euclidean distance. In the K-Means algorithm, unsupervised learning is used
and k classes are created which minimize the error function [9].

In K-Means clustering, k cluster centers are created from the selected data set. It is then
placed at the nearest cluster using Euclidean distance. New cluster centers are formed
according to the results of the clustering. From the calculations of the clustering, the cluster
center is recalculated. The arithmetic average is used as the calculation method, and the
new cluster center is determined. All samples are reclassified according to the new center.
This process is repeated until it is determined that the samples in the set have not passed to
another set.

The partitioning of the k pieces of data x is represented by the minimization of the J parameter
as in (3).

J ¼ min
X
k

X
x∈ ck

wxdist x; okð Þ
 !

(3)

If the data are classified in a cluster near the center of the nearest cluster, the J value will be the
minimum. If the data x are classified in the kth number cluster, the value can be optimized by
changing the weighting value of wx to obtain the minimum J value. dist x; okð Þ is the notation
which represents the distance function. In this formula, x represents the pixel data, ok is the
center of the cluster. k sets are shown as in (4).

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

21

In contrast to hierarchical clustering methods, partitional clustering aims successive clusters
using some iterative processes. Partitional clustering assigns a set of data points into k-clusters
by using iterative processes. In these processes, n data are classified into k-clusters. The predef-
ined criterion function J assigns the datum into kth number set according to the maximization
and minimization calculation in k sets.

Figure 1 represents the hierarchical clustering and partitional clustering. In addition, hierar-
chical clustering, all sub-clusters defined in another sub-cluster shown in Figure 1. Figure 1a
represents the raw data, Figure 1b shows the partitional clustering and Figure 1c represents
the hierarchical clustering. In hierarchical clustering, raw data are firstly clustered in some
subgroups (three-clustered shape). After that procedure, subgroups hierarchically defined
in two green clusters. Last procedure includes all these clusters which are defined in the
union set.

This chapter starts with an introduction to clustering criteria and continues with K-Means
algorithm, different fuzzy clustering techniques and genetic algorithm-based clustering.

2. Clustering criteria

Clustering aims to seek a partition of the data in the same homogenous clusters [7]. This
homogeneity and finding the exact clustering are evaluated only by using criterion functions.
One of the most popular techniques of the criterion function is the summing of squared-error
(SSE) criterion and similar methods are used such as mean-square-error (MSE), normalized
mean-square-error (NMSE), and so on. Sum of squared error criterion can be defined as:

Figure 1. Clustering techniques: (a) data set; (b) partitional clustering; and (c) hierarchical clustering.

Recent Applications in Data Clustering20

J Γ;Μð Þ ¼
XK

i¼1

XN

j¼1
γij xj �mi
�� ��2 ¼

XK

i¼1

XN

j¼1
γij xj �mi
� �T xj �mi

� �
(1)

where Γ is a partition matrix of γij and defined as;

γij ¼
1 if xj ∈ cluster i
0 otherwise

�
(2)

M is the cluster prototype or centroid matrix and mi defined as;

mi ¼ 1
Ni

PN
i¼1

γijxj is the sample mean for the ith number cluster corresponding to Ni objects.

The partition minimizes the sum-square-error (SSE). When the SSE regarded is minimum,
minimum variance partition will be achieved. As a result of this calculation, optimum cluster
is determined.

3. K-means algorithm

The K-Means clusters were first developed by Mac Queen [8]. In the K-Means clusters, clusters
are formed using Euclidean distance. In the K-Means algorithm, unsupervised learning is used
and k classes are created which minimize the error function [9].

In K-Means clustering, k cluster centers are created from the selected data set. It is then
placed at the nearest cluster using Euclidean distance. New cluster centers are formed
according to the results of the clustering. From the calculations of the clustering, the cluster
center is recalculated. The arithmetic average is used as the calculation method, and the
new cluster center is determined. All samples are reclassified according to the new center.
This process is repeated until it is determined that the samples in the set have not passed to
another set.

The partitioning of the k pieces of data x is represented by the minimization of the J parameter
as in (3).

J ¼ min
X
k

X
x∈ ck

wxdist x; okð Þ
 !

(3)

If the data are classified in a cluster near the center of the nearest cluster, the J value will be the
minimum. If the data x are classified in the kth number cluster, the value can be optimized by
changing the weighting value of wx to obtain the minimum J value. dist x; okð Þ is the notation
which represents the distance function. In this formula, x represents the pixel data, ok is the
center of the cluster. k sets are shown as in (4).

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

21

ck ¼ ck,1; ck,2;…; ck,nð Þ (4)

The distance function can be calculated as in Euclidean distance for k clusters in the next
formula (5).

dist xij; ok
� �

¼
ffi
xij,1 � ok,1
� �2

þ xij,1 � ok,2
� �2

þ…þ xij,n � ok,n
� �2r

(5)

The iterative operations are repeated as in the flow diagram in Figure 2. This flowchart
represents the iterative distance controlled operations to minimize the J parameter.

When this algorithm is applied for three-cluster for the original image shown in Figure 3a, this
image can be represented in three clusters as in Figure 3b–d, respectively. Cluster-1 shows the

Figure 2. Flow chart of the K-Means algorithm.

Figure 3. K-means algorithm results. (a) Original image; (b) K-Means Cluster No:1; (c) K-Means Cluster No:2; and (d) K-
Means Cluster No:3.

Recent Applications in Data Clustering22

sea for the given landscape, cluster-2 shows the the green areas in the landscape and cluster-3
shows the roads for the given landscape.

4. Fuzzy clustering

Fuzzy theory is firstly developed by Zadeh [10] for defining adjustable degrees of member-
ships. Fuzzy theory creates intermediate sets rather than classical sets. In classical sets, each
data item is assigned into only one cluster. In contrast, data in fuzzy clusters can be
represented in multiple clusters. This multiset assignment can belong to all the clusters with a
certain degree of membership defined by Bezdek [11]. This one item in multiset representation
can be useful for sharply separated cluster boundaries.

The fuzzy C-Mean algorithm (FCM) is frequently used because of its ease of operation and
reliability in many applications [12–15]. Conventional Fuzzy C-Mean (FCM) works with the
principle of minimizing the objective function [16] shown in the following formula (6):

JFCM ¼
Xc

i¼1

Xn

k¼1
umikd

2
ik (6)

where umik is the membership function in the range [0,1]. This membership represents the
membership degree of xk for the kth pixel. k is defined in the range of k∈ 1; n½ � for the ith

numbered cluster. Total cluster size (c) given in the range of 1; c½ �. In the formula (7), d2ik
represents the distance between xk and ith-cluster center (vi).

d2ik ¼ xk � vik k (7)

The fuzzy set theory aims that the membership function is
Pc

i¼1 uik ¼ 1 for each pixel. Using
the FCM membership function umik and cluster center vi, FCM targets to reach local minimums
by using the equivalence (8) and (9), respectively.

u∗ik ¼
Xc

j¼1

dik
djk

� �2= m�1ð Þ
8<
:

9=
;

�1

∀i∈ 1; c½ � and k∈ 1; n½ � (8)

v∗i ¼
Pn

k¼1 u
m
ikxkPn

k¼1 u
m
ik

∀i∈ 1; c½ � (9)

FCM algorithm flow chart is shown in Figure 4. This algorithm will be done in the given
iteration step specified in this traditional clustering method. The cluster centers are updated in
each iteration step to calculate the membership function.

When the FCM algorithm is applied for the given original image shown in Figure 5a for three
clusters, this image can be represented in three clusters as in Figure 5b–d, respectively. This
algorithm can only be applied for gray-scaled images. There is no crisp clustering for the given

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

23

ck ¼ ck,1; ck,2;…; ck,nð Þ (4)

The distance function can be calculated as in Euclidean distance for k clusters in the next
formula (5).

dist xij; ok
� �

¼
ffi
xij,1 � ok,1
� �2

þ xij,1 � ok,2
� �2

þ…þ xij,n � ok,n
� �2r

(5)

The iterative operations are repeated as in the flow diagram in Figure 2. This flowchart
represents the iterative distance controlled operations to minimize the J parameter.

When this algorithm is applied for three-cluster for the original image shown in Figure 3a, this
image can be represented in three clusters as in Figure 3b–d, respectively. Cluster-1 shows the

Figure 2. Flow chart of the K-Means algorithm.

Figure 3. K-means algorithm results. (a) Original image; (b) K-Means Cluster No:1; (c) K-Means Cluster No:2; and (d) K-
Means Cluster No:3.

Recent Applications in Data Clustering22

sea for the given landscape, cluster-2 shows the the green areas in the landscape and cluster-3
shows the roads for the given landscape.

4. Fuzzy clustering

Fuzzy theory is firstly developed by Zadeh [10] for defining adjustable degrees of member-
ships. Fuzzy theory creates intermediate sets rather than classical sets. In classical sets, each
data item is assigned into only one cluster. In contrast, data in fuzzy clusters can be
represented in multiple clusters. This multiset assignment can belong to all the clusters with a
certain degree of membership defined by Bezdek [11]. This one item in multiset representation
can be useful for sharply separated cluster boundaries.

The fuzzy C-Mean algorithm (FCM) is frequently used because of its ease of operation and
reliability in many applications [12–15]. Conventional Fuzzy C-Mean (FCM) works with the
principle of minimizing the objective function [16] shown in the following formula (6):

JFCM ¼
Xc

i¼1

Xn

k¼1
umikd

2
ik (6)

where umik is the membership function in the range [0,1]. This membership represents the
membership degree of xk for the kth pixel. k is defined in the range of k∈ 1; n½ � for the ith

numbered cluster. Total cluster size (c) given in the range of 1; c½ �. In the formula (7), d2ik
represents the distance between xk and ith-cluster center (vi).

d2ik ¼ xk � vik k (7)

The fuzzy set theory aims that the membership function is
Pc

i¼1 uik ¼ 1 for each pixel. Using
the FCM membership function umik and cluster center vi, FCM targets to reach local minimums
by using the equivalence (8) and (9), respectively.

u∗ik ¼
Xc

j¼1

dik
djk

� �2= m�1ð Þ
8<
:

9=
;

�1

∀i∈ 1; c½ � and k∈ 1; n½ � (8)

v∗i ¼
Pn

k¼1 u
m
ikxkPn

k¼1 u
m
ik

∀i∈ 1; c½ � (9)

FCM algorithm flow chart is shown in Figure 4. This algorithm will be done in the given
iteration step specified in this traditional clustering method. The cluster centers are updated in
each iteration step to calculate the membership function.

When the FCM algorithm is applied for the given original image shown in Figure 5a for three
clusters, this image can be represented in three clusters as in Figure 5b–d, respectively. This
algorithm can only be applied for gray-scaled images. There is no crisp clustering for the given

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

23

landscape image. This image includes many objects in different colors, and these colors are
generally indented in these objects.

FCM algorithm includes iterative procecesses. For the given image at the end of the 55 iteration
steps, clustering processes are completed for the given threshold value which is 10�5 for FCM
distance change.

Figure 4. Flow chart of the FCM algorithm.

Figure 5. FCM algorithm results. (a) Original image; (b) FCM Cluster No:1; (c) FCM Cluster No:2; and (d) FCM Cluster
No:3.

Recent Applications in Data Clustering24

5. Colored FCM

Colored Image Fuzzy C-Mean (C-FCM) involves color-based clustering using fuzzy sets.
This 3D method is firstly given by Kutbay and Hardalaç [17] as Robust Colored Image FCM
(RCI-FCM), but this presented method is different from RCI-FCM. In RCI-FCM, distances
are calculated for each R, G and B channels, but in this method, the mean distance is
calculated for RGB color spaces. This method represents the RGB color formed images in
FCM, which uses FCM-based algorithm in colored images. The membership function calcu-
lates the centroids of the clusters for each R, G and B color spaces. After calculation of
Euclidian distance for each channel, the mean distance could be calculated shown in equiv-
alence (10).

d2ik R;G;Bð Þ ¼ mean xk Rð Þ � vi Rð Þ
�� ��; xk Gð Þ � vi Gð Þ

�� ��; xk Bð Þ � vi Bð Þ
�� ��� �

(10)

Membership for each cluster can be calculated in the following formula (11).

u∗ik R;G;Bð Þ ¼
Xc

j¼1

dik R;G;Bð Þ
djk R;G;Bð Þ

 !2= m�1ð Þ8<
:

9=
;

�1

∀i∈ 1; c½ � and k∈ 1; n½ � (11)

where u∗ik R;G;Bð Þ represents the membership degree for mean distance for each color. In this

representation for each item, cluster’s membership can be calculated and statistically member-
ship could be defined for each cluster.

New cluster center can be calculated in the following equivalence (12) for each cluster:

v∗i R;G;Bð Þ ¼
Pn

k¼1 u
m
ik R;G;Bð Þxk R;G;Bð ÞPn

k¼1 u
m
ik R;G;Bð Þ

∀i∈ 1; c½ � (12)

where u∗ik R;G;Bð Þ is the membership function of each RGB color pixel. This function calculates for

each R, G and B colors, for the each RGB space representation. c denotes the clusters for each n-
pixel, and dik R;G;Bð Þ explains the distance between pixel xk and the centroid vi for ith number
cluster for each color domain. v∗i R;G;Bð Þ represents the centers of the clusters for each RGB pixel

value into the c-cluster. C-FCM algorithm’s flow chart is shown in Figure 6. The proposed
method aims to create c3 cluster for the given stopping criteria. New cluster centroids are
calculated from the results of the membership function for all RGB colors.

C-FCM algorithm flow chart is shown in Figure 6. The flowchart shows the C-FCM algorithm
for colored images. For each iteration step, RGB distances are calculated and cluster centers are
calculated. After updating the cluster centers in the given threshold value, each item will be
assigned into the given cluster.

Figure 7 represents the C-FCM algorithm, which is applied for the given original image
shown in Figure 7a. For each color, pixels assigned into two cluster. For RGB color space
23 cluster are created for this image. These clusters can be given in eight clusters as in
Figure 4b–i, respectively.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

25

landscape image. This image includes many objects in different colors, and these colors are
generally indented in these objects.

FCM algorithm includes iterative procecesses. For the given image at the end of the 55 iteration
steps, clustering processes are completed for the given threshold value which is 10�5 for FCM
distance change.

Figure 4. Flow chart of the FCM algorithm.

Figure 5. FCM algorithm results. (a) Original image; (b) FCM Cluster No:1; (c) FCM Cluster No:2; and (d) FCM Cluster
No:3.

Recent Applications in Data Clustering24

5. Colored FCM

Colored Image Fuzzy C-Mean (C-FCM) involves color-based clustering using fuzzy sets.
This 3D method is firstly given by Kutbay and Hardalaç [17] as Robust Colored Image FCM
(RCI-FCM), but this presented method is different from RCI-FCM. In RCI-FCM, distances
are calculated for each R, G and B channels, but in this method, the mean distance is
calculated for RGB color spaces. This method represents the RGB color formed images in
FCM, which uses FCM-based algorithm in colored images. The membership function calcu-
lates the centroids of the clusters for each R, G and B color spaces. After calculation of
Euclidian distance for each channel, the mean distance could be calculated shown in equiv-
alence (10).

d2ik R;G;Bð Þ ¼ mean xk Rð Þ � vi Rð Þ
�� ��; xk Gð Þ � vi Gð Þ

�� ��; xk Bð Þ � vi Bð Þ
�� ��� �

(10)

Membership for each cluster can be calculated in the following formula (11).

u∗ik R;G;Bð Þ ¼
Xc

j¼1

dik R;G;Bð Þ
djk R;G;Bð Þ

 !2= m�1ð Þ8<
:

9=
;

�1

∀i∈ 1; c½ � and k∈ 1; n½ � (11)

where u∗ik R;G;Bð Þ represents the membership degree for mean distance for each color. In this

representation for each item, cluster’s membership can be calculated and statistically member-
ship could be defined for each cluster.

New cluster center can be calculated in the following equivalence (12) for each cluster:

v∗i R;G;Bð Þ ¼
Pn

k¼1 u
m
ik R;G;Bð Þxk R;G;Bð ÞPn

k¼1 u
m
ik R;G;Bð Þ

∀i∈ 1; c½ � (12)

where u∗ik R;G;Bð Þ is the membership function of each RGB color pixel. This function calculates for

each R, G and B colors, for the each RGB space representation. c denotes the clusters for each n-
pixel, and dik R;G;Bð Þ explains the distance between pixel xk and the centroid vi for ith number
cluster for each color domain. v∗i R;G;Bð Þ represents the centers of the clusters for each RGB pixel

value into the c-cluster. C-FCM algorithm’s flow chart is shown in Figure 6. The proposed
method aims to create c3 cluster for the given stopping criteria. New cluster centroids are
calculated from the results of the membership function for all RGB colors.

C-FCM algorithm flow chart is shown in Figure 6. The flowchart shows the C-FCM algorithm
for colored images. For each iteration step, RGB distances are calculated and cluster centers are
calculated. After updating the cluster centers in the given threshold value, each item will be
assigned into the given cluster.

Figure 7 represents the C-FCM algorithm, which is applied for the given original image
shown in Figure 7a. For each color, pixels assigned into two cluster. For RGB color space
23 cluster are created for this image. These clusters can be given in eight clusters as in
Figure 4b–i, respectively.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

25

Figure 6. Flow chart of the C-FCM algorithm.

Figure 7. C-FCM algorithm results. (a)Original image; (b)–(i). C-FCM Cluster No:1–8.

Recent Applications in Data Clustering26

C-FCM algorithm includes iterative procecesses. For the given image at the end of the 26
iteration steps, clustering processes are completed for the given threshold value which is 10�5

for C-FCM distance change.

6. Genetic clustering

Genetic algorithm is very popular method in evolutionary computation processes. This
method is firstly developed by Holland in 1975 [18]. This algorithm includes natural evolu-
tionary processes. This method optimizes a population of the structure by using a set of
evolutionary operators.

This method maintains a population of structures and these structures consisting of individ-
uals. Each individual is evaluated by a function named as fitness function. These processes
includes selection, recombination and mutation processes.

In genetic algorithms (GAs), each individual represents a candidate solution in binary form.
This individual called as chromosome. After an initial population is generated, randomly
crossover and mutation processes are executed for each iteration step.

For genetic algorithm examination, the following terms are useful for describing the concept of
genetic algorithms. These are gene, chromosome, population (mass), reproduction process,
and conformity value.

Gen is a unit that carries partial information. By bringing together these units, the chromo-
somal sequence that forms the solution cluster comes into play; for this reason, the genome
decides well how to code it.

Chromosomes are structures that contain the information of the problem solving. Population is
formed by the combination of chromosomes. At the initiative of the designer, what informa-
tion is to be found on the chromosome.

The population is called the heap of possible solutions. In the GA process, the population size
remains constant, but the bad chromosomes separate from the stack. The size of the heap is a
very important concept, which must be well established, as the overcrowded heap increases
the time of possible heuristic approach, while the small heap may cause no possible solution at
all.

The reproduction process is the process of selecting the sequences to be transferred from the
current stack to the next stack. The sequences carried are genetically the most appropriate
sequences. The requirement for transition is whether the level of conformity specified has been
achieved.

The fitness value, in genetic algorithms, which specifies which index will transfer the next
generation, which index will be lost. Conformity value reflects the purpose of the problem.

Bandyopadhyay and Maulik [19] attempted to use GA to automatically determine the number
of clusters K in 2002. The GA clustering aims assigning the data into kth cluster using genetic
processes.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

27

Figure 6. Flow chart of the C-FCM algorithm.

Figure 7. C-FCM algorithm results. (a)Original image; (b)–(i). C-FCM Cluster No:1–8.

Recent Applications in Data Clustering26

C-FCM algorithm includes iterative procecesses. For the given image at the end of the 26
iteration steps, clustering processes are completed for the given threshold value which is 10�5

for C-FCM distance change.

6. Genetic clustering

Genetic algorithm is very popular method in evolutionary computation processes. This
method is firstly developed by Holland in 1975 [18]. This algorithm includes natural evolu-
tionary processes. This method optimizes a population of the structure by using a set of
evolutionary operators.

This method maintains a population of structures and these structures consisting of individ-
uals. Each individual is evaluated by a function named as fitness function. These processes
includes selection, recombination and mutation processes.

In genetic algorithms (GAs), each individual represents a candidate solution in binary form.
This individual called as chromosome. After an initial population is generated, randomly
crossover and mutation processes are executed for each iteration step.

For genetic algorithm examination, the following terms are useful for describing the concept of
genetic algorithms. These are gene, chromosome, population (mass), reproduction process,
and conformity value.

Gen is a unit that carries partial information. By bringing together these units, the chromo-
somal sequence that forms the solution cluster comes into play; for this reason, the genome
decides well how to code it.

Chromosomes are structures that contain the information of the problem solving. Population is
formed by the combination of chromosomes. At the initiative of the designer, what informa-
tion is to be found on the chromosome.

The population is called the heap of possible solutions. In the GA process, the population size
remains constant, but the bad chromosomes separate from the stack. The size of the heap is a
very important concept, which must be well established, as the overcrowded heap increases
the time of possible heuristic approach, while the small heap may cause no possible solution at
all.

The reproduction process is the process of selecting the sequences to be transferred from the
current stack to the next stack. The sequences carried are genetically the most appropriate
sequences. The requirement for transition is whether the level of conformity specified has been
achieved.

The fitness value, in genetic algorithms, which specifies which index will transfer the next
generation, which index will be lost. Conformity value reflects the purpose of the problem.

Bandyopadhyay and Maulik [19] attempted to use GA to automatically determine the number
of clusters K in 2002. The GA clustering aims assigning the data into kth cluster using genetic
processes.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

27

Showing the basic concept of the GA-based clustering, genetic guided algorithm [20] is used.
Fitness value is represented in fuzzy clusters as shown in equivalent (13);

j Mð Þ ¼
XN

j¼1

XK

i¼1
D1= 1�mð Þ

ij

 !1�m
(13)

where Diji∈ 1;K½ � and j∈ 1;N½ �. Dij represent the distance between the ith cluster prototype
vector and the data object of the number of j. m represents the fuzzification coefficient.
Calculation process of the genetic algorithm is shown in Figure 8.

In this genetic parameter optimized algorithm, firstly P individuals are initialized, and each
individual represents K x d prototype matrix encoded as gray codes. After this prototype
matrix representation, fitness values are calculated. After this calculated fitness value, tourna-
ment selection is used for parental member reproduction. For generating new parents, two-
point crossover and bitwise mutation are done. For these new individuals, the highest fitness
values are obtained using this fitness equation. All these processes are applied until termina-
tion condition (Dij < δ) is satisfied.

Chromosomes are randomly selected, and best parent are selected in tournament selection
process. After tournament selection process, two-point crosover process and bitwise
mutuation are done, respectively. These processes are shown in Figures 9 and 10, respectively.

Figure 9 represents crossover process. In two-point crossover process, bitwise crossover points
are determined. After determination process, crossover process will be done.

There are some crossover processes are used in different works [21–23]. These types are 1-point
crossover, K-point crossover, shuffle crosover, and so on [24].

Mutation process helps the genetically variations from parent chromosomes to child chromo-
somes. There are many mutation operators defined in the literature. These are bit-flip-muta-
tion, swap-mutation and inversion-mutation [25]. In mutation process, mutation points are
given. In this example, three mutation points are determined shown in Figure 10. After
mutation process, mutation points will be changed. If the mutation rate is high, the main

Figure 8. Flow chart of the genetic clustering.

Recent Applications in Data Clustering28

generation may be lost. In general terms, the rate of mutation in GA is between given 0.05 and
0.15% of the parent.

GA-based fuzzy clustering process in four clusters shown in Figure 11. GA is applied for the
given original image shown in Figure 11a for four clusters. This image can be represented in

Figure 9. Two-point crossover process.

Figure 10. Mutation process.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

29

Showing the basic concept of the GA-based clustering, genetic guided algorithm [20] is used.
Fitness value is represented in fuzzy clusters as shown in equivalent (13);

j Mð Þ ¼
XN

j¼1

XK

i¼1
D1= 1�mð Þ

ij

 !1�m
(13)

where Diji∈ 1;K½ � and j∈ 1;N½ �. Dij represent the distance between the ith cluster prototype
vector and the data object of the number of j. m represents the fuzzification coefficient.
Calculation process of the genetic algorithm is shown in Figure 8.

In this genetic parameter optimized algorithm, firstly P individuals are initialized, and each
individual represents K x d prototype matrix encoded as gray codes. After this prototype
matrix representation, fitness values are calculated. After this calculated fitness value, tourna-
ment selection is used for parental member reproduction. For generating new parents, two-
point crossover and bitwise mutation are done. For these new individuals, the highest fitness
values are obtained using this fitness equation. All these processes are applied until termina-
tion condition (Dij < δ) is satisfied.

Chromosomes are randomly selected, and best parent are selected in tournament selection
process. After tournament selection process, two-point crosover process and bitwise
mutuation are done, respectively. These processes are shown in Figures 9 and 10, respectively.

Figure 9 represents crossover process. In two-point crossover process, bitwise crossover points
are determined. After determination process, crossover process will be done.

There are some crossover processes are used in different works [21–23]. These types are 1-point
crossover, K-point crossover, shuffle crosover, and so on [24].

Mutation process helps the genetically variations from parent chromosomes to child chromo-
somes. There are many mutation operators defined in the literature. These are bit-flip-muta-
tion, swap-mutation and inversion-mutation [25]. In mutation process, mutation points are
given. In this example, three mutation points are determined shown in Figure 10. After
mutation process, mutation points will be changed. If the mutation rate is high, the main

Figure 8. Flow chart of the genetic clustering.

Recent Applications in Data Clustering28

generation may be lost. In general terms, the rate of mutation in GA is between given 0.05 and
0.15% of the parent.

GA-based fuzzy clustering process in four clusters shown in Figure 11. GA is applied for the
given original image shown in Figure 11a for four clusters. This image can be represented in

Figure 9. Two-point crossover process.

Figure 10. Mutation process.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

29

four clusters as in Figure 11b–e, respectively. This algorithm can only be applied for gray-
scaled images. Cluster-1 shows the roads for the given landscape, cluster-2 shows the green
areas in the landscape, cluster-3 shows the sea for the given landscape and cluster-4 represents
the air for the given landscape.

7. Conclusion

In this part, we discussed the fundamental partitional clustering algorithms and its applica-
tions. Partitional clustering produces a partition using K clusters but do not use hierarchical
structures. This type of clustering process uses criterion function in a range of error such as
mean square error, sum of squared error, and so on. For this reason, partitional clustering is an
iterative process.

Some search techniques which include evolutionary process, provide seeking the global or
local optima. Search techniques introduce more parameters than K-Means clustering process.
There is no theoretical approval for selecting of the best approach. All the given methods can
give the best results for different data.

The partitional clustering algorithms need high computational requirements. High computa-
tional requirements means that some complex algorithms need advanced operations. These
requirements limit their applications in large data. Overcoming this situation, high speed and
high-capacity memory-sized computers can be used for clustering processes.

Figure 11. Genetic algorithm results. (a) Original image, (b) Cluster No:1, (c) Cluster No:2, (d) Cluster No:3, and (e)
Cluster No:4.

Recent Applications in Data Clustering30

Another method for overcoming high computational requirements is the genetic optimization.
For large datasets, genetic optimization should be used with fuzzy clustering. In this tech-
nique, all individuals or pixels are genetically optimized so as to fuzzy sets.

Clusters cannot be always sharply separated in some datasets. For this type of data sets, fuzzy-
based clustering overcomes this crisp clustering. Fuzzy clustering allows to find the nearest
optimum cluster to assign into the clusters. This technique provides more information about
the data structure.

The most important point of the search techniques of the partitional clustering is the optimum
parameter selection. Parameter selection is an optimization problem. Overcoming this optimi-
zation problem, parameter selection can be done by using genetic algorithms. Genetic algo-
rithms can be useful solution for very-large scale data sets.

In partitional clustering, determination of cluster size is important. This selection differs from
the data sets to data sets. If data set includes more features to classify in a cluster, more clusters
will be needed. This cluster number unfortunately is not known for many clustering problems.
Generally experiences give the cluster number. Estimation of the cluster number is one of the
major problems for validation.

As a result, by using partitional clustering techniques, image understanding can be done by
using the given techniques. For many applications such as biomedical image understanding,
robotic applications and security applications, these techniques can be useful for pre-processing
of some algorithms.

Acknowledgements

This study was performed at Gazi University, Engineering Faculty, Electrical & Electronics
Engineering Department. MATLAB® 2016b software platform was used for this study. The
study was performed in a computer with 12 GB RAM, Intel i5 processor at 2.6 Ghz.

Competing interests

The author declares having no conflicts of interests.

Thanks

I would like to thank my wife Hande Kutbay who has given me a lot of support in my life. I
thank my daughter, Gökçe Kutbay, who makes life difficult but makes sense. Special thanks to
my mother Cemile KUTBAY and my father Hür Uğur KUTBAY for being in my life. In
addition, I would like to thank Assoc. Prof. Dr. Fırat Hardalaç due to academic help.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

31

four clusters as in Figure 11b–e, respectively. This algorithm can only be applied for gray-
scaled images. Cluster-1 shows the roads for the given landscape, cluster-2 shows the green
areas in the landscape, cluster-3 shows the sea for the given landscape and cluster-4 represents
the air for the given landscape.

7. Conclusion

In this part, we discussed the fundamental partitional clustering algorithms and its applica-
tions. Partitional clustering produces a partition using K clusters but do not use hierarchical
structures. This type of clustering process uses criterion function in a range of error such as
mean square error, sum of squared error, and so on. For this reason, partitional clustering is an
iterative process.

Some search techniques which include evolutionary process, provide seeking the global or
local optima. Search techniques introduce more parameters than K-Means clustering process.
There is no theoretical approval for selecting of the best approach. All the given methods can
give the best results for different data.

The partitional clustering algorithms need high computational requirements. High computa-
tional requirements means that some complex algorithms need advanced operations. These
requirements limit their applications in large data. Overcoming this situation, high speed and
high-capacity memory-sized computers can be used for clustering processes.

Figure 11. Genetic algorithm results. (a) Original image, (b) Cluster No:1, (c) Cluster No:2, (d) Cluster No:3, and (e)
Cluster No:4.

Recent Applications in Data Clustering30

Another method for overcoming high computational requirements is the genetic optimization.
For large datasets, genetic optimization should be used with fuzzy clustering. In this tech-
nique, all individuals or pixels are genetically optimized so as to fuzzy sets.

Clusters cannot be always sharply separated in some datasets. For this type of data sets, fuzzy-
based clustering overcomes this crisp clustering. Fuzzy clustering allows to find the nearest
optimum cluster to assign into the clusters. This technique provides more information about
the data structure.

The most important point of the search techniques of the partitional clustering is the optimum
parameter selection. Parameter selection is an optimization problem. Overcoming this optimi-
zation problem, parameter selection can be done by using genetic algorithms. Genetic algo-
rithms can be useful solution for very-large scale data sets.

In partitional clustering, determination of cluster size is important. This selection differs from
the data sets to data sets. If data set includes more features to classify in a cluster, more clusters
will be needed. This cluster number unfortunately is not known for many clustering problems.
Generally experiences give the cluster number. Estimation of the cluster number is one of the
major problems for validation.

As a result, by using partitional clustering techniques, image understanding can be done by
using the given techniques. For many applications such as biomedical image understanding,
robotic applications and security applications, these techniques can be useful for pre-processing
of some algorithms.

Acknowledgements

This study was performed at Gazi University, Engineering Faculty, Electrical & Electronics
Engineering Department. MATLAB® 2016b software platform was used for this study. The
study was performed in a computer with 12 GB RAM, Intel i5 processor at 2.6 Ghz.

Competing interests

The author declares having no conflicts of interests.

Thanks

I would like to thank my wife Hande Kutbay who has given me a lot of support in my life. I
thank my daughter, Gökçe Kutbay, who makes life difficult but makes sense. Special thanks to
my mother Cemile KUTBAY and my father Hür Uğur KUTBAY for being in my life. In
addition, I would like to thank Assoc. Prof. Dr. Fırat Hardalaç due to academic help.

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

31

Author details

Uğurhan Kutbay

Address all correspondence to: ukutbay@gazi.edu.tr

Electrical and Electronics Engineering Department, Gazi University Engineering, Ankara,
Turkey

References

[1] Liu AA, Su YT, Nie WZ, Kankanhalli M. Hierarchical clustering multi-task learning for
joint human action grouping and recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2017;39(1):102-114

[2] Bouguettaya A, Yu Q, Liu X, Zhou X, Song A. Efficient agglomerative hierarchical cluster-
ing. Expert Systems with Applications. 2015;42(5):2785-2797

[3] Cao K, Jiao L, Liu Y, Liu H, Wang Y, Yuan H. Ultra-high capacity lithium-ion batteries
with hierarchical CoO nanowire clusters as binder free electrodes. Advanced Functional
Materials. 2015;25(7):1082-1089

[4] Nanda SJ, Panda G. A survey on nature inspired metaheuristic algorithms for partitional
clustering. Swarm and Evolutionary Computation. 2014;16:1-18

[5] Menendez HD, Barrero DF, Camacho D. A genetic graph-based approach for partitional
clustering. International Journal of Neural Systems. 2014;24(03):1430008

[6] Pandeeswari N, Kumar G. Anomaly detection system in cloud environment using fuzzy
clustering based ANN. Mobile Networks and Applications; 21(3):494-505

[7] Xu R, Wunsch D. Clustering 2010. Vol. 10. John Wiley & Sons; 2008. pp. 63-110

[8] Mac-Queen J. Some methods for classification and analysis of multivariate observations.
In: Proceedings of the Fifth Berkeley Symposium onMathematical Statistics and Probabil-
ity; Vol. 1: Statistics. California, USA; 1967. pp. 281-297

[9] Kutbay U, Ural AB, Hardalaç F. Underground electrical profile clustering using K-
MEANS algorithm. In: 2015 23th IEEE Signal Processing and Communications Applica-
tions Conference (SIU); 2015. pp. 561-564

[10] Zadeh L. Fuzzy sets. Information and Control. 1965;8:338-353

[11] Bezdek J. Cluster validity with fuzzy sets. Journal of Cybernetics. 1974;3(3):58-72

[12] Abdulshahed AM, Longstaff AP, Fletcher S, Myers A. Thermal error modelling of
machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging
camera. Applied Mathematical Modelling. 2015;39(7):1837-1852

Recent Applications in Data Clustering32

[13] Ji Z, Liu J, Cao G, Sun Q, Chen Q. Robust spatially constrained fuzzy c-means algorithm
for brain MR image segmentation. Pattern Recognition. 2014;47(7):2454-2466

[14] Qiu C, Xiao J, Yu L, Han L, Iqbal MN. A modified interval type-2 fuzzy C-means algo-
rithmwith application in MR image segmentation. Pattern Recognition Letters. 2013;34(12):
1329-1338

[15] Kannan SR, Ramathilagam S, Devi R, Hines E. Strong fuzzy c-means in medical image
data analysis. Journal of Systems and Software. 2012;85(11):2425-2438

[16] Ji Z, Xia Y, Chen Q, Sun Q, Xia D, Feng DD. Fuzzy c-means clustering with weighted
image patch for image segmentation. Applied Soft Computing. 2012;12(6):1659-1667

[17] Kutbay U, Hardalaç F. Development of a multiprobe electrical resistivity tomography
prototype system and robust underground clustering. Expert Systems. 2017;34(3):e12206

[18] Holland JH. Adaptation in Natural and Artificial Systems. An Introductory Analysis with
Application to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: University of
Michigan Press; 1975

[19] Bandyopadhyay S, Maulik U. Genetic clustering for automatic evolution of clusters and
application to image classification. Pattern Recognition. 2002;35(6):1197-1208

[20] Hall LO, Ozyurt IB, Bezdek JC. Clustering with a genetically optimized approach. IEEE
Transactions on Evolutionary Computation. 1999;3(2):103-112

[21] De Jong KA, Spears WM. A formal analysis of the role of multi-point crossover in genetic
algorithms. Annals of Mathematics and Artificial Intelligence. 1992;5(1):1-26

[22] Whitley D. An executable model of a simple genetic algorithm. Foundations of Genetic
Algorithms. 2014;2(1519):45-62

[23] Yu F, Xu X. A short-term load forecasting model of natural gas based on optimized genetic
algorithm and improved BP neural network. Applied Energy. 2014;134:102-113

[24] Umbarkar AJ, Sheth PD. Crossover operators in genetic algorithms: A review. ICTACT
Journal on Soft Computing. 2015;6(1):1083-1092

[25] Larranaga P, Kuijpers CM, Murga RH, Inza I, Dizdarevic S. Genetic algorithms for the
travelling salesman problem: A review of representations and operators. Artificial Intelli-
gence Review. 1999;13(2):129-170

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

33

Author details

Uğurhan Kutbay

Address all correspondence to: ukutbay@gazi.edu.tr

Electrical and Electronics Engineering Department, Gazi University Engineering, Ankara,
Turkey

References

[1] Liu AA, Su YT, Nie WZ, Kankanhalli M. Hierarchical clustering multi-task learning for
joint human action grouping and recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2017;39(1):102-114

[2] Bouguettaya A, Yu Q, Liu X, Zhou X, Song A. Efficient agglomerative hierarchical cluster-
ing. Expert Systems with Applications. 2015;42(5):2785-2797

[3] Cao K, Jiao L, Liu Y, Liu H, Wang Y, Yuan H. Ultra-high capacity lithium-ion batteries
with hierarchical CoO nanowire clusters as binder free electrodes. Advanced Functional
Materials. 2015;25(7):1082-1089

[4] Nanda SJ, Panda G. A survey on nature inspired metaheuristic algorithms for partitional
clustering. Swarm and Evolutionary Computation. 2014;16:1-18

[5] Menendez HD, Barrero DF, Camacho D. A genetic graph-based approach for partitional
clustering. International Journal of Neural Systems. 2014;24(03):1430008

[6] Pandeeswari N, Kumar G. Anomaly detection system in cloud environment using fuzzy
clustering based ANN. Mobile Networks and Applications; 21(3):494-505

[7] Xu R, Wunsch D. Clustering 2010. Vol. 10. John Wiley & Sons; 2008. pp. 63-110

[8] Mac-Queen J. Some methods for classification and analysis of multivariate observations.
In: Proceedings of the Fifth Berkeley Symposium onMathematical Statistics and Probabil-
ity; Vol. 1: Statistics. California, USA; 1967. pp. 281-297

[9] Kutbay U, Ural AB, Hardalaç F. Underground electrical profile clustering using K-
MEANS algorithm. In: 2015 23th IEEE Signal Processing and Communications Applica-
tions Conference (SIU); 2015. pp. 561-564

[10] Zadeh L. Fuzzy sets. Information and Control. 1965;8:338-353

[11] Bezdek J. Cluster validity with fuzzy sets. Journal of Cybernetics. 1974;3(3):58-72

[12] Abdulshahed AM, Longstaff AP, Fletcher S, Myers A. Thermal error modelling of
machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging
camera. Applied Mathematical Modelling. 2015;39(7):1837-1852

Recent Applications in Data Clustering32

[13] Ji Z, Liu J, Cao G, Sun Q, Chen Q. Robust spatially constrained fuzzy c-means algorithm
for brain MR image segmentation. Pattern Recognition. 2014;47(7):2454-2466

[14] Qiu C, Xiao J, Yu L, Han L, Iqbal MN. A modified interval type-2 fuzzy C-means algo-
rithmwith application in MR image segmentation. Pattern Recognition Letters. 2013;34(12):
1329-1338

[15] Kannan SR, Ramathilagam S, Devi R, Hines E. Strong fuzzy c-means in medical image
data analysis. Journal of Systems and Software. 2012;85(11):2425-2438

[16] Ji Z, Xia Y, Chen Q, Sun Q, Xia D, Feng DD. Fuzzy c-means clustering with weighted
image patch for image segmentation. Applied Soft Computing. 2012;12(6):1659-1667

[17] Kutbay U, Hardalaç F. Development of a multiprobe electrical resistivity tomography
prototype system and robust underground clustering. Expert Systems. 2017;34(3):e12206

[18] Holland JH. Adaptation in Natural and Artificial Systems. An Introductory Analysis with
Application to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: University of
Michigan Press; 1975

[19] Bandyopadhyay S, Maulik U. Genetic clustering for automatic evolution of clusters and
application to image classification. Pattern Recognition. 2002;35(6):1197-1208

[20] Hall LO, Ozyurt IB, Bezdek JC. Clustering with a genetically optimized approach. IEEE
Transactions on Evolutionary Computation. 1999;3(2):103-112

[21] De Jong KA, Spears WM. A formal analysis of the role of multi-point crossover in genetic
algorithms. Annals of Mathematics and Artificial Intelligence. 1992;5(1):1-26

[22] Whitley D. An executable model of a simple genetic algorithm. Foundations of Genetic
Algorithms. 2014;2(1519):45-62

[23] Yu F, Xu X. A short-term load forecasting model of natural gas based on optimized genetic
algorithm and improved BP neural network. Applied Energy. 2014;134:102-113

[24] Umbarkar AJ, Sheth PD. Crossover operators in genetic algorithms: A review. ICTACT
Journal on Soft Computing. 2015;6(1):1083-1092

[25] Larranaga P, Kuijpers CM, Murga RH, Inza I, Dizdarevic S. Genetic algorithms for the
travelling salesman problem: A review of representations and operators. Artificial Intelli-
gence Review. 1999;13(2):129-170

Partitional Clustering
http://dx.doi.org/10.5772/intechopen.75836

33

Chapter 3

Incorporating Local Data and KL Membership
Divergence into Hard C-Means Clustering for Fuzzy and
Noise-Robust Data Segmentation

Reda R. Gharieb

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74514

Provisional chapter

Incorporating Local Data and KL Membership
Divergence into Hard C-Means Clustering for Fuzzy and
Noise-Robust Data Segmentation

Reda R. Gharieb

Additional information is available at the end of the chapter

Abstract

Hard C-means (HCM) and fuzzy C-means (FCM) algorithms are among the most popular
ones for data clustering including image data. The HCM algorithm offers each data entity
with a cluster membership of 0 or 1. This implies that the entity will be assigned to only
one cluster. On the contrary, the FCM algorithm provides an entity with a membership
value between 0 and 1, which means that the entity may belong to all clusters but with
different membership values. The main disadvantage of both HCM and FCM algorithms
is that they cluster an entity based on only its self-features and do not incorporate the
influence of the entity’s neighborhoods, which makes clustering prone to additive noise.
In this chapter, Kullback-Leibler (KL) membership divergence is incorporated into the
HCM for image data clustering. This HCM-KL-based clustering algorithm provides two-
fold advantage. The first one is that it offers a fuzzification approach to the HCM cluster-
ing algorithm. The second one is that by incorporating a local spatial membership
function into the HCM objective function, additive noise can be tolerated. Also spatial
data is incorporated for more noise-robust clustering.

Keywords: data science, clustering, image clustering, hard and fuzzy C-means,
membership function, Kullback-Leibler (KL) divergence

1. Introduction

Image segmentation is a principle process in many image, video, scene analysis and computer
vision applications [1–3]. The objective of segmentation process is to divide an image into
multiple separate regions or clusters which make it easier to recognize and distinguish differ-
ent objects in image. Over the last few decades, several image segmentation methods have

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74514

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 3

Incorporating Local Data and KL Membership
Divergence into Hard C-Means Clustering for Fuzzy and
Noise-Robust Data Segmentation

Reda R. Gharieb

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74514

Provisional chapter

Incorporating Local Data and KL Membership
Divergence into Hard C-Means Clustering for Fuzzy and
Noise-Robust Data Segmentation

Reda R. Gharieb

Additional information is available at the end of the chapter

Abstract

Hard C-means (HCM) and fuzzy C-means (FCM) algorithms are among the most popular
ones for data clustering including image data. The HCM algorithm offers each data entity
with a cluster membership of 0 or 1. This implies that the entity will be assigned to only
one cluster. On the contrary, the FCM algorithm provides an entity with a membership
value between 0 and 1, which means that the entity may belong to all clusters but with
different membership values. The main disadvantage of both HCM and FCM algorithms
is that they cluster an entity based on only its self-features and do not incorporate the
influence of the entity’s neighborhoods, which makes clustering prone to additive noise.
In this chapter, Kullback-Leibler (KL) membership divergence is incorporated into the
HCM for image data clustering. This HCM-KL-based clustering algorithm provides two-
fold advantage. The first one is that it offers a fuzzification approach to the HCM cluster-
ing algorithm. The second one is that by incorporating a local spatial membership
function into the HCM objective function, additive noise can be tolerated. Also spatial
data is incorporated for more noise-robust clustering.

Keywords: data science, clustering, image clustering, hard and fuzzy C-means,
membership function, Kullback-Leibler (KL) divergence

1. Introduction

Image segmentation is a principle process in many image, video, scene analysis and computer
vision applications [1–3]. The objective of segmentation process is to divide an image into
multiple separate regions or clusters which make it easier to recognize and distinguish differ-
ent objects in image. Over the last few decades, several image segmentation methods have

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74514

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

been developed. However, there is still no satisfactory performance especially in noisy images.
This makes development of segmentation algorithms that are capable of handling noisy
images an active area of research. The current segmentation methods can be classified into
thresholding, region-detection, edge-detection, probabilistic and artificial neural-network clas-
sification and clustering [1–3]. Among the widely used are the hard and fuzzy-based clustering
methods since clustering needs no training examples [4–24]. Hard C-means (HCM) also called
K-means clustering algorithm is an unsupervised approach in which data is basically
partitioned based on locations and distances between various data points [4–6]. K-means
partitions the data into C-clusters so that the distances between data within each cluster are
as close as possible but as far as possible between data in different clusters. HCM clustering
algorithm offers crisp segmentation in which each data point belongs to only one cluster.
Thereby it does not take into consideration fine details of infrastructure of data such as
hybridization or mixing. Compared with HCM algorithm, fuzzy C-means (FCM) algorithm is
able to provide soft segmentation by incorporating membership of belonging described by a
membership function [7, 8]. However, one disadvantage of the standard FCM is not incorpo-
rating any spatial or local information in image context, making it very sensitive to additive
noise and other imaging artifacts. To handle this problem, different techniques have been
developed [9–13]. These techniques have involved spatial or local data information for the
enhancement and regularization of the performance of the standard FCM algorithm. Local
membership information has also been employed to generate a parameter to weight or modify
the membership function in order to give more weight to the pixel membership if the immedi-
ate neighborhood pixels are of the same cluster [14]. HCM algorithm has also been fuzzified by
involving membership entropy optimization [15–17].

In this chapter, HCM clustering algorithm is modified by incorporating local spatial data and
Kullback-Leibler (KL) membership divergence [18–22]. The local data information is incorpo-
rated via an additional weighted HCM function in which the smoothed image data is used for
the distance computation. The KL membership divergence aims at minimizing the information
distance between the membership function of each pixel and the locally smoothed one in the
pixel vicinity. The KL membership divergence thus provides an approach for regularization
and fuzzification. The chapter is organized as follows. In Section 2, clustering problem formu-
lation is overviewed. In Section 3, HCM clustering algorithm is described. In Section 4, several
FCM-related clustering algorithms are explained. In Sections 5 and 6, the proposed local
membership KL divergence-based FCM (LMKLFCM) and Local Data and membership KL
divergence-based FCM (LDMKLFCM) clustering algorithm are discussed. In Section 7, simu-
lation results of clustering and segmentation of synthetic and real-world images are presented.
Finally Section 8 presents the conclusion.

2. Problem formulation

The objective is to cluster a set of observed data xn; n ¼ 1; 2; ::;Nf g where each data point is
an M� dimensional real-vector called the feature or the pattern vector, i.e., xn ∈R1�M. For
gray-scale image data, xn; n ¼ 1; 2; ::;Nf g is a row-wise concatenation of a 2-D image

Recent Applications in Data Clustering36

Xpq; p ¼ 1; 2; ::;P; q ¼ 1; 2; ::;Q
� �

. That is n ¼ p� 1ð ÞQþ q and the intensity-feature xn is a
single-dimensional real-value, i.e., M ¼ 1. Clustering aims at partitioning theses N observa-
tions into C < N divisions, {μ1, μ2,…,μC} called C clusters or segments so as to make the
entities or pixels in the same cluster as similar as possible and the ones in different clusters
as dissimilar as possible. One approach to cluster these data is to minimize the within-
clusters sum of squares of distances (WCSS) and to maximize the between-clusters sum of
squares of distances (BCSS).

3. Hard C-means (HCM)

In hard C-means (HCM) algorithm also called the K-means one, the objective is to minimize
the following function [4–6, 15].

JHCM ¼
XC

i¼1
XN

n¼1 uindin (1)

where din ¼ xn � vik k2, is the square of the Euclidian distance between the nth pixel feature xn
of the image under segmentation and vi ∈V ¼ v1; v2;…; vCf g called the center of the ith cluster
given by

vi ¼
P

xn ∈μi
xn

Ni
, i ¼ 1, 2,…, C: (2)

where μi is the ith cluster label and Ni is its number of patterns in cluster i. In (2), it is clear that
the pattern xn belongs to only one cluster which means that uin ∈ 0; 1f g called the membership
function is given by [15].

ukn ¼
1; k ¼ argmini dinð Þ
0, Otherwise

�
(3)

From (3), it is obvious that the HCM provides a crisp membership function uin ∈ 0; 1f g or {False,
True}. uin ∈ 0; 1f g. Thus HCM algorithm does not take into account fine details of infrastructure

Given xn, n ¼ 1, 2,…, N:

Initialize v0i , i ¼ 1, 2, ::, C; t ¼ 0;
1. For n ¼ 1, 2,…, N

Compute:

2. din ¼ xn � vti
�� ��2; i ¼ 1, 2,…, C:

3. k ¼ argmini dinð Þ; ukn=1; uin ¼ 0; i ¼ 1, 2, ::, C; i 6¼ k: (HCM);
uin ¼ 1

PC

j¼1
din
djn

� � 1
m�1ð Þ

(FCM)

4. Update t ¼ tþ 1; vtþ1i ¼
P

n
uinxnP
n
uin

, i ¼ 1, 2,…, C:

5. Check if Vt � Vtþ1�� ��2 > ε (negligible change); repeat 1–5 until convergence.

Table 1. Pseudo code of the HCM (FCM) algorithms.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

37

been developed. However, there is still no satisfactory performance especially in noisy images.
This makes development of segmentation algorithms that are capable of handling noisy
images an active area of research. The current segmentation methods can be classified into
thresholding, region-detection, edge-detection, probabilistic and artificial neural-network clas-
sification and clustering [1–3]. Among the widely used are the hard and fuzzy-based clustering
methods since clustering needs no training examples [4–24]. Hard C-means (HCM) also called
K-means clustering algorithm is an unsupervised approach in which data is basically
partitioned based on locations and distances between various data points [4–6]. K-means
partitions the data into C-clusters so that the distances between data within each cluster are
as close as possible but as far as possible between data in different clusters. HCM clustering
algorithm offers crisp segmentation in which each data point belongs to only one cluster.
Thereby it does not take into consideration fine details of infrastructure of data such as
hybridization or mixing. Compared with HCM algorithm, fuzzy C-means (FCM) algorithm is
able to provide soft segmentation by incorporating membership of belonging described by a
membership function [7, 8]. However, one disadvantage of the standard FCM is not incorpo-
rating any spatial or local information in image context, making it very sensitive to additive
noise and other imaging artifacts. To handle this problem, different techniques have been
developed [9–13]. These techniques have involved spatial or local data information for the
enhancement and regularization of the performance of the standard FCM algorithm. Local
membership information has also been employed to generate a parameter to weight or modify
the membership function in order to give more weight to the pixel membership if the immedi-
ate neighborhood pixels are of the same cluster [14]. HCM algorithm has also been fuzzified by
involving membership entropy optimization [15–17].

In this chapter, HCM clustering algorithm is modified by incorporating local spatial data and
Kullback-Leibler (KL) membership divergence [18–22]. The local data information is incorpo-
rated via an additional weighted HCM function in which the smoothed image data is used for
the distance computation. The KL membership divergence aims at minimizing the information
distance between the membership function of each pixel and the locally smoothed one in the
pixel vicinity. The KL membership divergence thus provides an approach for regularization
and fuzzification. The chapter is organized as follows. In Section 2, clustering problem formu-
lation is overviewed. In Section 3, HCM clustering algorithm is described. In Section 4, several
FCM-related clustering algorithms are explained. In Sections 5 and 6, the proposed local
membership KL divergence-based FCM (LMKLFCM) and Local Data and membership KL
divergence-based FCM (LDMKLFCM) clustering algorithm are discussed. In Section 7, simu-
lation results of clustering and segmentation of synthetic and real-world images are presented.
Finally Section 8 presents the conclusion.

2. Problem formulation

The objective is to cluster a set of observed data xn; n ¼ 1; 2; ::;Nf g where each data point is
an M� dimensional real-vector called the feature or the pattern vector, i.e., xn ∈R1�M. For
gray-scale image data, xn; n ¼ 1; 2; ::;Nf g is a row-wise concatenation of a 2-D image

Recent Applications in Data Clustering36

Xpq; p ¼ 1; 2; ::;P; q ¼ 1; 2; ::;Q
� �

. That is n ¼ p� 1ð ÞQþ q and the intensity-feature xn is a
single-dimensional real-value, i.e., M ¼ 1. Clustering aims at partitioning theses N observa-
tions into C < N divisions, {μ1, μ2,…,μC} called C clusters or segments so as to make the
entities or pixels in the same cluster as similar as possible and the ones in different clusters
as dissimilar as possible. One approach to cluster these data is to minimize the within-
clusters sum of squares of distances (WCSS) and to maximize the between-clusters sum of
squares of distances (BCSS).

3. Hard C-means (HCM)

In hard C-means (HCM) algorithm also called the K-means one, the objective is to minimize
the following function [4–6, 15].

JHCM ¼
XC

i¼1
XN

n¼1 uindin (1)

where din ¼ xn � vik k2, is the square of the Euclidian distance between the nth pixel feature xn
of the image under segmentation and vi ∈V ¼ v1; v2;…; vCf g called the center of the ith cluster
given by

vi ¼
P

xn ∈μi
xn

Ni
, i ¼ 1, 2,…, C: (2)

where μi is the ith cluster label and Ni is its number of patterns in cluster i. In (2), it is clear that
the pattern xn belongs to only one cluster which means that uin ∈ 0; 1f g called the membership
function is given by [15].

ukn ¼
1; k ¼ argmini dinð Þ
0, Otherwise

�
(3)

From (3), it is obvious that the HCM provides a crisp membership function uin ∈ 0; 1f g or {False,
True}. uin ∈ 0; 1f g. Thus HCM algorithm does not take into account fine details of infrastructure

Given xn, n ¼ 1, 2,…, N:

Initialize v0i , i ¼ 1, 2, ::, C; t ¼ 0;
1. For n ¼ 1, 2,…, N

Compute:

2. din ¼ xn � vti
�� ��2; i ¼ 1, 2,…, C:

3. k ¼ argmini dinð Þ; ukn=1; uin ¼ 0; i ¼ 1, 2, ::, C; i 6¼ k: (HCM);
uin ¼ 1

PC

j¼1
din
djn

� � 1
m�1ð Þ

(FCM)

4. Update t ¼ tþ 1; vtþ1i ¼
P

n
uinxnP
n
uin

, i ¼ 1, 2,…, C:

5. Check if Vt � Vtþ1�� ��2 > ε (negligible change); repeat 1–5 until convergence.

Table 1. Pseudo code of the HCM (FCM) algorithms.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

37

such as hybridization or mixing of data which is important in data clustering and decision
making. The algorithm is implemented by an iterative procedure as summarized in Table 1.

4. Related fuzzy clustering algorithms

4.1. Conventional FCM

The fuzzy C-means (FCM) algorithm seeks to minimize the following objective function [7].

JFCM ¼
XC

i¼1
XN

n¼1 u
m
indin (4)

It is obvious that the difference between the FCM algorithm and HCM one is the incorporation
of the exponent parameter m, called the fuzzification parameter, and if it is settled to 1, the
FCM algorithm reduces to the HCM one. Thus, due to this exponent m, the membership of the
nth pixel to the ith cluster, uin, can take on an infinite set of values from 0 to 1. Thus each nth
pixel may belong to all clusters with equal membership values of 1=C which in this case we
obtain too fuzzy membership function. Then the exponent parameter 1 < m is incorporated to
control the degrees of fuzzification; the bigger the m, the more the fuzzification. Finally, the
fuzzy membership uin should satisfy [7].

uin ∈U ¼ uin ∈ 0; 1½ �;
XC

i¼1 uin ¼ 1∀n; 0 <
XN

n¼1 uin < N∀i
n o

, (5)

The membership uin and the cluster-center vi that minimize the FCM function in (4), subject toPC
i¼1 uin ¼ 1∀n are given by [7].

uin ¼ 1
PC

j¼1
din
djn

� � 1
m�1ð Þ

(6)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(7)

4.2. Local spatial data-based FCM (LDFCM)

The neighboring pixels of an image are highly correlated and are thus highly expected to
belong to the same cluster or object. To get benefit from this spatial data information, the
standard FCM objective function in (4) has been modified by adding a weighted regularization
function dependent on local image data information [10–12]. That is, the LDFCM objective
function is given by

JLDFCM ¼ JFCM þ α
XC

i¼1

XN
n¼1

umindin (8)

where α is a weight to be experimentally selected by the user, m is a fuzzification parameter,

din ¼ xn � vik k2, xn ∈X is the nth pixel of the locally-smoothed image, X, obtained in advance

Recent Applications in Data Clustering38

from the original one by X ¼ w xð Þ∗∗X, where ** means two-dimensional convolution. The
weights w xð Þ can be equal or not provided that its centerweight is zero and are summed to
unity. From (8), it is clear that the LDFCM aims at minimizing the standard FCM objective
function plus another weighted modified FCM function acting as a regularization function. In
this regularization FCM function, the distances are generated from the locally-smoothed image
data instead of the original image data. Therefore, this correlates the clustering pixel xn with its
immediate spatial neighboring pixels which biases the algorithm to provide clustered images
with piecewise homogenous regions. The membership uin and the cluster-center vi functions of
the LDFCM method are given by [10–12].

uin ¼ 1

PC
j¼1

dinþα din
djnþα djn

� � 1
m�1ð Þ

(9)

vi ¼
PN

n¼1 uin xn þ αxnð Þ
1þ αð ÞPN

n¼1 uin
(10)

It is obvious from (9) and (10) that when α ¼ 0, the membership uin and the cluster-center vi
become the ones provided by the standard FCM algorithm in (6) and (7). The advantage of the
LDFCM method arises from involving the locally-smoothed data αxn in computing the mem-
bership uin and the cluster-center vi functions which indeed can handle additive noise.

4.3. Spatial-based fuzzy C-means (SFCM)

An approach to incorporating local spatial data information into the standard FCM has been
presented in [13]. The objective function of the SFCM algorithm is given by

JSFCM ¼
XC

i¼1

XN
n¼1

uminDin, (11)

where Din is a modified or weighted distance between the nth pixel and the ith cluster-center.

This modified distance is computed from the original or standard distance din ¼ xn � vik k2 as
follows

Din ¼ 1� λð Þdinf in þ λdin (12)

where λ∈ 0; 1½ � is an experimentally selected weight, and f in is a spatial or local data function
given by [13].

f in ¼
P

k∈Nn
dik

min
P

k∈Nn
dik; i ¼ 1; 2; ::;C

n o (13)

It is obvious from (12) that with λ ¼ 1, the SFCM clustering method reduces to the standard
FCM method. The spatial data function f in is dependent on the original distances of the set of
pixels Nn in the immediate neighborhood of the nth pixel. If all pixels in the neighbor set do

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

39

such as hybridization or mixing of data which is important in data clustering and decision
making. The algorithm is implemented by an iterative procedure as summarized in Table 1.

4. Related fuzzy clustering algorithms

4.1. Conventional FCM

The fuzzy C-means (FCM) algorithm seeks to minimize the following objective function [7].

JFCM ¼
XC

i¼1
XN

n¼1 u
m
indin (4)

It is obvious that the difference between the FCM algorithm and HCM one is the incorporation
of the exponent parameter m, called the fuzzification parameter, and if it is settled to 1, the
FCM algorithm reduces to the HCM one. Thus, due to this exponent m, the membership of the
nth pixel to the ith cluster, uin, can take on an infinite set of values from 0 to 1. Thus each nth
pixel may belong to all clusters with equal membership values of 1=C which in this case we
obtain too fuzzy membership function. Then the exponent parameter 1 < m is incorporated to
control the degrees of fuzzification; the bigger the m, the more the fuzzification. Finally, the
fuzzy membership uin should satisfy [7].

uin ∈U ¼ uin ∈ 0; 1½ �;
XC

i¼1 uin ¼ 1∀n; 0 <
XN

n¼1 uin < N∀i
n o

, (5)

The membership uin and the cluster-center vi that minimize the FCM function in (4), subject toPC
i¼1 uin ¼ 1∀n are given by [7].

uin ¼ 1
PC

j¼1
din
djn

� � 1
m�1ð Þ

(6)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(7)

4.2. Local spatial data-based FCM (LDFCM)

The neighboring pixels of an image are highly correlated and are thus highly expected to
belong to the same cluster or object. To get benefit from this spatial data information, the
standard FCM objective function in (4) has been modified by adding a weighted regularization
function dependent on local image data information [10–12]. That is, the LDFCM objective
function is given by

JLDFCM ¼ JFCM þ α
XC

i¼1

XN
n¼1

umindin (8)

where α is a weight to be experimentally selected by the user, m is a fuzzification parameter,

din ¼ xn � vik k2, xn ∈X is the nth pixel of the locally-smoothed image, X, obtained in advance

Recent Applications in Data Clustering38

from the original one by X ¼ w xð Þ∗∗X, where ** means two-dimensional convolution. The
weights w xð Þ can be equal or not provided that its centerweight is zero and are summed to
unity. From (8), it is clear that the LDFCM aims at minimizing the standard FCM objective
function plus another weighted modified FCM function acting as a regularization function. In
this regularization FCM function, the distances are generated from the locally-smoothed image
data instead of the original image data. Therefore, this correlates the clustering pixel xn with its
immediate spatial neighboring pixels which biases the algorithm to provide clustered images
with piecewise homogenous regions. The membership uin and the cluster-center vi functions of
the LDFCM method are given by [10–12].

uin ¼ 1

PC
j¼1

dinþα din
djnþα djn

� � 1
m�1ð Þ

(9)

vi ¼
PN

n¼1 uin xn þ αxnð Þ
1þ αð ÞPN

n¼1 uin
(10)

It is obvious from (9) and (10) that when α ¼ 0, the membership uin and the cluster-center vi
become the ones provided by the standard FCM algorithm in (6) and (7). The advantage of the
LDFCM method arises from involving the locally-smoothed data αxn in computing the mem-
bership uin and the cluster-center vi functions which indeed can handle additive noise.

4.3. Spatial-based fuzzy C-means (SFCM)

An approach to incorporating local spatial data information into the standard FCM has been
presented in [13]. The objective function of the SFCM algorithm is given by

JSFCM ¼
XC

i¼1

XN
n¼1

uminDin, (11)

where Din is a modified or weighted distance between the nth pixel and the ith cluster-center.

This modified distance is computed from the original or standard distance din ¼ xn � vik k2 as
follows

Din ¼ 1� λð Þdinf in þ λdin (12)

where λ∈ 0; 1½ � is an experimentally selected weight, and f in is a spatial or local data function
given by [13].

f in ¼
P

k∈Nn
dik

min
P

k∈Nn
dik; i ¼ 1; 2; ::;C

n o (13)

It is obvious from (12) that with λ ¼ 1, the SFCM clustering method reduces to the standard
FCM method. The spatial data function f in is dependent on the original distances of the set of
pixels Nn in the immediate neighborhood of the nth pixel. If all pixels in the neighbor set do

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

39

not belong to the ith cluster f in is maximum since the denominator is minimum while the
numerator is maximum. This implies that f in causes Din to increase when the pixels of the
immediate neighborhood of the nth pixel do not belong to the ith cluster. This increase of Din

contributes to decreasing the membership uin for achieving and preserving the minim of the
SFCM function in (11).

Themembership uin and the cluster-center vi associatedwith the SFCMmethod are given by [13].

uin ¼ 1
PC

j¼1
Din
Djn

� � 1
m�1ð Þ

(14)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(15)

It is obvious from (14) that similar to the standard FCM, the membership uin is inversely
proportional to the weighted distance Din, which again means that, increasing Din when the
immediate neighboring pixels to the nth pixel do not belong to the ith cluster, decreases
the membership function uin. From (15), however, it is clear that the SFCM algorithm computes
the cluster-center vi in a similar way as the standard FCM method does. Hence, additive noise
can still reduce the accuracy of cluster center vi obtained by the SFCM algorithm.

4.4. HCM incorporating membership entropy

The membership entropy has been incorporated into the HCM for fuzzification. The member-
ship entropy-based FCM (MEFCM) algorithm has the following objective function [17].

JMEFCM ¼ JHCM þ β
XC

i¼1
XN

n¼1 uin log uinð Þ þ 1� uinð Þ log 1� uinð Þð Þ (16)

where β > 0 is a weight experimentally selected to control the fuzziness of the entropy term.
We still need U to be constrained to satisfy (5). It can be shown that the membership and the
cluster-center that minimize (16) are respectively given by [17]

uin ¼ 1
PC

j¼1
exp din=βð Þþ1
exp djn=βð Þþ1

(17)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(18)

It is obvious so far that the membership function of the nth entities provided by FCM, HCM
and MEFCM algorithms depends upon the inverse of the square of the Euclidean distance

din ¼ xn � vik k2 which is a function of only xn with no data or membership information of the
clustering entity’s neighbors are involved. Hence, the FCM, HCM and MEFCM algorithms
miss important spatial local data and membership information. Thus additive noise can
degrade xn, vi and din, thereby biasing the membership of a degraded entity to a false cluster.

Recent Applications in Data Clustering40

5. HCM incorporating local membership KL divergence

In [18], an approach to incorporating local spatial membership information into HCM algo-
rithm has been presented. By adding Kullback-Leibler (KL) divergence between the member-
ship function of an entity and the locally-smoothed membership in the immediate spatial
neighborhood, the modified objective function, called the local membership KL divergence-
based FCM (LMKLFCM), is given by [18–22].

JLMKLFCM ¼ JHCM þ γ
XC

i¼1
XN

n¼1 uin log
uin
πin

� �
þ
XC

i¼1
XN

n¼1 uin log
uin
πin

� �� �
(19)

where γ is a weighting parameter experimentally selected to control the fuzziness induced by
the second term in (19), uin ¼ 1� uin is the complement of the membership function uin, πin

and πin are the spatial local or moving averages of membership uin and the complement
membership uin, functions respectively. These local membership and membership complement
averages are computed by [18–22].

πin ¼ 1
NK

X
k∈Nn; k6¼n

uik (20)

πin ¼ 1
NK

X
k∈Nn; k 6¼n

1� uikð Þ ¼ 1� πin (21)

whereNn is a set of entities/pixels falling in a square window around the nth pixel andNK is its

cardinality. It is obvious that all entities in the window are weighted equally by w uð Þ
pq ¼ 1=NK.

Other windows can be used such as Gaussian one provided that the weight of the window-
center is 0 and the rest weights are summed to unity. The first term in (19) provides hard-
cluster labeling. It pushes the membership function toward 0 or 1. The KL membership and
membership-complement divergences, in addition to providing fuzzification approach to
HCM clustering, measure the proximity between the membership of a pixel in a certain cluster
and the local average of the membership over the immediate spatial neighborhood pixels in
this cluster. So, they push the membership function to the locally smoothed membership
function πin. Therefore, this can smooth out additive noise and bias the solution to piecewise
homogenous labels which leads to a segmented image with piecewise homogenous regions.

The minimization of the objective function JLMKLFCM in (19) yields uin and vi to be given,
respectively, by [18].

uin ¼ 1
PC
j¼1

πjn 1�πinð Þexp din=γð Þþπinð Þ
1�πjnð Þexp djn=γð Þþπjn

� �πin ¼ δinπin (22)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(23)

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

41

not belong to the ith cluster f in is maximum since the denominator is minimum while the
numerator is maximum. This implies that f in causes Din to increase when the pixels of the
immediate neighborhood of the nth pixel do not belong to the ith cluster. This increase of Din

contributes to decreasing the membership uin for achieving and preserving the minim of the
SFCM function in (11).

Themembership uin and the cluster-center vi associatedwith the SFCMmethod are given by [13].

uin ¼ 1
PC

j¼1
Din
Djn

� � 1
m�1ð Þ

(14)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(15)

It is obvious from (14) that similar to the standard FCM, the membership uin is inversely
proportional to the weighted distance Din, which again means that, increasing Din when the
immediate neighboring pixels to the nth pixel do not belong to the ith cluster, decreases
the membership function uin. From (15), however, it is clear that the SFCM algorithm computes
the cluster-center vi in a similar way as the standard FCM method does. Hence, additive noise
can still reduce the accuracy of cluster center vi obtained by the SFCM algorithm.

4.4. HCM incorporating membership entropy

The membership entropy has been incorporated into the HCM for fuzzification. The member-
ship entropy-based FCM (MEFCM) algorithm has the following objective function [17].

JMEFCM ¼ JHCM þ β
XC

i¼1
XN

n¼1 uin log uinð Þ þ 1� uinð Þ log 1� uinð Þð Þ (16)

where β > 0 is a weight experimentally selected to control the fuzziness of the entropy term.
We still need U to be constrained to satisfy (5). It can be shown that the membership and the
cluster-center that minimize (16) are respectively given by [17]

uin ¼ 1
PC

j¼1
exp din=βð Þþ1
exp djn=βð Þþ1

(17)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(18)

It is obvious so far that the membership function of the nth entities provided by FCM, HCM
and MEFCM algorithms depends upon the inverse of the square of the Euclidean distance

din ¼ xn � vik k2 which is a function of only xn with no data or membership information of the
clustering entity’s neighbors are involved. Hence, the FCM, HCM and MEFCM algorithms
miss important spatial local data and membership information. Thus additive noise can
degrade xn, vi and din, thereby biasing the membership of a degraded entity to a false cluster.

Recent Applications in Data Clustering40

5. HCM incorporating local membership KL divergence

In [18], an approach to incorporating local spatial membership information into HCM algo-
rithm has been presented. By adding Kullback-Leibler (KL) divergence between the member-
ship function of an entity and the locally-smoothed membership in the immediate spatial
neighborhood, the modified objective function, called the local membership KL divergence-
based FCM (LMKLFCM), is given by [18–22].

JLMKLFCM ¼ JHCM þ γ
XC

i¼1
XN

n¼1 uin log
uin
πin

� �
þ
XC

i¼1
XN

n¼1 uin log
uin
πin

� �� �
(19)

where γ is a weighting parameter experimentally selected to control the fuzziness induced by
the second term in (19), uin ¼ 1� uin is the complement of the membership function uin, πin

and πin are the spatial local or moving averages of membership uin and the complement
membership uin, functions respectively. These local membership and membership complement
averages are computed by [18–22].

πin ¼ 1
NK

X
k∈Nn; k6¼n

uik (20)

πin ¼ 1
NK

X
k∈Nn; k 6¼n

1� uikð Þ ¼ 1� πin (21)

whereNn is a set of entities/pixels falling in a square window around the nth pixel andNK is its

cardinality. It is obvious that all entities in the window are weighted equally by w uð Þ
pq ¼ 1=NK.

Other windows can be used such as Gaussian one provided that the weight of the window-
center is 0 and the rest weights are summed to unity. The first term in (19) provides hard-
cluster labeling. It pushes the membership function toward 0 or 1. The KL membership and
membership-complement divergences, in addition to providing fuzzification approach to
HCM clustering, measure the proximity between the membership of a pixel in a certain cluster
and the local average of the membership over the immediate spatial neighborhood pixels in
this cluster. So, they push the membership function to the locally smoothed membership
function πin. Therefore, this can smooth out additive noise and bias the solution to piecewise
homogenous labels which leads to a segmented image with piecewise homogenous regions.

The minimization of the objective function JLMKLFCM in (19) yields uin and vi to be given,
respectively, by [18].

uin ¼ 1
PC
j¼1

πjn 1�πinð Þexp din=γð Þþπinð Þ
1�πjnð Þexp djn=γð Þþπjn

� �πin ¼ δinπin (22)

vi ¼
PN

n¼1 uinxnPN
n¼1 uin

(23)

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

41

It is obvious from (22) that uin is proportional to πin and the proportional parameter δin is
inversely proportional to the entity’s distance din and the maximum δkn occurs when dkn ¼ 0.

It is clear that if γ! ∞, uin ¼ πin=
PC

j¼1 πjn. Therefore, the resultant membership is indepen-

dent of the data to be clustered but dependent on the initial value of the membership matrixU0

and on the smoothing fashion. If u0in is generated from a random process greater than zero,
then utin versus the number of iteration t converges, because of recursive averaging and normal-

izing, to a normal distribution variable with mean equal to 1
C ¼ E utin

� � ¼ E πinf g=PC
j¼1 E πjn

� �

which, in this case, means too much fuzzy membership function. This has been proved exper-
imentally by using a synthetic image of 4 clusters and γ ¼ 1010: Finally, as shown by (23), the
computation of the cluster-center vi is still independent of the local original data.

6. HCM incorporating local data and membership KL divergence

To incorporate local spatial data into the LMKLFCM objective function in (19), the following
objective function has been proposed in [18].

JLDMKLFCM ¼
PC

i¼1
PN

n¼1 uin din þ αdin
� �þ

γ
PC

i¼1
PN

n¼1 uin log
uin
πin

� �
þPC

i¼1
PN

n¼1 uin log
uin
πin

� �� � (24)

Therefore, similar to (22) and (23), the membership function uin and the cluster-center vi are,
respectively, given by [18].

uin ¼ 1
PC
j¼1

πjn 1�πinð Þexp dinþαdinð Þ=γð Þþπinð Þ
1�πjnð Þexp dinþαdinð Þ=γð Þþπjnð Þ

� �πin (25)

vi ¼
PN

n¼1 uin xn þ αxnð Þ
1þ αð ÞPN

n¼1 uin
(26)

It is obvious that the LDMKLFCM algorithm in (24)–(26) provides a membership that depends
upon the local spatial data and membership information while the cluster center is dependent
upon the locally-smoothed data. Thus the algorithm has twofold approach to handle additive
noise.

7. Simulation results

This simulation aims at examining the performance of the conventional FCM, the member-
ship entropy-based FCM (MEFCM), the spatial distance weighted FCM (SFCM), the local
membership KL divergence-based FCM (LMKLFCM) and the local data and membership KL

Recent Applications in Data Clustering42

divergence-based FCM (LDMKLFCM) algorithms. It is to be noticed that all the algorithms
can be implemented almost similar to the pseudo code in Table 1 by replacing the steps 3 and 4
by the corresponding computation of the membership function and cluster centers of each
algorithm.

7.1. Clustering validity

To measure the performance of the fuzzy clustering algorithms, several quantitative measures
or indices have been adopted in [23, 25] and references therein. Few of these measures are the
partition coefficient VPC and the partition entropy VPE index of Bezdek and Xie-Beni (XB
index) VXB, given respectively by

VPC ¼ 1
N

XN

n¼1
XC

i¼1 uin (27)

VPE ¼ � 1
N

XN

n¼1
XC

i¼1 uin log uinð Þ (28)

The closer of the VPC to 1, the better the performance since the minimization is constrained byPC
i¼1 uin ¼ 1: The closer the VPE to 0, the better the performance since this means the less

fuzziness of the membership and thus clusters are well-separated.

In synthetic images, in addition to the above clustering validity measures, several clustering
validity and performance measures have also been used such as the accuracy, sensitivity and
specificity given respectively by

Acc: ¼ TPþ TNð Þ= TPþ TN þ FPþ FNð Þ (29)

Sen: ¼ TP= TPþ TNð Þ (30)

Spe: ¼ TN= TN þ FNð Þ (31)

where T, F, P, and N are mean true, false, positive, and negative, respectively. The TP, FP, TN,
and FN are computed as follows. While generating the synthetic image, the ground truth labels
are formulated as the logical matrix given by [23].

Lin ¼
1; if xn ∈ i
0; otherwise

; i ¼ 1, 2,…, C, n ¼ 1, 2, ::, N:

�
(32)

where xn is the noise-free pixel in the synthetic image and 1 and 0 represent True and False,
respectively. After the segmentation is done, the estimated labels are also formulated as logical
matrices generated by [20].

bLkn ¼
1; k ¼ argmaxi uinð Þ
0; otherwise

; i ¼ 1, 2,…, C, n ¼ 1, 2, ::, N:

�
(33)

Finally, the TP, TN, FP, and FN are given by [20].

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

43

It is obvious from (22) that uin is proportional to πin and the proportional parameter δin is
inversely proportional to the entity’s distance din and the maximum δkn occurs when dkn ¼ 0.

It is clear that if γ! ∞, uin ¼ πin=
PC

j¼1 πjn. Therefore, the resultant membership is indepen-

dent of the data to be clustered but dependent on the initial value of the membership matrixU0

and on the smoothing fashion. If u0in is generated from a random process greater than zero,
then utin versus the number of iteration t converges, because of recursive averaging and normal-

izing, to a normal distribution variable with mean equal to 1
C ¼ E utin

� � ¼ E πinf g=PC
j¼1 E πjn

� �

which, in this case, means too much fuzzy membership function. This has been proved exper-
imentally by using a synthetic image of 4 clusters and γ ¼ 1010: Finally, as shown by (23), the
computation of the cluster-center vi is still independent of the local original data.

6. HCM incorporating local data and membership KL divergence

To incorporate local spatial data into the LMKLFCM objective function in (19), the following
objective function has been proposed in [18].

JLDMKLFCM ¼
PC

i¼1
PN

n¼1 uin din þ αdin
� �þ

γ
PC

i¼1
PN

n¼1 uin log
uin
πin

� �
þPC

i¼1
PN

n¼1 uin log
uin
πin

� �� � (24)

Therefore, similar to (22) and (23), the membership function uin and the cluster-center vi are,
respectively, given by [18].

uin ¼ 1
PC
j¼1

πjn 1�πinð Þexp dinþαdinð Þ=γð Þþπinð Þ
1�πjnð Þexp dinþαdinð Þ=γð Þþπjnð Þ

� �πin (25)

vi ¼
PN

n¼1 uin xn þ αxnð Þ
1þ αð ÞPN

n¼1 uin
(26)

It is obvious that the LDMKLFCM algorithm in (24)–(26) provides a membership that depends
upon the local spatial data and membership information while the cluster center is dependent
upon the locally-smoothed data. Thus the algorithm has twofold approach to handle additive
noise.

7. Simulation results

This simulation aims at examining the performance of the conventional FCM, the member-
ship entropy-based FCM (MEFCM), the spatial distance weighted FCM (SFCM), the local
membership KL divergence-based FCM (LMKLFCM) and the local data and membership KL

Recent Applications in Data Clustering42

divergence-based FCM (LDMKLFCM) algorithms. It is to be noticed that all the algorithms
can be implemented almost similar to the pseudo code in Table 1 by replacing the steps 3 and 4
by the corresponding computation of the membership function and cluster centers of each
algorithm.

7.1. Clustering validity

To measure the performance of the fuzzy clustering algorithms, several quantitative measures
or indices have been adopted in [23, 25] and references therein. Few of these measures are the
partition coefficient VPC and the partition entropy VPE index of Bezdek and Xie-Beni (XB
index) VXB, given respectively by

VPC ¼ 1
N

XN

n¼1
XC

i¼1 uin (27)

VPE ¼ � 1
N

XN

n¼1
XC

i¼1 uin log uinð Þ (28)

The closer of the VPC to 1, the better the performance since the minimization is constrained byPC
i¼1 uin ¼ 1: The closer the VPE to 0, the better the performance since this means the less

fuzziness of the membership and thus clusters are well-separated.

In synthetic images, in addition to the above clustering validity measures, several clustering
validity and performance measures have also been used such as the accuracy, sensitivity and
specificity given respectively by

Acc: ¼ TPþ TNð Þ= TPþ TN þ FPþ FNð Þ (29)

Sen: ¼ TP= TPþ TNð Þ (30)

Spe: ¼ TN= TN þ FNð Þ (31)

where T, F, P, and N are mean true, false, positive, and negative, respectively. The TP, FP, TN,
and FN are computed as follows. While generating the synthetic image, the ground truth labels
are formulated as the logical matrix given by [23].

Lin ¼
1; if xn ∈ i
0; otherwise

; i ¼ 1, 2,…, C, n ¼ 1, 2, ::, N:

�
(32)

where xn is the noise-free pixel in the synthetic image and 1 and 0 represent True and False,
respectively. After the segmentation is done, the estimated labels are also formulated as logical
matrices generated by [20].

bLkn ¼
1; k ¼ argmaxi uinð Þ
0; otherwise

; i ¼ 1, 2,…, C, n ¼ 1, 2, ::, N:

�
(33)

Finally, the TP, TN, FP, and FN are given by [20].

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

43

TP ¼PC
i¼1
PN

n¼1 bLinLin; TN ¼PC
i¼1
PN

n¼1 bLin
Lin

FP ¼PC
i¼1
PN

n¼1 bLinLin; FN ¼PC
i¼1
PN

n¼1 bLin
Lin

(34)

where “__” means the logical complement.

7.2. Artificial image

In this simulation, the artificial or synthetic noise-free image shown in Figure 1(a) is degraded
by adding zero-mean white Gaussian noise (WGN) with different variances. The noisy image

Figure 1. Clustering of the synthetic image: (a), noise free-image; (b), the noise-free image plus zero-mean and 0.08
variance WGN; (c) FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM; (g), LDMKLFCM. It is evident that the clustered images
in (f) and (g) have lesser number of misclassified pixels which means that noisy pixels are rightly clustered. Clustering
validation measures are summarized in Table 2.

Recent Applications in Data Clustering44

shown in Figure 1(b) is for 0.08 noise variance. We have studied the performance of the five
algorithms, namely, the standard FCM, the membership entropy-based FCM (MEFCM), the
spatial distance weighted FCM (SFCM), the local membership KLFCM (LMKLFCM) and the
local data and membership KLFCM (LDMKLFCM) algorithms in segmenting these noisy
images with m ¼ 2 and C ¼ 4. The parameters for the algorithms have been elected via
simulation as β ¼ 1000 for MEFCM; λ ¼ 0:5 for SFCM; γ ¼ 1000 for LMKLFCM; and
γ ¼ 1000 and α ¼ 0:5 for LDMKLFCM. For the computation of the locally smoothed data xn,
a neighboring window of size 3x3 has been used. Also, the same spatial window has been used
for the computation of the locally-smoothed membership function πin. The initial values of the
membership functions U and the cluster-centers V are generated from a uniformly distributed
random process with means 0.5 and equal to the image mean, respectively. We have collected
results from 25 Monte Carlo runs of each algorithm. In each run, the initial values of U and V
of the FCM are new random samples while the ones of the rest algorithms are generated by
executing few number of iterations of the FCM algorithm. Simulation results, not included for
space limitation, have shown that the algorithms provide further improvement with these
initial values generated by the FCM algorithm than those randomly generated. Also, in each
run, a new random sample of WGN is used in generating the noisy images. Figure 1(c–g) show
the clustered images generated by the five algorithms in the case of 0.08 noise variance. These
clustered images show that the LMKLFCM and the LDMKLEFCM algorithms provide the
ones with lesser noise which means lesser number of misclassified pixels. Moreover, the
LDMKLFCM algorithm offers the superior clustered image. Table 2 summarizes the averages
and standard deviations (μ� σ) of the performance measures. The LMKLFCM and
LDMKLFCM show the maximum VPC and the minimum VPE. The averages of the accuracy,
sensitivity and the specificity performance measures of the five algorithms have been studied

Algorithm Images VPC VPE

FCM Synthetic
Simulated MR
Real MR
Lena

0.8105 �0.0007
0.7921 �0.0011
0.8930 �0.0140
0.8286 �0.0004

0.3517 � 0.0012
0.3986 � 0.0020
0.1998 � 0.0240
0.2824 � 0.0006

SFCM Synthetic
Simulated MR
Real MR
Lena

0.8370 � 0.0010
0.8674 � 0.0009
0.9204 � 0.0006
0.8936 � 0.0006

0.3017 � 0.0017
0.2409 � 0.0014
0.1440 � 0.0012
0.1786 � 0.0009

MEFCM Synthetic
Simulated MR
Real MR
Lena

0.8616 � 0.0012
0.8873 � 0.0012
0.9602 � 0.0113
0.9268 � 0.0004

0.2271 � 0.0019
0.1841 � 0.0018
0.0650 � 0.0183
0.1198 � 0.0007

LMKLFCM Synthetic
Simulated MR
Real MR
Lena

0.9853 � 0.0011
0.8958 � 0.0088
0.9625 � 0.0087
0.9609 � 0.0012

0.0270 � 0.0028
0.1721 � 0.0146
0.0441 � 0.0128
0.0643 � 0.0020

LDMKLFCM Synthetic
Simulated MR
Real MR
Lena

0.9874 � 0.0011
0.9234 � 0.0030
0.9519 � 0.0016
0.9730 � 0.0026

0.0227 � 0.0022
0.1258 � 0.0049
0.0604 � 0.0025
0.0446 � 0.0026

Table 2. Clustering validation measures for synthetic and real-world images.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

45

TP ¼PC
i¼1
PN

n¼1 bLinLin; TN ¼PC
i¼1
PN

n¼1 bLin
Lin

FP ¼PC
i¼1
PN

n¼1 bLinLin; FN ¼PC
i¼1
PN

n¼1 bLin
Lin

(34)

where “__” means the logical complement.

7.2. Artificial image

In this simulation, the artificial or synthetic noise-free image shown in Figure 1(a) is degraded
by adding zero-mean white Gaussian noise (WGN) with different variances. The noisy image

Figure 1. Clustering of the synthetic image: (a), noise free-image; (b), the noise-free image plus zero-mean and 0.08
variance WGN; (c) FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM; (g), LDMKLFCM. It is evident that the clustered images
in (f) and (g) have lesser number of misclassified pixels which means that noisy pixels are rightly clustered. Clustering
validation measures are summarized in Table 2.

Recent Applications in Data Clustering44

shown in Figure 1(b) is for 0.08 noise variance. We have studied the performance of the five
algorithms, namely, the standard FCM, the membership entropy-based FCM (MEFCM), the
spatial distance weighted FCM (SFCM), the local membership KLFCM (LMKLFCM) and the
local data and membership KLFCM (LDMKLFCM) algorithms in segmenting these noisy
images with m ¼ 2 and C ¼ 4. The parameters for the algorithms have been elected via
simulation as β ¼ 1000 for MEFCM; λ ¼ 0:5 for SFCM; γ ¼ 1000 for LMKLFCM; and
γ ¼ 1000 and α ¼ 0:5 for LDMKLFCM. For the computation of the locally smoothed data xn,
a neighboring window of size 3x3 has been used. Also, the same spatial window has been used
for the computation of the locally-smoothed membership function πin. The initial values of the
membership functions U and the cluster-centers V are generated from a uniformly distributed
random process with means 0.5 and equal to the image mean, respectively. We have collected
results from 25 Monte Carlo runs of each algorithm. In each run, the initial values of U and V
of the FCM are new random samples while the ones of the rest algorithms are generated by
executing few number of iterations of the FCM algorithm. Simulation results, not included for
space limitation, have shown that the algorithms provide further improvement with these
initial values generated by the FCM algorithm than those randomly generated. Also, in each
run, a new random sample of WGN is used in generating the noisy images. Figure 1(c–g) show
the clustered images generated by the five algorithms in the case of 0.08 noise variance. These
clustered images show that the LMKLFCM and the LDMKLEFCM algorithms provide the
ones with lesser noise which means lesser number of misclassified pixels. Moreover, the
LDMKLFCM algorithm offers the superior clustered image. Table 2 summarizes the averages
and standard deviations (μ� σ) of the performance measures. The LMKLFCM and
LDMKLFCM show the maximum VPC and the minimum VPE. The averages of the accuracy,
sensitivity and the specificity performance measures of the five algorithms have been studied

Algorithm Images VPC VPE

FCM Synthetic
Simulated MR
Real MR
Lena

0.8105 �0.0007
0.7921 �0.0011
0.8930 �0.0140
0.8286 �0.0004

0.3517 � 0.0012
0.3986 � 0.0020
0.1998 � 0.0240
0.2824 � 0.0006

SFCM Synthetic
Simulated MR
Real MR
Lena

0.8370 � 0.0010
0.8674 � 0.0009
0.9204 � 0.0006
0.8936 � 0.0006

0.3017 � 0.0017
0.2409 � 0.0014
0.1440 � 0.0012
0.1786 � 0.0009

MEFCM Synthetic
Simulated MR
Real MR
Lena

0.8616 � 0.0012
0.8873 � 0.0012
0.9602 � 0.0113
0.9268 � 0.0004

0.2271 � 0.0019
0.1841 � 0.0018
0.0650 � 0.0183
0.1198 � 0.0007

LMKLFCM Synthetic
Simulated MR
Real MR
Lena

0.9853 � 0.0011
0.8958 � 0.0088
0.9625 � 0.0087
0.9609 � 0.0012

0.0270 � 0.0028
0.1721 � 0.0146
0.0441 � 0.0128
0.0643 � 0.0020

LDMKLFCM Synthetic
Simulated MR
Real MR
Lena

0.9874 � 0.0011
0.9234 � 0.0030
0.9519 � 0.0016
0.9730 � 0.0026

0.0227 � 0.0022
0.1258 � 0.0049
0.0604 � 0.0025
0.0446 � 0.0026

Table 2. Clustering validation measures for synthetic and real-world images.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

45

Figure 2. The average versus noise variance of accuracy, (a); sensitivity, (b); and specificity, (c); ⊳, FCM; þ, MEFCM;
SFCM; LMKLFCM; LDMKLFCM. The proposed LMKLFCM and LDMKLFCM algorithms provide the superior perfor-
mance among the five algorithms. The LDMKLFCM algorithm shows more noise-robust capability.

Recent Applications in Data Clustering46

against noise variance. Figure 2 shows these measures versus noise variance. It is clear that
both the LMKLFCM and the LDMKLFCM algorithms provide the superior performance
among the five algorithms and the LDMKLFCM algorithm shows more noise-robustness.

7.3. Magnetic resonance image (MRI)

A simulated MRI of [26], illustrated by Figure 3(a), has been used as a noise-free image. It has
been degraded by adding white Gaussian noise (WGN) with zero-mean and 0.005 variance to

Figure 3. Clustering of simulated MRI: (a), noise-free MRI; (b), the MRI in (a) plus zero-mean WGN with 0.005 variance.
Segmented images by: (c), FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM (g), LDMKLFCM. Obviously, the segmented
images in (f) and (g) provided by the LMKLFCM and the LDMRKLCM algorithms, respectively, have lesser noise which
means that the noisy pixels are correctly clustered. The clustering validation measures summarized in Table 2 show that
the LMRKlCM; and LDMKLFCM provide the maximum VPC and the minimum VPE.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

47

Figure 2. The average versus noise variance of accuracy, (a); sensitivity, (b); and specificity, (c); ⊳, FCM; þ, MEFCM;
SFCM; LMKLFCM; LDMKLFCM. The proposed LMKLFCM and LDMKLFCM algorithms provide the superior perfor-
mance among the five algorithms. The LDMKLFCM algorithm shows more noise-robust capability.

Recent Applications in Data Clustering46

against noise variance. Figure 2 shows these measures versus noise variance. It is clear that
both the LMKLFCM and the LDMKLFCM algorithms provide the superior performance
among the five algorithms and the LDMKLFCM algorithm shows more noise-robustness.

7.3. Magnetic resonance image (MRI)

A simulated MRI of [26], illustrated by Figure 3(a), has been used as a noise-free image. It has
been degraded by adding white Gaussian noise (WGN) with zero-mean and 0.005 variance to

Figure 3. Clustering of simulated MRI: (a), noise-free MRI; (b), the MRI in (a) plus zero-mean WGN with 0.005 variance.
Segmented images by: (c), FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM (g), LDMKLFCM. Obviously, the segmented
images in (f) and (g) provided by the LMKLFCM and the LDMRKLCM algorithms, respectively, have lesser noise which
means that the noisy pixels are correctly clustered. The clustering validation measures summarized in Table 2 show that
the LMRKlCM; and LDMKLFCM provide the maximum VPC and the minimum VPE.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

47

generate the noisy MRI illustrated by Figure 3(b). This noisy MRI image has been clustered by
the five algorithms. The parameters for all algorithms have been taken similar to the ones of
the synthetic image simulation except, for the MEFCM algorithm, β ¼ 200 and, for both
LMKLFCM and LDMKLFCM algorithms, γ ¼ 1000: We have also executed 25 runs of each
algorithm. The initial values of uin and vi have been generated and adjusted as explained in the
synthetic image simulation. Figure 3(c–g) shows the resulting clustered images provided by
the five algorithms in a certain run. Table 2 shows the averages and standard deviations
(μ� σ) of the performance measures VPC and VPE of the five algorithms. It obvious that the
LMKLFCM and LDMKLFCM provide the segmented images with lesser noise or lesser num-
ber of misclassified pixels, the maximum VPC and the minimum VPE.

A real MRI from [27], shown in Figure 4(a), has been considered as a noise-free image. To
generate the noisy MRI shown in Figure 4(b), salt & pepper noise with 0.050 variance have

Figure 4. Clustering of real MRI example: (a), noise-free real MRI; (b), the image in (a) plus salt&pepper with 0.05
variance. Segmented images by: (c), FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM (g), LDMKLFCM. Clearly, the
segmented images in (f) and (g) generated by the LMKLFCM and the LDMRKLCM algorithms, respectively, have lesser
noise. The clustering validation coefficients summarized in Table 2 show that the LMRKlCM; and LDMKLFCM provide
the maximum VPC and the minimum VPE.

Recent Applications in Data Clustering48

been added. The noisy MRI has been clustered by the FCM, SFCM, MEFCM, LMKLCM and
the LDMKLFCM algorithms. The parameters for all algorithms have been taken similar to the
ones of the synthetic image simulation except, for the MEFCM algorithm, β ¼ 300 and, for both
the LMKLFCM and LDMKLFCM algorithms, γ ¼ 800: We have also obtained the results of 25
runs of each algorithm. The initial values of uin and vi have been generated and adjusted as

Figure 5. Segmentation of Lena image: (a), noise-free image; (b), the image in (a) plus WGN noise with zero-mean and
0.05 variance. It is obvious that the images in (f) and (g) have lesser number of misclassified pixels. The clustering
validation coefficients summarized in Table 2which shows that the LMKLFCM and the LDMKLFCM algorithms provide
the superior VPC and VPE.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

49

generate the noisy MRI illustrated by Figure 3(b). This noisy MRI image has been clustered by
the five algorithms. The parameters for all algorithms have been taken similar to the ones of
the synthetic image simulation except, for the MEFCM algorithm, β ¼ 200 and, for both
LMKLFCM and LDMKLFCM algorithms, γ ¼ 1000: We have also executed 25 runs of each
algorithm. The initial values of uin and vi have been generated and adjusted as explained in the
synthetic image simulation. Figure 3(c–g) shows the resulting clustered images provided by
the five algorithms in a certain run. Table 2 shows the averages and standard deviations
(μ� σ) of the performance measures VPC and VPE of the five algorithms. It obvious that the
LMKLFCM and LDMKLFCM provide the segmented images with lesser noise or lesser num-
ber of misclassified pixels, the maximum VPC and the minimum VPE.

A real MRI from [27], shown in Figure 4(a), has been considered as a noise-free image. To
generate the noisy MRI shown in Figure 4(b), salt & pepper noise with 0.050 variance have

Figure 4. Clustering of real MRI example: (a), noise-free real MRI; (b), the image in (a) plus salt&pepper with 0.05
variance. Segmented images by: (c), FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM (g), LDMKLFCM. Clearly, the
segmented images in (f) and (g) generated by the LMKLFCM and the LDMRKLCM algorithms, respectively, have lesser
noise. The clustering validation coefficients summarized in Table 2 show that the LMRKlCM; and LDMKLFCM provide
the maximum VPC and the minimum VPE.

Recent Applications in Data Clustering48

been added. The noisy MRI has been clustered by the FCM, SFCM, MEFCM, LMKLCM and
the LDMKLFCM algorithms. The parameters for all algorithms have been taken similar to the
ones of the synthetic image simulation except, for the MEFCM algorithm, β ¼ 300 and, for both
the LMKLFCM and LDMKLFCM algorithms, γ ¼ 800: We have also obtained the results of 25
runs of each algorithm. The initial values of uin and vi have been generated and adjusted as

Figure 5. Segmentation of Lena image: (a), noise-free image; (b), the image in (a) plus WGN noise with zero-mean and
0.05 variance. It is obvious that the images in (f) and (g) have lesser number of misclassified pixels. The clustering
validation coefficients summarized in Table 2which shows that the LMKLFCM and the LDMKLFCM algorithms provide
the superior VPC and VPE.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

49

mentioned in the synthetic image simulation. Figure 4(c–g) show the segmented images
provided by the five algorithms in a certain run while Table 2 summarizes the averages and
standard deviations (μ� σ) of the performance measures. It is obvious that the proposed
LMKLFCM and LDMKLFCM algorithms provide the segmented images with lesser noise or
lesser number of misclassified pixels, the maximum VPC and the minimum VPE.

7.4. Lena image

A popular Lena image shown in Figure 5(a) has been considered as a noise-free image
example. The noisy Lena image shown in Figure 5(b) has been generated by adding WGN
noise with zero-mean and 0.01 variance. The parameters of the five algorithms have been
adjusted to the values similar to the ones used in the previous simulations except C ¼ 2;
β ¼ 1000 for the MEFCM algorithm; γ ¼ 2000 for the LMREFCM and γ ¼ 2000 and α ¼ 0:5
for the LDMREFCM algorithms. We have also executed 25 Mont Carlo Runs of each algorithm
as explained above. Figure 5(c–g) shows the resulting segmented images obtained by the five
algorithms. Visually investigation of the segmented images shows that the LMKLFCM and
LDMKLFCM algorithms provide the images with lesser number of misclassified pixels.
Table 2 shows the average and standard deviation (μ� σ) of the performance measures of
the five algorithms. It is also clear that the two algorithms provide the maximum VPC and the
minimum VPE.

8. Conclusions

The hard C-means algorithm has been fuzzified by incorporating into the objective function
spatial local information through two KL membership divergences. The first KL membership
divergence measures the information proximity between the membership of each pixel and its
local membership average in the pixel neighborhood. The second one measures the informa-
tion proximity between the complement membership and its local membership average in the
pixel neighborhood. For regularization, the local data information has been incorporated by an
additional new weighted hard C-means function in which the noisy-image is replaced by a
noise-reduced one. Such incorporation of both local data and local membership information
facilitates biasing the algorithm to classify each pixel in correlation with its immediate neigh-
boring pixels. Results of segmentation of synthetic, simulated medical and real-world images
have shown that the proposed local membership KL divergence-based FCM (LMKLFCM) and
the local data and membership KL divergence-based entropy FCM (LDMKLFCM) algorithms
outperform several widely used FCM related algorithms. Moreover, the average runtimes of
all algorithms have been measured via simulation. In all runs, all algorithms start from the
same randomly generated initial conditions, as mentioned in the simulation section, and
stopped at the same fixed point. The LDMKLFCM, LMKLFCM, standard FCM, MEFCM, and
SFCM algorithms have provided average runtime of 1.5, 1.75, 1, 0.9 and 1 sec respectively. The
simulation results have been done using Matlab R2013b under windows on a processor of Intel
(R) core (TM) i3, CPU M370 2.4 GHZ, 4 GB RAM.

Recent Applications in Data Clustering50

Acknowledgements

The author would like to thank for funding the open access publication of this Chapter. Also,
the author would like to thank Prof. H. Selim, Dr. A. AbdelFattah and Eng. G. Gendy for their
contribution to this work.

Conflict of interest

No potential conflicts of interest to report.

Author details

Reda R. Gharieb1,2*

*Address all correspondence to: rrgharieb@gmail.com

1 Faculty of Engineering, Assiut University, Assiut, Egypt

2 Higher Institute of Engineering, Thebes Academy for Sciences, Cairo, Egypt

References

[1] Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition. 1993;
26(9):1277-1294

[2] Ravindraiah R, Tejaswini KA. Survey of image segmentation algorithms based on
expectation-maximization. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP).
2013;2:01-07

[3] Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annual
Review of Biomedical Engineering. 2000;2:315-337

[4] Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognition Letters. 2010;3:
651-666

[5] MacQueen J. Some methods for classification and analysis of multivariate observations.
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
1967;14:281-297

[6] Alsabti K, Ranka S, Singh V: An efficient k-means clustering algorithm. Electrical Engi-
neering and Computer Science. Paper 43

[7] Bezdek JC. Pattern Recognition with Objective Fuzzy Algorithms. New York: Plenum
Press; 1981

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

51

mentioned in the synthetic image simulation. Figure 4(c–g) show the segmented images
provided by the five algorithms in a certain run while Table 2 summarizes the averages and
standard deviations (μ� σ) of the performance measures. It is obvious that the proposed
LMKLFCM and LDMKLFCM algorithms provide the segmented images with lesser noise or
lesser number of misclassified pixels, the maximum VPC and the minimum VPE.

7.4. Lena image

A popular Lena image shown in Figure 5(a) has been considered as a noise-free image
example. The noisy Lena image shown in Figure 5(b) has been generated by adding WGN
noise with zero-mean and 0.01 variance. The parameters of the five algorithms have been
adjusted to the values similar to the ones used in the previous simulations except C ¼ 2;
β ¼ 1000 for the MEFCM algorithm; γ ¼ 2000 for the LMREFCM and γ ¼ 2000 and α ¼ 0:5
for the LDMREFCM algorithms. We have also executed 25 Mont Carlo Runs of each algorithm
as explained above. Figure 5(c–g) shows the resulting segmented images obtained by the five
algorithms. Visually investigation of the segmented images shows that the LMKLFCM and
LDMKLFCM algorithms provide the images with lesser number of misclassified pixels.
Table 2 shows the average and standard deviation (μ� σ) of the performance measures of
the five algorithms. It is also clear that the two algorithms provide the maximum VPC and the
minimum VPE.

8. Conclusions

The hard C-means algorithm has been fuzzified by incorporating into the objective function
spatial local information through two KL membership divergences. The first KL membership
divergence measures the information proximity between the membership of each pixel and its
local membership average in the pixel neighborhood. The second one measures the informa-
tion proximity between the complement membership and its local membership average in the
pixel neighborhood. For regularization, the local data information has been incorporated by an
additional new weighted hard C-means function in which the noisy-image is replaced by a
noise-reduced one. Such incorporation of both local data and local membership information
facilitates biasing the algorithm to classify each pixel in correlation with its immediate neigh-
boring pixels. Results of segmentation of synthetic, simulated medical and real-world images
have shown that the proposed local membership KL divergence-based FCM (LMKLFCM) and
the local data and membership KL divergence-based entropy FCM (LDMKLFCM) algorithms
outperform several widely used FCM related algorithms. Moreover, the average runtimes of
all algorithms have been measured via simulation. In all runs, all algorithms start from the
same randomly generated initial conditions, as mentioned in the simulation section, and
stopped at the same fixed point. The LDMKLFCM, LMKLFCM, standard FCM, MEFCM, and
SFCM algorithms have provided average runtime of 1.5, 1.75, 1, 0.9 and 1 sec respectively. The
simulation results have been done using Matlab R2013b under windows on a processor of Intel
(R) core (TM) i3, CPU M370 2.4 GHZ, 4 GB RAM.

