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Preface

The concept of wavelets is quite new and different to the readers. Original research works
were carried out in the field of mathematics, electrical engineering, physics, applied science,
and engineering such as geophysics and finance.

A wavelet is a wavelike oscillation with amplitude that begins at zero, increases, and then
decreases back to zero. It can typically be visualized as a “brief oscillation” like the one re‐
corded by a heart monitoring system. Generally, wavelets have specific properties that make
them useful for signal processing application.

Wavelet theory is applicable to several areas. Wavelet transforms normally come with time-
frequency representation for analog signals. For any practical purpose, people use discrete
wavelet transforms, which use discrete-time filter banks for implementation. These filter
banks are called the wavelet and scaling coefficients in wavelet nomenclature. These filter
banks may contain either finite impulse response (FIR) or infinite impulse response (IIR) fil‐
ters. To understand these filters, signal processing concepts are very much essential.

Scope of the book: This book is the research outcome of various researchers and professors
who have contributed a lot in applying wavelets in different application areas. This book
suits researchers doing their research in the area of wavelets and its applications. The under‐
standing of fundamentals of linear algebra and signal processing concepts is essential for the
readers before reading this book. This book gives fundamental idea of wavelets and also
how wavelets can be applied in different fields such as biomedical, prediction analysis, and
finance. I do not have any doubts that this book will motivate researchers in different parts
of the world to use the concepts, which are available in this book for their research.

Structure of the book: The book contains 12 chapters grouped into four sections. The reader
of the book is expected to know the fundamentals of linear algebra and signal processing,
which are available in the standard books. The book starts with an introductory chapter.
Section 2 deals with the role of wavelets in biomedical application containing three chapters.
Section 3 describes how wavelets can be applied in the field of finance containing two chap‐
ters. Section 4 concentrates on the usage of wavelets in contemporary applications contain‐
ing seven chapters.

Acknowledgment
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plete this work. I thank all the professors and scientists who have contributed to the differ‐
ent chapters. My sincere thanks go to the management of Dr. Mahalingam College of
Engineering and Technology and Prof. C. Ramaswamy, Secretary, NIA Institutions, for their
encouragement and patronage rendered to carry out this work. I am indebted to my wife
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1. Introduction

In this section, let us discuss some fundamentals which are required to understand wavelets. 
Signals which are coming from a source are normally in time domain. Examples are sinusoi-
dal signal, bio-medical signal, etc. Anytime domain signal can be processed or transformed 
into frequency domain (spectral domain) using mathematical transformations. Fourier trans-
form is one of the popular or famous transform that will convert a time domain signal into 
frequency domain signal without any loss of generality.

While plotting time domain signal, we use time in the x-axis and amplitude in the y-axis. 
The hidden information present in the signal cannot be revealed in the time domain hence 
a transform domain is required. The frequency content or spectrum of a signal is simply the 
frequency content (spectral components) of the signal. The frequency spectrum of a signal 
depicts what are all the frequencies exist in the signal. When plotting frequency domain, we 
use frequency in the x-axis and amplitude in the y-axis.

Normally for any signal, if the frequency content is not changing with respect to time is called
as stationary signal. Example can be a sinusoidal signal where the frequency ‘X’ Hz is not
changing irrespective of the cycle. Unfortunately, real time signals are nonstationary signal
where the frequency content of the signal is keeping on changing. The best example is biologi-
cal signals. Suppose when we are looking at an ECG (electrocardiograph) signal. The typical
shape of a healthy ECG signal is well known to cardiologists. Any significant deviation from
that shape is usually considered to be a symptom of a pathological condition. Doctors analyse
these cases not only in time domain, they are using frequency domain also to confirm the
pathological condition.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1. Fourier transform analysis side.

2. Fourier transform (FT)

To understand wavelets, let us go deep into the literature. The first and main contribution 
regarding the frequency content or spectrum came from the French mathematician John 
Baptise Fourier. He showed that any periodic function can be represented as an infinite sum 
of periodic complex exponential functions and named as Fourier transform (FT) [1].

Eqs. (1) and (2) represent the forward and inverse Fourier transform

  X (jΩ)  =   ∫ 
−∞

  
∞
   x (t)   e   −jΩt  dt  (1)

  x (t)  =   ∫ 
−∞

  
∞
   X (jΩ)   e   jΩt  dΩ  (2)

where x(t) represents the time domain signal, X(jΩ) represents the frequency content of the 
signal and  Ω = 2 × π × F  and

   e   jΩt  = cos (Ωt)  + jsin (Ωt)   (3)

Eq. (3) represents that any complex exponential is expressed as real part of cosine function 
and imaginary part of sine function with the corresponding frequency. As per Eq. (1), the 
input signal is multiplied with cosine function and sine function at all the time intervals and 
added (integrated) to yield the frequency content. The concept is best illustrated in Figures 1 
and 2. Figure 1 shows the implementation at analysis side. Here, each blue coloured square is 
a narrow band pass filter with the cut off frequency Ω0, Ω1, ….

Wavelet Theory and Its Applications4

Figure 2. Fourier transform synthesis side.

Figure 3. Cosine signal with three different frequencies 5, 25, and 50 Hz.
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Figure 2 shows the implementation at synthesis side. Here also, each blue coloured square is 
a narrow band pass filter with the cut off frequency Ω0, Ω1, ….

In Figure 1, if the result of the particular filter is large then, we can understand that the 
particular frequency component is dominant. If there is no output in any filter means that 
the particular frequency component is zero, i.e., single signal is passed multiple filter 
and the outputs are analysed and the reverse is happening in Figure 2 which is called as 
synthesis.

To understand the above one, see the following illustration shown in Figure 3 where the indi-
vidual frequencies are indicated as 5, 25, and 50 Hz. The corresponding spectrum is shown 
in Figure 4.

Figure 5 indicates a signal which contains all the three frequencies 5, 25, and 50 Hz mixed 
together and its corresponding spectrum.

Fourier transform is very much useful for a stationary signal. This means that Fourier trans-
form clearly indicates what are all the frequency components exist in the given signal inde-
pendent of time. Fourier transform completely fails for a nonstationary signal.

Figure 4. Spectrum cosine signal with three different frequencies 5, 25, and 50 Hz.

Wavelet Theory and Its Applications6

3. Short-time Fourier transform (STFT)

As discussed previously that FT is not suitable for a nonstationary signal, a new set of trans-
form is required which will provide timing and frequency information. The research moved 
forward and a conclusion was made that possibility of considering some portion of a non-
stationary signal as stationary. This means that the long duration signal must be chopped for a 
short duration and possibility of finding the frequency components in that interval and this has 
to be completed for the entire signal to know the entire frequency components are present. The 
transform which provides this opportunity is short time Fourier transform (STFT). The STFT 
equation is given by

    STFT  x     W  (t, Ω)  =   ∫ 
−∞

  
∞
   [x (t)  × W (t − τ) ]   e   −jΩt  dt  (4)

The above equation indicates that the input signal x(t) is chopped by a window with a duration 
of ‘τ’ and Fourier transform is taken. In other words, the signal is assumed to be stationary for 
the interval ‘τ’. This process is repeated for the entire duration of signal. Now, somewhat the 

Figure 5. Cosine signal with three combined frequencies 5, 25, and 50 Hz and its corresponding spectrum.
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Figure 5. Cosine signal with three combined frequencies 5, 25, and 50 Hz and its corresponding spectrum.
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Figure 7. Resolution for a narrower window.

problem faced by Fourier transform is solved and we get the frequency components with the 
window duration specified. Figure 6 indicates how STFT is taken for a nonstationary signal 
for one step of the window.

Now, the selection of the window width plays a vital role in STFT. The narrow window we 
select leads to poor frequency resolution and good time resolution which is shown in Figure 7. 
The opposite effect will happen if we select a wider window which is illustrated in Figure 8.

Figure 6. STFT of a nonstationary signal for one step.
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Hence, the conclusion is STFT [1] that will provide a solution to the problem faced by Fourier 
transform but the drawback is there is a constant width of the window which is used and 
hence it provides only fixed resolution.

Normally, signal can carry both low frequency and high frequency components. To capture 
both, we need different widths of the window which is not provided by STFT. To understand 
more clearly, the concept of multiresolution is not there in STFT. Hence, we need a new trans-
form which provides a solution to the above. The solution is wavelet transform.

4. Continuous wavelet transform (CWT)

The basic idea behind wavelet transform is, a new basis(window) function is introduced 
which can be enlarged or compressed to capture both low frequency and high frequency 
component of the signal (which relates to scale). The equation of wavelet transform [2, 3] is 
given in Eq. (5).

  W (a, b)  =   1 ___ 
 √ 

___
   | a |    
     ∫ 
−∞

  
∞
   x (t)  ψ (  t − b ___ a  ) dt  (5)

where W(a,b) is called the wavelet coefficient, ‘a’ is called the scaling parameter and ‘b’ is the 
shifting or translational parameter. ψ(t) is called the mother wavelet. Different dilations and 
translations lead to different daughter wavelets.

Figure 8. Resolution for a wider window.
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Any original data or signal can be represented in terms of a wavelet expansion. The best repre-
sentation of a data using a wavelet depends on the best or close wavelet of what we are choosing. 
There are many numbers of wavelets available as per the literature. Some of the examples of the 
wavelets are Haar and Daubechies [3]; under Gaussian-based wavelets, we have Mexican hat 
wavelet and Morlet wavelet; under polynomial-based wavelets, we have Battle-lemarie, Coiflet 
and Spline-based wavelets; and under Sinc wavelets, we have Meyer wavelet and Shannon 
wavelet.

5. Discrete wavelet transform (DWT)

From the previous understanding, it is clear that CWT is a redundant transform, which 
means that the translation parameter ‘b’ and scaling parameter ‘a’ seem to be infinite mak-
ing them difficult in terms of implementation. It is always seems to be CWT that is com-
putable but not implementable. The solution for the implementation of wavelet transform 
arises from discrete wavelet transform (DWT). Sampling in the time-frequency plane on a 
dyadic (octave) grid is happening in DWT that makes them efficient in terms of implemen-
tation. The scaling parameter ‘a’ is replaced by 2−j and ‘b’ is made proportional to ‘a’, i.e., 
b = k 2−j. Here ‘j’ is called as scaling parameter and ‘k’ is the proportionality constant taking 
the role of shifting parameter in DWT. Substituting  a =  2   −j ; b =  2   −j  k  (j and k are integers) in 
Eq. (5), we get Eq. (6).

   
  CWT  x     ψ  (a, b)  =   Ψ  x     ψ  (a, b)  =   1 ___ 

 √ 
___

   | a |    
    ∫ 
t
     x (t) ψ (  t − b ___ a  ) dt

     
 ψ  j,k   (t)  =  √ 

__
  2   j    ψ ( 2   j  t − k)  j, k ∈ Z

    (6)

In multiresolution analysis, the signal can be viewed as the sum of a smooth (“coarse”) 
part—reflects main features of the signal (approximation signal) and a detailed (“fine”) 
part—faster fluctuations represent the details of the signal [1]. The separation of the signal 

Figure 9. Filter bank implementation of DWT (courtesy by Robi polikar).
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into two parts is determined by the resolution given. This discussion introduces scaling 
function ‘  φ  

j,k
   (t)  ’ and wavelet function ‘  ψ  

j,k
   (t)  ’ and the corresponding approximation coefficients 

resulting from scaling function is denoted as aj,k and the detailed coefficients resulting from 
wavelet function is denoted as dj,k. In implementation perspective, any signal is represented 
in Eq. (7).

  x (t)  =   ∑ 
k=−∞

  
∞
     a   j  0  ,k    φ   j  0  ,k   (t)  +   ∑ 

j=−∞
  

 j  0  

     ∑ 
 k=−∞

  
∞
     d  j.k    ψ  j,k   (t)   (7)

Using Filter bank [2, 4], the implementation of Eq. (7) results in Figure 9, where h′[n] and g′[n] 
are the low pass and high pass filters in the analysis side and h[n] and g[n] are low pass and 
high pass filters in the synthesis side using the corresponding wavelet.

6. Conclusion

I hope that this chapter gives a definite and thoughtful introduction to all the beginners 
who are new to wavelets. As there are different number of wavelets available with differ-
ent signal processing properties like compact support, symmetry, regularity and vanish-
ing moments make them suitable in the field of signal de-noising, detecting discontinuities 
and breakdown points in a signal, compressing images, identifying pure frequencies, 
seismic and geophysical signal processing, video compression, acoustic data analysis, 
nuclear engineering, neurophysiology, music, magnetic resonance imaging, speech dis-
crimination, optics, fractals, turbulence, earthquake-prediction, radar, human vision, etc. 
Some of applications from the perspective scientists and researchers are discussed in the 
forthcoming chapters.
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Abstract

Even in cases when we recognize identical objects or when we behave similarly, the
spatiotemporal activities in the brain are likely to fluctuate to various degrees. Temporally
fluctuating responses easily decrease by averaging replicate measures. We previously
developed a wavelet correlation analysis that tolerates the across-trial oscillatory phase
variability observed in odor-induced cortical responses. The wavelet correlation analysis
revealed a change in the neuronal information redundancy of transient and oscillatory
brain waves from the dependencies on stimulus experience (high redundancy) to stimulus
quality (low redundancy) between the input and output layers of the anterior piriform
cortex in guinea pigs. We report on its application to estimate information in the fine
temporal structures of single-trial brain waves. By using a set of standard brain waves for
each information in a given category, the highest wavelet correlation coefficients provided
the first candidate of estimated information with 75% accuracy. Moreover, the probability
of including the correct information for the two upper candidates, regardless of informa-
tion redundancy of the signal sources, was >92%. The wavelet correlation analysis is
useful for similarity analyses and real-time estimates of in-brain information and for its
application to brain-machine interfaces or medical/research tools.
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1. Introduction

In the sensory system, a stimulant likely activates stimulant-specific subsets of neurons with a
stimulant-specific response profile through the sensory pathway from the sensory organ to the
primary sensory cortex, resulting in identical sensory perception of the stimulant. At different
stages of this neuronal information processing, the redundancy in sensory information
changes by summing or subtracting overlapping signals from cognate and noncognate recep-
tors for common and unique elements. The sensory systems generate oscillatory activities
between related cortical regions and the thalamus, except in the olfactory system. The olfactory
system generates oscillatory activities in the first and second olfactory centers, the olfactory
bulb, and the anterior piriform cortex (aPC). It is significantly more difficult to quantify the
degree of similarity or difference in these transient oscillatory responses compared to station-
ary oscillatory activities. We previously developed a wavelet correlation analysis that is phase-
tolerant for transient oscillatory responses and demonstrated a stimulus dependency of the
odor-evoked oscillatory brain waves (oscillatory local field potentials, osci-LFPs) in the aPC
output layer and an experience dependency in the input layer [1]. These results suggest that
the redundancy in the neural representation of olfactory information may change in the aPC.

Sensory systems are incorporated in higher brain functions that synergistically control animal
behaviors through multiple neural systems including sensory, memory, decision, motor, or
other systems. Generally, all neural systems would maintain the reliability of signal processing
in identical activities of identical subsets of neurons in identical time courses through neural
pathways with acceptable across-trial variability. This suggests that brain waves in identical
behaviors could be, to some extent, reproduced in each brain. Small fluctuations, however,
sometimes change oscillatory phases across trials, as has been observed in odor-induced
oscillatory brain waves [1]. The fine temporal structures of phase-fluctuated oscillatory activi-
ties responsible for informational differences are easily lost by averaging several brain waves,
even for identical information in each brain. Associations of single-trial brain waves with in-
brain information have been rarely studied. Regarding mental states, the most important
individual-independent frequencies of electroencephalography (EEG) are 7–12 Hz at the P1
electrode and <5 Hz at Fz for attention, 10–20 Hz at F4 for fatigue, and 4–7 Hz at Fz and
10–20 Hz at Cz for frustration, with even greater variations in frequencies observed across
individuals [2]. Alpha-band oscillations (8–13 Hz) exert top-down influences on the early
visual processing for attention orienting [3] and are sensitive markers in the auditory memory
loading process [4]. As a test case, we applied a wavelet correlation analysis to estimate odor
information in the fine temporal structures of single-trial brain waves.

2. Wavelet correlation analysis

2.1. Characteristics of odor-evoked oscillatory brain waves in the aPC

Odor-evoked oscillatory brain waves in the aPC are not stationary over the time window of
interest, even in an ex vivo isolated whole brain with attached nose preparation under the
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condition of no inputs from the nonolfactory sensory systems (Figure 1) [1, 5]. Oscillatory
brain waves initiate during the 1-s odor presentation before the peak of the receptor potential,
the electro-olfactogram (EOG) (the lowest trace in Figure 1) [1]. A pair of quite different odors,
lavender essential oil (Lav), and a mixture of three fatty acids—mc4 + mc6 + mc8 (mc468)—
were selected as plant- and animal-related odors, respectively. Linalool (Lina) and n-butanoic
acid (mc4) were selected as the single-compound odors of Lav and mc468, respectively, with
partial overlaps of the activated olfactory receptors and their respective signal pathways with
their original mixtures as well as 0.1 Lav (10-fold diluted Lav). As expected, oscillatory brain
waves of a pair of quite different Lav and mc468 odors look dissimilar in the initial phase but
are partially similar in the late phase.

Figure 1. Odor-evoked oscillatory brain waves in layer I of the anterior piriform cortex (aPC) [1]. Time courses of low-
pass-filtered (0–45 Hz) oscillatory brain waves and the receptor potential (electro-olfactogram, EOG) at the centromedial
or caudocentral** site of the aPC in the isolated whole brain are shown for three odors (Lav, lavender essential oil as an
odor from a plant; 0.1 Lav (10-fold diluted Lav); and mc468, a mixture of three fatty acids as an imitated odor from
animals). Ringer solution (RN) was used as a control. The odor or RN was presented to the nose of the isolated brain for 1
or 4 s* (only for the sixth Lav), as indicated by the horizontal bar in the in-presentation order for each odor (entire
presentation order). The responses in the 2.5-s time window* of interest were analyzed.
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The correlations of the temporal profiles of oscillatory brain waves in the aPC for a 2.5-s time
window, which comprised the 1-s odor presentation and the following 1.5 s, were not homo-
geneously high between identical odors (Figure 2A) [1]. Only a few identical odor pairs for Lav
or 0.1 Lav demonstrated relatively high correlations (0.7–0.74), whereas the remaining pairs
demonstrated intermediate (0.47–0.69) or low (0.29) correlations. These low correlations are
attributable to the independent fluctuations in the oscillatory phase angles and powers includ-
ing a few synchronous cycles (indicated by the daggers), in the fast Fourier transform (FFT)
components even between identical odors, indicating that oscillatory responses are not strictly
phase-locked to the stimulus onset (Figure 3) [1]. The spurious high correlations of the 0–45 Hz
components are attributable to the similarities in the temporal profiles of the 0–2 Hz compo-
nents [1]. The 0–2 Hz component resulted in high correlations (>0.77) for all the Lav and
0.1-Lav pairs (Figure 2B), whereas the 2–45 Hz components resulted in low correlations (<0.4)
for all pairs (Figure 2C). To address these weaknesses of the conventional analyses, we tested a
novel correlation analysis of wavelet profiles.

2.2. Wavelet correlation analysis procedure for oscillatory brain waves in the time
window of interest

Figure 4 shows the procedure for the wavelet transformation and its conversion to a data array
for the wavelet correlation analysis [1]. The wavelet time-frequency power profiles enable us to
quantify the similarity of the odor-evoked oscillatory brain waves. The wavelet transform is
like a running, windowed Fourier transform; it uses a certain window size and slides it along
in time, computing the FFT at each time using only the data within the window. The original
wavelet software libraries were provided by Torrence and Compo [6] and modified with
respect to the following points. Because of the spurious high correlations in the low-frequency
band, all 0–2 Hz components were removed prior to the phase-tolerant analysis of the 2–45 Hz
components of the oscillatory brain waves. The 2–45 Hz bandpass-filtered brain waves
(Figure 4A) were subjected to a Morlet wavelet analysis by using the following equations:
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where (*) indicates the complex conjugate, ω0 = 6, N = 2048, δt = 0.001, s0 = 2δt, and δj = 0.1. The
wavelet power spectrum, Wn sð Þj j2, was plotted in the 1.89–42.78 Hz frequency (ωj) range
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Figure 2. Correlation matrices among odor-evoked oscillatory brain waves in layer I of the aPC [1]. (A) Matrix of cross-/
autocorrelations of the 0–45 Hz components of the odor-evoked oscillatory brain waves in the 2.5-s time window* of
interest (shown in Figure 1). Some of the identical odor pairs produced high correlations >0.7. Identical odors are grouped
in the order of stimulus presentation. (B) Cross-/autocorrelation matrix of the 0–2 Hz components of the odor-evoked
oscillatory brain waves. (C) Cross/autocorrelation matrix of the 2–45 Hz components of the odor-evoked oscillatory brain
waves. By omitting the 0–2 Hz component, all correlations were reduced to <0.4. (D) the matrix in B rearranged in the
entire presentation order did not demonstrate an approach of the high correlations of the 0–2 Hz components to the
diagonal line (between the dashed lines). The color represents the respective amplitude range of the cross-correlations:
black, <0.60; green, 0.60–0.69; pink, 0.70–0.79; red, 0.80–0.89; orange, 0.90–0.99; and white, 1.00.

Wavelet Correlation Analysis for Quantifying Similarities and Real-Time Estimates of Information Encoded…
http://dx.doi.org/10.5772/intechopen.74810

19



The correlations of the temporal profiles of oscillatory brain waves in the aPC for a 2.5-s time
window, which comprised the 1-s odor presentation and the following 1.5 s, were not homo-
geneously high between identical odors (Figure 2A) [1]. Only a few identical odor pairs for Lav
or 0.1 Lav demonstrated relatively high correlations (0.7–0.74), whereas the remaining pairs
demonstrated intermediate (0.47–0.69) or low (0.29) correlations. These low correlations are
attributable to the independent fluctuations in the oscillatory phase angles and powers includ-
ing a few synchronous cycles (indicated by the daggers), in the fast Fourier transform (FFT)
components even between identical odors, indicating that oscillatory responses are not strictly
phase-locked to the stimulus onset (Figure 3) [1]. The spurious high correlations of the 0–45 Hz
components are attributable to the similarities in the temporal profiles of the 0–2 Hz compo-
nents [1]. The 0–2 Hz component resulted in high correlations (>0.77) for all the Lav and
0.1-Lav pairs (Figure 2B), whereas the 2–45 Hz components resulted in low correlations (<0.4)
for all pairs (Figure 2C). To address these weaknesses of the conventional analyses, we tested a
novel correlation analysis of wavelet profiles.

2.2. Wavelet correlation analysis procedure for oscillatory brain waves in the time
window of interest

Figure 4 shows the procedure for the wavelet transformation and its conversion to a data array
for the wavelet correlation analysis [1]. The wavelet time-frequency power profiles enable us to
quantify the similarity of the odor-evoked oscillatory brain waves. The wavelet transform is
like a running, windowed Fourier transform; it uses a certain window size and slides it along
in time, computing the FFT at each time using only the data within the window. The original
wavelet software libraries were provided by Torrence and Compo [6] and modified with
respect to the following points. Because of the spurious high correlations in the low-frequency
band, all 0–2 Hz components were removed prior to the phase-tolerant analysis of the 2–45 Hz
components of the oscillatory brain waves. The 2–45 Hz bandpass-filtered brain waves
(Figure 4A) were subjected to a Morlet wavelet analysis by using the following equations:

Wn sð Þ ¼
XN�1
n0¼0

xn0Ψ ∗ n
0 � n

� �
δt

s

" #
(1)

Ψ 0 ηð Þ ¼ π�1=4eiω0ηe�η
2=2 (2)

ωj ¼ ω0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ω0

2
p

4πsj
(3)

sj ¼ so2jδj j ¼ 0; 1;…Jð Þ (4)

J ¼ δj�1ln
Nδt
s0

(5)

where (*) indicates the complex conjugate, ω0 = 6, N = 2048, δt = 0.001, s0 = 2δt, and δj = 0.1. The
wavelet power spectrum, Wn sð Þj j2, was plotted in the 1.89–42.78 Hz frequency (ωj) range

Wavelet Theory and Its Applications18

Figure 2. Correlation matrices among odor-evoked oscillatory brain waves in layer I of the aPC [1]. (A) Matrix of cross-/
autocorrelations of the 0–45 Hz components of the odor-evoked oscillatory brain waves in the 2.5-s time window* of
interest (shown in Figure 1). Some of the identical odor pairs produced high correlations >0.7. Identical odors are grouped
in the order of stimulus presentation. (B) Cross-/autocorrelation matrix of the 0–2 Hz components of the odor-evoked
oscillatory brain waves. (C) Cross/autocorrelation matrix of the 2–45 Hz components of the odor-evoked oscillatory brain
waves. By omitting the 0–2 Hz component, all correlations were reduced to <0.4. (D) the matrix in B rearranged in the
entire presentation order did not demonstrate an approach of the high correlations of the 0–2 Hz components to the
diagonal line (between the dashed lines). The color represents the respective amplitude range of the cross-correlations:
black, <0.60; green, 0.60–0.69; pink, 0.70–0.79; red, 0.80–0.89; orange, 0.90–0.99; and white, 1.00.

Wavelet Correlation Analysis for Quantifying Similarities and Real-Time Estimates of Information Encoded…
http://dx.doi.org/10.5772/intechopen.74810

19



(Figure 4B) [1]. To avoid the frequency-dependent errors that increase at the edges of epochs,
the 8192 data points (213 sequential points at the 1000 Hz sampling rate) were divided into
seven epochs of 2048 (211) data points (2048 ms, centered every 1024 data points to the 7336th
data point) with a 50% overlap and subjected to wavelet transformations (Figure 4B) [1].
Around the edge of each epoch, the time series was padded with the actual data (s ≥ 0) or
zeros (s < 0). To reconstruct a continuous wavelet transform from 0 to 8191 ms, the middle two
quarters of each epoch of seven wavelets were combined (Figure 4B) [1]. Compared to the
average wavelet power of the pre-stimulus period (10–2057 ms, marked with double asterisks
in Figure 4A), the wavelet power in the regions within the black lines was highly significant

Figure 3. The oscillatory phases of the odor-evoked oscillatory brain waves differed between identical stimuli [1]. The
0–45 Hz and six frequency band components of the odor-evoked oscillatory brain waves were obtained by using an FFT
bandpass filter. The two responses in the left and middle columns were superimposed on the respective frequency bands
in the right column, indicating the trial-by-trial oscillatory phase differences and their fluctuations. The phase-matching
points are indicated by the daggers.
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Figure 4. Wavelet transformation and wavelet cross-correlation profile of an oscillatory response [1]. (A) The 2–45 Hz
component of a single-trial 1-s odor-evoked oscillatory brain wave (oscillatory local field potentials, osci-LFPs) in the
anterior piriform cortex in an isolated guinea-pig whole brain (second presentation of lavender odor, indicated by the
bold bar). (B) A Morlet wavelet time-frequency power spectrum of the second Lav-evoked oscillatory brain wave.
Subsequently, seven sets of 2048-point wavelet transformations of the oscillatory brain waves were computed. (C) A
columnar array of wavelet cross-/autocorrelations of the second Lav-evoked response. One of the responses for the 2.5-s
time window at nine representative frequencies and sets of logarithmic ratios of the cross-correlation to the autocorrela-
tion between wavelet pairs of the second Lav-evoked response (target) were serially concatenated into a data array, in
which the wavelet correlations were calculated as correlation coefficients.
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(P < 0.0001, chi-squared test, Figures 4B and 5) across all recordings from the same preparation
at each frequency [1].

We calculated correlation coefficients between logarithmic ratio arrays of the cross-correlations
to the autocorrelations of the wavelet power profile for the time window of interest at the
following nine representative frequencies (selected from the calculated wavelet frequencies) to
quantify the similarities of the wavelet time-frequency power profiles between identical and
different odors:

Delta (2–4 Hz): 3.78 Hz.

Theta (4–8 Hz): 7.56 Hz.

Alpha (8–13 Hz): 10.7 Hz for the dominant oscillation and 12.29 Hz.

Low beta (13–20 Hz): 15.13 Hz.

High beta (20–30 Hz): 21.39 and 26.33 Hz.

Gamma (30–45 Hz): 30.25 and 34.75 Hz.

The cross-correlation was calculated as the sum of the products of the wavelet power for a pair
comprising the target response ( Wt s; f i

� ��� ��) and one of the other responses ( Wn s; f i
� ��� ��) at the

representative frequencies (fi) for T1 [ms] ≤ s ≤ T2 [ms]. In a similar manner, the nine sums of
the squared wavelet power for the target response were used to calculate the autocorrelation.
Moreover, the logarithms of the ratios [Rn(fi)] of the cross-correlations to the autocorrelations at
the representative frequencies (fi) were used to equalize the contributions of the increases and
decreases in the response amplitude to the correlation analysis:

Rn f i
� � ¼

PT2
s¼T1

∣Wn s; f i
� �kWt s; f i

� �
∣

PT2
s¼T1

∣Wt s; f i
� �kWt s; f i

� �
∣

(6)

A serially concatenated columnar array of all sets of the nine logarithmic ratios of the cross-
correlations to the autocorrelations of the target response in the identical order of responses is
a form of a wavelet cross-correlation profile (Figure 4C) [1]. The wavelet correlations were
calculated as the correlation coefficients between these columnar arrays and employed to
quantify the similarities of the odor-evoked oscillatory brain waves in the aPC.

Other mother wavelets such as Meyer and Mexican hat were considered to be inadequate for
application to the odor-evoked oscillatory brain waves because their shapes appeared more
dissimilar to any FFT components of the oscillatory brain waves than that of the Morlet
(Figure 3). To date, except for one case [1], there are no published results of quantifying the
similarities between oscillatory brain waves. Regarding the time-frequency power profiles,
three reports were found. In one study, a discrete wavelet transform was used to identify and
compare the timings of spike trains in an insect antennal lobe (corresponding to the mammal
olfactory bulb) [7]. In another study, the Morlet wavelet transform was used to identify
dominant oscillatory frequency bands and the synchrony between the oscillatory brain waves
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Figure 5. The wavelet profiles of odor-evoked oscillatory brain waves differed between the input and output layers of the
aPC [1]. Of the 21 pairs of 1-s odor-evoked oscillatory brain waves (upper traces) that were simultaneously recorded in
layers I (input) or III (output) of the aPC, 10 pairs are represented. In the wavelet time-frequency power profiles (lower
traces) for the 2.2-s time window (marked by the asterisk), the ~10 Hz components remained prominent in layer III,
whereas the <8 Hz components became less prominent compared to those in layer I. The in-stimulant presentation order
is indicated. Statistically significant oscillatory powers were located within the black lines compared to those before
presentation of odors (P < 0.0001, chi-squared test).
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(P < 0.0001, chi-squared test, Figures 4B and 5) across all recordings from the same preparation
at each frequency [1].

We calculated correlation coefficients between logarithmic ratio arrays of the cross-correlations
to the autocorrelations of the wavelet power profile for the time window of interest at the
following nine representative frequencies (selected from the calculated wavelet frequencies) to
quantify the similarities of the wavelet time-frequency power profiles between identical and
different odors:

Delta (2–4 Hz): 3.78 Hz.

Theta (4–8 Hz): 7.56 Hz.

Alpha (8–13 Hz): 10.7 Hz for the dominant oscillation and 12.29 Hz.

Low beta (13–20 Hz): 15.13 Hz.

High beta (20–30 Hz): 21.39 and 26.33 Hz.

Gamma (30–45 Hz): 30.25 and 34.75 Hz.

The cross-correlation was calculated as the sum of the products of the wavelet power for a pair
comprising the target response ( Wt s; f i

� ��� ��) and one of the other responses ( Wn s; f i
� ��� ��) at the

representative frequencies (fi) for T1 [ms] ≤ s ≤ T2 [ms]. In a similar manner, the nine sums of
the squared wavelet power for the target response were used to calculate the autocorrelation.
Moreover, the logarithms of the ratios [Rn(fi)] of the cross-correlations to the autocorrelations at
the representative frequencies (fi) were used to equalize the contributions of the increases and
decreases in the response amplitude to the correlation analysis:

Rn f i
� � ¼

PT2
s¼T1

∣Wn s; f i
� �kWt s; f i

� �
∣

PT2
s¼T1

∣Wt s; f i
� �kWt s; f i

� �
∣

(6)

A serially concatenated columnar array of all sets of the nine logarithmic ratios of the cross-
correlations to the autocorrelations of the target response in the identical order of responses is
a form of a wavelet cross-correlation profile (Figure 4C) [1]. The wavelet correlations were
calculated as the correlation coefficients between these columnar arrays and employed to
quantify the similarities of the odor-evoked oscillatory brain waves in the aPC.

Other mother wavelets such as Meyer and Mexican hat were considered to be inadequate for
application to the odor-evoked oscillatory brain waves because their shapes appeared more
dissimilar to any FFT components of the oscillatory brain waves than that of the Morlet
(Figure 3). To date, except for one case [1], there are no published results of quantifying the
similarities between oscillatory brain waves. Regarding the time-frequency power profiles,
three reports were found. In one study, a discrete wavelet transform was used to identify and
compare the timings of spike trains in an insect antennal lobe (corresponding to the mammal
olfactory bulb) [7]. In another study, the Morlet wavelet transform was used to identify
dominant oscillatory frequency bands and the synchrony between the oscillatory brain waves

Wavelet Theory and Its Applications22

Figure 5. The wavelet profiles of odor-evoked oscillatory brain waves differed between the input and output layers of the
aPC [1]. Of the 21 pairs of 1-s odor-evoked oscillatory brain waves (upper traces) that were simultaneously recorded in
layers I (input) or III (output) of the aPC, 10 pairs are represented. In the wavelet time-frequency power profiles (lower
traces) for the 2.2-s time window (marked by the asterisk), the ~10 Hz components remained prominent in layer III,
whereas the <8 Hz components became less prominent compared to those in layer I. The in-stimulant presentation order
is indicated. Statistically significant oscillatory powers were located within the black lines compared to those before
presentation of odors (P < 0.0001, chi-squared test).
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in different olfactory regions [8]. In the third study, the Hilbert transform was used to identify
the dominant oscillations of the odor-evoked responses in the theta band in the posterior
piriform cortex with phase-locked activities in the hippocampus in humans [9]. The Hilbert
transform produced similar oscillation powers in a wide frequency range of 60–140 Hz, which
is inconsistent with the decreased powers of the Morlet wavelet. Considering these results, we
did not intend to analyze the odor-evoked oscillatory brain waves with the Meyer or Mexican
hat mother wavelets or the Hilbert transform.

2.3. Wavelet correlation analysis of the time-frequency power profiles for revealing the
stimulus dependency of odor-evoked oscillatory brain waves

The wavelet correlation analysis revealed that the olfactory information redundancy of a
neural representation changes from experience (high redundancy) to a stimulus depen-
dency (low redundancy) in the aPC [1]. The origins of the activities in layer I of the aPC
are mainly the afferent fibers (input), association fibers, and postsynaptic inhibitory feed-
back input, whereas the activities in layer III primarily originate from the responses (out-
put) of pyramidal cells, which are the principal neurons in the aPC and receive signals from
multiple ORs. The wavelet profiles of identical odors resembled each other more than they
resembled those of different odors in layers I (input signals) and III (output signals) of the
aPC (Figure 5) [1]. In addition, the wavelet transformation visualized moderately clustered
spot-like transient reductions in oscillatory power at frequencies just above 10 Hz in the
odor-evoked oscillatory brain waves in layer I of the aPC (Figure 5). The most characteristic
odor-dependent differences appeared in the initial phase of the wavelets for odor-evoked
oscillatory brain waves in layer I of aPC. The mc468-evoked oscillatory brain wave was
markedly greater especially at low frequencies in the initial phase than that of the Lav-
evoked response [1].

The array data of the logarithmic ratios of the wavelet cross-/autocorrelations between 21 odor-
evoked oscillatory brain waves differed slightly between layers I and III of the aPC (Figure 6)
[1]. The lengths of the bars reflect the differences between a pair of oscillatory brain waves in
such a way that the values of +1, 0, and �1 represent cross-correlations that are 10-fold, equal
to, and one-tenth of the autocorrelation at the respective frequencies.

In layer III, the Lav odor pairs (broken yellow square in Figure 7C) showed homogeneously
high correlations, except for the ninth Lav, whereas the identical Lav pairs in layer I
resulted in more heterogeneous correlations (Figure 7A) [1]. In addition, the correlations
between different single-component odors (Lina and mc4, in the broken blue squares in
Figure 7C) decreased to <0.6 in layer III, whereas the corresponding correlations in layer I
were mostly greater than 0.6 (Figure 7A) [1]. Notably, the heterogeneous correlations
changed into an experience-dependent response similarity, which was observed for some
of the odors in layer I of the aPC (a cluster of high correlations between the dashed lines
in Figure 7B vs. 7A) but was not clearly observed in layer III (Figure 7D vs. 7A) as well as
the 0–2 Hz components in layer I (Figure 2D) [1]. In layer III, the <8 Hz components
decreased relative to those in layer I, with the prominent ~10 Hz oscillation remaining [1].
These results indicate a change in the neuronal information redundancy of transient and
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oscillatory brain waves from the dependencies on stimulus experience (high redundancy) to
stimulus quality (low redundancy) between the input and output layers of the aPC.
Recently, in the olfactory bulb that is upstream of the aPC in the olfactory pathway, stim-
ulus history-dependent odor processing was observed [10]. This means that the wavelet
correlation analysis had revealed a consistent experience dependency in input signals in the
aPC from the olfactory bulb.

2.4. Effects of changes in oscillatory components on the wavelet correlation analysis

We evaluated the ability of the wavelet correlation analysis to detect changes in oscillatory
powers at specific frequencies by 0.2-fold step modified wavelet powers at 1–8 frequency

Figure 6. The wavelet cross-correlation profiles of odor-evoked oscillatory brain waves slightly differed between the
input and output layers of the aPC [1]. The five pairs of logarithmic ratio arrays of the wavelet cross-/autocorrelations are
exemplified. These ratio arrays suggest that the mc468-evoked responses markedly differed from those of Lav or Lina in
each layer of the aPC and that they slightly differed between the input and output layers.
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bands (Figure 8) [1]. Greater decreases in correlations (0.4–0.7) were observed as a result of the
0.2-fold power modification at only 1–2 frequencies than those of eight frequencies (number/9
given in parentheses on the Y-axis). For 0.2-fold power amplification, the largest and smallest
decreases were observed at 8–13 and 4–8 Hz, respectively. This analysis revealed that in the

Figure 7. The wavelet correlation matrices of oscillatory brain waves differed between the input and output signals in the
aPC [1]. (A) The wavelet correlation matrix of oscillatory brain waves in layer I (input) of the aPC. (B) The matrix in A
rearranged in the entire presentation order. High correlations approached the diagonal line. (C) The wavelet correlation
matrix of osci-LFPs in layer III (output) of the aPC. (D) The matrix in C rearranged in the entire presentation order. The
colors representing power magnitudes are the same as in Figure 2.
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aPC, the 8–13 Hz component of the oscillatory brain waves contributes to the correlation
coefficients more than the 4–8 Hz component. The wavelet correlation analysis enables the
estimation of the relative contributions of oscillatory components to the similarities and differ-
ences between oscillatory brain waves.

3. Method for estimating in-brain information

3.1. Ranking of the correlation coefficients of several brain waves for identical
information

Here, the odor-evoked brain waves were the same as those used in the previous section. To
estimate the in-brain information, two standard brain waves, covering a wide range of varia-
tions for identical information, were selected. The criteria for selecting the two standard brain
waves were as follows: (i) a brain wave with the highest pairwise correlation coefficient and a

Figure 8. Sensitivity of the wavelet correlation analysis to changes in the oscillatory components [1]. A 0.2-fold power
amplification resulted in the largest and smallest decreases in the wavelet correlations for 8–13 and 4–8 Hz, respectively. As
the number of power-modified frequencies increased to more than four, changes in the wavelet correlations were reduced.
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bands (Figure 8) [1]. Greater decreases in correlations (0.4–0.7) were observed as a result of the
0.2-fold power modification at only 1–2 frequencies than those of eight frequencies (number/9
given in parentheses on the Y-axis). For 0.2-fold power amplification, the largest and smallest
decreases were observed at 8–13 and 4–8 Hz, respectively. This analysis revealed that in the

Figure 7. The wavelet correlation matrices of oscillatory brain waves differed between the input and output signals in the
aPC [1]. (A) The wavelet correlation matrix of oscillatory brain waves in layer I (input) of the aPC. (B) The matrix in A
rearranged in the entire presentation order. High correlations approached the diagonal line. (C) The wavelet correlation
matrix of osci-LFPs in layer III (output) of the aPC. (D) The matrix in C rearranged in the entire presentation order. The
colors representing power magnitudes are the same as in Figure 2.
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aPC, the 8–13 Hz component of the oscillatory brain waves contributes to the correlation
coefficients more than the 4–8 Hz component. The wavelet correlation analysis enables the
estimation of the relative contributions of oscillatory components to the similarities and differ-
ences between oscillatory brain waves.

3. Method for estimating in-brain information

3.1. Ranking of the correlation coefficients of several brain waves for identical
information

Here, the odor-evoked brain waves were the same as those used in the previous section. To
estimate the in-brain information, two standard brain waves, covering a wide range of varia-
tions for identical information, were selected. The criteria for selecting the two standard brain
waves were as follows: (i) a brain wave with the highest pairwise correlation coefficient and a

Figure 8. Sensitivity of the wavelet correlation analysis to changes in the oscillatory components [1]. A 0.2-fold power
amplification resulted in the largest and smallest decreases in the wavelet correlations for 8–13 and 4–8 Hz, respectively. As
the number of power-modified frequencies increased to more than four, changes in the wavelet correlations were reduced.
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high average of pairwise correlation coefficients in the given information for each individual
and (ii) a brain wave with the second highest pairwise correlation coefficient and a differently
ranked average of pairwise correlation coefficients in the given information for the same
individual.

To select standard brain waves for the four odors, the correlation coefficients in the 2.2-s time
window of interest were ranked between single-trial brain waves for all possible pairs of
identical odors. Among the 28 pairs of brain waves for Lav, the highest correlation was
obtained for the second Lav and fourth Lav pair that provided the fourth (median) and second
highest averages of pairwise correlation coefficients, respectively (Table 1). The second highest
correlation coefficient was obtained for the third and fifth Lav brain wave pair that provided
the seventh and third highest averages of pairwise correlation coefficients, respectively. On the
basis of the criteria, the fourth and third Lav brain waves were selected as the two standard
brain waves for Lav information.

With regard to the pairwise correlation coefficients, their values for Lav pairs tended to be
greater than those for mc4 pairs, and the values for Lina pairs tended to be greater than those
for mc468 pairs. The lower correlation coefficients between identical odors suggest a greater
across-trial variability in the time-frequency power profiles of single-trial brain waves, despite
the tolerance of oscillatory phase differences. Similarly, the first and third Lina brain waves
(Table 2), the fourth and first mc4 brain waves (Table 3), and the third and first mc468 brain
waves (Table 4) were selected as standard brain waves for the respective information. These
eight standard brain waves, as well as a control brain wave evoked by an odorless Ringer
solution (second RN), were used as Set 1 of standard brain waves.

3.2. Estimates of the most probable information for single-trial brain waves using
a pair of standard brain waves for each item of information

Using the wavelet correlation analysis, all possible pairwise correlation coefficients between a
given single-trial brain wave and each standard brain wave (Set 1) were calculated. The first
candidate was selected as the standard brain wave with the highest correlation coefficient to a
target single-trial brain wave. The wavelet correlation analysis provided the first candidates for
12 single-trial brain waves with an accuracy of 75% (Table 5). An accuracy of 100%was achieved
for Lina (2/2) and mc468 (1/1), whereas an accuracy of 67% was achieved for Lav (4/6) and mc4
(2/3). Notably, the single-trial brain waves tested were not any of the Set 1 standard brain waves.
The accuracy of the first candidates was more than threefold higher than chance in five cases
(20%). The probability of including the correct information for the two upper candidates was
92% (Table 5). However, the third candidates did not improve the probability of including the
correct information for the three upper candidates (92%). In the estimates of information, candi-
dates with correlation coefficients <0.6 were disregarded as nonspecific ones.

To compare the ideal set of standard brain waves (Set 1) with different sets of standard brain
waves (standard Set 1-m) in terms of their accuracies for estimating information, wavelet
correlation analyses were performed with partial replacements of standard brain waves. When
one or three of the nine Set 1 standard brain waves were replaced with brain waves that did
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high average of pairwise correlation coefficients in the given information for each individual
and (ii) a brain wave with the second highest pairwise correlation coefficient and a differently
ranked average of pairwise correlation coefficients in the given information for the same
individual.

To select standard brain waves for the four odors, the correlation coefficients in the 2.2-s time
window of interest were ranked between single-trial brain waves for all possible pairs of
identical odors. Among the 28 pairs of brain waves for Lav, the highest correlation was
obtained for the second Lav and fourth Lav pair that provided the fourth (median) and second
highest averages of pairwise correlation coefficients, respectively (Table 1). The second highest
correlation coefficient was obtained for the third and fifth Lav brain wave pair that provided
the seventh and third highest averages of pairwise correlation coefficients, respectively. On the
basis of the criteria, the fourth and third Lav brain waves were selected as the two standard
brain waves for Lav information.

With regard to the pairwise correlation coefficients, their values for Lav pairs tended to be
greater than those for mc4 pairs, and the values for Lina pairs tended to be greater than those
for mc468 pairs. The lower correlation coefficients between identical odors suggest a greater
across-trial variability in the time-frequency power profiles of single-trial brain waves, despite
the tolerance of oscillatory phase differences. Similarly, the first and third Lina brain waves
(Table 2), the fourth and first mc4 brain waves (Table 3), and the third and first mc468 brain
waves (Table 4) were selected as standard brain waves for the respective information. These
eight standard brain waves, as well as a control brain wave evoked by an odorless Ringer
solution (second RN), were used as Set 1 of standard brain waves.

3.2. Estimates of the most probable information for single-trial brain waves using
a pair of standard brain waves for each item of information

Using the wavelet correlation analysis, all possible pairwise correlation coefficients between a
given single-trial brain wave and each standard brain wave (Set 1) were calculated. The first
candidate was selected as the standard brain wave with the highest correlation coefficient to a
target single-trial brain wave. The wavelet correlation analysis provided the first candidates for
12 single-trial brain waves with an accuracy of 75% (Table 5). An accuracy of 100%was achieved
for Lina (2/2) and mc468 (1/1), whereas an accuracy of 67% was achieved for Lav (4/6) and mc4
(2/3). Notably, the single-trial brain waves tested were not any of the Set 1 standard brain waves.
The accuracy of the first candidates was more than threefold higher than chance in five cases
(20%). The probability of including the correct information for the two upper candidates was
92% (Table 5). However, the third candidates did not improve the probability of including the
correct information for the three upper candidates (92%). In the estimates of information, candi-
dates with correlation coefficients <0.6 were disregarded as nonspecific ones.

To compare the ideal set of standard brain waves (Set 1) with different sets of standard brain
waves (standard Set 1-m) in terms of their accuracies for estimating information, wavelet
correlation analyses were performed with partial replacements of standard brain waves. When
one or three of the nine Set 1 standard brain waves were replaced with brain waves that did
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Ranking of wavelet correlations Standard set

Lina First
Lina

Second
Lina

Third
Lina

Fourth
Lina

Corr.
coeff.
Rank

Ave.
corr.
Coeff.

Ave.
rank

Memo. 1 1-
m1

1-
m1p1

1-
mp

2 2-
m2p

s1 s1 m1 s2

First
Lina

1.00 0.49 0.22 0.04 1 0.44 1 ◎ ○ ○ ○ ○ ○

Second
Lina

0.49 1.00 �0.13 0.18 1 0.38 3 Median ○ ○ ○ ○

Third
Lina

0.22 �0.13 1.00 0.34 2 0.36 4 △ ○

fourth
Lina

0.04 0.18 0.34 1.00 2 0.39 2 ○ ○ ○ ○ ○

Table 2. Pairwise wavelet correlations of single-trial brain waves for Lina in layer III of the aPC, their ranking, and
various sets of standard brain waves.

Ranking of wavelet correlations Standard set

mc4 First
mc4

Second
mc4

Third
mc4

Fourth
mc4

Fifth
mc4

Corr.
coeff.
Rank

Ave.
corr.
Coeff.

Ave.
rank

Memo. 1 1-
m1

1-
m1p1

1-
mp

2 2-
m2p

s1 s1 m1 s2

First mc4 1.00 0.04 0.467 0.35 0.15 2 0.40 5 △ ○ ○ ○
Second
mc4

0.04 1.00 0.25 0.366 0.368 4 0.40 4

Third
mc4

0.467 0.25 1.00 0.46 0.18 2 0.47 2 ○

Fourth
mc4

0.35 0.37 0.46 1.00 0.472 1 0.53 1 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○

Fifth
mc4

0.15 0.37 0.18 0.472 1.00 1 0.43 3 Median ○ ○

Table 3. Pairwise wavelet correlations of single-trial brain waves for mc4 in layer III of the aPC, their ranking, and
various sets of standard brain waves.

Ranking of wavelet correlations Standard set

mc468 First
mc468

Third
mc468

Fourth
mc468

Corr.
coeff.
Rank

Ave.
corr.
Coeff.

Ave.
rank

Memo. 1 1-
m1

1-
m1p1

1-
mp

2 2-
m2p

s1 s1 m1 s2

First
mc468

1.00 0.14 0.05 2 0.39 3 △ ○ ○

Third
mc468

0.14 1.00 0.23 1 0.46 1 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○

Fourth
mc468

0.05 0.23 1.00 1 0.43 2 Median ○ ○ ○ ○

Table 4. Pairwise wavelet correlations of single-trial brain waves for mc468 in layer III of the aPC and various sets of
standard brain waves.
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Ranking of wavelet correlations Standard set

Lina First
Lina

Second
Lina

Third
Lina

Fourth
Lina

Corr.
coeff.
Rank

Ave.
corr.
Coeff.

Ave.
rank

Memo. 1 1-
m1

1-
m1p1

1-
mp

2 2-
m2p

s1 s1 m1 s2

First
Lina

1.00 0.49 0.22 0.04 1 0.44 1 ◎ ○ ○ ○ ○ ○

Second
Lina

0.49 1.00 �0.13 0.18 1 0.38 3 Median ○ ○ ○ ○

Third
Lina

0.22 �0.13 1.00 0.34 2 0.36 4 △ ○

fourth
Lina

0.04 0.18 0.34 1.00 2 0.39 2 ○ ○ ○ ○ ○

Table 2. Pairwise wavelet correlations of single-trial brain waves for Lina in layer III of the aPC, their ranking, and
various sets of standard brain waves.

Ranking of wavelet correlations Standard set

mc4 First
mc4

Second
mc4

Third
mc4

Fourth
mc4

Fifth
mc4

Corr.
coeff.
Rank

Ave.
corr.
Coeff.

Ave.
rank

Memo. 1 1-
m1

1-
m1p1

1-
mp

2 2-
m2p

s1 s1 m1 s2

First mc4 1.00 0.04 0.467 0.35 0.15 2 0.40 5 △ ○ ○ ○
Second
mc4

0.04 1.00 0.25 0.366 0.368 4 0.40 4

Third
mc4

0.467 0.25 1.00 0.46 0.18 2 0.47 2 ○

Fourth
mc4

0.35 0.37 0.46 1.00 0.472 1 0.53 1 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○

Fifth
mc4

0.15 0.37 0.18 0.472 1.00 1 0.43 3 Median ○ ○

Table 3. Pairwise wavelet correlations of single-trial brain waves for mc4 in layer III of the aPC, their ranking, and
various sets of standard brain waves.

Ranking of wavelet correlations Standard set

mc468 First
mc468

Third
mc468

Fourth
mc468

Corr.
coeff.
Rank

Ave.
corr.
Coeff.

Ave.
rank

Memo. 1 1-
m1

1-
m1p1

1-
mp

2 2-
m2p

s1 s1 m1 s2

First
mc468

1.00 0.14 0.05 2 0.39 3 △ ○ ○

Third
mc468

0.14 1.00 0.23 1 0.46 1 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○

Fourth
mc468

0.05 0.23 1.00 1 0.43 2 Median ○ ○ ○ ○

Table 4. Pairwise wavelet correlations of single-trial brain waves for mc468 in layer III of the aPC and various sets of
standard brain waves.
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not meet the criteria, there were no changes in the 75% accuracy for the first candidates, and a
92% probability of including the correct information for the two upper candidates was
observed. Nevertheless, there were some exchanges between correct and incorrect estimates
for identical information (data not shown).

In contrast, by using the pair of brain waves with the highest pairwise correlation coefficients
as the two standard brain waves for each odor (standard Set 2), the accuracies of estimation
were reduced by 100% for Lina (2/2 ! 0/2) and 34% for Lav (4/6 ! 2/6), but no change
occurred for mc468 (1/1) and mc4 (2/3) (Table 6). This standard Set 2 provided a total accuracy
of 42% (33% reduction) and a 75% probability (17% reduction) of including the correct infor-
mation for the two upper candidates (Figure 9). By replacing two of the nine Set 2 standard
brain waves with one that did not meet the criteria, the accuracy for the first candidates
increased by 25% and the 92% probability of including the correct information for the two
upper candidates was recovered (Figure 9). Therefore, the proposed criteria of selecting stan-
dard brain waves with a wide variation are likely appropriate and achieve better estimation
than the selection of those with a narrow range (the most similar brain wave pairs).

3.3. Estimates of the most probable information for single-trial brain waves with
a standard brain wave for each item of information

By using a set of single standard brain waves for four odors that met only the first criterion
(standard Set s1), a similar accuracy of estimated information and probability of including the
correct information for the two upper candidates was obtained for the 12 target brain waves
(data not shown). The Set s1 standard brain waves were composed of the fourth Lav, first Lina,
third mc468, fourth mc4, and second RN. Among the 16 target brain waves, the accuracy and
probability slightly decreased by 6 and 4%, respectively, compared to those of the 12 target
brain waves (data not shown). When one or two of the five Set-s1 standard brain waves were
replaced with those that did not meet the criteria, the accuracy was reduced to 67 or 42%,
respectively (data not shown). The probability of including the correct information for the two
upper candidates was also reduced by 9 and 25%, respectively. For the 16 target brain waves,
the accuracy and probability showed almost no changes when one of the five Set s1 standard
brain waves was replaced, whereas the accuracy and probability for the estimated information
were reduced by 13% when two of the Set s1 standard brain waves were replaced (data not
shown).

3.4. Single-trial brain waves composed of redundant signals in the olfactory pathway
exhibiting a similar accuracy and probability for estimated information

It is interesting to examine the accuracy of the wavelet correlation analysis for predicting the
in-brain information of single-trial brain waves comprising redundant signals in layer I of the
aPC. By using a set of standard brain waves that meet the proposed criteria for the redundant
brain waves recorded in layer I (standard Set 1r), the wavelet correlation analysis provided a
similar accuracy (75%) of estimated information and probability (100%) of including the
correct information for the two upper candidates (Table 7) compared to the results observed
for the brain waves recorded in layer III (Table 5). In contrast, by using the pairs of brain waves
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not meet the criteria, there were no changes in the 75% accuracy for the first candidates, and a
92% probability of including the correct information for the two upper candidates was
observed. Nevertheless, there were some exchanges between correct and incorrect estimates
for identical information (data not shown).

In contrast, by using the pair of brain waves with the highest pairwise correlation coefficients
as the two standard brain waves for each odor (standard Set 2), the accuracies of estimation
were reduced by 100% for Lina (2/2 ! 0/2) and 34% for Lav (4/6 ! 2/6), but no change
occurred for mc468 (1/1) and mc4 (2/3) (Table 6). This standard Set 2 provided a total accuracy
of 42% (33% reduction) and a 75% probability (17% reduction) of including the correct infor-
mation for the two upper candidates (Figure 9). By replacing two of the nine Set 2 standard
brain waves with one that did not meet the criteria, the accuracy for the first candidates
increased by 25% and the 92% probability of including the correct information for the two
upper candidates was recovered (Figure 9). Therefore, the proposed criteria of selecting stan-
dard brain waves with a wide variation are likely appropriate and achieve better estimation
than the selection of those with a narrow range (the most similar brain wave pairs).

3.3. Estimates of the most probable information for single-trial brain waves with
a standard brain wave for each item of information

By using a set of single standard brain waves for four odors that met only the first criterion
(standard Set s1), a similar accuracy of estimated information and probability of including the
correct information for the two upper candidates was obtained for the 12 target brain waves
(data not shown). The Set s1 standard brain waves were composed of the fourth Lav, first Lina,
third mc468, fourth mc4, and second RN. Among the 16 target brain waves, the accuracy and
probability slightly decreased by 6 and 4%, respectively, compared to those of the 12 target
brain waves (data not shown). When one or two of the five Set-s1 standard brain waves were
replaced with those that did not meet the criteria, the accuracy was reduced to 67 or 42%,
respectively (data not shown). The probability of including the correct information for the two
upper candidates was also reduced by 9 and 25%, respectively. For the 16 target brain waves,
the accuracy and probability showed almost no changes when one of the five Set s1 standard
brain waves was replaced, whereas the accuracy and probability for the estimated information
were reduced by 13% when two of the Set s1 standard brain waves were replaced (data not
shown).

3.4. Single-trial brain waves composed of redundant signals in the olfactory pathway
exhibiting a similar accuracy and probability for estimated information

It is interesting to examine the accuracy of the wavelet correlation analysis for predicting the
in-brain information of single-trial brain waves comprising redundant signals in layer I of the
aPC. By using a set of standard brain waves that meet the proposed criteria for the redundant
brain waves recorded in layer I (standard Set 1r), the wavelet correlation analysis provided a
similar accuracy (75%) of estimated information and probability (100%) of including the
correct information for the two upper candidates (Table 7) compared to the results observed
for the brain waves recorded in layer III (Table 5). In contrast, by using the pairs of brain waves
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corresponding to the Set 1 of layer III (standard Set 10 in layer I), the accuracy of estimation was
reduced by 17%, and the probability of including the correct information for the two upper
candidates was reduced by 25% (to 75%) (data not shown). By using single standard brain
waves (standard Set s1r), the accuracy and probability were slightly reduced compared to
those of the standard Set s1 (data not shown).

Finally, it was examined whether the combination of data for two recording sites (layers I and
III) affected the accuracy for the first candidates. Using this method, the accuracy (75%) of
estimated information was maintained but not improved in standard Set 1 + 10 and Set 1r + 1r’
(data not shown).

3.5. A new method of real-time estimation of in-brain information of single-trial brain
waves

A new method is proposed for estimating the information of single-trial brain waves in fine
temporal structures with a cross-trial variability by using a set of standard brain waves in a
given category for each individual. In the oscillatory brain waves recorded in layer III or I of
the aPC of the isolated whole brain of a guinea pig, the wavelet correlation analysis provided a
75% accuracy for the first candidate and a > 92% probability of including the correct informa-
tion for the two upper candidates (Tables 5 and 7). The results support the validity of the
proposed criteria for selecting standard brain waves with a wide variation for estimating
different information in a given category.

The accuracy of this method was not affected by the information redundancy of signal sources,
such as those resulting from olfactory receptors with overlapping tuning specificities and an

Figure 9. Variation-dependent changes in the accuracy of estimated information of single-trial brain waves in layer III of
the aPC.
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corresponding to the Set 1 of layer III (standard Set 10 in layer I), the accuracy of estimation was
reduced by 17%, and the probability of including the correct information for the two upper
candidates was reduced by 25% (to 75%) (data not shown). By using single standard brain
waves (standard Set s1r), the accuracy and probability were slightly reduced compared to
those of the standard Set s1 (data not shown).

Finally, it was examined whether the combination of data for two recording sites (layers I and
III) affected the accuracy for the first candidates. Using this method, the accuracy (75%) of
estimated information was maintained but not improved in standard Set 1 + 10 and Set 1r + 1r’
(data not shown).

3.5. A new method of real-time estimation of in-brain information of single-trial brain
waves

A new method is proposed for estimating the information of single-trial brain waves in fine
temporal structures with a cross-trial variability by using a set of standard brain waves in a
given category for each individual. In the oscillatory brain waves recorded in layer III or I of
the aPC of the isolated whole brain of a guinea pig, the wavelet correlation analysis provided a
75% accuracy for the first candidate and a > 92% probability of including the correct informa-
tion for the two upper candidates (Tables 5 and 7). The results support the validity of the
proposed criteria for selecting standard brain waves with a wide variation for estimating
different information in a given category.

The accuracy of this method was not affected by the information redundancy of signal sources,
such as those resulting from olfactory receptors with overlapping tuning specificities and an

Figure 9. Variation-dependent changes in the accuracy of estimated information of single-trial brain waves in layer III of
the aPC.
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experience dependency in layer I or from pyramidal cells with a stimulus dependency after the
integration of signals from multiple cognate olfactory receptors in layer III (Table 8). Layer I
brain waves comprising redundant signals exhibited a similar accuracy of estimated informa-
tion and a slightly increased probability of including the correct information for the two upper
candidates compared to layer III brain waves.

The redundancies of brain waves are attributable to two origins: information and signaling. In
the olfactory system, the information redundancy changes through the signal pathway from
the receptors to the higher cortical areas via signal integration in the third- or higher-order
neurons and/or mutual inhibition [1, 11–13] for category [14] or elemental odor representation
[15]. Unlike the >80% overlap of about 70 receptors for carvone enantiomers having similar
odors [16], the quite different odors of Lav and mc468 evoked different amplitude receptor
potentials in the olfactory epithelium and dissimilar brain waves in the anterior piriform cortex
[1]. Nevertheless, the wavelet correlation analysis sometimes produced the highest correlation
coefficients of Lav for mc468. The error rate of Lav for mc468 was 9.3% in layer I brain waves
but was reduced to 1.7% in layer III brain waves (Table 8 and Figure 10), which is consistent
with the change in the information redundancy from high to low stages between layers I and
III. On the other hand, the error rate of mc468 for Lav was 0% in both layers I and III. For the
single-compound odors, Lina and mc4 exhibited odor similarity-dependent changes in the
error rates of the estimated information between layers I and III. The error rates of the single
compounds for their original mixture odors (partially similar odor) increased between layers I
and III (0 ! 7.7% in Lina and 13.6 ! 30.8% in mc4) and those of single compounds for their
nonrelative mixture odors (dissimilar odor) decreased between layers I and III (46.7! 19.2%
in Lina and 4.5! 0% in mc4). Notably, the error rates between these single compounds were
0% in both layers I and III. These results suggest a partial overlap of the elemental odors that
are represented in the pyramidal cells in the aPC and are recorded in layer III as brain waves.
The total error rates of Lina decreased in layer III compared to those of layer I (and vice versa
for the correct rate), whereas those of mc4 increased.

Information Recoding sites Estimated information

Lav Lina mc468 mc4

Lav Layer I (input) 62.8% 20.9% (e) 9.3% (e) 7.0% (e)

Layer III (output) 57.9% 18.4% (e) 1.3% (e) 22.4% (e)

Lina Layer I (input) 0.0% (e) 53.3% 46.7% (e) 0.0% (e)

Layer III (output) 7.7% (e) 73.1% 19.2% (e) 0.0% (e)

mc468 Layer I (input) 0.0% (e) 25.0% (e) 75.0% 0.0% (e)

Layer III (output) 0.0% (e) 26.7% (e) 73.3% 0.0% (e)

mc4 Layer I (input) 4.5% (e) 0.0% (e) 13.6% (e) 81.8%

Layer III (output) 0.0% (e) 0.0% (e) 30.8% (e) 69.2%

Table 8. Correct and error rates (e) of estimated information in single-trial brain waves recorded in layers I and III of the
aPC by the wavelet correlation analysis.
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The signaling redundancy originates from an identical temporal profile of different subsets of
neurons tuned to distinct or shared information or from identical temporal profiles that are
composed of multiple different profiles of various different subsets of neurons tuned to multi-
ple distinct or shared information. The constant error rates of mc468 for Lina between layers I
and III (both ~25%, Table 8 and Figure 10) are likely attributable to the signaling redundancy
rather than the information similarity or information redundancy. Moreover, in the increased
case, there was a threefold higher error rate of Lav for mc4 in layer III than layer I, whereas the
error rates of Lav for Lina were almost constant between layers I and III.

3.6. Applicable examples of estimated in-brain information in humans using the
wavelet correlation analysis

Each brain system (e.g., a sensory, memory, decision, or motor system) is organized in a
hierarchical manner from simple to complicated matters. The sensory system generates oscil-
latory activities between the related cortical regions and the thalamus, and the latter acts
(except in the olfactory system) to gate the sensory input to the cortex and provides feedback
from the cortical pyramidal neurons. In olfaction, transient oscillatory brain waves are
observed in the aPC [5, 17–21]. Strong feed-forward inhibition [5, 22, 23] via the sensitive
pathway from the olfactory bulb [24] and the other sensory thalamocortical circuit [25, 26] or
higher olfactory centers [27] could induce oscillatory brain waves that would contribute to
parts of the EEGs recorded at the respective positions on the human scalp, in analogy to these
experimental animals. Such information-dependent temporal profiles of the EEGs may enable
us to estimate in-brain information by comparison with a set of standard time-frequency

Figure 10. Correct and error rates of estimated information in single-trial brain waves recorded in layers I and III of the
aPC by the wavelet correlation analysis. These values are listed in Table 8.
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experience dependency in layer I or from pyramidal cells with a stimulus dependency after the
integration of signals from multiple cognate olfactory receptors in layer III (Table 8). Layer I
brain waves comprising redundant signals exhibited a similar accuracy of estimated informa-
tion and a slightly increased probability of including the correct information for the two upper
candidates compared to layer III brain waves.

The redundancies of brain waves are attributable to two origins: information and signaling. In
the olfactory system, the information redundancy changes through the signal pathway from
the receptors to the higher cortical areas via signal integration in the third- or higher-order
neurons and/or mutual inhibition [1, 11–13] for category [14] or elemental odor representation
[15]. Unlike the >80% overlap of about 70 receptors for carvone enantiomers having similar
odors [16], the quite different odors of Lav and mc468 evoked different amplitude receptor
potentials in the olfactory epithelium and dissimilar brain waves in the anterior piriform cortex
[1]. Nevertheless, the wavelet correlation analysis sometimes produced the highest correlation
coefficients of Lav for mc468. The error rate of Lav for mc468 was 9.3% in layer I brain waves
but was reduced to 1.7% in layer III brain waves (Table 8 and Figure 10), which is consistent
with the change in the information redundancy from high to low stages between layers I and
III. On the other hand, the error rate of mc468 for Lav was 0% in both layers I and III. For the
single-compound odors, Lina and mc4 exhibited odor similarity-dependent changes in the
error rates of the estimated information between layers I and III. The error rates of the single
compounds for their original mixture odors (partially similar odor) increased between layers I
and III (0 ! 7.7% in Lina and 13.6 ! 30.8% in mc4) and those of single compounds for their
nonrelative mixture odors (dissimilar odor) decreased between layers I and III (46.7! 19.2%
in Lina and 4.5! 0% in mc4). Notably, the error rates between these single compounds were
0% in both layers I and III. These results suggest a partial overlap of the elemental odors that
are represented in the pyramidal cells in the aPC and are recorded in layer III as brain waves.
The total error rates of Lina decreased in layer III compared to those of layer I (and vice versa
for the correct rate), whereas those of mc4 increased.

Information Recoding sites Estimated information

Lav Lina mc468 mc4

Lav Layer I (input) 62.8% 20.9% (e) 9.3% (e) 7.0% (e)

Layer III (output) 57.9% 18.4% (e) 1.3% (e) 22.4% (e)

Lina Layer I (input) 0.0% (e) 53.3% 46.7% (e) 0.0% (e)

Layer III (output) 7.7% (e) 73.1% 19.2% (e) 0.0% (e)

mc468 Layer I (input) 0.0% (e) 25.0% (e) 75.0% 0.0% (e)

Layer III (output) 0.0% (e) 26.7% (e) 73.3% 0.0% (e)

mc4 Layer I (input) 4.5% (e) 0.0% (e) 13.6% (e) 81.8%

Layer III (output) 0.0% (e) 0.0% (e) 30.8% (e) 69.2%

Table 8. Correct and error rates (e) of estimated information in single-trial brain waves recorded in layers I and III of the
aPC by the wavelet correlation analysis.
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The signaling redundancy originates from an identical temporal profile of different subsets of
neurons tuned to distinct or shared information or from identical temporal profiles that are
composed of multiple different profiles of various different subsets of neurons tuned to multi-
ple distinct or shared information. The constant error rates of mc468 for Lina between layers I
and III (both ~25%, Table 8 and Figure 10) are likely attributable to the signaling redundancy
rather than the information similarity or information redundancy. Moreover, in the increased
case, there was a threefold higher error rate of Lav for mc4 in layer III than layer I, whereas the
error rates of Lav for Lina were almost constant between layers I and III.

3.6. Applicable examples of estimated in-brain information in humans using the
wavelet correlation analysis

Each brain system (e.g., a sensory, memory, decision, or motor system) is organized in a
hierarchical manner from simple to complicated matters. The sensory system generates oscil-
latory activities between the related cortical regions and the thalamus, and the latter acts
(except in the olfactory system) to gate the sensory input to the cortex and provides feedback
from the cortical pyramidal neurons. In olfaction, transient oscillatory brain waves are
observed in the aPC [5, 17–21]. Strong feed-forward inhibition [5, 22, 23] via the sensitive
pathway from the olfactory bulb [24] and the other sensory thalamocortical circuit [25, 26] or
higher olfactory centers [27] could induce oscillatory brain waves that would contribute to
parts of the EEGs recorded at the respective positions on the human scalp, in analogy to these
experimental animals. Such information-dependent temporal profiles of the EEGs may enable
us to estimate in-brain information by comparison with a set of standard time-frequency

Figure 10. Correct and error rates of estimated information in single-trial brain waves recorded in layers I and III of the
aPC by the wavelet correlation analysis. These values are listed in Table 8.
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power profiles of EEGs in each individual. To this aim, a wavelet correlation analysis of the
brain waves in a guinea pig was conducted using standard brain waves with the proposed
criteria and achieved an accuracy of 75% for the first candidates. This accuracy is attributable
to the comparisons with standard single-trial responses in the wavelet time-frequency power
profiles.

Conventional methods have focused only on some parts of the brain wave characteristics.
For example, the FFT power spectra of sensorimotor EEGs [28, 29] or auditory EEGs [30] in
specific frequency bands at a specific recording position were analyzed for the development of
brain-computer interfaces. The Morlet wavelet convolutions for four-frequency band powers
of the single-trial EEGs were analyzed to understand the cognitive control system via a priori
estimation of information across three tasks [31]. By using the wavelet correlation analysis in
the time-frequency power profiles at nine frequencies, these analyses could be improved in
their subprocesses. Odor sensation [32, 33] and color-opponent responses [34] were also
recorded in humans at Fz and an intermediate position between Oz and the inion, respectively,
and they demonstrated informational differences in response amplitudes or profiles. Like
EEGs in object recognition and those responsible for mental states, these EEGs are also subjects
for the application of the wavelet correlation analysis for estimating in-brain fine information.
Pain-related alpha-band desynchronization at contralateral-central electrodes (C2, C4, CP2,
and CP4) and gamma-band synchronization at the ipsilateral-posterior electrodes (P3, P5, and
so on) [35] are also good candidates for application. In animal models, the neural pathways of
innate and learned fear responses have been revealed [36], and different pathways of stress
relaxation using rose and hinokitiol odors were found [37, 38]. Therefore, determining their
differing time-frequency power profiles would enable us to estimate the strengths of stress or
relaxation in EEGs in humans. Future studies will focus on programming the wavelet correla-
tion analysis for real-time estimates of in-brain information in humans.

4. Conclusions

We developed a new method for a similarity analysis and real-time estimates of in-brain
information in single-trial brain waves by ranking the correlation coefficients in the wavelet
correlation analysis. The wavelet correlation analysis with a set of standard brain waves
provided the first candidate of estimated information with an accuracy of 75% with a > 92%
probability of including the correct information for the two upper candidates, regardless of the
information redundancy of signal sources. This method may be also useful for its applications
to brain-machine interfaces or medical/research tools.
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1. Introduction

In June 2006, Cisco released a virtual network index (VNI) forecast that projects global IP
traffic over the next 5 years [1]. According to Cisco’s paper, there has been quantitative
evidence that proliferation of global IP traffic will exchange data to reach the order of zettabyte
(ZB) by 2021. This massive amount of data will be driven mainly by the number of connected
devices to IP networks, such as smart phones, tablets, sensors and machine-to-machine (M2M)
applications that are estimated to be more than three times the global population. Hence, in
this era, just about every physical object we see (e.g. health-care monitoring apparatus,
machinery, appliances, autonomous cars and intelligent transportation, etc.) will be connected,
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forming the Internet of Things (IoT) [2]. In order to handle the countless number and various
types of devices as well as linking the existing radio-access technologies, a new architecture
that will increase data rate, lower end-to-end latency and improve the coverage is urgently
required. Therefore, to meet with this demand, a new standard on the fifth-generation (5G)
networks is currently under consideration [3].

Health and medical care are considered as one of the most fascinating applications that can
fully benefit from IoT deployment. The IoT that employs various sensor and smart medical
devices may serve in, for example, tele-auscultation, remote health monitoring, remote diag-
nostics and possibly treatment as well as elderly care [4–6]. Such Internet of Medical Things
(IMedT) is expected to reduce consultation and transportation cost and to shrink the gap for
those who live in the isolated/remote areas where the presence of doctors is void. Nevertheless,
transmitting medical data to health-care providers through the public networks require high
data security as public networks are somehow vulnerable to spoof attack. In this chapter, two
anonymisation techniques based on wavelet decomposition and wavelet packet (WP) trans-
form for securing ECG signals will be discussed.

2. Motivations

An electrocardiogram (ECG) signal contains important health information of a patient. It is
used to detect abnormal heart rhythms by measuring the electrical activity generated by the
heart as it contracts. Recent studies show that an ECG signal can be used as a biometric
method for robust human identification and authentication [7–9]. The ECG signal was found
to be unique for each individual over a long period of time [10, 11]. An ECG biometric system
consists of feature extraction and classifiers to identify and recognise a person. The selection of
appropriate features is crucial for successful individual identification. In [12], ECG-based
biometric features were grouped as fiducial based, non-fiducial based or hybrid.

An unsecure ECG signal can be subjected to man in the middle attack where fraudsters can use
the spoofed recorded ECG data to gain access to a secured service [13–15]. A scenario where a
man in the middle attack can be a real threat for health information transmission is presented
in Figure 1. The figure illustrates possible attack points that include (1) wireless links between
sensor nodes that collect health information data from wireless body area networks (WBAN)
and gateways, (2) wire/wireless links between the gateway and the edge router, (3) wire/
wireless links between the other side of the edge router and health-care provider router and
(4) repository in the data centre/public server or health-care provider. In order to minimise
such security threat to a system, a health-care provider needs to comply with certain widely
accepted standards to protect medical records safely. For example, US government passed the
Health Insurance Portability and Accountability Act (HIPAA) in 1996 for protecting medical
privacy users [16], the European Union adopted the Directive on Data Protection in 1995 [17],
the Health Information Privacy Code was passed by New Zealand government in 1994, which
sets specific rules for agencies in the health sector to ensure protection of individual privacy
[18] and the personally controlled electronic health record (PCEHR) eHealth system was
launched by Australian government in 2012 [19].

Wavelet Theory and Its Applications44

There have been several proposed security techniques including image [20] and ECG
steganography [21–24] to secure confidential patient information. In the steganography
techniques, sensitive patient information is concealed inside public host data without
incurring huge computational overhead or any increase in the size of the host data [21].
ECG data is used as the host signal to embed secret patient information and physiological
readings. This may create watermarked ECG signals that is then transferred to a remote
hospital server for further diagnosis. The effectiveness of ECG watermarking is dependent
on the difference between the original host data and the watermarked data, that is, greater
differences point to an ineffective steganography process. Unfortunately, all steganogra-
phy methods bear some degree of information loss. This severe loss of information con-
tributes to smeared/incorrect signal features and in some cases can lead to the failure of
reconstructing the original ECG signal from the watermarked ECG signal [22]. However,
even effective ECG watermarking can result in the delectability of ECG fiducial and non-
fiducial features, which may allow for patient identification according to research in [7–9].
Therefore, a method combining the advantages of steganography with a technique that
hides ECG fiducial and non-fiducial features is required. In this chapter, a review between
two ECG anonymisation methods based on wavelet decomposition and wavelet packet
transform (WPT) is presented.

3. Wavelet decomposition-based ECG anonymisation approach

Recent ECG anonymisation approaches based on wavelet decomposition were proposed in
[13, 14]. During the wavelet decomposition process, filters of different cut-off frequencies were
used to analyse the ECG signal at different scales (frequencies). It can be done by passing the
ECG signal through a series of high-pass filters (i.e. the detail coefficients) for examining the
high-frequency bands. The ECG signal was also passed through a series of low-pass filters (i.e.
the approximation coefficients) to evaluate the low-frequency bands. Wavelet decomposition
at level 3 was used during signal evaluation in the chapter [13]. Moreover, in the order to

Figure 1. Possible attack points for unsecure ECG signals subjected to man in the middle attack.
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construct a complete evaluation, two individual methods were studied during the experimen-
tation [13]. Block diagram for the wavelet decomposition can be seen in Figure 2.

3.1. Method 1: discrete wavelet base anonymisation

In the first method, approximation (cA3) and detail (cD3) coefficients were removed after level
3 decomposition. Subsequently these nodes were encrypted using the well-known RSA
symmetric cryptography. On the other hand, the remaining nodes, that is, cD1 and cD2, were
compressed and transmitted to the ECG repository. Figure 3 shows that without knowledge of
nodes cA3 and cD3, the newly constructed signal in the repository completely hides P wave
and T wave of the original ECG. It can be concluded that the first method hides most of the
features required to reconcile the identity of a patient [7]. On the contrary, this method is not
able to provide complete obfuscation of the cardiovascular conditions. This is mainly because

Figure 2. ECG anonymisation using wavelet decomposition.

Figure 3. Normal ECG signal (top) and reconstructed annonymised ECG signal without nodes cA3 and cD3.
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the RR interval and certain types of arrhythmias are visible [25] as obvious in Figure 3.
However, this method only required minimal selection of coefficient (approximately 25%) for
encryption and key distribution. This is the main advantage of the first method. This method
will perform well when faster distribution of key is priority and strong security is not deemed
necessary. The removed coefficients are shown in Figure 4.

3.2. Method 2: discrete wavelet base anonymisation

In the second method, nodes cA3, cD3 and cD2 were selected for encryption, while the
remaining coefficients cD1 were transmitted to the ECG repository. In contrast to the previous
method, Figure 5 shows that the reconstructed ECG from the coefficients that are extracted

Figure 4. Removed (Selected for Encryption) Coefficients for Method 1.

Figure 5. Normal ECG signal (top) and reconstructed annonymised ECG signal without nodes cA3, cD3 and cD2.
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from the repository is completely able to obfuscate features related to cardiovascular condition
and person identification.

Therefore, this method provides higher ECG security by compromising larger key size (approx-
imately 50%) as can be seen in Figure 6. Figure 5 shows that the reconstructed ECG signal does
not contain any ECG features.

Both methods described above suffer from long key size and lack of complete obfuscation to
the ECG data. The long key size requires wider bandwidth during transmission process of the
key to the ECG repository. On the other hand, lack of complete obfuscation results in trivial
interpretation of the anonymised ECG signal. Therefore, due to these two main reasons, other
methods based on the wavelet packet were proposed and developed.

4. Wavelet packet-based ECG anonymisation approach

4.1. Overview of wavelet packet transform

Wavelet packet transform has been used in many applications of biomedical signal processing,
for example, feature extraction, noise reduction, data compression and QRS detection. Further-
more, wavelet packet transform has long been used for ECG signal analysis. A wavelet packet
function [18] is defined as

φn
j, k tð Þ ¼ 2

1
2φn 2jt�m
� �

, (1)

where j and m are the scale (frequency) and the translation (time) parameters, respectively, and
n ¼ 0, 1, 3,… is the oscillation parameter. The structure of wavelet packet (WP) decomposition

Figure 6. Removed (selected for encryption) coefficients for method 2.
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is described as a binary tree structure E; each node is described as j; nð Þ, where j is a
node’s scale level and n is a node’s number on the corresponded level. The root node 0; 0ð Þ of
the WP tree corresponds to the entire frequency range, 0; f s2

h i
, where f s is the ECG sampling

frequency of the ECG signal. Each internal node of the WP tree j; nð Þ∈E is called a parent
node that is divided into two child nodes: the first and the second nodes are associated with
low-pass h mð Þ and high-pass g mð Þ filters. These nodes forms a quadrature mirror filter (QMF)
pair [19].

The scaling function ω tð Þ and the mother wavelet φ tð Þ for the wavelet packet when n ¼ 0, 1
and j ¼ m ¼ 0 are given by

φ0 tð Þ ¼ ω tð Þ,φ1 tð Þ ¼ ψ tð Þ: (2)

The other wavelet packet functions for n ¼ 2, 3,… and j ¼ 1 are shown as follows:

φ2n tð Þ ¼
X
m

h mð Þφn
j,m tð Þ, (3)

φ2nþ1 tð Þ ¼
X
m

g mð Þφn
j,m tð Þ: (4)

By substituting Eq. (1) into Eq. (3) and (4), we can get

φ2n tð Þ ¼
ffiffiffi
2
p X

m
h mð Þφn 2t�mð Þ, (5)

φ2nþ1 tð Þ ¼
ffiffiffi
2
p X

m
g mð Þφn 2t�mð Þ, (6)

where the low-pass filter gives h mð Þ ¼ 1ffiffi
2
p ω tð Þ;ω 2t�mð Þh i, and the high-pass filter gives

g mð Þ ¼ 1ffiffi
2
p ψ tð Þ;ψ 2t�mð Þh i. The operator :; :h i stands for the inner product. The wavelet packet

coefficients of the ECG signal, x tð Þ, are expressed as follows:

Qn
j mð Þ ¼ x;ψn

j,m

D E
¼
ð∞
�∞

x tð Þψn
j,m tð Þdt (7)

Each coefficient measures a specific sub-band frequency content, controlled by the scaling
parameter, j, and the oscillation parameter, n. The ECG signal, x tð Þ, can be decomposed into
a different time-frequency space with Eq. (6) and Eq. (7). By computing the full wavelet
packet decomposition on the ECG signal, for the jth level of decomposition, we have 2j sets
of sub-band coefficients of length N

2j
, where N is the ECG signal length [20]. Each sub-band

coefficient, node, has a frequency range in the interval n
2jþ1

; nþ1
2jþ1

h i
, n ¼ 0, 1,…, 2j � 1. This is

how wavelet packet decomposes the original ECG signal into two or more coefficients.
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, where N is the ECG signal length [20]. Each sub-band

coefficient, node, has a frequency range in the interval n
2jþ1

; nþ1
2jþ1

h i
, n ¼ 0, 1,…, 2j � 1. This is

how wavelet packet decomposes the original ECG signal into two or more coefficients.
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4.2. The generalised framework for the ECG anonymisation method

In this section, a generalised framework for the ECG anonymisation using wavelet packet
transform (WPT) will be introduced. The proposed framework for ECG anonymisation can be
seen in Figure 7, while its pseudo-code is listed in Algorithm 1. This framework comprises the
following steps:

Step 1: Perform wavelet packet decomposition of the ECG signal, x tð Þ, at level j. The signal
coefficients at this level are given by

C ¼ c j; nð Þ:n ¼ 0; 1;…; 2j � 1
� �

(8)

where c j; nð Þ represents the coefficients of the nth node at level j.

Step 2: Exclude the first node, c j; 0ð Þ, from C in Eq. (8) to get

C ¼ c j; nð Þ:n ¼ 1; 2;…; 2j � 1
� �

: (9)

The excluded node is set to

k ¼ c j; 0ð Þ (10)

where k is an unencrypted and uncompressed key that includes the low-frequency compo-
nents of the ECG signal, x tð Þ.

Figure 7. Wavelet packet-based ECG anonymisation process.
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Step 3:Modify each node in C, Eq. (9), using a reversible function/operation such as logarithm
or division. In this chapter each node in C is divided by Γ. Γ is a reversible function driven from
the key coefficients. Hence, the modified coefficients in C are given by

bC ¼ C
Γ
¼ c j; nð Þ

Γ
: n ¼ 1; 2;…; 2j � 1

� �
; (11)

where Γ ¼ kþ offset, offset ¼ min kð Þj j þ η, η is a constant and :j j is the absolute operator. The
offset term in Γ is used to prevent division by zero.

Step 4: Securely distribute the key, K, and the offset value to medical personnel. The key
security will be achieved by compressing and encrypting the first node, k, and the offset as
follows:

K ¼ E Δ k; offsetð Þð Þ ¼ E Δ c j; 0ð Þ; offsetð Þð Þ; (12)

where Δ :ð Þ is the compression operator and E :ð Þ is the encryption operator [9]. Compression
and encryption are beyond the scope of this chapter.

Step 5: Perform wavelet packet reconstruction to the modified terminal nodes’ coefficient, bC, to
get the anonymised ECG, y tð Þ.
Step 6: Upload the anonymised ECG, y tð Þ, to the repository.

4.3. The ECG reconstruction method

The proposed reconstruction process for the anonymised ECG signal is shown in Figure 8, while
the pseudocode is shown in Algorithm 2. The authorised personnel receives the secure key, K,
and the anonymised ECG, y tð Þ, and performs the reconstruction process by the following steps:

Figure 8. Wavelet packet-based reconstruction process for the anonymised ECG.
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or division. In this chapter each node in C is divided by Γ. Γ is a reversible function driven from
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� �
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offset term in Γ is used to prevent division by zero.
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where Δ :ð Þ is the compression operator and E :ð Þ is the encryption operator [9]. Compression
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get the anonymised ECG, y tð Þ.
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4.3. The ECG reconstruction method

The proposed reconstruction process for the anonymised ECG signal is shown in Figure 8, while
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Step 1: Perform decryption and decompression to the key, K, to get Γ

Γ ¼ Λ D Kð Þð Þ; (13)

where Λ :ð Þ and D :ð Þ are the decryption and decompression operators, respectively. Decryption
and decompression are beyond the scope of this chapter.

Step 2: Perform wavelet packet decomposition of the ECG signal, y tð Þ, at level j to get bC ¼ C
Γ as

in Eq. (11).

Step 3: Multiply each node at bC by the factor Γ to get

C ¼ f�1 bC
� �

¼ bC� Γ ¼ c j; nð Þ : n ¼ 1; 2;…; 2j � 1
� �

(14)

Step 4: Add the first node, c j; 0ð Þ ¼ Γ� offset, to the WPT vector C at Eq. (14) to get the WPT
vector coefficients, C, of the original ECG signal, x tð Þ.
Step 5: Perform wavelet packet reconstruction of the coefficients vector, C, at level j to recover
the original unanonymised ECG signal, x tð Þ.

5. Algorithm validation

Two types of electrocardiogram (ECG) signals were used to validate and investigate the perfor-
mance and the effectiveness of the generalised ECG anonymisation framework. These signals are

1. normal ECG signal for a healthy subject, and

2. abnormal ECG signals for a patient with supraventricular arrhythmia and a patient with
ventricular tachyarrhythmia.

Algorithm 1: Wavelet packet-based ECG anonymisation
process

Algorithm 2: Wavelet packet-based reconstruction process

1: Begin
2: x tð Þ  ECG_signal
3: C wpacket_decomposition x tð Þ; j� �

4: k c j; 0
� �

// exclude the first node as a key

5: C c j; n
� �

6: offset min kð Þj j þ η
7: Γ kþ offset

8: bC C
Γ

9: K  E Δ k; offset
� �� �

//compression and encryption
10: Send K to healthcare providers or doctors as a key

11: y tð Þ  wpacket_reconstruction bC; j
� �

12: Upload y tð Þ to public server
13: Save y tð Þ with unique ID for a particular individual
14: End

1: Begin
2: k Λ D K; offsetð Þð Þ // decryption and decompression
3: y tð Þ  Anonymised_ECG_signal

4: bC wpacket_decomposition y tð Þ; j� �

5: C bC � Γ
6: c j; n
� � C

7: k Γ� offset
8: c j; 0
� � k

9: C add_first_node c j; 0
� �

; c j; n
� �� �

10: x tð Þ  wpacket_reconstruction C; j
� �

11: End
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The normal and abnormal ECG signals with different sampling frequencies were used in this
chapter to study the robustness of the proposed anonymisation approach in concealing and
smearing the ECG’s fiducial and non-fiducial features. The normal and abnormal ECG data
were obtained from the PTB ECG database [26] and the MIT-BIH arrhythmia database [27],
respectively. These databases are publically available [26, 27].

In the evaluation process in the latter sub-section, bior5.5 wavelet was used. Besides this type of
mother wavelet resembling the shape of an ECG signal, it is widely used for speech, video and
biomedical signals providing that bior5.5 inherited linear phase. Nevertheless, it should be noted
that for ECG anonymisation in this chapter, mother wavelet will not impact the anonymisation
result since the ECG signal will be constructed back to its original at the receiver side.

The security of the proposed scheme depends on the following parameters that are required at
the receiver side:

1. the encrypted security key which should be shared secretly,

2. the reversible function that should be used to reconstruct the original ECG information
from the anonymised ECG, and

3. the type of transformation and the level of decomposition (wavelet packet transform at
level 2 is used in this study).

An attacker with stolen key (i.e. able to decrypt the secure key) using brute force or any other
method will require the knowledge of the reversible function and the level of decomposition.
This information will be stored inside a patient/medical personnel PC and will not be trans-
mitted under any circumstance. In this case, brute force attack is infeasible for the attack.

In the following sections, performance analysis using cross-correlation of normal and anonymised
ECG signals, power spectral density of anonymised ECG signal and percentage residual difference
(PRD)methods will be examined.

5.1. Performance evaluation over normal electrocardiogram

An electrocardiogram (ECG) signal has a well-defined P, QRS and T signature that is represented
with each heartbeat. The P-wave arises from the depolarisation of the atrium. The QRS complex
arises from depolarisation of the ventricles and T-wave arises from repolarisation of the ventricle
muscles. The duration, shape and amplitude of these waves are considered as major features in
time-domain analysis. Sometimes the time morphologies of these waves are similar.

The normal ECG was obtained from the PTB database (patient247, signal s0479). The sampling
frequency, f s, for this signal was 1 kHz. A total of 10 s of this signal was transformed by
wavelet packet decomposition at level 2, j ¼ 2. Decomposition level, j, depends on the ECG
sampling frequency. Higher sampling frequency requires a low value of j to conceal all features
in the anonymised signal. Node c 2; 0ð Þ of size N

4 (N = 10,000 samples) was removed from the
wavelet packet coefficients of the normal ECG signal. This node was used to generate the key,
K, which was distributed securely to medical personnel. The anonymised ECG is reconstructed
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Step 1: Perform decryption and decompression to the key, K, to get Γ

Γ ¼ Λ D Kð Þð Þ; (13)

where Λ :ð Þ and D :ð Þ are the decryption and decompression operators, respectively. Decryption
and decompression are beyond the scope of this chapter.

Step 2: Perform wavelet packet decomposition of the ECG signal, y tð Þ, at level j to get bC ¼ C
Γ as

in Eq. (11).

Step 3: Multiply each node at bC by the factor Γ to get
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¼ bC� Γ ¼ c j; nð Þ : n ¼ 1; 2;…; 2j � 1
� �

(14)

Step 4: Add the first node, c j; 0ð Þ ¼ Γ� offset, to the WPT vector C at Eq. (14) to get the WPT
vector coefficients, C, of the original ECG signal, x tð Þ.
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the original unanonymised ECG signal, x tð Þ.
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Two types of electrocardiogram (ECG) signals were used to validate and investigate the perfor-
mance and the effectiveness of the generalised ECG anonymisation framework. These signals are

1. normal ECG signal for a healthy subject, and

2. abnormal ECG signals for a patient with supraventricular arrhythmia and a patient with
ventricular tachyarrhythmia.
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4: k c j; 0
� �

// exclude the first node as a key
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6: offset min kð Þj j þ η
7: Γ kþ offset

8: bC C
Γ

9: K  E Δ k; offset
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//compression and encryption
10: Send K to healthcare providers or doctors as a key

11: y tð Þ  wpacket_reconstruction bC; j
� �

12: Upload y tð Þ to public server
13: Save y tð Þ with unique ID for a particular individual
14: End

1: Begin
2: k Λ D K; offsetð Þð Þ // decryption and decompression
3: y tð Þ  Anonymised_ECG_signal

4: bC wpacket_decomposition y tð Þ; j� �

5: C bC � Γ
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� � C
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10: x tð Þ  wpacket_reconstruction C; j
� �
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biomedical signals providing that bior5.5 inherited linear phase. Nevertheless, it should be noted
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The security of the proposed scheme depends on the following parameters that are required at
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1. the encrypted security key which should be shared secretly,

2. the reversible function that should be used to reconstruct the original ECG information
from the anonymised ECG, and

3. the type of transformation and the level of decomposition (wavelet packet transform at
level 2 is used in this study).

An attacker with stolen key (i.e. able to decrypt the secure key) using brute force or any other
method will require the knowledge of the reversible function and the level of decomposition.
This information will be stored inside a patient/medical personnel PC and will not be trans-
mitted under any circumstance. In this case, brute force attack is infeasible for the attack.
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5.1. Performance evaluation over normal electrocardiogram

An electrocardiogram (ECG) signal has a well-defined P, QRS and T signature that is represented
with each heartbeat. The P-wave arises from the depolarisation of the atrium. The QRS complex
arises from depolarisation of the ventricles and T-wave arises from repolarisation of the ventricle
muscles. The duration, shape and amplitude of these waves are considered as major features in
time-domain analysis. Sometimes the time morphologies of these waves are similar.

The normal ECG was obtained from the PTB database (patient247, signal s0479). The sampling
frequency, f s, for this signal was 1 kHz. A total of 10 s of this signal was transformed by
wavelet packet decomposition at level 2, j ¼ 2. Decomposition level, j, depends on the ECG
sampling frequency. Higher sampling frequency requires a low value of j to conceal all features
in the anonymised signal. Node c 2; 0ð Þ of size N

4 (N = 10,000 samples) was removed from the
wavelet packet coefficients of the normal ECG signal. This node was used to generate the key,
K, which was distributed securely to medical personnel. The anonymised ECG is reconstructed
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from the rest nodes, three nodes, using the anonymisation algorithm in Section II (B) and
transmitted confidently over the public internet, since the anonymised ECG does not impose
any threat to privacy.

Figure 9 (a) and (b) shows the time-domain representation of the 10-s normal ECG signal
(patient247, signal s0479) and its anonymisation version, respectively. The frequency range for
the anonymised ECG after node c 2; 0ð Þ removal is 125 and 500 Hz. From the time-domain
representation of the ECG signal and its anonymisation in Figure 9 (a) and (b), the proposed
anonymisation algorithm conceals all fiducial features from the reconstructed ECG signal
(Figure 9(b)). Figure 10 (a) and (b) shows the frequency representation of the 10-s normal
ECG signal (Figure 9 (a)) and its anonymisation version, respectively. The non-fiducial features
were also concealed as shown in the frequency-domain representation of the anonymised
version of the normal ECG signal.

Figure 11 shows the time-domain representation of the coefficients c 2; 0ð Þ which was used to
create the secure key, K. The frequency range for c 2; 0ð Þ in this data is between 0 and 125 Hz.
This node preserves all fiducial features in the original ECG signal. Figure 12 (a) and (b) shows
the reconstructed ECG signal at the medical personnel side and its cross-correlation with the
original ECG signal at the patient side, respectively. From Figure 12 (b), both signals are highly
correlated, which guarantees a lossless reconstruction.

Figure 9. Time-domain representation of 10-s normal ECG signal, (a) unanonymised ECG signal and (b) anonymised
ECG signal. The sampling frequency was fs = 1 kHz.
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5.2. Performance evaluation over abnormal electrocardiogram

An arrhythmia is an abnormality in the heart’s rhythm or heartbeat pattern. The heartbeat can
be too slow, too fast, have extra beats or otherwise beat irregularly [28]. The types of abnormal
ECG signals investigated in this study were supraventricular arrhythmia and ventricular
tachyarrhythmia. Supraventricular arrhythmia occurs in the upper areas of the heart and

Figure 10. Power spectral density of 10-s normal ECG signal, (a) unanonymised ECG signal and (b) anonymised ECG
signal. The sampling frequency was fs = 1 kHz, the power spectral method was Welch periodogram.

Figure 11. Time-domain representation of the first node c 2; 0ð Þ coefficients for the 10-s normal ECG signal in Figure 9(a).
This node was used to create the secure key.

Wavelets in ECG Security Application
http://dx.doi.org/10.5772/intechopen.74477

55



from the rest nodes, three nodes, using the anonymisation algorithm in Section II (B) and
transmitted confidently over the public internet, since the anonymised ECG does not impose
any threat to privacy.

Figure 9 (a) and (b) shows the time-domain representation of the 10-s normal ECG signal
(patient247, signal s0479) and its anonymisation version, respectively. The frequency range for
the anonymised ECG after node c 2; 0ð Þ removal is 125 and 500 Hz. From the time-domain
representation of the ECG signal and its anonymisation in Figure 9 (a) and (b), the proposed
anonymisation algorithm conceals all fiducial features from the reconstructed ECG signal
(Figure 9(b)). Figure 10 (a) and (b) shows the frequency representation of the 10-s normal
ECG signal (Figure 9 (a)) and its anonymisation version, respectively. The non-fiducial features
were also concealed as shown in the frequency-domain representation of the anonymised
version of the normal ECG signal.

Figure 11 shows the time-domain representation of the coefficients c 2; 0ð Þ which was used to
create the secure key, K. The frequency range for c 2; 0ð Þ in this data is between 0 and 125 Hz.
This node preserves all fiducial features in the original ECG signal. Figure 12 (a) and (b) shows
the reconstructed ECG signal at the medical personnel side and its cross-correlation with the
original ECG signal at the patient side, respectively. From Figure 12 (b), both signals are highly
correlated, which guarantees a lossless reconstruction.

Figure 9. Time-domain representation of 10-s normal ECG signal, (a) unanonymised ECG signal and (b) anonymised
ECG signal. The sampling frequency was fs = 1 kHz.

Wavelet Theory and Its Applications54

5.2. Performance evaluation over abnormal electrocardiogram

An arrhythmia is an abnormality in the heart’s rhythm or heartbeat pattern. The heartbeat can
be too slow, too fast, have extra beats or otherwise beat irregularly [28]. The types of abnormal
ECG signals investigated in this study were supraventricular arrhythmia and ventricular
tachyarrhythmia. Supraventricular arrhythmia occurs in the upper areas of the heart and

Figure 10. Power spectral density of 10-s normal ECG signal, (a) unanonymised ECG signal and (b) anonymised ECG
signal. The sampling frequency was fs = 1 kHz, the power spectral method was Welch periodogram.

Figure 11. Time-domain representation of the first node c 2; 0ð Þ coefficients for the 10-s normal ECG signal in Figure 9(a).
This node was used to create the secure key.

Wavelets in ECG Security Application
http://dx.doi.org/10.5772/intechopen.74477

55



is less serious than ventricular arrhythmia. It has irregular shapes of QRS complexes [28].
These arrhythmia data—supraventricular arrhythmia and ventricular tachyarrhythmia—were
obtained from the MIT-BIH arrhythmia database [26].

5.2.1. Supraventricular arrhythmia

The sampling frequency, f s, for this signal was 128 Hz. A total of 10 s of this signal was
transformed by wavelet packet decomposition at level 2, j ¼ 2.

Node c 2; 0ð Þ of size N
4 (N = 1280 samples) was removed from the wavelet packet coefficients of

the supraventricular arrhythmia signal. This node was used to generate the key, K, which was
distributed securely to medical personnel. The frequency range for c 2; 0ð Þ in this data is
between 0 and 16 Hz. The other nodes at level 2 with the frequency range between 16 and 64
were used to construct the anonymised signal.

Figure 13 (a) and (b) shows the time-domain representation of the 10-s ECG signal of a patient
with supraventricular arrhythmia and its anonymisation version, respectively. The frequency-
domain representation for both signals is shown in Figure 14 (a) and (b). The fiducial and non-
fiducial features were concealed in the time-domain and frequency-domain representation of
the anonymised supraventricular arrhythmia signal.

Figure 15 shows the time-domain representation of the coefficients c 2; 0ð Þ, which was used to
create the secure key, K. This node preserves all fiducial features in the original supraventric-
ular arrhythmia signal.

Figure 12. Ten seconds reconstructed ECG signal, (a) time domain representation of the reconstructed ECG signal, (b)
cross correlation between the normal ECG signal in Figure 9(a) and its reconstructed version.
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Figure 14. Power spectral density of ten seconds normal ECG signal of a patient with supraventricular arrhythmia, (a)
unanonymised ECG and (b) anonymised ECG. The sampling frequency was fs = 128 Hz, and the power spectral method
was Welch periodogram.

Figure 13. Time-domain representation of 10-s ECG signal of a patient with supraventricular arrhythmia, (a) unanonymised
ECG and (b) anonymised CG. The sampling frequency was fs = 128 Hz.
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5.2.2. Ventricular tachyarrhythmia

The sampling frequency, f s, for this signal was 250 Hz. A total of 10 s of this signal was
transformed by wavelet packet decomposition at level 2. Node c 2; 0ð Þ of size N

4 (N = 2500
samples) was removed from the wavelet packet coefficients of the ventricular tachyarrhythmia
signal. This node was used to generate the key K, which was distributed securely to medical
personnel. The other nodes were used to reconstruct the anonymised ventricular tachyarrhyth-
mia signal.

Figure 16 (a) and (b) shows the time-domain representation of the 10-s ECG signal of a patient
with ventricular tachyarrhythmia and its anonymisation version, respectively. The frequency-
domain representation for both signals is shown in Figure 17 (a) and (b). The fiducial and
non-fiducial features were concealed in the time-domain and frequency-domain representa-
tion of the anonymised supraventricular arrhythmia signal.

Figure 18 shows the time-domain representation of the coefficients c 2; 0ð Þ which was used to
create the secure key, K. This node preserves all fiducial features in the original supraventric-
ular arrhythmia signal.

5.3. Performance evaluation with the PRD metric

The percentage residual difference (PRD) is used to measure the difference between the
original ECG signal and the anonymised ECG signal using the following equation.

Figure 15. Time-domain representation of the first node c 2; 0ð Þ coefficients for the 10-s abnormal ECG signal in Figure 7
(a). This node was used to create the secure key.
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PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

x ið Þ � y ið Þð Þ2

PN
i¼1

x ið Þ2

vuuuuuut (15)

where x ið Þ is the original ECG signal, y ið Þ is the anonymised ECG signal and i ¼ 1…N, where
N is the total number of the sample.

Performance of the proposed anonymisation algorithm using PRD metric is shown in Table 1.
It can be seen from the table that the minimum and the maximum PRD measured were 14.8
and 70.6%, respectively. The PRD value depends on the ECG frequency bandwidth and its
sampling frequency.

Figure 16. Time-domain representation of 10-s ECG signal of a patient with ventricular tachyarrhythmia, (a)
unanonymised ECG and (b) anonymised ECG. The sampling frequency was fs = 250 Hz.
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5.2.2. Ventricular tachyarrhythmia
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samples) was removed from the wavelet packet coefficients of the ventricular tachyarrhythmia
signal. This node was used to generate the key K, which was distributed securely to medical
personnel. The other nodes were used to reconstruct the anonymised ventricular tachyarrhyth-
mia signal.
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domain representation for both signals is shown in Figure 17 (a) and (b). The fiducial and
non-fiducial features were concealed in the time-domain and frequency-domain representa-
tion of the anonymised supraventricular arrhythmia signal.

Figure 18 shows the time-domain representation of the coefficients c 2; 0ð Þ which was used to
create the secure key, K. This node preserves all fiducial features in the original supraventric-
ular arrhythmia signal.

5.3. Performance evaluation with the PRD metric

The percentage residual difference (PRD) is used to measure the difference between the
original ECG signal and the anonymised ECG signal using the following equation.

Figure 15. Time-domain representation of the first node c 2; 0ð Þ coefficients for the 10-s abnormal ECG signal in Figure 7
(a). This node was used to create the secure key.
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PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

x ið Þ � y ið Þð Þ2

PN
i¼1

x ið Þ2

vuuuuuut (15)

where x ið Þ is the original ECG signal, y ið Þ is the anonymised ECG signal and i ¼ 1…N, where
N is the total number of the sample.

Performance of the proposed anonymisation algorithm using PRD metric is shown in Table 1.
It can be seen from the table that the minimum and the maximum PRD measured were 14.8
and 70.6%, respectively. The PRD value depends on the ECG frequency bandwidth and its
sampling frequency.

Figure 16. Time-domain representation of 10-s ECG signal of a patient with ventricular tachyarrhythmia, (a)
unanonymised ECG and (b) anonymised ECG. The sampling frequency was fs = 250 Hz.
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Figure 17. Power spectral density of 10-s ECG signal of a patient with supraventricular arrhythmia, (a) unanonymised
ECG and (b) anonymised ECG. The sampling frequency was fs = 250 Hz, the power spectral method was Welch
periodogram.

Figure 18. Time-domain representation of the first node c 2; 0ð Þ coefficients for the 10-s abnormal ECG signal in Figure 10
(a). This node was used to create the secure key.
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Comparing with ECG steganography methods, ECG steganography has a low PRD value
between original and watermarked ECG signal. For example, in [14], the maximum PRD
measured was 0.6%. Low PRD is essential in ECG steganography to guarantee correct diagno-
sis of the ECG watermarked signal. However, the lower value of PRD makes the ECG vulner-
able to attack [1–3, 9].

6. Conclusions

A generalised wavelet packet-based ECG anonymisation framework has been presented in this
chapter. This proposed anonymisation technique was used to conceal fiducial and non-fiducial
features from normal and abnormal ECG signal for secure transmission over the public inter-
net. Normal and abnormal ECG signals with different sampling frequencies have been inves-
tigated by the proposed method. Signal transformations other than wavelet packet transform
can be used in this framework. Such transformations should have inverse property.

The performance analysis revealed that the proposed method is able to conceal both fiducial
and non-fiducial features in normal and abnormal ECG signals under examination. Moreover,
the analysis showed that the reconstructed ECG is highly correlated with the original ECG
signal. It achieved a lossless reconstruction of the ECG data and proved the robustness of the
proposed method. The security measures taken to secure the key and other information such
as the level of decomposition and the knowledge of the reversible function make attacks using
methods such as brute force is infeasible.
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Abstract

Factor models are used to explain asset returns on all major capital markets. We argue that
standard econometric analyses implicitly assume that the relationships between prices,
spreads, and interest rates and their respective risk factors are time-scale independent.
Furthermore, by applying wavelet analysis, we do not have to assume capital market
efficiency; in fact, we explicitly allow for inefficiencies such as noise trading, dispersed
information, technical, feedback, fundamental, and rational trading to allow for typical
characteristics of capital market data. We use wavelet analysis to decompose capital
markets’ developments, and the risk factors, using the maximal overlap discrete wavelet
transform (MODWT). We proceed by estimating the relationships on a scale-by-scale
basis. Our respective empirical analyses for stock and bond markets are summarized and
new research is presented with regards to European corporate bonds markets. On stock
market, this approach finds more stable relationships between risk factors and price
movements. On the bond markets, we find empirical evidence for four significantly
evaluated factors. For the European corporate bonds market, the results show that the
amount of credit spreads explained by risk factors is in fact high for certain time scales
only which is similar to the findings for the other capital markets.

Keywords: maximal overlap discrete wavelet transform, factor models, stock markets,
term structure of interest rates, corporate bond spreads

1. Introduction

It has long been acknowledged that risk factors are important in explaining the development
of asset prices on all major capital markets. Ross [1] states that the difference between expected
and realized asset returns is due to the unexpected development of risk factors. In his arbitrage
pricing theory, he derives a relationship between expected asset returns and the sum of assets’
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sensitivities toward these risk factors. Similarities between equity and corporate bond markets’
risks have long been recognized and risk factors similar to those applied in stock markets were
included in the analysis of bond markets, and corporate bond spreads, for example, see [2].
Other empirical analyses present models for the simultaneous pricing of stock and bond
returns [3]. Generally speaking, it has long been recognized that capital markets have similar
characteristics [4]. Cutler et al. formulated four important characteristics of data concerning
returns in the stock, bond, foreign exchange, and other capital markets. Using monthly return
data, there appears to be a positive first-order auto-correlation from 1 month to the next. This
does, however, change if the time horizon is medium or even long term. In those cases, the
auto-correlation becomes negative. Finally, fundamental factors explain capital market move-
ments significantly in the medium and/or long term which can be explained by allowing for
capital markets’ inefficiencies, for example, they postulate that the positive 1 month autocor-
relation of data could be cause investors who only learn about relevant risk factors with a time
lag. In addition to that also traders acting on the basis of technical analyses can cause a positive
auto-correlation in the very short run. The negative medium, or long term, auto-correlation is
then a direct result from misperceptions that are corrected on those time scales. In addition to
those explanations, we consider that market participants have different objectives and there-
fore also different time horizons for their investments. Arbitrageurs seek to exploit mispricing
in nanoseconds. Day-traders want to use knowledge derived from technical analysis on a daily
or weekly basis. Although asset and wealth managers can represent investors with all sorts of
investment horizons their performance is evaluated at least every month. To summarize, it is
highly unlikely that the data generating process is the same for all investment horizons which
is the reason why we apply wavelet analysis to allow for discrepancies at different time
horizons.

We apply wavelet analysis to shed light on the applicability of factor models for stock, bond,
and corporate bond markets. For this purpose, we shortly summarize our respective findings
for stock and bond markets. We then present a detailed, exemplary, new analysis for European
corporate bond markets and present general ideas why the use of wavelet analysis improves
on the applicability of factor models in practice.

The wavelet decomposition we apply allows us to specifically distinguish short, medium, and
long run periods and at the same time it is possible to investigate if information from past
continues to be of importance for the following time period. There is little information about
the frequency content of data if no frequency analysis is performed. The frequency analysis,
however, is not able to maintain information about the time location of events. In our empirical
analysis of these models, explanatory variables are selected according to general consider-
ations which fundamental variable influence the capital markets and proceed by assuming
that the identified k factors contain the important information, so that we assume an approx-
imate factor structure to hold. We investigate if averaging over various time periods veils the
fact that the risk factors are of importance in explaining capital markets’ asset returns for
certain time scales only, i.e., we investigate if risk factors are especially powerful in explaining
asset returns at certain time horizons. For that purpose, we decompose asset returns and risk
factors into their time-scale components using the maximal overlap discrete wavelet transform
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(MODWT) thereby decomposing monthly data to their respective time scales (short term,
medium term, and long term). We then proceed by estimating the impact of the risk factors
on various capital markets on a scale-by-scale basis. We test for significance using the Fama/
MacBeth approach.

Only recently researchers start to analyze relationships to hold for various time periods and
not just for the short and long run. This is why wavelet analysis has been applied to macro-
economic and financial theories, for example see [5–10].

This chapter is organized in the following way. First, we review shortly the underlying theo-
retical backgrounds for the various capital markets’ factor models in Section 2. In Section 3, we
introduce the basic ideas of wavelet analysis and motivate its use to test for significantly
evaluated premiums for risk factors which we test for their significance on different time
scales. Our previous results for the stock and bond market are shortly summarized. In Section
4, we describe the respective analysis performed for the European corporate bond market as an
example in detail and Section 5 concludes.

2. Factor models in finance

Factor models have always been of great interest to explain price movements on all major
capital markets. If risk factors can be identified that are significantly evaluated by the market,
that information is valuable for the purpose of general management, determining fair values of
firms, asset management, finance, and controlling.

2.1. Stock markets

One of the most important and general approaches to explain price movements on stock
markets is the arbitrage pricing theory (APT) developed by Ross [1]. The advantage of the
APT is its generality. Various factor models can be derived and require different estimation and
testing techniques. A detailed overview of the various possibilities for factor models is given in
[7]. The factor models can be distinguished according to the origin of the factors. Statistical
factors can be derived from applying factor analysis. Factors can also be determined in
advance—derived from theoretical considerations—and observable data of macro-economic
variables can be investigated for being risk factors. Since the purpose is to identify risk factors
and not to derive fair prices for financial derivatives, the relationship between asset prices and
risk factors is restricted to be approximately linear [7].

Ross develops his theory in the context of neo-classical assumptions concerning capital mar-
kets without frictions. He assumes that investors differ in their opinion of the exact distribution
of the risk factors, however they all agree on a linear k-factor structure. The main assumption is
the following: the return at the end of the period is determined by the return that was expected
at the beginning of the investment period (μi) but also by the returns of the common risk

factors (~λk). The importance of the risk factors for an asset i depends on how sensitive the asset
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horizons.

We apply wavelet analysis to shed light on the applicability of factor models for stock, bond,
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for stock and bond markets. We then present a detailed, exemplary, new analysis for European
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on the applicability of factor models in practice.
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continues to be of importance for the following time period. There is little information about
the frequency content of data if no frequency analysis is performed. The frequency analysis,
however, is not able to maintain information about the time location of events. In our empirical
analysis of these models, explanatory variables are selected according to general consider-
ations which fundamental variable influence the capital markets and proceed by assuming
that the identified k factors contain the important information, so that we assume an approx-
imate factor structure to hold. We investigate if averaging over various time periods veils the
fact that the risk factors are of importance in explaining capital markets’ asset returns for
certain time scales only, i.e., we investigate if risk factors are especially powerful in explaining
asset returns at certain time horizons. For that purpose, we decompose asset returns and risk
factors into their time-scale components using the maximal overlap discrete wavelet transform
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(MODWT) thereby decomposing monthly data to their respective time scales (short term,
medium term, and long term). We then proceed by estimating the impact of the risk factors
on various capital markets on a scale-by-scale basis. We test for significance using the Fama/
MacBeth approach.

Only recently researchers start to analyze relationships to hold for various time periods and
not just for the short and long run. This is why wavelet analysis has been applied to macro-
economic and financial theories, for example see [5–10].

This chapter is organized in the following way. First, we review shortly the underlying theo-
retical backgrounds for the various capital markets’ factor models in Section 2. In Section 3, we
introduce the basic ideas of wavelet analysis and motivate its use to test for significantly
evaluated premiums for risk factors which we test for their significance on different time
scales. Our previous results for the stock and bond market are shortly summarized. In Section
4, we describe the respective analysis performed for the European corporate bond market as an
example in detail and Section 5 concludes.

2. Factor models in finance

Factor models have always been of great interest to explain price movements on all major
capital markets. If risk factors can be identified that are significantly evaluated by the market,
that information is valuable for the purpose of general management, determining fair values of
firms, asset management, finance, and controlling.

2.1. Stock markets

One of the most important and general approaches to explain price movements on stock
markets is the arbitrage pricing theory (APT) developed by Ross [1]. The advantage of the
APT is its generality. Various factor models can be derived and require different estimation and
testing techniques. A detailed overview of the various possibilities for factor models is given in
[7]. The factor models can be distinguished according to the origin of the factors. Statistical
factors can be derived from applying factor analysis. Factors can also be determined in
advance—derived from theoretical considerations—and observable data of macro-economic
variables can be investigated for being risk factors. Since the purpose is to identify risk factors
and not to derive fair prices for financial derivatives, the relationship between asset prices and
risk factors is restricted to be approximately linear [7].

Ross develops his theory in the context of neo-classical assumptions concerning capital mar-
kets without frictions. He assumes that investors differ in their opinion of the exact distribution
of the risk factors, however they all agree on a linear k-factor structure. The main assumption is
the following: the return at the end of the period is determined by the return that was expected
at the beginning of the investment period (μi) but also by the returns of the common risk

factors (~λk). The importance of the risk factors for an asset i depends on how sensitive the asset
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is with regards to the k risk factors (bik). Those sensitivities are called factor loadings. Last but
not least there is a white noise error variable (~E i). The k factors are common factors, i.e., every
asset reacts to the development of these factors.

~ri ¼ μi þ bi1~λ1 þ…þ bik~λk þ ~Ei ∀i ¼ 1,…, n (1)

with ~ri = realization of the random variable asset i’s asset return at the end of the investment
period; μi = expectation of asset i’s return at the beginning of the investment period; bik = factor

loading of asset i’s return in relation to the risk factor k’s realized end-of-period return; ~λk =
realization of the random variable risk factor k’s end of period return; and ~Ei = realization of the
random variable asset i’s idiosyncratic risk.

In matrix notation this becomes Eq. (2):

~r
nx1ð Þ ¼

μ

nx1ð Þ
þ

B

nxkð Þ
∗

~λ

kx1ð Þ
þ

~ε

nx1ð Þ
(2)

In this economy, systematic risk is represented through unexpected changes of common risk
factor returns. Ross assumes that idiosyncratic risk is diversifiable and that there are no
arbitrage opportunities. It is then possible to derive a relationship between asset i’s expected
return and the factor loadings multiplied by the risk premiums of the k risk factors (λ1,…, λk).
The exact APT equation is given by Eq. (3).

μi ¼ λ0 þ bi1λ1 þ…þ bikλk ∀i ¼ 1,…, n (3)

This is the APT equation which we use in the empirical analysis to identify statistically
significant risk factors. Without idiosyncratic risk, Eq. (3) is an immediate result arising from
the absence of arbitrage opportunities, because a riskless portfolio is then simply a combina-
tion of assets such that the portfolio is insensitive with regards to the risk of the risk factors and
therefore orthogonal to the column space of the B-matrix.

The factor models based on the APT can be summarized by four different model types
according to the different ways to choose risk factors. They can be macro-economic, funda-
mental, statistical or non-linear. Once the factors are determined the asset returns sensitivities
toward themmust be estimated. In the second step, the estimated sensitivities are incorporated
in a cross-section regression and the risk premiums are estimated.

After some transformation, Fama/MacBeth derived an OLS-estimator for risk premiums at

every point in time bλt ¼ bBk
‘bBk

� ��1bB ‘

k~rt for all t = 1,…, T in a cross-section regression [11]. This

results in a time series of estimated risk premiums bλt to which they apply a test statistic that is
t-distributed and that allows to test for significantly evaluated risk factors, see Eq. (4).

t λk
� � ¼ λk∗T

1
2

s bλk

� � (4)
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with T = numbers of observations, λk = arithmetic mean of bλkt, and s(λk) = standard deviation

of the monthly estimates bλkt.

Wavelet analysis is then applied to decompose the risk factors and asset returns. The test for
significantly evaluated risk factors is not only performed on an aggregate level but also at
different time scales that allow information to be of relevance for certain time periods only.
Furthermore, we also apply wavelet to distinguish expected and unexpected components of
the risk factors. This approach results in the identification of risk factors that remain significant
over longer time periods, the problem of parameter constancy is therefore mitigated as well.

This approach reduces the variance of the estimated means of the risk premiums. Furthermore,
it shows that only certain scale information of the risk factors remains important over time. We
find that this approach improves on the findings which fundamental factors are significant in
explaining stock market returns. For a detailed derivation of the estimation equations and the
results in which fundamental factors are significantly evaluated in the stock market, see [7].

2.2. Term structure of interest rates

The models to explain the term structure of interest rates have been of interest to researchers
for a long time. The models differ in the purpose they are built for. In our analysis, we assume
that the data generating process for term structure of interest rates can be expressed as an
approximate factor model as in the previous section. Those types of models are especially
meaningful if the task at hand is to forecast future term structures of interest rates. The models
that generate good forecasts and are equally satisfying from a theoretical, arbitrage-free view-
point have been developed, for example, see [12–14]. The risk factors are found to represent
information with regards to the level, slope, and curvature of the term structure of interest
rates. We find that in this market too, for the same reasons as before, an analysis on an
aggregate level can be misleading so that we perform our analysis on a scale-by-scale basis.
We then apply the procedure of Fama/MacBeth to test for significance of risk factors. The
Nelson-Siegel model approximates the actual yield curve observed in the market on any
specific date t for zero rates y with maturity τ through the following Eq. (5):

yt τð Þ ¼ β0t þ β1t
1� e�γτ

γτ

� �
þ β2t

1� e�γτ

γτ
� e�γτ

� �
(5)

with β0t, β1t, β2t, and γ as model parameters [15].

The respective βi’s can be viewed as dynamic factors that represent short-, medium-, and long-
term behavior [12]. The factors level (β0), slope (β1), curvature (β2), and γ the mean reversion
rate are then identified as risk factors. The models parameters are then estimated by assuming
an autoregressive, dynamic data generating process for the factors.

The dynamic generalized Nelson-Siegel [14] embeds the Nelson-Siegel approach in an
arbitrage-free setting. In order to ensure the absence of arbitrage, the number of risk factors
has to be increased to five.
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The exact APT equation is given by Eq. (3).
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This is the APT equation which we use in the empirical analysis to identify statistically
significant risk factors. Without idiosyncratic risk, Eq. (3) is an immediate result arising from
the absence of arbitrage opportunities, because a riskless portfolio is then simply a combina-
tion of assets such that the portfolio is insensitive with regards to the risk of the risk factors and
therefore orthogonal to the column space of the B-matrix.

The factor models based on the APT can be summarized by four different model types
according to the different ways to choose risk factors. They can be macro-economic, funda-
mental, statistical or non-linear. Once the factors are determined the asset returns sensitivities
toward themmust be estimated. In the second step, the estimated sensitivities are incorporated
in a cross-section regression and the risk premiums are estimated.

After some transformation, Fama/MacBeth derived an OLS-estimator for risk premiums at

every point in time bλt ¼ bBk
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results in a time series of estimated risk premiums bλt to which they apply a test statistic that is
t-distributed and that allows to test for significantly evaluated risk factors, see Eq. (4).
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with T = numbers of observations, λk = arithmetic mean of bλkt, and s(λk) = standard deviation

of the monthly estimates bλkt.

Wavelet analysis is then applied to decompose the risk factors and asset returns. The test for
significantly evaluated risk factors is not only performed on an aggregate level but also at
different time scales that allow information to be of relevance for certain time periods only.
Furthermore, we also apply wavelet to distinguish expected and unexpected components of
the risk factors. This approach results in the identification of risk factors that remain significant
over longer time periods, the problem of parameter constancy is therefore mitigated as well.

This approach reduces the variance of the estimated means of the risk premiums. Furthermore,
it shows that only certain scale information of the risk factors remains important over time. We
find that this approach improves on the findings which fundamental factors are significant in
explaining stock market returns. For a detailed derivation of the estimation equations and the
results in which fundamental factors are significantly evaluated in the stock market, see [7].

2.2. Term structure of interest rates

The models to explain the term structure of interest rates have been of interest to researchers
for a long time. The models differ in the purpose they are built for. In our analysis, we assume
that the data generating process for term structure of interest rates can be expressed as an
approximate factor model as in the previous section. Those types of models are especially
meaningful if the task at hand is to forecast future term structures of interest rates. The models
that generate good forecasts and are equally satisfying from a theoretical, arbitrage-free view-
point have been developed, for example, see [12–14]. The risk factors are found to represent
information with regards to the level, slope, and curvature of the term structure of interest
rates. We find that in this market too, for the same reasons as before, an analysis on an
aggregate level can be misleading so that we perform our analysis on a scale-by-scale basis.
We then apply the procedure of Fama/MacBeth to test for significance of risk factors. The
Nelson-Siegel model approximates the actual yield curve observed in the market on any
specific date t for zero rates y with maturity τ through the following Eq. (5):
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with β0t, β1t, β2t, and γ as model parameters [15].

The respective βi’s can be viewed as dynamic factors that represent short-, medium-, and long-
term behavior [12]. The factors level (β0), slope (β1), curvature (β2), and γ the mean reversion
rate are then identified as risk factors. The models parameters are then estimated by assuming
an autoregressive, dynamic data generating process for the factors.

The dynamic generalized Nelson-Siegel [14] embeds the Nelson-Siegel approach in an
arbitrage-free setting. In order to ensure the absence of arbitrage, the number of risk factors
has to be increased to five.
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The above models increase the number of explanatory factors according to theoretical consid-
erations. In our analysis, we test whether there is statistical evidence for the proposed risk
factors to be significantly evaluated by the market. As before, we acknowledge that there
might be inefficiencies present in the market. Similar to stock markets, we then assume an
approximate factor structure to hold in the bond markets. As before, we then test for signifi-
cance using the Fama/MacBeth approach. The data used consist of European Zero Coupon
Curves estimated by ICAP and provided by Thomson Reuters. We then determine whether
risk factors are significant for every time scale and not only on an aggregate level. Similar to
our analysis with regards to the stock markets, we find that the significance of the risk factors
varies with different time scales. By reconstructing the time series using the significant time
scales only, we concentrate on a relatively small number of wavelet functions. We then inves-
tigate the scaled and significantly evaluated risk factors for their ability to help forecast the
term structure of interest rates. In our analysis, we can only detect four significantly evaluated
risk factors for the term structure of interest rates [16].

2.3. Corporate bonds

Structural models based on the idea of Merton result in theoretical credit spreads that signifi-
cantly deviate from observable corporate bond markets spread [17]. The models can only
explain a limited proportion of corporate bond market spreads even if tax asymmetries,
liquidity, and conversion options are considered. This empirical finding is referred to as the
credit spread puzzle [18]. Similarities between equity and corporate bond market’s risk have
long been recognized and risk factors similar to those applied in stock markets are included in
the analysis of corporate bond spreads, for example see [2]. The set of explanatory variables is
enriched by other researchers to also account for market inefficiencies. For example, it can be
assumed that there are limits to arbitrage which combined with noise leads to predictable
deviations of market prices from the asset’s fundamental value [19]. A solution could be a
dynamic model with dispersed information in which noisy investors only learn about funda-
mental information with a time delay in order to solve the puzzle. Furthermore, it can be
assumed that market participants develop habit formation [20]. Other researchers find that
there are higher spreads for bonds for which analysts’ forecasts are more diverse, i.e., that
higher risk premiums are present for bonds where there is higher disagreement [21, 22].
Furthermore, the necessity to analyze varying frequency behavior in the data has been
documented for credit markets, for example see [23]. In contrast to the stock and bond market,
we do not impose Ross’ approximate factor structure, but instead we use Merton’s approach to
postulate a straightforward relationship between credit spreads and risk factors that influence
the corporate’s ability to pay back its debt and credit spreads on corporate bond markets in
general (fundamental factors). If the purpose is to analyze corporate bond markets jointly, the
assumption of Ross’s factor structure would become necessary.

To estimate the proportion of credit spreads (cs) explained by risk factors, Eq. (6) has to be
analyzed econometrically.

cst ¼ a þ b ðxtÞ þ ut (6)

with ut being a white noise error term, and xt being the risk factors.
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Risk factors represent risks arising from the possibility to default, term structure of interest
rates, equity markets, liquidity from mutual funds, and business cycle. Huang and Kong find
that for B (BB) rated corporate bonds approx. 68% (61%) of the variation in credit spreads can
be explained by respective risk factors [2]. For investment grade bonds however they find that
the proportion explained is much lower. Inefficiencies can lead to a higher proportion being
explained by the models, for example see [19, 21]. Again we want to analyze the data at
different time horizons and simultaneously allow for inefficiencies such as delayed learning
about relevant information or other forms of feedback, or technical trading and account for
different investment horizons of market participants.

We decompose the data with wavelet analysis. We then test for significantly evaluated risk
factors on a scale-by-scale basis, we find that only four factors can be viewed as significantly
evaluated by the market [16].

In the following section, we describe the respective analysis in detail for the European corpo-
rate bond market.

3. Estimation techniques

Wavelet analysis estimates the frequency structure of a time series and in addition to that it
keeps the information when an event of the time series takes place. This way an event can be
localized in the time domain with regards to its time of occurrence although frequencies are
analyzed as well. The functions at the heart of our analyses are wavelets. In contrast to co-sine
functions (waves), wavelets are not defined over the entire time axis but have limited support.
In order to achieve the ability to analyze relationships for different time periods, the wavelets
are moved over the time axis and at the various scales the support is accordingly. By doing so it
is possible to allow for changing regime shifts and the problem of parameter constancy is less
severe which removes the necessity to eliminate extreme market moves from a purely statisti-
cal point of view. The length (width) of a wavelet on a certain scale represents an investment
period of interest. The maximal overlap discrete wavelet transform (MODWT) increases the
support of the dilated wavelet with increasing scale, thereby increasing the investment period.
The advantage of this form of discrete wavelet transform is that it can be applied to any
number of observations of the time series of interest.

Wavelets (ψj, k and ϕJ,k) when multiplied with their respective coefficients at a certain level “j”
or “J” are called atoms Dj,k and SJ,k (i.e., dj,k*ψj,k = Dj,k and sJ,k*ϕJ,k = SJ,k) with ψj,k and ϕJ,k being
the wavelet and scaling functions at level “j” or “J” and “k” indicating the location of the
wavelet on the time axis. The sum of all atoms SJ,k(t) and Dj,k(t) over all locations on the time
axis k = 1, …, n

2j
at a certain level “j” or “J” are given by Eqs. (7) and (8).

SJ tð Þ ¼ ϕJ, k at level J (7)

Dj tð Þ ¼
Xn
2j

k¼1

dj, kψj, k∀j ¼ 1,…, J (8)
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dynamic model with dispersed information in which noisy investors only learn about funda-
mental information with a time delay in order to solve the puzzle. Furthermore, it can be
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there are higher spreads for bonds for which analysts’ forecasts are more diverse, i.e., that
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we do not impose Ross’ approximate factor structure, but instead we use Merton’s approach to
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at a certain level “j” or “J” are given by Eqs. (7) and (8).

SJ tð Þ ¼ ϕJ, k at level J (7)

Dj tð Þ ¼
Xn
2j

k¼1

dj, kψj, k∀j ¼ 1,…, J (8)

Empirical Support for Fundamental, Factor Models Explaining Major Capital Markets Using Wavelets
http://dx.doi.org/10.5772/intechopen.74725

73



Defining the importance of information to be valid for a specific time period only, the time
series are decomposed into their respective resolutions in time (time scales). The time series are
then approximated using only parts of the coefficients and their respective wavelets, i.e., the
multiresolution decomposition is applied to the time series which are then in turn
reconstructed using only the significant portions at the various scales.

The wavelets used in the analysis are “symmlets.” Those wavelets are best suited for the
analyses because their characteristics are closest to the functions used in the classical Fourier
analysis in that they are symmetric and do not contain jumps. This makes most sense if our
goal is to analyze the time series in the time and frequency domain. As co-sine functions, the
chosen wavelets should not require an interpretation in itself. In that sense, those wavelets are
the most “neutral” functions so that no other wavelet functions are considered that would
require additional explanations. Our goal is to be able to allow for an analysis on different
scales but we would like to keep as much structure of the original time series as possible. The
decomposition of the data is done by identifying significant wavelets at certain scales, i.e.,
wavelets with a specific support on the time axis. The search for significant wavelets is then
repeated on the next higher scale (lower frequency). With each increase of the wavelets´ widths
a new scale is defined. The number of scales used in this analysis equals four (i.e., J = 4) which
is a direct result of the number of observations available. For an explanation of how many
levels are recommendable, see [24]. Level “j” wavelet coefficients are associated with periods
[2j, 2j+1]. The sums of all atoms at all levels—one to four—result in the original time series.

We perform the regression analysis at each level. Asset returns are regressed on risk factors at
different time scales, i.e., the factor pricing equations are estimated at every time scale 1, …, J
using the reconstructed time series as outlined before (see Eqs. (9) and (10)):

cstð Þ dj
� � ¼ aþ b xtð Þ dj

� �þ ut for all d1 to d4 (9)

cstð Þ s4½ � ¼ aþ b xtð Þ s4½ � þ ut s4 (10)

The proportion explained by the risk factors is therefore estimated at each time scale.

4. Empirical analysis

4.1. The data

The credit index data used in this analysis are taken from Bank of America/Merrill Lynch. We
use monthly OAS spreads of corporate bond indexes for the time period January 2000 to
January 2013. We analyze EMU corporates in the rating category BBB-A (all EMU Corporates).
The analysis is performed by using the indexes for various times to maturities 1–3, 3–5 in case
of investment grade corporates. The differentiation is necessary to address the phenomenon
that short maturities of investment grade corporate bonds depict a higher extend of the credit
spread puzzle. For the Euro high yield market we use the Euro high yield index which
contains firms with credit ratings BB and lower. Due to concerns with regards to biases caused
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by low liquidity we do not distinguish the high yield index with regards to time to maturity.
As explanatory variables, the level, slope and volatility of the bond markets are calculated
from the monthly time series for European government term structures of interest rates avail-
able from the same source. Data with regards to the stock index Dax are included in the
analysis to capture risk characteristics present in the stock markets. Volatility for the stock
market is calculated from that time series. Data with regards to European corporate default
probabilities are taken from Moody’s. Monthly 1-year and 5-year default rates for European
investment grade and Caa-C rated companies are available from January 2000 to April 2012.
Due to data availability and quality of the data, the 5-year default rates are combined with 1-
year default rates.

4.2. Wavelet analysis

We decompose each time series using the maximal overlap discrete wavelet transform
(MODWT), i.e. the time series European credit spreads, Government Yields, Slopes, Volatil-
ities, monthly return of Dax, volatility of monthly return of Dax, and Moody’s default rates for
European Investment Grade Corporates and CCC-Lower-Rated Corporates are decomposed
to their respective time and frequency domain components as explained in section 3. Calculat-
ing the volatility from the monthly return data, the number of monthly observations we are left
to be able to use is 132 (January 2001 to April 2012). As a result of the number of observations
the number is set to four. The MODWT estimates the wavelet coefficients “d1” to “d4” and
“s4” scaling coefficients.

The decomposition of the time series and the amount of variation explained with Crystals (sum
of wavelets and their estimated coefficients at levels j = 1,…, 4) are summarized in Table 1.

The risk factors are well explained by coarse scales (low frequencies, e.g., “s4”). The only
variable that has different features is the return of the DAX index. In that case the high

“d1” “d2” “d3” “d4” “s4”

EMU corporates all maturities spread 0.3 0.4 2.2 5.5 91.5

EMU corporates 1–3 year maturity spread 0.4 0.6 2.7 7.2 89

EMU corporates 3–5 year maturity spread 0.3 0.5 2.4 5.6 91.2

Euro high yield spread 0.4 1 2.1 4.6 92

DAX return 46 25 12 8 8

DAX volatility 0.1 0.4 2.4 3 94.1

Euro government 10-year yield 0.1 0.1 0.3 0.4 99

Euro government yield curve slope 0.4 0.5 1.4 1.7 96

Euro government yield volatility 0.1 0.3 1.9 4.4 93.2

European investment grade default rates 0.1 0.2 0.3 1.7 97.7

European high yield default rates 0.5 0.7 1.6 6.8 90.3

Table 1. Variation of the time series explained by crystals (in %).
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Defining the importance of information to be valid for a specific time period only, the time
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multiresolution decomposition is applied to the time series which are then in turn
reconstructed using only the significant portions at the various scales.

The wavelets used in the analysis are “symmlets.” Those wavelets are best suited for the
analyses because their characteristics are closest to the functions used in the classical Fourier
analysis in that they are symmetric and do not contain jumps. This makes most sense if our
goal is to analyze the time series in the time and frequency domain. As co-sine functions, the
chosen wavelets should not require an interpretation in itself. In that sense, those wavelets are
the most “neutral” functions so that no other wavelet functions are considered that would
require additional explanations. Our goal is to be able to allow for an analysis on different
scales but we would like to keep as much structure of the original time series as possible. The
decomposition of the data is done by identifying significant wavelets at certain scales, i.e.,
wavelets with a specific support on the time axis. The search for significant wavelets is then
repeated on the next higher scale (lower frequency). With each increase of the wavelets´ widths
a new scale is defined. The number of scales used in this analysis equals four (i.e., J = 4) which
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cstð Þ dj
� � ¼ aþ b xtð Þ dj

� �þ ut for all d1 to d4 (9)

cstð Þ s4½ � ¼ aþ b xtð Þ s4½ � þ ut s4 (10)
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The analysis is performed by using the indexes for various times to maturities 1–3, 3–5 in case
of investment grade corporates. The differentiation is necessary to address the phenomenon
that short maturities of investment grade corporate bonds depict a higher extend of the credit
spread puzzle. For the Euro high yield market we use the Euro high yield index which
contains firms with credit ratings BB and lower. Due to concerns with regards to biases caused
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frequencies contribute the most in explaining the variation of the time series. The other vari-
ables are best explained by time scales ranging from “d4” to “s4,” whereas the return of the
DAX is best explained by time scales “d1” to “d3.”