Recent Applications in Data Clustering50

Acknowledgements

The author would like to thank for funding the open access publication of this Chapter. Also,
the author would like to thank Prof. H. Selim, Dr. A. AbdelFattah and Eng. G. Gendy for their
contribution to this work.

Conflict of interest

No potential conflicts of interest to report.

Author details

Reda R. Gharieb1,2*

*Address all correspondence to: rrgharieb@gmail.com

1 Faculty of Engineering, Assiut University, Assiut, Egypt

2 Higher Institute of Engineering, Thebes Academy for Sciences, Cairo, Egypt

References

[1] Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition. 1993;
26(9):1277-1294

[2] Ravindraiah R, Tejaswini KA. Survey of image segmentation algorithms based on
expectation-maximization. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP).
2013;2:01-07

[3] Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annual
Review of Biomedical Engineering. 2000;2:315-337

[4] Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognition Letters. 2010;3:
651-666

[5] MacQueen J. Some methods for classification and analysis of multivariate observations.
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
1967;14:281-297

[6] Alsabti K, Ranka S, Singh V: An efficient k-means clustering algorithm. Electrical Engi-
neering and Computer Science. Paper 43

[7] Bezdek JC. Pattern Recognition with Objective Fuzzy Algorithms. New York: Plenum
Press; 1981

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

51

[8] Zadeh LA. Fuzzy sets. Information and Control. 1965;8:338-353

[9] Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ. Fuzzy c-means clustering with spatial
information for image segmentation. Computerized Medical Imaging and Graphics.
2005;30:9-15

[10] Miyamoto S, Ichihashi H, Honda K. Algorithms for Fuzzy Clustering. Heidelberg:
Springer; 2008

[11] Ahmed MN, Ymany S, Mohamed N, Farag A, Moriarty T. A modified fuzzy c-means
algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on
Medical Imaging. 2002;21:193-199

[12] Krinidis CSV. A robust fuzzy local information and C-means clustering algorithm. IEEE
Transactions on Image Processing. 2010;(5):1328-1337

[13] Guo Y, Liu K, Wu Q, Hong Q, Zhang H. A new spatial fuzzy c-means for spatial
clustering. Wseas Transactions on Computer. 2015;14:369-381

[14] Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorpo-
rating local information for image segmentation. Pattern Recognition. 2005;40:825-838

[15] Honda K, Ichihashi H. A new approach to fuzzification of memberships in cluster analy-
sis. Modeling Decisions for Artificial Intelligence. 2005:97-124

[16] Yao J, Dash M, Tan ST, Liu H. Entropy-based fuzzy clustering and fuzzy modeling. Fuzzy
Sets and Systems. 2000;113:381-388

[17] Yasuda M. Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and
Simulated Annealing. InTech Book of Simulated Annealing-Advances, Applications and
Hybridizations. 2012. DOI: 10.5772/48659

[18] Gharieb RR, Gendy G, Abdelfattah A. C-means clustering fuzzified by two membership
relative entropy functions approach incorporating local data information for noisy image
segmentation. Signal, Image and Video Processing. 2017;11:541-548. https://doi.org/10.
1007/s11760-016-0992-4

[19] Gharieb RR, Gendy G, Selim H. A hard C-means clustering algorithm incorporating
membership KL divergence and local data information for noisy image segmentation.
International Journal of Pattern Recognition and Artificial Intelligence. 2017:1-12. https://
doi.org/10.1142/S021800141850012X

[20] Gharieb RR, Gendy G, Abdelfattah A, Selim H. Adaptive local data and membership
based KL divergence incorporating C-means algorithm for fuzzy image segmentation.
Applied Soft Computing. 2017. https://doi.org/10.1016/j.asoc.2017.05.055

[21] Gharieb RR. Data Science- Scientific and Statistical Computing. Germany: Noor Publish-
ing; 2017

Recent Applications in Data Clustering52

[22] Gharieb RR, Gendy G. Fuzzy C-means with a local membership KL distance for medical
image segmentation. In: Proceedings of the IEEE International Conference on Biomedical
Engineering Conference (CIBEC 14); 11–13 December 2014; Cairo; IEEE; p. 47-50

[23] Pal NR, Bezdek JC. On cluster validity for the fuzzy c-means model. IEEE Transactions on
Fuzzy Systems. 1995;3:370-379

[24] Gharieb RR. Gendy fuzzy C-means with local membership based weighted pixel distance
and KL divergence for image segmentation. Journal of Pattern Recognition Research.
2015;1:53-60

[25] Wang W, Zhang Y. On fuzzy cluster validity indices. Fuzzy Sets and Systems. 2007;158:
2095-2117

[26] Online simulated brain web. Available at: http://brainweb.bic.mni.mcgill.ca/brainweb/

[27] Internet brain segmentation repository (ibsr). Available at: https://www.nitrc.org/pro-
jects/ibsr

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

53

[8] Zadeh LA. Fuzzy sets. Information and Control. 1965;8:338-353

[9] Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ. Fuzzy c-means clustering with spatial
information for image segmentation. Computerized Medical Imaging and Graphics.
2005;30:9-15

[10] Miyamoto S, Ichihashi H, Honda K. Algorithms for Fuzzy Clustering. Heidelberg:
Springer; 2008

[11] Ahmed MN, Ymany S, Mohamed N, Farag A, Moriarty T. A modified fuzzy c-means
algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on
Medical Imaging. 2002;21:193-199

[12] Krinidis CSV. A robust fuzzy local information and C-means clustering algorithm. IEEE
Transactions on Image Processing. 2010;(5):1328-1337

[13] Guo Y, Liu K, Wu Q, Hong Q, Zhang H. A new spatial fuzzy c-means for spatial
clustering. Wseas Transactions on Computer. 2015;14:369-381

[14] Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorpo-
rating local information for image segmentation. Pattern Recognition. 2005;40:825-838

[15] Honda K, Ichihashi H. A new approach to fuzzification of memberships in cluster analy-
sis. Modeling Decisions for Artificial Intelligence. 2005:97-124

[16] Yao J, Dash M, Tan ST, Liu H. Entropy-based fuzzy clustering and fuzzy modeling. Fuzzy
Sets and Systems. 2000;113:381-388

[17] Yasuda M. Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and
Simulated Annealing. InTech Book of Simulated Annealing-Advances, Applications and
Hybridizations. 2012. DOI: 10.5772/48659

[18] Gharieb RR, Gendy G, Abdelfattah A. C-means clustering fuzzified by two membership
relative entropy functions approach incorporating local data information for noisy image
segmentation. Signal, Image and Video Processing. 2017;11:541-548. https://doi.org/10.
1007/s11760-016-0992-4

[19] Gharieb RR, Gendy G, Selim H. A hard C-means clustering algorithm incorporating
membership KL divergence and local data information for noisy image segmentation.
International Journal of Pattern Recognition and Artificial Intelligence. 2017:1-12. https://
doi.org/10.1142/S021800141850012X

[20] Gharieb RR, Gendy G, Abdelfattah A, Selim H. Adaptive local data and membership
based KL divergence incorporating C-means algorithm for fuzzy image segmentation.
Applied Soft Computing. 2017. https://doi.org/10.1016/j.asoc.2017.05.055

[21] Gharieb RR. Data Science- Scientific and Statistical Computing. Germany: Noor Publish-
ing; 2017

Recent Applications in Data Clustering52

[22] Gharieb RR, Gendy G. Fuzzy C-means with a local membership KL distance for medical
image segmentation. In: Proceedings of the IEEE International Conference on Biomedical
Engineering Conference (CIBEC 14); 11–13 December 2014; Cairo; IEEE; p. 47-50

[23] Pal NR, Bezdek JC. On cluster validity for the fuzzy c-means model. IEEE Transactions on
Fuzzy Systems. 1995;3:370-379

[24] Gharieb RR. Gendy fuzzy C-means with local membership based weighted pixel distance
and KL divergence for image segmentation. Journal of Pattern Recognition Research.
2015;1:53-60

[25] Wang W, Zhang Y. On fuzzy cluster validity indices. Fuzzy Sets and Systems. 2007;158:
2095-2117

[26] Online simulated brain web. Available at: http://brainweb.bic.mni.mcgill.ca/brainweb/

[27] Internet brain segmentation repository (ibsr). Available at: https://www.nitrc.org/pro-
jects/ibsr

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

53

Chapter 4

Centroid-Based Lexical Clustering

Khaled Abdalgader

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75433

Provisional chapter

Centroid-Based Lexical Clustering

Khaled Abdalgader

Additional information is available at the end of the chapter

Abstract

Conventional lexical-clustering algorithms treat text fragments as a mixed collection of
words, with a semantic similarity between them calculated based on the term of how
many the particular word occurs within the compared fragments. Whereas this technique
is appropriate for clustering large-sized textual collections, it operates poorly when clus-
tering small-sized texts such as sentences. This is due to compared sentences that may be
linguistically similar despite having no words in common. This chapter presents a new
version of the original k-means method for sentence-level text clustering that is relay on
the idea of use of the related synonyms in order to construct the rich semantic vectors.
These vectors represent a sentence using linguistic information resulting from a lexical
database founded to determine the actual sense to a word, based on the context in which it
occurs. Therefore, while traditional k-means method application is relay on calculating the
distance between patterns, the new proposed version operates by calculating the semantic
similarity between sentences. This allows it to capture a higher degree of semantic or
linguistic information existing within the clustered sentences. Experimental results illus-
trate that the proposed version of clustering algorithm performs favorably against other
well-known clustering algorithms on several standard datasets.

Keywords: semantic similarity, sentence-level text clustering, word sense identification,
lexical resource

1. Introduction

Although lexical clustering at the document-level text is well studied in the natural language
processing (NLP), computational linguistic, and knowledge discovery literature, clustering at
the sentence-text level is challenged by the fact that word frequency—possible frequent occur-
rence of words from textual collection—on which most text semantic similarity methods are

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75433

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 4

Centroid-Based Lexical Clustering

Khaled Abdalgader

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75433

Provisional chapter

Centroid-Based Lexical Clustering

Khaled Abdalgader

Additional information is available at the end of the chapter

Abstract

Conventional lexical-clustering algorithms treat text fragments as a mixed collection of
words, with a semantic similarity between them calculated based on the term of how
many the particular word occurs within the compared fragments. Whereas this technique
is appropriate for clustering large-sized textual collections, it operates poorly when clus-
tering small-sized texts such as sentences. This is due to compared sentences that may be
linguistically similar despite having no words in common. This chapter presents a new
version of the original k-means method for sentence-level text clustering that is relay on
the idea of use of the related synonyms in order to construct the rich semantic vectors.
These vectors represent a sentence using linguistic information resulting from a lexical
database founded to determine the actual sense to a word, based on the context in which it
occurs. Therefore, while traditional k-means method application is relay on calculating the
distance between patterns, the new proposed version operates by calculating the semantic
similarity between sentences. This allows it to capture a higher degree of semantic or
linguistic information existing within the clustered sentences. Experimental results illus-
trate that the proposed version of clustering algorithm performs favorably against other
well-known clustering algorithms on several standard datasets.

Keywords: semantic similarity, sentence-level text clustering, word sense identification,
lexical resource

1. Introduction

Although lexical clustering at the document-level text is well studied in the natural language
processing (NLP), computational linguistic, and knowledge discovery literature, clustering at
the sentence-text level is challenged by the fact that word frequency—possible frequent occur-
rence of words from textual collection—on which most text semantic similarity methods are

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75433

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

based, may be absent between two semantically similar text fragments. To solve this problem,
several sentence-level text similarity methods have recently been established [1–17]1.

The sentence similarity measures proposed by Li et al. [1], Mihalcea et al. [2], and Wang et al.
[18] have two major features in common. Firstly, rather than using all possible features from
applied external textual collections to representing sentences in a vector space model [19], only
the words appearing in the compared sentences are used, thus solving the issue of data
sparseness (i.e., high dimensionally) resulting from a randomly processing of the words (i.e.,
bag of words representation). Secondly, they use the available semantic and linguistic infor-
mation from the applied lexical sources to solve the issue of deficiency of word co-occurrence.

The measures of sentence-level text similarity such as presented by Abdalgader and Skabar
[10] (the latter of which we use in this chapter and described later in Section 2) depend in a way
of using the word-related synonyms to calculating the semantic similarity between words.
Unlike existing measure of short text semantic similarity, which use the exact words that
appear in the compared sentences, this similarity method creates an expansion word set for
each sentence using related synonyms of the sense-disambiguated words in that sentence. This
way lead to provide a richer and highly connected semantic context to estimate sentence
similarity through better utilization of the possible semantic information from the available
lexical resources such as WordNet [20, 21]. For each of the sentences being calculated for their
similarity, a word sense identification step is first applied in order to determine the correct sense
based on the surrounding context [22]. A synonym expansion step is then applied, resulting in
a richer and fully connected semantic context from which to estimate semantic vectors. The
similarity between these vectors can then be calculated using a standard vector space similar-
ity measure (i.e., cosine measure).

Several text-clustering methods: however, have been existed in the study [18, 23–37, 38–40, 42],
and a majority of them consider the matrix of semantic similarities between words as input
only. The k-medoids [30, 31] is one of these methods, which is considered as a developed
version of k-means method in which centroids are restricted to being data patterns (i.e.,
points). However, a problem with the k-medoid method is that it is highly sensitive to the
random selection (i.e., initial) of centroids, and in empirical executions, it is often requiring
to be executed many times with different initialization settings. To solve this issue with
k-medoids, Frey and Dueck [35] proposed Affinity Propagation, a graph-based algorithm that
concurrently does take all data points as possible centroids (i.e., exemplars). Processing each
data point as a node in a graph, affinity propagation recursively transfers real-valued mes-
sages along the vertices of the graph until a required set of possible centroids are achieved.

Another graph-based clustering method that depends on matrix decomposition techniques
from the linear algebra theories is a spectral-clustering algorithm [18, 36, 37, 39, 41]. Rather
than clustering data patterns in the traditional vector space model, it associated data patterns
together with the space resulted from eigen-vectors linked with the top eigen-values and then
apply clustering in this new transformed space, usually applying a k-means method. One of

1
This chapter adapts the journal version that appeared in the IAENG International Journal of Computer Science, 44:4,
IJCS_44_4_12 [42].

Recent Applications in Data Clustering56

the benefits of this method is that it has the ability to classify non-convex classes, which is
challenging when clustering by using k-means method (i.e., typical feature space). Since
spectral-clustering method requires only a matrix comprising pairwise similarity as input, it is
easy to apply it to the sentence-level text-clustering task [18, 29].

Erkan and Radev [43], Mihalcea and Tarau [44], and Fang et al. [46] have applied a PageRank
[45] as a centrality measure in the task of document summarization, in which the aim is to rank
sentences regarding their role in the document being summarized. Importantly, Skabar and
Abdalgader [29] proposed a new fuzzy sentence-level text-clustering method that also uses
PageRank as a centrality measure, and it allows clustered sentences to belong to all classes
with different degrees of similarity (i.e., membership). The nation of this fuzzy clustering is
required in the case of document summarization, in which a sentence may be linguistically
similar or related to more than one topic [14, 29, 47].

The contribution presented in this chapter is a new version of the original k-means method for
sentence-level text clustering that is dependent on the idea of using the related synonym sets to
create rich and highly connected semantic vectors [42]. These vectors characterize sentence
using semantic information derived from a WordNet to determine the actual sense to a word,
based on the surrounding context. Thus, while the original k-means method is relay on
calculating the distance between patterns, the new version is operating by calculating the
semantic similarity between sentences. This allows it to capture more semantic information
accessible within the clustered sentences. The result is a centroid-based lexical-clustering
method which can be used in any application in which the relationship between patterns is
expressed in terms of pairwise semantic similarities. We apply the algorithm to several bench-
mark datasets and compare its performance with that of well-known clustering methods such
as spectral clustering [36], affinity propagation [35], k-medoids [30, 31], STC-LE [39], and k-means
(TF-IDF) [40]). We claim that the satisfactory performance of new proposed version of the
centroid-based lexical-clustering method is due to its ability to better utilize and capture a
higher degree of semantic information available in used lexical resource.

The remainder of this chapter is organized as follows. Section 2 presents a representation scheme
for calculating sentence semantic similarity. Section 3 describes the proposed variation of original
k-means clustering (centroid-based) method. Empirical results are shown in Section 4, and
Section 5 concludes the chapter.

2. Semantic similarity representation scheme

By far, the most widely used text representation scheme in the natural language processing
activities is the vector space model (VSM), in which a text or a document is represented as a
point in a high-dimensional (Ni) input space. Each dimension in this input space (i.e., VSM)
corresponds to a unique word [19]. That is, a document dj is represented as a vector xj = (word1j,
word2j, word3j, …), where wordij is a weight that represents in some way the importance or
relatedness of word wordi in document dj and is dependent on the frequency of occurrence of
wordi in document dj. The semantic similarity between the compared documents is then

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

57

based, may be absent between two semantically similar text fragments. To solve this problem,
several sentence-level text similarity methods have recently been established [1–17]1.

The sentence similarity measures proposed by Li et al. [1], Mihalcea et al. [2], and Wang et al.
[18] have two major features in common. Firstly, rather than using all possible features from
applied external textual collections to representing sentences in a vector space model [19], only
the words appearing in the compared sentences are used, thus solving the issue of data
sparseness (i.e., high dimensionally) resulting from a randomly processing of the words (i.e.,
bag of words representation). Secondly, they use the available semantic and linguistic infor-
mation from the applied lexical sources to solve the issue of deficiency of word co-occurrence.

The measures of sentence-level text similarity such as presented by Abdalgader and Skabar
[10] (the latter of which we use in this chapter and described later in Section 2) depend in a way
of using the word-related synonyms to calculating the semantic similarity between words.
Unlike existing measure of short text semantic similarity, which use the exact words that
appear in the compared sentences, this similarity method creates an expansion word set for
each sentence using related synonyms of the sense-disambiguated words in that sentence. This
way lead to provide a richer and highly connected semantic context to estimate sentence
similarity through better utilization of the possible semantic information from the available
lexical resources such as WordNet [20, 21]. For each of the sentences being calculated for their
similarity, a word sense identification step is first applied in order to determine the correct sense
based on the surrounding context [22]. A synonym expansion step is then applied, resulting in
a richer and fully connected semantic context from which to estimate semantic vectors. The
similarity between these vectors can then be calculated using a standard vector space similar-
ity measure (i.e., cosine measure).

Several text-clustering methods: however, have been existed in the study [18, 23–37, 38–40, 42],
and a majority of them consider the matrix of semantic similarities between words as input
only. The k-medoids [30, 31] is one of these methods, which is considered as a developed
version of k-means method in which centroids are restricted to being data patterns (i.e.,
points). However, a problem with the k-medoid method is that it is highly sensitive to the
random selection (i.e., initial) of centroids, and in empirical executions, it is often requiring
to be executed many times with different initialization settings. To solve this issue with
k-medoids, Frey and Dueck [35] proposed Affinity Propagation, a graph-based algorithm that
concurrently does take all data points as possible centroids (i.e., exemplars). Processing each
data point as a node in a graph, affinity propagation recursively transfers real-valued mes-
sages along the vertices of the graph until a required set of possible centroids are achieved.

Another graph-based clustering method that depends on matrix decomposition techniques
from the linear algebra theories is a spectral-clustering algorithm [18, 36, 37, 39, 41]. Rather
than clustering data patterns in the traditional vector space model, it associated data patterns
together with the space resulted from eigen-vectors linked with the top eigen-values and then
apply clustering in this new transformed space, usually applying a k-means method. One of

1
This chapter adapts the journal version that appeared in the IAENG International Journal of Computer Science, 44:4,
IJCS_44_4_12 [42].

Recent Applications in Data Clustering56

the benefits of this method is that it has the ability to classify non-convex classes, which is
challenging when clustering by using k-means method (i.e., typical feature space). Since
spectral-clustering method requires only a matrix comprising pairwise similarity as input, it is
easy to apply it to the sentence-level text-clustering task [18, 29].

Erkan and Radev [43], Mihalcea and Tarau [44], and Fang et al. [46] have applied a PageRank
[45] as a centrality measure in the task of document summarization, in which the aim is to rank
sentences regarding their role in the document being summarized. Importantly, Skabar and
Abdalgader [29] proposed a new fuzzy sentence-level text-clustering method that also uses
PageRank as a centrality measure, and it allows clustered sentences to belong to all classes
with different degrees of similarity (i.e., membership). The nation of this fuzzy clustering is
required in the case of document summarization, in which a sentence may be linguistically
similar or related to more than one topic [14, 29, 47].

The contribution presented in this chapter is a new version of the original k-means method for
sentence-level text clustering that is dependent on the idea of using the related synonym sets to
create rich and highly connected semantic vectors [42]. These vectors characterize sentence
using semantic information derived from a WordNet to determine the actual sense to a word,
based on the surrounding context. Thus, while the original k-means method is relay on
calculating the distance between patterns, the new version is operating by calculating the
semantic similarity between sentences. This allows it to capture more semantic information
accessible within the clustered sentences. The result is a centroid-based lexical-clustering
method which can be used in any application in which the relationship between patterns is
expressed in terms of pairwise semantic similarities. We apply the algorithm to several bench-
mark datasets and compare its performance with that of well-known clustering methods such
as spectral clustering [36], affinity propagation [35], k-medoids [30, 31], STC-LE [39], and k-means
(TF-IDF) [40]). We claim that the satisfactory performance of new proposed version of the
centroid-based lexical-clustering method is due to its ability to better utilize and capture a
higher degree of semantic information available in used lexical resource.

The remainder of this chapter is organized as follows. Section 2 presents a representation scheme
for calculating sentence semantic similarity. Section 3 describes the proposed variation of original
k-means clustering (centroid-based) method. Empirical results are shown in Section 4, and
Section 5 concludes the chapter.

2. Semantic similarity representation scheme

By far, the most widely used text representation scheme in the natural language processing
activities is the vector space model (VSM), in which a text or a document is represented as a
point in a high-dimensional (Ni) input space. Each dimension in this input space (i.e., VSM)
corresponds to a unique word [19]. That is, a document dj is represented as a vector xj = (word1j,
word2j, word3j, …), where wordij is a weight that represents in some way the importance or
relatedness of word wordi in document dj and is dependent on the frequency of occurrence of
wordi in document dj. The semantic similarity between the compared documents is then

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

57

measured using the corresponding vectors, and a usually applied measure is the cosine of the
angle between the two vectors.

The VSM has been effective in information retrieval (IR) activities because it is able to suffi-
ciently utilize much of the semantic information expressed in the larger-sized textual collec-
tion. This is due to a large textual collection or documents may contain many shared words
with each other and thus be considered similar regarding to well-known vector space similar-
ity measures such as the cosine measure. However, in the case of sentence-level text (text
fragment), this is not the case, since two sentences may be carrying the same meaning (i.e.,
semantically similar) whereas comprising no similar words. For instance, consider the
sentences “Some places in the country are now in torrent crisis” and “The current flood disaster
affects the particular states.”Obviously, these two sentences have the same meaning, yet the only
common word they have is the, which does not carry any semantic information (i.e., stop
words). The reason why word co-occurrence may be rare or even absent in sentences is due
to the flexibility of natural language that allows humans to express the same meanings using
very different sentences in terms of structure and length [50]. Therefore, we need a sentence-
level text representation scheme which is superiorly able to utilize and capture all the possible
semantic information of sentences, thus enabling a more efficient similarity method to be used.

2.1. Measuring sentence-level text similarity

To calculate the semantic similarity between two sentences, we use sentence similarity method
that uses the sets of synonym expansion appeared in the compared sentences [10]. To demon-
strate how this measure work: however, suppose that Sentence1 and Sentence2 are the two
sentences being compared to calculate their semantic similarity, W1 and W2 are the sets of
sense-assigned words appeared in Sentence1 and Sentence2, respectively, sentence1 and sentence2
are the sets of synonym expansion appeared inW1 and W2, and U =W1 ∪ W2. Then, a semantic
vectors v1 and v2 have been created, according to sentence1 and sentence2.

Let wordj be the corresponding sense-assigned word from U and vij be the jth element of vi. In
this case, there are two instances to take into the account, relaying on whether wordj appears in
sentencei or not:

Instance 1: If wordj exists in sentencei, then set vij equal to the value of 1, this is based on the
semantic similarity of the same words in the WordNet.

Instance 2: If wordj does not exist in sentencei, then compute the semantic similarity between
compared words by using one of the WordNet-based word-to-word similarity measures (i.e.,
J&C measure) [51]. The final similarity score to vij is the highest of these scores between wordj
and each sentencei.

Once the vectors (v1 and v2) have been constructed, the semantic similarity between two
sentences can be determined using a cosine similarity measure between two constructed
vectors as

Similarity Sentence1; Sentence2ð Þ ¼ v1:v2ð Þ= jv1kv2jð Þ (1)

Recent Applications in Data Clustering58

2.2. Sentence-level clustering algorithm

In this section, we firstly describe the new proposed version of the original k-means clustering
algorithm which we called it centroid-based lexical-clustering (CBLC) algorithm. Then, we
describe how a cluster centroid can be constructed and defined. The remaining subsections
discuss the issues of calculating the semantic similarity between sentences and clustering
centroid, and other related technical issues such as empirical settings and space and time
complexity.

2.3. Centroid-based lexical clustering

Algorithm 1. Centroid-Based Lexical Clustering (CBLC).

Input: Sentences to be clustered S = {Si | i = 1 to TN}

Classes # k

Output:Membership values of each cluster πj
iji ¼ 1::TN; j ¼ 1::k

n o
where πj

i is the membership

value of sentences i to cluster j.

1. //Randomly distribute the sentences into k classes

2. for i = 1 to TN

3. if i ≤ k

4. j + =1

5. πj
i= Si //Sentencei

6. else

7. j = 1

8. πj
i= Si //Sentencei

9. end

10. repeat until there is no move (until convergence)

11. //Define or determine the centroid for each class (cluster)

12. for j = 1 to k

13. Mj = union-set {all possible synonym occurring in the cluster j} //U set

14. end

15. //Compute the similarity between each sentence (Si) to each cluster centroid

16. for j = 1 to k

17. similarity(Mj, Sm) // Sm is sentences related to cluster j, {m = 1.. n}.

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

59

measured using the corresponding vectors, and a usually applied measure is the cosine of the
angle between the two vectors.

The VSM has been effective in information retrieval (IR) activities because it is able to suffi-
ciently utilize much of the semantic information expressed in the larger-sized textual collec-
tion. This is due to a large textual collection or documents may contain many shared words
with each other and thus be considered similar regarding to well-known vector space similar-
ity measures such as the cosine measure. However, in the case of sentence-level text (text
fragment), this is not the case, since two sentences may be carrying the same meaning (i.e.,
semantically similar) whereas comprising no similar words. For instance, consider the
sentences “Some places in the country are now in torrent crisis” and “The current flood disaster
affects the particular states.”Obviously, these two sentences have the same meaning, yet the only
common word they have is the, which does not carry any semantic information (i.e., stop
words). The reason why word co-occurrence may be rare or even absent in sentences is due
to the flexibility of natural language that allows humans to express the same meanings using
very different sentences in terms of structure and length [50]. Therefore, we need a sentence-
level text representation scheme which is superiorly able to utilize and capture all the possible
semantic information of sentences, thus enabling a more efficient similarity method to be used.

2.1. Measuring sentence-level text similarity

To calculate the semantic similarity between two sentences, we use sentence similarity method
that uses the sets of synonym expansion appeared in the compared sentences [10]. To demon-
strate how this measure work: however, suppose that Sentence1 and Sentence2 are the two
sentences being compared to calculate their semantic similarity, W1 and W2 are the sets of
sense-assigned words appeared in Sentence1 and Sentence2, respectively, sentence1 and sentence2
are the sets of synonym expansion appeared inW1 and W2, and U =W1 ∪ W2. Then, a semantic
vectors v1 and v2 have been created, according to sentence1 and sentence2.

Let wordj be the corresponding sense-assigned word from U and vij be the jth element of vi. In
this case, there are two instances to take into the account, relaying on whether wordj appears in
sentencei or not:

Instance 1: If wordj exists in sentencei, then set vij equal to the value of 1, this is based on the
semantic similarity of the same words in the WordNet.

Instance 2: If wordj does not exist in sentencei, then compute the semantic similarity between
compared words by using one of the WordNet-based word-to-word similarity measures (i.e.,
J&C measure) [51]. The final similarity score to vij is the highest of these scores between wordj
and each sentencei.

Once the vectors (v1 and v2) have been constructed, the semantic similarity between two
sentences can be determined using a cosine similarity measure between two constructed
vectors as

Similarity Sentence1; Sentence2ð Þ ¼ v1:v2ð Þ= jv1kv2jð Þ (1)

Recent Applications in Data Clustering58

2.2. Sentence-level clustering algorithm

In this section, we firstly describe the new proposed version of the original k-means clustering
algorithm which we called it centroid-based lexical-clustering (CBLC) algorithm. Then, we
describe how a cluster centroid can be constructed and defined. The remaining subsections
discuss the issues of calculating the semantic similarity between sentences and clustering
centroid, and other related technical issues such as empirical settings and space and time
complexity.

2.3. Centroid-based lexical clustering

Algorithm 1. Centroid-Based Lexical Clustering (CBLC).

Input: Sentences to be clustered S = {Si | i = 1 to TN}

Classes # k

Output:Membership values of each cluster πj
iji ¼ 1::TN; j ¼ 1::k

n o
where πj

i is the membership

value of sentences i to cluster j.

1. //Randomly distribute the sentences into k classes

2. for i = 1 to TN

3. if i ≤ k

4. j + =1

5. πj
i= Si //Sentencei

6. else

7. j = 1

8. πj
i= Si //Sentencei

9. end

10. repeat until there is no move (until convergence)

11. //Define or determine the centroid for each class (cluster)

12. for j = 1 to k

13. Mj = union-set {all possible synonym occurring in the cluster j} //U set

14. end

15. //Compute the similarity between each sentence (Si) to each cluster centroid

16. for j = 1 to k

17. similarity(Mj, Sm) // Sm is sentences related to cluster j, {m = 1.. n}.

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

59

18. end

19. //Re-locate each sentence to the corresponding cluster centroid to which it is similar to.

20. re-locate(Si, Mj)

21. End

Given a k set (i.e., clusters), partition all the data points (i.e., sentences) randomly in given sets
(i.e., initialization), each with a determined centroid (mean) that demonstrates as representative
of the cluster. There are iterations process that rearrange these means or centroid of the
clusters, which is based on moving each sentence to the cluster corresponding to the centroid
to which it is closest (i.e., semantically similar). Redetermine the cluster centroids based on the
new located sentences belonging to them. Then, the following iteration is repeated until the
centroids do not move (until convergence). The new proposed version of the original k-means
clustering algorithm is as follows.

2.4. Determining a clustering centroid

In the standard vector space model, the text such as a document is processed as a vector (i.e.,
its elements are the tf-idf scores), a cluster centroid can be determined by taking into account
the vector average over all text fragments related to that cluster. This is experienced very hard
using the above-discussed text representation scheme, since the semantic vector for a sentence
is not unique, but depends on the length of the compared sentence context. However, just as a
context may be constructed by two sentences, it is direct to apply this nation to defining the
context over a collection of sentences. While a cluster is just such text fragments, we can define
the centroid of a cluster as the union set of all associated synonyms of disambiguated words
existing in the sentences relating to that cluster. Thus, if Sentence1, Sentence2, … SentenceN are
sentences belonging to some cluster, the centroid of the cluster, which we denote as Mj, is just
the union set {word1, word2, .. wordn}, where n is the number of distinct synonym words
(sentencei) inSentence1∪Sentence2∪…∪SentenceN. Figure 1 exemplifies the idea of determining a
clustering centroid.

Figure 1. Clustering centroid, where sentencei (si) is a set of synonym words corresponding to Sentencei (Si).

Recent Applications in Data Clustering60

2.5. Calculating similarity between sentence and cluster centroid

When the CBLC algorithm calculates the semantic similarity between sentences, there are two
cases to take into account. Firstly, if a sentence does belong to the cluster and secondly, if a
sentence does not belong to the cluster. This case is straightforward to implement. Since the
cluster centroids are represented in the same way as a union set (synonyms), the similarity
between a sentence and a cluster centroid (i.e., two sentences) can be calculated by using
sentence similarity measure, as described earlier. There is, however, a subtlety in the first case,
which is not immediately apparent.

To demonstrate how this semantic similarity is calculated, assume that Sentence1 = {word1, word2,
word3} and Sentence2 = {word4, word5} are not semantically similar. Comparing these sentences (S1
and S2), we obtain the semantic vectors v1 = {1,1,1,0,0} and v2 = {0,0,0,1,1} which obviously have a
cosine value of zero and is reliable with the fact that they are no semantic relation between them.
Now suppose, however, that Sentence1 (S1) and Sentence2 (S2) are in the same cluster. If we create
the cluster union set as mentioned earlier (i.e., by taking the union of all synonym words
appearing in all sentences in that cluster), we obtain Mj = {word1, word2, word3, word4, word5}. If
we now calculate the semantic similarity between Mj and S1 by using the cosine measure, we
then obtain the vectors vj = {1,1,1,1,1} and v1 = {1,1,1,0,0}, which have a similarity score equal to
0.77. An issue is clearly seen here, since S1 and S2 are not similar and their centroid would not
carry any useful meaning. This issue in which we would not expect the similarity value like this
has happened due to all of the words of S1 already existing in the cluster centroid Mj. We can
solve this problem by defining the centroid using all sentences in the cluster except the sentence
with which the cluster centroid is being currently compared. Therefore, assuming that we have a
cluster containing sentences Sentence1 … SentenceN, and we want the similarity between this
cluster and a sentence SG appearing in the cluster, we would determine the cluster centroid
using only the words appearing in Sentence1∪Sentence2∪…∪SentenceG�1∪Gþ1∪…∪SentenceN; that
is, we omit SG in calculating the cluster centroid.

2.6. Space and time complexity of CBLC algorithm

It has been founded that the proposed algorithm is no more expansive comparing with the basic
k-means [52] and spectral-clustering [18, 37] algorithms regarding the space complexity (i.e., the
three algorithms require the storage of the same similarity scores). The time (i.e., computation)
complexity of a new version of the standard k-means: however, far exceeds that of basic k-means;
and spectral-clustering algorithms. Furthermore, the computation complexities appeared in the
stage of calculating the similarity between each sentence and corresponding centroid; this is due
to representation of the text in the sentence similarity measure we have been applied within this
clustering algorithm. To demonstrate this complexity, suppose that operation time unit for
calculating semantic similarity between each sentence and cluster centroid is SentSim, the oper-
ation time unit for recalculating cluster centroids is ReTime, the total number of sentences in the
used dataset is tn, the number of clusters is k, and the iteration loop of the proposed algorithm is
LoopI. Therefore, essentially, the two following computations are required for each and every
clustering iteration: (i) tn.k times sentence to cluster centroid similarity calculation; (ii) k times for

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

61

18. end

19. //Re-locate each sentence to the corresponding cluster centroid to which it is similar to.

20. re-locate(Si, Mj)

21. End

Given a k set (i.e., clusters), partition all the data points (i.e., sentences) randomly in given sets
(i.e., initialization), each with a determined centroid (mean) that demonstrates as representative
of the cluster. There are iterations process that rearrange these means or centroid of the
clusters, which is based on moving each sentence to the cluster corresponding to the centroid
to which it is closest (i.e., semantically similar). Redetermine the cluster centroids based on the
new located sentences belonging to them. Then, the following iteration is repeated until the
centroids do not move (until convergence). The new proposed version of the original k-means
clustering algorithm is as follows.

2.4. Determining a clustering centroid

In the standard vector space model, the text such as a document is processed as a vector (i.e.,
its elements are the tf-idf scores), a cluster centroid can be determined by taking into account
the vector average over all text fragments related to that cluster. This is experienced very hard
using the above-discussed text representation scheme, since the semantic vector for a sentence
is not unique, but depends on the length of the compared sentence context. However, just as a
context may be constructed by two sentences, it is direct to apply this nation to defining the
context over a collection of sentences. While a cluster is just such text fragments, we can define
the centroid of a cluster as the union set of all associated synonyms of disambiguated words
existing in the sentences relating to that cluster. Thus, if Sentence1, Sentence2, … SentenceN are
sentences belonging to some cluster, the centroid of the cluster, which we denote as Mj, is just
the union set {word1, word2, .. wordn}, where n is the number of distinct synonym words
(sentencei) inSentence1∪Sentence2∪…∪SentenceN. Figure 1 exemplifies the idea of determining a
clustering centroid.

Figure 1. Clustering centroid, where sentencei (si) is a set of synonym words corresponding to Sentencei (Si).

Recent Applications in Data Clustering60

2.5. Calculating similarity between sentence and cluster centroid

When the CBLC algorithm calculates the semantic similarity between sentences, there are two
cases to take into account. Firstly, if a sentence does belong to the cluster and secondly, if a
sentence does not belong to the cluster. This case is straightforward to implement. Since the
cluster centroids are represented in the same way as a union set (synonyms), the similarity
between a sentence and a cluster centroid (i.e., two sentences) can be calculated by using
sentence similarity measure, as described earlier. There is, however, a subtlety in the first case,
which is not immediately apparent.

To demonstrate how this semantic similarity is calculated, assume that Sentence1 = {word1, word2,
word3} and Sentence2 = {word4, word5} are not semantically similar. Comparing these sentences (S1
and S2), we obtain the semantic vectors v1 = {1,1,1,0,0} and v2 = {0,0,0,1,1} which obviously have a
cosine value of zero and is reliable with the fact that they are no semantic relation between them.
Now suppose, however, that Sentence1 (S1) and Sentence2 (S2) are in the same cluster. If we create
the cluster union set as mentioned earlier (i.e., by taking the union of all synonym words
appearing in all sentences in that cluster), we obtain Mj = {word1, word2, word3, word4, word5}. If
we now calculate the semantic similarity between Mj and S1 by using the cosine measure, we
then obtain the vectors vj = {1,1,1,1,1} and v1 = {1,1,1,0,0}, which have a similarity score equal to
0.77. An issue is clearly seen here, since S1 and S2 are not similar and their centroid would not
carry any useful meaning. This issue in which we would not expect the similarity value like this
has happened due to all of the words of S1 already existing in the cluster centroid Mj. We can
solve this problem by defining the centroid using all sentences in the cluster except the sentence
with which the cluster centroid is being currently compared. Therefore, assuming that we have a
cluster containing sentences Sentence1 … SentenceN, and we want the similarity between this
cluster and a sentence SG appearing in the cluster, we would determine the cluster centroid
using only the words appearing in Sentence1∪Sentence2∪…∪SentenceG�1∪Gþ1∪…∪SentenceN; that
is, we omit SG in calculating the cluster centroid.

2.6. Space and time complexity of CBLC algorithm

It has been founded that the proposed algorithm is no more expansive comparing with the basic
k-means [52] and spectral-clustering [18, 37] algorithms regarding the space complexity (i.e., the
three algorithms require the storage of the same similarity scores). The time (i.e., computation)
complexity of a new version of the standard k-means: however, far exceeds that of basic k-means;
and spectral-clustering algorithms. Furthermore, the computation complexities appeared in the
stage of calculating the similarity between each sentence and corresponding centroid; this is due
to representation of the text in the sentence similarity measure we have been applied within this
clustering algorithm. To demonstrate this complexity, suppose that operation time unit for
calculating semantic similarity between each sentence and cluster centroid is SentSim, the oper-
ation time unit for recalculating cluster centroids is ReTime, the total number of sentences in the
used dataset is tn, the number of clusters is k, and the iteration loop of the proposed algorithm is
LoopI. Therefore, essentially, the two following computations are required for each and every
clustering iteration: (i) tn.k times sentence to cluster centroid similarity calculation; (ii) k times for

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

61

relocate cluster centroid. As a result, the time complexity of proposed version can be defined as
OCBLC = (SentSim. tn. k + ReTime. k). LoopI.

Since SentSim> > ReTime and tn> > k, the overall time complexity of CBLC algorithm is found O
(tn), which means that computational complexity is relative to the size of the dataset that needs
to be clustered.

3. Experiments and results

This section presents the performance of the CBLC algorithm to seven benchmark datasets,
and the results are compared with that of other well-known clustering algorithms; spectral
clustering [18, 36], affinity propagation [35], k-medoids algorithm [30, 31], STC-LE [39], and
k-means (TF-IDF) [40]. We first describe the seven benchmark datasets, discuss cluster eval-
uation criteria, and we then report the experimental results (Figure 2).

3.1. Benchmark datasets

While CBLC algorithm is obviously appropriate to tasks involving sentence clustering, the
algorithm is applied to generic in nature standard datasets such as Reuters-21,578 dataset [29],
Aural Sonar dataset [29, 53], Protein dataset [29, 54], Voting dataset [29, 55], SearchSnippets [38, 56],
StackOverflow [38], and Biomedical [38].

Figure 2. CBLC algorithm performance on seven benchmark datasets.

Recent Applications in Data Clustering62

The Reuters-21,578 is the commonly used dataset for text classification task. It contains more
than 20,000 documents from over 600 classes. The experimental results presented in this
chapter only use a subset containing only 1833 text fragments, each of them are labeled as
relating to one of 10 distinguished classes. The total number of the text fragments in each of the
10 classes is 354, 333, 258, 210, 155, 134, 113, 100, 90, and 70, respectively.

In the Aural Sonar dataset [53], two randomly selected people were asked to assign a similarity
score between 1 and 5 to all pairs of signals returned from a broadband active sonar system.
The two obtained scores from participated people were added to produce a 100 � 100 similar-
ity matrix with values ranging from 2 to 10.

The Protein dataset [54, 57] consists of dissimilarity values for 226 samples over nine classes.
We use the reduced set [57] of 213 proteins from four classes that result from removing classes
with fewer than seven samples.

The Voting dataset is a two-class classification task with around 435 samples (text fragments).
Similarity scores in the form of a matrix table were computed from the data in the categorical
domain.

The SearchSnippets dataset consists of eight different predefined domains (i.e., classes), which
was generated from the web-search-transaction result activity.

The StackOverflow dataset consists of 3,370,528 samples collected through the period of July
31, 2012, to August 14, 2012 (https//:www.kaggle.com). In this chapter, we randomly select
20,000 question titles from 20 different classes.

The Biomedical is a challenge dataset published in BioASQ’s official website, and we randomly
select 20,000 paper titles from 20 different MeSH major classes.

3.2. Clustering evaluation criteria

Since complete cluster (i.e., all objects from a single class are assigned to a single cluster) and
homogeneous cluster (i.e., each cluster contains only objects from a single class) are hardly
achieved, we aim to reach a satisfactory balance between these two approaches. Therefore,
we apply five well-known clustering criteria in order to evaluate the performance of the
proposed algorithm, which are Purity, Entropy, V-measure, Rand Index, and F-measure.

Entropy and Purity [58]. Entropy measure is used to show how the clusters of sentences are
partitioned within each cluster, and it is known as the average of weighted values in each
cluster entropy over all clusters C = {c1, c2, c3, … cn}:

Entropy ¼
X∣L∣

j¼1

∣wj∣
N

� 1
log∣C∣

X∣C∣

i¼1

∣wj ∩ ci∣
∣wj∣

log
∣wj ∩ ci∣
∣wj∣

 !
(2)

The purity of a cluster is the fraction of the cluster size that the largest class of sentences
assigned to that cluster represents, that is,

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

63

relocate cluster centroid. As a result, the time complexity of proposed version can be defined as
OCBLC = (SentSim. tn. k + ReTime. k). LoopI.

Since SentSim> > ReTime and tn> > k, the overall time complexity of CBLC algorithm is found O
(tn), which means that computational complexity is relative to the size of the dataset that needs
to be clustered.

3. Experiments and results

This section presents the performance of the CBLC algorithm to seven benchmark datasets,
and the results are compared with that of other well-known clustering algorithms; spectral
clustering [18, 36], affinity propagation [35], k-medoids algorithm [30, 31], STC-LE [39], and
k-means (TF-IDF) [40]. We first describe the seven benchmark datasets, discuss cluster eval-
uation criteria, and we then report the experimental results (Figure 2).

3.1. Benchmark datasets

While CBLC algorithm is obviously appropriate to tasks involving sentence clustering, the
algorithm is applied to generic in nature standard datasets such as Reuters-21,578 dataset [29],
Aural Sonar dataset [29, 53], Protein dataset [29, 54], Voting dataset [29, 55], SearchSnippets [38, 56],
StackOverflow [38], and Biomedical [38].

Figure 2. CBLC algorithm performance on seven benchmark datasets.

Recent Applications in Data Clustering62

The Reuters-21,578 is the commonly used dataset for text classification task. It contains more
than 20,000 documents from over 600 classes. The experimental results presented in this
chapter only use a subset containing only 1833 text fragments, each of them are labeled as
relating to one of 10 distinguished classes. The total number of the text fragments in each of the
10 classes is 354, 333, 258, 210, 155, 134, 113, 100, 90, and 70, respectively.

In the Aural Sonar dataset [53], two randomly selected people were asked to assign a similarity
score between 1 and 5 to all pairs of signals returned from a broadband active sonar system.
The two obtained scores from participated people were added to produce a 100 � 100 similar-
ity matrix with values ranging from 2 to 10.

The Protein dataset [54, 57] consists of dissimilarity values for 226 samples over nine classes.
We use the reduced set [57] of 213 proteins from four classes that result from removing classes
with fewer than seven samples.

The Voting dataset is a two-class classification task with around 435 samples (text fragments).
Similarity scores in the form of a matrix table were computed from the data in the categorical
domain.

The SearchSnippets dataset consists of eight different predefined domains (i.e., classes), which
was generated from the web-search-transaction result activity.

The StackOverflow dataset consists of 3,370,528 samples collected through the period of July
31, 2012, to August 14, 2012 (https//:www.kaggle.com). In this chapter, we randomly select
20,000 question titles from 20 different classes.

The Biomedical is a challenge dataset published in BioASQ’s official website, and we randomly
select 20,000 paper titles from 20 different MeSH major classes.

3.2. Clustering evaluation criteria

Since complete cluster (i.e., all objects from a single class are assigned to a single cluster) and
homogeneous cluster (i.e., each cluster contains only objects from a single class) are hardly
achieved, we aim to reach a satisfactory balance between these two approaches. Therefore,
we apply five well-known clustering criteria in order to evaluate the performance of the
proposed algorithm, which are Purity, Entropy, V-measure, Rand Index, and F-measure.

Entropy and Purity [58]. Entropy measure is used to show how the clusters of sentences are
partitioned within each cluster, and it is known as the average of weighted values in each
cluster entropy over all clusters C = {c1, c2, c3, … cn}:

Entropy ¼
X∣L∣

j¼1

∣wj∣
N

� 1
log∣C∣

X∣C∣

i¼1

∣wj ∩ ci∣
∣wj∣

log
∣wj ∩ ci∣
∣wj∣

 !
(2)

The purity of a cluster is the fraction of the cluster size that the largest class of sentences
assigned to that cluster represents, that is,

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

63

Pj ¼ 1
∣wj∣

max
i
jwj ∩ cij
� �

(3)

Overall purity is the weighted sum of the individual cluster purities and is given by

Purity ¼ 1
N

X∣L∣

j¼1
jwjj � Pj
� �

(4)

While purity and entropy are useful for comparing clusterings with the same number of
clusters, they are not reliable when comparing clusterings with different numbers of clusters.
This is because entropy and purity perform on how the sets of sentences are partitioned within
each cluster, and this will lead to homogeneity case. Highest scores however, of purity and
lowest scores of entropy are usually obtained when the total number of clusters is too big,
where this step will lead to being lowest in the completeness. The next measure we have used
considers both completeness and homogeneity approaches.

V-measure [59]. This is a measure that is known as the homogeneity and completeness har-
monic mean; that is, V = homogeneity * completeness / (homogeneity + completeness), where homo-
geneity and completeness are defined as homogeneity = 1 – H(C|L)/H(C) and completeness = 1 – H
(L|C)/H(L).

Eq. (5) can be written as follows, where

H Cð Þ ¼ �
X∣C∣

i¼1

∣ci∣
N

log
∣ci∣
N

, H Lð Þ ¼ �
X∣L∣

j¼1

∣wj∣
N

log
∣wj∣
N

H CjLð Þ ¼ �
X∣L∣

j¼1

X∣C∣

i¼1

∣wj ∩ ci∣
N

log
∣wj ∩ ci∣
∣wj∣

, and H LjCð Þ ¼ �
X∣C∣

i¼1

X∣L∣

j¼1

∣wj ∩ ci∣
N

log
∣wj ∩ ci∣
∣ci∣

(5)

Rand Index and F-measure. These measures depend on a combinatorial approach which con-
siders each possible pair of sentences. It is defined as Rand Index = (TP + FP)/(TP + FP + FN + TN),
where TP is a true positive (sentences corresponded to both same class and cluster), FP is a
false positive (sentences corresponded to the different classes but same cluster), FP is a false
positive (sentences corresponded to the different clusters but same class), and FN is a false
negative (sentences must correspond to both different clusters and classes).

The F-measure is another method widely applied in the information retrieval domain and is
defined as the harmonic mean of Precision (P) and Recall (R), that is, F-measure = 2*P*R/
(P + R), where P = TP/(TP + FP) and R = TP/(TP + FN).

3.3. Results

Since CBLC algorithm is generic in nature and can in principal be applied to any lexical semantic
clustering domain, Figure 3 shows the results of applying it to the Reuters-21,578, Aural Sonar,
Protein, Voting, SearchSnippets, StackOverflow, and Biomedical datasets, respectively, by using the

Recent Applications in Data Clustering64

Purity, Entropy, V-measure, Rand Index, and F-measure evaluation measures. CBLC algorithm
however, requires an initial number of clusters in which we specified before the algorithm start.
This number was varied from 7 to 12 for Reuters-21,578, Aural Sonar, Protein, Voting, and
SearchSnippets datasets, and from 17 to 23 for StackOverflow and Biomedical datasets. This is
because we found a proper clustering performance. Note that the values in the figure are
averaged over 100 trials, and the best performance according to each measure is only presented.

Figures 3–9 show the clustering performance of CBLC algorithm comparing with that of
spectral clustering, affinity propagation, k-medoids, STC-LE, and k-means (TF-IDF), respec-
tively, on seven mentioned benchmark datasets using the five cluster evaluation criteria
described earlier. For the baselined (i.e., compared) methods, the total values of the used
evaluation measures (i.e., purity, entropy, V-measure, Rand Index, and F-measure) were in
each measure obtained by discovering a range of numbers starting from 7 to 23 clusters and
then considering that which performance is the best in overall clustering quality. The figured
empirical results for our proposed new version of standard k-means clustering and other
compared algorithms correspond to the best performance resulted from 200 time runs.

The empirical results demonstrate that CBLC algorithm significantly outperforms the other
baselined algorithms on all used datasets. In this experiment however, we knew a priori what
the real number of clusters was. Generally, we wish that the clustering algorithm could
automatically determine an actual number of clusters, since we would not have this informa-
tion. Even when run with a high initial number of clusters, CBLC algorithm was able to
converge to a solution containing not more than seven clusters (e.g., in case of Reuters-21,578
dataset), and from the figures, it can be again seen that the evaluation of these clusterings is
superior than that for the other baselined clustering algorithms.

Figure 3. CBLC algorithm and other compared algorithms performance on Reuters-21,578 dataset.

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

65

Pj ¼ 1
∣wj∣

max
i
jwj ∩ cij
� �

(3)

Overall purity is the weighted sum of the individual cluster purities and is given by

Purity ¼ 1
N

X∣L∣

j¼1
jwjj � Pj
� �

(4)

While purity and entropy are useful for comparing clusterings with the same number of
clusters, they are not reliable when comparing clusterings with different numbers of clusters.
This is because entropy and purity perform on how the sets of sentences are partitioned within
each cluster, and this will lead to homogeneity case. Highest scores however, of purity and
lowest scores of entropy are usually obtained when the total number of clusters is too big,
where this step will lead to being lowest in the completeness. The next measure we have used
considers both completeness and homogeneity approaches.

V-measure [59]. This is a measure that is known as the homogeneity and completeness har-
monic mean; that is, V = homogeneity * completeness / (homogeneity + completeness), where homo-
geneity and completeness are defined as homogeneity = 1 – H(C|L)/H(C) and completeness = 1 – H
(L|C)/H(L).

Eq. (5) can be written as follows, where

H Cð Þ ¼ �
X∣C∣

i¼1

∣ci∣
N

log
∣ci∣
N

, H Lð Þ ¼ �
X∣L∣

j¼1

∣wj∣
N

log
∣wj∣
N

H CjLð Þ ¼ �
X∣L∣

j¼1

X∣C∣

i¼1

∣wj ∩ ci∣
N

log
∣wj ∩ ci∣
∣wj∣

, and H LjCð Þ ¼ �
X∣C∣

i¼1

X∣L∣

j¼1

∣wj ∩ ci∣
N

log
∣wj ∩ ci∣
∣ci∣

(5)

Rand Index and F-measure. These measures depend on a combinatorial approach which con-
siders each possible pair of sentences. It is defined as Rand Index = (TP + FP)/(TP + FP + FN + TN),
where TP is a true positive (sentences corresponded to both same class and cluster), FP is a
false positive (sentences corresponded to the different classes but same cluster), FP is a false
positive (sentences corresponded to the different clusters but same class), and FN is a false
negative (sentences must correspond to both different clusters and classes).

The F-measure is another method widely applied in the information retrieval domain and is
defined as the harmonic mean of Precision (P) and Recall (R), that is, F-measure = 2*P*R/
(P + R), where P = TP/(TP + FP) and R = TP/(TP + FN).

3.3. Results

Since CBLC algorithm is generic in nature and can in principal be applied to any lexical semantic
clustering domain, Figure 3 shows the results of applying it to the Reuters-21,578, Aural Sonar,
Protein, Voting, SearchSnippets, StackOverflow, and Biomedical datasets, respectively, by using the

Recent Applications in Data Clustering64

Purity, Entropy, V-measure, Rand Index, and F-measure evaluation measures. CBLC algorithm
however, requires an initial number of clusters in which we specified before the algorithm start.
This number was varied from 7 to 12 for Reuters-21,578, Aural Sonar, Protein, Voting, and
SearchSnippets datasets, and from 17 to 23 for StackOverflow and Biomedical datasets. This is
because we found a proper clustering performance. Note that the values in the figure are
averaged over 100 trials, and the best performance according to each measure is only presented.

Figures 3–9 show the clustering performance of CBLC algorithm comparing with that of
spectral clustering, affinity propagation, k-medoids, STC-LE, and k-means (TF-IDF), respec-
tively, on seven mentioned benchmark datasets using the five cluster evaluation criteria
described earlier. For the baselined (i.e., compared) methods, the total values of the used
evaluation measures (i.e., purity, entropy, V-measure, Rand Index, and F-measure) were in
each measure obtained by discovering a range of numbers starting from 7 to 23 clusters and
then considering that which performance is the best in overall clustering quality. The figured
empirical results for our proposed new version of standard k-means clustering and other
compared algorithms correspond to the best performance resulted from 200 time runs.

The empirical results demonstrate that CBLC algorithm significantly outperforms the other
baselined algorithms on all used datasets. In this experiment however, we knew a priori what
the real number of clusters was. Generally, we wish that the clustering algorithm could
automatically determine an actual number of clusters, since we would not have this informa-
tion. Even when run with a high initial number of clusters, CBLC algorithm was able to
converge to a solution containing not more than seven clusters (e.g., in case of Reuters-21,578
dataset), and from the figures, it can be again seen that the evaluation of these clusterings is
superior than that for the other baselined clustering algorithms.

Figure 3. CBLC algorithm and other compared algorithms performance on Reuters-21,578 dataset.

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

65

Figure 4. CBLC algorithm and other compared algorithms performance on aural sonar dataset.

Figure 5. CBLC algorithm and other compared algorithms performance on protein dataset.

Recent Applications in Data Clustering66

Figure 6. CBLC algorithm and other compared algorithms performance on voting dataset.

Figure 7. CBLC algorithm and other compared algorithms performance on SearchSnippets dataset.

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

67

Figure 4. CBLC algorithm and other compared algorithms performance on aural sonar dataset.

Figure 5. CBLC algorithm and other compared algorithms performance on protein dataset.

Recent Applications in Data Clustering66

Figure 6. CBLC algorithm and other compared algorithms performance on voting dataset.

Figure 7. CBLC algorithm and other compared algorithms performance on SearchSnippets dataset.

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

67

Figure 8. CBLC algorithm and other compared algorithms performance on StackOverflow dataset.

Figure 9. CBLC algorithm and other compared algorithms performance on biomedical dataset.

Recent Applications in Data Clustering68

4. Concluding remarks

This chapter has shown a new version of the k-means clustering method that is able to cluster
small-sized text fragments. This new variation measures the semantic similarity between pat-
terns (i.e., sentences) based on the idea of creating a synonym expansion set to be used in the
compared semantic vectors. The sentences are represented in these vectors by using semantic
information derived from a WordNet that is created for the purpose of identifying the actual
sense to a word, based on the surrounding context. The experimental results have demonstrated
the method to achieve a satisfactory performance against the compared algorithms such as
spectral clustering affinity propagation, k-medoids, STC-LE, and k-means (TF-IDF), as evaluated
on several standard datasets.

A clear domain of applying the algorithm is to text-mining processing; however, the algorithm can
also be used within more general text-processing settings such as text summarization. Like any
clustering algorithm, the performance of CBLC will eventually be based on the text similarity
values, and these values can be improved by defining the sentence-level text similarity measure
that can utilize muchmore possible semantic information expressed with the compared sentences.
Any such improvements are surly effected by the overall sentences clustering performance.

Sentence-level text clustering is an exciting area of research within the knowledge discovery and
computational linguistic activities, and this chapter has proposed a new variation of k-means
clustering which are capable to cluster sentences based on available semantic information writ-
ten in these sentences. We are interested in some of the new research directions that we have
experienced in this area; however, what we are most excited about is applying our proposed
cluster technique to operate on the text-mining activities. This is because the concepts existing in
human-written documents usually have buried knowledge and information, whereas the tech-
nique we have developed in this work is only applied on the clusters text-fragments domain.
Therefore, one of the possible future works is to apply these ideas of sentence clustering to the
development of complete techniques for sentiment analysis of the people’s opinion.

Author details

Khaled Abdalgader

Address all correspondence to: komar@soharuni.edu.om

Sohar University, Sohar, Oman

References

[1] Li Y, McLean D, Bandar ZA, O’Shea JD, Crockett K. Sentence similarity based on seman-
tic nets and Corpus statistics. IEEE Transactions on Knowledge and Data Engineering.
2006;18(8):1138-1150

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

69

Figure 8. CBLC algorithm and other compared algorithms performance on StackOverflow dataset.

Figure 9. CBLC algorithm and other compared algorithms performance on biomedical dataset.

Recent Applications in Data Clustering68

4. Concluding remarks

This chapter has shown a new version of the k-means clustering method that is able to cluster
small-sized text fragments. This new variation measures the semantic similarity between pat-
terns (i.e., sentences) based on the idea of creating a synonym expansion set to be used in the
compared semantic vectors. The sentences are represented in these vectors by using semantic
information derived from a WordNet that is created for the purpose of identifying the actual
sense to a word, based on the surrounding context. The experimental results have demonstrated
the method to achieve a satisfactory performance against the compared algorithms such as
spectral clustering affinity propagation, k-medoids, STC-LE, and k-means (TF-IDF), as evaluated
on several standard datasets.

A clear domain of applying the algorithm is to text-mining processing; however, the algorithm can
also be used within more general text-processing settings such as text summarization. Like any
clustering algorithm, the performance of CBLC will eventually be based on the text similarity
values, and these values can be improved by defining the sentence-level text similarity measure
that can utilize muchmore possible semantic information expressed with the compared sentences.
Any such improvements are surly effected by the overall sentences clustering performance.

Sentence-level text clustering is an exciting area of research within the knowledge discovery and
computational linguistic activities, and this chapter has proposed a new variation of k-means
clustering which are capable to cluster sentences based on available semantic information writ-
ten in these sentences. We are interested in some of the new research directions that we have
experienced in this area; however, what we are most excited about is applying our proposed
cluster technique to operate on the text-mining activities. This is because the concepts existing in
human-written documents usually have buried knowledge and information, whereas the tech-
nique we have developed in this work is only applied on the clusters text-fragments domain.
Therefore, one of the possible future works is to apply these ideas of sentence clustering to the
development of complete techniques for sentiment analysis of the people’s opinion.

Author details

Khaled Abdalgader

Address all correspondence to: komar@soharuni.edu.om

Sohar University, Sohar, Oman

References

[1] Li Y, McLean D, Bandar ZA, O’Shea JD, Crockett K. Sentence similarity based on seman-
tic nets and Corpus statistics. IEEE Transactions on Knowledge and Data Engineering.
2006;18(8):1138-1150

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

69

[2] Mihalcea R, Corley C, Strapparava C. Corpus-based and knowledge-based measures of
text semantic similarity. In: Proceedings of the 21st National Conference on Artificial
Intelligence; 2006. pp. 775-780

[3] Sowmya V, Vishnu Vardhan B, Bhadri Raju MSVS. Influence of token similarity measures
for semantic textual similarity. In: Proceedings of 2016 IEEE 6th International Conference
on Advance Computing (IACC2016); 2016. pp. 27-28

[4] Metzler D, Dumais S, Meek C. Similarity measures for short segments of text. In: Pro-
ceedings of the 29th European Conference on Information Retrieval. 4425, Springer,
Heidelberg; 2007. 16-27

[5] Islam A, Inkpen D. Semantic text similarity using corpus-based word similarity and string
similarity. ACM Transactions on Knowledge Discovery from Data (TKDD). 2008;2(2):1-25

[6] Feng J, Zhou Y-M, Martin T. Sentence similarity based on relevance. In: Proceedings of
the IPMU’08; 2008. 832-839

[7] Ramage D, Rafferty A, Manning C. Random walks for text semantic similarity. In: Pro-
ceedings of ACL-IJCNLP 2009; 2009. 23-31

[8] Achananuparp P, Hu X, Yang C. Addressing the variability of natural language expres-
sion in sentence similarity with semantic structure of the sentences. In: Proceedings of
PAKDD 2009. Bangkok; 2009. 548-555

[9] Ho C, Murad MAA, Kadir RA, Doraisamy SC. Word sense disambiguation-based sen-
tence similarity. In: Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, COLING ’10. Stroudsburg, PA, USA. Association for Computational
Linguistics; 2010. pp. 418-426

[10] Abdalgader K, Skabar A. Short-text similarity measurement using word sense disambigu-
ation and synonym expansion. In: Proceedings of the 23rd Australasian Joint Conference on
Artificial Intelligence. (AI2010, Adelaide, Australia). vol. LNAI 6464; 2011. pp. 435-444

[11] Liu H, Wang P. Assessing sentence similarity using WordNet based word similarity.
Journal of Software. June 2013;8(6)

[12] Zhu TT, Lan M. ECNUCS: Measuring short text semantic equivalence using multiple
similarity measurements. Second Joint Conference on Lexical and Computational Seman-
tics (SEM), Volume 1: Proceedings of the Main Conference and the Shared Task, Atlanta,
Georgia, June 13-14, 2013. pp. 124-131

[13] Kenter T, Rijke DM. Short text similarity with word embeddings. In: Proceedings of the
24th ACM international conference on information and knowledge management. In
CIKM ‘15. ACM; 2015

[14] Abdalgader K. Text-fragment similarity measurement using word sense identification.
International Journal of Applied Engineering Research. 2016;11(24):11755-11762

[15] Abdalgader K. Computational Linguistic Techniques for Sentence-Level Text Processing”.
PhD Dissertation. Department of Computer Engineering and Computer Science, La Trobe
University; 2011

Recent Applications in Data Clustering70

[16] Skabar A, Abdalgader K. Improving sentence similarity measurement by incorporating
sentential word importance. In: Proceedings of the 23rd Australasian joint conference
on artificial intelligence. (AI2010, Adelaide, Australia). Vol LNAI 6464. 2011. pp. 466-
475

[17] Abdalgader K. Word sense identification improves the measurement of short-text simi-
larity. In: Proceedings of the International Conference on Computing Technology and
Information Management (ICCTIM2014), Dubai, UAE, Digital Library of SDIWC, ISBN:
978–0–9891305-5-4. 2014. pp. 233-243

[18] Wang D, Li T, Zhu S, Ding C. Multi-document summarization via sentence-level semantic
analysis and symmetric matrix factorization. In: proceedings of the 31st annual interna-
tional ACM SIGIR conference on Research and Development in Information Retrieval.
pp. 307-314; 2008

[19] Salton G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Infor-
mation by Computer. Addison-Wesley: Reading, Mass; 1989

[20] Fellbaum C, editor. "WordNet: An Electronic Lexical Database". Cambridge, MA: MIT
Press; 1998

[21] Navigli R, Ponzetto S. BabelNet: The automatic construction, evaluation and application
of a wide-coverage multilingual semantic network. Artificial intelligence, 193, Elsevier.
2012. pp. 217-250

[22] Abdalgader K, Skabar A. Unsupervised similarity-based word sense disambiguation
using context vectors and sentential word importance. ACM Transactions on Speech and
Language Processing (TSLP). 2012;9(2)

[23] Chen F, Han K, Chen G. An approach to sentence selection based text summarization. In:
Proceedings of IEEE TENCON02; 2008. pp. 489-493

[24] Kyoomarsi F, Khosravi H, Eslami E, Dehkordy PK, Tajoddin A. Optimizing text summa-
rization based on fuzzy logic. Seventh IEEE/ACIS International Conference on Computer
and Information Science, IEEE Computer Society. 2008. pp. 347-352

[25] Radev DR, Jing H, Stys M, Tam D. Centroid-based summarization of multiple documents.
Information Processing and Management: AN International Journal. 2004;40:919-938

[26] Aliguyev RM. A new sentence similarity measure and sentence based extractive technique
for automatic text summarization. Expert Systems with Applications. 2009;36:7764-7772

[27] Hotho A, Nürnberger A, Paaß G. A brief survey of text mining. GLDV-Journal for Compu-
tational Linguistics and Language Technology. 2005;20:19-62

[28] Kosala R, Blockeel H. Web mining research: A survey. ACM SIGKDD Explorations News-
letter. 2000;2(1):1-15

[29] Skabar A, Abdalgader K. Clustering sentence-level text using a novel fuzzy relational
clustering algorithm. IEEE Transactions on Knowledge and Data Engineering (TKDE)
IEEE Computer Society Digital Library. 2013;25(1):62-75

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

71

[2] Mihalcea R, Corley C, Strapparava C. Corpus-based and knowledge-based measures of
text semantic similarity. In: Proceedings of the 21st National Conference on Artificial
Intelligence; 2006. pp. 775-780

[3] Sowmya V, Vishnu Vardhan B, Bhadri Raju MSVS. Influence of token similarity measures
for semantic textual similarity. In: Proceedings of 2016 IEEE 6th International Conference
on Advance Computing (IACC2016); 2016. pp. 27-28

[4] Metzler D, Dumais S, Meek C. Similarity measures for short segments of text. In: Pro-
ceedings of the 29th European Conference on Information Retrieval. 4425, Springer,
Heidelberg; 2007. 16-27

[5] Islam A, Inkpen D. Semantic text similarity using corpus-based word similarity and string
similarity. ACM Transactions on Knowledge Discovery from Data (TKDD). 2008;2(2):1-25

[6] Feng J, Zhou Y-M, Martin T. Sentence similarity based on relevance. In: Proceedings of
the IPMU’08; 2008. 832-839

[7] Ramage D, Rafferty A, Manning C. Random walks for text semantic similarity. In: Pro-
ceedings of ACL-IJCNLP 2009; 2009. 23-31

[8] Achananuparp P, Hu X, Yang C. Addressing the variability of natural language expres-
sion in sentence similarity with semantic structure of the sentences. In: Proceedings of
PAKDD 2009. Bangkok; 2009. 548-555

[9] Ho C, Murad MAA, Kadir RA, Doraisamy SC. Word sense disambiguation-based sen-
tence similarity. In: Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, COLING ’10. Stroudsburg, PA, USA. Association for Computational
Linguistics; 2010. pp. 418-426

[10] Abdalgader K, Skabar A. Short-text similarity measurement using word sense disambigu-
ation and synonym expansion. In: Proceedings of the 23rd Australasian Joint Conference on
Artificial Intelligence. (AI2010, Adelaide, Australia). vol. LNAI 6464; 2011. pp. 435-444

[11] Liu H, Wang P. Assessing sentence similarity using WordNet based word similarity.
Journal of Software. June 2013;8(6)

[12] Zhu TT, Lan M. ECNUCS: Measuring short text semantic equivalence using multiple
similarity measurements. Second Joint Conference on Lexical and Computational Seman-
tics (SEM), Volume 1: Proceedings of the Main Conference and the Shared Task, Atlanta,
Georgia, June 13-14, 2013. pp. 124-131

[13] Kenter T, Rijke DM. Short text similarity with word embeddings. In: Proceedings of the
24th ACM international conference on information and knowledge management. In
CIKM ‘15. ACM; 2015

[14] Abdalgader K. Text-fragment similarity measurement using word sense identification.
International Journal of Applied Engineering Research. 2016;11(24):11755-11762

[15] Abdalgader K. Computational Linguistic Techniques for Sentence-Level Text Processing”.
PhD Dissertation. Department of Computer Engineering and Computer Science, La Trobe
University; 2011

Recent Applications in Data Clustering70

[16] Skabar A, Abdalgader K. Improving sentence similarity measurement by incorporating
sentential word importance. In: Proceedings of the 23rd Australasian joint conference
on artificial intelligence. (AI2010, Adelaide, Australia). Vol LNAI 6464. 2011. pp. 466-
475

[17] Abdalgader K. Word sense identification improves the measurement of short-text simi-
larity. In: Proceedings of the International Conference on Computing Technology and
Information Management (ICCTIM2014), Dubai, UAE, Digital Library of SDIWC, ISBN:
978–0–9891305-5-4. 2014. pp. 233-243

[18] Wang D, Li T, Zhu S, Ding C. Multi-document summarization via sentence-level semantic
analysis and symmetric matrix factorization. In: proceedings of the 31st annual interna-
tional ACM SIGIR conference on Research and Development in Information Retrieval.
pp. 307-314; 2008

[19] Salton G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Infor-
mation by Computer. Addison-Wesley: Reading, Mass; 1989

[20] Fellbaum C, editor. "WordNet: An Electronic Lexical Database". Cambridge, MA: MIT
Press; 1998

[21] Navigli R, Ponzetto S. BabelNet: The automatic construction, evaluation and application
of a wide-coverage multilingual semantic network. Artificial intelligence, 193, Elsevier.
2012. pp. 217-250

[22] Abdalgader K, Skabar A. Unsupervised similarity-based word sense disambiguation
using context vectors and sentential word importance. ACM Transactions on Speech and
Language Processing (TSLP). 2012;9(2)

[23] Chen F, Han K, Chen G. An approach to sentence selection based text summarization. In:
Proceedings of IEEE TENCON02; 2008. pp. 489-493

[24] Kyoomarsi F, Khosravi H, Eslami E, Dehkordy PK, Tajoddin A. Optimizing text summa-
rization based on fuzzy logic. Seventh IEEE/ACIS International Conference on Computer
and Information Science, IEEE Computer Society. 2008. pp. 347-352

[25] Radev DR, Jing H, Stys M, Tam D. Centroid-based summarization of multiple documents.
Information Processing and Management: AN International Journal. 2004;40:919-938

[26] Aliguyev RM. A new sentence similarity measure and sentence based extractive technique
for automatic text summarization. Expert Systems with Applications. 2009;36:7764-7772

[27] Hotho A, Nürnberger A, Paaß G. A brief survey of text mining. GLDV-Journal for Compu-
tational Linguistics and Language Technology. 2005;20:19-62

[28] Kosala R, Blockeel H. Web mining research: A survey. ACM SIGKDD Explorations News-
letter. 2000;2(1):1-15

[29] Skabar A, Abdalgader K. Clustering sentence-level text using a novel fuzzy relational
clustering algorithm. IEEE Transactions on Knowledge and Data Engineering (TKDE)
IEEE Computer Society Digital Library. 2013;25(1):62-75

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

71

[30] Kaufman L, Rousseeuw PJ. Clustering by means of medoids. In: Godge Y, editor. Statistical
Analysis Based on the L1 Norm. Amsterdam: North Holland/Elsevier; 1987. pp. 405-416

[31] Kaufman L, Rousseeuw PJ. Finding Groups in Data. Wiley; 1990

[32] Krishnapuram R, Joshi A, Liyu Y. A fuzzy relative of the k-Medoids algorithm with
application to web document and snippet clustering”. In: Proceedings of the IEEE Fuzzy
Systems Conference; 1999. pp. 1281-1286

[33] Geweniger T, Zühlke D, Hammer B, Villmann T. Fuzzy variant of affinity propagation in
comparison to median fuzzy c-means. In: Proceedings of the 7th International Workshop on
Advances in Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg; 2009. pp. 72-79

[34] Geweniger T, Zühlke D, Hammer B, Villmann T. Median fuzzy C-means for clustering
dissimilarity data. Neurocomputing. 2010;73(7–9):1109-1116

[35] Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007;315:
972-976

[36] Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems. 2001:849-856

[37] Luxburg UV. A tutorial on spectral clustering. Statistics and Computing. 2007;17(4):395-416

[38] Xu J, Xu B, Wang P, Zheng S, Tian G, Zhao J. Self-taught convolutional neural networks
for short text clustering. Neural Networks. 2017;30(2):117-131

[39] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in Neural Information Processing Systems. 2001;14:585-591

[40] Wagsta K, Cardie C, Rogers S, Schrodl S, et al. Constrained k-means clustering with
background knowledge. In: ICML. Vol. 1. 2001. pp. 577-584

[41] Ganesan KA, Zhai CX, Han J. Opinosis: A graph based approach to abstractive summa-
rization of highly redundant opinions. Proceedings of the 23rd International Conference
on Computational Linguistics (COLING '10). 2010

[42] Abdalgader K. Clustering short text using a centroid-based lexical clustering algorithm.
IAENG International Journal of Computer Science. 2017;44(4):523-536

[43] Erkan G, Radev DR. LexRank: Graph-based lexical centrality as salience in text summari-
zation. Journal of Artificial Intelligence Research. 2004;22:457-479

[44] Mihalcea R, Tarau P. TextRank: Bringing order into texts. In: Proceedings of EMNLP.
2004. pp. 404-411

[45] Brin S, Page L. The anatomy of a large-scale Hypertextual web search engine. Computer
Networks and ISDN Systems. 1998;30:107-117

[46] Fang C, Mu D, Deng Z, Wu Z. Word-sentence co-ranking for automatic extractive text
summarization. Expert Systems with Applications. 2017;72:189-195

Recent Applications in Data Clustering72

[47] Namburu SM, Tu H, Luo J, Pattipati KR. Experiments on supervised learning algorithms
for text categorization. IEEE Aerospace Conference. Big Sky, MT. 2005

[48] Hatzivassiloglou V, Klavans JL, Holcombe ML, Barzilay R, Kan M-Y, McKeown KR.
SIMFINDER: A flexible clustering tool for summarization. In: NAACL Workshop on
Automatic Summarization. Association for Computational Linguistics, 2001. 41-49

[49] Vidhya KA, Aghila GG. Text mining process, techniques and tools: An overview. Interna-
tional Journal of Information Technology and Knowledge Management. 2010;2(2):613-622

[50] Bates M. Subject access in online catalogue: A design model. Journal of the American
Society for Information Science. 1986;37(6):357-376

[51] Jiang JJ, Conrath DW. Semantic similarity based on Corpus statistics and lexical taxon-
omy. In: Proceedings of the 10th International Conference on Research in Computational
Linguistics. 1997. pp. 19-33

[52] MacQueen JB. Some methods for classification and analysis of multivariate observations.
In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.
1967. pp. 281-297

[53] Philips S, Pitton J, Atlas L. Perceptual feature identification for active sonar echoes. Pro-
ceedings of IEEE OCEANS Conference. 2006

[54] Hofmann T, Buhmann JM. Pairwise data clustering by deterministic annealing. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1997;19(1):1-14

[55] Asuncion A, NewmanDJ, UCImachine learning repository [http://www.ics.uci.edu/~mlearn/
MLRepository.html]. Irvine, CA: University of California, Department of Information and
Computer Science

[56] Phan X-H, Nguyen L-M, Horiguchi S. Learning to classify short and sparse text & web
with hidden topics from large-scale data collections. In: Proceedings of the 17th Interna-
tional Conference on World Wide Web, ACM. 2008. pp. 91-100

[57] Chen Y, Garcia EK, Gupta MR, Rahimi A, Cazzanti L. “Similarity-based classification:
Concepts and algorithms”. Journal of Machine Learning Research, vol. 10, pp. 747–776, 2009

[58] Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge:
Cambridge University Press; 2008

[59] Rosenberg A, Hirschberg J. V-Measure: A conditional entropy-based external cluster
evaluation measure. In: Proceedings of the EMNLP. 2007. pp. 410-420

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

73

[30] Kaufman L, Rousseeuw PJ. Clustering by means of medoids. In: Godge Y, editor. Statistical
Analysis Based on the L1 Norm. Amsterdam: North Holland/Elsevier; 1987. pp. 405-416

[31] Kaufman L, Rousseeuw PJ. Finding Groups in Data. Wiley; 1990

[32] Krishnapuram R, Joshi A, Liyu Y. A fuzzy relative of the k-Medoids algorithm with
application to web document and snippet clustering”. In: Proceedings of the IEEE Fuzzy
Systems Conference; 1999. pp. 1281-1286

[33] Geweniger T, Zühlke D, Hammer B, Villmann T. Fuzzy variant of affinity propagation in
comparison to median fuzzy c-means. In: Proceedings of the 7th International Workshop on
Advances in Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg; 2009. pp. 72-79

[34] Geweniger T, Zühlke D, Hammer B, Villmann T. Median fuzzy C-means for clustering
dissimilarity data. Neurocomputing. 2010;73(7–9):1109-1116

[35] Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007;315:
972-976

[36] Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems. 2001:849-856

[37] Luxburg UV. A tutorial on spectral clustering. Statistics and Computing. 2007;17(4):395-416

[38] Xu J, Xu B, Wang P, Zheng S, Tian G, Zhao J. Self-taught convolutional neural networks
for short text clustering. Neural Networks. 2017;30(2):117-131

[39] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in Neural Information Processing Systems. 2001;14:585-591

[40] Wagsta K, Cardie C, Rogers S, Schrodl S, et al. Constrained k-means clustering with
background knowledge. In: ICML. Vol. 1. 2001. pp. 577-584

[41] Ganesan KA, Zhai CX, Han J. Opinosis: A graph based approach to abstractive summa-
rization of highly redundant opinions. Proceedings of the 23rd International Conference
on Computational Linguistics (COLING '10). 2010

[42] Abdalgader K. Clustering short text using a centroid-based lexical clustering algorithm.
IAENG International Journal of Computer Science. 2017;44(4):523-536

[43] Erkan G, Radev DR. LexRank: Graph-based lexical centrality as salience in text summari-
zation. Journal of Artificial Intelligence Research. 2004;22:457-479

[44] Mihalcea R, Tarau P. TextRank: Bringing order into texts. In: Proceedings of EMNLP.
2004. pp. 404-411

[45] Brin S, Page L. The anatomy of a large-scale Hypertextual web search engine. Computer
Networks and ISDN Systems. 1998;30:107-117

[46] Fang C, Mu D, Deng Z, Wu Z. Word-sentence co-ranking for automatic extractive text
summarization. Expert Systems with Applications. 2017;72:189-195

Recent Applications in Data Clustering72

[47] Namburu SM, Tu H, Luo J, Pattipati KR. Experiments on supervised learning algorithms
for text categorization. IEEE Aerospace Conference. Big Sky, MT. 2005

[48] Hatzivassiloglou V, Klavans JL, Holcombe ML, Barzilay R, Kan M-Y, McKeown KR.
SIMFINDER: A flexible clustering tool for summarization. In: NAACL Workshop on
Automatic Summarization. Association for Computational Linguistics, 2001. 41-49

[49] Vidhya KA, Aghila GG. Text mining process, techniques and tools: An overview. Interna-
tional Journal of Information Technology and Knowledge Management. 2010;2(2):613-622

[50] Bates M. Subject access in online catalogue: A design model. Journal of the American
Society for Information Science. 1986;37(6):357-376

[51] Jiang JJ, Conrath DW. Semantic similarity based on Corpus statistics and lexical taxon-
omy. In: Proceedings of the 10th International Conference on Research in Computational
Linguistics. 1997. pp. 19-33

[52] MacQueen JB. Some methods for classification and analysis of multivariate observations.
In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.
1967. pp. 281-297

[53] Philips S, Pitton J, Atlas L. Perceptual feature identification for active sonar echoes. Pro-
ceedings of IEEE OCEANS Conference. 2006

[54] Hofmann T, Buhmann JM. Pairwise data clustering by deterministic annealing. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1997;19(1):1-14

[55] Asuncion A, NewmanDJ, UCImachine learning repository [http://www.ics.uci.edu/~mlearn/
MLRepository.html]. Irvine, CA: University of California, Department of Information and
Computer Science

[56] Phan X-H, Nguyen L-M, Horiguchi S. Learning to classify short and sparse text & web
with hidden topics from large-scale data collections. In: Proceedings of the 17th Interna-
tional Conference on World Wide Web, ACM. 2008. pp. 91-100

[57] Chen Y, Garcia EK, Gupta MR, Rahimi A, Cazzanti L. “Similarity-based classification:
Concepts and algorithms”. Journal of Machine Learning Research, vol. 10, pp. 747–776, 2009

[58] Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge:
Cambridge University Press; 2008

[59] Rosenberg A, Hirschberg J. V-Measure: A conditional entropy-based external cluster
evaluation measure. In: Proceedings of the EMNLP. 2007. pp. 410-420

Centroid-Based Lexical Clustering
http://dx.doi.org/10.5772/intechopen.75433

73

Chapter 5

Point Cloud Clustering Using Panoramic Layered Range
Image

Masafumi Nakagawa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76407

Provisional chapter

DOI: 10.5772/intechopen.76407

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Point Cloud Clustering Using Panoramic Layered
Range Image

Masafumi Nakagawa

Additional information is available at the end of the chapter

Abstract

Point-cloud clustering is an essential technique for modeling massive point clouds
acquired with a laser scanner. There are three clustering approaches in point-cloud clus-
tering, namely model-based clustering, edge-based clustering, and region-based clus-
tering. In geoinformatics, edge-based and region-based clustering are often applied for
the modeling of buildings and roads. These approaches use low-resolution point-cloud
data that consist of tens of points or several hundred points per m2, such as aerial laser
scanning data and vehicle-borne mobile mapping system data. These approaches also
focus on geometrical knowledge and restrictions. We focused on region-based point-
cloud clustering to improve 3D visualization and modeling using massive point clouds.
We proposed a point-cloud clustering methodology and point-cloud filtering on a mul-
tilayered panoramic range image. A point-based rendering approach was applied for
the range image generation using a massive point cloud. Moreover, we conducted three
experiments to verify our methodology.

Keywords: point-cloud clustering, point-based rendering, terrestrial laser scanning,
surface extraction, 3D edge extraction

1. Introduction

Massive point-cloud acquisition is an effective approach for 3D modeling of unknown objects
in various fields, such as urban mapping, indoor mapping, plant management, factory man-
agement, heritage documentation, and infrastructure asset inspection and management. In
construction fields, base maps and 3D data are required for managing processes of construc-
tion, maintenance, rehabilitation, and replacement. Online maps, such as Google Maps and

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 5

Point Cloud Clustering Using Panoramic Layered Range
Image

Masafumi Nakagawa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76407

Provisional chapter

DOI: 10.5772/intechopen.76407

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Point Cloud Clustering Using Panoramic Layered
Range Image

Masafumi Nakagawa

Additional information is available at the end of the chapter

Abstract

Point-cloud clustering is an essential technique for modeling massive point clouds
acquired with a laser scanner. There are three clustering approaches in point-cloud clus-
tering, namely model-based clustering, edge-based clustering, and region-based clus-
tering. In geoinformatics, edge-based and region-based clustering are often applied for
the modeling of buildings and roads. These approaches use low-resolution point-cloud
data that consist of tens of points or several hundred points per m2, such as aerial laser
scanning data and vehicle-borne mobile mapping system data. These approaches also
focus on geometrical knowledge and restrictions. We focused on region-based point-
cloud clustering to improve 3D visualization and modeling using massive point clouds.
We proposed a point-cloud clustering methodology and point-cloud filtering on a mul-
tilayered panoramic range image. A point-based rendering approach was applied for
the range image generation using a massive point cloud. Moreover, we conducted three
experiments to verify our methodology.

Keywords: point-cloud clustering, point-based rendering, terrestrial laser scanning,
surface extraction, 3D edge extraction

1. Introduction

Massive point-cloud acquisition is an effective approach for 3D modeling of unknown objects
in various fields, such as urban mapping, indoor mapping, plant management, factory man-
agement, heritage documentation, and infrastructure asset inspection and management. In
construction fields, base maps and 3D data are required for managing processes of construc-
tion, maintenance, rehabilitation, and replacement. Online maps, such as Google Maps and

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

OpenStreetMap, are useful for approximate construction surveys in urban areas. However,
online maps are often insufficient for infrastructure inspection to recognize the details of nat-
ural features. Thus, base maps and 3D data should be prepared before inspection. Massive
point-cloud data can be acquired with a terrestrial laser scanner, mobile mapping systems
(MMSs), handheld laser scanners, and cameras using structure from motion (SfM) methodol-
ogy. SfM is a methodology for reconstructing a scene using multiple cameras simultaneously
from all available relative motions through key point detection, feature matching, motion
estimation, triangulation, and bundle adjustment. In an open sky environment, aerial photo-
grammetry and SfM using an unmanned aerial vehicle (UAV) are more effective than ground-
based scanning. On the other hand, when environments include natural obstacles, such as
trees, a terrestrial laser scanner is more effective than a UAV or MMSs. In indoor navigation
and building information modeling (BIM), floor maps and 3D data are also required. We
expected terrestrial laser scanners and indoor MMSs to be adequate for colored point-cloud
acquisition in an indoor environment.

Moreover, point-cloud clustering is an essential technique for modeling massive point clouds.
Figure 1 shows an example of point-cloud clustering using a terrestrial laser scanner data
acquired in an indoor environment.

There are three clustering approaches in point-cloud clustering, namely model-based clus-
tering [1], edge-based clustering [2], and region-based clustering [3]. Model-based cluster-
ing is a 3D model preparation approach. The model-based clustering requires 3D models
such as CAD models to estimate simple objects or point clusters from the point cloud. In
3D industrial modeling, standardized objects, such as pipes, boxes, and parts, are prepared
as CAD models in advance. Although the model-based clustering is suitable for modeling
known objects such as the standardized objects, the model-based clustering is unsuitable for
modeling unknown objects such as complex and natural objects. On the other hand, in mod-
eling unknown objects, such as buildings and roads in geoinformatics and civil engineering

Figure 1. Point-cloud clustering: colored point cloud (left image) and clustered point cloud (right image).

Recent Applications in Data Clustering76

fields, edge-based and region-based clustering are often applied [4]. These approaches use
low-resolution point-cloud data that consist of tens of points or several hundred points per
m2, such as aerial laser and vehicle-borne MMSs data. These approaches also focus on geo-
metrical knowledge [5] and 2D geometrical restrictions, such as the depth from a platform [6]
and discontinuous point extraction on each scanning plane from the MMSs [7] to extract fea-
tures. In urban areas and indoor environments, although there are simple features consisting
of lines and planes, there are many complex features consisting of curved lines and surfaces
with unclear boundaries. Moreover, point-cloud data are generally acquired with a terrestrial
and mobile laser scanner from many viewpoints and view angles for 3D modeling. Like the
conventional approaches, range image processing is proposed to apply 2D restrictions with
an interactive procedure in 3D plant modeling. However, viewpoints for range image render-
ing are limited to data acquisition points.

Thus, our aim was to improve region-based point-cloud clustering in modeling after point-
cloud integration. We also focused on region-based point clustering to extract a polygon
from a massive point cloud, because it is not easy to estimate accurate edges from point
clouds acquired with a laser scanner. In region-based clustering, random sample consensus
(RANSAC) [8] is a suitable approach for surface detection and estimation. However, local
work space should be selected to improve performance in a surface estimation from a massive
point cloud. Moreover, it is hard to determine whether a point lies inside or outside a surface
with conventional RANSAC.

In this chapter, we first proposed a point-cloud clustering methodology on a panoramic lay-
ered range image generated with point-based rendering from a massive point cloud. Next, we
conducted three experiments to verify our methodology. The first experiment was a 3D edge
and surface extraction for indoor modeling using an indoor MMS. The second experiment
was a 3D edge and surface extraction for 3D bridge modeling using a terrestrial laser scanner.
The third experiment was a 3D edge and surface extraction for ground surface and feature
extraction using a terrestrial laser scanner. Even though the acquired data had low homo-
geneity of spatial point density, these experiments confirmed that a terrestrial laser scanner
could cover complex surfaces, including flat surfaces, slopes, and steps. We also confirmed
that our proposed methodology could achieve point-cloud clustering to extract these features
from complex environments.

2. Methodology

Our proposed processing flow for point-cloud clustering is shown in Figure 2. First, we reg-
ister and integrate point-cloud data acquired from a viewpoint. Next, the point-cloud data
are projected into the image space with translation, view angle, and resolution parameters
in “Panoramic multilayered range image generation with point cloud rendering” to generate
several range images. Then, normal vectors around each projected point are estimated using
the 3D coordinate values of the point cloud in “Normal vector estimation in panoramic multi-
layered range image.” Next, edges are extracted from depth images generated in the panoramic

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

77

OpenStreetMap, are useful for approximate construction surveys in urban areas. However,
online maps are often insufficient for infrastructure inspection to recognize the details of nat-
ural features. Thus, base maps and 3D data should be prepared before inspection. Massive
point-cloud data can be acquired with a terrestrial laser scanner, mobile mapping systems
(MMSs), handheld laser scanners, and cameras using structure from motion (SfM) methodol-
ogy. SfM is a methodology for reconstructing a scene using multiple cameras simultaneously
from all available relative motions through key point detection, feature matching, motion
estimation, triangulation, and bundle adjustment. In an open sky environment, aerial photo-
grammetry and SfM using an unmanned aerial vehicle (UAV) are more effective than ground-
based scanning. On the other hand, when environments include natural obstacles, such as
trees, a terrestrial laser scanner is more effective than a UAV or MMSs. In indoor navigation
and building information modeling (BIM), floor maps and 3D data are also required. We
expected terrestrial laser scanners and indoor MMSs to be adequate for colored point-cloud
acquisition in an indoor environment.

Moreover, point-cloud clustering is an essential technique for modeling massive point clouds.
Figure 1 shows an example of point-cloud clustering using a terrestrial laser scanner data
acquired in an indoor environment.

There are three clustering approaches in point-cloud clustering, namely model-based clus-
tering [1], edge-based clustering [2], and region-based clustering [3]. Model-based cluster-
ing is a 3D model preparation approach. The model-based clustering requires 3D models
such as CAD models to estimate simple objects or point clusters from the point cloud. In
3D industrial modeling, standardized objects, such as pipes, boxes, and parts, are prepared
as CAD models in advance. Although the model-based clustering is suitable for modeling
known objects such as the standardized objects, the model-based clustering is unsuitable for
modeling unknown objects such as complex and natural objects. On the other hand, in mod-
eling unknown objects, such as buildings and roads in geoinformatics and civil engineering

Figure 1. Point-cloud clustering: colored point cloud (left image) and clustered point cloud (right image).

Recent Applications in Data Clustering76

fields, edge-based and region-based clustering are often applied [4]. These approaches use
low-resolution point-cloud data that consist of tens of points or several hundred points per
m2, such as aerial laser and vehicle-borne MMSs data. These approaches also focus on geo-
metrical knowledge [5] and 2D geometrical restrictions, such as the depth from a platform [6]
and discontinuous point extraction on each scanning plane from the MMSs [7] to extract fea-
tures. In urban areas and indoor environments, although there are simple features consisting
of lines and planes, there are many complex features consisting of curved lines and surfaces
with unclear boundaries. Moreover, point-cloud data are generally acquired with a terrestrial
and mobile laser scanner from many viewpoints and view angles for 3D modeling. Like the
conventional approaches, range image processing is proposed to apply 2D restrictions with
an interactive procedure in 3D plant modeling. However, viewpoints for range image render-
ing are limited to data acquisition points.

Thus, our aim was to improve region-based point-cloud clustering in modeling after point-
cloud integration. We also focused on region-based point clustering to extract a polygon
from a massive point cloud, because it is not easy to estimate accurate edges from point
clouds acquired with a laser scanner. In region-based clustering, random sample consensus
(RANSAC) [8] is a suitable approach for surface detection and estimation. However, local
work space should be selected to improve performance in a surface estimation from a massive
point cloud. Moreover, it is hard to determine whether a point lies inside or outside a surface
with conventional RANSAC.

In this chapter, we first proposed a point-cloud clustering methodology on a panoramic lay-
ered range image generated with point-based rendering from a massive point cloud. Next, we
conducted three experiments to verify our methodology. The first experiment was a 3D edge
and surface extraction for indoor modeling using an indoor MMS. The second experiment
was a 3D edge and surface extraction for 3D bridge modeling using a terrestrial laser scanner.
The third experiment was a 3D edge and surface extraction for ground surface and feature
extraction using a terrestrial laser scanner. Even though the acquired data had low homo-
geneity of spatial point density, these experiments confirmed that a terrestrial laser scanner
could cover complex surfaces, including flat surfaces, slopes, and steps. We also confirmed
that our proposed methodology could achieve point-cloud clustering to extract these features
from complex environments.

2. Methodology

Our proposed processing flow for point-cloud clustering is shown in Figure 2. First, we reg-
ister and integrate point-cloud data acquired from a viewpoint. Next, the point-cloud data
are projected into the image space with translation, view angle, and resolution parameters
in “Panoramic multilayered range image generation with point cloud rendering” to generate
several range images. Then, normal vectors around each projected point are estimated using
the 3D coordinate values of the point cloud in “Normal vector estimation in panoramic multi-
layered range image.” Next, edges are extracted from depth images generated in the panoramic

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

77

multilayered range image generation in ”Depth edge detection.” Finally, groups that have
similar direction in the point cloud are extracted after normal vector classification in the pro-
jected image in “Normal vector classification in projected image.” Generated range images
are managed in a multilayered range image.

2.1. Panoramic multilayered range image generation with point-cloud rendering

An advantage of 3D point-cloud data is that they allow accurate display from an arbitrary
viewpoint and 3D modeling. Additionally, point-cloud data have the potential for applica-
tions such as panoramic image geo-referencing and distance value-added panoramic image
processing for 3D geographical information system (GIS) visualization [9, 10]. However,
point-cloud visualization has two technical issues. The first issue is the near-far effect caused
by distance differences from the viewpoint to scanned points. The second issue is the trans-
parency effect caused by rendered hidden points. These effects degrade the quality of point-
cloud visualization. Thus, we focus on methodologies to improve the quality of point-cloud
visualization. The Splat-based ray tracing [11] can generate a photorealistic curved surface
from point-cloud data; surface generation requires the long period in the 3D work space.
Moreover, the curved-surface description is unsuitable for representing urban objects such as
CAD and GIS data. Therefore, we have applied a point-based rendering and filtering, which
we call a layered image-based depth arrangement refiner for versatile rendering (LIDAR VR)
[12] for point-cloud rendering.

The processing flow of LIDAR VR is described as follows. First, the sensors acquire a point
cloud with additional color data such as RGB data. The sensor position is defined as the origin
point in a 3D work space. Second, a multilayered range image from the simulated viewpoint
is generated using the point cloud. Finally, the generated multilayered range image is filtered

Figure 2. Processing flow for point-cloud clustering.

Recent Applications in Data Clustering78

to generate missing points in the rendered result using distance values between the view-
point and objects. The colored point cloud is projected from a 3D space to a panorama space.
This transformation simplifies viewpoint translation, filtering, and point-cloud browsing.
The LIDAR VR data consist of a projection model and multilayered range image, as shown
in Figure 3. The panorama model can be selected from a spherical, cylindrical, plane, hemi-
spherical, or cubic model. In this chapter, the spherical model is described. First, the mea-
sured point data are projected onto a spherical surface as a range of data. Next, the measured
point data are projected onto a spherical surface to manage X, Y, Z, R, G, B, and the intensity
values in the multilayered panorama space. Then, azimuth and elevation angles are calcu-
lated using 3D vectors generated from the viewpoint and the measured points. The azimuth
and elevation angles are converted to panorama image coordinate values with adequate spa-
tial angle resolution in the range data. Finally, a spherical panorama image is generated from
the measured point cloud.

Based on this panorama projection, the multilayered range data with a translated viewpoint
are generated using the point cloud, as shown in Figure 4. When a panorama space is gener-
ated using points from P1 to P10 from a viewpoint Xo the points from P1 to P10 are continuously

Figure 3. LIDAR VR data model.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

79

multilayered range image generation in ”Depth edge detection.” Finally, groups that have
similar direction in the point cloud are extracted after normal vector classification in the pro-
jected image in “Normal vector classification in projected image.” Generated range images
are managed in a multilayered range image.

2.1. Panoramic multilayered range image generation with point-cloud rendering

An advantage of 3D point-cloud data is that they allow accurate display from an arbitrary
viewpoint and 3D modeling. Additionally, point-cloud data have the potential for applica-
tions such as panoramic image geo-referencing and distance value-added panoramic image
processing for 3D geographical information system (GIS) visualization [9, 10]. However,
point-cloud visualization has two technical issues. The first issue is the near-far effect caused
by distance differences from the viewpoint to scanned points. The second issue is the trans-
parency effect caused by rendered hidden points. These effects degrade the quality of point-
cloud visualization. Thus, we focus on methodologies to improve the quality of point-cloud
visualization. The Splat-based ray tracing [11] can generate a photorealistic curved surface
from point-cloud data; surface generation requires the long period in the 3D work space.
Moreover, the curved-surface description is unsuitable for representing urban objects such as
CAD and GIS data. Therefore, we have applied a point-based rendering and filtering, which
we call a layered image-based depth arrangement refiner for versatile rendering (LIDAR VR)
[12] for point-cloud rendering.

The processing flow of LIDAR VR is described as follows. First, the sensors acquire a point
cloud with additional color data such as RGB data. The sensor position is defined as the origin
point in a 3D work space. Second, a multilayered range image from the simulated viewpoint
is generated using the point cloud. Finally, the generated multilayered range image is filtered

Figure 2. Processing flow for point-cloud clustering.

Recent Applications in Data Clustering78

to generate missing points in the rendered result using distance values between the view-
point and objects. The colored point cloud is projected from a 3D space to a panorama space.
This transformation simplifies viewpoint translation, filtering, and point-cloud browsing.
The LIDAR VR data consist of a projection model and multilayered range image, as shown
in Figure 3. The panorama model can be selected from a spherical, cylindrical, plane, hemi-
spherical, or cubic model. In this chapter, the spherical model is described. First, the mea-
sured point data are projected onto a spherical surface as a range of data. Next, the measured
point data are projected onto a spherical surface to manage X, Y, Z, R, G, B, and the intensity
values in the multilayered panorama space. Then, azimuth and elevation angles are calcu-
lated using 3D vectors generated from the viewpoint and the measured points. The azimuth
and elevation angles are converted to panorama image coordinate values with adequate spa-
tial angle resolution in the range data. Finally, a spherical panorama image is generated from
the measured point cloud.

Based on this panorama projection, the multilayered range data with a translated viewpoint
are generated using the point cloud, as shown in Figure 4. When a panorama space is gener-
ated using points from P1 to P10 from a viewpoint Xo the points from P1 to P10 are continuously

Figure 3. LIDAR VR data model.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

79

arranged in the range data. An azimuth or elevation angle from a viewpoint Xo to a measured
point P1 is denoted as Ro. On the other hand, when a panorama space is generated using the
points from P1 to P10 from a different viewpoint Xt, the angle from the viewpoint Xt to the mea-
sured point P1 is denoted as Rt. Thus, the change in angle from Ro to Rt affects the arrangement
of the projected points in the range data.

After the viewpoint translation, three types of filtering are applied to point-cloud rendering,
as shown in Figure 4. The first filtering is the occluded point overwriting. Figure 4 shows an
example to overwrite the projected point P1 by the projected point P2. After the viewpoint
translation from Xo to Xt, the projected point P1 becomes an occluded point behind P. Thus,
Figure 4 shows that P1 is overwritten by P2. The second filtering is the new point generation
in the no-data space. Figure 4 also shows an example to generate a new point Pnew1. After the
viewpoint translation from Xo to Xt, a no-data space occurs between the projected points P3
and P4. Therefore, Figure 4 shows that Pnew1 is generated between the projected points P3 and
P4. The third filtering is the occluded point replacement. Figure 4 shows an example to replace
an occluded point P8 with a new point Pnew2. After the viewpoint translation from Xo to Xt, the
point P8 is visible between points P9 and P10. However, the point P8 exists behind the real sur-
face. Thus, the occluded point P8 should be given a new distance value as Pnew2. The new dis-
tance value is calculated the distance values of points P9 and P10 through the pixel-selectable
averaging filter developed in this study, which we now describe.

In general image processing, each pixel value in an image is resampled by using pixel values
around it when the image is transformed. A similar technique is applied to the pixel-selectable

Figure 4. Point distribution calculated by viewpoint translation in range data, occlusion detection using the point cloud,
and point-cloud interpolation with distance information.

Recent Applications in Data Clustering80

averaging filter to improve the quality of the range data generated from point-cloud data
with the view-point translation. However, general image resampling techniques, such as the
nearest interpolation, linear interpolation, and cubic interpolation, degrade the quality of
the range data because the resampling blends various data, such as valid points, occluded
points, measurement noises, and missing data. Therefore, the pixel-selectable averaging filter
is applied to this technical issue. The pixel-selectable averaging filter extracts valid points
around a point for the resampling, as shown in Figure 5. This processing consists of a detec-
tion of valid data extraction and rejection of occluded points, noises, and missing data, and
missing-point regeneration.