At each scale “j” the coefficients are associated with time periods [2j, 2j+1]. The decomposition of
the monthly data allows us to extract components of the data that prevail in the medium or long
term. At the highest frequency of the monthly data—at scale “d1”—coefficients approximate
reactions to information for the time period of 2–4 months. At scale two, three, and four, the
respective time periods are 4–8 months, 8–16 months, 16–32 months. We associate the scales
“d1,” “d2,” and “d3” with the medium term (short medium term equals 2–4 months, medium
term 4–8 months, and longer medium term 8–16 months). The remaining two scales at the lower
frequencies represent long-term behavior (1.3–2.6 years and longer). Extracting the components
of the data that are influential in the medium or long term allows us to detect patterns that can be
a result of different investment behavior or different information used in forming expectations,
i.e., we are able to allow for inefficiencies in the credit market as outlined above.

In a next step we regress the credit spreads on the explanatory variables on a scale-by-scale
basis, i.e., we restrict features of the data to be of importance in the medium (“d1” to “d3”) or
long term (“d4” to “s4”). After decomposing the regression variables, we reconstruct the time
series using features of the time series at the respective resolutions 1, …, 4 only, thereby
restricting their variation to the respective time scale. On the other hand, it allows for the
possibility that information from more than just the previous period continues to be of influ-
ence in explaining credit spreads. By analyzing the amount of the variation explained in a
regression (R2) of the decomposed data at various time scales, we can infer which of the above
outlined possible expectation formations is significant in the medium and long run. Table 2
summarizes the regression results for regressing European investment grade and European
high yield credit spreads on the explanatory variables when the data are decomposed, i.e.,
when the time series are reconstructed to represent behavior present at scales “d1” to “s4.”

Determining significant components gives us insights into how long time periods are for
processing information. For the short medium term (2–4 months), we find that the default rate
is either not significant (“d1” for EMU Corporate all maturities, and “d1,” and “d2” for EMU
high yield) or even of negative influence. This is a strong indication that the fundamentals are
influential for longer time periods only, but do not explain well the variation in investment grade
credit spreads for shorter time periods. The credit spread puzzle therefore manifests itself if the
data are analyzed on time scales and in that the default rate is not significant in explaining credit
spreads at all at some time scales. At the time scales that carry most of the energy, the default rate
is significantly positive in explaining the investment grade credit spreads, i.e., for time periods
(1.3–2.6 years). For high yield spreads, the default rate is significant only for a longer time
horizon (8 months and above). We find that the influence of other explanatory variables changes
at the various time scales as well. At the coarsest scale “s4,” we find all explanatory variables of
significant influence for the credit spreads. However, at scale “d3” (i.e., for a time period of 8–
16 months), the variables that capture the volatilities in the stock and bond markets cannot be
viewed as being significant variables. The volatility of the DAX, although of importance in the
aggregate data, loses its significance for investment grade credit spreads on several scales. It
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continues to be important in explaining the high yield spreads though (with the exception of
“d3”), which is another indication for the fact that stock market characteristics are more influen-
tial in the high yield bond markets than in the investment grade bond markets. The R2 supports
the fact that has to be performed allowing for inefficiencies in the markets. We find that the
amount of the variation in credit spreads explained by the identified risk factors is highest for
time horizons from 1.3 to 2.6 years and above. The R2 at these time horizons in case of the
investment grade bonds is 85–98%. Similar results are achieved to the high yield spreads. For
shorter time periods, the amount of variation explained is much lower.

We therefore conclude that if information from the fundamental risk factors is allowed to be of
influencing longer time periods (1.3–2.6 years and above), then the variables from Eqs (9) and (10)

DAX DAXV Yield Yield slope Yield vola. Default rate R2

EMU corporates all maturities credit spread

d1 �275 2.3* 40.9 �131 890 257 0.1

d2 �16 0.1* �21.3* 39.9* �264.6* �7079* 0.53

d3 �418* 0.03 �19.8 72.9* 19.3 �10662* 0.61

d4 �365.7* 0.01 �77* 21.7* 323.4* 14632* 0.85

s4 �2278* 0.4* �114* 65.2* �645.2* 5518* 0.98

EMU corporates maturity 1–3 years credit spread

d1 1.1 �0.0 �52.2* 46.2* �18.1 �4219* 0.48

d2 20.7 0.1* �18.1* 57* �317.2* �8857* 0.55

d3 �336* 0.02 �34.7* 86* 12.7 �6722* 0.61

d4 �399* 0.0 �96.5* 36.8* 368.3* 16641* 0.85

s4 �2201* 0.45* �112* 83.7* �670.5* 5381* 0.98

EMU corporates maturity 3–5 years credit spread

d1 �26 0.05 �42.9* 24.8* �53.1 �3471* 0.44

d2 �27 0.1* �29.9* 40.6* �243.5* �7071* 0.53

d3 �410* 0.03 �23.4* 76.1* 14.2 �10330* 0.64

d4 �348* 0.0 �79.5* 23.2* 306.5* 14859* 0.87

s4 �2610* 0.4* �111* 59* �520* 4130* 0.98

EMU corporates high yield credit spread

d1 �275 2.2* 40.9 �132 890 257 0.09

d2 �792 2.3* 109.9 �333.5 �1025 1029 0.12

d3 �6267* 0.2 �71.1 700.7* 117.9 2622* 0.38

d4 �4765* 1.3* �135.9 �404.3* 5096* 4224* 0.84

s4 �9471* 2.8* �411* 340* �4762* 6988* 0.96

*Indicates significance at a 5% confidence level.

Table 2. Regression results for the European investment grade and high yield credit spreads on explanatory variables
using reconstructed time.
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frequencies contribute the most in explaining the variation of the time series. The other vari-
ables are best explained by time scales ranging from “d4” to “s4,” whereas the return of the
DAX is best explained by time scales “d1” to “d3.”

At each scale “j” the coefficients are associated with time periods [2j, 2j+1]. The decomposition of
the monthly data allows us to extract components of the data that prevail in the medium or long
term. At the highest frequency of the monthly data—at scale “d1”—coefficients approximate
reactions to information for the time period of 2–4 months. At scale two, three, and four, the
respective time periods are 4–8 months, 8–16 months, 16–32 months. We associate the scales
“d1,” “d2,” and “d3” with the medium term (short medium term equals 2–4 months, medium
term 4–8 months, and longer medium term 8–16 months). The remaining two scales at the lower
frequencies represent long-term behavior (1.3–2.6 years and longer). Extracting the components
of the data that are influential in the medium or long term allows us to detect patterns that can be
a result of different investment behavior or different information used in forming expectations,
i.e., we are able to allow for inefficiencies in the credit market as outlined above.

In a next step we regress the credit spreads on the explanatory variables on a scale-by-scale
basis, i.e., we restrict features of the data to be of importance in the medium (“d1” to “d3”) or
long term (“d4” to “s4”). After decomposing the regression variables, we reconstruct the time
series using features of the time series at the respective resolutions 1, …, 4 only, thereby
restricting their variation to the respective time scale. On the other hand, it allows for the
possibility that information from more than just the previous period continues to be of influ-
ence in explaining credit spreads. By analyzing the amount of the variation explained in a
regression (R2) of the decomposed data at various time scales, we can infer which of the above
outlined possible expectation formations is significant in the medium and long run. Table 2
summarizes the regression results for regressing European investment grade and European
high yield credit spreads on the explanatory variables when the data are decomposed, i.e.,
when the time series are reconstructed to represent behavior present at scales “d1” to “s4.”

Determining significant components gives us insights into how long time periods are for
processing information. For the short medium term (2–4 months), we find that the default rate
is either not significant (“d1” for EMU Corporate all maturities, and “d1,” and “d2” for EMU
high yield) or even of negative influence. This is a strong indication that the fundamentals are
influential for longer time periods only, but do not explain well the variation in investment grade
credit spreads for shorter time periods. The credit spread puzzle therefore manifests itself if the
data are analyzed on time scales and in that the default rate is not significant in explaining credit
spreads at all at some time scales. At the time scales that carry most of the energy, the default rate
is significantly positive in explaining the investment grade credit spreads, i.e., for time periods
(1.3–2.6 years). For high yield spreads, the default rate is significant only for a longer time
horizon (8 months and above). We find that the influence of other explanatory variables changes
at the various time scales as well. At the coarsest scale “s4,” we find all explanatory variables of
significant influence for the credit spreads. However, at scale “d3” (i.e., for a time period of 8–
16 months), the variables that capture the volatilities in the stock and bond markets cannot be
viewed as being significant variables. The volatility of the DAX, although of importance in the
aggregate data, loses its significance for investment grade credit spreads on several scales. It
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continues to be important in explaining the high yield spreads though (with the exception of
“d3”), which is another indication for the fact that stock market characteristics are more influen-
tial in the high yield bond markets than in the investment grade bond markets. The R2 supports
the fact that has to be performed allowing for inefficiencies in the markets. We find that the
amount of the variation in credit spreads explained by the identified risk factors is highest for
time horizons from 1.3 to 2.6 years and above. The R2 at these time horizons in case of the
investment grade bonds is 85–98%. Similar results are achieved to the high yield spreads. For
shorter time periods, the amount of variation explained is much lower.

We therefore conclude that if information from the fundamental risk factors is allowed to be of
influencing longer time periods (1.3–2.6 years and above), then the variables from Eqs (9) and (10)
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are significantly linked and the amount of variation explained is high. This means if we allow
information from the previous 1.3–2.6 years at scales “d4”and “s4” to be relevant, the propor-
tion of credit spreads explained by risk factors is higher. At the short horizon, technical trading
is perceived to be the most important influence in forming expectations; therefore, the insig-
nificance of the default rate to explain credit spreads for shorter time period is in line with
previous results and market data.

We conclude that aggregating over time scales “d1” to “s4” results in misleading interpreta-
tions of the influence of the various risk factors in explaining credit spreads. Only at time scales
that represent medium terms, the default rate is of significant, positive influence. The amount
of variation explainable with the fundamental risk factors is highest at that time scales. This
supports the fact that fundamental considerations are more important in longer time periods
and that inefficiencies in the credit markets are present at shorter time periods.

5. Conclusion

In this chapter, we give an overview of factor models that are applied to major capital markets.
Ross’ arbitrage pricing theory is chosen as the theoretical background for the stock and bond
markets, since it allows to test for significant risk factors even if there are non-stationary
features present in the data. In case of the corporate bond markets, Merton’s approach is used
to motivate which fundamental factors are chosen to explain market observations. We argue
that the assumptions made in standard econometric procedures to test for significantly evalu-
ated risk factors are responsible for the failure of finding the risk factors explain a higher
proportion of developments on those markets in practice. We use the maximal overlap discrete
wavelet transform to decompose the data into their time-scale components to allow for ineffi-
ciencies on capital markets and to allow for different time periods for adjustments to new
information. The decomposition of the time series with wavelets in the time domain enables us
to interpret data having features at different investment periods. This way we analyze the
influence of various variables at different time scales. We examine the significance of risk
factors and evaluate the proportion of variation explained at various time scales and find that
fundamental factors are especially significant at longer time periods. Wavelet application
allows for a thorough discrimination of various time horizons. The analysis is performed by
the author for all major capital markets and we present new empirical research with regards to
the European corporate bond market in detail as an example. A high percentage of variation in
credit spreads explained by fundamental factors can be found in the medium terms (1.3–
2.6 years) for investment grade and high yield corporates. We conclude that the adjustment
time period to new information is crucial for explaining the credit spreads by risk factors.
Aggregating over the time scales veils the fact that a higher proportion in variation of credit
spreads is explainable with the fundamental factors for the medium term and that the short
term is driven by other factors. These findings confirm our previous findings for major capital
markets where estimation and identification of significant fundamental risk factors improved
when the analyses were done on a scale-by-scale basis.
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are significantly linked and the amount of variation explained is high. This means if we allow
information from the previous 1.3–2.6 years at scales “d4”and “s4” to be relevant, the propor-
tion of credit spreads explained by risk factors is higher. At the short horizon, technical trading
is perceived to be the most important influence in forming expectations; therefore, the insig-
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previous results and market data.
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that represent medium terms, the default rate is of significant, positive influence. The amount
of variation explainable with the fundamental risk factors is highest at that time scales. This
supports the fact that fundamental considerations are more important in longer time periods
and that inefficiencies in the credit markets are present at shorter time periods.

5. Conclusion

In this chapter, we give an overview of factor models that are applied to major capital markets.
Ross’ arbitrage pricing theory is chosen as the theoretical background for the stock and bond
markets, since it allows to test for significant risk factors even if there are non-stationary
features present in the data. In case of the corporate bond markets, Merton’s approach is used
to motivate which fundamental factors are chosen to explain market observations. We argue
that the assumptions made in standard econometric procedures to test for significantly evalu-
ated risk factors are responsible for the failure of finding the risk factors explain a higher
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allows for a thorough discrimination of various time horizons. The analysis is performed by
the author for all major capital markets and we present new empirical research with regards to
the European corporate bond market in detail as an example. A high percentage of variation in
credit spreads explained by fundamental factors can be found in the medium terms (1.3–
2.6 years) for investment grade and high yield corporates. We conclude that the adjustment
time period to new information is crucial for explaining the credit spreads by risk factors.
Aggregating over the time scales veils the fact that a higher proportion in variation of credit
spreads is explainable with the fundamental factors for the medium term and that the short
term is driven by other factors. These findings confirm our previous findings for major capital
markets where estimation and identification of significant fundamental risk factors improved
when the analyses were done on a scale-by-scale basis.
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Abstract

We use multi-scale analysis and a rolling 250-day window to estimate a widely used
standard for empirical asset pricing. The asset pricing model employed is the Fama-
French three-factor model. The model is estimated using stock returns for 49 industry
stocks of US industry portfolios for the period from July 1969 to September 2017. The
rolling window estimation approach allows us to capture the behavior of an investor who
periodically reallocates his portfolio. Employing periodic estimates of expected return, we
implement a set of long/short investment strategies based on the standard Fama-French
three-factor model, and scale versions of the model. We find that during recessions, the
higher scale long/short strategies tend to outperform the standard approach. Our results
suggest distinct risk dynamics at specific horizons during recessions. We conclude that the
information content of the economic phenomena that generate the three-factor model does
not follow strict periodicity during recessions, making the wavelet approach more suit-
able for portfolio managers who must be prepared to rebalance portfolios during official
downturns.

Keywords: wavelets, portfolio returns, investment horizon

1. Introduction

The Holy Grail of finance is an empirical asset pricing model that explains stock returns. Most
models fall under the risk/return umbrella where risk is positively related to return. There are
two basic models in empirical asset pricing, the standard Capital Asset Pricing Model, CAPM
[15, 17, 21] and the Fama/French three-factor model, FF3 [5]. The basic idea behind the CAPM
is that market movements matter a lot for capturing the relationship between risk and return.
The systematic risk measure, beta, is an estimate of the sensitivity of a security or portfolio’s
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returns to market movements. In the risk/return world, the CAPM is considered a one-factor
model in that a single factor, the market return, does all the heavy lifting. The model specifica-
tion is as follows:

rit � rf t ¼ αi þ βi
∗ rmt � rf t
� �þ et (1)

where rit = return of firm i at time t, rmt = market return at time t, and rft = risk free rate at time t.
The slope term, βit, estimates systematic risk. The intercept, αi, measures abnormal returns, or
returns not explained by market exposure of the security or portfolio. In the context of the
CAPM, αi is expected to be zero since only non-diversifiable, also referred to as systematic or
market risk, represents the risk that matters for explaining returns.

While the CAPM remains a cornerstone of financial theory, numerous empirical studies have
called into question the ability of the CAPM to explain the cross-section of expected stock
returns (see for instance, [3]). Several studies have used wavelets to examine the CAPM across
scale. Gencay [7] first proposed the use of wavelets to estimate systematic risk in the Capital
Asset Pricing Model. They estimate the beta of each stock annually for 6 wavelet scales using
daily returns for the period January 1973 to November 2000 for stocks that were in the S&P
500. They find a positive relationship between portfolio returns and beta. Gencay et al. [8]
extend their 2003 study by including stocks from the Germany and UK. They find that scale
matters in other markets in that the relationship between portfolio returns and beta becomes
stronger at high scales. Fernandez [6] applies wavelet analysis to a model of the international
CAPM using a data set that consists of daily aggregate equity returns for seven emerging
markets for the period 1990–2004.1 The ICAPM2 was estimated at 6 scales (2–128 day dynam-
ics). Fernandez finds that market sensitivities are generally greatest at the higher scales of
5 and 6. In addition, the R2 peaked at scales 5 and 6. She concludes that the ICAPM does its
best at capturing the relationship between risk and return at the medium scale or long-term
scale that for their data set is 32–128 days. An important takeaway from research employing
wavelet measures of beta is that when the environment is distinguished by slowly changing
features, or low frequency events the CAPMs’ applicability in terms of providing a measure of
systematic risk improves when using wavelets. This is consistent with the findings of Rua and
Nunes [20] that employs wavelet methodology and provides evidence that market risk varies
across time and over frequencies.3

The adage the proof of the pudding is in the eating is of particular relevance for empirical asset
pricing models. Practitioners want to know if they employ a specific empirical asset pricing
model will their investors benefit? The fierce competition to develop a winning model con-
tinues among various market players, especially hedge funds [2]. The prescription to basically
accept that markets are efficient and form a portfolio that passively tracks the market has
contributed to the growth of index investing, but has not slowed the search for a better model.

1
Brazil, Chile, Mexico, Indonesia, South Korea, Malaysia, and Thailand.

2
ICAPM for two countries E ri � rð Þ ¼ β1cov ri; rwð Þ þ β2cov ri; sð Þ, where ri = returns for domestic asset, rw = returns for
world portfolio, s is the percent change in the exchange rate for domestic and foreign currency.
3
Their application is to Emerging Markets.
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The idea of basically finding other factors besides the market that explain equity returns has
generated many different versions of factor models. One that has gained widespread accep-
tance is the Fama and French three-factor model (FF3). The general consensus is that the FF3
has greater explanatory power than the CAPM. The Fama-French model adds to the explana-
tory power of the standard CAPM by including two additional factors, firm size and the book-
to-market ratio. Both factors were found in previous research to matter for explaining equity
returns. That small firms outperform large cap firms is found in Banz [1], while Barr Rosen-
berg, Kenneth Reid, and Ronald Lanstein [19] find a positive relationship between average
stock returns and book-to-market ratio. Low B/M firms are considered “value stocks” while
high B/M are “growth stocks.” There is strong consensus around the idea that smaller cap
firms are riskier and therefore, generating greater returns beyond what would be expected
from simple market beta exposure is a widely accepted explanation for the size factor. There is
less agreement for an explanation of the value premium, but one is rooted in behavior where
basically relatively cheap stocks outperform relatively expensive stocks because optimism and
pessimism persist among investors. Investors bid up growth stocks leading to future under
performance, and keep down value stocks leading to future over-performance. Both size and
B/M factors are added to their model as factors that account for returns, along with the market
factor as found in the CAPM. The FF3 model is specified as follows:

rit � rf t ¼ αi þ βi
∗ rmt � rf t
� �

beta2i∗SMBt þ β3i
∗HMLt þ et (2)

where SMBt and HMLt are the size and book-to-market factors, respectively. The book-to-
market ratio is intended to capture the difference between value and growth stocks in the
sense that the book-to-market ratio is high for value stocks and low for growth stocks.4

Several studies have examined the Fama-French 3-factor model at the scale level. Kim and In
[10–14] apply wavelets to the Fama-French 3-factor model using monthly data from 1964 to
2004 for 12 industry portfolios. They find that the market variable plays an important role in
explaining stock returns across all scales. In addition, they find that the estimated coefficients
for the SMB and the HML are significant in specific time scales, depending on the industry.
Trimtech et al. [22] apply wavelet analysis to the Fama-French model to study monthly returns
for the French stock market for the period 1985. They find that the r-square of the medium and
high scale versions of the Fama-French model exceed that of the standard model. They also
find that the risk sensitivity of the factors depends on the time scale with the magnitude and
sign of the size and book-to-market factors varying across scale.

We use multi-scale analysis and a rolling 250-day window to estimate the Fama-French
3-factor model of stock returns for 49 industry stocks of US industry portfolios. The data set,
which consists of daily observations, covers the period from July 1, 1969 to September 29, 2017.
We find through risk-adjusting the portfolios using the FF3 model that there are distinct risk
dynamics during recessions. The rolling window estimation approach allows us to capture the
behavior of an investor who periodically reallocates his portfolio. Using periodic estimates of
expected return we implement a set of out-of-sample long/short investment strategies based on

4
Book-to-market is defined and total assets less total liabilities.
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the standard Fama-French model, and also the scale versions of the model. We find that for the
sample as a whole the strategy based on the standard model outperforms each of the scale
based strategies. In other words, frequency-based information does not appear to matter for
portfolio performance when spanning the entire time period. However, during the majority of
recessions, the higher scale long/short strategies tend to outperform the standard approach.
The frequency content of information does appear to matter during recessions. We conclude
that most recessions reflect a time-varying market regime where scale dynamics matter for
portfolio performance. In terms of practioners the results suggest that an avenue for potential
improvement in portfolio performance is found by taking scale into consideration when faced
with potential recessionary periods.

The remainder of this chapter is organized as follows: Section 2 presents the data and basic
statistics. Section 3 describes the methodology. Section 4 presents the empirical findings, and
Section 5 follows with our concluding comments.

2. Data discussion

Our analysis uses daily equity returns for 49 value-weighted industry portfolios for the period
July 1, 1967 to September 29, 2017. The portfolios, which are made available by Kenneth
French at his website,5 are defined by assigning each NYSE, AMEX, and NASDAQ stock to
an industry at the end of June in year t, using Compustat 4 digit SIC codes for the fiscal year
ending in calendar year t�1. The industry definitions, along with basic statistics for daily
returns, are provided in Table 1. The returns, which are shown in excess of the risk free rate,
range from a low of 0.002% for Real Estate to a high of 0.0522% for Tobacco. The sign of the
skewness varies across industries, but the returns for all industries are leptokurtotic.

The period of analysis cover five recessions, which are listed in Table 2. Our analysis of the
performance of the long/short portfolios across scale focuses on these five recessions.

Excess market returns (Mkt), the risk free rate (RF), and the 2 Fama-French factors (SMB and
HML) are also from Kenneth French’s website. Excess market returns include all NYSE,
AMEX, and NASDAQ firms. The risk free rate is the 1-month Treasury bill rate. The two
Fama-French factors are constructed using 6 value-weighted portfolios formed on size and
book-to-market. The size factor, SMB (small minus big) is the average return on the three small
portfolios minus the average return on the three big portfolios. Similarly, HML (high minus
low) is the average return on the three value portfolios minus the average return on the three
growth portfolios. Table 3 contains summary statistics for Mkt, RF, SMB, and HML. The
average return for the HML portfolio exceeds that of the SMB portfolio. The HMB portfolio
has a small negative skew while Mkt and SMB each have a positive skew. The kurtosis for the
SMB portfolio is relatively large.

5
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Sector Name Industry Mean Std.Dev Skewness Kurtosis

Business Equipment Chips Electronic equipment 0.0302 1.6051 0.415 6.48

Business Equipment Hardw Computers 0.0247 1.6601 0.048 11.34

Business Equipment Softw Computer software 0.0271 2.2342 0.023 7.55

Chemicals Chems Chemicals 0.0310 1.2503 �0.142 8.77

Consumer Durables Hshld Consumer goods 0.0227 1.0970 �0.236 9.76

Consumer Non-Durables Agric Agriculture 0.0305 1.4128 0.390 14.57

Consumer Non-Durables Beer Beer & liquor 0.0359 1.1521 �0.401 14.72

Consumer Non-Durables Books Printing and publishing 0.0219 1.2104 �0.284 10.71

Consumer Non-Durables Clths Apparel 0.0266 1.2706 �0.057 6.84

Consumer Non-Durables Food Food products 0.0334 0.9178 �0.044 9.93

Consumer Non-Durables Smoke Tobacco products 0.0523 1.4031 �0.366 7.11

Consumer Non-Durables Soda Cand & soda 0.0350 1.4357 �0.284 10.67

Consumer Non-Durables Toys Recreation 0.0163 1.4800 �0.035 18.54

Consumer Non-Durables Txtls Textiles 0.0268 1.3612 �0.843 22.88

Energy Coal Coal 0.0318 2.4043 �0.187 8.55

Energy Mines Non-metallic and metal 0.0274 1.6273 �0.355 9.47

Energy Oil Petroleum and natural gas 0.0306 1.3598 �0.126 3.94

Health Drugs Pharmaceutical products 0.0341 1.1545 0.205 10.03

Health Hlth Healthcare 0.0243 1.5270 0.471 12.22

Health MedEq Medical equipment 0.0309 1.1857 0.117 7.20

Manufacturing Aero Aircraft 0.0368 1.3506 �0.197 9.90

Manufacturing Autos Automobiles and trucks 0.0213 1.4643 �0.269 6.62

Manufacturing Boxes Shipping containers 0.0294 1.2786 �0.319 10.36

Manufacturing ElcEq Electrical equipment 0.0355 1.3878 �0.380 10.49

Manufacturing FabPr Fabricated products 0.0150 1.5073 �0.441 9.15

Manufacturing Guns Defense 0.0424 1.3798 0.246 16.64

Manufacturing LabEq Measuring and control equip. 0.0290 1.4337 �0.307 10.14

Manufacturing Mach Machinery 0.0272 1.3123 �0.122 7.25

Manufacturing Paper Business supplies 0.0276 1.1143 �0.291 14.22

Manufacturing rubbr Rubber and plastic products 0.0279 1.1525 �0.131 6.20

Manufacturing Ships Shipbuilding, railroad equip. 0.0322 1.5089 �0.296 10.80

Manufacturing Steel Steel works, etc. 0.0165 1.6334 �0.236 9.17

Money Banks Banking 0.0295 1.4384 �0.184 6.51

Money Fin Trading 0.0351 1.4694 �0.564 14.32
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the standard Fama-French model, and also the scale versions of the model. We find that for the
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book-to-market. The size factor, SMB (small minus big) is the average return on the three small
portfolios minus the average return on the three big portfolios. Similarly, HML (high minus
low) is the average return on the three value portfolios minus the average return on the three
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5
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Sector Name Industry Mean Std.Dev Skewness Kurtosis

Money Insur Insurance 0.0313 1.1682 �0.484 11.24

Money RlEst Real estate 0.0022 1.5172 �0.355 8.30

Other BldMt Construction materials 0.0282 1.2248 �0.306 7.41

Other BusSv Business services 0.0242 1.1153 �0.196 10.40

Other Cnstr Construction 0.0246 1.5836 �0.175 6.79

Other Fun Entertainment 0.0429 1.6688 0.342 20.74

Other Gold Precious metals 0.0244 2.3694 �0.018 16.42

Other Meals Restaurants, hotels, motels 0.0301 1.2684 0.299 16.98

Other Other Almost nothing 0.0030 1.4295 0.226 15.55

Other Trans Transportation 0.0273 1.2429 �0.161 11.68

Shops PerSv Personal services 0.0089 1.3192 �0.092 13.46

Shops Rtail Retail 0.0305 1.1679 �0.438 6.14

Shops Whlsl Wholesale 0.0245 1.0612 �0.528 9.46

Telecommunications Telcm Communication 0.0266 1.1191 �0.163 13.71

Utilities Util Utilities 0.0239 0.8743 0.012 21.07

Table 1. Daily return statistics (%), July 1, 1967 to September 29, 2017.

Period Duration (mos)

Nov 1973–Mar 1975 16

Jan–July 1980 6

July 1981–Nov 1982 16

July 1990–Mar 1991 8

Mar 2001–Nov 2001 8

Dec 2007–June 2009 18

Table 2. Recessions and duration in data sample.

MKt SMB HML

Mean 0.0253 0.0032 0.0171

Std. Dev. 1.0248 0.5435 0.5217

Skewness �0.5049 �1.0605 0.3507

Kurtosis 14.8116 23.2372 9.9377

Table 3. Summary statistics for model factors, daily data, July 1, 1967–September 29, 2017.

Wavelet Theory and Its Applications86

Figures 1 and 2 contain the continuous wavelet power plots and time series plots of returns for
Mkt, SMB, and HMB, respectively. For all three series the power tends to be highest for periods
less than 256 days. Of the three series, HMB has the highest volatility of returns, and it tends to
cluster around the recessionary periods. This is particularly true for the last two recessions.
The SMB series has the lowest volatility, however, its power also tends to be highest during
recessions.

Figure 1. Mkt returns and wavelet power.
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3. Methodology

Our analysis of industry returns uses the Maximal Overlap Discrete Wavelet Transform
(MODWT). TheMODWT is calculated using a pyramid algorithm. Given a data series xt, a high

pass wavelet filter ~h1, and a low pass scaling filter ~g1 are applied to obtain wavelet coefficients
~w1 , and scaling coefficients ~v1 . In the second step of the pyramid, the original data series xt is

replaced by ~v1 which is passed a high pass filter ~h2 and a low pass filter ~g2 to obtain wavelet and
scaling coefficients, ~w2 , and ~v2 , respectively. This procedure is repeated up to J times where
J = log2(N). An important feature of the MODWT is that it can be applied to any sample size,
while the Discrete Wavelet Transform (DWT) can only be applied to series of size 2J.6

We apply MODWT to each portfolio of industry returns, as well as, the market returns (MKT),
the size returns (SMB), and the book-to-market returns. For a filter we choose the Daubechies
orthonormal compactly supported wavelet of length L = 8 [4], least asymmetric family. We
selected J = 6, common practice in wavelet applications to empirical asset pricing models for
providing a good balance in the time and frequency localization. The investment horizons we
evaluate cover 2–4 days (J = 1) to 64–128 days (J = 6).

6
See Chapter 4 of Gencay et al. [9] for additional detail.

Figure 2. SMB and HML, returns and wavelet power.
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3.1. Selecting a filter

In this section, we briefly discuss the process involved in selecting a filter. While our empirical
analysis is primarily focused on results using a Daubechies Least Asymmetric filter of length
L = 8, LA(8), we also provide results for two other filters to reflect the sensitivity of our results
to the filter choice. These two alternative filters are the Daubechies extremal phase filter of
length L = 4, DB(4), and the Coiflet filter of length L = 6, C(6).

Percival and Walden [18] point out that in selecting a filter there are two primary consider-
ations, (1) if the filter length is too short it may introduce undesirable anomalies into the
results; (2) if the filter is too long more coefficients will be affected by the boundary condition,
and there will also be a decrease in the localization of the coefficients. They suggest using the
smallest possible filter length that gives reasonable results. They also suggest that if one
requires the filter coefficients to be aligned in time, as we do in or analysis, then the LA(8) is
generally a good choice. It is not surprising that the LA(8) filter is a very common filter choice
in research that applies wavelet methodology to finance.

Figure 3 compares the LA(8) wavelet filter with the two alternative filters used in our analysis.
The filter lengths range from 4 to 8. The DB(4) filter has two vanishing moments; the Coiflet(6)
has two vanishing moments and is nearly symmetric; the LA(8) has four vanishing moments.
The greater the number of vanishing moments the smoother is the scale function.

Since our analysis employs the MODWT, we expect the results to be less sensitive to the filter
choice than if we had used a DWT. As discussed in [18] MODWT details and smooths can be
generated by averaging circularly shifted DWT details and smooths generated from circularly
shifted time series. The averaging smooths out some of the choppiness that is found in DWT
MRAs.7

3.2. Model specification

The specification of the Fama-French model that we estimated is as follows:

rit λj
� �� rf t λj

� � ¼ ai λj
� �þ βi λj

� �
∗ RMt λj

� �� RFt λj
� �� �

þ β2i λj
� �

∗SMBt λj
� �þ β3i∗ λj

� �
∗HMLt λj

� �þ eit λj
� � (3)

where λ ¼ 2j�1, for j = 1, …,6. rit λj
� �� rf t λj

� �
is the excess return for industry portfolio i and

time t, and scale j. RMtλj, RMtλj, SMBt λj
� �

, and HMLt λj
� �

are the Fama-French factor for
scale, j.

After we disaggregate the series to scale we use a rolling 250-day window to estimate the
standard model, and each of the six scale level models. Each time we estimate the models we
calculate the expected return for each industry as of the last day of the estimation period.

7
Percival and Walden provide a comparison of DWTand MODWT smooths for various filters which shows that MODWT
MRAs are less sensitive to the filter type than DWTMRAs. See pp. 195–200 in Percival and Walden for a discussion on the
practical considerations of the MODWT.
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We then rank the expected returns for that estimation period and assign a decile. The long-
short strategy that we employ consists of going long (buying) the top decile, and going short
(selling) the bottom decile. This position is held for 20 days. At the end of the 20 days period we
re-estimate the models using the previous 250 days and repeat the investment selection pro-
cess. Since there are 49 industry portfolios, this means that every 20 days we create a portfolio
that is long 5 industries and short 5 industries. We calculate the out-of-sample cumulative
returns for each 20-day period. We roll this process forward for the entire sample period.

4. Empirical findings

Our discussion of the empirical findings consists of four parts. We begin with a comparison of
the parameters for the standard model parameters and the 6 scale models for the LA(8) filter.
We discuss both sector averages, and industry results. Next, we examine parameter estimates
for the alternative filters, DB(4) and C(6). We then discuss the returns for the long/short
strategy at each scale over the entire sample period. Finally, we turn our focus to the perfor-
mance of the strategies during periods of recession.

4.1. Parameter estimates

4.1.1. LA(8) filter

Table 4 contains sector level averages of the industry ‘beta’ parameter estimates. The differ-
ence between the standard model and the scale models for the industries tends to be modest.
This is generally consistent with studies that have used monthly data to evaluate sector returns
across scale. For instance using the CAPM, McNevin and Nix [16] found only small differences
between the standard beta and wavelet betas for scales 1 and 2.

Figure 3. Three wavelet filters—DB(4), C(6), and LA(8).
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Table 15 (in Appendix) contains the industry level parameter estimates of the market variable, or
the ‘betas’. These parameters are averages of the rolling window estimates. There were a total of
597 rolling window regressions. On average, all of the parameter estimates in Table 15 are
significant at the 95% level of confidence. Table 16 contains the corresponding t-statistics. There
is no definitive pattern to the parameters across scale, though they tend to increase with scale.

Table 5 contains average sector parameters for the size variables. The range of parameters for
the Business Equipment sector is the greatest, ranging from 0.092 for scale 1 to 0.463 for scale 6.
Most of the other sectors do not exhibit a strong pattern across scale. The parameter estimates
for utilities change sign across scale. In this case the sector and industry parameters are the
same. An examination of Table 18 indicates that the standard model size parameter is insig-
nificant for the utilities, but the parameters for scales 4–6 are all negative and significant. As
shown in Table 17, the size parameter at the industry level can vary quite a bit across scale and
in comparison to the standard model indicating that in some industries investors require a
premium for investing in small firm stocks over longer investment horizons. Some examples
include Chips, Software, Mines, Steel, Gold, and Lab. equipment.

Table 6 contains the average sector parameter estimates for the book-to-market factor. Two
sectors with notable differences across scale are Chemicals and Energy. The Chemical sector
only contains a single industry. Table 20 shows the t-statistics for the HML parameter at the
industry level. On average, for the standard model the HML parameter is not statistically
significant. However, it is positive and significant at scales 3–6. Table 19 contains the industry
level parameters for the HML risk factor. As is the case with SMB, the importance of the HML
factor across scale varies widely by industry. Notable difference across scale can be seen in
Coal, Lab. Equipment, and Construction.

Sector Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment 1.184 1.215 1.162 1.138 1.139 1.149 1.147

Chemicals 1.083 1.049 1.086 1.102 1.136 1.176 1.084

Consumer Durables 0.849 0.874 0.831 0.822 0.764 0.769 0.857

Consumer Non-Durables 0.889 0.887 0.891 0.890 0.897 0.879 0.907

Energy 1.108 1.092 1.140 1.141 1.102 1.189 1.018

Health 0.955 0.963 0.986 0.960 0.945 0.948 0.866

Manufacturing 1.061 1.051 1.046 1.083 1.092 1.110 1.070

Money 1.091 1.062 1.086 1.123 1.133 1.109 1.214

Other 1.015 0.996 1.022 1.051 1.043 1.033 0.982

Shops 1.014 1.020 1.015 1.012 1.031 1.038 0.987

Telecommunications 0.888 0.941 0.881 0.867 0.830 0.849 0.805

Utilities 0.709 0.707 0.713 0.729 0.739 0.708 0.728

Table 4. Average Beta parameter by sector—LA(8).
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industry level. On average, for the standard model the HML parameter is not statistically
significant. However, it is positive and significant at scales 3–6. Table 19 contains the industry
level parameters for the HML risk factor. As is the case with SMB, the importance of the HML
factor across scale varies widely by industry. Notable difference across scale can be seen in
Coal, Lab. Equipment, and Construction.

Sector Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment 1.184 1.215 1.162 1.138 1.139 1.149 1.147

Chemicals 1.083 1.049 1.086 1.102 1.136 1.176 1.084

Consumer Durables 0.849 0.874 0.831 0.822 0.764 0.769 0.857

Consumer Non-Durables 0.889 0.887 0.891 0.890 0.897 0.879 0.907

Energy 1.108 1.092 1.140 1.141 1.102 1.189 1.018

Health 0.955 0.963 0.986 0.960 0.945 0.948 0.866

Manufacturing 1.061 1.051 1.046 1.083 1.092 1.110 1.070

Money 1.091 1.062 1.086 1.123 1.133 1.109 1.214

Other 1.015 0.996 1.022 1.051 1.043 1.033 0.982

Shops 1.014 1.020 1.015 1.012 1.031 1.038 0.987

Telecommunications 0.888 0.941 0.881 0.867 0.830 0.849 0.805

Utilities 0.709 0.707 0.713 0.729 0.739 0.708 0.728

Table 4. Average Beta parameter by sector—LA(8).
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4.1.2. Alternative filter parameter estimates: DB(4), C(6) filters

In this section, we provide sector averages of parameter estimates for the Fama-French model
based on two alternative filters.8 Tables 7 and 8 contain the average sector betas for the DB(4)
and C(6) filters, respectively. The sector level averages for the two alternative filters are quite
similar. What is important for our analysis is that they are similar to the results for the LA(8)

8
Industry level parameter estimates and t-statistics for the alternative filters are available from the authors upon request.

Sector Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment 0.175 0.092 0.182 0.242 0.312 0.412 0.463

Chemicals 0.066 0.041 0.090 0.110 0.088 0.029 0.041

Consumer Durables �0.270 �0.289 �0.290 �0.275 �0.175 �0.132 �0.207

Consumer Non-Durables 0.153 0.166 0.147 0.134 0.135 0.188 0.146

Energy 0.247 0.231 0.248 0.291 0.348 0.275 0.303

Health 0.158 0.186 0.164 0.139 0.114 0.120 0.179

Manufacturing 0.260 0.249 0.242 0.297 0.281 0.276 0.291

Money 0.286 0.304 0.291 0.249 0.216 0.190 0.244

Other 0.362 0.342 0.375 0.382 0.366 0.354 0.408

Shops 0.353 0.369 0.358 0.318 0.268 0.320 0.384

Telecommunications �0.196 �0.168 �0.223 �0.207 �0.211 �0.249 �0.091

Utilities �0.031 0.029 �0.018 �0.031 �0.147 �0.231 �0.337

Table 5. Average size parameter by sector—LA(8).

Sector Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment �0.661 �0.640 �0.686 �0.712 �0.672 �0.645 �0.583

Chemicals 0.193 0.145 0.189 0.228 0.270 0.242 0.347

Consumer Durables �0.231 �0.235 �0.231 �0.222 �0.260 �0.388 �0.227

Consumer Non-Durables �0.021 �0.013 �0.016 �0.037 �0.042 �0.069 0.028

Energy 0.444 0.355 0.489 0.495 0.554 0.578 0.653

Health �0.342 �0.268 �0.328 �0.395 �0.394 �0.411 �0.489

Manufacturing 0.188 0.202 0.176 0.197 0.189 0.103 0.152

Money 0.392 0.380 0.380 0.360 0.367 0.394 0.442

Other 0.077 0.070 0.077 0.095 0.074 0.071 0.155

Shops �0.014 0.025 �0.003 �0.039 �0.035 �0.072 �0.114

Telecommunications 0.253 0.305 0.275 0.226 0.196 0.274 0.097

Utilities 0.418 0.372 0.422 0.435 0.467 0.513 0.395

Table 6. Average book-to-market parameter by sector—LA(8).
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filter (Table 4). Tables 9 and 10 contain the sector parameter estimates for the firm size variable
for the DB(4) and C(6) filters, respectively. These parameter estimates are also similar across
filters. Tables 11 and 12 show the parameters for the book-to-market variable for the alterna-
tive filters. In summary, there is very little difference in parameter estimates across the different
filters.

Our comparison of paramater estimates across filters provides support that our parameter
estimates based on the MODWTare not over sensitive to the choice of a filter. The remainder of

Sector Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment 1.210 1.162 1.141 1.141 1.143 1.137

Chemicals 1.051 1.086 1.103 1.131 1.164 1.109

Consumer Durables 0.869 0.835 0.824 0.774 0.781 0.849

Consumer Non-Durables 0.887 0.892 0.889 0.896 0.882 0.905

Energy 1.095 1.133 1.139 1.108 1.161 1.053

Health 0.964 0.983 0.961 0.946 0.949 0.879

Manufacturing 1.050 1.050 1.079 1.091 1.107 1.085

Money 1.063 1.086 1.119 1.130 1.116 1.201

Other 0.996 1.021 1.048 1.043 1.026 1.000

Shops 1.018 1.016 1.012 1.027 1.034 1.002

Telecommunications 0.937 0.883 0.863 0.835 0.848 0.814

Utilities 0.708 0.713 0.727 0.735 0.701 0.714

Table 7. Average Beta parameter by sector—DB(4).

Sector Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment 1.211 1.162 1.142 1.141 1.146 1.139

Chemicals 1.051 1.086 1.103 1.132 1.168 1.105

Consumer Durables 0.870 0.835 0.825 0.773 0.780 0.848

Consumer Non-Durables 0.887 0.891 0.889 0.896 0.882 0.907

Energy 1.095 1.133 1.141 1.109 1.162 1.043

Health 0.964 0.983 0.961 0.947 0.948 0.878

Manufacturing 1.050 1.049 1.079 1.091 1.108 1.082

Money 1.063 1.086 1.119 1.131 1.117 1.202

Other 0.996 1.021 1.048 1.043 1.028 1.000

Shops 1.018 1.016 1.012 1.028 1.035 1.002

Telecommunications 0.937 0.883 0.864 0.835 0.847 0.814

Utilities 0.708 0.713 0.727 0.735 0.701 0.716

Table 8. Average Beta parameter by sector—C(6).
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Industry level parameter estimates and t-statistics for the alternative filters are available from the authors upon request.
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filters. Tables 11 and 12 show the parameters for the book-to-market variable for the alterna-
tive filters. In summary, there is very little difference in parameter estimates across the different
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the chapter focuses on the results for the LA(8) filter—a filter that is widely used in finance
research employing wavelet methodology.

4.2. Long-short strategy

In this section, we review the results of the long/short strategies applied over time. We begin
by examining the average statistics for the out-of-sample results for both the standard Fama-
French model and each of the scales. Table 13 presents a summary of the results.

Sector Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment 0.094 0.176 0.241 0.302 0.406 0.447

Chemicals 0.043 0.083 0.108 0.089 0.026 0.042

Consumer Durables �0.290 �0.288 �0.274 �0.187 �0.143 �0.211

Consumer Non-Durables 0.165 0.148 0.134 0.135 0.175 0.131

Energy 0.234 0.245 0.294 0.334 0.286 0.309

Health 0.185 0.164 0.140 0.121 0.122 0.147

Manufacturing 0.249 0.244 0.292 0.284 0.275 0.292

Money 0.303 0.291 0.253 0.221 0.190 0.232

Other 0.343 0.370 0.380 0.365 0.360 0.395

Shops 0.369 0.355 0.318 0.278 0.318 0.371

Telecommunications �0.172 �0.215 �0.214 �0.212 �0.221 �0.101

Utilities 0.027 �0.015 �0.039 �0.138 �0.215 �0.315

Table 9. Average size parameter by sector—DB(4).

Sector Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment 0.094 0.176 0.242 0.301 0.404 0.446

Chemicals 0.043 0.083 0.108 0.089 0.028 0.043

Consumer Durables �0.290 �0.287 �0.274 �0.186 �0.142 �0.209

Consumer Non-Durables 0.165 0.148 0.136 0.136 0.178 0.135

Energy 0.233 0.245 0.292 0.332 0.279 0.305

Health 0.185 0.164 0.140 0.120 0.125 0.156

Manufacturing 0.249 0.244 0.291 0.284 0.274 0.296

Money 0.303 0.291 0.255 0.222 0.188 0.231

Other 0.343 0.371 0.381 0.366 0.357 0.397

Shops 0.369 0.355 0.319 0.280 0.319 0.375

Telecommunications �0.172 �0.215 �0.213 �0.213 �0.223 �0.105

Utilities 0.027 �0.015 �0.037 �0.139 �0.217 �0.319

Table 10. Average size parameter by sector—C(6).
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On average the cumulative 20-day return for the standard model (2.47%) exceeds all of the
scale models. The scale 4 model has the second highest average cumulative returns (1.71%).
The standard deviations are quite similar for all 7 models. The minimum and maximum
cumulative returns are both quite high for all 7 models. This reflects the fact that there are only
10 positions in the out-of-sample portfolio at any point in time. It may also reflect the fact that
the positions in the portfolio have equal weights (in absolute value). Finally, the Sharpe ratio
for each of the models, even the standard model, is close to zero.

Sector Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment �0.640 �0.685 �0.700 �0.682 �0.634 �0.611

Chemicals 0.147 0.190 0.227 0.260 0.252 0.348

Consumer Durables �0.236 �0.226 �0.221 �0.261 �0.356 �0.225

Consumer Non-Durables �0.014 �0.017 �0.036 �0.042 �0.061 0.022

Energy 0.366 0.475 0.500 0.552 0.570 0.624

Health �0.271 �0.327 �0.395 �0.388 �0.419 �0.465

Manufacturing 0.201 0.181 0.195 0.184 0.117 0.160

Money 0.381 0.382 0.364 0.375 0.393 0.447

Other 0.070 0.078 0.093 0.075 0.076 0.146

Shops 0.020 �0.002 �0.036 �0.038 �0.070 �0.085

Telecommunications 0.302 0.273 0.221 0.206 0.252 0.105

Utilities 0.376 0.420 0.435 0.468 0.500 0.385

Table 11. Average book-to-market parameter by sector—DB(4).

Sector Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment �0.640 �0.684 �0.701 �0.682 �0.637 �0.609

Chemicals 0.147 0.190 0.227 0.261 0.256 0.349

Consumer Durables �0.236 �0.227 �0.220 �0.262 �0.358 �0.224

Consumer Non-Durables �0.014 �0.017 �0.036 �0.042 �0.061 0.021

Energy 0.365 0.476 0.498 0.553 0.573 0.636

Health �0.271 �0.328 �0.392 �0.389 �0.419 �0.464

Manufacturing 0.201 0.180 0.195 0.183 0.116 0.160

Money 0.381 0.381 0.363 0.373 0.391 0.442

Other 0.070 0.078 0.093 0.075 0.076 0.148

Shops 0.021 �0.002 �0.037 �0.040 �0.072 �0.090

Telecommunications 0.302 0.273 0.220 0.207 0.258 0.107

Utilities 0.376 0.420 0.435 0.469 0.502 0.391

Table 12. Average book-to-market parameter by sector—DB(4).
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On average the cumulative 20-day return for the standard model (2.47%) exceeds all of the
scale models. The scale 4 model has the second highest average cumulative returns (1.71%).
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cumulative returns are both quite high for all 7 models. This reflects the fact that there are only
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4.3. Strategy performance during economic recessions

While the scale level model does not seem to improve the long/short strategy overall, an exami-
nation of the returns during recessions tells a different story. As shown in Table 14 and Figures
4–6 for four of six recessions the returns at scale level exceed those using the standard model.

Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Mean 2.47 �0.60 0.40 �0.54 1.71 �0.70 0.85

Std. dev 29.75 28.28 28.50 27.24 26.92 25.81 23.45

Skewness �0.34 0.18 �0.09 �0.07 �0.09 �0.29 �0.20

Kurtosis 2.48 1.60 1.73 1.68 2.50 1.62 0.90

Minimum �166.32 �112.08 �110.44 �117.63 �109.45 �127.75 �97.01

Maximum 106.20 115.68 105.22 100.11 125.54 87.21 74.49

Median 3.82 �0.35 1.21 �0.03 �0.07 0.35 1.08

Sharpe Ratio 0.08 �0.02 0.01 �0.02 0.06 �0.03 0.04

Table 13. Average 20-day cumulative returns for long-short strategy—LA(8).

Figure 4. Out-of-sample returns—long-short strategy LA(8).

Figure 5. Out-of-sample returns—long-short strategy LA(8).
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In particular, the deep recession of the 1970s, as well as, the more recent financial crisis,
illustrates how scale effects matter for designing portfolios that maximize returns (Figures 4–6
and Table 14).

5. Conclusion

The focus of this chapter is on whether adding wavelet methodology to the FF3 model is really
“worth it.” We attempt to show why it makes sense to add this methodology to the empirical
asset pricing toolkit, and ultimately why practitioners should also consider including wavelet
methodology in the mix of empirical asset pricing techniques used to provide advice and select
portfolios for clients. The most fundamental reason for answering in the affirmative regarding
whether wavelet methodology should have a seat at the table of empirical asset pricing models
is that when an identified risk “signal” shows different behavior at different time periods,
wavelet analysis, capable of decomposing data into several time scales, allows the researcher
an opportunity to investigate the behavior of the risk factor/signal over various time scales.
The exploration is richer because it allows windows to vary. Of course, allowing for risk
measures that vary over time and across frequencies is not the same as finding that it will
always matter for the results when compared to a standard approach devoid of such possibil-
ities. Consistent with other research employing scale versions of the FF3 model, we find
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Table 14. Cumulative out-of-sample returns during recessions—LA(8).
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Figure 4. Out-of-sample returns—long-short strategy LA(8).

Figure 5. Out-of-sample returns—long-short strategy LA(8).
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industry-specific effects on size and HML factors that are absent using the standard model.
The large-scale versus fine-scale information distinction that the scale version of the FF3 model
is capable of capturing is found significant for portfolio performance during the majority of
recessions included in our data. Finding that the wavelet-based version of the FF3 model
produces better portfolio outcomes is of importance to practioners, as well as, researchers.
Our main conclusion based on the inter-temporal behavior of financial characteristics esti-
mated with the FF3 model is that risk measures that vary over time and across frequencies
are needed to capture the risk dynamics associated with most downturns. The importance of
scale effects during periods defined as recessions leads us to conclude that the distinct risk
dynamics during recessions are better captured with a methodology that allows for scale
effects, providing yet another reason why wavelet methodology is a worthwhile tool that
belongs in the methodological toolbox of practitioners in finance.

A. Appendix

See Tables 15–20.

Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips 1.190 1.192 1.160 1.145 1.183 1.193 1.309

Business Equipment Hardw 1.045 1.045 0.988 0.974 1.031 1.054 1.017

Business Equipment Softw 1.318 1.408 1.337 1.295 1.204 1.200 1.114

Chemicals Chems 1.083 1.049 1.086 1.102 1.136 1.176 1.084

Consumer Durables Hshld 0.849 0.874 0.831 0.822 0.764 0.769 0.857

Consumer Non-Durables Agric 0.863 0.894 0.844 0.851 0.894 0.850 0.826

Consumer Non-Durables Beer 0.749 0.749 0.762 0.748 0.689 0.734 0.827

Consumer Non-Durables Books 0.913 0.872 0.916 0.929 0.932 1.020 1.071

Consumer Non-Durables Clths 1.041 1.023 1.041 1.080 1.064 1.023 0.982

Consumer Non-Durables Food 0.732 0.759 0.741 0.724 0.701 0.722 0.718

Consumer Non-Durables Smoke 0.815 0.814 0.818 0.828 0.859 0.756 0.817

Consumer Non-Durables Soda 0.810 0.846 0.798 0.741 0.775 0.742 0.892

Consumer Non-Durables Toys 1.072 1.050 1.066 1.063 1.138 1.053 1.017

Consumer Non-Durables Txtls 1.011 0.977 1.031 1.047 1.018 1.012 1.011

Energy Coal 1.211 1.212 1.266 1.238 1.127 1.269 1.091

Energy Mines 1.108 1.064 1.138 1.172 1.192 1.229 1.060

Energy Oil 1.004 1.001 1.016 1.012 0.988 1.071 0.902
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Health Drugs 0.841 0.850 0.874 0.837 0.815 0.867 0.793

Health Hlth 1.086 1.090 1.112 1.093 1.108 1.073 1.030

Health MedEq 0.938 0.949 0.972 0.949 0.911 0.903 0.776

Manufacturing Aero 1.128 1.120 1.137 1.159 1.150 1.146 1.129

Manufacturing Autos 1.216 1.208 1.199 1.220 1.269 1.193 1.151

Manufacturing Boxes 0.962 0.963 0.960 1.005 0.960 1.000 0.986

Manufacturing ElcEq 1.052 1.046 1.024 1.078 1.063 1.091 1.030

Manufacturing FabPr 1.043 1.045 1.014 1.073 1.145 1.059 1.080

Manufacturing Guns 0.868 0.883 0.816 0.848 0.863 0.900 0.858

Manufacturing LabEq 1.113 1.096 1.107 1.105 1.126 1.125 1.108

Manufacturing Mach 1.146 1.116 1.145 1.170 1.189 1.217 1.094

Manufacturing Paper 0.983 0.971 0.982 0.992 1.021 1.059 1.100

Manufacturing Rubbr 0.938 0.927 0.920 0.967 0.958 0.970 0.979

Manufacturing Ships 0.973 0.949 0.932 1.014 1.018 1.167 1.045

Manufacturing Steel 1.309 1.284 1.316 1.362 1.348 1.392 1.275

Money Banks 1.149 1.102 1.157 1.177 1.194 1.163 1.269

Money Fin 1.179 1.135 1.174 1.227 1.242 1.187 1.337

Money Insur 1.015 0.990 1.024 1.036 1.061 1.057 1.128

Money RlEst 1.021 1.021 0.988 1.050 1.035 1.028 1.122

Other BldMt 1.056 1.024 1.066 1.100 1.088 1.057 1.085

Other BusSv 1.028 1.021 1.033 1.051 1.064 1.075 1.030

Other Cnstr 1.277 1.239 1.313 1.335 1.343 1.324 1.249

Other Fun 1.155 1.162 1.182 1.141 1.131 1.161 1.206

Other Gold 0.418 0.337 0.381 0.560 0.551 0.508 0.303

Other Meals 1.006 1.011 1.002 0.990 1.010 0.967 0.926

Other Other 1.030 1.022 1.045 1.080 0.979 1.019 1.038

Other Trans 1.149 1.151 1.151 1.156 1.177 1.155 1.016

Shops PerSv 1.045 1.057 1.039 1.029 1.073 1.109 1.080

Shops Rtail 1.015 1.016 1.038 1.008 1.022 0.969 0.944

Shops Whlsl 0.982 0.988 0.968 1.000 0.998 1.037 0.936

Telecommunications Telcm 0.888 0.941 0.881 0.867 0.830 0.849 0.805

Utilities Util 0.709 0.707 0.713 0.729 0.739 0.708 0.728

Table 15. Average betas by industry.
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips 20.058 18.676 18.987 20.548 22.601 24.972 31.644

Business Equipment Hardw 14.283 13.223 13.377 14.701 16.357 17.872 20.137

Business Equipment Softw 16.634 16.472 15.829 16.850 17.844 18.151 22.771

Chemicals Chems 21.925 19.738 21.799 23.713 25.057 28.151 27.495

Consumer Durables Hshld 17.380 16.028 16.498 18.202 19.852 22.056 27.869

Consumer Non-Durables Agric 8.821 8.099 8.490 9.475 10.377 11.386 14.378

Consumer Non-Durables Beer 10.932 9.917 10.975 11.545 11.508 13.507 17.300

Consumer Non-Durables Books 16.103 13.937 15.865 18.200 19.563 22.655 27.925

Consumer Non-Durables Clths 16.411 14.663 16.097 18.237 19.715 21.163 21.696

Consumer Non-Durables Food 16.342 15.236 16.662 18.015 18.750 19.287 18.581

Consumer Non-Durables Smoke 9.323 8.550 9.024 9.906 11.156 11.715 12.592

Consumer Non-Durables Soda 8.714 8.010 8.347 9.161 10.212 10.908 14.548

Consumer Non-Durables Toys 12.408 10.779 12.248 13.785 16.075 16.381 16.935

Consumer Non-Durables Txtls 14.762 12.818 14.965 16.364 17.847 19.035 19.842

Energy Coal 8.114 7.372 8.192 8.795 8.884 10.583 10.666

Energy Mines 12.208 10.836 12.522 13.965 13.910 15.223 15.581

Energy Oil 15.789 15.538 15.541 16.156 16.021 18.747 16.642

Health Drugs 16.934 16.820 16.901 17.337 17.415 18.129 18.117

Health Hlth 12.257 11.240 12.195 13.315 14.145 14.559 15.944

Health MedEq 15.091 13.963 15.091 16.873 16.795 18.946 17.974

Manufacturing Aero 16.333 14.903 15.914 18.339 19.158 20.647 22.643

Manufacturing Autos 17.121 15.669 16.714 18.524 20.197 21.464 22.892

Manufacturing Boxes 13.697 12.244 13.521 15.476 15.640 20.005 22.820

Manufacturing ElcEq 17.729 16.077 17.329 19.733 20.469 23.810 25.480

Manufacturing FabPr 11.949 10.657 11.535 13.547 15.453 16.114 18.031

Manufacturing Guns 9.236 8.155 8.858 9.972 11.309 13.892 14.047

Manufacturing LabEq 19.115 17.755 18.607 20.774 21.530 23.382 27.771

Manufacturing Mach 25.353 23.134 25.554 27.713 28.412 31.287 30.476

Manufacturing Paper 19.577 18.314 19.622 20.704 21.706 25.180 26.474

Manufacturing Rubbr 15.763 14.015 15.287 18.207 19.327 22.154 26.683

Manufacturing Ships 10.150 9.042 9.782 11.332 12.203 16.396 17.330

Manufacturing Steel 18.723 17.538 18.439 20.513 20.903 22.971 23.042

Money Banks 23.902 23.097 23.248 24.515 24.899 27.025 32.536

Money Fin 28.065 24.606 27.841 32.581 34.215 35.430 42.598

Money Insur 22.791 21.579 22.820 24.652 25.690 25.437 27.779

Money RlEst 13.792 12.192 13.428 15.351 16.482 18.424 23.825
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Other BldMt 23.160 20.729 23.102 25.692 27.509 28.187 30.079

Other BusSv 29.792 26.771 29.044 34.174 36.579 43.397 49.071

Other Cnstr 16.446 14.352 16.451 18.835 20.246 22.905 22.818

Other Fun 12.920 11.579 13.058 14.071 15.282 16.892 20.068

Other Gold 2.172 1.752 1.859 2.948 3.147 2.995 2.716

Other Meals 15.406 14.145 14.902 16.216 18.574 20.730 21.741

Other Other 19.085 17.702 18.328 20.316 21.834 24.979 28.458

Other Trans 20.572 19.167 19.705 22.067 23.519 26.414 23.600

Shops PerSv 14.241 12.781 13.989 15.642 17.178 19.807 22.745

Shops Rtail 21.002 20.071 20.629 21.615 24.246 24.585 25.547

Shops Whlsl 24.826 22.538 24.086 27.632 30.981 36.594 37.185

Telecommunications Telcm 17.784 17.634 16.979 18.254 18.723 20.464 21.987

Utilities Util 17.385 17.873 18.222 18.486 17.156 17.952 20.056

Table 16. Average t-statistics for the Mkt risk parameter.

Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips 0.1998 0.1560 0.1574 0.2144 0.2877 0.3544 0.3876

Business Equipment Hardw �0.2445 �0.4060 �0.2962 �0.1405 0.0260 0.1262 0.1714

Business Equipment Softw 0.5691 0.5265 0.6843 0.6507 0.6234 0.7560 0.8310

Chemicals Chems 0.0664 0.0408 0.0903 0.1104 0.0882 0.0286 0.0412

Consumer Durables Hshld �0.2695 �0.2885 �0.2902 �0.2755 �0.1750 �0.1320 �0.2072

Consumer Non-Durables Agric 0.3758 0.4000 0.3346 0.4365 0.3317 0.4373 0.4856

Consumer Non-Durables Beer �0.1894 �0.1742 �0.1779 �0.2261 �0.2481 �0.1270 �0.1546

Consumer Non-Durables Books 0.3068 0.3146 0.3086 0.2664 0.2520 0.2068 0.1749

Consumer Non-Durables Clths 0.4596 0.4600 0.4668 0.4470 0.3915 0.4289 0.4416

Consumer Non-Durables Food �0.0900 �0.0347 �0.0801 �0.1009 �0.1251 �0.1603 �0.2084

Consumer Non-Durables Smoke �0.2571 �0.2403 �0.2177 �0.3084 �0.2380 �0.2543 �0.2380

Consumer Non-Durables Soda �0.1360 �0.0748 �0.1717 �0.2282 �0.2255 0.0180 �0.0552

Consumer Non-Durables Toys 0.2947 0.2337 0.2728 0.3009 0.3984 0.6079 0.3526

Consumer Non-Durables Txtls 0.6164 0.6125 0.5859 0.6208 0.6822 0.5305 0.5190

Energy Coal 0.5192 0.5225 0.4946 0.5778 0.7556 0.5183 0.2613

Energy Mines 0.4235 0.4023 0.4291 0.4710 0.3921 0.4007 0.7195

Energy Oil �0.2021 �0.2319 �0.1798 �0.1753 �0.1043 �0.0953 �0.0733

Health Drugs �0.2174 �0.1567 �0.2341 �0.2440 �0.2329 �0.2875 �0.3023
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Other BldMt 23.160 20.729 23.102 25.692 27.509 28.187 30.079

Other BusSv 29.792 26.771 29.044 34.174 36.579 43.397 49.071

Other Cnstr 16.446 14.352 16.451 18.835 20.246 22.905 22.818

Other Fun 12.920 11.579 13.058 14.071 15.282 16.892 20.068

Other Gold 2.172 1.752 1.859 2.948 3.147 2.995 2.716

Other Meals 15.406 14.145 14.902 16.216 18.574 20.730 21.741

Other Other 19.085 17.702 18.328 20.316 21.834 24.979 28.458

Other Trans 20.572 19.167 19.705 22.067 23.519 26.414 23.600

Shops PerSv 14.241 12.781 13.989 15.642 17.178 19.807 22.745

Shops Rtail 21.002 20.071 20.629 21.615 24.246 24.585 25.547

Shops Whlsl 24.826 22.538 24.086 27.632 30.981 36.594 37.185

Telecommunications Telcm 17.784 17.634 16.979 18.254 18.723 20.464 21.987

Utilities Util 17.385 17.873 18.222 18.486 17.156 17.952 20.056

Table 16. Average t-statistics for the Mkt risk parameter.

Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips 0.1998 0.1560 0.1574 0.2144 0.2877 0.3544 0.3876

Business Equipment Hardw �0.2445 �0.4060 �0.2962 �0.1405 0.0260 0.1262 0.1714

Business Equipment Softw 0.5691 0.5265 0.6843 0.6507 0.6234 0.7560 0.8310

Chemicals Chems 0.0664 0.0408 0.0903 0.1104 0.0882 0.0286 0.0412

Consumer Durables Hshld �0.2695 �0.2885 �0.2902 �0.2755 �0.1750 �0.1320 �0.2072

Consumer Non-Durables Agric 0.3758 0.4000 0.3346 0.4365 0.3317 0.4373 0.4856

Consumer Non-Durables Beer �0.1894 �0.1742 �0.1779 �0.2261 �0.2481 �0.1270 �0.1546

Consumer Non-Durables Books 0.3068 0.3146 0.3086 0.2664 0.2520 0.2068 0.1749

Consumer Non-Durables Clths 0.4596 0.4600 0.4668 0.4470 0.3915 0.4289 0.4416

Consumer Non-Durables Food �0.0900 �0.0347 �0.0801 �0.1009 �0.1251 �0.1603 �0.2084

Consumer Non-Durables Smoke �0.2571 �0.2403 �0.2177 �0.3084 �0.2380 �0.2543 �0.2380

Consumer Non-Durables Soda �0.1360 �0.0748 �0.1717 �0.2282 �0.2255 0.0180 �0.0552

Consumer Non-Durables Toys 0.2947 0.2337 0.2728 0.3009 0.3984 0.6079 0.3526

Consumer Non-Durables Txtls 0.6164 0.6125 0.5859 0.6208 0.6822 0.5305 0.5190

Energy Coal 0.5192 0.5225 0.4946 0.5778 0.7556 0.5183 0.2613

Energy Mines 0.4235 0.4023 0.4291 0.4710 0.3921 0.4007 0.7195

Energy Oil �0.2021 �0.2319 �0.1798 �0.1753 �0.1043 �0.0953 �0.0733

Health Drugs �0.2174 �0.1567 �0.2341 �0.2440 �0.2329 �0.2875 �0.3023
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Health Hlth 0.5992 0.6107 0.6146 0.6126 0.4997 0.5490 0.6607

Health MedEq 0.0919 0.1046 0.1111 0.0494 0.0739 0.0974 0.1784

Manufacturing Aero 0.1087 0.0759 0.1182 0.1603 0.1775 0.1178 0.1247

Manufacturing Autos �0.0033 �0.1007 �0.0018 0.0975 0.1487 0.1189 0.2935

Manufacturing Boxes 0.1144 0.1614 0.1109 0.1248 0.1137 0.0077 �0.1318

Manufacturing ElcEq 0.0835 0.0799 0.0182 0.1073 0.1636 0.1478 0.1187

Manufacturing FabPr 0.7137 0.7314 0.7014 0.7544 0.7237 0.6921 0.6956

Manufacturing Guns 0.0159 �0.0055 �0.0323 0.0950 0.0378 0.0723 0.0229

Manufacturing LabEq 0.3092 0.2681 0.2857 0.2968 0.3211 0.4689 0.5188

Manufacturing Mach 0.3527 0.3419 0.3153 0.3799 0.4194 0.4127 0.3551

Manufacturing Paper 0.1091 0.1384 0.1146 0.1011 0.0161 0.0108 �0.0158

Manufacturing Rubbr 0.5363 0.5332 0.4960 0.5663 0.5263 0.5307 0.3955

Manufacturing Ships 0.3484 0.3504 0.3106 0.4258 0.2808 0.2984 0.3986

Manufacturing Steel 0.4330 0.4086 0.4614 0.4548 0.4483 0.4327 0.7188

Money Banks 0.0651 0.0740 0.0425 0.0219 0.0581 �0.0553 0.0099

Money Fin 0.2349 0.2459 0.2314 0.1781 0.1735 0.1765 0.1781

Money Insur 0.1104 0.1417 0.1584 0.0839 �0.0180 �0.0752 �0.0715

Money RlEst 0.7355 0.7525 0.7310 0.7134 0.6523 0.7150 0.8606

Other BldMt 0.3607 0.3596 0.3574 0.3410 0.3269 0.3968 0.2694

Other BusSv 0.4879 0.5111 0.4951 0.4573 0.4539 0.4040 0.4887

Other Cnstr 0.6069 0.5831 0.6786 0.5967 0.6344 0.5671 0.5042

Other Fun 0.2688 0.2297 0.2801 0.2886 0.2084 0.4270 0.5197

Other Gold 0.4373 0.3336 0.3802 0.6402 0.5836 0.2535 0.7318

Other Meals 0.1580 0.1199 0.1692 0.1784 0.1175 0.2247 0.2498

Other Other 0.3038 0.3289 0.3575 0.2765 0.3156 0.1769 0.2268

Other Trans 0.2698 0.2699 0.2786 0.2747 0.2905 0.3822 0.2701

Shops PerSv 0.5884 0.6341 0.6142 0.4737 0.4157 0.4531 0.7126

Shops Rtail 0.0531 0.0586 0.0721 0.0506 0.0031 0.0346 0.0209

Shops Whlsl 0.4161 0.4150 0.3876 0.4291 0.3849 0.4720 0.4194

Telecommunications Telcm �0.1961 �0.1676 �0.2229 �0.2066 �0.2111 �0.2495 �0.0907

Utilities Util �0.0315 0.0290 �0.0185 �0.0309 �0.1474 �0.2308 �0.3373

Table 17. Average parameters for SMB by industry.
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips 2.0270 1.6195 1.5146 2.0304 2.8404 3.9464 4.8717

Business Equipment Hardw �2.1448 �3.1135 �2.2787 �1.4227 �0.1158 1.1290 1.8938

Business Equipment Softw 2.4408 2.2554 2.7149 2.4298 2.6073 3.4493 5.0468

Chemicals Chems 0.8049 0.4926 1.0285 1.1941 0.9490 0.3295 0.7415

Consumer Durables Hshld �3.5220 �3.3883 �3.5238 �3.5921 �2.8983 �2.1829 �4.8518

Consumer Non-Durables Agric 2.5105 2.2923 2.1719 2.8455 2.6389 3.4121 5.8980

Consumer Non-Durables Beer �1.7689 �1.6097 �1.7492 �2.0344 �2.1755 �0.8634 �2.7206

Consumer Non-Durables Books 3.2699 3.0658 3.0600 3.0247 2.8598 2.3327 2.7036

Consumer Non-Durables Clths 4.6459 4.2592 4.4068 4.4906 4.3727 4.9556 6.6808

Consumer Non-Durables Food �0.7780 �0.2173 �0.7536 �0.6514 �1.4482 �1.7753 �2.1650

Consumer Non-Durables Smoke �1.9182 �1.6316 �1.6903 �2.2337 �1.8367 �1.8603 �3.0293

Consumer Non-Durables Soda �1.2139 �0.7835 �1.2947 �1.6556 �2.0505 �0.5054 �1.6006

Consumer Non-Durables Toys 2.2761 1.8055 2.1091 2.3271 3.2539 5.5906 2.8274

Consumer Non-Durables Txtls 5.8602 5.3274 5.3666 5.8874 6.9126 6.0350 7.7287

Energy Coal 2.1650 2.0755 1.9526 2.3896 3.6066 2.7436 2.3730

Energy Mines 3.1107 2.7770 3.0812 3.2862 2.9662 2.7582 5.6042

Energy Oil �2.0905 �2.3782 �1.7681 �1.6474 �1.0455 �0.8614 �0.0473

Health Drugs �2.4303 �1.6248 �2.5461 �2.7498 �2.7144 �3.3888 �4.1032

Health Hlth 4.0472 3.8694 3.9082 3.8369 3.8314 4.3567 6.1027

Health MedEq 1.0414 1.1860 1.1565 0.5778 0.6632 1.1281 2.7113

Manufacturing Aero 0.7459 0.2913 0.6606 1.1866 1.6213 1.3320 2.0286

Manufacturing Autos 0.0875 �0.5022 0.1685 0.8437 0.8694 0.8037 3.2068

Manufacturing Boxes 0.9961 1.2750 0.9464 1.0394 0.8415 �0.1866 �2.0069

Manufacturing ElcEq 1.3074 1.1908 0.7994 1.6185 2.1009 2.3364 1.8252

Manufacturing FabPr 5.1538 4.7242 4.9314 5.4761 6.3364 6.1554 7.7016

Manufacturing Guns �0.1197 �0.4346 �0.4361 0.5318 0.2840 0.5103 0.2687

Manufacturing LabEq 3.4862 3.0238 3.1742 3.5787 3.7878 5.3567 8.5789

Manufacturing Mach 4.9237 4.6258 4.3522 4.9186 5.8787 5.6268 5.8431

Manufacturing Paper 1.3213 1.5565 1.2804 1.0202 0.5431 0.0406 0.6256

Manufacturing Rubbr 5.4436 4.8395 4.8241 5.9850 6.1595 7.2427 7.7446

Manufacturing Ships 2.2170 2.0087 2.0331 2.6819 2.0796 2.0421 3.0639

Manufacturing Steel 3.8506 3.5880 4.0202 3.9397 4.2276 3.9885 6.3386

Money Banks 0.8555 1.1092 0.5180 0.2203 0.4598 �1.4619 �0.9630

Money Fin 4.0807 3.8641 3.9287 3.5456 3.3965 2.9959 2.9406

Money Insur 1.5832 1.9682 2.0359 1.1199 �0.1656 �0.8606 �1.7632
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Health Hlth 0.5992 0.6107 0.6146 0.6126 0.4997 0.5490 0.6607

Health MedEq 0.0919 0.1046 0.1111 0.0494 0.0739 0.0974 0.1784

Manufacturing Aero 0.1087 0.0759 0.1182 0.1603 0.1775 0.1178 0.1247

Manufacturing Autos �0.0033 �0.1007 �0.0018 0.0975 0.1487 0.1189 0.2935

Manufacturing Boxes 0.1144 0.1614 0.1109 0.1248 0.1137 0.0077 �0.1318

Manufacturing ElcEq 0.0835 0.0799 0.0182 0.1073 0.1636 0.1478 0.1187

Manufacturing FabPr 0.7137 0.7314 0.7014 0.7544 0.7237 0.6921 0.6956

Manufacturing Guns 0.0159 �0.0055 �0.0323 0.0950 0.0378 0.0723 0.0229

Manufacturing LabEq 0.3092 0.2681 0.2857 0.2968 0.3211 0.4689 0.5188

Manufacturing Mach 0.3527 0.3419 0.3153 0.3799 0.4194 0.4127 0.3551

Manufacturing Paper 0.1091 0.1384 0.1146 0.1011 0.0161 0.0108 �0.0158

Manufacturing Rubbr 0.5363 0.5332 0.4960 0.5663 0.5263 0.5307 0.3955

Manufacturing Ships 0.3484 0.3504 0.3106 0.4258 0.2808 0.2984 0.3986

Manufacturing Steel 0.4330 0.4086 0.4614 0.4548 0.4483 0.4327 0.7188

Money Banks 0.0651 0.0740 0.0425 0.0219 0.0581 �0.0553 0.0099

Money Fin 0.2349 0.2459 0.2314 0.1781 0.1735 0.1765 0.1781

Money Insur 0.1104 0.1417 0.1584 0.0839 �0.0180 �0.0752 �0.0715

Money RlEst 0.7355 0.7525 0.7310 0.7134 0.6523 0.7150 0.8606

Other BldMt 0.3607 0.3596 0.3574 0.3410 0.3269 0.3968 0.2694

Other BusSv 0.4879 0.5111 0.4951 0.4573 0.4539 0.4040 0.4887

Other Cnstr 0.6069 0.5831 0.6786 0.5967 0.6344 0.5671 0.5042

Other Fun 0.2688 0.2297 0.2801 0.2886 0.2084 0.4270 0.5197

Other Gold 0.4373 0.3336 0.3802 0.6402 0.5836 0.2535 0.7318

Other Meals 0.1580 0.1199 0.1692 0.1784 0.1175 0.2247 0.2498

Other Other 0.3038 0.3289 0.3575 0.2765 0.3156 0.1769 0.2268

Other Trans 0.2698 0.2699 0.2786 0.2747 0.2905 0.3822 0.2701

Shops PerSv 0.5884 0.6341 0.6142 0.4737 0.4157 0.4531 0.7126

Shops Rtail 0.0531 0.0586 0.0721 0.0506 0.0031 0.0346 0.0209

Shops Whlsl 0.4161 0.4150 0.3876 0.4291 0.3849 0.4720 0.4194

Telecommunications Telcm �0.1961 �0.1676 �0.2229 �0.2066 �0.2111 �0.2495 �0.0907

Utilities Util �0.0315 0.0290 �0.0185 �0.0309 �0.1474 �0.2308 �0.3373
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips 2.0270 1.6195 1.5146 2.0304 2.8404 3.9464 4.8717

Business Equipment Hardw �2.1448 �3.1135 �2.2787 �1.4227 �0.1158 1.1290 1.8938

Business Equipment Softw 2.4408 2.2554 2.7149 2.4298 2.6073 3.4493 5.0468

Chemicals Chems 0.8049 0.4926 1.0285 1.1941 0.9490 0.3295 0.7415

Consumer Durables Hshld �3.5220 �3.3883 �3.5238 �3.5921 �2.8983 �2.1829 �4.8518

Consumer Non-Durables Agric 2.5105 2.2923 2.1719 2.8455 2.6389 3.4121 5.8980

Consumer Non-Durables Beer �1.7689 �1.6097 �1.7492 �2.0344 �2.1755 �0.8634 �2.7206

Consumer Non-Durables Books 3.2699 3.0658 3.0600 3.0247 2.8598 2.3327 2.7036

Consumer Non-Durables Clths 4.6459 4.2592 4.4068 4.4906 4.3727 4.9556 6.6808

Consumer Non-Durables Food �0.7780 �0.2173 �0.7536 �0.6514 �1.4482 �1.7753 �2.1650

Consumer Non-Durables Smoke �1.9182 �1.6316 �1.6903 �2.2337 �1.8367 �1.8603 �3.0293

Consumer Non-Durables Soda �1.2139 �0.7835 �1.2947 �1.6556 �2.0505 �0.5054 �1.6006

Consumer Non-Durables Toys 2.2761 1.8055 2.1091 2.3271 3.2539 5.5906 2.8274

Consumer Non-Durables Txtls 5.8602 5.3274 5.3666 5.8874 6.9126 6.0350 7.7287

Energy Coal 2.1650 2.0755 1.9526 2.3896 3.6066 2.7436 2.3730

Energy Mines 3.1107 2.7770 3.0812 3.2862 2.9662 2.7582 5.6042

Energy Oil �2.0905 �2.3782 �1.7681 �1.6474 �1.0455 �0.8614 �0.0473

Health Drugs �2.4303 �1.6248 �2.5461 �2.7498 �2.7144 �3.3888 �4.1032

Health Hlth 4.0472 3.8694 3.9082 3.8369 3.8314 4.3567 6.1027

Health MedEq 1.0414 1.1860 1.1565 0.5778 0.6632 1.1281 2.7113

Manufacturing Aero 0.7459 0.2913 0.6606 1.1866 1.6213 1.3320 2.0286

Manufacturing Autos 0.0875 �0.5022 0.1685 0.8437 0.8694 0.8037 3.2068

Manufacturing Boxes 0.9961 1.2750 0.9464 1.0394 0.8415 �0.1866 �2.0069

Manufacturing ElcEq 1.3074 1.1908 0.7994 1.6185 2.1009 2.3364 1.8252

Manufacturing FabPr 5.1538 4.7242 4.9314 5.4761 6.3364 6.1554 7.7016

Manufacturing Guns �0.1197 �0.4346 �0.4361 0.5318 0.2840 0.5103 0.2687

Manufacturing LabEq 3.4862 3.0238 3.1742 3.5787 3.7878 5.3567 8.5789

Manufacturing Mach 4.9237 4.6258 4.3522 4.9186 5.8787 5.6268 5.8431

Manufacturing Paper 1.3213 1.5565 1.2804 1.0202 0.5431 0.0406 0.6256

Manufacturing Rubbr 5.4436 4.8395 4.8241 5.9850 6.1595 7.2427 7.7446

Manufacturing Ships 2.2170 2.0087 2.0331 2.6819 2.0796 2.0421 3.0639

Manufacturing Steel 3.8506 3.5880 4.0202 3.9397 4.2276 3.9885 6.3386

Money Banks 0.8555 1.1092 0.5180 0.2203 0.4598 �1.4619 �0.9630

Money Fin 4.0807 3.8641 3.9287 3.5456 3.3965 2.9959 2.9406

Money Insur 1.5832 1.9682 2.0359 1.1199 �0.1656 �0.8606 �1.7632
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Money RlEst 5.9944 5.4956 5.7325 5.9163 6.1071 7.1971 10.0976

Other BldMt 5.3071 5.0776 5.0110 4.7677 4.9501 5.8093 4.5240

Other BusSv 8.6517 8.1784 8.3038 8.4158 9.0863 9.5592 13.4606

Other Cnstr 5.0753 4.4826 5.3446 4.8955 5.8743 6.6856 6.7519

Other Fun 1.9042 1.6188 1.9848 2.1492 1.5732 3.7308 4.8763

Other Gold 1.4068 0.9538 1.1572 2.0191 2.3464 1.1064 2.9292

Other Meals 1.5560 1.3460 1.6073 1.5225 0.8809 2.6134 2.4165

Other Other 3.6119 3.2794 3.6755 3.2138 4.4955 3.2650 4.9368

Other Trans 3.0650 2.9089 3.0021 3.0266 3.4103 4.8166 3.8428

Shops PerSv 5.0862 5.1274 4.9562 4.2433 3.8334 4.6278 9.3979

Shops Rtail 0.8020 0.8529 0.9481 0.7217 0.0397 0.3771 �0.9400

Shops Whlsl 6.3787 5.7385 5.6478 6.6311 7.2358 10.2466 10.6375

Telecommunications Telcm �2.4523 �1.9666 �2.4536 �2.4007 �3.0064 �3.6550 �1.8704

Utilities Util �0.2203 1.1265 0.0408 �0.2535 �1.9483 �3.0557 �5.3771

Table 18. Average t-statistics for the size parameter, SMB.

Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips �0.5377 �0.5285 �0.5752 �0.6469 �0.5214 �0.4729 �0.3322

Business Equipment Hardw �0.8098 �0.8607 �0.8808 �0.8076 �0.7578 �0.7139 �0.6310

Business Equipment Softw �0.6364 �0.5303 �0.6027 �0.6813 �0.7367 �0.7481 �0.7859

Chemicals Chems 0.1927 0.1449 0.1889 0.2278 0.2695 0.2417 0.3472

Consumer Durables Hshld �0.2313 �0.2352 �0.2307 �0.2223 �0.2604 �0.3878 �0.2267

Consumer Non-Durables Agric 0.0095 �0.0165 �0.0158 0.0992 0.0344 �0.0904 0.0845

Consumer Non-Durables Beer �0.2143 �0.2016 �0.1889 �0.2460 �0.2633 �0.2624 �0.0864

Consumer Non-Durables Books 0.0862 0.0981 0.0933 0.0987 0.0568 0.0769 0.2010

Consumer Non-Durables Clths 0.1122 0.1421 0.1134 0.0999 0.1115 �0.0405 �0.0016

Consumer Non-Durables Food �0.0502 �0.0040 �0.0396 �0.1035 �0.1418 �0.0782 �0.0692

Consumer Non-Durables Smoke �0.1436 �0.1884 �0.1401 �0.1125 �0.0478 �0.0634 �0.0241

Consumer Non-Durables Soda �0.1529 �0.1422 �0.1075 �0.2756 �0.2496 �0.2288 �0.0798

Consumer Non-Durables Toys �0.1494 �0.1311 �0.1945 �0.2309 �0.0376 �0.0763 �0.1821

Consumer Non-Durables Txtls 0.3158 0.3260 0.3353 0.3410 0.1587 0.1391 0.4091

Energy Coal 0.5011 0.3591 0.5568 0.5143 0.6019 0.8063 0.8292

Energy Mines 0.3804 0.3116 0.4216 0.4245 0.5255 0.3970 0.5823

Energy Oil 0.4514 0.3939 0.4899 0.5467 0.5338 0.5298 0.5488
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Health Drugs �0.5554 �0.5052 �0.5491 �0.5895 �0.5725 �0.6042 �0.7282

Health Hlth �0.1292 �0.0484 �0.1273 �0.1609 �0.2080 �0.1178 �0.2578

Health MedEq �0.3412 �0.2495 �0.3072 �0.4346 �0.4019 �0.5114 �0.4813

Manufacturing Aero 0.1564 0.1499 0.1667 0.1944 0.2285 0.0375 0.1123

Manufacturing Autos 0.5113 0.5198 0.4965 0.5262 0.5037 0.4832 0.5802

Manufacturing Boxes 0.0993 0.1472 0.0730 0.0643 0.1148 0.0842 �0.1027

Manufacturing ElcEq �0.0827 �0.0828 �0.1275 �0.0159 �0.1266 �0.2090 �0.1646

Manufacturing FabPr 0.2800 0.3523 0.2280 0.2061 0.2466 0.1813 0.1398

Manufacturing Guns 0.1831 0.2354 0.1139 0.1712 0.1130 0.0979 0.2811

Manufacturing LabEq �0.3127 �0.2836 �0.2694 �0.3621 �0.3496 �0.4837 �0.5052

Manufacturing Mach 0.1358 0.1126 0.1292 0.1661 0.1470 0.1298 0.2192

Manufacturing Paper 0.2291 0.2275 0.2272 0.2515 0.2642 0.1278 0.3562

Manufacturing Rubbr 0.2029 0.2476 0.2163 0.1876 0.1510 0.0427 0.0903

Manufacturing Ships 0.2085 0.2072 0.2072 0.2523 0.1929 0.1642 0.0738

Manufacturing Steel 0.6477 0.5966 0.6558 0.7183 0.7811 0.5844 0.7460

Money Banks 0.5708 0.5330 0.5573 0.5681 0.5618 0.6051 0.6895

Money Fin 0.3545 0.3418 0.3303 0.3266 0.3530 0.3187 0.3266

Money Insur 0.3219 0.3246 0.3257 0.2904 0.3173 0.3464 0.3412

Money RlEst 0.3227 0.3210 0.3064 0.2561 0.2363 0.3058 0.4090

Other BldMt 0.2165 0.1679 0.2457 0.2584 0.2389 0.1483 0.2445

Other BusSv �0.0287 0.0044 �0.0173 �0.0309 �0.0591 �0.0452 �0.1486

Other Cnstr 0.3317 0.3605 0.3720 0.2881 0.2687 0.4498 0.5322

Other Fun �0.1184 �0.0801 �0.1530 �0.1116 �0.1949 �0.2539 �0.0978

Other Gold 0.1358 0.0125 0.0852 0.2177 0.2851 0.2729 0.7532

Other Meals �0.2193 �0.2227 �0.2296 �0.2285 �0.2175 �0.3029 �0.2790

Other Other 0.0386 0.0365 0.0558 0.1012 0.0031 0.0910 0.0652

Other Trans 0.2608 0.2783 0.2557 0.2630 0.2673 0.2069 0.1664

Shops PerSv 0.0106 0.0754 0.0059 �0.0664 0.0108 �0.0061 �0.0195

Shops Rtail �0.1028 �0.0794 �0.0716 �0.1005 �0.1233 �0.2047 �0.3034

Shops Whlsl 0.0510 0.0798 0.0577 0.0503 0.0075 �0.0043 �0.0177

Telecommunications Telcm 0.2525 0.3053 0.2749 0.2256 0.1955 0.2742 0.0969

Utilities Util 0.4179 0.3718 0.4217 0.4349 0.4668 0.5126 0.3949

Table 19. Average parameters for HML by industry.
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Money RlEst 5.9944 5.4956 5.7325 5.9163 6.1071 7.1971 10.0976

Other BldMt 5.3071 5.0776 5.0110 4.7677 4.9501 5.8093 4.5240

Other BusSv 8.6517 8.1784 8.3038 8.4158 9.0863 9.5592 13.4606

Other Cnstr 5.0753 4.4826 5.3446 4.8955 5.8743 6.6856 6.7519

Other Fun 1.9042 1.6188 1.9848 2.1492 1.5732 3.7308 4.8763

Other Gold 1.4068 0.9538 1.1572 2.0191 2.3464 1.1064 2.9292

Other Meals 1.5560 1.3460 1.6073 1.5225 0.8809 2.6134 2.4165
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Shops PerSv 5.0862 5.1274 4.9562 4.2433 3.8334 4.6278 9.3979
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Telecommunications Telcm �2.4523 �1.9666 �2.4536 �2.4007 �3.0064 �3.6550 �1.8704

Utilities Util �0.2203 1.1265 0.0408 �0.2535 �1.9483 �3.0557 �5.3771

Table 18. Average t-statistics for the size parameter, SMB.

Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6
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Consumer Non-Durables Books 0.0862 0.0981 0.0933 0.0987 0.0568 0.0769 0.2010
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Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Business Equipment Chips �3.8316 �3.6320 �3.7992 �4.6833 �4.4293 �4.9713 �3.3804

Business Equipment Hardw �4.8485 �4.7393 �5.0597 �5.2962 �6.1684 �6.4471 �5.7814

Business Equipment Softw �4.9513 �4.2904 �4.7301 �5.5315 �6.4523 �6.0185 �8.9519

Chemicals Chems 1.5807 1.0305 1.5022 2.0940 2.7400 2.9636 4.0330

Consumer Durables Hshld �2.3809 �2.0684 �2.3437 �2.4775 �3.7354 �5.6384 �4.9896

Consumer Non-Durables Agric 0.0740 �0.1157 0.0024 0.4892 0.3488 �0.5291 �0.0022

Consumer Non-Durables Beer �1.5311 �1.3189 �1.5000 �1.8565 �2.1101 �2.3938 �1.5355

Consumer Non-Durables Books 0.9144 0.9247 0.9670 1.1610 0.5773 1.1321 2.4769

Consumer Non-Durables Clths 0.9467 0.9735 0.9728 0.9999 1.2157 0.3739 0.5315

Consumer Non-Durables Food �0.4112 0.0323 �0.3587 �0.8661 �1.6998 �0.7677 �0.8502

Consumer Non-Durables Smoke �0.9420 �1.0478 �0.9154 �0.9083 �0.7504 �0.5228 �0.6924

Consumer Non-Durables Soda �0.8866 �0.7657 �0.7021 �1.2258 �1.5206 �1.9345 �2.9555

Consumer Non-Durables Toys �0.6113 �0.3523 �0.7208 �1.2232 �0.2576 �0.4538 �1.7159

Consumer Non-Durables Txtls 2.3341 2.0792 2.3535 2.7470 1.8222 2.0718 4.8854

Energy Coal 1.4393 0.9462 1.5578 1.7379 2.4123 2.6359 3.6478

Energy Mines 2.0426 1.5405 2.2404 2.5477 3.3198 2.5847 3.8822

Energy Oil 2.6581 2.3133 2.7992 3.2025 3.9142 4.3390 4.3149

Health Drugs �5.0907 �4.3717 �4.8950 �5.6002 �6.1844 �6.6855 �8.9212

Health Hlth �0.6160 �0.1308 �0.6923 �0.9001 �1.3981 �0.7229 �2.5513

Health MedEq �2.7898 �1.9996 �2.4451 �3.7228 �4.1971 �5.7059 �5.6987

Manufacturing Aero 0.9648 0.6773 1.0958 1.5436 1.9928 0.6222 1.5235

Manufacturing Autos 3.2835 2.9080 3.1879 3.9504 4.1288 4.5340 5.8731

Manufacturing Boxes 0.6010 0.7789 0.5898 0.4788 0.7280 0.3423 �2.5781

Manufacturing ElcEq �0.3872 �0.3341 �0.4123 0.0537 �1.0260 �2.1100 �1.3577

Manufacturing FabPr 1.4724 1.6384 1.1517 1.2185 1.6245 1.3601 1.6359

Manufacturing Guns 0.6623 0.7106 0.3766 0.9148 0.6122 0.6942 1.9906

Manufacturing LabEq �2.2409 �1.9613 �1.9003 �2.3894 �3.1570 �4.9967 �6.9546

Manufacturing Mach 1.4261 1.1052 1.5513 1.7953 1.6190 1.2927 2.5047

Manufacturing Paper 1.8917 1.6192 1.9279 2.3544 2.4226 1.2835 4.0063

Manufacturing Rubbr 1.5629 1.6763 1.5835 1.5672 1.4813 0.5814 1.0477

Manufacturing Ships 1.1188 1.0080 1.1144 1.4306 1.5571 1.2472 0.2335

Manufacturing Steel 4.4322 3.7856 4.3600 5.3271 6.1578 5.2726 6.4820

Money Banks 6.5329 6.1530 6.1435 6.6598 6.7497 7.9405 10.1990

Money Fin 4.4794 3.9067 4.2282 4.8100 5.5739 5.1944 6.3825

Money Insur 3.8657 3.7464 3.8372 3.8679 4.0888 4.6434 5.1487

Money RlEst 2.2449 2.0399 2.1946 1.8982 2.0844 2.7702 5.0913

Wavelet Theory and Its Applications106

Author details

Bruce D. McNevin1 and Joan Nix2*

*Address all correspondence to: joan.nix@qc.cuny.edu

1 Queens College, Flushing, NY, USA

2 Bank of America, New York, NY, USA

References

[1] Banz R. The relationship between return and market value of common stocks. Journal of
Financial Economics. 1981;9(1):3-18

[2] Berger T, Fieberg C. On portfolio optimization. The Journal of Risk Finance. 2016;17(3):
295-309

[3] Bollerslev T, Engle RF, Wooldridge JM. A capital asset pricing model with time-varying
covariances. Journal of Political Economy. 1988;96(1):116-131

[4] Daubechies I. Ten Lectures on Wavelets. CBMS-NSF Lecture Notes nr. 61. SIAM; 1992

[5] Fama E, French KR. The cross-section of expected stock returns. Journal of Finance. 1992;
47(2):427-465

Sector Industry Standard Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

Other BldMt 2.3264 1.7688 2.4867 2.8982 2.8896 2.1000 3.7157

Other BusSv �0.5466 �0.1084 �0.4198 �0.5681 �1.3059 �1.3618 �4.3800

Other Cnstr 2.1102 2.0812 2.2255 1.9296 1.9579 4.0280 5.2924

Other Fun �0.5212 �0.2189 �0.7152 �0.4888 �1.3764 �1.9931 �1.2353

Other Gold 0.1164 �0.1277 �0.0720 0.3751 0.7530 0.3273 1.9220

Other Meals �1.5515 �1.3257 �1.5194 �1.7373 �2.2743 �3.2196 �3.3617

Other Other 0.4663 0.5129 0.5866 0.7305 0.0857 1.0849 2.0143

Other Trans 2.1981 2.0402 2.1532 2.5688 2.7935 2.5544 1.9368

Shops PerSv 0.2821 0.5863 0.2316 �0.1287 0.2114 0.1905 �0.2324

Shops Rtail �1.2744 �1.0379 �0.9744 �1.3434 �1.8573 �2.4995 �3.1044

Shops Whlsl 0.3727 0.5534 0.4743 0.4695 �0.2664 �0.2654 �1.1328

Telecommunications Telcm 2.0616 2.0806 2.1254 1.9210 2.2603 3.3976 2.7911

Utilities Util 4.8274 4.3822 4.9051 5.3088 5.5951 6.5609 5.8998
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Abstract

Using discrete wavelet transform (DWT) in high-speed signal-processing applications
imposes a high degree of care to hardware resource availability, latency, and power
consumption. In this chapter, the design aspects and performance of multiplierless DWT
is analyzed. We presented the two key multiplierless approaches, namely the distributed
arithmetic algorithm (DAA) and the residue number system (RNS). We aim to estimate the
performance requirements and hardware resources for each approach, allowing for the
selection of proper algorithm and implementation of multi-level DAA- and RNS-based
DWT. The design has been implemented and synthesized in Xilinx Virtex 6 ML605, taking
advantage of Virtex 6’s embedded block RAMs (BRAMs).

Keywords: discrete wavelet transform (DWT), distributed arithmetic algorithm (DAA),
field programmable gate array (FPGA), residue number system (RNS), multiplierless
implementation

1. Introduction

The architecture of the embedded platform plays a significant role in ensuring that real-time
systems meet the performance requirements. Moreover, software development suffers from
increased implementation complexity and a lack of standard methodology for partitioning the
implementation of signal-processing functionalities to heterogeneous hardware platforms. For
instance, digital signal processor (DSP) is cheaper, consumes less power, and is easy to develop
software applications, but it has a considerable latency and less throughput compared with
field programmable gate arrays (FPGAs) [1]. For high-speed signal-processing (HSP) commu-
nication systems, such as cognitive radio (CR) [2, 3] and software-defined radio (SDR) [4], DSP
may fail to capture and process the received data due to data loss. In addition, implementing
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applications such as finite impulse response (FIR) filtering, discrete wavelet transform (DWT),
or fast Fourier transform (FFT) by software application limits the throughput, which is not
sufficient to meet the requirements of high-bandwidth and high-performance applications. As
a result, HSP systems are enhanced by off-loading complex signal-processing operations to
hardware platforms.

Although FPGAs exhibit an increased development time and design complexity, they are
preferred to meet high-performance requirements for two reasons. First, they efficiently
address signal-processing tasks that can be pipelined. Second, they have the capacity to
develop a programmable circuit architecture with the flexibility of computational, memory,
speed, and power requirements. However, FPGA has its own resources such as memory,
configurable logic blocks (CLBs), and multipliers that influence on the performance and
selected algorithm. As a consequence, the choice of algorithm is determined by the hardware
resource availability and performance requirements. These factors have an impact on each
other and create many challenges that need to be optimized.

As an example, the discrete wavelet transform (DWT) [5–9], a linear signal-processing tech-
nique that transforms a signal from the time domain to the wavelet domain [10], employs
various techniques for signal decomposing into an orthonormal time series with different
frequency bands. The signal decomposition is performed using a pyramid algorithm (PA) [10,
11] or a recursive pyramid transform (RPT) [12]. While the PA algorithm is based on convolu-
tions with quadrature mirror filters, which is infeasible for HW implementation, RPT decom-
poses the signal x[n] into two parts using high- and low-pass filters, which can be
implemented using FIR filter [13]. Figure 1 shows a four-tap FIR filter with four multipliers,
named as multiplier accumulator (MAC). By using the MAC structure, multipliers are
involved in multiplying an input with filter coefficients, bi. It is clear that the direct implemen-
tation of the N-tap filter requires N multipliers.

This work focuses exclusively on implementing a one-level multiplierless DWT for a pattern-
based cognitive communication system receiver (PBCCS) [8] by means of FPGA. The DWT is
required to extract the received signal’s features. Then, the extracted features are fed into a
multilayer perceptron (MLP) neural network (NN) to identify the received symbol. The most
challenging part is that the NN could consume most of the available multipliers inside the
FPGA. As an example, Ntoune et al. [14] have implemented a real-valued time-delay neural
network (RVTDNN) and real-valued recurrent neural network (RVRNN) architecture with 600

Figure 1. Four-tap finite impulse response filter.
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and 720 multipliers, respectively, while ML605 [15], ZC706 [16], and VC707 [17] have 768, 900,
and 2800 multipliers (DSP48Es), respectively.

Although the modern FPGAs come with a reasonable number of multipliers, designers prefer
to implement multiplier-free DWT architecture for many reasons. First, a partial number of
multipliers can be preserved for tasks, such as pulse shape filter, digital-up and digital-down
converter that are used at SDR front-ends. Second, in contrast to DWT, the MLP weights
depend on the learning step. Third, MLP weights could be frequently changed at runtime in
an adaptive manner, whereas the DWT coefficients are fixed and known. Therefore, the
multiplier-free DWT architecture could simplify the design process and allow the designers to
focus on the MLP design.

In this work, we present the 1-D DWT implementation on FPGA by means of memory-based
approaches. The aim is to compare different implementations in terms of system performance
and resource consumption. We demonstrate the implementation of Daubechies wavelets (DB2,
DB4, and DB5) using DAA and RNS approaches. These approaches do not employ explicit
multipliers in the design. Because the main focus of this work is on extracting the key features
of a signal via DWT, the inverse DWT (IDWT) and high-pass filter coefficients are not consid-
ered in this work.

1.1. Related work

Implementations of 1-D DWT for signal de-noising, feature extraction, and pattern recognition
and compression can be found in [8, 9, 18, 19]. The conventional convolution-based DWT
requires massive computations and consumes much area and power, which could be over-
come by using the lifting-based scheme for the DWT, which is introduced by Sweldens [20].
Although, the lifting scheme is used to compute the output of low- and high-pass using fewer
components, it may not be well suited to our application, owing to the PBCCS’s nature, where
the low-frequency components are much important than the higher ones. Therefore, in this
study, 1-D DWTdecomposition, which is implemented by means of filter banks, is considered.
Another advantage of using convolution-based DWT over lifting approach is that they do not
require temporary registers to store the intermediate results, and with an appropriate design
strategy, they could have better area and power efficiency [21].

Rather than the simplest implementation of FIR filter via multipliers and an adder tree, a
multiplier-free architecture is used because they result in low-complexity systems and for their
high-throughput-processing capability [22]. Fundamentally, there are two techniques for facil-
itating parallel processing. They are the distributed arithmetic algorithm (DAA) and the
residue number system (RNS). DAA is an algorithm that performs the inner product in a bit
serial with the assist of a lookup table (LUT) scheme followed by shift accumulation operations
[23, 24]. Several techniques have been proposed to improve the design, such as the partial sum
technique [25], a multiple memory bank technique [26, 27], and an LUT-less adder-based [28].
The DAA approach has been adapted in many applications, such as least mean square (LMS)
adaptive filter [29] and square-root-raised cosine filter [30].
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On the other hand, RNS is an integer number system, in which the operations are performed
based on the residue of division operation [31–33]. Eventually, the RNS-based results are
converted back to the equivalent binary number format using a Chinese reminder theorem
(CRT) [34]. The key advantage of RNS is gained by reducing an arithmetic operation to a set of
concurrent, but simple, operations. Several applications, such as digital filters, benefit from the
RNS implementation, for example, [35–37]. In addition, RNS was combined with DAA in one
architecture, called RNS-DA [38, 39], which benefits from the advantages of both approaches.

In this chapter, three major 1-D DWT approaches are implemented on FPGA-based platforms
and compared in terms of performance and energy requirements. The implementations are
compared for different number of, multipliers, memory consumptions, number of taps (N),
and levels (L) of the transform to show their advantages. To the best of our knowledge, no
detailed comparisons of hardware implementations of the three major 1-D DWT designs exist
in the study. This comparison will give significant insight on which implementation is the most
suitable for given values of relevant algorithmic parameters. Although there are many efficient
designs in the study, we did not optimize the number of memories in any approach, so that we
have a fair comparison.

The remainder of this chapter is organized as follows. Section 2 presents the preliminaries
information to understand DWT. It also reviews the theoretical background of DAA and RNS.
Section 3 describes the implementation of discrete wavelet transform. We further show an
analytical comparison between these approaches. Section 4 presents the performance results.
Finally, this chapter concludes in Section 5.

2. Fundamentals and basic concepts

2.1. Discrete wavelet transform

The wavelet decomposition mainly depends on the orthonormal filter banks. Figure 2 shows a
two-channel wavelet structure for decomposition, where x[n] is the input signal, g[n] is the

Figure 2. Multi-resolution wavelet decomposition. The block diagram of the two-channel four-level discrete wavelet
transform decomposition (J = 3) that decomposes a discrete signal into two parts. Note that ↓2 is maintaining one sample
out of two, ai and di are the approximation and details at level i, respectively.
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high-pass filter, h[n] is the low-pass filter, and ↓2 is the down-sampling by a factor of two. The
output of each low-pass filter is fed to the next level, so that each filter creates a series of
coefficients (ai and di), which represent and compact the original signal information.

Mathematically, a signal y[n] consists of high- and low-frequency components, as shown in
Eq. (1). It shows that the obtained signal can be represented by using half of the coefficients,
because they are decimated by 2

y n½ � ¼ yhigh n� 1½ � þ ylow n� 1½ � (1)

The decimated low-pass-filtered output is recursively passed through identical filter banks to
add the dimension of varying resolution at every stage. Eqs. (2) and (3) represent the filtering
process through a digital low-pass filter h[k] and high-pass filter g[k], corresponding to a
convolution with an impulse response of k-tap filters

ylow n½ � ¼
X
k

h k½ �:x 2n� k½ � (2)

ylow n½ � ¼
X
k

g k½ �:x 2n� k½ � (3)

where 2n is the down-sampling process. The outputs ylow [n] and yhigh [n] provide an approx-
imation signal and of the detailed signal, respectively [40].

2.2. Distributed arithmetic algorithm

The distributed arithmetic algorithm (DAA) gets rid of multipliers by performing the arith-
metic operations in a bit-serial computation [13]. Because the down-sampling process follows
each filter (as shown in Figure 2), Eq. (2) can be rewritten without the decimation factor as

ylow n½ � ¼
XN�1

k¼0
x k½ � : h k½ � (4)

Obviously, Eq. (4) requires an intensive operation due to multiplication of the real input values
with the filter coefficients. Eq. (3) can be simplified by representing x[k] as a fixed point
arithmetic of length L:

x k½ � ¼ � x k½ �0 þ
XL�1

l¼1
x k½ �l:2�l (5)

where x[k]l is the lth bit of x[k] and x[k]0 is the sign bit. Substituting Eq. (5) into Eq. (4), the
output of the filter becomes

y n½ � ¼
XL�1

l¼1
2�l:

XN� 1

k¼0
h k½ �:x k½ �l

" #
þ

XN� 1

k¼0
h k½ � �x k½ �0

� �
(6)
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X
k

g k½ �:x 2n� k½ � (3)

where 2n is the down-sampling process. The outputs ylow [n] and yhigh [n] provide an approx-
imation signal and of the detailed signal, respectively [40].

2.2. Distributed arithmetic algorithm

The distributed arithmetic algorithm (DAA) gets rid of multipliers by performing the arith-
metic operations in a bit-serial computation [13]. Because the down-sampling process follows
each filter (as shown in Figure 2), Eq. (2) can be rewritten without the decimation factor as

ylow n½ � ¼
XN�1

k¼0
x k½ � : h k½ � (4)

Obviously, Eq. (4) requires an intensive operation due to multiplication of the real input values
with the filter coefficients. Eq. (3) can be simplified by representing x[k] as a fixed point
arithmetic of length L:

x k½ � ¼ � x k½ �0 þ
XL�1

l¼1
x k½ �l:2�l (5)

where x[k]l is the lth bit of x[k] and x[k]0 is the sign bit. Substituting Eq. (5) into Eq. (4), the
output of the filter becomes

y n½ � ¼
XL�1

l¼1
2�l:

XN� 1

k¼0
h k½ �:x k½ �l

" #
þ

XN� 1

k¼0
h k½ � �x k½ �0

� �
(6)
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Since x[k]l takes the value of either 0 or 1,
PN�1

k¼0 h k½ �:x k½ �l may have only 2N possible values.
That is, rather than computing the summation at each iteration online, it is possible to pre-
compute and store these values in a ROM, indexed by x[k]l. In other words, Eq. (6) simply
realizes the sum of product computation by memory (LUT), adders, and shift register.

2.3. Residue number system

The RNS is a non-weighted number system that performs parallel carry-free addition and
multiplication arithmetic. In DSP applications, which require intensive computations, the
carry-free propagation allows for a concurrent computation in each residue channel. The RNS
moduli set, P = {m1, m2, …, mq}, consists of q channels. Each mi represents a positive relatively
prime integer; the greatest common divisor (GCD) (mi, mj) = 1 for i 6¼ j.

Any number, X ∈ ZM = 0, 1, …, M - 1, is uniquely represented in RNS by its residues Xj jmi
,

which is the remainder of division X by mi and M is defined in Eq. (7) as

M ¼ Πq
i¼1mi ¼ m1

∗ m2
∗ … ∗ mq (7)

where M determines the range of unsigned numbers in [0, M - 1], and should be greater than
the largest performed results. In addition, M uniquely represents any signed numbers. The
implementation of RNS-based DWT obtained from Eq. (4) is given by Eq. (8) as follows:

y n½ �mi
¼ ymi

¼
�����
XN�1

k¼0
∣h k½ �mi

:x n� k½ �mi mi

�����

!�����:
mi

0
@ (8)

for each mi ∈ P. This implies that a q-channel DWT is implemented by q FIR filters that work
in parallel.

Mapping from the RNS system to integers is performed by the Chinese reminder theorem
(CRT) [34, 41, 42]. The CRT states that binary/decimal representation of a number can be
obtained from its RNS if all elements of the moduli set are pairwise relatively prime.

Designing a robust RNS-based DWT requires selecting a moduli set and implementing the
hardware design of residue to binary conversion. Most widely studied moduli sets are given as
a power of two due to the attractive arithmetic properties of these modulo sets. For example,
2n � 1 ; 2n; 2nþ1 � 1
� �

[43], 2n � 1 ; 2n; 2n þ 1f g [39], and 2n; 22n � 1; 22n þ 1
� �

[44]
have been investigated.

For the purpose of illustrating, the moduli set Pn ¼ 2n � 1; 2n; 2nþ1 � 1
� �

is used for three
reasons. First, the multiplicative adder (MA) is simple and identical for m1 ¼ 2n � 1 and
m3 ¼ 2nþ1 � 1. Second, for small (n = 7), the dynamic range of P7 is large, M = 4,145,280, which
could efficiently express real numbers in the range [�2.5, 2.5] using a 16-bit fixed-point
representation, provided scaling and rounding are done properly. We assume that this interval
is sufficient to map the input values, which does not exceed �2. Third, the reverse converter
unit is simple and regular [42] due to using simple circuits design.
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3. DWT implementation methodology

3.1. DWT implementation using DA

DAA hides the explicit multiplications with a ROM lookup table. The memory stores all
possible values of the inner product of a fixed w-bit with any possible combination of the
DWT filter coefficients. The input data, x[n], are signed fixed-point of a 22-bit width, with 16
binary-point bits (Q5,16). We assumed that the memory contents have the same precision as the
input, which is reasonable to give high enough accuracy for the fixed-point implementation.
As a consequence, 22 ROMs, each consisting of 16 words, are required. Each ROM stores any
possible combination of the four DWT filter coefficients, where the final result is a 22-bit signed
fixed-point (Q5,16). In order to decrease the number of memory, the width should be reduced,
which will have an impact on the output precision.

Figure 3 shows the block diagram of 1-bit DAA at position l. This block contains one ROM
(4 � 22) and one shift register. Because the word’s length w of the input x is 22 bits, the actual
design contains 22 memory blocks and 21 adders for summing up the partial results.

3.2. DWT implementation using RNS

The RNS-based DWT implementation has mainly three components. They are the forward
converter, the modulo adders (MAs), and the reverse converter. The forward converter, which
is also known as the binary-to-residue converter (BRC), is used to convert a binary input
number to residue numbers. By contrast, the reverse converter or the residue-to-binary con-
verter (RBC) is used to obtain the result in a binary format from the residue numbers. We refer
to the RNS system, which does not include RBC, as a forward converter and modular-adders
(FCMA), as illustrated in Figure 4.

3.2.1. The forward converter

The forward converter is used to convert the result of multiplying an input number by a
wavelet coefficient to q residue numbers via LUT, shift, and modulo adders, where q is the
number of channels.

Figure 3. The block diagram of DAA-based architecture of the DB2. For simplicity, we showed one ROM and one shift
register. In the actual design, there are 22 ROMs and shift registers. >> is a 16� l shift operation, where 16 is the number of
the binary point.
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Since x[k]l takes the value of either 0 or 1,
PN�1

k¼0 h k½ �:x k½ �l may have only 2N possible values.
That is, rather than computing the summation at each iteration online, it is possible to pre-
compute and store these values in a ROM, indexed by x[k]l. In other words, Eq. (6) simply
realizes the sum of product computation by memory (LUT), adders, and shift register.
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which is the remainder of division X by mi and M is defined in Eq. (7) as

M ¼ Πq
i¼1mi ¼ m1

∗ m2
∗ … ∗ mq (7)

where M determines the range of unsigned numbers in [0, M - 1], and should be greater than
the largest performed results. In addition, M uniquely represents any signed numbers. The
implementation of RNS-based DWT obtained from Eq. (4) is given by Eq. (8) as follows:
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�����
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�����

!�����:
mi

0
@ (8)

for each mi ∈ P. This implies that a q-channel DWT is implemented by q FIR filters that work
in parallel.

Mapping from the RNS system to integers is performed by the Chinese reminder theorem
(CRT) [34, 41, 42]. The CRT states that binary/decimal representation of a number can be
obtained from its RNS if all elements of the moduli set are pairwise relatively prime.

Designing a robust RNS-based DWT requires selecting a moduli set and implementing the
hardware design of residue to binary conversion. Most widely studied moduli sets are given as
a power of two due to the attractive arithmetic properties of these modulo sets. For example,
2n � 1 ; 2n; 2nþ1 � 1
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[43], 2n � 1 ; 2n; 2n þ 1f g [39], and 2n; 22n � 1; 22n þ 1
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[44]
have been investigated.

For the purpose of illustrating, the moduli set Pn ¼ 2n � 1; 2n; 2nþ1 � 1
� �

is used for three
reasons. First, the multiplicative adder (MA) is simple and identical for m1 ¼ 2n � 1 and
m3 ¼ 2nþ1 � 1. Second, for small (n = 7), the dynamic range of P7 is large, M = 4,145,280, which
could efficiently express real numbers in the range [�2.5, 2.5] using a 16-bit fixed-point
representation, provided scaling and rounding are done properly. We assume that this interval
is sufficient to map the input values, which does not exceed �2. Third, the reverse converter
unit is simple and regular [42] due to using simple circuits design.
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3. DWT implementation methodology

3.1. DWT implementation using DA

DAA hides the explicit multiplications with a ROM lookup table. The memory stores all
possible values of the inner product of a fixed w-bit with any possible combination of the
DWT filter coefficients. The input data, x[n], are signed fixed-point of a 22-bit width, with 16
binary-point bits (Q5,16). We assumed that the memory contents have the same precision as the
input, which is reasonable to give high enough accuracy for the fixed-point implementation.
As a consequence, 22 ROMs, each consisting of 16 words, are required. Each ROM stores any
possible combination of the four DWT filter coefficients, where the final result is a 22-bit signed
fixed-point (Q5,16). In order to decrease the number of memory, the width should be reduced,
which will have an impact on the output precision.

Figure 3 shows the block diagram of 1-bit DAA at position l. This block contains one ROM
(4 � 22) and one shift register. Because the word’s length w of the input x is 22 bits, the actual
design contains 22 memory blocks and 21 adders for summing up the partial results.

3.2. DWT implementation using RNS

The RNS-based DWT implementation has mainly three components. They are the forward
converter, the modulo adders (MAs), and the reverse converter. The forward converter, which
is also known as the binary-to-residue converter (BRC), is used to convert a binary input
number to residue numbers. By contrast, the reverse converter or the residue-to-binary con-
verter (RBC) is used to obtain the result in a binary format from the residue numbers. We refer
to the RNS system, which does not include RBC, as a forward converter and modular-adders
(FCMA), as illustrated in Figure 4.

3.2.1. The forward converter

The forward converter is used to convert the result of multiplying an input number by a
wavelet coefficient to q residue numbers via LUT, shift, and modulo adders, where q is the
number of channels.

Figure 3. The block diagram of DAA-based architecture of the DB2. For simplicity, we showed one ROM and one shift
register. In the actual design, there are 22 ROMs and shift registers. >> is a 16� l shift operation, where 16 is the number of
the binary point.

A Comparative Performance of Discrete Wavelet Transform Implementations Using Multiplierless
http://dx.doi.org/10.5772/intechopen.76522

117



3.2.2. RNS-system number conversion

The received samples and wavelet coefficients span the real number and might take small
values. One of the main drawbacks of RNS-number representation is that it only operates with
positive integer numbers from [0,M – 1]. The DWTcoefficients are generally between 1 and� 1.
As a possible solution, we have divided the range of RNS, [0,M – 1], to handle those numbers.

In addition, the received sample X[i] is scaled up by shifting y positions to the left (multiplying
by 2y), which ensures that X[i] is a y-bit fixed point integer. In a similar manner, the wavelet
coefficients are scaled by shifting its z positions to the left. In our design, we set the filter
scaling factor z to 11. Table 1 presents the low-pass filter of DB2 before and after scaling.

3.2.3. Modulo mi multiplier

The multiplication of the received sample, X[i], by the filter coefficients, which are constants, is
performed by indexing the ROM. As the word length, w, of the received sample X[i] is
increased, the memory size becomes 2w. In addition, q ROMs are required to perform the
modulo multiplication.

We propose few improvements to this design. First, instead of preserving a dedicated memory
for each modulo mi, a ROM that contains all module results is used. Thus, each word at
location j contains the q modules of hk∗ j∗ 211. Figure 5 shows the internal BRC block design
of the three-channel moduli set P7 = {127, 128, 255} with its memory map at the right top
corner. It shows that, for a location j, the least significant 8 bit contains hk∗xj jm3

, the next 7 bit

Figure 4. The block diagram of DB2 RNS-based architecture. BRC is an abbreviation for binary-to-residue converter, RBC
for residue-to-binary converter, and MA for modulo adder.

Coefficient(hk) Real value RNS-system value

h0 �0.129409522550921 �266
h1 0.224143868041857 459

h2 0.836516303737469 1713

h3 0.482962913144690 989

Table 1. The DB2 low-pass real and RNS-system number equivalent, multiplied by 211.
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contains hk∗xj jm2
and the most significant 7 bit contains hk∗xj jm1

, which is generalized by Eq. (9).
The advantage of this method is that no extra hardware is required to separate each module
value.

ROM jð Þ ¼ ∣hk∗ j∗211∣m1
∗ 22nþ1 þ ∣hk∗j∗211∣m2

∗ 2nþ1 þ hk∗j∗ 211
�� ��

m3
, j ¼ 0; 2w½ � (9)

As with DAA-based approach, if the input word length is 16 bits, the ROM should contain 216

locations. One way to reduce the size of the memory is to divide it into four ROMs of 4 � 22.
Figure 4 shows the block diagram of the binary-to-residue converter with four ROMs; each is
indexed by four bits of x. However, the output of each ROM should be combined, so that the
final result can be corrected. It is worth noting that this division comes with a cost in terms of
adders and registers.

According to the previous improvements, the RNS-based works are as follows. The input
X16�bit ¼ x1; x2; x3; x4ð Þ is divided into four segments. Each of the 4-bit segment is fed into one
ROM, so that three outputs, corresponding to hk∗xl∗211

�� ��
mi
, are produced.

To obtain the final multiplications’ result, each mi output should be shifted by l positions,
where l is the index of the lowest input bit (4, 8, or 12). The modular multiplication and shift for
(2n – 1) and (2n + 1–1) can be achieved by a left circular shift (left rotate) for l positions, whereas
the modular multiplication and shift for 2n can be achieved by a left shift for l positions [17].
Finally, the modulo adder adds the corresponding output (Figure 6).

Figure 5. The block diagram of the binary-to-residue converter for the three-channel RNS-based DWT, P7 = {127, 128,
255}. Four identical memories are used for each tap. The upper corner shows the memory content at location j ∈ [0, 15].

Figure 6. The block diagram of (2n – 1) modulo adder.
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3.2.2. RNS-system number conversion
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contains hk∗xj jm2
and the most significant 7 bit contains hk∗xj jm1

, which is generalized by Eq. (9).
The advantage of this method is that no extra hardware is required to separate each module
value.
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∗ 22nþ1 þ ∣hk∗j∗211∣m2

∗ 2nþ1 þ hk∗j∗ 211
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m3
, j ¼ 0; 2w½ � (9)

As with DAA-based approach, if the input word length is 16 bits, the ROM should contain 216

locations. One way to reduce the size of the memory is to divide it into four ROMs of 4 � 22.
Figure 4 shows the block diagram of the binary-to-residue converter with four ROMs; each is
indexed by four bits of x. However, the output of each ROM should be combined, so that the
final result can be corrected. It is worth noting that this division comes with a cost in terms of
adders and registers.

According to the previous improvements, the RNS-based works are as follows. The input
X16�bit ¼ x1; x2; x3; x4ð Þ is divided into four segments. Each of the 4-bit segment is fed into one
ROM, so that three outputs, corresponding to hk∗xl∗211
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, are produced.

To obtain the final multiplications’ result, each mi output should be shifted by l positions,
where l is the index of the lowest input bit (4, 8, or 12). The modular multiplication and shift for
(2n – 1) and (2n + 1–1) can be achieved by a left circular shift (left rotate) for l positions, whereas
the modular multiplication and shift for 2n can be achieved by a left shift for l positions [17].
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Figure 6. The block diagram of (2n – 1) modulo adder.
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3.2.4. Modulo adder (MA)

The modulo adders are required for adding the results from a modular multiplier as well as for
a reverse converter. In this work, we have twoMAs—that is, one is based on 2n and the other is
based on 2n – 1. Modulo 2n adder is just the lowest n bits of adding two integer numbers,
where the carry is ignored. Figure 7 shows the block diagram of the 2n – 1 modulo adder.

3.2.5. The reverse converter

The Chinese remainder theorem (CRT) [34] provides the theoretical basis for converting a
residue number into a natural integer. The moduli set Pn ¼ 2n � 1; 2n; 2nþ1 � 1

� �
can be

efficiently implemented by four modulo adders and two multiplexers [42]. The output of the
RBC is unsigned (3 * n + 1)-bits integer number. The actual signed number can be found by
shifting the result y + z positions to the left, which is equivalent to dividing by 2(y + z). y and z
are the scaled values of the input and wavelet coefficients, respectively. Generally, the word
length of one-level DWT is bounded by Eq. (10) and should not exceed (3 * n – 2) bits

3∗ n þ 1 ≥ y þ z þ 3 (10)

As a consequence, the range of the moduli set should be greater than the maximum output, tho,
which can be computed as follows:

tho ¼
X
k

hk

 !2

∗max x n½ �ð Þ ∗ 2zð Þ2 ∗ 2y ≤M� 1 (11)

where hk is the kth filter coefficient, x[n] is the input, y and z are the input and filter scaling
factors, respectively, and M is the maximum range.

3.3. Two-level DWT implementation

The two-level discrete wavelet transform compromises two one-level DWTs, where the output
of the first level is fed into the second level (as shown in Figure 7). The one-level DWT at each
level is identical, but the output of each level is halved. For example, if a signal of 1800 samples
is applied to the input, then 900 and 450 samples are produced by the first and second levels,
respectively.

Figure 7 shows the design of two-level RNS-based DWT, which involves two FCMA blocks
and two RBC blocks. Each FCMA requires converting the result of the first stage to binary,
shifting the number by 11 and converting it to residue number again.

Figure 7. The block diagram of two-level RNS-based DWT design, and FCMA represents FIR-filtering process in RNS.
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3.4. Hardware complexity

3.4.1. Memory usage

DAA and RNS techniques employ the memory as a key resource to avoid multiplying two
input variables. In each approach, as the number of filter taps increases, both the size and the
number of memories change. Assuming that the length of the received word isw-bit and there
are N filter taps, the size of a memory element can be considered as a � b, where a and b are
the word length in bits of the input and output, respectively. The value of a determines the size
of the memory, 2a.

The total number of memory elements that are occupied by the DAA-based filter is w *
(N � 22). The output is a fixed 16-bit fixed point and the word length is 22 bits. The number
of memory elements remains constant as the filter taps increase, whereas the size of the
memory exponentially increases to 2N.

On the other hand, the total number of memory elements occupied by an RNS-based filter is
N∗ log2 wð Þ� �

∗ 4� 22ð Þ. This equation shows that the number of memory elements increases
linearly with the number of filter taps, while the memory size remains constant (4 � 22).
Table 2 shows a comparison of the memory usage with w = 16 for different DWT families.

3.4.2. Shift register and adder counts

DAA-based implementation employs shift registers and adders to sum the result at each bit
level (Figure 3). For a word lengthwwithmmagnitude bits, we need (w – 1) shift registers and
(w – 1) 2-input adders (data combined by a tree adder architecture). To handle the negative
numbers, the two’s complement operation requires additional (m – 1) shift registers and (m – 1)
adders. Thus, for l-level DA-based implementation, a total of l * (w – m – 2) shift registers and
two-input adders is required.

On the other hand, for a word length w and N-tap filter, the q-channel FCMA implementation
requires N BRC blocks and (q*(N – 1)) MA blocks to compute the final result. Each BRC block
has log2w

� �� �� 1, log2n
� �� 1
� �

, and log2w
� �� �� 1 MA blocks for 2n – 1, 2n, and 2n + 1–1

modulo, respectively. The modulo 2n requires log2(n) because shifting operations is not circular
and shifting n-bit numbers to the left by n positions or more is always zero. Likewise, the RBC
has four MA blocks (for 2n + 1–1), two multiplexers, and two subtractors. Thus, the total
number of MA blocks at one-level RNS-based is

DB2 DB4 DB5

Number of filter taps 4 8 10

DA memory usage 22*(4 � 22) 22*(8 � 22) 22*(10 � 22)

RNS memory usage 16*(4 � 22) 32*(4 � 22) 40*(4 � 22)

Table 2. Occupied memories when DA- and RNS-based approaches are used. The word length, w, is 22 and 16 bits for
DA- and RNS-based, respectively.
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3.2.4. Modulo adder (MA)

The modulo adders are required for adding the results from a modular multiplier as well as for
a reverse converter. In this work, we have twoMAs—that is, one is based on 2n and the other is
based on 2n – 1. Modulo 2n adder is just the lowest n bits of adding two integer numbers,
where the carry is ignored. Figure 7 shows the block diagram of the 2n – 1 modulo adder.
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� �
can be

efficiently implemented by four modulo adders and two multiplexers [42]. The output of the
RBC is unsigned (3 * n + 1)-bits integer number. The actual signed number can be found by
shifting the result y + z positions to the left, which is equivalent to dividing by 2(y + z). y and z
are the scaled values of the input and wavelet coefficients, respectively. Generally, the word
length of one-level DWT is bounded by Eq. (10) and should not exceed (3 * n – 2) bits

3∗ n þ 1 ≥ y þ z þ 3 (10)

As a consequence, the range of the moduli set should be greater than the maximum output, tho,
which can be computed as follows:

tho ¼
X
k

hk

 !2
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where hk is the kth filter coefficient, x[n] is the input, y and z are the input and filter scaling
factors, respectively, and M is the maximum range.

3.3. Two-level DWT implementation

The two-level discrete wavelet transform compromises two one-level DWTs, where the output
of the first level is fed into the second level (as shown in Figure 7). The one-level DWT at each
level is identical, but the output of each level is halved. For example, if a signal of 1800 samples
is applied to the input, then 900 and 450 samples are produced by the first and second levels,
respectively.

Figure 7 shows the design of two-level RNS-based DWT, which involves two FCMA blocks
and two RBC blocks. Each FCMA requires converting the result of the first stage to binary,
shifting the number by 11 and converting it to residue number again.
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the word length in bits of the input and output, respectively. The value of a determines the size
of the memory, 2a.

The total number of memory elements that are occupied by the DAA-based filter is w *
(N � 22). The output is a fixed 16-bit fixed point and the word length is 22 bits. The number
of memory elements remains constant as the filter taps increase, whereas the size of the
memory exponentially increases to 2N.

On the other hand, the total number of memory elements occupied by an RNS-based filter is
N∗ log2 wð Þ� �

∗ 4� 22ð Þ. This equation shows that the number of memory elements increases
linearly with the number of filter taps, while the memory size remains constant (4 � 22).
Table 2 shows a comparison of the memory usage with w = 16 for different DWT families.

3.4.2. Shift register and adder counts

DAA-based implementation employs shift registers and adders to sum the result at each bit
level (Figure 3). For a word lengthwwithmmagnitude bits, we need (w – 1) shift registers and
(w – 1) 2-input adders (data combined by a tree adder architecture). To handle the negative
numbers, the two’s complement operation requires additional (m – 1) shift registers and (m – 1)
adders. Thus, for l-level DA-based implementation, a total of l * (w – m – 2) shift registers and
two-input adders is required.

On the other hand, for a word length w and N-tap filter, the q-channel FCMA implementation
requires N BRC blocks and (q*(N – 1)) MA blocks to compute the final result. Each BRC block
has log2w

� �� �� 1, log2n
� �� 1
� �

, and log2w
� �� �� 1 MA blocks for 2n – 1, 2n, and 2n + 1–1

modulo, respectively. The modulo 2n requires log2(n) because shifting operations is not circular
and shifting n-bit numbers to the left by n positions or more is always zero. Likewise, the RBC
has four MA blocks (for 2n + 1–1), two multiplexers, and two subtractors. Thus, the total
number of MA blocks at one-level RNS-based is

DB2 DB4 DB5

Number of filter taps 4 8 10

DA memory usage 22*(4 � 22) 22*(8 � 22) 22*(10 � 22)

RNS memory usage 16*(4 � 22) 32*(4 � 22) 40*(4 � 22)

Table 2. Occupied memories when DA- and RNS-based approaches are used. The word length, w, is 22 and 16 bits for
DA- and RNS-based, respectively.
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MAt ¼ 2N ∗ log2w
� �� 1
� �

2n�1
� �þ log2n

� �� 1
� �

2n þ q ∗ N � 1ð Þ þ 4 (12)

For instance, three-channel DB2 implementation requires nine MA blocks to sum the result,
and P7 RNS-based implementation has a total of 45 MA blocks when w = 16.

Meanwhile, the number of RNS-based adders depends on the design of the MA block. For
example, each MA block of (2n – 1) and (2n + 1–1) requires two adders, while each MA block of
2n requires one adder. Thus, at ¼ 12 N þ N log2n

� �� 1
� �þ 5∗ N � 1ð Þ þ 10 adders are

required, which can be simplified as follows (summarized in Table 3):

at ¼ 17 N þ N log2n
� �� 1
� � þ 10 (13)

4. Performance analysis and validation

Hardware analysis was carried out by using a Xilinx System Generator for DSP (SysGen) [45],
which is a high-level software tool that enables the use of MATLAB/Simulink environment to
create and verify hardware designs for Xilinx FPGAs. It enables the use of the MathWorks
model-based Simulink design environment for FPGA design. Furthermore, the hardware-
software co-simulation design was synthesized and implemented onML605 Xilinx Vertex 6 [15].

The implementation of RNS and DA is compared with the multiplier-accumulate-based DWT
structure (MAC), as shown in Figure 8. We also consider the direct DWT implementation
using an IP FIR Compiler 6.3 (FIR6.3) block [46], which provides a common interface to
generate highly area-efficient and high-performance FIR filters (Figure 9).

DA-based RNS-based

Memory usage

Number of adders

Table 3. Memory usage and adders for 1-L N-tap DA and RNS-based approaches DWT.

Figure 8. The Simulink model of MAC-based one-level DB2 discrete wavelet transform. Filter coefficients are stored as
constants.
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For RNS implementation, the moduli sets of P7 = {127, 128, 255} and P10 = {1023, 1024, 2047}
were used. The dynamic ranges of these sets are M = 4,161,536 and 2,144,338,944, respectively.
The moduli set of P10 is selected because its dynamic range is greater than tho (Eq. (11) with
y = 6, z = 11 and ∑(hi) = 1.5436). In all RNS-based implementations, the word length was set to
16 bits.

4.1. Resource utilization and system performance

Table 4 summarizes the resource use by RNS-based components—that is, FCMA and reverse
converter (RBC). The RBC consumes fewer resources and less power. However, the operating
frequency is equal in all models and greater than the entire RNS-based filter.

Table 5 summarizes the resource consumption of each filter implementation. It shows that the
MAC and IP FIR-based implementations have four multiplier units (DSP48E1s) with maxi-
mum frequencies of 296 and 472 MHz, respectively. By contrast, the proposed approaches are
more complex than MAC. However; DAA- and RNS-based implementations has 22 and 16
memory blocks (BRAMs) used to store the pre-calculated wavelet coefficients. It also shows
that the number of slice registers, slice LUTs, and occupied slices of P10 RNS-based is greater
than one of P7 because the former has 31 output signals, while the latter has 22 output signals.
As a result, the number of flip-flops is increased and the number of resources is approximately

Figure 9. The Simulink model of FIR-based one-level DB2 discrete wavelet transform. The IP FIR compiler 6.3 of the
system generator is used.

Resources RNS-based (n = 7) RNS-based (n = 10)

FCMA RBC FCMA RBC

Number of slice registers 656 157 883 190

Number of slice LUTs 591 138 854 180

Number of RAMB18E1 16 0 16 0

Max. operating freq. (MHz) 291.2 311.62 283.85 298.67

Min. period (ns) 3.434 3.21 3.523 3.348

Estimated total power (mW) 40.5 6.59 43.08 7.33

Latency (clock cycle (CC)) 6 6 6 6

Table 4. The resource use and system performance of the RNS components—that is, FCMA.
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Table 4. The resource use and system performance of the RNS components—that is, FCMA.
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increased by one-third, while the maximum frequency in both designs is greater than
235 MHz.

Table 6 shows a comparison between the DA- and RNS-based one-level DWT implementations
when using larger filter banks—that is, DB4 and DB5. It shows that DAA-based implementation
occupies a fixed number of RAMB18E1. The number of memory elements of DAA-based imple-
mentation is fixed and depends on the word length (Table 2).

However, as the number of filter taps increases, the memory size is exponentially increased to
2N. By contrast, the number of memory elements that are used in RNS-based implementation
is linearly increased as the number of filter taps is increased. Similarly, the number of memo-
ries that are used at multilevel DAA-based and RNS-based implementations with the l-level
would be an aggregate of levels 1 through l.

4.2. Functionality verification

The discrete wavelet transform was simulated by means of ModelSim simulator. Figure 10
shows that the MAC and DAA have lower latency than other approaches. It depicts that the
FIR- and RNS-based of P7 and P10 implementations lag behind MAC and DAA by four clock
cycles.

Resources MAC DA FIR RNS (n = 7) RNS (n = 10)

Number of slice registers 282 661 167 767 1089

Number of slice LUTs 128 520 71 721 1055

Number of occupied slices 58 188 60 240 358

Number of DSP48E1s 4 0 4 0 0

Number of RAMB18E1 0 22 0 16 16

Max. operating freq. (MHz) 296.38 229.83 472.59 258.86 261.028

Min. period (ns) 3.374 4.351 2.030 3.863 3.831

Estimated total power (mW) 8.44 66.54 9.05 56.22 53.05

Table 5. The resource use and system performance of the DWT implementation for one-level DB2 implementation.

Resources DA-based RNS (n = 7)

DB2 DB4 DB5 DB2 DB4 DB5

Number of slice registers 650 737 780 767 1441 1898

Number of slice LUTs 521 539 568 721 132 1677

Number of RAMB18E1 22 22 22 16 32 40

Max. operating freq. (MHz) 232.72 205.55 223.31 258.87 265.32 258.80

Table 6. Resource use for the DWT implementation of DB2, DB4, and DB5.
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4.3. Precision analysis

We carried out the precision analysis for the first and DWT levels, and the result is presented in
Table 7. The output bit precision is set to Q5,16 for all implementations. Table 7 shows the
maximum performance based on the signal-to-noise-ratio (SNR) and peak-signal-to-noise-
ratio (PSNR). For P7, we could not achieve a better accuracy with the specified scaling factors
because y + z = 19 < (3 ∗ 7) + 1 = 22. However, both DAA- and RNS-based approaches offer
high-signal quality with a peak signal-to-noise ratio (PSNR) of 73.5 and 56.5 dB, respectively.
Figure 11 shows the effect of changing the scaling factors of P10 for DB2 RNS-based approach.
The input scaling factor is increased from 8 to 13 bit and the filter scaling factor is increased
from 11 to 18. As expected, lower scaler factors produce PSNR equal to 56 dB, whereas the
maximum PSNR equal to 84 is obtained when y = 12 and z = 16.

4.4. Discussion

Hardware availability and system performance requirements are critical for selecting the
appropriate architecture of the embedded platform. The number of DWT levels, filter taps,
and word length has a substantial influence on the performance of the design and complexity.