The detailed flow of the pixel-selectable averaging filter is described as follows. First, a three-
by-three block of pixels is prepared in the range data projected from point clouds. The center
point in the block is the focus point in the range data. Second, the block is checked to see
whether valid points exist. When there are more than two valid pixels, the processing moves
to the next step. If there is only the focus point, it is deleted as spike noise. When the focus
point is a missing part, a new pixel value such as color and intensity value is given to the
focus point using the other valid points around the center point in the block. Third, after
these point extraction steps, an average value of valid points in the block within the search
range is calculated to overwrite the focus point value. The average value is a distance from
the viewpoint to the valid points. This processing is applied to each channel in the RGB and
intensity image. However, when the center point in the block has a distance value within the
search range, the overwriting processing is not performed. Because, when the point can be
defined approximately as the nearest surface, the overwriting processing has a possibility of
degrading geometrical accuracy and image quality in this case. This processing sequence is
applied to all points.

In the valid point extraction, a range of search distances should be given. The distance from
the viewpoint to the nearest point found among the extracted points is defined as the start

Figure 5. Pixel-selectable averaging filter.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

81

arranged in the range data. An azimuth or elevation angle from a viewpoint Xo to a measured
point P1 is denoted as Ro. On the other hand, when a panorama space is generated using the
points from P1 to P10 from a different viewpoint Xt, the angle from the viewpoint Xt to the mea-
sured point P1 is denoted as Rt. Thus, the change in angle from Ro to Rt affects the arrangement
of the projected points in the range data.

After the viewpoint translation, three types of filtering are applied to point-cloud rendering,
as shown in Figure 4. The first filtering is the occluded point overwriting. Figure 4 shows an
example to overwrite the projected point P1 by the projected point P2. After the viewpoint
translation from Xo to Xt, the projected point P1 becomes an occluded point behind P. Thus,
Figure 4 shows that P1 is overwritten by P2. The second filtering is the new point generation
in the no-data space. Figure 4 also shows an example to generate a new point Pnew1. After the
viewpoint translation from Xo to Xt, a no-data space occurs between the projected points P3
and P4. Therefore, Figure 4 shows that Pnew1 is generated between the projected points P3 and
P4. The third filtering is the occluded point replacement. Figure 4 shows an example to replace
an occluded point P8 with a new point Pnew2. After the viewpoint translation from Xo to Xt, the
point P8 is visible between points P9 and P10. However, the point P8 exists behind the real sur-
face. Thus, the occluded point P8 should be given a new distance value as Pnew2. The new dis-
tance value is calculated the distance values of points P9 and P10 through the pixel-selectable
averaging filter developed in this study, which we now describe.

In general image processing, each pixel value in an image is resampled by using pixel values
around it when the image is transformed. A similar technique is applied to the pixel-selectable

Figure 4. Point distribution calculated by viewpoint translation in range data, occlusion detection using the point cloud,
and point-cloud interpolation with distance information.

Recent Applications in Data Clustering80

averaging filter to improve the quality of the range data generated from point-cloud data
with the view-point translation. However, general image resampling techniques, such as the
nearest interpolation, linear interpolation, and cubic interpolation, degrade the quality of
the range data because the resampling blends various data, such as valid points, occluded
points, measurement noises, and missing data. Therefore, the pixel-selectable averaging filter
is applied to this technical issue. The pixel-selectable averaging filter extracts valid points
around a point for the resampling, as shown in Figure 5. This processing consists of a detec-
tion of valid data extraction and rejection of occluded points, noises, and missing data, and
missing-point regeneration.

The detailed flow of the pixel-selectable averaging filter is described as follows. First, a three-
by-three block of pixels is prepared in the range data projected from point clouds. The center
point in the block is the focus point in the range data. Second, the block is checked to see
whether valid points exist. When there are more than two valid pixels, the processing moves
to the next step. If there is only the focus point, it is deleted as spike noise. When the focus
point is a missing part, a new pixel value such as color and intensity value is given to the
focus point using the other valid points around the center point in the block. Third, after
these point extraction steps, an average value of valid points in the block within the search
range is calculated to overwrite the focus point value. The average value is a distance from
the viewpoint to the valid points. This processing is applied to each channel in the RGB and
intensity image. However, when the center point in the block has a distance value within the
search range, the overwriting processing is not performed. Because, when the point can be
defined approximately as the nearest surface, the overwriting processing has a possibility of
degrading geometrical accuracy and image quality in this case. This processing sequence is
applied to all points.

In the valid point extraction, a range of search distances should be given. The distance from
the viewpoint to the nearest point found among the extracted points is defined as the start

Figure 5. Pixel-selectable averaging filter.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

81

value of the search range. Moreover, the start value plus a defined distance parameter is
assumed as the end value. The defined distance parameter is determined with the continuity
of the points in the point cloud. For example, the defined parameter would be between 10 cm
and 1 m from experience, when trees and building walls are measured.

Thus, the pixel-selectable averaging filter uses valid points in the range data to achieve an
interpolation without reducing geometrical accuracy by a uniform smoothing effect. Figure 6
shows an example of processing result.

2.2. Normal vector estimation in a panoramic multilayered range image

A normal vector can be estimated using three points in point cloud with a triangle patch or
mesh generation processing. In 2D image processing, the Delaunay division is a popular algo-
rithm. The Delaunay division can also be applied for 3D point-cloud processing with millions
of points [13]. However, using the Delaunay division, it is hard to generate triangle patches
for more than hundreds of millions of points without a high-speed computing environment
[14, 15]. Thus, we focused on point-cloud rendering that restricts visible point-cloud data as
a 2D image. A closed point detection and topology assignment can be processed as 2D image
processing.

In our normal vector estimation, four faces in a range image are generated to estimate normal
vectors of a point in point cloud, as shown in Figure 7. First, a point in the projected point cloud
on a panoramic layered range image is defined as point C. Next, the projected points P1, P2, P3,

Figure 6. LiDAR VR processing result: input point cloud (upper image) and output point cloud (bottom image).

Recent Applications in Data Clustering82

and P4 in the range image are set from point C with d1, d2, d3, and d4 pixels in vertical and hori-
zontal directions. Triangulation is applied to these points as vertexes C-P1-P2, C-P2-P3, C-P3-P4,
and C-P4-P1 with a clockwise topology in the image space. Moreover, parameters d1, d2, d3, and d4
in this procedure depend on the accuracy and resolution of the measurement data taken from
the laser scanner or stereo camera. When the accuracy and resolution are high enough, these
parameters are set as one pixel. These parameters are set to more than one pixel for low accu-
racy and resolution measurement data to keep a smooth condition of normal vectors on a flat
surface. This procedure, which is based on 2D image processing, can provide a higher topology
attachment to the point cloud.

Additionally, the normal vector on each triangle is estimated using the 3D coordinate values
of each point. When five points consisting of a center and four vertex points exist on the
same plane in 3D space, each normal vector has the same direction. When point C exists on
the edge of the 3D space, two clusters can be classified by two directions. Moreover, when
point C exists on the corner of the 3D space, each triangle has a different direction. Surfaces,
edges, and corners in the 3D space were estimated in point-cloud data using these clues. In
this research, we used the point cloud taken from a laser scanner that presents difficulties for
measuring edges and corners clearly. Thus, the average value of each normal vector is used
as a normal vector of point C. These procedures were iterated to estimate the normal vectors
of all points in point cloud.

2.3. Normal vector-based point clustering

Point clusters are generated from a classification result of normal vectors. The accuracy of
point-cloud classification can be improved with several approaches such as the Mincut,
Markov network, and fuzzy-based algorithms [16–18]. However, in this study, we focused
on verifying the practicality of our point-based rendering for point-cloud clustering. Thus,
we applied multilevel slicing as a simple classification algorithm to classify normal vectors,
as shown in Figure 8.

This classification detected boundaries of point clusters with the same normal vectors.
Moreover, clustered normal vectors were compared with normal vectors of neighboring

Figure 7. Normal vector estimation in panoramic multilayered range image.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

83

value of the search range. Moreover, the start value plus a defined distance parameter is
assumed as the end value. The defined distance parameter is determined with the continuity
of the points in the point cloud. For example, the defined parameter would be between 10 cm
and 1 m from experience, when trees and building walls are measured.

Thus, the pixel-selectable averaging filter uses valid points in the range data to achieve an
interpolation without reducing geometrical accuracy by a uniform smoothing effect. Figure 6
shows an example of processing result.

2.2. Normal vector estimation in a panoramic multilayered range image

A normal vector can be estimated using three points in point cloud with a triangle patch or
mesh generation processing. In 2D image processing, the Delaunay division is a popular algo-
rithm. The Delaunay division can also be applied for 3D point-cloud processing with millions
of points [13]. However, using the Delaunay division, it is hard to generate triangle patches
for more than hundreds of millions of points without a high-speed computing environment
[14, 15]. Thus, we focused on point-cloud rendering that restricts visible point-cloud data as
a 2D image. A closed point detection and topology assignment can be processed as 2D image
processing.

In our normal vector estimation, four faces in a range image are generated to estimate normal
vectors of a point in point cloud, as shown in Figure 7. First, a point in the projected point cloud
on a panoramic layered range image is defined as point C. Next, the projected points P1, P2, P3,

Figure 6. LiDAR VR processing result: input point cloud (upper image) and output point cloud (bottom image).

Recent Applications in Data Clustering82

and P4 in the range image are set from point C with d1, d2, d3, and d4 pixels in vertical and hori-
zontal directions. Triangulation is applied to these points as vertexes C-P1-P2, C-P2-P3, C-P3-P4,
and C-P4-P1 with a clockwise topology in the image space. Moreover, parameters d1, d2, d3, and d4
in this procedure depend on the accuracy and resolution of the measurement data taken from
the laser scanner or stereo camera. When the accuracy and resolution are high enough, these
parameters are set as one pixel. These parameters are set to more than one pixel for low accu-
racy and resolution measurement data to keep a smooth condition of normal vectors on a flat
surface. This procedure, which is based on 2D image processing, can provide a higher topology
attachment to the point cloud.

Additionally, the normal vector on each triangle is estimated using the 3D coordinate values
of each point. When five points consisting of a center and four vertex points exist on the
same plane in 3D space, each normal vector has the same direction. When point C exists on
the edge of the 3D space, two clusters can be classified by two directions. Moreover, when
point C exists on the corner of the 3D space, each triangle has a different direction. Surfaces,
edges, and corners in the 3D space were estimated in point-cloud data using these clues. In
this research, we used the point cloud taken from a laser scanner that presents difficulties for
measuring edges and corners clearly. Thus, the average value of each normal vector is used
as a normal vector of point C. These procedures were iterated to estimate the normal vectors
of all points in point cloud.

2.3. Normal vector-based point clustering

Point clusters are generated from a classification result of normal vectors. The accuracy of
point-cloud classification can be improved with several approaches such as the Mincut,
Markov network, and fuzzy-based algorithms [16–18]. However, in this study, we focused
on verifying the practicality of our point-based rendering for point-cloud clustering. Thus,
we applied multilevel slicing as a simple classification algorithm to classify normal vectors,
as shown in Figure 8.

This classification detected boundaries of point clusters with the same normal vectors.
Moreover, clustered normal vectors were compared with normal vectors of neighboring

Figure 7. Normal vector estimation in panoramic multilayered range image.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

83

planes to be integrated into a larger plane or deleted as a small segment. When a specified
plane is extracted, the direction of a normal vector and the cluster number are available as
initial value inputs. The point-cloud clustering methodology for extracting the intersection of
planes as ridge lines requires appropriate initial values such as curvature, fitting accuracy and
distances to closed points [19]. However, our approach can extract boundaries from a point
cloud without these parameters.

3. Experiments

We conducted three experiments using point-cloud data acquired in indoor and outdoor
environments. Here we present the point-cloud clustering results of these experiments.

3.1. Experiment 1: indoor MMSs data

We selected a floor in our university as the indoor environment. We prepared a point
cloud taken from an indoor MMSs (TIMMS, Nikon-Trimble), which consisted of a laser
scanner, an omni-directional camera, inertial measurement units (IMU), and a wheel
encoder, as shown in Figure 9. Acquired point-cloud data, point-cloud rendering results,

Figure 8. Normal vector-based point clustering.

Recent Applications in Data Clustering84

and point-cloud clustering results are shown in Figure 10. The results show that building
features such as ceilings, beams, window shades, pillars, benches, and floors are classi-
fied clearly.

3.2. Experiment 2: terrestrial laser scanner data (1)

We selected a bridge as a study area in the outdoor environment. We acquired 25.9 mil-
lion points using a terrestrial laser scanner (GLS-2000, TOPCON) from four viewpoints.
Rendered point cloud, depth range image, and point-cloud clustering results are shown
in Figure 11. The results show that vertical planes, horizontal planes, and natural features
are classified clearly. The processing time for the clustering was 6.1 s (Intel Core i7-6567U
3.30 GHz, MATLAB).

Figure 9. Indoor MMSs.

Figure 10. Point-cloud clustering result: rendered point cloud (left image), filtered point cloud (center image), and
clustered point cloud (right image).

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

85

planes to be integrated into a larger plane or deleted as a small segment. When a specified
plane is extracted, the direction of a normal vector and the cluster number are available as
initial value inputs. The point-cloud clustering methodology for extracting the intersection of
planes as ridge lines requires appropriate initial values such as curvature, fitting accuracy and
distances to closed points [19]. However, our approach can extract boundaries from a point
cloud without these parameters.

3. Experiments

We conducted three experiments using point-cloud data acquired in indoor and outdoor
environments. Here we present the point-cloud clustering results of these experiments.

3.1. Experiment 1: indoor MMSs data

We selected a floor in our university as the indoor environment. We prepared a point
cloud taken from an indoor MMSs (TIMMS, Nikon-Trimble), which consisted of a laser
scanner, an omni-directional camera, inertial measurement units (IMU), and a wheel
encoder, as shown in Figure 9. Acquired point-cloud data, point-cloud rendering results,

Figure 8. Normal vector-based point clustering.

Recent Applications in Data Clustering84

and point-cloud clustering results are shown in Figure 10. The results show that building
features such as ceilings, beams, window shades, pillars, benches, and floors are classi-
fied clearly.

3.2. Experiment 2: terrestrial laser scanner data (1)

We selected a bridge as a study area in the outdoor environment. We acquired 25.9 mil-
lion points using a terrestrial laser scanner (GLS-2000, TOPCON) from four viewpoints.
Rendered point cloud, depth range image, and point-cloud clustering results are shown
in Figure 11. The results show that vertical planes, horizontal planes, and natural features
are classified clearly. The processing time for the clustering was 6.1 s (Intel Core i7-6567U
3.30 GHz, MATLAB).

Figure 9. Indoor MMSs.

Figure 10. Point-cloud clustering result: rendered point cloud (left image), filtered point cloud (center image), and
clustered point cloud (right image).

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

85

3.3. Experiment 3: terrestrial laser scanner data (2)

We selected a long narrow slope including slopes and stone steps as our study field. We
prepared a point cloud acquired from 18 viewpoints over a wide area using a terrestrial laser
scanner (VZ-400, RIEGL). Acquired point cloud and point-cloud clustering results are shown
in Figure 12. The results show that features, such as steps, slopes, rock walls, and trees, are
classified clearly. The processing time for the clustering was 11.4 s (Intel Core i7 2.80 GHz,
MATLAB).

Figure 11. Point-cloud clustering result: colored point cloud (upper image), depth image (center image), and clustered
point cloud (bottom image).

Recent Applications in Data Clustering86

4. Discussion

Our described processing flow in Figure 2 can be extended from point-cloud clustering to
polygon extraction [20], as shown in Figure 13.

After the “Normal vector classification in projected image,” when a small region has a simi-
lar direction with the neighboring region, the small region is merged into the neighboring

Figure 12. Point-cloud clustering result: colored point cloud (upper image) and clustered point cloud (bottom image).

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

87

3.3. Experiment 3: terrestrial laser scanner data (2)

We selected a long narrow slope including slopes and stone steps as our study field. We
prepared a point cloud acquired from 18 viewpoints over a wide area using a terrestrial laser
scanner (VZ-400, RIEGL). Acquired point cloud and point-cloud clustering results are shown
in Figure 12. The results show that features, such as steps, slopes, rock walls, and trees, are
classified clearly. The processing time for the clustering was 11.4 s (Intel Core i7 2.80 GHz,
MATLAB).

Figure 11. Point-cloud clustering result: colored point cloud (upper image), depth image (center image), and clustered
point cloud (bottom image).

Recent Applications in Data Clustering86

4. Discussion

Our described processing flow in Figure 2 can be extended from point-cloud clustering to
polygon extraction [20], as shown in Figure 13.

After the “Normal vector classification in projected image,” when a small region has a simi-
lar direction with the neighboring region, the small region is merged into the neighboring

Figure 12. Point-cloud clustering result: colored point cloud (upper image) and clustered point cloud (bottom image).

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

87

region. Otherwise, the small region is deleted from the clustering result. Boundary points are
extracted through “Boundary point extraction” from the clustering result. Moreover, poly-
gons are extracted through “Boundary point tracing.” Boundaries of features can be extracted
from the refined surfaces in a range image. Moreover, 3D polygons can be extracted with
topology estimation using these extracted boundaries in the range image. In this procedure,
point tracing connects points in the 3D space along the boundary, as shown in Figure 14.
Although least squares fitting and polynomial fitting are generally applied for straight and
curved line extraction from points, these fitting approaches require a straight-line recogni-
tion or curved-line recognition. When the point clouds include noises, RANSAC is a suitable
approach for feature estimation. However, the RANSAC also requires the fitting procedure.
Thus, tracing based on the region growing is applied to complex geometry extraction, as fol-
lows. First, a topology of points is estimated in a range image. Continuous 3D points can be
extracted when a polyline or polygon is drawn in a range image. Next, a seed point is selected
from the continuous 3D points for point tracing. Then, a possible next point is searched within
a candidate area. The candidate area is determined using a 3D vector from the seed point.
When a point exists within the candidate area, it is connected to the seed point. Otherwise,
the point is assumed to be an outlier. A position of the outlier is corrected to a suitable posi-
tion using the 3D vector from the seed point. Then, the connected point is assumed as the next

Figure 13. Overall processing flow.

Recent Applications in Data Clustering88

seed point. These steps are iterated to close the geometry for the 3D smooth polygon genera-
tion. These procedures are applied to each rendered point cloud from arbitrary viewpoints.

In indoor navigation and BIM, terrestrial laser scanners and indoor MMSs are used for colored
point-cloud acquisition to generate floor maps and 3D data in an indoor environment. Figure 15
shows the result of polygon extraction from the point cloud used in the first experiment.

However, missing areas and a non-uniform density of the point cloud would exist in point-
cloud acquisition. This issue causes transparent and near-far effects in point-cloud visualiza-
tion. To avoid these effects, we have developed a spatial interpolation based on point-based
rendering in the point-cloud visualization and modeling. Nevertheless, when large missing
and occluded areas exist, the spatial interpolation approach is inefficient and ineffectual.
Therefore, we focused on a randomized algorithm to quickly find approximate nearest-neigh-
bor matches between image patches for image inpainting [21]. The image inpainting aims to
improve image quality with deletion works of scratches and unnecessary objects in an image
and reconstruction works of the natural image. That is, scratches and unnecessary objects are
replaced by other textures in the image [22], as shown in Figure 16. In manual works, these
objects are replaced using image retouching software such as Adobe Photoshop. The inpaint-
ing approach is an automated procedure for image retouches.

Figure 14. Point tracing.

Figure 15. Polygon extraction result.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

89

region. Otherwise, the small region is deleted from the clustering result. Boundary points are
extracted through “Boundary point extraction” from the clustering result. Moreover, poly-
gons are extracted through “Boundary point tracing.” Boundaries of features can be extracted
from the refined surfaces in a range image. Moreover, 3D polygons can be extracted with
topology estimation using these extracted boundaries in the range image. In this procedure,
point tracing connects points in the 3D space along the boundary, as shown in Figure 14.
Although least squares fitting and polynomial fitting are generally applied for straight and
curved line extraction from points, these fitting approaches require a straight-line recogni-
tion or curved-line recognition. When the point clouds include noises, RANSAC is a suitable
approach for feature estimation. However, the RANSAC also requires the fitting procedure.
Thus, tracing based on the region growing is applied to complex geometry extraction, as fol-
lows. First, a topology of points is estimated in a range image. Continuous 3D points can be
extracted when a polyline or polygon is drawn in a range image. Next, a seed point is selected
from the continuous 3D points for point tracing. Then, a possible next point is searched within
a candidate area. The candidate area is determined using a 3D vector from the seed point.
When a point exists within the candidate area, it is connected to the seed point. Otherwise,
the point is assumed to be an outlier. A position of the outlier is corrected to a suitable posi-
tion using the 3D vector from the seed point. Then, the connected point is assumed as the next

Figure 13. Overall processing flow.

Recent Applications in Data Clustering88

seed point. These steps are iterated to close the geometry for the 3D smooth polygon genera-
tion. These procedures are applied to each rendered point cloud from arbitrary viewpoints.

In indoor navigation and BIM, terrestrial laser scanners and indoor MMSs are used for colored
point-cloud acquisition to generate floor maps and 3D data in an indoor environment. Figure 15
shows the result of polygon extraction from the point cloud used in the first experiment.

However, missing areas and a non-uniform density of the point cloud would exist in point-
cloud acquisition. This issue causes transparent and near-far effects in point-cloud visualiza-
tion. To avoid these effects, we have developed a spatial interpolation based on point-based
rendering in the point-cloud visualization and modeling. Nevertheless, when large missing
and occluded areas exist, the spatial interpolation approach is inefficient and ineffectual.
Therefore, we focused on a randomized algorithm to quickly find approximate nearest-neigh-
bor matches between image patches for image inpainting [21]. The image inpainting aims to
improve image quality with deletion works of scratches and unnecessary objects in an image
and reconstruction works of the natural image. That is, scratches and unnecessary objects are
replaced by other textures in the image [22], as shown in Figure 16. In manual works, these
objects are replaced using image retouching software such as Adobe Photoshop. The inpaint-
ing approach is an automated procedure for image retouches.

Figure 14. Point tracing.

Figure 15. Polygon extraction result.

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

89

5. Conclusion

We have focused on improving region-based point-cloud clustering in 3D modeling after point-
cloud integration. We have also focused on region-based point clustering to extract a polygon
from a massive point cloud, because it is difficult to estimate accurate edges from point clouds
acquired with a laser scanner. First, we proposed a point-cloud clustering methodology on a
panoramic layered range image generated from a massive point cloud with point-based render-
ing. Next, we conducted three experiments using laser scanning data to verify our methodology.
The first experiment was 3D edge and surface extraction for indoor modeling using an indoor
MMS. The second experiment was 3D edge and surface extraction for 3D bridge modeling using
a terrestrial laser scanner. The third experiment was 3D edge and surface extraction for ground-
surface and feature extraction using a terrestrial laser scanner. The results of these experiments
confirm that our proposed methodology can achieve point-cloud clustering to extract features
such as flat surfaces, slopes, and steps from complex environments in practical processing times.

Acknowledgements

This work is supported by the Strategic Information and Communications R&D Promotion
Programme (SCOPE) of the Ministry of Internal Affairs and Communications, Japan. This
work is also supported by RIEGL Japan Co. Ltd., Nikon-Trimble Co. Ltd., and Sumire survey
Co., Ltd. for data acquisition.

Author details

Masafumi Nakagawa

Address all correspondence to: mnaka@shibaura-it.ac.jp

Shibaura Institute of Technology, Tokyo, Japan

Figure 16. Inpainted result: rendered point cloud (left image) and inpainted point cloud (right image).

Recent Applications in Data Clustering90

References

[1] Boyko A, Funkhouser T. Extracting roads from dense point clouds in large scale urban envi-
ronment. ISPRS Journal of Photogrammetry and Remote Sensing. 2011;66(2011):S2-S12

[2] Jiang X, Bunke H. Edge detection in range images based on scan line approximation.
Computer Vision and Image Understanding. 1999;73(2):183-199

[3] Vosselman G, Gorte BGH, Sithole G, Rabbani T. Recognising structure in laser scanning
point clouds. In: ISPRS 2004: Proceedings of the ISPRS Working Group VIII/2: Laser
Scanning for Forest and Landscape Assessment; 2004. pp. 33-38

[4] Tsai A, Hsu C, Hong I, Liu W. Plane and boundary extraction from LiDAR data using
clustering and convex hull projection. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences. 2010;XXXVIII(Part 3A):175-179

[5] Pu S, Vosselman G. Knowledge based reconstruction of building models from ter-
restrial laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing.
2009;64(6):575-584

[6] Zhou Q, Neumann U. Fast and extensible building modeling from airborne LiDAR data.
In: ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (ACM GIS). 2008. p. 8

[7] Denis E, Burck R, Baillard C. Towards road modelling from terrestrial laser points.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. 2010;XXXVIII(Part 3A):293-298

[8] Schnabel R, Wahl R, Klein R. Efficient RANSAC for point-cloud shape detection.
Computer Graphics Forum. 2007;26(2):214-226

[9] Shade J, Gortler S, He L, Szeliski R. Layered depth images. In: SIGGRAPH '98. 1998.
pp. 231-242

[10] Verbree E, Zlatanova S, Dijkman S. Distance-Value-Added Panoramic Images as the
Base Data Model for 3D-GIS. Panoramic Photogrammetry Workshop. 2005

[11] Linsen L, Müller K, Rosenthal P. Splat-based ray tracing of point clouds. Journal of
WSCG. 2007;15(1-3):51-58

[12] Nakagawa M. Point cloud clustering for 3D modeling assistance using a panoramic lay-
ered range image. Journal of Remote Sensing Technology. 2013;1(3):10

[13] Chevallier N, Maillot Y. Boundary of a non-uniform point cloud for reconstruction. In:
SoCG '11 Proceedings of the Twenty-Seventh Annual Symposium on Computational
Geometry. 2011. pp. 510-518

[14] Fabio R, From point cloud to surface: The modeling and visualization problem.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. 2003;XXXIV-5/W10

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

91

5. Conclusion

We have focused on improving region-based point-cloud clustering in 3D modeling after point-
cloud integration. We have also focused on region-based point clustering to extract a polygon
from a massive point cloud, because it is difficult to estimate accurate edges from point clouds
acquired with a laser scanner. First, we proposed a point-cloud clustering methodology on a
panoramic layered range image generated from a massive point cloud with point-based render-
ing. Next, we conducted three experiments using laser scanning data to verify our methodology.
The first experiment was 3D edge and surface extraction for indoor modeling using an indoor
MMS. The second experiment was 3D edge and surface extraction for 3D bridge modeling using
a terrestrial laser scanner. The third experiment was 3D edge and surface extraction for ground-
surface and feature extraction using a terrestrial laser scanner. The results of these experiments
confirm that our proposed methodology can achieve point-cloud clustering to extract features
such as flat surfaces, slopes, and steps from complex environments in practical processing times.

Acknowledgements

This work is supported by the Strategic Information and Communications R&D Promotion
Programme (SCOPE) of the Ministry of Internal Affairs and Communications, Japan. This
work is also supported by RIEGL Japan Co. Ltd., Nikon-Trimble Co. Ltd., and Sumire survey
Co., Ltd. for data acquisition.

Author details

Masafumi Nakagawa

Address all correspondence to: mnaka@shibaura-it.ac.jp

Shibaura Institute of Technology, Tokyo, Japan

Figure 16. Inpainted result: rendered point cloud (left image) and inpainted point cloud (right image).

Recent Applications in Data Clustering90

References

[1] Boyko A, Funkhouser T. Extracting roads from dense point clouds in large scale urban envi-
ronment. ISPRS Journal of Photogrammetry and Remote Sensing. 2011;66(2011):S2-S12

[2] Jiang X, Bunke H. Edge detection in range images based on scan line approximation.
Computer Vision and Image Understanding. 1999;73(2):183-199

[3] Vosselman G, Gorte BGH, Sithole G, Rabbani T. Recognising structure in laser scanning
point clouds. In: ISPRS 2004: Proceedings of the ISPRS Working Group VIII/2: Laser
Scanning for Forest and Landscape Assessment; 2004. pp. 33-38

[4] Tsai A, Hsu C, Hong I, Liu W. Plane and boundary extraction from LiDAR data using
clustering and convex hull projection. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences. 2010;XXXVIII(Part 3A):175-179

[5] Pu S, Vosselman G. Knowledge based reconstruction of building models from ter-
restrial laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing.
2009;64(6):575-584

[6] Zhou Q, Neumann U. Fast and extensible building modeling from airborne LiDAR data.
In: ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (ACM GIS). 2008. p. 8

[7] Denis E, Burck R, Baillard C. Towards road modelling from terrestrial laser points.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. 2010;XXXVIII(Part 3A):293-298

[8] Schnabel R, Wahl R, Klein R. Efficient RANSAC for point-cloud shape detection.
Computer Graphics Forum. 2007;26(2):214-226

[9] Shade J, Gortler S, He L, Szeliski R. Layered depth images. In: SIGGRAPH '98. 1998.
pp. 231-242

[10] Verbree E, Zlatanova S, Dijkman S. Distance-Value-Added Panoramic Images as the
Base Data Model for 3D-GIS. Panoramic Photogrammetry Workshop. 2005

[11] Linsen L, Müller K, Rosenthal P. Splat-based ray tracing of point clouds. Journal of
WSCG. 2007;15(1-3):51-58

[12] Nakagawa M. Point cloud clustering for 3D modeling assistance using a panoramic lay-
ered range image. Journal of Remote Sensing Technology. 2013;1(3):10

[13] Chevallier N, Maillot Y. Boundary of a non-uniform point cloud for reconstruction. In:
SoCG '11 Proceedings of the Twenty-Seventh Annual Symposium on Computational
Geometry. 2011. pp. 510-518

[14] Fabio R, From point cloud to surface: The modeling and visualization problem.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. 2003;XXXIV-5/W10

Point Cloud Clustering Using Panoramic Layered Range Image
http://dx.doi.org/10.5772/intechopen.76407

91

[15] Böhm J, Pateraki M. From point samples to surfaces, on meshing and alternatives. ISPRS
Image Engineering and Vision Metrology. 2006;XXXVI:50-55

[16] Golovinskiy A, Funkhouser T. Min-cut based segmentation of point clouds. In: IEEE
Workshop on Search in 3D and Video (S3DV) at ICCV; 2009. p. 6

[17] Shapovalov R, Velizhev A. Cutting-plane training of non-associative Markov network
for 3D point cloud segmentation. In: 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT); 2011. p. 8

[18] Biosca M, Luis Lerma J. Unsupervised robust planar segmentation of terrestrial laser scan-
ner point clouds based on fuzzy clustering methods. ISPRS Journal of Photogrammetry
and Remote Sensing. 2008;63(1):84-98

[19] Kitamura K, D'Apuzzo N, Kochi N, Kaneko S. Automated extraction of break lines in
tls data of real environment. International Archives of Photogrammetry and Remote
Sensing. 2010;38(5):331-336

[20] Nakagawa M, Kataoka K, Yamamoto T, Shiozaki M, Ohhashi T. Panoramic render-
ing-based polygon extraction from indoor mobile LiDAR data. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
2014;XL(4):181-186

[21] Barnes C, Shechtman E, Finkelstein A, Dan Goldman B. PatchMatch: A randomized cor-
respondence algorithm for structural image editing. ACM Transactions on Graphics
(Proc. SIGGRAPH). 2009;28(3)

[22] Nakagawa M, Tanaka S, Yamamoto T. Colorerd point cloud reconstruction based on
image inpainting. In: The 36th Asian Conference on Remote Sensing 2015 (ACRS2015);
2015. p. 7

Recent Applications in Data Clustering92

Chapter 6

CoClust: An R Package for Copula-Based Cluster
Analysis

Francesca Marta Lilja Di Lascio

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74865

Provisional chapter

CoClust: An R Package for Copula-Based Cluster
Analysis

Francesca Marta Lilja Di Lascio

Additional information is available at the end of the chapter

Abstract

The aim of this chapter is to present and describe the R package CoClust, which enables
implementing a clustering algorithm based on the copula function. The copula-based
clustering algorithm, called CoClust, was introduced by Di Lascio and Giannerini in 2012
(Journal of Classification, 29(1):50–75), improved in 2016 (Statistical Papers, p.1–17, DOI
10.1007/s00362-016-0822-3), and is able to find clusters according to the complex multivar-
iate dependence structure of the data-generating process. Hence, among other advan-
tages, the CoClust overcomes the limitations of classic approaches that only deal with
linear bivariate relationships. The first part of the chapter briefly describes the clustering
algorithm. The second part illustrates the clustering procedure through the R package
CoClust and presents numerical examples showing how the main R commands can be
used to perform a fully developed clustering of multivariate dependent data.

Keywords: clustering algorithm, CoClust, copula function, multivariate dependence
structure, R package

1. Introduction

Cluster analysis is an unsupervised classification method that aims to detect a structure within
data by assigning a set of objects (observations or variables) into groups, called clusters,
whereby objects in the same cluster are in some sense more closely related to each other than
objects assigned to different clusters.

Literature on clustering methods is very extensive and different criteria are taken into
account to organize and present these methods. One such criterion is the mathematical
object of the clustering methods: a distance or dissimilarity measure versus a probability

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74865

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[15] Böhm J, Pateraki M. From point samples to surfaces, on meshing and alternatives. ISPRS
Image Engineering and Vision Metrology. 2006;XXXVI:50-55

[16] Golovinskiy A, Funkhouser T. Min-cut based segmentation of point clouds. In: IEEE
Workshop on Search in 3D and Video (S3DV) at ICCV; 2009. p. 6

[17] Shapovalov R, Velizhev A. Cutting-plane training of non-associative Markov network
for 3D point cloud segmentation. In: 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT); 2011. p. 8

[18] Biosca M, Luis Lerma J. Unsupervised robust planar segmentation of terrestrial laser scan-
ner point clouds based on fuzzy clustering methods. ISPRS Journal of Photogrammetry
and Remote Sensing. 2008;63(1):84-98

[19] Kitamura K, D'Apuzzo N, Kochi N, Kaneko S. Automated extraction of break lines in
tls data of real environment. International Archives of Photogrammetry and Remote
Sensing. 2010;38(5):331-336

[20] Nakagawa M, Kataoka K, Yamamoto T, Shiozaki M, Ohhashi T. Panoramic render-
ing-based polygon extraction from indoor mobile LiDAR data. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
2014;XL(4):181-186

[21] Barnes C, Shechtman E, Finkelstein A, Dan Goldman B. PatchMatch: A randomized cor-
respondence algorithm for structural image editing. ACM Transactions on Graphics
(Proc. SIGGRAPH). 2009;28(3)

[22] Nakagawa M, Tanaka S, Yamamoto T. Colorerd point cloud reconstruction based on
image inpainting. In: The 36th Asian Conference on Remote Sensing 2015 (ACRS2015);
2015. p. 7

Recent Applications in Data Clustering92

Chapter 6

CoClust: An R Package for Copula-Based Cluster
Analysis

Francesca Marta Lilja Di Lascio

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74865

Provisional chapter

CoClust: An R Package for Copula-Based Cluster
Analysis

Francesca Marta Lilja Di Lascio

Additional information is available at the end of the chapter

Abstract

The aim of this chapter is to present and describe the R package CoClust, which enables
implementing a clustering algorithm based on the copula function. The copula-based
clustering algorithm, called CoClust, was introduced by Di Lascio and Giannerini in 2012
(Journal of Classification, 29(1):50–75), improved in 2016 (Statistical Papers, p.1–17, DOI
10.1007/s00362-016-0822-3), and is able to find clusters according to the complex multivar-
iate dependence structure of the data-generating process. Hence, among other advan-
tages, the CoClust overcomes the limitations of classic approaches that only deal with
linear bivariate relationships. The first part of the chapter briefly describes the clustering
algorithm. The second part illustrates the clustering procedure through the R package
CoClust and presents numerical examples showing how the main R commands can be
used to perform a fully developed clustering of multivariate dependent data.

Keywords: clustering algorithm, CoClust, copula function, multivariate dependence
structure, R package

1. Introduction

Cluster analysis is an unsupervised classification method that aims to detect a structure within
data by assigning a set of objects (observations or variables) into groups, called clusters,
whereby objects in the same cluster are in some sense more closely related to each other than
objects assigned to different clusters.

Literature on clustering methods is very extensive and different criteria are taken into
account to organize and present these methods. One such criterion is the mathematical
object of the clustering methods: a distance or dissimilarity measure versus a probability

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74865

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

model. In this chapter, we consider the model-based clustering methods that assume the
data matrix is generated according to a specific data generating process (henceforth DGP).
The classic model-based clustering method in [1, 2] is based on a mixture of multivariate
probability distributions, such as the multivariate normal. However, this approach only
accounts for the linear dependence between objects so that it inherits all the limitations of
the linear correlation coefficient. Hence, we here focus on clustering methods that assume
the data matrix is generated by a K-dimensional copula [3] such that each of the K clusters is
represented by a (continuous) univariate density function and the complex multivariate
relationship among clusters is expressed by the copula and its dependence parameter.
Specifically, this chapter aims to describe the copula-based clustering algorithm first intro-
duced by [4] and improved by [5], presenting in detail its implementation in the R package
called CoClust. The CoClust approach inspired the work of [6], while different copula-
based clustering approaches can be found in [7–9], [10–13], [14], and in [15, 16]. To the best
of our knowledge, none of these methods have been implemented in software available to
the scientific community.

Most clustering algorithms take as input some parameters, such as number of clusters, the
distance or density of clusters, or the number of points in a cluster, and a starting classification.
Some important benefits of the R function CoClust, which implements the copula-based
clustering algorithm in [5], are that (i) the user can simultaneously test a multiple number of
clusters in a single function call, (ii) there is no need for a starting classification, and (iii) the
algorithm can nonparametrically estimate the density of the clusters, which are distributional
free. The package is available from the Comprehensive R Archive Network (CRAN) at https://
cran.r-project.org/web/packages/CoClust/index.html.

The chapter is organized as follows. Section 2 presents the theoretical tools of copula theory
essential to understanding the copula-based clustering algorithm introduced and described in
Section 3. Section 4 describes in detail the R implementation of the CoClust algorithm and
illustrates its use on simulated DGPs. In Section 5, an application to a real dataset is presented,
while a brief conclusion follows in Section 6.

2. Copula theory

The copula function [17–20] was born in the probabilistic metric space with Sklar’s theorem [3]
stating that every joint distribution function F �ð Þ can be expressed in terms of K marginal
distribution function Fk and the copula distribution function C as follows:

F x1;…; xk;…; xKð Þ ¼ C F1 x1ð Þ;…; Fk xkð Þ;…; FK xKð Þð Þ (1)

for all x1;…; xk;…; xKð Þ∈R
K

(where R denotes the extended real line). According to this
theorem, any joint probability function f �ð Þ can be split into the margins f k �ð Þ and a copula
c �ð Þ, so that the latter represents the association among variables, that is, the multivariate
dependence structure of a joint density function [17–20]:

Recent Applications in Data Clustering94

f x1;…; xk;…; xKð Þ ¼ c F1 x1ð Þ;…; Fk xkð Þ;…; FK xKð Þð Þ
YK

k¼1
f k xkð Þ: (2)

Such separation determines the modeling flexibility of copulas, since it enables (i) freely choosing
the distribution of the margins and, separately, that of the copula, (ii) decomposing the estima-
tion problem into two steps: in the first step, the margins are estimated, in the second step, the
copula model is estimated, and (iii) combining different estimation methods or approaches.

The log-likelihood function of f �ð Þ is composed of two positive terms as follows:

l Θð Þ ¼
Xn

i¼1
log c F1 X1i; β1

� �
;…; Fk Xki; βk

� �
;…; FK XKi; βK

� �
;θ

� �þ
Xn

i¼1

XK

k¼1
log f k Xki; βk

� �
(3)

where the first term involves the copula density c �ð Þ and its parameter θ, and the second
involves marginal densities f k �ð Þ and their parameters βk, and the whole set of parameters to
be estimated is Θ ¼ β1;…; βk;…; βK;θ

� �
. Thus, it is possible to estimate f �ð Þ by exploiting the

decomposition into two terms of Eq. (2) [20, Chapter 4] using a sequential two-step maximum
likelihood method, called inference for margins (henceforth IFM) [21]. This method estimates
the marginal parameters in the first step and uses them to estimate the parameter of the copula
function in the second step, in either a full or semi-parametric approach.

A full parametric approach for the IFMmethod is based on the estimation of the marginal param-
eters β1;…; βk;…; βK

� �
in the first step by themaximum likelihood estimation for eachmargin:

bβk ¼ arg max
βk

Xn

i¼1
log f k Xki; βk

� �
(4)

where each marginal distribution f k has its own parameters βk. In the second step, the depen-

dence parameter θ given bβk for k ¼ 1,…, K is estimated by:

bθ ¼ arg max
θ

Xn

i¼1
log c F1 X1i;bβ1

� �
;…; Fk Xki;bβk

� �
;…; FK XKi;bβK

� �
;θ

h i
: (5)

using the maximum likelihood estimation method.

The IFM method can also be used in a semi-parametric approach [22] where the margins are
modeled without assumptions on their parametric form, that is, through the following empir-

ical cumulative distribution function bFk Xkið Þ:

bUki ¼ nbFk Xkið Þ
nþ 1ð Þ (6)

where bFk Xkið Þ is computed from Xk1;…;Xki;…;Xknð Þ with k ¼ 1, 2,…, K and n is the sample
size, while the copula parameter θ is estimated by using the following maximum log-
likelihood function:

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

95

model. In this chapter, we consider the model-based clustering methods that assume the
data matrix is generated according to a specific data generating process (henceforth DGP).
The classic model-based clustering method in [1, 2] is based on a mixture of multivariate
probability distributions, such as the multivariate normal. However, this approach only
accounts for the linear dependence between objects so that it inherits all the limitations of
the linear correlation coefficient. Hence, we here focus on clustering methods that assume
the data matrix is generated by a K-dimensional copula [3] such that each of the K clusters is
represented by a (continuous) univariate density function and the complex multivariate
relationship among clusters is expressed by the copula and its dependence parameter.
Specifically, this chapter aims to describe the copula-based clustering algorithm first intro-
duced by [4] and improved by [5], presenting in detail its implementation in the R package
called CoClust. The CoClust approach inspired the work of [6], while different copula-
based clustering approaches can be found in [7–9], [10–13], [14], and in [15, 16]. To the best
of our knowledge, none of these methods have been implemented in software available to
the scientific community.

Most clustering algorithms take as input some parameters, such as number of clusters, the
distance or density of clusters, or the number of points in a cluster, and a starting classification.
Some important benefits of the R function CoClust, which implements the copula-based
clustering algorithm in [5], are that (i) the user can simultaneously test a multiple number of
clusters in a single function call, (ii) there is no need for a starting classification, and (iii) the
algorithm can nonparametrically estimate the density of the clusters, which are distributional
free. The package is available from the Comprehensive R Archive Network (CRAN) at https://
cran.r-project.org/web/packages/CoClust/index.html.

The chapter is organized as follows. Section 2 presents the theoretical tools of copula theory
essential to understanding the copula-based clustering algorithm introduced and described in
Section 3. Section 4 describes in detail the R implementation of the CoClust algorithm and
illustrates its use on simulated DGPs. In Section 5, an application to a real dataset is presented,
while a brief conclusion follows in Section 6.

2. Copula theory

The copula function [17–20] was born in the probabilistic metric space with Sklar’s theorem [3]
stating that every joint distribution function F �ð Þ can be expressed in terms of K marginal
distribution function Fk and the copula distribution function C as follows:

F x1;…; xk;…; xKð Þ ¼ C F1 x1ð Þ;…; Fk xkð Þ;…; FK xKð Þð Þ (1)

for all x1;…; xk;…; xKð Þ∈R
K

(where R denotes the extended real line). According to this
theorem, any joint probability function f �ð Þ can be split into the margins f k �ð Þ and a copula
c �ð Þ, so that the latter represents the association among variables, that is, the multivariate
dependence structure of a joint density function [17–20]:

Recent Applications in Data Clustering94

f x1;…; xk;…; xKð Þ ¼ c F1 x1ð Þ;…; Fk xkð Þ;…; FK xKð Þð Þ
YK

k¼1
f k xkð Þ: (2)

Such separation determines the modeling flexibility of copulas, since it enables (i) freely choosing
the distribution of the margins and, separately, that of the copula, (ii) decomposing the estima-
tion problem into two steps: in the first step, the margins are estimated, in the second step, the
copula model is estimated, and (iii) combining different estimation methods or approaches.

The log-likelihood function of f �ð Þ is composed of two positive terms as follows:

l Θð Þ ¼
Xn

i¼1
log c F1 X1i; β1

� �
;…; Fk Xki; βk

� �
;…; FK XKi; βK

� �
;θ

� �þ
Xn

i¼1

XK

k¼1
log f k Xki; βk

� �
(3)

where the first term involves the copula density c �ð Þ and its parameter θ, and the second
involves marginal densities f k �ð Þ and their parameters βk, and the whole set of parameters to
be estimated is Θ ¼ β1;…; βk;…; βK;θ

� �
. Thus, it is possible to estimate f �ð Þ by exploiting the

decomposition into two terms of Eq. (2) [20, Chapter 4] using a sequential two-step maximum
likelihood method, called inference for margins (henceforth IFM) [21]. This method estimates
the marginal parameters in the first step and uses them to estimate the parameter of the copula
function in the second step, in either a full or semi-parametric approach.

A full parametric approach for the IFMmethod is based on the estimation of the marginal param-
eters β1;…; βk;…; βK

� �
in the first step by themaximum likelihood estimation for eachmargin:

bβk ¼ arg max
βk

Xn

i¼1
log f k Xki; βk

� �
(4)

where each marginal distribution f k has its own parameters βk. In the second step, the depen-

dence parameter θ given bβk for k ¼ 1,…, K is estimated by:

bθ ¼ arg max
θ

Xn

i¼1
log c F1 X1i;bβ1

� �
;…; Fk Xki;bβk

� �
;…; FK XKi;bβK

� �
;θ

h i
: (5)

using the maximum likelihood estimation method.

The IFM method can also be used in a semi-parametric approach [22] where the margins are
modeled without assumptions on their parametric form, that is, through the following empir-

ical cumulative distribution function bFk Xkið Þ:

bUki ¼ nbFk Xkið Þ
nþ 1ð Þ (6)

where bFk Xkið Þ is computed from Xk1;…;Xki;…;Xknð Þ with k ¼ 1, 2,…, K and n is the sample
size, while the copula parameter θ is estimated by using the following maximum log-
likelihood function:

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

95

bθ ¼ argmax
θ

Xn

i¼1
log c bU1i;…; bUki;…; bUKi;θ

h i
: (7)

Note that the scaling factor n= nþ 1ð Þ in Eq. (6) is typically introduced in the nonparametric

computation of the margins to avoid numerical problems at the boundary of 0; 1½ �K.

2.1. Copula models

While many different copula models are available in literature (see [18, 19] for details), the
Elliptical and Archimedean families are shown to be the most useful in empirical modeling.
The Elliptical family includes the Gaussian copula and the t-copula: both are symmetric,
exhibit the strongest dependence in the middle of the distribution, and can take into account
both positive and negative dependence, since �1 ≤θ ≤ 1. The Archimedean family enables
describing both left and right asymmetry as well as weak symmetry among the margins using
the Clayton, Gumbel, and Frank models, respectively. Clayton’s copula has the parameter
θ∈ 0;∞ð Þ and as θ approaches zero, the margins become independent. The dependence
parameter θ of a Gumbel model is restricted to the interval 1;þ∞½ Þ where the value 1 means
independence. Finally, the dependence parameter θ of a Frank copula may assume any real
value and as θ approaches zero, the marginal distributions become independent. According to
the type of copula model, the value of θ has a specific meaning and the magnitudes of the
dependence parameter are not comparable across copulas. It is always true that the greater the
value of the dependence parameter, the stronger the association among the margins, but since
the relationship between θ and the concordance measures is well known, it is standard to
convert θ to these, for example, to the Kendall’s τ correlation coefficient. The families of copula
models considered here are described in Table 1 and shown in Figure 1 in their bivariate
version. Note that here only single parameter copula models are considered.

The copula model selection task is still an open research field. Although various statistical tests
enable evaluating whether a specific model is plausible or not, no tool has thus far been
recognized as the best. In the copula-based clustering context, this issue can be overcome,

Copula C u1; u2;θð Þ Parameter range Kendall’s τ

Gaussian ΦG Φ�1 u1ð Þ;Φ�1 u2ð Þ
� �

θ∈ �1; 1ð Þ 2
π arcsin θð Þ

Student-t t2,ν t�1ν u1ð Þ; t�1ν u2ð Þ;θ
� �

θ∈ �1; 1½ �, ν∈ 2;∞ð Þ 2
π arcsin θð Þ

Clayton u�θ1 þ u�θ2 � 1
� ��1

θ θ∈ 0;∞ð Þ θ
θþ2

Frank � 1
θ ln 1þ e�θu1�1ð Þ e�θu2�1ð Þ

e�θ�1ð Þ

� �
θ∈ �∞;∞ð Þ 1� 4

θ 1�D1 θð Þ½ �

Gumbel e � � log u1� logu2ð Þ1=θ½ � θ∈ 1;∞½ Þ 1� 1
θ

Table 1. Some standard single parameter bivariate copulas with the range of the dependence parameter θ and its relation
with Kendall’s τ. uk with k ¼ 1, 2 are uniformly distributed variates so that xk ¼ F�1 ukð Þ � Fk. Φ is the cumulative
distribution function (cdf) of the standard normal distribution, ΦG u1; u2ð Þ is the standard bivariate normal distribution,
t2,ν �; �;θð Þ denotes the standard bivariate student-t distribution with ν degrees of freedom, and t�1ν the inverse univariate
student-t distribution function. D1 xð Þ denotes the “Debye” function 1=x

Ð x
0 t= expt � 1
� �

dt.

Recent Applications in Data Clustering96

since the choice of the type of model would seem less important in terms of the goodness of the
final clustering (see [5], Section 4.3), and a classic information criterion can be used, such as the
Bayesian or the Akaike information criterion. This topic is discussed in detail in Section 3.

3. CoClust algorithm

Di Lascio and Giannerini [4] proposed a clustering algorithm called CoClust that is able to
cluster multivariate observations with a complex dependence structure. The basic underlying
concept of CoClust is clustering multivariate dependent observations based on the likelihood
copula fit estimated on the previously allocated observations. To do so, the CoClust assumes

Figure 1. Contour plots of bivariate copula models with normal standard margins and dependence parameter θ such that
the Kendall’s correlation coefficient is τ ¼ 0:7; upper panel: Gaussian and t-Student copula models for 2 and 4 degrees of
freedom; lower panel: Clayton, Gumbel, and Frank copula models.

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

97

bθ ¼ argmax
θ

Xn

i¼1
log c bU1i;…; bUki;…; bUKi;θ

h i
: (7)

Note that the scaling factor n= nþ 1ð Þ in Eq. (6) is typically introduced in the nonparametric

computation of the margins to avoid numerical problems at the boundary of 0; 1½ �K.

2.1. Copula models

While many different copula models are available in literature (see [18, 19] for details), the
Elliptical and Archimedean families are shown to be the most useful in empirical modeling.
The Elliptical family includes the Gaussian copula and the t-copula: both are symmetric,
exhibit the strongest dependence in the middle of the distribution, and can take into account
both positive and negative dependence, since �1 ≤θ ≤ 1. The Archimedean family enables
describing both left and right asymmetry as well as weak symmetry among the margins using
the Clayton, Gumbel, and Frank models, respectively. Clayton’s copula has the parameter
θ∈ 0;∞ð Þ and as θ approaches zero, the margins become independent. The dependence
parameter θ of a Gumbel model is restricted to the interval 1;þ∞½ Þ where the value 1 means
independence. Finally, the dependence parameter θ of a Frank copula may assume any real
value and as θ approaches zero, the marginal distributions become independent. According to
the type of copula model, the value of θ has a specific meaning and the magnitudes of the
dependence parameter are not comparable across copulas. It is always true that the greater the
value of the dependence parameter, the stronger the association among the margins, but since
the relationship between θ and the concordance measures is well known, it is standard to
convert θ to these, for example, to the Kendall’s τ correlation coefficient. The families of copula
models considered here are described in Table 1 and shown in Figure 1 in their bivariate
version. Note that here only single parameter copula models are considered.

The copula model selection task is still an open research field. Although various statistical tests
enable evaluating whether a specific model is plausible or not, no tool has thus far been
recognized as the best. In the copula-based clustering context, this issue can be overcome,

Copula C u1; u2;θð Þ Parameter range Kendall’s τ

Gaussian ΦG Φ�1 u1ð Þ;Φ�1 u2ð Þ
� �

θ∈ �1; 1ð Þ 2
π arcsin θð Þ

Student-t t2,ν t�1ν u1ð Þ; t�1ν u2ð Þ;θ
� �

θ∈ �1; 1½ �, ν∈ 2;∞ð Þ 2
π arcsin θð Þ

Clayton u�θ1 þ u�θ2 � 1
� ��1

θ θ∈ 0;∞ð Þ θ
θþ2

Frank � 1
θ ln 1þ e�θu1�1ð Þ e�θu2�1ð Þ

e�θ�1ð Þ

� �
θ∈ �∞;∞ð Þ 1� 4

θ 1�D1 θð Þ½ �

Gumbel e � � log u1� logu2ð Þ1=θ½ � θ∈ 1;∞½ Þ 1� 1
θ

Table 1. Some standard single parameter bivariate copulas with the range of the dependence parameter θ and its relation
with Kendall’s τ. uk with k ¼ 1, 2 are uniformly distributed variates so that xk ¼ F�1 ukð Þ � Fk. Φ is the cumulative
distribution function (cdf) of the standard normal distribution, ΦG u1; u2ð Þ is the standard bivariate normal distribution,
t2,ν �; �;θð Þ denotes the standard bivariate student-t distribution with ν degrees of freedom, and t�1ν the inverse univariate
student-t distribution function. D1 xð Þ denotes the “Debye” function 1=x

Ð x
0 t= expt � 1
� �

dt.

Recent Applications in Data Clustering96

since the choice of the type of model would seem less important in terms of the goodness of the
final clustering (see [5], Section 4.3), and a classic information criterion can be used, such as the
Bayesian or the Akaike information criterion. This topic is discussed in detail in Section 3.

3. CoClust algorithm

Di Lascio and Giannerini [4] proposed a clustering algorithm called CoClust that is able to
cluster multivariate observations with a complex dependence structure. The basic underlying
concept of CoClust is clustering multivariate dependent observations based on the likelihood
copula fit estimated on the previously allocated observations. To do so, the CoClust assumes

Figure 1. Contour plots of bivariate copula models with normal standard margins and dependence parameter θ such that
the Kendall’s correlation coefficient is τ ¼ 0:7; upper panel: Gaussian and t-Student copula models for 2 and 4 degrees of
freedom; lower panel: Clayton, Gumbel, and Frank copula models.

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

97

that the data are generated by a multivariate copula function whose arguments represent the
clusters, and each cluster is thus generated by a (marginal) univariate density function. The
type and strength of multivariate dependence across clusters are modeled through a copula
function and its dependence parameter, respectively. Being copula-based, CoClust inherits all
the advantages of copula theory, and the multivariate complex dependence structure of the
DGP can be taken into account to perform the cluster analysis. However, CoClust in its first
version had some significant limitations. For example, it automatically allocated all the obser-
vations to the clusters without discarding potentially irrelevant observations, implying a high
computational burden. Di Lascio and Giannerini [5] proposed a new version of the CoClust
algorithm that satisfactorily overcomes these limitations. This section hereafter describes the
latest version of the CoClust algorithm, which is implemented in the R package CoClust.

The starting point of the CoClust algorithm is the standard n� pð Þ data matrix X:

X ¼

x11 … x1j … x1p

⋮ ⋮ ⋮ ⋮ ⋮

xi1 … xij … xip

⋮ ⋮ ⋮ ⋮ ⋮

xi01 … xi0j … xi0p

⋮ ⋮ ⋮ ⋮ ⋮

xn1 … xnj … xnp

2
666666666666664

3
777777777777775

¼

x1

⋮

xi

⋮

xi0

⋮

xn

2
666666666666664

3
777777777777775

(8)

in which np-dimensional objects have to be grouped in K groups. CoClust can be applied
either to the row or to the column data matrix according to the purpose of the analysis. In both
cases, CoClust works with vectors and treats each row (column) of the data matrix X as a
single element to be allocated to a cluster. The values within a row (or column) vector are
treated as independent realizations of the same density function, thus observations for each
cluster from the same distribution. Here, CoClust is described as applied to the rows of the
data matrix.

3.1. The basic procedure and selection of the number of clusters

The basic idea behind the CoClust consists in a forward procedure that allocates a K-plet of the
row data matrix at a time, that is, a p-dimensional vector for each cluster at a time, and the
decision on the allocation of each K-plet of rows is based on the value of the log-likelihood of
the copula fit. This likelihood is computed by using the K-plets already allocated and one

allocation candidate, say xi0 ¼ xi01;…; xi0j;…; xi0p
� �

, by varying the permutations of observa-

tions in xi0 in order to find, if it exists, the combination that maximizes the copula fit. If the log-
likelihood of the copula fitted on the observations already allocated plus the permutation of
the selected K-plet increases, then the candidate K-plet is allocated to the clusters; otherwise, it
is discarded, since theoretically it could be either independent from the identified DGP or
derive from another DGP.

Recent Applications in Data Clustering98

Before describing the clustering algorithm procedure, two aspects of the CoClust merit a
discussion: the construction of the K-plet candidate to the allocation and the selection of
number of clusters K. The K-plet of rows candidate to the allocation is constructed based on
the following function H �ð Þ, which is a sort of multivariate measure of association based on the
pairwise Spearman’s r correlation coefficient:

H Λ2jΛ1ð Þ ¼ max
i0 ∈Λ2

ψ
i∈Λ1

r xi; xi0ð Þð Þ
()

(9)

where Λ1 is the subset of row index vectors already selected to compose a K-plet, Λ2 is the
subset of the remaining candidate row index vectors to complete it, and ψ is an aggregation
function, for instance, the mean, median, or maximum.

As for the selection of K, one of the advantages of CoClust with respect to classic clustering
techniques is its ability to automatically choose the number of clusters. Indeed, CoClust
explores all the possibilities among those given by the user and selects the K on the basis of
the log-likelihood of the copula estimated on the subsets of k-plets allocated up to the user’s
predefined step. The technical details are given below.

The main steps of the CoClust algorithm to cluster the n row data matrix are described in the
following:

1. by varying the number of clusters k in the set of possibilities defined by the user and such
that 2 ≤ k ≤n,

a. select a subset of nk k-plets of rows in the data matrix in Eq. (8) on the basis of the
measure in Eq. (9);

b. fit the copula model on the nk k-plets of rows through the semiparametric estimation
method described in Section 2;

2. select the subset of nk k-plets of rows, say nK K-plets, that maximizes the log-likelihood of
the copula; hence, the number of clusters K, that is, the dimension of the copula, is
automatically chosen and nK K-plets are already allocated;

3. select a K-plet of rows among those remaining by using the measure in Eq. (9) and
estimate K! copulas by using the observations already clustered and a permutation of the
candidate to the allocation;

4. allocate the permutation of the selected K-plet to the clustering by assigning each row to
the corresponding cluster only if it increases the log-likelihood of the copula fit, otherwise
drop the entire K-plet of rows;

5. repeat steps 3 and 4 until all the observations are evaluated, that is, either allocated or
discarded.

At the end of the procedure, we obtain a clustering of K clusters each containing a maximum
n=Kð Þp independent observations such that the multivariate dependence relationship across
clusters can be revealed. Hence, attention in recovering the multivariate relationships does not

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

99

that the data are generated by a multivariate copula function whose arguments represent the
clusters, and each cluster is thus generated by a (marginal) univariate density function. The
type and strength of multivariate dependence across clusters are modeled through a copula
function and its dependence parameter, respectively. Being copula-based, CoClust inherits all
the advantages of copula theory, and the multivariate complex dependence structure of the
DGP can be taken into account to perform the cluster analysis. However, CoClust in its first
version had some significant limitations. For example, it automatically allocated all the obser-
vations to the clusters without discarding potentially irrelevant observations, implying a high
computational burden. Di Lascio and Giannerini [5] proposed a new version of the CoClust
algorithm that satisfactorily overcomes these limitations. This section hereafter describes the
latest version of the CoClust algorithm, which is implemented in the R package CoClust.

The starting point of the CoClust algorithm is the standard n� pð Þ data matrix X:

X ¼

x11 … x1j … x1p

⋮ ⋮ ⋮ ⋮ ⋮

xi1 … xij … xip

⋮ ⋮ ⋮ ⋮ ⋮

xi01 … xi0j … xi0p

⋮ ⋮ ⋮ ⋮ ⋮

xn1 … xnj … xnp

2
666666666666664

3
777777777777775

¼

x1

⋮

xi

⋮

xi0

⋮

xn

2
666666666666664

3
777777777777775

(8)

in which np-dimensional objects have to be grouped in K groups. CoClust can be applied
either to the row or to the column data matrix according to the purpose of the analysis. In both
cases, CoClust works with vectors and treats each row (column) of the data matrix X as a
single element to be allocated to a cluster. The values within a row (or column) vector are
treated as independent realizations of the same density function, thus observations for each
cluster from the same distribution. Here, CoClust is described as applied to the rows of the
data matrix.

3.1. The basic procedure and selection of the number of clusters

The basic idea behind the CoClust consists in a forward procedure that allocates a K-plet of the
row data matrix at a time, that is, a p-dimensional vector for each cluster at a time, and the
decision on the allocation of each K-plet of rows is based on the value of the log-likelihood of
the copula fit. This likelihood is computed by using the K-plets already allocated and one

allocation candidate, say xi0 ¼ xi01;…; xi0j;…; xi0p
� �

, by varying the permutations of observa-

tions in xi0 in order to find, if it exists, the combination that maximizes the copula fit. If the log-
likelihood of the copula fitted on the observations already allocated plus the permutation of
the selected K-plet increases, then the candidate K-plet is allocated to the clusters; otherwise, it
is discarded, since theoretically it could be either independent from the identified DGP or
derive from another DGP.

Recent Applications in Data Clustering98

Before describing the clustering algorithm procedure, two aspects of the CoClust merit a
discussion: the construction of the K-plet candidate to the allocation and the selection of
number of clusters K. The K-plet of rows candidate to the allocation is constructed based on
the following function H �ð Þ, which is a sort of multivariate measure of association based on the
pairwise Spearman’s r correlation coefficient:

H Λ2jΛ1ð Þ ¼ max
i0 ∈Λ2

ψ
i∈Λ1

r xi; xi0ð Þð Þ
()

(9)

where Λ1 is the subset of row index vectors already selected to compose a K-plet, Λ2 is the
subset of the remaining candidate row index vectors to complete it, and ψ is an aggregation
function, for instance, the mean, median, or maximum.

As for the selection of K, one of the advantages of CoClust with respect to classic clustering
techniques is its ability to automatically choose the number of clusters. Indeed, CoClust
explores all the possibilities among those given by the user and selects the K on the basis of
the log-likelihood of the copula estimated on the subsets of k-plets allocated up to the user’s
predefined step. The technical details are given below.

The main steps of the CoClust algorithm to cluster the n row data matrix are described in the
following:

1. by varying the number of clusters k in the set of possibilities defined by the user and such
that 2 ≤ k ≤n,

a. select a subset of nk k-plets of rows in the data matrix in Eq. (8) on the basis of the
measure in Eq. (9);

b. fit the copula model on the nk k-plets of rows through the semiparametric estimation
method described in Section 2;

2. select the subset of nk k-plets of rows, say nK K-plets, that maximizes the log-likelihood of
the copula; hence, the number of clusters K, that is, the dimension of the copula, is
automatically chosen and nK K-plets are already allocated;

3. select a K-plet of rows among those remaining by using the measure in Eq. (9) and
estimate K! copulas by using the observations already clustered and a permutation of the
candidate to the allocation;

4. allocate the permutation of the selected K-plet to the clustering by assigning each row to
the corresponding cluster only if it increases the log-likelihood of the copula fit, otherwise
drop the entire K-plet of rows;

5. repeat steps 3 and 4 until all the observations are evaluated, that is, either allocated or
discarded.

At the end of the procedure, we obtain a clustering of K clusters each containing a maximum
n=Kð Þp independent observations such that the multivariate dependence relationship across
clusters can be revealed. Hence, attention in recovering the multivariate relationships does not

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

99

rely on the within-cluster relationships, typical of classic clustering methods. A picture of the
final CoClust clustering is given in Figure 2. Each cluster is a set of independent and identically
distributed realizations from the same marginal distribution while observations across clusters
share the same multivariate dependence structure.

Note that since in each step of the procedure non-nested models are compared, that is, copula
models with a single dependence parameter, the described log-likelihood based criterion is
equivalent to the well-known Bayes information criterion and Akaike information criterion.
Finally, note that in the current CoClust version, the selection of the number of clusters K is
based on a representative subset of nk observations. Hence, the algorithm chooses the number

of clusters K by estimating the
PKmax

k¼Kmin

nk
k

� �
fits required, where Kmin;Kmax½ � is the range of the

number of clusters predefined by the user with Kmin ≥ 2 and nk is chosen by the user with
nk ≪ p. This allows keeping the computational complexity under control since it does not
depend on sample size.

3.2. Selecting the copula model

The CoClust algorithm has not been implemented to automatically perform the selection
copula model task and requires employing an information criterion a posteriori. The Bayesian
information criterion (henceforth BIC) is expressed as follows for a K-dimensional copula
model m:

Figure 2. The basic concept underlying the CoClust algorithm. Each element in a cluster is a row data matrix of p
elements.

Recent Applications in Data Clustering100

BICK,m ¼ �2 logΠn
i¼1cm bF1 X1ið Þ;…; bFk Xkið Þ;…; bFK XKið Þ; bθ

n o
þ s log n=Kð Þpð Þ (10)

where bθ is as in Eq. (5) or Eq. (7) with the summation over the number of allocated observa-
tions, which equals maximum n=Kð Þp (i.e., n=K p-dimensional vectors) and s is the number of
parameters. According to [23], we select the copula model that minimizes the BIC. Similarly,
the Akaike information criterion (henceforth AIC) results in:

AICK,m ¼ �2 logΠn
i¼1cm bF1 X1ið Þ;…; bFk Xkið Þ;…; bFK XKið Þ; bθ

n o
þ 2s (11)

and can also be used to select the copula model.

3.3. Assessing the CoClust performance

The goodness of the CoClust algorithm in finding the true multivariate clustering structure
underlying the data has been extensively investigated. Specifically, the first version of CoClust
[4] was tested on simulated data for different scenarios and compared with model-based
clustering [1, 2]. This shows that, both when the DGP is a copula and when it is misspecified,
CoClust appears to be able to identify both the true number of clusters and their size in most
situations. Moreover, in comparing model-based clustering, CoClust appears better suited to
clustering dependent data. In [5], a more sophisticated Monte Carlo study was carried out,
investigating the new features of the current version of the CoClust algorithm. Here, the
current version of the algorithm clearly outperforms the previous version by [4] and CoClust’s
ability to find the correct number of clusters and to reconstruct the true k-plets by varying
the dimension of the copula, the aggregation function ψ, and the copula model appears to be
very satisfactory. Furthermore, [5] also obtained good results in assessing CoClust’s ability to
drop from the clustering observations that are independent of the true DGP as well as
distinguishing two different DGPs in the same dataset.

As for real data applications, the CoClust algorithm has been successfully applied to several
datasets. In relation to biomedical applications, [4] apply the CoClust to microarray data to
formulate hypotheses on the possible co-regulation and functional relations between genes, [5]
use the copula-based clustering method to identify biologically and clinically relevant groups
of tumor samples, and [24] attempt to identify organ type from cancer cell lines from tumors.
Applications in other fields include [25], where the purpose of the analysis is investigating
changes in EU country diets in accordance with common European policies and guidelines on
healthy diets, and [24], where CoClust is used to investigate the geographic distribution of
(annual maxima) rainfall measurements.

4. The R implementation of the CoClust algorithm

The copula-based clustering algorithm procedure is implemented in the R package CoClust

[26]. It must be installed in the usual way, that is:

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

101

rely on the within-cluster relationships, typical of classic clustering methods. A picture of the
final CoClust clustering is given in Figure 2. Each cluster is a set of independent and identically
distributed realizations from the same marginal distribution while observations across clusters
share the same multivariate dependence structure.

Note that since in each step of the procedure non-nested models are compared, that is, copula
models with a single dependence parameter, the described log-likelihood based criterion is
equivalent to the well-known Bayes information criterion and Akaike information criterion.
Finally, note that in the current CoClust version, the selection of the number of clusters K is
based on a representative subset of nk observations. Hence, the algorithm chooses the number

of clusters K by estimating the
PKmax

k¼Kmin

nk
k

� �
fits required, where Kmin;Kmax½ � is the range of the

number of clusters predefined by the user with Kmin ≥ 2 and nk is chosen by the user with
nk ≪ p. This allows keeping the computational complexity under control since it does not
depend on sample size.

3.2. Selecting the copula model

The CoClust algorithm has not been implemented to automatically perform the selection
copula model task and requires employing an information criterion a posteriori. The Bayesian
information criterion (henceforth BIC) is expressed as follows for a K-dimensional copula
model m:

Figure 2. The basic concept underlying the CoClust algorithm. Each element in a cluster is a row data matrix of p
elements.

Recent Applications in Data Clustering100

BICK,m ¼ �2 logΠn
i¼1cm bF1 X1ið Þ;…; bFk Xkið Þ;…; bFK XKið Þ; bθ

n o
þ s log n=Kð Þpð Þ (10)

where bθ is as in Eq. (5) or Eq. (7) with the summation over the number of allocated observa-
tions, which equals maximum n=Kð Þp (i.e., n=K p-dimensional vectors) and s is the number of
parameters. According to [23], we select the copula model that minimizes the BIC. Similarly,
the Akaike information criterion (henceforth AIC) results in:

AICK,m ¼ �2 logΠn
i¼1cm bF1 X1ið Þ;…; bFk Xkið Þ;…; bFK XKið Þ; bθ

n o
þ 2s (11)

and can also be used to select the copula model.

3.3. Assessing the CoClust performance

The goodness of the CoClust algorithm in finding the true multivariate clustering structure
underlying the data has been extensively investigated. Specifically, the first version of CoClust
[4] was tested on simulated data for different scenarios and compared with model-based
clustering [1, 2]. This shows that, both when the DGP is a copula and when it is misspecified,
CoClust appears to be able to identify both the true number of clusters and their size in most
situations. Moreover, in comparing model-based clustering, CoClust appears better suited to
clustering dependent data. In [5], a more sophisticated Monte Carlo study was carried out,
investigating the new features of the current version of the CoClust algorithm. Here, the
current version of the algorithm clearly outperforms the previous version by [4] and CoClust’s
ability to find the correct number of clusters and to reconstruct the true k-plets by varying
the dimension of the copula, the aggregation function ψ, and the copula model appears to be
very satisfactory. Furthermore, [5] also obtained good results in assessing CoClust’s ability to
drop from the clustering observations that are independent of the true DGP as well as
distinguishing two different DGPs in the same dataset.

As for real data applications, the CoClust algorithm has been successfully applied to several
datasets. In relation to biomedical applications, [4] apply the CoClust to microarray data to
formulate hypotheses on the possible co-regulation and functional relations between genes, [5]
use the copula-based clustering method to identify biologically and clinically relevant groups
of tumor samples, and [24] attempt to identify organ type from cancer cell lines from tumors.
Applications in other fields include [25], where the purpose of the analysis is investigating
changes in EU country diets in accordance with common European policies and guidelines on
healthy diets, and [24], where CoClust is used to investigate the geographic distribution of
(annual maxima) rainfall measurements.

4. The R implementation of the CoClust algorithm

The copula-based clustering algorithm procedure is implemented in the R package CoClust

[26]. It must be installed in the usual way, that is:

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

101

R> install.packages("CoClust")

and then it must be loaded through the usual code:

R> library("CoClust")

The code of the CoClust package is entirely written in R, to enable using an easily accessible
open source system and the input/output facilities.

4.1. List of functions and subroutines

The main R function is CoClust(), which performs the copula-based clustering, while the
following auxiliary R functions.

fit.margin(), fit.margin2(), fit.margin3(), fcond.mod(), CoClust_perm(),

stima_cop() are intended for internal use only and are not documented in the package.

4.2. The CoClust function

The main function of the package CoClust is the R function CoClust(), which performs
copula-based clustering as described in Section 3. Some options are present, which mainly
allow us to:

• fit a variety of copula models (by setting the argument copula) with different types of
estimation procedures for margins and for copulas (arguments method.ma and method.c,

respectively); specifically, all the copula models belonging to the Elliptical and the Archime-
dean family described in Section 2 can be estimated through the estimation methods
implemented in the R package copula [27–30] that are maximum pseudo-likelihood estima-
tors based on two different variance estimators, the inversion of Kendall’s τ estimator and
the inversion of Spearman’s r estimator; as for the margins, two different estimation
methods have been implemented, one parametric and one nonparametric: the maximum
likelihood method as in Eq. (4) and the empirical cumulative distribution function in Eq. (6);

• set the range or set of dimensions for the copula model, that is, number of clusters, for
which the function tries the clustering (argument dimset);

• set the dimension of the sample units used for selecting the number of clusters (argument
noc);

• select the combination function of the pairwise Spearman’s r used to select the k-plets
among the mean, the median, or the maximum (argument fun) as defined in Eq. (9);

• specifies the likelihood criterion used for selecting the number of clusters among the AIC,
the BIC (as defined in Eqs. (10) and (11)), and the log-likelihood without penalty terms
(argument penalty).

The argument copula allows specifying a copula model among those described in Section 2.1.
As for the selection of the “best” model, CoClust can be run by varying the type of models of

Recent Applications in Data Clustering102

interest and selecting the one that fits best a posteriori using one of the criteria introduced in
Section 3.2.

The typical use of the function CoClust is as follows:

CoClust(m, dimset = 2:5, noc = 4, copula = "frank", fun = median,

method.ma = c("empirical", "pseudo"), method.c = c("ml", "mpl",

"irho", "itau"),

dfree = NULL, writeout = 5, penalty = c("BICk", "AICk", "LL"), …)

where m is the entry data matrix and the writeout argument allows monitoring the allocation
process, since it informs on each new allocated observation. Further details on the input
arguments are given in the package help files.

The main output of the function CoClust is an object of S4 class “CoClust”which is a list with
the following elements:

1. Number of Clusters: the number K of selected and identified clusters;

2. Index Matrix: a n:obs� K þ 1ð Þ matrix where n.obs is the number of observations put into
each cluster; the matrix contains the row indexes of the observations of the data matrix m

(Eq. (8)) and in the last column the log-likelihood of the copula fit;

3. Data Clusters: the data matrix of the final clustering; each column contains the observa-
tions allocated in a cluster;

4. Dependence: a list containing:

a. Model: the copula model used for the clustering;

b. Param: the estimated dependence parameter between/among clusters;

c. Std.Err: the standard error of Param;

d. P.val: the p-value associated to the null hypothesis H0 : θ ¼ 0;

5. LogLik: the maximized log-likelihood copula fit;

6. Est.Method: the estimation method used for the copula fit;

7. Opt.Method: the optimization method used for the copula fit;

8. LLC: the value of the log-likelihood criterion for each k in dimset;

9. Index.dimset: a list that, for each k in dimset, contains the index matrix of the initial set of
nk observations used to select the number of clusters, together with the associated maxi-
mized log-likelihood copula fit.

4.3. Simulated examples

This section shows how to use the CoClust package on data simulated from different DGPs.
In the first example, the data are drawn from a joint density function with different margins,

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

103

R> install.packages("CoClust")

and then it must be loaded through the usual code:

R> library("CoClust")

The code of the CoClust package is entirely written in R, to enable using an easily accessible
open source system and the input/output facilities.

4.1. List of functions and subroutines

The main R function is CoClust(), which performs the copula-based clustering, while the
following auxiliary R functions.

fit.margin(), fit.margin2(), fit.margin3(), fcond.mod(), CoClust_perm(),

stima_cop() are intended for internal use only and are not documented in the package.

4.2. The CoClust function

The main function of the package CoClust is the R function CoClust(), which performs
copula-based clustering as described in Section 3. Some options are present, which mainly
allow us to:

• fit a variety of copula models (by setting the argument copula) with different types of
estimation procedures for margins and for copulas (arguments method.ma and method.c,

respectively); specifically, all the copula models belonging to the Elliptical and the Archime-
dean family described in Section 2 can be estimated through the estimation methods
implemented in the R package copula [27–30] that are maximum pseudo-likelihood estima-
tors based on two different variance estimators, the inversion of Kendall’s τ estimator and
the inversion of Spearman’s r estimator; as for the margins, two different estimation
methods have been implemented, one parametric and one nonparametric: the maximum
likelihood method as in Eq. (4) and the empirical cumulative distribution function in Eq. (6);

• set the range or set of dimensions for the copula model, that is, number of clusters, for
which the function tries the clustering (argument dimset);

• set the dimension of the sample units used for selecting the number of clusters (argument
noc);

• select the combination function of the pairwise Spearman’s r used to select the k-plets
among the mean, the median, or the maximum (argument fun) as defined in Eq. (9);

• specifies the likelihood criterion used for selecting the number of clusters among the AIC,
the BIC (as defined in Eqs. (10) and (11)), and the log-likelihood without penalty terms
(argument penalty).

The argument copula allows specifying a copula model among those described in Section 2.1.
As for the selection of the “best” model, CoClust can be run by varying the type of models of

Recent Applications in Data Clustering102

interest and selecting the one that fits best a posteriori using one of the criteria introduced in
Section 3.2.

The typical use of the function CoClust is as follows:

CoClust(m, dimset = 2:5, noc = 4, copula = "frank", fun = median,

method.ma = c("empirical", "pseudo"), method.c = c("ml", "mpl",

"irho", "itau"),

dfree = NULL, writeout = 5, penalty = c("BICk", "AICk", "LL"), …)

where m is the entry data matrix and the writeout argument allows monitoring the allocation
process, since it informs on each new allocated observation. Further details on the input
arguments are given in the package help files.

The main output of the function CoClust is an object of S4 class “CoClust”which is a list with
the following elements:

1. Number of Clusters: the number K of selected and identified clusters;

2. Index Matrix: a n:obs� K þ 1ð Þ matrix where n.obs is the number of observations put into
each cluster; the matrix contains the row indexes of the observations of the data matrix m

(Eq. (8)) and in the last column the log-likelihood of the copula fit;

3. Data Clusters: the data matrix of the final clustering; each column contains the observa-
tions allocated in a cluster;

4. Dependence: a list containing:

a. Model: the copula model used for the clustering;

b. Param: the estimated dependence parameter between/among clusters;

c. Std.Err: the standard error of Param;

d. P.val: the p-value associated to the null hypothesis H0 : θ ¼ 0;

5. LogLik: the maximized log-likelihood copula fit;

6. Est.Method: the estimation method used for the copula fit;

7. Opt.Method: the optimization method used for the copula fit;

8. LLC: the value of the log-likelihood criterion for each k in dimset;

9. Index.dimset: a list that, for each k in dimset, contains the index matrix of the initial set of
nk observations used to select the number of clusters, together with the associated maxi-
mized log-likelihood copula fit.

4.3. Simulated examples

This section shows how to use the CoClust package on data simulated from different DGPs.
In the first example, the data are drawn from a joint density function with different margins,

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

103

whereas in the second example, a misspecified DGP is used. In these examples, we focus only
on the semi-parametric approach described in Section 2 due to its theoretical and computa-
tional advantages with respect to the full parametric approach. Moreover, the latter has only
been implemented for Gaussian margins.

Example 1

In this example, we build a 3-variate joint density function through a 3-dimensional Frank
copula with dependence parameter such that the Kendall’s τ ¼ 0:7 and three different mar-
gins: a Gaussian with parameters μ ¼ 7, σ ¼ 2, a Gamma with shape and rate, respectively, set
to 3 and 4, and a Beta with parameters α ¼ 2, β ¼ 1. To do so, we employ the function mvdc of
the copula package [27–30]. Next, we generate a data matrix X with 15 rows and 21 columns
and build the matrix of the true cluster indexes. Finally, we apply the function CoClust to the
rows of X, recover the multivariate dependence structure of the data and compare the obtained
clustering with the true one.

Code to generate the example dataset is given in the following. We first define the DGP:

R> n.marg <- 3

R> theta <- iTau(frankCopula(), 0.7)

R> copula <- frankCopula(theta, dim = n.marg)

R> mymvdc <- mvdc(copula, c("norm", "gamma", "beta"),list(list(mean=7, sd=2),

+ list(shape=3, rate=4), list(shape1=2, shape2=1)))

and then generate the data and save the true clustering in index.true:

R> set.seed(11)

R> n.col <- 21

R> n.row <- 15

R> n <- n.row*n.col/n.marg

R> x.samp <- rMvdc(n, mymvdc)

R> X <- matrix(x.samp, nrow = n.row, ncol = n.col, byrow=TRUE)

R> index.true <- matrix(1:n.row, n.row/n.marg, n.marg)

R> colnames(index.true) <- c("Cluster 1", "Cluster 2", "Cluster 3")

R> index.true

Note that n is the number of observations for each margin.

We apply the CoClust to the 15� 21 data matrix X using the maximum likelihood estimation
method for the copula, the empirical cumulative distribution function for the three margins,
and leaving by default the remaining arguments:

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="frank", method.

ma="empirical",

+ method.c="ml", writeout=1)

The output is as follows:

R> clust

Recent Applications in Data Clustering104

An object of class "CoClust"

Slot "Number.of.Clusters":

[1] 3

Slot "Index.Matrix":

Cluster 1 Cluster 2 Cluster 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

[3,] 12 2 7 103.67653

[4,] 14 4 9 136.31506

[5,] 15 5 10 170.36557

Slot "Data.Clusters":

Cluster 1 Cluster 2 Cluster 3

[1,] 0.35776965 4.566417 0.1634203

[2,] 0.36621352 5.532188 0.1470511

[3,] 0.99290268 11.191092 1.4006169

[4,] 0.60411081 6.613533 0.5457595

[5,] 0.13946354 2.658381 0.3489739

[6,] 0.80523424 9.526025 0.6908222

[7,] 0.79477600 8.899494 0.7864765

[..]

[102,] 0.36904520 3.629722 0.2763105

[103,] 0.82647042 10.809628 1.3899675

[104,] 0.48283666 5.185873 0.2763133

[105,] 0.90394435 10.583053 0.9962130

Slot "Dependence":

$Copula

[1] "frank"

$Param

[1] 11.95576

$Std.Err

[1] 0.8261832

$P.value

[1] 0

Slot "LogLik":

[1] 170.3656

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

105

whereas in the second example, a misspecified DGP is used. In these examples, we focus only
on the semi-parametric approach described in Section 2 due to its theoretical and computa-
tional advantages with respect to the full parametric approach. Moreover, the latter has only
been implemented for Gaussian margins.

Example 1

In this example, we build a 3-variate joint density function through a 3-dimensional Frank
copula with dependence parameter such that the Kendall’s τ ¼ 0:7 and three different mar-
gins: a Gaussian with parameters μ ¼ 7, σ ¼ 2, a Gamma with shape and rate, respectively, set
to 3 and 4, and a Beta with parameters α ¼ 2, β ¼ 1. To do so, we employ the function mvdc of
the copula package [27–30]. Next, we generate a data matrix X with 15 rows and 21 columns
and build the matrix of the true cluster indexes. Finally, we apply the function CoClust to the
rows of X, recover the multivariate dependence structure of the data and compare the obtained
clustering with the true one.

Code to generate the example dataset is given in the following. We first define the DGP:

R> n.marg <- 3

R> theta <- iTau(frankCopula(), 0.7)

R> copula <- frankCopula(theta, dim = n.marg)

R> mymvdc <- mvdc(copula, c("norm", "gamma", "beta"),list(list(mean=7, sd=2),

+ list(shape=3, rate=4), list(shape1=2, shape2=1)))

and then generate the data and save the true clustering in index.true:

R> set.seed(11)

R> n.col <- 21

R> n.row <- 15

R> n <- n.row*n.col/n.marg

R> x.samp <- rMvdc(n, mymvdc)

R> X <- matrix(x.samp, nrow = n.row, ncol = n.col, byrow=TRUE)

R> index.true <- matrix(1:n.row, n.row/n.marg, n.marg)

R> colnames(index.true) <- c("Cluster 1", "Cluster 2", "Cluster 3")

R> index.true

Note that n is the number of observations for each margin.

We apply the CoClust to the 15� 21 data matrix X using the maximum likelihood estimation
method for the copula, the empirical cumulative distribution function for the three margins,
and leaving by default the remaining arguments:

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="frank", method.

ma="empirical",

+ method.c="ml", writeout=1)

The output is as follows:

R> clust

Recent Applications in Data Clustering104

An object of class "CoClust"

Slot "Number.of.Clusters":

[1] 3

Slot "Index.Matrix":

Cluster 1 Cluster 2 Cluster 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

[3,] 12 2 7 103.67653

[4,] 14 4 9 136.31506

[5,] 15 5 10 170.36557

Slot "Data.Clusters":

Cluster 1 Cluster 2 Cluster 3

[1,] 0.35776965 4.566417 0.1634203

[2,] 0.36621352 5.532188 0.1470511

[3,] 0.99290268 11.191092 1.4006169

[4,] 0.60411081 6.613533 0.5457595

[5,] 0.13946354 2.658381 0.3489739

[6,] 0.80523424 9.526025 0.6908222

[7,] 0.79477600 8.899494 0.7864765

[..]

[102,] 0.36904520 3.629722 0.2763105

[103,] 0.82647042 10.809628 1.3899675

[104,] 0.48283666 5.185873 0.2763133

[105,] 0.90394435 10.583053 0.9962130

Slot "Dependence":

$Copula

[1] "frank"

$Param

[1] 11.95576

$Std.Err

[1] 0.8261832

$P.value

[1] 0

Slot "LogLik":

[1] 170.3656

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

105

Slot "Est.Method":

[1] "maximum likelihood"

Slot "Opt.Method":

[1] "ml"

Slot "LLC":

2 3 4

-70.93179 -136.00532 -41.35904

Slot "Index.dimset":

$`2`

1 2 LogLik

[1,] 11 1 19.75591

[2,] 8 3 37.33473

$`3`

1 2 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

$`4`

1 2 3 4 LogLik

[1,] 11 1 6 12 3.653809

[2,] 7 3 13 8 22.548352

To look at specific objects of the resulting list, it is possible to select, among others, the following
information:

R> clust@"Number.of.Clusters" # Selected number of clusters

R> clust@"Dependence"$Param # Estimated copula parameter

R> clust@"Data.Clusters" # Clustered data

To compare the obtained clustering with the true clustering we can input:

R> index.clust <- clust@"Index.Matrix"

R> index.clust

R> index.true

to obtain as follows:

> index.clust

Cluster 1 Cluster 2 Cluster 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

[3,] 12 2 7 103.67653

Recent Applications in Data Clustering106

[4,] 14 4 9 136.31506

[5,] 15 5 10 170.36557

> index.true

Cluster 1 Cluster 2 Cluster 3

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

The obtained clustering is perfect, CoClust is able to recognize the exact structure underlying
the data. Note that the label of each cluster, that is, the order of the margins, is not relevant. The
only important aspect is the composition of each cluster, that is, the row indexes in each
column of index.clust and their order that has to be such that it reconstructs the exact 3-
plets across the columns.

To apply the CoClust to the 15� 21 data matrix X previously generated by changing the
argument fun in max, or the range of number of clusters to be tried or the copula model, we
can input respectively:

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="frank", fun=max,

+ method.ma="empirical", method.c="ml", writeout=1)

R> clust <- CoClust(X, dimset = 3:5, noc=2, copula="frank",

+ method.ma="empirical", method.c="ml", writeout=1)

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="clayton",

+ method.ma="empirical", method.c="ml", writeout=1)

Example 2

In this example, we use a different DGP from the copula, thus showing the use of CoClust in
the misspecification case. Specifically, a 30� 21 data matrix is drawn from a three-dimensional
skew-normal distribution through the R package sn [31], we then apply CoClust to cluster the
row data matrix:

R> library(sn)

R> n.marg <- 3

R> rho <- 0.7

R> mu <- c(4,6,7)

R> v1 <- 1

R> v2 <- 1

R> v3 <- 1

R>omega <-matrix(c(v1,rho*sqrt(v1*v2),rho*sqrt(v1*v3),rho*sqrt(v1*v2),v2,

+ rho*sqrt(v3*v2), rho*sqrt(v1*v3), rho*sqrt(v3*v2), v3), n.marg)

R> alpha <- c(-1,1,1)

R> n.col <- 21

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

107

Slot "Est.Method":

[1] "maximum likelihood"

Slot "Opt.Method":

[1] "ml"

Slot "LLC":

2 3 4

-70.93179 -136.00532 -41.35904

Slot "Index.dimset":

$`2`

1 2 LogLik

[1,] 11 1 19.75591

[2,] 8 3 37.33473

$`3`

1 2 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

$`4`

1 2 3 4 LogLik

[1,] 11 1 6 12 3.653809

[2,] 7 3 13 8 22.548352

To look at specific objects of the resulting list, it is possible to select, among others, the following
information:

R> clust@"Number.of.Clusters" # Selected number of clusters

R> clust@"Dependence"$Param # Estimated copula parameter

R> clust@"Data.Clusters" # Clustered data

To compare the obtained clustering with the true clustering we can input:

R> index.clust <- clust@"Index.Matrix"

R> index.clust

R> index.true

to obtain as follows:

> index.clust

Cluster 1 Cluster 2 Cluster 3 LogLik

[1,] 11 1 6 34.15693

[2,] 13 3 8 69.87149

[3,] 12 2 7 103.67653

Recent Applications in Data Clustering106

[4,] 14 4 9 136.31506

[5,] 15 5 10 170.36557

> index.true

Cluster 1 Cluster 2 Cluster 3

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

The obtained clustering is perfect, CoClust is able to recognize the exact structure underlying
the data. Note that the label of each cluster, that is, the order of the margins, is not relevant. The
only important aspect is the composition of each cluster, that is, the row indexes in each
column of index.clust and their order that has to be such that it reconstructs the exact 3-
plets across the columns.

To apply the CoClust to the 15� 21 data matrix X previously generated by changing the
argument fun in max, or the range of number of clusters to be tried or the copula model, we
can input respectively:

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="frank", fun=max,

+ method.ma="empirical", method.c="ml", writeout=1)

R> clust <- CoClust(X, dimset = 3:5, noc=2, copula="frank",

+ method.ma="empirical", method.c="ml", writeout=1)

R> clust <- CoClust(X, dimset = 2:4, noc=2, copula="clayton",

+ method.ma="empirical", method.c="ml", writeout=1)

Example 2

In this example, we use a different DGP from the copula, thus showing the use of CoClust in
the misspecification case. Specifically, a 30� 21 data matrix is drawn from a three-dimensional
skew-normal distribution through the R package sn [31], we then apply CoClust to cluster the
row data matrix:

R> library(sn)

R> n.marg <- 3

R> rho <- 0.7

R> mu <- c(4,6,7)

R> v1 <- 1

R> v2 <- 1

R> v3 <- 1

R>omega <-matrix(c(v1,rho*sqrt(v1*v2),rho*sqrt(v1*v3),rho*sqrt(v1*v2),v2,

+ rho*sqrt(v3*v2), rho*sqrt(v1*v3), rho*sqrt(v3*v2), v3), n.marg)

R> alpha <- c(-1,1,1)

R> n.col <- 21

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

107

R> n.row <- 60

R> n.k <- n.row/n.marg

R> n <- n.row*n.col/n.marg

R> set.seed(11)

R> x.samp <- rmsn(n, xi=mu, Omega=omega, alpha=alpha)

R> X <- matrix(x.samp, nrow=n.row, ncol=n.col, byrow=TRUE)

R> clust <- CoClust(X, dimset=2:5, noc=4, copula="clayton",method.

ma="empirical",

+ method.c="ml", penalty = "BICk", writeout=1)

On the console, it is possible to monitor the number of observations already allocated (argu-
ment writeout). Indeed, while CoClust runs, the following information appears on the console:

Number of clusters selected: 3

Allocated observations: 5

Allocated observations: 10

Allocated observations: 15

To look at the obtained clustering and its details, one has to input:

R> clust

R> index.clust <- clust@"Index.Matrix"

R> index.true <- matrix(1:n.row, n.row/n.marg, n.marg)

R> index.clust; index.true

Note that when the number of K-plets to be allocated is not small, the goodness of the obtained
clustering is difficult to determine. Hence, for example, two functions can be exploited to
assess the quality of the final clustering: pca.coclust, which counts how many K-plets of
the true DGP have been correctly allocated in the final clustering, and pcc.coclust, which
counts how many K-plets of the obtained clustering have been correctly allocated. In Appen-
dix A., the R code of these two functions is shown. Here, we compute the true clustered index
matrix as follows:

R> ind.t <- apply(matrix(1:n.row,n.k), FUN=paste, MARGIN=1, collapse="-")

and the two functions pca.coclust and pcc.coclust after loading the required package
gtools:

R> library(gtools)

R> pca.coclust(clust, ind.t, n.marg)

[1] 65

R> pcc.coclust(clust, ind.t, n.marg)

[1] 86.66667

The obtained values inform us that 65% of 3-plets deriving from the true DGP are correctly
allocated and 86:7% of 3-plets in the final clustering are correctly allocated.

Recent Applications in Data Clustering108

5. Application to wine dataset

In this section, an application of the CoClust package to a real dataset is shown. [32] analyze a
set of Italian wines by observing the chemical properties of 178 specimens of three types of
wines (Barolo, Grignolino, and Barbera) produced in the Piedmont region in Italy. The data are
available in the package sn under the name wines.

A subset of randomly selected wines has been analyzed through CoClust by varying the
number of clusters from 2 to 7 and the copula model among the three models of the
Archimedean family. Since Grignolino is a type of wine with characteristics between those
of Barolo and Barbera, we work with a sample of only these two last types of wines. Code is
as follows:

R> data(wines)

R> n <- 6

R> set.seed(11)

R>ind.sample<-c(sample(1:59,n,replace=FALSE),sample(131:178,n,replace=FALSE))

R> X <- wines[ind.sample,-1]

R> clustF <- CoClust(X, dimset = 2:7, noc=1, copula="frank", method.

ma="empirical",

+ method.c="ml",writeout=1)

R> clustC <- CoClust(X, dimset = 2:7, noc=1, copula="clayton", method.

ma="empirical",

+ method.c="ml",writeout=1)

R> clustG <- CoClust(X, dimset = 2:7, noc=1, copula="gumbel", method.

ma="empirical",

+ method.c = "ml",writeout = 1)

To evaluate the final clustering obtained with a specific copula model, say the Frank model,
and to compare it with the true classification of the 12 selected wines, the code is as follows:

R> Type.wine <- wines[ind.sample,1]

R> Type.wine

R > K < � clustF@"Number.of.Clusters".

R > index.clust <� clustF@"Index.Matrix".

R> index.clust

R>index.fin <-matrix(Type.wine[index.clust[,1:K]],nrow=nrow(index.clust),

+ ncol=(ncol(index.clust)-1))

R> index.fin

[,1] [,2] [,3] [,4] [,5] [,6]

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

109

R> n.row <- 60

R> n.k <- n.row/n.marg

R> n <- n.row*n.col/n.marg

R> set.seed(11)

R> x.samp <- rmsn(n, xi=mu, Omega=omega, alpha=alpha)

R> X <- matrix(x.samp, nrow=n.row, ncol=n.col, byrow=TRUE)

R> clust <- CoClust(X, dimset=2:5, noc=4, copula="clayton",method.

ma="empirical",

+ method.c="ml", penalty = "BICk", writeout=1)

On the console, it is possible to monitor the number of observations already allocated (argu-
ment writeout). Indeed, while CoClust runs, the following information appears on the console:

Number of clusters selected: 3

Allocated observations: 5

Allocated observations: 10

Allocated observations: 15

To look at the obtained clustering and its details, one has to input:

R> clust

R> index.clust <- clust@"Index.Matrix"

R> index.true <- matrix(1:n.row, n.row/n.marg, n.marg)

R> index.clust; index.true

Note that when the number of K-plets to be allocated is not small, the goodness of the obtained
clustering is difficult to determine. Hence, for example, two functions can be exploited to
assess the quality of the final clustering: pca.coclust, which counts how many K-plets of
the true DGP have been correctly allocated in the final clustering, and pcc.coclust, which
counts how many K-plets of the obtained clustering have been correctly allocated. In Appen-
dix A., the R code of these two functions is shown. Here, we compute the true clustered index
matrix as follows:

R> ind.t <- apply(matrix(1:n.row,n.k), FUN=paste, MARGIN=1, collapse="-")

and the two functions pca.coclust and pcc.coclust after loading the required package
gtools:

R> library(gtools)

R> pca.coclust(clust, ind.t, n.marg)

[1] 65

R> pcc.coclust(clust, ind.t, n.marg)

[1] 86.66667

The obtained values inform us that 65% of 3-plets deriving from the true DGP are correctly
allocated and 86:7% of 3-plets in the final clustering are correctly allocated.

Recent Applications in Data Clustering108

5. Application to wine dataset

In this section, an application of the CoClust package to a real dataset is shown. [32] analyze a
set of Italian wines by observing the chemical properties of 178 specimens of three types of
wines (Barolo, Grignolino, and Barbera) produced in the Piedmont region in Italy. The data are
available in the package sn under the name wines.

A subset of randomly selected wines has been analyzed through CoClust by varying the
number of clusters from 2 to 7 and the copula model among the three models of the
Archimedean family. Since Grignolino is a type of wine with characteristics between those
of Barolo and Barbera, we work with a sample of only these two last types of wines. Code is
as follows:

R> data(wines)

R> n <- 6

R> set.seed(11)

R>ind.sample<-c(sample(1:59,n,replace=FALSE),sample(131:178,n,replace=FALSE))

R> X <- wines[ind.sample,-1]

R> clustF <- CoClust(X, dimset = 2:7, noc=1, copula="frank", method.

ma="empirical",

+ method.c="ml",writeout=1)

R> clustC <- CoClust(X, dimset = 2:7, noc=1, copula="clayton", method.

ma="empirical",

+ method.c="ml",writeout=1)

R> clustG <- CoClust(X, dimset = 2:7, noc=1, copula="gumbel", method.

ma="empirical",

+ method.c = "ml",writeout = 1)

To evaluate the final clustering obtained with a specific copula model, say the Frank model,
and to compare it with the true classification of the 12 selected wines, the code is as follows:

R> Type.wine <- wines[ind.sample,1]

R> Type.wine

R > K < � clustF@"Number.of.Clusters".

R > index.clust <� clustF@"Index.Matrix".

R> index.clust

R>index.fin <-matrix(Type.wine[index.clust[,1:K]],nrow=nrow(index.clust),

+ ncol=(ncol(index.clust)-1))

R> index.fin

[,1] [,2] [,3] [,4] [,5] [,6]

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

109

[1,] "Barolo" "Barolo" "Barolo" "Barolo" "Barolo" "Barolo"

[2,] "Barbera" "Barbera" "Barbera" "Barbera" "Barbera" "Barbera"

CoClust selects 6 clusters and allocates to each cluster the two types of wines. Thus, across
clusters, we can perfectly recognize the two types of Italian wines and in each cluster we have
different wines with different (e.g., independent) chemical characteristics.

Similarly, the other two copula models can be used as in clustC and clustG above. The
results appear to not be affected by the type of model used even though, based on the log-
likelihood of the copula fitted on the final clustering, the more appropriate model appears to
be the Gumbel model with a log-likelihood equal to 527.3022 (compared to 500.8835 for the
Frank copula and 429.184 for the Clayton copula).

6. Conclusion

In this chapter, we describe a copula-based clustering algorithm and its implementation in
the R package CoClust. One major advantage of this new package is that it provides an
algorithm that is able to cluster multivariate observations by taking into account their
underlying complex multivariate dependence structure. Being copula-based, the CoClust
algorithm inherits the benefits of the copula. Thus, potentially any type of multivariate
dependence structure can be handled and the most appropriate method can be employed
to estimate both a probability model for each cluster/margin and the copula model.

The current version of the R package implements the clustering algorithm procedure in the main
function CoClust. It enables the user to simultaneously choose the copula model, the estimation
method for the margins and for the copula, the aggregation function for constructing the k-plet of
observation allocation candidates. Moreover, the range (or set) of the number of clusters from
among which the procedure automatically selects the best one and the sample size to be used to
select it can be varied.

As with many other software packages, CoClust package is continually being augmented
and improved. We are currently investigating possible graphical solutions for the final cluster-
ing and implementing some measures to validate the clustering solution. Another future
direction includes expanding the functionality of the CoClust package to allow comparing
the solution of other clustering algorithms, such as mixture-based clustering and hierarchical
clustering methods.

Acknowledgements

The author acknowledges the support of the Free University of Bozen-Bolzano, Faculty of
Economics and Management, via the project “Aggregation functions for Innovation and Data

Recent Applications in Data Clustering110

Analysis (AIDA)” and Professor Simone Giannerini, University of Bologna, with whom the
first version of the package was developed.

A. Appendix

The following two functions are useful to evaluate the goodness of the final clustering obtained
through the CoClust algorithm when true clustering or benchmark clustering is available. The
arguments of these two functions are ccfit, which is the object CoClust as given by the
corresponding R function; ind.t, which is the true clustering expressed through the clustered
index matrix with clusters by columns and the row index of matrix in Eq. (8) by rows; and
nmarg, which is the dimension of the copula model, that is, the selected number of clusters.
For an example of the use of these two functions see Section 4.3, “Example 2”.

R> library("gtools")

pca.coclust <- function(ccfit, ind.t, nmarg){

n.marg <- ccfit@"Number.of.Clusters"

ind.perm <- permutations(n.marg,n.marg)

n.comb <- nrow(ind.perm)

if(n.marg==nmarg){

ind.cc <- ccfit@"Index.Matrix"[,1:n.marg]

n.kp <- nrow(ind.cc)

res <- rep(NA,n.kp)

for(i in 1:n.kp){

dum <- ind.cc[i,]

res0 <- rep(NA,n.comb)

for(j in 1:n.comb){

ind.ccs <- dum[ind.perm[j,]]

ind.ccs <- paste(ind.ccs, collapse="-")

res0[j] <- as.integer(ind.ccs%in%ind. t)

}

res[i] <- any(res0)

}

pca.k <- sum(res)/length(ind.t)*100

}

return(pca.k=pca.k)

}

pcc.coclust <- function(ccfit, ind.t, nmarg){

n.marg <- ccfit@"Number.of.Clusters"

ind.perm <- permutations(n.marg,n.marg)

n.comb <- nrow(ind.perm)

if(n.marg==nmarg){

ind.cc <- ccfit@"Index.Matrix"[,1:n.marg]

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

111

[1,] "Barolo" "Barolo" "Barolo" "Barolo" "Barolo" "Barolo"

[2,] "Barbera" "Barbera" "Barbera" "Barbera" "Barbera" "Barbera"

CoClust selects 6 clusters and allocates to each cluster the two types of wines. Thus, across
clusters, we can perfectly recognize the two types of Italian wines and in each cluster we have
different wines with different (e.g., independent) chemical characteristics.