Increasing the number of DWT levels has roughly the same effect on the operating frequency.
Because the only change between the RNS-based with P7 or P10 implementations is the output
signal width, and the maximum operating frequencies slightly change. Furthermore, the one-
level DB2 filter bankwas designedwith maximum operating frequencies of 232 and 258MHz for

Figure 10. The output and latency of one-level DWTusing a ModelSim simulator when a sin wave is applied. Each clock
cycle is 10 ns.

Resources FIR MAC DAA-based RNS-based

P7 P7

Input precision Q5,16 Q5,16 Q5,16 y = 8 y = 8

Coefficients precision Q0,12 Q1,15 Q0,15 z = 11 z = 11

Internal word length 22 bit 22 bit NA 22 bit 31 bit

SNR (dB) 83.2 78.7 70.4 53.41 54.78

PSNR (dB) 86.3 81.8 73.5 56.5 57.9

Table 7. The SNR and PSNR values of different DWT implementations.
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DAA- and RNS-based approaches, respectively. However, all high-frequency implementations
introduce a latency of at least 10 clock cycles for one-level DA-based DWT.

Another critical parameter that affects the DWT performance is the filter order. DAA-based
implementation outperforms the RNS-based with at most 10 taps. When the number of taps
increases, the number of memory units and binary adders within the RNS-based implementa-
tion constantly increases, and the size is not affected as shown in Table 2. The memory
requirement for DAA-based implementation is exponentially increased as the number of filter
taps increases.

In addition, the two approaches have different memory content. Whereas the memory content
of DAA-based implementation is consistent and identical, the memory content of RNS-based
varies from tap to tap. This is obvious because each memory 590 stores the multiplication
values of each filter coefficient by the moduli set.

The word length determines the number of occupied memory in both implementations. As the
word length increases, the number of memory within the DAA- and RNS-based approaches
increases linearly by w and w∗log2(w), respectively. Furthermore, we could not neglect the
effect of output word length on the accuracy and the internal structure. The DAA-based
approach requires large memories to have high precision. By contrast, RNS-based approach
could achieve high precision with adopting the scaling factors, which do not require any
change to the design, except updating memory contents.

5. Conclusion

In this chapter, we addressed the effect of multiplierless DWT implementations, which have a
substantial impact on the overall performance of the design and resource availability. We
presented DAA- and RNS-based implementations of DWT and compared them with the

Figure 11. The impact of input and wavelet filter scaling factors of one-level RNS-based implementation with respect to
P10 and P13 moduli sets on PSNR.
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MAC-based approach. The former approaches are multiplierless architectures that intensively
use memory to speed up the entire processing time.

Given implementation examples for experimental verifications and analysis, the approaches
were simulated using Simulink and validated on a Xilinx Virtex 6 FPGA platform. The co-
simulation results have also been verified and compared with the simulation environment. The
complexity and optimization of multi-level DWTwith respect to hardware structure provides
a foundation for employing an appropriate algorithm for high-performance applications, such
as in cognitive communication when combining the DWT analysis with machine-learning
algorithms.
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The forecasting of future value of water consumption in an urban area is highly complex
and nonlinear. It often exhibits a high degree of spatial and temporal variability. It is a
crucial factor for long-term sustainable management and improvement of the operation of
urban water allocation system. This chapter will study the application of two pre-
processing phase space reconstruction (PSR) and wavelet decomposition transform
(WDT) methods to investigate the behavior of time series to forecast short-term water
demand value of Kelowna City (BC, Canada). The research proposes two pre-process
technique to improve the accuracy of the models. Artificial neural networks (ANNs), gene
expression programming (GEP) and multilinear regression (MLR) methods are the tools
that considered for forecasting the demand values. Evaluation of the tools is based on two
steps with and without applying the pre-processing methods. Moreover, autocorrelation
function (ACF) is used to calculate the lag time. Correlation dimension is used to study the
chaotic behavior of the dataset. The models’ relative performance is compared using three
different fitness indexes; coefficient of determination (CD), root mean square error (RMSE)
and mean absolute error (MAE). The results showed how pre-processing combination of
WDTand PSR improved the performance of the models in forecasting short-term demand
values.
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1. Introduction

Climate change significantly affects the water availability all around the world. This effect
plays a crucial role in arid and semiarid regions. On the other hand, urban development,
population growth, industrial development and economic expansion also increases water
scarcity concerns critically worldwide. Therefore, the governments have to be prepared before-
hand for any consequences related to water problems, especially drinking water. The efficient
operation and a management plan of urban water supply requires information about the value
of consumption in the future. For using different standards to simulate hydraulic constitutions
in pipeline systems (to improve the reliability of the system), it is necessary to have an accurate
simulation of consumption value in a specific period. In other words, “The purpose of water
demand forecast is to demonstrate futuristic information available for public water suppliers
as they conduct their business” [1, 2]. Short-term (e.g., less than a week), mid-term (e.g.,
weekly to monthly) and long-term (e.g., greater than monthly) period forecast demand values
are critical for daily operations and future management of the system. Long-term urban
demand forecasting (up to 25 years), mid-term (up to 2 years) and short-term values (up to
2 days) depends upon vital factors such as water supply planning, pipeline maintenance, and
water distribution system optimization (e.g. optimized pumping, pipeline maintenance, mini-
mize energy cost and water supply cost, improving system reliability and water quality),
respectively [3–5]. While studies have advanced the understanding of nonlinear characteristics
and high complexity of water consumption factors, further research is still required. The
present accepted knowledge for these factors is still limited and depends upon (1) accurate
estimation and forecast water consumption and (2) determination of type and degree of
nonlinearity among the effective variables [6]. Over the past decades, two groups of determin-
istic and probabilistic methods have been proposed to forecast urban water demand. The
deterministic approach is solely based on the input variables and their initial conditions,
whereas a probabilistic model relies on modeling uncertainties and randomness of the input
variables.

Given the significant challenges and complexity of probabilistic methods and the fact that pre-
processing methods can provide a useful approximation to their probabilistic counterparts,
this research focused on the application of pre-processing to forecast short-term consumption.

2. Literature review

Midterm water demand forecast helps the water management authorities to develop an inte-
grated plan which balances supply and demand in a given period. Water stress of an area can
be reduced by accurate estimation of drinking water supply demand [3, 7–9]. Moreover,
management can provide water sustainability based on their experience as well as the accurate
and reliable value of future demand [10].

Compared to other hydrological forecast studies (e.g., river discharge, sedimentation, rain-
fall, etc.) water consumption is not as influenced by the input factors as other studies do. The
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most significant input variables are temperature, precipitation, and past demand values that
were popular in most of the studies [11–13]. Two different types of variables affecting water
demand: climatic (e.g., temperature, relative humidity, rainfall, etc.) and socioeconomic (e.g.,
population and income) [14]. Climatic variables can affect short-term and mid-term values
while socioeconomic variables are useful for long-term forecasting [11, 15, 16]. However, a
few studies investigated the impact of climatic variables on demand forecasting [17–19].
Literature enlists various deterministic and probabilistic techniques for forecasting urban
drinking water demand. In general, conventional methods were prevalent for a better under-
standing of determinants of water demand [20–22], which consider linear relationships
between effective variables and water demand, which is nonlinear. The mentioned studies
are broadly categorized into two-fold: physical based and black box models. Without ana-
lyzing the physical processes, the second one applies artificial intelligence techniques (artifi-
cial neural networks, genetic programming, etc.), fuzzy-based (fuzzy logic, neuro-fuzzy,
etc.), soft computing (support vector machine, etc.), and nonlinear deterministic (nonlinear
local approximation, etc.) to identify the relationship between the input and output vari-
ables. Conventional regression models [3], autoregressive integrated moving average
(ARIMA) [23], autoregressive integrated moving average with explanatory variable
(ARIMAX) [24, 25], artificial neural networks (ANN) [9, 26–29], a combination of conven-
tional and ANN [11, 12, 30], feedforward neural networks [12, 31], general regression neural
networks [32, 33], support vector machines [14, 9, 34–37], gene expression programming
[14, 38], fuzzy regression [39], neuro-fuzzy systems [40, 41], Fourier analysis [4], hybrid
models (e.g. combined wavelet-ANN and wavelet-GEP) [13, 38], fuzzy cognitive map learn-
ing method [42, 43]. This research applies probabilistic ANN, GEP approach and a conven-
tional method (MLR) to determine the performance of the methods with/without phase
space reconstruction and wavelet decomposition in the case.

The chaotic nature has been addressed for various systems [44–49]. Any chaotic system is
deterministic in which minor changes in the initial conditions could lead to entire different
behaviors in the next periods [44]. Chaos theory was successfully used to understand the
nonlinear dynamic of the system. The models that are based on chaos theory and nonlinear
dynamics are a better representative of the behavior of dynamic of observed data [50]. In
general, chaos theory improves the understanding of nonlinear dynamics [51]. Ng et al.
applied chaos theory on noisy time series of discharge in Saugeen River (Canada) [52]. They
argued that noisy time series not only increase the complications of the data but also gave high
embedding dimension. Sivakumar et al. utilized the concept of nonlinear dynamic behavior to
classify rivers from phase-space data reconstruction perspective [53].

Genetic programming (GP) and gene expression programming (GEP) are among the heuristic
algorithms based on Darwin’s evolution theory [53]. GP was employed to complete missing
data in wave records and forecasting [55–57]. Aytek and Kishi used GP model to suspended
sediment in the Tongue River (United States) and found GP more accurate than sediment
rating curves and multiple linear regressions (MLR) [58]. Ghorbani et al. investigated the chaos
theory, artificial neural network (ANN) and GEP in estimating suspended sediment in the
Mississippi River (United States) [59]. GEP is superior to GP as it is more convenient to
interpret the results by a GEP tree that comes along with output results. GEP also performs
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present accepted knowledge for these factors is still limited and depends upon (1) accurate
estimation and forecast water consumption and (2) determination of type and degree of
nonlinearity among the effective variables [6]. Over the past decades, two groups of determin-
istic and probabilistic methods have been proposed to forecast urban water demand. The
deterministic approach is solely based on the input variables and their initial conditions,
whereas a probabilistic model relies on modeling uncertainties and randomness of the input
variables.

Given the significant challenges and complexity of probabilistic methods and the fact that pre-
processing methods can provide a useful approximation to their probabilistic counterparts,
this research focused on the application of pre-processing to forecast short-term consumption.

2. Literature review

Midterm water demand forecast helps the water management authorities to develop an inte-
grated plan which balances supply and demand in a given period. Water stress of an area can
be reduced by accurate estimation of drinking water supply demand [3, 7–9]. Moreover,
management can provide water sustainability based on their experience as well as the accurate
and reliable value of future demand [10].

Compared to other hydrological forecast studies (e.g., river discharge, sedimentation, rain-
fall, etc.) water consumption is not as influenced by the input factors as other studies do. The
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most significant input variables are temperature, precipitation, and past demand values that
were popular in most of the studies [11–13]. Two different types of variables affecting water
demand: climatic (e.g., temperature, relative humidity, rainfall, etc.) and socioeconomic (e.g.,
population and income) [14]. Climatic variables can affect short-term and mid-term values
while socioeconomic variables are useful for long-term forecasting [11, 15, 16]. However, a
few studies investigated the impact of climatic variables on demand forecasting [17–19].
Literature enlists various deterministic and probabilistic techniques for forecasting urban
drinking water demand. In general, conventional methods were prevalent for a better under-
standing of determinants of water demand [20–22], which consider linear relationships
between effective variables and water demand, which is nonlinear. The mentioned studies
are broadly categorized into two-fold: physical based and black box models. Without ana-
lyzing the physical processes, the second one applies artificial intelligence techniques (artifi-
cial neural networks, genetic programming, etc.), fuzzy-based (fuzzy logic, neuro-fuzzy,
etc.), soft computing (support vector machine, etc.), and nonlinear deterministic (nonlinear
local approximation, etc.) to identify the relationship between the input and output vari-
ables. Conventional regression models [3], autoregressive integrated moving average
(ARIMA) [23], autoregressive integrated moving average with explanatory variable
(ARIMAX) [24, 25], artificial neural networks (ANN) [9, 26–29], a combination of conven-
tional and ANN [11, 12, 30], feedforward neural networks [12, 31], general regression neural
networks [32, 33], support vector machines [14, 9, 34–37], gene expression programming
[14, 38], fuzzy regression [39], neuro-fuzzy systems [40, 41], Fourier analysis [4], hybrid
models (e.g. combined wavelet-ANN and wavelet-GEP) [13, 38], fuzzy cognitive map learn-
ing method [42, 43]. This research applies probabilistic ANN, GEP approach and a conven-
tional method (MLR) to determine the performance of the methods with/without phase
space reconstruction and wavelet decomposition in the case.

The chaotic nature has been addressed for various systems [44–49]. Any chaotic system is
deterministic in which minor changes in the initial conditions could lead to entire different
behaviors in the next periods [44]. Chaos theory was successfully used to understand the
nonlinear dynamic of the system. The models that are based on chaos theory and nonlinear
dynamics are a better representative of the behavior of dynamic of observed data [50]. In
general, chaos theory improves the understanding of nonlinear dynamics [51]. Ng et al.
applied chaos theory on noisy time series of discharge in Saugeen River (Canada) [52]. They
argued that noisy time series not only increase the complications of the data but also gave high
embedding dimension. Sivakumar et al. utilized the concept of nonlinear dynamic behavior to
classify rivers from phase-space data reconstruction perspective [53].

Genetic programming (GP) and gene expression programming (GEP) are among the heuristic
algorithms based on Darwin’s evolution theory [53]. GP was employed to complete missing
data in wave records and forecasting [55–57]. Aytek and Kishi used GP model to suspended
sediment in the Tongue River (United States) and found GP more accurate than sediment
rating curves and multiple linear regressions (MLR) [58]. Ghorbani et al. investigated the chaos
theory, artificial neural network (ANN) and GEP in estimating suspended sediment in the
Mississippi River (United States) [59]. GEP is superior to GP as it is more convenient to
interpret the results by a GEP tree that comes along with output results. GEP also performs
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better at extracting a mathematical equation which shows the relation between input and
output variables [59–61]. Nasseri et al. developed a hybrid model combining the extended
Kalman filter with genetic programming for monthly water demand forecasting in Tehran [62].
Shabani et al. proposed a new rationale and a novel technique in forecasting water demand
using lag time to feed the determinants of water demand by the development of GEP and SVM
models [14]. Yousefi et al. implemented sophisticated mathematical models to forecast water
demand of City of Kelowna in monthly temporal scale. Their study assessed the performance
of GEP using wavelet decomposition [38].

Among the variety of examined methods Artificial Neural Networks (ANNs), have been
applied to the various period in the wide variety of hydrological issues. The main reason of
ANNs frequent usage is its ability to overcome the relationship in determining the complexity
of time series, even with the shortage of amount of data available to train the models. There-
fore, most of the studies applicable in area of water resources demand applies ANNs to
forecast short, mid and long-term demand values [13, 30, 31].

Regarding the literature review reported by Nourani et al. concluded about the dominant
application of wavelet-based models [63]. Moreover, Labat notified about the improving
ability of wavelet in models’ performance [64]. Therefore, the application of wavelet brought
researchers attention into the area such as denoising [65]; stream flow and water resources [66];
evaporation and climatic models [67]; groundwater level modeling [68]; water demand fore-
casting [13, 38], where in most of the mentioned studies combination of Wavelet-ANNs
performed accurately over conventional models without hybrid wavelet models (e.g. ARIMA,
MLR, ANN and etc.).

The objectives of this study are four-fold: (1) to investigate chaotic behavior of case data and
finding the proper lag time; (2) to find the accuracy of the forecasting for one-day ahead lead
time with various input combination, and (3) to study if phase space reconstruction (PSR)
based on optimum embedding dimension would improve the accuracy of the models, and 4)
application of wavelet decomposition by five different transform functions combined with all
the mentioned models with and without PSR.

3. Methodology

3.1. Case study and data information

3.1.1. Understandings

Unlike natural water resources like rainfall, the lower percentage of drinking water which is
change to waste water after use, back to the cycle. Water pressure in a pipeline, water quality,
supply peak consumption time, pipeline maintenance, maintenance cost, specialist and edu-
cated human resources, pipeline failure management, etc. are the variables that all of them
should be under control at the same time. Also, to develop an integrated long-term plan,
availability of resources is crucial. Therefore, knowing about the value of consumption in a
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specific period is the first step for any management plan beyond urban drinking water supply
and allocation. This chapter investigates the first step of every long-term plan development in
urban drinking water as discussed below. Water utility management needs drinking water
long-term forecasted values in several terms. (1) water distribution network design; (2) supply
and consumption management; (3) efficient application of distribution network; (4) pipeline
pressure management; (5) network development; (6) optimizing the cost of water supply and
network maintenance.

3.1.2. Study area

The present research selected Water consumption of the City of Kelowna (BC, Canada) as the
test case. The city of Kelowna water utility provides services for approximately 65,000 resi-
dents. Poplar Point, Eldorado, Cedar Creek and Swick Road pump stations cover services for
99% of the population of the area [69]. However, few areas in the boundary are named as
“Future City”where does not contain any population yet, land development plan shows water
servicing is considered in the area. Monitoring of water quality, the operation of the pumps,
water level in reservoirs, and pipeline pressure are conducted by the use of Supervisory
Control and Data Acquisition Software (SCADA).

3.1.3. Review of data records

Hourly water demand for the above-mentioned stations has been made available by the city
utility of Kelowna. The data used 6 years (approximately 52,464 hourly consumption) starting
from January 1st, 2011 to 30th December 2016. Figure 1 shows the variation of daily and
monthly water demand and the consumption pattern. Concerning the 6 years water demand
samples of daily scale (2186 points), the first 5 years (1882 points) are used for calibrating the
models and the last year (365 points – 2016) is considered as the test period. Table 1 shows the
characteristics of the dataset in the test case.

3.2. Phase space reconstruction (PSR)

Given a set of physical variables and their interactions, the dynamics of a system (e.g., water
consumption) can be defined by a single point moving on a trajectory, where each of its points

Figure 1. Time series plot of (a) daily water demand; (b) average of the consumption pattern in 24 h within 6 years.
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using lag time to feed the determinants of water demand by the development of GEP and SVM
models [14]. Yousefi et al. implemented sophisticated mathematical models to forecast water
demand of City of Kelowna in monthly temporal scale. Their study assessed the performance
of GEP using wavelet decomposition [38].
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of time series, even with the shortage of amount of data available to train the models. There-
fore, most of the studies applicable in area of water resources demand applies ANNs to
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Regarding the literature review reported by Nourani et al. concluded about the dominant
application of wavelet-based models [63]. Moreover, Labat notified about the improving
ability of wavelet in models’ performance [64]. Therefore, the application of wavelet brought
researchers attention into the area such as denoising [65]; stream flow and water resources [66];
evaporation and climatic models [67]; groundwater level modeling [68]; water demand fore-
casting [13, 38], where in most of the mentioned studies combination of Wavelet-ANNs
performed accurately over conventional models without hybrid wavelet models (e.g. ARIMA,
MLR, ANN and etc.).

The objectives of this study are four-fold: (1) to investigate chaotic behavior of case data and
finding the proper lag time; (2) to find the accuracy of the forecasting for one-day ahead lead
time with various input combination, and (3) to study if phase space reconstruction (PSR)
based on optimum embedding dimension would improve the accuracy of the models, and 4)
application of wavelet decomposition by five different transform functions combined with all
the mentioned models with and without PSR.

3. Methodology

3.1. Case study and data information

3.1.1. Understandings

Unlike natural water resources like rainfall, the lower percentage of drinking water which is
change to waste water after use, back to the cycle. Water pressure in a pipeline, water quality,
supply peak consumption time, pipeline maintenance, maintenance cost, specialist and edu-
cated human resources, pipeline failure management, etc. are the variables that all of them
should be under control at the same time. Also, to develop an integrated long-term plan,
availability of resources is crucial. Therefore, knowing about the value of consumption in a
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specific period is the first step for any management plan beyond urban drinking water supply
and allocation. This chapter investigates the first step of every long-term plan development in
urban drinking water as discussed below. Water utility management needs drinking water
long-term forecasted values in several terms. (1) water distribution network design; (2) supply
and consumption management; (3) efficient application of distribution network; (4) pipeline
pressure management; (5) network development; (6) optimizing the cost of water supply and
network maintenance.

3.1.2. Study area

The present research selected Water consumption of the City of Kelowna (BC, Canada) as the
test case. The city of Kelowna water utility provides services for approximately 65,000 resi-
dents. Poplar Point, Eldorado, Cedar Creek and Swick Road pump stations cover services for
99% of the population of the area [69]. However, few areas in the boundary are named as
“Future City”where does not contain any population yet, land development plan shows water
servicing is considered in the area. Monitoring of water quality, the operation of the pumps,
water level in reservoirs, and pipeline pressure are conducted by the use of Supervisory
Control and Data Acquisition Software (SCADA).

3.1.3. Review of data records

Hourly water demand for the above-mentioned stations has been made available by the city
utility of Kelowna. The data used 6 years (approximately 52,464 hourly consumption) starting
from January 1st, 2011 to 30th December 2016. Figure 1 shows the variation of daily and
monthly water demand and the consumption pattern. Concerning the 6 years water demand
samples of daily scale (2186 points), the first 5 years (1882 points) are used for calibrating the
models and the last year (365 points – 2016) is considered as the test period. Table 1 shows the
characteristics of the dataset in the test case.

3.2. Phase space reconstruction (PSR)

Given a set of physical variables and their interactions, the dynamics of a system (e.g., water
consumption) can be defined by a single point moving on a trajectory, where each of its points

Figure 1. Time series plot of (a) daily water demand; (b) average of the consumption pattern in 24 h within 6 years.
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represents a state of the system. The lag-embedding method reconstructs phase-space from a
univariate or multivariate time series generated by a deterministic dynamic system [70]. The
underlying dynamics can be studied by building an m-dimensional space Xt defined by [49]:

Xt ¼ xt; xt�τ; xt�2τ;…; xt� m�1ð Þτ
� �

, t ¼ 1, 2,…, N (1)

where Xt is a vector of the observed data of {xt} t = 1,…,N, N is the total number of observed
data, τ is the lag time, and m is embedding dimension. The embedding dimension (m) is
typically in the range of 1–10 [53, 54]. The lag-embedding method is sensitive to both embed-
ding parameters of τ and m. Average mutual information (AMI) and autocorrelation function
(ACF) are the two well-known methods for estimating the lag time [71, 72]. More details about
ACF and different functions are available at [73].

3.3. Correlation dimension (Chaos investigation)

Correlation dimension is a nonlinear measure of the correlation between pairs lying on the
attractor. The dimension of a system reveals the number of effective variables in the system.
Kermani (2016) classified different dimensions in a system as topological, Hausdorf, box
counting, point-wise, and correlation dimension. These dimensions are nearly equal in chaotic
systems [52, 74]. This research employed correlation dimension, as it is a lower bound measure
of the fractal dimension [59, 74]. For time series whose underlying dynamics is chaotic, the
correlation dimension gets a finite fractional value, whereas it is infinite for stochastic systems.
The later does not saturate to a specific amount of correlation exponent [75]. For an m-
dimensional phase-space, the correlation function, Cm(r), is defined as the fraction of states
closer than r [76].

Cm rð Þ ¼ lim
Np!∞

2
Np � w
� �

Np � w� 1
� �X

Np

i¼1

XNp

j¼iþ1þw
H r� Xi � Xj

�� ��� �
(2)

where H is the Heaviside step function, Xi is the ith state vector, Np is the number of points on
the reconstructed attractor, r is the radius of a sphere with the content of Xi or Xj. The Theiler
window (w) is the correction needed to avoid spurious results due to temporal correlations
instead of dynamical ones. Cm(r) is proportional to r for stochastic time series, whereas for
chaotic time series it scales with r as:

Cm rð Þ∝ rce : (3)

where ce is correlation exponent defined by:

Property Number of
Data

Max.
Value*

Min.
Value*

Average* Standard
deviation*

Coefficient of
variation

Skew Kurtosis

Data 2186 114597.2 14,124 43046.4 20074.5 0.46 0.73 �0.38

Table 1. Statistics of water consumption of Kelowna City in different temporal resolutions (*m3).
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ce ¼ lim
r!0

lnCm rð Þ
ln r

: (4)

The parameters m and Ce can be determined as the slopes of the lines when plotted Cm(r)
against r in logarithmic scale. In a deterministic system, Ce increases by increasing m until
eventually remaining unchanged. The correlation dimension of time series is defined as the
specific value of m after which Ce remains unchanged [54, 59].

3.4. Artificial neural networks

When ANN is based roughly on the neural layout of the human brain and is capable of non-
linear modeling processes that can classify the patterns and recognize the capabilities [77].
Regarding the ability of multilayer perceptron (MLP)-ANN outperformance as a conventional
ANN approaches [77, 78, 79], this research employed three-layer MLP-ANN (input, hidden
and output layers) and the different number of neurons. In hidden layer, neurons are calcu-
lated by the summation of demand values (di) with the given weight for each value (wij) to
determine the output signal as (uj).

uj ¼
Xt

i¼1
wijdi (5)

Oj ¼ ϕ uj � θj
� �

(6)

where ϕ is the transfer function and θ is a threshold limit [80, 81, 82]. Among various transfer
functions (e.g., sigmoid shape, piecewise, step, linear and non-linear functions), the logistic
sigmoid and Purelin (linear) transfer functions. Regarding the large number of input variables
in the present study, no transfer function is applied to reduce the computationally demanding.
While, the logistic sigmoid and Purelin transfer functions that are commonly used in literature
[79, 81, 82] are provided at the output and hidden layers, respectively (further details about the
bias and transfer functions are available at [79, 81]). Feed-forward multi linear perceptron is
employed in this study containing input, hidden and output layers. The number of neurons in
the input layer varies from 1 to 10 (without decomposition) and from 4 to 24 (with decompo-
sition). Moreover, the neurons of the layers are connected with the neurons in the next layer by
weights. Also, to consider all optimal solutions with the highest probable accuracy, this study
investigated the number of HLN from 1 to 20 in 1 to 200 epochs.

3.5. Gene expression programming

Evolutionary computation has received significant attention among researchers for studying
complex engineering systems. Genetic algorithm (GA), genetic programming (GP), and gene
expression programming (GEP) were inspired by Darwin’s theory of evolution [60, 61]. GEP
defines an algorithm and equation which shows the relation between input and output vari-
ables. GA and GP rely on a string of numbers with defined length called “chromosomes”,
while GEP employs a set of nonlinear entities with different shapes and sizes, “expression/
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represents a state of the system. The lag-embedding method reconstructs phase-space from a
univariate or multivariate time series generated by a deterministic dynamic system [70]. The
underlying dynamics can be studied by building an m-dimensional space Xt defined by [49]:

Xt ¼ xt; xt�τ; xt�2τ;…; xt� m�1ð Þτ
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, t ¼ 1, 2,…, N (1)

where Xt is a vector of the observed data of {xt} t = 1,…,N, N is the total number of observed
data, τ is the lag time, and m is embedding dimension. The embedding dimension (m) is
typically in the range of 1–10 [53, 54]. The lag-embedding method is sensitive to both embed-
ding parameters of τ and m. Average mutual information (AMI) and autocorrelation function
(ACF) are the two well-known methods for estimating the lag time [71, 72]. More details about
ACF and different functions are available at [73].

3.3. Correlation dimension (Chaos investigation)

Correlation dimension is a nonlinear measure of the correlation between pairs lying on the
attractor. The dimension of a system reveals the number of effective variables in the system.
Kermani (2016) classified different dimensions in a system as topological, Hausdorf, box
counting, point-wise, and correlation dimension. These dimensions are nearly equal in chaotic
systems [52, 74]. This research employed correlation dimension, as it is a lower bound measure
of the fractal dimension [59, 74]. For time series whose underlying dynamics is chaotic, the
correlation dimension gets a finite fractional value, whereas it is infinite for stochastic systems.
The later does not saturate to a specific amount of correlation exponent [75]. For an m-
dimensional phase-space, the correlation function, Cm(r), is defined as the fraction of states
closer than r [76].
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where H is the Heaviside step function, Xi is the ith state vector, Np is the number of points on
the reconstructed attractor, r is the radius of a sphere with the content of Xi or Xj. The Theiler
window (w) is the correction needed to avoid spurious results due to temporal correlations
instead of dynamical ones. Cm(r) is proportional to r for stochastic time series, whereas for
chaotic time series it scales with r as:

Cm rð Þ∝ rce : (3)

where ce is correlation exponent defined by:

Property Number of
Data

Max.
Value*

Min.
Value*

Average* Standard
deviation*

Coefficient of
variation

Skew Kurtosis

Data 2186 114597.2 14,124 43046.4 20074.5 0.46 0.73 �0.38

Table 1. Statistics of water consumption of Kelowna City in different temporal resolutions (*m3).
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lnCm rð Þ
ln r

: (4)

The parameters m and Ce can be determined as the slopes of the lines when plotted Cm(r)
against r in logarithmic scale. In a deterministic system, Ce increases by increasing m until
eventually remaining unchanged. The correlation dimension of time series is defined as the
specific value of m after which Ce remains unchanged [54, 59].

3.4. Artificial neural networks

When ANN is based roughly on the neural layout of the human brain and is capable of non-
linear modeling processes that can classify the patterns and recognize the capabilities [77].
Regarding the ability of multilayer perceptron (MLP)-ANN outperformance as a conventional
ANN approaches [77, 78, 79], this research employed three-layer MLP-ANN (input, hidden
and output layers) and the different number of neurons. In hidden layer, neurons are calcu-
lated by the summation of demand values (di) with the given weight for each value (wij) to
determine the output signal as (uj).

uj ¼
Xt

i¼1
wijdi (5)

Oj ¼ ϕ uj � θj
� �

(6)

where ϕ is the transfer function and θ is a threshold limit [80, 81, 82]. Among various transfer
functions (e.g., sigmoid shape, piecewise, step, linear and non-linear functions), the logistic
sigmoid and Purelin (linear) transfer functions. Regarding the large number of input variables
in the present study, no transfer function is applied to reduce the computationally demanding.
While, the logistic sigmoid and Purelin transfer functions that are commonly used in literature
[79, 81, 82] are provided at the output and hidden layers, respectively (further details about the
bias and transfer functions are available at [79, 81]). Feed-forward multi linear perceptron is
employed in this study containing input, hidden and output layers. The number of neurons in
the input layer varies from 1 to 10 (without decomposition) and from 4 to 24 (with decompo-
sition). Moreover, the neurons of the layers are connected with the neurons in the next layer by
weights. Also, to consider all optimal solutions with the highest probable accuracy, this study
investigated the number of HLN from 1 to 20 in 1 to 200 epochs.

3.5. Gene expression programming

Evolutionary computation has received significant attention among researchers for studying
complex engineering systems. Genetic algorithm (GA), genetic programming (GP), and gene
expression programming (GEP) were inspired by Darwin’s theory of evolution [60, 61]. GEP
defines an algorithm and equation which shows the relation between input and output vari-
ables. GA and GP rely on a string of numbers with defined length called “chromosomes”,
while GEP employs a set of nonlinear entities with different shapes and sizes, “expression/
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parse trees”. The expression tree accommodates the ease of a GA solution as well as the
capability of accepting the nonlinear/complex behavior in a typical GP solution. The chromo-
some can have one or more genes of equal length. A gene represents a set of symbols
containing two parts; a head which has functions and terminals and a tail which only has
terminals. Initiating with the random generation of chromosomes, GEP is followed by different
applications of genetic operators like replication, recombination, mutation, etc. The terminat-
ing condition for developing GEP depends upon the selection of maximum fitness. This
research applied 30 chromosomes, eight head sizes, three genes, and arithmetic operators of
{+,-, �, x, x2, √x}.

3.6. Multilinear regression

When MLR corresponds to a linear combination of the components of multiple signals x (e.g.
recorded discharge, lag time discharge, or combination of both) to a single output signal y
(Demand) by:

y ¼ bþ
XN

i¼0
aixi (7)

where xi is the defined input (demand) and ai is regression coefficient determined by the least
square method with the residual r defined by:

r ¼ y� a1x1 � a2x2 �…� b: (8)

3.7. Wavelet decomposition

Commonly wavelet transforms are used for decomposition, de-noising, and compression of
the time series [83]. Time series have a combination of low and high frequency which represent
improved features (e.g., cyclical trends) and chaotic element, respectively [84]. Considering
these frequencies, separation of low and high frequency is helpful in studying the original
pattern and behavior of the time series. One of the mentioned methods is discrete wavelet
transform (DWT) to separate per level of frequencies in time series. One of the common
discretion ways proposed by Mallat that this study used the mentioned DTW method to
separate the frequencies of the applied data [85]. The level of the decomposition shows the
subseries. For example, for level 1 decomposition, the number of subseries is two. Therefore,
the number of levels indicates the number of subseries plus one. Level 3 is considered as
suitable decomposition level in the present study regarding the number of data (2186 day)
and following Nourani et al. (2009) that offered [83]:

Ln ¼ int log Nð Þ½ �: (9)

where Ln is the number, the level of decomposition andN is the number of used data. Thus, the
proper level in this study is considered as 3. However, increasing the level number does not
necessarily improve the accuracy of the models. Therefore, the original data are discretized in a
high-frequency subset (a3) and three high frequencies as (d1), (d2) and (d3), where the
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summation of all is equal with the value of original data. This research employed Haar, the
second and fourth order Daubechies (db2, db4), and the second and fourth order Symlets
(Sym2, sym4) wavelets to decompose daily water demand time series into sub-series. The
software MATLAB 2015 (https://www.mathworks.com) was employed for the analysis.

3.8. Evaluation of models’ performance

This research measured the models’ accuracy by coefficient of determination (CD), root mean
squared error (RMSE) and mean absolute error (MAE) defined as:

CD ¼
PNt

i¼1 Oi �O
� �

Fi � F
� �

PNt
i Oi �O
� �2h i1

2 PNt
i Fi � F
� �2h i1

2

2
64

3
75
2

: (10)

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt

i¼1 Oi � Fið Þ2
Nt

s
: (11)

MAE ¼ 1
n

Xn

j¼1
Oi � Fij j: (12)

where Nt is the number of values, O and F are the observed and forecasted values of demand,
respectively.O and F are the mean of the observed and forecasted demand values, respectively.
Note that the range of CD is between 0 and 1 with higher positive values indicate better
agreement. A lower value of RMSE andMAE indicates better agreement between the observed
and forecasted values.

4. Preliminary results

4.1. Phase space reconstruction and investigation of chaotic behavior

Existence of chaotic behavior in the time series is shown in Figure 2. However, the results are
not entirely based on the proof of having chaotic behavior, as the figure only shows possible
low-dimensional chaotic behavior. Theoretically, several methods are well known for investi-
gating the chaotic behavior such as lag time calculation method (e.g., average mutual informa-
tion (AMI), Autocorrelation function (ACF)), correlation dimension, largest Lyapunov
exponent, etc.). This study investigates the chaotic behavior by applying ACF and correlation
dimension. Having chaotic behavior allows using ACF to calculate the lag time of the time
series. The value of lag time is considered as the first approach of ACF to 0 (Figure 2).

The results show 83-days as the lag time of the time series. Therefore, 83-day is used to design
combination of inputs as phase space for the time series. In this study, the difference between
1st day and 83rd day is used as delay period for phase space reconstruction varying embed-
ding dimensions from 1 to 10 (m1: Dt; m2: Dt,Dt-τ; m10: Dt,…,Dt-10τ). It should be noticed that
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parse trees”. The expression tree accommodates the ease of a GA solution as well as the
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y ¼ bþ
XN

i¼0
aixi (7)
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improved features (e.g., cyclical trends) and chaotic element, respectively [84]. Considering
these frequencies, separation of low and high frequency is helpful in studying the original
pattern and behavior of the time series. One of the mentioned methods is discrete wavelet
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summation of all is equal with the value of original data. This research employed Haar, the
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2 PNt
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2
64

3
75
2
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Nt

s
: (11)
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n

Xn

j¼1
Oi � Fij j: (12)

where Nt is the number of values, O and F are the observed and forecasted values of demand,
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exponent, etc.). This study investigates the chaotic behavior by applying ACF and correlation
dimension. Having chaotic behavior allows using ACF to calculate the lag time of the time
series. The value of lag time is considered as the first approach of ACF to 0 (Figure 2).

The results show 83-days as the lag time of the time series. Therefore, 83-day is used to design
combination of inputs as phase space for the time series. In this study, the difference between
1st day and 83rd day is used as delay period for phase space reconstruction varying embed-
ding dimensions from 1 to 10 (m1: Dt; m2: Dt,Dt-τ; m10: Dt,…,Dt-10τ). It should be noticed that
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several methods were introduced in literature to calculate the value of optimum embedding
dimension which may be more than 10 for the used time series in this study. This study aims at
showing the performance of embedding dimension and reconstructed phase space, where m is
only considered 1 to 10. Figure 2 shows the value of ACF for the demand series and reconstructed
phase space (τ = 83). Figure 3a shows the relation between C(r) and r and (3b) correlation
exponent by varying m. Figure 3b shows that the value of correlation exponent increases by m
and as m = 17, the correlation exponent reaches a specific value (Ce = 3.41). This constant value of
Ce at m = 17 indicates the existence of the deterministic behavior of the time series.

4.2. Multilinear regression

Excel 2010 was used to implement MLR model. The train period was used to derive regression
coefficient from getting the value of variables in the linear equation. The availability of trained
equation, helped in testifying the last year data as the test period. In the first fold, the 1-day
delay was considered for m 1 to 10, and second fold applied 83-day delay. Table 2 shows the
results of both MLR and PSR-MLR in the test period.

Figure 2. (a) Autocorrelation function (τ); (b) reconstructed phase space by (τ and 2τ -day lag time).

Figure 3. (a) The relation between correlation function C(r) and r by various m; (b) Saturation of correlation dimension Ce
(m) with embedding dimensions.
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Statistical indices for the fitness values showed m = 1 for 1-day delay and m = 4 for the
reconstructed phase space with the value of (CD = 0.9565, RMSE = 3642.89 and MAE = 50.42)
and (CD = 0.9572, RMSE = 3636.34 and MAE = 51.04), respectively. However, the difference
between the two models is not considerable, in the large value of demand in long-term this
difference can come into account. Figure 4 shows the comparison of observed and demand
values. Moreover, the suggested equation for the best result by MLR is given by:

Dtþ1 ¼ �0:00854Dt � 0:0366Dtþτ � 0:0128Dtþ2τ þ 0:9427Dtþ3τ: (13)

4.3. Performance of artificial neural network

ANN is another approach to model the demand values which represented in Section 3.4.
ANN’s structures have different hidden layer neurons (HLN) from 1 to 20 with 200 epochs

MLR, τ = 1 PSR-MLR, τ = 83

m CD RMSE(m3/day) MAE m CD RMSE(m3/day) MAE

1 0.9565 3642.89 50.42 1 0.9565 3642.89 50.42

2 0.9565 3804.14 52.14 2 0.9565 3804.14 52.14

3 0.9468 14106.70 112.82 3 0.9570 5319.51 66.90

4 0.9473 13174.97 108.82 4 0.9572 3636.34 51.04

5 0.9505 3724.99 49.81 5 0.9568 4167.55 56.45

6 0.9503 3746.33 50.09 6 0.9569 5907.90 71.65

7 0.9503 3747.49 50.10 7 0.9565 4370.03 58.86

8 0.9493 6058.34 70.88 8 0.9566 4581.10 60.89

9 0.9505 3736.33 50.02 9 0.9566 5023.16 64.71

10 0.9506 3738.35 50.07 10 0.9566 4327.34 58.48

Table 2. Fitness values for MLR and PSR-MLR methods in different embedding dimensions (bolded lines are the most
accurate values).

Figure 4. The performance of MLR and PSR-MLR in comparison with observed values.
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Statistical indices for the fitness values showed m = 1 for 1-day delay and m = 4 for the
reconstructed phase space with the value of (CD = 0.9565, RMSE = 3642.89 and MAE = 50.42)
and (CD = 0.9572, RMSE = 3636.34 and MAE = 51.04), respectively. However, the difference
between the two models is not considerable, in the large value of demand in long-term this
difference can come into account. Figure 4 shows the comparison of observed and demand
values. Moreover, the suggested equation for the best result by MLR is given by:

Dtþ1 ¼ �0:00854Dt � 0:0366Dtþτ � 0:0128Dtþ2τ þ 0:9427Dtþ3τ: (13)
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ANN is another approach to model the demand values which represented in Section 3.4.
ANN’s structures have different hidden layer neurons (HLN) from 1 to 20 with 200 epochs
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for each model. Table 3 represents the result of ANN for both 1-day delay and PSR values. The
results in the table for each m, are extracted from the result of various HLN and epochs.
Figure 5 shows the example for selecting m = 3 among (20 � 200 = 4000). This calculation has
been done for all m from 1 to 10 for both 1-day delay and PSR. (4000 � 10 � 2 = 80,000) number
of calculations where the best 10 values have been selected (Table 3).

Selection of ANN structures are represented in Table 3 for the test period. Statistical indices for
the fitness values showed m = 6 for 1-day delay and m = 3 for PSR, with the values of
(CD = 0.9520, RMSE = 3535.66 and MAE = 47.58) and (CD = 0.9578, RMSE = 3330.53 and

ANN, τ = 1 PSR-ANN, τ = 83

m Structure Epoch CD RMSE* MAE m Structure Epoch CD RMSE* MAE

1 1-5-1 110 0.9505 3611.56 48.34 1 1-6-1 150 0.9573 3369.55 47.63

2 1-3-1 140 0.9509 3602.25 48.25 2 1-4-1 20 0.9568 3369.50 47.83

3 1-16-1 20 0.9514 3554.13 48.06 3 1-2-1 120 0.9578 3330.53 47.13

4 1-16-1 170 0.9516 3550.99 47.90 4 1-2-1 70 0.9575 3333.67 47.25

5 1-3-1 160 0.9513 3561.33 47.98 5 1-3-1 110 0.9578 3340.36 47.15

6 1-9-1 50 0.9520 3535.66 47.58 6 1-3-1 40 0.9572 3340.16 47.46

7 1-3-1 100 0.9511 3563.14 48.08 7 1-3-1 100 0.9570 3348.68 47.80

8 1-8-1 20 0.9510 3570.70 47.84 8 1-2-1 150 0.9573 3333.88 47.24

9 1-4-1 200 0.9511 3566.00 47.69 9 1-2-1 140 0.9571 3338.53 47.89

10 1-3-1 100 0.9515 3546.72 47.94 10 1-4-1 10 0.9539 3518.86 49.28

Table 3. Fitness values for ANN and PSR-ANN in different embedding dimensions *m3/day). (bolded lines are the most
accurate values).

Figure 5. The results of ANN for τ = 83 PSR by various HLN and epochs.
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MAE = 47.13), respectively. Regarding the results, PSR-ANN mostly dominates in all embed-
ding dimensions for the fitness accuracy indices. Figure 6 shows the comparison of observed
and demand values in the test period for both ANN and PSR-ANN inm = 6 and 3, respectively.
The results showed (Dt, Dt + τ, Dt + 2τ) as the best input combination for the models.

4.4. Performance of gene expression programming

GEP preliminarily investigates the relationship between input and output as discussed in
Section 3.5. Unlike the other models in this study, 1-day ahead is output, and various combi-
nations of input in terms ofm are considered as input variables. The arithmetic operations used
in this study are {+,�,�, x, x2, √x}, and GEP applies them to fit the best accuracy between input
and output variables. Further details of GEP initial term values are in following of [14, 38, 59]
to extract the GEP model for both 1-day delay and PSR. The results are shown in the Table 4
for the test period.

According to the Table 4, there is not much difference among the different m. But the differ-
ence in PSR-GEP results can be considered as a proof of sensitivity to the initial values of
specific time lags where the variations of the results for different m are more than 1-day delay.
There is not a significant difference in the results in this study comparing to other alternative
models, especially PSR-ANN is not an advantage of GEP. However, extracting the mathemat-
ical equation through GEP is one of advantage of GEP comparing to other artificial models. As
a result of given model, equation form = 3 (PSR-GEP) can calculate the demand value for 1-day
ahead by:

Dtþ1 ¼ 0:0529
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtþτ þDtþ2τ

p
þDt � 7:0838 (14)

Although, variety of other arithmetic operations may have been applied here but focusing on
the aim of study, only simple known operations were applied to extract the GEP equation. The
results of PSR-GEP and alternative ones prove the advantage of PSR to improve the accuracy
of the models. Statistical indices for the fitness values showed m = 2 for 1-day delay and m = 3
for the reconstructed phase space with the value of (CD = 0.9497, RMSE = 3609.82, and

Figure 6. The performance of ANN and PSR-ANN in comparison with observed values.
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MAE = 47.13), respectively. Regarding the results, PSR-ANN mostly dominates in all embed-
ding dimensions for the fitness accuracy indices. Figure 6 shows the comparison of observed
and demand values in the test period for both ANN and PSR-ANN inm = 6 and 3, respectively.
The results showed (Dt, Dt + τ, Dt + 2τ) as the best input combination for the models.

4.4. Performance of gene expression programming

GEP preliminarily investigates the relationship between input and output as discussed in
Section 3.5. Unlike the other models in this study, 1-day ahead is output, and various combi-
nations of input in terms ofm are considered as input variables. The arithmetic operations used
in this study are {+,�,�, x, x2, √x}, and GEP applies them to fit the best accuracy between input
and output variables. Further details of GEP initial term values are in following of [14, 38, 59]
to extract the GEP model for both 1-day delay and PSR. The results are shown in the Table 4
for the test period.

According to the Table 4, there is not much difference among the different m. But the differ-
ence in PSR-GEP results can be considered as a proof of sensitivity to the initial values of
specific time lags where the variations of the results for different m are more than 1-day delay.
There is not a significant difference in the results in this study comparing to other alternative
models, especially PSR-ANN is not an advantage of GEP. However, extracting the mathemat-
ical equation through GEP is one of advantage of GEP comparing to other artificial models. As
a result of given model, equation form = 3 (PSR-GEP) can calculate the demand value for 1-day
ahead by:

Dtþ1 ¼ 0:0529
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Although, variety of other arithmetic operations may have been applied here but focusing on
the aim of study, only simple known operations were applied to extract the GEP equation. The
results of PSR-GEP and alternative ones prove the advantage of PSR to improve the accuracy
of the models. Statistical indices for the fitness values showed m = 2 for 1-day delay and m = 3
for the reconstructed phase space with the value of (CD = 0.9497, RMSE = 3609.82, and
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MAE = 48.37) and (CD = 0.9569, RMSE = 3343.36, and MAE = 47.50), respectively. Figure 7
shows the comparison of observed and demand values in the test period for both GEP and
PSR-GEP in m = 2 and 3, respectively.

5. Wavelet decomposition and models’ performance

The combination of models with wavelet decomposition is derived by adding the output of
each wavelet to the input of the models. Figure 8 shows the example of the decomposed values
for water demand time series by db2 transform function. To discrete the demand values, five

GEP, τ = 1 PSR-GEP, τ = 83

m CD RMSE(m3/day) MAE m CD RMSE(m3/day) MAE

1 0.9494 3621.87 48.59 1 0.9565 3363.46 48.03

2 0.9497 3609.82 48.37 2 0.9565 3357.00 47.82

3 0.9494 3633.87 48.42 3 0.9569 3343.36 47.50

4 0.9494 3637.74 48.42 4 0.9566 3359.53 47.95

5 0.9494 3639.05 48.43 5 0.9562 3372.70 48.04

6 0.9494 3619.77 48.60 6 0.9566 3359.64 48.08

7 0.9495 3630.44 48.38 7 0.9564 3365.04 47.95

8 0.9494 3634.41 48.42 8 0.9567 3353.24 47.62

9 0.9494 3628.46 48.42 9 0.9562 3370.08 48.05

10 0.9494 3631.12 48.40 10 0.9565 3356.68 47.84

Table 4. Fitness values for GEP and PSR-GEP in different embedding dimensions (bolded lines are the most accurate
values).

Figure 7. The performance of GEP and PSR-GEP in comparison with observed values.
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wavelet transforms were applied (Section 3.7.). As suggested by Nourani et al. [83], 3rd level
decomposition is recommended for 2186 point data.

Table 5 indicates the results of wavelet decomposition for the selected models in the previous
section. As the table highlights, db4 and db2 are the transforms which resulted in the highest
accuracy in W-MLR and W-PSR-MLR, with the value of (CD = 0.9697, RMSE = 2804.44 and
MAE = 42.11) and (CD = 0.9745, RMSE = 2699.83 and MAE = 43.61), respectively. After implying
the decomposed inputs for MLR and PSR-MLR for result comparison improved the results in
both models. Also, sym4 and db2 are the transforms which resulted in the highest accuracy inW-
ANN and W-PSR-ANN, with the value of (CD = 0.9915, RMSE = 1486.21 and MAE = 30.06) and
(CD = 0.9756, RMSE = 2517.24, and MAE = 41.68), respectively. Also, calculations for W-ANN
and W-PSR-ANN are done with HLN 1 to 20 and epochs 1 to 200, and the mentioned results in
the table are selective of the highest among them. Unlike the results of MLR, W-ANN forecasted
accurately than W-PSR-ANN which is the inversion of the results of ANN and PSR-ANN.
However, wavelet decomposition improved the results of W-ANN andW-PSR-ANN comparing
to the alternative without decomposition (Table 3). Moreover, db4 and db2 are the transforms
which resulted in the highest accuracy in W-GEP and W-PSR- GEP, with the value of
(CD = 0.9845, RMSE = 2027.28 and MAE = 36.62) and (CD = 0.9753, RMSE = 2532.21, and
MAE = 41.69), respectively. Following the results of ANN method, W-GEP forecasted accurately
thanW-PSR-GEP. However, wavelet decomposition improved the results of W-GEP andW-PSR-
GEP comparing to the alternative without decomposition (Table 4).

All PSR models resulted in the highest values which used the decomposed inputs by db2
transform. It is noticeable that PSR affects the inherent of the time series which the results of
performance of all models are in common about improving the accuracy. Considering this fact,

Figure 8. Three level DWT of daily water demand time series of Kelowna City in 2016.
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MAE = 48.37) and (CD = 0.9569, RMSE = 3343.36, and MAE = 47.50), respectively. Figure 7
shows the comparison of observed and demand values in the test period for both GEP and
PSR-GEP in m = 2 and 3, respectively.
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wavelet transforms were applied (Section 3.7.). As suggested by Nourani et al. [83], 3rd level
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accuracy in W-MLR and W-PSR-MLR, with the value of (CD = 0.9697, RMSE = 2804.44 and
MAE = 42.11) and (CD = 0.9745, RMSE = 2699.83 and MAE = 43.61), respectively. After implying
the decomposed inputs for MLR and PSR-MLR for result comparison improved the results in
both models. Also, sym4 and db2 are the transforms which resulted in the highest accuracy inW-
ANN and W-PSR-ANN, with the value of (CD = 0.9915, RMSE = 1486.21 and MAE = 30.06) and
(CD = 0.9756, RMSE = 2517.24, and MAE = 41.68), respectively. Also, calculations for W-ANN
and W-PSR-ANN are done with HLN 1 to 20 and epochs 1 to 200, and the mentioned results in
the table are selective of the highest among them. Unlike the results of MLR, W-ANN forecasted
accurately than W-PSR-ANN which is the inversion of the results of ANN and PSR-ANN.
However, wavelet decomposition improved the results of W-ANN andW-PSR-ANN comparing
to the alternative without decomposition (Table 3). Moreover, db4 and db2 are the transforms
which resulted in the highest accuracy in W-GEP and W-PSR- GEP, with the value of
(CD = 0.9845, RMSE = 2027.28 and MAE = 36.62) and (CD = 0.9753, RMSE = 2532.21, and
MAE = 41.69), respectively. Following the results of ANN method, W-GEP forecasted accurately
thanW-PSR-GEP. However, wavelet decomposition improved the results of W-GEP andW-PSR-
GEP comparing to the alternative without decomposition (Table 4).

All PSR models resulted in the highest values which used the decomposed inputs by db2
transform. It is noticeable that PSR affects the inherent of the time series which the results of
performance of all models are in common about improving the accuracy. Considering this fact,

Figure 8. Three level DWT of daily water demand time series of Kelowna City in 2016.
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PSR can be introduced as a pre-processing method like wavelet decomposition; however,
complexity and accuracy of PSR cannot be compared with the higher result of wavelet decom-
position. Figure 9 shows the comparison of all selected models with highest accuracy (W-PSR-
MLR, W-ANN, and W-GEP) in forecast of short-term water demand values.

The figure shows that the performance of W-ANN and W-GEP is better than W-PSR-MLR,
while W-ANN’s calculated values are more accurate than W-GEP in simulating peak points.
This study eventually would suggest that these peak points are indication of critical issues
related to water distribution system (pressure management, peak time demand, etc.) taking in
account the performance of the models and simulations of highest and lowest values of
demands. Therefore, it is recommended to evaluate models’ performance in two separate parts
as maximum values and minimum values along with evaluating criteria such as CD, RMSE,
and MAE for the test period. The difference is not visible in Figure 9. Therefore focusing on
Figure 10, it shows the performance of models by residual values in the test period.

In Figure 10 the residual values show the remarkable difference of performance of models. W-
ANN values distributed in the area of (�15%, +15%), unlike other two models. W-GEP domi-
nates over W-PSR-MLR; however, the fitness criteria values for both are very close to each
other (Tables 2 and 4).

Models Fitness Transform functions

haar db2 db4 sym2 sym4

W-MLR CD 0.9612 0.9477 0.9697 0.9677 0.9694

RMSE(m3/day) 3168.62 3681.17 2804.44 2893.60 2816.06

MAE 44.48 49.04 42.11 43.54 42.24

W-PSR-MLR CD 0.9670 0.9745 0.9719 0.9745 0.9712

RMSE(m3/day) 3008.34 2699.83 2811.58 2699.83 2845.69

MAE 45.39 43.61 43.95 43.61 44.24

W-ANN CD 0.9868 0.9816 0.9861 0.9856 0.9915

RMSE(m3/day) 1853.11 2189.15 2136.25 1948.28 1486.21

MAE 33.78 36.91 39.50 33.86 30.06

W-PSR-ANN CD 0.9685 0.9756 0.9723 0.9752 0.9715

RMSE(m3/day) 2867.87 2517.24 2677.44 2547.89 2724.56

MAE 43.16 41.68 42.09 42.19 42.61

W-GEP CD 0.9721 0.9766 0.9845 0.9297 0.9255

RMSE(m3/day) 2698.16 2492.46 2027.28 4311.60 4429.89

MAE 41.21 39.05 36.62 54.23 55.25

W-PSR-GEP CD 0.9667 0.9753 0.9721 0.9748 0.9704

RMSE(m3/day) 2937.76 2532.21 2689.20 2555.82 2770.80

MAE 43.66 41.69 42.13 41.90 42.51

Table 5. Fitness values for decomposition of selection of models for the test period (bolded lines are the most accurate values).
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This chapter presents the performance of two pre-processes methods in improving the accu-
racy of three models to forecast short-term urban water demand value in Kelowna City, BC,
Canada. The first pre-process approach of PSR which is calculated by ACF method has
improved the results of all models in this study. However, PSR does not improve the accuracy
of models for entire dataset. Based on the behavior of time series, ACF or AMI (two lag time
calculation methods) may have improved a non-deterministic dataset, but it seems in a chaotic
dataset, PSR improves the performance of models in increasing accuracy with a proper num-
ber of embedding dimensions. Wavelet decomposition, the second pre-process method in the
present study has also improved the accuracy of the models but, decomposition did not work
on PSR based methods except MLR. It can be concluded that PSR and wavelet are in common
with their outfits as two applicable pre-process methods. Also, PSR pre-processing is simpler
than wavelet. Therefore, it is recommended to use PSR for the models. As per the results of this
study it seems PSR works on a chaotic dataset which seems to be considered as disadvantage
of PSR. Comparing the mentioned two pre-process methods, wavelet decomposition is signif-
icant to use, though, it is time-consuming and complex than PSR. Also, each transform func-
tions have specific application where each of them can be used independently (e.g., seasonal,
de-noising, peak points, etc.).

Figure 9. The performance of the W-models in comparison with observed values.

Figure 10. Residual values of the selected W-models.
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This chapter presents the performance of two pre-processes methods in improving the accu-
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6. Conclusion

Over the past decades, hydrologists have paid attention to data-driven modeling techniques.
City governments and WDS operators are always looking for an accurate estimation of water
demand values not only for future but also focusing on probable failures like peak consump-
tion and pressure values to manage the WDS pipelines. Therefore, the wide variety of model-
ing techniques such as artificial and evolutionary simulation methods are proposed by
researchers. This chapter investigated the performance of three techniques (ANN, GEP, and
MLR) in forecasting short-term water demand of Kelowna City (BC, Canada). About 6 years
daily dataset was employed for training and testing the models. First 5 years were considered
to train the model and the last year as the test period. All three techniques performed consid-
erably accurate, while the focus of this chapter was on improving the accuracy of the models
for the same dataset. Firstly, the model was calibrated by different input combination with 1-
day lag time. Then, models were calibrated by the lag time of the data set (83-day) which was
calculated by ACF method. WDT was combined with the models to capture multi-scale
features of the signals by decomposing observed demand values into sub-series. Five WDT
functions (haar, Db2, db4, Sym2, and sym4) were employed to decompose the dataset. The
results were then compared with the MLR, ANN, and GEP when no pre-processing (PSR,
WDT) was applied. The research results were accurate than PSR. WDT have also improved the
accuracy of models with PSR and without PSR. However, the impact of wavelet on the models
with PSR was not as considerable as without PSR. The lowest error was reported by W-ANN
among all alternative models in this chapter. Regarding the improvement of all models com-
bining WDT and PSR, it is recommended to use the method in modeling and forecasting
issues, especially about the dataset that the peak points are very critical in the case. The
inherent behavior of dataset (deterministic or stochastic) can affect the performance of the
pre-processing methods. Therefore, behavior of datasets should be investigated before decid-
ing to combine any pre-process methods.
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Abstract

Network monitoring and analysis are very important, in order to understand the per-
formance of the networks, the reliability of the networks, the security of the networks, 
and to identify potential problems. In this chapter, we present our latest work on univer-
sity network data traffic analysis by using continuous wavelet transform (CWT). With 
CWT, you can analyse the data and show how the frequency content of the data changes 
over time. This time dependent frequency varying information, which is lacking in other 
techniques, such FFT, is very useful for network traffic analysis. A twelve month’s net-
work traffic data, include World Wide Web (WWW) data and Email data were presented 
in 3D format, by using wavelet transform, we can visualise the hourly, daily, weekly 
and monthly activities. We will first present the theoretical background, then show the 
experimental results.

Keywords: wavelet transform, educational network, data traffic analysis

1. Introduction

Network monitoring and analysis are very important, in order to understand the perfor-
mance of the networks, the reliability of the networks, the security of the networks, and to 
identify potential problems. With network traffic analysis, network security staff would be 
able to identify any malicious or suspicious packets within the traffic, whilst network admin-
istrators could monitor the download/upload speeds, throughput, etc., and therefore to have 
a better understanding of network operations. To date, many techniques have been used in 
network data traffic analysis. The neural network (NN), also known as the artificial neural 
network (ANN), has been used for prediction, as well as to identify the presence of anomalies 
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[1–3]. Pattern recognition has been used for traffic data classification [4, 5], and chaos theory 
has been used for the correlation and the prediction of time series data, and to identify the 
nonlinear dynamical behaviour of real-time traffic data [6, 7]. The Fourier transform (FFT) 
and wavelet transform have been used to analyse the frequency components of the traffic data 
[8–10]. The main difference between FFT and wavelet transform is that wavelet transform is 
localised in both time and frequency whereas the standard Fourier transform is only localised 
in frequency. In other words, with wavelet transform, when a certain frequency event hap-
pened, we can know both what frequency component was, and when it happened. In this 
chapter, we will use wavelet transform to analyse the London South Bank University network 
traffic data, in order to understand and evaluate the network utilisation.

London South Bank University (LSBU) network is based on three-tier network architecture, 
i.e. CORE layer, distribution layer, and edge layer. The core layer is responsible for the routing 
protocols, the distribution layer responsible for all the VLAN management as well as span-
ning tree protocol and loop prevention as well as some level of security i.e. DOS protection, 
and finally the edge layer responsible for the end user connectivity. The LSBU network traffic 
raw data were first captured using the Paessler Router Traffic Grapher (PRTG) network-mon-
itoring tool (Paessler AG, Germany), and then many numerical analysis algorithms, including 
wavelet transform, were developed to analyse the captured raw data.

2. Wavelet data analysis

A wavelet is a small wave. Wavelet data analysis is based on the wavelet transform, which 
has been used for numerous studies in geophysics, including tropical convection [11]. The 
wavelet transform can be used to analyse time series that contain nonstationary power at 
many different frequencies [12]. Unlike traditional sin(t) or cos(t) waves that go from negative 
infinity to positive infinity, wavelets always begin at zero, increases, and then decreases back 
to zero. Many types of wavelets exist, most of which are used for orthogonal wavelet analysis 
[13, 14], which purposefully crafted to have specific properties that make them useful for sig-
nal processing. Figure 1 shows some examples of commonly used wavelets.

Wavelet transform is the convolution of time sequence data and wavelets, and can be gener-
ally expressed as:

  F (a, b)  =   1 __  √ 
__

 a      ∫ −∞  ∞    f (t)   ψ   ∗  (  t − b ___ a  ) dt  (1)

Here, a is the scale (a > 0), b is the translational value, t is the time, f(t) is the data, and ψ(t) is the 
wavelet function, and the * is the complex conjugate symbol. Wavelet transform can be gener-
ally divided into discrete wavelet transform (DWT) and continuous wavelet transform (CWT).

The discrete wavelet transform (DWT) is an implementation of the wavelet transform using a 
discrete set of the wavelet scales. DWT decomposes the signal into mutually orthogonal set of 
wavelets, which is the main difference from the continuous wavelet transform (CWT). DWT 
can be used for wavelet decomposition and easy and fast denoising of a noisy signal.
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Continuous wavelet transform (CWT) is an implementation of the wavelet transform using 
arbitrary scales and almost arbitrary wavelets. The wavelets used are not orthogonal and the 
data obtained by this transform are highly correlated. To approximate the continuous wavelet 
transform, the convolution should be done N times for each scale, where N is the number of 
points in the time series [15]. The wavelet transform is similar to the Fourier transform, but 
unlike Fourier transform (which is localised only in the frequency space), the wavelet trans-
form localised in both the time space and the frequency space, see Figure 2. CWT allows users 
to have variable resolutions, i.e. either high precision in time and low precision in frequency, 
or high precision in frequency and low precision in time. Although windowed transform, 

Figure 1. Examples of different types of wavelets.

Figure 2. Continuous wavelet transform.
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[1–3]. Pattern recognition has been used for traffic data classification [4, 5], and chaos theory 
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localised in both time and frequency whereas the standard Fourier transform is only localised 
in frequency. In other words, with wavelet transform, when a certain frequency event hap-
pened, we can know both what frequency component was, and when it happened. In this 
chapter, we will use wavelet transform to analyse the London South Bank University network 
traffic data, in order to understand and evaluate the network utilisation.
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ning tree protocol and loop prevention as well as some level of security i.e. DOS protection, 
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raw data were first captured using the Paessler Router Traffic Grapher (PRTG) network-mon-
itoring tool (Paessler AG, Germany), and then many numerical analysis algorithms, including 
wavelet transform, were developed to analyse the captured raw data.

2. Wavelet data analysis

A wavelet is a small wave. Wavelet data analysis is based on the wavelet transform, which 
has been used for numerous studies in geophysics, including tropical convection [11]. The 
wavelet transform can be used to analyse time series that contain nonstationary power at 
many different frequencies [12]. Unlike traditional sin(t) or cos(t) waves that go from negative 
infinity to positive infinity, wavelets always begin at zero, increases, and then decreases back 
to zero. Many types of wavelets exist, most of which are used for orthogonal wavelet analysis 
[13, 14], which purposefully crafted to have specific properties that make them useful for sig-
nal processing. Figure 1 shows some examples of commonly used wavelets.

Wavelet transform is the convolution of time sequence data and wavelets, and can be gener-
ally expressed as:

  F (a, b)  =   1 __  √ 
__

 a      ∫ −∞  ∞    f (t)   ψ   ∗  (  t − b ___ a  ) dt  (1)

Here, a is the scale (a > 0), b is the translational value, t is the time, f(t) is the data, and ψ(t) is the 
wavelet function, and the * is the complex conjugate symbol. Wavelet transform can be gener-
ally divided into discrete wavelet transform (DWT) and continuous wavelet transform (CWT).

The discrete wavelet transform (DWT) is an implementation of the wavelet transform using a 
discrete set of the wavelet scales. DWT decomposes the signal into mutually orthogonal set of 
wavelets, which is the main difference from the continuous wavelet transform (CWT). DWT 
can be used for wavelet decomposition and easy and fast denoising of a noisy signal.
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Continuous wavelet transform (CWT) is an implementation of the wavelet transform using 
arbitrary scales and almost arbitrary wavelets. The wavelets used are not orthogonal and the 
data obtained by this transform are highly correlated. To approximate the continuous wavelet 
transform, the convolution should be done N times for each scale, where N is the number of 
points in the time series [15]. The wavelet transform is similar to the Fourier transform, but 
unlike Fourier transform (which is localised only in the frequency space), the wavelet trans-
form localised in both the time space and the frequency space, see Figure 2. CWT allows users 
to have variable resolutions, i.e. either high precision in time and low precision in frequency, 
or high precision in frequency and low precision in time. Although windowed transform, 

Figure 1. Examples of different types of wavelets.

Figure 2. Continuous wavelet transform.
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such as Short-Time Fourier Transform (STFT), which is also cable to create a local frequency 
analysis, the drawback of STFT is that the window size is fixed.

In this study, the wavelet transform used for data decomposition, data denoising and time 
dependent frequency components analysis by using continuous wavelet transform (CWT).

3. Results and discussions

3.1. Network traffic data 2D and 3D presentation

Figure 3 shows the LSBU 1-year total network traffic data, recorded at 1 h interval, in 3D 
format (top) and 2D format (bottom), which X axis represents the time of the day, from 01:00 
to 24:00, and Y axis represents the day of the year, from 1 to 365, and Z axis represents the 
total traffic in Gbits per second. The data was recorded at 1 h interval for a period of 1 year, 
November 2016 to November 2017. By presenting the network traffic data in 2D and 3D for-
mation we can better understand the network usage and characterisations.

The results show that the total network traffic varies from season to season throughout the 
year, and also varies from time to time throughout the day. By understanding the total net-
work traffic pattern, we can plan better for the network operations, optimise the network 
usage, and identify potentially suspicious traffics.

Figure 4 shows the LSBU 1-year World Wide Web (WWW) traffic data in 3D format (top) and 
the corresponding 2D presentation (bottom). The results show that WWW traffic is highly 
seasonal. It has a strong week day and weekend effect, this agrees well with our previous 
studies [16, 17]. It also has a strong effect of Christmas, Easter and summer holiday periods. 
The WWW traffic data varies significantly within a day, with the highest between 10:00 am 
and 19:00 pm, and lowest between 06:00 am and 09:00 am, not at the midnight! Also, there 
seems more traffic during the autumn semester (September–January) than spring semester 
(February–June).

Figure 5 shows the 1-year Email traffic data in 3D format (top) and the corresponding 2D 
format (bottom). Similar to the WWW data, the Email data also shows week day and week-
end effect, as well as seasonal effect. However, different from the WWW data, the major of 
the Email traffic was between 09:00 am and 18:00 pm, there is very little traffic in the evening 
and early in the morning. So in these periods, people browsed the web but did not send many 
emails. The massive peak at the middle of the graph is due to the Email upgrade, where a lot 
of emails have been sent and received.

3.2. Network traffic data and Fourier transform

Figure 6 shows the original 1-year LSBU total network traffic data (top) and the correspond-
ing Fourier transforms (bottom). Figure 7 shows the original 1-year LSBU WWW data (top) 
and the corresponding Fourier transforms (bottom). Figure 8 shows the original 1-year LSBU 
Email data (top) and the corresponding Fourier transforms (bottom).
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Figure 3. The 3D presentation (top) and the corresponding 2D presentation (bottom) of 1-year total network data in a 
daily usage pattern (Nov 2016–Nov 2017).
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Figure 3. The 3D presentation (top) and the corresponding 2D presentation (bottom) of 1-year total network data in a 
daily usage pattern (Nov 2016–Nov 2017).
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Figure 4. The 3D presentation (top) and the corresponding 2D presentation (bottom) of 1-year WWW traffic data in a 
daily usage pattern (Nov 2016–Nov 2017).
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Figure 5. The 3D presentation (top) and the corresponding 2D presentation (bottom) of 1-year Email data in a daily usage 
pattern (Nov 2016–Nov 2017).
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Figure 4. The 3D presentation (top) and the corresponding 2D presentation (bottom) of 1-year WWW traffic data in a 
daily usage pattern (Nov 2016–Nov 2017).
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Figure 5. The 3D presentation (top) and the corresponding 2D presentation (bottom) of 1-year Email data in a daily usage 
pattern (Nov 2016–Nov 2017).
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Figure 7. The original 1-year WWW data (top) and its corresponding FFT spectrum (bottom) (Nov 2016–Nov 2017).

Figure 6. The original 1-year total network traffic data (top) and its corresponding FFT spectrum (bottom) (Nov 2016–
Nov 2017).
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The total network traffic data, the WWW data, and the Email data, have completely different 
patterns, and therefore different FFT spectrum. With the total network traffic data, there are 
a lot of small peaks throughout the FFT spectrum, indicating there are repeatedly happened 
events. But with the WWW data and Email, the FFT peaks mainly occurs at lower frequency 
range. But with FFT, it is not possible to identify when these events happened.

3.3. Wavelet decomposition

Wavelet decomposition [18] is a powerful tool that can decompose the original network traf-
fic into low frequency component (A) and high frequency component (D). The low frequency 
component (A) is also called approximation coefficient, and the high frequency component 
(D) is called detail coefficient. By performing decomposition several times, we also have mul-
tilevel wave decomposition, see Figure 9. The multilevel wavelet decomposition allows us 
to gradually separate and to eliminate high frequency components, which is mostly noise. 
Through wavelet decomposition we can reduce the data noise, and therefore observe the data 
trend better.

Figure 10 shows the wavelet decomposition of the WWW network traffic data, wavelet used 
is “sym4” wavelet (see Figure 1) and the level of decomposition is level 4. The key in wavelet 
decomposition is to choose the right wavelet and to select the right level of decomposition. The 
results show that the low frequency component (A4) reflects better the trend of the network 
traffic data, where the high frequency component (D4) reflects more about the traffic noise.

Figure 8. The original LSBU 1 year Email data (top, Nov 2016 – Nov 2017) and its corresponding FFT spectrum (bottom).
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Figure 7. The original 1-year WWW data (top) and its corresponding FFT spectrum (bottom) (Nov 2016–Nov 2017).

Figure 6. The original 1-year total network traffic data (top) and its corresponding FFT spectrum (bottom) (Nov 2016–
Nov 2017).
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Figure 8. The original LSBU 1 year Email data (top, Nov 2016 – Nov 2017) and its corresponding FFT spectrum (bottom).
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3.4. Wavelet denoising

Based on wavelet decomposition, a very useful feature of wavelet analysis is denoising, which 
is very useful for noisy data. The steps are as follows. First, choose a wavelet and a level of 
decomposition N, and then compute the wavelet decompositions of the data at levels 1 to 
N. For each level, a threshold is selected and the threshold applied to the detail coefficients 
(D). Finally, compute wavelet reconstructions using the original approximation coefficients 
(A) of level N and the modified detail coefficients (D) of levels 1 to N.

Figure 9. Multilevel wavelet decomposition, where approximation coefficient A is the low frequency component and 
detail coefficient D is the high frequency component.

Figure 10. One-year WWW data in an hourly usage pattern (top, Nov 2016–Nov 2017), the corresponding level 4 low 
frequency component (A4) (middle) and level 4 high frequency component (D4) (bottom).
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Figure 11 shows the 1-year total network traffic data in an hourly usage pattern (Nov 2016–
Nov 2017) and the corresponding denoised results. In this case, the wavelet used is “sym8” 
wavelet (see Figure 1), the level of decomposition was chosen as N = 3. Similar to wavelet 
decomposition, the key in wavelet denoising is to choose the right wavelet and to select the 
right level of decomposition, in order balance the noise removal and signal integrity. The 
denoising of the WWW data and Email also yields similar results.

The quality of the denoised results is good. The trends of the original network traffic data are 
well preserved. To select the right wavelet and right level of decomposition is very important 
so that we can achieve maximum denoising and preserve the useful information.

3.5. Continuous wavelet analysis (CWT)

With continuous wavelet transform (CWT), we can analyse the data and show how the 
frequency content of the data changes over time. This time dependent frequency varying 
information, which is lacking in other techniques, such FFT, is very useful for network 
traffic analysis. In this CWT calculation, there are several parameters to choose from, i.e. 
the type of wavelet, the smallest scale (S0), the space between scales (ds) and number of 
scales (Ns). The scales (S) can be converted to pseudo frequencies (fp) by using the follow-
ing formula,

   f  p   =   
 f  c   ________ S dt    (2)

Figure 11. One-year total network traffic data in an hourly usage pattern (Nov 2016–Nov 2017) and the corresponding 
denoised results.
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Figure 12. The continuous wavelet transform (CWT) using different wavelets. (a) CWT with Morlet wavelet, (b) CWT 
with Mexican hat wavelet, (c) CWT with Paul wavelet and (d) CWT with bump wavelet.

Where fc is the centre frequency of the wavelet, and dt is the sampling time. Scales are inversely 
proportional to frequencies, i.e. small scales represents high frequencies, and vice versa.

Figure 12 shows the continuous wavelet transform (CWT) of 1 year total traffic using differ-
ent wavelets, e.g. Morlet wavelet (analytic), Mexican hat wavelet (nonanalytic), bump wavelet 
(analytic), and Paul wavelet (analytic). The X axis is time of 1 year, and the Y axis is pseudo 
frequency. Different wavelet gives different results. Based on the results, we have decided to 
use Morlet wavelet to analyse the network traffic data, as it can provide more details on daily, 
weekly and monthly events, more details will be discussed later.

Figure 13 shows the continuous wavelet transform (CWT) using different parameters. The 
smallest scale (S0) decides the highest frequency. The ds decides the resolution of the results, 
Ns decides the range of the frequency. By balancing the result resolution, frequency range and 
calculation time, we have decided to perform the CWT using the following values, S0 = 6 × 
3600 = 21,600, i.e. six-hourly event, ds = 0.025, and Ns = 300.
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Figure 14 shows the CWT results of the original 1 year total traffic data using Morlet wavelet, 
with S0 = 21,600, ds = 0.025, and Ns = 300 as CWT parameters. The X axis is time of 1 year, and 
the Y axis is pseudo frequency. We can convert this pseudo frequency into event. Table 1 
shows the pseudo frequencies in Hz of hourly, daily, weekly, two weekly, monthly and quar-
terly events. Using these pseudo frequencies we can then identify the corresponding hourly, 
daily, weekly, two weekly, monthly and quarterly events in Figure 11. The hot spot at the 
lower left corner is the when the system is upgraded. By using CWT, we can easily identify 
the event which is otherwise difficult to identify in the original time domain.

Figure 15 shows the CWT results of the WWW traffic data using the same wavelet and same 
parameters. The results show that half daily and daily events happen throughout the year. They 
are highly seasonal, as you can clearly identify the summer, Christmas, and Easter gaps. The 
half daily and daily events also show clear day and night effects, as well as weekday and week-
end effect, while weekly, two weekly and monthly events are patchy, with no seasonal effects.

Figure 13. The continuous wavelet transform (CWT) using different parameters. (a) S0 = 3600, ds = 0.025, Ns = 300,  
(b) S0 = 21,600, ds = 0.025, Ns = 100, (c) S0 = 21,600, ds = 0.025, Ns = 300 and (d) S0 = 21,600, ds = 0.025, Ns = 500.
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Figure 14. The CWT time-frequency 2D results of the 1-year total network traffic data (Nov 2016–Nov 2017). The hot spot 
at the lower left corner is the when the system is upgraded.

Time Pseudo frequency (Hz)

Hourly 2.78E−04

Quarter daily 1.39E−04

Half daily 2.31E−05

Daily 1.16E−05

Weekly 1.65E−06

Two weekly 8.27E−07

Monthly 3.86E−07

Quarterly 1.29E−07

Table 1. The pseudo frequencies (Hz) of different events.

Figure 16 shows the CWT results of the Email traffic data using the same wavelet and same 
parameters. The results show that hourly event and quarter daily events happen through-
out the year. The Christmas gap is obvious whilst the summer and the Easter gaps are not. 
They also show clear weekday and weekend effects. The half daily, daily and weekly events 
are very patchy, with no seasonal effects. This kind of time-frequency results can help us to 
understand the traffic characteristics better.
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Figure 15. The CWT time-frequency 2D results of the 1-year WWW data (Nov 2016–Nov 2017).

Figure 16. The CWT time-frequency 2D results of the 1-year Email data (Nov 2016–Nov 2017).
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Figure 15. The CWT time-frequency 2D results of the 1-year WWW data (Nov 2016–Nov 2017).

Figure 16. The CWT time-frequency 2D results of the 1-year Email data (Nov 2016–Nov 2017).
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4. Conclusions

We present out latest study on using wavelet transform technique for analysing the educational 
network traffic data. The 2D and 3D presentation network traffic data, i.e. traffic in 24 h and 
365 days, helps us to understand better the network traffic pattern. With wavelet transform, 
we are able to perform network traffic data decomposition and data denoising. With continu-
ous wavelet transform (CWT), we can analyse the data and show how the frequency content 
of the data changes over time. The CWT analysis shows different characteristics of total traffic 
data, WWW data and Email data. This time dependent frequency varying information, which 
is lacking in other techniques, such FFT, is very useful for network traffic analysis. By using 
CWT, we can easily identify the event which is otherwise difficult to identify in the original 
time domain.
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4. Conclusions
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Abstract

Optical metrology and interferometry are widely known disciplines that study and
develop techniques to measure physical quantities such as dimensions, force, tempera-
ture, stress, etc. A key part of these disciplines is the processing of interferograms, also
called fringe patterns. Owing that this kind of images contains the information of interest
in a codified form, processing them is of main relevance and has been a widely studied
topic for many years. Several mathematical tools have been used to analyze fringe pat-
terns, from the classic Fourier analysis to regularization methods. Some methods based on
wavelet theory have been proposed for this purpose in the last years and have evidenced
virtues to consider them as a good alternative for fringe pattern analysis. In this chapter,
we resume the theoretical basis of fringe pattern image formation and processing, and
some of the most relevant applications of the 2D continuous wavelet transform (CWT) in
fringe pattern analysis.

Keywords: 2-D wavelets, fringe patterns, optical measurement techniques

1. Introduction

Fringe pattern processing has been an interesting topic in optical metrology and interferome-
try; owing to its relevance nowadays, it is a widely studied discipline. Digital fringe pattern
processing is used in optical measurement techniques such as optical testing [1, 2], electronic
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speckle pattern interferometry (ESPI), holographic interferometry, and moiré interferometry or
profilometry [3–5]. They are quite popular for non-contact measurements in engineering and
have been applied for measuring various physical quantities like displacement, strain, surface
profile, refractive index, etc. In optical methods of measurement, the phase, which is related to
the measured physical quantity, is encoded in an intensity distribution represented in an image
which is, in general, the result of the interference phenomena. This phenomenon is used in
classical interferometry, in holographic interferometry, and in electronic speckle pattern inter-
ferometry to convert the phase of a wave of interest into an intensity distribution. As the
physical quantity to be measured is codified as the phase of a fringe pattern image, the main
task of fringe pattern processing is to recover such phase.

The methods for phase recovery from fringe patterns can be classified mainly in three catego-
ries [2, 6]: (a) Phase-stepping or phase-shifting methods which require a series of fringe images
to recover the phase information. (b) Spatial domain methods which can compute the phase
from a single fringe pattern in the spatial domain. (c) Frequency domain methods which uses
some kind of transformation to the frequency domain to compute the phase. In this category,
the Fourier and Wavelet transforms are the most common mathematical tools to carry out the
task.

Apart from the phase recovery, there are other important steps in fringe pattern processing.
For example, many times the fringe patterns are corrupted by noise, such as the case of the
electronic speckle pattern interferometry. Then, fringe image enhancement by means of low-
pass filtering is usually required. Owing that most algorithms to retrieve the phase from a
fringe pattern give the phase wrapped in the interval �π;π½ Þ, other important step is the well-
known phase-unwrapping process [6, 7]. In the field of fringe image enhancement, such as
fringe image denoising or phase denoising, there has been a wide research activity in the last
years. Researchers have realized that improving the quality of fringe images and wrapped
phase fields is of main relevance for a successful phase recovery or phase unwrapping. How-
ever, enhancing fringe images or wrapped phase fields has resulted to be a task that must be
realized in a special manner, so that ordinary techniques for image enhancement are not
always adequate. Owing that frequencies of fringes and noise usually overlap and normally
cannot be properly separated, common filters for image processing have blurring effects on
fringe features, especially for patterns with high density fringes. For these cases, the use of
anisotropic filters is a better way for removing noise without the harmful blurring effects.

In the fields of fringe pattern denoising and wrapped phase map denoising, there have been
many proposals to realize these tasks. Some of the first contributions in this field were mainly
based on convolution filters using different kinds of anisotropic filtering masks [8–12]. Other
set of the main contributions in the last years is based on the variational calculus approach by
solving partial differential equations [13–18], and by means of the regularization theory [19,
20]. The use of the Fourier transform for fringe or phase map denoising has also been proposed
in [21, 22] (Localized Fourier transform filter and windowed Fourier transform, respectively).
There have been other proposals that used different methodologies such as coherence enhanc-
ing diffusion [23], image decomposition [24], and multivariate empirical mode decomposition
[25]. The great disadvantage of already reported methods for fringe and phase map denoising
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is that they require the previous estimation of the so-called fringe orientation which, as it uses
the computation of the image gradient, could be an inaccurate procedure in the presence
of noise and low modulation of fringes. This is not the case for the Fourier-based methods
[21, 22]; however, as in the case of the Windowed Fourier transform technique, several param-
eters have to be adjusted depending on the particular image and it may require a long
processing time.

In the field of phase recovery from fringe images, there have been a lot of researches along the
last decades. For the case of phase-shifting algorithms, outstanding summaries of them can be
found in [2, 26]. For the case of spatial and frequency domain methods from a single pattern
image, two of the most popular techniques are the well-known Fourier Transform method
reported by Takeda et al. [27] and the Synchronous detection method [28]. Other methods that
use the regularization theory were also proposed [29, 30]. However, although these methods
are efficient and easy to implement, they are limited to be used in fringe images with frequency
carrier, which just in few experimental situations these kinds of images can be obtained. In
most cases, experimental conditions in optical measurement techniques yields fringe images
without a dominant frequency (i.e., closed fringes) which becomes the phase recovery problem
difficult, therefore more complicated algorithms must be used. One of the first proposals for
phase demodulation from single closed fringe images was reported by Kreis using a Fourier
based approach [31]. In the last decade of the twentieth century, it was a boom in the research
of closed fringe images, specially using the regularization theory. The Regularized phase-
tracking technique was reported by Servín et al. [32]. Marroquín et al. reported the regularized
adaptive quadrature filters [33] and the regularization method that uses the local orientation of
fringes [34]. At the beginning of this century, Larkin et al. proposed the spiral-phase quadra-
ture transform [35] and Servín et al. reported the General n-dimensional quadrature transform
[36]. Also, we proposed the orientational vector-field-regularized estimator to demodulate
closed fringe images [37].

As will be shown, closed fringe and wrapped-phase images have certain characteristics that
make them to be treated in a special manner. First, it is common that this kind of images present
structures with high anisotropy at the same time that many frequencies are dispersed over the
entire image. For these reasons, in most situations, the use of linear-translation-spatial (LTI)
filters, which are spatially invariant and independent of image content, do not give proper
results. Furthermore, owing that the Fourier transform is a global operation, this technique is
not always suitable for accurately model the local characteristics of closed fringe images.

It is widely known that the wavelet transform is a powerful tool that provides local, sparse,
and decorrelated multiresolution analysis of signals. In the last years, 2D wavelets have been
used for image analysis as a proper alternative to the weakness of LTI filters and linear trans-
forms as the Fourier one. In particular, it has been shown that 1-D and 2D continuous wavelet
transform (CWT) using Gabor atoms is a natural choice for proper analyses of fringe images.
This kind of analysis has been used for fringe pattern denoising and fringe pattern demodula-
tion showing several advantages, for example in laser plasma interferometry [38], in shadow
moiré [39–41], in profilometry [42–44], in speckle interferometry [45], in digital holography
[46], and other optical measurement techniques [47–55].
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In this chapter, the theoretical basis of fringe pattern image formation and processing is described.
Also, in general, the theory and advantages of the 2D continuous wavelet transform (CWT) for
fringe pattern processing is described. We also explain some of the main applications in fringe
pattern processing, such as phase recovery and wrapped phase map denoising, showing some
examples of applications in different optical measurement techniques.

2. Digital fringe patterns

2.1. Elements of digital fringe image processing systems

Often, a digital fringe image processing system is represented by a sequence of devices, which
typically starts with an imaging system that observes the target, a digitizer system which
samples and quantizes the analog information acquired by the imaging system, a digital
storage device, a digital computer that process the information, and finally, a displaying
system to visualize the acquired and processed information (Figure 1).

A typical imaging system is composed by an objective lens to form images in a photosensitive
plane which is commonly a CCD (charge couple devices) array.

2.2. Fringe image formation

Fringe pattern images are present in several kinds of optical tests for the measurement of
different physical quantities. Such tests are examples for the quality measurement of optical
devices using optical interferometry, photoelasticity for stress analysis, or electronic speckle
pattern interferometry (ESPI) for the measurement of mechanical properties of materials. The
interference phenomena are usually used in many optical methods of measurement. We now
describe a classical way to form a fringe pattern image using the two-wave interference.

Two-wave interference can be generated by means of several types of interferometers, and the
interferograms or fringe patterns are produced by superimposing two wavefronts. An inter-
ferometer can accurately measure deformations of the wavefront of the order of the wave-
length. Considering two mutually coherent monochromatic waves, as depicted in Figure 2,
W x; yð Þ represents the wavefront shape under study (i.e., the wave that contains the informa-
tion of the physical quantity to be measured). The sum of their complex amplitudes can be
represented as

Figure 1. Typical sequence in a digital fringe pattern image processing system.
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E x; yð Þ ¼ A1 x; yð ÞeikW x; yð Þ þ A2 x; yð Þeikx sinθ, (1)

where A1 and A2 are the amplitudes of the wavefront under test and the reference wavefront (a
flat wavefront), respectively, and k ¼ 2π

λ , being λ the wavelength.

The irradiance at a given plane perpendicular to z-axis is then represented as

I x; yð Þ ¼ E x; yð ÞE∗ x; yð Þ
¼ A2

1 x; yð Þ þ A2
2 x; yð Þ þ 2A1 x; yð ÞA2 x; yð Þ cos kx sinθþ kW x; yð Þ½ �: (2)

For simplicity, Eq. (2) is usually written in a general form as:

I x; yð Þ ¼ a x; yð Þ þ b x; yð Þ cos u0xþ ϕ x; yð Þ� �
, (3)

where a x; yð Þ and b x; yð Þ are commonly called the background illumination and the amplitude
modulation, respectively. The term u0 ¼ k sinθ is the fringe carrier frequency and ϕ x; yð Þ ¼
kW x; yð Þ is the phase to be recovered from the fringe pattern image. It must be noted that if the
reference wavefront is perpendicular to z-axis (i.e., θ ¼ 0), the fringe carrier frequency is
removed and Eq. (3) is simplified:

I x; yð Þ ¼ a x; yð Þ þ b x; yð Þ cos ϕ x; yð Þ� �
: (4)

Figure 2. Interference of two wavefronts. Solid line represents the wavefront under test and dashed line represents the
reference wavefront.
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In this chapter, the theoretical basis of fringe pattern image formation and processing is described.
Also, in general, the theory and advantages of the 2D continuous wavelet transform (CWT) for
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pattern processing, such as phase recovery and wrapped phase map denoising, showing some
examples of applications in different optical measurement techniques.
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system to visualize the acquired and processed information (Figure 1).
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ferometer can accurately measure deformations of the wavefront of the order of the wave-
length. Considering two mutually coherent monochromatic waves, as depicted in Figure 2,
W x; yð Þ represents the wavefront shape under study (i.e., the wave that contains the informa-
tion of the physical quantity to be measured). The sum of their complex amplitudes can be
represented as

Figure 1. Typical sequence in a digital fringe pattern image processing system.
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reference wavefront is perpendicular to z-axis (i.e., θ ¼ 0), the fringe carrier frequency is
removed and Eq. (3) is simplified:
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Equations (3) and (4) represent the mathematical expressions of fringe pattern images with and
without fringe carrier frequency, respectively. Examples of these kinds of fringe images are
shown in Figure 3.

3. Fringe pattern processing

3.1. Phase-shifting methods for phase recovery

One of the most popular methods for phase recovery is the well-known phase-shifting. This
method requires a set of phase-shifted fringe patterns which are experimentally obtained in
different ways depending on the optical measurement technique. For example, in interferometry

Figure 3. Examples of simulated fringe pattern images with (a) and without (b) fringe carrier frequency. The phase of
modulation ϕ x; yð Þ (c) is the same for both fringe images (phase shown wrapped and codified in gray levels).
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the phase shifting is realized by moving some mirrors in the optical interferometer. The set of N
phase-shifted fringe patterns is defined as

In x; yð Þ ¼ a x; yð Þ þ b x; yð Þ cos ϕ x; yð Þ þ αn
� �

n ¼ 1, 2,…, N: (5)

The pointwise solution for ϕ x; yð Þ from the non-linear system of equations is obtained by using
the last-squares approach (see [2] for details):

W ϕ x; yð Þ� � ¼ tan �1 �
PN

n¼1 In sin αnð ÞPN
n¼1 In cos αnð Þ

 !
∈ �π;π½ Þ, (6)

where W is the wrapping operator such that W ϕ x; yð Þ� �
∈ �π;π½ Þ. Several algorithms can be

used that require three, four, up to eight images.

3.2. Phase recovery from single fringe patterns with carrier

As previously mentioned, processing fringe patterns with fringe carrier frequencymay be simple
to carry out. The key point in the demodulation of fringe patterns with carrier is that the total
phase function u0xþ ϕ x; yð Þ represents the addition of an inclined phase plane u0x plus the
target phase ϕ x; yð Þ. In this case, a monotonically increasing (or decreasing) phase function has
to be recovered. If we analyze the Fourier spectrum of Eq. (3), for a proper separation between
spectral lobes in the Fourier space, the following inequality must be complied:

max k∇ϕk� �
< ku0k: (7)

The analytic signal g x; yð Þ to recover the phase ϕ x; yð Þ can be computed with the Fourier
transform method [27], which can expressed as

g x; yð Þ ¼ F�1 H u; vð ÞF I x; yð Þf gf g ¼ ei2π u0xþϕ x; yð Þ½ �, (8)

where H u; vð Þ is a filter in the Fourier domain centered at the frequency u0, u the frequency
variable along x direction, and v the frequency variable along y direction. Finally, the wrapped
phase is computed with

W ϕ x; yð Þ� � ¼ tan �1
Real g x; yð Þe�i2πu0� �
Imag g x; yð Þe�i2πu0f g
� �

∈ �π;π½ Þ: (9)

Other technique to compute the phase from a carrier frequency fringe pattern is the synchro-
nous detection technique [28], which is realized in the spatial domain. Using the complex
notation, in this case, the analytic function g x; yð Þ can be computed with

g x; yð Þ ¼ h x; yð Þ∗ I x; yð Þei2πu0� � ¼ ei2πϕ x; yð Þ, (10)

where ∗ represents the convolution operator and h x; yð Þ a low-pass convolution filter in the
spatial domain. The wrapped phase can be computed with
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Equations (3) and (4) represent the mathematical expressions of fringe pattern images with and
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shown in Figure 3.

3. Fringe pattern processing

3.1. Phase-shifting methods for phase recovery

One of the most popular methods for phase recovery is the well-known phase-shifting. This
method requires a set of phase-shifted fringe patterns which are experimentally obtained in
different ways depending on the optical measurement technique. For example, in interferometry
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modulation ϕ x; yð Þ (c) is the same for both fringe images (phase shown wrapped and codified in gray levels).
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the phase shifting is realized by moving some mirrors in the optical interferometer. The set of N
phase-shifted fringe patterns is defined as

In x; yð Þ ¼ a x; yð Þ þ b x; yð Þ cos ϕ x; yð Þ þ αn
� �

n ¼ 1, 2,…, N: (5)

The pointwise solution for ϕ x; yð Þ from the non-linear system of equations is obtained by using
the last-squares approach (see [2] for details):

W ϕ x; yð Þ� � ¼ tan �1 �
PN

n¼1 In sin αnð ÞPN
n¼1 In cos αnð Þ

 !
∈ �π;π½ Þ, (6)

where W is the wrapping operator such that W ϕ x; yð Þ� �
∈ �π;π½ Þ. Several algorithms can be

used that require three, four, up to eight images.

3.2. Phase recovery from single fringe patterns with carrier

As previously mentioned, processing fringe patterns with fringe carrier frequencymay be simple
to carry out. The key point in the demodulation of fringe patterns with carrier is that the total
phase function u0xþ ϕ x; yð Þ represents the addition of an inclined phase plane u0x plus the
target phase ϕ x; yð Þ. In this case, a monotonically increasing (or decreasing) phase function has
to be recovered. If we analyze the Fourier spectrum of Eq. (3), for a proper separation between
spectral lobes in the Fourier space, the following inequality must be complied:

max k∇ϕk� �
< ku0k: (7)

The analytic signal g x; yð Þ to recover the phase ϕ x; yð Þ can be computed with the Fourier
transform method [27], which can expressed as

g x; yð Þ ¼ F�1 H u; vð ÞF I x; yð Þf gf g ¼ ei2π u0xþϕ x; yð Þ½ �, (8)

where H u; vð Þ is a filter in the Fourier domain centered at the frequency u0, u the frequency
variable along x direction, and v the frequency variable along y direction. Finally, the wrapped
phase is computed with

W ϕ x; yð Þ� � ¼ tan �1
Real g x; yð Þe�i2πu0� �
Imag g x; yð Þe�i2πu0f g
� �

∈ �π;π½ Þ: (9)

Other technique to compute the phase from a carrier frequency fringe pattern is the synchro-
nous detection technique [28], which is realized in the spatial domain. Using the complex
notation, in this case, the analytic function g x; yð Þ can be computed with

g x; yð Þ ¼ h x; yð Þ∗ I x; yð Þei2πu0� � ¼ ei2πϕ x; yð Þ, (10)

where ∗ represents the convolution operator and h x; yð Þ a low-pass convolution filter in the
spatial domain. The wrapped phase can be computed with
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W ϕ x; yð Þ� � ¼ tan �1
Real g x; yð Þf g
Imag g x; yð Þf g
� �

∈ �π;π½ Þ: (11)

3.3. Phase recovery from single fringe patterns without carrier

As described in [34–37], for the case in which u0 ¼ 0, the previous computation of the fringe
direction is necessary to compute the analytic function g x; yð Þ, for example, using the quadra-
ture transform [36]:

Imag g x; yð Þf g ¼ sin ϕ x; yð Þ� � ¼ nϕ x; yð Þ � ∇In x; yð Þ
k∇ϕ x; yð Þk , (12)

where In x; yð Þ ¼ cos ϕ x; yð Þ� � ¼ Real g x; yð Þf g is a normalized version of I x; yð Þ, and nϕ is the
unit vector normal to the corresponding isophase contour, which points to the direction of
∇ϕ x; yð Þ. It is well known that the computation of nϕ is by far the most difficult problem to
compute the phase using this method.

Also, the modulo-2π fringe orientation angle α x; yð Þ can be used to compute the quadrature
fringe pattern by means of the spiral-phase signum function S u; vð Þ in the Fourier domain
[35]:

Imag g x; yð Þf g ¼ sin ϕ x; yð Þ� � ¼ �ie�iα x;yð ÞF�1 S u; vð ÞF In x; yð Þf gf g, (13)

where

S u; vð Þ ¼ uþ ivffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p , (14)

and i ¼ ffiffiffiffiffiffiffi�1p
. However, the most difficult problem in this method is the computation of α x; yð Þ.

It can be deduced that Eqs. (12) and (13) are closely related because

α x; yð Þ ¼ angle nϕ x; yð Þ� �
∈ 0; 2πð �: (15)

3.4. Wrapped phase maps denoising

The unwrapping process can be, in many cases, a difficult task due to phase inconsistencies or
noise. In order to understand the phase unwrapping problem of noisy phase maps, we define
the wrapped and the unwrapped phase as ψ x; yð Þ and ϕ x; yð Þ respectively. As it is known that
ψ x; yð Þ∈ �π;π½ Þ, the following relation can be established:

ψ x; yð Þ ¼ ϕ x; yð Þ þ 2πk x; yð Þ, (16)

where k x; yð Þ is a field of integers such that ψ x; yð Þ∈ �π;π½ Þ. The wrapped phase-
difference vector field Δψ x; yð Þ which can be computed from the wrapped phase map, is
defined as
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Δψ x; yð Þ ¼ ψ x; yð Þ � ψ x� 1; yð Þ;ψ x; yð Þ � ψ x; y� 1ð Þ½ �, (17)

where x� 1; yð Þ and x; y� 1ð Þ are contiguous horizontal and vertical sites, respectively. In a
similar manner, we can also define the unwrapped phase-difference field:

Δϕ x; yð Þ ¼ ϕ x; yð Þ � ϕ x� 1; yð Þ;ϕ x; yð Þ � ϕ x; y� 1ð Þ� �
: (18)

It can be deduced that the problem of the recovery of ϕ from ψ can be properly solved if the
sampling theorem is reached, that is, if the distance between two fringes is more than two
pixels (the phase difference between two fringes is 2π). In phase terms, the sampling theorem
is reached if the phase difference between two pixels is less than π or, in general

kΔϕk < π, ∀ x; yð Þ: (19)

If this condition is satisfied, the following relation can be established:

Δϕ ¼W Δψf g ¼ ψx;ψy

h i
, (20)

where

ψx ¼W ψ x; yð Þ � ψ x� 1; yð Þf g and ψx ¼W ψ x; yð Þ � ψ x; y� 1ð Þf g: (21)

Note that W Δψf g (the wrapped phase differences) can be obtained from the observed
wrapped phase field ψ. Then, the unwrapped phase ϕ can be achieved by two-dimensional
integration of the vector field W Δψf g.
A simple way to compute the unwrapped phase ϕ from the wrapped one ψ is by means of
minimizing the cost function

U ϕ
� � ¼

X
x; yð Þ∈ L

ψx x; yð Þ � ϕ x; yð Þ � ϕ x� 1; yð Þ� �� �2 þ ψy x; yð Þ � ϕ x; yð Þ � ϕ x; y� 1ð Þ� �h i2� �
,

(22)

where L is the set of valid pixels in the image. Unfortunately, in most cases noise is present,
therefore, inequality (19) is not always satisfied and the integration does not provide proper
results. Therefore, denoising wrapped phase maps is a fundamental step before the phase
unwrapping process.

4. The 2D continuous wavelet transform for processing fringe patterns

It is clear that the phase demodulation of fringe images with carrier may be easily realized.
Owing that, in this case, the fringe image may represent a quasi-stationary signal along the
direction of the frequency carrier, the use of classical linear operators such as the Fourier
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W ϕ x; yð Þ� � ¼ tan �1
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Imag g x; yð Þf g
� �

∈ �π;π½ Þ: (11)
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As described in [34–37], for the case in which u0 ¼ 0, the previous computation of the fringe
direction is necessary to compute the analytic function g x; yð Þ, for example, using the quadra-
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It can be deduced that Eqs. (12) and (13) are closely related because
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∈ 0; 2πð �: (15)

3.4. Wrapped phase maps denoising

The unwrapping process can be, in many cases, a difficult task due to phase inconsistencies or
noise. In order to understand the phase unwrapping problem of noisy phase maps, we define
the wrapped and the unwrapped phase as ψ x; yð Þ and ϕ x; yð Þ respectively. As it is known that
ψ x; yð Þ∈ �π;π½ Þ, the following relation can be established:

ψ x; yð Þ ¼ ϕ x; yð Þ þ 2πk x; yð Þ, (16)

where k x; yð Þ is a field of integers such that ψ x; yð Þ∈ �π;π½ Þ. The wrapped phase-
difference vector field Δψ x; yð Þ which can be computed from the wrapped phase map, is
defined as
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Δψ x; yð Þ ¼ ψ x; yð Þ � ψ x� 1; yð Þ;ψ x; yð Þ � ψ x; y� 1ð Þ½ �, (17)

where x� 1; yð Þ and x; y� 1ð Þ are contiguous horizontal and vertical sites, respectively. In a
similar manner, we can also define the unwrapped phase-difference field:

Δϕ x; yð Þ ¼ ϕ x; yð Þ � ϕ x� 1; yð Þ;ϕ x; yð Þ � ϕ x; y� 1ð Þ� �
: (18)

It can be deduced that the problem of the recovery of ϕ from ψ can be properly solved if the
sampling theorem is reached, that is, if the distance between two fringes is more than two
pixels (the phase difference between two fringes is 2π). In phase terms, the sampling theorem
is reached if the phase difference between two pixels is less than π or, in general

kΔϕk < π, ∀ x; yð Þ: (19)

If this condition is satisfied, the following relation can be established:

Δϕ ¼W Δψf g ¼ ψx;ψy

h i
, (20)

where

ψx ¼W ψ x; yð Þ � ψ x� 1; yð Þf g and ψx ¼W ψ x; yð Þ � ψ x; y� 1ð Þf g: (21)

Note that W Δψf g (the wrapped phase differences) can be obtained from the observed
wrapped phase field ψ. Then, the unwrapped phase ϕ can be achieved by two-dimensional
integration of the vector field W Δψf g.
A simple way to compute the unwrapped phase ϕ from the wrapped one ψ is by means of
minimizing the cost function
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,

(22)

where L is the set of valid pixels in the image. Unfortunately, in most cases noise is present,
therefore, inequality (19) is not always satisfied and the integration does not provide proper
results. Therefore, denoising wrapped phase maps is a fundamental step before the phase
unwrapping process.

4. The 2D continuous wavelet transform for processing fringe patterns

It is clear that the phase demodulation of fringe images with carrier may be easily realized.
Owing that, in this case, the fringe image may represent a quasi-stationary signal along the
direction of the frequency carrier, the use of classical linear operators such as the Fourier
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transform may be adequate. It works well mainly for few components in the frequency
domain (i.e., for narrow spectrums); however, this is not the case for many signals in the real
world. This dependence is a serious weakness mainly in two aspects: the degree of automa-
tion and the accuracy of the method specially when fringes produce spread spectrums due to
localized variations or phase transients. Additionally, in the case of closed fringes there may
be a wide range of frequencies in all directions. Then, evidently standard Fourier analysis is
inadequate for treating with this kind of images because it represents signals with a linear
superposition of sine waves with “infinite” extension. For this reason, an image with closed
fringes should be represented with localized components characterizing the frequency,
shifting, and orientation. A powerful mathematical tool for signal description that has been
developed in the last decades is the wavelet analysis. Fortunately, for our purposes, a key
characteristic of this type of analysis is the finely detailed description of frequency or phase
of signals. In consequence, it can have a good performance especially with fringes that
produce spread spectrums. Additionally, one of the main advantages using wavelets com-
pared with standard techniques is its high capability to deal with noise. In particular, the 2D
continuous wavelet transform have recently been proposed for the processing of interfero-
metric images. Advantages of denoising and demodulation of interferograms using the 2D
CWT has been discussed in [44–55].

Considering an interferometric image (an interferogram or a wrapped-phase field) G rð Þ, where
r ¼ x; yð Þ∈R2, its 2D CWT decomposition can be defined as

GW s;θ; ηð Þ ¼W G rð Þf g ¼
ð

R2
G rð Þφ∗

s,θ,η rð Þdr: (23)

In Eq. (23), φ represents the 2D mother wavelet and ∗ indicates the complex conjugated. The
variable s∈R2 represents the shift, θ∈ 0; 2π½ Þ the rotation angle, and η the scaling factor. It has
been shown that a proper mother wavelet for processing interferometric images is the 2D
Gabor wavelet (see Figure 4). The mathematical representation of this kind of wavelet can be
defined as

Figure 4. Example of a 2D Gabor wavelet. (a) Real part and (b) imaginary part.

Wavelet Theory and Its Applications182

φs,θ,η rð Þ ¼ exp �π ∥r� s∥2

η

� �
� exp i2π

ν
η

r� sð Þ �Θð Þ
� �

, (24)

where Θ ¼ cosθ; sinθð Þ, �ð Þ represents the dot product, and ν∈R is the frequency variable.

Figure 5 shows that the 2D CWT is performed along different directions and frequencies.

4.1. Phase recovery with the 2D CWT

Owing that fringe pattern images with closed fringes generally contain elements with high
anisotropy and sparse frequency components, the phase recovery is a complex procedure.
Compounding the problem, the presence of noise makes the process even more complicated
because noise and fringes are mixed in the Fourier domain.

Also, it has been shown that a single fringe pattern without carrier frequency, is not easy to
deal with. Owing to ambiguities in the image formation process, a main drawback analyzing
them is that several solutions of the phase function can satisfy the original observed image.
Therefore, it is necessary to restrict the solution space of ϕ in Eq. (4). Fortunately, as in most
practical cases the phase to be recovered is continuous, the algorithm to process the fringe
pattern usually seeks for a continuous phase function. However, the recovery of the continu-
ous phase function is not a simple task to carry out as occur with fringe patterns with carrier
frequency. It can be observed that the phase gradient represents the local frequencies of the
fringe pattern in the x and y directions; however, the sign of ∇ϕ is ambiguous because negative
and positive frequencies are mixed in the Fourier domain.

The following is a general description of the phase recovery method using the 2D CWT. First,
it is necessary to consider a normalized version of the fringe pattern. The normalization

Figure 5. Frequency localization of the 2D wavelets in the Fourier domain (f ¼ ν
η).
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transform may be adequate. It works well mainly for few components in the frequency
domain (i.e., for narrow spectrums); however, this is not the case for many signals in the real
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tion and the accuracy of the method specially when fringes produce spread spectrums due to
localized variations or phase transients. Additionally, in the case of closed fringes there may
be a wide range of frequencies in all directions. Then, evidently standard Fourier analysis is
inadequate for treating with this kind of images because it represents signals with a linear
superposition of sine waves with “infinite” extension. For this reason, an image with closed
fringes should be represented with localized components characterizing the frequency,
shifting, and orientation. A powerful mathematical tool for signal description that has been
developed in the last decades is the wavelet analysis. Fortunately, for our purposes, a key
characteristic of this type of analysis is the finely detailed description of frequency or phase
of signals. In consequence, it can have a good performance especially with fringes that
produce spread spectrums. Additionally, one of the main advantages using wavelets com-
pared with standard techniques is its high capability to deal with noise. In particular, the 2D
continuous wavelet transform have recently been proposed for the processing of interfero-
metric images. Advantages of denoising and demodulation of interferograms using the 2D
CWT has been discussed in [44–55].

Considering an interferometric image (an interferogram or a wrapped-phase field) G rð Þ, where
r ¼ x; yð Þ∈R2, its 2D CWT decomposition can be defined as

GW s;θ; ηð Þ ¼W G rð Þf g ¼
ð

R2
G rð Þφ∗

s,θ,η rð Þdr: (23)

In Eq. (23), φ represents the 2D mother wavelet and ∗ indicates the complex conjugated. The
variable s∈R2 represents the shift, θ∈ 0; 2π½ Þ the rotation angle, and η the scaling factor. It has
been shown that a proper mother wavelet for processing interferometric images is the 2D
Gabor wavelet (see Figure 4). The mathematical representation of this kind of wavelet can be
defined as

Figure 4. Example of a 2D Gabor wavelet. (a) Real part and (b) imaginary part.
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φs,θ,η rð Þ ¼ exp �π ∥r� s∥2

η

� �
� exp i2π

ν
η

r� sð Þ �Θð Þ
� �

, (24)

where Θ ¼ cosθ; sinθð Þ, �ð Þ represents the dot product, and ν∈R is the frequency variable.

Figure 5 shows that the 2D CWT is performed along different directions and frequencies.

4.1. Phase recovery with the 2D CWT

Owing that fringe pattern images with closed fringes generally contain elements with high
anisotropy and sparse frequency components, the phase recovery is a complex procedure.
Compounding the problem, the presence of noise makes the process even more complicated
because noise and fringes are mixed in the Fourier domain.

Also, it has been shown that a single fringe pattern without carrier frequency, is not easy to
deal with. Owing to ambiguities in the image formation process, a main drawback analyzing
them is that several solutions of the phase function can satisfy the original observed image.
Therefore, it is necessary to restrict the solution space of ϕ in Eq. (4). Fortunately, as in most
practical cases the phase to be recovered is continuous, the algorithm to process the fringe
pattern usually seeks for a continuous phase function. However, the recovery of the continu-
ous phase function is not a simple task to carry out as occur with fringe patterns with carrier
frequency. It can be observed that the phase gradient represents the local frequencies of the
fringe pattern in the x and y directions; however, the sign of ∇ϕ is ambiguous because negative
and positive frequencies are mixed in the Fourier domain.

The following is a general description of the phase recovery method using the 2D CWT. First,
it is necessary to consider a normalized version of the fringe pattern. The normalization

Figure 5. Frequency localization of the 2D wavelets in the Fourier domain (f ¼ ν
η).
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procedure can be carried out using the method proposed in [56]. Consider we represent the
normalized fringe pattern in complex form:

G rð Þ ¼ cos ϕ rð Þ� � ¼ exp iϕ rð Þ� �
2

þ exp �iϕ rð Þ� �
2

: (25)

In this particular case, the 2D CWT of G rð Þ is

W G rð Þf g ¼ ÐR2

exp iϕ rð Þ� �
2

exp �π ∥r� s∥2

η

� �
� exp �i2π ν

η
r� sð Þ �Θð Þ

� �
dx

þ ÐR2

exp �iϕ rð Þ� �
2

exp �π ∥r� s∥2

η

� �
� exp �i2π ν

η
r� sð Þ �Θð Þ

� �
dx:

(26)

Note that W G rð Þf g represents a four-dimensional function depending on x, y, η, and θ. The
process to recover the phase ϕ rð Þ using the 2D CWTconsists on realizing the well-known ridge
detection. To understand the phase recovery from the ridge detection, first it is necessary to
know the meaning of Eq. (26). To do so, let ~r ¼ r� s and νθ ¼ ν

η cosθ; sinθð Þ, where νθ ∈R2.

Using Taylor’s expansion we know that

ϕ ~r þ sÞ ≈ϕ sð Þ þ ∇ϕ sð Þ � ~r:�
(27)

Then, we can now rewrite Eq. (26) as

W G rð Þf g ≈ exp iϕ sð Þ� �
2

ð

R2
exp i ∇ϕ sð Þ � ~r� �� �� exp �π ∥~r∥2

η

� �
exp �i2π ~r � νθÞð �d~r½

þ exp �iϕ sð Þ� �
2

ð

R2
exp �i ∇ϕ sð Þ � ~r� �� �� exp �π ∥~r∥2

η

� �
exp �i2π ~r � νθÞð �d~r,½ (28)

or, which is the same

W G rð Þf g ≈ exp iϕ sð Þ� �
2

F exp i ∇ϕ sð Þ � ~r� �� �� exp �π ∥~r∥2

η

� �� �

þ exp �iϕ sð Þ� �
2

F exp �i ∇ϕ sð Þ � ~r� �� �� exp �π ∥~r∥2

η

� �� �
: (29)

The two terms in (29) contains Fourier transforms of complex periodic functions of frequencies
∇ϕ sð Þ=2π and �∇ϕ sð Þ=2π. Then, applying the Fourier’s similarity and modulation theorems
this last equation can be finally written as

W G rð Þf g ≈ η exp iϕ sð Þ� �
2

exp �ηπ νθ � ∇ϕ sð Þ
2π

����
����
2

" #

þ η
exp �iϕ sð Þ� �

2
exp �ηπ νθ þ ∇ϕ sð Þ

2π

����
����
2

" #
:

(30)
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In this case, νθ is the two-dimensional frequency variable. Note that for a fixed s, W G rð Þf g
represents two Gaussian filters in the Fourier domain localized at polar coordinates ν

η ;θ
� �

. It

can also be visualized as an orientation and frequency decomposition of the fringe pattern.

To detect the analytic function and consequently compute the phase ϕ sð Þ at a given pixel s (i.e.,

the ridge detection), we can choice one of two possibilities: at νθ ¼ ∇ϕ sð Þ
2π or νθ ¼ � ∇ϕ sð Þ

2π . Owing
that the sign of the phase gradient cannot be determined from the image intensity, there exists
a sign ambiguity of the phase in the θ� η map. In Figure 6, it can be observed that in this
situation, there are two maximum in each θ� η map. Also, it can be deduced that the
magnitude of the coefficients map is periodic with respect to θ with period π. To solve the
problem of sign ambiguity, Ma et al. [48] proposed a phase determination rule according to
the phase distribution continuity. Also, Villa et al. [55] proposed a sliding 2D CWT method
that assumes that the phase is continuous and smoothly varying, in this way, the ridge
detection is realized assuming that the coefficient maps are similar in adjacent pixels, reducing
the processing time too.

Once detected the ridge W G rð Þf gridge that represents a 2D function, the wrapped phase can be

computed with

W ϕ rð Þ� � ¼ tan �1
Real W G rð Þf gridge

n o

Imag W G rð Þf gridge
n o

0
@

1
A: (31)

Figures 7 and 8 show examples of fringe pattern phase recovery using the 2D CWT method
reported in [55]. It is important to remark that this method is highly robust against noise.

Figure 6. (a) Example of noisy simulated fringe pattern. The square indicates a region around a pixel swhere the phase is
estimated. (b) Magnitude of the θ� η map at the pixel s, codified in gray levels. Horizontal direction represents the
rotation angle while the vertical direction represents the scale. The two white regions represent the two terms in Eq. (30).
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procedure can be carried out using the method proposed in [56]. Consider we represent the
normalized fringe pattern in complex form:
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η
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� exp �i2π ν
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dx
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η

� �
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dx:
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Note that W G rð Þf g represents a four-dimensional function depending on x, y, η, and θ. The
process to recover the phase ϕ rð Þ using the 2D CWTconsists on realizing the well-known ridge
detection. To understand the phase recovery from the ridge detection, first it is necessary to
know the meaning of Eq. (26). To do so, let ~r ¼ r� s and νθ ¼ ν

η cosθ; sinθð Þ, where νθ ∈R2.

Using Taylor’s expansion we know that

ϕ ~r þ sÞ ≈ϕ sð Þ þ ∇ϕ sð Þ � ~r:�
(27)

Then, we can now rewrite Eq. (26) as

W G rð Þf g ≈ exp iϕ sð Þ� �
2

ð
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exp i ∇ϕ sð Þ � ~r� �� �� exp �π ∥~r∥2

η

� �
exp �i2π ~r � νθÞð �d~r½
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exp �i2π ~r � νθÞð �d~r,½ (28)

or, which is the same

W G rð Þf g ≈ exp iϕ sð Þ� �
2

F exp i ∇ϕ sð Þ � ~r� �� �� exp �π ∥~r∥2
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� �� �

þ exp �iϕ sð Þ� �
2
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� �� �
: (29)

The two terms in (29) contains Fourier transforms of complex periodic functions of frequencies
∇ϕ sð Þ=2π and �∇ϕ sð Þ=2π. Then, applying the Fourier’s similarity and modulation theorems
this last equation can be finally written as

W G rð Þf g ≈ η exp iϕ sð Þ� �
2

exp �ηπ νθ � ∇ϕ sð Þ
2π

����
����
2

" #

þ η
exp �iϕ sð Þ� �

2
exp �ηπ νθ þ ∇ϕ sð Þ

2π

����
����
2

" #
:

(30)
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In this case, νθ is the two-dimensional frequency variable. Note that for a fixed s, W G rð Þf g
represents two Gaussian filters in the Fourier domain localized at polar coordinates ν

η ;θ
� �

. It

can also be visualized as an orientation and frequency decomposition of the fringe pattern.

To detect the analytic function and consequently compute the phase ϕ sð Þ at a given pixel s (i.e.,

the ridge detection), we can choice one of two possibilities: at νθ ¼ ∇ϕ sð Þ
2π or νθ ¼ � ∇ϕ sð Þ

2π . Owing
that the sign of the phase gradient cannot be determined from the image intensity, there exists
a sign ambiguity of the phase in the θ� η map. In Figure 6, it can be observed that in this
situation, there are two maximum in each θ� η map. Also, it can be deduced that the
magnitude of the coefficients map is periodic with respect to θ with period π. To solve the
problem of sign ambiguity, Ma et al. [48] proposed a phase determination rule according to
the phase distribution continuity. Also, Villa et al. [55] proposed a sliding 2D CWT method
that assumes that the phase is continuous and smoothly varying, in this way, the ridge
detection is realized assuming that the coefficient maps are similar in adjacent pixels, reducing
the processing time too.

Once detected the ridge W G rð Þf gridge that represents a 2D function, the wrapped phase can be

computed with

W ϕ rð Þ� � ¼ tan �1
Real W G rð Þf gridge

n o

Imag W G rð Þf gridge
n o

0
@

1
A: (31)

Figures 7 and 8 show examples of fringe pattern phase recovery using the 2D CWT method
reported in [55]. It is important to remark that this method is highly robust against noise.

Figure 6. (a) Example of noisy simulated fringe pattern. The square indicates a region around a pixel swhere the phase is
estimated. (b) Magnitude of the θ� η map at the pixel s, codified in gray levels. Horizontal direction represents the
rotation angle while the vertical direction represents the scale. The two white regions represent the two terms in Eq. (30).
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A big advantage of using the 2D CWT method to compute the phase from fringe patterns
without carrier is that the sign ambiguity of ∇ϕ can be easily solved, for example, with the
method reported in [55]. The key idea of the method is the assumption that the phase ϕ is
smooth; in other words, the fringe frequency and fringe orientation are very similar in neigh-
bor pixels, hence the ridge detection at each θ� η map is simplified registering the previous
computation of neighbor pixels.

Figure 8. Example of the 2D CWT method applied to phase recovery. (a) Experimentally obtained moiré fringe pattern.
(b) Recovered phase.

Figure 7. Example of the 2D CWT method applied to phase recovery. (a) Synthetic noisy fringe pattern. (b) Recovered
phase.
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4.2. The 2D CWT for wrapped phase maps denoising

Other of the most relevant tasks in fringe pattern processing is the wrapped phase maps den-
oising. Owing that the phase unwrapping is a key step in fringe pattern processing for optical
measurement techniques, the previous denoising of the wrapped phase is crucial for a proper
measurement. Several optical measurement techniques, such as the electronic speckle pattern
interferometry, use different phase recovery methods, inherently produces highly noisy wrapped
phase maps. In these situations, the phase map denoising is a crucial pre-process for a successful
phase unwrapping. Considering the problem of denoising wrapped phase maps, the drawback
is that owing to 2π phase jumps of the wrapped phaseψ, direct application of any kind of filter is
not always a proper procedure to solve it. For example, the application of a simple mean filter
may smear out the phase jumps. In order to avoid this drawback, the wrapped phase filtering
must be realized computing the following complex function:

G rð Þ ¼ exp iψ rð Þ½ �, (32)

where i ¼ ffiffiffiffiffiffiffi�1p
. As both imaginary and real parts are continuous functions, we can properly

apply a filter over G rð Þ, and the argument of the filtered complex signal will contain the
denoised phase map. Again, substituting (32) in (23), we now obtain

W G rð Þf g ¼
ð

R2
exp iψ rð Þ½ �exp �π ∥r� s∥2

η

� �
� exp �i2π ν

η
r� sð Þ �Θð Þ

� �
dx: (33)

Following the same reasoning to obtain Eq. (30), for this case, we obtain:

W G rð Þf g ≈ ηexp iψ sð Þ½ �exp �ηπ νθ � ∇ψ sð Þ
2π

����
����
2

" #
: (34)

The difference of this equation with the result shown in Eq. (30) is that at each θ� ηmap, there

is only one maximum: at νθ ¼ ∇ψ sð Þ
2π (see Figure 9). Thus, in this case, the ridge detection is

simpler and the filtered wrapped phase map ψf rð Þ can be computed with

Figure 9. (a) Zoom of a small square region in a noisy wrapped phase map (around some pixel s). (b) Magnitude of the
θ� η map at the pixel s, codified in gray levels. Horizontal direction represents the rotation angle while the vertical
direction represents the scale.
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ψf rð Þ ¼ tan �1
Real W G rð Þf gridge

n o

Imag W G rð Þf gridge
n o

0
@

1
A∈ �π;π½ Þ: (35)

Figures 10 and 11 are examples of the results applying the 2D CWT in wrapped phase map
denoising. Note the outstanding performance removing the structures due to the gratings in
the experimentally obtained wrapped phase map with moire deflectometry (Figure 11).

The key step in the 2D CWTmethod for phase map denoising is the ridge detection. In this way,
all the coefficients in the θ� η map contributed by the noise and spurious information are

Figure 10. (a) Simulated noisy wrapped phase map. (b) Filtered wrapped phase map.

Figure 11. (a) Experimentally obtained moiré noisy wrapped phase map. (b) Filtered wrapped phase map.
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removed. A comparison of the performance of this method compared with the windowed Fourier
transform method [22] and the localized Fourier transform method [21] is shown in Table 1. In
this case, the normalized-mean-square-error (NMSE) was used as the metric applied over a
synthetic noisy phase map ψ (Figure 10). Although the performance against noise of the WFT is
better that the 2D CWTmethod, this last is much simpler to implement, as discussed in [53].

NMSE ¼
∥ψ� ψf ∥

2

∥ψ∥2
: (36)

5. Conclusions

It canbeobviouslydeduced that often fringepatterns contain elementswithhigh anisotropy, sparse
frequency components, and noise, which makes the processing of this kind of images by means of
classical LTI methods inadequate. Several authors have shown that the use of multiresolution
analysis bymeans of the 2DCWT for processing fringe patterns has resulted a proper and interest-
ing alternative for this task. The 2D CWTmethods present some attractive advantages compared
with other commonly used techniques. (1) The use of the Gabormotherwavelet for processing this
kind of images is a natural choice to model them, as can be obviously deduced analyzing the
physical theory of fringe image formation. (2) In most classical methods for processing fringe
images, the previous estimation of the fringe direction or orientation is a must, especially for fringe
patterns without a fringe carrier frequency. Owing that the multiresolution analysis using the 2D
CWTmethods models the image by means of the angle θ, fringe direction or orientation is inher-
ently computed through the ridgedetection. (3)As the2DCWTmethodsmodels the interferograms
bymeans of scale and orientation, all spurious information andnoise contributing in theθ� ηmap
is efficiently removed through the ridge detection, resulting a powerful tool to remove the noise.
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Abstract

The phenomenon of superoscillation is the local oscillation of a band limited function at a
frequency ω higher than the band limit. Superoscillations exist during the limited time
intervals, and their amplitude is small compared to the signal components with the
frequencies inside the bandwidth. For this reason, the wavelet transform is a useful
mathematical tool for the quantitative description of the superoscillations. Continuous-
time wavelet transform (CWT) of a transient signal f tð Þ is a function of two variables: one
of them represents a time shift, and the other one is the scale or dilation variable. As a
result, CWT permits the simultaneous analysis of the transient signals both in the time
and frequency domain. We show that the superoscillations strongly localized in time and
frequency domains can be identified by using CWT analysis. We use CWT with the
Mexican hat and Morlet mother wavelets for the theoretical investigation of superoscillation
spectral features and time dependence for the first time, to our best knowledge. The results
clearly show that the high superoscillation frequencies, time duration, and energy contours
can be found by using CWTof the superoscillating signals.

Keywords: wavelet transform, superoscillations, transient signals, low-pass filter

1. Introduction

Superoscillating signals are band-limited signals that oscillate in some region faster than their
largest Fourier component [1]. Superoscillatory functions may have interesting applications
in quantum mechanics, signal processing, and optics (see, for instance, [1] and references
therein). However, the superoscillation amplitude is usually so small compared to the typical
values of the amplitude in non-superoscillating regions that the practical applications of the
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superoscillating functions depend on tailoring the functions in order to reduce such an effect
[1]. It has been shown that the superoscillations amplitude decreases exponentially with the
length of the superoscillating stretch [2]. Nevertheless, the existence of superoscillations and
the possibility of encoding arbitrary amounts of information into an arbitrary short segment of
a low-bandwidth signal do not contradict the information theory [2]. Taking into account the
Shannon’s theorem concerning the information channel capacity, it appeared to be that the
superoscillatory information can be compressed to an arbitrary extent under the condition that
the signal power increases exponentially with the length of the superoscillatory part of the
message [2]. Superoscillations can be designed by prescribing their amplitude and/or their
derivative on a grid which is denser than the Nyquist density [3]. Four different ways to
constrain the signal in order to render it superoscillatory have been described in Reference
[3]: (1) amplitude constraints, without any restriction on the derivative; (2) derivative con-
straints, without restrictions on the amplitude; (3) the amplitude and the derivative constraints
on staggered grids; and (4) the amplitude and the derivative constraints on aligned grids at
one half density [3]. When a set of constraints is chosen to ensure a required superoscillation,
the signal is optimized by minimizing its total energy within the subspace of all the
superoscillatory functions obeying the same set of constraints [2]. Superoscillations can be
constructed also by using the so-called direct approach. This approach is based on a signal
that is a superposition of time shifted SINC functions which ensures its band limitation [4].
Then the coefficients of the superposition are chosen by specification of the signal values on a
relatively dense set of points, which forces the required superoscillations yet leaves some
degrees of freedom for optimization [4]. The propagation of the temporal optical signals with
a superoscillation at an absorbing resonance of a dielectric medium has been studied theoret-
ically [5]. The absorption acts only on the Fourier components of the band limited signals,
while the superoscillation is not absorbed [5]. When the signal propagates through the
medium, the superoscillation revives periodically or quasi-periodically, and a superoscillatory
signal may be used in order to deliver fast oscillations to a target in a dielectric medium in the
frequency bands characterized by a high absorption [5].

It should be noted that it is impossible to infer the bandwidth of a finite energy signal f tð Þ from a
sampled segment of length T even for a sufficiently large T because there exist signals of an
arbitrary small bandwidth oscillating throughout an interval of a length T with an arbitrary
small period [2]. The meaning is that we can make the superoscillatory part of a signal, T, and
the corresponding frequency inside, ω, arbitrarily large. This comes at a price, that the amplitude
of the signal outside the superoscillatory portion is exponentially large in the number of superos-
cillations present in the time interval, T, compared to the amplitude of superoscillation [1, 2]. In
such a case, the standard Fourier analysis is not sufficient because we cannot locate the sharp
pulses in the signal spectrum caused by the sharp changes of the signal in the time domain [6]. A
small perturbation of the sinusoidal function sin ωtð Þ or cos ωtð Þ at any point of the time axis
influences every point of the frequency axis and vice-versa [6]. The Fourier transform integral can
be evaluated at only one frequency at a time which is not convenient for the signal processing [6].
In particular, the so-called time-frequency analysis combining both the frequency domain and
the time domain analyses is necessary for superoscillation studies [2, 6]. The short-time Fourier
transform (STFT) can be used for the time-frequency analysis because it permits to obtain the

Wavelet Theory and Its Applications196

approximate frequency contents of the time-dependent signal in the vicinity of a desired location
in the time domain [6]. However, the fixed time-frequency resolution is a disadvantage of STFT
because STFT can resolve properly either the low-frequency of the signal, or the high-frequency
part of it [6]. The linear transform providing an efficient time-frequency resolution in any
location of the time-frequency plane is the continuous-time wavelet transform (CWT) [6, 7].
CWT is defined by two real positive parameters: the scale or dilation variable a and the time
shift or translation b [6, 7]. By changing the parameters a, b, CWT can be calculated on the entire
time-frequency plane [6].

In this chapter, we constructed a family of complex valued superoscillating functions and
investigated their behavior for different values of the maximum frequency ω0 and amplitude
by using CWT with the Mexican hat and Morlet mother wavelets. We have shown that the
high superoscillation frequencies, short-time durations, and energy contours can be evaluated
by using CWT.

The chapter is organized as follows. The superoscillating function properties are discussed in
Section 2. Some possible applications of superoscillations are reviewed in Section 3. CWT and
discrete wavelet transform (DWT) definition and fundamental features are presented in Sec-
tion 4. The applications of wavelet transform for the optical signal processing are briefly
discussed in Section 5. The simulation results are presented and discussed in Section 6. Con-
clusions are presented in Section 7.

2. The properties of the superoscillating functions

The frequency limited functions and superoscillations occur in a number of scientific and
technological applications such as foundations of quantum mechanics, information theory,
optics, and signal processing which led also to work on the optimization and stability of
superoscillations [8–14]. Some examples of superoscillatory functions have been proposed
and investigated in the past [1–4, 8, 10, 11]. In this section, we consider the generic example of
the Aharonov, Popescu, Rohlich functions f xð Þ given by [11]:

f xð Þ ¼ cosxþ ig sin xð Þn; g > 1;n≫ 1 (1)

Here, for general, g f xð Þ is a periodic function with a period 2π. It is easy to see from Eq. (1) that
for g ¼ 1 we obtain from Eq. (1):

f xð Þ ¼ exp inxð Þ (2)

For small x! 0, Eq. (1) yields:

f xð Þ ≈ exp ln 1þ igxð Þð Þ� �n
≈ exp ignxð Þ (3)

Obviously, in the limiting case, the function determined by Eq. (3) is varying faster than the
function determined by Eq. (2). Consider now the Fourier series for f xð Þ given by [11]:
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superoscillating functions depend on tailoring the functions in order to reduce such an effect
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discrete wavelet transform (DWT) definition and fundamental features are presented in Sec-
tion 4. The applications of wavelet transform for the optical signal processing are briefly
discussed in Section 5. The simulation results are presented and discussed in Section 6. Con-
clusions are presented in Section 7.

2. The properties of the superoscillating functions

The frequency limited functions and superoscillations occur in a number of scientific and
technological applications such as foundations of quantum mechanics, information theory,
optics, and signal processing which led also to work on the optimization and stability of
superoscillations [8–14]. Some examples of superoscillatory functions have been proposed
and investigated in the past [1–4, 8, 10, 11]. In this section, we consider the generic example of
the Aharonov, Popescu, Rohlich functions f xð Þ given by [11]:

f xð Þ ¼ cosxþ ig sin xð Þn; g > 1;n≫ 1 (1)

Here, for general, g f xð Þ is a periodic function with a period 2π. It is easy to see from Eq. (1) that
for g ¼ 1 we obtain from Eq. (1):

f xð Þ ¼ exp inxð Þ (2)

For small x! 0, Eq. (1) yields:

f xð Þ ≈ exp ln 1þ igxð Þð Þ� �n
≈ exp ignxð Þ (3)

Obviously, in the limiting case, the function determined by Eq. (3) is varying faster than the
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f xð Þ ¼
Xn
m¼0

cmexp inkmxð Þ (4)

where

km ¼ 1� 2m
n

; cm ¼ n!
2n
�1ð Þm g2 � 1

� �n=2 g� 1ð Þ= gþ 1ð Þ½ �nkm=2
n 1þ kmð Þ=2½ �! n 1� kmð Þ=2½ �! (5)

Equations (4) and (5) contain only wavenumbers kmj j ≤ 1 [11]. Comparison of Eqs. (3–5) shows
that the function f xð Þ demonstrates superoscillatory behavior with the degree of super-
oscillation defined by g [11]. The function f xð Þ Eq. (1) can be represented in an integral form
[11]:

f xð Þ ¼ g
k xð Þ
� �n=2

exp in
ðx

0

dx0k x0ð Þ
8<
:

9=
; (6)

Here, the local wavenumber k xð Þ is introduced given by [11]:

k xð Þ � 1
n
Im

∂ln f xð Þ
∂x

� �
¼ g

cos2xþ g2sin2x
(7)

The relationship Eq. (6) can be proved immediately taking into account that:

ðx

0

dx0k x0ð Þ ¼ arctan gtanxð Þ (8)

and using the identities cosx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2x
p� ��1

and sinx ¼ tanx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2x
p� �

. The wave-

number k xð Þ determined by Eq. (7) is varying from the superoscillatory value k 0ð Þ ¼ g to the
minimum value k π=2ð Þ ¼ 1=g. The superoscillatory region where kj j > 1 is determined by the
following condition [11]:

xj j < xs ¼ arc cot
ffiffiffi
g
p� �

(9)

The number of oscillations nosc in the superoscillatory region is given by:

nosc ¼ n
2π

ðarccot
ffiffi
a
pð Þ

�arccot ffiffi
a
pð Þ

dxk xð Þ ¼ n
π
arctan

ffiffiffi
g
p� �

(10)

Equation (6) shows in particular that in the superoscillatory region kj j > 1, the magnitude f xð Þj j
is exponentially smaller than in the normal region kj j < 1 [11]. Consequently, n is the asymp-
totic parameter describing the number of oscillations in the superoscillatory region and the
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corresponding exponential smallness of f xð Þj j [11]. More accurate approximation gives the
following expressions for the region of fast superoscillations xfs and the number of fast
superoscillations nfs [11]:

xj j < xs ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n g2 � 1ð Þp ; nfs ¼ g

ffiffiffi
n
p

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p (11)

Superoscillations is a week phenomenon such that there is no slightest indication of
superoscillations in the power spectrum P kð Þ of f xð Þ [11]. Indeed, using the Fourier compo-
nents Eq. (5) we obtain [11]:

P kð Þ ¼ nc2m m ¼ n 1� kð Þ=2ð Þ
2
Pn
0
c2m

≈
1

σ
ffiffiffiffiffiffi
2π
p exp � k� kh ið Þ2

2σ2

( )
(12)

where

kh i ¼ 1
g
; σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� kh ið Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1
2ng2

s
(13)

The asymptotic spectrum Eq. (12) is a narrow Gaussian with the center at k ¼ g�1 representing
the slow oscillations near xj j ¼ π [11]. The superoscillations gradually disappear getting
slower and reducing to the region kj j ≤ 1 according to the Fourier series Eqs. (4) and (5) [11].

The function f xð Þ defined by Eq. (1) is periodic. Consequently, it may represent a diffraction
grating with spatial period πd that transforms an incident light plane wave into a propagating
series of diffracted beams [11]. Such a grating transforms the wave Eq. (1) into the super-
oscillatory function Ψ x; 0ð Þ ¼ f x=dð Þ under the following condition for the wavenumber
K:n=d < K < gn=d [11]. The grating produces a novel kind of super-resolution, that is, the
subwavelength structure in the field with only propagating waves and without evanescent
waves [11].