Similarly, the other two copula models can be used as in clustC and clustG above. The
results appear to not be affected by the type of model used even though, based on the log-
likelihood of the copula fitted on the final clustering, the more appropriate model appears to
be the Gumbel model with a log-likelihood equal to 527.3022 (compared to 500.8835 for the
Frank copula and 429.184 for the Clayton copula).

6. Conclusion

In this chapter, we describe a copula-based clustering algorithm and its implementation in
the R package CoClust. One major advantage of this new package is that it provides an
algorithm that is able to cluster multivariate observations by taking into account their
underlying complex multivariate dependence structure. Being copula-based, the CoClust
algorithm inherits the benefits of the copula. Thus, potentially any type of multivariate
dependence structure can be handled and the most appropriate method can be employed
to estimate both a probability model for each cluster/margin and the copula model.

The current version of the R package implements the clustering algorithm procedure in the main
function CoClust. It enables the user to simultaneously choose the copula model, the estimation
method for the margins and for the copula, the aggregation function for constructing the k-plet of
observation allocation candidates. Moreover, the range (or set) of the number of clusters from
among which the procedure automatically selects the best one and the sample size to be used to
select it can be varied.

As with many other software packages, CoClust package is continually being augmented
and improved. We are currently investigating possible graphical solutions for the final cluster-
ing and implementing some measures to validate the clustering solution. Another future
direction includes expanding the functionality of the CoClust package to allow comparing
the solution of other clustering algorithms, such as mixture-based clustering and hierarchical
clustering methods.

Acknowledgements

The author acknowledges the support of the Free University of Bozen-Bolzano, Faculty of
Economics and Management, via the project “Aggregation functions for Innovation and Data

Recent Applications in Data Clustering110

Analysis (AIDA)” and Professor Simone Giannerini, University of Bologna, with whom the
first version of the package was developed.

A. Appendix

The following two functions are useful to evaluate the goodness of the final clustering obtained
through the CoClust algorithm when true clustering or benchmark clustering is available. The
arguments of these two functions are ccfit, which is the object CoClust as given by the
corresponding R function; ind.t, which is the true clustering expressed through the clustered
index matrix with clusters by columns and the row index of matrix in Eq. (8) by rows; and
nmarg, which is the dimension of the copula model, that is, the selected number of clusters.
For an example of the use of these two functions see Section 4.3, “Example 2”.

R> library("gtools")

pca.coclust <- function(ccfit, ind.t, nmarg){

n.marg <- ccfit@"Number.of.Clusters"

ind.perm <- permutations(n.marg,n.marg)

n.comb <- nrow(ind.perm)

if(n.marg==nmarg){

ind.cc <- ccfit@"Index.Matrix"[,1:n.marg]

n.kp <- nrow(ind.cc)

res <- rep(NA,n.kp)

for(i in 1:n.kp){

dum <- ind.cc[i,]

res0 <- rep(NA,n.comb)

for(j in 1:n.comb){

ind.ccs <- dum[ind.perm[j,]]

ind.ccs <- paste(ind.ccs, collapse="-")

res0[j] <- as.integer(ind.ccs%in%ind. t)

}

res[i] <- any(res0)

}

pca.k <- sum(res)/length(ind.t)*100

}

return(pca.k=pca.k)

}

pcc.coclust <- function(ccfit, ind.t, nmarg){

n.marg <- ccfit@"Number.of.Clusters"

ind.perm <- permutations(n.marg,n.marg)

n.comb <- nrow(ind.perm)

if(n.marg==nmarg){

ind.cc <- ccfit@"Index.Matrix"[,1:n.marg]

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

111

n.kp <- nrow(ind.cc)

res <- rep(NA,n.kp)

for(i in 1:n.kp){

dum <- ind.cc[i,]

res0 <- rep(NA,n.comb)

for(j in 1:n.comb) {

ind.ccs <- dum[ind.perm[j,]]

ind.ccs <- paste(ind.ccs, collapse="-")

res0[j] <- sum(ind.ccs%in%ind.it)

}

res[i] <- any(res0)

}

pcc.k <- sum(res)/nrow(ccfit@"Index.Matrix")*100

}

return(pcc.k=pcc.k)

}

Author details

Francesca Marta Lilja Di Lascio

Address all correspondence to: marta.dilascio@unibz.it

Faculty of Economics and Management, Free University of Bozen-Bolzano, Italy

References

[1] Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via
model–based cluster analysis. The Computer Journal. 1998;41(8):578-588

[2] Fraley C, Raftery AE. Model–Based Clustering, Discriminat Analysis and Density Esti-
mation. Technical report. Department of Statistics, University of Washington; 2000

[3] Sklar A. Fonctions de répartition à n dimensions et leures marges. Publications de
l’Institut de Statistique de L’Université de Paris. 1959;8:229-231

[4] Di Lascio FML, Giannerini S. A copula-based algorithm for discovering patterns of
dependent observations. Journal of Classification. 2012;29(1):50-75

[5] Di Lascio FML, Giannerini S. Clustering dependent observations with copula functions.
Statistical Papers. 2016:1-17

[6] Chessa A, Crimaldi I, Riccaboni M, Trapin L. Cluster analysis of weighted bipartite
networks: A new copula-based approach. PLoS One. 2014;9(10):e109507

Recent Applications in Data Clustering112

[7] Durante F, Pappadà R, Torelli N. Clustering of financial time series in risky scenarios.
Advance in Data Analysis and Classification. 2014;8:359-376

[8] Durante F, Pappadà R. Cluster analysis of time series via Kendall distribution. In:
Grzegorzewski P, Gagolewski M, Hryniewicz O, Gil MA, editors. Strengthening Links
Between Data Analysis and Soft Computing, Volume 3l5 of Advances in Intelligent
Systems and Computing. Springer International Publishing; 2015. pp. 209-216

[9] Durante F, Pappadà R, Torelli N. Clustering of time series via non–parametric tail depen-
dence estimation. Statistical Papers. 2015;56(3):701-721

[10] De Luca G, Zuccolotto P. A tail dependence-based dissimilarity measure for financial
time series clustering. Advances in Data Analysis and Classification. 2011;5(4):323-340

[11] De Luca G, Zuccolotto P. Time series clustering on lower tail dependence for portfolio
selection. In: Corazza M, Pizzi C, editors. Mathematical and Statistical Methods for
Actuarial Sciences and Finance. Berlin: Springer; 2014. pp. 131-140

[12] De Luca G, Zuccolotto P. Dynamic tail dependence clustering of financial time series.
Statistical Papers, page in press. 2015

[13] De Luca G, Zuccolotto P. A double clustering algorithm for financial time series based on
extreme events. Statistics and Risk Modeling. 2017;34(1–2):1-12

[14] D’Urso P, Disegna M, Durante F. Copula-based fuzzy clustering of time series. In: Mola F,
Conversano C, editors. Book of Abstracts of the 10th Scientific Meeting of the Classifica-
tion and Data Analysis Group, Page 4. Cagliari: CUEC; 2015

[15] Arakelian V, Karlis D. Clustering dependencies via mixtures of copulas. Communication
in Statistics - Simulation and Compution. 2014;43(7):1644-1661

[16] Kosmidis I, Karlis D. Model-based clustering using copulas with applications. Statistics
and Computing. 2016;26(5):1079-1099

[17] Cherubini U, Luciano E, Vecchiato W. Copula Methods in Finance. Chichester: Wiley
Finance Series. John Wiley & Sons Ltd.; 2004

[18] Durante F, Sempi C. Principles of Copula Theory. Boca Raton: CRC Press; 2015

[19] Nelsen RB. Introduction to Copulas. New York: Springer; 2006

[20] Trivedi PK, Zimmer DM. Copula Modeling: An Introduction for Practitioners, volume 1.
Foundations and Trends in Econometrics. 2005

[21] Joe H, Xu J. The Estimation Method of Inference Functions for Margins for Multivariate
Models. Technical report. Department of Statistics, University of British Columbia; 1996

[22] Genest C, Ghoudi K, Rivest LP. A semiparametric estimation procedure of dependence
parameters in multivariate families of distributions. Biometrika. 1995;82:543-552

[23] Raftery AE, Nema D. Variable selection for model-based clustering. Journal of the Amer-
ican Statistical Association. 2006;101(473):168-178

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

113

n.kp <- nrow(ind.cc)

res <- rep(NA,n.kp)

for(i in 1:n.kp){

dum <- ind.cc[i,]

res0 <- rep(NA,n.comb)

for(j in 1:n.comb) {

ind.ccs <- dum[ind.perm[j,]]

ind.ccs <- paste(ind.ccs, collapse="-")

res0[j] <- sum(ind.ccs%in%ind.it)

}

res[i] <- any(res0)

}

pcc.k <- sum(res)/nrow(ccfit@"Index.Matrix")*100

}

return(pcc.k=pcc.k)

}

Author details

Francesca Marta Lilja Di Lascio

Address all correspondence to: marta.dilascio@unibz.it

Faculty of Economics and Management, Free University of Bozen-Bolzano, Italy

References

[1] Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via
model–based cluster analysis. The Computer Journal. 1998;41(8):578-588

[2] Fraley C, Raftery AE. Model–Based Clustering, Discriminat Analysis and Density Esti-
mation. Technical report. Department of Statistics, University of Washington; 2000

[3] Sklar A. Fonctions de répartition à n dimensions et leures marges. Publications de
l’Institut de Statistique de L’Université de Paris. 1959;8:229-231

[4] Di Lascio FML, Giannerini S. A copula-based algorithm for discovering patterns of
dependent observations. Journal of Classification. 2012;29(1):50-75

[5] Di Lascio FML, Giannerini S. Clustering dependent observations with copula functions.
Statistical Papers. 2016:1-17

[6] Chessa A, Crimaldi I, Riccaboni M, Trapin L. Cluster analysis of weighted bipartite
networks: A new copula-based approach. PLoS One. 2014;9(10):e109507

Recent Applications in Data Clustering112

[7] Durante F, Pappadà R, Torelli N. Clustering of financial time series in risky scenarios.
Advance in Data Analysis and Classification. 2014;8:359-376

[8] Durante F, Pappadà R. Cluster analysis of time series via Kendall distribution. In:
Grzegorzewski P, Gagolewski M, Hryniewicz O, Gil MA, editors. Strengthening Links
Between Data Analysis and Soft Computing, Volume 3l5 of Advances in Intelligent
Systems and Computing. Springer International Publishing; 2015. pp. 209-216

[9] Durante F, Pappadà R, Torelli N. Clustering of time series via non–parametric tail depen-
dence estimation. Statistical Papers. 2015;56(3):701-721

[10] De Luca G, Zuccolotto P. A tail dependence-based dissimilarity measure for financial
time series clustering. Advances in Data Analysis and Classification. 2011;5(4):323-340

[11] De Luca G, Zuccolotto P. Time series clustering on lower tail dependence for portfolio
selection. In: Corazza M, Pizzi C, editors. Mathematical and Statistical Methods for
Actuarial Sciences and Finance. Berlin: Springer; 2014. pp. 131-140

[12] De Luca G, Zuccolotto P. Dynamic tail dependence clustering of financial time series.
Statistical Papers, page in press. 2015

[13] De Luca G, Zuccolotto P. A double clustering algorithm for financial time series based on
extreme events. Statistics and Risk Modeling. 2017;34(1–2):1-12

[14] D’Urso P, Disegna M, Durante F. Copula-based fuzzy clustering of time series. In: Mola F,
Conversano C, editors. Book of Abstracts of the 10th Scientific Meeting of the Classifica-
tion and Data Analysis Group, Page 4. Cagliari: CUEC; 2015

[15] Arakelian V, Karlis D. Clustering dependencies via mixtures of copulas. Communication
in Statistics - Simulation and Compution. 2014;43(7):1644-1661

[16] Kosmidis I, Karlis D. Model-based clustering using copulas with applications. Statistics
and Computing. 2016;26(5):1079-1099

[17] Cherubini U, Luciano E, Vecchiato W. Copula Methods in Finance. Chichester: Wiley
Finance Series. John Wiley & Sons Ltd.; 2004

[18] Durante F, Sempi C. Principles of Copula Theory. Boca Raton: CRC Press; 2015

[19] Nelsen RB. Introduction to Copulas. New York: Springer; 2006

[20] Trivedi PK, Zimmer DM. Copula Modeling: An Introduction for Practitioners, volume 1.
Foundations and Trends in Econometrics. 2005

[21] Joe H, Xu J. The Estimation Method of Inference Functions for Margins for Multivariate
Models. Technical report. Department of Statistics, University of British Columbia; 1996

[22] Genest C, Ghoudi K, Rivest LP. A semiparametric estimation procedure of dependence
parameters in multivariate families of distributions. Biometrika. 1995;82:543-552

[23] Raftery AE, Nema D. Variable selection for model-based clustering. Journal of the Amer-
ican Statistical Association. 2006;101(473):168-178

CoClust: An R Package for Copula-Based Cluster Analysis
http://dx.doi.org/10.5772/intechopen.74865

113

[24] Di Lascio FML, Durante F, Pappadà R. Copulas and Dependence Models with Applica-
tions - Contributions in Honor of Roger B. Nelsen, chapter copula–based clusteringmethods.
Springer; 2017. pp. 49-67

[25] Di Lascio FML, Disegna M. A copula-based clustering algorithm to analyse eu country
diets. Knowledge-Based Systems. 2017;132:72-84

[26] Di Lascio FML, Giannerini S. CoClust: Copula based cluster analysis. R package version
0.3-2; 2017

[27] Hofert M, Ivan Kojadinovic I, Maechler M, copula JY. Multivariate dependence with
copulas. R package version 0.999-18; 2017

[28] Hofert M, Maechler M. Nested archimedean copulas meet r: The nacopula package.
Journal of Statistical Software. 2011;39(9):1-20

[29] Kojadinovic I, Yan J. Modeling multivariate distributions with continuous margins using
the copula r package. Journal of Statistical Software. 2010;34(9):1-20

[30] Yan J. Enjoy the joy of copulas: With a package copula. Journal of Statistical Software.
2007;21(4):1-21

[31] Azzalini A. The R Package Sn: The Skew-Normal and Skew-T Distributions, version 1.5-0;
2017

[32] Forina M, Armanino C, Castino M, Ubigli M. Multivariate data analysis as a discriminat-
ing method of the origin of wines. Vitis. 1986;25:189-201

Recent Applications in Data Clustering114

Chapter 7

Temporal Clustering for Behavior Variation and
Anomaly Detection from Data Acquired Through IoT in
Smart Cities

Vladimir Urosevic, Ana Kovacevic,
Firas Kaddachi and Milan Vukicevic

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75203

Provisional chapter

DOI: 10.5772/intechopen.75203

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Temporal Clustering for Behavior Variation and
Anomaly Detection from Data Acquired Through IoT
in Smart Cities

Vladimir Urosevic, Ana Kovacevic, Firas Kaddachi
and Milan Vukicevic

Additional information is available at the end of the chapter

Abstract

In this chapter, we propose a methodology for behavior variation and anomaly detection
from acquired sensory data, based on temporal clustering models. Data are collected
from five prominent European smart cities, and Singapore, that aim to become fully
“elderly-friendly,” with the development and deployment of ubiquitous systems for
assessment and prediction of early risks of elderly Mild Cognitive Impairments (MCI)
and frailty, and for supporting generation and delivery of optimal personalized pre-
ventive interventions that mitigate those risks, utilizing smart city datasets and IoT
infrastructure. Low level data collected from IoT devices are preprocessed as sequences
of activities, with temporal and causal variations in sequences classified as normal or
anomalous behavior. The goals of proposed methodology are to (1) recognize significant
behavioral variation patterns and (2) support early identification of pattern changes.
Temporal clustering models are applied in detection and prediction of the following
variation types: intra-activity (single activity, single citizen) and inter-activity (multi-
ple-activities, single citizen). Identified behavioral variations and anomalies are further
mapped to MCI/frailty onset behavior and risk factors, following the developed geriatric
expert model.

Keywords: temporal clustering, IoT, smart cities, behavior recognition, anomaly
detection

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[24] Di Lascio FML, Durante F, Pappadà R. Copulas and Dependence Models with Applica-
tions - Contributions in Honor of Roger B. Nelsen, chapter copula–based clusteringmethods.
Springer; 2017. pp. 49-67

[25] Di Lascio FML, Disegna M. A copula-based clustering algorithm to analyse eu country
diets. Knowledge-Based Systems. 2017;132:72-84

[26] Di Lascio FML, Giannerini S. CoClust: Copula based cluster analysis. R package version
0.3-2; 2017

[27] Hofert M, Ivan Kojadinovic I, Maechler M, copula JY. Multivariate dependence with
copulas. R package version 0.999-18; 2017

[28] Hofert M, Maechler M. Nested archimedean copulas meet r: The nacopula package.
Journal of Statistical Software. 2011;39(9):1-20

[29] Kojadinovic I, Yan J. Modeling multivariate distributions with continuous margins using
the copula r package. Journal of Statistical Software. 2010;34(9):1-20

[30] Yan J. Enjoy the joy of copulas: With a package copula. Journal of Statistical Software.
2007;21(4):1-21

[31] Azzalini A. The R Package Sn: The Skew-Normal and Skew-T Distributions, version 1.5-0;
2017

[32] Forina M, Armanino C, Castino M, Ubigli M. Multivariate data analysis as a discriminat-
ing method of the origin of wines. Vitis. 1986;25:189-201

Recent Applications in Data Clustering114

Chapter 7

Temporal Clustering for Behavior Variation and
Anomaly Detection from Data Acquired Through IoT in
Smart Cities

Vladimir Urosevic, Ana Kovacevic,
Firas Kaddachi and Milan Vukicevic

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75203

Provisional chapter

DOI: 10.5772/intechopen.75203

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Temporal Clustering for Behavior Variation and
Anomaly Detection from Data Acquired Through IoT
in Smart Cities

Vladimir Urosevic, Ana Kovacevic, Firas Kaddachi
and Milan Vukicevic

Additional information is available at the end of the chapter

Abstract

In this chapter, we propose a methodology for behavior variation and anomaly detection
from acquired sensory data, based on temporal clustering models. Data are collected
from five prominent European smart cities, and Singapore, that aim to become fully
“elderly-friendly,” with the development and deployment of ubiquitous systems for
assessment and prediction of early risks of elderly Mild Cognitive Impairments (MCI)
and frailty, and for supporting generation and delivery of optimal personalized pre-
ventive interventions that mitigate those risks, utilizing smart city datasets and IoT
infrastructure. Low level data collected from IoT devices are preprocessed as sequences
of activities, with temporal and causal variations in sequences classified as normal or
anomalous behavior. The goals of proposed methodology are to (1) recognize significant
behavioral variation patterns and (2) support early identification of pattern changes.
Temporal clustering models are applied in detection and prediction of the following
variation types: intra-activity (single activity, single citizen) and inter-activity (multi-
ple-activities, single citizen). Identified behavioral variations and anomalies are further
mapped to MCI/frailty onset behavior and risk factors, following the developed geriatric
expert model.

Keywords: temporal clustering, IoT, smart cities, behavior recognition, anomaly
detection

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Frailty and Mild Cognitive Impairment are common and inevitable conditions in the elderly
citizen population defined as premature or accelerated physical and mental declines. These
conditions are often an early indicator of more severe states, such as Alzheimer’s disease.
Control (delaying or decelerating) of the onset and progression of MCI/frailty is becoming one
of the major tasks of global efforts in maintaining the functional independence and quality of
life of the globally growing elderly population. In 2016, for the first time in history, estimated
majority of the world population can expect to live into their sixties and beyond. Beside the
global initiatives, strategies and action plans on healthy ageing conducted by the relevant
key organizations such as World Health Organization (WHO), or United Nations (UN), the
growing market trend for the so-called “silver economy” sector is booming. The increase of
population aged 65 and over is projected to reach 28.1% of the whole population in the EU by
2050, they have a spending power higher than the generation segment aged 18 to 39, and they
account for approx. 60% of total expenditures in the US and 50% in the UK, generating demand
for new services and products, ranging from personalized care to age-friendly technologies
and other solutions that enable the maintenance and prolongation of healthy, independent
lives. Technologies and systems supporting innovative ways of influencing people's behavior
and lifestyles at all ages also present a significant economic and business opportunity.

Geriatric practice has in this aim utilized different standardized instruments based on tradi-
tional data collection methods (administration of questionnaires, meter-based measurement or
direct observation in controlled conditions) which are in most cases intrusive and demand citi-
zens’ presence in geriatric centers and a lot of time for data collection. More importantly, these
methods do not enable real time monitoring of behavioral changes (e.g., data from question-
naires are collected on semi-annual or annual intervals) and thus prevent predictive and preven-
tive interventions. Finally, data collected from such method is often subjective or incomplete.

With the goal to overcome the stated drawbacks, many technological instruments and
methods emerged, aiming to automate as much as possible the detection and mitigation of
behavior deteriorations and anomalies. Particularly, the recent development and expansion
of wearable technologies/devices and Internet of Things (IoT) has enabled the build-up of
infrastructures of smart devices that collect vast and heterogeneous volumes of various sen-
sory data in smart cities. These social and technological infrastructural advances potentiate
the public health and prevention aspects of smart cities, transforming the urban public health
from a reactive to a predictive system. In the specific area of support for (active and healthy)
ageing, the transformation and progress direction of particular interest is the expansion of
concept of ambient-assisted environments, from currently predominant implementations in
residential and social indoor spaces (homes, elderly care/community centers) to outdoor and
public environments. However, there is still a large gap between potential and actual IoT data
exploitation because of many challenges that have to be overcome before putting data driven
predictive and preventive models in geriatric or healthcare practice [1, 2].

Research presented in this paper is mainly the part of City4Age project (www.city4agepro-
ject.eu) that develops age-friendly Cities and Environments in deployments in six differ-
ent prominent pilot smart cities in EU and beyond—Athens, Birmingham, Lecce, Madrid,

Recent Applications in Data Clustering116

Montpellier and Singapore. The main goal of this research and City4Age project is to develop
a framework for predictive and preventive risk control of Frailty and MCI, as one of the core
system infrastructure assets of age-friendly cities. Specific goals are development of methods
based on smart cities IoT data for early risk detection and enrichment of traditional geriatric
instruments. In order to achieve these goals, we are faced with several challenges: (1) identifi-
cation and characterization of temporal behavioral patterns from sensor data, (2) Identification
of behavior changes (transitions) and (3) Anomalous behavior and anomalous data detection.

Given that IoT data are collected from smart devices in form of unlabeled data streams, for
initial behavior variation detection models, unsupervised machine learning techniques have
to be employed. From data analytics point of view, behavior can be defined as alternating
pattern of sequences of activities. Based on this definition, clustering is identified as natural
technique for behavioral pattern recognition, change and anomaly detection. Clustering tech-
niques that allow grouping objects into homogenous groups where objects in the same group
are similar (intra-cluster distance is low) and objects between groups are dissimilar (inter-
cluster distance is high). For building cluster models, we employed Hidden Markov models
(HMMs), since they allow direct modeling of time series, provide framework for anomaly
detection and have high degree of interpretability. Interpretability is very important property
for incorporation of data driven models in healthcare practice and integration with domain
knowledge of geriatricians.

Contributions of this chapter are twofold: (1) we propose a framework for behavior charac-
terization, change and anomaly detection in IoT data in smart cities environment and (2) we
provide first experimental evidence of usefulness of data driven modeling of behavioral data
on collected City4Age IoT data.

2. State-of-the-art

World Health Organization (WHO) had recognized the importance as well as human and
economic impact of age-friendly environments and launched the age-friendly Cities and
Communities Programme that introduced the terms in 2006/2007, as the foundation initia-
tive aimed for local and metropolitan governance and development levels. The European
Commission (EC) supports the pursues of goals and objectives of age-friendly environments
and sustainable development by numerous different instruments, primarily through R&D
funding programs such as Horizon 2020 or specialized Active and Assistive Living (AAL)
Programme. Important higher-level EC initiatives that foster innovation and concentrate
stakeholder efforts are the recently established:

• European Innovation Partnership on Smart Cities and Communities (EIP on SCC), involv-
ing almost 400 committed cities and other partners, with a marketplace of specialized ini-
tiatives, solutions and tools.

• European Innovation Partnership on active and healthy ageing (EIP on AHA), first estab-
lished EIP, in 2011, with specialized dedicated groups A3 for Functional decline & frailty,
and D4 for age-friendly environments, among others.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

117

1. Introduction

Frailty and Mild Cognitive Impairment are common and inevitable conditions in the elderly
citizen population defined as premature or accelerated physical and mental declines. These
conditions are often an early indicator of more severe states, such as Alzheimer’s disease.
Control (delaying or decelerating) of the onset and progression of MCI/frailty is becoming one
of the major tasks of global efforts in maintaining the functional independence and quality of
life of the globally growing elderly population. In 2016, for the first time in history, estimated
majority of the world population can expect to live into their sixties and beyond. Beside the
global initiatives, strategies and action plans on healthy ageing conducted by the relevant
key organizations such as World Health Organization (WHO), or United Nations (UN), the
growing market trend for the so-called “silver economy” sector is booming. The increase of
population aged 65 and over is projected to reach 28.1% of the whole population in the EU by
2050, they have a spending power higher than the generation segment aged 18 to 39, and they
account for approx. 60% of total expenditures in the US and 50% in the UK, generating demand
for new services and products, ranging from personalized care to age-friendly technologies
and other solutions that enable the maintenance and prolongation of healthy, independent
lives. Technologies and systems supporting innovative ways of influencing people's behavior
and lifestyles at all ages also present a significant economic and business opportunity.

Geriatric practice has in this aim utilized different standardized instruments based on tradi-
tional data collection methods (administration of questionnaires, meter-based measurement or
direct observation in controlled conditions) which are in most cases intrusive and demand citi-
zens’ presence in geriatric centers and a lot of time for data collection. More importantly, these
methods do not enable real time monitoring of behavioral changes (e.g., data from question-
naires are collected on semi-annual or annual intervals) and thus prevent predictive and preven-
tive interventions. Finally, data collected from such method is often subjective or incomplete.

With the goal to overcome the stated drawbacks, many technological instruments and
methods emerged, aiming to automate as much as possible the detection and mitigation of
behavior deteriorations and anomalies. Particularly, the recent development and expansion
of wearable technologies/devices and Internet of Things (IoT) has enabled the build-up of
infrastructures of smart devices that collect vast and heterogeneous volumes of various sen-
sory data in smart cities. These social and technological infrastructural advances potentiate
the public health and prevention aspects of smart cities, transforming the urban public health
from a reactive to a predictive system. In the specific area of support for (active and healthy)
ageing, the transformation and progress direction of particular interest is the expansion of
concept of ambient-assisted environments, from currently predominant implementations in
residential and social indoor spaces (homes, elderly care/community centers) to outdoor and
public environments. However, there is still a large gap between potential and actual IoT data
exploitation because of many challenges that have to be overcome before putting data driven
predictive and preventive models in geriatric or healthcare practice [1, 2].

Research presented in this paper is mainly the part of City4Age project (www.city4agepro-
ject.eu) that develops age-friendly Cities and Environments in deployments in six differ-
ent prominent pilot smart cities in EU and beyond—Athens, Birmingham, Lecce, Madrid,

Recent Applications in Data Clustering116

Montpellier and Singapore. The main goal of this research and City4Age project is to develop
a framework for predictive and preventive risk control of Frailty and MCI, as one of the core
system infrastructure assets of age-friendly cities. Specific goals are development of methods
based on smart cities IoT data for early risk detection and enrichment of traditional geriatric
instruments. In order to achieve these goals, we are faced with several challenges: (1) identifi-
cation and characterization of temporal behavioral patterns from sensor data, (2) Identification
of behavior changes (transitions) and (3) Anomalous behavior and anomalous data detection.

Given that IoT data are collected from smart devices in form of unlabeled data streams, for
initial behavior variation detection models, unsupervised machine learning techniques have
to be employed. From data analytics point of view, behavior can be defined as alternating
pattern of sequences of activities. Based on this definition, clustering is identified as natural
technique for behavioral pattern recognition, change and anomaly detection. Clustering tech-
niques that allow grouping objects into homogenous groups where objects in the same group
are similar (intra-cluster distance is low) and objects between groups are dissimilar (inter-
cluster distance is high). For building cluster models, we employed Hidden Markov models
(HMMs), since they allow direct modeling of time series, provide framework for anomaly
detection and have high degree of interpretability. Interpretability is very important property
for incorporation of data driven models in healthcare practice and integration with domain
knowledge of geriatricians.

Contributions of this chapter are twofold: (1) we propose a framework for behavior charac-
terization, change and anomaly detection in IoT data in smart cities environment and (2) we
provide first experimental evidence of usefulness of data driven modeling of behavioral data
on collected City4Age IoT data.

2. State-of-the-art

World Health Organization (WHO) had recognized the importance as well as human and
economic impact of age-friendly environments and launched the age-friendly Cities and
Communities Programme that introduced the terms in 2006/2007, as the foundation initia-
tive aimed for local and metropolitan governance and development levels. The European
Commission (EC) supports the pursues of goals and objectives of age-friendly environments
and sustainable development by numerous different instruments, primarily through R&D
funding programs such as Horizon 2020 or specialized Active and Assistive Living (AAL)
Programme. Important higher-level EC initiatives that foster innovation and concentrate
stakeholder efforts are the recently established:

• European Innovation Partnership on Smart Cities and Communities (EIP on SCC), involv-
ing almost 400 committed cities and other partners, with a marketplace of specialized ini-
tiatives, solutions and tools.

• European Innovation Partnership on active and healthy ageing (EIP on AHA), first estab-
lished EIP, in 2011, with specialized dedicated groups A3 for Functional decline & frailty,
and D4 for age-friendly environments, among others.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

117

These efforts increased research efforts in the area of smart city IoT data analytics through
different projects.

Geriatric practice has in this aim utilized different standardized instruments based on tradi-
tional data collection methods (administration of questionnaires, meter-based measurement
or direct observation in controlled conditions) and quantification and categorization of func-
tional domains of daily life behavior and known frailty/MCI risk factors, such as Lawton IADL
scale, Mini-Mental State Examination (MMSE), Fried Frailty Index, Nottingham Extended
Activities of Daily Living, and numerous others. A comprehensive summary of such tradi-
tional generally psychogeriatric instruments and methods is provided in [3]. These instru-
ments have evident major drawbacks, of late detection and problem identification (analysis
and interpretation of questionnaires or conducting of exams can span intervals of months), and
being generally ineffective, possibly subjective to a high degree, and costly for deployment.

The City4Age project (www.city4ageproject.eu), funded through the mentioned EC Horizon
2020 programme, is one of the pioneering efforts acting as a bridge between the mentioned
two European Innovation Partnerships, EIP on SCC and EIP on AHA, contributing to specific
and shared objectives and involving the committed participants from both Partnerships. The
primary aim of the project is to enable fully Ambient Assisted age-friendly cities, through
development and deployment of a range of ICT tools and services that will improve the unob-
trusive early detection of MCI/frailty risks from heterogeneous IoT and smart city data sources
at homes or on the move within the city, comprising the research and development work
performed and results presented in this chapter as part of the work on the Data Analytics
Platform. Coupled with the appropriate interventions—the developed tools will mitigate the
detected risks as secondary aim. The developed system and components are being validated
through in-situ deployments in six pilot smart cities.

Besides the City4Age project, there are numerous other related efforts in development of IoT
driven systems for maintaining the functional independence and quality of life of the globally
growing elderly population, or in development of data-driven health-related behavior recog-
nition systems or platforms. Some of the recent relevant ones are the following:

The ActivAGE project (www.activageproject.eu), started in January 2017 and likewise funded
through the Horizon 2020 programme, is a European multi-centric large-scale pilot on Smart
Living Environments. The main objective is to build the first European IoT ecosystem across
nine Deployment Sites (DS) in seven European countries, reusing and scaling up underly-
ing open and proprietary IoT platforms, technologies and standards, and integrating new
interfaces needed to provide interoperability across these heterogeneous platforms, that will
enable the deployment and operation at large scale of active & healthy ageing IoT-based solu-
tions and services.

Participatory Urban Living for Sustainable Environments (PULSE) project (www.pulsepro-
ject.eu), started in January 2016 and likewise funded through the Horizon 2020 programme,
harvests open city data, and data from health systems, urban and remote sensors, and per-
sonal devices, to enable evidence-driven and timely management of public health events and
processes, leveraging diverse data sources and big data analytics to transform urban public
health from a reactive to a predictive system, and from a system focused on surveillance to an

Recent Applications in Data Clustering118

inclusive and collaborative system supporting health equity. The clinical focus of the project
is on chronic respiratory (asthma) and metabolic diseases (type 2 Diabetes), developing risk
stratification models based on risk factors in each urban location (pilot deployment in five
global cities—Barcelona, Birmingham, Paris, New York and Singapore), taking account of
biological, behavioral, social and environmental risk factors, community resilience and well-
being in cities.

IGERT project, ended in 2016, funded by the US National Science Foundation grant, com-
prises a multi-disciplinary doctoral training programme focused on designing and study-
ing health-assistive smart environments, with particular emphasis on automatic monitoring
and analysis of human health and behavior, unsupervised data-driven detection of activity/
behavior and lifestyle changes, potential simulation/prediction of human behavior and activi-
ties, and enhancement of human physical and cognitive abilities [4].

Recently exhaustive and comprehensive reviews about temporal clustering algorithms and
applications are published [5–7] and thus we will focus here only on the concepts that are
closest to this research. As said behavior recognition, change and anomaly detection can be
modeled naturally with clustering algorithms. Clustering techniques that allow grouping
objects into homogenous groups where objects in the same group are similar (intra-cluster
distance is low) and objects between groups are dissimilar (inter-cluster distance is high).
Since the definition of clustering is based on the notion of similarity it is utterly important to
define the notion of similarity and types of similarity measures. Unlike stationary data, time
series have several aspects of similarity [7]:

Similarity in time: this is the simplest form of similarity with the assumption that instances
that are close in time have similar values. This is a naïve assumption and is used for bench-
mark purposes in most of the cases.

Similarity in shape: these similarities disregard the time of occurrence of patterns. Using this
definition, clusters of time-series with similar patterns of change are constructed regardless
of time points—for example, extracting groups of elderly citizens who have a common pat-
tern in their visits to pharmacy, regardless when these pharmacy visits occur in time-series.
Dynamic time warping (DTW) is one of the mostly used dissimilarity measures of this type.

Structural similarity: the types of metrics used to find similarities in changes of time series.
This is done by building models like AutoRegressive Moving Average (ARMA) or Hidden
Markov models (HMMs), and the similarity is measured between parameters of models. In
case of intra-activity behavior variations, structural similarity could recognize patterns such
as: after three weeks of decrease of outdoor_time, citizen has registered increased outdoor_
time, and this behavior is repeated every month.

3. City4Age analytic framework

Main challenges for the Data Science and Analytics in the related research in City4Age coin-
cide with main generic challenges for the potential of collected IoT data from smart cities for
health (and other personal) monitoring—volume and diversity of collected data is huge and

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

119

These efforts increased research efforts in the area of smart city IoT data analytics through
different projects.

Geriatric practice has in this aim utilized different standardized instruments based on tradi-
tional data collection methods (administration of questionnaires, meter-based measurement
or direct observation in controlled conditions) and quantification and categorization of func-
tional domains of daily life behavior and known frailty/MCI risk factors, such as Lawton IADL
scale, Mini-Mental State Examination (MMSE), Fried Frailty Index, Nottingham Extended
Activities of Daily Living, and numerous others. A comprehensive summary of such tradi-
tional generally psychogeriatric instruments and methods is provided in [3]. These instru-
ments have evident major drawbacks, of late detection and problem identification (analysis
and interpretation of questionnaires or conducting of exams can span intervals of months), and
being generally ineffective, possibly subjective to a high degree, and costly for deployment.

The City4Age project (www.city4ageproject.eu), funded through the mentioned EC Horizon
2020 programme, is one of the pioneering efforts acting as a bridge between the mentioned
two European Innovation Partnerships, EIP on SCC and EIP on AHA, contributing to specific
and shared objectives and involving the committed participants from both Partnerships. The
primary aim of the project is to enable fully Ambient Assisted age-friendly cities, through
development and deployment of a range of ICT tools and services that will improve the unob-
trusive early detection of MCI/frailty risks from heterogeneous IoT and smart city data sources
at homes or on the move within the city, comprising the research and development work
performed and results presented in this chapter as part of the work on the Data Analytics
Platform. Coupled with the appropriate interventions—the developed tools will mitigate the
detected risks as secondary aim. The developed system and components are being validated
through in-situ deployments in six pilot smart cities.

Besides the City4Age project, there are numerous other related efforts in development of IoT
driven systems for maintaining the functional independence and quality of life of the globally
growing elderly population, or in development of data-driven health-related behavior recog-
nition systems or platforms. Some of the recent relevant ones are the following:

The ActivAGE project (www.activageproject.eu), started in January 2017 and likewise funded
through the Horizon 2020 programme, is a European multi-centric large-scale pilot on Smart
Living Environments. The main objective is to build the first European IoT ecosystem across
nine Deployment Sites (DS) in seven European countries, reusing and scaling up underly-
ing open and proprietary IoT platforms, technologies and standards, and integrating new
interfaces needed to provide interoperability across these heterogeneous platforms, that will
enable the deployment and operation at large scale of active & healthy ageing IoT-based solu-
tions and services.

Participatory Urban Living for Sustainable Environments (PULSE) project (www.pulsepro-
ject.eu), started in January 2016 and likewise funded through the Horizon 2020 programme,
harvests open city data, and data from health systems, urban and remote sensors, and per-
sonal devices, to enable evidence-driven and timely management of public health events and
processes, leveraging diverse data sources and big data analytics to transform urban public
health from a reactive to a predictive system, and from a system focused on surveillance to an

Recent Applications in Data Clustering118

inclusive and collaborative system supporting health equity. The clinical focus of the project
is on chronic respiratory (asthma) and metabolic diseases (type 2 Diabetes), developing risk
stratification models based on risk factors in each urban location (pilot deployment in five
global cities—Barcelona, Birmingham, Paris, New York and Singapore), taking account of
biological, behavioral, social and environmental risk factors, community resilience and well-
being in cities.

IGERT project, ended in 2016, funded by the US National Science Foundation grant, com-
prises a multi-disciplinary doctoral training programme focused on designing and study-
ing health-assistive smart environments, with particular emphasis on automatic monitoring
and analysis of human health and behavior, unsupervised data-driven detection of activity/
behavior and lifestyle changes, potential simulation/prediction of human behavior and activi-
ties, and enhancement of human physical and cognitive abilities [4].

Recently exhaustive and comprehensive reviews about temporal clustering algorithms and
applications are published [5–7] and thus we will focus here only on the concepts that are
closest to this research. As said behavior recognition, change and anomaly detection can be
modeled naturally with clustering algorithms. Clustering techniques that allow grouping
objects into homogenous groups where objects in the same group are similar (intra-cluster
distance is low) and objects between groups are dissimilar (inter-cluster distance is high).
Since the definition of clustering is based on the notion of similarity it is utterly important to
define the notion of similarity and types of similarity measures. Unlike stationary data, time
series have several aspects of similarity [7]:

Similarity in time: this is the simplest form of similarity with the assumption that instances
that are close in time have similar values. This is a naïve assumption and is used for bench-
mark purposes in most of the cases.

Similarity in shape: these similarities disregard the time of occurrence of patterns. Using this
definition, clusters of time-series with similar patterns of change are constructed regardless
of time points—for example, extracting groups of elderly citizens who have a common pat-
tern in their visits to pharmacy, regardless when these pharmacy visits occur in time-series.
Dynamic time warping (DTW) is one of the mostly used dissimilarity measures of this type.

Structural similarity: the types of metrics used to find similarities in changes of time series.
This is done by building models like AutoRegressive Moving Average (ARMA) or Hidden
Markov models (HMMs), and the similarity is measured between parameters of models. In
case of intra-activity behavior variations, structural similarity could recognize patterns such
as: after three weeks of decrease of outdoor_time, citizen has registered increased outdoor_
time, and this behavior is repeated every month.

3. City4Age analytic framework

Main challenges for the Data Science and Analytics in the related research in City4Age coin-
cide with main generic challenges for the potential of collected IoT data from smart cities for
health (and other personal) monitoring—volume and diversity of collected data is huge and

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

119

promising, but the development of formalized and applicable knowledge and learning mod-
els is lagging with adequate potential for interpretation, classification and exploitation. At
the same time, the unobtrusively acquired dataset for each specific person over time is often
sparse, incomplete and erroneous, and with high degree of variation caused by temporary
sensor imprecisions or influence of external factors beyond the sensing or modeling scope.
High-level City4Age Analytics and detection process flow is depicted on Figure 1. City4Age
has from the beginning adopted the combined hybrid knowledge- and data-driven approach,
with the initial contribution of the knowledge-based approach turning out somewhat overes-
timated in the meantime due to the issues mentioned above and consequent non-determinis-
tic and volatile semantic integrity of “known” or presumed universal geriatric causalities and
concepts. The main focus is thus currently on the data driven behavior change variation rec-
ognition and characterization, analysis of relative changes in time series data for each specific
person since the start of the pilot monitoring and determining baseline referent points, values
and features (individual geriatric care analytics), and subsequently on discovering correla-
tions and underlying features and interdependencies in the complete studied and monitored
populations and clusters and groups within it (group exploratory analytics), starting from
minimal initial domain model knowledge.

Majority of the functional domains and parameters of daily life behavior and geriatric risk
are nevertheless known and established, and formalized in the City4Age hierarchic computa-
tional model of geriatric behavior and risk [8].

The main model constructs and variables are based on the notions of Geriatric factors (GEF),
representing monthly behavior characterizations from all various functional behavioral
domain variables and known MCI/frailty risk indicators, on unified Likert scale, with 1 denot-
ing the least favorable and five the most favorable behavior with respect to MCI and Frailty
risk, a common and standard adopted representation in geriatric practice and many of the
used traditional instruments and questionnaires. GEF are further structured on several hier-
archic levels of decomposition (GES—geriatric sub-factors, GFG—geriatric factor groups),
and can be synthesized or derived from “Measures,” native numeric values generated by the

Figure 1. High-level City4Age analytics and detection process flow.

Recent Applications in Data Clustering120

various sensing technologies and methods for collecting data (e.g., daily number of walked
steps, weekly number of visits to relatives, daily time in seconds spent in public transport,
etc.), as exemplified on the diagram above. Measures are analyzed and processed using vari-
ous algorithmic techniques and/or methods, some of which are the clustering and grading
algorithms described in this chapter, but others have also been tried and tested, and therein
is the flexibility and scalability of the model and the Analytics Framework, supporting the
registration of various algorithmic methods through metadata and deploying them on the
“detection” variables (GFG, GEF, GES, Measures) on various model hierarchy and derivation
levels. Example of network representation of GES, GEF and Measures is presented on the
diagram on Figure 2 below. Relations between nodes shown on the diagram are not fixed/
persistent, can variate according to different model configurations in different cities, or adap-
tively according to the results of the data-driven detection.

The results of the data-driven detection are in turn used for expanding and building-up the
domain knowledge base. The structure (ontologies and semantics) and mechanisms for this
are established [9] are in parallel ongoing development, and will be still more intensely in
the future work, in the scope and frame of City4Age contributions and breakthroughs in
establishment of data-driven geriatrics. The unobtrusively acquired temporal dataset on indi-
vidual level, currently being acquired for each single elderly person, is highly likely to expand
with the increase and improvement of deployment scope and reliability of data acquisition
and detection infrastructure and technologies.

Figure 2. Example network representation of the City4Age geriatric model main constructs: Measures (purple), GES
(green), and GEF (red).

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

121

promising, but the development of formalized and applicable knowledge and learning mod-
els is lagging with adequate potential for interpretation, classification and exploitation. At
the same time, the unobtrusively acquired dataset for each specific person over time is often
sparse, incomplete and erroneous, and with high degree of variation caused by temporary
sensor imprecisions or influence of external factors beyond the sensing or modeling scope.
High-level City4Age Analytics and detection process flow is depicted on Figure 1. City4Age
has from the beginning adopted the combined hybrid knowledge- and data-driven approach,
with the initial contribution of the knowledge-based approach turning out somewhat overes-
timated in the meantime due to the issues mentioned above and consequent non-determinis-
tic and volatile semantic integrity of “known” or presumed universal geriatric causalities and
concepts. The main focus is thus currently on the data driven behavior change variation rec-
ognition and characterization, analysis of relative changes in time series data for each specific
person since the start of the pilot monitoring and determining baseline referent points, values
and features (individual geriatric care analytics), and subsequently on discovering correla-
tions and underlying features and interdependencies in the complete studied and monitored
populations and clusters and groups within it (group exploratory analytics), starting from
minimal initial domain model knowledge.

Majority of the functional domains and parameters of daily life behavior and geriatric risk
are nevertheless known and established, and formalized in the City4Age hierarchic computa-
tional model of geriatric behavior and risk [8].

The main model constructs and variables are based on the notions of Geriatric factors (GEF),
representing monthly behavior characterizations from all various functional behavioral
domain variables and known MCI/frailty risk indicators, on unified Likert scale, with 1 denot-
ing the least favorable and five the most favorable behavior with respect to MCI and Frailty
risk, a common and standard adopted representation in geriatric practice and many of the
used traditional instruments and questionnaires. GEF are further structured on several hier-
archic levels of decomposition (GES—geriatric sub-factors, GFG—geriatric factor groups),
and can be synthesized or derived from “Measures,” native numeric values generated by the

Figure 1. High-level City4Age analytics and detection process flow.

Recent Applications in Data Clustering120

various sensing technologies and methods for collecting data (e.g., daily number of walked
steps, weekly number of visits to relatives, daily time in seconds spent in public transport,
etc.), as exemplified on the diagram above. Measures are analyzed and processed using vari-
ous algorithmic techniques and/or methods, some of which are the clustering and grading
algorithms described in this chapter, but others have also been tried and tested, and therein
is the flexibility and scalability of the model and the Analytics Framework, supporting the
registration of various algorithmic methods through metadata and deploying them on the
“detection” variables (GFG, GEF, GES, Measures) on various model hierarchy and derivation
levels. Example of network representation of GES, GEF and Measures is presented on the
diagram on Figure 2 below. Relations between nodes shown on the diagram are not fixed/
persistent, can variate according to different model configurations in different cities, or adap-
tively according to the results of the data-driven detection.

The results of the data-driven detection are in turn used for expanding and building-up the
domain knowledge base. The structure (ontologies and semantics) and mechanisms for this
are established [9] are in parallel ongoing development, and will be still more intensely in
the future work, in the scope and frame of City4Age contributions and breakthroughs in
establishment of data-driven geriatrics. The unobtrusively acquired temporal dataset on indi-
vidual level, currently being acquired for each single elderly person, is highly likely to expand
with the increase and improvement of deployment scope and reliability of data acquisition
and detection infrastructure and technologies.

Figure 2. Example network representation of the City4Age geriatric model main constructs: Measures (purple), GES
(green), and GEF (red).

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

121

4. Hidden Markov models for behavioral modeling of smart cities
IoT data

As discussed, the main tasks of City4Age analytic framework are recognition of behavioral
patterns, behavior changes (transitions) in time and anomaly detection. Additionally, mod-
els derived from data should be interpretable in order to integrate data driven insights with
domain knowledge expertise. Hidden Markov models (HMMs) provide a framework for all
main tasks and thus we employed these models for behavior variation analyses. Additionally,
HMMs allow prediction of identified behavioral patterns in future and this adds predictive
and preventive component in analytic framework. Here we will consider first order HMMs
where each temporal state depends only on one previous state. This is strong assumption, but
allows development of scalable models and real-time inference. Figure 3 describes first order
Markov chain where each state x depends on previous state (x-1) and observed data (y).

Hidden Markov models can be explained as total probability of X and Y by following formulae:

 p (X,Y)  = p (x 1) ∏
T−1

t=1

  p (x t+1  |  x t) ∏
T

t′=1
  p (y t′  |  x t′) (1)

where p (y
t′
  |  x

t
) represents observation probability, while p(xt+1|xt) prepresents transition probability.

In our case observations are series of IoT sensory data while hidden states represent catego-
rized, homogenous series parts (that wil.l be characterized as behavioral patterns or behav-
iors). This is why we use Gaussian HMMs that characterize states with Gaussian distributions.
This is depicted on Figure 4.

Each HMM model is thus constituted from three elements:

1. Prior probability distribution of hidden states (vector π) that describes how frequently
each state occurs in general.

2. Transition matrix (Ai,j) that describe the transition probabilities from one state to another.

3. Probability distribution functions (one for each state) with corresponding parameters. In
our case Gaussian distributions are modeled and thus means and standard deviations are
used for definition of hidden state (behavior) probability distribution. HMMs allow mod-
eling of discrete data too, but in that case probability distributions are represented by con-
ditional distributions.

Figure 3. First-order Markov chain.

Recent Applications in Data Clustering122

Based on HMM definition, we can work on following tasks [10]:

Training—Learning parameters of HMM (A, B, and the prior distribution π), given a train-
ing sequence of observations y1,y2,…,yT. By solving this task, we will be able to characterize
behavioral patterns (distributions). This task is solved by forward-backward algorithm.

Decoding—given an observation sequence and an HMM, determine the most probable hid-
den state (behavior) sequence. We used this task for state prediction and model evaluation.
This task is solved by Viterbi (backward algorithm).

Likelihood—Calculation of probability that given sequence originates from given HMM
model. In this research, we did not work on this task, since we built personalized behavioral
models, but it will be used in later stages of the project when we will model behavior of
groups of care recipients.

5. Framework for behavioral pattern recognition and change
detection

Based on definition of behavior as pattern of sequences of activities and corresponding mea-
sure values, clustering algorithms emerge as natural algorithmic approach for behavioral pat-
tern recognition and change detection. In City4Age setting, inputs for clustering algorithms
are time series. These time series can be represented by values of activity measures, GES, GEF
or Geriatric Score of care recipients. Based on time series, temporal clustering algorithms can
identify patterns (similar time series values in consecutive time-steps) that are repeated over
time. We characterize these patterns as behaviors and transition between patterns, behavior
changes. Very important component in derivation of GES and GEF from activity measures are
numerical indicators (NUIs). NUIs represent aggregations (e.g., mean, std., trend, etc.) of activ-
ity measure values on monthly level. This granularity level is convenient since it allows direct

Figure 4. Behavior modeling with Gaussian HMMs.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

123

4. Hidden Markov models for behavioral modeling of smart cities
IoT data

As discussed, the main tasks of City4Age analytic framework are recognition of behavioral
patterns, behavior changes (transitions) in time and anomaly detection. Additionally, mod-
els derived from data should be interpretable in order to integrate data driven insights with
domain knowledge expertise. Hidden Markov models (HMMs) provide a framework for all
main tasks and thus we employed these models for behavior variation analyses. Additionally,
HMMs allow prediction of identified behavioral patterns in future and this adds predictive
and preventive component in analytic framework. Here we will consider first order HMMs
where each temporal state depends only on one previous state. This is strong assumption, but
allows development of scalable models and real-time inference. Figure 3 describes first order
Markov chain where each state x depends on previous state (x-1) and observed data (y).

Hidden Markov models can be explained as total probability of X and Y by following formulae:

 p (X,Y)  = p (x 1) ∏
T−1

t=1

  p (x t+1  |  x t) ∏
T

t′=1
  p (y t′  |  x t′) (1)

where p (y
t′
  |  x

t
) represents observation probability, while p(xt+1|xt) prepresents transition probability.

In our case observations are series of IoT sensory data while hidden states represent catego-
rized, homogenous series parts (that wil.l be characterized as behavioral patterns or behav-
iors). This is why we use Gaussian HMMs that characterize states with Gaussian distributions.
This is depicted on Figure 4.

Each HMM model is thus constituted from three elements:

1. Prior probability distribution of hidden states (vector π) that describes how frequently
each state occurs in general.

2. Transition matrix (Ai,j) that describe the transition probabilities from one state to another.

3. Probability distribution functions (one for each state) with corresponding parameters. In
our case Gaussian distributions are modeled and thus means and standard deviations are
used for definition of hidden state (behavior) probability distribution. HMMs allow mod-
eling of discrete data too, but in that case probability distributions are represented by con-
ditional distributions.

Figure 3. First-order Markov chain.

Recent Applications in Data Clustering122

Based on HMM definition, we can work on following tasks [10]:

Training—Learning parameters of HMM (A, B, and the prior distribution π), given a train-
ing sequence of observations y1,y2,…,yT. By solving this task, we will be able to characterize
behavioral patterns (distributions). This task is solved by forward-backward algorithm.

Decoding—given an observation sequence and an HMM, determine the most probable hid-
den state (behavior) sequence. We used this task for state prediction and model evaluation.
This task is solved by Viterbi (backward algorithm).

Likelihood—Calculation of probability that given sequence originates from given HMM
model. In this research, we did not work on this task, since we built personalized behavioral
models, but it will be used in later stages of the project when we will model behavior of
groups of care recipients.

5. Framework for behavioral pattern recognition and change
detection

Based on definition of behavior as pattern of sequences of activities and corresponding mea-
sure values, clustering algorithms emerge as natural algorithmic approach for behavioral pat-
tern recognition and change detection. In City4Age setting, inputs for clustering algorithms
are time series. These time series can be represented by values of activity measures, GES, GEF
or Geriatric Score of care recipients. Based on time series, temporal clustering algorithms can
identify patterns (similar time series values in consecutive time-steps) that are repeated over
time. We characterize these patterns as behaviors and transition between patterns, behavior
changes. Very important component in derivation of GES and GEF from activity measures are
numerical indicators (NUIs). NUIs represent aggregations (e.g., mean, std., trend, etc.) of activ-
ity measure values on monthly level. This granularity level is convenient since it allows direct

Figure 4. Behavior modeling with Gaussian HMMs.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

123

conversion of NUIs to GES and GEF that are interpretable to geriatricians. However, monthly
statistics in some cases do not capture important within month variations in time series.

This is why, in contrast to NUIs, clusters are not restricted to monthly level. Depending on
input data, clusters can be identified on daily or monthly level. For example, if number_
of_steps activity measure is clustered over time, model can identify similar groups of daily
values: days with high values (i.e. average of 3000 steps with standard deviation of 200 steps)
and days with low values (i.e. average of 600 steps with standard deviation of 100 steps).
Similarly, cluster models can identify patterns of series of GES or GEF. For example: care
recipient have periods of time where motility have average motility value of 4.1 with standard
deviation of 0.2. So, behavioral patterns encapsulated in cluster models provide characteriza-
tion of behavior on finer grade than monthly level. Additionally, the level of granularities
does not have to be defined in advance (e.g., weeks).

For example, in first 22 days of January, care recipient had high values and high variability
of number_of_steps, but in next 12 days he or she had low values with low variability. Even
though, behavioral patterns described by clusters are not necessarily aligned with monthly
representations of NUIs, GES and GEF, they can be exploited for definition of new NUIs that
will capture within month behavior variations (e.g., care recipient showed improved behav-
ior in last eight days of a month). NUIs based can be further graded as described in previous
sub-section. Based on previous examples it is intuitively clear that clusters (behavior patterns)
encapsulate smaller variations of time series and allows data driven discretization and char-
acterization of discrete categories. This discretization allows easier inspection of behavioral
changes (than observing unclustered series with many variations) and thus, results of cluster-
ing (cluster labels) can be directly represented on City4Age interactive dashboards or used as
NUIs for derivations of GES and GEF (Figure 5). This way Geriatricians can access visualiza-
tions of natural groupings among series data, and label behaviors (e.g., normal, bad or good
or on the Likert scale) or revise data driven grading of clusters.

It is important to emphasize that grouping of activities and/or citizens will play an important
role in extending of City4Age interactive dashboards, with mentioned easier identification

Figure 5. Cluster model flow.

Recent Applications in Data Clustering124

and labeling of patterns in streaming data. The labels will allow development of supervised
models and further automation of City4Age analytics processes and improvement of alarm-
ing systems.

6. Experiments

In order to evaluate proposed framework we conducted experiments collected from City4Age
Pilot sites. The main goal of the experimental evaluation was to evaluate usefulness of HMM
models for behavior recognition, behavior change and anomaly detection in context of
City4Age IoT data. We will describe process of data collection, modeling and evaluation in
following text.

6.1. Data collection and preparation

Data used in experiments originate from the Birmingham Pilot. Data have been acquired by
monitoring 3 Care recipients during a 6-month period (from January to July 2017, and ongo-
ing). Sensory data are collected using Nokia Steel (e.g., Withings Activité) smartwatches.
Nokia Steel tracks the following activities: sleep cycle, movements tracking, walked steps
and distance, burned calories, elevation, heart rate, and optionally SP02 (peripheral capillary
oxygen saturation, an estimate of the amount of oxygen in the blood, taken with additional
pulse oximeter). Integration of sensor data with City4Age analytics platform is described in
the following text. The proximity positioning data are gathered through smartphone BLE
transceiver and relayed through the smartphone 4G connection to the City4Age Platform.
Nokia/Withings API is used for initial pre-processing step on the sleep, activity, and other
data obtained from the smartwatches, before sending to the City4Age Platform. So, input for
building clustering algorithms in this research was sets of activity measures for each citizen.
Summary of observed activity measures is presented in Table 1.

6.2. Experimental setup

The main goal of our experiments was to show that HMM models can be efficiently used for
behavioral pattern recognition, behavior change detection and anomaly detection. In order
to achieve this goal we faced several challenges: identification of adequate model evalua-
tion (selection) measure, identify optimal number of behavioral states for each care recipient
and each activity and finally to characterize identified behaviors (clusters or behavioral pat-
terns). Since HMM models cannot implicitly learn optimal number of hidden states, we built
HMM models with varying number of clusters (in the range 2–10) for each care recipient and
each activity. Additionally, since there is no consensus for evaluation of cluster models in
unsupervised setting, each model was evaluated with log likelihood, BIC and AIC evaluation
measures. So setting we conducted 810 experiments in total (3 care recipients × 10 activities
× 9 variations of state numbers × 3 evaluation measures). Each experiment lasted for 15–24 s
(including learning and evaluation). Since HMM is one of the most scalable algorithm from

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

125

conversion of NUIs to GES and GEF that are interpretable to geriatricians. However, monthly
statistics in some cases do not capture important within month variations in time series.

This is why, in contrast to NUIs, clusters are not restricted to monthly level. Depending on
input data, clusters can be identified on daily or monthly level. For example, if number_
of_steps activity measure is clustered over time, model can identify similar groups of daily
values: days with high values (i.e. average of 3000 steps with standard deviation of 200 steps)
and days with low values (i.e. average of 600 steps with standard deviation of 100 steps).
Similarly, cluster models can identify patterns of series of GES or GEF. For example: care
recipient have periods of time where motility have average motility value of 4.1 with standard
deviation of 0.2. So, behavioral patterns encapsulated in cluster models provide characteriza-
tion of behavior on finer grade than monthly level. Additionally, the level of granularities
does not have to be defined in advance (e.g., weeks).

For example, in first 22 days of January, care recipient had high values and high variability
of number_of_steps, but in next 12 days he or she had low values with low variability. Even
though, behavioral patterns described by clusters are not necessarily aligned with monthly
representations of NUIs, GES and GEF, they can be exploited for definition of new NUIs that
will capture within month behavior variations (e.g., care recipient showed improved behav-
ior in last eight days of a month). NUIs based can be further graded as described in previous
sub-section. Based on previous examples it is intuitively clear that clusters (behavior patterns)
encapsulate smaller variations of time series and allows data driven discretization and char-
acterization of discrete categories. This discretization allows easier inspection of behavioral
changes (than observing unclustered series with many variations) and thus, results of cluster-
ing (cluster labels) can be directly represented on City4Age interactive dashboards or used as
NUIs for derivations of GES and GEF (Figure 5). This way Geriatricians can access visualiza-
tions of natural groupings among series data, and label behaviors (e.g., normal, bad or good
or on the Likert scale) or revise data driven grading of clusters.

It is important to emphasize that grouping of activities and/or citizens will play an important
role in extending of City4Age interactive dashboards, with mentioned easier identification

Figure 5. Cluster model flow.

Recent Applications in Data Clustering124

and labeling of patterns in streaming data. The labels will allow development of supervised
models and further automation of City4Age analytics processes and improvement of alarm-
ing systems.

6. Experiments

In order to evaluate proposed framework we conducted experiments collected from City4Age
Pilot sites. The main goal of the experimental evaluation was to evaluate usefulness of HMM
models for behavior recognition, behavior change and anomaly detection in context of
City4Age IoT data. We will describe process of data collection, modeling and evaluation in
following text.

6.1. Data collection and preparation

Data used in experiments originate from the Birmingham Pilot. Data have been acquired by
monitoring 3 Care recipients during a 6-month period (from January to July 2017, and ongo-
ing). Sensory data are collected using Nokia Steel (e.g., Withings Activité) smartwatches.
Nokia Steel tracks the following activities: sleep cycle, movements tracking, walked steps
and distance, burned calories, elevation, heart rate, and optionally SP02 (peripheral capillary
oxygen saturation, an estimate of the amount of oxygen in the blood, taken with additional
pulse oximeter). Integration of sensor data with City4Age analytics platform is described in
the following text. The proximity positioning data are gathered through smartphone BLE
transceiver and relayed through the smartphone 4G connection to the City4Age Platform.
Nokia/Withings API is used for initial pre-processing step on the sleep, activity, and other
data obtained from the smartwatches, before sending to the City4Age Platform. So, input for
building clustering algorithms in this research was sets of activity measures for each citizen.
Summary of observed activity measures is presented in Table 1.

6.2. Experimental setup

The main goal of our experiments was to show that HMM models can be efficiently used for
behavioral pattern recognition, behavior change detection and anomaly detection. In order
to achieve this goal we faced several challenges: identification of adequate model evalua-
tion (selection) measure, identify optimal number of behavioral states for each care recipient
and each activity and finally to characterize identified behaviors (clusters or behavioral pat-
terns). Since HMM models cannot implicitly learn optimal number of hidden states, we built
HMM models with varying number of clusters (in the range 2–10) for each care recipient and
each activity. Additionally, since there is no consensus for evaluation of cluster models in
unsupervised setting, each model was evaluated with log likelihood, BIC and AIC evaluation
measures. So setting we conducted 810 experiments in total (3 care recipients × 10 activities
× 9 variations of state numbers × 3 evaluation measures). Each experiment lasted for 15–24 s
(including learning and evaluation). Since HMM is one of the most scalable algorithm from

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

125

Probabilistic Graphical models family (it is frequently used for signal processing and speech
recognition) it allows adaption for much larger series as City4Age streaming data arrives.
After building models, they are applied to activity measure time series for each citizen and
each activity. In this way we labeled each time point with cluster (behavioral pattern or state)
assignment. When scoring HMM models, probabilities that time point originates from cluster
distributions are identified and largest probabilities are stored for anomaly detection pur-
poses. Experimental setup is implemented in Python. Hmmlearn library is used for building
HMM models while Pandas DataFrame is used for data manipulation. All experiments are
conducted on a testing cloud comprising three servers with quad-core Intel Xeon class CPU
each, 8 GB of RAM combined for data storage processes and up to 252 GB of RAM combined
at disposal for data analytics and applicative processes.

6.3. Results and discussion

In this section we will analyze and discuss experimental results from the aspects of identifica-
tion of adequate model selector, behavioral pattern recognition, behavioral change (transi-
tion) recognition and anomaly detection.

6.3.1. Identification of adequate model selector

Since there is no consensus about the best HMM model selection and evaluation metric in
unsupervised setting, our first objective was to identify well suited metric for data at hand.
Good metric should enable automated identification of parsimonious solutions: ones with
high performance but as less complex as possible. For that purpose, we inspected general
behavior of AIC, BIC over all experiments (care recipients and activity measures) and corre-
lated these values with log likelihood performances. Log likelihood measures how probable
is model given the series data. It is intuitively clear that models with maximum possible log

Geriatric sub-factor Activity Measure unit

Walking WALK_STEPS # of steps

WALK_DISTANCE meters

Quality of sleep SLEEP_LIGHT_TIME seconds

SLEEP_DEEP_TIME seconds

SLEEP_AWAKE_TIME seconds

SLEEP_WAKEUP_NUM seconds

SLEEP_TOSLEEP_TIME seconds

Physical activity PHYSICALACTIVITY_SOFT_TIME seconds

PHYSICALACTIVITY_MODERATE_TIME seconds

PHYSICALACTIVITY_INTENSE_TIME seconds

PHYSICALACTIVITY_CALORIES # of calories

Table 1. Observed activity measurements.

Recent Applications in Data Clustering126

likelihood are desired, however in general, likelihood monotonically increases with increase
of model complexity. This means that larger number of clusters will almost always be pre-
ferred by log likelihood criteria. The aim of the first analyses was to inspect how AIC and
BIC measurements capture degree of changes (slope) in likelihood values of the model.
Distributions of average values of log likelihood, AIC and BIC over different model complexi-
ties (numbers of states) are shown on Figure 6.

On X-axis numbers of clusters are showed and on Y-axis average AIC, BIC and log likelihood
values (over all experiments), respectively. It can be seen on figure below that AIC values follow
adequately identify steep growth of log likelihood on log likelihood curve. Meaning that average
AIC shows better model performance while log likelihood performance increases in large steps.

Optimal number of clusters (in average over all experiments) according to AIC measure is
5 where “elbow” in AIC curve is detected. This point corresponds to transition from higher
growth (for number of clusters 2–5) of log likelihood to Lower growth (for number of clusters
6–10). On the other side, BIC model selector, ignores steep increase of log likelihood and iden-
tifies three as optimal number of clusters.

Figure 6. Distribution of average values of log likelihood, AIC, and BIC over different model complexities.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

127

Probabilistic Graphical models family (it is frequently used for signal processing and speech
recognition) it allows adaption for much larger series as City4Age streaming data arrives.
After building models, they are applied to activity measure time series for each citizen and
each activity. In this way we labeled each time point with cluster (behavioral pattern or state)
assignment. When scoring HMM models, probabilities that time point originates from cluster
distributions are identified and largest probabilities are stored for anomaly detection pur-
poses. Experimental setup is implemented in Python. Hmmlearn library is used for building
HMM models while Pandas DataFrame is used for data manipulation. All experiments are
conducted on a testing cloud comprising three servers with quad-core Intel Xeon class CPU
each, 8 GB of RAM combined for data storage processes and up to 252 GB of RAM combined
at disposal for data analytics and applicative processes.

6.3. Results and discussion

In this section we will analyze and discuss experimental results from the aspects of identifica-
tion of adequate model selector, behavioral pattern recognition, behavioral change (transi-
tion) recognition and anomaly detection.

6.3.1. Identification of adequate model selector

Since there is no consensus about the best HMM model selection and evaluation metric in
unsupervised setting, our first objective was to identify well suited metric for data at hand.
Good metric should enable automated identification of parsimonious solutions: ones with
high performance but as less complex as possible. For that purpose, we inspected general
behavior of AIC, BIC over all experiments (care recipients and activity measures) and corre-
lated these values with log likelihood performances. Log likelihood measures how probable
is model given the series data. It is intuitively clear that models with maximum possible log

Geriatric sub-factor Activity Measure unit

Walking WALK_STEPS # of steps

WALK_DISTANCE meters

Quality of sleep SLEEP_LIGHT_TIME seconds

SLEEP_DEEP_TIME seconds

SLEEP_AWAKE_TIME seconds

SLEEP_WAKEUP_NUM seconds

SLEEP_TOSLEEP_TIME seconds

Physical activity PHYSICALACTIVITY_SOFT_TIME seconds

PHYSICALACTIVITY_MODERATE_TIME seconds

PHYSICALACTIVITY_INTENSE_TIME seconds

PHYSICALACTIVITY_CALORIES # of calories

Table 1. Observed activity measurements.

Recent Applications in Data Clustering126

likelihood are desired, however in general, likelihood monotonically increases with increase
of model complexity. This means that larger number of clusters will almost always be pre-
ferred by log likelihood criteria. The aim of the first analyses was to inspect how AIC and
BIC measurements capture degree of changes (slope) in likelihood values of the model.
Distributions of average values of log likelihood, AIC and BIC over different model complexi-
ties (numbers of states) are shown on Figure 6.

On X-axis numbers of clusters are showed and on Y-axis average AIC, BIC and log likelihood
values (over all experiments), respectively. It can be seen on figure below that AIC values follow
adequately identify steep growth of log likelihood on log likelihood curve. Meaning that average
AIC shows better model performance while log likelihood performance increases in large steps.

Optimal number of clusters (in average over all experiments) according to AIC measure is
5 where “elbow” in AIC curve is detected. This point corresponds to transition from higher
growth (for number of clusters 2–5) of log likelihood to Lower growth (for number of clusters
6–10). On the other side, BIC model selector, ignores steep increase of log likelihood and iden-
tifies three as optimal number of clusters.

Figure 6. Distribution of average values of log likelihood, AIC, and BIC over different model complexities.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

127

After this point, BIC curve grows super linearly meaning that it does not prefer models with
higher number of clusters than 2 or 3. Deeper inspection of AIC, BIC and log likelihood curves
for each care recipient and each activity showed consistent behavior with ones described on
Figure 6. Thus we selected AIC as measure of choice for HMM model selection. Based on
previous discussion we took AIC as measure of choice for model selection and identification
of optimal number of behavioral state for each care recipient and each activity.

However, it is very important to emphasize that insights presented in previous text cannot
be considered as conclusive and cannot generalize over all problems. This is because cluster
performance is dependent on data distributions that are different for each dataset, but also
because depends on the context of analyses.

6.3.2. Choosing optimal number of clusters

Based on previous insights, we used AIC measure to analyze quality of the models with
respect to number of clusters. Results for each activity for one care recipient are shown on
Figure 7. It can be seen from Figure 7 that different activities have different “optimal” number
of clusters. In this analyses term “optimal” have to be considered very loosely because, in
many cases difference in AIC performance is very similar for different number of clusters. This
means that for behavior analysis purposes adequate model can be selected in range of models
with good and similar AIC performance. Most often, parsimonious solution is applied: model
with satisfying performance and the least number of cluster is selected. On the other hand, in
case of existence of global saddle point model selection is clearer process. Saddle points have
strict mathematical definition based on function derivatives, but in this case, saddle point
can be descriptively defined as: point with property that all points from the left side (lower
number of clusters) are larger and all points from the right side (higher number of clusters)
are larger. In these situations, model selection is based on minimal (optimal value of AIC).
Clear example of saddle point on Figure 7 is labeled with k = 4 for physical_activity_calories
activity measure.

6.3.3. Behavior characterization

Figure 8 depicts behavioral patterns for activity sleep_light_time for one care recipient identi-
fied by HMM. X-axis represents temporal dimension in day units is presented for the period
and Y-axis represents cumulative duration of sleep_light time for each day.

It can be seen that HMM model based on AIC model selection criteria identified three differ-
ent clusters (behavioral patterns) that can be characterized as following:

1. Behavior (purple line): medium values of sleep_light_time (between 8000 and 13000 s) with
low deviations,

2. Behavior (green line): high values of sleep_light_time (between 13000 and 20000 s) with
low deviations and

3. Behavior (red line): low values of sleep_light_time (between 0 and 15000 s) with high
deviations.

Recent Applications in Data Clustering128

Normal sleeping process includes interchange of light sleep and deep sleep. First and second
behaviors are considered desirable and such times of light sleep lead to mitigation of frailty risk.
On the other hand lack of light sleep time and high variations are considered as negative behav-
ior and could indicate increase of stress and chance of MCI/frailty risk development. Based on
these observations behavioral patterns are quantified and ordered (e.g., 1—worst behavior, 2—
medium behavior, and 3—good behavior) and pushed in further process of risk quantification
through derivation of numerical indicators and grading (described in previous section).

6.3.4. Behavior variation change and anomaly detection

After characterization of behavioral patterns, we analyzed behavior (pattern) changes over
time. Identification and characterization of behavior changes (transitions) over time is cru-
cial step for building proactive systems and providing timely and preventive interventions.
Figure 9 describes transitions of behaviors identified in previous sub-section.

Figure 7. Selection of “optimal” number of behavioral patterns based on AIC values.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

129

After this point, BIC curve grows super linearly meaning that it does not prefer models with
higher number of clusters than 2 or 3. Deeper inspection of AIC, BIC and log likelihood curves
for each care recipient and each activity showed consistent behavior with ones described on
Figure 6. Thus we selected AIC as measure of choice for HMM model selection. Based on
previous discussion we took AIC as measure of choice for model selection and identification
of optimal number of behavioral state for each care recipient and each activity.

However, it is very important to emphasize that insights presented in previous text cannot
be considered as conclusive and cannot generalize over all problems. This is because cluster
performance is dependent on data distributions that are different for each dataset, but also
because depends on the context of analyses.

6.3.2. Choosing optimal number of clusters

Based on previous insights, we used AIC measure to analyze quality of the models with
respect to number of clusters. Results for each activity for one care recipient are shown on
Figure 7. It can be seen from Figure 7 that different activities have different “optimal” number
of clusters. In this analyses term “optimal” have to be considered very loosely because, in
many cases difference in AIC performance is very similar for different number of clusters. This
means that for behavior analysis purposes adequate model can be selected in range of models
with good and similar AIC performance. Most often, parsimonious solution is applied: model
with satisfying performance and the least number of cluster is selected. On the other hand, in
case of existence of global saddle point model selection is clearer process. Saddle points have
strict mathematical definition based on function derivatives, but in this case, saddle point
can be descriptively defined as: point with property that all points from the left side (lower
number of clusters) are larger and all points from the right side (higher number of clusters)
are larger. In these situations, model selection is based on minimal (optimal value of AIC).
Clear example of saddle point on Figure 7 is labeled with k = 4 for physical_activity_calories
activity measure.

6.3.3. Behavior characterization

Figure 8 depicts behavioral patterns for activity sleep_light_time for one care recipient identi-
fied by HMM. X-axis represents temporal dimension in day units is presented for the period
and Y-axis represents cumulative duration of sleep_light time for each day.

It can be seen that HMM model based on AIC model selection criteria identified three differ-
ent clusters (behavioral patterns) that can be characterized as following:

1. Behavior (purple line): medium values of sleep_light_time (between 8000 and 13000 s) with
low deviations,

2. Behavior (green line): high values of sleep_light_time (between 13000 and 20000 s) with
low deviations and

3. Behavior (red line): low values of sleep_light_time (between 0 and 15000 s) with high
deviations.

Recent Applications in Data Clustering128

Normal sleeping process includes interchange of light sleep and deep sleep. First and second
behaviors are considered desirable and such times of light sleep lead to mitigation of frailty risk.
On the other hand lack of light sleep time and high variations are considered as negative behav-
ior and could indicate increase of stress and chance of MCI/frailty risk development. Based on
these observations behavioral patterns are quantified and ordered (e.g., 1—worst behavior, 2—
medium behavior, and 3—good behavior) and pushed in further process of risk quantification
through derivation of numerical indicators and grading (described in previous section).

6.3.4. Behavior variation change and anomaly detection

After characterization of behavioral patterns, we analyzed behavior (pattern) changes over
time. Identification and characterization of behavior changes (transitions) over time is cru-
cial step for building proactive systems and providing timely and preventive interventions.
Figure 9 describes transitions of behaviors identified in previous sub-section.

Figure 7. Selection of “optimal” number of behavioral patterns based on AIC values.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

129

Frequent pattern changes from Figure 9 can be observed from green (“good” behavior) to
red (“bad” behavior) lines. It can also be observed that red behavior appears more frequently
than other two.

Finally, in most cases “medium” behavior (purple line) transitions to “good” behavior
(green line). Based on this analysis it can be observed that after behavior improvement (from
“medium” to “good”) care recipients often have sudden worsening of behavior. Recognition
of such transitional patterns enables predictive and preventive approach in risk prevention.
Namely, HMM models, based on transitional probability matrices identify probabilities of

Figure 9. Behavior variations (transitions) and anomalous point.

Figure 8. Behavioral patterns identified by HMM model.

Recent Applications in Data Clustering130

behavior transitions and if behaviors are characterized well, these probabilities can be used
as early risk identification indicators. Furthermore, based on HMM, model anomalies can
be automatically identified per user defined thresholds. For example, by manual labeling on
behavioral series presented on Figure 9, the lowest point of bad behavior (red line between
2017-05 and 2017-06) is identified. This point is captured as anomalous based on probability
threshold of 70%. This means that behavioral point (instance) has max. probability of belong-
ing to any state less than 70%. Experiments on all other activities showed that optimal value of
threshold should be between 65 and 75%. Similarly, anomalous states (behaviors) can be iden-
tified by setting threshold for minimum number of instances (behavioral measurements) that
should constitute behavior (cluster). Since number of behavior measurements is variable for
different users, activities and even periods of measurements, we define threshold as percent-
age of total number of measurements for selected period. In all our experiments series were
constituted from 140 to 180 measurements. Experiments showed that good anomaly scoring
is achieved by setting threshold to 3–5%. Figure 10 illustrates situation where anomalous
behavior is detected (last two measurements connected with yellow line).

7. Conclusion and future work

In this chapter we addressed the problem of behavioral pattern recognition, behavior change
detection and anomaly detection based on IoT data in smart city environment. We proposed
a framework for behavioral change detection that will be utilized in context of mild cog-
nitive impairment (MCI) and frailty risk assessment and detection in the City4Age project.
Behavioral modeling and risk assessment for MCI and Frailty are very challenging tasks
because of the large variations between each specific personal case, and the practical lack

Figure 10. Anomalous state.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

131

Frequent pattern changes from Figure 9 can be observed from green (“good” behavior) to
red (“bad” behavior) lines. It can also be observed that red behavior appears more frequently
than other two.

Finally, in most cases “medium” behavior (purple line) transitions to “good” behavior
(green line). Based on this analysis it can be observed that after behavior improvement (from
“medium” to “good”) care recipients often have sudden worsening of behavior. Recognition
of such transitional patterns enables predictive and preventive approach in risk prevention.
Namely, HMM models, based on transitional probability matrices identify probabilities of

Figure 9. Behavior variations (transitions) and anomalous point.

Figure 8. Behavioral patterns identified by HMM model.

Recent Applications in Data Clustering130

behavior transitions and if behaviors are characterized well, these probabilities can be used
as early risk identification indicators. Furthermore, based on HMM, model anomalies can
be automatically identified per user defined thresholds. For example, by manual labeling on
behavioral series presented on Figure 9, the lowest point of bad behavior (red line between
2017-05 and 2017-06) is identified. This point is captured as anomalous based on probability
threshold of 70%. This means that behavioral point (instance) has max. probability of belong-
ing to any state less than 70%. Experiments on all other activities showed that optimal value of
threshold should be between 65 and 75%. Similarly, anomalous states (behaviors) can be iden-
tified by setting threshold for minimum number of instances (behavioral measurements) that
should constitute behavior (cluster). Since number of behavior measurements is variable for
different users, activities and even periods of measurements, we define threshold as percent-
age of total number of measurements for selected period. In all our experiments series were
constituted from 140 to 180 measurements. Experiments showed that good anomaly scoring
is achieved by setting threshold to 3–5%. Figure 10 illustrates situation where anomalous
behavior is detected (last two measurements connected with yellow line).

7. Conclusion and future work

In this chapter we addressed the problem of behavioral pattern recognition, behavior change
detection and anomaly detection based on IoT data in smart city environment. We proposed
a framework for behavioral change detection that will be utilized in context of mild cog-
nitive impairment (MCI) and frailty risk assessment and detection in the City4Age project.
Behavioral modeling and risk assessment for MCI and Frailty are very challenging tasks
because of the large variations between each specific personal case, and the practical lack

Figure 10. Anomalous state.

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

131

of universally agreed and adopted criteria in geriatric practice (in real-life environment, not
controlled “lab” settings) on the referent thresholds or ranges of quantified risk factors or
geriatric domain variables that actually denote certain MCI/frailty risk or potential onset.

Thus we developed data driven models based on HMMs that exploit IoT sensory data and
allow automated behavior recognition, change and anomaly detection. Models are used for
characterization of data that serves as an input for exploratory analytics through interac-
tive dashboarding and/or enrichment of modeled Geriatric factors that quantify the specific
behavior characterizations and risk levels for MCI and Frailty.

In future work, we will integrate results from this research in City4Age interactive monitor-
ing dashboards and thus enable geriatricians to gain additional insights into care recipients
behavior and potential risk. This will open the space for supervised behavioral scoring and
risk prediction. Further, we will develop data driven behavioral models for multivariate IoT
data series and explore mutual influence between series. Finally, we will evaluate more unsu-
pervised models for behavioral modeling including deep learning models (e.g., recurrent
neural networks) in the analyses.

Acknowledgements

Main body of this research is part of the European project City4Age that received funding
from the Horizon 2020 research and innovation funding programme, under grant agreement
number 689731.

Author details

Vladimir Urosevic1, Ana Kovacevic2, Firas Kaddachi3 and Milan Vukicevic4*

*Address all correspondence to: vukicevicm@fon.bg.ac.rs

1 Belit Ltd., Belgrade, Serbia

2 Big Data Analytics, Belgrade, Serbia

3 Montpellier Laboratory of Informatics, Robotics and Microelectronics (LIRMM),
Montpellier, France

4 Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia

References

[1] Van Poucke S, Zhang Z, Schmitz M, Vukicevic M, Vander Laenen M, Celi LA, De Deyne
C. Scalable predictive analysis in critically ill patients using a visual open data analysis
platform. PloS One. 2016b;11(1):e0145791

Recent Applications in Data Clustering132

[2] Van Poucke S, Thomeer M, Heath J, Vukicevic M. Are randomized controlled trials the
(G) old Standard? From clinical intelligence to prescriptive analytics. Journal of Medical
Internet Research. 2016;18(7):e185. DOI: 10.2196/jmir.5549. PMID: 27383622, PMCID:
4954919. http://www.jmir.org/2016/7/e185

[3] Kaddachi F, Aloulou H, Abdulrazak B, Fraisse P, Mokhtari M. Unobtrusive Technological
Approach for Continuous Behavior Change Detection Toward Better Adaptation of
Clinical Assessments and Interventions for Elderly People. In: International Conference
on Smart Homes and Health Telematics. Cham: Springer; 2017, August. pp. 21-33

[4] Sprint G, Cook DJ, Schmitter-Edgecombe M. Unsupervised detection and analysis of
changes in everyday physical activity data. Journal of Biomedical Informatics. 2016
July;63:54-65. ISSN: 1532-0464

[5] Gupta M, Gao J, Aggarwal CC, Han J. Outlier detection for temporal data: A survey.
IEEE Transactions on Knowledge and Data Engineering. 2014;26(9):2250-2267

[6] Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho AC, Gama J. Data stream clus-
tering: A survey. ACM Computing Surveys (CSUR). 2013;46(1):13

[7] Aghabozorgi S, Shirkhorshidi AS, Wah TY. Time-series clustering–A decade review.
Information Systems. 2015;53:16-38

[8] Copelli S, Mercalli M, Ricevuti G, Venturini L. City4Age frailty and MCI risk model, v2.
City4Age Project Public Deliverable D. 2017 October;2(06)

[9] Azkune G, Almeida A, López-de-Ipiña D, Chen L. Extending knowledge-driven activ-
ity models through data-driven learning techniques. Expert Systems with Applications.
2015 April;42(6):3115-3128. ISSN: 0957-4174

[10] Bilmes JA. A gentle tutorial of the EM algorithm and its application to parameter estima-
tion for Gaussian mixture and hidden Markov models. International Computer Science
Institute. 1998;4(510):126

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

133

of universally agreed and adopted criteria in geriatric practice (in real-life environment, not
controlled “lab” settings) on the referent thresholds or ranges of quantified risk factors or
geriatric domain variables that actually denote certain MCI/frailty risk or potential onset.

Thus we developed data driven models based on HMMs that exploit IoT sensory data and
allow automated behavior recognition, change and anomaly detection. Models are used for
characterization of data that serves as an input for exploratory analytics through interac-
tive dashboarding and/or enrichment of modeled Geriatric factors that quantify the specific
behavior characterizations and risk levels for MCI and Frailty.

In future work, we will integrate results from this research in City4Age interactive monitor-
ing dashboards and thus enable geriatricians to gain additional insights into care recipients
behavior and potential risk. This will open the space for supervised behavioral scoring and
risk prediction. Further, we will develop data driven behavioral models for multivariate IoT
data series and explore mutual influence between series. Finally, we will evaluate more unsu-
pervised models for behavioral modeling including deep learning models (e.g., recurrent
neural networks) in the analyses.

Acknowledgements

Main body of this research is part of the European project City4Age that received funding
from the Horizon 2020 research and innovation funding programme, under grant agreement
number 689731.

Author details

Vladimir Urosevic1, Ana Kovacevic2, Firas Kaddachi3 and Milan Vukicevic4*

*Address all correspondence to: vukicevicm@fon.bg.ac.rs

1 Belit Ltd., Belgrade, Serbia

2 Big Data Analytics, Belgrade, Serbia

3 Montpellier Laboratory of Informatics, Robotics and Microelectronics (LIRMM),
Montpellier, France

4 Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia

References

[1] Van Poucke S, Zhang Z, Schmitz M, Vukicevic M, Vander Laenen M, Celi LA, De Deyne
C. Scalable predictive analysis in critically ill patients using a visual open data analysis
platform. PloS One. 2016b;11(1):e0145791

Recent Applications in Data Clustering132

[2] Van Poucke S, Thomeer M, Heath J, Vukicevic M. Are randomized controlled trials the
(G) old Standard? From clinical intelligence to prescriptive analytics. Journal of Medical
Internet Research. 2016;18(7):e185. DOI: 10.2196/jmir.5549. PMID: 27383622, PMCID:
4954919. http://www.jmir.org/2016/7/e185

[3] Kaddachi F, Aloulou H, Abdulrazak B, Fraisse P, Mokhtari M. Unobtrusive Technological
Approach for Continuous Behavior Change Detection Toward Better Adaptation of
Clinical Assessments and Interventions for Elderly People. In: International Conference
on Smart Homes and Health Telematics. Cham: Springer; 2017, August. pp. 21-33

[4] Sprint G, Cook DJ, Schmitter-Edgecombe M. Unsupervised detection and analysis of
changes in everyday physical activity data. Journal of Biomedical Informatics. 2016
July;63:54-65. ISSN: 1532-0464

[5] Gupta M, Gao J, Aggarwal CC, Han J. Outlier detection for temporal data: A survey.
IEEE Transactions on Knowledge and Data Engineering. 2014;26(9):2250-2267

[6] Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho AC, Gama J. Data stream clus-
tering: A survey. ACM Computing Surveys (CSUR). 2013;46(1):13

[7] Aghabozorgi S, Shirkhorshidi AS, Wah TY. Time-series clustering–A decade review.
Information Systems. 2015;53:16-38

[8] Copelli S, Mercalli M, Ricevuti G, Venturini L. City4Age frailty and MCI risk model, v2.
City4Age Project Public Deliverable D. 2017 October;2(06)

[9] Azkune G, Almeida A, López-de-Ipiña D, Chen L. Extending knowledge-driven activ-
ity models through data-driven learning techniques. Expert Systems with Applications.
2015 April;42(6):3115-3128. ISSN: 0957-4174

[10] Bilmes JA. A gentle tutorial of the EM algorithm and its application to parameter estima-
tion for Gaussian mixture and hidden Markov models. International Computer Science
Institute. 1998;4(510):126

Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired…
http://dx.doi.org/10.5772/intechopen.75203

133

Chapter 8

A Class of Parametric Tree-Based Clustering Methods

Fred Glover and Yang Wang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76406

Provisional chapter

DOI: 10.5772/intechopen.76406

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

A Class of Parametric Tree-Based Clustering Methods

Fred Glover and Yang Wang

Additional information is available at the end of the chapter

Abstract

We introduce a class of tree-based clustering methods based on a single parameter W
and show how to generate the full collection of cluster sets C(W), without duplication,
by varying W according to conditions identified during the algorithm’s execution. The
number of clusters within C(W) for a given W is determined automatically, using a graph
representation in which cluster elements are represented by nodes and their pairwise con-
nections are represented by edges. We identify features of the clusters produced which
lead to special procedures to accelerate the computation. Finally, we introduce a related
node-based variant of the algorithm based on a parameter Y which can be used to gen-
erate clusters with complementary features, and a method that combines both variants
based on a parameter Z and a weight that determines the contribution of each variant.

Keywords: clustering, minimum spanning trees, spanning forests, machine learning,
big data analytics

1. Introduction

Clustering methods have long been a mainstay of statistics and machine learning [1–3], and
have experienced a surge in importance with the advent of Big Data Analytics [4, 5]. A highly
successful use of clustering in practical applications has been to seek out particular kinds of
clustering methods that are effective in particular settings, based on the finding that different
classes of problems respond best to specific classes of clustering methods. This finding moti-
vates the work of this paper, which introduces a new class of tree-based clustering methods
with an ability to modify the kinds of clusters produced by changing the value of a particular
parameter. Moreover, we show all members of class can be generated without duplication by
a process that adaptively determines each new parameter value from the information pro-
duced by executing the class member that precedes it.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 8

A Class of Parametric Tree-Based Clustering Methods

Fred Glover and Yang Wang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76406

Provisional chapter

DOI: 10.5772/intechopen.76406

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

A Class of Parametric Tree-Based Clustering Methods

Fred Glover and Yang Wang

Additional information is available at the end of the chapter

Abstract

We introduce a class of tree-based clustering methods based on a single parameter W
and show how to generate the full collection of cluster sets C(W), without duplication,
by varying W according to conditions identified during the algorithm’s execution. The
number of clusters within C(W) for a given W is determined automatically, using a graph
representation in which cluster elements are represented by nodes and their pairwise con-
nections are represented by edges. We identify features of the clusters produced which
lead to special procedures to accelerate the computation. Finally, we introduce a related
node-based variant of the algorithm based on a parameter Y which can be used to gen-
erate clusters with complementary features, and a method that combines both variants
based on a parameter Z and a weight that determines the contribution of each variant.

Keywords: clustering, minimum spanning trees, spanning forests, machine learning,
big data analytics

1. Introduction

Clustering methods have long been a mainstay of statistics and machine learning [1–3], and
have experienced a surge in importance with the advent of Big Data Analytics [4, 5]. A highly
successful use of clustering in practical applications has been to seek out particular kinds of
clustering methods that are effective in particular settings, based on the finding that different
classes of problems respond best to specific classes of clustering methods. This finding moti-
vates the work of this paper, which introduces a new class of tree-based clustering methods
with an ability to modify the kinds of clusters produced by changing the value of a particular
parameter. Moreover, we show all members of class can be generated without duplication by
a process that adaptively determines each new parameter value from the information pro-
duced by executing the class member that precedes it.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

We are motivated to use a tree-based algorithm due to their applications in genome analysis
[6–8], image segmentation [9, 10], statistics [11] and microaggregation [12]. The most common
forms of the tree-based clustering methods in the literature [8, 13–15] begin with a minimum
spanning tree and then successively delete edges according to various criteria. However, our
approach has a greater level of flexibility than these commonly applied methods due to the
fact that the clusters produced include those that cannot be obtained by removing edges of a
minimum spanning tree.

We introduce special techniques for accelerating the execution of our basic approach by
exploiting its underlying properties and then introduce a closely related clustering algorithm
that replaces an “edge-based” focus with a complementary “node-based” focus. We unify
these two classes of approaches by identifying a third class that marries their complementary
features, and which provides additional variation by means of a weight that permits the con-
tribution of these complementary approaches to be varied along a continuum. We conclude
by demonstrating how the procedures for accelerating the first method can be expressed in a
more general form to accelerate the execution of the combined procedure as well.

The ability to generate a family of clustering methods from each of the three basic clustering
designs by varying a single parameter (and the weight employed by the third method) invites
empirical research to determine parameter ranges that are effective for specific types of clus-
tering applications, opening the possibility to produce clusters exhibiting features different
from those customarily obtained.

2. Cluster problem formulation

The clustering problem in our treatment is formulated by reference to a graph G = (N, E)
where N = {1, …, n} is a set of nodes (cluster elements) and E is a set of edges (pairwise connec-
tions between elements) given by E ⊂N × N = {(p,q): p,q∈N}. The notation (p,q) is understood
to represent an unordered pair (hence (p,q) = (q,p), and is equivalently represented by the
set notation {p,q}). Each edge e = (p,q) ∈ E has an associated cost (or length) denoted by c(e)
(= c(p,q)). It is not necessary to assume that G is complete or connected. We also do not require
that the costs c(e) be nonnegative.

The goal is to partition N into sets (clusters) Nk, k∈ K = {1, …, ko}, where the value ko is auto-
matically determined by the clustering process. We also identify an associated set of edges Ek⊂
{(p,q), p,q∈ Nk}, where the subgraph (Nk,Ek) of G constitutes a min cost spanning tree over the
nodes of Nk. In contrast to those tree-based clustering approaches that begin with a min cost
spanning tree over all of G and selectively delete particular edges, our algorithm produces
subgraphs (Nk,Ek), k ∈ K, that may not be possible to obtain by deleting edges from such a tree.

The class of clustering methods we describe is based on specifying the value of a parameter
W, whose value uniquely determines the outcome of each clustering method within the class.
W is expressed as an additive threshold for selecting edges and hence nodes to be added to a
current construction (collection of subgraphs), and observe that W can equally be expressed as
a multiplicative threshold in the case where the costs are nonnegative and the two approaches
are equivalent in this instance.

Recent Applications in Data Clustering136

We start with any selected value W = Wo≥ 0 and after obtaining a collection of clusters C(W)
for a given W we systematically modify W so that over successive iterations all possible clus-
ter collections C(W) for W ≥ Wo will be generated without duplication. The complete range of
cluster collections results by choosing Wo = 0 (or Wo = 1 in the multiplicative version).

3. Algorithm to generate the cluster collections C(W)

In overview, we index the edges of E in ascending cost order so that c(e(1)) ≤ c(e(2)) ≤ … ≤ c
(e(|E|)), and identify the nodes of edge e(s) by writing e(s) = (p(s), q(s)). We start with each
cluster Nk consisting of just the node k, that is, each cluster is a degenerate single node tree
given by.
 Nk =  {k} , k ∈ K for K = N =  {1, … , n}

The associated set Ek of edges in the tree corresponding to Nk is empty (Ek = ∅). As the algo-
rithm progresses, the composition of the clusters will change and the index set K of clusters
will change accordingly.

In addition, we keep a cost value denoted by MinCost(k) for each k ∈ K which identifies the
cost of the minimum cost edge e ∈ Ek. To begin, since no cluster yet contains an edge, we
define MinCost(k) = Large, a large positive number, for all k ∈ K. (We will not have to exam-
ine the set Ek to identify MinCost(k) = Min(c(e): e ∈ Ek) because the structure of the algorithm
will insure that MinCost(k) will equal the cost of the first edge added to Ek. In general, while
we describe the composition of Ek and the manner in which it changes, the organization of
the algorithm assures that it is unnecessary to keep track of Ek since the sets Nk, for k∈ K, will
identify the elements in the clusters produced.)

We also maintain a list L(i) for each i∈ N that names the cluster that node i belongs to. Hence,
initially, L(i) = (i) since i∈ Ni = {i} for all i∈ N. The redundancy provided by this list enables
updates to be performed efficiently. Subsequently, L(i) is modified as node i becomes the
member of a new cluster Nk. As this is done, the list K will come to have “holes” in it, i.e., will
not consist of consecutive indexes. (At the end of the algorithm we can rename the clusters
indexes, if desired, so that K = {1, 2, …, ko} where ko = |K|.)

Finally, during the process of generating the cluster collection C(W) for the current W value,
we will identify a value Wnext so that the process may then be repeated for W: = Wnext to
generate a new collection of clusters. As previously noted, by starting with W = Wo = 0 (or
W = Wo = 1 in the multiplicative version), and then successively identifying Wnext each time a
cluster collection C(W) is generated, we can ultimately generate all possible collections C(W),
without duplication. The process terminates when W becomes large enough that C(W) con-
sists of a min cost spanning tree over each connected component of G. (A simple condition for
identifying this termination point is identified below.)

Building on these observations, we now state the full form of our algorithm.

C(W) Algorithm (Multiplicative Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Wo value for W.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

137

We are motivated to use a tree-based algorithm due to their applications in genome analysis
[6–8], image segmentation [9, 10], statistics [11] and microaggregation [12]. The most common
forms of the tree-based clustering methods in the literature [8, 13–15] begin with a minimum
spanning tree and then successively delete edges according to various criteria. However, our
approach has a greater level of flexibility than these commonly applied methods due to the
fact that the clusters produced include those that cannot be obtained by removing edges of a
minimum spanning tree.

We introduce special techniques for accelerating the execution of our basic approach by
exploiting its underlying properties and then introduce a closely related clustering algorithm
that replaces an “edge-based” focus with a complementary “node-based” focus. We unify
these two classes of approaches by identifying a third class that marries their complementary
features, and which provides additional variation by means of a weight that permits the con-
tribution of these complementary approaches to be varied along a continuum. We conclude
by demonstrating how the procedures for accelerating the first method can be expressed in a
more general form to accelerate the execution of the combined procedure as well.

The ability to generate a family of clustering methods from each of the three basic clustering
designs by varying a single parameter (and the weight employed by the third method) invites
empirical research to determine parameter ranges that are effective for specific types of clus-
tering applications, opening the possibility to produce clusters exhibiting features different
from those customarily obtained.

2. Cluster problem formulation

The clustering problem in our treatment is formulated by reference to a graph G = (N, E)
where N = {1, …, n} is a set of nodes (cluster elements) and E is a set of edges (pairwise connec-
tions between elements) given by E ⊂N × N = {(p,q): p,q∈N}. The notation (p,q) is understood
to represent an unordered pair (hence (p,q) = (q,p), and is equivalently represented by the
set notation {p,q}). Each edge e = (p,q) ∈ E has an associated cost (or length) denoted by c(e)
(= c(p,q)). It is not necessary to assume that G is complete or connected. We also do not require
that the costs c(e) be nonnegative.

The goal is to partition N into sets (clusters) Nk, k∈ K = {1, …, ko}, where the value ko is auto-
matically determined by the clustering process. We also identify an associated set of edges Ek⊂
{(p,q), p,q∈ Nk}, where the subgraph (Nk,Ek) of G constitutes a min cost spanning tree over the
nodes of Nk. In contrast to those tree-based clustering approaches that begin with a min cost
spanning tree over all of G and selectively delete particular edges, our algorithm produces
subgraphs (Nk,Ek), k ∈ K, that may not be possible to obtain by deleting edges from such a tree.

The class of clustering methods we describe is based on specifying the value of a parameter
W, whose value uniquely determines the outcome of each clustering method within the class.
W is expressed as an additive threshold for selecting edges and hence nodes to be added to a
current construction (collection of subgraphs), and observe that W can equally be expressed as
a multiplicative threshold in the case where the costs are nonnegative and the two approaches
are equivalent in this instance.

Recent Applications in Data Clustering136

We start with any selected value W = Wo≥ 0 and after obtaining a collection of clusters C(W)
for a given W we systematically modify W so that over successive iterations all possible clus-
ter collections C(W) for W ≥ Wo will be generated without duplication. The complete range of
cluster collections results by choosing Wo = 0 (or Wo = 1 in the multiplicative version).

3. Algorithm to generate the cluster collections C(W)

In overview, we index the edges of E in ascending cost order so that c(e(1)) ≤ c(e(2)) ≤ … ≤ c
(e(|E|)), and identify the nodes of edge e(s) by writing e(s) = (p(s), q(s)). We start with each
cluster Nk consisting of just the node k, that is, each cluster is a degenerate single node tree
given by.
 Nk =  {k} , k ∈ K for K = N =  {1, … , n}

The associated set Ek of edges in the tree corresponding to Nk is empty (Ek = ∅). As the algo-
rithm progresses, the composition of the clusters will change and the index set K of clusters
will change accordingly.

In addition, we keep a cost value denoted by MinCost(k) for each k ∈ K which identifies the
cost of the minimum cost edge e ∈ Ek. To begin, since no cluster yet contains an edge, we
define MinCost(k) = Large, a large positive number, for all k ∈ K. (We will not have to exam-
ine the set Ek to identify MinCost(k) = Min(c(e): e ∈ Ek) because the structure of the algorithm
will insure that MinCost(k) will equal the cost of the first edge added to Ek. In general, while
we describe the composition of Ek and the manner in which it changes, the organization of
the algorithm assures that it is unnecessary to keep track of Ek since the sets Nk, for k∈ K, will
identify the elements in the clusters produced.)

We also maintain a list L(i) for each i∈ N that names the cluster that node i belongs to. Hence,
initially, L(i) = (i) since i∈ Ni = {i} for all i∈ N. The redundancy provided by this list enables
updates to be performed efficiently. Subsequently, L(i) is modified as node i becomes the
member of a new cluster Nk. As this is done, the list K will come to have “holes” in it, i.e., will
not consist of consecutive indexes. (At the end of the algorithm we can rename the clusters
indexes, if desired, so that K = {1, 2, …, ko} where ko = |K|.)

Finally, during the process of generating the cluster collection C(W) for the current W value,
we will identify a value Wnext so that the process may then be repeated for W: = Wnext to
generate a new collection of clusters. As previously noted, by starting with W = Wo = 0 (or
W = Wo = 1 in the multiplicative version), and then successively identifying Wnext each time a
cluster collection C(W) is generated, we can ultimately generate all possible collections C(W),
without duplication. The process terminates when W becomes large enough that C(W) con-
sists of a min cost spanning tree over each connected component of G. (A simple condition for
identifying this termination point is identified below.)

Building on these observations, we now state the full form of our algorithm.

C(W) Algorithm (Multiplicative Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Wo value for W.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

137

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set W = Wo and sLast = |E|

Begin Outer Loop

While W < Large

Initialization(A). Set Wnext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCost(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)), to create the first non-
degenerate cluster (containing more than one node and hence more than 0 edges) by
identifying k′ = L(i′) and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: =
Nk′∪ Nk″ = {i′, i″} with edge set Ek′ = e(1). Set MinCost(k′) = c(e(1)) and conclude by elimi-
nating the superfluous cluster Nk″ (now contained within Nk′) by setting K: = K \ {k″}.
Finally, initialize the edge index s by setting s = 1.

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′)
and k″ = L(i″). There are three cases:

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
 iteration of the Inner Loop.

Case (2): If c(e(s)) > W + MinCost0, for MinCost0 = Min(MinCost(k′), MinCost(k″)),
 then edge e(s) is forbidden to be added to join the clusters Nk′ and Nk″ into
 a single cluster. In this case, compute Wnext = Min(Wnext, c(e(s)) –MinCost0)
 and continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply)1: Absorb Nk″ into Nk′ to create the larger
 cluster Nk′ := Nk′∪Nk″ with its associated edge set Ek″: = Ek′∪ Ek″∪{e(s)}.
 Correspondingly, update L(i) by setting L(i) = k′for all i∈ Nk″, and set
 MinCost(k′) := Min(MinCost(k′), MinCost(k″), c(e(s)). Finally, eliminate the
 superfluous cluster Nk″(whose elements are now contained within Nk′) by
 setting K : = K \ {k″}.

Endwhile.

// The node and edge sets for the collection of clusters C(W) for the current W are given.

// by Nk and Ek for k ∈ K. The node sets can alternatively be recovered by reference to.

// the values L(i), i = 1, …, n.

W = Wnext

Endwhile

End of C(W) Algorithm

1Case (3) generalizes Initialization(B).

Recent Applications in Data Clustering138

We employ the customary convention that a loop of the form “While x < Constant” will be
bypassed if the beginning value of x does not satisfy “x < Constant” and that the execution of
the loop will not be interrupted if x is changed so that x ≥ Constant within the loop (though
the execution will then terminate at the loop’s conclusion). Hence, for example, in the Inner
Loop when s: = s + 1 results in s = sLast, the loop will continue its execution until the current
iteration ends.

We now make several observations about the algorithm.

Remark 1: The multiplicative version of the C(W) Algorithm results by modifying Case (2) to
replace W + MinCost0 by W∙MinCost0 and to replace Wnext = Min(Wnext, c(e(s)) – MinCost0)
by Wnext = Min(Wnext, c(e(s))/MinCost0). (Hence, addition is replaced by multiplication and
subtraction is replaced by division.) These approaches will generate the same collection of
clusters under the assumption that all c(e) > 0 for the following reason: a positive value W′ can
always be found for the multiplicative case that will cause Wnext to screen out the same set of
elements as any positive value W for the additive case, and vice versa. This relationship can
also be extended to cover the situation where all c(e)are nonnegative.

Remark 2: The assignment W = Wnext at the end of the outer loop can be replaced by setting
W:= Wnext + Δ for a chosen increment Δ to generate only a subset of the possible C(W) col-
lections. Experimentation with a given class of cluster applications may additionally lead to
identifying upper and lower bounds on W (or specific intervals for W) that prove most effec-
tive for that class.

Remark 3: To reduce the updating effort of Case (3), the indexes i′ = p(s) and i″ = q(s) can be
interchanged (hence also interchanging k′ and k″) to assure that |Nq(s)| ≤ |Np(s)|. (More
comprehensive ways of reducing computation are identified in Sections 4 and 7.)

Remark 4: The justification of terminating the outer loop of the algorithm when W = Large
(after setting W = Wnextat the conclusion of the inner loop) derives from the observation
that Wnext = Large implies the condition c(e(s)) > W + MinCost0 is never satisfied in Case (2).
(When this terminating condition occurs in a connected graph, the method will have gener-
ated a min cost spanning tree.) Moreover, if the algorithm is repeated for W = Large, the same
outcome will result.

Remark 5: When Wo = 0 (or Wo = 1 for the multiplicative case), each resulting node-disjoint
subgraph (Nk, Ek) in the collection C(W) consists of a tree in which the cost c(e) for all edges
e ∈ Ek is the same.

Remark 6: In a complete graph, the algorithm will leave at most one node isolated (with
Nk = {k} and Ek = ∅) at the conclusion of the Inner Loop for any W. In a graph that is not
complete or not connected, no node that is not isolated in G will be left isolated in the collec-
tion C(W) for W sufficiently large. (To permit additional isolated nodes, a limit clim may be
imposed that prevents C(W) from including any edges e such that c(e) > clim.)

Remark 7: When there are tied (duplicate) cost values c(e), all orderings of e(1) to e(|E|) sat-
isfying c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)) will produce the same collection of clusters C(W) in
the following sense: For a given value of W, all orderings will produce the same node sets Nk
defining C(W), and the sum of costs over the edge sets Ek will also be the same, though the
edges within these sets may differ.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

139

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set W = Wo and sLast = |E|

Begin Outer Loop

While W < Large

Initialization(A). Set Wnext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCost(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)), to create the first non-
degenerate cluster (containing more than one node and hence more than 0 edges) by
identifying k′ = L(i′) and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: =
Nk′∪ Nk″ = {i′, i″} with edge set Ek′ = e(1). Set MinCost(k′) = c(e(1)) and conclude by elimi-
nating the superfluous cluster Nk″ (now contained within Nk′) by setting K: = K \ {k″}.
Finally, initialize the edge index s by setting s = 1.

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′)
and k″ = L(i″). There are three cases:

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
 iteration of the Inner Loop.

Case (2): If c(e(s)) > W + MinCost0, for MinCost0 = Min(MinCost(k′), MinCost(k″)),
 then edge e(s) is forbidden to be added to join the clusters Nk′ and Nk″ into
 a single cluster. In this case, compute Wnext = Min(Wnext, c(e(s)) –MinCost0)
 and continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply)1: Absorb Nk″ into Nk′ to create the larger
 cluster Nk′ := Nk′∪Nk″ with its associated edge set Ek″: = Ek′∪ Ek″∪{e(s)}.
 Correspondingly, update L(i) by setting L(i) = k′for all i∈ Nk″, and set
 MinCost(k′) := Min(MinCost(k′), MinCost(k″), c(e(s)). Finally, eliminate the
 superfluous cluster Nk″(whose elements are now contained within Nk′) by
 setting K : = K \ {k″}.

Endwhile.

// The node and edge sets for the collection of clusters C(W) for the current W are given.

// by Nk and Ek for k ∈ K. The node sets can alternatively be recovered by reference to.

// the values L(i), i = 1, …, n.

W = Wnext

Endwhile

End of C(W) Algorithm

1Case (3) generalizes Initialization(B).

Recent Applications in Data Clustering138

We employ the customary convention that a loop of the form “While x < Constant” will be
bypassed if the beginning value of x does not satisfy “x < Constant” and that the execution of
the loop will not be interrupted if x is changed so that x ≥ Constant within the loop (though
the execution will then terminate at the loop’s conclusion). Hence, for example, in the Inner
Loop when s: = s + 1 results in s = sLast, the loop will continue its execution until the current
iteration ends.

We now make several observations about the algorithm.

Remark 1: The multiplicative version of the C(W) Algorithm results by modifying Case (2) to
replace W + MinCost0 by W∙MinCost0 and to replace Wnext = Min(Wnext, c(e(s)) – MinCost0)
by Wnext = Min(Wnext, c(e(s))/MinCost0). (Hence, addition is replaced by multiplication and
subtraction is replaced by division.) These approaches will generate the same collection of
clusters under the assumption that all c(e) > 0 for the following reason: a positive value W′ can
always be found for the multiplicative case that will cause Wnext to screen out the same set of
elements as any positive value W for the additive case, and vice versa. This relationship can
also be extended to cover the situation where all c(e)are nonnegative.

Remark 2: The assignment W = Wnext at the end of the outer loop can be replaced by setting
W:= Wnext + Δ for a chosen increment Δ to generate only a subset of the possible C(W) col-
lections. Experimentation with a given class of cluster applications may additionally lead to
identifying upper and lower bounds on W (or specific intervals for W) that prove most effec-
tive for that class.

Remark 3: To reduce the updating effort of Case (3), the indexes i′ = p(s) and i″ = q(s) can be
interchanged (hence also interchanging k′ and k″) to assure that |Nq(s)| ≤ |Np(s)|. (More
comprehensive ways of reducing computation are identified in Sections 4 and 7.)

Remark 4: The justification of terminating the outer loop of the algorithm when W = Large
(after setting W = Wnextat the conclusion of the inner loop) derives from the observation
that Wnext = Large implies the condition c(e(s)) > W + MinCost0 is never satisfied in Case (2).
(When this terminating condition occurs in a connected graph, the method will have gener-
ated a min cost spanning tree.) Moreover, if the algorithm is repeated for W = Large, the same
outcome will result.

Remark 5: When Wo = 0 (or Wo = 1 for the multiplicative case), each resulting node-disjoint
subgraph (Nk, Ek) in the collection C(W) consists of a tree in which the cost c(e) for all edges
e ∈ Ek is the same.

Remark 6: In a complete graph, the algorithm will leave at most one node isolated (with
Nk = {k} and Ek = ∅) at the conclusion of the Inner Loop for any W. In a graph that is not
complete or not connected, no node that is not isolated in G will be left isolated in the collec-
tion C(W) for W sufficiently large. (To permit additional isolated nodes, a limit clim may be
imposed that prevents C(W) from including any edges e such that c(e) > clim.)

Remark 7: When there are tied (duplicate) cost values c(e), all orderings of e(1) to e(|E|) sat-
isfying c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)) will produce the same collection of clusters C(W) in
the following sense: For a given value of W, all orderings will produce the same node sets Nk
defining C(W), and the sum of costs over the edge sets Ek will also be the same, though the
edges within these sets may differ.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

139

4. Fundamental relationships for accelerating the algorithm

A number of key relationships hold for the C(W) Algorithm that make it possible to accelerate its
execution. We discuss the relationships here in broad outline and then incorporate them in Section 7
within a template for a computer code that applies not only to C(W) but to additional related
types of cluster collections C(Y) and C(Z) whose algorithms are described in Sections 5 and 6.

4.1. Early termination of the inner loop

The Inner Loop can typically terminate far in advance of satisfying the condition s = sLast for
sLast = |E|, hence making it unnecessary to examine all edges of the graph.

First note that the process of examining the edges in ascending cost order implies that once
c(e(s)) > W + MinCost(k) for a given k = ko∈ K, then the inequality c(e(v)) > W + MinCost(ko)
will also hold for all subsequent edges e(v) for v > s. Hence, by Case (2) of the algorithm, no
nodes or edges will be adjoined to the cluster sets Nko and Eko for v > s. In addition, it will be
unnecessary to update Wnext by reference to ko in the future.

It may further be observed that the MinCost(k) values are generated in a sequence that makes
it possible to readily identify (without sorting) the values k(1), k(2), …, k(m), so that Min
Cost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)). It is convenient to define m so that these
values refer just to those k ∈ K such that MinCost(k) < Large. (Recall that MinCost(k) = Large
implies that Nk consists of a single node k, and Ek = ∅.)

Thus if c(e(s)) > W + MinCost(k(m)), we know that none of the clusters indexed from k(1) to
k(m) can take part in the creation of new clusters. Alternatively, if we start by checking whether
c(e(s)) > W + MinCost(k(h)) holds for h = 1 and work forward until finding the first index k(h*)
for which the inequality does not hold, then on future encounters with Case (2) it is possible
to start from k(h*) rather than k(1) to begin checking whether c(e(s)) > W + MinCost(k(h)).

In consideration of these relationships, it should be kept in mind that when two clusters k′
and k″ are joined, then MinCost(k″) will no longer be referenced (since the cluster k″ will no
longer exist). To see the consequences of this, suppose that k′ and k″ are interchanged, if nec-
essary, so that MinCost(k′) ≤ MinCost(k″). Then when Nk″ is absorbed into Nk′, the following
two possibilities arise:

i. MinCost(k′) < Large (hence MinCost(k′) identifies the cost of an edge previously added)
and MinCost(k′) will be unchanged;

ii. MinCost(k′) = Large, and the new MinCost(k′) will be the value c(e(s)) of the edge e(s)
currently added.

This implies that in the sequence MinCost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)),
the value MinCost(k″) will drop out, and the value MinCost(k′) will either be unchanged
and retain its position, or else it will change from a Large value to become the new value
MinCost(k(m)) at the end of the ordered list.

However, applying this knowledge to shortcut the checks performed in Case (2) does not
make it possible to save appreciable computation, since the amount of effort to perform the

Recent Applications in Data Clustering140

checks of Case (2) is not great in any case. Instead, we can make use of the foregoing relation-
ships in a simpler manner without having to keep track of the values k(1), k(2), …, k(m).

To accomplish this, we record the number of elements nk in each node set Nk by initializing all
nk = 1, and then setting nk′: = nk′ + nk″ when Nk″ is absorbed into Nk′ in Case (3). We also record
the number of times t(i) each node i is encountered as a node i′ = p(s) or i″ = q(s) by initial-
izing t(i) = 0 for all i, and then setting t(i′): = t(i′) + 1 and t(i″): = t(i″) + 1 when the edge e(s) is
examined in the prelude to Case (1)of the algorithm (and also for i′ and i″ in the Initialization).
Note that t(i) is bounded by tMax(i) which is the number of nodes adjacent to i in the graph G
(where tMax(i) = n – 1 if G is complete).

We are interested in determining when t(i) = tMax(i) for an isolated node. We can conve-
niently identify the condition of being isolated by i = L(i). In conjunction with the preceding
records, this makes it possible to keep track of the number nTrack of nodes that cannot take
part in any further steps of adding an edge to C(W), and hence permitting the inner loop to
terminate when nTrack = n.

Specifically, by initializing nTrack = 0, the first time c(e(s)) > W + MinCost(k)occurs for a given
k = k′ or k″ in Case (2), we set nTrack: = nTrack + nk. (To identify this first occurrence, initialize
FirstTime(k) = True, and then set FirstTime(k) = False at the point of setting nTrack: = nTrack
+ nk.) We also set nTrack: = nTrack + 1 whenever t(i) is incremented for i = i′ and i″ in the pre-
lude to Cases (1) to (3) to yield t(i) = tMax(i) under the condition that i = L(i). By checking for
nTrack = n at each point where nTrack changes its value, we can then terminate the inner loop
when this condition occurs.

Having performed the foregoing operations to terminate early for W = Wo, we may take
advantage of another useful relationship to terminate early for all W > Wo. In particular, let
sEnd(W) equal the value of s for the final edge e(s) added to C(W) for a given W. Then for
values W′ and W″ such that W″ > W′, we are assured that sEnd(W″) ≤ sEnd(W′). Consequently,
we can exploit this fact by introducing a variable sEnd which is set to sEnd = s at the conclu-
sion of Case (3), which will cause sEnd to be the index s of the final edge added in construct-
ing the current C(W). Then it is only necessary to set sLast = sEnd after the termination of the
Inner Loop, thus overriding the initialization sLast = |E| to permit the next execution of the
Inner Loop to terminate earlier. We can also allow the final execution of the Inner Loop to
terminate earlier by the fact that the spanning tree generated on this execution will have n − 1
edges, while all other constructions must have fewer than this number of edges.

4.2. Advanced starting for successive W values

We can also accelerate the computation of the algorithm by saving information to produce an
advanced start on successive executions of the Inner Loop. The underlying relationships are
as follows.

Let s2(1), s2(2), …, s2(v2) denote the s indexes starting with s2(1) = 1 (when Wnext = Large)
where the values s2(v) for v > 1 identify successive edges e(s) for which a new (smaller)
value of Wnext is identified in Case (2). Also, starting with W(1) = Large, let W(1), W(2), …,
W(v″) denote the corresponding values for Wnext identified at these points (hence, for v2 > 1,
W(1) > W(2) > … > W(v2)). Similarly, let s3(1), s3(2), …, s3(v3) denote the s indexes starting with

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

141

4. Fundamental relationships for accelerating the algorithm

A number of key relationships hold for the C(W) Algorithm that make it possible to accelerate its
execution. We discuss the relationships here in broad outline and then incorporate them in Section 7
within a template for a computer code that applies not only to C(W) but to additional related
types of cluster collections C(Y) and C(Z) whose algorithms are described in Sections 5 and 6.

4.1. Early termination of the inner loop

The Inner Loop can typically terminate far in advance of satisfying the condition s = sLast for
sLast = |E|, hence making it unnecessary to examine all edges of the graph.

First note that the process of examining the edges in ascending cost order implies that once
c(e(s)) > W + MinCost(k) for a given k = ko∈ K, then the inequality c(e(v)) > W + MinCost(ko)
will also hold for all subsequent edges e(v) for v > s. Hence, by Case (2) of the algorithm, no
nodes or edges will be adjoined to the cluster sets Nko and Eko for v > s. In addition, it will be
unnecessary to update Wnext by reference to ko in the future.

It may further be observed that the MinCost(k) values are generated in a sequence that makes
it possible to readily identify (without sorting) the values k(1), k(2), …, k(m), so that Min
Cost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)). It is convenient to define m so that these
values refer just to those k ∈ K such that MinCost(k) < Large. (Recall that MinCost(k) = Large
implies that Nk consists of a single node k, and Ek = ∅.)

Thus if c(e(s)) > W + MinCost(k(m)), we know that none of the clusters indexed from k(1) to
k(m) can take part in the creation of new clusters. Alternatively, if we start by checking whether
c(e(s)) > W + MinCost(k(h)) holds for h = 1 and work forward until finding the first index k(h*)
for which the inequality does not hold, then on future encounters with Case (2) it is possible
to start from k(h*) rather than k(1) to begin checking whether c(e(s)) > W + MinCost(k(h)).

In consideration of these relationships, it should be kept in mind that when two clusters k′
and k″ are joined, then MinCost(k″) will no longer be referenced (since the cluster k″ will no
longer exist). To see the consequences of this, suppose that k′ and k″ are interchanged, if nec-
essary, so that MinCost(k′) ≤ MinCost(k″). Then when Nk″ is absorbed into Nk′, the following
two possibilities arise:

i. MinCost(k′) < Large (hence MinCost(k′) identifies the cost of an edge previously added)
and MinCost(k′) will be unchanged;

ii. MinCost(k′) = Large, and the new MinCost(k′) will be the value c(e(s)) of the edge e(s)
currently added.

This implies that in the sequence MinCost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)),
the value MinCost(k″) will drop out, and the value MinCost(k′) will either be unchanged
and retain its position, or else it will change from a Large value to become the new value
MinCost(k(m)) at the end of the ordered list.

However, applying this knowledge to shortcut the checks performed in Case (2) does not
make it possible to save appreciable computation, since the amount of effort to perform the

Recent Applications in Data Clustering140

checks of Case (2) is not great in any case. Instead, we can make use of the foregoing relation-
ships in a simpler manner without having to keep track of the values k(1), k(2), …, k(m).

To accomplish this, we record the number of elements nk in each node set Nk by initializing all
nk = 1, and then setting nk′: = nk′ + nk″ when Nk″ is absorbed into Nk′ in Case (3). We also record
the number of times t(i) each node i is encountered as a node i′ = p(s) or i″ = q(s) by initial-
izing t(i) = 0 for all i, and then setting t(i′): = t(i′) + 1 and t(i″): = t(i″) + 1 when the edge e(s) is
examined in the prelude to Case (1)of the algorithm (and also for i′ and i″ in the Initialization).
Note that t(i) is bounded by tMax(i) which is the number of nodes adjacent to i in the graph G
(where tMax(i) = n – 1 if G is complete).

We are interested in determining when t(i) = tMax(i) for an isolated node. We can conve-
niently identify the condition of being isolated by i = L(i). In conjunction with the preceding
records, this makes it possible to keep track of the number nTrack of nodes that cannot take
part in any further steps of adding an edge to C(W), and hence permitting the inner loop to
terminate when nTrack = n.

Specifically, by initializing nTrack = 0, the first time c(e(s)) > W + MinCost(k)occurs for a given
k = k′ or k″ in Case (2), we set nTrack: = nTrack + nk. (To identify this first occurrence, initialize
FirstTime(k) = True, and then set FirstTime(k) = False at the point of setting nTrack: = nTrack
+ nk.) We also set nTrack: = nTrack + 1 whenever t(i) is incremented for i = i′ and i″ in the pre-
lude to Cases (1) to (3) to yield t(i) = tMax(i) under the condition that i = L(i). By checking for
nTrack = n at each point where nTrack changes its value, we can then terminate the inner loop
when this condition occurs.

Having performed the foregoing operations to terminate early for W = Wo, we may take
advantage of another useful relationship to terminate early for all W > Wo. In particular, let
sEnd(W) equal the value of s for the final edge e(s) added to C(W) for a given W. Then for
values W′ and W″ such that W″ > W′, we are assured that sEnd(W″) ≤ sEnd(W′). Consequently,
we can exploit this fact by introducing a variable sEnd which is set to sEnd = s at the conclu-
sion of Case (3), which will cause sEnd to be the index s of the final edge added in construct-
ing the current C(W). Then it is only necessary to set sLast = sEnd after the termination of the
Inner Loop, thus overriding the initialization sLast = |E| to permit the next execution of the
Inner Loop to terminate earlier. We can also allow the final execution of the Inner Loop to
terminate earlier by the fact that the spanning tree generated on this execution will have n − 1
edges, while all other constructions must have fewer than this number of edges.

4.2. Advanced starting for successive W values

We can also accelerate the computation of the algorithm by saving information to produce an
advanced start on successive executions of the Inner Loop. The underlying relationships are
as follows.

Let s2(1), s2(2), …, s2(v2) denote the s indexes starting with s2(1) = 1 (when Wnext = Large)
where the values s2(v) for v > 1 identify successive edges e(s) for which a new (smaller)
value of Wnext is identified in Case (2). Also, starting with W(1) = Large, let W(1), W(2), …,
W(v″) denote the corresponding values for Wnext identified at these points (hence, for v2 > 1,
W(1) > W(2) > … > W(v2)). Similarly, let s3(1), s3(2), …, s3(v3) denote the s indexes starting with

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

141

s3(1) = 1 where the values s3(v) for v > 1 identify successive edges e(s) that are added in Case
(3) of the Inner Loop(to generate the current cluster collection C(W)).

After completing the Inner Loop for W = Wo (while saving this information), upon assigning
W the value Wnext = W(v2), the fact that Wnext < W(v) for v < v2 implies that the algorithm
will perform exactly the same sequence of steps until reaching s = s2(v2), at which point the
edge e(s) for s = s2(v2), will be added to the construction (although this edge was not added on
the previous execution of the inner loop).

Consequently, all edges e(s3(v)) for s3(v) < s2(v2) will again be added to the current con-
struction, and the values s2(v) for v < v2 will also be unchanged. Hence, letting v* = Max(v:
s3(v) < s2(v2)) we can start the current construction by simply adding the edges e(s) for s = s3(1)
to s3(v*), followed by adding the edge e(s) for s = s2(v2) (whose index s2(v2) therefore becomes
recorded as the new index s3(v* + 1)). Then the customary Inner Loop for W > Wo can be
executed starting with s initialized by setting s = s2(v2) instead of s = 1. Subsequent executions
of the Inner Loop continue to save the same information, which is used again to create an
advanced start in the manner described.

By this means, we avoid examining all edges e(s) for s < s2(v2) that were not added to the pre-
vious construction. We also avoid having to re-do the checks to determine that the remaining
edges qualify to be added. Together this can amount to a considerable savings in computation.

A possibility arises to save additional computation by using more memory. Each time a new
candidate for Wnext is identified, in the process of identifying the indexes s2(1), s2(2), …,
s2(v2), we can save a current copy of the arrays Nk, Ek, MinCost(k) and K used by the algo-
rithm, avoiding the burden of excessive memory by overwriting the previous copy each time
a new one is made. Then the latest copy will be available at the point where the edge e(s) for
s = s2(v2) is added on the current execution of the loop, making it possible to recover the arrays
without having to regenerate them to resume the current loop.

However, it may not be possible to take advantage of a current copy of the saved arrays on
every iteration of the Inner Loop (unless previous copies are not overwritten when new ones
are made). After re-starting by recovering the arrays for s2(v2), if now a new Wnext value is
determined for s > s2(v2) (referring to the v2 of the previous execution) then we can proceed by
again making a copy of the arrays for the next execution of the loop. But if it no new value of
Wnext is found for s > s2(v2), then the previous value W(v2–1) (for s = s2(v2–1) will be the new
final Wnext value, and no copies of the arrays remain in memory for this value.

Consequently, in this latter case we resort to the construction that does not rely on the copied
arrays, generating the arrays instead in the process of adding edges. Thus, on the next execu-
tion of the inner loop we will again have the copies available. Hence in this fashion we will
be able to take advantage of the copied arrays at least on every second execution of the loop,
if not more frequently.

As previously noted, the foregoing relationships and their implications are embodied in a for-
mat suitable for creating a computer code in Section 7, after we first describe two additional
algorithmic variants that can be exploited by analogous relationships.

Recent Applications in Data Clustering142

5. Algorithm C(Y): a node-based algorithmic variant

It is possible to formulate a node-based variant of the C(W) algorithm which follows a closely
related format and is supported by a similar rationale.

In the node-based approach, we replace the parameter W by a parameter Y which is linked
to costs associated with nodes in Nk rather than to costs associated with edges in Ek. (More
precisely, the costs associated with nodes are also derived from edges—i.e., the edges that
meet these nodes—though these edges are different from those referenced in the C(W)
algorithm.)

Accompanying this parameter change, we replace the value MinCost(k) associated with the
sets indexed by k ∈ K with a value MinCostB(i) associated with the nodes i∈ N, and more
particularly, we replace MinCost(k′) for k′ = L(i′) by MinCostB(i′), and replace MinCost(k″) for
k″ = L(i″) by MinCostB(i″)).

This replacement changes the updating rule when Nk″ is absorbed into Nk′ in Case (3).
Specifically, the values MinCostB(i′) and MinCostB(i″)) are updated by setting MinCostB(i):
= Min(MinCostB(i),c(e(s)) for i = i′ and i″, in contrast to the update involving MinCost(k′) and
MinCost(k″) (which setsMinCost(k′): = Min(MinCost(k′),MinCost(k″), c(e(s))).

The reason for these changes is as follows. In the node-based version, to permit the edge e(s) = (i′, i″)
(= (p(s),q(s))) to be added and hence to join the subgraphs (Nk′, Ek′) and (Nk″, Ek″), we require
that c(e(s)) ≤ Y + MinCostB(i) for both i = i′ and i″. Hence we require c(e(s)) ≤ Y + MinCostB0, for
MinCostB0 = Min(MinCostB(i′), MinCostB(i″)). On the other hand, if c(e(s)) > Y + MinCostB0,
we are prevented from adding edge e(s), and by the preceding relationships this causes the first
part of Case (2) to retain exactly the same form as in the C(W) algorithm.

To update MinCostB(i′) and MinCostB(i″) in Case (3), we must account for the fact that each
of these two values is affected only by the cost of the edge e(s), and hence will either retain
its present value or become equal to c(e(s)), according to which is smaller. (It may be noted
that once node i for i = i′ or i″ has been assigned an edge cost c(e(s)), then MinCostB(i) will not
change thereafter, since any edge e(s) that is added later to meet node I will have a cost no less
than that of the earlier edge.)

Based on these observations, we can state the form of the C(Y) algorithm as follows.

C(Y) Algorithm (Node-Based Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Yo value for Y.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Y = Yoand sLast = |E|.

Begin Outer Loop

While Y < Large

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

143

s3(1) = 1 where the values s3(v) for v > 1 identify successive edges e(s) that are added in Case
(3) of the Inner Loop(to generate the current cluster collection C(W)).

After completing the Inner Loop for W = Wo (while saving this information), upon assigning
W the value Wnext = W(v2), the fact that Wnext < W(v) for v < v2 implies that the algorithm
will perform exactly the same sequence of steps until reaching s = s2(v2), at which point the
edge e(s) for s = s2(v2), will be added to the construction (although this edge was not added on
the previous execution of the inner loop).

Consequently, all edges e(s3(v)) for s3(v) < s2(v2) will again be added to the current con-
struction, and the values s2(v) for v < v2 will also be unchanged. Hence, letting v* = Max(v:
s3(v) < s2(v2)) we can start the current construction by simply adding the edges e(s) for s = s3(1)
to s3(v*), followed by adding the edge e(s) for s = s2(v2) (whose index s2(v2) therefore becomes
recorded as the new index s3(v* + 1)). Then the customary Inner Loop for W > Wo can be
executed starting with s initialized by setting s = s2(v2) instead of s = 1. Subsequent executions
of the Inner Loop continue to save the same information, which is used again to create an
advanced start in the manner described.

By this means, we avoid examining all edges e(s) for s < s2(v2) that were not added to the pre-
vious construction. We also avoid having to re-do the checks to determine that the remaining
edges qualify to be added. Together this can amount to a considerable savings in computation.

A possibility arises to save additional computation by using more memory. Each time a new
candidate for Wnext is identified, in the process of identifying the indexes s2(1), s2(2), …,
s2(v2), we can save a current copy of the arrays Nk, Ek, MinCost(k) and K used by the algo-
rithm, avoiding the burden of excessive memory by overwriting the previous copy each time
a new one is made. Then the latest copy will be available at the point where the edge e(s) for
s = s2(v2) is added on the current execution of the loop, making it possible to recover the arrays
without having to regenerate them to resume the current loop.

However, it may not be possible to take advantage of a current copy of the saved arrays on
every iteration of the Inner Loop (unless previous copies are not overwritten when new ones
are made). After re-starting by recovering the arrays for s2(v2), if now a new Wnext value is
determined for s > s2(v2) (referring to the v2 of the previous execution) then we can proceed by
again making a copy of the arrays for the next execution of the loop. But if it no new value of
Wnext is found for s > s2(v2), then the previous value W(v2–1) (for s = s2(v2–1) will be the new
final Wnext value, and no copies of the arrays remain in memory for this value.

Consequently, in this latter case we resort to the construction that does not rely on the copied
arrays, generating the arrays instead in the process of adding edges. Thus, on the next execu-
tion of the inner loop we will again have the copies available. Hence in this fashion we will
be able to take advantage of the copied arrays at least on every second execution of the loop,
if not more frequently.

As previously noted, the foregoing relationships and their implications are embodied in a for-
mat suitable for creating a computer code in Section 7, after we first describe two additional
algorithmic variants that can be exploited by analogous relationships.

Recent Applications in Data Clustering142

5. Algorithm C(Y): a node-based algorithmic variant

It is possible to formulate a node-based variant of the C(W) algorithm which follows a closely
related format and is supported by a similar rationale.

In the node-based approach, we replace the parameter W by a parameter Y which is linked
to costs associated with nodes in Nk rather than to costs associated with edges in Ek. (More
precisely, the costs associated with nodes are also derived from edges—i.e., the edges that
meet these nodes—though these edges are different from those referenced in the C(W)
algorithm.)

Accompanying this parameter change, we replace the value MinCost(k) associated with the
sets indexed by k ∈ K with a value MinCostB(i) associated with the nodes i∈ N, and more
particularly, we replace MinCost(k′) for k′ = L(i′) by MinCostB(i′), and replace MinCost(k″) for
k″ = L(i″) by MinCostB(i″)).

This replacement changes the updating rule when Nk″ is absorbed into Nk′ in Case (3).
Specifically, the values MinCostB(i′) and MinCostB(i″)) are updated by setting MinCostB(i):
= Min(MinCostB(i),c(e(s)) for i = i′ and i″, in contrast to the update involving MinCost(k′) and
MinCost(k″) (which setsMinCost(k′): = Min(MinCost(k′),MinCost(k″), c(e(s))).

The reason for these changes is as follows. In the node-based version, to permit the edge e(s) = (i′, i″)
(= (p(s),q(s))) to be added and hence to join the subgraphs (Nk′, Ek′) and (Nk″, Ek″), we require
that c(e(s)) ≤ Y + MinCostB(i) for both i = i′ and i″. Hence we require c(e(s)) ≤ Y + MinCostB0, for
MinCostB0 = Min(MinCostB(i′), MinCostB(i″)). On the other hand, if c(e(s)) > Y + MinCostB0,
we are prevented from adding edge e(s), and by the preceding relationships this causes the first
part of Case (2) to retain exactly the same form as in the C(W) algorithm.

To update MinCostB(i′) and MinCostB(i″) in Case (3), we must account for the fact that each
of these two values is affected only by the cost of the edge e(s), and hence will either retain
its present value or become equal to c(e(s)), according to which is smaller. (It may be noted
that once node i for i = i′ or i″ has been assigned an edge cost c(e(s)), then MinCostB(i) will not
change thereafter, since any edge e(s) that is added later to meet node I will have a cost no less
than that of the earlier edge.)

Based on these observations, we can state the form of the C(Y) algorithm as follows.

C(Y) Algorithm (Node-Based Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Yo value for Y.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Y = Yoand sLast = |E|.

Begin Outer Loop

While Y < Large

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

143

Initialization(A). Set Ynext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCostB(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)) by identifying k′ = L(i′)
and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with
edge set Ek′ = e(1). Set MinCostB(k′) = c(e(1)) and set K: = K \ {k″}. Finally, initialize the
edge index s by setting s = 1.

Begin Inner Loop

While s < sLast|

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″).

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
 iteration of the Inner Loop.

Case (2): If c(e(s)) > Y + MinCostB0, for MinCostB0 = Min(MinCostB(i′),
 MinCostB(i″)), then compute Ynext = Min(Ynext, c(e(s)) – MinCostB0) and
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create Nk′: = Nk′∪ Nk″
 with its associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″,
 and setMinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and i″. Finally, set K:
 = K \ {k″}.

Endwhile.

Y = Ynext.

Endwhile.

End of C(Y) Algorithm

The Remarks concerning the C(W) algorithm in Section 3 can be applied as well to the C(Y)
algorithm.

Now we show how to join the C(W) and C(Y) algorithms.

6. Algorithm C(Z): a combination of C(W) and C(Y)

Each of the C(W) and C(Y) algorithms has features lacking in the other. However, the C(Y)
algorithm has a potential deficiency, which resides in the fact that it is subject to “drift”—a
phenomenon where the costs of edges in an edge set Ek can grow along a chain, where each
new edge added to Ek has a higher cost than the previous one. Such an eventuality can arise
because the cost of an edge in a chain is limited only by the cost of the previous edge.

Recent Applications in Data Clustering144

It is possible to combat drift and also take advantage of the different features of the C(W) and
C(Y) algorithms by joining these algorithms to create an algorithm C(Z) that incorporates the
MinCost evaluation criteria of both C(W) and C(Y) simultaneously.

Let α be a nonnegative weight applied to the edge selection criterion of C(W) and let β = 1 – αbe
a nonnegative weight applied to the edge selection criterion of C(Y). We construct Algorithm
C(Z) so that it will be the same as C(W) if α = 1 and will be the same as C(Y) if α = 0 (β = 1).

For notational convenience, we refer to the value MinCost(k) of the C(W) algorithm as
MinCostA(k). Then the MinCost evaluation criterion of C(Z) is given by.

 MinCostC(i) = α∙MinCostA(k) + β∙MinCostB(i), for k = L(i).

To apply this criterion, we create values MinCostC(i′) and MinCostC(i″) for nodes i′ = p(s) and
i″ = q(s), and for k′ = L(i′) and k″ = L(i″), given by

 MinCostC (i ′)  = α ∙ MinCostA (k ′) + β ∙ MinCostB (i ′)

 MinCostC (i ″)  = α ∙ MinCostA (k ″) + β ∙ MinCostB (i ″)

Associated with the foregoing values, we define

 MinCostC0 = Min (MinCostC (i ′) , MinCostC (i ″))

We state the C(Z) algorithm by reference to these definitions.

C(Z) Algorithm.

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|

Begin Outer Loop

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ =
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″. Set.

K: = K \ {k″} and s = 1.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

145

Initialization(A). Set Ynext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCostB(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)) by identifying k′ = L(i′)
and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with
edge set Ek′ = e(1). Set MinCostB(k′) = c(e(1)) and set K: = K \ {k″}. Finally, initialize the
edge index s by setting s = 1.

Begin Inner Loop

While s < sLast|

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″).

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
 iteration of the Inner Loop.

Case (2): If c(e(s)) > Y + MinCostB0, for MinCostB0 = Min(MinCostB(i′),
 MinCostB(i″)), then compute Ynext = Min(Ynext, c(e(s)) – MinCostB0) and
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create Nk′: = Nk′∪ Nk″
 with its associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″,
 and setMinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and i″. Finally, set K:
 = K \ {k″}.

Endwhile.

Y = Ynext.

Endwhile.

End of C(Y) Algorithm

The Remarks concerning the C(W) algorithm in Section 3 can be applied as well to the C(Y)
algorithm.

Now we show how to join the C(W) and C(Y) algorithms.

6. Algorithm C(Z): a combination of C(W) and C(Y)

Each of the C(W) and C(Y) algorithms has features lacking in the other. However, the C(Y)
algorithm has a potential deficiency, which resides in the fact that it is subject to “drift”—a
phenomenon where the costs of edges in an edge set Ek can grow along a chain, where each
new edge added to Ek has a higher cost than the previous one. Such an eventuality can arise
because the cost of an edge in a chain is limited only by the cost of the previous edge.

Recent Applications in Data Clustering144

It is possible to combat drift and also take advantage of the different features of the C(W) and
C(Y) algorithms by joining these algorithms to create an algorithm C(Z) that incorporates the
MinCost evaluation criteria of both C(W) and C(Y) simultaneously.

Let α be a nonnegative weight applied to the edge selection criterion of C(W) and let β = 1 – αbe
a nonnegative weight applied to the edge selection criterion of C(Y). We construct Algorithm
C(Z) so that it will be the same as C(W) if α = 1 and will be the same as C(Y) if α = 0 (β = 1).

For notational convenience, we refer to the value MinCost(k) of the C(W) algorithm as
MinCostA(k). Then the MinCost evaluation criterion of C(Z) is given by.

 MinCostC(i) = α∙MinCostA(k) + β∙MinCostB(i), for k = L(i).

To apply this criterion, we create values MinCostC(i′) and MinCostC(i″) for nodes i′ = p(s) and
i″ = q(s), and for k′ = L(i′) and k″ = L(i″), given by

 MinCostC (i ′)  = α ∙ MinCostA (k ′) + β ∙ MinCostB (i ′)

 MinCostC (i ″)  = α ∙ MinCostA (k ″) + β ∙ MinCostB (i ″)

Associated with the foregoing values, we define

 MinCostC0 = Min (MinCostC (i ′) , MinCostC (i ″))

We state the C(Z) algorithm by reference to these definitions.

C(Z) Algorithm.

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|

Begin Outer Loop

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ =
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″. Set.

K: = K \ {k″} and s = 1.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

145

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0 (for MinCostC0 determined by the preceding
 definitions), then compute Znext = Min(Znext, c(e(s)) – MinCostC0) and
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create the larger clus
 ter Nk′: = Nk′∪ Nk″ with its associated edge set.

 Ek″: = Ek′∪ Ek″ ∪ {e(s)}.

Correspondingly, update L(i) by setting L(i) = k′ for all i∈ Nk″, and set MinCostA(k′):
= Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i),c(e(s))
for i = i′ and i″ (thus yielding MinCostC(i) by the definitions above).Finally, set K:
= K \ {k″}.

Endwhile

Z = Znext

Endwhile

End of C(Z) Algorithm

The next section shows how to carry out accelerated updates in the context of the preceding
algorithm.

7. Implementing accelerated updates for the C(Z) algorithm

We build on the relationships identified in Section 4 to apply them to the more general C(Z)
algorithm. By the implications described earlier, our general updates also apply directly to the
C(W) and C(Y) algorithms by respectively replacing Z with W and Y (hence Znext with Wnext
and Ynext) and replacing MinCostC(∙) by MinCost(∙) and MinCostB(∙).

7.1. Early termination for the C(Z) inner loop

Early termination for the Inner Loop of C(Z) is effected by creating an Initialization(C) imme-
diately following Initialization(B) (hence inheriting the assignments of Initialization(B)) and
modifying the Inner Loop as follows. We apply these changes for Z = Zo and thereafter take
advantage of setting sLast = sEnd as indicated below, in order to allow for the advanced
updating of C(Z) for successive Z values.

Recent Applications in Data Clustering146

Initialization(C) for Z = Zo:

Set nk = 1, k ∈ K \ {k′}, and nk′ = 2 (hence nk = |Nk|, k ∈ K); set t(i) = 0 for i∈ N \{i′, i″}and set
t(i′) = t(i″) = 1 (hence t(i) identifies the number of edges e(s) = (i,j) for all s currently examined
in the Inner Loop (and its initialization). Finally, set nTrack = 0 and set FirstTime(k) = True, k
∈ K (to identify the sets that have not been prevented from having an edge added to them).

Modification of Inner Loop for Z = Zo:

In the prelude to Case (1): Execute the following for i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1
and if (now) t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the
Inner Loop. (tMax(i) denotes the number of nodes adjacent to i in the graph G.)

Re-organize Case (2) to become as follows: Execute the following for k = k′ and k = k″: If
FirstTime(k) = True, then if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: =
nTrack + nk, compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n, termi-
nate the Inner Loop.After performing the preceding for both k′ and k″: If FirstTime(k) = False
for k = k′ or k = k″, then continue to the next iteration of the Inner Loop. (Note: Case (2) could
also be moved to precede Case (1).)

In Case (3) (when Nk″ is absorbed into Nk′): Set nk′: = nk′ + nk″.

Modifications for all Z values:

Set sEnd = s at the end of Case (3) and set sLast = sEnd immediately after the conclusion of the
Inner Loop (following Z = Znext).

For early termination of the last execution of the Inner Loop:

Set ne = 1 in Initialization(B). Then at the end of Case (3) set ne = ne + 1 and if ne = n – 1 terminate the
Inner Loop. (The Outer Loop will automatically terminate as well, by the condition Z = Large.)

Because of the special modifications for Z = Zo that do not apply for Z > Zo, it is convenient
to insert the portion of the algorithm for Z = Zo at the very beginning of the C(Z) Algorithm,
before the Outer Loop.

7.2. Advanced updating for successive Z values

We draw on the relationships of Section 4.2 to create the instructions for updating C(Z) to
reduce the amount of computation required on successive iterations of the Inner Loop.

We adopt the following notation of Section 4.2, re-expressed in terms of the C(Z) algorithm:
s2(1), s2(2), …, s2(v2)identifies the successive s indexes that occur each time a new (smaller) value
of Znext is identified in Case (2) of the Inner Loop, beginning with the initialized value s2(1) = 1.
Similarly, s3(1), s3(2), …, s3(v3)identifies the s indexes of successive edges e(s) that are added in
Case (3), beginning with the initialized value s3(1) = 1. (In the re-organized Case (2) for Z = Zo in
Section 7.1, the value Znext may be reduced twice for a given edge e(s) and we only consider the
last (smaller) Znext value produced for e(s).) The sequence Z(1), Z(2), …, Z(v2) with the initializa-
tion Z(1) = Large, denotes the corresponding candidate values for Znext generated in Case (2).
We therefore have Z(1) > Z(2) > … > Z(v2), where the final Znext is given by Znext = Z(v2).

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

147

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0 (for MinCostC0 determined by the preceding
 definitions), then compute Znext = Min(Znext, c(e(s)) – MinCostC0) and
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create the larger clus
 ter Nk′: = Nk′∪ Nk″ with its associated edge set.

 Ek″: = Ek′∪ Ek″ ∪ {e(s)}.

Correspondingly, update L(i) by setting L(i) = k′ for all i∈ Nk″, and set MinCostA(k′):
= Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i),c(e(s))
for i = i′ and i″ (thus yielding MinCostC(i) by the definitions above).Finally, set K:
= K \ {k″}.

Endwhile

Z = Znext

Endwhile

End of C(Z) Algorithm

The next section shows how to carry out accelerated updates in the context of the preceding
algorithm.

7. Implementing accelerated updates for the C(Z) algorithm

We build on the relationships identified in Section 4 to apply them to the more general C(Z)
algorithm. By the implications described earlier, our general updates also apply directly to the
C(W) and C(Y) algorithms by respectively replacing Z with W and Y (hence Znext with Wnext
and Ynext) and replacing MinCostC(∙) by MinCost(∙) and MinCostB(∙).

7.1. Early termination for the C(Z) inner loop

Early termination for the Inner Loop of C(Z) is effected by creating an Initialization(C) imme-
diately following Initialization(B) (hence inheriting the assignments of Initialization(B)) and
modifying the Inner Loop as follows. We apply these changes for Z = Zo and thereafter take
advantage of setting sLast = sEnd as indicated below, in order to allow for the advanced
updating of C(Z) for successive Z values.

Recent Applications in Data Clustering146

Initialization(C) for Z = Zo:

Set nk = 1, k ∈ K \ {k′}, and nk′ = 2 (hence nk = |Nk|, k ∈ K); set t(i) = 0 for i∈ N \{i′, i″}and set
t(i′) = t(i″) = 1 (hence t(i) identifies the number of edges e(s) = (i,j) for all s currently examined
in the Inner Loop (and its initialization). Finally, set nTrack = 0 and set FirstTime(k) = True, k
∈ K (to identify the sets that have not been prevented from having an edge added to them).

Modification of Inner Loop for Z = Zo:

In the prelude to Case (1): Execute the following for i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1
and if (now) t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the
Inner Loop. (tMax(i) denotes the number of nodes adjacent to i in the graph G.)

Re-organize Case (2) to become as follows: Execute the following for k = k′ and k = k″: If
FirstTime(k) = True, then if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: =
nTrack + nk, compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n, termi-
nate the Inner Loop.After performing the preceding for both k′ and k″: If FirstTime(k) = False
for k = k′ or k = k″, then continue to the next iteration of the Inner Loop. (Note: Case (2) could
also be moved to precede Case (1).)

In Case (3) (when Nk″ is absorbed into Nk′): Set nk′: = nk′ + nk″.

Modifications for all Z values:

Set sEnd = s at the end of Case (3) and set sLast = sEnd immediately after the conclusion of the
Inner Loop (following Z = Znext).

For early termination of the last execution of the Inner Loop:

Set ne = 1 in Initialization(B). Then at the end of Case (3) set ne = ne + 1 and if ne = n – 1 terminate the
Inner Loop. (The Outer Loop will automatically terminate as well, by the condition Z = Large.)

Because of the special modifications for Z = Zo that do not apply for Z > Zo, it is convenient
to insert the portion of the algorithm for Z = Zo at the very beginning of the C(Z) Algorithm,
before the Outer Loop.

7.2. Advanced updating for successive Z values

We draw on the relationships of Section 4.2 to create the instructions for updating C(Z) to
reduce the amount of computation required on successive iterations of the Inner Loop.

We adopt the following notation of Section 4.2, re-expressed in terms of the C(Z) algorithm:
s2(1), s2(2), …, s2(v2)identifies the successive s indexes that occur each time a new (smaller) value
of Znext is identified in Case (2) of the Inner Loop, beginning with the initialized value s2(1) = 1.
Similarly, s3(1), s3(2), …, s3(v3)identifies the s indexes of successive edges e(s) that are added in
Case (3), beginning with the initialized value s3(1) = 1. (In the re-organized Case (2) for Z = Zo in
Section 7.1, the value Znext may be reduced twice for a given edge e(s) and we only consider the
last (smaller) Znext value produced for e(s).) The sequence Z(1), Z(2), …, Z(v2) with the initializa-
tion Z(1) = Large, denotes the corresponding candidate values for Znext generated in Case (2).
We therefore have Z(1) > Z(2) > … > Z(v2), where the final Znext is given by Znext = Z(v2).

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

147

Assume the algorithm for Z = Zo has been inserted before the start of the Outer Loop, as
indicated in Section 7.1.

Modification of Initialization(B) for Z = Zo only:

Add v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large.

Modification of the Inner Loop for all Z:

In Case (2) when Znext is updated (reduced): set v2 = v2 + 1; s2(v2) = s, and Z(v2) = Znext.

In Case (3) upon adding e(s): set v3 = v3 + 1; s3(v3) = s.

Modification After the Inner Loop for all Z:

Following the instructions Z = Znext, and sLast = sEnd:If v2 = 1, terminate.

Modification Before the Inner Loop for Z > Zo:

Insert a Preliminary Loop before the Inner Loop for Z > Zo as follows:

(After Initialization(A) and Initialization(B))

Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Insert the prelude to Case (1) followed by Case (3) (excluding the modification above
 that adds v3 = v3 + 1; s3(v3) = s)

EndWhile2

Set s = s3(v3)

7.3. Modifications involving additional memory

Added Modification to Initialization for Z = Zo:

Copy = False (where Copy indicates whether a copy is made of the arrays indicated in the
modification below).

Added Modification of the Inner Loop for all Z:

Each time Case (2) yields a new value of Znext (after checking for both k′ and k″ for Z = Zo)
record a copy of ne, the set K and arrays Nk,Ek, MinCostA(k), k ∈K and the arrays L(i),

2As before, we adopt the convention whereby the loop is bypassed if v3 = 1 but will be executed on the iteration where
v: = v + 1 results in v = v3.

Recent Applications in Data Clustering148

MinCostB(i), MinCostC(i), i∈ N (writing over any previous copy). Let Copy = True if such a
copy is made. (As remarked earlier, it is not necessary to keep track of the Ek array.)

Added Modification for the Preliminary Loop

If Copy = False, execute the Preliminary Loop. Otherwise, if Copy = True, instead of executing
the Preliminary Loop read the copies of the saved arrays into the active form of these arrays,
followed by setting s = s2(v2) and Copy = False. (The Inner Loop immediately follows this
modification.)

The complete C(Z) Algorithm that incorporates all of these changes is shown in the Appendix
for convenience.

8. Conclusions

The new classes of tree-based clustering algorithms represented by C(W), C(Y) and in the most
general case by C(Z), afford the possibility to generate clusters with a range of different charac-
teristics as the parameters W, Y and Z are varied. The fact that the key parameter can be varied
adaptively to generate all cluster collections in its class without duplication invites empirical stud-
ies to identify parameter ranges that are effective for particular types of clustering applications.

The C(Z) Algorithm can be made still more general by changing the implicit definition of
MinCostC(i) for i = i′ and i″ by defining MinCostA(k), for k = k′ and k″, to be any convex
combination of the costs of edges in the set E(Nk) = {e = (i,j) ∈ Nk}⊂ E (hence (Nk,E(Nk)) is the
subgraph of G spanned by the nodes of Nk) and defining MinCostB(i) to be any convex combi-
nation of the edges of E(Nk) that are adjacent to node i in G. However, this requires updating
these MinCost values in a more complex way than in the current form of Case (3).

Future work to exploit the properties of these algorithms can include an investigation of the
choice of the parameter α (and hence β = 1 – α) in Algorithm C(Z) to similarly determine
ranges that are effective for particular types of clustering applications.

Acknowledgements

This research was supported in part by the Key Laboratory of International Education
Cooperation of Guangdong University of Technology and by the Fundamental Research
Funds for the Central Universities (No3102017zy059).

A. Appendix

A.1. Algorithm C(Z) with accelerated updates

We identify the form of the C(Z) algorithm that results by incorporating all of the accelerated
updates of Section 7. As before, the sets Ek do not need to be maintained unless they are of

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

149

Assume the algorithm for Z = Zo has been inserted before the start of the Outer Loop, as
indicated in Section 7.1.

Modification of Initialization(B) for Z = Zo only:

Add v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large.

Modification of the Inner Loop for all Z:

In Case (2) when Znext is updated (reduced): set v2 = v2 + 1; s2(v2) = s, and Z(v2) = Znext.

In Case (3) upon adding e(s): set v3 = v3 + 1; s3(v3) = s.

Modification After the Inner Loop for all Z:

Following the instructions Z = Znext, and sLast = sEnd:If v2 = 1, terminate.

Modification Before the Inner Loop for Z > Zo:

Insert a Preliminary Loop before the Inner Loop for Z > Zo as follows:

(After Initialization(A) and Initialization(B))

Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Insert the prelude to Case (1) followed by Case (3) (excluding the modification above
 that adds v3 = v3 + 1; s3(v3) = s)

EndWhile2

Set s = s3(v3)

7.3. Modifications involving additional memory

Added Modification to Initialization for Z = Zo:

Copy = False (where Copy indicates whether a copy is made of the arrays indicated in the
modification below).

Added Modification of the Inner Loop for all Z:

Each time Case (2) yields a new value of Znext (after checking for both k′ and k″ for Z = Zo)
record a copy of ne, the set K and arrays Nk,Ek, MinCostA(k), k ∈K and the arrays L(i),

2As before, we adopt the convention whereby the loop is bypassed if v3 = 1 but will be executed on the iteration where
v: = v + 1 results in v = v3.

Recent Applications in Data Clustering148

MinCostB(i), MinCostC(i), i∈ N (writing over any previous copy). Let Copy = True if such a
copy is made. (As remarked earlier, it is not necessary to keep track of the Ek array.)

Added Modification for the Preliminary Loop

If Copy = False, execute the Preliminary Loop. Otherwise, if Copy = True, instead of executing
the Preliminary Loop read the copies of the saved arrays into the active form of these arrays,
followed by setting s = s2(v2) and Copy = False. (The Inner Loop immediately follows this
modification.)

The complete C(Z) Algorithm that incorporates all of these changes is shown in the Appendix
for convenience.

8. Conclusions

The new classes of tree-based clustering algorithms represented by C(W), C(Y) and in the most
general case by C(Z), afford the possibility to generate clusters with a range of different charac-
teristics as the parameters W, Y and Z are varied. The fact that the key parameter can be varied
adaptively to generate all cluster collections in its class without duplication invites empirical stud-
ies to identify parameter ranges that are effective for particular types of clustering applications.

The C(Z) Algorithm can be made still more general by changing the implicit definition of
MinCostC(i) for i = i′ and i″ by defining MinCostA(k), for k = k′ and k″, to be any convex
combination of the costs of edges in the set E(Nk) = {e = (i,j) ∈ Nk}⊂ E (hence (Nk,E(Nk)) is the
subgraph of G spanned by the nodes of Nk) and defining MinCostB(i) to be any convex combi-
nation of the edges of E(Nk) that are adjacent to node i in G. However, this requires updating
these MinCost values in a more complex way than in the current form of Case (3).

Future work to exploit the properties of these algorithms can include an investigation of the
choice of the parameter α (and hence β = 1 – α) in Algorithm C(Z) to similarly determine
ranges that are effective for particular types of clustering applications.

Acknowledgements

This research was supported in part by the Key Laboratory of International Education
Cooperation of Guangdong University of Technology and by the Fundamental Research
Funds for the Central Universities (No3102017zy059).

A. Appendix

A.1. Algorithm C(Z) with accelerated updates

We identify the form of the C(Z) algorithm that results by incorporating all of the accelerated
updates of Section 7. As before, the sets Ek do not need to be maintained unless they are of

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

149

interest for experimental purposes. The case where added memory is used is identified in
Case (2) so that this memory need not be used if desired. (In that case, the variable Copy will
always remain False, as in Initialization(B).)

C(Z) Algorithm with Accelerated Updates

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|. Copy = False.

Execute Routine for Z = Zo (Given Below)

Begin Outer Loop for Z > Zo

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ =
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″ and set K: = K
\ {k″}. Then set ne = 1 and s = 1.

If (Copy = False) then.

Execute Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and k″
= L(i″).

Execute Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪ Nk″ with its
associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″, and set
MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): =
Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i) by the
definitions of Section 7). Set K: = K \ {k″} and sEnd = s. Set ne: = ne + 1 and if
ne = n – 1 terminate the C(Z) Algorithm.

EndWhile

Set s = s3(v3)

Else

Read the latest copy of ne and the arrays saved in Case (2) of the Inner Loop into the
active form of these arrays. Set s = s2(v2) and Copy = False.

Recent Applications in Data Clustering150

Endif

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and
k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0, then compute Znext = Min(Znext, c(e(s)) –
 MinCostC0), set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

 For added memory case:

 Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k),
 k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previous
 copy).

 Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪Nk″ with its associated edge set Ek″:
 = Ek′∪ Ek″ ∪{e(s)}. Set L(i) = k′ for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),
 MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and
 i″ (thus yielding MinCostC(i) by the definitions of Section 7). Set K: = K \ {k″}
 and sEnd = s.Set v3:= v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the
 Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 terminate the C(Z) Algorithm

Endwhile

End of C(Z) Algorithm

Routine for Z = Zo

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and.

k″ = L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with
edge set Ek′ = e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and
i″ and set K: = K \ {k″}. Set v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large. Set ne = 1
and s = 1.

Initialization(C): Set nk = 1, k ∈ K \ {k′}, and nk′ = 2; set t(i) = 0 for i∈ N \{i′, i″} and
set t(i′) = t(i″) = 1. Set nTrack = 0 and set FirstTime(k) = True, k ∈ K.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

151

interest for experimental purposes. The case where added memory is used is identified in
Case (2) so that this memory need not be used if desired. (In that case, the variable Copy will
always remain False, as in Initialization(B).)

C(Z) Algorithm with Accelerated Updates

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|. Copy = False.

Execute Routine for Z = Zo (Given Below)

Begin Outer Loop for Z > Zo

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ =
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″ and set K: = K
\ {k″}. Then set ne = 1 and s = 1.

If (Copy = False) then.

Execute Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and k″
= L(i″).

Execute Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪ Nk″ with its
associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″, and set
MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): =
Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i) by the
definitions of Section 7). Set K: = K \ {k″} and sEnd = s. Set ne: = ne + 1 and if
ne = n – 1 terminate the C(Z) Algorithm.

EndWhile

Set s = s3(v3)

Else

Read the latest copy of ne and the arrays saved in Case (2) of the Inner Loop into the
active form of these arrays. Set s = s2(v2) and Copy = False.

Recent Applications in Data Clustering150

Endif

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and
k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0, then compute Znext = Min(Znext, c(e(s)) –
 MinCostC0), set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

 For added memory case:

 Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k),
 k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previous
 copy).

 Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪Nk″ with its associated edge set Ek″:
 = Ek′∪ Ek″ ∪{e(s)}. Set L(i) = k′ for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),
 MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and
 i″ (thus yielding MinCostC(i) by the definitions of Section 7). Set K: = K \ {k″}
 and sEnd = s.Set v3:= v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the
 Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 terminate the C(Z) Algorithm

Endwhile

End of C(Z) Algorithm

Routine for Z = Zo

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and.

k″ = L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with
edge set Ek′ = e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and
i″ and set K: = K \ {k″}. Set v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large. Set ne = 1
and s = 1.

Initialization(C): Set nk = 1, k ∈ K \ {k′}, and nk′ = 2; set t(i) = 0 for i∈ N \{i′, i″} and
set t(i′) = t(i″) = 1. Set nTrack = 0 and set FirstTime(k) = True, k ∈ K.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

151

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″). For i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1 and if (now)
t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the
Inner Loop.

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
iteration of the Inner Loop.

Case (2): Execute the following for k = k′ and k = k″: If FirstTime(k) = True, then
if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: = nTrack + nk,
compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n,
terminate the Inner Loop. After performing the preceding for both k′ and k″: If
FirstTime(k) = False for k = k′ or k = k″ execute the following (and otherwise pro-
ceed to Case (3)): set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

For added memory case:

Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k),
k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previ-
ous copy).

Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ to create the larger cluster Nk′: = Nk′∪ Nk″ with its asso-
ciated edge set Ek″: = Ek′∪ Ek″ ∪{e(s)}. Correspondingly, update L(i) by setting L(i) = k′
for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s));
MinCostB(i): = Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i)
by the definitions of Section 7). Set K: = K \ {k″}, nk′: = nk′ + nk″, and sEnd = s. Set v3:=
v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 then

Terminate the C(Z) Algorithm

Else.

v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

Endif

End of Routine for Z = Zo

Recent Applications in Data Clustering152

Author details

Fred Glover1* and Yang Wang2

*Address all correspondence to: fredwglover@yahoo.com

1 School of Engineering and Science, University of Colorado, Boulder, CO, USA

2 School of Management, Northwestern Polytechnical University, Xian, China

References

[1] Anderberg MR. Cluster analysis for applications. In: Monographs and Textbooks on
Probability and Mathematical Statistics. New York: Academic Press, Inc.; 1973

[2] Stefik MJ. Machine learning: An artificial intelligence approach. R.S. Michalski,
J.G. Carbonell and T.M. Mitchell, (Tioga, Palo Alto, CA); 572 pages, $39.50. Artificial
Intelligence. 1985;25(2):236-238

[3] Michalski RS, Carbonell JG, Learning TMMM. An artificial intelligence approach.
Understanding the Nature of Learning. 1983;2:3-26

[4] Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G. Visually
driven analysis of movement data by progressive clustering. Information Visualization.
2008;7(3):225-239

[5] Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: From big data to
big impact. MIS Quarterly. 2012;36(4):1165-1188

[6] Xu Y, Olman V, Xu D. Minimum spanning trees for gene expression data clustering.
Genome Informatics. 2001;12:24-33

[7] Xu Y, Olman V, Xu D. Clustering gene expression data using a graph-theoretic approach:
An application of minimum spanning trees. Bioinformatics. 2002;18(4):536-545

[8] Jana PK, Naik A, editors. An efficient minimum spanning tree based clustering algo-
rithm. In: Proceedings of International Conference on Methods and MODELS in Com-
puter Science; 2009

[9] Grygorash O, Zhou Y, Jorgensen Z, editors. Minimum spanning tree based clustering
algorithms. In: IEEE International Conference on TOOLS with Artificial Intelligence;
2008

[10] Wang ZM, Soh YC, Song Q, Kang S. Adaptive spatial information-theoretic clustering
for image segmentation. Pattern Recognition. 2009;42(9):2029-2044

[11] Gower JC, Ross GJS. Minimum spanning trees and single linkage cluster analysis.
Journal of the Royal Statistical Society. 1969;18(1):54-64

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

153

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″). For i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1 and if (now)
t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the
Inner Loop.

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
iteration of the Inner Loop.

Case (2): Execute the following for k = k′ and k = k″: If FirstTime(k) = True, then
if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: = nTrack + nk,
compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n,
terminate the Inner Loop. After performing the preceding for both k′ and k″: If
FirstTime(k) = False for k = k′ or k = k″ execute the following (and otherwise pro-
ceed to Case (3)): set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

For added memory case:

Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k),
k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previ-
ous copy).

Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ to create the larger cluster Nk′: = Nk′∪ Nk″ with its asso-
ciated edge set Ek″: = Ek′∪ Ek″ ∪{e(s)}. Correspondingly, update L(i) by setting L(i) = k′
for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s));
MinCostB(i): = Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i)
by the definitions of Section 7). Set K: = K \ {k″}, nk′: = nk′ + nk″, and sEnd = s. Set v3:=
v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 then

Terminate the C(Z) Algorithm

Else.

v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

Endif

End of Routine for Z = Zo

Recent Applications in Data Clustering152

Author details

Fred Glover1* and Yang Wang2

*Address all correspondence to: fredwglover@yahoo.com

1 School of Engineering and Science, University of Colorado, Boulder, CO, USA

2 School of Management, Northwestern Polytechnical University, Xian, China

References

[1] Anderberg MR. Cluster analysis for applications. In: Monographs and Textbooks on
Probability and Mathematical Statistics. New York: Academic Press, Inc.; 1973

[2] Stefik MJ. Machine learning: An artificial intelligence approach. R.S. Michalski,
J.G. Carbonell and T.M. Mitchell, (Tioga, Palo Alto, CA); 572 pages, $39.50. Artificial
Intelligence. 1985;25(2):236-238

[3] Michalski RS, Carbonell JG, Learning TMMM. An artificial intelligence approach.
Understanding the Nature of Learning. 1983;2:3-26

[4] Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G. Visually
driven analysis of movement data by progressive clustering. Information Visualization.
2008;7(3):225-239

[5] Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: From big data to
big impact. MIS Quarterly. 2012;36(4):1165-1188

[6] Xu Y, Olman V, Xu D. Minimum spanning trees for gene expression data clustering.
Genome Informatics. 2001;12:24-33

[7] Xu Y, Olman V, Xu D. Clustering gene expression data using a graph-theoretic approach:
An application of minimum spanning trees. Bioinformatics. 2002;18(4):536-545

[8] Jana PK, Naik A, editors. An efficient minimum spanning tree based clustering algo-
rithm. In: Proceedings of International Conference on Methods and MODELS in Com-
puter Science; 2009

[9] Grygorash O, Zhou Y, Jorgensen Z, editors. Minimum spanning tree based clustering
algorithms. In: IEEE International Conference on TOOLS with Artificial Intelligence;
2008

[10] Wang ZM, Soh YC, Song Q, Kang S. Adaptive spatial information-theoretic clustering
for image segmentation. Pattern Recognition. 2009;42(9):2029-2044

[11] Gower JC, Ross GJS. Minimum spanning trees and single linkage cluster analysis.
Journal of the Royal Statistical Society. 1969;18(1):54-64

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

153

[12] Laszlo M, Mukherjee S. Minimum spanning tree partitioning algorithm for microag-
gregation. IEEE Transactions on Knowledge and Data Engineering. 2005;17(7):902-911

[13] Asano T, Bhattacharya B, Keil M, Yao F, editors. Clustering algorithms based on mini-
mum and maximum spanning trees. In: Symposium on Computational Geometry; 1988

[14] Päivinen N. Clustering with a minimum spanning tree of scale-free-like structure.
Pattern Recognition Letters. 2005;26(7):921-930

[15] Wang X, Wang X, Wilkes DM. A divide-and-conquer approach for minimum span-
ning tree-based clustering. IEEE Transactions on Knowledge and Data Engineering.
2009;21(7):945-958

Recent Applications in Data Clustering154

Chapter 9

Robust Spectral Clustering via Sparse Representation

Xiaodong Feng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76586

Provisional chapter

Robust Spectral Clustering via Sparse Representation

Xiaodong Feng

Additional information is available at the end of the chapter

Abstract

Clustering high-dimensional data has been a challenging problem in data mining and
machining learning. Spectral clustering via sparse representation has been proposed for
clustering high-dimensional data. A critical step in spectral clustering is to effectively
construct a weight matrix by assessing the proximity between each pair of objects. While
sparse representation proves its effectiveness for compressing high-dimensional signals,
existing spectral clustering algorithms based on sparse representation use those sparse
coefficients directly. We believe that the similarity measure exploiting more global infor-
mation from the coefficient vectors will provide more truthful similarity among data
objects. The intuition is that the sparse coefficient vectors corresponding to two similar
objects are similar and those of two dissimilar objects are also dissimilar. In particular, we
propose two approaches of weight matrix construction according to the similarity of the
sparse coefficient vectors. Experimental results on several real-world high-dimensional
data sets demonstrate that spectral clustering based on the proposed similarity matrices
outperforms existing spectral clustering algorithms via sparse representation.

Keywords: spectral clustering, high-dimensional data, weight matrix, sparse
representation

1. Introduction

As an important task in data mining cluster analysis aims at partitioning data objects into
several meaningful subsets, called clusters, such that data objects are similar to those in the
same cluster and dissimilar to those in different clusters. With advances in database technol-
ogy and real-world need of informed decisions, data sets to be analyzed are getting bigger—
with many more records and variables. Examples of high-dimensional data sets include docu-
ment data [1], user ratings data [2], multimedia data [3], financial time series data [4],
gene expression data [5] and so on. Due to the “curse of dimensionality” [6], clustering

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.76586

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[12] Laszlo M, Mukherjee S. Minimum spanning tree partitioning algorithm for microag-
gregation. IEEE Transactions on Knowledge and Data Engineering. 2005;17(7):902-911

[13] Asano T, Bhattacharya B, Keil M, Yao F, editors. Clustering algorithms based on mini-
mum and maximum spanning trees. In: Symposium on Computational Geometry; 1988

[14] Päivinen N. Clustering with a minimum spanning tree of scale-free-like structure.
Pattern Recognition Letters. 2005;26(7):921-930

[15] Wang X, Wang X, Wilkes DM. A divide-and-conquer approach for minimum span-
ning tree-based clustering. IEEE Transactions on Knowledge and Data Engineering.
2009;21(7):945-958

Recent Applications in Data Clustering154

Chapter 9

Robust Spectral Clustering via Sparse Representation

Xiaodong Feng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76586

Provisional chapter

Robust Spectral Clustering via Sparse Representation

Xiaodong Feng

Additional information is available at the end of the chapter

Abstract

Clustering high-dimensional data has been a challenging problem in data mining and
machining learning. Spectral clustering via sparse representation has been proposed for
clustering high-dimensional data. A critical step in spectral clustering is to effectively
construct a weight matrix by assessing the proximity between each pair of objects. While
sparse representation proves its effectiveness for compressing high-dimensional signals,
existing spectral clustering algorithms based on sparse representation use those sparse
coefficients directly. We believe that the similarity measure exploiting more global infor-
mation from the coefficient vectors will provide more truthful similarity among data
objects. The intuition is that the sparse coefficient vectors corresponding to two similar
objects are similar and those of two dissimilar objects are also dissimilar. In particular, we
propose two approaches of weight matrix construction according to the similarity of the
sparse coefficient vectors. Experimental results on several real-world high-dimensional
data sets demonstrate that spectral clustering based on the proposed similarity matrices
outperforms existing spectral clustering algorithms via sparse representation.

Keywords: spectral clustering, high-dimensional data, weight matrix, sparse
representation

1. Introduction

As an important task in data mining cluster analysis aims at partitioning data objects into
several meaningful subsets, called clusters, such that data objects are similar to those in the
same cluster and dissimilar to those in different clusters. With advances in database technol-
ogy and real-world need of informed decisions, data sets to be analyzed are getting bigger—
with many more records and variables. Examples of high-dimensional data sets include docu-
ment data [1], user ratings data [2], multimedia data [3], financial time series data [4],
gene expression data [5] and so on. Due to the “curse of dimensionality” [6], clustering

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.76586

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

high-dimensional data has been a challenging task and therefore, attracts much research in
data mining and related research domains [7].

Many of the existing high-dimensional clustering approaches can be categorized into the
following three types: dimension reduction [8], subspace clustering [9] and spectral clustering
[10–12]. The first two types transform the original feature space to a lower-dimensional space
and then apply an ordinary clustering algorithm (such as K-means). The focus is on how to
extract more important features of data objects and avoid noises from the less important
dimensions. Spectral clustering is based on the spectral graph model, which searches for
clusters in the full feature space and is equivalent to graph min-cut problem based on a graph
structure constructed from the original objects in vector space [12]. Spectral clustering is also
considered superior to traditional clustering algorithms due to its deterministic and polyno-
mial time solution. All these characteristics make spectral clustering suitable for high-
dimensional data clustering [10].

The effectiveness of spectral clustering depends on the weights between each pair of data
objects. Thus, it is vital to construct a weight matrix that faithfully reflects the similarity
information among objects. Traditional simple weight construction, such as ε-ball neighbor-
hood, k-nearest neighbors, inverse Euclidean distance [13, 14] and Gaussian radial basis
function (RBF) [12], is based on the Euclidean distance in the original space, thus not suitable
for high-dimensional data.

In this chapter, we focus on effective weight construction for spectral clustering, based on
sparse representation theory. Sparse representation aims for representing each object approxi-
mately by a sparse linear combination of other objects, which comes from the theory of
compressed sensing [15]. Coefficients of the sparse linear combination represent the closeness
of each object to other objects. Traditional spectral clustering methods based on sparse repre-
sentation [16] use these sparse coefficients directly to build the weight matrix, thus only local
information is utilized. However, exploiting more global information of the whole coefficient
vectors promises better performance, followed by an assumption that the sparse representation
vectors corresponding to two similar objects should be similar, since they can be reconstructed
in a similar fashion using other data objects. If two objects are contributing in a similar manner
to the reconstruction of all other objects in the same data set, they are considered similar.

Therefore, this chapter presents a spectral clustering approach of high-dimensional data
exploiting global information from sparse representation solution. More specifically, using
sparse representation, we firstly convert each high-dimensional data object into a vector of
sparse coefficients. Then, the proximity of two data objects is assessed according to the simi-
larity between their sparse coefficient vectors. This construction considers the complete infor-
mation of the solution coefficient vectors of two objects to analyze the similarity between these
two objects rather than directly using a particular single sparse coefficient, which only con-
siders local information. In particular, we propose two different weight matrix construction
approaches: one of which is based on consistent sign set (CSS) and the other is based on the
cosine similarity (COS) between the two vectors. Extensive experimental results on several
image data sets show that similarly exploiting the global information from the solutions of
sparse representation works better than using local information of the solutions under a
variety of clustering performance metrics.

Recent Applications in Data Clustering156

2. Related work

2.1. Techniques for high-dimensional data

There are many techniques for dealing with high-dimensional signals (or data), popular of
which include non-negative matrix factorization (NMF), manifold learning, compressed sens-
ing and some combinations between them.

Non-negative matrix factorization (NMF) is a powerful dimensionality reduction technique
and has been widely applied to image processing and pattern recognition applications [17], by
approximating a non-negative matrix X by the product of two non-negative low-rank factor
matrices W and H. It has attracted much attention since it was first proposed by Paatero and
Tapper [18] and has already been proven to be equivalent in terms of optimization process
with K-means and spectral clustering under some constraints [19]. The research about NMF
can be generally categorized into the following groups. The first group is focused on the
distance measures between the original matrix and the approximate matrix, including
Kullback–Leibler divergence (KLNMF) [17], Euclidean distance (EucNMF) [20], earth mover’s
distance metric [21] and Manhattan distance-based NMF (MahNMF) [22]. Besides, there are
researches about how to solve the optimization of NMF efficiently and the scalability of NMF
algorithms for large-scale data sets, for example, fast Netwon-type methods (FNMA) [23],
online NMF with robust stochastic approximation (OR-NMF) [24] and large-scale graph-
regularized NMF [25]. Moreover, how to improve the performance of NMF using some
constrains or exploiting more information of data is also popular, such as sparseness
constrained NMF (NMFsc) [26], convex model for NMF using l1,∞ regularization [27], discrim-
inant NMF (DNMF) [28], graph-regularized NMF (GNMF) [29], manifold regularized discrim-
inative NMF (MD-NMF) [30] and constrained NMF (CNMF) [31] incorporating the label
information.

Manifold learning is another theory to process high-dimensional data, assuming that the data
distribution is supported on a low-dimensional sub-manifold [32]. The key idea of manifold
learning is that the locality structure of high-dimensional data should be preserved in low-
dimensional space after dimension reduction, which is exploited as a regularization term [33–35]
or constraint [36, 37] to be added to the original problem. It has been widely used to machine
learning and computer vision, such as image classification [38], semi-supervised multiview
distance metric learning [39], human action recognition [40], complex object correspondence
construction [41] and so on.

Besides the abovementioned two approaches for high-dimensional data, in recent years, sparse
representation coming from compressed sensing has also attracted a great deal of attention
and proves to be an extremely powerful tool for acquiring, representing and compressing
high-dimensional data. The following section will briefly review of sparse representation.

2.2. Brief review of sparse representation

Given a sufficient high-dimensional training data set, X = [x1, x2,…, xn] ∈ Rm � n, where xi = [xi1,
xi2,…, xim]T ∈ Rm is the column vector of the i-th object. Research on manifold learning [32] has

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

157

high-dimensional data has been a challenging task and therefore, attracts much research in
data mining and related research domains [7].

Many of the existing high-dimensional clustering approaches can be categorized into the
following three types: dimension reduction [8], subspace clustering [9] and spectral clustering
[10–12]. The first two types transform the original feature space to a lower-dimensional space
and then apply an ordinary clustering algorithm (such as K-means). The focus is on how to
extract more important features of data objects and avoid noises from the less important
dimensions. Spectral clustering is based on the spectral graph model, which searches for
clusters in the full feature space and is equivalent to graph min-cut problem based on a graph
structure constructed from the original objects in vector space [12]. Spectral clustering is also
considered superior to traditional clustering algorithms due to its deterministic and polyno-
mial time solution. All these characteristics make spectral clustering suitable for high-
dimensional data clustering [10].

The effectiveness of spectral clustering depends on the weights between each pair of data
objects. Thus, it is vital to construct a weight matrix that faithfully reflects the similarity
information among objects. Traditional simple weight construction, such as ε-ball neighbor-
hood, k-nearest neighbors, inverse Euclidean distance [13, 14] and Gaussian radial basis
function (RBF) [12], is based on the Euclidean distance in the original space, thus not suitable
for high-dimensional data.

In this chapter, we focus on effective weight construction for spectral clustering, based on
sparse representation theory. Sparse representation aims for representing each object approxi-
mately by a sparse linear combination of other objects, which comes from the theory of
compressed sensing [15]. Coefficients of the sparse linear combination represent the closeness
of each object to other objects. Traditional spectral clustering methods based on sparse repre-
sentation [16] use these sparse coefficients directly to build the weight matrix, thus only local
information is utilized. However, exploiting more global information of the whole coefficient
vectors promises better performance, followed by an assumption that the sparse representation
vectors corresponding to two similar objects should be similar, since they can be reconstructed
in a similar fashion using other data objects. If two objects are contributing in a similar manner
to the reconstruction of all other objects in the same data set, they are considered similar.

Therefore, this chapter presents a spectral clustering approach of high-dimensional data
exploiting global information from sparse representation solution. More specifically, using
sparse representation, we firstly convert each high-dimensional data object into a vector of
sparse coefficients. Then, the proximity of two data objects is assessed according to the simi-
larity between their sparse coefficient vectors. This construction considers the complete infor-
mation of the solution coefficient vectors of two objects to analyze the similarity between these
two objects rather than directly using a particular single sparse coefficient, which only con-
siders local information. In particular, we propose two different weight matrix construction
approaches: one of which is based on consistent sign set (CSS) and the other is based on the
cosine similarity (COS) between the two vectors. Extensive experimental results on several
image data sets show that similarly exploiting the global information from the solutions of
sparse representation works better than using local information of the solutions under a
variety of clustering performance metrics.

Recent Applications in Data Clustering156

2. Related work

2.1. Techniques for high-dimensional data

There are many techniques for dealing with high-dimensional signals (or data), popular of
which include non-negative matrix factorization (NMF), manifold learning, compressed sens-
ing and some combinations between them.

Non-negative matrix factorization (NMF) is a powerful dimensionality reduction technique
and has been widely applied to image processing and pattern recognition applications [17], by
approximating a non-negative matrix X by the product of two non-negative low-rank factor
matrices W and H. It has attracted much attention since it was first proposed by Paatero and
Tapper [18] and has already been proven to be equivalent in terms of optimization process
with K-means and spectral clustering under some constraints [19]. The research about NMF
can be generally categorized into the following groups. The first group is focused on the
distance measures between the original matrix and the approximate matrix, including
Kullback–Leibler divergence (KLNMF) [17], Euclidean distance (EucNMF) [20], earth mover’s
distance metric [21] and Manhattan distance-based NMF (MahNMF) [22]. Besides, there are
researches about how to solve the optimization of NMF efficiently and the scalability of NMF
algorithms for large-scale data sets, for example, fast Netwon-type methods (FNMA) [23],
online NMF with robust stochastic approximation (OR-NMF) [24] and large-scale graph-
regularized NMF [25]. Moreover, how to improve the performance of NMF using some
constrains or exploiting more information of data is also popular, such as sparseness
constrained NMF (NMFsc) [26], convex model for NMF using l1,∞ regularization [27], discrim-
inant NMF (DNMF) [28], graph-regularized NMF (GNMF) [29], manifold regularized discrim-
inative NMF (MD-NMF) [30] and constrained NMF (CNMF) [31] incorporating the label
information.

Manifold learning is another theory to process high-dimensional data, assuming that the data
distribution is supported on a low-dimensional sub-manifold [32]. The key idea of manifold
learning is that the locality structure of high-dimensional data should be preserved in low-
dimensional space after dimension reduction, which is exploited as a regularization term [33–35]
or constraint [36, 37] to be added to the original problem. It has been widely used to machine
learning and computer vision, such as image classification [38], semi-supervised multiview
distance metric learning [39], human action recognition [40], complex object correspondence
construction [41] and so on.

Besides the abovementioned two approaches for high-dimensional data, in recent years, sparse
representation coming from compressed sensing has also attracted a great deal of attention
and proves to be an extremely powerful tool for acquiring, representing and compressing
high-dimensional data. The following section will briefly review of sparse representation.

2.2. Brief review of sparse representation

Given a sufficient high-dimensional training data set, X = [x1, x2,…, xn] ∈ Rm � n, where xi = [xi1,
xi2,…, xim]T ∈ Rm is the column vector of the i-th object. Research on manifold learning [32] has

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

157

proved that any new test data y lie on a lower dimensional manifold, which can be approxi-
mately represented by a linear combination of the training objects:

y ¼ α1x1 þ⋯þ αixi þ⋯þ αnxn ¼ Xα∈Rm: (1)

Obviously, if m ≫ n, Eq. (1) is overdetermined, and α can usually be found as its unique
solution. Typically, the number of attributes is much less than that of training objects (i.e.
m ≪ n) and Eq. (1) is undetermined, so its solution is not unique.

However, if we add the constraint that the best solution of Eq. (1) should be as sparse as
possible, which means that the number of non-zero elements is minimized, the solution
becomes unique. Such a sparse representation can be obtained by solving the optimization
problem:

α∗¼ arg min
α

αk k0 subject to y ¼ Xα, (2)

where ||. ||0 denotes the l0-norm of a vector, counting the number of non-zero entries in the
vector. Donoho [42] proves that if matrix X satisfies restricted isometry property (RIP) [43],
Eq. (2) has a unique solution of α.

However, it is NP-hard to find the sparsest solution of an underdetermined equation: that is,
there is no known approach to find the sparsest solution that is significantly more efficient
than exhausting all subsets of the entries for α. Researchers in emerging theory of compressed
sensing [44] reveal that the non-convex optimization in (2) is equal to the following convex l1
optimization problem if the solution α is sparse enough:

α∗¼ arg min
α

αk k1 subject to y ¼ Xα, (3)

where ||. ||1 denotes the l1-norm of a vector, summing the absolute value of each entry in the
vector. This problem can be solved in polynomial time by standard linear programming
methods [45].

Since the real data contains noise, it may not be possible to express the test sample exactly as a
sparse representation of the training data. The sparse solution α can still be approximately
obtained by solving the following stable l1 optimization problem:

α∗¼ arg min
α

αk k1 subject to y� Xαk k2 ≤ ε, (4)

where ε is the maximum residual error; ||. ||2 denotes the l2-norm of a vector.

In many situations, we do not know the noise level ε beforehand. Then we can use the Lasso
(least absolute shrinkage and selection operator) [46] optimization algorithm to recover the
sparse solution from the following l1 optimization:

α∗¼ arg min
α

λ αk k1 þ y� Xαk k2, (5)

Recent Applications in Data Clustering158

where λ is a scalar regularization parameter of the Lasso penalty, which directly determines
how sparse α will be and balances the trade-off between reconstruction error and sparsity.

In addition to Lasso, other sparse learning models are also developed. It will be the elastic net
model [47] if the l2-norm of α is also added to Eq. (5) as another penalty term. Double shrinking
algorithm (DSA) [48] compresses image data on both dimensionality and cardinality via
building either sparse low-dimensional representations or a sparse projection matrix for
dimension reduction. Go decomposition (GoDec) [49] tried to efficiently and robustly decom-
pose a matrix with the low-rank part L and the sparse part S. Locality structure of manifold
can also be combined with sparse representation, such as manifold elastic net (MEN) [50] and
graph-regularized sparse coding (GraphSC) [51], laplacian sparse coding (LSc) [35] and
Hypergraph laplacian sparse coding (HLSc) [35].

Learning tasks such as classification and clustering usually perform better and cost less (time
and space) on compressed representations than on the original data [48]. Therefore, supervised
learning and pattern recognition based on the sparse representation coefficients using these
sparse learning models are proposed, such as sparse representation-based classification (SRC)
[52], Local_SRC [53], Kernel_SRC [54] and the methods outperform traditional classifier, such
as SVM, nearest neighbor (NN) and nearest subspace (NS).

2.3. Sparse representation for clustering

Inspired by the successful application of sparse representation in the above-supervised learn-
ing approaches, researchers have also exploited sparse representation in unsupervised [55–57]
and semi-supervised clustering [58, 59]. The main idea of clustering via sparse representation
is to build weight matrix directly from normalized and symmetrized coefficients of sparse
representation coefficients, called sparsity-induced similarity (SIS) measure [59]. To a certain
extent, weight measure approaches derived from sparse representation can reveal the neigh-
borhood structure without calculating Euclidean distance, which means a great potential to
clustering high-dimensional data.

Some significant work applying SIS to spectral clustering is reviewed as follows. Sparse
subspace clustering [55] directly uses the sparse representation of vectors lying in a single
low-dimensional linear subspace to cluster the data into separate subspaces, followed by
applying spectral clustering. It is also extended to clustering data contaminated by noise,
missing entries or outliers. Experiments show that its performance for clustering motion
trajectories outperforms state-of-the-art methods, such as power factorization and principal
component analysis. Image clustering via sparse representation [56] characterizes the graph
adjacency structure and graph weights by sparse linear coefficients, which is more effective
than Gaussian RBF [12] to cluster an image data set. In semi-supervised learning by sparse
representation [18], the graph adjacency structure as well as the graph weights of the directed
graph construction is derived simultaneously and in a parameter-free manner to utilize both
labeled and unlabeled data. Experiments on semi-supervised face recognition and image
classification demonstrate the superiority over the counterparts based on traditional graphs
(e.g. ε-ball neighborhood, k-nearest neighbors). Compared to approaches using SIS of real

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

159

proved that any new test data y lie on a lower dimensional manifold, which can be approxi-
mately represented by a linear combination of the training objects:

y ¼ α1x1 þ⋯þ αixi þ⋯þ αnxn ¼ Xα∈Rm: (1)

Obviously, if m ≫ n, Eq. (1) is overdetermined, and α can usually be found as its unique
solution. Typically, the number of attributes is much less than that of training objects (i.e.
m ≪ n) and Eq. (1) is undetermined, so its solution is not unique.

However, if we add the constraint that the best solution of Eq. (1) should be as sparse as
possible, which means that the number of non-zero elements is minimized, the solution
becomes unique. Such a sparse representation can be obtained by solving the optimization
problem:

α∗¼ arg min
α

αk k0 subject to y ¼ Xα, (2)

where ||. ||0 denotes the l0-norm of a vector, counting the number of non-zero entries in the
vector. Donoho [42] proves that if matrix X satisfies restricted isometry property (RIP) [43],
Eq. (2) has a unique solution of α.

However, it is NP-hard to find the sparsest solution of an underdetermined equation: that is,
there is no known approach to find the sparsest solution that is significantly more efficient
than exhausting all subsets of the entries for α. Researchers in emerging theory of compressed
sensing [44] reveal that the non-convex optimization in (2) is equal to the following convex l1
optimization problem if the solution α is sparse enough:

α∗¼ arg min
α

αk k1 subject to y ¼ Xα, (3)

where ||. ||1 denotes the l1-norm of a vector, summing the absolute value of each entry in the
vector. This problem can be solved in polynomial time by standard linear programming
methods [45].

Since the real data contains noise, it may not be possible to express the test sample exactly as a
sparse representation of the training data. The sparse solution α can still be approximately
obtained by solving the following stable l1 optimization problem:

α∗¼ arg min
α

αk k1 subject to y� Xαk k2 ≤ ε, (4)

where ε is the maximum residual error; ||. ||2 denotes the l2-norm of a vector.

In many situations, we do not know the noise level ε beforehand. Then we can use the Lasso
(least absolute shrinkage and selection operator) [46] optimization algorithm to recover the
sparse solution from the following l1 optimization:

α∗¼ arg min
α

λ αk k1 þ y� Xαk k2, (5)

Recent Applications in Data Clustering158

where λ is a scalar regularization parameter of the Lasso penalty, which directly determines
how sparse α will be and balances the trade-off between reconstruction error and sparsity.

In addition to Lasso, other sparse learning models are also developed. It will be the elastic net
model [47] if the l2-norm of α is also added to Eq. (5) as another penalty term. Double shrinking
algorithm (DSA) [48] compresses image data on both dimensionality and cardinality via
building either sparse low-dimensional representations or a sparse projection matrix for
dimension reduction. Go decomposition (GoDec) [49] tried to efficiently and robustly decom-
pose a matrix with the low-rank part L and the sparse part S. Locality structure of manifold
can also be combined with sparse representation, such as manifold elastic net (MEN) [50] and
graph-regularized sparse coding (GraphSC) [51], laplacian sparse coding (LSc) [35] and
Hypergraph laplacian sparse coding (HLSc) [35].

Learning tasks such as classification and clustering usually perform better and cost less (time
and space) on compressed representations than on the original data [48]. Therefore, supervised
learning and pattern recognition based on the sparse representation coefficients using these
sparse learning models are proposed, such as sparse representation-based classification (SRC)
[52], Local_SRC [53], Kernel_SRC [54] and the methods outperform traditional classifier, such
as SVM, nearest neighbor (NN) and nearest subspace (NS).

2.3. Sparse representation for clustering

Inspired by the successful application of sparse representation in the above-supervised learn-
ing approaches, researchers have also exploited sparse representation in unsupervised [55–57]
and semi-supervised clustering [58, 59]. The main idea of clustering via sparse representation
is to build weight matrix directly from normalized and symmetrized coefficients of sparse
representation coefficients, called sparsity-induced similarity (SIS) measure [59]. To a certain
extent, weight measure approaches derived from sparse representation can reveal the neigh-
borhood structure without calculating Euclidean distance, which means a great potential to
clustering high-dimensional data.

Some significant work applying SIS to spectral clustering is reviewed as follows. Sparse
subspace clustering [55] directly uses the sparse representation of vectors lying in a single
low-dimensional linear subspace to cluster the data into separate subspaces, followed by
applying spectral clustering. It is also extended to clustering data contaminated by noise,
missing entries or outliers. Experiments show that its performance for clustering motion
trajectories outperforms state-of-the-art methods, such as power factorization and principal
component analysis. Image clustering via sparse representation [56] characterizes the graph
adjacency structure and graph weights by sparse linear coefficients, which is more effective
than Gaussian RBF [12] to cluster an image data set. In semi-supervised learning by sparse
representation [18], the graph adjacency structure as well as the graph weights of the directed
graph construction is derived simultaneously and in a parameter-free manner to utilize both
labeled and unlabeled data. Experiments on semi-supervised face recognition and image
classification demonstrate the superiority over the counterparts based on traditional graphs
(e.g. ε-ball neighborhood, k-nearest neighbors). Compared to approaches using SIS of real

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

159

numbers, non-negative SIS measure [57] exploits the symmetric coefficients of non-negative
sparse representation as weight matrix, which outperforms similarity measures, such as SIS
and Euclidean (with Gaussian RBF baseline [12]), in cluster analysis of spam images.

However, all the above-existing approaches based on sparse representation treat directly the
coefficients or just normalized coefficients of sparse representation as the weight matrix. These
cannot exactly reflect the similarity between objects because the coefficients of sparse repre-
sentation are somehow local similarity and sensitive to outliers. Our approach is expected to
provide more effective weight matrix construction using more global content from the solution
coefficients of sparse representation.

2.4. Graph construction with sparse representation

In clustering analysis, given a high-dimensional object data set X = [x1, x2, …, xn] ∈ Rm � n,
xi = [xi1, xi2,…, xim]T ∈ Rm, we can use Eq. (5) to represent each objects xi as a linear combination
of other objects. The coefficients vector αi of xi can be calculated by solving the following Lasso
optimization:

αi
∗¼ arg min

αi

λ αik k1 þ xi � Xiαik k2, (6)

where Xi = X\xi = [x1, …, xi � 1, xi + 1,…, xn]; αi = [αi,1, …, αi, (i-1), αi, (i + 1), …, αi,n]
T.

Once we get the coefficient vector αi for each object xi (i = 1, 2, …, n) as a sparse representation
of all other data objects by solving the l1 optimization Eq. (6),we can construct the weight
matrix using different approaches.

Existing weight matrix constructions via sparse representation are based on the assumption
that coefficients in the sparse representation reflect the closeness or similarity between two
data objects. For example, the SIS measure [20] is computed as:

wij ¼
max αi, j; 0

� �
Pn

k¼1, k6¼i max αi, k; 0f g ; SISij ¼
wij þ wji

2
: (7)

The l1 Directed Graph Construction (DGC) measure [19] is computed as:

DGCij ¼
αi, j
�� ��þ αj, i

�� ��
2

: (8)

Obviously, the similarity calculation using the absolute coefficients in Eq. (8) will mistake the
big negative coefficient as high similarity, resulting in a cluster of two objects with apparent
opposite attributes value.

The non-negative SIS measure [22] adds a non-negative constraint in l1 optimization Eq. (6):

αi
∗¼ arg min

αi

λ αik k1 þ xi � Xiαik k2 s:t:αi , j > 0: (9)

Recent Applications in Data Clustering160

Then the non-negative SIS measure is computed as:

NNij ¼
αi, jPn

k¼1, k6¼i αi, k
: (10)

3. Sparse representation for spectral clustering

Our proposed clustering algorithm consists of three steps: (1) solving l1 optimization of sparse
representation to obtain the coefficients of each object; (2) constructing weight matrix between
objects on the basis of coefficients using more global content forms the solution coefficients of
sparse representation; and (3) exploiting the spectral clustering algorithm with the weight
matrix to get partition of the graph.

Compared to the direct construction methods using the independent solutions of Eq. (6), we
have the assumption that for any two objects xi and xj; the more similar they are, the more
similar the corresponding coefficient vectors (e.g., αi and αj) are not only a particular coefficient
(αi,j or αj,i). According to this assumption, we propose the following two graph adjacency
structure and weight matrix constructions, which are expected to use the global information
of the solution coefficients.

3.1. Proximity based on a consistent sign set

To get the similarity of two objects clearly and logically, we firstly find an object set for each of
the two different objects xi and xj from the object data set X, called CSS. This definition is based
on the assumption that the more objects of which a pair of objects both positively contribute to
the reconstruction, the more similar the pair of objects are. In particular, the sparse reconstruc-
tion coefficients corresponding to xi and xj for every object in this set are both positive, defined
as follows:

CSS xi; xj
� � ¼ xkj αk, i > 0 ∧αk, j > 0

� �
; k 6¼ i; k 6¼ j

� �
∀i 6¼ j: (11)

Furthermore, we can construct graph adjacency structure and weight matrix as follows. A
directed edge is placed between objects xi and xjj if CSS(xi, xj) 6¼ Φ and the weight between
object xi and xj is defined as the ratio of the CSS(xi, xj)’s cardinal to the total number of objects:

wij ¼
∣CSS xi; xj

� �
∣

n
i 6¼ j

0 i ¼ j ,

8<
: (12)

where n is the total number of objects in X. Obviously, the weight is between 0 and 1.

3.2. Proximity based on cosine similarity of coefficient vector

We can construct coefficient matrix А of data set X, to which transforming solution coefficients
of Eq. (6) are:

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

161

numbers, non-negative SIS measure [57] exploits the symmetric coefficients of non-negative
sparse representation as weight matrix, which outperforms similarity measures, such as SIS
and Euclidean (with Gaussian RBF baseline [12]), in cluster analysis of spam images.

However, all the above-existing approaches based on sparse representation treat directly the
coefficients or just normalized coefficients of sparse representation as the weight matrix. These
cannot exactly reflect the similarity between objects because the coefficients of sparse repre-
sentation are somehow local similarity and sensitive to outliers. Our approach is expected to
provide more effective weight matrix construction using more global content from the solution
coefficients of sparse representation.

2.4. Graph construction with sparse representation

In clustering analysis, given a high-dimensional object data set X = [x1, x2, …, xn] ∈ Rm � n,
xi = [xi1, xi2,…, xim]T ∈ Rm, we can use Eq. (5) to represent each objects xi as a linear combination
of other objects. The coefficients vector αi of xi can be calculated by solving the following Lasso
optimization:

αi
∗¼ arg min

αi

λ αik k1 þ xi � Xiαik k2, (6)

where Xi = X\xi = [x1, …, xi � 1, xi + 1,…, xn]; αi = [αi,1, …, αi, (i-1), αi, (i + 1), …, αi,n]
T.

Once we get the coefficient vector αi for each object xi (i = 1, 2, …, n) as a sparse representation
of all other data objects by solving the l1 optimization Eq. (6),we can construct the weight
matrix using different approaches.

Existing weight matrix constructions via sparse representation are based on the assumption
that coefficients in the sparse representation reflect the closeness or similarity between two
data objects. For example, the SIS measure [20] is computed as:

wij ¼
max αi, j; 0

� �
Pn

k¼1, k6¼i max αi, k; 0f g ; SISij ¼
wij þ wji

2
: (7)

The l1 Directed Graph Construction (DGC) measure [19] is computed as:

DGCij ¼
αi, j
�� ��þ αj, i

�� ��
2

: (8)

Obviously, the similarity calculation using the absolute coefficients in Eq. (8) will mistake the
big negative coefficient as high similarity, resulting in a cluster of two objects with apparent
opposite attributes value.

The non-negative SIS measure [22] adds a non-negative constraint in l1 optimization Eq. (6):

αi
∗¼ arg min

αi

λ αik k1 þ xi � Xiαik k2 s:t:αi , j > 0: (9)

Recent Applications in Data Clustering160

Then the non-negative SIS measure is computed as:

NNij ¼
αi, jPn

k¼1, k6¼i αi, k
: (10)

3. Sparse representation for spectral clustering

Our proposed clustering algorithm consists of three steps: (1) solving l1 optimization of sparse
representation to obtain the coefficients of each object; (2) constructing weight matrix between
objects on the basis of coefficients using more global content forms the solution coefficients of
sparse representation; and (3) exploiting the spectral clustering algorithm with the weight
matrix to get partition of the graph.

Compared to the direct construction methods using the independent solutions of Eq. (6), we
have the assumption that for any two objects xi and xj; the more similar they are, the more
similar the corresponding coefficient vectors (e.g., αi and αj) are not only a particular coefficient
(αi,j or αj,i). According to this assumption, we propose the following two graph adjacency
structure and weight matrix constructions, which are expected to use the global information
of the solution coefficients.

3.1. Proximity based on a consistent sign set

To get the similarity of two objects clearly and logically, we firstly find an object set for each of
the two different objects xi and xj from the object data set X, called CSS. This definition is based
on the assumption that the more objects of which a pair of objects both positively contribute to
the reconstruction, the more similar the pair of objects are. In particular, the sparse reconstruc-
tion coefficients corresponding to xi and xj for every object in this set are both positive, defined
as follows:

CSS xi; xj
� � ¼ xkj αk, i > 0 ∧αk, j > 0

� �
; k 6¼ i; k 6¼ j

� �
∀i 6¼ j: (11)

Furthermore, we can construct graph adjacency structure and weight matrix as follows. A
directed edge is placed between objects xi and xjj if CSS(xi, xj) 6¼ Φ and the weight between
object xi and xj is defined as the ratio of the CSS(xi, xj)’s cardinal to the total number of objects:

wij ¼
∣CSS xi; xj

� �
∣

n
i 6¼ j

0 i ¼ j ,

8<
: (12)

where n is the total number of objects in X. Obviously, the weight is between 0 and 1.

3.2. Proximity based on cosine similarity of coefficient vector

We can construct coefficient matrix А of data set X, to which transforming solution coefficients
of Eq. (6) are:

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

161

Α i; jð Þ ¼ α
0
i, j ¼

αi, j i 6¼ j
0 i ¼ j

:

�
(13)

A directed edge is placed from object xi and xj if angle cosine of the two corresponding vectors
is greater than 0, that is:

α
0
i � α

0
j

α0i
�� ��

2 � α0j
���
���
2

> 0, (14)

where αi
’ denotes the i-th row vector of А.

The weight between object xi and xj is defined as the cosine similarity of αi
’ and αj

’:

wij ¼ max 0;
α
0
i � α

0
j

α0i
�� ��

2 � α0j
���
���
2

0
B@

1
CA i 6¼ j

0 i ¼ j

:

8>>><
>>>:

(15)

From the above similarity calculation formula, two objects have large similarity in condition
that the corresponding solution coefficients of Eq. (6) are much similar, which is expected to
use the whole solution coefficients.

3.3. The relationship between consistent sign set (CSS) and cosine similarity of
coefficient vector (COS)

Since proposed proximity based on both CSS and COS are trying to exploit more information
from the solution coefficient of sparse representation, the relationship between each other is
following:

1. Both of them asses the weight between two objects according to the similarity between the
corresponding coefficient vectors of the two objects. However, the difference is that proxim-
ity based on CSS uses the column vectors of the coefficient matrix Аwhile proximity based
on COS calculates the similarity between row vectors, which means two understandings
of the coefficient matrix. The reason for defining these two approaches like this is just
experimental.

2. Proximity based on COS is to calculate the similarity of the original coefficient vector,
while CSS can be considered as the discretization of the original coefficient vector with
threshold zero. Therefore, proximity based on COS can be seen as the generalization of
that based on CSS.

3. Specifically, another equivalent way to understand proximity based on CSS is as follows:

• Transform the coefficients matrix А to DA: DA i; jð Þ ¼ 1 A i; jð Þ > 0
0 else

�
;

• The weight between xi and xj is:

Recent Applications in Data Clustering162

• wij ¼
DAi �DAj

n
i 6¼ j

0 i ¼ j

8<
: , where DAi denotes the i-th column vector of DA.

Obviously, the inner product (DAi DAj) between DAi and DAj is equal to CSS (xi, xj)’s cardinal
|CSS(xi, xj)|.

To illustrate the differences between our approaches for weight construction and others also
using sparse representation, an example is given as follows. Assume that the coefficient matrix
А of a data set with five objects obtained from solution coefficients of Eq. (6) is as the following
5 � 5 matrix:

А ¼ α
0
i, j ¼

0 0:3 0:6 0:6 -0:7
0:4 0 0:5 0:6 -0:6
0:4 0:4 0 -0:1 -0:2
-0:6 -0:3 0:2 0 0:7
-0:5 0:3 0:2 0:4 0

2
6666664

3
7777775

According to the above introduction of different weight constructions:

1. SIS13 = 0.4, SIS12 = 0.2, DGC13 = 0.5 and DGC12 = 0.35, and these numbers show that the
similarity between x1 and x3 is larger than that between x1 and x2. However, in our
approaches using more entries in А, CSS13 = 1/5 = 0.2, CSS12 = 2/5 = 0.4, COS13 = 0.24 and
COS12 = 0.98 and these numbers show the different weights compared to the first group,
where CSS and COS are the abbreviation of the above two proximity approaches, respec-
tively.

2. DGC25 = 0.45, CSS25 = 0, COS25 = 0.16, thus DGCmistakes the big negative coefficient (α25
’)

as high similarity while CSS and COS both give lower similarity.

3.4. Algorithm description

Algorithm 1 describes the general procedure for spectral clustering of high-dimensional data,
using sparse representation. The basic idea is to extract coefficients of sparse representation
(Lines 1–4); construct a weight matrix using the coefficients (Line 5); and feed the weight
matrix into a spectral clustering algorithm (Line 6) to find the best partitioning efficiently.

Algorithm 1. General procedure for spectral clustering of high-dimensional data.

Input: high-dimensional training data set X = [x1, x2, …, xn] ∈ Rm � n, where xi = [xi1, xi2,…, xim]T ∈ Rm represents the i-th

data object; the number of clusters K.

Parameter: penalty coefficient λ for Lasso optimization

Output: cluster labels corresponding to each data object: c = [c1, c2,…, cn]

//standardize the input data for Lasso optimization

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

163

Α i; jð Þ ¼ α
0
i, j ¼

αi, j i 6¼ j
0 i ¼ j

:

�
(13)

A directed edge is placed from object xi and xj if angle cosine of the two corresponding vectors
is greater than 0, that is:

α
0
i � α

0
j

α0i
�� ��

2 � α0j
���
���
2

> 0, (14)

where αi
’ denotes the i-th row vector of А.

The weight between object xi and xj is defined as the cosine similarity of αi
’ and αj

’:

wij ¼ max 0;
α
0
i � α

0
j

α0i
�� ��

2 � α0j
���
���
2

0
B@

1
CA i 6¼ j

0 i ¼ j

:

8>>><
>>>:

(15)

From the above similarity calculation formula, two objects have large similarity in condition
that the corresponding solution coefficients of Eq. (6) are much similar, which is expected to
use the whole solution coefficients.

3.3. The relationship between consistent sign set (CSS) and cosine similarity of
coefficient vector (COS)

Since proposed proximity based on both CSS and COS are trying to exploit more information
from the solution coefficient of sparse representation, the relationship between each other is
following:

1. Both of them asses the weight between two objects according to the similarity between the
corresponding coefficient vectors of the two objects. However, the difference is that proxim-
ity based on CSS uses the column vectors of the coefficient matrix Аwhile proximity based
on COS calculates the similarity between row vectors, which means two understandings
of the coefficient matrix. The reason for defining these two approaches like this is just
experimental.