In the framework of the precise classical wave model, it has been shown how superoscillations
can emerge and propagate into the far-field region [14]. The band-limited superoscillatory
wave (the “red light”) is propagating along the x axis of a unidimensional (1D) waveguide
with the a segment of the x axis (the “window”) which is opened and closed as the
superoscillation passes by releasing the light pulse into the two-dimensional (2D) space
corresponding to x, z > 0 [14]. The wave traveling in the positive x direction with a speed
c ¼ 1 can be described without loss of generality by the band limited function Eq. (1) with the
replacement of the argument x by x� tð Þ=n in expressions (1) and (4) [14]. This new function
f red x; tð Þ is superoscillatory near x ¼ t [14]. It represents a rigidly moving polychromatic packet
with associated frequencies ωm ¼ km [14]. The function f red x; tð Þcan be approximated by the

following expression: f red:app x; tð Þ ¼ exp ig x� tð Þ½ �exp x�tð Þ2
2X2

� �
; X ¼

ffiffiffiffiffiffiffiffi
n

g2�1
q

[14]. The function

f red:app x; tð Þ represents superoscillations over the interval �2X < x < 2X for t ¼ 0 [14]. In order
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Equation (6) shows in particular that in the superoscillatory region kj j > 1, the magnitude f xð Þj j
is exponentially smaller than in the normal region kj j < 1 [11]. Consequently, n is the asymp-
totic parameter describing the number of oscillations in the superoscillatory region and the
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corresponding exponential smallness of f xð Þj j [11]. More accurate approximation gives the
following expressions for the region of fast superoscillations xfs and the number of fast
superoscillations nfs [11]:

xj j < xs ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Superoscillations is a week phenomenon such that there is no slightest indication of
superoscillations in the power spectrum P kð Þ of f xð Þ [11]. Indeed, using the Fourier compo-
nents Eq. (5) we obtain [11]:
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2
Pn
0
c2m

≈
1

σ
ffiffiffiffiffiffi
2π
p exp � k� kh ið Þ2

2σ2

( )
(12)

where

kh i ¼ 1
g
; σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� kh ið Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1
2ng2

s
(13)

The asymptotic spectrum Eq. (12) is a narrow Gaussian with the center at k ¼ g�1 representing
the slow oscillations near xj j ¼ π [11]. The superoscillations gradually disappear getting
slower and reducing to the region kj j ≤ 1 according to the Fourier series Eqs. (4) and (5) [11].

The function f xð Þ defined by Eq. (1) is periodic. Consequently, it may represent a diffraction
grating with spatial period πd that transforms an incident light plane wave into a propagating
series of diffracted beams [11]. Such a grating transforms the wave Eq. (1) into the super-
oscillatory function Ψ x; 0ð Þ ¼ f x=dð Þ under the following condition for the wavenumber
K:n=d < K < gn=d [11]. The grating produces a novel kind of super-resolution, that is, the
subwavelength structure in the field with only propagating waves and without evanescent
waves [11].

In the framework of the precise classical wave model, it has been shown how superoscillations
can emerge and propagate into the far-field region [14]. The band-limited superoscillatory
wave (the “red light”) is propagating along the x axis of a unidimensional (1D) waveguide
with the a segment of the x axis (the “window”) which is opened and closed as the
superoscillation passes by releasing the light pulse into the two-dimensional (2D) space
corresponding to x, z > 0 [14]. The wave traveling in the positive x direction with a speed
c ¼ 1 can be described without loss of generality by the band limited function Eq. (1) with the
replacement of the argument x by x� tð Þ=n in expressions (1) and (4) [14]. This new function
f red x; tð Þ is superoscillatory near x ¼ t [14]. It represents a rigidly moving polychromatic packet
with associated frequencies ωm ¼ km [14]. The function f red x; tð Þcan be approximated by the
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to capture the superoscillations, the region near x ¼ 0 is selected with a Gaussian window of
width L which is opened and closed with a Gaussian switching function over an interval near
t ¼ 0 [14]. The window must faithfully transmit the red light including the superoscillaitons
[14].

For the sake of definiteness, we consider the time-dependent superoscillating signal of the type
Eq. (1) assuming that:

x ¼ ω0t
n

; g ¼ ω
ω0

(14)

Substituting relationships Eq. (14) into Eq. (1) we obtain:

f n ω0t;ω=ω0ð Þ ¼ cos
ω0t
n

� �
þ i

ω
ω0

sin
ω0t
n

� �� �n

(15)

Expression (15) is the signal band limited by the frequency ω0 with the superoscillation
manifested by a single peak of a width Δt ¼ ω�1 while the ratio ω=ω0 may be arbitrary larger
than unity. It should be noted that:

lim
n!∞

Ref n ω0t;ω=ω0ð Þ ¼ cos ωtð Þ (16)

For finite n and under the first condition of Eq. (11) which now takes the form ω0t <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= ω=ω0ð Þ2 � 1
h ir

, expression (16) reduces to the following approximation:

f n ω0t;ω=ω0ð Þ ≈ cos ωtð Þ (17)

Equation (17) shows that the band limited signal Eq. (15) oscillates with a frequency ω higher
than the band limit ω0 for the arbitrary long time depending on n.

3. The possible applications of superoscillations

Optical superoscillations can be used in the subwavelength imaging [15]. This super-resolution
technology is based on a superoscillatory lens (SOL) which represents a nanostructured mask
[15]. SOL illuminated with a coherent light source creates a focus at a distance which is larger
than the near-field of the mask [15]. Indeed, the ability to focus beyond the diffraction limit is
related to the superoscillation, since the band-limited functions in such a case oscillate faster
than their highest Fourier components [11]. Superoscillatory binary masks do not use evanes-
cent waves and focus at distances tens of wavelengths away from the mask [15]. The
superoscillation-based imaging has the following advantages with respect to other technolo-
gies: (1) it is non-invasive which allows to place the object at a substantial distance from SOL;
(2) it can operate at the wide range of wavelengths from X-rays to microwaves; and (3) the
resolution of the SOL can be improved by refining the design, increasing the size of the

Wavelet Theory and Its Applications200

superoscillatory mask and by increasing the dynamic range of the light detection [15]. SOL can
be also used for the creation of sub-diffraction-limit optical needles [16]. An optical needle
could be created by converting the central region of the SOL into an opaque area forming a
shadow, and changing the diameter of the blocking region without varying the rest of SOL
[16]. The possible applications of the sub-diffraction-limit optical needles are the far-field
super-resolution microscopy and nanofabrication [16].

The possible applications of superoscillations for data compressions have been discussed [8].
However, the superoscillations are unstable in a way that tiny perturbations of a band-limited
superoscillating function can induce very high-frequency components [8]. For this reason, the
practical use of the superoscillations in imperfect communication channels is difficult [8].

4. The fundamental properties of CWTand DWT

There exist different types of a wavelet transform: CWT, discrete wavelet transform (DWT) [6,
7, 17], multi-wavelets [17, 18], and complex wavelets [19]. We applied these types of wavelets
to the problems related to the signal processing in optical communication systems [20–23]. We
have found that CWT is the most appropriate for the analysis of superoscillations.

In this section, we consider some fundamental features of CWT. Unlike the Fourier transform
and STFT, the CWT is characterized by the time and frequency selectivity [6, 7]. It can localize
events both in time and in frequency in the entire time-frequency plane [6, 7]. That is why CWT
is unique mathematical tool for the investigation of the superoscillations where the time-
frequency analysis in different regions of the spectrum is necessary as it is mentioned earlier
[2, 6]:

The CWT W a; bð Þ of any square integrable function f tð Þ with respect to a wavelet ψ tð Þ is
defined as follows [7]:

W a; bð Þ �
ð∞

�∞
f tð Þ 1ffiffiffiffiffi

aj jp ψ∗ t� b
a

� �
dt (18)

Here a, b are real, the asterisk denotes complex conjugation, the energy signals f tð Þ,ψ tð Þ⊂ L2 Rð Þ,
L2 Rð Þ is the set of square integrable functions such that

Ð∞
�∞

ψ tð Þj j2dt < ∞. The real- or complex-

value continuous-time function ψ tð Þ is called the mother wavelet. It satisfies the following

condition that
Ð∞
�∞

ψ tð Þdt ¼ 0 [7].

CWT W a; bð Þ is a function of two variables: (1) the scale or dilation variable a determines the
amount of time scaling or dilation and (2) the translation or time shift variable b represents the
shift of ψa,0 tð Þ by an amount b along the time axis and indicates the location of the wavelet
window along it [6, 7]. The inverse scaling parameter 1=a is a measure of frequency [6].
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[15]. SOL illuminated with a coherent light source creates a focus at a distance which is larger
than the near-field of the mask [15]. Indeed, the ability to focus beyond the diffraction limit is
related to the superoscillation, since the band-limited functions in such a case oscillate faster
than their highest Fourier components [11]. Superoscillatory binary masks do not use evanes-
cent waves and focus at distances tens of wavelengths away from the mask [15]. The
superoscillation-based imaging has the following advantages with respect to other technolo-
gies: (1) it is non-invasive which allows to place the object at a substantial distance from SOL;
(2) it can operate at the wide range of wavelengths from X-rays to microwaves; and (3) the
resolution of the SOL can be improved by refining the design, increasing the size of the
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superoscillatory mask and by increasing the dynamic range of the light detection [15]. SOL can
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could be created by converting the central region of the SOL into an opaque area forming a
shadow, and changing the diameter of the blocking region without varying the rest of SOL
[16]. The possible applications of the sub-diffraction-limit optical needles are the far-field
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However, the superoscillations are unstable in a way that tiny perturbations of a band-limited
superoscillating function can induce very high-frequency components [8]. For this reason, the
practical use of the superoscillations in imperfect communication channels is difficult [8].
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In this section, we consider some fundamental features of CWT. Unlike the Fourier transform
and STFT, the CWT is characterized by the time and frequency selectivity [6, 7]. It can localize
events both in time and in frequency in the entire time-frequency plane [6, 7]. That is why CWT
is unique mathematical tool for the investigation of the superoscillations where the time-
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[2, 6]:

The CWT W a; bð Þ of any square integrable function f tð Þ with respect to a wavelet ψ tð Þ is
defined as follows [7]:

W a; bð Þ �
ð∞

�∞
f tð Þ 1ffiffiffiffiffi

aj jp ψ∗ t� b
a

� �
dt (18)

Here a, b are real, the asterisk denotes complex conjugation, the energy signals f tð Þ,ψ tð Þ⊂ L2 Rð Þ,
L2 Rð Þ is the set of square integrable functions such that

Ð∞
�∞

ψ tð Þj j2dt < ∞. The real- or complex-

value continuous-time function ψ tð Þ is called the mother wavelet. It satisfies the following

condition that
Ð∞
�∞

ψ tð Þdt ¼ 0 [7].

CWT W a; bð Þ is a function of two variables: (1) the scale or dilation variable a determines the
amount of time scaling or dilation and (2) the translation or time shift variable b represents the
shift of ψa,0 tð Þ by an amount b along the time axis and indicates the location of the wavelet
window along it [6, 7]. The inverse scaling parameter 1=a is a measure of frequency [6].
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Defining

ψa, b tð Þ ¼ 1ffiffiffi
a
p ψ

t� b
a

� �
(19)

and substituting expression (19) into Eq. (18) we obtain [7]:

W a; bð Þ �
ð∞

�∞
f tð Þψ∗

a,b tð Þdt (20)

The energy conservation law for the mother wavelet has the form for all values of a, b [7].

ð∞

�∞
ψa,b tð Þ
���

���
2
dt ¼

ð∞

�∞
ψ tð Þj j2dt (21)

Consider some typical mother wavelets [6, 7]. The Haar wavelet is a piecewise continuous
function. It has the form:

ψ tð Þ ¼
1, 0 ≤ t < 1=2
�1, 1=2 ≤ t < 1
0, otherwise

8><
>:

(22)

The Mexican hat wavelet is obtained by taking the second derivative of the negative Gaussian
function �exp �t2� �

=2 [7]. It is given by [7]:

ψ tð Þ ¼ 1� 2t2
� �

exp �t2� �
(23)

The time dependence of the Mexican hat wavelet is shown in Figure 1.

The Morlet wavelet represents a sinusoidal function modulated by a Gaussian function given
by [7]:

Figure 1. The Mexican hat wavelet.
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ψ tð Þ ¼ exp �t2� �
cos πt

ffiffiffiffiffiffiffi
2
ln2

r !
(24)

The time dependence of the Morlet wavelet is shown in Figure 2. It is a wavelet of an infinite
duration, but most of the energy in this wavelet is confined to a finite interval [7].

CWT can be used in pattern detection and classification [6, 7]. Indeed, taking into account the
definition of the inner product x tð Þ; y tð Þh i of two finite energy signals as:

x tð Þ; y tð Þh i ¼
ð∞

�∞
x tð Þy∗ tð Þdt (25)

one can say that CWT is a collection of the inner products of a signal f tð Þ and the translated

and dilated mother wavelets ψa, b tð Þ for all a, b: W a; bð Þ ¼ f tð Þ;ψa,b tð Þ
D E

[7]. CWT can be also

considered as the cross-correlation at lag b between f tð Þ and the mother wavelet dilated to scale
factor a [7]. Comparing the definition of the cross-correlation function:

Rx,y τð Þ � x tð Þ; y t� τð Þh i ¼
ð
x tð Þy∗ t� τð Þdt (26)

and CWT expression (20) we can write [7]:

W a; bð Þ ¼ f tð Þ;ψa,0 t� bð Þ
D E

¼ Rf ,ψa,0 bð Þ (27)

The CWT is characterized by the time selectivity or the so-called windowing effect because the
segment of f tð Þ influencing the value of W a; bð Þ for any a; bð Þ coincides with the interval over
which ψa, b tð Þ has the bulk of its energy [7]. The CWT frequency selectivity can be described by
its representation as a collection of linear, time-invariant filters with impulse responses which
are dilations of the mother wavelet reflected about the time axis [7]. Indeed, using the defini-
tion of the convolution of the input signal x tð Þ and the system impulse response h tð Þ:

Figure 2. The Morlet wavelet.
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2
ln2

r !
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The CWT is characterized by the time selectivity or the so-called windowing effect because the
segment of f tð Þ influencing the value of W a; bð Þ for any a; bð Þ coincides with the interval over
which ψa, b tð Þ has the bulk of its energy [7]. The CWT frequency selectivity can be described by
its representation as a collection of linear, time-invariant filters with impulse responses which
are dilations of the mother wavelet reflected about the time axis [7]. Indeed, using the defini-
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h tð Þ∗x tð Þ �
ð∞

�∞
h τð Þx t� τð Þdτ (28)

we can write for the CWT:

W a; bð Þ ¼ f bð Þ∗ψ∗
a,0 �bð Þ (29)

Consequently, for any given a, CWT W a; bð Þ is the output of a filter with the impulse response
ψ∗
a,0 �bð Þ and input f bð Þ [7]. There exists a continuum of filters characterized by the scale factor

a as a parameter [7]. We define the Fourier transform Ψ ωð Þ of the mother wavelet ψ tð Þ:

Ψ ωð Þ ¼ F ψ tð Þf g �
ð∞

�∞
ψ tð Þexp �iωtð Þdt (30)

Then, the corresponding Q factor is determined as Q ¼ ωc=Δω, where ωc is center frequency of
the Fourier transform Eq. (30) and Δω is the 3-dB bandwidth defined as the difference between

the two frequencies on either side of the peak at which Ψ ωð Þj j2 is exactly half its peak value

Ψ ωð Þj j2max [7]. The Q factor is invariant with respect to the wavelet dilation, since F ψ t=að Þf g ¼
aj jΨ aωð Þ. The center frequency ωc of Ψ ωð Þj j2 for any a is at 1= aj j times the center frequency of
the mother wavelet ψ tð Þ, and its 3-dB bandwidth is 1= aj j times the 3-dB bandwidth of the
mother wavelet ψ tð Þ which gives the same value of the Q factor as the one mentioned above
[7]. Hence the continuum of filters mentioned above is a set of constant Q bandpass filters
which results in the frequency selectivity of the CWT [7]. For large values of a, the
corresponding filter has a frequency response with a low center frequency ω0, and the
corresponding CWT W a; bð Þ captures the frequency content of the signal f tð Þ around this low
frequency [7]. The bandpass filter shifts to higher frequencies region with the decrease of a in
such a way that the CWT W a; bð Þ at small scales contains information about f tð Þ at the higher
end of its frequency spectrum [7]. The time and frequency resolution of the CWT W a; bð Þ are
based on the duration and bandwidth of the mother wavelet ψ tð Þ, respectively. The first
moments tc and ωc of the mother wavelet ψ tð Þ and its Fourier transform Ψ ωð Þ, respectively,
are given by [7]:

tc �

Ð∞
�∞

t ψ tð Þj j2dt
Ð∞
�∞

ψ tð Þj j2dt
;ωc ¼

Ð∞
�∞

ω Ψ ωð Þj j2dω
Ð∞
�∞

Ψ ωð Þj j2dω
(31)

Expressions (31) provide the location of the center of ψ tð Þ and Ψ ωð Þ along the time and
frequency axes, respectively [6, 7]. A measure of the wavelet duration Δt, or the root mean
square (RMS) duration, and the RMS bandwidth of the wavelet Δω are given by, [6, 7],
respectively:
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Δt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ∞
�∞

t� tcð Þ2 ψ tð Þj j2dt
Ð∞
�∞

ψ tð Þj j2dt

vuuuuut ;Δω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ∞
�∞

ω� ωcð Þ2 Ψ ωð Þj j2dω
Ð∞
�∞

Ψ ωð Þj j2dω

vuuuuut (32)

Expressions (31) and (32) can be used only for the mother wavelet ψ tð Þ and its Fourier
transform Ψ ωð Þ rapidly decaying in time and frequency, respectively, since the integrals in
the numerators of these expressions should have finite values [7]. For the RMS duration Δtψ
and bandwidth Δωψ of the mother wavelet ψ tð Þ, the RMS duration Δtψ að Þ and bandwidth
Δωψ að Þ of its dilation ψa,0 tð Þ are given by [7]:

Δtψ að Þ � aj jΔtψ;Δωψ að Þ ¼ Δωψ= aj j (33)

Combining expressions (33) we obtain:

Δtψ að ÞΔωψ að Þ ¼ ΔtψΔωψ ¼ cψ ¼ const (34)

It has been shown that the smallest time-bandwidth product is equal to 1/2., and condition
Eq. (34) takes the form [6, 7]:

Δtψ að ÞΔωψ að Þ ≥ 1
2

(35)

Equation (34) shows that the product of the wavelet duration and bandwidth is invariant to
dilation. For small values of a, the CWT is characterized by good time resolution and poor
frequency resolution because the RMS duration of the dilated wavelet is small while the RMS
bandwidth of the dilated wavelet is large [7]. For large values of a, the time resolution of the
CWT is poor, and its frequency resolution is good. The CWT provides better frequency
resolution for the low-frequency region of the spectrum and poorer frequency resolution for
the high-frequency region of the spectrum [7]. It can be shown that the translation parameter b
does not influence the mother wavelet duration and bandwidth [7].

The inverse CWT can be evaluated under the following sufficient condition for the mother
wavelet Fourier transform Ψ ωð Þ [7]:

ð∞

�∞

Ψ ωð Þj j2
ωj j dω � C; 0 < C < ∞ (36)

Then the inverse CWT has the form [7]:

f tð Þ ¼ 1
C

ð∞

a¼�∞

ð∞

b¼�∞

1

aj j2 W a; bð Þψa,b tð Þdadb (37)
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Then, the corresponding Q factor is determined as Q ¼ ωc=Δω, where ωc is center frequency of
the Fourier transform Eq. (30) and Δω is the 3-dB bandwidth defined as the difference between

the two frequencies on either side of the peak at which Ψ ωð Þj j2 is exactly half its peak value

Ψ ωð Þj j2max [7]. The Q factor is invariant with respect to the wavelet dilation, since F ψ t=að Þf g ¼
aj jΨ aωð Þ. The center frequency ωc of Ψ ωð Þj j2 for any a is at 1= aj j times the center frequency of
the mother wavelet ψ tð Þ, and its 3-dB bandwidth is 1= aj j times the 3-dB bandwidth of the
mother wavelet ψ tð Þ which gives the same value of the Q factor as the one mentioned above
[7]. Hence the continuum of filters mentioned above is a set of constant Q bandpass filters
which results in the frequency selectivity of the CWT [7]. For large values of a, the
corresponding filter has a frequency response with a low center frequency ω0, and the
corresponding CWT W a; bð Þ captures the frequency content of the signal f tð Þ around this low
frequency [7]. The bandpass filter shifts to higher frequencies region with the decrease of a in
such a way that the CWT W a; bð Þ at small scales contains information about f tð Þ at the higher
end of its frequency spectrum [7]. The time and frequency resolution of the CWT W a; bð Þ are
based on the duration and bandwidth of the mother wavelet ψ tð Þ, respectively. The first
moments tc and ωc of the mother wavelet ψ tð Þ and its Fourier transform Ψ ωð Þ, respectively,
are given by [7]:

tc �

Ð∞
�∞

t ψ tð Þj j2dt
Ð∞
�∞

ψ tð Þj j2dt
;ωc ¼

Ð∞
�∞

ω Ψ ωð Þj j2dω
Ð∞
�∞

Ψ ωð Þj j2dω
(31)

Expressions (31) provide the location of the center of ψ tð Þ and Ψ ωð Þ along the time and
frequency axes, respectively [6, 7]. A measure of the wavelet duration Δt, or the root mean
square (RMS) duration, and the RMS bandwidth of the wavelet Δω are given by, [6, 7],
respectively:
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Δt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ∞
�∞

t� tcð Þ2 ψ tð Þj j2dt
Ð∞
�∞

ψ tð Þj j2dt

vuuuuut ;Δω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ∞
�∞

ω� ωcð Þ2 Ψ ωð Þj j2dω
Ð∞
�∞

Ψ ωð Þj j2dω

vuuuuut (32)
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It has been shown that the smallest time-bandwidth product is equal to 1/2., and condition
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2

(35)

Equation (34) shows that the product of the wavelet duration and bandwidth is invariant to
dilation. For small values of a, the CWT is characterized by good time resolution and poor
frequency resolution because the RMS duration of the dilated wavelet is small while the RMS
bandwidth of the dilated wavelet is large [7]. For large values of a, the time resolution of the
CWT is poor, and its frequency resolution is good. The CWT provides better frequency
resolution for the low-frequency region of the spectrum and poorer frequency resolution for
the high-frequency region of the spectrum [7]. It can be shown that the translation parameter b
does not influence the mother wavelet duration and bandwidth [7].

The inverse CWT can be evaluated under the following sufficient condition for the mother
wavelet Fourier transform Ψ ωð Þ [7]:

ð∞

�∞

Ψ ωð Þj j2
ωj j dω � C; 0 < C < ∞ (36)

Then the inverse CWT has the form [7]:
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C
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1

aj j2 W a; bð Þψa,b tð Þdadb (37)
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The variable time-frequency resolution is an important property of the CWTwhich permits to
use CWT for the analysis of the signals consisting of the slowly varying low-frequency com-
ponents and the rapidly varying high-frequency components [7]. For this reason, the CWT is a
unique tool for the study of the superoscillating signals described in Section 2.

Suppose that the dilation parameter a and the translation parameter b are discrete and take a
form a ¼ 2k, b ¼ 2kl, where k and l are integers [6, 7, 17]. Then, Eq. (37) takes the form [7]:

f tð Þ ¼
Xk¼∞

k¼�∞

Xl¼∞

l¼�∞
d k; lð Þ2�k=2ψ 2�kt� l

� �
(38)

The two-dimensional sequence d k; lð Þ is defined as DWT of f tð Þ [7]. The values of DWT d k; lð Þ
are related to the values of CWTW a; bð Þ Eq. (18) at a ¼ 2k, b ¼ 2kl [7]. Then DWTWkl a; bð Þ takes
the form [6, 7]:

Wkl a; bð Þ ¼
ð∞

�∞
f tð Þ 1

2k=2
ψ∗ 2�kt� l
� �

dt (39)

Comparison of CWTand DWTshows that the signal f tð Þ in the both cases is expressed in terms
of dilations and translations of a single mother wavelet [6]. DWT is used in the multiresolution
analysis (MRA) which is based on a hierarchy of approximations to functions in N various
subspaces WN�1,WN�2,…,W1 of a linear vector space VN ¼WN�1 ⊕WN�2 ⊕ :…,W1 ⊕V1 [6].
In general case, the wavelet ψ tð Þ providing the DWT corresponding to the MRA must satisfy
the following conditions [7]:

ð∞

�∞
ψ tð Þdt ¼ 0;

ð∞

�∞
ψ tð Þj j2dt ¼ 1; ψ tð Þ;ψ t� nð Þh i ¼ δ nð Þ; ψ tð Þ;ϕ t� nð Þ� � ¼ 0 (40)

Here δ nð Þ ¼ 1, n ¼ 0 and δ nð Þ ¼ 0, n 6¼ 0 and ϕ tð Þ is the scaling function ϕ tð Þ satisfying the
following conditions [7]:

ð∞

�∞
ϕ tð Þdt ¼ 1;

ð∞

�∞
ϕ tð Þ�� ��2dt ¼ 1; ϕ tð Þ;ϕ t� nð Þ� � ¼ δ nð Þ (41)

The scaling function ϕ tð Þ and the wavelet function ψ tð Þ are defined by the following equations,
respectively [7]:

ϕ tð Þ ¼
X∞
n¼�∞

c nð Þϕ 2t� nð Þ;ψ tð Þ ¼
X∞
n¼�∞

d nð Þϕ 2t� nð Þ, n ¼ 0, � 1, � 2,… (42)

where c nð Þ, d nð Þ are sequences of scalars. It is seen that the scaling function ϕ tð Þ is determined
by its own dyadic dilation and translation. For this reason, the equation for ϕ tð Þ is called a
dilation Equation [6, 7, 17]. It can be shown that the DWT is equivalent to filtering a signal by a
band of filters with nonoverlapping bandwidths differing by a factor of 2 [17].
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5. The applications of wavelet transforms

The different types of WT are widely used in different areas of mathematics and engineering
[17]. The number of scientific books and articles concerning wavelet transforms (WT) applica-
tions is enormous and hardly observable. In this section, we briefly review some typical
applications of wavelet transforms in optical communication systems and signal processing.
Wavelet methods may complement the Fourier techniques due to their following specific
features mentioned above [17]. Wavelets are functions of two parameters which represent the
dilation and translation while the Fourier transform is characterized by the dilation only. In the
case of wavelets, the width of the window through which the signal is observed is varying as a
function of location. For a wavelet method, the window function in the time-frequency plane is
nonuniform being a function of both time and frequency.

Wavelet transforms as a mathematical tool can be successfully used in the electromagnetic
problems and signal processing applications [6, 7, 17–24]. Wavelet based signal processing
represents a useful technique for the compression of certain classes of data demonstrating
isolated band-limited properties [17]. Wavelets may be used as basis functions for the solution
of Maxwell’s equations in the integral or differential form [17]. Signal denoising process can be
implemented by using wavelets with a smaller computational complexity as compared to the
Fourier technique [17].

Wavelets can be successfully applied to signal and image processing including noise reduction,
signal and image compression, signature identification, target detection, and interference
suppression [6].

Wavelet packet transform (WPT) can be used in optical communications [20, 24]. WPTs are the
generalization of wavelet transforms where the orthogonal basis functions are wavelet packets
instead of ordinary wavelets [24]. Discrete WPT (DWPT) is used in the coherent optical
orthogonal frequency division multiplexing (CO-OFDM) systems [24]. The detailed analysis
of CO-OFDM communication systems can be found in [20, 24] and references therein. In a
WPT-OFDM system, each channel occupies a wavelet packet, that is, a subcarrier in wavelet
domain [24]. Inverse DWPT (IDWPT) is used at the transmitter which reconstructs the time
domain signal from wavelet packets [24]. DWPTare used at the receiver in order to decompose
the time domain signal into different wavelet packets by means of successive low-pass and
high-pass filtering in the time domain [24].

We proposed a novel hierarchical architecture of the 1Tb=s transmission system based on
DWPT-OFDM in order to reduce the computational complexity of the digital signal processing
(DSP) algorithms [20]. We separated the low bit rate and high bit rate signal channels in such a
way that the low bit rate signals are processed in the electrical domain, while the high bit rate
signals are processed optically [20]. We have shown theoretically that the performance of the
WPT based CO-OFDM can be significantly improved by increasing the spectral efficiency (SE)
of the system and mitigating the channel chromatic dispersion [20].

Recently, some novel applications of different types of wavelet transforms have been reported.
CWT can be applied for the improvement of the time-delay estimation (TDE) method in the
different-wavelength based inteferometric vibration sensor in a fiber link [25].
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� �
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analysis (MRA) which is based on a hierarchy of approximations to functions in N various
subspaces WN�1,WN�2,…,W1 of a linear vector space VN ¼WN�1 ⊕WN�2 ⊕ :…,W1 ⊕V1 [6].
In general case, the wavelet ψ tð Þ providing the DWT corresponding to the MRA must satisfy
the following conditions [7]:

ð∞

�∞
ψ tð Þdt ¼ 0;

ð∞

�∞
ψ tð Þj j2dt ¼ 1; ψ tð Þ;ψ t� nð Þh i ¼ δ nð Þ; ψ tð Þ;ϕ t� nð Þ� � ¼ 0 (40)

Here δ nð Þ ¼ 1, n ¼ 0 and δ nð Þ ¼ 0, n 6¼ 0 and ϕ tð Þ is the scaling function ϕ tð Þ satisfying the
following conditions [7]:

ð∞

�∞
ϕ tð Þdt ¼ 1;

ð∞

�∞
ϕ tð Þ�� ��2dt ¼ 1; ϕ tð Þ;ϕ t� nð Þ� � ¼ δ nð Þ (41)

The scaling function ϕ tð Þ and the wavelet function ψ tð Þ are defined by the following equations,
respectively [7]:

ϕ tð Þ ¼
X∞
n¼�∞

c nð Þϕ 2t� nð Þ;ψ tð Þ ¼
X∞
n¼�∞

d nð Þϕ 2t� nð Þ, n ¼ 0, � 1, � 2,… (42)

where c nð Þ, d nð Þ are sequences of scalars. It is seen that the scaling function ϕ tð Þ is determined
by its own dyadic dilation and translation. For this reason, the equation for ϕ tð Þ is called a
dilation Equation [6, 7, 17]. It can be shown that the DWT is equivalent to filtering a signal by a
band of filters with nonoverlapping bandwidths differing by a factor of 2 [17].
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5. The applications of wavelet transforms

The different types of WT are widely used in different areas of mathematics and engineering
[17]. The number of scientific books and articles concerning wavelet transforms (WT) applica-
tions is enormous and hardly observable. In this section, we briefly review some typical
applications of wavelet transforms in optical communication systems and signal processing.
Wavelet methods may complement the Fourier techniques due to their following specific
features mentioned above [17]. Wavelets are functions of two parameters which represent the
dilation and translation while the Fourier transform is characterized by the dilation only. In the
case of wavelets, the width of the window through which the signal is observed is varying as a
function of location. For a wavelet method, the window function in the time-frequency plane is
nonuniform being a function of both time and frequency.

Wavelet transforms as a mathematical tool can be successfully used in the electromagnetic
problems and signal processing applications [6, 7, 17–24]. Wavelet based signal processing
represents a useful technique for the compression of certain classes of data demonstrating
isolated band-limited properties [17]. Wavelets may be used as basis functions for the solution
of Maxwell’s equations in the integral or differential form [17]. Signal denoising process can be
implemented by using wavelets with a smaller computational complexity as compared to the
Fourier technique [17].

Wavelets can be successfully applied to signal and image processing including noise reduction,
signal and image compression, signature identification, target detection, and interference
suppression [6].

Wavelet packet transform (WPT) can be used in optical communications [20, 24]. WPTs are the
generalization of wavelet transforms where the orthogonal basis functions are wavelet packets
instead of ordinary wavelets [24]. Discrete WPT (DWPT) is used in the coherent optical
orthogonal frequency division multiplexing (CO-OFDM) systems [24]. The detailed analysis
of CO-OFDM communication systems can be found in [20, 24] and references therein. In a
WPT-OFDM system, each channel occupies a wavelet packet, that is, a subcarrier in wavelet
domain [24]. Inverse DWPT (IDWPT) is used at the transmitter which reconstructs the time
domain signal from wavelet packets [24]. DWPTare used at the receiver in order to decompose
the time domain signal into different wavelet packets by means of successive low-pass and
high-pass filtering in the time domain [24].

We proposed a novel hierarchical architecture of the 1Tb=s transmission system based on
DWPT-OFDM in order to reduce the computational complexity of the digital signal processing
(DSP) algorithms [20]. We separated the low bit rate and high bit rate signal channels in such a
way that the low bit rate signals are processed in the electrical domain, while the high bit rate
signals are processed optically [20]. We have shown theoretically that the performance of the
WPT based CO-OFDM can be significantly improved by increasing the spectral efficiency (SE)
of the system and mitigating the channel chromatic dispersion [20].

Recently, some novel applications of different types of wavelet transforms have been reported.
CWT can be applied for the improvement of the time-delay estimation (TDE) method in the
different-wavelength based inteferometric vibration sensor in a fiber link [25].
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The maximal overlap DWPT (MODWPT) has been used for the real-time estimation of root
mean square (RMS) power value, active power, reactive power, apparent power, and power
factor in power electronic systems [26].

The time-reversal (TR) technique is used for the detection and localization of objects in micro-
wave imaging [27]. TR technique is based on an assumption that in a lossless medium, for
every wave component propagating away from a source point along a certain path there exists
a corresponding time-reversed wave propagating along the same path back to the original
point of the source [27]. This assumption is caused by the time invariance of the Maxwell’s
Equations [27]. TR can achieve super-resolution by using the multipath propagation [27].
However, TR in real media is deteriorated due to the dispersion and losses [27]. A compensa-
tion method based on CWT has been proposed which can overcome both the dispersion and
attenuation of the electromagnetic wave propagating in a dispersive and lossy medium [27]. In
this method, the adjustable-length windows are used in such a way that the long-time win-
dows and short-time windows are applied at low and high frequencies, respectively [27].
Wavelets depend on both the time and frequency which results in the signal decomposition
into different time and frequency components. The dispersion and attenuation of these com-
ponents can be compensated by different filters. Unlike the short-time Fourier transform
(STFT) method, the proposed CWT method can be applied in real-life scenarios, and its
resolution is about three times higher than in other methods [27].

Online monitoring and control of power grid require the accurate and fast estimation of har-
monics [28]. The WT has been widely used in the estimation of time-varying harmonics [28]. In
particular, undecimated WPT (UWPT) is one of multiresolution techniques characterized by
redundancy and time invariance which can be implemented by a set of filter banks [28]. Unlike
DWPT, the UWPT does not perform downsampling on wavelet coefficients at each decomposi-
tion level preserving time-invariant property which permits the accurate estimation of the time-
varying harmonics in one cycle of the fundamental frequency [28]. The comparison of the
simulation results obtained by using the UWPT based method and the experimental results
shows that the UWPTalgorithm has better estimation accuracy for different types of signals [28].

We for the first time to our best knowledge applied CWT to the theoretical investigation of
superoscillations which requires the dynamic time-frequency analysis of the strongly localized
signals. CWT appeared to be a powerful mathematical tool for the identification of the
superoscillation characteristic features.

6. The simulation results and discussion

We theoretically investigated the superoscillations of the signal defined by the real part of
expression (15):

Ref n ω0t;ω=ω0ð Þ ¼ Re cos
ω0t
n

� �
þ i

ω
ω0

sin
ω0t
n

� �� �n

(43)

The signal Eq. (38) is band limited by the maximum frequency ω0=2π as it was mentioned
above. Without the loss of generality, we have chosen the frequency ω0=2π ¼ 100KHz, n ¼ 4
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and n ¼ 5. We used the Mexican hat mother wavelet Eq. (23) and the Morlet mother wavelet
Eq. (24), since their oscillating temporal behavior is similar to the behavior of the
superoscillating signal Eq. (38).

We investigated the scalogram of the energy contours for the spectral component of the signal
Eq. (38) at the highest frequency f ω0tð Þ ¼ cos ω0tð Þ and used the results for the analysis of the
superoscillation features.

The behavior of the component with the frequency ω0=2π in the time domain (lower box) and
its scalogram (the upper box) are shown in Figure 3. The pseudo-frequency ωa=2π shown in
the scalogarm is defined as follows:

ωa=2π ¼ ωc=2πa (44)

where ωc is the mother wavelet central frequency defined by the second expression (31) [6, 7].
It is seen from Figure 3 that the homogeneous scalogram in the time-pseudo-frequency plane
is strictly periodic. The maximum energy at the scalogram corresponds to the pseudo-
frequency ωa=2π ≈ 30KHz.

The spectra, the temporal behavior, and the scalograms of the signal Eq. (38) for n ¼ 4 and
n ¼ 5 are presented in Figures 4–7, respectively. The spectra shown in Figures 4 and 6 are
obtained by using the Fourier transform. For this reason, the superoscillations are absent in the
spectra shown in Figures 4 and 6, and the highest frequency corresponding to the maximum
spectral amplitude is �100KHz in the both cases.

The scalograms shown in the upper box of Figures 5 and 7 are obtained by evaluating the
CWT of the signal Eq. (38) with the Mexican hat mother wavelet Eq. (23).

The superoscillations with the time duration of about ΔT n ¼ 4ð Þ ¼ 8μs can be identified in
the lower box of Figure 5. These superoscillations correspond to the frequency of about
ω4=2π ¼ 1=ΔT n ¼ 4ð Þ ¼ 125KHz > ω0=2π ¼ 100KHz. The energy contours of these super-
oscillations in the time-pseudo-frequency plane shown in the upper box of Figure 5 correspond
to the pseudo-frequency of about ωa4=2π ¼ ω4=2πa ≈ 50� 60ð ÞKHz > ωa=2π ≈ 30KHz. Their

Figure 3. The time dependence (lower box) and scalogram (upper box) of the monochromatic sinusoidal signal
f ω0tð Þ ¼ cos ω0tð Þ, ω0=2π ¼ 100KHz.
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The time-reversal (TR) technique is used for the detection and localization of objects in micro-
wave imaging [27]. TR technique is based on an assumption that in a lossless medium, for
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ponents can be compensated by different filters. Unlike the short-time Fourier transform
(STFT) method, the proposed CWT method can be applied in real-life scenarios, and its
resolution is about three times higher than in other methods [27].

Online monitoring and control of power grid require the accurate and fast estimation of har-
monics [28]. The WT has been widely used in the estimation of time-varying harmonics [28]. In
particular, undecimated WPT (UWPT) is one of multiresolution techniques characterized by
redundancy and time invariance which can be implemented by a set of filter banks [28]. Unlike
DWPT, the UWPT does not perform downsampling on wavelet coefficients at each decomposi-
tion level preserving time-invariant property which permits the accurate estimation of the time-
varying harmonics in one cycle of the fundamental frequency [28]. The comparison of the
simulation results obtained by using the UWPT based method and the experimental results
shows that the UWPTalgorithm has better estimation accuracy for different types of signals [28].

We for the first time to our best knowledge applied CWT to the theoretical investigation of
superoscillations which requires the dynamic time-frequency analysis of the strongly localized
signals. CWT appeared to be a powerful mathematical tool for the identification of the
superoscillation characteristic features.
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The signal Eq. (38) is band limited by the maximum frequency ω0=2π as it was mentioned
above. Without the loss of generality, we have chosen the frequency ω0=2π ¼ 100KHz, n ¼ 4

Wavelet Theory and Its Applications208

and n ¼ 5. We used the Mexican hat mother wavelet Eq. (23) and the Morlet mother wavelet
Eq. (24), since their oscillating temporal behavior is similar to the behavior of the
superoscillating signal Eq. (38).

We investigated the scalogram of the energy contours for the spectral component of the signal
Eq. (38) at the highest frequency f ω0tð Þ ¼ cos ω0tð Þ and used the results for the analysis of the
superoscillation features.

The behavior of the component with the frequency ω0=2π in the time domain (lower box) and
its scalogram (the upper box) are shown in Figure 3. The pseudo-frequency ωa=2π shown in
the scalogarm is defined as follows:

ωa=2π ¼ ωc=2πa (44)

where ωc is the mother wavelet central frequency defined by the second expression (31) [6, 7].
It is seen from Figure 3 that the homogeneous scalogram in the time-pseudo-frequency plane
is strictly periodic. The maximum energy at the scalogram corresponds to the pseudo-
frequency ωa=2π ≈ 30KHz.

The spectra, the temporal behavior, and the scalograms of the signal Eq. (38) for n ¼ 4 and
n ¼ 5 are presented in Figures 4–7, respectively. The spectra shown in Figures 4 and 6 are
obtained by using the Fourier transform. For this reason, the superoscillations are absent in the
spectra shown in Figures 4 and 6, and the highest frequency corresponding to the maximum
spectral amplitude is �100KHz in the both cases.

The scalograms shown in the upper box of Figures 5 and 7 are obtained by evaluating the
CWT of the signal Eq. (38) with the Mexican hat mother wavelet Eq. (23).

The superoscillations with the time duration of about ΔT n ¼ 4ð Þ ¼ 8μs can be identified in
the lower box of Figure 5. These superoscillations correspond to the frequency of about
ω4=2π ¼ 1=ΔT n ¼ 4ð Þ ¼ 125KHz > ω0=2π ¼ 100KHz. The energy contours of these super-
oscillations in the time-pseudo-frequency plane shown in the upper box of Figure 5 correspond
to the pseudo-frequency of about ωa4=2π ¼ ω4=2πa ≈ 50� 60ð ÞKHz > ωa=2π ≈ 30KHz. Their

Figure 3. The time dependence (lower box) and scalogram (upper box) of the monochromatic sinusoidal signal
f ω0tð Þ ¼ cos ω0tð Þ, ω0=2π ¼ 100KHz.
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maxima are strongly manifested at the time intervals with the center localized near t ¼ 0, � 20μs
and the pseudo-frequencies higher than the ones corresponding to the highest pseudo-frequency
shown in the upper box of Figure 3.

Figure 4. The spectrum of the signal Ref n ω0t;ω=ω0ð Þ for ω0=2π ¼ 100KHz, n ¼ 4.

Figure 5. The time dependence (lower box) and scalogram (upper box) of the superoscillating signal Ref n ω0t;ω=ω0ð Þ,
ω0=2π ¼ 100KHz, n ¼ 4, the Mexican hat mother wavelet.

Figure 6. The spectrum of the signal Ref n ω0t;ω=ω0ð Þ for ω0=2π ¼ 100KHz, n ¼ 5.
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It is seen from the lower box of Figure 7 that the superoscillations with the time duration of about
ΔT n ¼ 5ð Þ ≈ 7:2μs < ΔT n ¼ 4ð Þ are identified for n ¼ 5. They have the frequency ω5=2π ¼ 1=ΔT
n ¼ 5ð Þ ≈ 139KHz > ω4=2π ¼ 125KHz.

The corresponding energy contours are identified in the scalogram (upper box of Figure 7) in
the time intervals localized near t ¼ 0, � 25μs. The maxima of the corresponding energy
contours are localized at the pseudo frequency of about ωa5=2π ¼ ω5=2πa ≈ 100� 130ð ÞKHz
> ωa=2π ≈ 30KHz. Evidently, we can identify the higher frequency superoscillations by increas-
ing n and using CWT.

The scalograms for different mother wavelets are also different. In order to compare the CWT
results consider the application of the Morlet mother wavelet Eq. (24) for the superoscillating
signal Ref n ω0t;ω=ω0ð Þ, ω0=2π ¼ 100KHz, n ¼ 5.

Comparison of Figures 7 and 8 shows that the spectral features of superoscillations are pronounced
at the higher pseudo-frequencies of about 250� 300ð ÞGHz, because the central frequencies of the

Figure 7. The time dependence (lower box) and scalogram (upper box) of the superoscillating signal Ref n ω0t;ω=ω0ð Þ,
ω0=2π ¼ 100KHz, n ¼ 5, the Mexican hat mother wavelet.

Figure 8. The time dependence (lower box) and scalogram (upper box) of the superoscillating signal Ref n ω0t;ω=ω0ð Þ,
ω0=2π ¼ 100KHz, n ¼ 5, the Morlet mother wavelet.
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Mexican hat and Morlet mother wavelets are different. The real superoscillation frequencies can be
obtained by pseudo-frequency multiplication by a scaling parameter a according to Eq. (39).

The theoretical results of the wavelet analysis clearly show that the superoscillations with the
local frequency larger that the band limit of the signal can be identified by using CWT.

7. Conclusions

We for the first time to our best knowledge applied CWT for the theoretical analysis of
superoscillations in the time and frequency domain. We discussed the basic properties of the
superoscillating signals containing the components with the frequencies larger than the max-
imum frequency in the signal spectrum. We also considered some possible applications of
superoscillations in optics and signal processing. The superoscillating components are
extremely weak and short in the time domain. They cannot be identified by the Fourier
transform since they require the time-frequency analysis. We discussed the fundamental prop-
erties of CWT and DWT and their typical applications. The CWT is a unique tool for the
superoscillation studies because it provides the localization of the signal both in time and in
the frequency domain. We used the Mexican hat and the Morlet mother wavelets for the CWT
of the sinusoidal superoscillating signal because these mother wavelets are similar to the signal
oscillations. The theoretical results clearly show that the superoscillation frequency, time dura-
tion, and energy contours can be identified by using the CWT of the corresponding signal.
Generally, CWTwith different mother wavelets can be used for the analysis of superoscillating
signals with different structures.
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Abstract

Lakes Shinji and Nakaumi form a coupled brackish lake system on the Japan Sea coast of
Japan, and seawater frequently intrudes into these lakes. The study analyzed the influence
of river discharge, tide level, and meteorological forcing on seawater flux at Nakaura
Watergate. Continuous wavelet transform (CWT), wavelet coherence (WTC), cross-
wavelet transform (XWT), and partial wavelet coherence (PWC) were used to analyze
seawater intrusion. CWT reveals the characteristics of seawater flux, river discharge, tide
level, and meteorological forcing. WTC and XWT showed the correlation between forcing
variables and seawater flux. PWC analyzed the impact of river discharge, tide level, and
meteorological forcing variables on seawater flux after controlling the effect of all other
forcing variables. The results showed that tide level has an impact on seawater flux over
0.5-day and 1-day cycle throughout the analysis period, suggesting that astronomical
tides play an important role in the salinity intrusion processes. The river discharge char-
acteristics and its influence on seawater flux were clearly revealed especially during high
river flows. Sometimes, atmospheric pressure and wind velocity affect tide level, thereby
driving salinity transport. The study reveals the power of wavelet analysis in examining
nonlinear time series such as salinity intrusion processes.

Keywords: seawater flux, coastal lakes, wavelet analysis, wavelet coherence

1. Introduction

The wavelet transform has been used for process understanding since the early 1980s. It
originated in geophysics and was significantly developed, both theoretically and application-
oriented, in the signal processing and mathematics community [1]. Wavelets enable linear and
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optimal extraction of information from a time series of any length [2]. The continuous wavelet
transform (CWT) provides redundant information by mapping a time series into a function of
time and frequency. The discrete wavelet transform (DWT) computes the transform for dis-
crete values for time and frequency [3]. Hence, DWT is simple, easy to implement, and has low
computational requirements. CWT requires a high computational time; however, it allows a
larger freedom in wavelets selection than DWT. Redundant information in pictures from the
CWT makes it easier to interpret results from the analysis of dynamic time series data. For an
analysis where the main purpose is to reveal patterns or hidden information and data com-
pression is not of concern, then redundancy provided by CWT may be useful [3]. Generally,
CWTs are useful for dynamical analyses, while DWTs are better for information compression
[2, 3].

This study utilized the CWT rather than DWT. The CWT may use an arbitrary number of
daughter wavelets built from mother wavelet to match salinity oscillation periods, as needed for
the optimal extraction of information concerning astronomical and meteorological forcing of the
salinity intrusion. The daughter wavelets will be complete but not orthogonal. A DWT can be
complete and orthogonal, given that it is built from functions with geometrically spaced periods;
however, it may not have frequency flexibility necessary for salinity intrusion analysis [2].

Various studies have used wavelet analysis to analyze nonstationary time series water quality,
meteorological, and hydrological data. Torrence and Compo provided a practical guide to
wavelet analysis and also analyzed time series of the El Niño-Southern Oscillation (ENSO)
[4]. Liu et al. ratified the bias problem in the estimation of the wavelet power spectrum and
applied wavelet analysis to Niño-3 SST data [5]. Wavelet analysis was also used to study
water-quality parameters [6, 7]. Zhang et al. [8], Sovi et al. [9], and Somoza et al. [10] used
wavelet analysis to characterize water level variation. A number of studies have analyzed tidal
variation and its influence on rivers using wavelet analysis [2, 11–13]. Ideião et al. studied the
variability of the total monthly rainfall with the aid of CWT [4, 14]. The cross-wavelet trans-
form (XWT) and wavelet coherence (WTC) techniques were used to analyze geophysical time
series, for example, the effects of tidal range and river discharge on the salinity intrusion
[15, 16], the impacts of Arctic Oscillation index and ENSO on the Baltic sea ice [17, 18],
the relative humidity, and the shortwave radiation dataset [19]. Partial wavelet coherence
(PWC) and multiple wavelet coherence (MWC) were used to study the impact of ENSO on
the variability of tropical cyclones [20]. Wavelet analysis has also been applied in economics
field [3, 21].

This study used CWT to analyze the period characteristics of tide level, river discharge,
meteorological forcing variables, and seawater flux. It also quantified the relationships
between river discharge, tide and meteorological forcing variables, and salinity intrusion,
using WTC, XWT, and PWC. Several studies examined the effects of river discharge, tidal
range, and meteorological forcing on salinity intrusion [15, 16]. Meteorologically induced sea
surface variation (MISSV) and large periodic river discharge are considered to be effective
water exchange mechanism between Lakes Nakaumi and Shinji, and the Japan Sea [22].
Though tidal amplitude on the Japan Sea is small, astronomical tides appear to be an effective
water exchange mechanism [16]. The study of the influence of external forces on salinity
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intrusion is difficult; the same applies to the development and application of seawater intru-
sion countermeasures. However, understanding the dynamic characteristics of forcing mecha-
nisms and their influence on seawater intrusion enable the development and implementation
of appropriate mitigation measures, for example, the regulation of river flow or the operation
of flood control gates.

The previous wavelet analysis of salinity intrusion in the Sakai Channel was studied for one
summer season [16]. Since salinity intrusion varies with season and time, the assessment of its
dynamics requires a long-term analysis. Therefore, in order to understand the nonlinear
characteristics of salinity intrusion in Sakai Channel in other seasons, this study conducted
long-term wavelet analysis.

2. Materials and methods

2.1. Study area

Lakes Shinji and Nakaumi form a coupled brackish lake system in the western part of Japan
(Figure 1). Lake Shinji has an average depth of 4.5 m, a surface area of 80 km2, and a volume of
0.366 km3. Lake Nakaumi has an average depth of 5.4 m, a surface area of 86.2 km2, and a
volume of 0.47 km3. The Ohashi River (7.0 km long) connects the two lakes and the Sakai
Channel (7.5 km long) connects Lake Nakaumi to the Japan Sea. The Hii River at the west-end
of Lake Shinji supplies the lake system with most of its fresh water. Lake Shinji is a mesohaline
lake with an average salinity between 1 and 6 PSU. Lake Nakaumi has a strongly differenti-
ated two-layer system; the salinity of the surface water is 14–20 PSU and that of the bottom
layer is 25–30 PSU. Hence, these brackish lakes are stably stratified due to salinity (density)
differences, and density gradients have a large impact on water movement in this system [23].

Figure 1. Location of Lakes Shinji and Nakaumi, and Nakaura Watergate monitoring station (insert). The red arrow
indicates the third eastern-side floodgate, the location of sampling, and measurement equipment. Also shown are
meteorological and hydrological monitoring stations (source: [16]).
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2.2. Observations

Salinity data used in the study were collected at Nakaura Watergate monitoring station shown
in Figure 1. Nakaura Watergate (width 414 m, depth 6.8 m) had five floodgates in the east and
in the west (each 32 m long), and three floodgates at the center. On the western pile of the third
east-side floodgate (indicated by a red arrow, Figure 1), submerged water pumps were
installed for water sampling at 1, 2, 4, and 6 m from the bottom. The water was pumped to
acrylic boxes in the floodgate administration building, where water temperature, electrical
conductivity, and dissolved oxygen were measured every 30 min using custom-made sensors
(Alec Electronics Co., Ltd.). Salinity was calculated from electrical conductivity.

Continuous measurements of salinity over a period of 6 years (February 1998 to March 2004)
are available, although there are periods with missing data. Instantaneous seawater flux for the
period January 2001 to October 2003 was used in this study. The salinity data were averaged to
a 1-h interval to match the intervals of the other data used in the analysis. One-hour interval
meteorological data (atmospheric pressure, wind speed, and direction) were collected at
Matsue Meteorological Station (available on Japan Meteorological Agency website, http://
www.jma.go.jp/jma/index.html). The wind was treated as a mathematical vector, and the
mathematical convention for the direction was used, that is, wind direction was converted
from “meteorological direction” to “math direction.” The wind vector was resolved into its u
(wx) and v (wy) components. Wind from the west was denoted as positive u and from the south
a positive v. Tidal data used were recorded at Mihonoseki tide gauge station, and river
discharge was recorded in Hii River at Nadabun gauging station (available on Japan’s water
information system website, http://www1.river.go.jp/).

2.3. Methodology

2.3.1. Salinity transport

Instantaneous advective salt transport (Ms, kg m�1s�1) per unit width of a section, normal to
the longitudinal flow of the channel, is given by the following expression [24, 25]:

Ms ¼
ðh

0

rVSdz ¼ rVS∙h (1)

where r is the density, V is the longitudinal velocity component, and S is the longitudinal
salinity. The upper bar denotes averaging over the total depth of the water column, h.

The study lakes are shallow. Pressure variation in shallow lakes is negligible. Therefore, the
density of water was calculated using the following approximate density formula neglecting
pressure [26]:

r ¼ 999:83þ 0:808S� 0:0708 1þ 0:068Tð ÞT � 0:003 1� 0:012Tð Þ 35� Sð ÞT (2)

where T is the temperature in �C and S is the salinity in PSU.
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2.3.2. Continuous wavelet transform (CWT)

CWTdecomposes a time series into a time-frequency space and determines both the dominant
modes of variability and their variation with time [4]. The wavelet is applied as a bandpass
filter to the time, stretching it in time by varying its scale(s) and normalizing it to have a unit
energy [8, 18].

A wavelet ψ tð Þ is a function that oscillates around the t-axis and loses strength as it moves
away from the center, behaving like a small wave [4]. Beginning with a mother wavelet ψ, a
family of “daughter wavelet” ψ τ; sð Þ is computed by scaling and translating ψ [4]:

ψτ, s tð Þ ¼
1ffiffiffiffiffi
sj jp ψ

t� τ
s

� �
; s, τ∈ℝ; s 6¼ 0 (3)

where ψ tð Þ is the mother wavelet, ψτ, s tð Þ is the daughter wavelet, t is a nondimensional “time”
parameter, s is a scaling or a dilation factor that controls the width of the wavelet, and τ is a
translation parameter controlling the location of the wavelet.

This study used the Morlet wavelet, which consists of a plane wave modulated by a Gaussian
or in other words a complex exponential function multiplied by a Gaussian window. Hence, it
represents the best compromise between frequency and time localization. A complex wavelet
is essential for this study, as it yields a complex transform, with information on both the
amplitude and the phase, crucial to study the synchronization of oscillations between different
time series [3, 27]. Morlet wavelet is defined as [4]

ψ0 tð Þ ¼ π�1=4eiω0te�t2 =2 (4)

where ψ0 tð Þ is the Morlet wavelet, ω0 is the fundamental frequency, which gives the number of
oscillations within the wavelet itself.

CWT of a time series x tð Þ∈ L2 ℝð Þ with respect to the wavelet ψ is a function of two variables,
Wx;ψ τ; sð Þ [3]:

Wx;ψ τ; sð Þ ¼
ð∞

�∞
x tð Þ 1ffiffiffiffiffi

sj jp ψ∗ t� τ
s

� �
dt (5)

where Wx;ψ τ; sð Þ is the CWT of a time series x tð Þ, L2 ℝð Þ denotes the set of square integrable

functions, that is, the set of functions defined on the real line and satisfying
Ð∞
�∞

x tð Þj j2dt < ∞, ψ∗

is the complex conjugation of ψ.

2.3.3. Cross-wavelet transform (XWT)

The cross-wavelet transform (XWT), a multiscale signal analytical technique, combines the
wavelet transform and cross-spectrum analysis. XWT analyzes multiple time-frequencies of
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2.2. Observations
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(Alec Electronics Co., Ltd.). Salinity was calculated from electrical conductivity.
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meteorological data (atmospheric pressure, wind speed, and direction) were collected at
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www.jma.go.jp/jma/index.html). The wind was treated as a mathematical vector, and the
mathematical convention for the direction was used, that is, wind direction was converted
from “meteorological direction” to “math direction.” The wind vector was resolved into its u
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the longitudinal flow of the channel, is given by the following expression [24, 25]:

Ms ¼
ðh

0

rVSdz ¼ rVS∙h (1)

where r is the density, V is the longitudinal velocity component, and S is the longitudinal
salinity. The upper bar denotes averaging over the total depth of the water column, h.

The study lakes are shallow. Pressure variation in shallow lakes is negligible. Therefore, the
density of water was calculated using the following approximate density formula neglecting
pressure [26]:

r ¼ 999:83þ 0:808S� 0:0708 1þ 0:068Tð ÞT � 0:003 1� 0:012Tð Þ 35� Sð ÞT (2)

where T is the temperature in �C and S is the salinity in PSU.
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2.3.2. Continuous wavelet transform (CWT)

CWTdecomposes a time series into a time-frequency space and determines both the dominant
modes of variability and their variation with time [4]. The wavelet is applied as a bandpass
filter to the time, stretching it in time by varying its scale(s) and normalizing it to have a unit
energy [8, 18].

A wavelet ψ tð Þ is a function that oscillates around the t-axis and loses strength as it moves
away from the center, behaving like a small wave [4]. Beginning with a mother wavelet ψ, a
family of “daughter wavelet” ψ τ; sð Þ is computed by scaling and translating ψ [4]:

ψτ, s tð Þ ¼
1ffiffiffiffiffi
sj jp ψ

t� τ
s

� �
; s, τ∈ℝ; s 6¼ 0 (3)

where ψ tð Þ is the mother wavelet, ψτ, s tð Þ is the daughter wavelet, t is a nondimensional “time”
parameter, s is a scaling or a dilation factor that controls the width of the wavelet, and τ is a
translation parameter controlling the location of the wavelet.

This study used the Morlet wavelet, which consists of a plane wave modulated by a Gaussian
or in other words a complex exponential function multiplied by a Gaussian window. Hence, it
represents the best compromise between frequency and time localization. A complex wavelet
is essential for this study, as it yields a complex transform, with information on both the
amplitude and the phase, crucial to study the synchronization of oscillations between different
time series [3, 27]. Morlet wavelet is defined as [4]

ψ0 tð Þ ¼ π�1=4eiω0te�t2 =2 (4)

where ψ0 tð Þ is the Morlet wavelet, ω0 is the fundamental frequency, which gives the number of
oscillations within the wavelet itself.

CWT of a time series x tð Þ∈ L2 ℝð Þ with respect to the wavelet ψ is a function of two variables,
Wx;ψ τ; sð Þ [3]:

Wx;ψ τ; sð Þ ¼
ð∞

�∞
x tð Þ 1ffiffiffiffiffi

sj jp ψ∗ t� τ
s

� �
dt (5)

where Wx;ψ τ; sð Þ is the CWT of a time series x tð Þ, L2 ℝð Þ denotes the set of square integrable

functions, that is, the set of functions defined on the real line and satisfying
Ð∞
�∞

x tð Þj j2dt < ∞, ψ∗

is the complex conjugation of ψ.

2.3.3. Cross-wavelet transform (XWT)

The cross-wavelet transform (XWT), a multiscale signal analytical technique, combines the
wavelet transform and cross-spectrum analysis. XWT analyzes multiple time-frequencies of
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two time series from multiple time scale points, thereby exposing regions with a common high
power, and further reveals information about the phase relationship in time-frequency space,
hence determining correlations [15, 18].

For two time series xn and yn, their cross-wavelet transform is given by [4, 15]

WXY
n sð Þ ¼WX

n sð ÞWY∗
n sð Þ (6)

where WX
n sð Þ and WY

n sð Þ are wavelet transforms of xn and yn, respectively, and * denotes

complex conjugation. WXY
n sð Þ�� �� is the cross-wavelet power. If two time series have background

power spectra PX
k and PY

k , then their theoretical distribution of the cross-wavelet power is given
by [4, 18].

D
WX

n sð ÞWY∗
n sð Þ�� ��

σXσY
< p

 !
¼ Zv pð Þ

v

ffiffiffiffiffiffiffiffiffiffiffiffi
PX
k P

Y
k

q
(7)

where σX and σY are the respective standard deviations, Zv pð Þ is the confidence level associ-
ated with the probability p for a probability distribution function (pdf) defined by the square
root of the product of two chi-squared (χ2) distributions.

2.3.4. Wavelet coherence (WTC)

Wavelet coherence (WTC) between two CWTs can find significant coherence even though the
common power is low and show how confidence levels against red noise backgrounds are
calculated. This can be thought of as a local correlation between two time series in the time-
frequency space. It finds locally phase-locked behavior. The significance level of the WTC is
determined using Monte Carlo methods [15]

R2
n sð Þ ¼ S s�1WXY

n sð Þ� ��� ��2

S s�1 WX
n sð Þ�� ��2� �

∙S s�1 WY
n sð Þ�� ��2� � (8)

where S is a smoothing operator.

2.3.5. Partial wavelet coherence

CWT is increasingly being used in the analysis of marine sciences time series data. However,
most of the CWT analyses have been limited to univariate and bivariate analyses, that is, the
wavelet power spectrum, the wavelet coherency, and the wavelet phase difference [3]. Wavelet
analysis tools have already been extended to allow for multivariate analyses [3, 20]. PWC and
PPD are the examples of recent wavelet analysis techniques. The PWC technique is similar to
partial correlation and it identifies the resulting wavelet coherence between two time series
after eliminating the influence of their common dependence [20]. The applicability of PWC to
geophysics was demonstrated during the study of the “stand-alone” relationship between the
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“ratio of number of typhoons to number of tropical cyclones” and “large-scale atmospheric
factors” after removing the effect of El Nino-Southern Oscillation (ENSO) [20].

The squared multiple wavelet coherence (R2
1 23…pð Þ) between the series x1 and all the other series

x2,…, xp is given by the following formula [3]:

R2
1 23…pð Þ ¼ 1� Cd

Cd
11

(9)

where C denotes the p� p matrix of all the complex wavelet coherencies ϱij, that is,

C ¼ ϱij

� �p
i, j¼1

, Cd ¼ detC.

The complex partial wavelet coherence (ϱ1j:qj ) of x1 and xj 2 ≤ j ≤ pð Þ allowing for all the other

series is given by [3]

ϱ1j:qj ¼ �
Cd
j1ffiffiffiffiffiffiffi

Cd
11

q ffiffiffiffiffiffi
Cd
jj

q (10)

The partial wavelet coherence (R1j:qj ) of x1 and xj allowing for all the other series is defined as

the absolute value of Eq. (10), that is,

R1j:qj ¼
Cd
j1

���
���

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cd
11C

d
jj

q (11)

and the squared partial wavelet coherence of x1 and xj allowing for all the other series is simply
the square of R1j:qj .

The partial phase delay (phase difference) of x1 and xj given all the other series is defined as the
angle of ϱ1j:qj . A complex wavelet function contains information about both the amplitude and

the phase, making it suitable to capture oscillatory behavior. Complex partial wavelet coher-

ence, ϱ1j:qj considered can be separated into its real part, R ϱ1j:qj

� �
, and imaginary part,

J ϱ1j:qj

� �
, or in its amplitude, ϱ1j:qj

���
���, and phase angle ϕ1j:qj

. The phase difference, ϕ1j:qj
, is given

as follows [3]:

ϕ1j:qj
¼ Arctan

J ϱ1j:qj

� �

R ϱ1j:qj

� �
0
@

1
A (12)

A phase difference of zero indicates that the time series moves together at the specified time-
frequency; if ϕx1xj

E 0; 90ð Þ, the series moves in a phase and the time series of x1 leads xj; if

ϕx1xj
E �90; 0ð Þ, then xj leads x1. A phase difference of 180 (or �180) indicates an antiphase

Use of Wavelet Techniques in the Study of Seawater Flux Dynamics in Coastal Lakes
http://dx.doi.org/10.5772/intechopen.75177

221



two time series from multiple time scale points, thereby exposing regions with a common high
power, and further reveals information about the phase relationship in time-frequency space,
hence determining correlations [15, 18].

For two time series xn and yn, their cross-wavelet transform is given by [4, 15]

WXY
n sð Þ ¼WX

n sð ÞWY∗
n sð Þ (6)

where WX
n sð Þ and WY

n sð Þ are wavelet transforms of xn and yn, respectively, and * denotes

complex conjugation. WXY
n sð Þ�� �� is the cross-wavelet power. If two time series have background

power spectra PX
k and PY

k , then their theoretical distribution of the cross-wavelet power is given
by [4, 18].

D
WX

n sð ÞWY∗
n sð Þ�� ��

σXσY
< p

 !
¼ Zv pð Þ

v

ffiffiffiffiffiffiffiffiffiffiffiffi
PX
k P

Y
k

q
(7)
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ated with the probability p for a probability distribution function (pdf) defined by the square
root of the product of two chi-squared (χ2) distributions.

2.3.4. Wavelet coherence (WTC)
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common power is low and show how confidence levels against red noise backgrounds are
calculated. This can be thought of as a local correlation between two time series in the time-
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where S is a smoothing operator.
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CWT is increasingly being used in the analysis of marine sciences time series data. However,
most of the CWT analyses have been limited to univariate and bivariate analyses, that is, the
wavelet power spectrum, the wavelet coherency, and the wavelet phase difference [3]. Wavelet
analysis tools have already been extended to allow for multivariate analyses [3, 20]. PWC and
PPD are the examples of recent wavelet analysis techniques. The PWC technique is similar to
partial correlation and it identifies the resulting wavelet coherence between two time series
after eliminating the influence of their common dependence [20]. The applicability of PWC to
geophysics was demonstrated during the study of the “stand-alone” relationship between the
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the square of R1j:qj .
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A phase difference of zero indicates that the time series moves together at the specified time-
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E 0; 90ð Þ, the series moves in a phase and the time series of x1 leads xj; if
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relationship; if ϕx1xj
E 90; 180ð Þ, then xj leads x1; if ϕx1xj

E �180;�90ð Þ, then x1 leads xj (see Figure 2).

Phase difference can be converted into instantaneous time lag between two time series by
dividing the phase difference, ϕ1j:qj

by the angular frequency corresponding to the scale s, ω sð Þ.

2.3.6. Significance tests

It is important to assess the statistical significance of the wavelet, cross-wavelet power and the
wavelet coherence. The assessment of the statistical significance levels and confidence intervals
against red noise backgrounds was done using direct Monte Carlo simulations.

2.3.7. Wavelet packages and parameters used

Ng and Kwok provided the software for CWT, WTC, and XWT, which is available at http://
www.cityu.edu.hk/gcacic/wavelet. It is used in collaboration with the software provided by
Grinsted, which is available at http://www.glaciology.net/wavelet-coherence. The software for
PWC was provided by Aguiar-Conraria and Soares and is available at http://sites.google.com/
site/aguiarconraria/joanasoares-wavelets. Some of the parameters used in the analysis are as
follows: the mother wavelet function—Morlet; the sampling time (dt)—1 h; the spacing
between discrete scales (dj)—0.5 h; the level of significance—5%; and the number of Monte
Carlo simulations used to assess statistical significance—1000. Default values were taken for
other parameters.

Figure 2. Phase difference circle.
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3. Results and discussion

3.1. Analysis of period characteristics

3.1.1. Variability of seawater flux

Figure 3 shows the seawater flux per unit width at Nakaura Watergate and its CWT coefficient
chart. Positive values of the time series indicate seawater flux toward the Japan Sea and
negative toward Lake Nakaumi. The CWT coefficient chart for seawater flux has stable period
characteristics, with high power oscillations in the 12-h and 1-day period band throughout the
analysis period. Both the red color and the black contour indicate that cycles are strong and
statistically significant at 95% confidence level (hereinafter statistically significant).