2. Proximity based on COS is to calculate the similarity of the original coefficient vector,
while CSS can be considered as the discretization of the original coefficient vector with
threshold zero. Therefore, proximity based on COS can be seen as the generalization of
that based on CSS.

3. Specifically, another equivalent way to understand proximity based on CSS is as follows:

• Transform the coefficients matrix А to DA: DA i; jð Þ ¼ 1 A i; jð Þ > 0
0 else

�
;

• The weight between xi and xj is:

Recent Applications in Data Clustering162

• wij ¼
DAi �DAj

n
i 6¼ j

0 i ¼ j

8<
: , where DAi denotes the i-th column vector of DA.

Obviously, the inner product (DAi DAj) between DAi and DAj is equal to CSS (xi, xj)’s cardinal
|CSS(xi, xj)|.

To illustrate the differences between our approaches for weight construction and others also
using sparse representation, an example is given as follows. Assume that the coefficient matrix
А of a data set with five objects obtained from solution coefficients of Eq. (6) is as the following
5 � 5 matrix:

А ¼ α
0
i, j ¼

0 0:3 0:6 0:6 -0:7
0:4 0 0:5 0:6 -0:6
0:4 0:4 0 -0:1 -0:2
-0:6 -0:3 0:2 0 0:7
-0:5 0:3 0:2 0:4 0

2
6666664

3
7777775

According to the above introduction of different weight constructions:

1. SIS13 = 0.4, SIS12 = 0.2, DGC13 = 0.5 and DGC12 = 0.35, and these numbers show that the
similarity between x1 and x3 is larger than that between x1 and x2. However, in our
approaches using more entries in А, CSS13 = 1/5 = 0.2, CSS12 = 2/5 = 0.4, COS13 = 0.24 and
COS12 = 0.98 and these numbers show the different weights compared to the first group,
where CSS and COS are the abbreviation of the above two proximity approaches, respec-
tively.

2. DGC25 = 0.45, CSS25 = 0, COS25 = 0.16, thus DGCmistakes the big negative coefficient (α25
’)

as high similarity while CSS and COS both give lower similarity.

3.4. Algorithm description

Algorithm 1 describes the general procedure for spectral clustering of high-dimensional data,
using sparse representation. The basic idea is to extract coefficients of sparse representation
(Lines 1–4); construct a weight matrix using the coefficients (Line 5); and feed the weight
matrix into a spectral clustering algorithm (Line 6) to find the best partitioning efficiently.

Algorithm 1. General procedure for spectral clustering of high-dimensional data.

Input: high-dimensional training data set X = [x1, x2, …, xn] ∈ Rm � n, where xi = [xi1, xi2,…, xim]T ∈ Rm represents the i-th

data object; the number of clusters K.

Parameter: penalty coefficient λ for Lasso optimization

Output: cluster labels corresponding to each data object: c = [c1, c2,…, cn]

//standardize the input data for Lasso optimization

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

163

1 for each data object xi ∈ X do

// Solve Eq. (6) with Lasso optimization

2 Set Xi = X\xi = [x1, …,xi-1, xi + 1,…, xn];

3 αi
* arg min λ||αi||1 + || xi - Xαi ||2;

4 end

5 W ConstructWeightMatrix(α);

6 c SpectralClustering(W);

7 return c.

The construct weight matrix () sub-routine can exploit any weight matrix construction method,
such as those mentioned in Section 4. In particular, we describe the algorithm for computing
the two newly proposed weight matrices, one based on the CSS (see Section 4.1) and the other
based on COS of sparse coefficient vectors (see Section 4.2).

Algorithm 2 describes the procedure to construct the weight matrix according to the concept of
CSS. To find the CSS of each pair of data objects (the two outermost loops), there is the need of
checking the sparse coefficients of each remaining object to these two objects, so the time
complexity of weight matrix constructions based on CSS is O (n3).

Algorithm 2. Construct weight matrix based on consistent sign set.

Input: Coefficients for sparse representation α

Output: Weight matrix W

1 for i 1 to n do

2 for j 1 ton do

3 if j = i then wij 0;

4 else

5 ncss 0;

6 for k 1 to n do

7 if k 6¼ i and k 6¼ j and αk,i > 0 andαk,j > 0 then

8 ncss ncss + 1;

9 end

10 end

11 wij ncss/n;

12 end

13 end

14 end

Algorithm 3 describes the procedure to construct the weight matrix according to the COS of the
sparse coefficients between each pair of items. The computation complexity for calculating the

Recent Applications in Data Clustering164

COS of two vectors of length n is O(n), and there are O(n2) pairs of data objects whose COS
needs to be computed. Thus the complexity for COS-based weight matrix construction isO(n3).

Algorithm 3. Construct weight matrix based on similarity of coefficient vector.

Input: Coefficients for sparse representation α

Output: Weight matrix W

1 for i 1 to n do

2 for j 1 ton do

3 if j = i then wij 0;

4 else

5 cosine α
0
i �α
0
j

α0ik k2� α0j

���
���

2

6 if cosine > 0 then wij cosine;

7 else wij 0;

8 end

9 end

10 end

As shown in line 6 of Algorithm 1, after constructing the weight matrix W, we can use the
classical spectral clustering algorithm [10] to discover the cluster structure of high-dimensional
data.

The main characteristics of our proposed algorithm include the following: (1) compared to
traditional graph construction induced from the Euclidean distance or other measures in the
original high-dimensional space, the weight matrix is constructed after transforming the high
dimensional data space into another space via sparse representation, which is expected to have
better performance resulting from the superiority of compressed sensing [58] for high-
dimensional data; (2) our graph construction based on consistent sign set or similarity of
coefficient vector can simultaneously complete both the graph adjacency and weight matrix,
while traditional graph constructions (such as ε-ball neighborhood or k-nearest neighbors)
complete the two tasks separately, which are interrelated and should not be separated [19];
(3) rather than existing graph constructions via sparse representation directly and indepen-
dently applying the solution of l1 optimization for each object in Eq. (6) to determine a row of
the weight matrix, our approach considers the global information from the coefficients of the
whole object set to calculate one element in the weight matrix.

4. Experimental results

In this section, we use experimental results to demonstrate the performance of our proposed
approaches on real-world data sets using several effectiveness evaluations.

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

165

1 for each data object xi ∈ X do

// Solve Eq. (6) with Lasso optimization

2 Set Xi = X\xi = [x1, …,xi-1, xi + 1,…, xn];

3 αi
* arg min λ||αi||1 + || xi - Xαi ||2;

4 end

5 W ConstructWeightMatrix(α);

6 c SpectralClustering(W);

7 return c.

The construct weight matrix () sub-routine can exploit any weight matrix construction method,
such as those mentioned in Section 4. In particular, we describe the algorithm for computing
the two newly proposed weight matrices, one based on the CSS (see Section 4.1) and the other
based on COS of sparse coefficient vectors (see Section 4.2).

Algorithm 2 describes the procedure to construct the weight matrix according to the concept of
CSS. To find the CSS of each pair of data objects (the two outermost loops), there is the need of
checking the sparse coefficients of each remaining object to these two objects, so the time
complexity of weight matrix constructions based on CSS is O (n3).

Algorithm 2. Construct weight matrix based on consistent sign set.

Input: Coefficients for sparse representation α

Output: Weight matrix W

1 for i 1 to n do

2 for j 1 ton do

3 if j = i then wij 0;

4 else

5 ncss 0;

6 for k 1 to n do

7 if k 6¼ i and k 6¼ j and αk,i > 0 andαk,j > 0 then

8 ncss ncss + 1;

9 end

10 end

11 wij ncss/n;

12 end

13 end

14 end

Algorithm 3 describes the procedure to construct the weight matrix according to the COS of the
sparse coefficients between each pair of items. The computation complexity for calculating the

Recent Applications in Data Clustering164

COS of two vectors of length n is O(n), and there are O(n2) pairs of data objects whose COS
needs to be computed. Thus the complexity for COS-based weight matrix construction isO(n3).

Algorithm 3. Construct weight matrix based on similarity of coefficient vector.

Input: Coefficients for sparse representation α

Output: Weight matrix W

1 for i 1 to n do

2 for j 1 ton do

3 if j = i then wij 0;

4 else

5 cosine α
0
i �α
0
j

α0ik k2� α0j

���
���

2

6 if cosine > 0 then wij cosine;

7 else wij 0;

8 end

9 end

10 end

As shown in line 6 of Algorithm 1, after constructing the weight matrix W, we can use the
classical spectral clustering algorithm [10] to discover the cluster structure of high-dimensional
data.

The main characteristics of our proposed algorithm include the following: (1) compared to
traditional graph construction induced from the Euclidean distance or other measures in the
original high-dimensional space, the weight matrix is constructed after transforming the high
dimensional data space into another space via sparse representation, which is expected to have
better performance resulting from the superiority of compressed sensing [58] for high-
dimensional data; (2) our graph construction based on consistent sign set or similarity of
coefficient vector can simultaneously complete both the graph adjacency and weight matrix,
while traditional graph constructions (such as ε-ball neighborhood or k-nearest neighbors)
complete the two tasks separately, which are interrelated and should not be separated [19];
(3) rather than existing graph constructions via sparse representation directly and indepen-
dently applying the solution of l1 optimization for each object in Eq. (6) to determine a row of
the weight matrix, our approach considers the global information from the coefficients of the
whole object set to calculate one element in the weight matrix.

4. Experimental results

In this section, we use experimental results to demonstrate the performance of our proposed
approaches on real-world data sets using several effectiveness evaluations.

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

165

We select three data sets from the UCI machine-learning repository [60] and three face recog-
nition data sets [61–63], which are well known in the machine learning and data mining
research community. Table 1 lists a summary of these data sets.

In Yale and ORL face data sets, each image is transformed into a 32 � 32 pixel configuration
using Matlab Image Processing Toolbox. In Yale B data set, which has 10 clusters, and each
cluster has 585 image data, since the original size (5850) is too big, which leads to too much
time consumption in clustering, we randomly select 60 images from the totally 585 images in
each cluster. In all the data sets, each image is normalized to have unit norm.

We use interior-point method-based l1_ls_matlab tool [64] to solve Eq. (6) for each data object
and then implement different weight matrices for algorithm 1 in Matlab to cluster each data
set. Table 2 shows a summary of the proposed and baseline algorithms.

Since the true class labels of each data set are known, five commonly used external cluster
validation metrics [66–68] are employed to evaluate the clustering results, namely clustering
accuracy (CA) and normalized mutual information (NMI)1.

1
We use the matlab toolbox from: http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

Data set # Instance # Attributes # Classes Source

Heart 270 13 2 UCI

Image (Image segmentation) 2310 18 7 UCI

Yale 165 1024 15 [61]

Yale B 600 1200 10 [62]

ORL Face 400 1024 40 [63]

Movement 360 90 15 UCI

Table 1. Summary of data sets.

Name Description Source Role

CSS Spectral clustering with weight matrix from consistent sign set Section
3.1

Solution
proposed

COS Spectral clustering with weight matrix from cosine similarity of sparse coefficients Section
3.2

Solution
proposed

RBF Spectral clustering with weight matrix from Gaussian RBF [12] Baseline

SIS Spectral clustering with weight matrix from sparsity induced similarity measure [59] Baseline

DGC Spectral clustering with weight matrix from l1 Directed Graph Construction [58] Baseline

NN Spectral clustering with weight matrix from non-negative sparsity induced
similarity measure

[57] Baseline

KM k-means clustering [65] Baseline

Table 2. Summary of algorithms to be compared.

Recent Applications in Data Clustering166

To illustrate the weight matrices from different approaches, we demonstrate the visual prop-
erty of the proposed graph weight matrices in comparison with traditional ones in Figure 1,
taking the Yale data set as an example. In Figure 1, each subfigure is a weight matrix with N*N
(entries larger than the threshold is shown in white, otherwise black) and images from the
same cluster are arranged together. These sparse representation-based graphs include consis-
tent sign set (CSS), cosine similarity of coefficient vectors (COS), induced similarity measure
(SIS), l1 directed graph construction (DGC), nonnegative sparsity induced similarity measure
(NN) and Gaussian RBF (RBF).

Since none of the original weight matrices constructed by the five approaches is sparse, we set
threshold values (0.2 for COS; 0.388 for CSS; 0 for RBF (σ is set 4 in RBF); 0.02 for the other
three matrices) to get the best sparse matrices of different threshold values in Figure 1. A value
larger than the threshold is shown in white, otherwise black. Normally, the clustering perfor-
mance will be good if the weights between two objects from different clusters are little while
weights from the same cluster are large. This comment can be equalized in the matrix with
above arrangement that good matrix should be compact in diagonal position and sparse in
other positions.

From Figure 1, we have the following observations: (1) matrices in all subfigures are compact
in diagonal position; (2) the matrix of COS is sparser than others in lower left or upper right

Figure 1. Visualization of the graph weight matrices of the Yale data set, where images from the same subject are
arranged together. (a) SIS, (b) DGC, (c) NN, (d) RBF, (e) CSS, (f) COS.

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

167

We select three data sets from the UCI machine-learning repository [60] and three face recog-
nition data sets [61–63], which are well known in the machine learning and data mining
research community. Table 1 lists a summary of these data sets.

In Yale and ORL face data sets, each image is transformed into a 32 � 32 pixel configuration
using Matlab Image Processing Toolbox. In Yale B data set, which has 10 clusters, and each
cluster has 585 image data, since the original size (5850) is too big, which leads to too much
time consumption in clustering, we randomly select 60 images from the totally 585 images in
each cluster. In all the data sets, each image is normalized to have unit norm.

We use interior-point method-based l1_ls_matlab tool [64] to solve Eq. (6) for each data object
and then implement different weight matrices for algorithm 1 in Matlab to cluster each data
set. Table 2 shows a summary of the proposed and baseline algorithms.

Since the true class labels of each data set are known, five commonly used external cluster
validation metrics [66–68] are employed to evaluate the clustering results, namely clustering
accuracy (CA) and normalized mutual information (NMI)1.

1
We use the matlab toolbox from: http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

Data set # Instance # Attributes # Classes Source

Heart 270 13 2 UCI

Image (Image segmentation) 2310 18 7 UCI

Yale 165 1024 15 [61]

Yale B 600 1200 10 [62]

ORL Face 400 1024 40 [63]

Movement 360 90 15 UCI

Table 1. Summary of data sets.

Name Description Source Role

CSS Spectral clustering with weight matrix from consistent sign set Section
3.1

Solution
proposed

COS Spectral clustering with weight matrix from cosine similarity of sparse coefficients Section
3.2

Solution
proposed

RBF Spectral clustering with weight matrix from Gaussian RBF [12] Baseline

SIS Spectral clustering with weight matrix from sparsity induced similarity measure [59] Baseline

DGC Spectral clustering with weight matrix from l1 Directed Graph Construction [58] Baseline

NN Spectral clustering with weight matrix from non-negative sparsity induced
similarity measure

[57] Baseline

KM k-means clustering [65] Baseline

Table 2. Summary of algorithms to be compared.

Recent Applications in Data Clustering166

To illustrate the weight matrices from different approaches, we demonstrate the visual prop-
erty of the proposed graph weight matrices in comparison with traditional ones in Figure 1,
taking the Yale data set as an example. In Figure 1, each subfigure is a weight matrix with N*N
(entries larger than the threshold is shown in white, otherwise black) and images from the
same cluster are arranged together. These sparse representation-based graphs include consis-
tent sign set (CSS), cosine similarity of coefficient vectors (COS), induced similarity measure
(SIS), l1 directed graph construction (DGC), nonnegative sparsity induced similarity measure
(NN) and Gaussian RBF (RBF).

Since none of the original weight matrices constructed by the five approaches is sparse, we set
threshold values (0.2 for COS; 0.388 for CSS; 0 for RBF (σ is set 4 in RBF); 0.02 for the other
three matrices) to get the best sparse matrices of different threshold values in Figure 1. A value
larger than the threshold is shown in white, otherwise black. Normally, the clustering perfor-
mance will be good if the weights between two objects from different clusters are little while
weights from the same cluster are large. This comment can be equalized in the matrix with
above arrangement that good matrix should be compact in diagonal position and sparse in
other positions.

From Figure 1, we have the following observations: (1) matrices in all subfigures are compact
in diagonal position; (2) the matrix of COS is sparser than others in lower left or upper right

Figure 1. Visualization of the graph weight matrices of the Yale data set, where images from the same subject are
arranged together. (a) SIS, (b) DGC, (c) NN, (d) RBF, (e) CSS, (f) COS.

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

167

parts. This means that there are less inter-cluster adjacency connections in the COS than other
graphs, so COS can encode more discriminating information and hence is more effective in
spectral clustering than other traditional graphs; (3) CSS has a similar performance to SIS,
DGC and NN Graph in Yale data set.

The clustering results obtained from the seven clustering algorithms with different evaluation
metrics are reported in Tables 3 and 4, each of which corresponds to one evaluation metric. For
each data set, the best results are in bold. All the numbers, except the last two rows in each
table, represent the best clustering results using different lasso parameters (λ). The last two
rows in each table present the average performance of each algorithm over all six data sets.
Since the k-means clustering within spectral clustering is sensitive to initial centroids, we run
spectral clustering 50 times for each case and report the mean and standard deviation (std).

From Tables 3 and 4, we can clearly see that, generally, CSS or COS algorithm gets the best
clustering performance with all the two evaluation metrics. However, there are also some
particular cases where CSS or COS does not get best result. For example, though NN gets the
best CA on Yale B data sets, COS gets almost the same CA result as NN, that is, from 0.8937 to
0.8940; though NN also gets the best NMI for movement data set, COS gets best result in other
metric on this data set. In particular, COS performs better than CSS with mean value of
evaluation metrics, and the average standard deviation between 50 random tests of CSS is
lowest for all metrics except CA.

Overall, for most data sets, CSS and COS show better performance than those baselines, which
are robust across various external validation metrics. However, it is noticed that COS out-
performs CSS in terms of all average mean metrics except CA, and CSS outperforms COS in

Data set CSS COS DGC SIS NN BRF KM

Heart Mean 0.7704 0.8174 0.5852 0.7889 0.7519 0.7963 0.7320

(Std) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0882)

Image Mean 0.7631 0.7921 0.7020 0.7820 0.7360 0.5335 0.6215

(Std) (0.0148) (0.0323) (0.0339) (0.0341) (0.0379) (0.0305) (0.0355)

Yale Mean 0.6823 0.7408 0.7178 0.7023 0.6417 0.6635 0.5482

(Std) (0.0432) (0.0345) (0.0414) (0.0314) (0.0412) (0.0395) (0.0529)

Yale B Mean 0.8572 0.8937 0.8320 0.8620 0.8940 0.6918 0.6862

(Std) (0.0791) (0.0713) (0.0768) (0.0635) (0.0767) (0.0226) (0.0721)

ORL face Mean 0.7315 0.7570 0.7225 0.7243 0.6903 0.7314 0.7196

(Std) (0.0247) (0.0218) (0.0222) (0.0244) (0.0207) (0.0252) (0.0311)

Movement mean 0.5241 0.5472 0.5009 0.5183 0.5304 0.4874 0.4653

(Std) (0.0222) (0.0187) (0.0248) (0.0193) (0.0271) (0.0232) (0.0203)

Average Mean 0.7214 0.7580 0.6767 0.7296 0.7074 0.6506 0.6288

(Std) (0.0307) (0.0298) (0.0332) (0.0288) (0.0339) (0.0235) (0.0500)

Table 3. Evaluation of all algorithms with CA as metric.

Recent Applications in Data Clustering168

terms of all average standard metrics. It can be explained that CSS is more stable because its
discretization may lower the variance of the pairwise of similarity, while COS get more
generalized information of the pairwise of similarity leading to better average metrics but
higher variance. Therefore, the choice between stability and quality should be taken into
account when it is facing the clustering problem, in practice, using this kind of approach.

Finally, we plot the averages of the mean value and standard deviation (from the last two rows
of the five tables), for comparing clustering algorithms, as shown in Figure 2.

Data set CSS COS DGC SIS NN BRF KM

Heart Mean 0.2208 0.3149 0.0511 0.1791 0.0331 0.2712 0.2028

(Std) (0.0000) (0.0000) (0.0000) (0.0000) (0.0312) (0.0000) (0.1013)

Image Mean 0.7088 0.7451 0.5921 0.7319 0.6637 0.7451 0.6122

(Std) (0.0071) (0.0184) (0.0171) (0.0176) (0.0357) (0.0284) (0.0437)

Yale Mean 0.7137 0.7815 0.7513 0.7641 0.6926 0.6989 0.6484

(Std) (0.0211) (0.0183) (0.0203) (0.0188) (0.0198) (0.0271) (0.0342)

Yale B Mean 0.9008 0.9526 0.9202 0.9379 0.9510 0.7768 0.7858

(Std) (0.0302) (0.0360) (0.0422) (0.0326) (0.0398) (0.0224) (0.0621)

ORL face Mean 0.8477 0.8688 0.8492 0.8547 0.8426 0.8512 0.8620

(Std) (0.0116) (0.0108) (0.0105) (0.0118) (0.0109) (0.0140) (0.0157)

Movement Mean 0.5891 0.5914 0.5933 0.6000 0.6306 0.5741 0.5818

(Std) (0.0128) (0.0124) (0.0140) (0.0130) (0.0173) (0.0169) (0.0180)

Average Mean 0.6635 0.7090 0.6262 0.6779 0.6356 0.6529 0.6155

(Std) (0.0138) (0.0160) (0.0174) (0.0156) (0.0258) (0.0181) (0.0458)

Table 4. Evaluation of all algorithms with NMI as metric.

Figure 2. Error bar of different algorithms (a) CA, (b) NMI.

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

169

parts. This means that there are less inter-cluster adjacency connections in the COS than other
graphs, so COS can encode more discriminating information and hence is more effective in
spectral clustering than other traditional graphs; (3) CSS has a similar performance to SIS,
DGC and NN Graph in Yale data set.

The clustering results obtained from the seven clustering algorithms with different evaluation
metrics are reported in Tables 3 and 4, each of which corresponds to one evaluation metric. For
each data set, the best results are in bold. All the numbers, except the last two rows in each
table, represent the best clustering results using different lasso parameters (λ). The last two
rows in each table present the average performance of each algorithm over all six data sets.
Since the k-means clustering within spectral clustering is sensitive to initial centroids, we run
spectral clustering 50 times for each case and report the mean and standard deviation (std).

From Tables 3 and 4, we can clearly see that, generally, CSS or COS algorithm gets the best
clustering performance with all the two evaluation metrics. However, there are also some
particular cases where CSS or COS does not get best result. For example, though NN gets the
best CA on Yale B data sets, COS gets almost the same CA result as NN, that is, from 0.8937 to
0.8940; though NN also gets the best NMI for movement data set, COS gets best result in other
metric on this data set. In particular, COS performs better than CSS with mean value of
evaluation metrics, and the average standard deviation between 50 random tests of CSS is
lowest for all metrics except CA.

Overall, for most data sets, CSS and COS show better performance than those baselines, which
are robust across various external validation metrics. However, it is noticed that COS out-
performs CSS in terms of all average mean metrics except CA, and CSS outperforms COS in

Data set CSS COS DGC SIS NN BRF KM

Heart Mean 0.7704 0.8174 0.5852 0.7889 0.7519 0.7963 0.7320

(Std) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0882)

Image Mean 0.7631 0.7921 0.7020 0.7820 0.7360 0.5335 0.6215

(Std) (0.0148) (0.0323) (0.0339) (0.0341) (0.0379) (0.0305) (0.0355)

Yale Mean 0.6823 0.7408 0.7178 0.7023 0.6417 0.6635 0.5482

(Std) (0.0432) (0.0345) (0.0414) (0.0314) (0.0412) (0.0395) (0.0529)

Yale B Mean 0.8572 0.8937 0.8320 0.8620 0.8940 0.6918 0.6862

(Std) (0.0791) (0.0713) (0.0768) (0.0635) (0.0767) (0.0226) (0.0721)

ORL face Mean 0.7315 0.7570 0.7225 0.7243 0.6903 0.7314 0.7196

(Std) (0.0247) (0.0218) (0.0222) (0.0244) (0.0207) (0.0252) (0.0311)

Movement mean 0.5241 0.5472 0.5009 0.5183 0.5304 0.4874 0.4653

(Std) (0.0222) (0.0187) (0.0248) (0.0193) (0.0271) (0.0232) (0.0203)

Average Mean 0.7214 0.7580 0.6767 0.7296 0.7074 0.6506 0.6288

(Std) (0.0307) (0.0298) (0.0332) (0.0288) (0.0339) (0.0235) (0.0500)

Table 3. Evaluation of all algorithms with CA as metric.

Recent Applications in Data Clustering168

terms of all average standard metrics. It can be explained that CSS is more stable because its
discretization may lower the variance of the pairwise of similarity, while COS get more
generalized information of the pairwise of similarity leading to better average metrics but
higher variance. Therefore, the choice between stability and quality should be taken into
account when it is facing the clustering problem, in practice, using this kind of approach.

Finally, we plot the averages of the mean value and standard deviation (from the last two rows
of the five tables), for comparing clustering algorithms, as shown in Figure 2.

Data set CSS COS DGC SIS NN BRF KM

Heart Mean 0.2208 0.3149 0.0511 0.1791 0.0331 0.2712 0.2028

(Std) (0.0000) (0.0000) (0.0000) (0.0000) (0.0312) (0.0000) (0.1013)

Image Mean 0.7088 0.7451 0.5921 0.7319 0.6637 0.7451 0.6122

(Std) (0.0071) (0.0184) (0.0171) (0.0176) (0.0357) (0.0284) (0.0437)

Yale Mean 0.7137 0.7815 0.7513 0.7641 0.6926 0.6989 0.6484

(Std) (0.0211) (0.0183) (0.0203) (0.0188) (0.0198) (0.0271) (0.0342)

Yale B Mean 0.9008 0.9526 0.9202 0.9379 0.9510 0.7768 0.7858

(Std) (0.0302) (0.0360) (0.0422) (0.0326) (0.0398) (0.0224) (0.0621)

ORL face Mean 0.8477 0.8688 0.8492 0.8547 0.8426 0.8512 0.8620

(Std) (0.0116) (0.0108) (0.0105) (0.0118) (0.0109) (0.0140) (0.0157)

Movement Mean 0.5891 0.5914 0.5933 0.6000 0.6306 0.5741 0.5818

(Std) (0.0128) (0.0124) (0.0140) (0.0130) (0.0173) (0.0169) (0.0180)

Average Mean 0.6635 0.7090 0.6262 0.6779 0.6356 0.6529 0.6155

(Std) (0.0138) (0.0160) (0.0174) (0.0156) (0.0258) (0.0181) (0.0458)

Table 4. Evaluation of all algorithms with NMI as metric.

Figure 2. Error bar of different algorithms (a) CA, (b) NMI.

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

169

5. Conclusion

In this chapter, we present a study of spectral clustering based on sparse representation, using
two novel weight matrix construction approaches to assess the consistency of two sparse
vectors. This construction considers the global information of the solution coefficient vectors
of two objects to analyze the similarity between these two objects rather than directly using the
sparse coefficients, which only considers local information. Evaluation experiments on real-
world data sets show that spectral clustering for high-dimensional data using our novel
weight matrix construction exploiting global information outperforms direct k-means and
spectral clustering approaches using Gaussian RBF, SIS, l1-directed graph construction and
non-negative SIS in five evaluation metrics (CA and NMI).

These results demonstrate a reliable performance of our algorithm and therefore promise wide
applicability in practice. The findings also shed light on developing global solutions theories in
the future work.

Figure 2 clearly demonstrates that COS and CSS algorithms outperform other algorithms, and
COS is better than CSS on average. CSS obtains the least average value of standard deviation
among all seven algorithms. The KM and DGC algorithms have comparable performance,
which is usually worse than the other algorithms.

Author details

Xiaodong Feng

Address all correspondence to: fengxd1988@hotmail.com

School of Public Administration, University of Electronic Science and Technology of China,
Chengdu, Sichuan, China

References

[1] Liu Y, Wang X, Wu C. ConSOM: A conceptional self-organizing map model for text
clustering. Neurocomputing. 2008;71:857-862

[2] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems.
Computer. 2009;42:30-37

[3] Bhatt CA, Kankanhalli MS. Multimedia data mining: State of the art and challenges.
Multimedia Tools Applications. 2011;51:35-76

[4] Zhang X, Liu J, Du Y, Lv T. A novel clustering method on time series data. Expert Systems
with Applications. 2011;38:11891-11900

Recent Applications in Data Clustering170

[5] Sun J, Chen W, Fang W, Wun X, Xu W. Gene expression data analysis with the clustering
method based on an improved quantum-behaved particle swarm optimization. Engineer-
ing Applications of Artificial Intelligence. 2012;25:376-391

[6] Steinbach M, Ertoz L, Kumar V. The challenges of clustering high dimensional data. In:
New Directions in Statistical Physics. Berlin, Germany: Springer; 2004. pp. 273-309

[7] Chen X, Ye Y, Xu X, Huang JZ. A feature group weighting method for subspace clustering
of high-dimensional data. Pattern Recognition. 2012;45:434-446

[8] Song Q, Ni J, Wang G. A fast clustering-based feature subset selection algorithm for high
dimensional data. IEEE Transactions on Knowledge and Data Engineering. 2011;9:1-14

[9] Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: A review.
ACM SIGKDD Explorations Newsletter. 2004;6:90-105

[10] Von Luxburg U. A tutorial on spectral clustering. Statistics and Computing. 2007;17:395-
416

[11] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2000;22:888-905

[12] Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems. 2002;2:849-856

[13] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Computation. 2003;15:1373-1396

[14] Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear
dimensionality reduction. Science. 2000;290:2319-2323

[15] Donoho DL. Compressed sensing. IEEE Transactions on Information Theory. 2006;52:
1289-1306

[16] Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S. Sparse representation for computer
vision and pattern recognition. Proceedings of the IEEE. 2010;98:1031-1044

[17] Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization.
Nature. 1999;401:788-791

[18] Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics. 1994;5:111-126

[19] Ding CH, He X, Simon HD. On the equivalence of nonnegative matrix factorization and
spectral clustering. In: SIAM International Conference on Data Mining; 2005. pp. 606-610

[20] Lee DD, Seung HS. Algorithms for non-negative matrix factorization. Advances in Neural
Information Processing Systems. 2001;13:556-562

[21] Sandler R, LindenbaumM. Nonnegative matrix factorization with Earth mover's distance
metric for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence. 2011;33:1590-1602

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

171

5. Conclusion

In this chapter, we present a study of spectral clustering based on sparse representation, using
two novel weight matrix construction approaches to assess the consistency of two sparse
vectors. This construction considers the global information of the solution coefficient vectors
of two objects to analyze the similarity between these two objects rather than directly using the
sparse coefficients, which only considers local information. Evaluation experiments on real-
world data sets show that spectral clustering for high-dimensional data using our novel
weight matrix construction exploiting global information outperforms direct k-means and
spectral clustering approaches using Gaussian RBF, SIS, l1-directed graph construction and
non-negative SIS in five evaluation metrics (CA and NMI).

These results demonstrate a reliable performance of our algorithm and therefore promise wide
applicability in practice. The findings also shed light on developing global solutions theories in
the future work.

Figure 2 clearly demonstrates that COS and CSS algorithms outperform other algorithms, and
COS is better than CSS on average. CSS obtains the least average value of standard deviation
among all seven algorithms. The KM and DGC algorithms have comparable performance,
which is usually worse than the other algorithms.

Author details

Xiaodong Feng

Address all correspondence to: fengxd1988@hotmail.com

School of Public Administration, University of Electronic Science and Technology of China,
Chengdu, Sichuan, China

References

[1] Liu Y, Wang X, Wu C. ConSOM: A conceptional self-organizing map model for text
clustering. Neurocomputing. 2008;71:857-862

[2] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems.
Computer. 2009;42:30-37

[3] Bhatt CA, Kankanhalli MS. Multimedia data mining: State of the art and challenges.
Multimedia Tools Applications. 2011;51:35-76

[4] Zhang X, Liu J, Du Y, Lv T. A novel clustering method on time series data. Expert Systems
with Applications. 2011;38:11891-11900

Recent Applications in Data Clustering170

[5] Sun J, Chen W, Fang W, Wun X, Xu W. Gene expression data analysis with the clustering
method based on an improved quantum-behaved particle swarm optimization. Engineer-
ing Applications of Artificial Intelligence. 2012;25:376-391

[6] Steinbach M, Ertoz L, Kumar V. The challenges of clustering high dimensional data. In:
New Directions in Statistical Physics. Berlin, Germany: Springer; 2004. pp. 273-309

[7] Chen X, Ye Y, Xu X, Huang JZ. A feature group weighting method for subspace clustering
of high-dimensional data. Pattern Recognition. 2012;45:434-446

[8] Song Q, Ni J, Wang G. A fast clustering-based feature subset selection algorithm for high
dimensional data. IEEE Transactions on Knowledge and Data Engineering. 2011;9:1-14

[9] Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: A review.
ACM SIGKDD Explorations Newsletter. 2004;6:90-105

[10] Von Luxburg U. A tutorial on spectral clustering. Statistics and Computing. 2007;17:395-
416

[11] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2000;22:888-905

[12] Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems. 2002;2:849-856

[13] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Computation. 2003;15:1373-1396

[14] Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear
dimensionality reduction. Science. 2000;290:2319-2323

[15] Donoho DL. Compressed sensing. IEEE Transactions on Information Theory. 2006;52:
1289-1306

[16] Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S. Sparse representation for computer
vision and pattern recognition. Proceedings of the IEEE. 2010;98:1031-1044

[17] Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization.
Nature. 1999;401:788-791

[18] Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics. 1994;5:111-126

[19] Ding CH, He X, Simon HD. On the equivalence of nonnegative matrix factorization and
spectral clustering. In: SIAM International Conference on Data Mining; 2005. pp. 606-610

[20] Lee DD, Seung HS. Algorithms for non-negative matrix factorization. Advances in Neural
Information Processing Systems. 2001;13:556-562

[21] Sandler R, LindenbaumM. Nonnegative matrix factorization with Earth mover's distance
metric for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence. 2011;33:1590-1602

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

171

[22] Guan N, Tao D, Luo Z, Shawe-Taylor J, MahNMF. Manhattan Non-Negative Matrix
Factorization, arXiv preprint arXiv:1207.3438;2012

[23] Kim D, Sra S, Dhillon IS. Fast Newton-type methods for the least squares nonnegative
matrix approximation problem. In: SIAM International Conference on Data Mining; 2007

[24] Guan N, Tao D, Luo Z, Yuan B. Online nonnegative matrix factorization with robust
stochastic approximation. IEEE Transactions on Neural Networks and Learning Systems.
2012;23:1087-1099

[25] SunM, Hamme HV. Large scale graph regularized non-negative matrix factorization with
l1 normalization based on Kullback–Leibler divergence. IEEE Transaction on Signal
Processing. 2012;60:3876-3880

[26] Hoyer PO. Non-negative matrix factorization with sparseness constraints. The Journal of
Machine Learning Research. 2004;5:1457-1469

[27] Esser E, Moller M, Osher S, Sapiro G, Xin J. A convex model for nonnegative matrix
factorization and dimensionality reduction on physical space. IEEE Transactions on Image
Processing. 2012;21:3239-3252

[28] Zafeiriou S, Tefas A, Buciu I, Pitas I. Exploiting discriminant information in nonnegative
matrix factorization with application to frontal face verification. IEEE Transactions on
Neural Networks. 2006;17:683-695

[29] Cai D, He X, Han WJ, Huang TS. Graph regularized nonnegative matrix factorization for
data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2011;33:1548-1560

[30] Guan N, Tao D, Luo Z, Yuan B. Manifold regularized discriminative nonnegative matrix
factorization with fast gradient descent. IEEE Transactions on Image Processing. 2011;20:
2030-2048

[31] Liu H, Wu Z, Li X, Cai D, Huang TS. Constrained nonnegative matrix factorization for
image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2012;34:1299-1311

[32] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding.
Science. 2000;290:2323-2326

[33] Luo Y, Tao D, Geng B, Xu C, Maybank S. Manifold regularized multi-task learning for
semi-supervised multi-label image classification. 2013;22:523-536

[34] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. The Journal of Machine Learning Research.
2006;7:2399-2434

[35] Gao S, Tsang I, Chia L. Laplacian sparse coding, hypergraph laplacian sparse coding, and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013;35:
92-104

Recent Applications in Data Clustering172

[36] Zhou Y, Barner K. Locality constrained dictionary learning for nonlinear dimensionality
reduction. IEEE Signal Processing Letters. 2012;20:335-338

[37] Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y. Locality-constrained linear coding for image
classification, computer vision and pattern recognition (CVPR). In: 2010 IEEE Conference
on, (IEEE, 2010); pp. 3360-3367

[38] Yu J, Tao D, Wang M. Adaptive hypergraph learning and its application in image classifi-
cation. IEEE Transactions on Image Processing. 2012;21:3262-3272

[39] Yu J, Wang M, Tao D. Semi-supervised multiview distance metric learning for cartoon
synthesis. IEEE Transactions on Image Processing. 2012;21:4636-4648

[40] Deng X, Liu X, Song M, Cheng J, Bu J, Chen C. LF-EME: Local features with elastic
manifold embedding for human action recognition. Neurocomputing. 2013;99:144-153

[41] Yu J, Liu D, Tao D, Seah HS. Complex object correspondence construction in two-
dimensional animation. IEEE Transactions on Image Processing. 2011;20:3257-3269

[42] Donoho DL. For most large underdetermined systems of equations, the minimal l1-norm
near-solution approximates the sparsest near-solution. Communications on Pure and
Applied Mathematics. 2006;59:907-934

[43] Candès EJ. The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique. 2008;346:589-592

[44] Candès EJ, Compressive sampling. In: Proceedings of the International Congress of Math-
ematicians; 22-30 August 2006: Invited Lectures; Madrid. 2006. pp. 1433-1452

[45] Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing. 1998;20:33-61

[46] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society. Series B (Methodological). 1996:267-288

[47] Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology). 2005;67:301-320

[48] Zhou T, Tao D. Double shrinking for sparse dimension reduction. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 2013;35:92-104

[49] Zhou T, Tao D, Godec: Randomized low-rank & sparse matrix decomposition in noisy
case. In: Proceedings of the 28th International Conference onMachine Learning (ICML-11);
2011. pp. 33-40

[50] Zhou T, Tao D, Wu X. Manifold elastic net: A unified framework for sparse dimension
reduction. Data Mining and Knowledge Discovery. 2011;22:340-371

[51] Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D. Graph regularized sparse coding
for image representation. IEEE Transactions on Image Processing. 2011;20:1327-1336

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

173

[22] Guan N, Tao D, Luo Z, Shawe-Taylor J, MahNMF. Manhattan Non-Negative Matrix
Factorization, arXiv preprint arXiv:1207.3438;2012

[23] Kim D, Sra S, Dhillon IS. Fast Newton-type methods for the least squares nonnegative
matrix approximation problem. In: SIAM International Conference on Data Mining; 2007

[24] Guan N, Tao D, Luo Z, Yuan B. Online nonnegative matrix factorization with robust
stochastic approximation. IEEE Transactions on Neural Networks and Learning Systems.
2012;23:1087-1099

[25] SunM, Hamme HV. Large scale graph regularized non-negative matrix factorization with
l1 normalization based on Kullback–Leibler divergence. IEEE Transaction on Signal
Processing. 2012;60:3876-3880

[26] Hoyer PO. Non-negative matrix factorization with sparseness constraints. The Journal of
Machine Learning Research. 2004;5:1457-1469

[27] Esser E, Moller M, Osher S, Sapiro G, Xin J. A convex model for nonnegative matrix
factorization and dimensionality reduction on physical space. IEEE Transactions on Image
Processing. 2012;21:3239-3252

[28] Zafeiriou S, Tefas A, Buciu I, Pitas I. Exploiting discriminant information in nonnegative
matrix factorization with application to frontal face verification. IEEE Transactions on
Neural Networks. 2006;17:683-695

[29] Cai D, He X, Han WJ, Huang TS. Graph regularized nonnegative matrix factorization for
data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2011;33:1548-1560

[30] Guan N, Tao D, Luo Z, Yuan B. Manifold regularized discriminative nonnegative matrix
factorization with fast gradient descent. IEEE Transactions on Image Processing. 2011;20:
2030-2048

[31] Liu H, Wu Z, Li X, Cai D, Huang TS. Constrained nonnegative matrix factorization for
image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2012;34:1299-1311

[32] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding.
Science. 2000;290:2323-2326

[33] Luo Y, Tao D, Geng B, Xu C, Maybank S. Manifold regularized multi-task learning for
semi-supervised multi-label image classification. 2013;22:523-536

[34] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. The Journal of Machine Learning Research.
2006;7:2399-2434

[35] Gao S, Tsang I, Chia L. Laplacian sparse coding, hypergraph laplacian sparse coding, and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013;35:
92-104

Recent Applications in Data Clustering172

[36] Zhou Y, Barner K. Locality constrained dictionary learning for nonlinear dimensionality
reduction. IEEE Signal Processing Letters. 2012;20:335-338

[37] Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y. Locality-constrained linear coding for image
classification, computer vision and pattern recognition (CVPR). In: 2010 IEEE Conference
on, (IEEE, 2010); pp. 3360-3367

[38] Yu J, Tao D, Wang M. Adaptive hypergraph learning and its application in image classifi-
cation. IEEE Transactions on Image Processing. 2012;21:3262-3272

[39] Yu J, Wang M, Tao D. Semi-supervised multiview distance metric learning for cartoon
synthesis. IEEE Transactions on Image Processing. 2012;21:4636-4648

[40] Deng X, Liu X, Song M, Cheng J, Bu J, Chen C. LF-EME: Local features with elastic
manifold embedding for human action recognition. Neurocomputing. 2013;99:144-153

[41] Yu J, Liu D, Tao D, Seah HS. Complex object correspondence construction in two-
dimensional animation. IEEE Transactions on Image Processing. 2011;20:3257-3269

[42] Donoho DL. For most large underdetermined systems of equations, the minimal l1-norm
near-solution approximates the sparsest near-solution. Communications on Pure and
Applied Mathematics. 2006;59:907-934

[43] Candès EJ. The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique. 2008;346:589-592

[44] Candès EJ, Compressive sampling. In: Proceedings of the International Congress of Math-
ematicians; 22-30 August 2006: Invited Lectures; Madrid. 2006. pp. 1433-1452

[45] Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing. 1998;20:33-61

[46] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society. Series B (Methodological). 1996:267-288

[47] Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology). 2005;67:301-320

[48] Zhou T, Tao D. Double shrinking for sparse dimension reduction. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 2013;35:92-104

[49] Zhou T, Tao D, Godec: Randomized low-rank & sparse matrix decomposition in noisy
case. In: Proceedings of the 28th International Conference onMachine Learning (ICML-11);
2011. pp. 33-40

[50] Zhou T, Tao D, Wu X. Manifold elastic net: A unified framework for sparse dimension
reduction. Data Mining and Knowledge Discovery. 2011;22:340-371

[51] Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D. Graph regularized sparse coding
for image representation. IEEE Transactions on Image Processing. 2011;20:1327-1336

Robust Spectral Clustering via Sparse Representation
http://dx.doi.org/10.5772/intechopen.76586

173

[52] Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009;31:
210-227

[53] Li C, Guo J, Zhang H. Local sparse representation based classification. In: Pattern Recog-
nition (ICPR), 2010 20th International Conference on, (IEEE, 2010); pp. 649-652

[54] Gao S, Tsang IW, Chia L. Kernel sparse representation for image classification and face
recognition. In: Computer Vision–ECCV 2010. Berlin, Germany: Springer; 2010. pp. 1-14

[55] Elhamifar E, Vidal R. Sparse subspace clustering. In: Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009); pp. 2790-2797

[56] Jiao J, Mo X, Shen C. Image clustering via sparse representation. In: Advances in Multi-
media Modeling. Springer; 2010. pp. 761-766

[57] Gao Y, Choudhary A, Hua G. A nonnegative sparsity induced similarity measure with
application to cluster analysis of spam images. In: Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, (IEEE, 2010); pp. 5594-5597

[58] Yan S, Wang H. Semi-supervised learning by sparse representation. In: SIAM Interna-
tional Conference on Data Mining; 2009. pp. 792-801

[59] Cheng H, Liu Z, Yang J. Sparsity induced similarity measure for label propagation. In:
Computer Vision, 2009 IEEE 12th International Conference on, (IEEE, 2009); pp. 317-324

[60] UCI Data Sets. http://archive.ics.uci.edu/ml/datasets/ [Accessed: November 10, 2012]

[61] Georghiades A. Yale Face. 2013. http://cvc.yale.edu/projects/yalefaces/yalefaces.html

[62] Georghiades A, Belhumeur P, Kriegman D, Yale Face_B. 2013. http://cvc.yale.edu/pro-
jects/yalefacesB/yalefacesB.html

[63] ORL Face. AT&T Lab Cambridge. 2013. http://www.face-rec.org/databases/

[64] Koh K, Kim SJ, Boyd S, l1_ls_matlab. 2013. http://www.stanford.edu/~boyd/l1_ls/l1_ls_
matlab.zip

[65] Hartigan JA,WongMA. AlgorithmAS 136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics). 1979;28:100-108

[66] Huang Z. Extensions to the k-means algorithm for clustering large data sets with categor-
ical values. Data Mining and Knowledge Discovery. 1998;2:283-304

[67] Jing L, Ng MK, Huang JZ. An entropy weighting k-means algorithm for subspace cluster-
ing of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engi-
neering. 2007;19:1026-1041

[68] Deng Z, Choi K, Chung F, Wang S. EEW-SC, enhanced entropy-weighting subspace
clustering for high dimensional gene expression data clustering analysis. Applied Soft
Computing. 2011;11:4798-4806

Recent Applications in Data Clustering174

Chapter 10

Performance Assessment of Unsupervised Clustering
Algorithms Combined MDL Index

Hadeel K. Aljobouri, Hussain A. Jaber and
Ilyas Çankaya

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74506

Provisional chapter

DOI: 10.5772/intechopen.74506

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Performance Assessment of Unsupervised Clustering
Algorithms Combined MDL Index

Hadeel K. Aljobouri, Hussain A. Jaber and
Ilyas Çankaya

Additional information is available at the end of the chapter

Abstract

Best clustering analysis should be resisting the presence of outliers and be less sensi-
tive to initialization as well as the input sequence ordering. This chapter compares the
performance among three of the unsupervised clustering algorithms: neural gas (NG),
growing neural gas (GNG), and robust growing neural gas (RGNG). A complete expla-
nation of NG and GNG algorithms is presented in the next comparison with RGNG.
Another comparison due to the minimum description length (MDL) criterion between
RGNG used MDL value as the clustering validity index versus GNG and NG combined
with MDL. Statistical estimations are applied to explain the meaning of the output results
when these algorithms are fed to the synthetic 2D dataset. The techniques introduced
in this chapter are designed and implemented in a simple software package using a
MATLAB-based graphical user interface (GUI) tool, which allows users to interact with
the clustering techniques and output data easily.

Keywords: clustering techniques, graphical user interface (GUI), growing neural gas
(GNG), neural gas (NG), robust growing neural gas (RGNG)

1. Introduction

Cluster analysis [1] is a robust tool for exploring the underlining structures in data and group-
ing them with similar objects called clusters. Cluster analysis found applications in different
fields ranging from the main task of data mining applications [2] such as scientific data explo-
ration, spatial database applications, web analysis, marketing, medical diagnostics, computa-
tional biology, etc., to statistical data analysis that is used in many fields including machine

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[52] Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009;31:
210-227

[53] Li C, Guo J, Zhang H. Local sparse representation based classification. In: Pattern Recog-
nition (ICPR), 2010 20th International Conference on, (IEEE, 2010); pp. 649-652

[54] Gao S, Tsang IW, Chia L. Kernel sparse representation for image classification and face
recognition. In: Computer Vision–ECCV 2010. Berlin, Germany: Springer; 2010. pp. 1-14

[55] Elhamifar E, Vidal R. Sparse subspace clustering. In: Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009); pp. 2790-2797

[56] Jiao J, Mo X, Shen C. Image clustering via sparse representation. In: Advances in Multi-
media Modeling. Springer; 2010. pp. 761-766

[57] Gao Y, Choudhary A, Hua G. A nonnegative sparsity induced similarity measure with
application to cluster analysis of spam images. In: Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, (IEEE, 2010); pp. 5594-5597

[58] Yan S, Wang H. Semi-supervised learning by sparse representation. In: SIAM Interna-
tional Conference on Data Mining; 2009. pp. 792-801

[59] Cheng H, Liu Z, Yang J. Sparsity induced similarity measure for label propagation. In:
Computer Vision, 2009 IEEE 12th International Conference on, (IEEE, 2009); pp. 317-324

[60] UCI Data Sets. http://archive.ics.uci.edu/ml/datasets/ [Accessed: November 10, 2012]

[61] Georghiades A. Yale Face. 2013. http://cvc.yale.edu/projects/yalefaces/yalefaces.html

[62] Georghiades A, Belhumeur P, Kriegman D, Yale Face_B. 2013. http://cvc.yale.edu/pro-
jects/yalefacesB/yalefacesB.html

[63] ORL Face. AT&T Lab Cambridge. 2013. http://www.face-rec.org/databases/

[64] Koh K, Kim SJ, Boyd S, l1_ls_matlab. 2013. http://www.stanford.edu/~boyd/l1_ls/l1_ls_
matlab.zip

[65] Hartigan JA,WongMA. AlgorithmAS 136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics). 1979;28:100-108

[66] Huang Z. Extensions to the k-means algorithm for clustering large data sets with categor-
ical values. Data Mining and Knowledge Discovery. 1998;2:283-304

[67] Jing L, Ng MK, Huang JZ. An entropy weighting k-means algorithm for subspace cluster-
ing of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engi-
neering. 2007;19:1026-1041

[68] Deng Z, Choi K, Chung F, Wang S. EEW-SC, enhanced entropy-weighting subspace
clustering for high dimensional gene expression data clustering analysis. Applied Soft
Computing. 2011;11:4798-4806

Recent Applications in Data Clustering174

Chapter 10

Performance Assessment of Unsupervised Clustering
Algorithms Combined MDL Index

Hadeel K. Aljobouri, Hussain A. Jaber and
Ilyas Çankaya

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74506

Provisional chapter

DOI: 10.5772/intechopen.74506

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Performance Assessment of Unsupervised Clustering
Algorithms Combined MDL Index

Hadeel K. Aljobouri, Hussain A. Jaber and
Ilyas Çankaya

Additional information is available at the end of the chapter

Abstract

Best clustering analysis should be resisting the presence of outliers and be less sensi-
tive to initialization as well as the input sequence ordering. This chapter compares the
performance among three of the unsupervised clustering algorithms: neural gas (NG),
growing neural gas (GNG), and robust growing neural gas (RGNG). A complete expla-
nation of NG and GNG algorithms is presented in the next comparison with RGNG.
Another comparison due to the minimum description length (MDL) criterion between
RGNG used MDL value as the clustering validity index versus GNG and NG combined
with MDL. Statistical estimations are applied to explain the meaning of the output results
when these algorithms are fed to the synthetic 2D dataset. The techniques introduced
in this chapter are designed and implemented in a simple software package using a
MATLAB-based graphical user interface (GUI) tool, which allows users to interact with
the clustering techniques and output data easily.

Keywords: clustering techniques, graphical user interface (GUI), growing neural gas
(GNG), neural gas (NG), robust growing neural gas (RGNG)

1. Introduction

Cluster analysis [1] is a robust tool for exploring the underlining structures in data and group-
ing them with similar objects called clusters. Cluster analysis found applications in different
fields ranging from the main task of data mining applications [2] such as scientific data explo-
ration, spatial database applications, web analysis, marketing, medical diagnostics, computa-
tional biology, etc., to statistical data analysis that is used in many fields including machine

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

learning, pattern recognition [3], image analysis [4], information retrieval [5], and bioinformat-
ics [6]. There are different algorithms related to neural networks; the most popular are K-means,
the self-organizing map (SOM), neural gas (NG), and growing neural gas (GNG) [7, 8].

The goal of this work is to present a comparison among neural gas (NG), growing neural
gas (GNG), and robust growing neural gas (RGNG) approaches that are related to neural
networks, as well as design a new simulation tool for the purpose of education and scien-
tific research using unsupervised learning methods. Due to the difficulty in introducing these
algorithms in literature, the three techniques have been presented using a simple graphical
user interface (GUI) model. Alziarjawey et al. [9] introduced an application of Matlab GUI
in the medical field using the ECG signal for heart rate monitoring and PQRST detection.
They introduced another application by developing a software package based on GUI, which
consists of two modules using many important methods derived from linear algebra [10].
Aljobouri et al. [11] designed an educational tool for biosignal processing and medical imag-
ing using a GUI package. The user friendly package explained in this work can be used easily
by: choosing any method, changing the predefined parameters for each algorithm and com-
paring the results. Hence, it can be used without any programming knowledge. The inter-
ested reader may find more technical details in our previous reports and publications [12, 13].

The current study is organized as follows: Section 2 provides the unsupervised clustering
algorithms. Case studies are described in Section 3. Sections 4 and 5 present the experimental
implementation on the synthetic dataset and clustering package design, respectively. Finally,
Section 6 concludes the paper and introduces future work.

2. Unsupervised clustering algorithms

In this section, a review of the NG, GNG, and RGNG algorithms are presented. Because of the
length and complexity of these algorithms, along with the mathematical model, flowcharts
are designed for the three algorithms in this work in order to make it more understandable
and easier to write the related codes.

2.1. NG algorithm

The NG network algorithm is a simple artificial neural network algorithm for finding optimal
data representations based on reference vectors (prototype vectors). It was first introduced in 1991
[14] and is based on Kohonen’s SOM [15]. Because of the dynamics of the reference vectors during
the adaptation process, this algorithm was called “neural gas” that spread itself as a gas through
the data space. NG is unlike other methods that consider distance as a rank like Euclidean dis-
tance, but it proposes a new way of calculating the influence of distance. Nearer prototypes in NG
algorithm are more affected, but it does not depend directly on the influence of distance.

NG has been successfully applied to clustering [16], speech recognition [17], image processing
[18], vector quantization, pattern recognition, topology representation, etc., [19, 20] especially
where there is a problem arriving at vector quantization or data compression.

Recent Applications in Data Clustering176

It adapts the reference vectors (prototype vectors) “ w
i
 ” without any fixed topological arrange-

ment within the network. NG not just adapts the winner vector for a specific input vector
as a single-layered soft competitive learning neural network, but also updates the residual
reference vectors according to the input vector nearness using a soft-max updating rule [21].
The main advantages of NG network [22] are: (1) lower distortion error than other clustering
algorithms (k-means, maximum-entropy and SOM), (2) faster assemblage due to low distor-
tion errors, (3) submission a stochastic gradient descent on a specific energy surface.

The NG algorithm is represented by the dependence of updating strengths for c reference vec-
tors w

ci
 (i 0 ,  i 1 , … ,  i

N−1
) on their position ranking. If the input vector is presented by x , the definition

of the position ranking (w
i0
 ,  w

i1
 , … ,  w

ik
) of the reference vectors w

ci
 will be:

 w
i0
 is adjacent to x.

 w
i1
 is second adjacent to x

for k = 1, 2, … , N − 1 ; ‖x − w
j
 ‖  <  ‖x − w

ik
 ‖ , where w

ik
 is the reference vector, which has k vectors w

j
 .

 k
i
 (x, w) is the ranking index associated with each weight w

i
 .

The updating step of adjusting w
i
 according to a Hebb-like learning rule is given by:

 ∆  w i  = ε (t)  .  h λ (k i (x, w))  .  (x − w i) , i = 1, 2, … , c (1)

where:

 h (., .) : deterministic function with some regularity condition imposed on it.

 ε (t)  ∈  [0, 1] : the learning rate (step size) that characterize the total range of the variation. This
extent is represented by { ε (t)  =  ε

i
  .  (ε

f
  /  ε

i
) t/ (Max_ter) }, so  Max_iter , so and t denote the maximum number

of repetitions and the repetition step respectively.

 h
λ
 (  k

i
 (v, w)  ∈  [0, 1] : considers the w

i
 within the input extent.

for h
λ
 (k)  ∈  [0, 1] , the exponential form exp (− k / λ) was proposed [22] to obtain the best extensive

result compared to other options like the Gaussian function.

 λ : finds the number of reference vectors that significantly change their positions in the updat-
ing steps and usually individually decrease with the iteration step t as: λ (t)  =  λ

i
  .  (λ

f
  /  λ

i
) t/ (Max_iter) .

The NG algorithm is widely related to the structure of fuzzy clustering methods [23]. So, NG
used the uncertainty of the relationship value (h

λ
 (k

i
 (x, w)))  /  (C  (λ)) to set each input vector “ x ” to

all the reference vectors w
i
 (i = 1, 2, … , c) instead of using u

ij
 (2 ≤ i ≤ c, 1 ≤ j ≤ N) in FCM algorithm.

This algorithm is based on solving a cost function using iterative methods plus the familiar-
ity with linear optimization methods, essentially the gradient descent method and Newton’s
method. Therefore, the NG cost function to optimize [22] is:

 E ng  =  1 _____ 2C (λ)   ∑
i=1

c
 ∫ P (x)   h λ (k i (x, w)) ‖x − w i ‖ 2 (2)

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

177

learning, pattern recognition [3], image analysis [4], information retrieval [5], and bioinformat-
ics [6]. There are different algorithms related to neural networks; the most popular are K-means,
the self-organizing map (SOM), neural gas (NG), and growing neural gas (GNG) [7, 8].

The goal of this work is to present a comparison among neural gas (NG), growing neural
gas (GNG), and robust growing neural gas (RGNG) approaches that are related to neural
networks, as well as design a new simulation tool for the purpose of education and scien-
tific research using unsupervised learning methods. Due to the difficulty in introducing these
algorithms in literature, the three techniques have been presented using a simple graphical
user interface (GUI) model. Alziarjawey et al. [9] introduced an application of Matlab GUI
in the medical field using the ECG signal for heart rate monitoring and PQRST detection.
They introduced another application by developing a software package based on GUI, which
consists of two modules using many important methods derived from linear algebra [10].
Aljobouri et al. [11] designed an educational tool for biosignal processing and medical imag-
ing using a GUI package. The user friendly package explained in this work can be used easily
by: choosing any method, changing the predefined parameters for each algorithm and com-
paring the results. Hence, it can be used without any programming knowledge. The inter-
ested reader may find more technical details in our previous reports and publications [12, 13].

The current study is organized as follows: Section 2 provides the unsupervised clustering
algorithms. Case studies are described in Section 3. Sections 4 and 5 present the experimental
implementation on the synthetic dataset and clustering package design, respectively. Finally,
Section 6 concludes the paper and introduces future work.

2. Unsupervised clustering algorithms

In this section, a review of the NG, GNG, and RGNG algorithms are presented. Because of the
length and complexity of these algorithms, along with the mathematical model, flowcharts
are designed for the three algorithms in this work in order to make it more understandable
and easier to write the related codes.

2.1. NG algorithm

The NG network algorithm is a simple artificial neural network algorithm for finding optimal
data representations based on reference vectors (prototype vectors). It was first introduced in 1991
[14] and is based on Kohonen’s SOM [15]. Because of the dynamics of the reference vectors during
the adaptation process, this algorithm was called “neural gas” that spread itself as a gas through
the data space. NG is unlike other methods that consider distance as a rank like Euclidean dis-
tance, but it proposes a new way of calculating the influence of distance. Nearer prototypes in NG
algorithm are more affected, but it does not depend directly on the influence of distance.

NG has been successfully applied to clustering [16], speech recognition [17], image processing
[18], vector quantization, pattern recognition, topology representation, etc., [19, 20] especially
where there is a problem arriving at vector quantization or data compression.

Recent Applications in Data Clustering176

It adapts the reference vectors (prototype vectors) “ w
i
 ” without any fixed topological arrange-

ment within the network. NG not just adapts the winner vector for a specific input vector
as a single-layered soft competitive learning neural network, but also updates the residual
reference vectors according to the input vector nearness using a soft-max updating rule [21].
The main advantages of NG network [22] are: (1) lower distortion error than other clustering
algorithms (k-means, maximum-entropy and SOM), (2) faster assemblage due to low distor-
tion errors, (3) submission a stochastic gradient descent on a specific energy surface.

The NG algorithm is represented by the dependence of updating strengths for c reference vec-
tors w

ci
 (i 0 ,  i 1 , … ,  i

N−1
) on their position ranking. If the input vector is presented by x , the definition

of the position ranking (w
i0
 ,  w

i1
 , … ,  w

ik
) of the reference vectors w

ci
 will be:

 w
i0
 is adjacent to x.

 w
i1
 is second adjacent to x

for k = 1, 2, … , N − 1 ; ‖x − w
j
 ‖  <  ‖x − w

ik
 ‖ , where w

ik
 is the reference vector, which has k vectors w

j
 .

 k
i
 (x, w) is the ranking index associated with each weight w

i
 .

The updating step of adjusting w
i
 according to a Hebb-like learning rule is given by:

 ∆  w i  = ε (t)  .  h λ (k i (x, w))  .  (x − w i) , i = 1, 2, … , c (1)

where:

 h (., .) : deterministic function with some regularity condition imposed on it.

 ε (t)  ∈  [0, 1] : the learning rate (step size) that characterize the total range of the variation. This
extent is represented by { ε (t)  =  ε

i
  .  (ε

f
  /  ε

i
) t/ (Max_ter) }, so  Max_iter , so and t denote the maximum number

of repetitions and the repetition step respectively.

 h
λ
 (  k

i
 (v, w)  ∈  [0, 1] : considers the w

i
 within the input extent.

for h
λ
 (k)  ∈  [0, 1] , the exponential form exp (− k / λ) was proposed [22] to obtain the best extensive

result compared to other options like the Gaussian function.

 λ : finds the number of reference vectors that significantly change their positions in the updat-
ing steps and usually individually decrease with the iteration step t as: λ (t)  =  λ

i
  .  (λ

f
  /  λ

i
) t/ (Max_iter) .

The NG algorithm is widely related to the structure of fuzzy clustering methods [23]. So, NG
used the uncertainty of the relationship value (h

λ
 (k

i
 (x, w)))  /  (C  (λ)) to set each input vector “ x ” to

all the reference vectors w
i
 (i = 1, 2, … , c) instead of using u

ij
 (2 ≤ i ≤ c, 1 ≤ j ≤ N) in FCM algorithm.

This algorithm is based on solving a cost function using iterative methods plus the familiar-
ity with linear optimization methods, essentially the gradient descent method and Newton’s
method. Therefore, the NG cost function to optimize [22] is:

 E ng  =  1 _____ 2C (λ)   ∑
i=1

c
 ∫ P (x)   h λ (k i (x, w)) ‖x − w i ‖ 2 (2)

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

177

with

 C (λ)  =  ∑
i=1

c
   h λ (k i)  =  ∑

k=0

c−1
   h λ (k) (3)

Martinetz et al. [22, 26] introduced this cost function and proved that the updating in the
Hebb-like learning rule can be derived by a stochastic gradient descent on this function. By
starting with a large value of λ and reducing it slowly, a good reference vector can be obtained.

Due to the sequential learning scheme in NG algorithms and the use of the neighborhood
dealing rule, NG became less sensitive to various initializations due to the sequential learn-
ing scheme and use of neighborhood cooperation rule with comparison to other clustering
algorithms like k-means and FCM.

Before feeding the NG algorithm, there are some parameters that have to be defined:

 N : maximal number of neurons

 ε
i
 ,  ε

f
 : step size

 λ
i
 ,  λ

f
 : decay constant

 T
i
 ,  T

f
 : life-time

 t
max

 = Max_iter = (maximal number of iterations)

Figure 1 shows the flowchart of the NG algorithm. Although the NG model has many advan-
tages as mentioned earlier, it also has some limitations. It depends on decaying parameters
that change over time; it is incapable of finding a network size and structure automatically and
continue learning. Hence, based on the NG algorithm, the GNG algorithm was introduced by
Fritzke [24, 25], which has an advantage over NG algorithms through its ability to modify
the network topology by removing edges with its age variable. Moreover, during the growth
process associated with the neighborhood updating rule, there is no need for the neighbor-
hood sorting step [24, 25]. It has the ability to find a network size and structure automatically,
and continue learning, adding units and connections, until a performance criterion is fulfilled.

2.2. GNG algorithm

In the GNG algorithm, Fritzke [24, 27] proposed changing the unit numbers (mostly increased)
during SOM network with a variable topological structure [24, 25]. This growth mechanism is
combined with topology formation rules using the competitive Hebbian learning (CHL) [26]
and the earlier proposed growing mechanism inherited from the growing cell structures [27]
to form a new model.

The GNG algorithm needs only constant parameters; it is not required to set the amount of
prototypes. The main idea behind the GNG is to start with a minimal network size and insert
a few new neurons and connections respectively in a growing structure by using a vector
quantization until the desired characteristics of the model is fulfilled (e.g., net size, time limit,
predefined number of neurons inserted, quality or some performance measure). To determine
where to insert new units, local error measures are gathered during the adaptation process.

Recent Applications in Data Clustering178

Each new unit is inserted near the unit that has accumulated the highest error, and a con-
nection between the winner and the second nearest neuron is formed using the competitive
Hebbian learning algorithm.

Before feeding the GNG algorithm, there are some parameters that have to be defined:

 N : maximal number of neurons

 ε
b
 ,  ε

n
 : constant learning rate for the winner and its topological neighbors, respectively

Figure 1. The flowchart of an NG algorithm.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

179

with

 C (λ)  =  ∑
i=1

c
   h λ (k i)  =  ∑

k=0

c−1
   h λ (k) (3)

Martinetz et al. [22, 26] introduced this cost function and proved that the updating in the
Hebb-like learning rule can be derived by a stochastic gradient descent on this function. By
starting with a large value of λ and reducing it slowly, a good reference vector can be obtained.

Due to the sequential learning scheme in NG algorithms and the use of the neighborhood
dealing rule, NG became less sensitive to various initializations due to the sequential learn-
ing scheme and use of neighborhood cooperation rule with comparison to other clustering
algorithms like k-means and FCM.

Before feeding the NG algorithm, there are some parameters that have to be defined:

 N : maximal number of neurons

 ε
i
 ,  ε

f
 : step size

 λ
i
 ,  λ

f
 : decay constant

 T
i
 ,  T

f
 : life-time

 t
max

 = Max_iter = (maximal number of iterations)

Figure 1 shows the flowchart of the NG algorithm. Although the NG model has many advan-
tages as mentioned earlier, it also has some limitations. It depends on decaying parameters
that change over time; it is incapable of finding a network size and structure automatically and
continue learning. Hence, based on the NG algorithm, the GNG algorithm was introduced by
Fritzke [24, 25], which has an advantage over NG algorithms through its ability to modify
the network topology by removing edges with its age variable. Moreover, during the growth
process associated with the neighborhood updating rule, there is no need for the neighbor-
hood sorting step [24, 25]. It has the ability to find a network size and structure automatically,
and continue learning, adding units and connections, until a performance criterion is fulfilled.

2.2. GNG algorithm

In the GNG algorithm, Fritzke [24, 27] proposed changing the unit numbers (mostly increased)
during SOM network with a variable topological structure [24, 25]. This growth mechanism is
combined with topology formation rules using the competitive Hebbian learning (CHL) [26]
and the earlier proposed growing mechanism inherited from the growing cell structures [27]
to form a new model.

The GNG algorithm needs only constant parameters; it is not required to set the amount of
prototypes. The main idea behind the GNG is to start with a minimal network size and insert
a few new neurons and connections respectively in a growing structure by using a vector
quantization until the desired characteristics of the model is fulfilled (e.g., net size, time limit,
predefined number of neurons inserted, quality or some performance measure). To determine
where to insert new units, local error measures are gathered during the adaptation process.

Recent Applications in Data Clustering178

Each new unit is inserted near the unit that has accumulated the highest error, and a con-
nection between the winner and the second nearest neuron is formed using the competitive
Hebbian learning algorithm.

Before feeding the GNG algorithm, there are some parameters that have to be defined:

 N : maximal number of neurons

 ε
b
 ,  ε

n
 : constant learning rate for the winner and its topological neighbors, respectively

Figure 1. The flowchart of an NG algorithm.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

179

 λ : iteration number

 α : reduction of error counter by inserting a new neuron

 β : value that will reduce the overall value of the error counter every iteration step

 Max_iter :: maximal number of iterations

Each reference vector w
i
 , i = 1, 2, … , c , has a set of edges emanating from it. It is defined to con-

nect with its direct topological neighbors. The GNG algorithm starts by initializing a few
prototype vectors (usually two) W =  { w

1
 ,  w

2
 } with reference vectors that are chosen randomly.

New prototype vectors are successively inserted. The learning rates ε
b
 ,  ε

n
 are used in the train-

ing procedure and a connection is formed C , C ⊂ w × w , to the empty set: C = ∅ .

The pre-specified maximum number of prototypes or neurons is set to grow as pre_numnode ;
and the maximum predefined training epoch Max_iter is set during each growth stage with the
largest local accumulated error measure. The data set used for training is  X =  { x

1
 ,  x

2
 , … ,  x

N
 } . Then,

the initial training epoch number is set as m = 0 and the iteration step in the training epoch
m is set as : t = 0 .

Figure 2 presents the flowchart of the GNG algorithm. This figure shows that nonfunctional
prototypes that do not win over long time intervals may be detected by tracing the changes
of an age variable associated with each edge. Hence, the GNG algorithm has an advantage
against the NG algorithm through its ability to modify the network topology by removing
edges with their age variable (not being refreshed for a time interval α_max) and the resul-
tant nonfunctional prototypes. In the GNG algorithm, the growth process associated with
the neighborhood updating rule used is somewhat similar to the neighborhood, decreasing
procedure in NG. However, unlike the NG algorithm, there is no need for the neighborhood
sorting step.

2.3. RGNG algorithm

Any robust algorithm should have the following features [28]:

1. It should achieve a good precision for the given model.

2. The performance of the given model may have few deviations from the assumptions made,
but these deviations should not weaken the performance, except by a small degree.

3. The presence of large deviations from the model assumptions should not cause disaster.

If classical clustering methods are to be used as prototype based clustering algorithms, the
major robustness problems are the sensitivity to initialization, the order of input vectors, and
existence of many outliers, but each well executed regarding condition 1. Due to the growth
scheme associated with the GNG algorithm, the algorithm faces the “dead nodes” problem.
This occurs due to inappropriate initializations that led to some prototypes that may never
win through the training process.

Recent Applications in Data Clustering180

Figure 2. The flowchart of the GNG algorithm.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

181

 λ : iteration number

 α : reduction of error counter by inserting a new neuron

 β : value that will reduce the overall value of the error counter every iteration step

 Max_iter :: maximal number of iterations

Each reference vector w
i
 , i = 1, 2, … , c , has a set of edges emanating from it. It is defined to con-

nect with its direct topological neighbors. The GNG algorithm starts by initializing a few
prototype vectors (usually two) W =  { w

1
 ,  w

2
 } with reference vectors that are chosen randomly.

New prototype vectors are successively inserted. The learning rates ε
b
 ,  ε

n
 are used in the train-

ing procedure and a connection is formed C , C ⊂ w × w , to the empty set: C = ∅ .

The pre-specified maximum number of prototypes or neurons is set to grow as pre_numnode ;
and the maximum predefined training epoch Max_iter is set during each growth stage with the
largest local accumulated error measure. The data set used for training is  X =  { x

1
 ,  x

2
 , … ,  x

N
 } . Then,

the initial training epoch number is set as m = 0 and the iteration step in the training epoch
m is set as : t = 0 .

Figure 2 presents the flowchart of the GNG algorithm. This figure shows that nonfunctional
prototypes that do not win over long time intervals may be detected by tracing the changes
of an age variable associated with each edge. Hence, the GNG algorithm has an advantage
against the NG algorithm through its ability to modify the network topology by removing
edges with their age variable (not being refreshed for a time interval α_max) and the resul-
tant nonfunctional prototypes. In the GNG algorithm, the growth process associated with
the neighborhood updating rule used is somewhat similar to the neighborhood, decreasing
procedure in NG. However, unlike the NG algorithm, there is no need for the neighborhood
sorting step.

2.3. RGNG algorithm

Any robust algorithm should have the following features [28]:

1. It should achieve a good precision for the given model.

2. The performance of the given model may have few deviations from the assumptions made,
but these deviations should not weaken the performance, except by a small degree.

3. The presence of large deviations from the model assumptions should not cause disaster.

If classical clustering methods are to be used as prototype based clustering algorithms, the
major robustness problems are the sensitivity to initialization, the order of input vectors, and
existence of many outliers, but each well executed regarding condition 1. Due to the growth
scheme associated with the GNG algorithm, the algorithm faces the “dead nodes” problem.
This occurs due to inappropriate initializations that led to some prototypes that may never
win through the training process.

Recent Applications in Data Clustering180

Figure 2. The flowchart of the GNG algorithm.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

181

Even with initialization-insensitive clustering methods, good clustering results may not be
obtained if the order of the input sequence is not chosen properly.

Even with the initialization insensitive clustering methods, good clustering results may not be
obtained if the order of the input sequence is not chosen properly. As well as the introduced
problem gets along with the sensitivity for initialization and the order of input vectors, there
also another problem attributable to the existence of many outliers. This implies the GNG
network may fail to differentiate the outliers from the inliers through the original prototype
updating rule when many of outliers exist in a data set. These outliers can be regarded as
input vectors that different from data points belonging to the ordinary clusters (inliers).

For these limitations of the GNG algorithm, a novel robust clustering algorithm was proposed
[29] within the GNG structure, namely the robust growing neural gas (RGNG) network.
RGNG possesses better robustness than the original GNG algorithm because of its succes-
sion properties. It also incorporates with it several robust strategies, such as outlier resistant
scheme, adaptive modulation of learning rates, and cluster repulsion method.

Therefore, compared to the GNG network, the RGNG network is insensitive to initialization,
input sequence ordering, the presence of outliers, and determination of the optimal number
of clusters. The minimum description length (MDL) value was used with RGNG as the clus-
tering validity index [30, 31]. The MDL value is used to find the optimal number of clusters
and their center positions corresponding to the smallest MDL. This determined automatically
the optimal number of clusters by searching the extreme value of the MDL measure through
the network growing process.

Before feeding the RGNG algorithm, there are some parameters that have to be defined:

 N : maximal number of neurons

 ε
b
 l : learning rate of the winner

 ε
n
 l : learning rate of its topological neighbors

 ε
bf
 l ,  ε

bi
 l ,  ε

nf
 l ,  ε

ni
 l : initial and final values of ε

b
 l and ε

n
 l

 α
max

 : maximal age of a connection

 β : mobility of the winner’s neighborhood toward the input vector

 k , η : parameters used to determine the MDL value

 Max_iter : maximal number of iterations

The maximum number of nodes may be set to increase the pre_numnode and Max_iter and dur-
ing each step with a defined number of nodes. The initial training epoch number (m = 0) and
the iteration stage in training epoch m at  t = 0 may also be set. Hence, the total iteration step
iter during each increasing step is iter = m . N + t , where N is an actual number of the neuron. The
dataset used for training is X =  { x

1
 ,  x

2
 , … ,  x

N
 } .

Figure 3 presents the flowchart of the RGNG algorithm.

Recent Applications in Data Clustering182

Figure 3. The flowchart of the RGNG algorithm.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

183

Even with initialization-insensitive clustering methods, good clustering results may not be
obtained if the order of the input sequence is not chosen properly.

Even with the initialization insensitive clustering methods, good clustering results may not be
obtained if the order of the input sequence is not chosen properly. As well as the introduced
problem gets along with the sensitivity for initialization and the order of input vectors, there
also another problem attributable to the existence of many outliers. This implies the GNG
network may fail to differentiate the outliers from the inliers through the original prototype
updating rule when many of outliers exist in a data set. These outliers can be regarded as
input vectors that different from data points belonging to the ordinary clusters (inliers).

For these limitations of the GNG algorithm, a novel robust clustering algorithm was proposed
[29] within the GNG structure, namely the robust growing neural gas (RGNG) network.
RGNG possesses better robustness than the original GNG algorithm because of its succes-
sion properties. It also incorporates with it several robust strategies, such as outlier resistant
scheme, adaptive modulation of learning rates, and cluster repulsion method.

Therefore, compared to the GNG network, the RGNG network is insensitive to initialization,
input sequence ordering, the presence of outliers, and determination of the optimal number
of clusters. The minimum description length (MDL) value was used with RGNG as the clus-
tering validity index [30, 31]. The MDL value is used to find the optimal number of clusters
and their center positions corresponding to the smallest MDL. This determined automatically
the optimal number of clusters by searching the extreme value of the MDL measure through
the network growing process.

Before feeding the RGNG algorithm, there are some parameters that have to be defined:

 N : maximal number of neurons

 ε
b
 l : learning rate of the winner

 ε
n
 l : learning rate of its topological neighbors

 ε
bf
 l ,  ε

bi
 l ,  ε

nf
 l ,  ε

ni
 l : initial and final values of ε

b
 l and ε

n
 l

 α
max

 : maximal age of a connection

 β : mobility of the winner’s neighborhood toward the input vector

 k , η : parameters used to determine the MDL value

 Max_iter : maximal number of iterations

The maximum number of nodes may be set to increase the pre_numnode and Max_iter and dur-
ing each step with a defined number of nodes. The initial training epoch number (m = 0) and
the iteration stage in training epoch m at  t = 0 may also be set. Hence, the total iteration step
iter during each increasing step is iter = m . N + t , where N is an actual number of the neuron. The
dataset used for training is X =  { x

1
 ,  x

2
 , … ,  x

N
 } .

Figure 3 presents the flowchart of the RGNG algorithm.

Recent Applications in Data Clustering182

Figure 3. The flowchart of the RGNG algorithm.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

183

3. Case studies

In the presented work, the performance of the NG, GNG, and RGNG algorithms on synthetic
data are described. The cases studies are carried out to compare the performance of the three
approaches. The experimental results on a public synthetic dataset are presented in the next
section. Comparison of different neural networks and the need for such performance param-
eters using statistical evaluations has been recently highlighted by a number of researchers.

There are four parameters that are used in this work to evaluate the performance of the pro-
posed clustering technique. These performance measures are: classification rate (CR), average
partition quality (PQ), minimum cluster number (MCN), and mean square error (MSE). A
robust clustering technique should be less sensitive to parameter configurations and give bet-
ter performance under the same parameter settings in all experiments.

In the following experiments, the parameters are fixed for each technique with typical values
suggested in literature. The RGNG technique was set with the typical values provided by Qin
and Suganthan [29]: ε

bi
  = 0.1 ,  ε

bf
  = 0.01 ,  ε

ni
  = 0.005 ,  ε

nf
  = 0.0005 ,  α

max
  = 100 ,  k = 1.3 ,  η = 1 × 10 −4 . GNG and

NG techniques were set with the typical values provided by Fritzke [24]: ε
b
  = 0.05 ,  ε

n
  = 0.006 , 

 α
max

  = 100 ,  β = 0.0005 ,  λ = 300 for GNG; and ε
i
  = 0.5 ,    ε

f
  = 0.005 ,  λ

i
  = 10 ,  λ

f
  = 0.01 ,  t

max
  = 40000 for NG

network.

Each index of the performance measures is explained in the following sections.

3.1. Classification rate

This index refers to the classification rate (CR) for the whole dataset so that each data point is
classified according to its nearest prototype. CR is based on using a majority voting classifier
[32] by labeling all prototypes using a simple voting mechanism. According to the proposed
technique, the numbers of prototypes are small, so the resulting CR will not be high.

3.2. Partition quality

This index refers to the average partition quality (PQ) measurement, which is averaged over
all the independent runs in the experiments. PQ was defined by Hamerly and Elkan [33], as:

 PQ = 
 ∑
i=1

 n cs

 ∑
j=1

 n ct

 p  (i, j) 2

 ∑
i=1

 n cs

 p  (i) 2
 (4)

where:

 n
cs
 : true number of classes

 m
ct
 : minimum number of clusters found by the technique

 p (i, j) : probability of a point vector in cluster j belonging to the class i

 p (i) : class probability

Recent Applications in Data Clustering184

The number of classes n
cs
 should equal the actual number of clusters if each natural cluster is

assumed to stand for an individual class. The minimum cluster number m
ct
 can be obtained by

running the techniques.

The p (i, j) term represents the frequency based on the probability that a data point is labeled by
clusters i and j . The p (i, j) quality is normalized by the sum of true probabilities; then, squared.
This statistic is related to the rand statistic for comparing partitions [34]. The PQ index is
maximized when the number of clusters m

ct
 is correctly detected and induces the same par-

tition of n
cs
 , i.e., m

ct
  =  n

cs
 , so that all points in each cluster are the same as those in one of the

natural clusters.

3.3. Minimum cluster number

The minimum cluster number (MCN) is the average number of detected clusters by the tech-
niques. The MCN indexes the ability of the techniques to find the underlying natural clusters.
During the training of the techniques and according to the MCN value, only the proposed
RGNG approach can find the actual number of clusters successfully.

During the growing process, this value is defined as the number of natural clusters in which
the algorithm places at least one prototype when the number of prototypes in the network
reaches the actual number of clusters. Cluster numbers detected by NG and GNG during the
growing process deviate from the actual value of clusters when the number of prototypes is
the same as the actual number of clusters.

3.4. Mean square error

Mean square error (MSE) is another criterion used for evaluating the performance of the pro-
posed clustering technique. The MSE value represents the mean distance between the current
nearest prototypes’ positions resulting from the application of the techniques and the actual
cluster centers.

The average MSE value in this experiment is higher for NG and GNG techniques than the
RGNG technique. This indicates that the RGNG approach achieves the best accuracy with the
strongest stability among the three approaches.

4. Experimental results with synthetic data

There are six different types of 2D synthetic datasets [29, 35] which are used in this work.
They are snail, screw, ring, set3, set5, and set25 dataset. Figures 4–6 show the plots of NG,
GNG, and RGNG clustering with three types of 2D synthetic datasets (screw, set5, and snail)
as an example. The number of neurons are selected randomly, N = 7, 10, and 12.

These figures cannot clearly differentiate between each method. Hence, four parameters are
used in this work to evaluate the performance of the proposed clustering techniques: CR, PQ,
MCN, and MSE introduced in the previous section. For the best comparison with RGNG,
MDL criterion is added to NG and GNG techniques. The training results of these techniques

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

185

3. Case studies

In the presented work, the performance of the NG, GNG, and RGNG algorithms on synthetic
data are described. The cases studies are carried out to compare the performance of the three
approaches. The experimental results on a public synthetic dataset are presented in the next
section. Comparison of different neural networks and the need for such performance param-
eters using statistical evaluations has been recently highlighted by a number of researchers.

There are four parameters that are used in this work to evaluate the performance of the pro-
posed clustering technique. These performance measures are: classification rate (CR), average
partition quality (PQ), minimum cluster number (MCN), and mean square error (MSE). A
robust clustering technique should be less sensitive to parameter configurations and give bet-
ter performance under the same parameter settings in all experiments.

In the following experiments, the parameters are fixed for each technique with typical values
suggested in literature. The RGNG technique was set with the typical values provided by Qin
and Suganthan [29]: ε

bi
  = 0.1 ,  ε

bf
  = 0.01 ,  ε

ni
  = 0.005 ,  ε

nf
  = 0.0005 ,  α

max
  = 100 ,  k = 1.3 ,  η = 1 × 10 −4 . GNG and

NG techniques were set with the typical values provided by Fritzke [24]: ε
b
  = 0.05 ,  ε

n
  = 0.006 , 

 α
max

  = 100 ,  β = 0.0005 ,  λ = 300 for GNG; and ε
i
  = 0.5 ,    ε

f
  = 0.005 ,  λ

i
  = 10 ,  λ

f
  = 0.01 ,  t

max
  = 40000 for NG

network.

Each index of the performance measures is explained in the following sections.

3.1. Classification rate

This index refers to the classification rate (CR) for the whole dataset so that each data point is
classified according to its nearest prototype. CR is based on using a majority voting classifier
[32] by labeling all prototypes using a simple voting mechanism. According to the proposed
technique, the numbers of prototypes are small, so the resulting CR will not be high.

3.2. Partition quality

This index refers to the average partition quality (PQ) measurement, which is averaged over
all the independent runs in the experiments. PQ was defined by Hamerly and Elkan [33], as:

 PQ = 
 ∑
i=1

 n cs

 ∑
j=1

 n ct

 p  (i, j) 2

 ∑
i=1

 n cs

 p  (i) 2
 (4)

where:

 n
cs
 : true number of classes

 m
ct
 : minimum number of clusters found by the technique

 p (i, j) : probability of a point vector in cluster j belonging to the class i

 p (i) : class probability

Recent Applications in Data Clustering184

The number of classes n
cs
 should equal the actual number of clusters if each natural cluster is

assumed to stand for an individual class. The minimum cluster number m
ct
 can be obtained by

running the techniques.

The p (i, j) term represents the frequency based on the probability that a data point is labeled by
clusters i and j . The p (i, j) quality is normalized by the sum of true probabilities; then, squared.
This statistic is related to the rand statistic for comparing partitions [34]. The PQ index is
maximized when the number of clusters m

ct
 is correctly detected and induces the same par-

tition of n
cs
 , i.e., m

ct
  =  n

cs
 , so that all points in each cluster are the same as those in one of the

natural clusters.

3.3. Minimum cluster number

The minimum cluster number (MCN) is the average number of detected clusters by the tech-
niques. The MCN indexes the ability of the techniques to find the underlying natural clusters.
During the training of the techniques and according to the MCN value, only the proposed
RGNG approach can find the actual number of clusters successfully.

During the growing process, this value is defined as the number of natural clusters in which
the algorithm places at least one prototype when the number of prototypes in the network
reaches the actual number of clusters. Cluster numbers detected by NG and GNG during the
growing process deviate from the actual value of clusters when the number of prototypes is
the same as the actual number of clusters.

3.4. Mean square error

Mean square error (MSE) is another criterion used for evaluating the performance of the pro-
posed clustering technique. The MSE value represents the mean distance between the current
nearest prototypes’ positions resulting from the application of the techniques and the actual
cluster centers.

The average MSE value in this experiment is higher for NG and GNG techniques than the
RGNG technique. This indicates that the RGNG approach achieves the best accuracy with the
strongest stability among the three approaches.

4. Experimental results with synthetic data

There are six different types of 2D synthetic datasets [29, 35] which are used in this work.
They are snail, screw, ring, set3, set5, and set25 dataset. Figures 4–6 show the plots of NG,
GNG, and RGNG clustering with three types of 2D synthetic datasets (screw, set5, and snail)
as an example. The number of neurons are selected randomly, N = 7, 10, and 12.

These figures cannot clearly differentiate between each method. Hence, four parameters are
used in this work to evaluate the performance of the proposed clustering techniques: CR, PQ,
MCN, and MSE introduced in the previous section. For the best comparison with RGNG,
MDL criterion is added to NG and GNG techniques. The training results of these techniques

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

185

with synthetic data are shown in Table 1, where the number of neurons is chosen randomly
as N = 7, 10, and 12.

According to literature [29, 36], the clustering output results introduced in Table 1 clarified
that RGNG approach is insensitive to different initializations and the presence of outliers. In

Figure 6. Clustering with snail synthetic dataset for N = 12, by running NG, GNG, and RGNG techniques.

Figure 4. Clustering with screw synthetic dataset for N = 7, by running NG, GNG, and RGNG techniques.

Figure 5. Clustering with set5 synthetic dataset for N = 10, by running NG, GNG, and RGNG techniques.

Recent Applications in Data Clustering186

these techniques, the number of neurons used is small, so the CR values registered in the table
are not high. In all the three clustering techniques, the number of neurons was equal to the
actual cluster number. RGNG can effectively locate the actual number of clusters compared to
the other two methods; NG and GNG fail with higher cluster numbers in the synthetic case.

The registered values of the MCN show that the number of detected prototypes or clusters
in the RGNG technique is less than the others; which means that its ability to group data in
actual number of clusters is better than the other two techniques. For example, when N is set
to 10, the MCN value for RGNG is 10, which is less than that for NG and GNG values. The
MCN value for running RGNG is equal to the number of neurons, 10, and has the same rate
when compared with other N values; while the MCN value of running NG and GNG deviated
from the actual cluster number.

Regarding the PQ value, it is noticed that the RGNG approach possesses higher PQ values
than the NG and GNG techniques. For example, when N is set to 12, the PQ value for RGNG
is 0.9807, which is higher than that of NG and GNG values. These high values of PQ indicate
that the RGNG technique has a better partitioning quality with respect to the others, and finds
more representative clusters.

Moreover, the RGNG method can find all the natural clusters during the growing stage
with the correct number of prototypes. Hence, the MSE values are lower, which indicates
that the RGNG technique has better robustness. For example, when N is set to 7, the MSE
value for RGNG is 2.6493e + 004, which is lower than that for NG and GNG values. NG and
GNG techniques may not detect all the actual clusters; hence, they yield higher MSE values.

The MDL value is one of the popular information theory evaluation measures that are used
as clustering validity indexes [37]. The MDL criterion gives the ability of finding the optimal
number of clusters and their center positions, corresponding to the smallest MDL value.

Parameters Number of neurons NG GNG RGNG

CR N = 7 0.8718 0.9686 0.9929

N = 10 0.8514 0.9786 0.9843

N = 12 0.8010 0.9647 0.9759

MCN N = 7 9 8 7

N = 10 12 11 10

N = 12 15 14 12

PQ N = 7 0.8990 0.9465 0.9869

N = 10 0.8531 0.9288 0.9841

N = 12 08279 0.9043 0.9807

MSE N = 7 2.8032e+004 2.7608e+004 2.6493e+004

N = 10 2.7913e+004 2.7378e+004 2.6351e+004

N = 12 2.7703e+004 2.6940e+004 2.6188e+004

Table 1. Clustering results of synthetic data.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

187

with synthetic data are shown in Table 1, where the number of neurons is chosen randomly
as N = 7, 10, and 12.

According to literature [29, 36], the clustering output results introduced in Table 1 clarified
that RGNG approach is insensitive to different initializations and the presence of outliers. In

Figure 6. Clustering with snail synthetic dataset for N = 12, by running NG, GNG, and RGNG techniques.

Figure 4. Clustering with screw synthetic dataset for N = 7, by running NG, GNG, and RGNG techniques.

Figure 5. Clustering with set5 synthetic dataset for N = 10, by running NG, GNG, and RGNG techniques.

Recent Applications in Data Clustering186

these techniques, the number of neurons used is small, so the CR values registered in the table
are not high. In all the three clustering techniques, the number of neurons was equal to the
actual cluster number. RGNG can effectively locate the actual number of clusters compared to
the other two methods; NG and GNG fail with higher cluster numbers in the synthetic case.

The registered values of the MCN show that the number of detected prototypes or clusters
in the RGNG technique is less than the others; which means that its ability to group data in
actual number of clusters is better than the other two techniques. For example, when N is set
to 10, the MCN value for RGNG is 10, which is less than that for NG and GNG values. The
MCN value for running RGNG is equal to the number of neurons, 10, and has the same rate
when compared with other N values; while the MCN value of running NG and GNG deviated
from the actual cluster number.

Regarding the PQ value, it is noticed that the RGNG approach possesses higher PQ values
than the NG and GNG techniques. For example, when N is set to 12, the PQ value for RGNG
is 0.9807, which is higher than that of NG and GNG values. These high values of PQ indicate
that the RGNG technique has a better partitioning quality with respect to the others, and finds
more representative clusters.

Moreover, the RGNG method can find all the natural clusters during the growing stage
with the correct number of prototypes. Hence, the MSE values are lower, which indicates
that the RGNG technique has better robustness. For example, when N is set to 7, the MSE
value for RGNG is 2.6493e + 004, which is lower than that for NG and GNG values. NG and
GNG techniques may not detect all the actual clusters; hence, they yield higher MSE values.

The MDL value is one of the popular information theory evaluation measures that are used
as clustering validity indexes [37]. The MDL criterion gives the ability of finding the optimal
number of clusters and their center positions, corresponding to the smallest MDL value.

Parameters Number of neurons NG GNG RGNG

CR N = 7 0.8718 0.9686 0.9929

N = 10 0.8514 0.9786 0.9843

N = 12 0.8010 0.9647 0.9759

MCN N = 7 9 8 7

N = 10 12 11 10

N = 12 15 14 12

PQ N = 7 0.8990 0.9465 0.9869

N = 10 0.8531 0.9288 0.9841

N = 12 08279 0.9043 0.9807

MSE N = 7 2.8032e+004 2.7608e+004 2.6493e+004

N = 10 2.7913e+004 2.7378e+004 2.6351e+004

N = 12 2.7703e+004 2.6940e+004 2.6188e+004

Table 1. Clustering results of synthetic data.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

187

The average MDL values during the growth stages are plotted versus the number of clusters
or prototypes. Figure 7 shows the curves for the NG and GNG techniques combined with the
MDL criterion, as well as the RGNG approach on a synthetic dataset for different number of
neurons, which are selected randomly as N = 7, 10, and 12. Each detected the cluster number
corresponding to the MDL value.

In RGNG, the smallest MDL value was recorded on average with respect to NG and GNG
combined with the MDL principle. For example, in Figure 7 (b), the smallest MDL value
is 2.65 that is obtained from running RGNG when N is equal to 4. While in the same N = 4,
higher MDL value of 2.77 is recorded from running NG and GNG. From the presented fig-
ures, it is concluded that the proposed RGNG approach is insensitive to different initializa-
tions and the presence of outliers and can successfully find the actual number of clusters.

5. Prototype-based clustering package

The techniques introduced in this work are designed and implemented in a simple software
package tool that allows users to interact with the clustering techniques and output data eas-
ily [13]. Figure 8 shows the main window with the most important features of the designed
prototype-based clustering software package.

1. Selection data: The user can select any one type of data from the different synthetic 2D
datasets in the pop-up menu. Ring data is a 2D synthetic data selected as an example in
Figure 8.

2. Load data: The selected data are loaded and all information related to the selected data
(“Dimension,” “Name,” and “Type of Data”) appear in the “info” window. The dimension

Figure 7. MDL values versus the number of clusters running the NG, GNG, and RGNG techniques on synthetic data,
for: (a) N = 7; (b) N = 10; (c) N = 12.

Recent Applications in Data Clustering188

of the selected “Ring” data is 400x2 double. The selected data is plotted on sketch1 inside
the main clustering window of Figure 8.

Figure 9 shows some of selected 2D synthetic datasets from the different datasets that were
used in this work. Beside each plot, the information related to it is shown in the “info” win-
dow, in the left side of each plot.

3. Selection technique: The user can select one of the clustering techniques NG, GNG, or
RGNG. The RGNG technique is selected as an example for the training in Figure 8 with
Ring data and N = 18, which is selected randomly.

Before clicking on “Apply NG,” “Apply GNG,” or “Apply RGNG” button, the training param-
eters related to each technique must be defined. As explained in Section 3, the training param-
eters must be set carefully within the limited range. The number of neurons (N) as well as the
other parameters related to the selected technique must be defined. Another example of using
the RGNG technique with Set3 dataset is shown in Figure 10. RGNG training parameters are set
as the typical values in literature: ε

bi
  = 0.1 ,  ε

bf
  = 0.01 , ε

ni
  = 0.005 , ε

nf
  = 0.0005 , α

max
  = 100 ,  k = 1.3 , η = 1 × 10 −4 ;

the number of neurons (N) is chosen randomly as 14. When the algorithm’s training is

Figure 8. Main window of the prototype-based clustering software package.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

189

The average MDL values during the growth stages are plotted versus the number of clusters
or prototypes. Figure 7 shows the curves for the NG and GNG techniques combined with the
MDL criterion, as well as the RGNG approach on a synthetic dataset for different number of
neurons, which are selected randomly as N = 7, 10, and 12. Each detected the cluster number
corresponding to the MDL value.

In RGNG, the smallest MDL value was recorded on average with respect to NG and GNG
combined with the MDL principle. For example, in Figure 7 (b), the smallest MDL value
is 2.65 that is obtained from running RGNG when N is equal to 4. While in the same N = 4,
higher MDL value of 2.77 is recorded from running NG and GNG. From the presented fig-
ures, it is concluded that the proposed RGNG approach is insensitive to different initializa-
tions and the presence of outliers and can successfully find the actual number of clusters.

5. Prototype-based clustering package

The techniques introduced in this work are designed and implemented in a simple software
package tool that allows users to interact with the clustering techniques and output data eas-
ily [13]. Figure 8 shows the main window with the most important features of the designed
prototype-based clustering software package.

1. Selection data: The user can select any one type of data from the different synthetic 2D
datasets in the pop-up menu. Ring data is a 2D synthetic data selected as an example in
Figure 8.

2. Load data: The selected data are loaded and all information related to the selected data
(“Dimension,” “Name,” and “Type of Data”) appear in the “info” window. The dimension

Figure 7. MDL values versus the number of clusters running the NG, GNG, and RGNG techniques on synthetic data,
for: (a) N = 7; (b) N = 10; (c) N = 12.

Recent Applications in Data Clustering188

of the selected “Ring” data is 400x2 double. The selected data is plotted on sketch1 inside
the main clustering window of Figure 8.

Figure 9 shows some of selected 2D synthetic datasets from the different datasets that were
used in this work. Beside each plot, the information related to it is shown in the “info” win-
dow, in the left side of each plot.

3. Selection technique: The user can select one of the clustering techniques NG, GNG, or
RGNG. The RGNG technique is selected as an example for the training in Figure 8 with
Ring data and N = 18, which is selected randomly.

Before clicking on “Apply NG,” “Apply GNG,” or “Apply RGNG” button, the training param-
eters related to each technique must be defined. As explained in Section 3, the training param-
eters must be set carefully within the limited range. The number of neurons (N) as well as the
other parameters related to the selected technique must be defined. Another example of using
the RGNG technique with Set3 dataset is shown in Figure 10. RGNG training parameters are set
as the typical values in literature: ε

bi
  = 0.1 ,  ε

bf
  = 0.01 , ε

ni
  = 0.005 , ε

nf
  = 0.0005 , α

max
  = 100 ,  k = 1.3 , η = 1 × 10 −4 ;

the number of neurons (N) is chosen randomly as 14. When the algorithm’s training is

Figure 8. Main window of the prototype-based clustering software package.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

189

started, the program sketches the output running of the implemented technique as Sketch1.
In Sketch1, a Set3 data is shown with firm red circles, which represent the actual cluster
centers.

4. MDL plot: This panel is related to plotting MDL values versus the number of neurons (N)
running the RGNG, GNG, and NG combined with MDL criterion. This panel includes
three main buttons: “No. of neurons (N),” “Technique selection for MDL value,” and “Apply
MDL versus N” buttons, as shown in Figure 11.

After defining the number of neurons (N); one, two, or three of the training techniques have
to be selected for comparing the MDL results. In the “Technique selection for MDL value”
pop-up menu, there are seven selections—either show the result of each technique alone, two
of them, or three of them for easy comparison. After clicking on the “Apply MDL versus N”
button, the output results of MDL values are plotted with respect to the number of neurons
(N) in Sketch2.

Figure 11 shows an example of the MDL plot, defining N = 16 and choosing “RGNG &
GNG & NG” for comparing the results of the three techniques in Sketch2. For easy and best
comparison between the MDL values of the three techniques, the output results sketch in
the same figure.

Figure 9. Different datasets with their information: (a) snail data; (b) screw data; (c) ring data; (d) Set5 data.

Recent Applications in Data Clustering190

6. Conclusions

A simple user friendly software package is designed and implemented as an automatic clus-
tering model for any dataset to use as part of the neural network course. NG, GNG, and
RGNG algorithms are performed in the same package using a MATLAB-based graphical user

Figure 10. RGNG clustering with Set3 data (N = 14).

Figure 11. Comparison of MDL values for N = 16.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

191

started, the program sketches the output running of the implemented technique as Sketch1.
In Sketch1, a Set3 data is shown with firm red circles, which represent the actual cluster
centers.

4. MDL plot: This panel is related to plotting MDL values versus the number of neurons (N)
running the RGNG, GNG, and NG combined with MDL criterion. This panel includes
three main buttons: “No. of neurons (N),” “Technique selection for MDL value,” and “Apply
MDL versus N” buttons, as shown in Figure 11.

After defining the number of neurons (N); one, two, or three of the training techniques have
to be selected for comparing the MDL results. In the “Technique selection for MDL value”
pop-up menu, there are seven selections—either show the result of each technique alone, two
of them, or three of them for easy comparison. After clicking on the “Apply MDL versus N”
button, the output results of MDL values are plotted with respect to the number of neurons
(N) in Sketch2.

Figure 11 shows an example of the MDL plot, defining N = 16 and choosing “RGNG &
GNG & NG” for comparing the results of the three techniques in Sketch2. For easy and best
comparison between the MDL values of the three techniques, the output results sketch in
the same figure.

Figure 9. Different datasets with their information: (a) snail data; (b) screw data; (c) ring data; (d) Set5 data.

Recent Applications in Data Clustering190

6. Conclusions

A simple user friendly software package is designed and implemented as an automatic clus-
tering model for any dataset to use as part of the neural network course. NG, GNG, and
RGNG algorithms are performed in the same package using a MATLAB-based graphical user

Figure 10. RGNG clustering with Set3 data (N = 14).

Figure 11. Comparison of MDL values for N = 16.

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

191

interface (GUI) tool. This visual tool lets the students/ researchers visualize the desired results
using plots obtained with the click of a few buttons. The performance of these algorithms on
2D synthetic datasets is reported with respect to statistical estimations to explain the mean-
ing of the output results. These results clarified that RGNG is better than NG and GNG when
considering insensitivity to initialization as well as the presence of outliers. RGNG enhances
GNG to be more robust toward noisy input dataset by using MDL criteria. Hence, RGNG
solves the problem of finding the optimal number of clusters with respect to NG and GNG.

For future research directions, other unsupervised or supervised clustering algorithms may
be used in the laboratory experiments. Another research direction is to apply the comparison
among the three clustering algorithms to real multimodal datasets in medical applications.
The package results could also be shared to websites using ASP .NET, which can give facility
for users by sharing applications which requires no installation of MATLAB or any special
program just a Web browser.

Author details

Hadeel K. Aljobouri1,2*, Hussain A. Jaber2 and Ilyas Çankaya2

*Address all correspondence to: hadeel_bme77@yahoo.com

1 Biomedical Engineering Department, College of Engineering, Al-Nahrain University,
Baghdad, Iraq

2 Electrical and Electronics Engineering Department, Graduate School of Natural Science,
Ankara Yıldırım Beyazıt University, Ankara, Turkey

References

[1] Jain AK, Murty MN, Flynn PJ. Data clustering: A review. ACM Computing Surveys
(CSUR). 1999;31(3):264-323

[2] Berkhin P. Survey of Clustering Data Mining Techniques. Technical Report. Accrue
Software Inc.; 2002

[3] Kato N, Nemoto Y. Large scale handwritten character recognition system using sub-
space methods. Proceeding of IEEE International Conference on Systems, Man and
Cybernetics, Beijing, China, 1996. pp. 1996432-1996437

[4] Ray S, Turi RH. Determination of number of clusters in k-means clustering and applica-
tion in color image segmentation. Proceeding of the Fourth International Conference on
Advances in Pattern Recognition and Digital Techniques (ICAPRDT’99), Calcutta, India,
1999. pp.137-143

[5] Bhatia SK, Deogun JS. Conceptual clustering in information retrieval. IEEE Transactions
on System, Man, Cybernetics, Part B. 1998;28(3):427-436

Recent Applications in Data Clustering192

[6] Ressom H, Wang D, Natarajan P. Adaptive double self-organizing maps for clustering
gene expression profiles. Neural Networks. 2003;16(5-6):633-640

[7] Duda RO, Hart PE, Storck DG. Pattern Classification. New York: Wiley-Interscience;
2000

[8] Ripley BD. Pattern Recognition and Neural Networks. New York: Cambridge University
Press; 1996

[9] Alziarjawey HA, Cankaya I. Heart rate monitoring and PQRST detection based on
graphical user interface with Matlab. IJIEE. 2015;5:311-316

[10] Alziarjawey HAJ, Çamdalı Ü, Çankaya I, Aljobouri H. Design graphical user interface of
linear algebra system package by using MATLAB. IJRITCC. 2016;4:428-433

[11] AlJobouri HK, Alziarjawey HA, Cankaya I. Biosignal Processing. Medical Imaging and
fMRI (BSPMI) Software Package Based on MATLAB GUI for Education and Research.
2015;1:2380-8128

[12] Aljobouri HK, Çankaya I, Karal O. From biomedical signal processing techniques to
fMRI Parcellation. Biosciences Biotechnology Research Asia. 2015;12(2):1115-1138

[13] AlJobouri HK, Jaber HA, Çankaya I. Performance evaluation of prototype-based
 clustering algorithms combined MDL index. Computer Applications in Engineering
Education, Wiley Inc. 2017;25(4):642-654

[14] Martinetz T, Schulten KA. “Neural Gas” Network Learns Topologies. Artificial Neural
Networks. Elsevier; 1991. pp. 397-402

[15] Kohonen T. Self-Organizing Maps. 3rd ed. Berlin: Springer; 2001

[16] Fernando C, Max C. Modification of the growing neural gas algorithm for cluster analy-
sis. Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in
Computer Science, Springer. 2007;4756:684-693

[17] Curatelli F, Mayora-Iberra O. Competitive learning methods for efficient vector Quantizations
in a speech recognition environment. MICAI 2000: Advances in artificial intelligence, lecture
notes in computer science. Spring. 2000;1793:108-114

[18] Anastassia A, Alexandra P, José GR, Kenneth R. Automatic Landmarking of 2D medical
shapes using the growing neural gas network. Computer vision for biomedical image
applications, lecture notes in computer science. Spring. 2005;3765:210-219

[19] Atukorale AS, Downs T, Suganthan PN. Boosting the HONG network. Neurocomputing.
2003;51:75-86

[20] Winter M, Metta G, Sandini G. Neural-gas for Function Approximation: A heuristic for
minimizing the local estimation error. Proceeding of International Joint Conference on
Neural Network (IJCNN), Italy. 2000:535-538

[21] Haykin S. Neural Networks: A Comprehensive Foundation. 2nd ed. Englewood Cliffs,
NJ: Prentice-Hall; 1998

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

193

interface (GUI) tool. This visual tool lets the students/ researchers visualize the desired results
using plots obtained with the click of a few buttons. The performance of these algorithms on
2D synthetic datasets is reported with respect to statistical estimations to explain the mean-
ing of the output results. These results clarified that RGNG is better than NG and GNG when
considering insensitivity to initialization as well as the presence of outliers. RGNG enhances
GNG to be more robust toward noisy input dataset by using MDL criteria. Hence, RGNG
solves the problem of finding the optimal number of clusters with respect to NG and GNG.

For future research directions, other unsupervised or supervised clustering algorithms may
be used in the laboratory experiments. Another research direction is to apply the comparison
among the three clustering algorithms to real multimodal datasets in medical applications.
The package results could also be shared to websites using ASP .NET, which can give facility
for users by sharing applications which requires no installation of MATLAB or any special
program just a Web browser.

Author details

Hadeel K. Aljobouri1,2*, Hussain A. Jaber2 and Ilyas Çankaya2

*Address all correspondence to: hadeel_bme77@yahoo.com

1 Biomedical Engineering Department, College of Engineering, Al-Nahrain University,
Baghdad, Iraq

2 Electrical and Electronics Engineering Department, Graduate School of Natural Science,
Ankara Yıldırım Beyazıt University, Ankara, Turkey

References

[1] Jain AK, Murty MN, Flynn PJ. Data clustering: A review. ACM Computing Surveys
(CSUR). 1999;31(3):264-323

[2] Berkhin P. Survey of Clustering Data Mining Techniques. Technical Report. Accrue
Software Inc.; 2002

[3] Kato N, Nemoto Y. Large scale handwritten character recognition system using sub-
space methods. Proceeding of IEEE International Conference on Systems, Man and
Cybernetics, Beijing, China, 1996. pp. 1996432-1996437

[4] Ray S, Turi RH. Determination of number of clusters in k-means clustering and applica-
tion in color image segmentation. Proceeding of the Fourth International Conference on
Advances in Pattern Recognition and Digital Techniques (ICAPRDT’99), Calcutta, India,
1999. pp.137-143

[5] Bhatia SK, Deogun JS. Conceptual clustering in information retrieval. IEEE Transactions
on System, Man, Cybernetics, Part B. 1998;28(3):427-436

Recent Applications in Data Clustering192

[6] Ressom H, Wang D, Natarajan P. Adaptive double self-organizing maps for clustering
gene expression profiles. Neural Networks. 2003;16(5-6):633-640

[7] Duda RO, Hart PE, Storck DG. Pattern Classification. New York: Wiley-Interscience;
2000

[8] Ripley BD. Pattern Recognition and Neural Networks. New York: Cambridge University
Press; 1996

[9] Alziarjawey HA, Cankaya I. Heart rate monitoring and PQRST detection based on
graphical user interface with Matlab. IJIEE. 2015;5:311-316

[10] Alziarjawey HAJ, Çamdalı Ü, Çankaya I, Aljobouri H. Design graphical user interface of
linear algebra system package by using MATLAB. IJRITCC. 2016;4:428-433

[11] AlJobouri HK, Alziarjawey HA, Cankaya I. Biosignal Processing. Medical Imaging and
fMRI (BSPMI) Software Package Based on MATLAB GUI for Education and Research.
2015;1:2380-8128

[12] Aljobouri HK, Çankaya I, Karal O. From biomedical signal processing techniques to
fMRI Parcellation. Biosciences Biotechnology Research Asia. 2015;12(2):1115-1138

[13] AlJobouri HK, Jaber HA, Çankaya I. Performance evaluation of prototype-based
 clustering algorithms combined MDL index. Computer Applications in Engineering
Education, Wiley Inc. 2017;25(4):642-654

[14] Martinetz T, Schulten KA. “Neural Gas” Network Learns Topologies. Artificial Neural
Networks. Elsevier; 1991. pp. 397-402

[15] Kohonen T. Self-Organizing Maps. 3rd ed. Berlin: Springer; 2001

[16] Fernando C, Max C. Modification of the growing neural gas algorithm for cluster analy-
sis. Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in
Computer Science, Springer. 2007;4756:684-693

[17] Curatelli F, Mayora-Iberra O. Competitive learning methods for efficient vector Quantizations
in a speech recognition environment. MICAI 2000: Advances in artificial intelligence, lecture
notes in computer science. Spring. 2000;1793:108-114

[18] Anastassia A, Alexandra P, José GR, Kenneth R. Automatic Landmarking of 2D medical
shapes using the growing neural gas network. Computer vision for biomedical image
applications, lecture notes in computer science. Spring. 2005;3765:210-219

[19] Atukorale AS, Downs T, Suganthan PN. Boosting the HONG network. Neurocomputing.
2003;51:75-86

[20] Winter M, Metta G, Sandini G. Neural-gas for Function Approximation: A heuristic for
minimizing the local estimation error. Proceeding of International Joint Conference on
Neural Network (IJCNN), Italy. 2000:535-538

[21] Haykin S. Neural Networks: A Comprehensive Foundation. 2nd ed. Englewood Cliffs,
NJ: Prentice-Hall; 1998

Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
http://dx.doi.org/10.5772/intechopen.74506

193

[22] Martinetz TM, Berkovich SG, Schulten KJ. “Neural gas” network for vector quantization
and its application to time series prediction. IEEE Transactions on Neural Networks.
1993;4(4):558-569

[23] Bezdek JC, Keller JM, Krishnapuram R, Pal NR. Fuzzy Models and Algorithms for
Pattern Recognition and Image Processing. Norwell, MA: Kluwer; 1999

[24] Fritzke B. Some Competitive Learning Methods (Draft). Technique Report, Institute for
Neural Computation. Bochum: Ruhr-University; 1997

[25] Fritzke B. A Growing Neural Gas Network Learns Topologies. Advances in Neural
Information Processing Systems 7, Cambridge: MIT Press; 1995:625-632

[26] Martinetz TM Competitive Hebbian learning rule forms perfectly topology preserv-
ing maps. Proceedings of International Conference on Artificial Neural Networks
(ICANN93), Amsterdam, The Netherlands. 1993. pp. 427-434

[27] Fritzke B. Growing cells structures—A self-organizing network for unsupervised and
supervised learning. Neural Networks. 1994;7(9):1441-1460

[28] Huber PJ. Robust Statistics. New York: Wiley; 1981

[29] Qin AK, Suganthan PN. Robust growing neural gas algorithm with application in clus-
ter analysis. Neural Networks, Elsevier Ltd. 2004;17:1135-1148

[30] Tenmoto H, Kudo M, Shimbo M. MDL-based selection of the number of components in
mixture models for pattern classification. Advance in pattern recognition. Lecture Notes
in Computer Science. 1998;1451:831-836

[31] Zemel RS. A Minimum Description Length Framework for Unsupervised Learning.
Ph.D. Thesis. University of Toronto; 1994

[32] Gareth J. Majority Vote Classifiers: Theory and Applications. Ph.D. dissertation submit-
ted to Stanford University; 1998

[33] Hamerly G, Elkan C. Learning the k in k-means. Proceeding of 17th annual conference
on neural information processing systems (NIPS2003). Canada; 2003

[34] Hubert L, Arabie P. Comparing partitions. Journal of Classification. 1985;2:193-218

[35] Retrieved 2015, from www.yarpiz.com. 2015

[36] Qin AK, Suganthan PN. Enhanced neural gas network for prototype-based clustering.
Pattern Recognition, Elsevier Ltd. 2005;38:1275-1288

[37] Rissanen J. A universal prior for integers and estimation by minimum description length.
Annals of Statistics. 1983;11:416-431

Recent Applications in Data Clustering194

Chapter 11

New Approaches in Multi-View Clustering

Fanghua Ye, Zitai Chen, Hui Qian, Rui Li,
Chuan Chen and Zibin Zheng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75598

Provisional chapter

New Approaches in Multi-View Clustering

Fanghua Ye, Zitai Chen, Hui Qian, Rui Li,
Chuan Chen and Zibin Zheng

Additional information is available at the end of the chapter

Abstract

Many real-world datasets can be naturally described by multiple views. Due to this, multi-
view learning has drawn much attention from both academia and industry. Compared to
single-view learning, multi-view learning has demonstrated plenty of advantages. Clus-
tering has long been serving as a critical technique in data mining and machine learning.
Recently, multi-view clustering has achieved great success in various applications. To
provide a comprehensive review of the typical multi-view clustering methods and their
corresponding recent developments, this chapter summarizes five kinds of popular clus-
tering methods and their multi-view learning versions, which include k-means, spectral
clustering, matrix factorization, tensor decomposition, and deep learning. These clustering
methods are the most widely employed algorithms for single-view data, and lots of efforts
have been devoted to extending them for multi-view clustering. Besides, many other
multi-view clustering methods can be unified into the frameworks of these five methods.
To promote further research and development of multi-view clustering, some popular and
open datasets are summarized in two categories. Furthermore, several open issues that
deserve more exploration are pointed out in the end.

Keywords: clustering, multi-view clustering, multi-view k-means, multi-view spectral
clustering, multi-view matrix factorization, tensor decomposition, deep learning

1. Introduction

Clustering is one of the most critical unsupervised learning techniques, which has been widely
applied for data analysis, such as social network analysis, gene expression analysis, heteroge-
neous data analysis, and market analysis. The goal of clustering is to partition a dataset into
several groups such that data samples in the same group are more similar than those in

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75598

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[22] Martinetz TM, Berkovich SG, Schulten KJ. “Neural gas” network for vector quantization
and its application to time series prediction. IEEE Transactions on Neural Networks.
1993;4(4):558-569

[23] Bezdek JC, Keller JM, Krishnapuram R, Pal NR. Fuzzy Models and Algorithms for
Pattern Recognition and Image Processing. Norwell, MA: Kluwer; 1999

[24] Fritzke B. Some Competitive Learning Methods (Draft). Technique Report, Institute for
Neural Computation. Bochum: Ruhr-University; 1997

[25] Fritzke B. A Growing Neural Gas Network Learns Topologies. Advances in Neural
Information Processing Systems 7, Cambridge: MIT Press; 1995:625-632

[26] Martinetz TM Competitive Hebbian learning rule forms perfectly topology preserv-
ing maps. Proceedings of International Conference on Artificial Neural Networks
(ICANN93), Amsterdam, The Netherlands. 1993. pp. 427-434

[27] Fritzke B. Growing cells structures—A self-organizing network for unsupervised and
supervised learning. Neural Networks. 1994;7(9):1441-1460

[28] Huber PJ. Robust Statistics. New York: Wiley; 1981

[29] Qin AK, Suganthan PN. Robust growing neural gas algorithm with application in clus-
ter analysis. Neural Networks, Elsevier Ltd. 2004;17:1135-1148

[30] Tenmoto H, Kudo M, Shimbo M. MDL-based selection of the number of components in
mixture models for pattern classification. Advance in pattern recognition. Lecture Notes
in Computer Science. 1998;1451:831-836

[31] Zemel RS. A Minimum Description Length Framework for Unsupervised Learning.
Ph.D. Thesis. University of Toronto; 1994

[32] Gareth J. Majority Vote Classifiers: Theory and Applications. Ph.D. dissertation submit-
ted to Stanford University; 1998

[33] Hamerly G, Elkan C. Learning the k in k-means. Proceeding of 17th annual conference
on neural information processing systems (NIPS2003). Canada; 2003

[34] Hubert L, Arabie P. Comparing partitions. Journal of Classification. 1985;2:193-218

[35] Retrieved 2015, from www.yarpiz.com. 2015

[36] Qin AK, Suganthan PN. Enhanced neural gas network for prototype-based clustering.
Pattern Recognition, Elsevier Ltd. 2005;38:1275-1288

[37] Rissanen J. A universal prior for integers and estimation by minimum description length.
Annals of Statistics. 1983;11:416-431

Recent Applications in Data Clustering194

Chapter 11

New Approaches in Multi-View Clustering

Fanghua Ye, Zitai Chen, Hui Qian, Rui Li,
Chuan Chen and Zibin Zheng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75598

Provisional chapter

New Approaches in Multi-View Clustering

Fanghua Ye, Zitai Chen, Hui Qian, Rui Li,
Chuan Chen and Zibin Zheng

Additional information is available at the end of the chapter

Abstract

Many real-world datasets can be naturally described by multiple views. Due to this, multi-
view learning has drawn much attention from both academia and industry. Compared to
single-view learning, multi-view learning has demonstrated plenty of advantages. Clus-
tering has long been serving as a critical technique in data mining and machine learning.
Recently, multi-view clustering has achieved great success in various applications. To
provide a comprehensive review of the typical multi-view clustering methods and their
corresponding recent developments, this chapter summarizes five kinds of popular clus-
tering methods and their multi-view learning versions, which include k-means, spectral
clustering, matrix factorization, tensor decomposition, and deep learning. These clustering
methods are the most widely employed algorithms for single-view data, and lots of efforts
have been devoted to extending them for multi-view clustering. Besides, many other
multi-view clustering methods can be unified into the frameworks of these five methods.
To promote further research and development of multi-view clustering, some popular and
open datasets are summarized in two categories. Furthermore, several open issues that
deserve more exploration are pointed out in the end.

Keywords: clustering, multi-view clustering, multi-view k-means, multi-view spectral
clustering, multi-view matrix factorization, tensor decomposition, deep learning

1. Introduction

Clustering is one of the most critical unsupervised learning techniques, which has been widely
applied for data analysis, such as social network analysis, gene expression analysis, heteroge-
neous data analysis, and market analysis. The goal of clustering is to partition a dataset into
several groups such that data samples in the same group are more similar than those in

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.75598

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

different groups. Clustering plays an important role in mining the hidden patterns. However,
most of the existing clustering algorithms are designed for single-view data.

With the rapid development of Internet and communication technology (ICT), the accesses to
extract data are dramatically extended. That is, data can be collected from multiple sources or
multiple facets. In such setting, each datum is associated with much richer information, which
results in the requirement that to mine the intrinsic and valuable patterns hidden in the data, it
is a necessity to take full advantage of the information contained in multiple sources. This issue
is formally referred to as multi-view learning. To be more specific, each view corresponds to one
source of information. For example, web pages can be described by both the page-contents
(one view) and the hyperlink information (another view). Besides, different facets of a datum
can also be treated as different views. For instance, an image can be characterized by its shape,
color, and location.

Obviously, integrating the information contained in multiple views can bring great benefits for
data clustering. The most straightforward way to utilize the information of all views is to
concatenate the data features of each view together and then perform the traditional clustering
methods such as k-means. However, such a method lacks the ability to distinguish the different
significance of different views. That is, the important views and less important views are
treated equally, which may degrade the ultimate performance severely. To take better advan-
tage of the multi-view information, the ideal approach is to simultaneously perform the
clustering using each view of data features and integrate their results based on their impor-
tance to the clustering task. Formally, this approach is known as multi-view clustering.

As an emerging and effective paradigm in data mining and machine learning, multi-view
clustering refers to the clustering of the same class of data samples with multi-view represen-
tations, either from various information sources or from different feature generators. It is clear
that if the clustering method cannot cope appropriately with multi-views, these views may
even degrade the performance of multi-view clustering. To make use of multi-view informa-
tion to improve clustering results, there are two main challenges to overcome. The first one is
how to naturally ensemble the multiple clustering results of all the views. The second one is
how to learn the importance of different views to the clustering task. In addition, these two
issues should be figured out simultaneously. Thus, to achieve these goals, new clustering
objective function should be designed, followed by the new solving method.

Multi-view clustering was first studied by Bickel and Scheffer [1] in 2004. They extended the
classic k-means and expectation maximization (EM) clustering methods to the multi-view
environment to deal with text data with two conditionally independent views. Based on this
seminal work, a variety of multi-view clustering methods have been proposed over the past
two decades [2–4]. Since covering all the proposed methods in one chapter is hard, to provide a
comprehensive review of the typical multi-view clustering methods and their corresponding
recent developments, we summarize five kinds of popular clustering methods and their multi-
view learning versions, which include k-means, spectral clustering, matrix factorization, tensor
decomposition, and deep learning. This is based on the consideration that these clustering
methods are the most widely employed algorithms for single-view data, and lots of efforts
have been devoted to extending them for multi-view clustering. Besides, many other multi-

Recent Applications in Data Clustering196

view clustering methods can be unified into the frameworks of these five methods. Therefore,
when readers become familiar with these five multi-view clustering methods, they can capture
the core ideas of other multi-view clustering methods easily. This chapter is self-contained,
which follows a line of introduction from the preliminaries of these clustering methods for
single-view data to their variant forms for multi-view clustering.

The remainder of this chapter is organized as follows. Section 2 describes the benefits of multi-
view clustering. Section 3 details the aforementioned five multi-view clustering methods.
Section 4 summarizes two kinds of popular open datasets. Several open issues are illustrated
in Section 5. Section 6 concludes this chapter.

2. Benefits of multi-view clustering

Compared with the clustering methods that are implemented on single-view data, multi-view
clustering is expected to obtain more robust and novel partitioning results by exploiting the
redundant and complementary information in different views [5], as stated in the following
sections.

2.1. Benefit one: accurate description of data

It is obvious that single-view data may contain incomplete knowledge, while multi-view data
usually contains complementary and redundant information, which results in a more accurate
description of the data. For example, it may fail to identify the intrinsic community structures
of a social network via just leveraging the friendships. However, if more information such as
users’ demographics can be obtained, it is more inclined to find out the implicit relationships
between users.

2.2. Benefit two: reducing noises of data

Even when the information contained in single-view data is complete, there may exist some
unavoidable noises. It is apparent that data cleaning is one critical issue in data analysis, which
can tremendously affect the performance of clustering algorithms. It is quite hard and costly to
remove all the noises of data, and thus single-view noisy data usually leads to unsatisfactory
clustering results. On the other hand, multi-view clustering is able to circumvent the side effect
of noises or corrupted data in each view and emphasize the common patterns shared by multi-
view data.

2.3. Benefit three: wider range of applications

There is no doubt that all the multi-view clustering methods can be applied to single-view
data. However, many clustering tasks are impossible to implement by single-view clustering
due to its limitations. For example, data with multiple modalities is becoming more and more
common and heterogeneous information networks are gaining increasing popularity as well.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

197

different groups. Clustering plays an important role in mining the hidden patterns. However,
most of the existing clustering algorithms are designed for single-view data.

With the rapid development of Internet and communication technology (ICT), the accesses to
extract data are dramatically extended. That is, data can be collected from multiple sources or
multiple facets. In such setting, each datum is associated with much richer information, which
results in the requirement that to mine the intrinsic and valuable patterns hidden in the data, it
is a necessity to take full advantage of the information contained in multiple sources. This issue
is formally referred to as multi-view learning. To be more specific, each view corresponds to one
source of information. For example, web pages can be described by both the page-contents
(one view) and the hyperlink information (another view). Besides, different facets of a datum
can also be treated as different views. For instance, an image can be characterized by its shape,
color, and location.

Obviously, integrating the information contained in multiple views can bring great benefits for
data clustering. The most straightforward way to utilize the information of all views is to
concatenate the data features of each view together and then perform the traditional clustering
methods such as k-means. However, such a method lacks the ability to distinguish the different
significance of different views. That is, the important views and less important views are
treated equally, which may degrade the ultimate performance severely. To take better advan-
tage of the multi-view information, the ideal approach is to simultaneously perform the
clustering using each view of data features and integrate their results based on their impor-
tance to the clustering task. Formally, this approach is known as multi-view clustering.

As an emerging and effective paradigm in data mining and machine learning, multi-view
clustering refers to the clustering of the same class of data samples with multi-view represen-
tations, either from various information sources or from different feature generators. It is clear
that if the clustering method cannot cope appropriately with multi-views, these views may
even degrade the performance of multi-view clustering. To make use of multi-view informa-
tion to improve clustering results, there are two main challenges to overcome. The first one is
how to naturally ensemble the multiple clustering results of all the views. The second one is
how to learn the importance of different views to the clustering task. In addition, these two
issues should be figured out simultaneously. Thus, to achieve these goals, new clustering
objective function should be designed, followed by the new solving method.

Multi-view clustering was first studied by Bickel and Scheffer [1] in 2004. They extended the
classic k-means and expectation maximization (EM) clustering methods to the multi-view
environment to deal with text data with two conditionally independent views. Based on this
seminal work, a variety of multi-view clustering methods have been proposed over the past
two decades [2–4]. Since covering all the proposed methods in one chapter is hard, to provide a
comprehensive review of the typical multi-view clustering methods and their corresponding
recent developments, we summarize five kinds of popular clustering methods and their multi-
view learning versions, which include k-means, spectral clustering, matrix factorization, tensor
decomposition, and deep learning. This is based on the consideration that these clustering
methods are the most widely employed algorithms for single-view data, and lots of efforts
have been devoted to extending them for multi-view clustering. Besides, many other multi-

Recent Applications in Data Clustering196

view clustering methods can be unified into the frameworks of these five methods. Therefore,
when readers become familiar with these five multi-view clustering methods, they can capture
the core ideas of other multi-view clustering methods easily. This chapter is self-contained,
which follows a line of introduction from the preliminaries of these clustering methods for
single-view data to their variant forms for multi-view clustering.

The remainder of this chapter is organized as follows. Section 2 describes the benefits of multi-
view clustering. Section 3 details the aforementioned five multi-view clustering methods.
Section 4 summarizes two kinds of popular open datasets. Several open issues are illustrated
in Section 5. Section 6 concludes this chapter.

2. Benefits of multi-view clustering

Compared with the clustering methods that are implemented on single-view data, multi-view
clustering is expected to obtain more robust and novel partitioning results by exploiting the
redundant and complementary information in different views [5], as stated in the following
sections.

2.1. Benefit one: accurate description of data

It is obvious that single-view data may contain incomplete knowledge, while multi-view data
usually contains complementary and redundant information, which results in a more accurate
description of the data. For example, it may fail to identify the intrinsic community structures
of a social network via just leveraging the friendships. However, if more information such as
users’ demographics can be obtained, it is more inclined to find out the implicit relationships
between users.

2.2. Benefit two: reducing noises of data

Even when the information contained in single-view data is complete, there may exist some
unavoidable noises. It is apparent that data cleaning is one critical issue in data analysis, which
can tremendously affect the performance of clustering algorithms. It is quite hard and costly to
remove all the noises of data, and thus single-view noisy data usually leads to unsatisfactory
clustering results. On the other hand, multi-view clustering is able to circumvent the side effect
of noises or corrupted data in each view and emphasize the common patterns shared by multi-
view data.

2.3. Benefit three: wider range of applications

There is no doubt that all the multi-view clustering methods can be applied to single-view
data. However, many clustering tasks are impossible to implement by single-view clustering
due to its limitations. For example, data with multiple modalities is becoming more and more
common and heterogeneous information networks are gaining increasing popularity as well.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

197

These types of data naturally fit into multi-view learning, while cannot be settled by single-
view learning methods appropriately. In all, the complementary property among multi-view
data can overcome the limitations of single-view data and expand their application areas.

3. Multi-view clustering methods

Due to the widespread use of multi-view datasets in practice, many realistic applications are
accomplished by multi-view learning methods, such as community detection in social networks,
image annotation in computer vision, and cross-domain user modeling in recommendation
systems [6]. Meanwhile, based on the seminal work of Bickel and Scheffer [1], plenty of multi-
view clustering methods have been proposed [2, 3, 5]. As explained in Section 1, this chapter
seeks to review five kinds of typical clustering methods and their multi-view versions, which
include k-means, spectral clustering, matrix factorization, tensor decomposition, and deep learn-
ing. All of these five methods are popular methods for single-view clustering. Although there are
some other multi-view clustering methods not contained in this chapter, such as the canonical
correlation analysis (CCA)-based multi-view clustering methods [7], the DBSCAN-based multi-
view clustering methods [8], and the lower dimensional subspace-based multi-view clustering
methods [9], most of them can be unified into the frameworks of these five involved methods.
For instance, a pair-wise sparse subspace representation model for multi-view clustering pro-
posed in [10] can be unified into the framework of matrix factorization.

3.1. Multi-view clustering via k-means

k-means is one of the most popular clustering algorithms with a history of more than 50 years
[11]. Except for its simplicity, k-means has a good potential to deal with large-scale datasets.
Owing to these properties, k-means has been successfully used in various topics, including
computer vision, social network analysis, and market segmentation, to name but a few.
Although it has been studied deeply over the past few decades, many variants of k-means are
put forward continuously [12–15].

3.1.1. Preliminaries of k-means

As a classic clustering algorithm, k-means employs K prototype vectors (i.e., centers or cen-
troids of the K clusters) to characterize each data sample and minimizes a sum of squared loss
function to find these prototypes. Consider a dataset denoted by X ¼ x1; x2;…; xN½ �∈ IRM�N,
where xi ∈ IRM represents the attribute (feature) vector of the i-th data sample xi. In order to
partition the dataset X into K disjoint clusters, denoted by C ¼ C1;C2;…;CKf g, k-means tries to
optimize the following objective function:

ε ¼
XN

i¼1

XK

k¼1
δik∥xi � vk∥22, vk ¼

PN
i¼1 δikxiPN
i¼1 δik

¼ 1
∣Ck∣

X
x∈Ck

x, (1)

where δik is an indicator variable with δik ¼ 1 if xi ∈Ck and 0 otherwise and vk is the k-th
prototype vector, i.e., the k-th cluster center.

Recent Applications in Data Clustering198

As can be seen, Eq. (1) adopts the Euclidean distance to measure the similarities between data
samples. However, there are many data structures or data distributions in real world. Thus, it
is not always suitable to apply this basic form of k-means to accurately identify the hidden
patterns of datasets. What is more, some datasets may be not separable in the low-dimensional
space. Recently, kernel method has been of wide concern in the field of machine learning. By
introducing a kernel function, the original nonlinear datasets are mapped to a higher dimen-
sional reproducing kernel Hilbert space. In the new space, the datasets become linearly sepa-
rable. For this reason, the kernel k-means algorithm [16, 17] has been proposed. It is just a
generalization of the standard k-means algorithm and has the following objective function:

ε ¼
XN

i¼1

XK

k¼1
δik∥ϕ xið Þ � v0k∥

2
2, v0k ¼

PN
i¼1 δikϕ xið ÞPN

i¼1 δik
, (2)

where ϕ : X! H is a nonlinear transformation function. Define a kernel function

K : X� X! IR with K xi; xj
� � ¼ ϕ xið ÞTϕ xj

� �
. Then, Eq. (2) can be rewritten into the kernel form

as below:

ε ¼
XN

i¼1

XK

k¼1
δik K xi; xið Þ � 2

PN
j¼1 δjkK xi; xj

� �
PN

j¼1 δjk
þ
PN

j¼1
PN

l¼1 δjkδlkK xj; xl
� �

PN
j¼1
PN

l¼1 δjkδlk

 !
: (3)

With the aid of the kernel function, there is no need to explicitly provide the transformation
function ϕ. This is because, for certain kernel function, the corresponding transformation
function is intractable. However, the inner products in the kernel space can be easily obtained
according to the kernel function.

3.1.2. Basic form of multi-view k-means

Both the k-means and the kernel k-means described above are designed for single-view data. To
solve the multi-view clustering problem, some new objective functions should be developed.

Assume that there are V views in total. Let X ¼ X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

denote the data of all the

views. It is obvious that different views should have different contributions according to their
conveyed information. To achieve this goal, it is straightforward to modify the standard k-means
to make it applicable in the multi-view environment with a new objective function as follows:

ε ¼
XV
v¼1

μγ
vεv, s:t:μv ≥ 0,

XV
v¼1

μv ¼ 1,γ > 1, (4)

where μv is the weight factor for the v-th view, γ is a parameter used to control the weight
distribution, and εv corresponds to the objective function (i.e., loss function) of the v-th view:

εv ¼
XN

i¼1

XK

k¼1
δik∥x

vð Þ
i � v vð Þ

k ∥22, v
vð Þ
k ¼

PN
i¼1 δikx

vð Þ
iPN

i¼1 δik
: (5)

Similarly, the objective function of the multi-view kernel k-means can be obtained, which is
omitted here. Note that finding the optimal solution of Eq. (4) is an NP-hard problem; thus,

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

199

These types of data naturally fit into multi-view learning, while cannot be settled by single-
view learning methods appropriately. In all, the complementary property among multi-view
data can overcome the limitations of single-view data and expand their application areas.

3. Multi-view clustering methods

Due to the widespread use of multi-view datasets in practice, many realistic applications are
accomplished by multi-view learning methods, such as community detection in social networks,
image annotation in computer vision, and cross-domain user modeling in recommendation
systems [6]. Meanwhile, based on the seminal work of Bickel and Scheffer [1], plenty of multi-
view clustering methods have been proposed [2, 3, 5]. As explained in Section 1, this chapter
seeks to review five kinds of typical clustering methods and their multi-view versions, which
include k-means, spectral clustering, matrix factorization, tensor decomposition, and deep learn-
ing. All of these five methods are popular methods for single-view clustering. Although there are
some other multi-view clustering methods not contained in this chapter, such as the canonical
correlation analysis (CCA)-based multi-view clustering methods [7], the DBSCAN-based multi-
view clustering methods [8], and the lower dimensional subspace-based multi-view clustering
methods [9], most of them can be unified into the frameworks of these five involved methods.
For instance, a pair-wise sparse subspace representation model for multi-view clustering pro-
posed in [10] can be unified into the framework of matrix factorization.

3.1. Multi-view clustering via k-means

k-means is one of the most popular clustering algorithms with a history of more than 50 years
[11]. Except for its simplicity, k-means has a good potential to deal with large-scale datasets.
Owing to these properties, k-means has been successfully used in various topics, including
computer vision, social network analysis, and market segmentation, to name but a few.
Although it has been studied deeply over the past few decades, many variants of k-means are
put forward continuously [12–15].

3.1.1. Preliminaries of k-means

As a classic clustering algorithm, k-means employs K prototype vectors (i.e., centers or cen-
troids of the K clusters) to characterize each data sample and minimizes a sum of squared loss
function to find these prototypes. Consider a dataset denoted by X ¼ x1; x2;…; xN½ �∈ IRM�N,
where xi ∈ IRM represents the attribute (feature) vector of the i-th data sample xi. In order to
partition the dataset X into K disjoint clusters, denoted by C ¼ C1;C2;…;CKf g, k-means tries to
optimize the following objective function:

ε ¼
XN

i¼1

XK

k¼1
δik∥xi � vk∥22, vk ¼

PN
i¼1 δikxiPN
i¼1 δik

¼ 1
∣Ck∣

X
x∈Ck

x, (1)

where δik is an indicator variable with δik ¼ 1 if xi ∈Ck and 0 otherwise and vk is the k-th
prototype vector, i.e., the k-th cluster center.

Recent Applications in Data Clustering198

As can be seen, Eq. (1) adopts the Euclidean distance to measure the similarities between data
samples. However, there are many data structures or data distributions in real world. Thus, it
is not always suitable to apply this basic form of k-means to accurately identify the hidden
patterns of datasets. What is more, some datasets may be not separable in the low-dimensional
space. Recently, kernel method has been of wide concern in the field of machine learning. By
introducing a kernel function, the original nonlinear datasets are mapped to a higher dimen-
sional reproducing kernel Hilbert space. In the new space, the datasets become linearly sepa-
rable. For this reason, the kernel k-means algorithm [16, 17] has been proposed. It is just a
generalization of the standard k-means algorithm and has the following objective function:

ε ¼
XN

i¼1

XK

k¼1
δik∥ϕ xið Þ � v0k∥

2
2, v0k ¼

PN
i¼1 δikϕ xið ÞPN

i¼1 δik
, (2)

where ϕ : X! H is a nonlinear transformation function. Define a kernel function

K : X� X! IR with K xi; xj
� � ¼ ϕ xið ÞTϕ xj

� �
. Then, Eq. (2) can be rewritten into the kernel form

as below:

ε ¼
XN

i¼1

XK

k¼1
δik K xi; xið Þ � 2

PN
j¼1 δjkK xi; xj

� �
PN

j¼1 δjk
þ
PN

j¼1
PN

l¼1 δjkδlkK xj; xl
� �

PN
j¼1
PN

l¼1 δjkδlk

 !
: (3)

With the aid of the kernel function, there is no need to explicitly provide the transformation
function ϕ. This is because, for certain kernel function, the corresponding transformation
function is intractable. However, the inner products in the kernel space can be easily obtained
according to the kernel function.

3.1.2. Basic form of multi-view k-means

Both the k-means and the kernel k-means described above are designed for single-view data. To
solve the multi-view clustering problem, some new objective functions should be developed.

Assume that there are V views in total. Let X ¼ X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

denote the data of all the

views. It is obvious that different views should have different contributions according to their
conveyed information. To achieve this goal, it is straightforward to modify the standard k-means
to make it applicable in the multi-view environment with a new objective function as follows:

ε ¼
XV
v¼1

μγ
vεv, s:t:μv ≥ 0,

XV
v¼1

μv ¼ 1,γ > 1, (4)

where μv is the weight factor for the v-th view, γ is a parameter used to control the weight
distribution, and εv corresponds to the objective function (i.e., loss function) of the v-th view:

εv ¼
XN

i¼1

XK

k¼1
δik∥x

vð Þ
i � v vð Þ

k ∥22, v
vð Þ
k ¼

PN
i¼1 δikx

vð Þ
iPN

i¼1 δik
: (5)

Similarly, the objective function of the multi-view kernel k-means can be obtained, which is
omitted here. Note that finding the optimal solution of Eq. (4) is an NP-hard problem; thus,

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

199

some iterative algorithms are developed according to the greedy strategy. One basic iterative
algorithm works in a two-stage manner: (1) updating the clustering for given weights and (2)
updating the weights for given clusters; see [18] for details.

Denote ∥X∥F as the Frobenius norm of a given matrix X, i.e., ∥X∥F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i, j¼1 x
2
ij

q
. Then, Eq. (4)

can be easily transformed into a matrix form as shown in the following:

min
V vð Þ,U,μv

XV
v¼1

μγ
v∥X

vð Þ �V vð ÞUT∥2F, s:t:uik ∈ 0; 1f g,
XK

k¼1
uik ¼ 1,μv ≥ 0,

XV
v¼1

μv ¼ 1,γ > 1, (6)

where V vð Þ ∈ IRMv�K denotes the centroid matrix for the v-th view and U∈ IRN�K denotes the
clustering indicator matrix with the i; kð Þ element being δik. Note that all the views share a
common clustering indicator matrix U.

3.1.3. Variants of multi-view k-means

The basic formulations of multi-view k-means shown in Eqs. (4) and (6) do have some draw-
backs. For example, it assumes that all the views are sharing a common clustering indicator
matrix U. However, the structure information contained may be very limited or even lost in
some views. In such case, the performance will be severely affected if all the views share a
common clustering indicator matrix. To tackle the issues, many variants of multi-view k-means
clustering algorithms have been proposed in recent years. Instead of the ℓ2-norm, the struc-
tured sparsity-inducing norm, i.e., the ℓ2,1-norm, is adopted to strengthen the basic multi-view
k-means, in the hope that the effect of outlier data samples will be reduced [19]. In [20], a
k-means-based dual-regularized multi-view outlier detection method (DMOD) is proposed to
identify the cluster outliers and the attribute outliers simultaneously, which is based on a novel
cross-view outlier measurement criterion. Moreover, in the DMOD model, each view is asso-
ciated with a particular clustering indicator matrix, and another alignment matrix is intro-
duced to enforce the consistency between different views. An automated two-level variable
weighting clustering algorithm, called TW-k-means, is developed in [21]. TW-k-means is able to
compute weights for each view and each individual attribute simultaneously. More specifi-
cally, in this algorithm, to identify the compactness of the view, a view weight is assigned to
each view, and an attribute weight is assigned to each attribute in the view to identify the
importance of the attribute. Both view weights and attribute weights are employed in the
distance function to determine the cluster structures of data samples. Similar strategies have
also been taken in [22, 23] to learn more robust multi-view k-means models.

As aforementioned, it is NP-hard to find the optimal solution of the multi-view k-means
clustering problem. The greedy iterative algorithm has a high risk of getting stuck in local
optima during the optimization. Recently, the self-paced learning has been used to alleviate
this problem. The general self-paced learning model consists of a weighted loss function on all
data samples and a regularizer term imposed on the weights of data samples. By gradually
increasing the penalty on the regularizer, more data samples are automatically added into
consideration from “easy” to “complex” via a pure self-paced approach. In this, Xu et al. [24]

Recent Applications in Data Clustering200

present a new multi-view self-paced learning (MSPL) algorithm for clustering based on multi-
view k-means. MSPL learns the multi-view model by not only progressing from “easy” to
“complex” data samples but also from “easy” to “complex” views. The objective function of
MSPL is quite succinct, which is shown in Eq. (7).

min
V vð Þ,U,U

XV
v¼1

∥ X vð Þ �V vð ÞUT
� �

diag
ffiffiffiffiffiffiffiffi
μ vð Þ

q� �
∥2F þ f Uð Þ, s:t:uik ∈ 0; 1f g,

XK

k¼1
uik ¼ 1, (7)

where μ vð Þ ¼ μ vð Þ
1 ;μ vð Þ

2 ;…;μ vð Þ
N

h i
∈ 0; 1½ �N denotes the weights of data samples in the v-th view,

U ¼ μ 1ð Þ;μ 2ð Þ;…;μ Vð Þ� �
, and f Uð Þ denotes the regularization term on demand.

3.2. Multi-view clustering via spectral clustering

Spectral clustering is built upon the spectral graph theory. In recent years, spectral clustering
has become one of the most popular clustering algorithms and shown its effectiveness in
various real-world applications ranging from statistics, computer sciences to bioinformatics.
Due to its adaptation in data distribution, spectral clustering often outperforms traditional
clustering algorithms such as k-means. In addition, spectral clustering is simple to implement
and can be solved efficiently by standard linear algebra.

3.2.1. Preliminaries of spectral clustering

Spectral clustering is closely related to the minimum cut problem of graphs. It first performs
dimensionality reduction on the original data space by leveraging the spectrum of the similar-
ity matrix of data samples and then performs k-means on the low-dimensional space to
partition data into different clusters. Therefore, for a set of data samples, a similarity matrix
should be constructed at first. Typically, each data sample is treated as a node of a graph and
each relationship between data samples is regarded as an edge in the graph. Besides, each edge
is associated with a weight. It is obvious that the value of the edge weight between two far-
away data samples should be low and the value between two close data samples should be
high. For a given dataset X ¼ x1; x2;…; xN½ �∈ IRM�N, let G ¼ V;ℰ;Sð Þ be the generated undi-
rected weighted graph, where V denotes the set of nodes representing the data samples and ℰ
denotes the set of edges representing the relationships between data samples. The similarity
matrix S is a symmetric matrix with each element sij representing the similarity between xi and
xj. There are three popular approaches to construct graph G, that is, the ε-neighborhood graph,
the k-nearest neighbor graph, and the fully connected graph (see details in [25]). To partition G

into disjoint subgraphs (clusters), the minimum cut problem requires that the edge weights
across different clusters are as small as possible, while the total edge weights within each
cluster are as high as possible.

According to the above graph cut theory, two popular versions of spectral clustering are
developed, i.e., the ratio cut (RatioCut) and the normalized cut (Ncut). The classical relaxed
form of the RatioCut [26] is shown as below:

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

201

some iterative algorithms are developed according to the greedy strategy. One basic iterative
algorithm works in a two-stage manner: (1) updating the clustering for given weights and (2)
updating the weights for given clusters; see [18] for details.

Denote ∥X∥F as the Frobenius norm of a given matrix X, i.e., ∥X∥F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i, j¼1 x
2
ij

q
. Then, Eq. (4)

can be easily transformed into a matrix form as shown in the following:

min
V vð Þ,U,μv

XV
v¼1

μγ
v∥X

vð Þ �V vð ÞUT∥2F, s:t:uik ∈ 0; 1f g,
XK

k¼1
uik ¼ 1,μv ≥ 0,

XV
v¼1

μv ¼ 1,γ > 1, (6)

where V vð Þ ∈ IRMv�K denotes the centroid matrix for the v-th view and U∈ IRN�K denotes the
clustering indicator matrix with the i; kð Þ element being δik. Note that all the views share a
common clustering indicator matrix U.

3.1.3. Variants of multi-view k-means

The basic formulations of multi-view k-means shown in Eqs. (4) and (6) do have some draw-
backs. For example, it assumes that all the views are sharing a common clustering indicator
matrix U. However, the structure information contained may be very limited or even lost in
some views. In such case, the performance will be severely affected if all the views share a
common clustering indicator matrix. To tackle the issues, many variants of multi-view k-means
clustering algorithms have been proposed in recent years. Instead of the ℓ2-norm, the struc-
tured sparsity-inducing norm, i.e., the ℓ2,1-norm, is adopted to strengthen the basic multi-view
k-means, in the hope that the effect of outlier data samples will be reduced [19]. In [20], a
k-means-based dual-regularized multi-view outlier detection method (DMOD) is proposed to
identify the cluster outliers and the attribute outliers simultaneously, which is based on a novel
cross-view outlier measurement criterion. Moreover, in the DMOD model, each view is asso-
ciated with a particular clustering indicator matrix, and another alignment matrix is intro-
duced to enforce the consistency between different views. An automated two-level variable
weighting clustering algorithm, called TW-k-means, is developed in [21]. TW-k-means is able to
compute weights for each view and each individual attribute simultaneously. More specifi-
cally, in this algorithm, to identify the compactness of the view, a view weight is assigned to
each view, and an attribute weight is assigned to each attribute in the view to identify the
importance of the attribute. Both view weights and attribute weights are employed in the
distance function to determine the cluster structures of data samples. Similar strategies have
also been taken in [22, 23] to learn more robust multi-view k-means models.

As aforementioned, it is NP-hard to find the optimal solution of the multi-view k-means
clustering problem. The greedy iterative algorithm has a high risk of getting stuck in local
optima during the optimization. Recently, the self-paced learning has been used to alleviate
this problem. The general self-paced learning model consists of a weighted loss function on all
data samples and a regularizer term imposed on the weights of data samples. By gradually
increasing the penalty on the regularizer, more data samples are automatically added into
consideration from “easy” to “complex” via a pure self-paced approach. In this, Xu et al. [24]

Recent Applications in Data Clustering200

present a new multi-view self-paced learning (MSPL) algorithm for clustering based on multi-
view k-means. MSPL learns the multi-view model by not only progressing from “easy” to
“complex” data samples but also from “easy” to “complex” views. The objective function of
MSPL is quite succinct, which is shown in Eq. (7).

min
V vð Þ,U,U

XV
v¼1

∥ X vð Þ �V vð ÞUT
� �

diag
ffiffiffiffiffiffiffiffi
μ vð Þ

q� �
∥2F þ f Uð Þ, s:t:uik ∈ 0; 1f g,

XK

k¼1
uik ¼ 1, (7)

where μ vð Þ ¼ μ vð Þ
1 ;μ vð Þ

2 ;…;μ vð Þ
N

h i
∈ 0; 1½ �N denotes the weights of data samples in the v-th view,

U ¼ μ 1ð Þ;μ 2ð Þ;…;μ Vð Þ� �
, and f Uð Þ denotes the regularization term on demand.

3.2. Multi-view clustering via spectral clustering

Spectral clustering is built upon the spectral graph theory. In recent years, spectral clustering
has become one of the most popular clustering algorithms and shown its effectiveness in
various real-world applications ranging from statistics, computer sciences to bioinformatics.
Due to its adaptation in data distribution, spectral clustering often outperforms traditional
clustering algorithms such as k-means. In addition, spectral clustering is simple to implement
and can be solved efficiently by standard linear algebra.

3.2.1. Preliminaries of spectral clustering

Spectral clustering is closely related to the minimum cut problem of graphs. It first performs
dimensionality reduction on the original data space by leveraging the spectrum of the similar-
ity matrix of data samples and then performs k-means on the low-dimensional space to
partition data into different clusters. Therefore, for a set of data samples, a similarity matrix
should be constructed at first. Typically, each data sample is treated as a node of a graph and
each relationship between data samples is regarded as an edge in the graph. Besides, each edge
is associated with a weight. It is obvious that the value of the edge weight between two far-
away data samples should be low and the value between two close data samples should be
high. For a given dataset X ¼ x1; x2;…; xN½ �∈ IRM�N, let G ¼ V;ℰ;Sð Þ be the generated undi-
rected weighted graph, where V denotes the set of nodes representing the data samples and ℰ
denotes the set of edges representing the relationships between data samples. The similarity
matrix S is a symmetric matrix with each element sij representing the similarity between xi and
xj. There are three popular approaches to construct graph G, that is, the ε-neighborhood graph,
the k-nearest neighbor graph, and the fully connected graph (see details in [25]). To partition G

into disjoint subgraphs (clusters), the minimum cut problem requires that the edge weights
across different clusters are as small as possible, while the total edge weights within each
cluster are as high as possible.

According to the above graph cut theory, two popular versions of spectral clustering are
developed, i.e., the ratio cut (RatioCut) and the normalized cut (Ncut). The classical relaxed
form of the RatioCut [26] is shown as below:

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

201

min tr UTLU
� �

, s:t:UTU ¼ I, (8)

where tr computes the trace of a matrix, U∈ IRN�K is the clustering indicator matrix, I is an
identity matrix, and L is the graph Laplacian matrix defined as L ¼ D� S. Here, D is a

diagonal matrix with dii ¼
PN

j¼1 sij. The objective function of Ncut [27] is similar to Eq. (8) by

replacing L by the normalized Laplacian matrix ~L ¼ I�D�1=2SD�1=2. Both RatioCut and

NCut can be solved efficiently by the eigenvalue decomposition (EVD) of L or ~L.

3.2.2. Basic form of multi-view spectral clustering

Multi-view spectral clustering is able to learn the latent cluster structures by fusing the infor-
mation contained in multiple graphs. Similar to multi-view k-means, it is not hard to extend
the basic spectral clustering to the multi-view environment. Given a dataset X ¼
X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

with V views, V graphs G 1ð Þ;G 2ð Þ;…;G Vð Þ
n o

and the corresponding

Laplacian matrices L 1ð Þ;L 2ð Þ;…;L Vð Þ
n o

can be constructed.

Kumar et al. [28] firstly present a multi-view spectral clustering approach, which has a flavor
of co-training idea widely used in semi-supervised learning. It follows the consistency of
multi-view learning that each view gives the same labels for all data samples. So it can use
the eigenvector of one view to “label” another view and vice versa. For example, via comput-

ing two views’ eigenvectors, say U 1ð Þ and U 2ð Þ, the clustering result of U 1ð Þ can be used to

modify the graph similarity matrix S 2ð Þ, and then the clustering result of U 2ð Þ can be used to

modify the graph similarity matrix S 1ð Þ. For more than two views, the same strategy can be
applied. Kumar et al. [29] further propose a multi-view spectral clustering approach using co-
regularization idea that makes the clustering results of different views agree with each other.
The co-regularization form is stated as the disagreement between clustering results of two

views: Φ U pð Þ;U qð Þ
� �

¼ �tr U pð ÞU pð ÞTU qð ÞU qð ÞT
� �

. Then the goal is to minimize the disagreement

to achieve the consistency between views with the following objective function:

min
XV
v¼1

tr U vð ÞTL vð ÞU vð Þ
� �

�
XV
p, q¼1

λpqtr U pð ÞU pð ÞTU qð ÞU qð ÞT
� �

, s:t:U vð ÞTU vð Þ ¼ I, (9)

where λpq represents the degree of disagreement between the p-th view and the q-th view.
From another perspective, all the views sharing a common indicator matrix U∗ is also rational
according to the consistency requirement. So the model in Eq. (9) can be rewritten as

min
XV
v¼1

tr U vð ÞTL vð ÞU vð Þ
� �

�
XV
v¼1

λvtr U vð ÞU vð ÞTU∗U∗T
� �

, s:t:U vð ÞTU vð Þ ¼ I, (10)

where λv controls the degree of disagreement between U vð Þ and U∗.

Recent Applications in Data Clustering202

3.2.3. Variants of multi-view spectral clustering

The basic form of multi-view spectral clustering achieves the basic goals of multi-view learn-
ing. However, some issues have not yet been considered. For instance, the weight parameter λ
in Eq. (9) needs to be set manually. To make up this issue, it is necessary to adaptively compute
the weight of each view. Xia et al. [30] assume that each view has a weight μv representing its
importance and the weight distribution should be sufficiently smooth. They further consider a
unified indicator matrix U across all views, which can be fulfilled via exploring the comple-
mentary property of different views. To this end, they develop a novel model as follows:

min
XV
v¼1

μγ
v tr UTL vð ÞU
� �

, s:t:
XV
v¼1

μv ¼ 1,μv > 0: (11)

The model above needs a manually specified parameter γ to adjust the weights of different
views, which is sometimes intractable. Thus, Nie et al. [31] propose a parameter-free auto-
weighted multiple graph learning method (AMGL), wherein the weight parameter μv is

replaced by αv ¼ 1
2

ffi
tr UTL vð ÞU
� �r

. Thus, AMGL does not require additional parameters, and

αv can be self-updated. To avoid the considerable noise in each view which often degrades the
performance severely, Xia et al. [32] propose a robust multi-view spectral clustering (RMSC)
method via low-rank and sparse decomposition. In RMSC, a novel Markov chain is designed

for dealing with the noise. First, the similarity matrix S vð Þ and the corresponding transition

probability matrix P vð Þ ¼ D vð Þ
� ��1

S vð Þ are computed. Then, the row-rank latent transition

probability matrix bP and the deviation error matrix E vð Þ are constructed via low-rank and

sparse decomposition. Finally, based on the transition probability matrix bP, the standard
Markov chain method is applied for partitioning data into K clusters. Note that the methods
above have a high cost in optimization computation. There are numerous variables that need
to be updated and the derivation process is also extremely complex during the optimization.
To overcome this limitation, Chen et al. [33] present a novel variant of the Laplacian matrix
named block intra-normalized Laplacian defined as follows, without the linear combination of
multiple Laplacian matrices.

B ¼ Bw þ βBa ¼
L 1ð Þ 0 ⋯ 0
0 L 2ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ L Vð Þ

0
BBB@

1
CCCAþ β

V � 1ð ÞI �I ⋯ �I
�I V � 1ð ÞI ⋯ �I
⋮ ⋮ ⋱ ⋮
�I �I ⋯ V � 1ð ÞI

0
BBB@

1
CCCA, (12)

where Bw denotes the within Laplacian matrix of V views and Ba denotes the across Laplacian
matrix between different views. Based on B, the block intra-normalized Laplacian matrix is

then defined as bB ¼ D�1=2BwD�1=2 þ βBa, where D is a block diagonal matrix with the v-th

block being D vð Þ. By proving that the multiplicity of the zero eigenvalue of the constructed
block Laplacian matrix is equal to the number of clusters K, the eigenvectors of the block

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

203

min tr UTLU
� �

, s:t:UTU ¼ I, (8)

where tr computes the trace of a matrix, U∈ IRN�K is the clustering indicator matrix, I is an
identity matrix, and L is the graph Laplacian matrix defined as L ¼ D� S. Here, D is a

diagonal matrix with dii ¼
PN

j¼1 sij. The objective function of Ncut [27] is similar to Eq. (8) by

replacing L by the normalized Laplacian matrix ~L ¼ I�D�1=2SD�1=2. Both RatioCut and

NCut can be solved efficiently by the eigenvalue decomposition (EVD) of L or ~L.

3.2.2. Basic form of multi-view spectral clustering

Multi-view spectral clustering is able to learn the latent cluster structures by fusing the infor-
mation contained in multiple graphs. Similar to multi-view k-means, it is not hard to extend
the basic spectral clustering to the multi-view environment. Given a dataset X ¼
X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

with V views, V graphs G 1ð Þ;G 2ð Þ;…;G Vð Þ
n o

and the corresponding

Laplacian matrices L 1ð Þ;L 2ð Þ;…;L Vð Þ
n o

can be constructed.

Kumar et al. [28] firstly present a multi-view spectral clustering approach, which has a flavor
of co-training idea widely used in semi-supervised learning. It follows the consistency of
multi-view learning that each view gives the same labels for all data samples. So it can use
the eigenvector of one view to “label” another view and vice versa. For example, via comput-

ing two views’ eigenvectors, say U 1ð Þ and U 2ð Þ, the clustering result of U 1ð Þ can be used to

modify the graph similarity matrix S 2ð Þ, and then the clustering result of U 2ð Þ can be used to

modify the graph similarity matrix S 1ð Þ. For more than two views, the same strategy can be
applied. Kumar et al. [29] further propose a multi-view spectral clustering approach using co-
regularization idea that makes the clustering results of different views agree with each other.
The co-regularization form is stated as the disagreement between clustering results of two

views: Φ U pð Þ;U qð Þ
� �

¼ �tr U pð ÞU pð ÞTU qð ÞU qð ÞT
� �

. Then the goal is to minimize the disagreement

to achieve the consistency between views with the following objective function:

min
XV
v¼1

tr U vð ÞTL vð ÞU vð Þ
� �

�
XV
p, q¼1

λpqtr U pð ÞU pð ÞTU qð ÞU qð ÞT
� �

, s:t:U vð ÞTU vð Þ ¼ I, (9)

where λpq represents the degree of disagreement between the p-th view and the q-th view.
From another perspective, all the views sharing a common indicator matrix U∗ is also rational
according to the consistency requirement. So the model in Eq. (9) can be rewritten as

min
XV
v¼1

tr U vð ÞTL vð ÞU vð Þ
� �

�
XV
v¼1

λvtr U vð ÞU vð ÞTU∗U∗T
� �

, s:t:U vð ÞTU vð Þ ¼ I, (10)

where λv controls the degree of disagreement between U vð Þ and U∗.

Recent Applications in Data Clustering202

3.2.3. Variants of multi-view spectral clustering

The basic form of multi-view spectral clustering achieves the basic goals of multi-view learn-
ing. However, some issues have not yet been considered. For instance, the weight parameter λ
in Eq. (9) needs to be set manually. To make up this issue, it is necessary to adaptively compute
the weight of each view. Xia et al. [30] assume that each view has a weight μv representing its
importance and the weight distribution should be sufficiently smooth. They further consider a
unified indicator matrix U across all views, which can be fulfilled via exploring the comple-
mentary property of different views. To this end, they develop a novel model as follows:

min
XV
v¼1

μγ
v tr UTL vð ÞU
� �

, s:t:
XV
v¼1

μv ¼ 1,μv > 0: (11)

The model above needs a manually specified parameter γ to adjust the weights of different
views, which is sometimes intractable. Thus, Nie et al. [31] propose a parameter-free auto-
weighted multiple graph learning method (AMGL), wherein the weight parameter μv is

replaced by αv ¼ 1
2

ffi
tr UTL vð ÞU
� �r

. Thus, AMGL does not require additional parameters, and

αv can be self-updated. To avoid the considerable noise in each view which often degrades the
performance severely, Xia et al. [32] propose a robust multi-view spectral clustering (RMSC)
method via low-rank and sparse decomposition. In RMSC, a novel Markov chain is designed

for dealing with the noise. First, the similarity matrix S vð Þ and the corresponding transition

probability matrix P vð Þ ¼ D vð Þ
� ��1

S vð Þ are computed. Then, the row-rank latent transition

probability matrix bP and the deviation error matrix E vð Þ are constructed via low-rank and

sparse decomposition. Finally, based on the transition probability matrix bP, the standard
Markov chain method is applied for partitioning data into K clusters. Note that the methods
above have a high cost in optimization computation. There are numerous variables that need
to be updated and the derivation process is also extremely complex during the optimization.
To overcome this limitation, Chen et al. [33] present a novel variant of the Laplacian matrix
named block intra-normalized Laplacian defined as follows, without the linear combination of
multiple Laplacian matrices.

B ¼ Bw þ βBa ¼
L 1ð Þ 0 ⋯ 0
0 L 2ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ L Vð Þ

0
BBB@

1
CCCAþ β

V � 1ð ÞI �I ⋯ �I
�I V � 1ð ÞI ⋯ �I
⋮ ⋮ ⋱ ⋮
�I �I ⋯ V � 1ð ÞI

0
BBB@

1
CCCA, (12)

where Bw denotes the within Laplacian matrix of V views and Ba denotes the across Laplacian
matrix between different views. Based on B, the block intra-normalized Laplacian matrix is

then defined as bB ¼ D�1=2BwD�1=2 þ βBa, where D is a block diagonal matrix with the v-th

block being D vð Þ. By proving that the multiplicity of the zero eigenvalue of the constructed
block Laplacian matrix is equal to the number of clusters K, the eigenvectors of the block

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

203

Laplacian matrix can be used for clustering via the classical form of spectral clustering. At the
end, the lower and upper bounds of the optimal solution are also established. See [33] for more
details.

3.3. Multi-view clustering via matrix factorization

In the fields of data mining and machine learning, matrix factorization (MF) is an effective
latent factor learning model. Given a data matrix X∈ IRM�N, MF tries to find two low-rank
factor matrices V∈ IRM�K and U∈ IRN�K whose multiplication can well approximate it, i.e.,
X ≈VUT . MF has shown many promising applications in real world, such as information
retrieval, recommendation system, signal processing, document analysis, and so on. Usually,
the nonnegativity constraints are enforced to the factor matrices to promote the interpretability
of the MF models. Therefore, in this part, we focus on the introduction of the nonnegative MF
(NMF)-related clustering models. For a comprehensive review of NMF-based models and
applications, please refer to [34].

3.3.1. Preliminaries of matrix factorization

As is well known, there are many matrix factorization models, including the singular value
decomposition, Cholesky decomposition, LU decomposition, QR decomposition, and Schur
decomposition. These factorization models either have too strict restrictions on the factor
matrices or lack the ability to be applied to data analysis. Due to the wide applications of
NMF in recommending systems, NMF has drawn much attention in both academia and
industry. In fact, NMF can be regarded as an extension of the standard k-means algorithm by
relaxing the constraints imposed on the clustering indicator matrix. For a given dataset
X ¼ x1; x2;…; xN½ �∈ IRM�N

þ , NMF seeks to learn a basis matrix V and a coefficient matrix U via
optimizing the following objective function:

min
V,U

∥X�VUT∥2F, s:t:V ≥ 0,U ≥ 0, (13)

where V∈ IRM�K
þ can be considered as the cluster centroid matrix and U∈ IRN�K

þ can be treated
as a “soft” clustering indicator matrix. The objective function above is not convex in U and V;
therefore, it is impractical to find the global optima. Typically, there are two methods to solve
Eq. (13). The first one is the gradient descent method [35]. The other one is the multiplicative
method [36] where the iterative updating rules are as follows:

V V⊙
XU

VUTU
, U U⊙

XTV
UVTV

, (14)

where ⊙ and �½ �
�½ � denote the element-wise multiplication and division, respectively. It is note-

worthy that there are many other criterions to measure the difference between X and VUT ,
such as the ℓ1-norm, the ℓ2,1-norm, and the Kullback-Leibler divergence (a.k.a. relative
entropy). For these criterions, the updating rules can be derived similarly.

Recent Applications in Data Clustering204

3.3.2. Basic form of multi-view matrix factorization

The hypothesis behind multi-view clustering is that different views should admit the same
underlying clustering structures of the datasets. That is, the coefficient matrices learned from
different views should be as consistent as possible. To this end, a soft regularization term is
introduced to enforce the coefficient matrices of different views toward a common consensus

[37]. For a given dataset X ¼ X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

with V views, the following objective func-

tion can be derived to partition X into K clusters:

min
V vð Þ,U vð Þ

XV
v¼1

∥X vð Þ �V vð ÞU vð ÞT∥2F þ
XV
v¼1

λv∥U vð Þ �U∗∥2F, s:t:V
vð Þ ≥ 0,U vð Þ ≥ 0,U∗ ≥ 0, (15)

where U∗ is a consensus matrix that characterizes the intrinsic clustering structures of datasets
among all views and λv is the parameter used to tune both the relative importance of different
views and the contribution between the first reconstruction error term and the second dis-
agreement term. Note that Eq. (15) does not require that all the views share a common U∗;
thus, this model is more robust to low-quality views, i.e., the effect of low-quality views is
reduced by setting the corresponding λv to be small enough.

Instead of enforcing a rigid common consensus constraint on all the views as in Eq. (15),
another form of basic multi-view NMF for clustering is the pair-wise CoNMF model [38],
which imposes similarity constraints on each pair of views. Through the pair-wise co-
regularization, it is expected that the coefficient matrices learned from two views can comple-
ment with each other during the factorization process. And therefore, high-quality clustering
results can be yielded. The co-regularization objective function of the pair-wise CoNMF model
is defined intuitively as follows:

min
V vð Þ,U vð Þ

XV
v¼1

λv∥X vð Þ �V vð ÞU vð ÞT∥2F þ
XV
p, q¼1

λpq∥U pð Þ �U qð Þ∥2F, s:t:V
vð Þ ≥ 0,U vð Þ ≥ 0, (16)

where λv is the parameter employed to combine the factorization of different views and λpq is

the parameter used to denote the weight of similarity constraint on U pð Þ and U qð Þ. As the
column vector of the coefficient matrix U represents a cluster, when adopting the vector-based
ℓ2-norm, each element of UTU gives the cosine similarity between two clusters. Obviously, in
the multi-view environment, the cluster similarity between different views should also be
consistent, which results in the cluster-wise CoNMF model. Cluster-wise CoNMF replaces the
pair-wise regularization term in Eq. (16) by the following cluster-wise regularization term:

XV
p, q¼1

λpq∥U pð ÞTU pð Þ �U qð ÞTU qð Þ∥2F: (17)

Similar to the optimization of the standard single-view NMF model, all the three basic multi-
view NMF clustering models can be optimized via the multiplicative updating rules.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

205

Laplacian matrix can be used for clustering via the classical form of spectral clustering. At the
end, the lower and upper bounds of the optimal solution are also established. See [33] for more
details.

3.3. Multi-view clustering via matrix factorization

In the fields of data mining and machine learning, matrix factorization (MF) is an effective
latent factor learning model. Given a data matrix X∈ IRM�N, MF tries to find two low-rank
factor matrices V∈ IRM�K and U∈ IRN�K whose multiplication can well approximate it, i.e.,
X ≈VUT . MF has shown many promising applications in real world, such as information
retrieval, recommendation system, signal processing, document analysis, and so on. Usually,
the nonnegativity constraints are enforced to the factor matrices to promote the interpretability
of the MF models. Therefore, in this part, we focus on the introduction of the nonnegative MF
(NMF)-related clustering models. For a comprehensive review of NMF-based models and
applications, please refer to [34].

3.3.1. Preliminaries of matrix factorization

As is well known, there are many matrix factorization models, including the singular value
decomposition, Cholesky decomposition, LU decomposition, QR decomposition, and Schur
decomposition. These factorization models either have too strict restrictions on the factor
matrices or lack the ability to be applied to data analysis. Due to the wide applications of
NMF in recommending systems, NMF has drawn much attention in both academia and
industry. In fact, NMF can be regarded as an extension of the standard k-means algorithm by
relaxing the constraints imposed on the clustering indicator matrix. For a given dataset
X ¼ x1; x2;…; xN½ �∈ IRM�N

þ , NMF seeks to learn a basis matrix V and a coefficient matrix U via
optimizing the following objective function:

min
V,U

∥X�VUT∥2F, s:t:V ≥ 0,U ≥ 0, (13)

where V∈ IRM�K
þ can be considered as the cluster centroid matrix and U∈ IRN�K

þ can be treated
as a “soft” clustering indicator matrix. The objective function above is not convex in U and V;
therefore, it is impractical to find the global optima. Typically, there are two methods to solve
Eq. (13). The first one is the gradient descent method [35]. The other one is the multiplicative
method [36] where the iterative updating rules are as follows:

V V⊙
XU

VUTU
, U U⊙

XTV
UVTV

, (14)

where ⊙ and �½ �
�½ � denote the element-wise multiplication and division, respectively. It is note-

worthy that there are many other criterions to measure the difference between X and VUT ,
such as the ℓ1-norm, the ℓ2,1-norm, and the Kullback-Leibler divergence (a.k.a. relative
entropy). For these criterions, the updating rules can be derived similarly.

Recent Applications in Data Clustering204

3.3.2. Basic form of multi-view matrix factorization

The hypothesis behind multi-view clustering is that different views should admit the same
underlying clustering structures of the datasets. That is, the coefficient matrices learned from
different views should be as consistent as possible. To this end, a soft regularization term is
introduced to enforce the coefficient matrices of different views toward a common consensus

[37]. For a given dataset X ¼ X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

with V views, the following objective func-

tion can be derived to partition X into K clusters:

min
V vð Þ,U vð Þ

XV
v¼1

∥X vð Þ �V vð ÞU vð ÞT∥2F þ
XV
v¼1

λv∥U vð Þ �U∗∥2F, s:t:V
vð Þ ≥ 0,U vð Þ ≥ 0,U∗ ≥ 0, (15)

where U∗ is a consensus matrix that characterizes the intrinsic clustering structures of datasets
among all views and λv is the parameter used to tune both the relative importance of different
views and the contribution between the first reconstruction error term and the second dis-
agreement term. Note that Eq. (15) does not require that all the views share a common U∗;
thus, this model is more robust to low-quality views, i.e., the effect of low-quality views is
reduced by setting the corresponding λv to be small enough.

Instead of enforcing a rigid common consensus constraint on all the views as in Eq. (15),
another form of basic multi-view NMF for clustering is the pair-wise CoNMF model [38],
which imposes similarity constraints on each pair of views. Through the pair-wise co-
regularization, it is expected that the coefficient matrices learned from two views can comple-
ment with each other during the factorization process. And therefore, high-quality clustering
results can be yielded. The co-regularization objective function of the pair-wise CoNMF model
is defined intuitively as follows:

min
V vð Þ,U vð Þ

XV
v¼1

λv∥X vð Þ �V vð ÞU vð ÞT∥2F þ
XV
p, q¼1

λpq∥U pð Þ �U qð Þ∥2F, s:t:V
vð Þ ≥ 0,U vð Þ ≥ 0, (16)

where λv is the parameter employed to combine the factorization of different views and λpq is

the parameter used to denote the weight of similarity constraint on U pð Þ and U qð Þ. As the
column vector of the coefficient matrix U represents a cluster, when adopting the vector-based
ℓ2-norm, each element of UTU gives the cosine similarity between two clusters. Obviously, in
the multi-view environment, the cluster similarity between different views should also be
consistent, which results in the cluster-wise CoNMF model. Cluster-wise CoNMF replaces the
pair-wise regularization term in Eq. (16) by the following cluster-wise regularization term:

XV
p, q¼1

λpq∥U pð ÞTU pð Þ �U qð ÞTU qð Þ∥2F: (17)

Similar to the optimization of the standard single-view NMF model, all the three basic multi-
view NMF clustering models can be optimized via the multiplicative updating rules.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

205

3.3.3. Variants of multi-view matrix factorization

As the locality preserving learning and the manifold learning have been shown very important
to promote the performance of clustering algorithms, Cai et al. [39] propose a graph (or
manifold) regularized NMF model GNMF for single-view clustering with satisfying perfor-
mance. Note that the aforementioned multi-view NMF models cannot preserve the local
geometrical structures of the samples. To overcome this limitation, a multi-manifold regular-
ized NMF model (MMNMF) is proposed in [40]. MMNMF incorporates consensus manifold
and consensus coefficient matrix with multi-manifold regularization to preserve the local
geometrical structures of the multi-view data space. The multi-manifold regularization has
also been considered in [41]. Moreover, the correntropy-induced metric (CIM) is adapted to
measure the reconstruction error, since CIM has achieved excellent performance in many
applications. CIM is also insensitive to large errors that are mainly introduced from heavy
noises. A much simpler formulation of the manifold regularized multi-view NMF model is
developed in [42]. Without the explicit constraint that enforces a rigid common manifold
consensus, an auxiliary matrix is involved to add constraints on the column sums of the basis

matrix V vð Þ such that the coefficient matrix U vð Þ is comparable. A weighted extension of multi-
view NMF is presented in [43] to address the image annotation problem. In this model, two
weight matrices are introduced. One weight matrix is used to bias the factorization toward
improved reconstruction for rare tags. The other weight matrix gives more weight to images
containing rare tags and is applied to all views. A weighted extension of the pair-wise CoNMF
model has also been developed in [44] to handle those attributes that are unobserved in each
data sample so as to resolve the sparseness problem in all views’ matrices. For the realistic
cases that many views suffer from missing of some data samples resulting in many partial
examples, Li et al. [45] firstly devise a partial multi-view clustering method to handle this
problem. A multi-incomplete-view clustering method MIC [46] is also designed to deal with
the incompleteness of the views. MIC is built upon the weighted NMF model with a ℓ2,1-norm
regularization. Zhang et al. [47] further propose a constrained multi-view clustering algorithm
for unmapped data in the framework of NMF. The proposed algorithm uses inter-view con-
straints to establish the connections between different views.

Due to its great interpretability and high efficacy, NMF has been widely employed for graph
clustering [48]. In such setting, the data matrix X is replaced by the adjacency matrix A. In
many applications, graph data may be collected from heterogeneous domains or sources.
Integrating multiple graphs has been shown to be a promising approach to improve the graph
clustering accuracy. Clearly, multi-view NMF is suitable for multiple graph processing. In [49],
a flexible and robust NMF-based framework, named co-regularized graph clustering (CGC), is
developed to address the multi-domain graph clustering problem. CGC supports many-to-
many cross-domain node relationships, and it also incorporates weights on cross-domain
relationships. Besides, CGC allows partial cross-domain mapping so that graphs in different
domains may have different sizes. Considering the fact that in many real-world applications,
different graphs have different node distributions, the assumption that the multiple graphs
share a common clustering structure does not hold. Given this, Ni et al. [50] develop a novel
two-phase clustering method NoNClus, based on the NMF framework. At first, a main graph

Recent Applications in Data Clustering206

is constructed via modeling the similarity between different domains. Then, the main graph is
utilized to regularize the clustering structures in different domain-specific graphs. In the
NonClus model, multiple underlying clustering structures can co-exist among domain-specific
graphs, while for similar domains, the corresponding clustering structures should be as con-
sistent as possible.

3.4. Multi-view clustering via tensor decomposition

In this part, we analyze multi-view clustering from a multilinear algebra perspective and
present several novel multi-view clustering algorithms (note that the notations used in this
part are self-contained). Tensor is known as a multidimensional matrix or multiway array [51].
In multi-view research field, data can be naturally modeled as a third-order tensor with
objects, features, and view dimensions. An intuitive way is to compact different views along
the view dimension of the tensor (see Figure 1). Another widely adopted way is to transform
each feature matrix to a similarity matrix before compacting them.

3.4.1. Preliminaries of tensor decomposition

In the field of data mining and machine learning, tensor decomposition is an emerging and
effective tool for processing multi-view data. In this section, some basic knowledge on tensors
and tensor decomposition methods is provided. We refer the readers to [51, 52] for a compre-
hensive understanding of these topics.

3.4.1.1. Notations

Let X be an m-order tensor of size I1 � I2 �⋯� Im. The mode-p matricization of X is denoted
as an Ip � I1⋯Ip�1Ipþ1⋯Im

� �
matrix X pð Þ, which is obtained by arranging the mode-p fibers to

be the columns of the matrix X pð Þ. The p-mode multiplication Y ¼ X�pU can be manipulated as

matrix multiplication Y pð Þ ¼ UX pð Þ, where U∈ IRJp�Ip and Y∈ IRI1⋯Ip�1JpIpþ1⋯Im . The Frobenius
norm of a tensor X is the sum of the squares of all its elements xi1 i2…im . The tensor X is a rank-
one tensor if it can be written as the outer product of m vectors, i.e., X ¼ x 1ð Þ∘x 2ð Þ∘…∘x mð Þ,
where ∘ represents the vector outer product.

Figure 1. Visualization of the process of transforming the feature matrices to a third-order tensor.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

207

3.3.3. Variants of multi-view matrix factorization

As the locality preserving learning and the manifold learning have been shown very important
to promote the performance of clustering algorithms, Cai et al. [39] propose a graph (or
manifold) regularized NMF model GNMF for single-view clustering with satisfying perfor-
mance. Note that the aforementioned multi-view NMF models cannot preserve the local
geometrical structures of the samples. To overcome this limitation, a multi-manifold regular-
ized NMF model (MMNMF) is proposed in [40]. MMNMF incorporates consensus manifold
and consensus coefficient matrix with multi-manifold regularization to preserve the local
geometrical structures of the multi-view data space. The multi-manifold regularization has
also been considered in [41]. Moreover, the correntropy-induced metric (CIM) is adapted to
measure the reconstruction error, since CIM has achieved excellent performance in many
applications. CIM is also insensitive to large errors that are mainly introduced from heavy
noises. A much simpler formulation of the manifold regularized multi-view NMF model is
developed in [42]. Without the explicit constraint that enforces a rigid common manifold
consensus, an auxiliary matrix is involved to add constraints on the column sums of the basis

matrix V vð Þ such that the coefficient matrix U vð Þ is comparable. A weighted extension of multi-
view NMF is presented in [43] to address the image annotation problem. In this model, two
weight matrices are introduced. One weight matrix is used to bias the factorization toward
improved reconstruction for rare tags. The other weight matrix gives more weight to images
containing rare tags and is applied to all views. A weighted extension of the pair-wise CoNMF
model has also been developed in [44] to handle those attributes that are unobserved in each
data sample so as to resolve the sparseness problem in all views’ matrices. For the realistic
cases that many views suffer from missing of some data samples resulting in many partial
examples, Li et al. [45] firstly devise a partial multi-view clustering method to handle this
problem. A multi-incomplete-view clustering method MIC [46] is also designed to deal with
the incompleteness of the views. MIC is built upon the weighted NMF model with a ℓ2,1-norm
regularization. Zhang et al. [47] further propose a constrained multi-view clustering algorithm
for unmapped data in the framework of NMF. The proposed algorithm uses inter-view con-
straints to establish the connections between different views.

Due to its great interpretability and high efficacy, NMF has been widely employed for graph
clustering [48]. In such setting, the data matrix X is replaced by the adjacency matrix A. In
many applications, graph data may be collected from heterogeneous domains or sources.
Integrating multiple graphs has been shown to be a promising approach to improve the graph
clustering accuracy. Clearly, multi-view NMF is suitable for multiple graph processing. In [49],
a flexible and robust NMF-based framework, named co-regularized graph clustering (CGC), is
developed to address the multi-domain graph clustering problem. CGC supports many-to-
many cross-domain node relationships, and it also incorporates weights on cross-domain
relationships. Besides, CGC allows partial cross-domain mapping so that graphs in different
domains may have different sizes. Considering the fact that in many real-world applications,
different graphs have different node distributions, the assumption that the multiple graphs
share a common clustering structure does not hold. Given this, Ni et al. [50] develop a novel
two-phase clustering method NoNClus, based on the NMF framework. At first, a main graph

Recent Applications in Data Clustering206

is constructed via modeling the similarity between different domains. Then, the main graph is
utilized to regularize the clustering structures in different domain-specific graphs. In the
NonClus model, multiple underlying clustering structures can co-exist among domain-specific
graphs, while for similar domains, the corresponding clustering structures should be as con-
sistent as possible.

3.4. Multi-view clustering via tensor decomposition

In this part, we analyze multi-view clustering from a multilinear algebra perspective and
present several novel multi-view clustering algorithms (note that the notations used in this
part are self-contained). Tensor is known as a multidimensional matrix or multiway array [51].
In multi-view research field, data can be naturally modeled as a third-order tensor with
objects, features, and view dimensions. An intuitive way is to compact different views along
the view dimension of the tensor (see Figure 1). Another widely adopted way is to transform
each feature matrix to a similarity matrix before compacting them.

3.4.1. Preliminaries of tensor decomposition

In the field of data mining and machine learning, tensor decomposition is an emerging and
effective tool for processing multi-view data. In this section, some basic knowledge on tensors
and tensor decomposition methods is provided. We refer the readers to [51, 52] for a compre-
hensive understanding of these topics.

3.4.1.1. Notations

Let X be an m-order tensor of size I1 � I2 �⋯� Im. The mode-p matricization of X is denoted
as an Ip � I1⋯Ip�1Ipþ1⋯Im

� �
matrix X pð Þ, which is obtained by arranging the mode-p fibers to

be the columns of the matrix X pð Þ. The p-mode multiplication Y ¼ X�pU can be manipulated as

matrix multiplication Y pð Þ ¼ UX pð Þ, where U∈ IRJp�Ip and Y∈ IRI1⋯Ip�1JpIpþ1⋯Im . The Frobenius
norm of a tensor X is the sum of the squares of all its elements xi1 i2…im . The tensor X is a rank-
one tensor if it can be written as the outer product of m vectors, i.e., X ¼ x 1ð Þ∘x 2ð Þ∘…∘x mð Þ,
where ∘ represents the vector outer product.

Figure 1. Visualization of the process of transforming the feature matrices to a third-order tensor.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

207

3.4.1.2. CP decomposition

The idea of expressing tensor as the sum of a number of rank-one tensors comes from the study
of Hitchcock [53]. Then, Cattell [54] proposed the idea of parallel proportional analysis. The
popular CP decomposition comes from the ideas of Carroll and Chang [55] (canonical decom-
position) and Harshman [56] (parallel factors). Taking a third-order tensor X∈ IRI�J�K as an
example, the CP decomposition tries to approximate tensor X with R components of rank-one
tensor, i.e.,

X ≈
XR
r¼1

ur∘vr∘wr, (18)

where ur ∈ IRI , vr ∈ IRJ , and wr ∈ IRK. For simplicity, we denote U ¼ u1;u2;…;uR½ �,
V ¼ v1; v2;…; vR½ �, W ¼ w1;w2;…;wR½ �, and ½½U;V;W�� as the CP decomposition of X.

3.4.1.3. Tucker decomposition

The idea of Tucker decomposition is introduced by Tucker [57]. The Tucker decomposition is a
form of higher-order singular value decomposition (HOSVD) [58]. It decomposes a tensor
X∈ IRI�J�K into a core tensor G∈ IRP�Q�R multiplied by several orthogonal matrices along each
mode, i.e.,

X ≈G�1U�2V�3W ¼
XP
p¼1

XQ

q¼1

XR
r¼1

gpqrup∘vq∘wr: (19)

The cutting-edge technique for calculating the factor matrices is proposed in [59].

3.4.2. Tensor decomposition-based multi-view clustering

In multi-view clustering, the goal is to find out some meaningful group of objects from the
data. The above CP decomposition naturally divides the multi-view data into several compo-
nents, which can be seen as the clusters. Thus, it can be directly applied to solve multi-view

clustering problems. For a given dataset X ¼ X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

with V views, where X vð Þ of

each view takes value from IRN�M,X can be formulated as a third-order tensorX∈ IRN�M�V. In
this part, a variant of CP decomposition is introduced first, which is quite straightforward.
Then we shed light on the relations between several classic multi-view spectral clustering
methods and the Tucker decomposition.

3.4.2.1. Total variation based CP (TVCP)

In some clustering problems, a consecutive range of time points is non-negligible. For example,
in the dataset with authors, publications, and a sequence of time points, we are interested in
figuring out which group of authors work in the same topics during a period of time. Chen
et al. [60] propose a total variation based tensor decomposition method (TVCP) for the

Recent Applications in Data Clustering208

constraint on a period of consecutive time points. The total variation regularizes the time factor
to obtain a piece-wise constant function w.r.t. time points. Owing to the piece-wise constant
function, the decomposition can be relatively consistent in a cluster and separated between
clusters. The TVCP model is formulated as follows:

min
½½U;V;W��

1
2
∥X�

XR
r¼1

ur∘vr∘wr∥2F þ τ
XR
r¼1

∥Fwr∥1, (20)

where F is the first-order difference V � 1ð Þ � V matrix such that f ii ¼ 1 and f i iþ1ð Þ ¼ �1 for

i ¼ 1, 2,⋯, V � 1, and the other elements are zeros, τ is a positive regularization parameter,
and ∥ � ∥1 denotes the ℓ1-norm. The first term corresponds to the CP decomposition of X, and
the second term constrains the time mode (w) to be a piece-wise constant function.

3.4.2.2. Relations between Tucker decomposition and spectral clustering

Liu et al. [61] propose a framework of multi-view clustering via tensor decomposition, mainly
the Tucker decomposition. According to the framework, the common type of multi-view
spectral clustering is equivalent to a Tucker decomposition problem as follows:

min
U

XV
v¼1

tr UTL vð ÞU
� �

, s:t:UTU ¼ I, ⇔ max
U

∥X�1UT�2UT�3IT∥2F: (21)

Another form of multi-view spectral clustering can also be written as a Tucker problem:

min
U,μ

tr UT
XV
v¼1

μvL
vð Þ

 !
U

 !
,

s:t:UTU ¼ I,μv ≥ 0,
XV
v¼1

μv ¼ 1,

⇔

max
U,μ

∥X�1UT�2UT�3μT∥2F,

s:t:UTU ¼ I,μv ≥ 0,
XV
v¼1

μv ¼ 1:
(22)

With this framework, variety of spectral clustering problems can be solved by a tensor decom-
position algorithm. We can see the strong connection between them as well as the strong
capability of tensor methodology.

Canonical correlation analysis is designed to inspect the linear relationship between two sets of
variables [62]. In multi-view learning, a typical approach is to maximize the sum of pair-wise
correlations between different views [63]. Without loss of high-order correlations, Luo et al.
[64] propose a tensor canonical correlation analysis (TCCA), which is equivalent to CP decom-
position of the correlation tensor. Khan et al. [65] propose a Bayesian extension of CP decom-
position for multiple coupled tensors sharing common latent factors.

3.5. Multi-view clustering via deep learning

With the third wave of artificial intelligence, deep learning is gaining increasing popularity in
recent years. Deep learning has demonstrated excellent performance in many real-world

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

209

3.4.1.2. CP decomposition

The idea of expressing tensor as the sum of a number of rank-one tensors comes from the study
of Hitchcock [53]. Then, Cattell [54] proposed the idea of parallel proportional analysis. The
popular CP decomposition comes from the ideas of Carroll and Chang [55] (canonical decom-
position) and Harshman [56] (parallel factors). Taking a third-order tensor X∈ IRI�J�K as an
example, the CP decomposition tries to approximate tensor X with R components of rank-one
tensor, i.e.,

X ≈
XR
r¼1

ur∘vr∘wr, (18)

where ur ∈ IRI , vr ∈ IRJ , and wr ∈ IRK. For simplicity, we denote U ¼ u1;u2;…;uR½ �,
V ¼ v1; v2;…; vR½ �, W ¼ w1;w2;…;wR½ �, and ½½U;V;W�� as the CP decomposition of X.

3.4.1.3. Tucker decomposition

The idea of Tucker decomposition is introduced by Tucker [57]. The Tucker decomposition is a
form of higher-order singular value decomposition (HOSVD) [58]. It decomposes a tensor
X∈ IRI�J�K into a core tensor G∈ IRP�Q�R multiplied by several orthogonal matrices along each
mode, i.e.,

X ≈G�1U�2V�3W ¼
XP
p¼1

XQ

q¼1

XR
r¼1

gpqrup∘vq∘wr: (19)

The cutting-edge technique for calculating the factor matrices is proposed in [59].

3.4.2. Tensor decomposition-based multi-view clustering

In multi-view clustering, the goal is to find out some meaningful group of objects from the
data. The above CP decomposition naturally divides the multi-view data into several compo-
nents, which can be seen as the clusters. Thus, it can be directly applied to solve multi-view

clustering problems. For a given dataset X ¼ X 1ð Þ;X 2ð Þ;…;X Vð Þ
n o

with V views, where X vð Þ of

each view takes value from IRN�M,X can be formulated as a third-order tensorX∈ IRN�M�V. In
this part, a variant of CP decomposition is introduced first, which is quite straightforward.
Then we shed light on the relations between several classic multi-view spectral clustering
methods and the Tucker decomposition.

3.4.2.1. Total variation based CP (TVCP)

In some clustering problems, a consecutive range of time points is non-negligible. For example,
in the dataset with authors, publications, and a sequence of time points, we are interested in
figuring out which group of authors work in the same topics during a period of time. Chen
et al. [60] propose a total variation based tensor decomposition method (TVCP) for the

Recent Applications in Data Clustering208

constraint on a period of consecutive time points. The total variation regularizes the time factor
to obtain a piece-wise constant function w.r.t. time points. Owing to the piece-wise constant
function, the decomposition can be relatively consistent in a cluster and separated between
clusters. The TVCP model is formulated as follows:

min
½½U;V;W��

1
2
∥X�

XR
r¼1

ur∘vr∘wr∥2F þ τ
XR
r¼1

∥Fwr∥1, (20)

where F is the first-order difference V � 1ð Þ � V matrix such that f ii ¼ 1 and f i iþ1ð Þ ¼ �1 for

i ¼ 1, 2,⋯, V � 1, and the other elements are zeros, τ is a positive regularization parameter,
and ∥ � ∥1 denotes the ℓ1-norm. The first term corresponds to the CP decomposition of X, and
the second term constrains the time mode (w) to be a piece-wise constant function.

3.4.2.2. Relations between Tucker decomposition and spectral clustering

Liu et al. [61] propose a framework of multi-view clustering via tensor decomposition, mainly
the Tucker decomposition. According to the framework, the common type of multi-view
spectral clustering is equivalent to a Tucker decomposition problem as follows:

min
U

XV
v¼1

tr UTL vð ÞU
� �

, s:t:UTU ¼ I, ⇔ max
U

∥X�1UT�2UT�3IT∥2F: (21)

Another form of multi-view spectral clustering can also be written as a Tucker problem:

min
U,μ

tr UT
XV
v¼1

μvL
vð Þ

 !
U

 !
,

s:t:UTU ¼ I,μv ≥ 0,
XV
v¼1

μv ¼ 1,

⇔

max
U,μ

∥X�1UT�2UT�3μT∥2F,

s:t:UTU ¼ I,μv ≥ 0,
XV
v¼1

μv ¼ 1:
(22)

With this framework, variety of spectral clustering problems can be solved by a tensor decom-
position algorithm. We can see the strong connection between them as well as the strong
capability of tensor methodology.

Canonical correlation analysis is designed to inspect the linear relationship between two sets of
variables [62]. In multi-view learning, a typical approach is to maximize the sum of pair-wise
correlations between different views [63]. Without loss of high-order correlations, Luo et al.
[64] propose a tensor canonical correlation analysis (TCCA), which is equivalent to CP decom-
position of the correlation tensor. Khan et al. [65] propose a Bayesian extension of CP decom-
position for multiple coupled tensors sharing common latent factors.

3.5. Multi-view clustering via deep learning

With the third wave of artificial intelligence, deep learning is gaining increasing popularity in
recent years. Deep learning has demonstrated excellent performance in many real-world

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

209

applications, such as face recognition, image annotation, natural language processing, object
detection, customer relationship management, and mobile advertising. Typically, deep learn-
ing models are composed of multiple nonlinear transformations and thus can learn a better
feature representation than traditional shallow models [66]. However, deep learning requires
labeled training data to learn the models, which limits its application in data clustering for the
reason that training data with cluster labels are not available in many cases. Despite the
hardness, there are some works devoted to adjusting shallow clustering models for deep
learning. Here, we introduce two popular deep clustering models and their extensions to the
multi-view environment.

3.5.1. Deep auto-encoder

An auto-encoder [67] is an artificial neural network adopted for unsupervised learning, the
goal of which is to learn a representation for each data sample. An auto-encoder always
consists of two parts: the encoder and the decoder. The encoder plays the role of a nonlinear
mapping function that can map each data sample to a representation space. The decoder
demands accurate data reconstruction from the representation generated by the encoder.
Auto-encoder has been shown to be similar to spectral clustering in theory; however, it is more
efficient and flexible in practice. The auto-encoder can be easily deepened via adding more
encoder layers and corresponding decoder layers. Figure 2 (a) gives an example of the frame-
work of the deep auto-encoder.

Although auto-encoder can learn a compact representation for each data sample, it contributes
little to clustering since it does not require that the representation vectors of similar data
samples should also be similar. To make the learned feature representation better capture the
cluster structures, many variants of deep auto-encoder models have been proposed. In [68], a
novel regularization term that is similar to the objective function of k-means is introduced to
guide the learning of the mapping function. In this way, the learned feature representation is
more stable and suitable for clustering. In [69], a deep embedded clustering method is pro-
posed to simultaneously learn feature representations and cluster assignments using deep
auto-encoders. These deep clustering models are designed for single-view data. For deep
multi-view clustering, the learned feature representations should not only capture the cluster
structure of each single view but also implement a consensus between different views. To this
end, a common encoder is utilized to extract the shared feature representation for all views,

Figure 2. Frameworks of deep auto-encoder and deep matrix factorization (depth is 2).

Recent Applications in Data Clustering210

and different decoders are used to reconstruct view-specific input data samples [70]. In [71], an
extension of CCA based on deep neural networks is proposed to learn a shared representation
of two views. In fact, the feature representations of the two views are not exactly the same,
but their correlations are maximized. Following this line, the deep canonically correlated
auto-encoder (DCCAE) is developed in [72]. DCCAE simultaneously optimizes the canonical
correlation between the learned feature representations and the reconstruction errors of the
auto-encoders. Benton et al. [73] further extend the deep CCA model for multiple views.

3.5.2. Deep matrix factorization

Another line of developing deep clustering models is deepening the MF models. As shown
earlier, MF, especially NMF, has demonstrated outstanding performance in many applications.
Thus, it is worth building a deep structure for MF in the hope that better feature representa-
tions can be obtained to facilitate clustering. Figure 2(b) illustrates an example of the frame-
work of the deep MF models. Compared to the deep auto-encoders, both deep MF and deep
auto-encoders are trying to minimize the reconstruction errors. However, unlike deep auto-
encoders, the mapping function of deep MF is linear.

The first nonnegative deep network based on NMF is proposed in [74] for speech separation.
This architecture can be discriminatively trained for optimal separation performance. Then Li
et al. [75] propose a novel weakly supervised deep MF model to uncover the latent image
representations and tag representations embedded in the latent subspace by collaboratively
exploring the weakly supervised tagging information, the visual structure, and the semantic
structure. In [76], a deep semi-NMF model is further developed for learning latent attribute
representations. Semi-NMF is a popular variant of NMF by relaxing the factorized basis matrix
to be real-valued. This practice makes semi-NMF have much wider applications than NMF
since the datasets in real world may contain complex information, for instance, the attributes
may be mix-signed. Considering the fact that these deep MF models are trying to factorize the
basis matrix hierarchically alone, Qiu et al. [77] further propose a deep orthogonal NMF model
which can decompose the coefficient matrix hierarchically. This model is able to learn higher-
level representations for clusters. These deep MF models have achieved great success in data
clustering for single-view data. However, they are seldom utilized for multi-view clustering. A
recent work [78] attempts to extend the deep semi-NMF model for multi-view clustering,
which can dissemble unimportant factors layer by layer and generate an effective consensus
representation in the last layer. Another work [79] proposes to address the incomplete multi-
view clustering problem via deep semantic mapping. The proposed model first projects all
incomplete multi-view data to a unified representation in a common subspace, which is
further executed by standard shallow NMF for clustering.

4. Open datasets

No one can make bricks without straw. In this section we will first list two kinds of open
datasets that can be used in multi-view clustering, i.e., feature-based and graph-based
datasets. Then we will discuss the performance of multi-view clustering on them briefly.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

211

applications, such as face recognition, image annotation, natural language processing, object
detection, customer relationship management, and mobile advertising. Typically, deep learn-
ing models are composed of multiple nonlinear transformations and thus can learn a better
feature representation than traditional shallow models [66]. However, deep learning requires
labeled training data to learn the models, which limits its application in data clustering for the
reason that training data with cluster labels are not available in many cases. Despite the
hardness, there are some works devoted to adjusting shallow clustering models for deep
learning. Here, we introduce two popular deep clustering models and their extensions to the
multi-view environment.

3.5.1. Deep auto-encoder

An auto-encoder [67] is an artificial neural network adopted for unsupervised learning, the
goal of which is to learn a representation for each data sample. An auto-encoder always
consists of two parts: the encoder and the decoder. The encoder plays the role of a nonlinear
mapping function that can map each data sample to a representation space. The decoder
demands accurate data reconstruction from the representation generated by the encoder.
Auto-encoder has been shown to be similar to spectral clustering in theory; however, it is more
efficient and flexible in practice. The auto-encoder can be easily deepened via adding more
encoder layers and corresponding decoder layers. Figure 2 (a) gives an example of the frame-
work of the deep auto-encoder.

Although auto-encoder can learn a compact representation for each data sample, it contributes
little to clustering since it does not require that the representation vectors of similar data
samples should also be similar. To make the learned feature representation better capture the
cluster structures, many variants of deep auto-encoder models have been proposed. In [68], a
novel regularization term that is similar to the objective function of k-means is introduced to
guide the learning of the mapping function. In this way, the learned feature representation is
more stable and suitable for clustering. In [69], a deep embedded clustering method is pro-
posed to simultaneously learn feature representations and cluster assignments using deep
auto-encoders. These deep clustering models are designed for single-view data. For deep
multi-view clustering, the learned feature representations should not only capture the cluster
structure of each single view but also implement a consensus between different views. To this
end, a common encoder is utilized to extract the shared feature representation for all views,

Figure 2. Frameworks of deep auto-encoder and deep matrix factorization (depth is 2).

Recent Applications in Data Clustering210

and different decoders are used to reconstruct view-specific input data samples [70]. In [71], an
extension of CCA based on deep neural networks is proposed to learn a shared representation
of two views. In fact, the feature representations of the two views are not exactly the same,
but their correlations are maximized. Following this line, the deep canonically correlated
auto-encoder (DCCAE) is developed in [72]. DCCAE simultaneously optimizes the canonical
correlation between the learned feature representations and the reconstruction errors of the
auto-encoders. Benton et al. [73] further extend the deep CCA model for multiple views.

3.5.2. Deep matrix factorization

Another line of developing deep clustering models is deepening the MF models. As shown
earlier, MF, especially NMF, has demonstrated outstanding performance in many applications.
Thus, it is worth building a deep structure for MF in the hope that better feature representa-
tions can be obtained to facilitate clustering. Figure 2(b) illustrates an example of the frame-
work of the deep MF models. Compared to the deep auto-encoders, both deep MF and deep
auto-encoders are trying to minimize the reconstruction errors. However, unlike deep auto-
encoders, the mapping function of deep MF is linear.

The first nonnegative deep network based on NMF is proposed in [74] for speech separation.
This architecture can be discriminatively trained for optimal separation performance. Then Li
et al. [75] propose a novel weakly supervised deep MF model to uncover the latent image
representations and tag representations embedded in the latent subspace by collaboratively
exploring the weakly supervised tagging information, the visual structure, and the semantic
structure. In [76], a deep semi-NMF model is further developed for learning latent attribute
representations. Semi-NMF is a popular variant of NMF by relaxing the factorized basis matrix
to be real-valued. This practice makes semi-NMF have much wider applications than NMF
since the datasets in real world may contain complex information, for instance, the attributes
may be mix-signed. Considering the fact that these deep MF models are trying to factorize the
basis matrix hierarchically alone, Qiu et al. [77] further propose a deep orthogonal NMF model
which can decompose the coefficient matrix hierarchically. This model is able to learn higher-
level representations for clusters. These deep MF models have achieved great success in data
clustering for single-view data. However, they are seldom utilized for multi-view clustering. A
recent work [78] attempts to extend the deep semi-NMF model for multi-view clustering,
which can dissemble unimportant factors layer by layer and generate an effective consensus
representation in the last layer. Another work [79] proposes to address the incomplete multi-
view clustering problem via deep semantic mapping. The proposed model first projects all
incomplete multi-view data to a unified representation in a common subspace, which is
further executed by standard shallow NMF for clustering.

4. Open datasets

No one can make bricks without straw. In this section we will first list two kinds of open
datasets that can be used in multi-view clustering, i.e., feature-based and graph-based
datasets. Then we will discuss the performance of multi-view clustering on them briefly.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

211

4.1. Feature-based datasets

Audio genre [80] consists of 1886 audio tracks classified into 9 music genres, which are Blues,
Electronic, Jazz, Pop, Rap/HipHop, Rock, Folk/Country, Alternative, and Funk/Soul. Forty-
nine low-level audio features have been extracted and they are grouped into 15 vector spaces.

NUS-WIDE [81] is a web image dataset composed of 269,648 images, 5018 related tags, and 81
ground-truth concepts. Six types of low-level features have been extracted: 64-D color histo-
gram, 144-D color correlogram, 73-D edge direction histogram, 128-D wavelet texture, 225-D
block-wise color moments extracted over 5�5 fixed grid partitions, and 500-D bag of words
based on SIFT descriptions.

UCF101 [82] consists of 101 human action classes. These actions can be divided into five types:
human-object interaction, body-motion only, human-human interaction, playing musical
instruments, and sports. There are over 13,000 clips and 27 hours of video data in it.

Handwritten numerals [83] is composed of 2000 handwritten digits which are divided into 10
classes. Four types of feature sets have been extracted: Zernike moments, Karhunen-Loeve
features, Fourier descriptors, and image vectors. For Zernike set, it has 47 rotation invariant
Zernike moments and 6 morphological features. For Fourier set, it has 76 two-dimensional
shape descriptors. Both Zernike and Fourier feature sets are rotation invariant. For Karhunen-
Loeve set, it has 64 Karhunen-Loeve transform which corresponds to the projection of images
onto the eigenvectors of a covariance matrix.

4.2. Graph-based datasets

DBLP coauthorship [84] is a coauthorship network composed of 10,305 authors. There are 617
layers in it, each layer representing different publication categories.

Facebook [85] is a three-layer social network composed of 1640 users with multiple types of
ties. The first layer shows whether two users are friends. The second layer shows whether
users are in a same group. The third layer shows whether users are in the same photos
uploaded by users.

CiteSeer [86] consists of 3312 scientific publications classified into 6 classes, which are Agents, AI,
DB, IR, ML, and HCI. It can be represented as an annotated network, where nodes represent
scientific publications and links represent the citation relationships. For each node, there is a
3703-dimensional one-hot encoding vector representing the absence/presence of key words.

Enron e-mail [87] consists of 184 users and 44 layers. Although it is a temporal network, it can
be considered as a multi-layer network. Each layer represents communication in different
months.

4.3. Performance on different datasets

For feature-based datasets, when confronted with the situation where we need to reconstruct
the views, the performance of classical methods, like deep learning, is not promising. But

Recent Applications in Data Clustering212

multi-view clustering can give satisfactory results under this condition. In some cases, classical
methods can also give good performance for feature-based datasets where all features are
descriptions of the same object from different perspectives. For graph-based datasets, multi-
view clustering naturally fits into them since different graphs can be processed by different
views.

For both feature-based and graph-based datasets, when the scale of datasets becomes signifi-
cantly large, most multi-view clustering methods have the potential to outperform other
clustering methods on speed. For example, multi-view matrix factorization is quite suitable to
parallel process.

5. Open issues

Although multi-view clustering has demonstrated its superiority over single-view clustering
in many applications, there are still many open issues deserving much more attention from
both academia and industry. Several vital open issues are summarized in this part.

5.1. View construction

Although there are many typical methods to construct views, they all have their own draw-
backs. It is well known that if we cannot extract valuable information from the original data
and put it into different views appropriately, the performance will be highly limited no matter
how delicate the algorithm is. So it is important to find efficient ways of constructing and
evaluating multiple views.

5.2. Incomplete view

When constructing different views, we may find that for some views, the information is not
complete. In other words, even though we know how to construct views appropriately, we do
not have enough information to do it, which is very common in practical problems. In real
world, it is very difficult to ensure the completeness of data. This unbalanced relationship
between complete views and incomplete views could cause huge problems. Moreover, these
incomplete views may influence views with complete information. To solve it, one possible
way is to construct these lost information from other views.