3.1.2. Variability of tide level

Figure 4 shows time series plot and CWT coefficient chart for the tide level. The high-power
tide level oscillations have statistically significant periods of 12 h and 1 day. This implies
considerable power spreads throughout the semi-diurnal and diurnal bands throughout the
analysis period. The oscillations indicate spring-neap tidal variations since they appear twice a
month. Also observed is a relatively strong statistically significant, though not regular, 2–6-day
period cycle that occurs mainly in winter (December to March). Tide level and atmospheric
pressure are negatively correlated. The time series of both shows that as the atmospheric
pressure increases, the tide level decreases and vice versa (Figures 4 and 5).

3.1.3. Variability of sea level atmospheric pressure

The CWT coefficient chart for the atmospheric pressure (Figure 5) shows continuous statisti-
cally significant high power 64-day period cycles from April 2002. There are also 128-day to
1-year period cycles throughout the analysis period. There are some discontinuous and irreg-
ular high power oscillations in the 1-day and 2–32-day period cycles.

Figure 3. (a) The time series of salinity flux (salt flux (kg/m/s)) and (b) its wavelet power spectrum for the Jan 2001 to Oct
2003 period. Period is in days. The red color designates high power oscillations whilst blue is low power oscillations. The
black contour designates 95% confidence level, using red noise as the background spectrum. White regions on either end
indicate the “cone of influence” where edge effects become important.
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3.1.4. Variability of river discharge

Figure 6 shows the time series plot and CWT coefficient chart for the total river discharge in
Hii River. Wavelet coefficients acutely vary from the highest to the lowest, indicating an
unstable river discharge. The chart also shows a distinct character that has long vertical peaks
like a raindrop, which indicate that the period of oscillation varies from high to low almost

Figure 4. Tide level—time-series plot (a) and time-series wavelet power spectrum (b) for the Jan 2001 to Oct 2003 period.

Figure 5. Atmospheric pressure–time-series plot (a) and time-series wavelet power spectrum (b) for the Jan 2001 to Oct
2003 period.

Figure 6. River discharge—time-series plot (a) and time-series wavelet power spectrum (b) for the Jan 2001 to Oct 2003
period.
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instantaneously. Each peak of energy corresponds to a high river discharge. From the time
series plot and CWTcoefficient chart, it is evident that the highest river flow rate occurs in June
and July. However, there were little rains in the summer of 2002 compared to that of 2001 and
2003. The CWT coefficient chart did show the river discharge in the summer of 2002 as
significant; however, the wavelet analysis of the periods June–September 2002 indicated high
energy in June and July [16]. The river discharge during June–July 2002 was dwarfed by that of
June–July 2001 and 2003 and hence the absence of high energy on the CWT coefficient chart.

3.1.5. Variability of wind velocity

Figure 7 shows the CWT coefficient chart for the wind velocity vectors. There are observations
of fluctuating medium power in the 0.5-day period band for the North–South (wy) wind
velocity component throughout the analysis period. The strong and statistically significant
oscillations are in the 2–14-day period band throughout the analysis period. The East–West
(wx) wind velocity component has discontinuous and irregular high power oscillations in the
2–16-day period band. There are continuous medium-power oscillations in the 32-day period
band and 64-day to 1-year period band.

3.2. Analysis of dynamic relationships

3.2.1. Correlation between the tide level and the seawater flux

The WTC and XWTof the tide level and the seawater flux are shown in Figure 8, which displays
that significant power sections appear continuously throughout the analysis period. This indicates

Figure 7. Wind velocity (wx (a & c) and wy (b & d))—time-series plot (a & b) and time-series wavelet power spectrum (c &
d) for the Jan 2001 to Oct 2003 period.

Use of Wavelet Techniques in the Study of Seawater Flux Dynamics in Coastal Lakes
http://dx.doi.org/10.5772/intechopen.75177

225



3.1.4. Variability of river discharge

Figure 6 shows the time series plot and CWT coefficient chart for the total river discharge in
Hii River. Wavelet coefficients acutely vary from the highest to the lowest, indicating an
unstable river discharge. The chart also shows a distinct character that has long vertical peaks
like a raindrop, which indicate that the period of oscillation varies from high to low almost

Figure 4. Tide level—time-series plot (a) and time-series wavelet power spectrum (b) for the Jan 2001 to Oct 2003 period.

Figure 5. Atmospheric pressure–time-series plot (a) and time-series wavelet power spectrum (b) for the Jan 2001 to Oct
2003 period.

Figure 6. River discharge—time-series plot (a) and time-series wavelet power spectrum (b) for the Jan 2001 to Oct 2003
period.

Wavelet Theory and Its Applications224

instantaneously. Each peak of energy corresponds to a high river discharge. From the time
series plot and CWTcoefficient chart, it is evident that the highest river flow rate occurs in June
and July. However, there were little rains in the summer of 2002 compared to that of 2001 and
2003. The CWT coefficient chart did show the river discharge in the summer of 2002 as
significant; however, the wavelet analysis of the periods June–September 2002 indicated high
energy in June and July [16]. The river discharge during June–July 2002 was dwarfed by that of
June–July 2001 and 2003 and hence the absence of high energy on the CWT coefficient chart.

3.1.5. Variability of wind velocity

Figure 7 shows the CWT coefficient chart for the wind velocity vectors. There are observations
of fluctuating medium power in the 0.5-day period band for the North–South (wy) wind
velocity component throughout the analysis period. The strong and statistically significant
oscillations are in the 2–14-day period band throughout the analysis period. The East–West
(wx) wind velocity component has discontinuous and irregular high power oscillations in the
2–16-day period band. There are continuous medium-power oscillations in the 32-day period
band and 64-day to 1-year period band.

3.2. Analysis of dynamic relationships

3.2.1. Correlation between the tide level and the seawater flux

The WTC and XWTof the tide level and the seawater flux are shown in Figure 8, which displays
that significant power sections appear continuously throughout the analysis period. This indicates

Figure 7. Wind velocity (wx (a & c) and wy (b & d))—time-series plot (a & b) and time-series wavelet power spectrum (c &
d) for the Jan 2001 to Oct 2003 period.

Use of Wavelet Techniques in the Study of Seawater Flux Dynamics in Coastal Lakes
http://dx.doi.org/10.5772/intechopen.75177

225



that the influence of the tide level on the seawater flux is strong. Both WTC and XWT show
significant power sections in the semi-diurnal and diurnal periods. WTC also shows almost
continuous coherence between the tide level and the seawater flux in the 2–16-day period band.
XWT does not show much common power in the 2–16-day period band. This indicates that the
tide level influences the seawater flux mainly in the 0.5-day and 1-day period band. Both WTC
and XWT show that in the 0.5-day and 1-day period band, the tide level and the seawater flux
have an antiphase relationship with tides leading (the arrow pointing down and to the left). That
is, a rise in the tide level leads to an increase in the negative seawater flux (seawater flux into Lake
Nakaumi is denoted as the negative flux in this study).

3.2.2. Correlation between the river discharge and the seawater flux

Extensive significant power sections show the influence of river discharge on salinity, Figure 9.
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Figure 9. The WTC (a) and XWT (b) of river discharge and salinity flux for the Jan 2001 to Oct 2003 period.
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coherence in the 2–16 period band. However, the XWT shows the occasional appearance of the
significant power sections with irregular intervals especially during the summer period. The
power section appears around June, July, September, and January. The influence of the river
discharge on the seawater flux failed to pass the significance test at 5% level in other months
and the summer of 2002.

3.2.3. Correlation between the atmospheric pressure and the seawater flux

The XWT and WTC of the atmospheric pressure and the seawater flux shown in Figure 10
occasionally display extensive significant power sections in the 0.5-, 1–, and 256-day to 1-year
period band, which stands out throughout analysis period, testing the existence of the correla-
tion between the atmospheric pressure and the seawater flux. The WTC shows occasional
correlation in the 2–16-day period band.

Figure 10. The WTC (a) and XWT (b) of the atmospheric pressure and the salinity flux for the Jan 2001 to Oct 2003 period.

Figure 11. The WTC (a) and XWT (b) for the wx wind velocity component and salinity flux for the Jan 2001 to Oct 2003
period.
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coherence in the 2–16 period band. However, the XWT shows the occasional appearance of the
significant power sections with irregular intervals especially during the summer period. The
power section appears around June, July, September, and January. The influence of the river
discharge on the seawater flux failed to pass the significance test at 5% level in other months
and the summer of 2002.

3.2.3. Correlation between the atmospheric pressure and the seawater flux

The XWT and WTC of the atmospheric pressure and the seawater flux shown in Figure 10
occasionally display extensive significant power sections in the 0.5-, 1–, and 256-day to 1-year
period band, which stands out throughout analysis period, testing the existence of the correla-
tion between the atmospheric pressure and the seawater flux. The WTC shows occasional
correlation in the 2–16-day period band.

Figure 10. The WTC (a) and XWT (b) of the atmospheric pressure and the salinity flux for the Jan 2001 to Oct 2003 period.

Figure 11. The WTC (a) and XWT (b) for the wx wind velocity component and salinity flux for the Jan 2001 to Oct 2003
period.
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Figure 12. The WTC (a) and XWT (b) for the wy wind velocity component and salinity flux for the Jan 2001 to Oct 2003
period.

Figure 13. Partial wavelet coherence of observed tides versus salinity flux for the period (a) Jun-Sep 2001, (b) Dec 2001 -
Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003. The thick black line indicates the cone of influence that delimits the
region not influenced by edge effects.

Wavelet Theory and Its Applications228

3.2.4. Correlation between the wind velocity and the seawater flux

The XWTandWTC for the wind velocity vectors and the seawater flux are shown in Figures 11
and 12. East–West (wx) wind velocity vector also influences seawater flux. The WTC indicates
significant discontinuous and irregular power sections on the periods 2–32 days throughout
the statistical intervals as shown in Figure 11. The XWT shows some discontinuous and
irregular significant power sections in the 0.5- and 1-day period band, testifying that some-
times a correlation exists between East–West wind velocity component and seawater flux.

The XWT and WTC for North–South (wy) wind velocity vector display continuous extensive
significant power sections, and their center focuses on the period of 0.5 day (Figure 12). The
significant power sections also appear at irregular intervals with varying periods in the 2–16-day
period band. Powerful influence of wind speed is consistent in the 0.5 day throughout the
analysis period.

3.3. Analysis of dynamic characteristics using partial wavelet coherence

Figures 13–17 shows PWC, the relationship, in the time-frequency domain, between seawater
flux and each of the forcing variables, after eliminating the effect of other variables. Two summer

Figure 14. Partial wavelet coherence of river discharge versus salinity flux for the period (a) Jun-Sep 2001, (b) Dec 2001 -
Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003.

Use of Wavelet Techniques in the Study of Seawater Flux Dynamics in Coastal Lakes
http://dx.doi.org/10.5772/intechopen.75177

229



Figure 12. The WTC (a) and XWT (b) for the wy wind velocity component and salinity flux for the Jan 2001 to Oct 2003
period.

Figure 13. Partial wavelet coherence of observed tides versus salinity flux for the period (a) Jun-Sep 2001, (b) Dec 2001 -
Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003. The thick black line indicates the cone of influence that delimits the
region not influenced by edge effects.

Wavelet Theory and Its Applications228

3.2.4. Correlation between the wind velocity and the seawater flux

The XWTandWTC for the wind velocity vectors and the seawater flux are shown in Figures 11
and 12. East–West (wx) wind velocity vector also influences seawater flux. The WTC indicates
significant discontinuous and irregular power sections on the periods 2–32 days throughout
the statistical intervals as shown in Figure 11. The XWT shows some discontinuous and
irregular significant power sections in the 0.5- and 1-day period band, testifying that some-
times a correlation exists between East–West wind velocity component and seawater flux.

The XWT and WTC for North–South (wy) wind velocity vector display continuous extensive
significant power sections, and their center focuses on the period of 0.5 day (Figure 12). The
significant power sections also appear at irregular intervals with varying periods in the 2–16-day
period band. Powerful influence of wind speed is consistent in the 0.5 day throughout the
analysis period.

3.3. Analysis of dynamic characteristics using partial wavelet coherence

Figures 13–17 shows PWC, the relationship, in the time-frequency domain, between seawater
flux and each of the forcing variables, after eliminating the effect of other variables. Two summer

Figure 14. Partial wavelet coherence of river discharge versus salinity flux for the period (a) Jun-Sep 2001, (b) Dec 2001 -
Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003.

Use of Wavelet Techniques in the Study of Seawater Flux Dynamics in Coastal Lakes
http://dx.doi.org/10.5772/intechopen.75177

229



seasons and two winter seasons were analyzed separately in order to visualize the relationships
that might otherwise be lost in a long-term analysis. The analysis of 2002 summer season was
done before and will be compared with the current analysis [16].

3.3.1. PWC between the tide level and the seawater flux

Figure 13 shows extensive statistically significant coherence at the 5% level in all the seasons,
indicating the existence of relationship between observed tides and salinity transport. The
center of power sections focuses on periods 0.5 and 1 day. Tides have a positive impact on
seawater flux over the periods 0.5 and 1 day throughout the year. This study reinforces
previous conclusion that short-term salinity transport is highly influenced by tides [16].

3.3.2. PWC between the river discharge and the seawater flux

PWC between the river discharge and the seawater flux, after controlling for other forcing
variables, shows statistically significant in-phase relationship in the 3–16-day period in all the
seasons analyzed (Figure 14). The 2001 summer (June and July) and spring/summer 2003
(April–June) show a significant continuous coherence between the river discharge and the
seawater flux in the 16-day period band. In July 2003, though the coherence in the 16-day band

Figure 15. Partial wavelet coherence of atmospheric pressure versus salinity flux for the period (a) Jun-Sep 2001, (b) Dec
2001 - Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003.
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is high, it is not statistically significant. The winter periods also showed some significant
correlation between the river discharge and the seawater flux. 2001–2002 winters have coher-
ences, which are discontinuous and occur at irregular intervals. March 2002 exhibits a signifi-
cant continuous coherence in the 4–24-day period band. 2002–2003 winters have statistically
significant coherences that occur continuously in the 16–32-day period band. This shows the
existence of the relationship between the river discharge and the seawater flux, which gener-
ally coincides with an increased river discharge. The effect of increased river flows due to rain,
typhoon events, and water releases upstream is clearly shown.

3.3.3. PWC between the atmospheric pressure and the seawater flux

During summer, a discontinuous and irregular statistically significant relationship between the
atmospheric pressure and the seawater flux exists in the 4–16-day period band, indicating the
existence of an on-and-off correlation between the tide level and the seawater flux (Figure 15).
During winter, a continuous relationship exists in the 16–32-day period band. WTC and XWT
show that the atmospheric pressure’s influence on the flux of seawater is not stable, implying
that it is short-lived and has a weak influence on seawater flux (Figure 10). However, PWC
shows that the atmospheric pressure sometimes influences the seawater flux.

3.3.4. PWC between the wind velocity and the seawater flux

Figures 16 and 17 show partial wavelet coherence between the wind velocity and the seawater
flux. An unstable relationship between wind vectors and seawater flux is exhibited. The East–
West (wx) wind velocity component and seawater flux have a discontinuous and irregular

Figure 16. Partial wavelet coherence of East–West (wx) wind velocity component versus salinity flux for the period (a)
Jun-Sep 2001, (b) Dec 2001 - Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003.
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ally coincides with an increased river discharge. The effect of increased river flows due to rain,
typhoon events, and water releases upstream is clearly shown.

3.3.3. PWC between the atmospheric pressure and the seawater flux
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atmospheric pressure and the seawater flux exists in the 4–16-day period band, indicating the
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show that the atmospheric pressure’s influence on the flux of seawater is not stable, implying
that it is short-lived and has a weak influence on seawater flux (Figure 10). However, PWC
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3.3.4. PWC between the wind velocity and the seawater flux

Figures 16 and 17 show partial wavelet coherence between the wind velocity and the seawater
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West (wx) wind velocity component and seawater flux have a discontinuous and irregular

Figure 16. Partial wavelet coherence of East–West (wx) wind velocity component versus salinity flux for the period (a)
Jun-Sep 2001, (b) Dec 2001 - Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003.

Use of Wavelet Techniques in the Study of Seawater Flux Dynamics in Coastal Lakes
http://dx.doi.org/10.5772/intechopen.75177

231



relationship, mainly in the periods between 2 and 8 days. A continuous month-long relation-
ship exists in the 8–16-day period band. The statistically significant month-long power sections
for the North–South (wy) wind velocity component exist for 2001–2002 winters, 2002–2003
winters, and 2003 summer. The statistically significant correlation between the North–South
(wy) wind velocity component and seawater flux exists mainly in the 2–16-day period band.
Short-term oscillations are irregular and short-lived.

4. Conclusion(s)

This study explored the usefulness of continuous wavelet analysis in the investigation of salinity
intrusion. The study summarized CWT, WTC, XWT, and PWC approaches and applied them in
the analysis of the impact of forcing variables on the seawater flux in Sakai Channel. The study

Figure 17. Partial wavelet coherence of North–South (wy) wind velocity component versus salinity flux for the period (a)
Jun-Sep 2001, (b) Dec 2001 - Mar 2002, (c) Dec 2002 - Mar 2003, (d) Apr-Jul 2003).
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revealed fundamental characteristics in the variation of forcing parameters and seawater flux, as
well as their interactions. The only constraint in this study was a high computation time due to
1000 Monte Carlo simulation runs.

The CWT results show that the seawater flux and the tide level have regular oscillations in the
12-h and 1-day period band, indicating that the influence of astronomical tides is dominant.
River discharge from the Hii River does not exhibit any periodical variations due to the
irregularity of precipitation and the controlled release from upstream reservoirs. Atmospheric
pressure exhibits a continuous high power (lasting over a month) with a period range from 16-
day to 1-year. East–West (wx) and North–South (wy) wind velocity components show irregular
oscillations with periods between 2 and 16 days.

WTC, XWT, and PWC revealed the influence of tide level, river discharge, atmospheric pres-
sure, and wind velocity on seawater flux. WTC, XWT, and PWC showed that tides are consis-
tently influential on the seawater flux in the 0.5- and 1-day period band. River discharge
influenced seawater flux after heavy rains or water releases from upstream reservoirs. Atmo-
spheric pressure and wind velocity occasionally influence seawater flux at Nakaura Watergate
and may have an indirect influence on salinity transport through their effect on sea surface
elevation. High drops of atmospheric pressure occasionally resulted in an increased tide level.
This study reiterated the importance of tides in the transport of seawater in and out of Lakes
Shinji and Nakaumi.

To conclude, the wavelet analysis of seawater intrusion studies proved useful. Wavelet coher-
ence is helpful in the study of relationships between two time series. Partial wavelet coherence
reveals the relationship between two time series after removing the effect of other time series.
This is very useful when a dependent variable is under the influence of two or more variables.
Wavelet analysis performs spectral analysis in frequency-time domain, revealing time-varying
relationships across frequencies.
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Abstract

In this chapter, a new image denoising approach is proposed. It combines two image
denoising techniques. The first one is based on a wavelet transform (WT), and the second
one is a two-stage image denoising by PCA (principal component analysis) with LPG
(local pixel grouping). In this proposed approach, we first apply the first technique to the
noisy image in order to obtain the first estimation version of the clean image. Then, we
estimate the noise-level from the noisy image. This estimate is obtained by applying the
third technique of noise estimation from noisy images. The third step of the proposed
approach consists in using the first estimation of the clean image, the noisy image, and the
estimate of the noise-level as inputs of the second image denoising system (LPG-PCA). A
comparative study of the proposed technique and the two others denoising technique
(one is based on WT and and the second is based on LPG-PCA), is performed. This
comparative study used a number of noisy images, and the obtained results from PSNR
(peak signal-to-noise ratio) and SSIM (structural similarity) computations show that the
proposed approach outperforms the two other denoising approaches (the first one is
based on WT and the second one is based on LPG-PCA).

Keywords: image denoising, wavelet transform, noise estimation, LPG-PCA

1. Introduction

In the image acquisition process, the noise will be inevitably introduced so denoising is a
necessary step for ameliorating the image quality. As a primary low-level image processing,
noise suppression has been extensively studied, and numerous denoising approaches have
been proposed, from the earlier frequency domain denoising approaches and smoothing filters
[1] to the lately developed wavelet [2–11], curvelet- [12] and ridgelet- [13] based approaches,
sparse representation [14] and K-SVD approaches [15], shape-adaptive transform [16], bilateral
filtering [17, 18], nonlocal mean-based techniques [19, 20], and nonlocal collaborative filtering
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[21]. With the quick development of modern digital imaging devices and their increasingly
broad applications in our daily life, there are rising necessities of new denoising techniques for
higher quality of image. The WT (wavelet transform) [22] proved its effectiveness in noise
cancelation [2–11]. This transform decomposes the input signal into multiple scales which
represent different time-frequency components of the original signal. At each scale, some
operations, such as statistical modeling [4–6] and thresholding [2, 3], can be applied for
canceling noise. Noise reduction is performed by transforming back the processed wavelet
coefficients into spatial domain. Late development of WT-based denoising techniques includes
ridgelet- and curvelet-based techniques [12, 13] for line structure conservation. Despite WT
proved its effectiveness in denoising, it uses a fixed wavelet basis (with translation and
dilation) for representing image. However, for natural images, a rich amount of different local
structural patterns exists and therefore cannot be well represented by using just one fixed
wavelet basis. Consequently, WT-based techniques can generate many visual artifacts in the
denoising output. To overcome the problem of WT, in [23], Muresan and Parks proposed a
spatially adaptive principal component analysis (PCA)-based denoising technique, which
computes the locally fitted basis for transforming the image. In [15, 16], Elad and Aharon
proposed K-SVD-based denoising approach and sparse and redundant representation by
training a highly over-complete dictionary. In [16], Foi et al. applied a shape-adaptive discrete
cosine transform (DCT) to the neighborhood, which can attain very sparse representation of
the image and consequently lead to efficient denoising. All these approaches proved better
denoising performance than classical WT-based denoising techniques. The NLM (nonlocal
means) schemes used a very different philosophy from the above approaches in noise cancel-
ation. The NLM idea can be traced back to [24], where the similar image pixels are averaged
according to their intensity distance. Similar ideas were used in the bilateral filtering schemes
[17, 18], where both the spatial and intensity similarities are exploited for pixel averaging. The
NLM denoising framework was well established in [19]. In the image, each pixel is estimated
as the weighted average of all the pixels and the weights are determined by the similarity
between the pixels. This scheme was improved in [20], where the pair-wise hypothesis testing
was used in the NLM estimation. Inspired from the success of NLM schemes, Dabov et al. [21]
proposed a collaborative image denoising scheme by sparse 3D transform and patch matching.
They look for similar blocks in the image by using block matching and grouped these blocks
into a 3D cube. Then, a sparse 3D transform was applied to that cube, and noise was canceled
by Wiener filtering in the transformed domain. The so-called BM3D approach attains remark-
able denoising results, yet its implementation is a little complex. Lei Zhang et al. [25] have
presented an efficient PCA-based denoising approach with local pixel grouping (LPG). PCA is
a classical de-correlation technique in statistical signal processing, and it is pervasively used in
dimensionality reduction and pattern, etc. [26]. The original dataset is transformed into PCA
domain, and only the different most significant principal components are conserved. Conse-
quently, trivial information and noise can be eliminated. In [23], a PCA-based scheme was
proposed for image denoising by using a moving window for computing the local statistics,
from which the local PCA transformation matrix was estimated. This technique applies PCA
directly to the noisy image without data selection, and much residual noise and visual artifacts
appear in the denoised image. In the LPG-PCA-based technique, Lei Zhang et al. [25] modeled
a pixel and its nearest neighbors as a vector variable. The training samples of this variable are
chosen by grouping the pixels with similar local spatial structures to the underlying one in the
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local window. With such an LPG technique, the local statistics of the variables can be accu-
rately calculated so that the image edge structures can be well conserved after shrinkage in the
PCA domain for noise suppression. The LPG-PCA scheme proposed in [25] has two stages
where the first stage yields an initial image estimation by eliminating the most of the noise and
the second stage will further refine the first stage output. The two stages have the same
procedures except for the noise-level parameter. Since the noise is significantly reduced in the
first stage, the LPG precision will be much improved in the second stage so that the final
denoised image is visually much better. When compared with WT which uses a fixed basis
function for decomposing the noisy image, the proposed LPG-PCA approach is a spatially
adaptive image representation so that it can better characterize the image local structures.
When compared with BM3D and NLM approaches, the LPG-PCA-based technique proposed
in [25] can use a relatively small local window to group the similar pixels for PCA training, yet
it yields competitive results with state-of-the-art BM3D algorithm. In this paper we propose a
new image denoising approach which combines the dual-tree discrete wavelet transform (DT-
DWT)-based denoising approach [12] and the two-stage image denoising technique by PCA
with local pixel grouping (LPG) [25]. To evaluate this proposed technique, we have compared
it to the two techniques (the DT-DWT-based denoising technique [12] and LPG-PCA [25]). This
comparison is based on PSNR and SSIM computation. In the rest of this paper, we first will
deal with PCA. Then, we will be interested in DT-DWT [12]. After that we will deal with noise-
level estimation from the noisy image proposed in [27, 28]. Then, we will present the two
denoising techniques proposed in [12, 25]. After that we will detail the proposed image
denoising technique, and finally we will give results and evaluation.

2. Principal component analysis (PCA)

Let

X ¼

x11 x21 … xn1
x12 x22 … xn2
:

x1n

:
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xnn
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(2)

representing the sample vector of xi. The mean value of Xi is computed as follows:

μi ¼
1
n

Xn

j¼1
Xi jð Þ: (3)

And then, the sample vector is centralized as follows:

Xi ¼ Xi � μi ¼ x1i x
2
i …xni

� �
(4)

with xji ¼ xji � μi. Accordingly, the centralized matrix of X is expressed as follows:
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X ¼ Xi � μi ¼ XT
i XT

2…x
T
m

h iT
: (5)

Finally, the covariance matrix of the centralized dataset is computed as follows:

Ω ¼ 1
n
XX

T
: (6)

The PCA aim consists in finding an orthonormal transformation matrix P in order to de-
correlate X, i.e., Y ¼ PX, so that the matrix of covariance of Y is diagonal. Since the covariance
matrix Ω is symmetrical; therefore, it can be expressed as follows:

Ω ¼ ϕΛϕT (7)

where Λ ¼ diag λ1;λ2;…;λmf g is the diagonal eigenvalue matrix with λ1 ≥λ2 ≥… ≥λm and
ϕ ¼ ϕ1 ϕ2…ϕm

� �
represents the m�m orthonormal eigenvector matrix. The terms

λ1,λ2,…,λm and ϕ1,ϕ2,…,ϕmare, respectively, the eigenvalues and the eigenvectors of Ω. By
setting the matrix P as follow:

P ¼ ϕT, (8)

X can be de-correlated, i.e., Λ ¼ 1
n

Y
Y
T andY ¼ PX. An interesting property of PCA is that it fully

de-correlates the original datasetX. In general, the signal energywill concentrate on a small subset
of the PCA transformed dataset, whereas the noise energy will evenly spread over the whole
dataset. Consequently, the noise and signal can be better distinguished in the domain of PCA.

3. LPG-PCA denoising algorithm

3.1. Modeling of spatially adaptive PCA denoising

In [25] and in previous literature, the noise υ degrading the original image I is supposed to be
white and additive with standard deviation σ and zero mean, and the noisy image,Iυ, is
expressed as follows:

Iυ ¼ I þ υ (9)

Both noise υ and image I are supposed to be uncorrelated. The purpose of image denoising

consists in estimating the clean image I from Iυ, and the estimate is denoted by bI. The latter is
expected to be as close as possible to the original image, I. Two quantities describe an image
pixel. Those quantities are its intensity and the spatial location. However, the image local
structure is represented as a set of neighboring pixels at different intensity levels. As most of
the semantic information of an image is conveyed by its edge structures, edge conservation is
highly required in denoising of this image. In [25], the pixel and its nearest neighbors were
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modeled as a vector variable and perform denoising on the vector instead of the single pixel.
According to Figure 1, for an underlying pixel to be denoised, Lei Zhang et al. [25] set a K � K

window centered on it, and denoted by x ¼ x1;…; xm½ �T, m ¼ K2, the vector contains all com-
ponents within the window.

As the observed image is the original image degraded by the noise, they denote the noisy
vector of x by [25]:

xυ ¼ xþ υ (10)

x where υ ¼ υ1…υm½ �T , xυk ¼ xk þ υk, k ¼ 1,…, m, and xυ ¼ xυ1…xυm
� �

. For estimating x from the
noisy vector, xυ, they are viewed as (both noiseless and noisy) vector variables so that one can
use the statistical techniques such as PCA. For canceling the noise from the noisy vector xυ by
using PCA, a set of training samples of xυ is needed so that the covariance matrix of xυ and
therefore the PCA transformation matrix can be computed. For this aim, Lei Zhang et al. [25]
have used an L� L L > Kð Þ training block centered on xυ in order to find the training samples,
as illustrated in Figure 1. The simplest manner consists in taking the pixels in each possible
K � K block within the L� L training block as the samples of noisy variable xυ. In this way, for

each component xυk of xυ, there are in total L� K þ 1ð Þ2 training samples. Though, there can be
very different blocks from the given central K � K block in the L� L training window, taking
all the K � K blocks as the training samples of xυwill lead to inaccurate estimation of the matrix
of covariance of xυ, which subsequently leads to inaccurate estimation of the PCA transforma-
tion matrix and finally results in much residual noise. Consequently, selecting and grouping
the training samples that are similar to the central K � K block are required before image
denoising by applying the PCA transform.

3.2. Local pixel grouping (LPG)

Grouping the training samples similar to the central K � K block in the L� L training window
is certainly a problem of classification, and therefore different grouping techniques such as

Figure 1. Illustration of the modeling of LPG-PCA-based denoising [25].
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tion matrix and finally results in much residual noise. Consequently, selecting and grouping
the training samples that are similar to the central K � K block are required before image
denoising by applying the PCA transform.

3.2. Local pixel grouping (LPG)

Grouping the training samples similar to the central K � K block in the L� L training window
is certainly a problem of classification, and therefore different grouping techniques such as

Figure 1. Illustration of the modeling of LPG-PCA-based denoising [25].
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correlation based matching, block matching, K-means clustering, etc. can be used based on
different criteria. The block matching-based technique may be the simplest but very efficient

one, and it is used in [25] for LPG. There are totally L� K þ 1ð Þ2 possible training blocks of xυ
in the L� L training window. We will denote xυ0 in the column sample vector which contains

the pixels in the central K � K block, and denoted by xυi , i ¼ 1, 2,…, L� K þ 1ð Þ2 � 1, the sam-
ple vectors correspond to the other blocks. Let xi and x0 be, respectively, the associated
noiseless sample vectors of xυi and xυ0. It can be simply computed that

ei ¼ 1
m

Xm

k¼1
xυ0 kð Þ � xυi kð Þ2 ≈ 1

m

Xm

k¼1
x0 kð Þ � x0 kð Þ2 þ 2σ2 (11)

In Eq. (11), the fact that noise υ is white and uncorrelated with signal is used. With Eq. (11), if
we have the following condition

ei < T þ 2σ2 (12)

where T designates a preset threshold, then we select xυi as a sample vector of xυ. Assume that n
sample vectors of xυ are selected including the central vector xυ0. For the expression convenience,
these sample vectors are denoted as xυ0 , x

υ
1 ,…, xυn�1. The noiseless counterparts of those vectors

are denoted as x0, x1,…, xn�1, accordingly. Then, the training dataset for xυ is constituted by.

Xυ ¼ xυ0; x
υ
1;…; xυn�1

� �
(13)

The noiseless counterpart of Xυ is designated as X ¼ x0; x1;…; xn�1½ �. To insure the existence of
enough samples in calculating the PCA transformation matrix, ncould not be too small.
Practically speaking, it will be used in denoising at least c �m training samples of xυ, with
c ¼ 8˜10. That is to say that in case of n < c �m, we will use the best c �m-matched samples in
PCA training. Often, the best c �m-matched samples are robust for estimating the local statis-
tics of image, and this operation makes the algorithm more stable for computing the PCA
transformation matrix. The problem now is how to estimate from the noisy data Xυ, the
noiseless dataset X. Once this dataset X is estimated, the central block and therefore we can
extract the central underlying pixel. Such procedure is applied to each pixel, and then the
entire image Iυ can be denoised. The LPG-PCA-based denoising is detailed in [25], and the
denoising refinement in the second stage will be detailed in the next part of this paper.

3.3. Denoising refinement in the second stage

Most of the noise will be suppressed by employing the denoising procedures described in [25].
However, there is still much visually unpleasant residual noise in the denoised image. Figure 2
shows an example of image denoising where (a) is the original image Cameraman, (b) the
noisy version of it with PSNR ¼ 22:1 dB and σ ¼ 20, and að Þ is the denoised image with
PSNR ¼ 29:8 dB by employing the LPG-PCA technique proposed in [25]. Despite the remark-
able improvement of PSNR, one can still see much residual noise in the denoising output.
There are mainly two reasons for the residual noise. First, because of the strong noise in the
original dataset Xυ, the covariance matrix Ωxυ is much noise degraded, which leads to
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estimation bias of the PCA transformation matrix and therefore deteriorates the denoising
performance; second, the strong noise in the original dataset will also lead to LPG errors,
which therefore results in estimation bias of the covariance matrix Ωxυ or Ωx. Consequently, it
is essential to further process the denoising output for a better image denoising. As the noise
has been much canceled in the first round of LPG-PCA denoising, the LPG correctness and the
estimation of Ωxυ or Ωx can be much ameliorated with the denoised image. Consequently, the
LPG-PCA denoising procedure for the second round for enhancing the denoising results.

According to this figure, we remark that the visual quality is much ameliorated after the
second round of refinement. As shown in Figure 3, in the second round of LPG-PCA denoising
technique [25], the noise-level should be updated.

Figure 2. (a) Original image Cameraman, (b) corresponding noisy image (PSNR ¼ 22:1 dB), (c) denoised image after the
first round of the technique proposed in [25] (PSNR ¼ 29:8 dB), and (d) denoised image after the second round of the
proposed technique (PSNR ¼ 30:1 dB) [25].

Figure 3. Flowchart of the two-stage LPG-PCA denoising technique proposed in [25].
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tics of image, and this operation makes the algorithm more stable for computing the PCA
transformation matrix. The problem now is how to estimate from the noisy data Xυ, the
noiseless dataset X. Once this dataset X is estimated, the central block and therefore we can
extract the central underlying pixel. Such procedure is applied to each pixel, and then the
entire image Iυ can be denoised. The LPG-PCA-based denoising is detailed in [25], and the
denoising refinement in the second stage will be detailed in the next part of this paper.

3.3. Denoising refinement in the second stage

Most of the noise will be suppressed by employing the denoising procedures described in [25].
However, there is still much visually unpleasant residual noise in the denoised image. Figure 2
shows an example of image denoising where (a) is the original image Cameraman, (b) the
noisy version of it with PSNR ¼ 22:1 dB and σ ¼ 20, and að Þ is the denoised image with
PSNR ¼ 29:8 dB by employing the LPG-PCA technique proposed in [25]. Despite the remark-
able improvement of PSNR, one can still see much residual noise in the denoising output.
There are mainly two reasons for the residual noise. First, because of the strong noise in the
original dataset Xυ, the covariance matrix Ωxυ is much noise degraded, which leads to
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estimation bias of the PCA transformation matrix and therefore deteriorates the denoising
performance; second, the strong noise in the original dataset will also lead to LPG errors,
which therefore results in estimation bias of the covariance matrix Ωxυ or Ωx. Consequently, it
is essential to further process the denoising output for a better image denoising. As the noise
has been much canceled in the first round of LPG-PCA denoising, the LPG correctness and the
estimation of Ωxυ or Ωx can be much ameliorated with the denoised image. Consequently, the
LPG-PCA denoising procedure for the second round for enhancing the denoising results.

According to this figure, we remark that the visual quality is much ameliorated after the
second round of refinement. As shown in Figure 3, in the second round of LPG-PCA denoising
technique [25], the noise-level should be updated.

Figure 2. (a) Original image Cameraman, (b) corresponding noisy image (PSNR ¼ 22:1 dB), (c) denoised image after the
first round of the technique proposed in [25] (PSNR ¼ 29:8 dB), and (d) denoised image after the second round of the
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Denote bybI, the denoised version of the noisy image in the first stage. ThebI can be expressed as

bI ¼ I þ υs (14)

where υs is the residual noise in the denoised image. The level estimation ofυs is denoted by

σs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E υ2s
� �q

and inputs it to the second round of LPG-PCA denoising algorithm. In [25], σs is

estimated based on the difference between Iυ andbI . Let

~I ¼ Iυ �bI ¼ υ� υs (15)

We have E ~I2
h i

¼ E υ2
� �þ E υ2s

� �� 2E υ � υs½ � ¼ σ2 þ σ2s � 2E υ � υs½ �. The υs can be seen as the

smoothed version of noise υ, and it mainly contains the low-frequency component of υ. Let
~υ ¼ υ� υs be their difference, and ~υ mainly contains the high-frequency component of υ.
There is E υ � υs½ � ¼ E ~υ � υs� þ E υ2s

� ��
. Generally, compared to E υ2s

� �
, E ~υ � υs�½ is much smaller,

and we can obtain the following approximation: E υ � υs½ � ≈E υ2s
� � ¼ σ2s . Thus, from E ~I2

h i
¼ σ2þ

σ2s � 2E υ � υsð Þ, we obtain

σ2s ≈ σ
2 � E ~I2

h i
(16)

In practice, υs will include not only the residual noise but also the estimation error of noiseless
image I. Consequently, in the implementation [25], of Lei Zhang et al. let

σs ¼ Cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 � E ~I2

h ir
(17)

where Cs is a constant satisfying Cs < 1. In [25], Lei Zhang et al. found experimentally that
setting Cs around 0:35 can lead to satisfying denoising results for most of the testing images.
Figure 2d shows the denoised image (PSNR ¼ 30:1 dB) after the second round of the LPG-PCA
denoising technique [25]. Although the PSNR is not too much ameliorated on this image, we
can remark clearly that the visual quality is much ameliorated by efficiently eliminating the
residual noise obtained from the first round of denoising.

4. The proposed image denoising technique

As previously mentioned, in this chapter, a new image denoising technique is proposed. It
combines two denoising approaches. The first one is a dual-tree discrete wavelet (DT-DWT)-
based denoising method [12], and the second one is a two-stage image denoising by PCA with
LPG [25]. This proposed technique consists at the first step in applying the first denoising
approach [12] to the noisy image in order to obtain the first estimation of the clean image (the
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cleaned image). Then, we estimate the level of noise corrupting the clean image. The cleaned
image, the noisy image, and the noise-level are used for applying the second approach which
is two-stage image denoising by PCA with LPG [25]. Figure 4 illustrates the block diagram of
the proposed technique.

According to this figure, the first step of the proposed image denoising technique consists
in applying the first denoising approach based on DT-DWT [12] to the noisy image, Ib, in
order to obtain a first estimate of the clean image, Id, and then estimates the noise-level, υ,
from Ib. The noisy images Ib, Id, and υ constitute the inputs of the second image denoising
system proposed in [25, 27]. The output of this system and the overall proposed one are
the final denoised image, Id1. In the image denoising system (LPG-PCA denoising) pro-
posed in [25, 27], Lei Zhang et al. have used the clean image, I, and the noise-level, υ, as
the inputs of this system [27]. However, only the noisy image, Ib, is available, and for this
raison, we have used in our proposed technique the denoising approach based on DT-
DWT [12] in order to obtain a cleaned image, Id, which is then used as a clean image, I.
This clean image is one important input of the denoising system proposed by Lei Zhang
et al. [27]. In the following two subsections, we will be interested in the first image
denoising approach based on DT-DWT [12] and the technique of noise-level estimation
proposed in [28, 29], from the noisy image, Ib.

5. The Hilbert transform

The Hilbert transform of a signal corresponds in Fourier plane to a filter with complex
gain, �i sign γð Þ [30]. This is corresponding to an impulse response vp 1

π t

� �
where vp is the

principal value in Cauchy sense [30]. The analytic signal is then constructed as follows:

Figure 4. The block diagram of the proposed image denoising technique.
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setting Cs around 0:35 can lead to satisfying denoising results for most of the testing images.
Figure 2d shows the denoised image (PSNR ¼ 30:1 dB) after the second round of the LPG-PCA
denoising technique [25]. Although the PSNR is not too much ameliorated on this image, we
can remark clearly that the visual quality is much ameliorated by efficiently eliminating the
residual noise obtained from the first round of denoising.

4. The proposed image denoising technique

As previously mentioned, in this chapter, a new image denoising technique is proposed. It
combines two denoising approaches. The first one is a dual-tree discrete wavelet (DT-DWT)-
based denoising method [12], and the second one is a two-stage image denoising by PCA with
LPG [25]. This proposed technique consists at the first step in applying the first denoising
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cleaned image). Then, we estimate the level of noise corrupting the clean image. The cleaned
image, the noisy image, and the noise-level are used for applying the second approach which
is two-stage image denoising by PCA with LPG [25]. Figure 4 illustrates the block diagram of
the proposed technique.

According to this figure, the first step of the proposed image denoising technique consists
in applying the first denoising approach based on DT-DWT [12] to the noisy image, Ib, in
order to obtain a first estimate of the clean image, Id, and then estimates the noise-level, υ,
from Ib. The noisy images Ib, Id, and υ constitute the inputs of the second image denoising
system proposed in [25, 27]. The output of this system and the overall proposed one are
the final denoised image, Id1. In the image denoising system (LPG-PCA denoising) pro-
posed in [25, 27], Lei Zhang et al. have used the clean image, I, and the noise-level, υ, as
the inputs of this system [27]. However, only the noisy image, Ib, is available, and for this
raison, we have used in our proposed technique the denoising approach based on DT-
DWT [12] in order to obtain a cleaned image, Id, which is then used as a clean image, I.
This clean image is one important input of the denoising system proposed by Lei Zhang
et al. [27]. In the following two subsections, we will be interested in the first image
denoising approach based on DT-DWT [12] and the technique of noise-level estimation
proposed in [28, 29], from the noisy image, Ib.

5. The Hilbert transform

The Hilbert transform of a signal corresponds in Fourier plane to a filter with complex
gain, �i sign γð Þ [30]. This is corresponding to an impulse response vp 1
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z tð Þ ¼ x tð Þ þ iH x tð Þf g ¼ x tð Þ þ i
π
vp
ðþ∞

�∞

x sð Þ
t� s

ds (18)

This analytic signal has only positive frequencies. The Hilbert transform of a real signal is
also real. Instead of considering the Hilbert transform of the wavelet (which is defined
through the associated filters), we can consider the Hilbert transform of the signal, and the

analysis is performed with initial wavelet because we have f ;Hψa, t

D E
¼ Hf ;ψa, t

D E
[30].

The latter equality is justified by the fact that the Hilbert transform is considered as a
linear filter [30]. Therefore, we have the following scheme: let X nð Þ be the signal to be
analyzed with real wavelet by using the Mallat algorithm in order to obtain the wavelet
coefficients, d1 j; kð Þ. Then, we analyze HX nð Þ with the same wavelet, and we obtain the
coefficients d2 j; kð Þ. Then, we construct the complex coefficients: dcomplex ¼ d1 j; kð Þ þ i d2 j; kð Þ.
As follows, the magnitude of those coefficients is named Hilbert magnitude. The draw-
backs of this method are as follows: The support of the Hilbert transform of a wavelet
having a compact support is infinite. There is a computing disadvantage because the cost
of two wavelet transforms plus the Hilbert Transform. Theoretically speaking, it is possi-
ble to limit the drawback of the support of the Hilbert transform of the wavelet by using
an approximate of the Hilbert transform. However, this approximation cannot be opti-
mized for all scales [30]. One solution of this problem has been proposed by Kingsbury:
the dual tree [30].

6. Dual-tree complex wavelet transform

The dual tree complex wavelet (DT-CWT) permits to make signal analysis by using two
different trees of DWT, with filters selected in such manner to obtain approximately a signal
decomposition using analytic wavelet [30]. Figure 5 shows a tree of DT-CWT, using two
different filter banks: h1 and g1 are high-pass filters of the first and second trees, and h0 and g0
are low-pass filters of the same two trees [30]. The first tree gives the coefficients of the real
part, dr(j,k), and the second tree gives those of the imaginary part, di(j,k). After that, we
construct the complex coefficients dcomplex(j,k) = dr(j,k) + i di(j,k). The magnitude of those
coefficients is named dual-tree magnitude [30].

This Q-shift dual-tree complex wavelet transform (Figure 5) is in 1D. Synthesis of the
filters adapted to this structure has been performed by many research works. Particularly,
Kingsbury [30] proposed some filters named Q-shift. In [30], some filters are employed,
and their utilization is equivalent to the signal analysis by wavelets illustrated in Figure 6.

We can see in this figure that the wavelet corresponding to the imaginary part tree is very near
to the Hilbert transform of the wavelet corresponding to the real part tree [30]. Finally, the
utilization of this structure requires an operation of prefiltering; it means that the filters used in
the first step are not the same as those used in the next step. The advantages of this method
compared to the simple Hilbert transform (Section 5) are [30]:
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• A lower computation cost ( Two DWT),

• An approximate of the Hilbert transform, is optimized for each scale,

• The possibility of an exact reconstruction is preserved.

Figure 5. Dual tree of real filters for the Q-shift DT-CWT, giving real and imaginary parts of complex coefficients from
tree (a) and tree (b), respectively [30].

Figure 6. Q-shift wavelet obtained with filters Antonini [30].
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The principal drawback of the DT-CWT is the non-possibility of the use of the well-known
wavelets of the DWT (Daubechies wavelet, Spline, etc.) and therefore the non-possibility to
choose the number of vanishing moments (all the Q-shift filter gives wavelets with two
vanishing moments).

6.1. 2D DT-CWT

To explain how the DT-CWT produces oriented wavelets, consider the 2D wavelet ψ x; yð Þ ¼
ψ xð Þ � ψ yð Þ associated with the row-column implementation of the wavelet transform, where
ψ xð Þ is a complex wavelet (approximately analytic) and is expressed as follows [31]:

ψ xð Þ ¼ ψh xð Þ þ i ψg xð Þ: (19)

Therefore, we obtain the following expression of ψ x; yð Þ:

ψ x; yð Þ ¼ ψh xð Þ þ iψg xð Þ
h i

ψh yð Þ þ iψg yð Þ
h i

¼ ψh xð Þψh yð Þ � ψg xð Þψg yð Þþ

i ψg xð Þψh yð Þ þ ψh xð Þψg yð Þ
h i

(20)

The following idealized diagram (Figure 7) illustrates the Fourier spectrum support of this
complex wavelet [31].

Since the (approximately) 1D wavelet spectrum is supported on just one side of the frequency
axis, the complex 2D wavelet (ψ x; yð Þ) spectrum is supported in just one quadrant of the 2D
frequency plane. That is why the complex 2D wavelet, ψ x; yð Þ, is oriented. If the real part of this
complex wavelet is taken, then the sum of two separable wavelets is obtained:

Real Part ψ x; yð Þf g ¼ ψh xð Þψh yð Þ � ψg xð Þψg yð Þ: (21)

Since the real function spectrum should be symmetric with respect to the origin, then the
spectrum of this real wavelet is supported in two quadrants of the 2D frequency plane (Figure 8).

Unlike the real separable wavelet, the support of the spectrum of this real wavelet has not the
checkerboard artefact and consequently this real wavelet (illustrated in the second panel of
Figure 11), is oriented at �45 ∘ . It is deserving mentioning that this construction is depending
on ψ xð Þ ¼ ψh xð Þ þ iψg xð Þ being (approximately) analytic or equivalently on ψg xð Þ being
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have

Real Part ψ2 x; yð Þ� � ¼ ψh xð Þψh yð Þ þ ψg xð Þψg yð Þ: (23)

The spectrum of which is supported in two quadrants of the 2D frequency plane as illustrated
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Again, neither the wavelet nor the spectrum of this real wavelet has the spectrum of the
checkerboard artifact. This real 2D wavelet is oriented at þ45 ∘ as illustrated in the fifth panel
of Figure 11. To have four more oriented real 2D wavelets, one can repeat this procedure on

Figure 8. Idealized diagram illustrating the support of spectrum of this real wavelet, Real Part ψ x; yð Þf g [31].

Figure 9. The idealized diagram in 2D frequency plane of the spectrum of this complex wavelet [31].

Wavelets and LPG-PCA for Image Denoising
http://dx.doi.org/10.5772/intechopen.74453

249



The principal drawback of the DT-CWT is the non-possibility of the use of the well-known
wavelets of the DWT (Daubechies wavelet, Spline, etc.) and therefore the non-possibility to
choose the number of vanishing moments (all the Q-shift filter gives wavelets with two
vanishing moments).

6.1. 2D DT-CWT

To explain how the DT-CWT produces oriented wavelets, consider the 2D wavelet ψ x; yð Þ ¼
ψ xð Þ � ψ yð Þ associated with the row-column implementation of the wavelet transform, where
ψ xð Þ is a complex wavelet (approximately analytic) and is expressed as follows [31]:

ψ xð Þ ¼ ψh xð Þ þ i ψg xð Þ: (19)

Therefore, we obtain the following expression of ψ x; yð Þ:

ψ x; yð Þ ¼ ψh xð Þ þ iψg xð Þ
h i

ψh yð Þ þ iψg yð Þ
h i

¼ ψh xð Þψh yð Þ � ψg xð Þψg yð Þþ

i ψg xð Þψh yð Þ þ ψh xð Þψg yð Þ
h i

(20)

The following idealized diagram (Figure 7) illustrates the Fourier spectrum support of this
complex wavelet [31].

Since the (approximately) 1D wavelet spectrum is supported on just one side of the frequency
axis, the complex 2D wavelet (ψ x; yð Þ) spectrum is supported in just one quadrant of the 2D
frequency plane. That is why the complex 2D wavelet, ψ x; yð Þ, is oriented. If the real part of this
complex wavelet is taken, then the sum of two separable wavelets is obtained:

Real Part ψ x; yð Þf g ¼ ψh xð Þψh yð Þ � ψg xð Þψg yð Þ: (21)

Since the real function spectrum should be symmetric with respect to the origin, then the
spectrum of this real wavelet is supported in two quadrants of the 2D frequency plane (Figure 8).

Unlike the real separable wavelet, the support of the spectrum of this real wavelet has not the
checkerboard artefact and consequently this real wavelet (illustrated in the second panel of
Figure 11), is oriented at �45 ∘ . It is deserving mentioning that this construction is depending
on ψ xð Þ ¼ ψh xð Þ þ iψg xð Þ being (approximately) analytic or equivalently on ψg xð Þ being

Figure 7. Idealized diagram illustrating the Fourier spectrum support of the complex wavelet, ψ x; yð Þ ¼ ψ xð Þ � ψ yð Þ [31].

Wavelet Theory and Its Applications248

approximately the Hilbert transform of ψh xð Þ (ψg xð Þ ≈H ψh xð Þ� �
). Note that ψh xð Þψh yð Þ is the

sub-band HH of a separable 2D real wavelet transform implemented employing the filters

h0 nð Þ0 ;h1 nð Þ
n o

. The term ψg xð Þψg yð Þ is also the sub-band HH which is obtained from the

application of a real separable wavelet transform. The latter is implemented by employing the

filters g0 nð Þ0;g1 nð Þ
n o

. To have a real 2D wavelet oriented at þ45 ∘ , we consider now the complex

2D wavelet ψ2 x; yð Þ ¼ ψ xð Þψ yð Þwhere ψ yð Þ is the complex conjugate of ψ yð Þ and, as previ-
ously mentioned, ψ xð Þ is approximately the analytic wavelet, ψh xð Þ þ iψg xð Þ. Therefore, we

have

ψ2 x; yð Þ ¼ ψh xð Þ þ iψg xð Þ
h i

ψh yð Þ � iψg yð Þ
h i

¼ ψh xð Þψh yð Þ þ ψg xð Þψg yð Þ þ i ψg xð Þψh yð Þ þ ψh xð Þψg yð Þ
h i (22)

The support in the 2D frequency plane of this complex wavelet spectrum is illustrated in
Figure 9.

As above, the spectrum of the complex wavelet, ψ2 x; yð Þ, is supported in just one quad-
rant of the 2D frequency plane. If the real part of this complex wavelet is taken, then we
have

Real Part ψ2 x; yð Þ� � ¼ ψh xð Þψh yð Þ þ ψg xð Þψg yð Þ: (23)

The spectrum of which is supported in two quadrants of the 2D frequency plane as illustrated
in Figure 10.

Again, neither the wavelet nor the spectrum of this real wavelet has the spectrum of the
checkerboard artifact. This real 2D wavelet is oriented at þ45 ∘ as illustrated in the fifth panel
of Figure 11. To have four more oriented real 2D wavelets, one can repeat this procedure on

Figure 8. Idealized diagram illustrating the support of spectrum of this real wavelet, Real Part ψ x; yð Þf g [31].

Figure 9. The idealized diagram in 2D frequency plane of the spectrum of this complex wavelet [31].

Wavelets and LPG-PCA for Image Denoising
http://dx.doi.org/10.5772/intechopen.74453

249



the complex wavelets expressed as follows: ϕ xð Þψ yð Þ, ψ xð Þϕ yð Þ, ϕ xð Þ ψ⇀ yð Þ, and ψ xð Þϕ yð Þ
where we have

ψ xð Þ ¼ ψh xð Þ þ iψg xð Þ (24)

ϕ xð Þ ¼ ϕh xð Þ þ i ϕg xð Þ (25)

By taking the real part of each of these wavelets, one can obtain four real oriented 2D wavelets.
Moreover, the two already obtained in Eqs. (21) and (23). Precisely, we have six wavelets
expressed as follows:

ψi x; yð Þ ¼ 1ffiffiffi
2
p ψ1, i x; yð Þ � ψ2, i x; yð Þ
� �

(26)

ψiþ3 x; yð Þ ¼ 1ffiffiffi
2
p ψ1, i x; yð Þ þ ψ2, i x; yð Þ
� �

(27)

For i ¼ 1, 2, 3, the two separable 2-D wavelet bases are expressed as follow:

Figure 10. Idealized diagram in 2D frequency plane of the spectrum Real Part ψ2 x; yð Þ� �
[31].

Figure 11. Typical wavelets associated with the real oriented 2D dual-tree wavelet transform. Top row illustrates the
wavelets in the space domain: bottom row illustrates the (idealized) support of the Fourier spectrum of each wavelet in 2D
frequency plane. The absence of the checkerboard phenomenon is observed in both frequency and spatial domains.
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ψ1,1 x; yð Þ ¼ ϕh xð Þψh yð Þh,ψ2,1 x; yð Þ ¼ ϕg xð Þψg yð Þg, (28)

ψ1,2 x; yð Þ ¼ ψh xð Þϕh yð Þh,ψ2,2 x; yð Þ ¼ ψg xð Þϕg yð Þg, (29)

ψ1,3 x; yð Þ ¼ ψh xð Þψh yð Þh,ψ2,3 x; yð Þ ¼ ψg xð Þψg yð Þg, (30)

The normalization factor 1=
ffiffiffi
2
p

is used only so that the sum/difference operation constitutes
an orthonormal operation. In Figure 11 the six real oriented wavelets derived from a pair of
typical wavelets satisfying ψg xð Þ ≈H ψh xð Þ� �

are illustrated. Compared to separable wave-

lets, these six non-separable wavelets succeed in isolating different orientations. Each of
these six wavelets are aligned with a specific direction. Moreover, no checkerboard effect
appears. In addition, they cover more distinct orientations than the separable wavelets
obtained from the application of DWT. Moreover, since the sum/difference operation is
orthonormal, the wavelet set is obtained from integer translates and dyadic dilations from a
frame [31].

7. The technique of Noise-level estimation

In many image processing applications, the noise-level is an important parameter. For exam-
ple, the performance of an image denoising technique can be much degraded due to the poor
noise-level estimation. The most available denoising techniques simply supposed that the
noise-level is known that largely prevents them from practical employment. Furthermore,
even with the given true noise-level, those denoising techniques still cannot achieve the best
performance, precisely for scenes with rich texture. Xinhao Liu et al. [28, 29] have proposed a
technique of patch-based noise-level estimation, and they suggested that the noise-level
parameter should be tuned according to the complexity of the scene. Their approach [28, 29]
includes the process of selecting low-rank patches without high-frequency components from a
single noisy image. Then, the noise-level was estimated from the selected patches employing
principal component analysis. Because the exact noise-level does not always provide the best
performance for non-blind denoising. Experiments prove that both the stability and precision
are superior to the state-of-the-art noise-level estimation technique for different noise-levels
and scenes.

8. Evaluation criteria

In this section, we will evaluate the three techniques which are the proposed image denoising
techniques: the first image denoising approach based on DT-CWT [12] and the second
denoising approach and the two-stage image denoising by principal component analysis with
local pixel grouping [25]. This evaluation is based on the computation of PSNR and SSIM
which are detailed in [32].
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frame [31].
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noise-level estimation. The most available denoising techniques simply supposed that the
noise-level is known that largely prevents them from practical employment. Furthermore,
even with the given true noise-level, those denoising techniques still cannot achieve the best
performance, precisely for scenes with rich texture. Xinhao Liu et al. [28, 29] have proposed a
technique of patch-based noise-level estimation, and they suggested that the noise-level
parameter should be tuned according to the complexity of the scene. Their approach [28, 29]
includes the process of selecting low-rank patches without high-frequency components from a
single noisy image. Then, the noise-level was estimated from the selected patches employing
principal component analysis. Because the exact noise-level does not always provide the best
performance for non-blind denoising. Experiments prove that both the stability and precision
are superior to the state-of-the-art noise-level estimation technique for different noise-levels
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In this section, we will evaluate the three techniques which are the proposed image denoising
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9. Results and discussion

In this work, we have applied the proposed image denoising technique, the first image denoising
technique based on DT-CWT [12] and the second denoising technique and the two-stage image
denoising by principal component analysis with local pixel grouping [25], on a number of digital
images such as “House,” “Lena,” and “Cameraman.” These images are degraded by additive
white noise with different values of noise-level, σ. PSNR and SSIM values obtained from the
application of the three mentioned techniques on the noisy images are listed in Table 1.

Technique The first image
denoising
technique based
on DT-DWT [12]

Two-stage image denoising
by principal component
analysis with local pixel
grouping [25]: first stage

Two-stage image denoising
by principal component
analysis with local pixel
grouping [25]: second stage

The proposed
technique

House (σ = 10) 34.7138 (0.8778) 35.4 (0.9003) 35.6 (0.9012) 36.1223 (0.9130)

House (σ = 20) 31.6671 (0.8253) 31.8 (0.8084) 32.5 (0.8471) 33.0828 (0.8677)

House (σ = 30) 29.8494 (0.7877) 29.3 (0.7225) 30.4 (0.8185) 31.2095 (0.8393)

House (σ = 40) 28.5744 (0.8084) 27.3(0.6243) 28.9 (0.7902) 29.7344 (0.8084)

Lena (σ = 10) 33.6767(0.9170) 33.6 (0.9218) 33.7 (0.9243) 34.0765 (0.9271)

Lena (σ = 20) 30.0002 (0.8539) 29.5 (0.8346) 29.7 (0.8605) 30.5415 (0.8765)

Lena (σ = 30) 27.9859 (0.8016) 27.1 (0.7441) 27.6 (0.8066) 28.3595 (0.8292)

Lena (σ = 40) 26.6364 (0.7585) 25.4 (0.6597) 26.0 (0.7578) 26.8566 (0.7882)

Cameraman (σ = 10) 32.7481 (0.8989) 33.9 (0.9261) 34.1 (0.9356) 33.6141 (0.9241)

Cameraman (σ = 20) 28.9990 (0.8175) 29.8 (0.8320) 30.1 (0.8902) 29.7184 (0.8575)

Cameraman (σ = 30) 27.1022 (0.7641) 27.3 (0.7395) 27.8(0.8558) 27.8174 (0.8151)

Cameraman (σ = 40) 25.7866 (0.7241) 25.5 (0.6393) 26.2 (0.8211) 26.4954 (0.7826)

Monarch (σ = 10) 32.9907 (0.9369) 34.0 (0.9522) 34.2 (0.9594) 34.0698 (0.9553)

Monarch (σ = 20) 29.1114 (0.8811) 29.6 (0.8859) 30.0 (0.9202) 30.0384 (0.9145)

Monarch (σ = 30) 27.0058 (0.8346) 27.0 (0.8071) 27.4 (0.8769) 27.7209 (0.8735)

Monarch (σ = 40) 25.5973 (0.7950) 25.2 (0.7267) 25.9 (0.8378) 26.0832 (0.8293)

Peppers (σ = 10) 33.4942 (0.9056) 33.4 (0.8909) 33.3 (0.8943) 33.7904 (0.9189)

Peppers (σ = 20) 29.8124 (0.8424) 29.9 (0.8177) 30.1 (0.8413) 30.5252 (0.8743)

Peppers (σ = 30) 27.7810 (0.7924) 27.5 (0.7332) 27.9 (0.7973) 28.4765 (0.8356)

Peppers (σ = 40) 26.4045 (0.7507) 25.9 (0.6447) 26.7(0.7648) 26.9883 (0.8013)

Paint (σ = 10) 32.5488 (0.9165) 33.5 (0.9280) 33.6 (0.9311) 33.3567 (0.9276)

Paint (σ = 20) 28.5980 (0.8416) 26.8 (0.7467) 29.5 (0.8683) 29.4699 (0.8648)

Paint (σ = 30) 26.6067 (0.7817) 26.8 (0.7467) 27.2 (0.8088) 27.2540 (0.8077)

Paint (σ = 40) 25.2968 (0.7330) 25.0 (0.6590) 25.6 (0.7569) 25.6389 (0.7560)

Table 1. PSNR (dB) and SSIM results of the denoised images for the different techniques.
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Figure 12. (a) Clean image (Cameraman.tif), (b) Noisy image with, (c) The denoised image by the proposed technique
(the first stage) and denoised image by the proposed technique (the second stage).

Figure 13. (a) Clean image (Monarch.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the
first stage) and denoised image by the proposed technique (the second stage).
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Figure 12. (a) Clean image (Cameraman.tif), (b) Noisy image with, (c) The denoised image by the proposed technique
(the first stage) and denoised image by the proposed technique (the second stage).

Figure 13. (a) Clean image (Monarch.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the
first stage) and denoised image by the proposed technique (the second stage).
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Figure 14. (a) Clean image (Lena.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the first
stage) and denoised image by the proposed technique (the second stage).

Figure 15. (a) Clean image (Peppers.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the
first stage) and denoised image by the proposed technique (the second stage).
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These obtained results (Table 1) show clearly that the proposed technique outperforms the
denoising technique based on DT-CWT proposed in [12] and the denoising approach based on
LPG-PCA [25]. Figures 12–15 show four examples of image denoising using the proposed
technique.

These figures show that the noise corrupting the original images is sufficiently suppressed.
Moreover, the proposed technique permits to obtain denoised images with good perceptual
quality. In each of these figures, the image (c) is obtained after the first denoising stage in the
proposed technique. In this image (c), some noise is still existing, whereas it is considerably
reduced into the image (d) obtained after the second denoising step. In the following subsec-
tion, we will give the results obtained by applying the proposed technique, the LPG-PCA-
based denoising technique [25, 27] and the DT-DWT-based denoising one to a number of
grayscale images. Those results are in terms of SNR and MSE and are listed in Table 2.

Technique The first image denoising
technique based on DT-DWT
[12]

Two-stage image denoising by
principal component analysis
with local pixel grouping [25]

The proposed technique

House (σ = 10) SNR = 78.00, MSE = 21.96 SNR = 79.41, MSE = 15.88 SNR = 79.44, MSE = 15.75

House (σ = 20) SNR = 74.95, MSE = 44.29 SNR = 76.37, MSE = 31.97 SNR = 76.38, MSE = 31.92

House (σ = 30) SNR = 73.14, MSE = 67.31 SNR = 74.50, MSE = 49.21 SNR = 74.50, MSE = 49.21

House (σ = 40) SNR = 71.86, MSE = 90.28 SNR = 73.02, MSE = 69.16 SNR = 73.02, MSE = 69.14

Lena (σ = 10) SNR = 74.67, MSE = 27.88 SNR = 75.28, MSE = 24.17 SNR = 75.28, MSE = 24.19

Lena (σ = 20) SNR = 70.99, MSE = 65.02 SNR = 71.53, MSE = 57.40 SNR = 71.55, MSE = 57.19

Lena (σ = 30) SNR = 68.97, MSE = 103.39 SNR = 69.35, MSE = 94.87 SNR = 69.37, MSE = 94.36

Lena (σ = 40) SNR = 67.62, MSE = 141.07 SNR = 67.85, MSE = 134.09 SNR = 67.87, MSE = 133.35

Cameraman (σ = 10) SNR = 75.33, MSE = 34.53 SNR = 76.19, MSE = 28.29 SNR = 76.23, MSE = 28.06

Cameraman (σ = 20) SNR = 71.58, MSE = 81.88 SNR = 72.30, MSE = 69.38 SNR = 72.33, MSE = 68.80

Cameraman (σ = 30) SNR = 69.68, MSE = 126.72 SNR = 70.39, MSE = 107.48 SNR = 70.45, MSE = 106.00

Cameraman (σ = 40) SNR = 68.36, MSE = 171.56 SNR = 69.07, MSE = 145.72 SNR = 69.14, MSE = 143.51

Monarch (σ = 10) SNR = 74.94, MSE = 32.65 SNR = 76.02, MSE = 25.47 SNR = 76.01, MSE = 25.55

Monarch (σ = 20) SNR = 71.06, MSE = 79.78 SNR = 71.99, MSE = 64.45 SNR = 71.98, MSE = 64.53

Monarch (σ = 30) SNR = 68.96, MSE = 129.56 SNR = 69.67, MSE = 109.89 SNR = 69.68, MSE = 109.62

Monarch (σ = 40) SNR = 67.55, MSE = 179.20 SNR = 68.01, MSE = 161.05 SNR = 68.03, MSE = 160.25

Peppers (σ = 10) SNR = 76.07, MSE = 29.08 SNR = 76.65, MSE = 25.43 SNR = 76.63, MSE = 25.56

Peppers (σ = 20) SNR = 72.39, MSE = 67.89 SNR = 73.10, MSE = 57.61 SNR = 73.12, MSE = 57.43

Peppers (σ = 30) SNR = 70.36, MSE = 108.38 SNR = 71.05, MSE = 92.34 SNR = 71.07, MSE = 92.02

Peppers (σ = 40) SNR = 68.98, MSE = 148.80 SNR = 69.57, MSE = 130.09 SNR = 69.58, MSE = 129.58

Table 2. SNR (dB) and MSE results of the denoised images for the different techniques.
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Figure 14. (a) Clean image (Lena.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the first
stage) and denoised image by the proposed technique (the second stage).

Figure 15. (a) Clean image (Peppers.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the
first stage) and denoised image by the proposed technique (the second stage).
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These figures show that the noise corrupting the original images is sufficiently suppressed.
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Those results show that the proposed technique outperforms the two other techniques (the
LPG-PCA-based denoising technique [25, 27] and the DT-DWT-based denoising one [12]). In
fact the proposed techniques are the highest values of SNR and lowest values of MSE.

10. Conclusion

In this chapter, a new image denoising technique is proposed. It combines two denoising
approaches. The first one is a dual-tree discrete wavelet transform (DT-DWT)-based denoising
technique, and the second one is a two-stage image denoising by principal component analysis
with local pixel grouping (LPG-PCA). The first step of this proposed technique consists in
applying the first approach to the noisy image in order to obtain a first estimate of the clean
image. Then, we estimate the level of noise corrupting the original image. This estimation is
performed by using a method of noise estimation from noisy images. The third step of the
proposed technique consists in using this first clean image estimation, the noisy image, and
this noise-level estimate as inputs of the second image denoising system (LPG-PCA-based
image denoising) in order to obtain the final estimation of the clean image. A comparative
study is performed between the proposed image denoising technique and two others
denoising approaches where the first is based on DT-DWT and the second is based on LPG-
PCA. This study is based on PSNR and SSIM computations, and the obtained results show that
the proposed technique outperforms the two other denoising approaches. We also computed
SNR (Signal to Noise Ratio) and MSE (Mean Square Error) and the obtained results also show
that the proposed technique outperforms the others techniques.
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