5.3. Single-view to multi-view

In multi-view learning, sometimes researchers will convert single-view data into multiple
views and apply relevant algorithms on them. In practice, it may give good performance, but
there are few theoretical researches on the proof of its reliability. Since the original data is
single view, it is important to make it clear: is it necessary to complicate a simple task? We
should not only focus on the final performance, the trade-off between cost and benefit is also
important.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

213

4.1. Feature-based datasets

Audio genre [80] consists of 1886 audio tracks classified into 9 music genres, which are Blues,
Electronic, Jazz, Pop, Rap/HipHop, Rock, Folk/Country, Alternative, and Funk/Soul. Forty-
nine low-level audio features have been extracted and they are grouped into 15 vector spaces.

NUS-WIDE [81] is a web image dataset composed of 269,648 images, 5018 related tags, and 81
ground-truth concepts. Six types of low-level features have been extracted: 64-D color histo-
gram, 144-D color correlogram, 73-D edge direction histogram, 128-D wavelet texture, 225-D
block-wise color moments extracted over 5�5 fixed grid partitions, and 500-D bag of words
based on SIFT descriptions.

UCF101 [82] consists of 101 human action classes. These actions can be divided into five types:
human-object interaction, body-motion only, human-human interaction, playing musical
instruments, and sports. There are over 13,000 clips and 27 hours of video data in it.

Handwritten numerals [83] is composed of 2000 handwritten digits which are divided into 10
classes. Four types of feature sets have been extracted: Zernike moments, Karhunen-Loeve
features, Fourier descriptors, and image vectors. For Zernike set, it has 47 rotation invariant
Zernike moments and 6 morphological features. For Fourier set, it has 76 two-dimensional
shape descriptors. Both Zernike and Fourier feature sets are rotation invariant. For Karhunen-
Loeve set, it has 64 Karhunen-Loeve transform which corresponds to the projection of images
onto the eigenvectors of a covariance matrix.

4.2. Graph-based datasets

DBLP coauthorship [84] is a coauthorship network composed of 10,305 authors. There are 617
layers in it, each layer representing different publication categories.

Facebook [85] is a three-layer social network composed of 1640 users with multiple types of
ties. The first layer shows whether two users are friends. The second layer shows whether
users are in a same group. The third layer shows whether users are in the same photos
uploaded by users.

CiteSeer [86] consists of 3312 scientific publications classified into 6 classes, which are Agents, AI,
DB, IR, ML, and HCI. It can be represented as an annotated network, where nodes represent
scientific publications and links represent the citation relationships. For each node, there is a
3703-dimensional one-hot encoding vector representing the absence/presence of key words.

Enron e-mail [87] consists of 184 users and 44 layers. Although it is a temporal network, it can
be considered as a multi-layer network. Each layer represents communication in different
months.

4.3. Performance on different datasets

For feature-based datasets, when confronted with the situation where we need to reconstruct
the views, the performance of classical methods, like deep learning, is not promising. But

Recent Applications in Data Clustering212

multi-view clustering can give satisfactory results under this condition. In some cases, classical
methods can also give good performance for feature-based datasets where all features are
descriptions of the same object from different perspectives. For graph-based datasets, multi-
view clustering naturally fits into them since different graphs can be processed by different
views.

For both feature-based and graph-based datasets, when the scale of datasets becomes signifi-
cantly large, most multi-view clustering methods have the potential to outperform other
clustering methods on speed. For example, multi-view matrix factorization is quite suitable to
parallel process.

5. Open issues

Although multi-view clustering has demonstrated its superiority over single-view clustering
in many applications, there are still many open issues deserving much more attention from
both academia and industry. Several vital open issues are summarized in this part.

5.1. View construction

Although there are many typical methods to construct views, they all have their own draw-
backs. It is well known that if we cannot extract valuable information from the original data
and put it into different views appropriately, the performance will be highly limited no matter
how delicate the algorithm is. So it is important to find efficient ways of constructing and
evaluating multiple views.

5.2. Incomplete view

When constructing different views, we may find that for some views, the information is not
complete. In other words, even though we know how to construct views appropriately, we do
not have enough information to do it, which is very common in practical problems. In real
world, it is very difficult to ensure the completeness of data. This unbalanced relationship
between complete views and incomplete views could cause huge problems. Moreover, these
incomplete views may influence views with complete information. To solve it, one possible
way is to construct these lost information from other views.

5.3. Single-view to multi-view

In multi-view learning, sometimes researchers will convert single-view data into multiple
views and apply relevant algorithms on them. In practice, it may give good performance, but
there are few theoretical researches on the proof of its reliability. Since the original data is
single view, it is important to make it clear: is it necessary to complicate a simple task? We
should not only focus on the final performance, the trade-off between cost and benefit is also
important.

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

213

5.4. Deep leaning in multi-view

Deep learning has shown remarkable performance in many fields. One common way to deal
with data composed of different types of sources is to combine them together and then feed them
into a deep learning model. It often works well. Although multi-view learning seems to be a
more reasonable way to deal with data composed of different types of sources, there is no
evidence showing that multi-view learning has an obvious advantage over deep learning.
Another issue is that when using deep learning in multi-view learning, we need to train different
neural networks for different views separately. This method has two drawbacks. One is that the
number of neural networks depends on the number of views. When there are many views, the
calculation is huge. The other is that it fails to unify different views during training.

6. Conclusion

Multi-view clustering has demonstrated variety of real-world applications, such as community
detection in social networks, image annotation in computer vision, cross-domain user model-
ing in recommendation systems, and protein interaction analysis in bioinformatics. This chap-
ter provides a comprehensive review of the typical multi-view clustering methods and their
corresponding recent developments by focusing on five most typical and popular clustering
methods, which include k-means, spectral clustering, matrix factorization, tensor decomposi-
tion, and deep learning. The basic forms of these five clustering methods are introduced in
detail, followed by a substantial overview of their recent developments. Several open datasets
and open issues are discussed in the end, which deserves more attention to facilitate the future
research of multi-view clustering.

In the field of multi-view clustering, there are many algorithms whose source codes are
exposed by their authors. For example, the co-training1 and co-regularization2 methods of
classical multi-view spectral clustering are open in GitHub with MATLAB. The variants MSE3

and AMGL4 are also implemented by MATLAB.

Author details

Fanghua Ye1, Zitai Chen1, Hui Qian1, Rui Li2, Chuan Chen1* and Zibin Zheng1

*Address all correspondence to: chenchuan@mail.sysu.edu.cn

1 School of Data and Computer Science, Sun Yat-sen University, China

2 School of Physics, Sun Yat-sen University, China

1
https://github.com/areslp/matlab/tree/master/code_cospectral

2
https://github.com/areslp/matlab/tree/master/code_coregspectral

3
https://github.com/rciszek/mse

4
http://www.escience.cn/people/fpnie/index.html;jsessionid = 253C211B5AEDB8C09865FFEAEAACFB73-n1

Recent Applications in Data Clustering214

References

[1] Bickel S, Scheffer T. Multi-view clustering. ICDM. 2004;4:19-26

[2] Chang X, Tao D, Xu C. A survey on multi-view learning. arXiv preprint arXiv. 2013;1304:
5634

[3] Sun S. A survey of multi-view machine learning. Neural Computing and Applications.
Feb 2013;23(7–8):2031-2038

[4] Zhao J, Xie X, Xin X, Sun S. Multi-view learning overview: Recent progress and new
challenges. Information Fusion. 2017;38:43-54

[5] Liu X. Learning from Multi-View Data: Clustering Algorithm and Text Mining Applica-
tion. Leuven, Belgium: KU Leuven; 2011

[6] Ali Mamdouh E, Yang S, Xiaodong H. A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In: WWW, International World Wide
Web Conferences Steering Committee; 2015. pp. 278-288

[7] BlaschkoMB, Lampert CH. Correlational spectral clustering. In: CVPR. IEEE; 2008. pp. 1-8

[8] Kailing K, Kriegel H-P, Pryakhin A, Schubert M. Clustering multi-represented objects
with noise. In: PAKDD. Springer Berlin Heidelberg: Springer; 2004. pp. 394-403

[9] Chaudhuri K, Kakade SM, Livescu K, Sridharan K. Multi-view clustering via canonical
correlation analysis. In: ICML. ACM; 2009. pp. 129-136

[10] Yin Q, Shu W, He R, Wang L. Multi-view clustering via pairwise sparse subspace repre-
sentation. Neurocomputing. 2015;156:12-21

[11] Jain AK. Data clustering: 50 years beyond k-means. PRL. Jun 2010;31(8):651-666

[12] Maldonado S, Carrizosa E, Weber R. Kernel penalized k-means: A feature selection
method based on kernel k-means. Information Sciences. 2015;322:150-160

[13] Liang D, Zhou P, Shi L, Wang H, Fan M, Wang W, Shen Y-D. Robust multiple kernel k-
means using l21-norm. In: IJCAI; 2015

[14] Liu X, Li M, Wang L, Dou Y, Yin J, Zhu E. Multiple kernel k-means with incomplete
kernels. In: AAAI: 2017. pp. 2259-2265

[15] Wang S, Gittens A, Mahoney MW. Scalable kernel k-means clustering with nystrom
approximation: Relative-error bounds. arXiv preprint arXiv. 2017;1706:02803

[16] Zhang R, Rudnicky AI. A large scale clustering scheme for kernel k-means. In: ICPR. Vol.
4. IEEE; 2002. pp. 289-292

[17] Dhillon IS, Guan Y, Kulis B. Kernel k-means. In: SIGKDD. ACM, ACM Press; 2004. pp.
551-556

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

215

5.4. Deep leaning in multi-view

Deep learning has shown remarkable performance in many fields. One common way to deal
with data composed of different types of sources is to combine them together and then feed them
into a deep learning model. It often works well. Although multi-view learning seems to be a
more reasonable way to deal with data composed of different types of sources, there is no
evidence showing that multi-view learning has an obvious advantage over deep learning.
Another issue is that when using deep learning in multi-view learning, we need to train different
neural networks for different views separately. This method has two drawbacks. One is that the
number of neural networks depends on the number of views. When there are many views, the
calculation is huge. The other is that it fails to unify different views during training.

6. Conclusion

Multi-view clustering has demonstrated variety of real-world applications, such as community
detection in social networks, image annotation in computer vision, cross-domain user model-
ing in recommendation systems, and protein interaction analysis in bioinformatics. This chap-
ter provides a comprehensive review of the typical multi-view clustering methods and their
corresponding recent developments by focusing on five most typical and popular clustering
methods, which include k-means, spectral clustering, matrix factorization, tensor decomposi-
tion, and deep learning. The basic forms of these five clustering methods are introduced in
detail, followed by a substantial overview of their recent developments. Several open datasets
and open issues are discussed in the end, which deserves more attention to facilitate the future
research of multi-view clustering.

In the field of multi-view clustering, there are many algorithms whose source codes are
exposed by their authors. For example, the co-training1 and co-regularization2 methods of
classical multi-view spectral clustering are open in GitHub with MATLAB. The variants MSE3

and AMGL4 are also implemented by MATLAB.

Author details

Fanghua Ye1, Zitai Chen1, Hui Qian1, Rui Li2, Chuan Chen1* and Zibin Zheng1

*Address all correspondence to: chenchuan@mail.sysu.edu.cn

1 School of Data and Computer Science, Sun Yat-sen University, China

2 School of Physics, Sun Yat-sen University, China

1
https://github.com/areslp/matlab/tree/master/code_cospectral

2
https://github.com/areslp/matlab/tree/master/code_coregspectral

3
https://github.com/rciszek/mse

4
http://www.escience.cn/people/fpnie/index.html;jsessionid = 253C211B5AEDB8C09865FFEAEAACFB73-n1

Recent Applications in Data Clustering214

References

[1] Bickel S, Scheffer T. Multi-view clustering. ICDM. 2004;4:19-26

[2] Chang X, Tao D, Xu C. A survey on multi-view learning. arXiv preprint arXiv. 2013;1304:
5634

[3] Sun S. A survey of multi-view machine learning. Neural Computing and Applications.
Feb 2013;23(7–8):2031-2038

[4] Zhao J, Xie X, Xin X, Sun S. Multi-view learning overview: Recent progress and new
challenges. Information Fusion. 2017;38:43-54

[5] Liu X. Learning from Multi-View Data: Clustering Algorithm and Text Mining Applica-
tion. Leuven, Belgium: KU Leuven; 2011

[6] Ali Mamdouh E, Yang S, Xiaodong H. A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In: WWW, International World Wide
Web Conferences Steering Committee; 2015. pp. 278-288

[7] BlaschkoMB, Lampert CH. Correlational spectral clustering. In: CVPR. IEEE; 2008. pp. 1-8

[8] Kailing K, Kriegel H-P, Pryakhin A, Schubert M. Clustering multi-represented objects
with noise. In: PAKDD. Springer Berlin Heidelberg: Springer; 2004. pp. 394-403

[9] Chaudhuri K, Kakade SM, Livescu K, Sridharan K. Multi-view clustering via canonical
correlation analysis. In: ICML. ACM; 2009. pp. 129-136

[10] Yin Q, Shu W, He R, Wang L. Multi-view clustering via pairwise sparse subspace repre-
sentation. Neurocomputing. 2015;156:12-21

[11] Jain AK. Data clustering: 50 years beyond k-means. PRL. Jun 2010;31(8):651-666

[12] Maldonado S, Carrizosa E, Weber R. Kernel penalized k-means: A feature selection
method based on kernel k-means. Information Sciences. 2015;322:150-160

[13] Liang D, Zhou P, Shi L, Wang H, Fan M, Wang W, Shen Y-D. Robust multiple kernel k-
means using l21-norm. In: IJCAI; 2015

[14] Liu X, Li M, Wang L, Dou Y, Yin J, Zhu E. Multiple kernel k-means with incomplete
kernels. In: AAAI: 2017. pp. 2259-2265

[15] Wang S, Gittens A, Mahoney MW. Scalable kernel k-means clustering with nystrom
approximation: Relative-error bounds. arXiv preprint arXiv. 2017;1706:02803

[16] Zhang R, Rudnicky AI. A large scale clustering scheme for kernel k-means. In: ICPR. Vol.
4. IEEE; 2002. pp. 289-292

[17] Dhillon IS, Guan Y, Kulis B. Kernel k-means. In: SIGKDD. ACM, ACM Press; 2004. pp.
551-556

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

215

[18] Tzortzis G, Likas A. Kernel-based weighted multi-view clustering. In: ICDM. IEEE; 2012.
pp. 675-684

[19] Cai X, Nie F, Huang H. Multi-view k-means clustering on big data. In: IJCAI; 2013. pp.
2598-2604

[20] Zhao H, Yun F. Dual-regularized multi-view outlier detection. In: IJCAI; 2015. pp. 4077-
4083

[21] Chen X, Xiaofei X, Huang JZ, Ye Y. Tw-k-means: Automated two-level variable weighting
clustering algorithm for multiview data. TKDE. 2013;25(4):932-944

[22] Yu-Meng X, Wang C-D, Lai J-H. Weighted multi-view clustering with feature selection.
Pattern Recognition. 2016;53:25-35

[23] Bo J, Qiu F, Wang L. Multi-view clustering via simultaneous weighting on views and
features. Applied Soft Computing. 2016;47:304-315

[24] Xu C, Tao D, Xu C. Multi-view self-paced learning for clustering. In: IJCAI; 2015. pp. 3974-
3980

[25] von Luxburg U. A tutorial on spectral clustering. Statistics and Computing. 2007;17(4):
395-416

[26] Hagen L, Kahng AB. New spectral methods for ratio cut partitioning and clustering.
TCAD. 1992;11(9):1074-1085

[27] Shi J, Malik J. Normalized cuts and image segmentation. TCAD. 2000;22(8):888-905

[28] Kumar A, Daumé H. A co-training approach for multi-view spectral clustering. In: ICML;
2011. pp. 393-400

[29] Kumar A, Rai P, Daume H. Co-regularized multi-view spectral clustering. In: NIPS; 2011.
pp. 1413-1421

[30] Xia T, Tao D, Mei T, Zhang Y. Multiview spectral embedding. SMCB. 2010;40(6):1438-1446

[31] Nie F, Li J, Li X et al. Parameter-free auto-weighted multiple graph learning: A framework
for multiview clustering and semi-supervised classification. In: IJCAI; 2016. pp. 1881-1887

[32] Xia R, Pan Y, Lei D, Yin J. Robust multi-view spectral clustering via low-rank and sparse
decomposition. In: AAAI; 2014, pp. 2149-2155

[33] Chen C, Ng MK, Zhang S. Block spectral clustering methods for multiple graphs. Numer-
ical Linear Algebra with Applications. 2017;24:e2075. DOI: 10.1002/nla.2075

[34] Wang Y-X, Zhang Y-J. Nonnegative matrix factorization: A comprehensive review. TKDE.
2013;25(6):1336-1353

[35] Kivinen J, Warmuth MK. Additive versus exponentiated gradient updates for linear predic-
tion. In Proceedings of the twenty-seventh annual ACM symposium on Theory of computing

Recent Applications in Data Clustering216

(STOC '95). ACM, New York, NY, USA.1995. pp. 209-218. http://dx.doi.org/10.1145/225058.2
25121

[36] Lee DD, Sebastian Seung H. Learning the parts of objects by non-negative matrix factori-
zation. Nature. 1999;401(6755):788-791

[37] Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative matrix factoriza-
tion. In: ICDM. SIAM; 2013. pp. 252-260

[38] He X, KanM-Y, Xie P, Chen X. Comment-based multi-view clustering of web 2.0 items. In:
WWW. ACM, ACM Press; 2014. pp. 771-782

[39] Cai D, He X, Han J, Huang TS. Graph regularized nonnegative matrix factorization for
data representation. PAMI. 2011;33(8):1548-1560

[40] Zong L, Zhang X, Zhao L, Hong Y, Zhao Q. Multi-view clustering via multi-manifold
regularized non-negative matrix factorization. Neural Networks. 2017;88:74-89

[41] Weihua O, Shujian Y, Li G, Jian L, Zhang K, Xie G. Multi-view non-negative matrix
factorization by patch alignment framework with view consistency. Neurocomputing.
2016;204:116-124

[42] Hidru D, Goldenberg A. Equinmf: Graph regularized multiview nonnegative matrix
factorization. arXiv preprint arXiv. 2014;1409:4018

[43] Kalayeh MM, Idrees H, Shah M. Nmf-knn: Image annotation using weighted multi-view
non-negative matrix factorization. In: CVPR; 2014. pp. 184-191

[44] Gong X, Wang F, Huang L. Weighted nmf-based multiple sparse views clustering for web
items. In: PAKDD. Springer; 2017. pp. 416-428

[45] Li S-Y, Jiang Y, Zhou Z-H. Partial multi-view clustering. In: AAAI; 2014

[46] Shao W, He L, Philip SY. Multiple incomplete views clustering via weighted nonnegative
matrix factorization with l2,1 regularization. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer; 2015. pp. 318-334

[47] Zhang X, Zong L, Liu X, Yu H. Constrained nmf-based multi-view clustering on
unmapped data. In: AAAI; 2015. pp. 3174-3180

[48] Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using nonnegative matrix
factorization. DMKD. 2011;22(3):493-521

[49] Cheng W, Zhang X, Guo Z, Yubao W, Sullivan PF, Wang W. Flexible and robust co-
regularized multi-domain graph clustering. In: SIGKDD. ACM; 2013. pp. 320-328

[50] Ni J, Tong H, Fan W, Zhang X. Flexible and robust multi-network clustering. In: SIGKDD.
ACM; 2015. pp. 835-844

[51] Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Review. Aug 2009;
51(3):455-500

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

217

[18] Tzortzis G, Likas A. Kernel-based weighted multi-view clustering. In: ICDM. IEEE; 2012.
pp. 675-684

[19] Cai X, Nie F, Huang H. Multi-view k-means clustering on big data. In: IJCAI; 2013. pp.
2598-2604

[20] Zhao H, Yun F. Dual-regularized multi-view outlier detection. In: IJCAI; 2015. pp. 4077-
4083

[21] Chen X, Xiaofei X, Huang JZ, Ye Y. Tw-k-means: Automated two-level variable weighting
clustering algorithm for multiview data. TKDE. 2013;25(4):932-944

[22] Yu-Meng X, Wang C-D, Lai J-H. Weighted multi-view clustering with feature selection.
Pattern Recognition. 2016;53:25-35

[23] Bo J, Qiu F, Wang L. Multi-view clustering via simultaneous weighting on views and
features. Applied Soft Computing. 2016;47:304-315

[24] Xu C, Tao D, Xu C. Multi-view self-paced learning for clustering. In: IJCAI; 2015. pp. 3974-
3980

[25] von Luxburg U. A tutorial on spectral clustering. Statistics and Computing. 2007;17(4):
395-416

[26] Hagen L, Kahng AB. New spectral methods for ratio cut partitioning and clustering.
TCAD. 1992;11(9):1074-1085

[27] Shi J, Malik J. Normalized cuts and image segmentation. TCAD. 2000;22(8):888-905

[28] Kumar A, Daumé H. A co-training approach for multi-view spectral clustering. In: ICML;
2011. pp. 393-400

[29] Kumar A, Rai P, Daume H. Co-regularized multi-view spectral clustering. In: NIPS; 2011.
pp. 1413-1421

[30] Xia T, Tao D, Mei T, Zhang Y. Multiview spectral embedding. SMCB. 2010;40(6):1438-1446

[31] Nie F, Li J, Li X et al. Parameter-free auto-weighted multiple graph learning: A framework
for multiview clustering and semi-supervised classification. In: IJCAI; 2016. pp. 1881-1887

[32] Xia R, Pan Y, Lei D, Yin J. Robust multi-view spectral clustering via low-rank and sparse
decomposition. In: AAAI; 2014, pp. 2149-2155

[33] Chen C, Ng MK, Zhang S. Block spectral clustering methods for multiple graphs. Numer-
ical Linear Algebra with Applications. 2017;24:e2075. DOI: 10.1002/nla.2075

[34] Wang Y-X, Zhang Y-J. Nonnegative matrix factorization: A comprehensive review. TKDE.
2013;25(6):1336-1353

[35] Kivinen J, Warmuth MK. Additive versus exponentiated gradient updates for linear predic-
tion. In Proceedings of the twenty-seventh annual ACM symposium on Theory of computing

Recent Applications in Data Clustering216

(STOC '95). ACM, New York, NY, USA.1995. pp. 209-218. http://dx.doi.org/10.1145/225058.2
25121

[36] Lee DD, Sebastian Seung H. Learning the parts of objects by non-negative matrix factori-
zation. Nature. 1999;401(6755):788-791

[37] Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative matrix factoriza-
tion. In: ICDM. SIAM; 2013. pp. 252-260

[38] He X, KanM-Y, Xie P, Chen X. Comment-based multi-view clustering of web 2.0 items. In:
WWW. ACM, ACM Press; 2014. pp. 771-782

[39] Cai D, He X, Han J, Huang TS. Graph regularized nonnegative matrix factorization for
data representation. PAMI. 2011;33(8):1548-1560

[40] Zong L, Zhang X, Zhao L, Hong Y, Zhao Q. Multi-view clustering via multi-manifold
regularized non-negative matrix factorization. Neural Networks. 2017;88:74-89

[41] Weihua O, Shujian Y, Li G, Jian L, Zhang K, Xie G. Multi-view non-negative matrix
factorization by patch alignment framework with view consistency. Neurocomputing.
2016;204:116-124

[42] Hidru D, Goldenberg A. Equinmf: Graph regularized multiview nonnegative matrix
factorization. arXiv preprint arXiv. 2014;1409:4018

[43] Kalayeh MM, Idrees H, Shah M. Nmf-knn: Image annotation using weighted multi-view
non-negative matrix factorization. In: CVPR; 2014. pp. 184-191

[44] Gong X, Wang F, Huang L. Weighted nmf-based multiple sparse views clustering for web
items. In: PAKDD. Springer; 2017. pp. 416-428

[45] Li S-Y, Jiang Y, Zhou Z-H. Partial multi-view clustering. In: AAAI; 2014

[46] Shao W, He L, Philip SY. Multiple incomplete views clustering via weighted nonnegative
matrix factorization with l2,1 regularization. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer; 2015. pp. 318-334

[47] Zhang X, Zong L, Liu X, Yu H. Constrained nmf-based multi-view clustering on
unmapped data. In: AAAI; 2015. pp. 3174-3180

[48] Wang F, Li T, Wang X, Zhu S, Ding C. Community discovery using nonnegative matrix
factorization. DMKD. 2011;22(3):493-521

[49] Cheng W, Zhang X, Guo Z, Yubao W, Sullivan PF, Wang W. Flexible and robust co-
regularized multi-domain graph clustering. In: SIGKDD. ACM; 2013. pp. 320-328

[50] Ni J, Tong H, Fan W, Zhang X. Flexible and robust multi-network clustering. In: SIGKDD.
ACM; 2015. pp. 835-844

[51] Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Review. Aug 2009;
51(3):455-500

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

217

[52] Sidiropoulos ND, De Lathauwer L, Xiao F, Huang K, Papalexakis EE, Faloutsos C. Tensor
decomposition for signal processing and machine learning. SP. 2017;65(13):3551-3582

[53] Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematical Physics. Apr 1927;6(1–4):164-189

[54] Cattell RB. “Parallel proportional profiles” and other principles for determining the choice
of factors by rotation. Psychometrika. Dec 1944;9(4):267-283

[55] Douglas Carroll J, Chang J-J. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “Eckart-young” decomposition. Psychometrika.
Sep 1970;35(3):283-319

[56] Harshman RA. Foundations of the parafac procedure: Models and conditions for an
“explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics. 1970;16:
1-84

[57] Tucker LR. Some mathematical notes on three-mode factor analysis. Psychometrika. 1966;
31(3):279-311

[58] De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition.
SIAM Journal on Matrix Analysis and Applications. July 2000;21:1253-1278

[59] De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(r1 ,r2 ,…,rn)
approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applica-
tions. 2000;21(4):1324-1342

[60] Chen C, Li X, Ng MK, Yuan X. Total variation based tensor decomposition for multi-
dimensional data with time dimension. Numerical Linear Algebra with Applications.
May 2015;22(6):999-1019

[61] Liu X, Ji S, GlänzelW, DeMoor B. Multiview partitioning via tensor methods. TKDE. 2013;
25(5):1056-1069

[62] Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: An overview
with application to learning methods. Neural Computation. Dec 2004;16(12):2639-2664

[63] Vía J, Santamaría I, Pérez J. A learning algorithm for adaptive canonical correlation
analysis of several data sets. Neural Networks. 2007;20(1):139-152

[64] Luo Y, Tao D, Ramamohanarao K, Xu C, Wen Y. Tensor canonical correlation analysis for
multi-view dimension reduction. TKDE. Nov 2015;27(11):3111-3124

[65] Khan SA, Kaski S. Bayesian multi-view tensor factorization. In: Machine Learning and
Knowledge Discovery in Databases. Springer Berlin Heidelberg: Springer; 2014. pp. 656-
671

[66] Zhao L, Chen Z, Yang Z, Yueming H, Obaidat MS. Local similarity imputation based on
fast clustering for incomplete data in cyber-physical systems. IEEE Systems Journal. 2016;
PP(99):1-11

Recent Applications in Data Clustering218

[67] Bengio Y. Learning deep architectures for Al. Foundations and trends® in Machine Learn-
ing. 2009;2(1):1-127

[68] Song C, Huang Y, Liu F, Wang Z, Liang W. Deep auto-encoder based clustering. Intelli-
gent Data Analysis. 2014;18(6S):S65-S76

[69] Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In:
ICML; 2016. pp. 478-487

[70] Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. Multimodal deep learning. In: ICML;
2011. pp. 689-696

[71] Andrew G, Arora R, Bilmes J, Livescu K. Deep canonical correlation analysis. In: ICML;
2013. pp. 1247-1255

[72] Wang W, Arora R, Livescu K, Bilmes J. On deep multi-view representation learning:
Objectives and optimization. arXiv preprint arXiv. 2016;1602:01024

[73] Benton A, Khayrallah H, Gujral B, Reisinger D, Zhang S, Arora R. Deep generalized
canonical correlation analysis. arXiv preprint arXiv. 2017;1702:02519

[74] Le Roux J, Hershey JR, Weninger F. Deep nmf for speech separation. In: ICASSP. IEEE;
2015, pp. 66-70

[75] Li Z, Tang J. Weakly supervised deep matrix factorization for social image understanding.
IP. Jan 2017;26(1):276-288

[76] Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller BW. A deep matrix factorization method
for learning attribute representations. PAMI. 2017;39(3):417-429

[77] Qiu Y, Zhou G, Xie K. Deep approximately orthogonal nonnegative matrix factorization
for clustering. arXiv preprint arXiv. 2017;1711:07437

[78] Zhao H, Ding Z, Fu Y. Multi-view clustering via deep matrix factorization. In: AAAI;
2017. pp. 2921-2927

[79] Zhao L, Chen Z, Yi Y, Jane Wang Z, Leung VCM. Incomplete multi-view clustering via
deep semantic mapping. Neurocomputing. 2018;275:1053-1062

[80] Homburg H, Mierswa I, Moller B, Morik K, Wurst M. A benchmark dataset for audio
classification and clustering. In: Ismir 2005, Proceedings of the International Conference
on Music Information Retrieval, 11–15 September 2005; London. Uk; 2005. pp. 528-531

[81] Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y. Nus-wide: a real-world web image
database from national university of singapore. In: ACM International Conference on
Image and Video Retrieval; 2009. p. 48

[82] Soomro K, Zamir AR, ShahM. Ucf101: A dataset of 101 human actions classes from videos
in the wild. CRCV-TR-12-01, November, 2012

[83] Van Breukelen M, Duin RPW, Tax DMJ, Den Hartog JE. Handwritten digit recognition by
combined classifiers. Kybernetika. 1998;34(4):381-386

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

219

[52] Sidiropoulos ND, De Lathauwer L, Xiao F, Huang K, Papalexakis EE, Faloutsos C. Tensor
decomposition for signal processing and machine learning. SP. 2017;65(13):3551-3582

[53] Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematical Physics. Apr 1927;6(1–4):164-189

[54] Cattell RB. “Parallel proportional profiles” and other principles for determining the choice
of factors by rotation. Psychometrika. Dec 1944;9(4):267-283

[55] Douglas Carroll J, Chang J-J. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “Eckart-young” decomposition. Psychometrika.
Sep 1970;35(3):283-319

[56] Harshman RA. Foundations of the parafac procedure: Models and conditions for an
“explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics. 1970;16:
1-84

[57] Tucker LR. Some mathematical notes on three-mode factor analysis. Psychometrika. 1966;
31(3):279-311

[58] De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition.
SIAM Journal on Matrix Analysis and Applications. July 2000;21:1253-1278

[59] De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(r1 ,r2 ,…,rn)
approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applica-
tions. 2000;21(4):1324-1342

[60] Chen C, Li X, Ng MK, Yuan X. Total variation based tensor decomposition for multi-
dimensional data with time dimension. Numerical Linear Algebra with Applications.
May 2015;22(6):999-1019

[61] Liu X, Ji S, GlänzelW, DeMoor B. Multiview partitioning via tensor methods. TKDE. 2013;
25(5):1056-1069

[62] Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: An overview
with application to learning methods. Neural Computation. Dec 2004;16(12):2639-2664

[63] Vía J, Santamaría I, Pérez J. A learning algorithm for adaptive canonical correlation
analysis of several data sets. Neural Networks. 2007;20(1):139-152

[64] Luo Y, Tao D, Ramamohanarao K, Xu C, Wen Y. Tensor canonical correlation analysis for
multi-view dimension reduction. TKDE. Nov 2015;27(11):3111-3124

[65] Khan SA, Kaski S. Bayesian multi-view tensor factorization. In: Machine Learning and
Knowledge Discovery in Databases. Springer Berlin Heidelberg: Springer; 2014. pp. 656-
671

[66] Zhao L, Chen Z, Yang Z, Yueming H, Obaidat MS. Local similarity imputation based on
fast clustering for incomplete data in cyber-physical systems. IEEE Systems Journal. 2016;
PP(99):1-11

Recent Applications in Data Clustering218

[67] Bengio Y. Learning deep architectures for Al. Foundations and trends® in Machine Learn-
ing. 2009;2(1):1-127

[68] Song C, Huang Y, Liu F, Wang Z, Liang W. Deep auto-encoder based clustering. Intelli-
gent Data Analysis. 2014;18(6S):S65-S76

[69] Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In:
ICML; 2016. pp. 478-487

[70] Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. Multimodal deep learning. In: ICML;
2011. pp. 689-696

[71] Andrew G, Arora R, Bilmes J, Livescu K. Deep canonical correlation analysis. In: ICML;
2013. pp. 1247-1255

[72] Wang W, Arora R, Livescu K, Bilmes J. On deep multi-view representation learning:
Objectives and optimization. arXiv preprint arXiv. 2016;1602:01024

[73] Benton A, Khayrallah H, Gujral B, Reisinger D, Zhang S, Arora R. Deep generalized
canonical correlation analysis. arXiv preprint arXiv. 2017;1702:02519

[74] Le Roux J, Hershey JR, Weninger F. Deep nmf for speech separation. In: ICASSP. IEEE;
2015, pp. 66-70

[75] Li Z, Tang J. Weakly supervised deep matrix factorization for social image understanding.
IP. Jan 2017;26(1):276-288

[76] Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller BW. A deep matrix factorization method
for learning attribute representations. PAMI. 2017;39(3):417-429

[77] Qiu Y, Zhou G, Xie K. Deep approximately orthogonal nonnegative matrix factorization
for clustering. arXiv preprint arXiv. 2017;1711:07437

[78] Zhao H, Ding Z, Fu Y. Multi-view clustering via deep matrix factorization. In: AAAI;
2017. pp. 2921-2927

[79] Zhao L, Chen Z, Yi Y, Jane Wang Z, Leung VCM. Incomplete multi-view clustering via
deep semantic mapping. Neurocomputing. 2018;275:1053-1062

[80] Homburg H, Mierswa I, Moller B, Morik K, Wurst M. A benchmark dataset for audio
classification and clustering. In: Ismir 2005, Proceedings of the International Conference
on Music Information Retrieval, 11–15 September 2005; London. Uk; 2005. pp. 528-531

[81] Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y. Nus-wide: a real-world web image
database from national university of singapore. In: ACM International Conference on
Image and Video Retrieval; 2009. p. 48

[82] Soomro K, Zamir AR, ShahM. Ucf101: A dataset of 101 human actions classes from videos
in the wild. CRCV-TR-12-01, November, 2012

[83] Van Breukelen M, Duin RPW, Tax DMJ, Den Hartog JE. Handwritten digit recognition by
combined classifiers. Kybernetika. 1998;34(4):381-386

New Approaches in Multi-View Clustering
http://dx.doi.org/10.5772/intechopen.75598

219

[84] Ng KP, Li X, Ye Y. Multirank: co-ranking for objects and relations in multi-relational data.
In: SIGKDD; 2011. pp. 1217-1225

[85] Lewis K, Kaufman J, Gonzalez M, Wimmer A, Christakis N. Tastes, ties, and time: A new
social network dataset using facebook.Com. Social Networks. 2008;30(4):330-342

[86] Sen P, Namata G, Bilgic M, Getoor L, Gallagher B, Eliassi-Rad T. Collective classification in
network data articles. AI Magazine. 2008;29(3):93-106

[87] Bader BW, Harshman RA, Kolda TG. Temporal analysis of semantic graphs using asalsan.
In: ICDM; 2007. pp. 33-42

Recent Applications in Data Clustering220

Chapter 12

Collective Solutions on Sets of Stable Clusterings

Vladimir Vasilevich Ryazanov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76189

Provisional chapter

Collective Solutions on Sets of Stable Clusterings

Vladimir Vasilevich Ryazanov

Additional information is available at the end of the chapter

Abstract

Two clustering problems are considered. We consider a lot of different clusters of the same
data for a given number of clusters. Data clustering is understood as their stable partition
into a given number of sets. Clustering is considered stable if the corresponding
partitioning remains unchanged with its minimum change. How to create a new cluster
based on ensemble clusterings? The second problem is the following. A definition of the
committee synthesis as ensemble clustering is introduced. The sets of best and worst
matrices of estimates are considered. Optimum clustering is built on the basis of the
clusterings obtained as being closest to the set of the best estimation matrices or as the
most distant from the set of worst-case matrices of estimates. As a result, the problem of
finding the best committee clustering is formulated as a discrete optimization problem on
permutations.

Keywords: clustering, algorithm, ensemble, collective, stability, optimality, construction

1. Introduction

There are many different approaches to solving the problems of clustering multidimensional
data: based on the optimization of internal criteria (indices) [1, 2], hierarchical clustering [3],
centroid-based clustering [4], density-based clustering [5], distribution-based clustering [6],
and many others. There are well-known books and papers on clustering [7–10].

This section is devoted to one approach to the creation of stable clusterings and the processing
of their sets. A natural criterion is considered, which is applicable to any clustering method. In
work [11], various criteria (indices) are proposed, optimizing which clustering is built with a
definite look “what is clustering?” In this chapter, we use a criterion based on stability. If we
really got clustering, that is, a solution for the whole sample, the partitioning should not

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.76189

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[84] Ng KP, Li X, Ye Y. Multirank: co-ranking for objects and relations in multi-relational data.
In: SIGKDD; 2011. pp. 1217-1225

[85] Lewis K, Kaufman J, Gonzalez M, Wimmer A, Christakis N. Tastes, ties, and time: A new
social network dataset using facebook.Com. Social Networks. 2008;30(4):330-342

[86] Sen P, Namata G, BilgicM, Getoor L, Gallagher B, Eliassi-Rad T. Collective classification in
network data articles. AI Magazine. 2008;29(3):93-106

[87] Bader BW, Harshman RA, Kolda TG. Temporal analysis of semantic graphs using asalsan.
In: ICDM; 2007. pp. 33-42

Recent Applications in Data Clustering220

Chapter 12

Collective Solutions on Sets of Stable Clusterings

Vladimir Vasilevich Ryazanov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76189

Provisional chapter

Collective Solutions on Sets of Stable Clusterings

Vladimir Vasilevich Ryazanov

Additional information is available at the end of the chapter

Abstract

Two clustering problems are considered. We consider a lot of different clusters of the same
data for a given number of clusters. Data clustering is understood as their stable partition
into a given number of sets. Clustering is considered stable if the corresponding
partitioning remains unchanged with its minimum change. How to create a new cluster
based on ensemble clusterings? The second problem is the following. A definition of the
committee synthesis as ensemble clustering is introduced. The sets of best and worst
matrices of estimates are considered. Optimum clustering is built on the basis of the
clusterings obtained as being closest to the set of the best estimation matrices or as the
most distant from the set of worst-case matrices of estimates. As a result, the problem of
finding the best committee clustering is formulated as a discrete optimization problem on
permutations.

Keywords: clustering, algorithm, ensemble, collective, stability, optimality, construction

1. Introduction

There are many different approaches to solving the problems of clustering multidimensional
data: based on the optimization of internal criteria (indices) [1, 2], hierarchical clustering [3],
centroid-based clustering [4], density-based clustering [5], distribution-based clustering [6],
and many others. There are well-known books and papers on clustering [7–10].

This section is devoted to one approach to the creation of stable clusterings and the processing
of their sets. A natural criterion is considered, which is applicable to any clustering method. In
work [11], various criteria (indices) are proposed, optimizing which clustering is built with a
definite look “what is clustering?” In this chapter, we use a criterion based on stability. If we
really got clustering, that is, a solution for the whole sample, the partitioning should not

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.76189

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

change with a small change in the data. Criteria are introduced for the quality of the partition
obtained. If the criterion value is less than one, then the partition is unstable. Let us obtain for
the same data N clusterings. How to create a new ensemble clustering based on the N
partitions? Previously, a committee method for building ensemble clusterings was proposed
[12–15]. Let there be N results of cluster analysis of the same data for l clusters. The committee
method of building ensemble clustering makes it possible to build such l clusters, each of
which is the intersection of “many” initial clusters. In other words, we find such l clusters
whose objects are “equivalent” to each other according to several principles. As initial N
clusterings, one can take stable ones. Finally, we consider a video-logical approach to building
the initial N coarse clusterings.

2. Criteria for stability of clustering

Let the sample of objects Χ ¼ xi; i ¼ 1; 2;…;mf g, xi ∈Rn be given and Κ ¼ K1;K2;…;Klf g is the
clustering of the sample into l clusters obtained by some method, Ki⊆Χ, i ¼ 1, 2,…, l, ∪l1Ki ¼ Χ,
Ki ∩Kj ¼ ∅, i 6¼ j: Speaking of clustering, we mean applying a method to a sample without
focusing on the method itself. Is partition Κ of a sample by this method clustering or here some
kind of stopping criterion is satisfied? For example, an extremum of some functional is
obtained or the maximum number of operations in the iterative process is fulfilled. We will
use the following thesis as the main one. If the resulting partition Κ is indeed clustering, then it
must be the same clustering for any minimal change in the sample Χ. Let xi be arbitrary, xi ∈Kα

ensemble then the sample Χ∖ xif g partition Κ∗ xið Þ ¼ K∗
1;K

∗
2;…;K∗

l

� �
, K∗

j ¼ Kj, j ¼ 1, 2,…,

l, j 6¼ α, K∗
α ¼ Kα∖ xif g, i ¼ 1, 2,…, m must be clustering. The fact of “coincidence” of clusterings

Κ ¼ K1;K2;…;Klf g and Κ∗ xið Þ ¼ K∗
1;K

∗
2;…;K∗

l

� �
will be called identity, the clusterings them-

selves are identical and denoted it as Κ∗ xið Þ ≈Κ. In this case, it is natural to call a partition Κ as
stable clustering if the partitions Κ∗ xið Þ and Κ coincide for all xi, i ¼ 1, 2,…, m. In the case of
non-identity of some individual Κ∗ xið Þ with Κ, we will call Κ as quasi-clustering.

Definition 1. The quality of quasi-clustering (of unstable clustering) is the quantity
Ф Κð Þ ¼ xi; i ¼ 1; 2;…;m : Κ∗ xið Þ ≈Κf gj j=m.

If Ф Κð Þ ¼ 1, then in this case, we will talk about stable clustering Κ or simply clustering.
Suppose that for some i, i ¼ 1, 2,…, m the condition Κ∗ xið Þ ≈Κ is not satisfied, and
Κ ∘ xið Þ ¼ K ∘

1 ;K
∘
2 ;…;K ∘

l

� �
is the clustering of the sample X∖ xif g obtained from the partition

Κ∗ xið Þ using Κ∗ xið Þ as the initial approximation. Then Κ ∘ xið Þ can significantly differ from
Κ∗ xið Þ. We will use as a function of the proximity between clustering Κ ∘ xið Þ and partitioning

Κ the value d Κ ∘ xið Þ;Κð Þ ¼ maxα
Pl

i¼1 K ∘
i ∩Kαi

�� ��= m� 1ð Þ. Note that to calculate proximity it is
required to find the maximum matching in a bipartite graph, for which there is a polynomial
algorithm [16]. If Κ ∘ xið Þ does not exist, we will assume that d Κ ∘ xið Þ;Κð Þ ¼ 0.

Definition 2. The quality Fmin(Κ) of the quasi-clustering Κ will be called the quantity
Fmin Κð Þ ¼ mini d Κ ∘ xið Þ;Κð Þ.

Recent Applications in Data Clustering222

Definition 3. The quality Favr(Κ) of the quasi-clustering Κ will be called the quantity
Favr Κð Þ ¼Pm

i¼1 d Κ ∘ xið Þ;Κð Þ=m.

For some clustering algorithms, there are simple economical rules for computing Ф Κð Þ. Let us
bring them (see also in [3, 17, 18]).

2.1. Method of minimizing the dispersion criterion

It is known that in order to minimize the dispersion criterion, it suffices to satisfy inequalities

nj
nj � 1
� � kx� �mjk2 � nk

nk þ 1ð Þ kx
� �mkk2 ≤ 0 (1)

for any clusters Kj and Kk, arbitrary x� ∈Kj, where nj ¼ Kj

���
���, mj ¼ 1

nj

P
xt ∈Kj

xt.

We establish the conditions for the identity Κ∗ xið Þ ≈Κ of the partitions Κ∗ xið Þ and Κ. In the case
x� ∈Kj [considering (Eq. (1))] to satisfy the condition Κ∗ xið Þ ≈Κ inequalities.

nj�1ð Þ
nj�2ð Þ kx

� �mjk2 þ 2
nj�2ð Þ x� �mj; xi �mj

� �þ 1
nj�1ð Þ nj�2ð Þ kxi �mjk2 � nk

nkþ1 kx� �mkk2 ≤ 0 must

be satisfied. In the case x� ∈Kk inequalities nk
nk�1ð Þ kx� �mkk2 � nj�1ð Þ

nj
kx� �mjk2 � 2

nj
x�ð

�mj; xi �mjÞ � 1
nj nj�1ð Þ kxi �mjk2 ≤ 0 must be satisfied.

2.2. k-means method

Let the clustering Κ be obtained by k-means method, that is, kx� �mjk ≤ kx� �mkk, ∀j 6¼ k,
∀x� ∈Kj. In the case of equality, the object is considered to belong to a cluster with a lower

number. Then, Κ∗ xið Þ ≈Κ is satisfied if kx� �mjk2 þ 2
nj�1ð Þ x� �mj; xi �mj

� �þ 1
nj�1ð Þ2 kxi�

mjk2 ≤ kx� �mkk2 under x� ∈Kj, x� 6¼ xi and kx� �mkk2 ≤ kx� �mjk2 þ 2
nj�1ð Þ x� �mj; xi

�

�mjÞ þ 1
nj�1ð Þ2 kxi �mjk2 under x� ∈Kk.

2.3. Method of hierarchical agglomeration grouping

We confine ourselves to the case of an agglomeration hierarchical grouping. To find the value of the
criterion Ф Κð Þ, you can calculate the partitioning Κ, partitions Κ ∘ xið Þ, i ¼ 1, 2,…, m, and compare
Κ with each Κ ∘ xið Þ, i ¼ 1, 2,…, m. Here it is possible to save in the calculation of Ф Κð Þ without
carrying through the clustering for some of “i”. Indeed, let there Κt xið Þ ¼ Kt

1;K
t
2;…;Kt

m�t
� �

be
clustering of the sample X∖ xif g into m� t clusters, t ≤m� l. Κ is a partition obtained by the
clustering algorithm X. The main property of the hierarchical grouping is that for any
k ¼ 1, 2,…, m� t there is j ¼ 1, 2,…, m� t� 1 for which Kt

k⊆K
tþ1
j . In this case, if at some step

t, t ≤m� l for some k the condition Kt
k⊆Kj does not hold for all j ¼ 1, 2,…, l, then the condition

Κ∗ xið Þ ≈Κ will not be fulfilled.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

223

change with a small change in the data. Criteria are introduced for the quality of the partition
obtained. If the criterion value is less than one, then the partition is unstable. Let us obtain for
the same data N clusterings. How to create a new ensemble clustering based on the N
partitions? Previously, a committee method for building ensemble clusterings was proposed
[12–15]. Let there be N results of cluster analysis of the same data for l clusters. The committee
method of building ensemble clustering makes it possible to build such l clusters, each of
which is the intersection of “many” initial clusters. In other words, we find such l clusters
whose objects are “equivalent” to each other according to several principles. As initial N
clusterings, one can take stable ones. Finally, we consider a video-logical approach to building
the initial N coarse clusterings.

2. Criteria for stability of clustering

Let the sample of objects Χ ¼ xi; i ¼ 1; 2;…;mf g, xi ∈Rn be given and Κ ¼ K1;K2;…;Klf g is the
clustering of the sample into l clusters obtained by some method, Ki⊆Χ, i ¼ 1, 2,…, l, ∪l1Ki ¼ Χ,
Ki ∩Kj ¼ ∅, i 6¼ j: Speaking of clustering, we mean applying a method to a sample without
focusing on the method itself. Is partition Κ of a sample by this method clustering or here some
kind of stopping criterion is satisfied? For example, an extremum of some functional is
obtained or the maximum number of operations in the iterative process is fulfilled. We will
use the following thesis as the main one. If the resulting partition Κ is indeed clustering, then it
must be the same clustering for any minimal change in the sample Χ. Let xi be arbitrary, xi ∈Kα

ensemble then the sample Χ∖ xif g partition Κ∗ xið Þ ¼ K∗
1;K

∗
2;…;K∗

l

� �
, K∗

j ¼ Kj, j ¼ 1, 2,…,

l, j 6¼ α, K∗
α ¼ Kα∖ xif g, i ¼ 1, 2,…, m must be clustering. The fact of “coincidence” of clusterings

Κ ¼ K1;K2;…;Klf g and Κ∗ xið Þ ¼ K∗
1;K

∗
2;…;K∗

l

� �
will be called identity, the clusterings them-

selves are identical and denoted it as Κ∗ xið Þ ≈Κ. In this case, it is natural to call a partition Κ as
stable clustering if the partitions Κ∗ xið Þ and Κ coincide for all xi, i ¼ 1, 2,…, m. In the case of
non-identity of some individual Κ∗ xið Þ with Κ, we will call Κ as quasi-clustering.

Definition 1. The quality of quasi-clustering (of unstable clustering) is the quantity
Ф Κð Þ ¼ xi; i ¼ 1; 2;…;m : Κ∗ xið Þ ≈Κf gj j=m.

If Ф Κð Þ ¼ 1, then in this case, we will talk about stable clustering Κ or simply clustering.
Suppose that for some i, i ¼ 1, 2,…, m the condition Κ∗ xið Þ ≈Κ is not satisfied, and
Κ ∘ xið Þ ¼ K ∘

1 ;K
∘
2 ;…;K ∘

l

� �
is the clustering of the sample X∖ xif g obtained from the partition

Κ∗ xið Þ using Κ∗ xið Þ as the initial approximation. Then Κ ∘ xið Þ can significantly differ from
Κ∗ xið Þ. We will use as a function of the proximity between clustering Κ ∘ xið Þ and partitioning

Κ the value d Κ ∘ xið Þ;Κð Þ ¼ maxα
Pl

i¼1 K ∘
i ∩Kαi

�� ��= m� 1ð Þ. Note that to calculate proximity it is
required to find the maximum matching in a bipartite graph, for which there is a polynomial
algorithm [16]. If Κ ∘ xið Þ does not exist, we will assume that d Κ ∘ xið Þ;Κð Þ ¼ 0.

Definition 2. The quality Fmin(Κ) of the quasi-clustering Κ will be called the quantity
Fmin Κð Þ ¼ mini d Κ ∘ xið Þ;Κð Þ.

Recent Applications in Data Clustering222

Definition 3. The quality Favr(Κ) of the quasi-clustering Κ will be called the quantity
Favr Κð Þ ¼Pm

i¼1 d Κ ∘ xið Þ;Κð Þ=m.

For some clustering algorithms, there are simple economical rules for computing Ф Κð Þ. Let us
bring them (see also in [3, 17, 18]).

2.1. Method of minimizing the dispersion criterion

It is known that in order to minimize the dispersion criterion, it suffices to satisfy inequalities

nj
nj � 1
� � kx� �mjk2 � nk

nk þ 1ð Þ kx
� �mkk2 ≤ 0 (1)

for any clusters Kj and Kk, arbitrary x� ∈Kj, where nj ¼ Kj

���
���, mj ¼ 1

nj

P
xt ∈Kj

xt.

We establish the conditions for the identity Κ∗ xið Þ ≈Κ of the partitions Κ∗ xið Þ and Κ. In the case
x� ∈Kj [considering (Eq. (1))] to satisfy the condition Κ∗ xið Þ ≈Κ inequalities.

nj�1ð Þ
nj�2ð Þ kx

� �mjk2 þ 2
nj�2ð Þ x� �mj; xi �mj

� �þ 1
nj�1ð Þ nj�2ð Þ kxi �mjk2 � nk

nkþ1 kx� �mkk2 ≤ 0 must

be satisfied. In the case x� ∈Kk inequalities nk
nk�1ð Þ kx� �mkk2 � nj�1ð Þ

nj
kx� �mjk2 � 2

nj
x�ð

�mj; xi �mjÞ � 1
nj nj�1ð Þ kxi �mjk2 ≤ 0 must be satisfied.

2.2. k-means method

Let the clustering Κ be obtained by k-means method, that is, kx� �mjk ≤ kx� �mkk, ∀j 6¼ k,
∀x� ∈Kj. In the case of equality, the object is considered to belong to a cluster with a lower

number. Then, Κ∗ xið Þ ≈Κ is satisfied if kx� �mjk2 þ 2
nj�1ð Þ x� �mj; xi �mj

� �þ 1
nj�1ð Þ2 kxi�

mjk2 ≤ kx� �mkk2 under x� ∈Kj, x� 6¼ xi and kx� �mkk2 ≤ kx� �mjk2 þ 2
nj�1ð Þ x� �mj; xi

�

�mjÞ þ 1
nj�1ð Þ2 kxi �mjk2 under x� ∈Kk.

2.3. Method of hierarchical agglomeration grouping

We confine ourselves to the case of an agglomeration hierarchical grouping. To find the value of the
criterion Ф Κð Þ, you can calculate the partitioning Κ, partitions Κ ∘ xið Þ, i ¼ 1, 2,…, m, and compare
Κ with each Κ ∘ xið Þ, i ¼ 1, 2,…, m. Here it is possible to save in the calculation of Ф Κð Þ without
carrying through the clustering for some of “i”. Indeed, let there Κt xið Þ ¼ Kt

1;K
t
2;…;Kt

m�t
� �

be
clustering of the sample X∖ xif g into m� t clusters, t ≤m� l. Κ is a partition obtained by the
clustering algorithm X. The main property of the hierarchical grouping is that for any
k ¼ 1, 2,…, m� t there is j ¼ 1, 2,…, m� t� 1 for which Kt

k⊆K
tþ1
j . In this case, if at some step

t, t ≤m� l for some k the condition Kt
k⊆Kj does not hold for all j ¼ 1, 2,…, l, then the condition

Κ∗ xið Þ ≈Κ will not be fulfilled.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

223

2.4. Examples

We give some examples illustrating the stability criteria introduced.

1. Below are the results obtained for model samples. The method of clustering based on the
minimization of the dispersion criterion [3] has been used. As the initial data, we used
samples of a mixture of two two-dimensional normal distributions with independent fea-
tures, different а, and σ. Examples are shown in Figures 1–3 (images of the samples in
question) and in Tables 1 and 2. Figure 1 represents a sample of 200 objects for which all
the criteriaФ Κð Þ, Fmin(Κ), Favr(Κ) are equal to 1, and the resulting clustering into two clusters
is stable clustering. Here we used distributions with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, and
σ1 ¼ σ2 ¼ 3; 3ð Þ.
Further, with the same parameters а1, а2, experiments were carried out for σ1 ¼ σ2 ¼ 5; 5ð Þ.
Then, we used distributions with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 10; 10ð Þ,
m ¼ 200. In this case, we have the case of strongly intersecting distributions. Formally,
the clustering method gives a quasi-clustering, approximately corresponding to the
partitioning of the original sample (Figure 3) into two sets by a diagonal from the upper
left corner of the picture to the lower right. The values of the criteria in Table 2 were
obtained.

2. Data clustering of [19] and criteria values Ф Κð Þ, Fmin(Κ), Favr(Κ). The following data from
classification problem of electromagnetic signals were considered: n ¼ 34, m1 ¼ 225,
m2 ¼ 126, l ¼ 2. We give the values of the stability criteria obtained. Figure 4 shows the
visualization [3] of the sample. The accuracy of the supervised classification methods was
about 87% of the correct answers. However, the clustering of data turned out to be only
quasi-clustering (Table 3).

Figure 1. Clustering in a task with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 3; 3ð Þ, m ¼ 200.

Recent Applications in Data Clustering224

Figure 2. Clustering in a task with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 5; 5ð Þ, m ¼ 200.

Figure 3. Data with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 10; 10ð Þ, m ¼ 200.

Ф Κð Þ 0.995

Fmin(Κ) 0.995

Favr(Κ) 0.999

Table 1. Values of quasi-clustering criteria.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

225

2.4. Examples

We give some examples illustrating the stability criteria introduced.

1. Below are the results obtained for model samples. The method of clustering based on the
minimization of the dispersion criterion [3] has been used. As the initial data, we used
samples of a mixture of two two-dimensional normal distributions with independent fea-
tures, different а, and σ. Examples are shown in Figures 1–3 (images of the samples in
question) and in Tables 1 and 2. Figure 1 represents a sample of 200 objects for which all
the criteriaФ Κð Þ, Fmin(Κ), Favr(Κ) are equal to 1, and the resulting clustering into two clusters
is stable clustering. Here we used distributions with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, and
σ1 ¼ σ2 ¼ 3; 3ð Þ.
Further, with the same parameters а1, а2, experiments were carried out for σ1 ¼ σ2 ¼ 5; 5ð Þ.
Then, we used distributions with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 10; 10ð Þ,
m ¼ 200. In this case, we have the case of strongly intersecting distributions. Formally,
the clustering method gives a quasi-clustering, approximately corresponding to the
partitioning of the original sample (Figure 3) into two sets by a diagonal from the upper
left corner of the picture to the lower right. The values of the criteria in Table 2 were
obtained.

2. Data clustering of [19] and criteria values Ф Κð Þ, Fmin(Κ), Favr(Κ). The following data from
classification problem of electromagnetic signals were considered: n ¼ 34, m1 ¼ 225,
m2 ¼ 126, l ¼ 2. We give the values of the stability criteria obtained. Figure 4 shows the
visualization [3] of the sample. The accuracy of the supervised classification methods was
about 87% of the correct answers. However, the clustering of data turned out to be only
quasi-clustering (Table 3).

Figure 1. Clustering in a task with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 3; 3ð Þ, m ¼ 200.

Recent Applications in Data Clustering224

Figure 2. Clustering in a task with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 5; 5ð Þ, m ¼ 200.

Figure 3. Data with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 10; 10ð Þ, m ¼ 200.

Ф Κð Þ 0.995

Fmin(Κ) 0.995

Favr(Κ) 0.999

Table 1. Values of quasi-clustering criteria.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

225

3. Committee synthesis of ensemble clustering

The problem is as follows. There are N clusterings for the same number of clusters. How to
choose from them the only one or build a new clustering from the available ones? In the
supervised classification problem (with the help of a collective solution of a set of algorithms)
there is a criterion according to which one can choose an algorithm from existing ones or build
a new algorithm. This is a supervised classification error. This direction in the theory of
classification appeared in the early 1970s of the last century [20, 21], then was created an
algebraic approach [22], various correctors were appeared. The key in the algebraic approach
is the creation in the form of special algebraic polynomials of a correct (error-free) algorithm
based on a set of supervised classification algorithms. Some algebraic operations on matrices
of “degrees of belonging” of recognized objects are used. Various types of correctors were also
created [22–25], when the problem of constructing (and applying) the best algorithm is also
solved in two stages. First, the supervised classification algorithms are determined, and then
the corrector. This can be, for example, the problem of approximating a given partial Boolean
function by some monotonic function. In recent decades, there are conferences on multiple
classifier systems, these issues are reflected in the books [21, 10]. How to choose or create the

Ф Κð Þ 0.770

Fmin(Κ) 0.995

Favr(Κ) 0.998

Table 2. Values of quasi-clustering criteria. Сase of very intersecting distributions

Figure 4. Data visualization.

Ф Κð Þ 0.966

Fmin(Κ) 0.997

Favr(Κ) 0.999

Table 3. The values of the criteria in the problem “ionosphere” Ф Κð Þ, Fmin(Κ), Favr(Κ).

Recent Applications in Data Clustering226

best clustering using a finite set of given solutions? Here, all problems are connected primarily
with the absence of a single generally accepted criterion. Each clustering algorithm finds such
“source” clusters of objects that are “equivalent” to each other. In this chapter, it is proposed to
build such a clustering of the initial data, the cluster solutions of which have a large intersec-
tion with the initial clusters.

Let the sample of objects Χ ¼ x1; x2;…; xmf g, xi ∈Rn for supervised classification and l classes
are given. In the theory of supervised classification, the following definition of the supervised
classification algorithm exists [21]. Let αij ∈ 0; 1f g be equal to 1 when the object xi, i ¼ 1, 2,…, m
is classified by the algorithm Ar as xi ∈Kj and 0 otherwise: Ar Χð Þ ¼ kαijkm�l. Here the intersec-
tion of classes is allowed. Unlike the supervised classification problem, when clustering a
sample, we have freedom in the designation of clusters.

Definition 4. The matrices I ¼ kαijkm�l,αij ∈ 0; 1f g and I
0 ¼ kα0ijkm�l,α

0
ij ∈ 0; 1f g are said to be

equivalent if they are equals to within a permutation of the columns.

It is clear that this definition defines a class of equivalent matrices for some matrix.

Definition 5. A clustering algorithm is an algorithm that maps a sample Χ to a set of equiva-
lent information matrices Ac Χð Þ ¼ Κ kαijkm�l

�
:

�

The number of clusters and the length of the control sample are considered to be given. This
definition emphasizes the fact that in an arbitrary partition of a sample into l clusters, we have
complete freedom in the numbering of clusters. In what follows we shall always consider
matrices of dimension m� l.

Let there be given N algorithms Ac
1, A

c
2,…, Ac

N for clustering and their solutions Ac
ν Χð Þ ¼

Κ kαv
ijkm�l

��
for sample Χ. We denote Iν ¼ kαν

ijkm�l an arbitrary element of the clustering

Κ kαv
ijkm�l

��
.

Therefore, we have Ι ¼ Κ I1ð Þ � Κ I2ð Þ �…� Κ INð Þ or set Ι ¼ I
0
1; I

0
2;…; I

0
N

� �
; I
0
ν ∈Κ Iνð Þ

n o
,

I
0
ν ¼ kα

0ν
ij km�l.

There are two problems.

1. Construction of the mapping Ι on, Κc, Ι! Κc ¼ Κkсijkm�l
�
, сij ∈ 0; 1f g�

(that is, the con-
struction of some kind of clustering).

2. Finding the optimal element in Κc (i.e. finding the best clustering in Κc).

Definition 6. An operator Β I
0
1; I

0
2;…; I

0
N

� �
¼ B ¼ kbijkm�l is called an adder if bij ¼

PN
ν¼1 α

0ν
ij .

It is clear that 0 ≤ bij ≤N, bij ∈ 0; 1; 2;…;Nf g .

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

227

3. Committee synthesis of ensemble clustering

The problem is as follows. There are N clusterings for the same number of clusters. How to
choose from them the only one or build a new clustering from the available ones? In the
supervised classification problem (with the help of a collective solution of a set of algorithms)
there is a criterion according to which one can choose an algorithm from existing ones or build
a new algorithm. This is a supervised classification error. This direction in the theory of
classification appeared in the early 1970s of the last century [20, 21], then was created an
algebraic approach [22], various correctors were appeared. The key in the algebraic approach
is the creation in the form of special algebraic polynomials of a correct (error-free) algorithm
based on a set of supervised classification algorithms. Some algebraic operations on matrices
of “degrees of belonging” of recognized objects are used. Various types of correctors were also
created [22–25], when the problem of constructing (and applying) the best algorithm is also
solved in two stages. First, the supervised classification algorithms are determined, and then
the corrector. This can be, for example, the problem of approximating a given partial Boolean
function by some monotonic function. In recent decades, there are conferences on multiple
classifier systems, these issues are reflected in the books [21, 10]. How to choose or create the

Ф Κð Þ 0.770

Fmin(Κ) 0.995

Favr(Κ) 0.998

Table 2. Values of quasi-clustering criteria. Сase of very intersecting distributions

Figure 4. Data visualization.

Ф Κð Þ 0.966

Fmin(Κ) 0.997

Favr(Κ) 0.999

Table 3. The values of the criteria in the problem “ionosphere” Ф Κð Þ, Fmin(Κ), Favr(Κ).

Recent Applications in Data Clustering226

best clustering using a finite set of given solutions? Here, all problems are connected primarily
with the absence of a single generally accepted criterion. Each clustering algorithm finds such
“source” clusters of objects that are “equivalent” to each other. In this chapter, it is proposed to
build such a clustering of the initial data, the cluster solutions of which have a large intersec-
tion with the initial clusters.

Let the sample of objects Χ ¼ x1; x2;…; xmf g, xi ∈Rn for supervised classification and l classes
are given. In the theory of supervised classification, the following definition of the supervised
classification algorithm exists [21]. Let αij ∈ 0; 1f g be equal to 1 when the object xi, i ¼ 1, 2,…, m
is classified by the algorithm Ar as xi ∈Kj and 0 otherwise: Ar Χð Þ ¼ kαijkm�l. Here the intersec-
tion of classes is allowed. Unlike the supervised classification problem, when clustering a
sample, we have freedom in the designation of clusters.

Definition 4. The matrices I ¼ kαijkm�l,αij ∈ 0; 1f g and I
0 ¼ kα0ijkm�l,α

0
ij ∈ 0; 1f g are said to be

equivalent if they are equals to within a permutation of the columns.

It is clear that this definition defines a class of equivalent matrices for some matrix.

Definition 5. A clustering algorithm is an algorithm that maps a sample Χ to a set of equiva-
lent information matrices Ac Χð Þ ¼ Κ kαijkm�l

�
:

�

The number of clusters and the length of the control sample are considered to be given. This
definition emphasizes the fact that in an arbitrary partition of a sample into l clusters, we have
complete freedom in the numbering of clusters. In what follows we shall always consider
matrices of dimension m� l.

Let there be given N algorithms Ac
1, A

c
2,…, Ac

N for clustering and their solutions Ac
ν Χð Þ ¼

Κ kαv
ijkm�l

��
for sample Χ. We denote Iν ¼ kαν

ijkm�l an arbitrary element of the clustering

Κ kαv
ijkm�l

��
.

Therefore, we have Ι ¼ Κ I1ð Þ � Κ I2ð Þ �…� Κ INð Þ or set Ι ¼ I
0
1; I

0
2;…; I

0
N

� �
; I
0
ν ∈Κ Iνð Þ

n o
,

I
0
ν ¼ kα

0ν
ij km�l.

There are two problems.

1. Construction of the mapping Ι on, Κc, Ι! Κc ¼ Κkсijkm�l
�
, сij ∈ 0; 1f g�

(that is, the con-
struction of some kind of clustering).

2. Finding the optimal element in Κc (i.e. finding the best clustering in Κc).

Definition 6. An operator Β I
0
1; I

0
2;…; I

0
N

� �
¼ B ¼ kbijkm�l is called an adder if bij ¼

PN
ν¼1 α

0ν
ij .

It is clear that 0 ≤ bij ≤N, bij ∈ 0; 1; 2;…;Nf g .

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

227

Definition 7. An operator r is called a threshold decision rule, if r Bð Þ ¼ С ¼ kсijkm�l,
cij ¼

1, bij ≥ δi,
0, otherwise,

�
where δi ∈R.

Definition 8. By the committee synthesis of an information matrix С on an element
~I
0 ¼ I

0
1; I

0
2;…; I

0
N

� �
let us call it a computation by the formula С ¼ rΒ ~I

0� �
, provided that Β is

the adder and r is the threshold decision rule.

The general scheme of collective synthesis is shown in Figure 5.

We note that the total number of possible values B is bounded from above by a quantity l!ð ÞN.
Let s be the operator that performs permutation of columns of matrices m� lwith the help of a
substitution < j1, j2,…, jl >, S ¼ sf g is the set of all operators s. We believe that rs ¼ sr, ∀s∈S.

We continue s∈ S to the n-dimensional case σ ~I
0� �
¼ s I

0
1

� �
; s I

0
2

� �
;…; s I

0
n

� �� �
. We denote

Σ ¼ σf g, σ is the extension of s. From the definition of the adder it follows that

σΒ ¼ Βσ,∀σ∈Σ. Further, ∀~I
0
∈ Ι, ∀σ∈Σ we have rΒ σ ~I

0� �� �
¼ rσ Β ~I

0� �� �
¼ s rΒ ~I

0� �� �
and

finally σ ~I
0� �
; σ∈Σ

n o
!rΒ s rΒ ~I

0� �� �
; s∈S

n o
¼ Κ rΒ ~I

0� �� �
¼ Κ kcijkm�l

��
. Therefore, the prod-

uct rΒ defines the desired mapping and specifies some ensemble clustering. It is necessary to

determine the optimal element from Κc, find it and ~I
0
.

Ι!rΒ Κc, Ac
~I
0 Χð Þ ¼ Κ rΒ ~I

0� �� �
.

Figure 5. Scheme of committee synthesis.

Recent Applications in Data Clustering228

We introduce definitions of potentially best and worst-case solutions. As the “ideal” of the
collective solution, we will consider the case when all algorithms give us essentially the same
partitions or coverings.

Definition 9. A numerical matrix kbijkm�l is called contrasting if bij ∈ 0;Nf g. A numeric matrix
kbijkm�l is called blurred if bij ¼ δi ∈R.

As the distance between two numerical matrices, we consider the function

r B1;B2� � ¼P
m

i¼1

Pl
j¼1

b1ij � b2ij
���

���.

Denote by Μ the set of all contrast matrices, and by ~M the set of all blurred matrices. We
introduce definitions for estimating the quality of matrices.

Definition 10.

Φ Bð Þ ¼ r B;Μð Þ!
B
min: (2)

Definition 11.
~Φ Bð Þ ¼ r B; ~Μ

� �!
B
max: (3)

The set ~Μ
0 ¼ ~Bg�

(where ~B ¼ k~bijkm�l, ~bij ¼ N
2) is called the mean blurred matrix.

Definition 12.

~Φ
0
Bð Þ ¼ r B; ~B

� �!
B
max (4)

We note that the optimums according to the criteria (Eq. (2)) and (Eq. (3)) do not have to
coincide. The sets Μ and ~Μ intersect.

Figure 6 illustrates the sets of contrasting and blurred matrices. Arrows indicate some ele-
ments of sets.

Theorem 1. The sets of optimal solutions by criteria Eqs. (2) and (4) coincide.

Let us show that Φ Bð Þ+~Φ 0
Bð Þ = Nml

2 for any B. We write ~Φ
0
Bð Þ ¼P

m

i¼1

Pl
j¼1

~α ij, ~α ij ¼ bij � N
2

�� ��,Φ Bð Þ

¼P
m

i¼1

Pl
j¼1

α∗
ij,α

∗
ij ¼ min bij;N � bij

� �
. If bij ≥ N

2 then ~α ij ¼ bij � N
2 ,α

∗
ij ¼ N � bij, and ~αij+α∗

ij ¼ N
2 . If

bij < N
2 then ~α ij ¼ N

2 � bij,α∗
ij ¼ bij, and ~α ij+α∗

ij ¼ N
2 .

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

229

Definition 7. An operator r is called a threshold decision rule, if r Bð Þ ¼ С ¼ kсijkm�l,
cij ¼

1, bij ≥ δi,
0, otherwise,

�
where δi ∈R.

Definition 8. By the committee synthesis of an information matrix С on an element
~I
0 ¼ I

0
1; I

0
2;…; I

0
N

� �
let us call it a computation by the formula С ¼ rΒ ~I

0� �
, provided that Β is

the adder and r is the threshold decision rule.

The general scheme of collective synthesis is shown in Figure 5.

We note that the total number of possible values B is bounded from above by a quantity l!ð ÞN.
Let s be the operator that performs permutation of columns of matrices m� lwith the help of a
substitution < j1, j2,…, jl >, S ¼ sf g is the set of all operators s. We believe that rs ¼ sr, ∀s∈S.

We continue s∈ S to the n-dimensional case σ ~I
0� �
¼ s I

0
1

� �
; s I

0
2

� �
;…; s I

0
n

� �� �
. We denote

Σ ¼ σf g, σ is the extension of s. From the definition of the adder it follows that

σΒ ¼ Βσ,∀σ∈Σ. Further, ∀~I
0
∈ Ι, ∀σ∈Σ we have rΒ σ ~I

0� �� �
¼ rσ Β ~I

0� �� �
¼ s rΒ ~I

0� �� �
and

finally σ ~I
0� �
; σ∈Σ

n o
!rΒ s rΒ ~I

0� �� �
; s∈S

n o
¼ Κ rΒ ~I

0� �� �
¼ Κ kcijkm�l

��
. Therefore, the prod-

uct rΒ defines the desired mapping and specifies some ensemble clustering. It is necessary to

determine the optimal element from Κc, find it and ~I
0
.

Ι!rΒ Κc, Ac
~I
0 Χð Þ ¼ Κ rΒ ~I

0� �� �
.

Figure 5. Scheme of committee synthesis.

Recent Applications in Data Clustering228

We introduce definitions of potentially best and worst-case solutions. As the “ideal” of the
collective solution, we will consider the case when all algorithms give us essentially the same
partitions or coverings.

Definition 9. A numerical matrix kbijkm�l is called contrasting if bij ∈ 0;Nf g. A numeric matrix
kbijkm�l is called blurred if bij ¼ δi ∈R.

As the distance between two numerical matrices, we consider the function

r B1;B2� � ¼P
m

i¼1

Pl
j¼1

b1ij � b2ij
���

���.

Denote by Μ the set of all contrast matrices, and by ~M the set of all blurred matrices. We
introduce definitions for estimating the quality of matrices.

Definition 10.

Φ Bð Þ ¼ r B;Μð Þ!
B
min: (2)

Definition 11.
~Φ Bð Þ ¼ r B; ~Μ

� �!
B
max: (3)

The set ~Μ
0 ¼ ~Bg�

(where ~B ¼ k~bijkm�l, ~bij ¼ N
2) is called the mean blurred matrix.

Definition 12.

~Φ
0
Bð Þ ¼ r B; ~B

� �!
B
max (4)

We note that the optimums according to the criteria (Eq. (2)) and (Eq. (3)) do not have to
coincide. The sets Μ and ~Μ intersect.

Figure 6 illustrates the sets of contrasting and blurred matrices. Arrows indicate some ele-
ments of sets.

Theorem 1. The sets of optimal solutions by criteria Eqs. (2) and (4) coincide.

Let us show that Φ Bð Þ+~Φ 0
Bð Þ = Nml

2 for any B. We write ~Φ
0
Bð Þ ¼P

m

i¼1

Pl
j¼1

~α ij, ~α ij ¼ bij � N
2

�� ��,Φ Bð Þ

¼P
m

i¼1

Pl
j¼1

α∗
ij,α

∗
ij ¼ min bij;N � bij

� �
. If bij ≥ N

2 then ~α ij ¼ bij � N
2 ,α

∗
ij ¼ N � bij, and ~αij+α∗

ij ¼ N
2 . If

bij < N
2 then ~α ij ¼ N

2 � bij,α∗
ij ¼ bij, and ~α ij+α∗

ij ¼ N
2 .

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

229

Summing over all the set of values of pairs of indices i, j, we get that Φ Bð Þ+ ~Φ 0
Bð Þ = Nml

2 .

We consider the problem of finding optimal ensemble clusterings for the criterion (2). It is clear

that Φ Bð Þ ¼P
m

i¼1

Pl
j¼1

min bij;N � bij
� �

.

We introduce the notations M ¼ 1; 2;…;mf g, Xj ¼ ijbij ≥ N
2 ; i ¼ 1; 2;…;m

� �
, Yj ¼M∖Xj,

j ¼ 1, 2,…, l. Let πν ¼< μν
1,μ

ν
2,…,μν

l >, ν ¼ 1, 2,…, N be some permutation of the set
π0 ¼< 1, 2,…, l >. A set of permutations π ¼< π1,π2,…,πN > uniquely determines the matrix
of estimates.

B
0 ¼ kb0ijkm�l, b

0
ij ¼ bij πð Þ ¼

PN
ν¼1

α
0ν
ij .

We will further assume that the “initial”matrix kαν
ijkm�l of the algorithm Ac

ν corresponds to the

permutation π0. kα0νij km�l is the matrix of the algorithm Ac
ν corresponding to some permutation

πν. Then α
0ν
ij ¼ αν

iμν
j
.

Consider ~Δν ¼
Pl

j¼1
P

i∈Xj
αν

ij
þPi∈Yj

αν
ij

� �
, ~Δ

0
ν ¼

Pl
j¼1

P
i∈Xj

α
0ν
ij
þPi∈Yj

α
0ν
ij

� �
.

ThenΔν ¼ ~Δ
0
ν � ~Δν ¼

Pl
j¼1

P
i∈Xj

αν
ij � α

0ν
ij

� �
þPi∈Yj

α
0ν
ij � αν

ij

� �� �
. We convert this expression.

Figure 6. The sets of contrasting Μ, blurred ~Μ matrices, and the set of matrices Bf g.

Recent Applications in Data Clustering230

The identity
Pl

j¼1
P

i∈Xj
αν
ij þ

P
i∈Yj

αν
ij

� �
¼Pl

j¼1
P

i∈Xj
αν
iμν

j
þPi∈Yj

αν
iμν

j

� �
is valid. Get

Δν ¼
Pl

j¼1
P

i∈Xj
αν
ij � αν

iμν
j

� �
þPi∈Yj

αν
iμν

j
� αν

ij

� �� �
¼ 2

Pl
j¼1
P

i∈Xj
αν
ij � αν

iμν
j

� �
¼ 2

Pl
j¼1

P
i∈Xj

αν
ij � 2

Pl
j¼1
P

i∈Xj
αν
iμν

j
.

Thus, minimizing a function is equivalent to maximizing the second sum of the expression.

After applying the permutations π ¼< π1,π2,…,πN >, the sets Xj, Yj, j ¼ 1, 2,…, l change. We

introduce the notations M1j ¼ Xj∖ Y
0
j∖Yj

� �
, M2j ¼ Y

0
j∖Yj, M3j ¼ Yj∖ X

0
j∖Xj

� �
, M4j ¼ X

0
j∖Xj.

Figure 7 schematically shows the changes in sets Xj, Yj, j ¼ 1, 2,…, l.

Theorem 2

ΔΦ ¼ Φ B
0

� �
� Φ Bð Þ ≤

XN
ν¼1

Δν þ
XN
ν¼1

M2j
�� �� �2, N � even,

�1, N � odd
þ M4j
�� �� 0, N � even,

�1, N � odd

(!(

The proof is given in [12, 13]. Theorem 2 is the basis for creating an effective minimization
algorithm of Φ.

Figure 7. Sets Xj, Yj, j ¼ 1, 2,…, l are changed.

Figure 8. All possible variants of
Pl

j¼1
P

i∈Xj
αν
iμν

j
for all admissible j and i.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

231

Summing over all the set of values of pairs of indices i, j, we get that Φ Bð Þ+ ~Φ 0
Bð Þ = Nml

2 .

We consider the problem of finding optimal ensemble clusterings for the criterion (2). It is clear

that Φ Bð Þ ¼P
m

i¼1

Pl
j¼1

min bij;N � bij
� �

.

We introduce the notations M ¼ 1; 2;…;mf g, Xj ¼ ijbij ≥ N
2 ; i ¼ 1; 2;…;m

� �
, Yj ¼M∖Xj,

j ¼ 1, 2,…, l. Let πν ¼< μν
1,μ

ν
2,…,μν

l >, ν ¼ 1, 2,…, N be some permutation of the set
π0 ¼< 1, 2,…, l >. A set of permutations π ¼< π1,π2,…,πN > uniquely determines the matrix
of estimates.

B
0 ¼ kb0ijkm�l, b

0
ij ¼ bij πð Þ ¼

PN
ν¼1

α
0ν
ij .

We will further assume that the “initial”matrix kαν
ijkm�l of the algorithm Ac

ν corresponds to the

permutation π0. kα0νij km�l is the matrix of the algorithm Ac
ν corresponding to some permutation

πν. Then α
0ν
ij ¼ αν

iμν
j
.

Consider ~Δν ¼
Pl

j¼1
P

i∈Xj
αν

ij
þPi∈Yj

αν
ij

� �
, ~Δ

0
ν ¼

Pl
j¼1

P
i∈Xj

α
0ν
ij
þPi∈Yj

α
0ν
ij

� �
.

ThenΔν ¼ ~Δ
0
ν � ~Δν ¼

Pl
j¼1

P
i∈Xj

αν
ij � α

0ν
ij

� �
þPi∈Yj

α
0ν
ij � αν

ij

� �� �
. We convert this expression.

Figure 6. The sets of contrasting Μ, blurred ~Μ matrices, and the set of matrices Bf g.

Recent Applications in Data Clustering230

The identity
Pl

j¼1
P

i∈Xj
αν
ij þ

P
i∈Yj

αν
ij

� �
¼Pl

j¼1
P

i∈Xj
αν
iμν

j
þPi∈Yj

αν
iμν

j

� �
is valid. Get

Δν ¼
Pl

j¼1
P

i∈Xj
αν
ij � αν

iμν
j

� �
þPi∈Yj

αν
iμν

j
� αν

ij

� �� �
¼ 2

Pl
j¼1
P

i∈Xj
αν
ij � αν

iμν
j

� �
¼ 2

Pl
j¼1

P
i∈Xj

αν
ij � 2

Pl
j¼1
P

i∈Xj
αν
iμν

j
.

Thus, minimizing a function is equivalent to maximizing the second sum of the expression.

After applying the permutations π ¼< π1,π2,…,πN >, the sets Xj, Yj, j ¼ 1, 2,…, l change. We

introduce the notations M1j ¼ Xj∖ Y
0
j∖Yj

� �
, M2j ¼ Y

0
j∖Yj, M3j ¼ Yj∖ X

0
j∖Xj

� �
, M4j ¼ X

0
j∖Xj.

Figure 7 schematically shows the changes in sets Xj, Yj, j ¼ 1, 2,…, l.

Theorem 2

ΔΦ ¼ Φ B
0

� �
� Φ Bð Þ ≤

XN
ν¼1

Δν þ
XN
ν¼1

M2j
�� �� �2, N � even,

�1, N � odd
þ M4j
�� �� 0, N � even,

�1, N � odd

(!(

The proof is given in [12, 13]. Theorem 2 is the basis for creating an effective minimization
algorithm of Φ.

Figure 7. Sets Xj, Yj, j ¼ 1, 2,…, l are changed.

Figure 8. All possible variants of
Pl

j¼1
P

i∈Xj
αν
iμν

j
for all admissible j and i.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

231

Since the second sum is always not positive, we have an upper bound. We consider the
problem of minimizing a function Δν. We write out all possible variants of the functionPl

j¼1
P

i∈Xj
αν
iμν

j
in the form of a table in Figure 8. Then the minimum of this function is

reduced to finding the maximum matching of the bipartite graph, for finding which we can
use the polynomial Hungarian algorithm [16].

It is clear that min
πν

Δν ≤ 0. Now we can propose the following heuristic algorithm for steepest

descent.

Algorithm.

1. We calculate Xj, j ¼ 1, 2,…, l.

2. We find Δ∗
ν ¼ min

πν
Δν for each ν.

If
PN

ν¼1 Δ
∗
ν < 0, then apply the found permutations πν ¼< μν

1,μ
ν
2,…,μν

l > , ν ¼ 1, 2,…, N and
go to step 1).

If
PN

ν¼1 Δ
∗
ν ¼ 0 then the END of algorithm.

NOTE. We note that our algorithm does not even find a local minimum of the criterion Φ Bð Þ.
Nevertheless, this algorithm is very fast, its complexity at each iteration is estimated as
O l5mN
� �

.

4. The algorithm of collective k-means

Results of clustering by N algorithms of sampling of m objects to l clusters solutions are
obtained, which we can write in the form of a binary matrix kαv

ijk, ν ¼ 1, 2,…, N, i ¼ 1, 2,…,

m, j ¼ 1, 2,…, l. We assume that the cluster numbers in each algorithm are fixed. Then any
horizontal layer number i of this three-dimensional matrix will denote the results of object xi
clustering. As an ensemble clustering of the sample Χ, we can take the result of clustering the
“new” descriptions—the layers of the original matrix kαv

ijk, ν ¼ 1, 2,…, n. As a method of

clustering, we take the method of minimizing the dispersion criterion. Let there be a lot of N
clusterings kαv

i1 jk, kαv
i2jk,…, kαv

iNjk with heuristic clustering algorithms, then we calculate their

sample mean kα∗ν
j k as the solution of the problem

Pt
μ¼1 α∗v

j � αv
iμ j

� �2
! min

α∗v
j

. Where do we

obtain α∗v
j ¼ 1

N

PN
μ¼1 α

v
iμ j. Note that this method makes it possible to calculate such ensemble

clusterings Κ ¼ K∗
1;K

∗
2;…;K∗

l

� �
that the sets of heuristic clustering of the objects of some

cluster of the collective solution will be close to each other in the Euclidean metric. The
committee synthesis of collective decisions provides more interpretable solutions. Indeed, if
Κν ¼ Kν

1;K
ν
2;…;Kν

l

� �
, ν ¼ 1, 2,…, N are separate solutions of heuristic clustering algorithms,

then the cluster of collective solution will be the “intersection” of many some original clusters
K1
i1 , K

2
i2 ,…, KN

il .

Recent Applications in Data Clustering232

5. Man-machine (video-logical) clustering method

In the problems of ensemble clustering synthesis considered earlier, we did not consider the
number of initial clustering algorithms, their quality and their proximity. Ensemble clustering
was built and reflected only the opinion of the collective decisions that we used. “Internal”
indices [9] reflect the person’s ideas about clustering. You can think up examples of data when
known internal criteria lead to degenerate solutions.

At the same time, a person has the ability to cluster visual sets on a plane without using any
proximity functions, criteria and indices. The following idea was realized. A person can
personally cluster projections of sets of points from Rn into R2. Having made such clusterings
under different projections, we can construct generally speaking various N clusterings, which
we submit to the input of the construction of the collective solution. The person himself “does
not see” the objects in Rn, but can exactly solve the clustering tasks on the plane. Thus, here we
use N precise solutions, but of various partial information about the data. Consider this video-
logical method on one model example.

A sample of two normal distributions with independent characteristics was considered. The
first feature of the first distribution (200 objects) had zero expectation and the standard
deviation, the first attribute of the second distribution (200 objects) had these values equal to
5. All the other 49 attributes for all objects had аi ¼ 5, σi ¼ 5, i ¼ 2, 3,…, 50. That is, the two
sets had equal distributions for 49 features and one informative feature. Clustering of the entire
sample by minimizing dispersion is shown in Figure 9. Black and gray points on sample
visualization represent the objects of the first and second clusters. Here the fact of informative
character of the first feature is lost.

The program of the video-logical approach worked as follows. With the help of a single
heuristic approach, all C2

n projections are automatically ordered according to the descending
criteria of the presence of two clusters. Next we as experts consider some projections and with
the help of the mouse we select in each of them two clusters. Figure 10 shows two such
examples. Note that the first feature was present in all projections. It was used “manually” as
the defining area for the dense location of objects. Then 10 “manual” clustering went to the
program entrance for the committee synthesis of the collective solution. Note that only two
objects were erroneously clustered.

Figure 9. Clustering of a sample of model objects by the method of minimizing variance.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

233

Since the second sum is always not positive, we have an upper bound. We consider the
problem of minimizing a function Δν. We write out all possible variants of the functionPl

j¼1
P

i∈Xj
αν
iμν

j
in the form of a table in Figure 8. Then the minimum of this function is

reduced to finding the maximum matching of the bipartite graph, for finding which we can
use the polynomial Hungarian algorithm [16].

It is clear that min
πν

Δν ≤ 0. Now we can propose the following heuristic algorithm for steepest

descent.

Algorithm.

1. We calculate Xj, j ¼ 1, 2,…, l.

2. We find Δ∗
ν ¼ min

πν
Δν for each ν.

If
PN

ν¼1 Δ
∗
ν < 0, then apply the found permutations πν ¼< μν

1,μ
ν
2,…,μν

l > , ν ¼ 1, 2,…, N and
go to step 1).

If
PN

ν¼1 Δ
∗
ν ¼ 0 then the END of algorithm.

NOTE. We note that our algorithm does not even find a local minimum of the criterion Φ Bð Þ.
Nevertheless, this algorithm is very fast, its complexity at each iteration is estimated as
O l5mN
� �

.

4. The algorithm of collective k-means

Results of clustering by N algorithms of sampling of m objects to l clusters solutions are
obtained, which we can write in the form of a binary matrix kαv

ijk, ν ¼ 1, 2,…, N, i ¼ 1, 2,…,

m, j ¼ 1, 2,…, l. We assume that the cluster numbers in each algorithm are fixed. Then any
horizontal layer number i of this three-dimensional matrix will denote the results of object xi
clustering. As an ensemble clustering of the sample Χ, we can take the result of clustering the
“new” descriptions—the layers of the original matrix kαv

ijk, ν ¼ 1, 2,…, n. As a method of

clustering, we take the method of minimizing the dispersion criterion. Let there be a lot of N
clusterings kαv

i1 jk, kαv
i2jk,…, kαv

iNjk with heuristic clustering algorithms, then we calculate their

sample mean kα∗ν
j k as the solution of the problem

Pt
μ¼1 α∗v

j � αv
iμ j

� �2
! min

α∗v
j

. Where do we

obtain α∗v
j ¼ 1

N

PN
μ¼1 α

v
iμ j. Note that this method makes it possible to calculate such ensemble

clusterings Κ ¼ K∗
1;K

∗
2;…;K∗

l

� �
that the sets of heuristic clustering of the objects of some

cluster of the collective solution will be close to each other in the Euclidean metric. The
committee synthesis of collective decisions provides more interpretable solutions. Indeed, if
Κν ¼ Kν

1;K
ν
2;…;Kν

l

� �
, ν ¼ 1, 2,…, N are separate solutions of heuristic clustering algorithms,

then the cluster of collective solution will be the “intersection” of many some original clusters
K1
i1 , K

2
i2 ,…, KN

il .

Recent Applications in Data Clustering232

5. Man-machine (video-logical) clustering method

In the problems of ensemble clustering synthesis considered earlier, we did not consider the
number of initial clustering algorithms, their quality and their proximity. Ensemble clustering
was built and reflected only the opinion of the collective decisions that we used. “Internal”
indices [9] reflect the person’s ideas about clustering. You can think up examples of data when
known internal criteria lead to degenerate solutions.

At the same time, a person has the ability to cluster visual sets on a plane without using any
proximity functions, criteria and indices. The following idea was realized. A person can
personally cluster projections of sets of points from Rn into R2. Having made such clusterings
under different projections, we can construct generally speaking various N clusterings, which
we submit to the input of the construction of the collective solution. The person himself “does
not see” the objects in Rn, but can exactly solve the clustering tasks on the plane. Thus, here we
use N precise solutions, but of various partial information about the data. Consider this video-
logical method on one model example.

A sample of two normal distributions with independent characteristics was considered. The
first feature of the first distribution (200 objects) had zero expectation and the standard
deviation, the first attribute of the second distribution (200 objects) had these values equal to
5. All the other 49 attributes for all objects had аi ¼ 5, σi ¼ 5, i ¼ 2, 3,…, 50. That is, the two
sets had equal distributions for 49 features and one informative feature. Clustering of the entire
sample by minimizing dispersion is shown in Figure 9. Black and gray points on sample
visualization represent the objects of the first and second clusters. Here the fact of informative
character of the first feature is lost.

The program of the video-logical approach worked as follows. With the help of a single
heuristic approach, all C2

n projections are automatically ordered according to the descending
criteria of the presence of two clusters. Next we as experts consider some projections and with
the help of the mouse we select in each of them two clusters. Figure 10 shows two such
examples. Note that the first feature was present in all projections. It was used “manually” as
the defining area for the dense location of objects. Then 10 “manual” clustering went to the
program entrance for the committee synthesis of the collective solution. Note that only two
objects were erroneously clustered.

Figure 9. Clustering of a sample of model objects by the method of minimizing variance.

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

233

6. Conclusion

This chapter consists of two parts. First, clustering criteria based on sustainability are intro-
duced. Next, we propose an approach to processing the sets of obtained partitions of the same
sample. As the initial clustering, it is better to use stable clustering. It is shown how a person
can be used in the construction of the committee synthesis of ensemble clustering.

Acknowledgements

The reported study was funded by RFBR according to the research project No 17-01-00634 and
No 18-01-00557.

Author details

Vladimir Vasilevich Ryazanov

Address all correspondence to: rvvccas@mail.ru

Dorodnicyn Computing Centre, Federal Research Center, “Computer Science and Control” of
Russian Academy of Sciences, Moscow, Russia

References

[1] Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: Part 1. SIGMOD
Record. 2002;31(2):40-45. DOI: 10.1145/601858.601862

[2] Aggarwal C, Reddy C. Data Clustering: Algorithms and Applications. CRC Press; 2014

[3] Duda R, Hart P, Stork D. Pattern Classification. 2nd ed. New York: Wiley; 2000

Figure 10. Allocation of clusters by mouse on the (1.4) and (1.6) features.

Recent Applications in Data Clustering234

[4] Lloyd S. Least squares quantization in PCM (PDF). IEEE Transactions on Information
Theory. 1982;28(2):129-137. DOI: 10.1109/TIT.1982.1056489

[5] Kriegel H, Kröger P, Sander J, Zimek A. Density-based clustering. WIREs Data Mining
and Knowledge Discovery. 2011;1(3):231-240. DOI: 10.1002/widm.30

[6] Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B. 1977;39(1):1-38 JSTOR 2984875.
MR 0501537

[7] Jain A, Dubes R. Algorithms for Clustering Data. Englewood Cliffs: Prentice-Hall, Inc.; 1998

[8] Kaufman L, Rousseeuw P. Finding Groups in data: An Introduction to Cluster Analysis.
New York: Wiley; 2009

[9] Aggarwal C. Data Mining: The Textbook. Yorktown Heights/New York: IBM T.J. Watson
Research Center; 2015. 771 p. DOI: 10.1007/978-3-319-14142-8

[10] Kuncheva L. Combining Pattern Classifiers: Methods and Algorithms. Hoboken: Wiley;
2004. DOI: 10.1002/9781118914564

[11] Desgraupes B. Clustering indices. University Paris Ouest. Lab Modal'X; 2013

[12] Ryazanov V. Commitee synthesis of algorithms for recognition and classification. Journal
of Computational Mathematics and Mathematical Physics. 1981;21(6):1533-1543. DOI:
10.1016/0041-5553(81)90161-0

[13] Ryazanov V. On the synthesis of classification algorithms on finite sets of classification
algorithms (taxonomy). Journal of Computational Mathematics and Mathematical Phys-
ics. 1982;22(2):429-440. DOI: 10.1016/0041-5553(82)90049-0

[14] Ryazanov V. One approach for classification (taxonomy) problem solution by sets of
heuristic algorithms. In: Proceedings of the 9-th Scandinavian Conference on Image Anal-
ysis; 6–9 June 1995; Uppsala; 1995(2). pp. 997-1002

[15] Biryukov A, Shmakov A, Ryazanov V. Solving the problems of cluster analysis by collec-
tives of algorithms. Journal of Computational Mathematics and Mathematical Physics.
2008;48(1):176-192. DOI: 10.1134/S0965542508010132

[16] Kuhn H. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly. 1955;2:83-97. DOI: 10.1002/nav.3800020109

[17] Ryazanov V. Estimations of clustering quality via evaluation of its stability. In: Bayro-
Corrochano E, Hancock E, editors. CIARP 2014. LNCS. Vol. 8827; 2014. pp. 432-439. DOI: 10.
1007/978-3-319-12568-8_53

[18] Ryazanov V. About estimation of quality of clustering results via its stability. Intelligent
Data Analysis. 2016;20:S5-S15. DOI: 10.3233/IDA-160842

[19] Sigillito V, Wing S, Hutton L, Baker K. Classification of radar returns from the ionosphere
using neural networks. Johns Hopkins APL Technical Digest. 1989;10:262-266

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

235

6. Conclusion

This chapter consists of two parts. First, clustering criteria based on sustainability are intro-
duced. Next, we propose an approach to processing the sets of obtained partitions of the same
sample. As the initial clustering, it is better to use stable clustering. It is shown how a person
can be used in the construction of the committee synthesis of ensemble clustering.

Acknowledgements

The reported study was funded by RFBR according to the research project No 17-01-00634 and
No 18-01-00557.

Author details

Vladimir Vasilevich Ryazanov

Address all correspondence to: rvvccas@mail.ru

Dorodnicyn Computing Centre, Federal Research Center, “Computer Science and Control” of
Russian Academy of Sciences, Moscow, Russia

References

[1] Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: Part 1. SIGMOD
Record. 2002;31(2):40-45. DOI: 10.1145/601858.601862

[2] Aggarwal C, Reddy C. Data Clustering: Algorithms and Applications. CRC Press; 2014

[3] Duda R, Hart P, Stork D. Pattern Classification. 2nd ed. New York: Wiley; 2000

Figure 10. Allocation of clusters by mouse on the (1.4) and (1.6) features.

Recent Applications in Data Clustering234

[4] Lloyd S. Least squares quantization in PCM (PDF). IEEE Transactions on Information
Theory. 1982;28(2):129-137. DOI: 10.1109/TIT.1982.1056489

[5] Kriegel H, Kröger P, Sander J, Zimek A. Density-based clustering. WIREs Data Mining
and Knowledge Discovery. 2011;1(3):231-240. DOI: 10.1002/widm.30

[6] Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B. 1977;39(1):1-38 JSTOR 2984875.
MR 0501537

[7] Jain A, Dubes R. Algorithms for Clustering Data. Englewood Cliffs: Prentice-Hall, Inc.; 1998

[8] Kaufman L, Rousseeuw P. Finding Groups in data: An Introduction to Cluster Analysis.
New York: Wiley; 2009

[9] Aggarwal C. Data Mining: The Textbook. Yorktown Heights/New York: IBM T.J. Watson
Research Center; 2015. 771 p. DOI: 10.1007/978-3-319-14142-8

[10] Kuncheva L. Combining Pattern Classifiers: Methods and Algorithms. Hoboken: Wiley;
2004. DOI: 10.1002/9781118914564

[11] Desgraupes B. Clustering indices. University Paris Ouest. Lab Modal'X; 2013

[12] Ryazanov V. Commitee synthesis of algorithms for recognition and classification. Journal
of Computational Mathematics and Mathematical Physics. 1981;21(6):1533-1543. DOI:
10.1016/0041-5553(81)90161-0

[13] Ryazanov V. On the synthesis of classification algorithms on finite sets of classification
algorithms (taxonomy). Journal of Computational Mathematics and Mathematical Phys-
ics. 1982;22(2):429-440. DOI: 10.1016/0041-5553(82)90049-0

[14] Ryazanov V. One approach for classification (taxonomy) problem solution by sets of
heuristic algorithms. In: Proceedings of the 9-th Scandinavian Conference on Image Anal-
ysis; 6–9 June 1995; Uppsala; 1995(2). pp. 997-1002

[15] Biryukov A, Shmakov A, Ryazanov V. Solving the problems of cluster analysis by collec-
tives of algorithms. Journal of Computational Mathematics and Mathematical Physics.
2008;48(1):176-192. DOI: 10.1134/S0965542508010132

[16] Kuhn H. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly. 1955;2:83-97. DOI: 10.1002/nav.3800020109

[17] Ryazanov V. Estimations of clustering quality via evaluation of its stability. In: Bayro-
Corrochano E, Hancock E, editors. CIARP 2014. LNCS. Vol. 8827; 2014. pp. 432-439. DOI: 10.
1007/978-3-319-12568-8_53

[18] Ryazanov V. About estimation of quality of clustering results via its stability. Intelligent
Data Analysis. 2016;20:S5-S15. DOI: 10.3233/IDA-160842

[19] Sigillito V, Wing S, Hutton L, Baker K. Classification of radar returns from the ionosphere
using neural networks. Johns Hopkins APL Technical Digest. 1989;10:262-266

Collective Solutions on Sets of Stable Clusterings
http://dx.doi.org/10.5772/intechopen.76189

235

[20] Rastrigin L, Erenstein R. Collective decision-making in pattern recognition. Avtomatica i
telemehanika. 1975;9:133-144

[21] Method of committees in pattern recognition. Sverdlovsk, IMM AN USSR; 1974

[22] Yu Z. On the algebraic approach to solving problems of recognition or classification.
Problems of Cybernetics. 1978;33:5-68

[23] Zuev Y. The method of increasing the reliability of classification in the presence of several
classifiers, based on the principle of monotony. Journal of Computational Mathematics
and Mathematical Physics. 1981;21(1):157-167

[24] Krasnoproshin V. About the optimal corrector of the set of recognition algorithms. Journal
of Computational Mathematics and Mathematical Physics. 1979;19(1):204-215

[25] Zhuravlev Y. Selected Scientific Works. Moscow: Publishing House Magister; 1998. p. 420

Recent Applications in Data Clustering236

[20] Rastrigin L, Erenstein R. Collective decision-making in pattern recognition. Avtomatica i
telemehanika. 1975;9:133-144

[21] Method of committees in pattern recognition. Sverdlovsk, IMM AN USSR; 1974

[22] Yu Z. On the algebraic approach to solving problems of recognition or classification.
Problems of Cybernetics. 1978;33:5-68

[23] Zuev Y. The method of increasing the reliability of classification in the presence of several
classifiers, based on the principle of monotony. Journal of Computational Mathematics
and Mathematical Physics. 1981;21(1):157-167

[24] Krasnoproshin V. About the optimal corrector of the set of recognition algorithms. Journal
of Computational Mathematics and Mathematical Physics. 1979;19(1):204-215

[25] Zhuravlev Y. Selected Scientific Works. Moscow: Publishing House Magister; 1998. p. 420

Recent Applications in Data Clustering236

Recent Applications in
Data Clustering

Edited by Harun Pirim

Edited by Harun Pirim

Clustering has emerged as one of the more fertile fields within data analytics, widely
adopted by companies, research institutions, and educational entities as a tool to

describe similar/different groups.

The book Recent Applications in Data Clustering aims to provide an outlook of recent
contributions to the vast clustering literature that offers useful insights within the

context of modern applications for professionals, academics, and students. The book
spans the domains of clustering in image analysis, lexical analysis of texts, replacement
of missing values in data, temporal clustering in smart cities, comparison of artificial

neural network variations, graph theoretical approaches, spectral clustering,
multiview clustering, and model-based clustering in an R package. Applications

of image, text, face recognition, speech (synthetic and simulated), and smart city
datasets are presented.

Published in London, UK

© 2018 IntechOpen
© oleksii arseniuk / iStock

ISBN 978-1-78923-526-5

Recent A
pplications in D

ata C
lustering

ISBN 978-1-83881-560-8

	Recent Applications in Data Clustering
	Contents
	Preface
	Chapter 1
Clustering Algorithms for Incomplete Datasets
	Chapter 2
Partitional Clustering
	Chapter 3
Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust Data Segmentation
	Chapter 4
Centroid-Based Lexical Clustering
	Chapter 5
Point Cloud Clustering Using Panoramic Layered Range Image
	Chapter 6 - CoClust: An R Package for Copula-Based Cluster Analysis
	Chapter 7 - Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired Through IoT in Smart Cities
	Chapter 8 - A Class of Parametric Tree-Based Clustering Methods
	Chapter 9 - Robust Spectral Clustering via Sparse Representation
	Chapter 10 - Performance Assessment of Unsupervised Clustering Algorithms Combined MDL Index
	Chapter 11 - New Approaches in Multi-View Clustering
	Chapter 12 - Collective Solutions on Sets of Stable Clusterings

